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AbstractGaussian scale-space is considered to be a modern bottom-up tool in computer vision. The Amer-ican and European vision community, however, is unaware of the fact that Gaussian scale-spacehas already been axiomatically derived in 1959 in a Japanese paper by Taizo Iijima. This resultformed the starting point of an entire world of linear scale-space research in Japan ranging fromvarious axiomatic derivations over deep structure analysis to applications to optical characterrecognition (OCR). Since this world is unknown to western scale-space researchers and many pa-pers are written in Japanese, we give an overview of the basic concepts. In particular, we reviewfour Japanese axiomatics for Gaussian scale-space which have been proposed between 1959 and1981. By juxtaposing them to ten American or European axiomatics, we present an overview ofthe state-of-the-art in Gaussian scale-space axiomatics.Key words: Scale-space, axiomatics, deep structure, OCR.1



1 IntroductionA rapidly increasing number of publications, workshops and conferences which are devoted to scale-space ideas con�rms the impression that the scale-space paradigm belongs to the challenging newtopics in computer vision.In scale-space theory one embeds an image f : IR2 ! IR into a continuous family fTtf j t � 0g ofgradually smoother versions of it. The original image corresponds to the scale t = 0 and increasing thescale should simplify the image without creating spurious structures. Since a scale-space introduces ahierarchy of the image features, it constitutes an important step from a pixel-related image descriptionto a semantical image description.Usually a 1983 paper by Witkin [67] or an unpublished 1980 report by Stans�eld [60] are regarded as the�rst references to the scale-space idea. Witkin obtained a scale-space representation by convolution ofthe original image with Gaussians of increasing width. Koenderink [41] pointed out that this Gaussianscale-space is equivalent to calculating (Ttf)(x) as the solution u(x; t) of the linear di�usion process@tu = Xi @xixiu =: �u; (1)u(x; 0) = f(x): (2)Soon linear di�usion �ltering became very popular in image processing, and many results have beenobtained with respect to axiomatization, di�erential geometry, deep structure, and applications. Anexcellent overview of all these aspects can be found in the recent book edited by Sporring, Nielsen,Florack and Johansen [59].Perona and Malik [53] pioneered the �eld of nonlinear di�usion processes, where the di�usivity isadapted to the underlying image structure. Many regularized variants of the Perona{Malik �lter arewell-posed and reveal scale-space properties [63, 64, 65]. Other important classes of nonlinear scale-space have been established as well. Some of them are continuous-scale versions of classical morpho-logical processes such as dilation or erosion [4, 5, 38], others can be described as intrinsic evolutions oflevel curves [1, 40, 50, 56]. These scale-spaces are generated by nonlinear partial di�erential equations(PDEs) which are designed to have a�ne [1, 56] or projective invariances [11, 6, 50, 10]. Overviews ofnonlinear approaches can be found in [9, 16, 64].This diversity of scale-space approaches has triggered people to investigate which of these equationscan be distinguished in a unique way from others, because they can be derived from �rst principles(axioms) [41, 68, 3, 44, 13, 4, 1, 50, 52, 48, 45, 12]. Apart from a few exceptions [4, 1, 50], all of theseaxiomatics use (explicitly or implicitly) one requirement: a linearity assumption. Within such a linearframework it was always possible to derive the Gaussian scale-space as the unique possibility. Thefact that many of these approaches have been found recently shows that linear scale-space axiomaticbelongs to the current research topics in computer vision.However, since the linear di�usion equation is well-established in mathematics and physics sinceFourier's pioneering work in 1822 [14], and image processing was already an active �eld in the �fties,one might wonder whether the concept of Gaussian scale-space is not much older as well. Koenderink[42] states in a very nice preface discussing how scale-related ideas can be traced back in literature,poetry, painting and cartography that \the key ideas have been around for centuries and essentiallyeverything important was around by the end of the nineteenth century." The goal of the present paperis to supplement these statements by showing that not only the ingredients, but also their �nal mixtureand application to image processing is much older than generally assumed. To this end we presentfour Japanese scale-space approaches, which are older than American and European ones. The �rstone of them dates back to 1959.The outline of this paper is as follows: In Section 2 we describe the basic ideas of a 1-D axiomatic forGaussian scale-space that has been discovered by Taizo Iijima in 1959 [20]. Section 3 studies a 2-Dversion of this axiomatics leading to a�ne Gaussian scale-space. It has been established in 1962. In1971 Iijima presented a more physical 2-D axiomatics of a�ne Gaussian scale-space [25]. Its principlesare sketched in Section 4. Section 5 describes a 2-D axiomatic which has been found by NobuyukiOtsu in 1981 [51]. In Section 6 we shall relate all these results to the well-known linear axiomaticsthat have been established since 1984. We conclude with a discussion in Section 7. In order to givethe reader an impression of the spirit of these Japanese papers, we stick closely to the notations inthe original work. The discussions are supplemented with remarks on the philosophical background,2



