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PREFACE

This volume contains the full papers presented at the XI International Conference on Computational 
Plasticity (COMPLAS XI), held in Barcelona on 7-9 September, 2011. The first ten conferences in 
the series were also held in Barcelona; in April 1987, September 1989, April 1992, April 1995, March 
1997, September 2000, April 2003, September 2005,  September 2007 and September 2009. The 
continuing importance of this research topic is demonstrated by the fact that the number of papers 
presented has increased from just over 100 papers in the first conference to over 330 papers at this 
meeting.

The ever increasing rate of development of new engineering materials required to meet advanced 
technological needs poses fresh challenges in the field of constitutive modelling. The complex be-
haviour of such materials demands a closer interaction between numerical analysts and material 
scientists in order to produce thermodynamically consistent models which provide a response, while 
keeping with fundamental micromechanical principles and experimental observations. This neces-
sity for collaboration is further highlighted by the continuing remarkable developments in computer 
hardware which makes the numerical simulation of complex deformation responses increasingly 
possible.

The developments that have taken place in these directions are illustrated by the contents of the 
papers included in these Proceedings. A stronger interaction between the phenomenological and 
micromechanical modelling of plasticity behaviour is apparent. The development of efficient and 
accurate computational methods for plasticity problems continues to be challenging goal, while it 
is interesting to note the permanence of element modelling as a research issue. The blending of 
classical FEM with new particle-based and discrete element methods appears as one of the more 
prominent areas of research. Industrial forming processes, geo-mechanics, bio-mechanics, steel, 
concrete and masonry structures form the core of the applications of the different numerical meth-
ods presented.

This volume includes contributions sent directly from the authors. The editors can not accept re-
sponsibility for any inaccuracies, comments and opinions contained in the papers.

The organizers would like to thank all authors for submitting their contributions, as well as the sup-
porting organizations for their help in making COMPLAS XI possible.

 Roger Owen      Eugenio Oñate
 Djordje Peric     Benjamín Suárez
 Swansea University    Universitat Politècnica de Catalunya
 Swansea, Wales, United Kingdom Barcelona, Spain 
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Abstract. Recently, the lead free piezoelectric material, which could be used for the actuator 
and the sensor of medical care devices, such as the health monitoring system (HMS) and the 
drug delivery system (DDS), is strongly required. In this study, we try to find a new 
biocompatible and lead-free piezoelectric material, by using the three-scale process-
crystallographic analyses scheme, which consists of the first-principles calculations, the 
homogenization based finite element method, and the process optimization algorithm. After 
numerical calculations, we found an optimum biocompatible element combination and a 
tetragonal crystal structure of candidate material MgSiO3. As a result of process 
crystallography simulation to adjust with the selected substrate Au(111), lattice parameters of 
MgSiO3 with tetragonal structure were obtained as a=b=0.3449nm and c=0.3538nm, and its 
aspect ratio was 1.026. The piezoelectric stress constants of a non constraint MgSiO3 crystal, 
e33=4.57C/m2, e31=-2.20C/m2 and e15=12.77C/m2, were obtained. Macro homogenized 
piezoelectric stress constants of MgSiO3 thin film were obtained as e33=5.10C/m2, e31=-
3.65C/m2 and e15=3.24C/m2. We confirmed the availability of our process crystallographic 
simulation scheme for a new biocompatible piezoelectric material design through the 
comparison with the experimental observation of a newly generated MgSiO3 thin film 
material. 

 
 
1 INTRODUCTION 

Recently, the lead-based piezoelectric materials, such as PbTiO3 and Pb(Zr,Ti)O3, have 
been applied to various actuators [1] and sensors [2] in Micro Electro Mechanical System 
(MEMS) devices due to their high piezoelectric and dielectric properties. However, these 
materials contain the lead. Recently, lead and hazardous material are prohibited to use by 
Restriction of Hazardous Substances (RoHS) regulation [3]. Recently, the lead-free  and 
biocompatible piezoelectric materials for Bio-MEMS devices have been developed by using 
the computational and the experimental approaches [4]. 

Zhang S. et al. [5] doped Ca and Zr in BaTiO3 and succeeded in generating the 
piezoelectric material with high piezoelectric and dielectric constants. Fu P. et al. [6] doped 
La2O3 in Bi based (Bi0.5Na0.5)0.94Ba0.06TiO3 and succeeded in generating the piezoelectric 
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material with high piezoelectric constant and spontaneous polarization. However, these 
materials had problem of biocompatibility, and were not adequate for Bio-MEMS devices. 
Especially, ions of the composition element of a piezoelectric material invade the human body, 
when piezoelectric materials are applied to the implanted Bio-MEMS device. Therefore, 
piezoelectric materials should be constructed by biocompatible elements. 

In previous study, we have developed a new three-scale analysis algorithm for a new 
piezoelectric material design, which consists of the first-principles calculation [7] and the 
process-crystallographic analyses scheme [8]. MgSiO3, which was a candidate for a new 
biocompatible piezoelectric material and had the perovskite tetragonal structure, was found by 
using this numerical scheme, and it showed a high piezoelectric constant. Before a new 
material MgSiO3 design and generation, we confirm the availability of our newly developed 
simulation scheme to analyze the epitaxial growth process of the perovskite tetragonal crystal 
structure and the piezoelectric properties of the existence piezoelectric material BaTiO3.
Numerical results showed a good agreement with the experimental ones. 

In this study, we apply our three-scale process-crystallographic analyses scheme to design 
a new biocompatible MgSiO3 piezoelectric thin film. Then, this thin film is generated by 
using the radio-frequency (RF) magnetron sputtering. Finally, the crystallographic orientation 
and the piezoelectric strain constant d33 are measured by using the X-ray diffracto-meter 
(XRD) and the ferroelectric measurement system to confirm the availability of our process-
crystallographic design algorithm. 

2 FIRST-PRINCIPLES AIDED THREE-SCALE ANALYSIS 

2.1 Three-scale modeling of a piezoelectric thin film 
Figure 1 shows the schematic description of the first-principles aided three-scale modeling 

of the piezoelectric thin film, which is grown on a substrate. It shows the three-scale 
structures, such as a “crystal structure”, a “micro  structure” and a “macro structure.” 

Figure 1: First-principles aided three-scale modeling of piezoelectric thin film on substrate 
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In the crystal structure scale, the stable structure and the crystal properties are evaluated by 
using the first-principles calculation. Next, the preferred orientations and their fractions are 
determined by considering the epitaxial strains, caused by the lattice mismatches between the 
thin film and the substrates. Additionally, the calculated crystal morphology is introduced into 
the micro structure and properties of the macro structure, which consist the thin film and the 
substrate, are calculated by the two-scale finite element analysis, which is derived based on 
the homogenization theory. 

2.2 Process crystallography simulation algorithm 
Thin film crystal is strained by mismatch between lattice constant of thin film and one of 

substrate, when thin film is grown epitaxially. Virtual crystal clusters with various 
orientations and conformations are generated by our process crystallography simulation, 
because thin film crystal has various conformations on a substrate as shown in Figure 2(a) and 
(b). Total energies of virtual clusters are varied by the crystal strain. Therefore, total energies 
of strained crystals are calculated by using the density functional theory (DFT), and total 
energies of virtual clusters are calculated. Total energies of virtual clusters are compared with 
one of stable state and total energy increments of virtual crystals are also calculated. In order 
to calculate the possibility of growth of the virtual cluster Pi, total energy increment ΔE is 
introduced into the canonical distribution as flows: 

∑
=

n Bn

Bi
i TkEΔ

TkEΔP
][exp

]exp[  (1)

where, kB is the Boltzmann constant and T the absolute temperature. 
The existing lead-free BaTiO3 piezoelectric material with (111) orientation, which has 

perovskite type tetragonal structure as same as MgSiO3, shows highest piezoelectric 
properties. In this study, we find the best substrate of MgSiO3(111) with the minimum energy 
is found. 

: Substrate: MgSiO3 : Substrate: MgSiO3

(a) MgSiO3/Mo(100)                   (b) MgSiO3/Au(111) 

Figure 2: Schematic diagram for some conformations of MgSiO3 crystal cluster on substrates 
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2.3 Numerical characterization process of the macro homogenized piezoelectric thin 
film

In order to evaluate the macro homogenized properties of the thin film, the micro structure 
of the thin film with a preferred orientation is applied to the two-scale finite element analysis 
on basis of crystallographic homogenization theory as shown in Fig.1. The crystal orientation 
fraction of the thin film is determined by frequency distribution of each grown cluster, which 
is calculated by the canonical distribution. The crystal orientation is introduced in the micro 
structure. For simplicity, the micro structure is divided evenly by eight-node rectangular solid 
elements and crystal orientations are assigned at the integration points of each element. For 
BaTiO3, we employ experimentally obtained properties in the micro structure, and for 
MgSiO3, computational properties obtained by the first-principles are employed for the micro 
structure.

3 DESIGN OF A NEW BIOCOMPATIBLE MATERIAL 

3.1 The first-principles calculation 
To calculate the crystal structure of perovskite MgSiO3, energy cutoff was set as 500eV 

and k-point was generated by 8×8×8 Monkhurst-Pack mesh. We calculated the cubic structure 
as shown in Figure 3. Lattice constants a=b=c=0.3459nm were obtained. 

The eigenfrequency of the cubic structure of MgSiO3 was obtained as -112cm-1 by using 
phonon vibration analysis. This result indicated that MgSiO3 crystal had possibility of phase 
transition to another phase, due to the eigenfrequency with negative value. Table I shows 
eigenvectors of each atom. It indicated that MgSiO3 cubic crystal had possibility to change to 
the tetragonal structure, because all eigenvectors were existed along c axis only. 

In order to calculate the stable tetragonal structure, initial structure was determined by 
employing eigenvectors. As a result, lattice parameters were obtained as a=b=0.3449nm and 
c=0.3538nm. The aspect ratio a/c=1.026 was obtained from 1.011 of BaTiO3 thin film [9] to 
1.049 of PbTiO3 thin film [10]. Table 2 shows internal coordinates of the tetragonal MgSiO3.
We obtained reasonable result, because displacements of all internal atoms of the tetragonal 
structure had good agreement with direction of eigenvectors of the cubic structure as show in 
Table 1. 

Furthermore, the variation of polarization and piezoelectricity of MgSiO3 caused by the 
assigned small strain was calculated. The piezoelectric stress constants of MgSiO3 crystal 
were determined as e33=4.57C/m2, e31=-2.20C/m2 and e15=12.77C/m2.

3.2 Determination of the best substrate 
Biocompatible elements have bio-essential elements (Ca, Fe, Ge, Mg, Mn, Mo, Na, Ni, Sn 

and Zn) and elements (Si, Ta, Ti and Zr), which have been used in the human body. In 
previous study, we calculated reactivity with biological molecules and found new 
biocompatible elements (Li, Ba, K, Au, Rb, In) [11]. In these 20 biocompatible elements, we 
selected Au, Mo and Ta for candidates of the substrate, because these elements satisfied four 
terms, such as (1) the melting point is over sputtering temperature, (2) element dose not react 
to other elements under sputtering condition, (3) element is able to be use the under electrode 
and (4) element is cubic structure. Lattice parameters of Au with FCC cubic structure are 
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a=b=c=0.4080nm, ones of Mo with BCC cubic structure are a=b=c=0.3147nm and ones of 
Ta with BCC cubic structure are a=b=c=0.3289nm. 

Table 3 shows result of crystallography simulation on (100), (110) and (111) oriented three 
substrate candidates. Total energies and orientation fractions of epitaxially grown MgSiO3
thin films were different depend on conformations as shown in Figure 4. It shows an example 
of conformations of MgSiO3(001)/Au(100). 

Figure 3: Schematic diagram for some conformations of MgSiO3 crystal cluster on substrates 

Table 1: Eigenvectors of interior atoms in MgSiO3
Crystal

Atom Eigenvector 
ξx ξy ξz

Mg 0.00 0.00 0.88 
Si 0.00 0.00 -0.13 
OI 0.00 0.00 -0.37 
OII 0.00 0.00 -0.37 
OIII 0.00 0.00 -0.22 

Table 2: Internal coordinates of MgSiO3 crystal 

Atom x y z
Mg 0.00 0.00 0.00 
Si 0.50 0.50 0.42 
OI 0.00 0.50 0.38 
OII 0.50 0.00 0.38 
OIII 0.50 0.50 0.90 

Table 3: Internal coordinates of MgSiO3 crystal 
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: Au: MgSiO3
: Au: MgSiO3
: Au: MgSiO3

Figure 4: Conformations of MgSiO3/Au(100) calculated by process crystallography simulation 

Therefore, we summarized numerical results of independent orientations, total energies and 
fractions in Table 3. It shows that MgSiO3(111) with highest piezoelectric property could be 
grown on Au(111) and Mo(111) substrates. Here, Au(111) was the best substrate of 
biocompatible MgSiO3 thin film, because the total energy of MgSiO3 on Au(111) was smaller 
than one on Mo(111) substrate. 

Finally, the macro homogenized piezoelectric property of MgSiO3 thin film on the best 
substrate, Au(111), was calculated by using the two-scale finite element analysis on basis of 
crystallographic homogenization theory. As a result, macro homogenized piezoelectric stress 
constants were calculated as e33=5.10C/m2, e31=-3.65C/m2 and e15=3.24C/m2.
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Figure 5: XRD 2θ/θ patterns for MgSiO3 thin films generated at Ta=650ºC and Ts =300, 350 and 400 ºC 

4 EXPERIMENTAL RESULTS OF THIN FILM GENERATION BY SPUTTERING 
In order to confirm the availability of our process-crystallographic simulation scheme, 

MgSiO3 thin film with the perovskite tetragonal crystal structure was generated by using RF 
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magnetron sputtering apparatus. We employed the simple search algorithm, such as the 
experimental design algorithm, by employing two design parameters, such as the substrate 
temperature Ts  and post annealing temperature Ta.

Figure 5 shows 2θ/θ patterns for MgSiO3 thin film generated at Ta=650ºC and Ts =300, 
350 and 400 ºC. The peak of MgSiO (111) crystal was obtained. 

The displacement-voltage curves were measured by using the ferroelectric measurement 
system in six cases of combinations with Ta=600, 650 and 700 ºC and Ts =300 and 350 ºC. 
Figure 6 shows displacement-voltage curves of generated piezoelectric MgSiO3 thin films. It 
means that all films showed the piezoelectric property because of typical butterfly-type 
hysteresis curves. The piezoelectric strain constant d33 can be calculated by the gradient at 
cross point of the curve. Figure 7 shows measurement results of d33 under conditions of Ts
=300, 350 and 400 ºC, and Ta=650 ºC. 

Finally, the optimum condition, Ts=300ºC and Ta=650ºC, was found and the piezoelectric 
strain constant was d33=346.7pm/V. 
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Figure 6: Displacement-voltage curves of MgSiO3 thin film 
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5 CONCLUSION 
In order to generate a new biocompatible MgSiO3 piezoelectric thin film, which can apply 

to the Bio-MEMS device, our three-scale process-crystallographic simulation scheme for a 
new material generation was applied. Further, MgSiO3 was generated by using RF magnetron 
sputtering apparatus and confirm the availability of our simulation scheme through the 
comparison with the experimental results. Finally, following results were obtained. 
(1) Lattice constants of MgSiO3 with tetragonal structure were obtained as a=b=0.3449nm 

and c=0.3538nm, and its aspect ratio is 1.026. 
(2) The piezoelectric stress constants of MgSiO3 crystal, e33=4.57C/m2, e31=-2.20C/m2 and 

e15=12.77C/m2, were obtained. 
(3) Au(111) was the best biocompatible substrate, on which MgSiO3(111) thin film with 

minimum total energy can be grown. 
(4) Macro homogenized piezoelectric stress constants of MgSiO3 thin film on Au(111) 

substrate were obtained as e33=5.10C/m2, e31=-3.65C/m2 and e15=3.24C/m2.
(5) An optimum condition was obtained as Ts=300ºC and Ta=650ºC, and its piezoelectric 

strain constant was d33=346.7pm/V. 
Consequently, we indicated that a new biocompatible MgSiO3 thin film could be applied to 
actuators and sensors in Bio-MEMS. 
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Abstract. The paper presents a double structure constitutive model based on a generalized 
plasticity formalism. The behaviour of macrostructure, microstructure and their interactions 
are described. A coupled hydromechanical formulation is then presented that assumes no 
hydraulic equilibrium between structural levels. Constitutive law and formulation are applied 
to the simulation of the behaviour during hydration of a heterogeneous mixture of bentonite 
powder and bentonite pellets. A satisfactory reproduction of observed behaviour is achieved.    

1 INTRODUCTION 
The behaviour of swelling clays is better understood if the effect of the pore size structure 

on their hydromechanical behaviour is taken into account. In compacted (and therefore 
unsaturated) swelling clays, the pore size structure is set up during compaction but it may 
change significantly in response to various actions such as loading and hydration. Although 
the distribution of pore sizes is of course continuous, useful insights can be obtained by 
considered only two structural levels: microstructural and macrostructural as well as their 
interactions. This dual material aspect is reinforced when the material is composed of a 
mixture of powder and highly compacted pellets. This mixture is an attractive sealing material 
in radioactive waste disposal schemes because, even when only modest compaction efforts are 
applied, a sufficiently high density value is achieved after hydration has taken place. 
However, the heterogeneity of the material gives rise to a complex hydromechanical 
behaviour that must be well understood if a sufficient degree of confidence in the 
performance of the seal is to be achieved. 

The generalized plasticity model adopted for the description of the behaviour of the double 
structure material is presented first followed by the formulation of the hydromechanical 
problem. Constitutive law and formulation are then applied to description of a number of 
swelling pressure tests of a mixture of bentonite powder and highly compacted bentonite 
pellets being studies as a potential sealing material for a dep geological repository for high 
level nuclear waste. 
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2 GENERALIZED PLASTICITY CONSTITUTIVE MODEL 
In strongly swelling clays, there are plastic mechanisms giving rise to irreversible 

behaviour in addition to those observed in non-swelling materials. Those additional 
mechanisms can often be attributed to the interaction between the macrostructure and the 
microstructure. This kind of irreversible behaviour generally appears at any value of applied 
suction and it is difficult to determine the initiation of the yielding. Those facts encourage the 
use of the generalized plasticity theory to describe these plastic mechanisms. In a generalized 
plasticity model the yield function is not defined or it is not defined in an explicit way [1]. 
The advantages in using the generalized plasticity theory to model the plastic mechanisms 
ascribed to the interaction between structures are presented in detail in [2]. 

The model is defined in terms of the three stress invariants (p, J, Ө) and suction (s). To 
formulate the double structure model is necessary to define laws for: i) the macrostructural 
level, ii) the microstructural level, and iii) the interaction between both structural levels.

2.1 Macrostructural level 
The inclusion of this structural level in the analysis allows the consideration of phenomena 

that affect the skeleton of the material, for instance deformations due to loading and/or 
collapse of the macrostructure. The BBM (Barcelona Basic Model) has been adopted to 
describe the macrostructural behaviour [3]. The BBM considers two stress variables to model 
the unsaturated behaviour: the net stress () computed as the excess of the total stresses over 
the gas pressure, and the matric suction (s), computed as the difference between gas pressure 
and liquid pressure (pg-pl). The BBM yield surface (FLC) is defined as follows:
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where M is the slope of the critical state, po is the apparent unsaturated isotropic pre-
consolidation pressure at a specific value of suction, and ps considers the dependence of shear 
strength on suction. To complete the definition of the yield surface as set out in (1), it is 
possible, in principle, to adopt any suitable Lode’s angle function, g().   