physical and biological motivations, results on the deep structure in scale-space and applications tooptical character recognition (OCR).A preliminary version of this paper focusing exclusively on the axiomatic aspects of 2 of these 4Japanese frameworks has been presented in [66].2 Iijima's 1-D axiomatic (1959)2.1 Historical and philosophical backgroundJapanese scale-space research was initiated by Taizo Iijima. After graduating in electrical engineeringand mathematics from Tokyo Institute of Technology in 1948, he joined the Electrotechnical Labo-ratory (ETL). In his thesis titled `A fundamental study on electromagnetic radiation' he derived thethird analytical solution of the radiation equation. During these studies he acquired the mathematicaland physical prereqisites for his later scale-space work.At the ETL Iijima was involved in di�erent research activities on speech and pattern recognition.Triggered by actual needs such as optical character recognition (OCR), but also voice typewriting, ormedical diagnosis, he wanted to establish a general theoretical framework for extracting characteristicinformation of patterns. This framework should avoid extreme standpoints such as purely determin-istic or purely stochastic classi�cations, and it should make use of the original physical or geometriccharacteristics of the patterns [24].Besides this problem-driven background, there was also a philosophical motivation for Iijima's scale-space research. Its principles go back to Zen Buddhism, and they can be characterized by the sentence\Anything is nothing, nothing is anything". Applied to the scale-space context this means to obtainthe desired information, it is necessary to control the unwanted information. The blurred scale-spaceevolution may be interpreted as a kind of unwanted information which helps to understand the se-mantical content of the unblurred image. In this sense important information is existing in seeminglyunimportant information.2.2 AxiomsIijima's �rst axiomatic formulation of the scale-space concept can be found in a technical paper from1959 titled `Basic theory of pattern observation' [20]. A journal version of this paper has been publishedin 1962 under the title `Basic theory on normalization of pattern (In case of typical one-dimensionalpattern)' [21]. Both papers are written in Japanese. The restriction to the 1-D case is for simplicityreasons. Extensions to 2-D are discussed in Section 3.Iijima imposes basic principles which are in accordance with requirements from observation theory:a robust object recognition should be invariant under changes in the re
ected light intensity, parallelshifts in position, and expansions or contractions of the object.In addition to these three transformations he considers an observation transformation � which dependson an observation parameter � and which transforms the original image g(x) into a blurred versionf(x). This class of blurring transformations is called `boke' (defocusing). He assumes that it has thestructure1 f(x) = �[g(x0); x; �] = 1Z�1 �fg(x0); x; x0; �g dx0; (3)and that it should satisfy four conditions:(I) Linearity (with respect to multiplications):If the intensity of a pattern becomes A times its original intensity, then the same should happento the observed pattern: �[Ag(x0); x; �] = A�[g(x0); x; �]: (4)(II) Translation invariance:Filtering a translated image is the same as translating the �ltered image:�[g(x0�a); x; �] = �[g(x0); x�a; �]: (5)1The variable x0 serves as a dummy variable. 3



(III) Scale invariance:If a pattern is spatially enlarged by some factor �, then there exists a �0 = �0(�; �) such that�[g(x0=�); x; �] = �[g(x0); x=�; �0]: (6)(IV) (Generalized) semigroup property:If g is observed under a parameter �1 and this observation is observed under a parameter �2,then this is equivalent to observing g under a suitable parameter �3:�h�[g(x00); x0; �1]; x; �2i = �[g(x00); x; �3]; (7)where �3 = �3(�1; �2), but not necessarily �3 = �1 + �2.We recognize that the �rst three principles re
ect just the requirements from observation theory.Later on we shall see that { in order to determine the Gaussian uniquely { this axiomatic has to besupplemented with a �fth requirement: preservation of positivity.2.3 ConsequencesIn order to determine the function � Iijima establishes in a very systematic way four lemmas whichstart with the class (3) and con�ne this family by subsequently imposing one more of the conditions(I){(IV):(a) Lemma 1:If � has the structure (3) and satis�es the linearity axiom (I), then it can be written as theintegral �[g(x0); x; �] = 1Z�1 g(x0)�(x; x0; �) dx0: (8)(b) Lemma 2:If � is given by (8) and satis�es the translation invariance axiom (II), then it can be written asa convolution operation: �[g(x0); x; �] = 1Z�1 g(x0)�(x�x0; �) dx0: (9)(c) Lemma 3:If � is given by (9) and satis�es the scale invariance axiom (III), then it can be written as�[g(x0); x; �] = 1Z�1 g(x0)�(�(�)(x�x0)) �(�) dx0; (10)where �(�) is an arbitrary function of �.(d) Lemma 4:If � is given by (10) and satis�es the semigroup axiom (IV), then it can be written either as�[g(x0); x; �] = 1Z�1 g(x0)�(�(�)(x�x0)) �(�) dx0 (11)where � has the speci�c structure�(u) = 12� 1Z�1 exp (�k2m�2m+i�u) d� (k 2 IR; m = 1; 2; :::); (12)or �[g(x0); x; �] � 0: (13)4



The proofs of the �rst three lemmas are rather short and not very complicated, whereas the longerproof of Lemma 4 involves some more sophisticated reasonings in the Fourier domain.In a next step Iijima simpli�es the result of Lemma 4. The case �[g(x0); x; �] � 0 is of no scienti�cinterest and is not considered any further. In equation (11) the function � is eliminated by de�ning(without loss of generality) a new scale parameter � via �(�) = k=�. Then the k-dependence in (11)and (12) immediately vanishes by means of substitution of variables. The results are summarized ina theorem, which states that � satisfying (3) and the axioms (I){(IV) is given by�[g(x0); x; �] = 1Z�1 g(x0)�m�x� x0� � dx0� (14)with �m(u) = 12� 1Z�1 exp (��2m+i�u) d� (m = 1; 2; :::): (15)For this family it follows that �0 in (III) becomes �0 = �=�, and �3 in (IV) satis�es�2m3 = �2m1 + �2m2 : (16)For the special case m = 1 equation (15) becomes�1(u) = 12p� exp��u24 � ; (17)which gives �[g(x0); x; �] = 12p�� 1Z�1 g(x0) exp��(x� x0)24�2 � dx0: (18)Thus, �[g(x0); x; �] is just the convolution between g and a Gaussian with standard deviation �p2.In another theorem he establishes that, if one requires that � is positivity preserving, i.e.�[f(x0); x; �] > 0 8 f(x) > 0; 8� > 0; (19)then m = 1 arises by necessity. The proof presents an explicit example, where the positivity is notpreserved for m > 1.This concludes his axiomatic derivation of the Gaussian kernel under �ve assumptions: linearity,translation invariance, scale invariance, semi-group property, and preservation of positivity.Interestingly, Iijima used his axiomatic also for justifying why humans and many animals have avisual system that is based on a lens [24]: an optical lens has a Gaussian-like blurring pro�le. In thissense, its existence can be regarded as a natural consequence from elementary observational principals.Conversely, it indicates that it is natural to require preservation of positivity.Iijima considered scale-space as a �rst part of his theory of pattern recognition. In [24] one can �nd anoverview of his ideas, the main 1-D results, their motivation from a viewpoint of observation theoryand their theoretical foundation as a classi�cation tool for OCR and other problems. This paper iswritten in English.3 Iijima's 2-D axiomatic (1962)Having obtained these one-dimensional results, it was straightforward for Iijima to generalize them toa two-dimensional scale-space axiomatic. This was done in a technical paper from 1962 [22], followedby a journal paper in 1963 [23], which also contains an interesting English abstract.In this paper he considers a blurring transformation of typef�(x) = �[f(x0); x;�] = 1Z�1 1Z�1 �ff(x0); x; x0;�g dx01dx02; (20)where � is a positive de�nite 2� 2 matrix. This transformation should satisfy four conditions:5



(I) Linearity (with respect to multiplications):�[Ff(x0); x;�] = F �[f(x0); x;�] 8F 2 IR: (21)(II) Translation invariance:�[f(x0�a); x;�] = �[f(x0); x�a;�] 8 a 2 IR: (22)(III) Scale invariance and closedness under a�ne transformations:If the pattern is transformed by an (invertible) matrix �, then there exists a �0 = �0(�;�) suchthat �[f(��1x0); x;�] = �[f(x0);��1x;�0]: (23)(IV) (Generalized) semigroup property:For every �1 and �2 there exists a �3 = �3(�1;�2) such that�h�[f(x00); x0;�1]; x;�2i = �[f(x00); x;�3]: (24)These four axioms in combination with the requirement of positivity preservation are su�cient toderive that the blurring transformation � is given by the a�ne Gaussian scale-space:�[f(x0); x;�] = 1Z�1 1Z�1 f(x01; x02) �1�x1�x01; x2�x02;�� dx01 dx02 (25)with �1(u1; u2;�) = 14��2 exp���22u21 � 2�12u1u2 + �11u224�2 � (26)and � = �2� �11 �12�12 �22 � ; det� �11 �12�12 �22 � = 1: (27)In order to single out the usual (isotropic) Gaussian scale-space, one has to impose one more axiom,namely invariance under rotations. Then axiom (III) should be reduced to pure scale invariance.4 Iijima's 2-D axiomatic based on physical principles (1971)4.1 The principlesIn 1971 Iijima decided to reconsider his scale-space and pattern recognition theory in order to get toa consistent reformulation which leads to a simpli�cation of his ideas.As a result, 2-D a�ne Gaussian scale-space has been derived from physical principles. This is treatedin a paper, which is available as a complete English translation in [25].The goal of this paper is to obtain a generalized �gure f(r; �) from an original �gure f(r) in a waywhich is comparable with the defocusing of an optical system. Two principles are assumed to hold:(I) Conservation principle:The blurring transformation does not change the total light energy within the image. This meansthat the image satis�es the continuity equation@f(r; �)@� + div I(r; �) = 0 (28)where the 