The trace of the yield function on the isotropic p-s plane is called LC (Loading-Collapse) 
yield curve because it represents the locus of activation of irreversible deformations due to 
loading increments or to hydration collapse. The position of the LC curve is given by the pre-
consolidation yield stress of the saturated state, po

* (hardening variable) that varies with 
plastic volumetric strain according to the following hardening law: 
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where e is the void ratio, p
v  is the volumetric plastic strain,  is the elastic compression index 

for changes in p and (0) is the stiffness parameter for changes in p for virgin states of the soil 
in saturated condition. 

2.2 Microstructural level 
The microstructure is the seat of the basic physico-chemical phenomena occurring at clay 

particle level. The strains arising from microstructural phenomena are considered nonlinear 
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elastic and volumetric. The microstructural strains are proportional to the microstructural 
effective stress ( p̂ ) through a microstructural bulk modulus according to: 

 p̂ p s (3)
  



   
ˆ

v m

m m m

p p s

K K K
(4)

where the subscript m refers to the microstructural level, the subscript v refers to the 
volumetric component of the strains, Km is the microstructural bulk modulus and  is a 
parameter dependent on the degree of saturation of the microstructure. The parameter  is 
included only to account for the possibility that the microstructure may become unsaturated. 
However, generally a constant value of  = 1 is adopted since the micro-structural level, 
associated with the behaviour of expansive clay particles, is very likely to be saturated. In 
very active expansive clays this assumption can be supported by the high affinity of the active 
clay minerals by water, which maintain the interlayer space and micro-pores saturated even at 
relatively high suction. Under this condition mean effective stress controls the mechanical 
behaviour at microstructural level.  

The concept of a Neutral Line (NL) is introduced corresponding to constant p̂  and no 
microstructural deformation (Fig. 1). The NL divides the p-s plane into two parts, defining 
two main generalized stress paths, which are identified as: MC (microstructural contraction) 
when there is an increase in p̂  and MS (microstructural swelling) in the opposite case. 

 

 

Figure 1:  Neutral line and load directions in the microstructural model. 

2.3 Interaction between microstructural and macrostructural levels 
Based on experimental evidence, it is assumed that the macrostructure is affected by 

microstructural deformations generally in an irreversible way [4]. A hypothesis of the model 
is that the plastic deformations of the macrostructure ( p

vM ) induced by microstructural effects 
are proportional to the microstructural strains ( vm ) according to interaction functions f [2].
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The total plastic macrostructural strains (i.e. the sum of the plastic strains induced by the 
yielding of the macrostructure, p

LC, plus that induced by the microstructure,


p
vM m ) are 

evaluated using:
   

  p p p

v M v LC v LC v m

p
vM m f    (5)

Two interaction functions f are defined: fc for MC paths and fS for MS paths. The 
interaction functions depend on the ratio p/po (Fig. 2). The ratio p/po is a measure of the 
degree of openness of the macrostructure relative to the applied stress state. When this ratio is 
low, it implies a dense packing of the material and it is expected that, under this condition 
(dense macrostructure), the microstructural swelling (MS path) affects strongly the global 
arrangements of clay aggregates, inducing large macrostructural plastic strains. In this case 
the microstructure effects induce a more open macrostructure, which implies a 
macrostructural softening. On the other hand, when the microstructure contracts (MC path) 
the induced macrostructural plastic strains are larger with open macrostructures, that is, for 
values of p/po close to 1. Under this path the clay tends towards a more dense state, which 
implies a hardening of the macrostructure. The result of the coupling between macro and 
micro levels is reflected in the value of po

*, the hardening variable of the macrostructure. In 
this way the effect of microstructural processes on the global arrangements of aggregates is 
taken into account. 

Figure 2:  Interaction functions 

To fully describe the soil behaviour, the definition of specific elasto-plastic laws for each 
domain is required according to the microstructural stress path followed (MC or MS).
Generalized plasticity theory can deal with such conditions, allowing the consideration of two 
directions of different behaviour and the formulation of proper elasto-plastic laws for each 
region. Thus, a complete description of a generalized model includes the definition of the: i) 
loading and unloading direction, ii) plastic flow direction, and iii) a plastic modulus. 
Equivalent to loading/unloading directions in conventional stress/strain formulations, two 
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vectors may be defined at every point of the stress space. One vector indicates the MC
direction and the other the MS direction. Given a generalized stress state and stress increment, 
the criterion to identify the microstructural stress path is illustrated in Figure 1. 

2.4 Stress-strain relations 
The constitutive model described contains two plastic mechanisms: i) a plastic mechanism 

associated with the yield of the macrostructure defined by a classical plasticity law, and ii) a 
plastic mechanism associated with the interaction between microstructure and macrostructure 
described by a generalized plasticity approach. 

 In classical plasticity theory, it is assumed that the material behaves either as an elastic or 
an elasto-plastic solid. The yield surface defines the transition from elasticity to plasticity, 
stress states inside the yield surface are considered as elastic (F < 0). In generalized plasticity 
theory, the state of the material is determined directly from the control variables: generalized 
stresses, strains and a finite number of internal variables. A process of loading is defined as 
elastic if the set of internal variables remains unchanged. 

In the case of a purely (nonlinear) elastic loading, the stress increment is related to the 
increment of strains and suction by the following relationship: 

 
  ee s sD  (6)

where De is the global elastic matrix that considers the elastic component of both structural 
levels. s is the elastic vector associated to suction. 

When a loading process is inelastic, the material behaviour is described by the elasto-
plastic mechanisms that are activated during the loading process. A multidissipative approach 
[5] has been adopted to derive the general elasto-plastic relations  that can be expressed as 
follows: 

  
  ep s sD   (7)

where Dep is the global elasto-plastic matrix and s is the elasto-plastic vector associated with 
suction. The expressions for the vectors and matrices in (6) and (7) together with the details of 
numerical implementation are presented in [6]. 

3 HYDROMECHANCIAL FORMULATION 
The overall media is assumed to consist of two overlapping but distinct continua. In the 

following, subscript M will stand for the macrostructure and subscript m for the 
microstructure. Accordingly, macroporosity and microporosity are denoted as M  and m
respectively. Macroporosity and microporosity are defined as the volume of macropores and 
micropores, respectively, divided by the total volume of the soil. Thus, total porosity 
equals mM  . The degree of saturation of the macroporosity, SwM, is the volume of 
macropores occupied by water over the volume of the macropores; an equivalent definition 
holds for the microporosity degree of saturation, Swm.

An important feature of the formulation is that hydraulic equilibrium between the two 
continua is not assumed, i.e. at each point of the domain the water potentials in the two 
continua may be different leading to an exchange of water between them. For simplicity, a 
linear relationship is assumed (e.g. [7]) where water exchange is described by: 
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)( mM
w  (8)

where w  is the water exchange term,  is a parameter (often called the leakage parameter) 
and   is the total water potential. It is assumed that only matric and gravitational potential 
contribute to the total potential of the macrostructure but an additional osmotic component 
may also contribute to the microstructural potential [8]. Here, potential is defined in pressure 
units. As the water exchange is local in space, the gravitational potential will be the same for 
the two media. Water exchange will therefore be driven by suction differences alone. 

Using the concept of material derivative, the balance equation for the solid phase can be 
written, for the case of a single porosity medium, as: 

    v
s

s Dt
D

Dt
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where D(.)/Dt denotes material derivative, s is the solid density, v is the volumetric strain 
increment and t is time. For the case of double porosity equation (9) becomes: 
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where it has been assumed that the total volumetric deformation is the sum of the volumetric 
deformations of each medium. 

3.1 Balance equations 
The water mass balance equation for the case of two overlapping flow media is: 

     ;  ,w w
w wj j wj jS f j M m

t


      


j (11)

where Swj is the liquid saturation of medium j, jwj is the total mass fluxes of water in the liquid 
phase and fj

w is the external mass supply of water per unit volume in medium j. The possible 
presence of dissolved air in the liquid phase is neglected for simplicity. 

Finally, it is assumed that total stresses for the overall medium affect equally the macro 
and the microstructure. The equilibrium equation is: 

0bσ  (12)
where  is the total stress tensor and b is the vector of body forces. In contrast, the total 
deformation of the medium is obtained from the sum of the deformations of each domain. 

3.2 Hydraulic relationships 
Liquid flow is governed by Darcy’s law: 

   =   ;  ,wj wj j wj wj wjp j M m      q K K g (13)
where q is the mass liquid flow (with respect to the solid phase), Kl is the liquid permeability 
tensor, pl is the liquid pressure, l is the liquid density and g is the gravity vector. The 
permeability tensor is expressed as  

 


;  ,rj
wj j

j

k
j M mK k (14)

where k is the intrinsic permeability and kr is the relative permeability that expresses the 
effect of degree of saturation (or suction) on global permeability. Intrinsic permeability 
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depends on many factors such as pore size distribution, pore shape, tortuosity and porosity. 
Here a dependence of intrinsic permeability on porosity is adopted: 

    exp ( )  ;  ,j o j ok b j M mk (15)
where o is a reference permeability for which the intrinsic permeability is ko. Relative 
permeability and retention curves are also defined for the two porosity levels using standard 
relationships. .

4 APPLICATION 
The double-structure constitutive law and hydromechanical formulation is applied to the 

modelling of the behaviour of a mixture of 50% bentonite powder and 50% bentonite pellets, 
by dry weight, during hydration as observed in a number of laboratory swelling pressure tests 
[9]. FoCa clay, a calcium bentonite from the Paris Basin has been selected for the study. The 
major component of the clay fraction is an interstratified clay mineral of 50% calcium 
beidellite and 50% kaolinite. Pellets are manufactured by dynamic compaction of the powder 
between two rotating wheels. The dimensions of the pellets are 25 x 25 x 15 mm and their 
average dry density is 1.89g/cm3. Compaction water content lies in the range of 4% to 5%. 

In particular, three tests performed on samples with a dry density of 1.60 g/cm3 (RS2B, 
RS2E and RS2F) are considered. Their lengths are 5, 10 and 12 cm respectively. Computed 
evolutions of swelling pressures compared with the measured values are shown in Figures 3a, 
3b and 3c. Testing times ranged from 150 to 500 days depending on specimen length. The 
model reproduces very satisfactorily the observed behaviour. The evolution of water intake is 
also well matched (Figures 3d, 3e and 3f), some discrepancies at the end of the test have been 
attributed to small leakages in some of the very long term tests. 

The evolutions of macrostructural and microstructural suctions at three different points 
(bottom, middle and top of the specimen) of test RS2E obtained in the analysis are plotted in 
Figure 4. It can be observed that, at the bottom boundary, the macrostructural and 
microstructural suctions reduce rapidly but they differ at the beginning of the test because of 
the delay in water transfer between the two porosities. Eventually, however, they come 
together and remain in equilibrium for the remainder of the test. Interestingly, at the other two 
points the two porosities come into equilibrium before they are reached by the hydration front, 
i.e. before they exhibit any suction reduction. They also maintain this equilibrium condition 
throughout the rest of the test. The analysis suggests, therefore, that non-equilibrium between 
the two porosity levels is only likely to affect the early stages of the test. 

The cause underlying the characteristic temporary drop in swelling pressure is the collapse 
of the macrostructure that, in the constitutive model, corresponds to reaching the LC yield 
surface in the BBM. This is illustrated in Figure 5, where the stress paths (in macrostructural 
suction – vertical net stress space) followed by the same three points of test RS2E are plotted. 
The initial position of the LC yield surface is also shown.  In the section of the stress path that 
moves towards the LC surface, stress increase appears to be more significant than suction 
reduction. Once the LC yield surface is reached, the vertical stress drops to compensate the 
tendency of the macrostructure to collapse so that the sample length is kept constant. It can 
also be noted that the point of start of the collapse does not coincide exactly with the plotted 
LC; this is because, by then, the yield surface has moved slightly due to the interaction with 
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the microstructural strains (MS, microstructure swelling) that develop from the very start of 
the test. 

Figure 3:  Observations vs. computed results for tests on samples of 1.60 g/cm3 dry density. a), b) and c) 
Swelling pressure evolution for tests RS2B, RS2E and RS2F. d), e) and f) Evolution of accumulated water intake 

for tests RS2B, RS2E and RS2F. 

Figure 4:  Computed evolution of macrostructural and microstructural suctions at three different points of test 
RS2E. 
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Figure 5:  Computed stress path (macrostructural suction – vertical stress) for three different points of sample 
RS2E. 

5 CONCLUSIONS 
A double-porosity numerical formulation and a constitutive model have been developed to 

deal with the coupled hydromechanical behaviour of swelling clays exhibiting two levels of 
structure. The formulation is especially appropriate to reproduce the behaviour of mixtures of 
bentonite pellets and powder; a material that is receiving much attention as a potential 
component of sealing systems. It has been shown that the formulation results in a close 
quantitative reproduction of a number of swelling pressure tests performed on samples of 
different lengths. In addition, a detailed examination of the computational results provides 
valuable insights and understanding of the basic processes that underlie the observed 
macroscopic behaviour. The formulation is thus validated for use in analysis of field problems 
[10]
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Abstract.  
The fundamental mechanical assumptions and the basic principles of 3-dimensional FE 
discretization are briefly summarized. Several important numerical developments for efficient 
and accurate computation of large plastic deformation are discussed. Material behavior must 
be known precisely: material parameters of the constitutive law, thermal law and friction law 
must be determined by experimental tests and identification procedures by inverse modeling. 
Is it also necessary to avoid the possible onset of defects, such as crack opening, by 
introducing damage modeling in the cost function. A parameter sensitivity analysis is utilized 
in order to select the most important factors: shape of the preform, tools geometry, etc. The 
practical optimization is carried out by a genetic algorithm technique or by a surface response 
method. Moreover, for assessing the fatigue behavior, a more local approach is necessary in 
order to take into account material evolution at the micro scale.  

 
1 INTRODUCTION 
Optimization of industrial forming processes has received a growing attention to increase 
competitiveness. Until recently this objective was the result of a long and expensive 
procedure, mostly achieved by trial and error, using industrial equipments and real materials. 
Finite element simulation of metal forming processes started in the 70’s for 2D problems [1-
4] and in the 80’s for 3D configurations [5]. To-day commercial simulation codes facilitate 
trial and error optimization. However, in view of the continuous improvement of softwares 
and computing facilities, including parallel computing, it is now possible to consider 
automatic optimization, where the optimal solution is mostly found by computation.  
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A software, called MOOPI (MOdular software dedicated to Optimization and Parameters 
Identification) has been developed in CEMEF to address these issues. MOOPI, presented in 
Figure 1, is based on 4 different layers. The basic layer 0 represents the direct model, which is 
the finite element computation Forge in our case. Layer 1 deals with sensitivity analyses and 
enables us to check the influence of input parameters on output observables. Layer 2 is the 
optimization layer in order to find optimal parameters of any kind of numerical simulations. 
Finally layer 3 deals with inverse analysis for automatic materials parameters analysis by 
comparing experimental and numerical observables. Each layer can use the algorithms 
implemented in the other layers. For example, inverse analysis uses the optimization 
algorithms developed in the second layer in order to minimize the cost function, defined as 
the sum of the squared differences between experimental and numerical observables. If 
response surfaces are needed in the optimization algorithm, the sensitivity analysis layer can 
also be used to give the initial database using DoE (Design of Experiment) techniques. 

Figure 1 :  Flowchart of the MOOPI software 

2 MECHANICAL AND NUMERICAL APPROACH 
The finite element approach of metal forming processes was described in [6], to which the 

interested reader is referred for more details. 

2.1 – Mechanical and Thermal Description 
Introducing an additive decomposition of the strain rate tensor εɺ  into an elastic part eεɺ  and a 
plastic (or viscoplastic) one pεɺ : 
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e pε ε ε= +ɺ ɺ ɺ                               (1) 

Utilizing the Jauman objective derivative of the stress tensor , the hypo elastic law is written: 

e e e eJd trace I 2
dt
σ = λ ε + µ ε( )ɺ ɺ                        (2) 

where λe and  µe are the Lamé coefficients. The plastic or viscoplastic component of the strain 
rate tensor obeys a general Perzyna rule of the form: 

1
eq eq3 2σ (σ R)/K

mp = −ɺ
/

ε / σ'                           (3) 

where σeq is the equivalent strain, σ’  is the deviatoric stress tensor, εɺ  is the equivalent strain 
rate and ε  is the equivalent strain, K, R and m are material parameters.  
At the interface between part and tool, the friction shear stress can be modeled by a 
“viscoplastic Coulomb” law, in term of the normal stress σn and the tangential velocity v : 

1 p
f n v vτ α σ −= − ∆ ∆/              (4) 

Where αf and p are friction coefficients. 
For a quasi incompressible material flow, a mixed formulation in term of velocity v and 
pressure p is chosen in the domain Ω; for any virtual velocity and pressure fields pv*, * : 

          
c

dV pdiv v dV v dS 0σ ε τ
Ω Ω ∂Ω

′ − − =∫ ∫ ∫: * ( *) *ɺ                 (5) 

Introducing the material compressibility κ, the mass conservation equation is written: 

div v p p*dV 0
Ω

− κ + =∫ ( ( ) )ɺ                    (6) 

The total time of the process is decomposed into small increments ∆t, and the displacement 
field is assumed to be proportional to the velocity field at the beginning of the increment: 

u t v∆ = ∆                           (7) 

In the same way the stress increments are introduced, so that eqs. (5) and (6) are rewritten: 

    
c

dV p p div v dV v dS 0σ σ ε τ
Ω Ω ∂Ω

′ ′+ ∆ − + ∆ − =∫ ∫ ∫( ) : * ( ) ( *) *ɺ       (8) 

p t div u p dV 0κ
Ω

− ∆ + ∆ =∫ ( / ( )) : *                 (9) 

For hot forming process the heat equation is introduced: 
cdT dt div k grad T r 0ρ σ ε− − =/ ( ( )) : ɺ  (10) 
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 Where ρ is the material density, c the heat capacity, k the thermal conductivity and r the 
fraction of plastic work transformed into heat. The thermal and mechanical coupling 
originates from heat generation by plastic work, thermal dilatation which modifies eq. (9), and 
the dependency of the material parameters on temperature, e.g.: 

( )n
0 0 0 1K K ε ε exp( , m m m TTβ= + = +/ )  (11) 

2.2 – Finite Element Discretization 

To achieve robustness and compatibility with other numerical requirements, a mixed 
displacement (or velocity) and pressure formulation with P1+P1 stabilized elements is chosen. 
The pressure field is discretized using tetrahedral elements with 4 linear shape functions Mn, 
while the velocity, or the displacement field, uses 5 shape functions Nn: the linear functions 
plus a bubble function. The discretized mixed integral formulation for the mechanical 
problem is:  

c

U
n n n f n n

vR ( ) dV (p p) trace(B )dV N dS 0
vΩ Ω ∂Ω

∆′ ′= σ + ∆σ − + ∆ + α σ =
∆∫ ∫ ∫: Β: Β: Β: Β   (12) 

R ( ( ) ) 0P
m mdiv u p M dV

t
κ

Ω

= ∆ + =
∆∫                (13) 

To which the discretized heat equation is added: 

t t 0′∆ + ∆ + ∆ =C. T H .T F  (14) 
Where C is the heat capacity matrix, H’ is the conduction matrix and F is a vector 

gathering the boundary conditions and the heat source terms. Equations (12) and (13) on one 
hand and equation (14) on the other hand can be solved separately until convergence or using 
a global Newton Raphson algorithm. 