ux I denotes the �gure 
ow.(II) Principle of maximum loss of �gure impression:The �gure 
ow is determined such that its normalized expressionJ(I) := kI rfk2IR�1I (29)takes the maximum value. Here, R(�) denotes a positive de�nite matrix which is the mediumconstant of the blurring process. 6



From the last principle he derives thatI(r; �) = �R(�) � rf(r; �): (30)Together with the conservation principle this leads to the anisotropic linear di�usion equation@f(r; �)@� = div�R(�) � rf(r; �)� (31)which is just the formulation of a�ne Gaussian scale-space as a partial di�erential equation. R(�) isa di�usion tensor. Iijima calls this equation the basic equation of �gure.4.2 Further results by Iijima and his studentsIn the remainder of [25] Iijima shows that this equation is essentially invariant under conformaltransformations describing multiplication of grey values with a constant, addition of linear bright-ness gradients, translations, and a�ne transformations. Essentially invariant means that it may betransformed into another anisotropic linear di�usion equation.The set of these conformal mappings form an algebraic group, while the set of a�ne Gaussian blurringtransformations form a semigroup. Iijima studies compositions of a conformal mapping and a blurringtransformation under the name observational transformations. These transformations are used toconstruct a theory of pattern classi�cation: two �gures are considered as equivalent if they result fromthe same original �gure by observational transformations.Iijima compares the invariance of the basic equation of �gure under conformal transformations withthe invariance of Newton's basic equations of motion to Galileo's transformation, and the invarianceof the Maxwell equations to the Lorentz transformation. It seems that he was fully aware of the futureimportance of his discovery when he wrote in [25] that \this paper provides a basis for exploringthe recognition theory of visual patterns and solving mathematically the various problems in visualphysiology".This subsequent recognition theory is documented in a series of Japanese papers which are eitheravailable as full English translations [26, 27, 28, 29, 30] or as extended English abstracts [31, 32].Iijima regards a Gaussian-blurred �gure as an element in a Hilbert space which can be expanded inan orthonormal function system given in terms of Hermite polynomials. The similarity between twopatterns is a function of the scalar product in this Hilbert space. Gaussian blurring plays a centralrole in this theory, because it makes the algorithms insensitive to noise, it reduces e�ects of positionaldeviation, and it allows a coarser sampling. In order to overcome the problem that blurred patternsbecome more similar, he devised a speci�c canonical transformation. Incorporating all these featuresand modifying the similarity measure has lead Iijima to a robust scale-space based pattern matchingtechnique which he called multiple similarity method.Applications of Iijima's theory to OCR have been presented in English proceedings papers at the FirstUSA{Japan Computer Conference in 1972 [35], and at the First International Joint Conference onPattern Recognition in 1973 [36]. In [35] it is described how Iijima, Genchi and Mori have realizedthe multiple similarity method in hardware in the optical character reader ASPET/71. This machinewas capable of reading 2000 alphanumeric characters per second, and the scale-space part has beenregarded as the reason for its reliability and robustness. Others stated about ASPET/71 that \ithas been proved to have better performance than any similar conventional method" [49]. It is nowexhibited at the National Museum of Sciences in Tokyo. The ASPET/71 was an analog machine, butits commercial variant OCR-V100 by Toshiba used digital technology fully. Iijima's multiple similaritymethod has also become the main algorithm of Toshiba's later OCR systems [47].In 1973 Iijima condensed his whole scale-space and pattern classi�cation theory to a Japanese textbook[33]. It can be regarded as one of the �rst monographs on linear scale-space theory.In the eighties he addressed together with Nan-yuan Zhao, a Ph.D. student of him, the problem ofdeep structure analysis in scale-space [70]; see also the discussion in [37]. For a solution f(x; t) of theisotropic linear di�usion equation, they constructed a curve which comprises the stationary points,i.e. locations (x; t) with rf(x; t) = 0. This so-called stationary curve r(t) obeys the equationHess(f) dr(t)dt = ���rf(r; t)�: (32)7



They stated criteria for identifying stable viewpoints on the stationary curve, for instance by requiringthat dr(t)dt vanishes there without vanishing in a neighbourhood. Afterwards they linked these stableviewpoints to a topological scale-space tree [71]. It provides an hierarchical organization of extremaand saddle points at stable scales. To each stable point (xi; ti) they assign a region of interest which isgiven by a disk with center xi and radius ti. Applied to an image of Zhao himself, this focus-of-attentionmethod extracted eyes, nostrils and the mouth as regions of interest [69].Parts of this work on scale-space trees was further pursued by the image processing group of MakotoSato, another former Ph.D. student of Iijima. Sato's group established linear scale-space results rangingfrom deep structure analysis [57, 58, 62, 7] to the �ltering of periodic or spherical patterns [61, 39].All cited Sato papers are written in English.Iijima continued his research on scale-space techniques for OCR till the nineties [2]. After 1972 heheld professorships at Tokyo Institute of Technology, Tokyo Engineering University, and the AdvancedInstitute of Science and Technology. In spring 1997 he retired at the age of 72. An English bibliographycan be found in [2].5 Otsu's 2-D axiomatic (1981)5.1 Derivation of the GaussianIn 1981 another Japanese scale-space axiomatic has been established in the Ph.D. thesis of NobuyukiOtsu [51]. He wrote his thesis at the ETL, where Iijima was working in the sixties. Otsu derives two-dimensional Gaussian scale-space in an axiomatic way by modifying the axioms described in Section 2.Section 4.1 of his thesis is titled `Axiomatic derivation of the scale transformation'. There he considerssome transformation of an image f into an image ~f , for which the following holds:(I) Representation as a linear integral operator:There exists a function W : IR2 � IR2 ! IR such that~f(r) = ZIR2 W (r; r0) f(r0) dr0 8 r 2 IR2: (33)(II) Translation invariance:For all r 2 IR2 and for all a 2 IR2 it is required that~f(r�a) = ZIR2 W (r; r0) f(r0�a) dr0: (34)Since this is just RIR2 W (r; r0+a) f(r0) dr0, and (I) states that ~f(r�a) = RIR2 W (r�a; r0) f(r0) dr0,it follows that the integral kernel is symmetric,W (r; r0+a) = W (r�a; r0); (35)and, thus, it is a convolution kernel:W (r; r0) = W (r � r0): (36)(III) Rotation invariance (of the kernel):For all rotation matrices T� and for all r = (x; y)T 2 IR2 it is assumed thatW (T�r) = W (r): (37)Hence, W depends only on jrj: W (r) = W (x2 + y2).(IV) Separability:There exists a function u : IR ! IR such thatW (r) = u(x)u(y): (38)8



Combining this with (III) implies after elementary manipulations thatW (r) = k exp [c (x2+y2)]with some parameters k; c 2 IR. In order to get k > 0 and c < 0, however, additional constraintsare needed.(V) His next requirement which he names \Normalization of energy" actually consists of two parts:Preservation of nonnegativity, ~f(r) � 0 8 f(r) � 0; (39)and average grey level invariance, ZIR2 ~f(r) dr = ZIR2 f(r) dr: (40)This leads to W (r) � 0 and RIR2 W (r) dr = 1, respectively.Combining these results gives k = 12��2 and c = � 12�2 . This yields the Gaussian kernelW (r) = 12��2 exp��x2+y22�2 � (41)and concludes the axiomatic derivation of the 2-D linear scale-space.5.2 Further resultsSection 4.2 of Otsu's thesis is titled `Representation of scale-space transformation and semigroup'. Itis devoted to the N -dimensional Gaussian scale-space. With � := �2=2 he de�nesT (�)f(r) := 1(4��)N=2 exp��jrj24� � � f(r): (42)Using Fourier techniques he shows that the generator of the scale-space transformation is the Laplacean:~f(r; �) = T (�)f(r) = exp(��) f(r): (43)This gives @ ~f(r; �)@� = �� exp(��)f(r)� = � ~f(r; �):Thus, ~f satis�es the isotropic linear di�usion equation.The formal inversion of the scale-space transformation by means of (43) isf(r) = [T (�)]�1 ~f(r; �) = exp(���) ~f(r; �) = �I � �� + �22 �2 � :::� ~f(r; �):For the case that � or �2 ~f is small, Otsu proposes to approximate [T (�)]�1 by [I � ��] and to use itfor recovering the original image from a blurred one2.6 Relation to other workHaving sketched the basic ideas of these Japanese axiomatics, it is natural to ask about similarities anddi�erences to other approaches. Table 1 gives an overview of the current axiomatics for the continuousGaussian scale-space. These axioms and some of their relations can be explained as follows3:2This is an ill-posed problem which may lead to unstable results.3Of course, such a table can only give a \
avour" of the di�erent approaches, and the precise description of eachaxiom may slightly vary from paper to paper. Several relations between the presented axioms are discussed in [1, 45, 52].9