2.3 - Numerical problems 

2.2.1 Remeshing 
Remeshing steps are compulsory when deformation of the work-piece results in too distorted 
elements and when contact occurs progressively between tools and the part. An iterative 
method is designed to remesh locally where it is necessary. Moreover, for a more reliable 
control of accuracy, an estimation of the discretization error is performed and the elements 
must be refined locally in the zones where the strain is higher. This is achieved by prescribing 
a local size of the elements and rebuilding the mesh accordingly [7]. But this approach may 
lead to generate a very large number of elements. This drawback can be partly overcome, by 
introducing anisotropic meshes having narrow elements in the direction of high strain gradient 
and elongated ones in the orthogonal direction [8].

2.2.2 Equations Solving 
At each time increment several linear systems are generated by the Newton-Raphson 
procedure, their resolutions representing the more expensive contribution to the total CPU 
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time. Iterative methods are effective on the reasonably well conditioned systems we get due to 
the stabilization induced by the choice of P1+P1 elements. These methods can be parallelized, 
provided a domain partitioning is defined, each sub domain being treated on a separate 
processor [8].  

2.2.3 Multi Material Coupling 
The problem of multi material coupling appears when the tools are considered as elastically 
deformable, or when a part is formed with several materials. At the interface between 
different materials, we must impose a unilateral contact condition with friction (and possibly 
with a force of cohesion). However challenging numerical problems appear to take into 
account this situation with non coincident meshes at the interface between materials. In the 
“master and slave approach”, a Lagrange multiplier contribution of the non linear equations to 
solve is introduced to avoid penetration of the slave surface contact

B∂Ω , into the master 
surface contact

A∂Ω . But this approach is effective only when the surface mesh of the slave is 
more refined than the surface mesh of the master in contact. A quasi symmetric Lagrange 
multiplier formulation, was proposed by Fourment et al in [9] in which the additional term is 
written: 

1 ( )  ( )
2

contact contact
B A

QSYM B B
A B B B A Ah u ds h u dsλ λ

∂Ω ∂Ω

 
 Λ = ∆ + ∆
 
 
∫ ∫  (15) 

Where Aλ  is the Lagrange multiplier defined on contact
A∂Ω and Bλ  is the projection of  

Bλ  on the surface contact
A∂Ω . With a nodal formulation, the quasi symmetric approach imposes 

a number of constraints equal to the number of nodes of the slave mesh in contact. This 
method was applied successfully to forging with deformable tools. 

2.2.4 Multi grid and multi mesh. 
A major concern in numerical simulation is to reduce CPU time in order to be able to solve 

more complex problems, involving more refined meshes. However the CPU time is not a 
linear function of the number of unknowns, even for iterative solvers. The multi grid method 
is a way to achieve a quasi linear dependence of resolution time and consequently to reduce 
dramatically the computational cost.   In ref. [10] a promising node-nested Galerkin multigrid 
method is described for solving very large linear systems originating from linearization of 3D 
metal forming problems. The smoothing and coarsening operators are built, using node-nested 
meshes made of unstructured tetrahedra. The coarse meshes are built by an automatic 
coarsening algorithm based on node removal and local topological remeshing techniques. A 
research version of the Forge finite element software was utilized to test the effectiveness of 
the multigrid solver, for several large scale industrial forging problems and it was shown that 
the decrease of CPU time can reach a factor higher than 7.  
Another method for saving computational cost is to utilize different meshes as developed in 
ref. [11]. In hot incremental forming, such as cogging or ring rolling, a unique mesh for 
mechanical and thermal simulation is not the optimal choice.  A Bimesh method will use 
different finite element meshes for the resolution of the different physical problems:  

- a main fine mesh to store the results and to carry out the linear thermal computations with 
one unknown per node, 

- a less refined mesh for the non-linear mechanical calculations with 4 unknowns per node. 
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The numerical development of the Bimesh method consists mainly in building the embedded 
meshes and managing the data transfer between the meshes. The Bimesh method leads to a 
CPU reduction of about 4 on industrial examples and is compatible with parallel calculations. 

2.2.5 Finite Element modeling at the micro scale 
It is well known that the micro (or nano) structure of metals is a key factor for determining 

the constitutive law during forming and for predicting the final properties of the work-piece. 
To treat in an average way, the evolution of the material micro structure during thermal and 
mechanical treatments, the classical method is based on a macro description, selecting 
representative material parameters (grain size, phase percentage, precipitates, etc.) and to 
identify physical laws which govern the evolution of these parameters, and their influence on 
the mechanical behavior [12]. The macro approach is quite convenient for coupling thermal, 
mechanical and physical computation, but it suffers severe limitations and needs a large 
amount of experiments to identify the physical laws describing micro structure evolution. On 
the other hand, computation at the micro scale is now possible and is developed for a more 
realistic description of materials. Micro modeling is potentially much more accurate but, due 
to heavier computer cost at the local micro level, direct coupling with macro thermal and 
mechanical simulations seems limited to 2D problems and simple parts, even with large 
clusters of computers. One way to view the middle term applications is to use micro modeling 
of material in post processing, to predict micro structure evolution for a limited number of 
locations in the work piece, neglecting coupling effects. Another method is to utilize the 
micro approach to help identification of macro laws. The basic ingredients of the general 
micro model developed at CEMEF are summarized in [13].

3 INVERSE METHOD FOR MATERIAL PARAMETERS IDENTIFICATION 
For a given material law, inverse analysis is used to determine the best parameters that fit 
experimental data. Identification of the parameters is achieved by minimizing a least square 
cost function which evaluates the difference between computed and experimental values. In 
the past differentiation methods were mostly utilized [14], but for a more general approach it 
was realized that optimization methods using only the evaluation of the least square function 
must be preferred.  
A parallel optimization algorithm based on EGO (Efficient Global Optimization Algorithm) 
suggested by Jones et al. [15], has been developed for identification and integrated in the 
MOOPI software. A flowchart of this algorithm is presented in Figure 2. The main idea of this 
extension is the following: instead of evaluating exactly the cost function of one new set of 
parameters at each iteration, the idea is to temporally set the cost function value to an 
approximate value regarding the kriging meta-model. This temporally approximation of the 
cost function value is not time consuming and enables to extract a new set of parameters from 
the meta-model without exact evaluation. N set of parameters can thus be extracted from the 
meta-model without any exact evaluation. The final step is to evaluate exactly the cost 
function value of these N new points, which can be done simultaneously using parallel 
computing.   

The EGO algorithm implemented in MOOPI is well suited for parameters identification by 
inverse analysis. This software is able to work with multiple experimental observables and 
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multiple mechanical tests. The optimization procedure gives the set of identified parameters. 
Another useful information is a map of the objective function all over the parameters design 
space. This map is particularly interesting to understand the sensitivity of the observable 
regarding each parameter of the model. 

Figure 2:  Flowchart of the parallel extension of the EGO algorithm implemented in the MOOPI software 

As an example, we identified both elastic-plastic materials behavior law and Lemaître 
ductile damage parameters, in order to study the final mechanical strength of the clinched 
component. Figure 3 shows the identified and experimental load-displacement curves, and 
necking-displacement curves. 

Figure 3:  Identified and experimental load-displacement and necking-displacement curves 
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4 SENSITIVITY ANALYSIS 
For any kind of manufacturing processes, input data are always subjected to variability or 
uncertainty. These variability issues can be experimental (prescribed load, temperature, 
lubrication, exact materials behaviour, friction, etc.) or numerical (mesh size, time step, etc.). 
Sensitivity analysis studies are essential to evaluate the impact of input data variability on 
output results and possibly to select the more important parameters for optimization. In our 
MOOPI software, finite element computations can be run iteratively with different input data. 
Observables are stored and compared to check the influence of input data on final results. The 
modification of input parameters can be done manually by the user, or can be obtained 
through a Design of Experiments (DoE). Sensitivity analysis is applied here to the study of 
the clinching process, where a sheet is deformed by the tools illustrated in Figure 4a. The idea 
is to find the clinching process parameters that have the highest influence on the final 
mechanical strength of the joined component. A sensitivity analysis has been done on the 
punch and lower die geometries, as shown in Figure 4a. A 5% modification has been applied 
to each parameter and the influence on the mechanical strength to pull-out has been measured. 
Figure 4b shows that two parameters have a major influence on the mechanical strength: the 
punch radius Rp and the lower die depth Pm. 

Figure 4:  a) Clinching tools geometry and b) Influence of clinching process parameters on the final mechanical 
strength to pull-out. 

5 PROCESS OPTIMIZATION 
The numerical problem is to find the minimum of the cost function which represents the 
practical objective of the optimization. Several methods were attempted using complex 
derivatives of the cost function (see e. g. [16, 17]). However it is now preferred to use 
optimization algorithms that require only computation of the cost function. In the following, 
two examples are presented in order to illustrate the different approaches which are developed 
in the laboratory. 
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The numerical problem is to find the minimum of the cost function which represents the 
practical objective of the optimization. Several methods were attempted using complex 
derivatives of the cost function (see e. g. [16, 17]). However it is now preferred to use 
optimization algorithms that require only computation of the cost function. In the following, 
two examples are presented in order to illustrate the different approaches which are developed 
in the laboratory. 
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5.1 Optimization with a single objective 

Here the objective is to find the clinching tools geometry that maximizes the final 
mechanical strength of the clinched component. The sensitivity analysis of section 4 allows us 
to select two parameters: the punch radius Rp and the lower die depth Pm. Using the MOOPI 
software, our methodology is summarized in Figure 5.  

Figure 5 :  Optimization of the whole chain of simulation, including the clinching process and the simulation 
of the shearing and pull-out test.

Table 1 shows the nominal values of the two parameters, the research space and the final 
optimal values identified by MOOPI.  

 Nominal valueResearch spaceOptimal identified value

Rp (mm) 1.9 [1.6, 2.2] 1.96 
Pm (mm) 0 [-0.3, 0.6] 0.16 

Table 1 : Nominal values, research space and optimal values associated to the punch radius and the lower 
tool depth

In Figure 6a it can be seen that damage has been significantly decreased in the upper sheet 
thanks to the tools geometry modification. Figure 6b shows the response surface associated to 
the fracture strength to pull-out, that has been maximized. It is interesting to stress that in 
addition to a higher mechanical strength, the optimal solution is also surrounded by a smooth 
maximal area, so that a slight perturbation (or variability) of Rp and Pm will not have much 
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influence on the final mechanical strength. 

Figure 6 :  a) Map of the final damage field, and b) Response surface associated of the final mechanical 
strength of the clinched component (* for reference, + for optimized configurations). 

Table 2 shows the mechanical strength associated with the reference and optimal 
configurations. It can be seen that the optimized configuration induces an increase of 13.5% 
of the mechanical strength to pull-out, and of 42% of the mechanical strength to shearing. 

 Mech Strength 
Pull-out (N) 

Mech Strength 
Shearing (N) 

Reference configuration 737 814 
Optimized configuration 840 1193 

Benefit (%) 13.5% 42.1%

Table 2 :  Mechanical strengths for a pull-out and shearing test associated with the reference and optimal 
configurations

5.2 Multi objective optimization 

Traditionally, in wire-drawing industry uses the optimization of the drawing force to design 
wire-drawing dies. The optimum die semi-angle is claimed to be 6°, or more generally is in a 
range between 4° and 8°. A second objective raises ambiguities, as the risk of ductile fracture 
should be estimated on a damage criterion. For instance, high-carbon drawn wire may show 
brittleness either during the drawing process, or at the cabling stage, or during wire service 
life. Then we have a multi-objective framework, the solution consists in a family of non-
dominated solutions that constitute the Pareto optimal set, or the decision space S. 
The industrial wire drawing process has been simulated following Bobadilla et al [18]. The 
mechanical analysis of the drawing process is performed by a 2D axi symmetric simulation. 
Dies are assumed non deformable and the drawing speed is constant. In Figure 7 the mesh 
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size is 0.5mm and the total nodes number is about 10,000. The wire is long enough to reach 
the mechanical steady state.  

   

Figure 7 : Wire drawing mesh - Die geometry and corresponding design parameters

The Latham and Cockcroft (L&C) damage criterion is used as one of the objective function: 

0

0f
I

max p
eq

max( , )D Max d
ε

Ω

σ ε
σ

 
=   

 ∫   (16) 

Alternatively, the wire drawing force F will be taken as an objective function. Bi-objective 
optimization (force and damage) will finally be addressed. 
The shape parameters describe the geometry of the wire drawing die: reduction ratio R, die 
semi-angle α and the die length L as illustrated in Figure 7. The land length has no significant 
impact on the minimization of F or Dmax. In single pass optimization, reduction ratio cannot 
be an optimization parameter, which leaves one optimization parameter: the die semi-angle α
with values included in the range [1.2°; 22.5°]; this wide range has been selected not to 
exclude non-conventional solutions. 
The selected multi-objective evolutionary algorithm (MOEA) is the Non Sorting Genetic 
Algorithm, NSGA-II, which is considered one of the most efficient MOEA to find Pareto 
optimal sets. In order to reduce computational costs, NSGA-II is coupled [19] to a metamodel 
based on the Meshless Finite Difference Method (MFDM). After initiating the metamodel 
with a reduced number of individuals, the metamodel is continuously updated during the 
algorithm iterations. This way, quite accurate Pareto fronts can be obtained by approximately 
the same number of function evaluations as in the single-objective case. 
Optimization provides different optimal die semi-angle (αopt) depending on the objective 
function. Indeed, an optimal die angle minimizing the non-dimensional drawing stress is 
found only when friction is non-zero (see Figure 8). On the other hand, no optimal die angle 
is observed in damage minimization, as the lowest damage is found on the lower bound 
(α = 1.2° here, see Figure 8). Finally, L&C damage criterion and the non-dimensional wire 
drawing force have been coupled into a bi-objective approach. The Pareto Optimal Front has 
been accurately constructed in a single optimization operation, showing these two objective 
functions to be in conflict. This curve in Figure 9 enables the user to set his priority either on 
damage or on drawing force. In this case, accepting a 2.1% increase of the drawing force 
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could save as much as 51% damage, at a die semi-angle α = 3.46°. Therefore, damage can be 
strongly decreased with a slight increase of the reduced drawing force. 
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Figure 8 : Wire drawing force (left) and damage (right) versus die angle from a single objective optimization.

Figure 9 : Pareto front (wire drawing force versus damage) of the multi-objective optimization problem.

6   TOWARD PREDICTION AND OPTIMIZATION OF LOCAL MECHANICAL 
PROPERTIES 

Forged components are recognized for their excellent mechanical strength and fatigue 
properties. The methodology presented here consists in improving fatigue analyses of forged 
components by accounting for the forging simulation stage. Kneading rate and grain flow 
orientation are two consequences of the forging process. Using the FORGE software, grain 
flow orientation is computed all along the forming process simulation. This grain flow 
orientation, as well as residual stresses, are input data for predicting fatigue, using an 
anisotropic extension of the Papadopoulos fatigue criterion. It is based on experimental 
fatigue results obtained on samples extracted at 0°, 45° and 90° with respect to the grain flow 
orientation. A numerical modelling is performed at the microscale using the DIGIMICRO 
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software. These simulations give a better understanding on the influence of elongated 
particles and cluster of particles on high cycle fatigue mechanisms. A virtual simulation chain 
is set-up to work on real industrial components. This simulation chain, together with 
microscale numerical modelling demonstrate the positive influence of the grain flow 
orientation of forged components on high cycle fatigue properties of industrial parts. The 
general methodology is schematically illustrated in Figure 10 and the complete description of 
the work is given in ref. [20]. 

Figure 10 : Prediction and optimization of fatigue for forged components 

7  CONCLUSIONS  

The basic scientific ingredients were reviewed for accurate simulation of metal forming 
processes with a finite element computer code. A general software system was presented 
which will allow the user not only to simulate industrial processes but also to identify material 
parameters by inverse modeling, to assess the sensitivity of the results to process parameters 
and to optimize the whole forming sequence. An example of multi scale prediction of fatigue 
properties of a forged part was given as a first step toward optimization of the final properties 
of the work-pieces. 
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Abstract. The simulation of high-speed impacts needs the use of advanced constitutive equations 
required for the accurate prediction of the different thermomechanical fields and their mutual 
interactions (temperature, large strains, hardening, damage, friction …). Since these fields localize 
inside intense shear bands (ISB), ductile micro-cracks initiate inside these ISB leading to the initiation 
of macroscopic crack and its fast propagation until the final fracture occurs. Accordingly, these 
advanced constitutive equations should take into account not only the strong thermomechanical 
coupling but also the ductile damage and its strong effect (coupling) on the other thermomechanical 
fields. In this work a complete set of advanced and fully coupled thermo-elasto-viscoplastic-damage 
constitutive equations accounting for mixed nonlinear isotropic and kinematic hardening fully coupled 
with the ductile isotropic damage and the thermal softening for time dependent finite plasticity is 
presented. Related numerical aspects in the framework of a fully adaptive 2D finite element strategy 
are developed and briefly discussed. This adaptive procedure is applied to the simulation of simple 
high velocity impact of thick sheets with dynamic ductile fracture occurrence. Attention is paid to the 
localization of the main thermomechanical fields inside the ISB as well as to the macroscopic cracks 
initiation and growth under high velocity impact. 

 
1 INTRODUCTION 

High speed impact is mostly used to investigate the material behaviour under dynamic 
(high velocity) loading conditions where the strain rates can locally reach 108 s-1. For strain 
rates in between 10 s-1 and 104 s-1 the impact tests can be investigated using the Hopkinson 
bar facilities, and between 104 s-1 and 108 s-1 the so called Taylor impact experimental 
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procedure should be used where the data analysis is more complex to investigate. Note that 
Taylor [1] was the first who developed analytical method to assess the dynamic yield stress at 
different strain rates for various materials. Other research works have investigated the high 
speed impacts on several metals like steel, aluminium and cooper [2-4]. More information 
about recent high speed experimental studies can be found in [5-8] where many of high speed 
impact works are reviewed. 

The numerical simulations of high speed impact should take into account the highly severe 
thermomechanical conditions i.e.: high temperature which can exceeds the melting 
temperature, high strain rates reaching the 108 s-1, large viscoplastic strains and complex 
contact and friction conditions. These fully coupled phenomena and their interactions should 
be accounted for in any constitutive equations used for their numerical simulation. Recently, 
different material behaviour models are used to simulate the high speed machining processes. 
These constitutive equations often propose a weak thermal coupling and isotropic viscoplastic 
flow with isotropic hardening of Norton-Hoff or Johnson-Cook types. In these models, many 
numerical formulations have been used like updated Lagrangian formulation ([10], [12-22], 
[25]), Eulerian formulation [9] or arbitrary Lagrangian Eulerian (ALE) formulations ([11-12])
have been used. Other works use specific meshless based numerical approaches to avoid the 
mesh adaptivity ([20]-[22]). In this work, an adaptive 2D FE-based numerical methodology 
using advanced constitutive equations which account for the ductile damage and its effect on 
the other thermomechanical fields at finite strain is presented. The coupling between thermal 
aspects, thermo-elasto-viscoplasticity and ductile damage including the mixed isotropic and 
kinematic non-linear hardening are included in this model previously developed by Saanouni 
et al. ([23]-[28]). Using the Vumat subroutine, the developed model is implemented into 
ABAQUS/EXPLICIT. Using this fully coupled methodology, the typical example of dynamic 
impact is investigated and attention is paid to the prediction of the thermomechanical fields’ 
localization inside ISB where macroscopic cracks initiate and evolve with high velocity until 
the final fracture occurs. 