Table 1: Overview of continuous Gaussian scale-space axiomatics (I1 = Iijima [20, 21], I2 = Iijima[22, 23], I3 = Iijima [25], O = Otsu [51], K = Koenderink [41], Y = Yuille/Poggio [68], B = Babaudet al. [3], L1 = Lindeberg [44], F1 = Florack et al. [13], A = Alvarez et al. [1], P = Pauwels et al.[52], N = Nielsen et al. [48], L2 = Lindeberg [45], F2 = Florack [12]).I1 I2 I3 O K Y B L1 F1 A P N L2 F2convolution kernel � � � � � � � � � � �semigroup property � � � � � � � � �locality �regularity � � � � � � � �in�netesimal generator �max. loss principle �causality � � � � �nonnegativity � � � � � �Tikhonov regularization �average grey level invar. � � � � � �
at kernel for t!1 � �isometry invariance � � � � � � � � � � �homogeneity & isotropy �separability � �scale invariance � � � � � � � �valid for dimension 1 2 2 2 1,2 1,2 1 1 > 1 N 1,2 N N N� Convolution kernel:There exists a family of functions fkt : IR ! IR j t � 0g such that(Ttf)(x) = ZIRN kt(x� x0) f(x0) dx0:In Section 5.1 we have already seen that this property can be derived from the two assumptions:{ Linear integral operator:There exists a family of kernels fkt j t � 0g with(Ttf)(x) = ZIRN kt(x; x0) f(x0) dx0:Since every continuous linear functional can be written as an integral operator, it followsthat Florack's topological duality paradigm [12] can also be interpreted as requiring theexistence of a linear integral operator4.{ Translation invariance:Let a translation �a be de�ned by (�af)(x) := f(x�a). Then,�aTt = Tt�a 8 a 2 IRN ; 8 t > 0:Since usually linearity and translation invariance are imposed in conjunction, we have summa-rized them under the term \convolution kernel".� Semigroup property: Tt+sf = Tt(Tsf) 8 t; s � 0; 8 f:This property ensures that one can implement the scale-space process as a cascade smoothingwhich resembles certain processes of the human visual system.4Dirac point distributions and their derivatives are admitted as \functions under the integral".10



� Locality:For small t the value of Ttf at any point x is determined by its vicinity:limt!0+(Ttf � Ttg)(x) = o(x)for all f; g 2 C1 whose derivatives of order � 0 are identical.� Regularity:A precise de�nition of the smoothness requirements for the scale-space operator depends on theauthor:{ Since the original image creates the scale-space, it is natural to assume that it is contin-uously embedded, i.e. limt!0+ Tt = I . In the linear convolution case, this means that kt(x)tends to Dirac's delta distribution [68] and its Fourier transform becomes 1 everywhere[13].{ Babaud et al. [3] and Florack [12] consider in�netely times di�erentiable convolution kernelswhich are rapidly decreasing functions in x, i.e. they are vanishing at 1 faster than anyinverse of polynomials.{ Lindeberg uses kernels kt which are Borel measurable in t [44], or kernels which convergefor t! 0+ in the L1 norm to the Dirac distribution [45].{ Alvarez et al. [1] require thatkTt(f + hg)� (Tt(f) + hg)k1 � Chtfor all h; t 2 [0; 1], and for all smooth f , g, where C may depend on f and g.{ Pauwels et al. [52] assume that the convolution kernel kt(x) is separately continuous in xand in t.� In�netesimal generator:The existence of limt!0+ Ttf � ft =: A[f ]guarantees that the semigroup can be represented by the evolution equation@tu = A[u]:From the mathematical literature it is well-known that the existence of an in�nitesimal generatorfollows from the semigroup property when being combined with regularity assumptions [18].� Principle of maximum loss of �gure impression:See Section 4.1.� Causality:The scale-space evolution should not create new level curves when increasing the scale parameter.If this is satis�ed, iso-intensity linking through the scales is possible and a structure at a coarsescale can (in principle) be traced back to the original image.For this reason, Koenderink [41] required that at spatial extrema (with nonvanishing determinantof the Hessian) isophotes in scale-space are upwards convex; In 2-D he showed that at theseextrema the di�usion equation @tu = �(x; t) �u (44)has to be satis�ed. Hereby, � denotes a positive-valued function.Hummel [19] established the equivalence between causality and a maximum principle for certainparabolic operators.We may also derive the causality equation (44) and its N -dimensional generalizations by requir-ing that local extrema with positive or negative de�nite Hessians are not enhanced [3, 45]: Thisassumption states that such an extremum in x0 at scale t0 satis�es@tu > 0 if x0 is a minimum,@tu < 0 if x0 is a maximum.11



This is just the causality requirement sign(@tu) = sign(�u). Moreover, in 1-D, nonenhancementof local extrema is equivalent to the requirement that the number of local extrema does notincrease [3, 44]. In higher dimensions, however, di�usion scale-spaces may create new extrema,see e.g. [68, 43, 8].� Nonnegativity:If the nonnegativity of the convolution kernel,kt(x) � 0 8x; 8 t > 0;is violated, new level crossings may appear for t > 0, such that the causality property does nothold.Within a linear framework with spatially continuous convolution kernels, nonnegativity is equiv-alent to the monotony requirement [1]f(x) � g(x) 8x =) (Ttf)(x) � (Ttg)(x) 8x; 8 t > 0and the preservation of nonnegativity:f(x) � 0 8x =) (Ttf)(x) � 0 8x; 8 t > 0:� Tikhonov regularization:In the 1-D case, u is called a Tikhonov regularization of f 2  L2(IR), if it minimizes the energyfunctional Ef [u] = ZIR "(f � u)2 + 1Xi=1 �i �diudxi�2# dx (�i > 0):This concept and an N -dimensional generalization has been used by Nielsen, Florack and Deriche[48]. The �rst term under the integral ensures that u remains close to f , while the second one isresponsible for the smoothness of u.� Average grey level invariance:The average grey level invarianceZIRN Ttf dx = ZIRN f dx 8 t > 0can be achieved by means of the continuity equation (28) in connection with re
ecting or periodicboundary conditions. It boils down to the normalization conditionZIRN kt(x) dx = 1;if we consider linear convolution kernels.In this case normalization is also equivalent to grey level shift invariance [1]:Tt(0) = 0;Tt(f + C) = Tt(f) + Cfor all images f and for all constants C.� Flat kernel for t!1:For t ! 1, one expects that the kernel spreads the information uniformly over the image.Therefore, if the integral over the kernel should remain �nite, it follows that the kernel has tobecome entirely 
at: limt!1 kt(x) = 0.
12



� Isometry invariance:Let R 2 IRN be an orthogonal transformation (i.e. detR = �1) and de�ne (Rf)(x) := f(Rx).Then, Tt(Rf) = R(Ttf) 8 f; 8 t > 0:In the 1-D case with a linear convolution kernel this invariance under rotation and mirroringcomes down to the symmetry condition kt(x) = kt(�x).� Homogeneity and isotropy:Koenderink [41] required that the scale-space treats all spatial points equally. He assumed thatthe di�usion equation (44), which results at extrema from the causality requirement, should bethe same at each spatial position (regardless whether there is an extremum or not) and for allscales. He named these requirements homogeneity and isotropy5.� Separability:The convolution kernel kt(x) with x = (x1; :::; xN )T 2 IRN may be split into N factors, eachacting along one coordinate axis:kt(x) = k1;t(x1) � � � kN;t(xN ):� Scale invariance:Let (S�f)(x) := f(�x). Then there exists some t0(�; t) withS�Tt0 = TtS�:One may achieve this by requiring that, in the N -dimensional case, the convolution kernel kthas the structure kt(x) = 1	N(t) �� x	(t)�with a continouus, strictly increasing rescaling function 	. This means that all kernels can bederived by stretching a parent kernel such that its area remains constant [52]. It is evident thatthis is related to the normalization condition.Scale invariance follows also from the semigroup property when being combined with isometryinvariance and causality [45]. Moreover, scale invariance, translation invariace and isometryinvariance result from the more general assumption of invariance under the spacetime symmetrygroup; see [12] for more details.We observe that { despite the fact that all presented axiomatics use many similar requirements {not two of them are identical. Each of the 14 axiomatics con�rms and enhances the evidence that theothers give: that Gaussian scale-space is unique within a linear framework. This theoretical foundationis the backbone of a lot of successful applications of linear scale-space theory.Nevertheless, apart from their historical merits, the early Japanese approaches di�er from the well-known axiomatics after 1984 in several aspects:Firstly, it is interesting to note that all Japanese axiomatics require only quite a few axioms in orderto derive Gaussian scale-space. Even recent approaches which intend to use a minimal set of �rstprinciples do not utilize less axioms.Iijima's 1-D and 2-D frameworks from 1959 and 1962, respectively, do not only belong to the mostsystematic derivations of Gaussian scale-space, they appear also rather modern: principles such asthe semigroup property are typical for axiomatizations after 1990, and also the importance of scaleinvariance has been emphasized mainly in recent years [13, 52, 12].Iijima's physical motivation for a�ne Gaussian scale-space from 1971 uses only two principles whichreduce the essential features of linear di�usion �ltering to a minimum. In this sense it is written ina similar spirit as Koenderink's derivation [41], which also uses two highly condensed requirements(although of very di�erent nature). Concepts such as the principle of maximum loss of �gure impressionmay remind some of the readers of properties of nonlinear scale-spaces like the Euclidean and a�neshortening 
ow [1, 50, 56]: they shrink the Euclidean or a�ne perimeter of a closed curve as fast as5In our terminology, homogeneity and isotropy are much stricter requirements than translation and isometry invari-ance. They enable Koenderink to derive Gaussian scale-space under only one additional assumption (causality).13