2 THERMO-ELASTO-VISCOPLASTIC DAMAGE MODEL 
In the framework of the thermodynamics of irreversible processes with state variables, and 

assuming small elastic and large viscoplastic strains, fully coupled thermo-elasto-visco-
plastic-damage constitutive equations accounting for the micro-cracks closure are developed. 
Two external state variables are used: ( ∫=

t

dtDε , σ) for mechanical aspects and (T, s) for 

thermal phenomena. For ‘internal’ state variables and their conjugate forces we have: (εe, σ)
for small elastic strain tensor and the Cauchy stress tensor; ( q,g grad(T )=

  
) for heat flux 

vector and its conjugate force; (α, X) for the kinematic hardening (i.e. translation of the yield 
surface center); (r, R) for the isotropic hardening (i.e. variation of the yielding surface size) 
and (D,Y) for isotropic damage and its conjugate force.  

Following this approach, a complete set of fully coupled constitutive equations is deduced 
in which the state relations (1) to (4) and the evolution equations (5) to (8) are summarized as 
following: 
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• State relations:

−+ ><+>=< σσσ  where 
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where: ( E ,ν ): Young modulus and Poisson coefficient, T : temperature, 0T : reference 
temperature, ξ : thermal expansion coefficient, C : kinematic hardening modulus, Q : 
isotropic hardening modulus, vC : specific heat coefficient, ρ : material density, elY : the 
elastic part of the damage energy release rate and inY : its inelastic counter part, m a material 
parameter and  0 < h < 1 is the micro-cracks closure parameter.   
• Evolution equations: 

nD vp
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( , , ; )
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σ −
σ = − − σ

− −
    (9) 

In these equations a  and b  are the material parameters governing the non-linearity of 
kinematic and isotropic hardening respectively. S, s , 0Y  and β are the ductile damage 
parameters.  

vpλɺ  is the viscoplastic multiplier defined by 21 KfSinhKvp =λɺ  which in fact is taken as 
the main unknown to be determined numerically at each integration point. 1K  and 2K  are the 
viscous parameters and fvp is the viscoplastic yield function defined in Eq.8. The deviatoric 
tensor n  in Eq.5b defines the outward normal to this yield function. The equivalent 

viscoplastic deformation rate is defined  by ( ) Dp vp
vpvp −== 1:32 λεε ɺɺɺɺ  and the von 

Mises equivalent stress is given by: (3/ 2)( ) : ( )dev dev
MX X Xσ − = σ − σ − .  

Combining Eq.7b (where k  is the thermal conductivity) with the first law of 
thermodynamics leads to the generalized heat equation governing the temperature evolution 
under the form:                                  
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v ɺɺɺɺɺɺɺɺ αεσπασρ ::::     (10)                                             

Note that, in this study, only the following material properties: E , C , Q , S, 1K  and yσ , 
are taken as temperature dependent according to the simple relation of the form: 

(((( ))))0 0 f 0p p 1 ( T T ) T T
χ    = − − −= − − −= − − −= − − −        

                                                                                           (11) 

where { }yKSQCEP σ,,,,, 1∈  is the value of any of these parameters at the temperature T, P0

its value at the reference temperature T0, Tf is the melting temperature of the material and χ
is a temperature independent material parameter. 

The numerical aspects of the presented model and their implementation in 
ABAQUS/EXPLICIT is detailed in ([24-27]). A dynamic explicit scheme is used for the 
resolution of the global equilibrium and temperature equations, for the numerical integration 
of the fully coupled constitutive equations at each Gauss point of each element, the stress 
tensor as well as the overall state variables at each time increment, is calculated by iterative 
implicit algorithm using the elastic prediction and viscoplastic correction procedure with 
radial return mapping  algorithm applied to a reduced number of differential equations.  

A 2D mesh generator named DIAMESH2D is used for the 2D adaptive analysis following 
the procedure described in [26]. Based on appropriate error indicators with 2D linear and 
quadratic Quadrangular and Triangular elements, this procedure adapts the mesh size and the 
loading sequence with respect to the local curvature of the contact surfaces and to the 
distribution of the plastic and damage dissipations. 
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3 Application to high speed shear impact 
This example concerns a typical dynamic (high speed) impact test performed using 

AISI4340 steel cylindrical sample composed from a hollow cylinder connected with a solid 
one, as schematically shown in Fig.1. Basing on the force displacement curves given in [28] 
for the AISI4340 stainless steel, the material parameters of the sample are determined using a 
classical inverse approach. The obtained values are: E=205000 MPa, ν=0.3, Cv=457 J/kg°C, 
ξ =1.37 10-5 °C-1 for the thermo elasticity. σy=792 MPa, Q=320 MPa, C= 5000 MPa, b=0.6, 
a=20, K1=48.9, K2=79.38 MPa for the viscoplastisity and S= 20, s=2, β=1, 0Y =7 for the 
damage evolution equations. All these parameters are identified at the reference temperature 
T0= 20°C and their evolutions with respect to the temperature are governed by Eq. (11) in 
which the parameter χ =1.03 for all parameters except for the parameter S where χ =1.08 and 
the parameter E for which χ =4. The melting temperature for AISI4340 steel is taken equal to 
Tf=1520 °C and its conductivity k=5 W/m/°C in order to favour the adiabatic condition. The 
sample is impacted at a speed of 1600 mm/s, on its lower part (hollow cylinder) by a 
projectile made by fully thermoelastic material with the following parameters: GPaE 450= , 

22.0=ν , CKgJCv °= //400 , 1510.37,1 −− °= Cξ  and  k=50W/m/°C.   

Figure 1. Schematization of the Impact test. 

The geometric parameters required by the adaptive meshing procedure [26] are: 
max =0.55ph mm, min =0.4ph mm and min =0.06dh mm.  

In this example we focus on the numerical prediction of the thermomechanical fields’ 
localization as well as the initiation and propagation of macroscopic cracks under the impact 
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loading. The mesh adaptation and the distribution of the different thermomechanical fields 
will be investigated. 

The Fig.2 shows the evolution of the mesh for different displacements of the projectile. 
The mesh is first refined inside the ISB where the temperature and the plastic strain are highly 
localized (as can bee seen in Fig 3 to 7) and mainly around the macroscopic crack where the 
damage has reached its maximum value. Clearly, the mesh refinement precedes the 
macroscopic crack path since its initiation for u = 1.95 mm (Fig. 3a) till the final fracture of 
the sample for u=3.26 mm (Fig. 2-c) and through the intermediate configuration as for u=2.75 
mm (Fig. 2-b).  

a) u=1.95 mm                                              b) u=2.75 mm                                         c) u=3.26 mm 
Figure 2.  Mesh adaptation during the macroscopic crack evolution for three different values of the projectile 

displacement 

As shown in Fig. 3, the equivalent von Mises stress is, first, maximum with a value of 
1220 MPa inside the ISB before the damage occurrence (Fig. 3a). It decreases and goes to 
zero as the damage increases and the macroscopic crack evolves as shown in Fig. 3a for 
u=1.95 mm and in Fig. 3b for u=2.75 mm. However, when the sample is completely fractured 
the von Mises stress is near zero every where around the crack except some zones where the 
contact between the crack lips generates normal stresses (Fig. 3.c). Note that this stress 
relaxation inside the ISB is not only due to the damage induced softening but also to the 
temperature increase from 0 =20T C°  to max =924T C°  (see Fig. 6) generated by the plastic 
work converted to heat.  

a) u=1.95 mm                                              b) u=2.75 mm                                        c) u=3.26 mm 
Figure 3. Distribution of the von Mises equivalent stress for three different values of the projectile displacement 
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Similarly, the equivalent plastic strain distribution is shown in Fig.4. It is worth noting that 
the equivalent plastic strain localizes inside the ISB with a relatively homogeneous value 
around 60maxp %=  every where before the macroscopic crack initiation as indicated in Fig. 
4. However, once the macroscopic crack is initiated the equivalent plastic strain strongly 
localizes inside a very small zone located at the crack-tip where it reaches max 206 %p =
inside a small area of max 155 %p =  for u=1.95 mm as shown in Fig. 4.a. As the macroscopic 
crack evolves inside the ISB, the accumulated plastic strain diffuses around the crack tip and 
its maximum decreases to reach max 137 %p =  inside a relatively large area with 

max 100 %p =  for u=2.75 mm (Fig. 4b); and max =132 %p  with a large area of max 90 %p =  for 
u=3.26 mm at the final fracture of the sample (Fig. 4c). This accumulated plastic strain 
distribution is confirmed by the equivalent plastic strain rate distribution shown in Fig. 5 
where 4

max =5.85 10pɺ  s-1 for u=1.95 mm (Fig.5a), 4
max =8.04 10pɺ  s-1 for u=2.75 mm (Fig.5b) 

and 5
max =3.00 10pɺ  s-1 for u=3.26 mm (Fig.5c). 

a) u=1.95 mm                                              b) u=2.75 mm                                     c) u=3.26 mm 
Figure 4.  Distribution of the equivalent plastic strain for three different values of the projectile displacement 

a) u=1.95 mm                                             b) u=2.75 mm                                        c) u=3.26 mm 
Figure 5. Distribution of the equivalent plastic strain rate for three different values of the projectile displacement 

The Fig.6 shows the evolution of temperature during the impact test. For the displacement 
u = 1.95 mm (Fig.6-a), the highest temperatures (500 ° C and 900 ° C) locate on both ends of 
the adiabatic shear band, for two reasons. The first is the concentration of high plastic strain 
rate on both ends of the band (between 3.103 and 9.103 s-1) (Fig.6-a). The second reason is 
related to intense friction between the two sides of the crack which maintains high 
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temperatures on the edges of the crack even after the passage of the shear band (Fig.6-b) and 
Fig.6-c),. 

The temperature localizes also inside the ISB as can be seen in Fig. 6. However, due to the 
friction between the crack lips, the maximum of the temperature is still located at the initial 
crack-initiation location with max =924T C°  for u=1.95 mm (Fig. 6a), max =790T C°  for u=2.75 
mm (Fig. 6b) and max =817T C°  for u=3.26 mm at the final fracture of the sample (Fig. 6c). 

a) u=1.95 mm                                            b) u=2.75 mm                                     c) u=3.26 mm 
Figure 6. Distribution of the temperature for three different values of the projectile displacement 

Finally, the Fig.7 shows the distribution of the ductile damage including the macroscopic 
crack defined by killing the fully damaged elements having the smallest mesh size hd=0.06 
mm.  The macroscopic crack length can be estimated to 0.5 mm for u = 1.95 mm (Fig. 7-a), 
1.9 mm for u = 2.75 mm (Fig.7-b), and 3.31 mm for u = 3.26 mm (Fig. 7-c). 

a) u=1.95 mm                                       b) u=2.75 mm                                            c) u=3.26 mm 
Figure 7. Distribution of the ductile damage for three different values of the projectile displacement 

4 CONCLUSION 
An advanced thermo-elasto-viscoplastic-damage model accounting for non-linear isotropic 

and kinematic hardening, thermal and ductile damage effects including the micro-cracks 
closure under compressive phase of the loading has been briefly presented. Using the 
ABAQUS/EXPLICIT user’s subroutine where this model has been implemented, the 
efficiency of this adaptive numerical methodology to simulate the dynamic fracture under 
high velocity impact has been shown. Particularly, this model is shown to be efficient to 
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capture the thermomechanical fields’ localization inside an intensive shear band as well as the 
strong localization of the damage giving rise to the initiation and propagation of macroscopic 
cracks until the final fracture of the structure.  
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Abstract. This contribution describes the numerical treatment and calibration strategy for a 
new micromechanical damage model, which employs two internal damage variables. The new 
micromechanical model is based on Gurson's theory incorporating the void volume fraction as 
one damage parameter and a shear mechanism, which was formulated considering 
geometrical and phenomenological aspects, as the second internal damage variable. The first 
and the second damage variables are coupled in the constitutive formulation in order to affect 
the hydrostatic stress and deviatoric stress contributions, respectively. Both internal damage 
variables are independent and, as a consequence, they also require independent nucleation 
mechanisms for each one in order to trigger the growth contribution. These mechanisms 
require the determination of material parameters that are obtained through two calibration 
points: one for high and the other for low stress triaxiality. This is in contrast to other damage 
models that typically require one calibration point. In the first part of this paper, theoretical 
aspects of the constitutive formulation are presented and discussed. Then, an implicit 
numerical integration algorithm is derived, based on the operator split methodology, together 
with a methodology to perform the calibration of all material parameters. In order to assess 
the performance of the new model, the “butterfly” specimen was used and the 1045 steel was 
employed under a wide range of stress triaxiality. The results obtained from the numerical 
simulations are presented such as: the evolution of both damage parameters, the evolution of 
the equivalent plastic strain, the reaction versus displacement curve and the contour of the 
effective damage parameter. From the comparison of the numerical results with experimental 
evidence, it will be highlighted that the present formulation is able to predict accurately the 
location of fracture onset and the level of the associated equivalent plastic strain at fracture.  

 
 
1 INTRODUCTION 

Ductile fracture in metals is an important subject to be improved in order to predict the 
correct location of crack initiation in machine components and rupture in general structures. 
The fracture phenomenon can be studied by its separated evolution contribution as the 
initiation and growth of general micro defects which is induced by large deformations. Some 
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Abstract. This contribution describes the numerical treatment and calibration strategy for a 
new micromechanical damage model, which employs two internal damage variables. The new 
micromechanical model is based on Gurson's theory incorporating the void volume fraction as 
one damage parameter and a shear mechanism, which was formulated considering 
geometrical and phenomenological aspects, as the second internal damage variable. The first 
and the second damage variables are coupled in the constitutive formulation in order to affect 
the hydrostatic stress and deviatoric stress contributions, respectively. Both internal damage 
variables are independent and, as a consequence, they also require independent nucleation 
mechanisms for each one in order to trigger the growth contribution. These mechanisms 
require the determination of material parameters that are obtained through two calibration 
points: one for high and the other for low stress triaxiality. This is in contrast to other damage 
models that typically require one calibration point. In the first part of this paper, theoretical 
aspects of the constitutive formulation are presented and discussed. Then, an implicit 
numerical integration algorithm is derived, based on the operator split methodology, together 
with a methodology to perform the calibration of all material parameters. In order to assess 
the performance of the new model, the “butterfly” specimen was used and the 1045 steel was 
employed under a wide range of stress triaxiality. The results obtained from the numerical 
simulations are presented such as: the evolution of both damage parameters, the evolution of 
the equivalent plastic strain, the reaction versus displacement curve and the contour of the 
effective damage parameter. From the comparison of the numerical results with experimental 
evidence, it will be highlighted that the present formulation is able to predict accurately the 
location of fracture onset and the level of the associated equivalent plastic strain at fracture.  

 
 
1 INTRODUCTION 

Ductile fracture in metals is an important subject to be improved in order to predict the 
correct location of crack initiation in machine components and rupture in general structures. 
The fracture phenomenon can be studied by its separated evolution contribution as the 
initiation and growth of general micro defects which is induced by large deformations. Some 
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researchers like  McClintock [15] and Rice & Tracey [21] developed pioneering work 
undertaken on the subject, where the nature of defect was taken into account the study of 
ductile damage by analyzing its geometry in a continuous matrix.  

The degradation of material properties is an irreversible process and starts from the 
formation of micro defects which can be voids, cracks and others, that already exist or that 
will be formed in the material matrix. However, the evolution of material degradation is 
dependent on macroscopic loading conditions which can cause a volumetric void growth such 
as in tensile loading condition or a preferential elongation of micro defects which can be 
observed in pure shear loading conditions. The ductile fracture phenomenon can be described, 
based on a micromechanical analysis of micro cavity growth, especially for the fracture 
computation within local approaches of fracture, (see Pineau [19]; Mudry [16]; Rousselier 
[23]; Besson [3]) or based on the Continuum Damage Mechanics theory and a thermodynamic 
framework, either phenomenological or micromechanically based, as Lemaitre [12]. 

The formulations proposed by Lemaitre and Gurson are the most important coupled 
damage ductile models to describe the above two methodologies, see Chaboche [7]. Since 
then, motivated by the limitations of these classical models, such as in prediction of the 
correct fracture location or in determination of the correct values of the internal variables at 
fracture, many researchers have proposed improvements in both methodologies, by 
introducing more effects in the constitutive formulation or  in the damage evolution law  like 
the pressure effect, temperature, Lode angle dependence, viscoplastic effects, crack closure 
effect, shear mechanisms, among others (Tvergaard & Needleman [27]; Rousselier [22;24]; 
Xue [28]; Nahshon & Hutchinson [17]; Lemaitre & Chaboche [13]; Chaboche [6]; Andrade 
Pires [1]; Chaboche et al. [7] ; Besson [4]). 

These classical coupled damage models have the ability to predict the correct fracture 
location under a specific range of stress triaxialities (see Xue [28]; Nahshon [17]; Teng [26]) 
and are extremely accurate for loading conditions close to the calibration point, see Malcher 
[14]. For example, within range of high levels of stress triaxialities, where the spherical void 
growth is the predominant mechanism, the models based on Gurson theory, like the Gurson-
Tvergaard-Needleman model, have good performance in prediction of fracture location and 
parameters in fracture as equivalent plastic strain and displacement. However, under shear 
dominated loads, where failure is mainly driven by the shear localization of plastic strain of 
the inter-voids ligaments due to void rotation and distortion, the model does not perform well, 
see Engelen [9] and Chaboche [7].  

Due to these two types of ductile failure mechanisms, it is expected that the population of 
micro defects, that can be nucleated, would be higher in void sheeting than in internal 
necking. Motivated by these short comings, in this contribution, a new extension to the GTN 
model is proposed in order to improve the ability to predict the correct fracture location and 
determinate the internal parameters in the fracture. A new independent damage parameter is 
suggested to capture elongation of micro-defects and coupled to constitutive model to affect 
only the deviatoric stress part. A nucleation of general micro defects is introduced to trigger 
the shear mechanism and gives more accuracy to the model in prediction of ductile failure 
under mixed loading condition. 
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2 CONTITUTIVE FORMULATION 

One of the most popular versions of Gurson’s model is the Tvergaard–Needleman 
modification (Tvergaard and Needleman [27]). The model assumes isotropic hardening and 
isotropic damage, represented by the effective porosity . The constitutive formulation for 
GTN’s model can be better expressed as: 

 
(1) 

where, the parameters ,  and  are introduced to bring the model predictions into closer 
agreement with full numerical analyses of a periodic array of voids. 

The damage evolution, in this formulation, is reproduced by three simultaneous or 
successive mechanisms that can be described as the nucleation, growth and coalescence of 
voids as 

 
(2) 

where,  represents the effective damage,  denotes the critical volume void fraction and  is 
the volume void fraction at fracture. The effective damage is determined based on both 
nucleation and growth mechanisms if the volume void fraction is less than critical value. The 
coalescence is active only if the volume void fraction is higher than the critical value. The 
volume void fraction rate, , is a sum of the nucleation and growth mechanism as. 

 (3) 

The nucleation mechanism can be driven by either the plastic strain or the hydrostatic 
pressure. Equation 4 represents the nucleation mechanism based on the equivalent plastic 
strain:  

 
(4) 

where,  represents the volume fraction of all second-phase particles with potential for 
microvoid nucleation,  and  are the mean strain/pressure for void nucleation and its 
standard deviation. The variable  represents the equivalent plastic strain and  is the rate of 
the accumulated plastic strain. The nucleation mechanism is valid only if the hydrostatic 
pressure is great to zero, . If  , the nucleation mechanism rate is equal to zero. The 
evolution of growth mechanism in GTN’s model is determined as: 

 

 (5) 

where, the elastic strain rate contributions is represented by . 
In order to improve the micromechanical models like Gurson and GTN to predict failure 

when void sheeting mechanism plays the main role, researchers as Xue [28], Nahshon & 
Hutchinson [17], Butcher et al. [5] have suggested the introduction of another mechanism as 
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shear, in the evolution law of the Gurson’s damage parameter. Both researchers have initially 
formulated shear mechanisms based on phenomenological and geometrical aspects resulting 
in expression dependent on the equivalent plastic strain and its rate and a Lode angle function. 
Both formulations have shown a very nice performance in pure loading conditions, regarding 
the prediction of the crack initiation, but in combined load path, the models have failed either 
in prediction of the fracture location or in level of equivalent strain and displacement at 
fracture, see Malcher [14] and Reis & Malcher [20]). Xue [28], based on volume conservation 
of a representative square cell contains a cylindrical void at the center, has proposed a shear 
mechanism when this cell structure is subjected a pure shear loading condition. The evolution 
law for the shear mechanism proposed by Xue is represented by Equation 6 

 (6) 

where,  and  are geometrical parameters and can be defined according to two or three 
dimensional problem. For two dimensional problem,  and  and for three 

dimensional problem,  and . 
The shear mechanisms can be coupled in GTN’s model and a so called Lode angle 

function is required to active the mechanism only when the shear strain is detected in a 
general loading condition. Xue [28] defines the Lode angle function as a linear expression of 
the normalized Lode angle, as: 

 (7) 

where,  represents the so called Lode angle function and  is the normalized Lode angle. 
Thus, the damage internal variable rate (Equation 3) can be re-written according Equation 8.  

 (8) 

Authors as Reis & Malcher [20],  Malcher [14], Xue [28] and Nahshon & Hutchinson [17] 
have shown that the original GTN’s model has limitations, such as: no ability to predict 
failure in pure shear loading condition, due to the fact that the growth rate of the volume void 
fraction, which plays the damage parameter role, has no evolution; the coupled damage 
models have got good performance only for loading conditions close to calibration point; the 
nucleation of micro-voids mechanism does not have a physical meaning in low stress 
triaxiality, since the nucleation of micro-defects, in general, can be better appointed; and, in 
the plastic flow rule, the deviatoric stress tensor contribution is not affected by the damage 
parameter and the volume void fraction affects only the hydrostatic stress term. However, in 
order to try to solve the above problems, in this paper, a new formulation for GTN original 
model is suggested, giving ability to predict the correct location to crack initiation and the 
determination of the values of the internal variables at fracture. 

The proposition starts from the way that the shear damage parameter is coupled in the 
GTN yield function. In the GTN original model (see Tvergaard and Needleman [27]) or in the 
GTN improved model (see Xue [28]; Nahshon & Hutchinson [17]), the damage parameters, 
such as only porosity or porosity and shear damage, affect mainly the hydrostatic pressure 
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contribution (see Equation 1). Hence, in this case, the plastic flow rule is expressed by an 
unbalanced equation, which the deviatoric contribution is free of the damage parameters. In 
this contribution, the volume void fraction and the shear damage will be coupled 
disconnectedly in the yield surface. The volume void fraction will affect exclusively the 
hydrostatic pressure and the shear damage will be coupled affecting the deviatoric stress 
contribution. Thus, Equation 1 can be re-written as follow: 

 
(9) 

The new yield function would still be a function of the set of parameters , since than 
the shear mechanism would still be a function of the volume void fraction.  

In this paper, it is suggested an uncoupling between both shear damage and volume void 
fraction as well as the creation of a new nucleation of micro defects mechanism, responsible 
to trigger the shear damage parameter. Thus, the new constitutive formulation will get two 
independent damage parameters and the yield function established by Equation 9 would be a 
function of the set of parameters . The volume void fraction, as defined by Tvergaard 
& Needleman [27] would be the first damage parameter and shear damage with a new 
nucleation of micro defect mechanism, the second one. Hence, the evolution of the new 
damage parameter can be expressed as: 

 (10) 

where  represents the rate of the new damage parameter,  represents the rate of the 
nucleation of micro defects mechanism,  denotes the rate of the shear contribution and 
the parameter  can be introduced to calibrate the rate of the shear contribution, bringing 
more flexibility to suit the critical shear damage with the experimental critical displacement. 

The nucleation of micro defects mechanisms, by the authors, will be considered a normal 
distribution of  all second-phase particles with potential for micro defect nucleation and can 
be expressed as: 

 
(11) 

where,  represents the fraction of all second-phase particles with potential for micro defect 
nucleation,  and  are the mean strain for defect nucleation and its standard deviation. The 
set of parameters , required to the nucleation of micro defect, need to be calibrated 
for a point in pure shear loading condition. This contribution added a new calibration point 
further the already required, which can come a very nice accuracy for the formulation within 
the all range of stress triaxiality. 

Regarding the same simplification adopted by Gurson [11], in order to vanish the elastic 
contribution in the definition of the volume void fraction rate for a rigid plastic matrix (see 
Equation 5), the authors can suggest that in the rate of the shear mechanisms (Equation 6) 
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contribution, both equivalent strain and equivalent strain rate would be changed by the 
equivalent plastic strain and equivalent plastic strain rate. This simplification is reasonable in 
the majority of problems involving ductile damage since the elastic strains can be considered 
negligible. Thus, the expressions can be re-written, as: 

 (12) 

By the authors and through the experimental evidence, the stress triaxiality effect can be 
introduced by an exponent in the previous Lode angle functions suggested by Xue. 

 (13) 

where,  is the new function that now will be called by balance function,  represents the 
stress triaxiality and  is a constant that need to be calibrated. Figure 1 represents the behavior 
of the balance function on the space of the set of parameters . The influence of the 
stress triaxiality can be observed manly in the range of stress triaxiality between . 

  
(a) (b) 

Figure 1: Three dimensional representation of the balance function suggested by the authors. 

Regarding this new model, two independents nucleation mechanisms are introduced, first 
one to trigger the growth rate of the volume void fraction and the second one to trigger the 
growth rate of the shear mechanism. In order to active or not each one contribution when pure 
shear or pure tensile loading condition is applied or to balance the value of it when both 
shear/tensile or shear/compression loading condition is present, the authors suggest the 
introduction of the Lode angle function, , in the nucleation mechanisms 

How was previously discussed, based on the modified formulation, two calibration points 
are required. First one for high stress triaxiality, which the smooth bar specimen can be used 
to determine the hardening law, , for undamaged model, the void nucleation parameters as 

,  and  and the critical volume void fraction . A specimen in pure shear loading 
condition is also required to calibrate the general micro defects nucleation parameters as , 

 and , the accelerator damage parameter, ,  and the critical shear damage parameter, . 
In Box 1, the basic constitutive equations and evolution law for internal variable and damage 
parameters are summarized: 
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Box 1. GTN’s modified model including nucleation and elongation of micro shear defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 NUMERICAL INTEGRATION ALGORITHM 
Algorithms based on operator split methodology are especially suitable for the numerical 

integration of the evolution problem and have been widely used in computational plasticity 
(see Simo & Hughes [25]; De Souza Neto et al. [8]). This method, which is used for our 
development, consists of splitting the problem in two parts: an elastic predictor, where the 
problem is assumed to be elastic and, a plastic corrector, in which the system of residual 
equations comprising the elasticity law, plastic consistency and the rate equations is solved, 
taking the results of the elastic predictor stage as initial conditions. In the case of the yield 
condition has been violated, the plastic corrector stage is initiated and the Newton- Raphson 

(i) Elasto-plastic split of the strain tensor:  
 

(ii) Elastic law 

 
(iii) Yield function 

 
(iv) Plastic flow and evolution equations for ,  and  

 

 

 

 
where, 

 

 
and, 

 
 

(v) Loading/unloading criterion 
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Box 1. GTN’s modified model including nucleation and elongation of micro shear defects. 
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procedure is used to solve the discretised equations. The Newton-Raphson procedure was 
chosen motivated by the quadratic rates of convergence achieved which results in return 
mapping procedures computationally efficient, see Simo & Hughes [25] and De Souza Neto 
et al. [8]. The implicit algorithms were proposed initially based on the infinitesimal strain 
theory and here, both numerical models are extended to the finite strain through the 
framework based on a logarithmic strain measure, rather than the elastic deformation gradient, 
see Peric´ et al. [18] and Eterovic et al. [10]). The overall algorithm for numerical integration 
is summarized in Box 2. 

Box 2. Fully implicit Elastic predictor/Return mapping algorithm. 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   

 

(i) Evaluate elastic trial state: Given the incremental strain   and the state variables at : 

 ;  ;  
 ;  ;  

 ;    

(ii) Check plastic admissibility: 

IF  

THEN  set   (elastic step) and go to (v) 

ELSE go to (iii) 

(iii) Return mapping (plastic step): Solve the system of equations below for 
, , ,  and , using Newton-Raphson method: 

 

 

where, 
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 continue Box 2. 

 

 

 

 

 

 

 

 

 

 
 

4 CALIBRATION PROCEDURE 
In order to determine the materials parameters for the proposed constitutive model, two 

calibration points are required. The first point is taken from a specimen at high level of stress 
triaxiality, where a smooth bar specimen can be used. In this step, the hardening law, , 
for the undamaged model is determined as well as the set of parameters for nucleation of 
micro void mechanism . The second calibration point can be taken from a specimen 
in pure shear loading condition, where the accelerator parameter, , is determined as well as 
the set of parameters for the nucleation of micro defects mechanism . Here, a 
butterfly specimen can be used under pure shear loading condition. 

4.1 Geometry and mesh definition 
Regarding the material properties for the first calibration point, a classical smooth bar 

specimen is used and the following dimensions were employed (see Figure 2a). In order to 
trigger necking, a dimensional reduction of 5% in the central diameter of the specimen is 
used. For a steel 1045, a gauge section 20.6 mm is used. The standard eight-nodded 
axsymmetric quadrilateral element, with four Gauss integration points, is adopted. The initial 
mesh discretisation is illustrated in Figure 2b, where only one symmetric quarter of the 
problem, with the appropriate symmetric boundary conditions imposed to the relevant edges, 
is modeled. A total number of 1800 elements have been used in the discretisation of both the 
smooth specimens, amounting to a total of 5581 nodes. 

 

 

  

(iv) Update the others state variables: 

 
(v) Exit 
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(a) (b) 
Figure 2. Geometry for the smooth bar specimen. Dimension in (mm). Taken from Teng [26]. 

 
For the second calibration point and the numerical tests that will be presented, a butterfly 

specimen is used. The specimen was initially designed by Bai [2] and the geometry and 
general dimensions can be verified by Figure 3. In this case, a three dimensional finite 
element mesh of 3392 twenty nodded elements, with nine Gauss integration points, is used 
amounting to 17465 nodes. 

 
Figure 3. The geometry for butterfly specimen. Dimension in (mm). Taken from Bai [2]. 

4.2 Material parameters 
In the present section, the stress-strain curve, the parameters required for modeling micro 

void nucleation mechanism from the GTN model are calibrated by tensile tests in cylindrical 
smooth bars. Through experimental data (see Bai [2]), the reaction versus displacement curve 
is determined as well as the stress-strain curve for an elasto-plastic model of von Mises type. 
The inverse method is adopted in order to calibrate the material parameters for coupled 
damage model by forcing the numerical solution to be, as close as possible to the 
experimental results. Figure 4a shows reaction curve for the model determined after the 
application of inverse method. A good agreement between the experimental and numerical 
results can be observed. Furthermore, the critical volume void fraction is also determined in 
the point where the model attains the displacement to fracture, experimentally observed (see 
Figure 4b). The critical values obtained is , for aluminum a steel 1045. 
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(a) (b) 

Figure 4. (a) Reaction versus displacement curve for GTN model and experimental results for 
steel 1045. (b) Critical volume void fraction parameter calibrated for the material. 

The results of the calibration procedure, in terms of stress-strain curve, can also be 
observed in Figure 5, where for uncoupled and coupled damage models, were determined. 

 
Figure 5. Stress-strain curve determined for an uncoupled and coupled models. 

Regarding the second calibration point, the parameters related with the micro defects 
nucleation mechanism are determined as well as the critical value for the shear damage. The 
butterfly specimen is here used under pure shear loading condition and the displacement at 
fracture was suggested by Bai [2]. An inverse method is also adopted, regarding the 
calibration of the parameters by forcing the numerical results to be as close as possible to the 
experimental data. Table 2 contents the best materials parameters suggested after some 
inverse numerical tests. The parameters will be used during all numerical simulations. 

Table 1: Materials parameters for steel 1045. 

High stress triaxiality          
         

Low stress triaxiality          
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5 NUMERICAL RESULTS 
Regarding a consistent analysis for the new constitutive formulation at low level of stress 

triaxiality, some numerical tests are performed using the butterfly specimen and the implicit 
algorithm developed in above sections. Three different loading conditions are taken as: pure 
shear (0º), shear/tensile (10º) and shear/compression (-5º), taken hand the materials properties 
for a steel 1045. The performance of some internal variable and the ability to predict the 
correct fracture location are evaluated. At the end, the numerical results determined by the 
new formulation can be compared with the results obtained by other shear mechanisms as 
Xue [28] and Nahshon & Hutchinson [17]. 

Table 2: Numerical results for butterfly specimen, regarding different loading conditions. 

Angle Experimental data Numerical results 
      

0º 1.03 0.50 1.03 0.522 0.000 0.160 
10º 0.42 0.36 0.44 0.353 0.026 0.053 
-5º 1.71 0.60 1.71 0.612 0.000 0.126 

 
Figure 6 represents a comparative illustration for the ability to predict the fracture location 

in combined shear/tensile (10º) loading condition using 1045 steel, regarding different shear 
mechanisms. Figure 6a illustrate the contour of damage parameter for Nahshon & Hutchinson 
shear mechanism, Figure 6b for Xue shear mechanism and Figure 6c for the new proposition. 
We can observer that only the new proposition predicts fracture onset in agreement with 
experimental evidence. The prediction by Xue is in complete disagreement with experimental 
evidence and by Nahshon & Hutchison, the contour is somewhat spread around the critical 
section, which may suggest a certain vagueness to the model. 

 

 

 

 
(a) (b) 

 

 
(c) 

Figure 6. Damage parameter contour, (a) Nahshon & Hutchinson shear mechanism, (b) Xue 
shear mechanism and (c) new proposition. Section CC in the critical zone. 
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6 CONCLUSIONS 
In this contribution, it was proposed a new formulation for improve the original GTN 

model, regarding the ability to predict ductile fracture in low level of stress triaxialities. The 
new formulation has two damage parameters, first one affecting only the hydrostatic stress 
part and another affecting the deviatoric part. 

Numerical tests were provided, based on implicit integration algorithm, in order to evaluate 
the formulation in prediction the crack formation. A butterfly specimen was required, besides 
to a steel 1045. The model behaves well, whether in the determination of the correct level of 
equivalent plastic strain and displacement at fracture, or in prediction of the location to crack 
formation.  

The proposition of create two damage parameters affecting separated stress contribution 
brings a balance in the evolution of internal variables so the more precise values at time of 
crack formation. Furthermore, the creation of a new micro-defects nucleation mechanism 
allowed a better calibration model and thus a good performance within wide range of stress 
triaxialities.  
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Abstract. A structure for a composite of fibre-metal laminate (FML) has been proposed, 
which is composed of reinforcing fibre bundles, thermoplastic resin as the matrix and metal 
plates. The reinforcing fibre bundles are discontinuous, and are intentionally overlapped in the 
longitudinal direction. The resin including fibre bundles was sandwiched between the metal 
plates. The application concept for the industry is composed of three stages. At the 1st stage, 
FML is fabricated by lamination of reinforcing fibre bundles, thermoplastic resin and metal 
plates. At the 2nd stage, FML is formed into the final shape of the product by secondary 
forming processes, such as stretching or bending under a heated condition which melts the 
thermo resin. At the 3rd stage, the formed product is expected to have high strength. In the 
present paper, the effect of heating temperature on the deformation of FML at the 2nd stage 
was clarified. Firstly, the numerical examination was shown on the effect of overlap length on 
the fracture mode and the reinforcing mechanism in the proposed FML. Based on the result, 
the minimum bare length for the overlapped part for the discontinuous fibre bundles was 
determined so that the tensile strength might be as high as that with FMLs with continuous 
fibre bundles at the 3rd stage. Finally actual FML was experimentally fabricated, and 
subjected to all though the 1st to 3rd stages to verify the efficiency of the FML. In particular, 
the effect of heating temperature was focused upon to realize the forming process at the 2nd 
stage. 

 
 
1 INTRODUCTION 

It would be meaningful to develop materials, including composites, which have both high 
formability in plastic deformation and high strength after forming. It would be important 
particularly when the material is employed as structural components for vehicles or 
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architecture. The material should have higher formability and lower flow resistance during 
forming. On the other hand, the material should have high strength once it is formed into its 
final shape and used as structural components. 

Many research trials have been conducted to develop such kinds of materials which have 
contradictory properties: high formability and high strength. Ultra-fine-grained metal is one of 
the most popular materials recently. Several new technologies have been proposed and have 
successfully formed ultra-fine-grained metals [1]. However, formability and tensile strength 
still have a contradictory tendency, and that is to say that fine-grained metals with higher 
strength tend to have lower elongation. Bake hardening is an effective method to satisfy the 
contradictory requirements [2]. Before bake hardening, the metal plate is relatively soft and 
easily deformed by cold working processes. After the metal plate is formed into its final shape, 
bake hardening is conducted to strengthen the metal.  

Composites are very efficient materials which realise high strength while suppressing total 
weight [3]. The efficiency has been evaluated in terms of both mechanical properties and 
formability in the forming processes [4, 5]. However, it is generally difficult to subject the 
formed composite to secondary forming processes which require plastic deformation.  

Discontinuous reinforcing fibres are inevitably used for composites to secure secondary 
deformation. Some composites with short fibres are proposed using an aluminium matrix, and 
their manufacturing methods are presented [6, 7]. However, short fibres would lead to lower 
strength than long fibres. "Stampable sheets" which are composed of a net of fibres and a 
thermoplastic matrix, have been proposed with emphasis on the formability at secondary 
deformation [8, 9]. "Stampable sheets" would enhance the flexibility in forming under the 
condition that the deformation is bending and the length is kept constant during the 
deformation. However, "stampable sheets" would not be applicable for forming processes 
where the composites are elongated because the fibres are woven into the shape of a net.  

Fibre–metal laminates (FMLs) have been developed as hybrid structures, which have the 
durability of metals with the impressive fatigue and fracture properties of fibre-reinforced 
composite materials. The mechanical properties of FMLs have been investigated [10, 11]. 
There are also some research studies focusing upon the blast response of FMLs [12, 13]. Even 
though the fatigue and fracture properties of FMLs are excellent, the formability of FMLs is 
not secured. 