possible. Moreover, the group-theoretical studies in [25] prove that Iijima has also pioneered modernscale-space analysis based on algebraic invariance theory such as in [1, 50, 54, 55].Otsu's two-dimensional axiomatic is very appealing due to its simplicity: in contrast to many otherapproaches it does not require advanced mathematical techniques like Fourier analysis, complex inte-grals, or functional analysis in order to derive the uniqueness of the Gaussian kernel. It is therefore awell-suited approach even for undergraduate courses in image processing.7 DiscussionIn this paper we have analysed four axiomatics for the linear di�usion scale-space that have been un-known in the American and European image processing world. They reveal many interesting qualitieswhich should trigger everyone who is interested in scale-space theory to have a closer look at them.The discussed results demonstrate that an entire world of linear scale-space theory has evolved inJapan ranging from axiomatics for isotropic and a�ne Gaussian scale-space over algebraic invariancetheory and deep structure analysis to hardware implementations for OCR. The Japanese scale-spaceparadigm was well-embedded into a general framework for pattern recognition and object classi�cation[24, 33, 51], and many results have been established earlier than in America and Europe.It is surprising that eastern and western scale-space theory have evolved with basically no interaction:To the best of our knowledge, the �rst citation of Iijima's work by non-Japanese scale-space researcherswas made in 1996 [65]. Conversely, also Japanese work after 1983 was not always aware of Americanand European scale-space results. Some (English) papers by Makoto Sato's group [57, 58, 62, 61] citeboth Iijima and Witkin. His paper with the probably most explicit reference to Iijima's work hasbeen presented at the ICASSP '87 [57], where Sato and Wada cite the original Japanese versions of[25, 26] and state: \The notion same as scale-space �ltering was also proposed by T. Iijima in the�eld of pattern recognition. He derived a partial di�erential equation, called basic equation, from thecontinuity of the light energy in the waveform observation".In 1992 several direct hints to Iijima's scale-space research can be found in the widespread journalProceedings of the IEEE [47]. In an invited historical review of OCR methods written by Mori, Suenand Yanamoto, 10 out of the 193 key references were papers by Iijima. Concerning his contributions,the authors state that \the concept of blurring was �rst introduced into pattern recognition by hiswork, whereas it was widely attributed to Marr in the West. Iijima's idea was derived from his studyon modelling the vision observation system. (...) Setting reasonable conditions for the observationsystem, he proved that the mathematical form must be a convolution of a signal f(x0) with a Gaussiankernel". They also give a recommendation to the non-Japanese audience: \Iijima's theory is not soeasy to understand, but his recent book [34] is readable, although it is written in Japanese".One can only speculate why nobody paid attention to these passages. Maybe, because none of theauthors referred to one of Iijima's English scale-space papers. The present paper contains 10 refer-ences to publications by Iijima which are either originally written in English or available as completeEnglish translations. They can be found in many libraries in America and Europe, and a short look atpapers such as [24, 25] should convince everybody that there remains no justi�cation to deny Iijima'spioneering role in linear scale-space theory because of language reasons.Another reason might be that Iijima's work came too early to be appreciated: His theory was mathe-matically much more demanding than other methods at this time. At a stage where pattern recognitionwas still in its infancy and experimenting with very simple methods, it was not easy to make techniquespopular, which are based on advanced mathematics. Also computing facilities were more restricted inthe sixties and seventies than they are today. Despite very remarkable developments such as the scale-space based optical character readers, it was certainly more di�cult to attract people by presentingcomputed results that demonstrate the advantages of a conceptually clean scale-space technique overad-hoc strategies.When scale-space became popular in America and Europe in the eighties, the situation was di�erent:Computing power was much higher, and the pattern recognition and computer vision community hadexperienced su�ciently many frustrations with ad hoc methods to get aware of their limitations andto become mature for better founded techniques which take advantage of centuries of research inmathematics and physics. Today it is possible to establish an international conference solely devotedto scale-space ideas which attracts people from many countries and disciplines [17]. Would this havebeen possible 30 years ago? Certainly not. 14



Unfortunately, it seems that Iijima was not the only one who has pioneered the �eld of partial di�eren-tial equations in image processing far ahead of his time, so that his work fell into oblivion for decades.Another example is the fact that already in 1965 the Nobel prize winner Dennis Gabor { the inven-tor of optical holography and the so-called Gabor functions { proposed a deblurring algorithm basedon combining mean curvature 
ow with backward smoothing along 
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