In the present research, a structure of FML has been proposed for the purpose of 
maintaining substantial elongation at the secondary forming process as well as providing high 
strength [14]. The structure is composed of reinforcing fibre bundles, thermoplastic resin as 
the matrix and metal plates. The reinforcing fibre bundles are discontinuous, and are 
intentionally overlapped in the longitudinal direction. The resin including fibre bundles was 
sandwiched between the metal plates. Finite element analyses were carried out for the 
examination of the structure in terms of stress distribution and composite strength. Based on 
the analytical results, experiments were carried out to verify the formability in secondary 
forming under a heated condition as well as the strength after being cooled to room 
temperature. In particular, the effect of heating temperature was focused upon to realize the 
forming process at the 2nd stage. 
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2 INTRODUCTION OF A STRUCTURE FOR FIBRE–METAL LAMINATE (FML) 
FML has been proposed by the authors, which is able to be greatly elongated at secondary 

forming and which provides a high level of strength in one direction after the secondary 
forming [14]. Figure 1 shows the application image of the FML and the verification 
procedure by laboratory experiment. At the 1st stage of the application, FML is formed by 
lamination of reinforcing fibre bundles, thermoplastic resin and metal plates. At the 2nd stage, 
FML is formed into the final shape of the product by secondary forming processes, such as 
stretching or bending under a heated condition which melts the thermo resin. At the 3rd stage, 
the formed product is expected to have high strength. In the laboratory experiments for 
verification, FML is firstly formed by lamination into the shape for a tension test. The FML is 
elongated under a heated condition. After being cooled, the FML is subjected to a tension test 
for the measurement of mechanical properties.  

In the proposed structure, the reinforcing fibre bundles are discontinuous, and are 
intentionally overlapped in the longitudinal direction. When the overlap length is 
satisfactorily long, the FML would have enough strength at the 1st stage. If the FML is heated 
at an appropriately warm temperature to melt the thermoplastic resin, the FML would be 
elongated with reduction of overlap length at the 2nd stage. If the overlap length is still long, 
the FML would maintain strength at the 3rd stage. 

3 FINITE ELEMENT ANALYSIS OF FML 

3.1 FEA model for FML 
The unique point of the proposed FML is the existence of overlapped fibre bundles. 

Concept for 
application

Lamination 

Forming 
under 
heated 
condition 

Product 

Verification by 
experiment 

Sheet metal

Fibre bundle 

Matrix 

HeaterHeated Punch

Warm stretching etc.

Tensile test

Stretching

[1st stage]

[2nd stage]

[3rd stage]

Figure 1: Concept and experimental procedure for FML Figure 2: Schematic illustration of composites 
examined in FE analysis 
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Thermoplastic resin around the overlapped fibre bundles is required to withstand certain stress 
for maintaining the high strength of FML. In order to clarify the role of the overlapped part, a 
series of analyses was carried out. 

Two types of models were adopted for the analyses as shown in Fig. 2. The fibre-bundle 
diameter was fixed at 0.43 mm, which was the same as the actual one used in the experiment. 
The thickness of the matrix of thermoplastic resin was 0.56 mm, which was determined from 
the measured value of tentatively formed FML. In the analyses, FMLs are elongated in the 
parallel direction to the fibre bundles by applying displacement at one of the FML ends. 

Fibre bundles and thermoplastic resin are sandwiched by two metal plates of 5 mm 
thickness in Case (1). While one of the fibre-bundles ends is connected to one end of the FML, 
the other end is embedded into the resin. As the metal plates are much thicker than the fibre-
bundle diameter, the FML is supposed to deform almost homogeneously without being 
affected by the existence of the fibre bundle. Therefore, Case (1) would simulate the 
behaviour of fibre bundles and resin in homogeneous deformation, i.e. in idealistic 
deformation of the composite. Fibre bundles, supplied from two directions, are sandwiched by 
two metal plates of 0.49 mm thickness in Case (2). 

Numerical models in finite element analysis (FEA) are shown in Fig. 3 taking Case (2) as 
an example. Elastic-plastic analysis was carried out using the commercial code ELFEN, 
which was developed by Rockfield Software Limited, Swansea. Implicit scheme was used. 
Metal plates and thermoplastic resin were treated as elasto-plastic material and fibre bundles 
were assumed to be elastic material. A von Mises' yield criterion was adopted for elasto-
plastic materials, and the normality principle was applied to the flow rule. Constraints were 
dealt with by the penalty function method. The F-bar method was applied to the hexahedra 
element for overcoming volumetric locking with simple brick-type elements [15].  

Figure 3: FEM model for composite 
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As the nodes between different materials belong to both materials, no slippage occurs, i.e. 
the materials are assumed to stick together completely. A half model was adopted in the 
thickness direction considering the symmetry. Only two fibres are modelled considering the 
periodicity in width direction. As the centre axis of fibre would be straight if a number of 
fibres exist periodically, surface ABB'A' is fixed in x direction as shown in Fig. 3. Although 
the other surface CDD'C' is not fixed in x direction, the movement of nodes on the surface are 
coupled so that the displacement of the surface CDD'C' should be the same. While surface 
A'B'C'D' is fixed in z direction, displacement is given to surface ABCD during tension test. 

3.2 Stress distribution during numerical tensile test 
A series of analyses was carried out for clarifying the reinforcing mechanism of the 

proposed FML by comparing stress distribution between different structures. The geometry of 
FML is shown in Table 1. If stress concentrates at some area, the tensile strength would 
decrease due to localized deformation. As stress concentration would occur at either the fibre 
bundle or boundaries between the fibre bundle and matrix, axial stress σF along the axis of the 
fibre bundle and shear stress τM on the boundary were evaluated. The evaluation lines for σF
and τM are A-A" and E-E", respectively, in Fig. 3. 

Table 1: geometry of FML 
Total length  (L), mm 60 
Fibre bundle Diameter  (DF), mm 

Length    (LF), mm 
Overlap length (LD), mm 
Pitch      (pF), mm 

0.43 
28  -  40 
(Case 1) 6, 20 
(Case 1) 1.0 
(Case 2) 1.0 at overlapped part 

Matrix Thickness (tM), mm 0.56 
Plate (Case 1) Annealed aluminium 1050, thickness tP=5.0 mm 

(Case 2) Annealed aluminium 1050, thickness tP=0.49 mm 

Figure 4 shows the result for Case (1) which would simulate the behaviour of fibre 
bundles and matrix in homogeneous deformation. With increase of nominal strain ε of the 
laminate, axial stress σF of the fibre increases while the length LS of the area, where shear 
stress τM is equal to yield shear stress of matrix τ My, expands. At the same time, the length of 
part LA, where axial stress σF changes at a constant rate at the end of the fibre bundle, also 
expands. Once nominal strain ε of FML reaches 0.0256, axial stress σF reaches rupture level. 
This phenomenon of stress slope would be explained by the following equation (1). 

(1) 

where, DF = Diameter of fibre bundle [mm]. 
The left-hand side is increase of tension given by axial stress σ F of the fibre bundle, while 

the right-hand side is the total force given by shear stress τM on the boundary. At the 
beginning of elongation of the laminate, shear stress τM reaches yield shear stress τMy on the 

dzDDd MFF
2
F4

τπσπ =
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boundary at the tip of the fibre bundle. With increase of elongation, the length LS of τMy
expands, and axial stress σ F has a slope following equation (1) at the end of the fibre bundle 
embedded in resin. Axial stress σ F reaches σFP at the end of the slope and σ F is constant at 
σFP at the plateau area, which is denoted by P1 for ε =0.012 in Fig. 4. When nominal strain ε is 
larger than 0.0256, σFP reaches rupture level. When σFP reaches rupture level σBF, the length 
of axial-stress slope LC is calculated following equation (2) derived from equation (1). 

(2) 

In the remaining section, let LC be called critical length. 

Figure 5(a) shows the result for Case (2) where fibre bundles, supplied from two 
directions, are sandwiched by two metal plates, and the overlap length LD is longer than 
critical length LC. The shear-stress field is confined within the overlapped part LD. Axial stress 
σF of the fibre bundle has two plateaus, P1 and P2, and two slopes following equation (1). As 
the plates also play a role of supporting tensile load, the stress proportion is not simple and the 
axial stress at the overlapped part P2 is larger than half of the axial stress at P1. As a result, 
shear stress τM is larger around z =40 mm than around z =20 mm. 

Figure 5(b) shows the result for Case (2) when the overlap length LD is shorter than critical 
length LC. It is noteworthy that the shear-stress field expands beyond the overlapped part LD. 
Even in the single-way-bundle part, axial stress continues to increase in the left-side direction 
in the area denoted by α. It is thought that the supporting plates have a role to convey stress to 
the single-way-bundle part. The existence of surplus length α is the reason why FML can 
reduce the minimum bare overlap length LDN for maintaining tensile strength less than LC
calculated by equation (2). 

Based on the numerical study above, the role of the overlap part was clarified. Shear stress 
τM on the boundary changes corresponding to axial stress σF of the fibre bundle which should 
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be 0 at the tip of the bundle and should be a certain constant value in single-way-bundle part 
P1. Due to this stress distribution, the whole laminate can withstand the applied load, even if 
the fibre bundles are not continuous. The relationship between shear stress and axial stress 
should comply with equation (1). When the plate does not exist, the overlapped part LD should 
be longer than critical length LC, which is calculated by equation (2) in order to maintain 
strength of the laminate as high as the value predicted by the law of mixture [16]. However, 
the supporting plate would reduce the needed length for the maintenance of strength by 
surplus length α in Fig. 5(b). Surplus length α would change depending on the mechanical 
properties and thickness of the plates. 

  

Figure 5: Stress distribution for Case (2)
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4 EXPERIMENTAL RESULTS 

4.1 Effect of temperature in 2nd stage of deformation 

According to equation (1), when yield shear stress τ My, which is the maximum value of τ y, 
is enough low, axial stress σ F would not be increased as the deformation will not conveyed 
between fibre bundles. This situation is easily realized by heating FML because the matrix is 
a thermoplastic resin, which melts completely over 100 degrees Celsius [17]. The effect of 
temperature on the formability of FML of case (2) is tested using device in Fig. 6. 4 rod 
heaters were used for heating FML. After the temperature at the surface of FML reached a 
saturated value, the temperature was recorded as heating temperature T. The experimental 
result is shown in Fig. 7 in the form of stress-strain diagram with overlap length LD of 30 mm. 
Overlap LD of 30 mm is much longer than critical value LC calculated equation (1) for room 
temperature. 

Rod heater

Holder

Connector 
of holders

String for
hanging

FML

Figure 6: Schematic illustration of heating device and geometry of FML for tension test
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When the heating temperature T is at room temperature, the thermoplastic resin conveyed 
shear stress completely, the fibre bundles are tightly elongated so that tensile strength reached 
over 100 MPa and suddenly dropped due to rupture at the fibre bundles. With increase of 
heating temperature T, tensile strength decreased and total elongation increases. When the 
heating temperature is over 80 degrees, as the thermoplastic soften satisfactory, FML 
elongated more than 0.2 at nominal strain. 

Figure 8 shows effect of heating temperature on fracture mode of FML at the 2nd stage of 
deformation. When the heating temperature T is lower than 60 degrees Celsius, the 
thermoplastic resin conveyed shear stress to fibre bundles, rupture occurred at the fibre 
bundles. On the other hand. The temperature T is over 60 degrees Celsius, the thermoplastic 
resin could not convey shear stress to the fibre bundles, and the bundles were pulled out from 
the resin. 

4.2 Effect of overlap length on strength at 3rd stage 
In order to verify the function of the proposed FML, Case (2), experiments were carried 

out by a strategy as explained in Fig. 1, which is composed of three stages, i.e. (1st stage) 
lamination, (2nd stage) forming under a heated condition and (3rd stage) tension test at room 
temperature. The geometry of test piece was the same as that shown in Fig. 6. Overlap length 
LD was fixed at 20 mm. 

At the 1st stage, FML was laminated at a temperature of 120 ̊C, which melts the 
thermoplastic resin. At the 2nd stage, FML was elongated at a constant temperature of 120 ̊C, 
after being re-heated by a heater which was mounted to the tension test machine as shown in 
Fig. 6. At the 3rd stage, FML was elongated again at room temperature and the stress-strain 
relationship was measured. Pre-elongation ∆Lp at the 2nd stage ranges from 0 to 18 mm 
against overlap length LD of 20 mm.  
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According to the FEA result, which is not shown in the authors' previous paper [14], as the 
minimum bare length LDN of the overlapped length should be around 8 mm, pre-elongation 
∆Lp could be up to 12 mm (=20 - 8) while maintaining tensile strength. Figure 9(a) shows the 
effect of pre-elongation at the 2nd stage for a stress-strain diagram at the 3rd stage. 
Regardless of pre-elongation, stress increases with increase of strain and abruptly drops at 
some strain value. Figure 9(b) shows the effect of pre-elongation ∆Lp on tensile strength σBL
of FML. With increase of pre-elongation ∆Lp, tensile strength σBL increases according to the 
law of mixture [16], up to ∆Lp =13.6 mm, which is almost equal to, but a little bit longer than 
predicted by FEA.  

Judging from the result of the tension test and observation of rupture, the FML with 
proposed structure has a funct ion of being able to be elongated up to 9.1 mm at the 2nd stage 
while maintaining sound tensile strength and bonding condition at the 3rd stage. This ability 
of elongation and formability is much higher than other FML structures.  

5 CONCLUSIONS 
- A structure for FML was introduced, which is composed of reinforcing fibre bundles, 

thermoplastic resin as the matrix and metal plates.
- The reinforcing fibre bundles are discontinuous, and are intentionally overlapped in 

the longitudinal direction. The resin including fibre bundles was sandwiched between 
the metal plates. 

- FEA results show that when overlap length is appropriately long, the axial stress of 
the fibre bundle has a distribution with two slopes. This would provide tensile 
strength of FML as high as a composite of continuous fibre bundles which comply 
with the law of mixture. 

- The rupture would occur at the single-way-bundle part. 
- On the other hand, when overlap length is short, the shear strength reaches the yield 

value on the boundary through the whole overlapping area. Rupture would occur on 
the boundary. 

- Experimental results showed when FML is heated at appropriate temperatures at the 
second stage of deformation, it would be elongated much longer than conventional 
composites. 

- Experimental results also showed FML has as high tensile strength with sound 
bonding condition as expected even after pre-elongation up to 9.1 mm against the 
parallel part of 60 mm, which is much longer than other structures of FML. 
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Abstract. Elastic and elastic-plastic responses were examined of cantilevers made from a cold 
rolled steel sheet and made from the same sheet plated with a thin hard layer.  Tension test of 
these sheets showed a non-linear behaviour even in the area of small strain and conventional 
linear theory of cantilever had to be modified.  By extending this theory to a sheet plated with 
a thin hard layer Young’s modulus of plated layer was estimated.  The range of estimated 
Young’s modulus was similar to those in previous works but material non-linearity, especially 
on the compression side, must be measured more precisely. 
 
1 INTRODUCTION 

Metallic materials such as steels are deemed to be a linear elastic body at the beginning 
stage of its deformation and to deform plastically as soon as the stress reaches the intrinsic 
yield limit of the material [1].  However, precise observation showed that microscopic plastic 
deformation influences the macroscopic elastic response even after annealing and the elastic 
stress-strain curve becomes slightly non-linear [2].  Numerical investigation was carried out 
on this phenomenon by using homogenization method [3].  It is known for a metallic material 
that the Young’s modulus decreases after plastic deformation [4] and for inverse loading this 
phenomenon is known as the Bauschinger’s effect [5].  The response after plastic deformation 
is seemingly linear elastic but precise observation shows that the response is non-linear [6,7].  
In the present work influence of this intrinsic non-linearity of material is evaluated on the 
response of bulk material with and without a thin hard coated layer taking an example on a 
bending experiment of a cantilever.  Finally the Young’s modulus of a thin hard coated layer 
is estimated on an assumption that the response of base material is non-linear. 
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COMPLAS XI 
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2 BASIC EXPERIMENT 

2.1 Theory 
It is assumed in tension test that specimen of uniform cross sectional area in the axial 

direction elongates uniformly under the tensile force F.  When the loading is on the linear 
elastic stage Young’s modulus E is the coefficient that links stress σ, which is the force F
divided by cross sectional area, and strain ε, which is the elongation per unit length in the 
axial direction.  Schematic illustration is given in Figure 1.  The stress-strain relationship is 
written by equation (1).

σ = E ・ε (1)

If the specimen has a thin plated layer of a different material on the surface the force 
undertaken by two materials are Fb and Fp as it is illustrated in Figure 1.  The distributions of 
stress for these two cases are illustrated in Figure2.  If the materials of plated layer and the 
base are the same the distribution of stress is uniform in the cross section but if the Young’s 
modulus of the hard layer is higher the stress is higher in the hard layer than in the base. 

               

Figure 1: Schematic illustration of responses of specimens with and without thin hard plated layer 

Figure 2: Schematic comparison of distribution of stress in specimens with and without thin plated layer 



93

TAKASHI UCHIMURA, TETSUYA YAMAMOTO, MASAYOSHI AKIYAMA. 

3

The average Young’s modulus Ea of the whole material with a plated layer can be 
calculated by equation (2)

Ea = ( Eb + Ep ( tp / tb) ) /  (1 + ( tp / tb) ) (2)

where Eb, Ep, tb, tp are the Young’s module and the thicknesses of the base and the hard plated 
layer respectively.  It is easy to understand that Ea is nearly equal to Eb if tp is much smaller 
than tb, and the value Ea obtained by tension test may give a considerably precise value of Eb

regardless of the Young’s modulus Ep of the hard plated layer. 

2.2  Tension test 
Tension tests were carried out on small specimens with and without a thin hard plated 

layer in a manner shown in Figure3.  A couple of strain gauges of which gauge length was 
0.3mm were placed at the centre of specimen.  The major concern was the elastic response or 
a nearly elastic response and the tension test was stopped when the stress was estimated to 
reach the yield limit.  The thickness of base sheet was a cold-rolled steel sheet with 0.8mm in 
thickness and the thickness of plated CrN layer was 2μm, and the value of tp / tb is 0.0025, 
which is small enough to grant that Ea is nearly equal to Eb in equation (2).  The results of 
base sheet and plated sheet are shown in Figure 4. 

Figure 3: Specimen geometry and view of tension test

Figure 4: Stress-strain curves of specimens with and without thin hard plated layer 
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The stress-strain curve of the base sheet in Figure 4 can be deemed linear but detailed 
observation shows that it is non-linear.  Piecewise measurement of the tangent of this curve 
showed that the tangent gradually decreases according to the increase in strain.  The result is 
indicated in Table 1.  After annealing treatment the Young’s modulus of steel may lie usually 
between 200 and 210 MPa and the tangent for the lowest strain range in Table 1 may be an 
appropriate value.  It is known that the Young’s modulus decreases according to the increase 
in plastic strain [4,5] and the tendency of the change in the tangent value in Table 1 suggests 
that similar phenomenon can be observed depending upon the range of strain adopted for 
calculating the Young’s modulus. 

Table 1: Piecewise tangent values of stress-strain curve of base sheet 

Range of strain 0.0000-0.0002 0.0002-0.0004 0.0004-0.0006 0.0006-0.0008
 Tangent (MPa) 207 189 180 144 

  The response of the base sheet is not that of linear elastic material but it is non-linear 
when a wide range of strain is taken.  It is only a phenomenological approach but it is curious 
to note that the stress-strain relationship is well expressed by equation (3) 

σ = a  (ε)2 + b ε (3)

where σ and ε are stress and strain, and a and b are coefficients [7].  Examples of the values 
of a and b are shown by equations (4) and (5) for a case such that the range of strain is 0.0 and 
0.0008.  The maximum difference between the measured stress and the calculated stress by 
equation (3) was 1 MPa and the approximation may be fairly good. 

a  = － 4.48×10 7
(4)

b  =      2.16×10 5 (5)

The base sheet can be granted a non-linear elastic material, but it can be granted an 
elastic-plastic material as it was suggested by using the homogenization method [8].  The base 
sheet can be granted this kind of material, i.e. linear elastic material under the strain of 0.0002 
and plastically deforms after that with an extremely high work-hardening ratio until the value 
of strain reaches 0.0012.  Linear elastic approach may be useful when one simulates the 
behaviour of base sheet under loading, but elastic-plastic approach may be useful depending 
upon the problem that one simulates. 

Compared to the stress-strain curve for base sheet the curve for a plated sheet seems to be 
straight in Figure 4.  The piecewise tangent values of this curve is indicated in Table 2.  The 
plated sheet shows harder response than the base sheet.  It is assumed that the plating 
operation might have given heat to the base sheet and the heat affected the recovery of 
Young’s modulus [4].  It depends upon the accuracy required on the predicted result but it can 
be possible to grant the plated sheet a linear elastic body. 

Table 2: Piecewise tangent values of stress-strain curve of plated sheet 

Range of strain 0.0000-0.0002 0.0002-0.0004 0.0004-0.0006 0.0006-0.0008
 Tangent (MPa) 209 199 199 196 
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3 THEORY OF BENDING 

3.1  Linear elastic body 
In the conventional theory of elastic bending of a cantilever strain is defined by equation 

(6) [9], where y, η and ρ are coordinate value in the thickness direction, the coordinate 
value of neutral plane and the radius of curvature of the neutral plane respectively.  If the 
cantilever is a linear elastic body the axial stress σ is related to strain ε as given by equation 
(7) via the Young’s modulus E.

ε = ( y － η ) /ρ
(6)

σ = E ･ε (7)

By solving two equations (8) and (9) for the equilibriums of axial force and moment in a 
cross section the values of η and ρ are determined, where h, A and w are half thickness, 
cross sectional area and width of cantilever,  and M is the moment by the external force 
exerting at the top of cantilever.   The deflection of cantilever the can be calculated by using 
the values of E, η and ρ.

     ∫-h
 h
σ dA =∫-h

 h ( E･ (ｙ－η) /ρ ) w dy = 0 
(8)

∫-h
 h
σ･ ( y－η)   dA = ∫-h

h (  E ･( y－η) 2  /ρ) w dy = M (9)

The moment is calculated by equation (10) where F, L and x are the external force 
exerting on the free end of cantilever, the length of cantilever and the axial position of cross 
section after taking the origin at the fixed end of cantilever respectively. 

M  = F ･ ( L – x ) (10)

For a plated sheet equations (8) and (9) are modified as shown in (11) and (12), where k,
Eb and Ep are the y-coordinate value of the boundary of the base and the plated layer and the 
elastic module of the base and the plated layer.  In a manner similar to that for a linear elastic 
material the deflection is calculated. 

     ∫-h
 k ( Eb･ (ｙ－η)  /ρ )･ w dy +∫k

 h ( Ep･ (ｙ－η)  /ρ )･ w  dy  = 0 
(11)

∫-h
k ( Eb･ (ｙ－η) 2  /ρ )･ w dy +∫k

h ( Ep･ (ｙ－η) 2  /ρ )･ w  dy = M (12)

When the Young’s modulus Ep of the plated layer is unknown and that of the base sheet 
Eb is known, it is possible to determine the value by carrying out a bending experiment to 
measure the deflection of cantilever. 

3.2  Non-linear body 
If the base material reveals a non-linear behaviour described by equation (3), the 

equilibrium equations of axial force and moment corresponding to equations (8) and (9) are 
given by equations (13) and (14). What is important here is that it is not specified whether the 
material is an elastic body or not.  Similarly to the elastic material η and ρ are determined 
by solving these two equations, and the deflection of cantilever is calculated. 

     ∫-h
 h ( a･ (ｙ－η) 2 /ρ 2 +  b･ (ｙ－η) /ρ ) w dy =  0 

(13)

∫-h
 h ( a･ (ｙ－η) 3 /ρ2  +  b･ (ｙ－η) 2 /ρ ) w dy =  M (14)
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4 BENDING TEST 
Bending tests of a cantilever was carried out by using the base sheet of which thickness 

was 0.8mm and the sheet with a plated layer of CrN of which thickness was 2μm.  The size 
of specimen was 5mm in width and 150mm in length.  Two pieces of cantilever of the same 
dimensions were sectioned from the parent sheet to check the repeatability.  End portion of 
20mm in length was sandwiched in between heavy steel blocks and weight was loaded on the 
other end in an incremental manner.  The view of experiment is shown in Figure 5. 

Figure 5: View of bending experiment of cantilever 

5 RESULTS 
The deflection of cantilever is plotted against the weight in Figure 6.  Good repeatability

is observed between the two cantilevers and between the cases when the front side of the 
sheet was used upward and when the back side was used upward.  If the basic equations (12) 
and (13) of linear elasticity are used and the Young’s modulus is 209 GPa in Table 2 the 
maximum deflection of the top end must be 6.2 mm which is much less than the measured 
value in Figure 6.

Figure 6: Responses of parent sheet 
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It is shown in the references [4, 5, 6] the Young’s modulus of a plastically deformed 
material on the reverse loading side is smaller.  If smaller value of Young’s modulus is 
adopted on the compression side the discrepancy between the predicted and the measured 
deflections becomes smaller.  The value of Young’s modulus on the compression side may 
be slightly below 160GPa, but it is recommended to measure it by experiment. 

For the sheet with a thin hard layer of CrN bending experiment was carried out in the 
same manner.  The measured Young’s modulus was 209 GPa as it was shown in Table 2 and 
the predicted deflection of the top end of cantilever never meets the measured deflection 
when the maximum weight of 37.3g was applied.  If a value about 160 GPa is given to the 
Young’s modulus on the compression side of the base steel of the plated sheet the estimated 
Young’s modulus may lie within a range of 300 and 650 GPa.  In order to determine the 
precise value of the Young’s modulus of thin layer of CrN it is necessary to carry out a 
compression test of plated sheet to know the Young’s modulus of the plated sheet. 

6 DISCUSSIONS 
If the material shows a non-linear behaviour use of equations (3), (4), (5), (13) and (14) 

may be recommended, but in the present work elastic-plastic FEA was carried out on the 
bending of a cantilever of base sheet assuming that the material behaves elastically when the 
strain is under 0.0002 and plastically deforms after that as it was indicated in Table 1.  The 
results are shown in Figure 7.  The software used for the analyses was ELFEN [10] 
developed at University of Wales.  Basically the stress-strain curves on tension and 
compression sides are regarded as point symmetry and the Young’s modulus has the same 
values both on the tension and compression sides.  The difference in the deflection at the top 
was 14% smaller for linear elastic body than elastic-plastic body, but the difference was still 
large.  Measurement of compressive S-S curve is necessary. 

Original mesh for cantilever (20000 elements) 

Deformed cantilever 

Linear elastic body 

Elastic-plastic body 

Figure 7: Comparison of axial stress levels in response of bending of base sheet 
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7 CONCLUSIONS 
    The stress-strain curve of a cold-rolled steel sheet was measured by a tension test and the 
response of cantilever made of the sheet was predicted assuming the sheet as linear elastic and 
elastic-plastic bodies.  Assumption of linear elastic body gave smaller deflection at the top of 
the cantilever than that of the experimental result.  Even when the deflection is predicted on 
the assumption such that the sheet is an elastic-plastic body with extremely high work-
hardening ratio the difference was still large.  It was assumed that the key to the precision of 
prediction was the measurement of the Young’s modulus or the stress-strain curve on the 
compression side.  When a smaller value of Young’s modulus is given on the compression 
side than the tension side the predicted value came closer to the measured value.  By using 
this technique for predicting the deflection the Young’s modulus of a thin plated layer of CrN 
on the steel sheet was estimated to give a moderate value. 

NOTE 
    Some part of this research work was carried out by Mr. Tetsuya Yamamoto, the second 
author when he was a student in Kyoto Institute of Technology and this paper has nothing to 
do with his present work at his present affiliation Canon Machinery Inc.. 
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Abstract. A kinematic hardening model proposed by Yoshida and Uemori (Y-U model) was 
applied to the prediction of springback of stainless steel sheet part. From the experiments for 
the determination of the material constants, an anisotropic property of change in Young’s 
modulus was observed; namely, the anisotropy was different at 0°, 45° and 90° from the 
rolling direction. The Y-U model for the stainless steel sheet was used to a calculation of a 
forming process of a part to examine the accuracy of the prediction of the springback by 
compar-ing the calculated result with the actual part formed. In order to consider the 
anisotropic property of change in Young’s modulus, the calculated result to the actual part 
formed. In order to consider the anisotropic property of the change in Young’s modulus, the 
calculations were performed using the different material constants at 0°, 45° and 90° from the 
rolling direction. With the material constants at 90° from the rolling direction, which was the 
direction of springback of the part, the prediction accuracy can be improved. Therefore, the 
consideration of the anisotropic property of the change in Young’s modulus was found to be 
effective for more accurate prediction of the springback of the stainless steel part.  

 
 
1 INTRODUCTION 

Stainless steel sheets have been commonly used for automobile exhaust parts due to the 
excellent feature of corrosion resistance, heat resistance and design. The sheet metal part has 
become complicated in geometry and forming process due to the current demand of the 
strength and the lightness as an automobile part. Therefore, finite element analysis has widely 
used effectively nowadays for designing a sheet metal forming process. However, the precise 
prediction of springback has still been open problem. Many researches have been reported on 
the improvement of the accuracy. It is well known nowadays that the plastic constitutive 
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model developed by Yoshida and Uemori (Y-U model) can furnishes more accurate 
prediction of springback in the case of sheet metal forming of high-strength steel than 
conventional isotropic or kinematic hardening models in FE analysis [1-4]. 

In the present paper, the Y-U model was applied the part by stainless steel sheet for more 
presice prediction of the springback. First, the experiments of the materials were performed to 
determine the material constants used in the Y-U model. From the experiments, the 
anisotropic behavior of plastic-deformation-dependent Young’s modulus in which the 
apparent Young’s modulus decreases after preloading was confirmed in stainless steel sheet. 
Therefore, a method of calculation considering of the anisotropic property of the change in 
Young’s modulus in Y-U model was examined by comparing the calculated results of 
springback with actual sheet metal part. 

2 EXPERIMENTAL METHOD FOR TENSILE-COMPRESSIVE BEHAVIOR OF 
SHEET METAL 

Several experiments have been reported for the tensile-compressive behavior of sheet 
metal without buckling under compressive loading [1, 5]. In the present paper, an electro-
hydraulic controlled fatigue testing machine SHIMADZU Servopulser EHF-EV 100KN/TV 
1KN/m-A20 was used for tensile-compressive tests of the materials. Figure 1 shows the 
geometry of specimen used for tensile-compressive tests. Figure 2 show Schematics of setup 
for tensile-compressive tests of stainless steel sheet. The specimen was clamped between 
clamp A, B and clamp C, D in order to prevent buckling. The extensometer SHI-MADZU 
SG10-100 was used with a jig shown in Figure 2 to measure the elongation of the specimen 
from the thickness direction without touching the clamps. The material used was SUS304 and 
SUS430. The angles of loading direction of the specimen were at 0°, 45° and 90°from the 
rolling direction (RD). 

 
 
 
 
 
 
 
 
 
 

Figure 1: Geometry of specimen (unit: mm)    Figure 2: Schematics of setups of experiment for 
tensile-compressive tests of stainless steel sheet. 

 
Figures 3 and 4 show experimental results of tensile tests of SUS304 and SUS430. Figure 

5 shows a result of tensile-compressive loading test of SUS304, in which strain was subjected 
to 2.5%→-2.5%→5%→-5%. Figure 6 shows a result of loading-unloading tests of SUS304 
for the evaluation of plastic-deformation-dependent Young’s modulus. 

 
 
 

Clamp A

Clamp B 

Clamp C 

Clamp D 

Extensometer 

Specimen

Teflon sheet 
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Figure 3: Stress- strain curves of SUS304        Figure 4. Stress-stain curves of SUS430 under tensile 
loading                                                                     under tensile loading 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Stress-strain curve of SUS430                          Figure 6. Result of loading-unloading tests of  
under tensile-compressive test                                           SUS304 

 

3 ANISOTROPIC PROPERTY OF PLASTIC-DEFORMATION-DEPENDENT 
YOUNG’S MODULUS 

Anisotropic property of plastic-deformation-dependent Young’s modulus is a phenomenon 
in which apparent Young’s modulus after plastic deformation decreases with the increase of 
equivalent plastic strain. 

Figures 7 and 8 show the change in Young’s modulus Eav as a function of equivalent 
plastic strain of SUS304 and SUS430. Moreover, for the sake of comparison, the change in 
Eav of high tensile strength steel sheet JSC980YN is shown in Figure 9. The stress range of 
stress used for the calculation of Eav was 0 ≤ σ ≤ 0.95σ0, where σ0 is the stress from which the 
unloading began. 

In case of JSC980YN, it seems that plastic-deformation-dependent Young’s modulus is 
almost isotropic. In case of SUS304 and SUS430, however, the anisotropic behaviors in 
change in the Eav were observed obviously. For SUS430, the dependence tendency at 45° is 
the same as the tendency at 90°, only the tendency at 0° is different from the others. On the 
other hand, for SUS304, the different tendency was observed in the range of 0 ≤ p  ≤ 0.04 in 
each specimen. As the strain become larger, only the tendency of at 45° is different from at 0° 
and 90°. 

In the Y-U model, the Eav can be given in the following expression using initial Young’s 
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modulus E0 and its asymptotic value Ea: 

     0 0 1 exp p
av aE E E E       (1) 

where, ξ is a material constant. Material constants for equation (1) at 0°, 45° and 90° from the 
RD were obtained as shown in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Change in plastic-deformation-dependent      Figure 8: Change in plastic-deformation-dependent 
Young’s modulus of SUS304                                                 Young’s modulus of SUS430. 
  
 
 
 
 
 
 
 
 
 
 
Figure 9. Change in plastic-deformation-dependent 
Young’s modulus of JSC980YN. 
 

4 MATERIAL CONSTANTS OF HARDENING MODEL OF Y-U MODEL 
In the present study, the calculation was performed using the Y-U model that can represent 

the work hardening stag-nation, plastic-deformation-dependent cyclic hardening and plastic-
deformation-dependent Young’s modulus. In Y-U model, the yield surface f and the bounding 
surface F are expressed by the following equation: 

  , 0f Y  σ   (2) 

    , 0F B R      (3) 

where   is the function expressing equivalent stress, Y is the radius of f, α is the center of f, β 
is the center of F, B is the initial radius of F, and R is the amount of isotropic hardening of F. 

Material Loading 
direction E0 (GPa) Ea (GPa) ξ 

SUS304
0° 203 154 40

45° 200 143 40
90° 206 148 20

SUS430
0° 208 175 40

45° 209 183 17
90° 212 183 18

Table 1: Material constants for change in Young’s modulus 
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For the type of f, the anisotropic yield function by Hill in 1948 (Hill ’48-type) was assumed. 
The backstress   expressing the relative kinematic motion of the center of f against the 

center of F is given by 
       (4) 

The evolution equation of  ,   and R is given by 

  
*

pa ad C d
Y




        
   

     (5) 

  * 3 / 2 :      (6) 

   sata B R Y B Y R X R        (7) 

   pbd m d
Y

        
     (8) 

   p
satdR m R R d   (9) 

where pd  is the equivalent plastic strain increment, C, b, Rsat and m are material constants. C 
has two values C1 and C2. The C1 is used only the visitnity of the initial yielding, then it 
switches to C = C2 in the subsequent deformation [2]. The material constants are determined 
so that calculation can express the experimental results of tensile-compressive test as shown 
in Table 2. 

The Lankford value for SUS304 and SUS430 was also obtained as shown in Table 3 in 
order to represent the anisotropic property of the materials. 
 
Table 2: Material constants of hardening model of Y-U model                        Table 3: Lankford values  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Comparison between experiment and  Figure 11. Comparison between experiment and 
analysis of SUS304 under tensile-compressive loading.     analysis of SUS430 under tensile-compressive loading 

Material 0° 45° 90° 
SUS304 0.989 1.089 0.932 
SUS430 1.202 0.951 1.632 

Material Y (MPa) Xsat (MPa) C1 C2 b (MPa) Rsat (MPa) m

SUS304 284 26 260 135 150 540 4
SUS430 300 50 260 280 60 230 10
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Figures 10 and 11 show the comparison between experimental and calculated results of 
tensile-compressive loading using Y-U model with the material constants in Tables 2 and 3 of 
SUS304 and SUS430. The calculated results show good agreement with the experiments in 
both SUS304 and SUS430. 

5 COMPARISON OF SPRINGBACK OF ACTUAL SHEET METAL PART WITH 
CALCULATION 

Forming-springback analyses were performed by the part a using a finite element software 
ESI PAM-STAMP2G with the shell element. Forming process analysis was performed by 
stamping a blank sheet with a punch and a die by moving the die to the punch. The thickness 
of sheet metal is 1.5mm, Blank holder force (BHF) is 100kN, and Coulomb friction 
coefficient μ was set as 0.08. 

Although the anisotropic characteristics on the change in Young’s modulus was observed 
in stainless steel sheet from the experiments, equation (1) cannot express such anisotropy in 
single calculation. Therefore, in the present paper, three calculations were performed using 
material constants on the change in Young’s modulus at 0°, 45° and 90°as shown in Table 1. 
The direction that springback of the part occur was at almost 90° from the RD, as the 
longitudinal direction of the part was along to RD. In the present case, therefore, the accuracy 
can be expected to be highest at the calculation by the material constants at 90°. 

Prediction accuracy evaluation was performed by comparing the radius of curvature ρA and 
ρB of the calculated and the actual part formed at each section along the longitudinal direction 
in every 5 mm as shown in Figure 12. The 3-dimensional digital laser measurement system 
Konica-Minolta VIVID-9i was used for the measurement of the geometry of the actually 
formed part. 

 
 
 
 
 
 
 
 
 
 
 

Figure 12.  Shape of Part and Radius of curvature measured. 
 

Figures 13 to 16 show the comparison of the values between calcualted and actual part in 
SUS304 and SUS430. The calculated result using the material constants of 90 from RD show 
the higher accuracy than the others. In the present case, the direction in which the springback 
occur is almost 90° from RD as expected. For SUS430 in Figures 15 and 16, the large 
difference can be observed. This is because the difference of the Young’s modulus at 0 and 90 
was significant as shown in Figure 8. From the results, the consideration of the anisotropic 
property of the change in Young’s modulus was found out effective for more accu-rate 
prediction of the springback of the stainless steel sheet. 

 

Radius of curvature ρA 

Radius of curvature ρB 
Section measured 
at every 5mm 

Longitudinal direction l
(RD) Magnification of Section: 

l = 150mm

ρA = 50mm 

ρA= 25mm 
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6 CONCLUSIONS 
The normal text should be written single-spaced, justified, using 12pt (Times New) Roman 

in one column. The first line of each paragraph must be indented 0.5cm. There is not inter-
paragraph spacing. 

The Y-U model was applied to stainless steel sheet SUS304 and SUS430 for more precise 
prediction of springback. From the tensile-compressive loading test for determination of the 
material constants of the Y-U model, the anisotropic property of plastic-deformation-
dependent Young’s modulus and the tendency was shown. Moreover, influence of 
consideration of the anisotropic property of the change in Young’s modulus was investigated 
by com-paring calculated result with the actual part formed. The following results were 
obtained: 

1. The anisotropic characteristics on Plastic-deformation-dependent Young’s modulus 
were shown in SUS304 and SUS430. In SUS430, the dependence tendency at 45° is the same 
as the tendency at 90°, only the tendency at 0° is different. In SUS304 each tendency shows 
different tendency. 

2. The consideration of the anisotropic property of the change in Young’s modulus in the 
Y-U model was found out to be effective for more accurate prediction of the springback of the 
stainless steel sheet. 

 
 

        
 
 
 
 
 
 
 
 
 

Figure 13: Difference of radius of curvature between    Figure 14: Difference of radius of curvature between 
experiment and analysis (SUS304, ρA)                                experiment and analysis (SUS304, ρB) 

 
 
 
 
 
 
 
 
 
 
 

Figure 15: Difference of radius of curvature between     Figure 16: Difference of radius of curvature between 
experiment and analysis (SUS430, ρA)                                 experiment and analysis (SUS430, ρB) 
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Abstract. Elastic-plastic FEA was carried out on the rolling process of twin skew rolling for a 
blooming mill to evaluate the influences of roll diameter, skew angle, and coefficient of 
friction on the suppression effect of porosities in the vicinity of centre axis of the material.  
Rolling by using a proto-type mill and modelling clay was then carried out to verify the 
validity of numerical analysis.  Both results showed that the larger the roll diameter, and also 
the larger the coefficient of friction, the higher the suppression effect of porosities. 
 
1 INTRODUCTION 
   Technology development for suppressing the porosities in blooming mill has a long history 
and many trials have been tried out mainly on the groove geometry of a pair of rolls [1], but 
there has been something more to do for the complete suppression.  Recently a trial was 
proposed from a different point of view in which adoption of a pair of cone-type rolls showed 
a considerable effect in suppressing the porosities [2,3].  It is concluded in this proposal that 
use of a pair of cone rolls has a high advantage and the higher the skew angle the larger the 
effect.  However, one important viewpoint has been missing from this result.  According to 
the increase in the skew angle the working roll diameter increases and direct comparison of 
the results must be carefully done.  In the present work rolling by a pair of simple cylindrical 
rolls was carried out both numerically and experimentally and influence of skew angle was 
evaluated on two sets of rolls; a pair of cylindrical rolls and a pair of skew rolls of which 
working diameter at the roll centre is the same as that of the cylindrical roll.  In the 
experiment modelling clay was used for a parent billet and the parent billets were rolled 
through a proto-type rolling stand manufactured for this experiment. 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



108

TAKASHI UCHIMURA, YOKI OKUDA, MASAYOSHI AKIYAMA 

2 MILL CONCEPT 
The features of twin skew rolling method are illustrated in Figure 1.  The major component 

of the mill is a pair of conical rolls of which half cone angle is θ and the difference in roll 
peripheral speed in the roll axis allows the three dimensional distribution of shearing force 
exerting on the billet surface and makes it possible to ease the generation of plastic 
deformation.  This mechanism enhances the infiltration of compressive deformation to the 
billet centre that leads to the suppression of porosities [2,3].  Three features other than the roll 
geometry with half skew angle θ are that the roll axes are parallel each other, the angular 
velocities of two rolls are the same, and two rolls have the same geometry. 

 
(a) Plane view                             (b) Elevation                                       (c) Side view 

Figure 1: Schematic illustrations of roll configuration for twin skew rolling method 

In the previous work attention was focused on the effect of cone angle on the infiltration of 
deformation to the billet centre and a wide range of rolls with different cone angles were used 
to investigate the effect in the laboratory.  However, roll diameter changes in the roll axis 
when cone angle is given and the lager the cone angle, the larger the working diameter of roll 
is.  In a strict sense, therefore, influence of roll diameter and that of cone angle must be 
evaluated separately. 

In the present work four pairs of rolls with a simple cylindrical geometry (flat roll) were 
manufactured corresponding to the skew rolls with different skew angles.  The roll diameter 
of each cylindrical roll was the same as that of a skew roll measured at the centre in the axial 
direction.  

 
(a)Conventional roll                                      (b)Skew roll 

Figure. 2: Schematic illustration of flat roll and conical roll 
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3 NUMERICAL ANALYSES 
Elastic-plastic FEA was carried out on the hot rolling by the twin skew rolling.  The 

software used for the analyses was ELFEN [4] developed at University of Swansea, U.K..  A 
pair of rolls was assumed rigid and the parent billet was regarded an elastic-plastic material.  
Figure 3 shows a schematic illustration of rolling.  The billet centre coincides with the roll 
centre in the axial direction.  At the initial stage of analysis the tail end of billet was pushed 
by a rigid plane to urge the bite and as soon as the rolling starts the constraint by rigid plane 
was released.  The material was hot medium carbon steel and the flow stress was calculated 
by the Misaka’s equation [5] that is given by equation (1) that is often used in the analyses of 
hot steel rolling, where C, T, ε, are carbon content, temperature, strain and strain rate.ε&

Figure 3: Configuration of rolls and billet. 
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Coulomb friction rule was assumed on the contact surface and 0.3 and 0.4 were the values 
of the coefficient of friction.  The skew angle was 15 degrees that was found optimum in the 
previous work [2,3].  The list of condition of numerical rolling is shown in Table 1. 

Table 1: Conditions of numerical analyses 

Material S45C 
Rolling temperature, T 1273K 
Friction coefficient, μ 0.3, 0.4 

Mesh division 16×16×64 
Specimen size 35mm×35mm×70mm 

Draft 10% 
Skew angle, θ 0°, 15° 

Centre diameter of roll φ70mm, φ140mm 
Strain late, ε&  130 −s  

X 

Z 
Y 

Rigid plane 

Billet 
Rolls 

 3
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4 RESULTS OF NUMERICAL ANALYSES 

4.1 Influence of roll diameter
Distributions of equivalent plastic strain in a cross section where the state of rolling is 

steady are compared in Figure4.  When a pair of skew roll is adopted clear shear deformation 
is observed but the intensity of equivalent plastic strain increases in the vicinity of centre axis. 
Axial distributions of equivalent plastic strain are compared in Figure5.  It is clearly observed 
that infiltration of compressive deformation is higher for the rolling by twin skew rolling.  

 

 
Figure 4: Distribution of equivalent plastic strain in cross-section after rolling 
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Figure 5: Distribution of effective plastic strain on centre axis of billet 
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4.2 Influence of friction  
Influences of friction on deformation in a cross section and on the rolling axis are 

illustrated in Figure 6 and Figure 7 respectively.  The tendencies of both rolling methods are 
very close and equivalent plastic strain increases according to the increase in friction, but the 
intensity of this tendency is higher for twin skew rolling.  Distribution of roll peripheral speed 
due to the existence of skew angle realizes stronger three dimensional deformation that leads 
to higher infiltration of compressive deformation near to the billet axis. 

Flat roll                                                     Skew roll (Skew angle 15deg) 
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Figure 6: Comparison of influence of friction on distribution of equivalent plastic strain 
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Figure 7: Distributions of equivalent plastic strain on rolling axis in steady state rolling 
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5 EXPERIMENT 

5.1 Evaluating influence of roll diameter
A proto-type mill used for laboratory experiment is shown in Figure 8, and a set of four 

skew rolls and corresponding flat rolls are shown in Figure 9.  The roll diameters of flat rolls 
were equal to the roll diameters of corresponding skew rolls at the centre in the axial direction.  
In Figure 10 an example of parent billet is shown that has a square cross section with a hole 
around the centre axis.  The parent billet was made of a modelling clay, of which relationship 
between the flow stress and plastic strain resembles to that of hot steel, and the size of billet 
was 35mm×35mm×120mm and the diameter of centre hole was 5mm. 

  
Figure 8: Twin skew rolling mill 

  
Skew rolls 

 
Flat rolls 

Figure 9: Comparison of geometry of skew and flat rolls used for laboratory experiment 

 
Figure 10: Modelling clay specimen 
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Similarly to the previous work [2,3] intensity of infiltration of compressive deformation 
was evaluated by measuring the ovality, i.e. aspect ratio, of the centre hole b/a as it is shown 
in Figure11.  The smaller the ovality is, the higher the influence is. 

 
Figure 11: Schematic illustrations of initial round hole in cross-section and oval hole after rolling 

The basic lubricant adopted was CaCO3 that is often used for a laboratory experiment 
using modelling clay for simulating the rolling phenomenon of hot steel.  Conditions of the 
rolling experiments are given in Table 2. 

Table2: Conditions of rolling experiment in laboratory 

Material Modelling clay 
Rolling temperature 293K 

Specimen size 35mm×35mm×120mm 
Round hole size φ5mm 

Draft 10%, 20% 
Skew angle 0°, 15° 

Centre diameter of roll φ70mm, φ103mm, φ120mm, φ140mm 

Lubricant CaCO3 

5.2 Evaluating influence of friction
Similarly to the previous work [2,3] influence of friction was evaluated by changing the 

lubrication condition.  As it is shown in Table 3 three types of lubrication condition were 
adopted on the rolling using modelling clay billet; no lubricant, CaCO3 and solution of soap.   

Table 3: Condition of rolling experiment by changing friction 

Material Modelling clay 
Rolling temperature 293K 

Specimen size 35mm×35mm×120mm 
Round hole size φ5mm 

Draft 20% 
Skew angle 0°, 15° 

Centre diameter of roll φ103mm 

Lubricant No lubricant, CaCO3, Solution of soap 

d
a

b

Before rolling   

 7
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6 RESULTS OF EXPERIMENT 

6.1 Influence of roll diameter
Examples of cross section at the steady state rolling are compared in Figure 12.  The 

ovality of centre hole by twin skew rolling is larger when the working diameter of roll is the 
same, and the ovality becomes larger according to the increase in roll diameter regardless of 
the type of rolling.  These results are summarized and shown in Figure 13. 

Conventional  
rolling

Skew rolling 
(Skew angle15°)

 
(a): Rolling reduction 10%                                                      (b): Rolling reduction 20%     
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Figure 12: Deformation pattern of round hole in centre of specimen 
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(a) Rolling reduction 10%                                         (b) Rolling reduction 20% 

Figure 13: Relationship between centre diameter and aspect ratio 
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6.2 Influence of friction condition 
Influence of friction condition on infiltration of compressive deformation near to the centre 

axis is shown in Figure 14.  As it was shown in Table 3 three conditions of lubrication were 
tried but lubrication by solution of soap failed only for twin skew rolling and only two other 
conditions by no lubricant and CaCO3 were successful.  The reason of the failure was 
assumed as follows.  Use of soap solution lead to too much decrease in friction coefficient on 
the contact surface and transmission of distributed shearing force on the roll surface was 
difficult, i.e. the distribution of shearing force was mainly used for the generation of lateral 
metal flow of billet surface ant the biting force in the rolling direction becomes poorer.  This 
result suggests that slightly high coefficient of friction may be necessary for the twin skew 
rolling compared to the conventional rolling by a pair of flat rolls.  Regarding the effect of 
high infiltration of compressive deformation near to the billet centre the results clearly shows 
the superiority of twin skew rolling similarly to the results by FEA. 
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Figure 14: Influence of lubricity on infiltration of compressive deformation near to centre axis 

7 CONCLUSIONS 
In the present work influences of roll diameter of twin skew rolling and friction on the 

deformation near the centre axis of billet were evaluated numerically and experimentally.  It 
was clarified that higher intensity of deformation is obtainable by the twin skew rolling 
method when the roll diameter of skew roll at the roll centre is the same as that of flat roll.  
Numerical results showed that concentration of strain in the vicinity of contact surface fades 
out according to the increase in roll diameter and the intensity of the concentration of 
equivalent plastic strain in the vicinity of billet centre increases.  The results of experiment 
proved the validity of the numerical results.  Friction on the contact surface is an important 
factor that generates the three dimensional shear deformation that is typical for the twin skew 
rolling method.  Influence of friction on the infiltration of deformation to the billet centre was 
evaluated by changing the coefficient of friction in the numerical analysis and by changing 
the lubricant in the laboratory experiment.  The results showed that the higher the friction is, 
the larger the infiltration of deformation to the centre is.  Friction is more influential on the 
twin skew rolling than on the ordinary flat rolling.  One important point to emphasize is that 
too low friction leads to failure in biting and rolling does not start in the twin skew rolling 
method. 
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NOTE 
Some part of this work was carried out by the second author Mr. Yoki Okuda when he was 

a student at Kyoto Institute of Technology and this paper has nothing to do with his present 
work at his present affiliation Topcon Corporation. 

 

ACKNOWLEDGEMENT 
This research project was financially supported by The Amada Foundation, and the authors 

would like to express their deep gratitude for all the support. 

REFERENCES 
[1] R.E.Beynon, Roll Design and Mill Layout, AISE, (1956). 
[2] Y. Okuda, M. Akiyama, Evaluation of new rolling method ensuring high reduction near 

billet centre, COMPLAS X, (2009), 448. 
[3] Y. OKUDA, and M. AKIYAMA, Effect of variable roll peripheral speed to ensure high 

reduction in vicinity of billet centre (in Japanese), 2009, CAMP-ISIJ, 22, 434 
[4] Rockfield Software Limited, Technium, Kings Road, Prince of Wales Dock, Swansea, 

SA1 8PH, West Glamorgan, U.K., http://rsazure.swan.ac.uk/profile.htm. 
[5] Y. Misaka, T. Yoshimoto, Formularization of Mean Resistance to Deformation of Plain 

Carbon Steels at Elevated Temperature, J. of JSTP, 8-79 (1967), 414-422.  



117

 
 
 

INFLUENCES OF FINISHED GEOMETRY OF SPECIMEN FOR 
COMPRESSION TEST ON THE STABILITY OF TESTING AND 

PRECISION OF MEASURED STRESS AND STRAIN 

JUNKI MIYAGAWA*, SHIGERU OHBA†, MASAYOSHI AKIYAMA†† 

* Taisei Kako Co., Ltd. 
2-11-12, Fujinosato, Ibaraki city, Osaka 567-0054, Japan 

e-mail: ewhfocenj@yahoo.co.jp, web page: www.taisei-g.co.jp 
 

† Sumitomo Metals Technology Ltd. 1-8 Fuso-cho, Amagasaki, 660-0891, Japan 
e-mail: ooba-sgr@smt-co.jp 

 
†† Department of Mechanical and System Engineering, Kyoto Institute of Technology (KIT) 

Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan 
email: akiyama@mech.kit.ac.jp, web page: www.mesh.kit.ac.jp 

Key words: Compression Test, Cylinder, ASTM-E9 89a, Precision, Stress-Strain Curve. 

Abstract. This paper deals with the influence of the specimen geometry on the precision of 
measured stress-strain curve on the compression side.  Cylindrical specimen is adopted after 
ASTM-E9 89a and laboratory experiment and elastic-plastic FEA are carried out to evaluate 
the influence of the degree of parallelism of end surfaces.  Present tolerance value of 0.5/1000 
for the inclination of end surface can be relieved up to 6/1000.  

 
 
1 INTRODUCTION 

Stress-strain curve is an essential characteristic when one analyzes the plastic deformation 
of a material.  Usually only a tension test is carried out to know the stress-strain curve on an 
assumption such that the stress-strain curve is point symmetric around the origin.  This 
assumption is approximately correct, but in an exact sense two curves are slightly different [1].  
If the difference is not negligibly small the assumption of point symmetry may lead to a 
discrepancy between the experimental and analytical results and prediction by the analysis of 
the forming process fails.  For the prevention of this failure one ought to carry out a 
compression test as well as the tension test prior to the analysis [2].  Compression test 
specified by ASTM-E9 89a [3] is a commonly used compression test.  For this test a 
cylindrical specimen is prepared in a manner such that the degree of parallelism of end 
surfaces must lie within the tolerance value of 0.5/1000, although the background of this 
tolerance value is not clear.  If it is possible to loosen the tolerance value it will help specimen 
preparation.  In the following part of this paper experiments and numerical analyses are 
carried out to evaluate the influence of specimen geometry on the precision of measured stress 
and strain and expansion of tolerance value is discussed.  The code for numerical analysis is 
ELFEN [4] developed at University of Swansea, U.K. 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 
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2 PREPARATIONS 

2.1 Specimen preparations 
Figure 1 shows the manufacturing process for specimen.  Parent bar was subjected to turning 
after thermal treatment at 680℃ and the end surface was finished by a sandpaper. 

 
Measuringδ/d

Abrasion by sandpaper

TurningHeat Treatment

Material

Compression test

Material δ

Measuringδ/d

Abrasion by sandpaper

TurningHeat Treatment

Material

Compression test

Material δ

 
Figure 1: Flow of processing for preparing specimen for compression test 

2.2 Theory 
Inclination of end surface was measured by using the following theory.  It was assumed that 
both end surfaces were flat planes and one end surface that was exactly perpendicular to the 
axis was placed on a flat table that was spanned by X and Y axes  as is illustrated in Figure 2.  
The plane showing the top flat surface may cross the X-Y-plane, and the inclination angle α 
and parallelism (δ/d) of the top flat surface is calculated by determining the line AB.  
 

 
Figure 2: Illustrated image for measuring geometry of inclined upper surface 

The equation of top flat surface is given by equation (1).  Using the least square method the 
constants a, b and c are calculated, i.e. minimization process of the error S given by equation 
(2) leads to a set of equations (3), (4) and (5).  Precise measurement of N sets of coordinate 
values (Xi, Yi, Zi) determines the plane ABC, where N must be larger than 2. 
  

Z = aX + bY + c                                                                        (1) 
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Once a, b and c are determined the coordinate values of (Xh, Yh) of point H are calculated by 
solving a set of equations (6) and (7).  The inclination angle α of the top flat surface is then 
calculated by using equation (8) and the parallelism (δ/d) is also calculated. 
 
  

aX + bY + c = 0                                                                          (6) 
 

bX - aY = 0                                                                               (7) 

⎟
⎠
⎞

⎜
⎝
⎛= −

OH
OC

tan 1α                                                                          (8) 

2.3 Measurement 
Figure 3 shows the outline of the measuring system.  Coordinate values of (Xi, Yi) of each 
data points were calculated according to the angle βi and the fixed length L and the value Zi 
was the height of the spot of a laser pointer mounted on the top flat surface of the specimen. 
 

 
Figure 3: Illustration and view of measuring height of laser spot Zi 

2.4 Result
Table 1 shows the measured values of parallelism of specimens.  The range of parallelism 

lies between naught and 50/1000, and plural number of specimens were prepared for each 
geometrical conditions in Table 1. 

 
Table 1: Calculated degree of inclination angle α of specimen 

Specimen number 1 2 3 4 5 6 7 8 
Parallelism of end 
surface (δ/d) 

1   
/1000 

2   
/1000

6   
/1000

7     
/1000

15   
/1000

23   
/1000

40 
/1000 

48   
/1000 

 

2.5 Tooling
A protector and a set of toolings for compression test were manufactured as shown in Figure 4.  
Compression test may endanger the operator because the specimen can suddenly become a 
bullet, and the protector prevents this danger from occurring.  On the side of the protector 
there is a hole that is smaller than the specimen size and the cables from strain gauges placed 
on the specimen are drawn through this hole.  The material of toolings was 0.45 mass % 
carbon steel and was prepared according to the thermal treatment illustrated in Figure 5 [5]. 
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Figure 4: Tooling and protector for compression test 

 

 
Figure 5: Diagram for quenching and tempering operations for toolings 

3 EXPERIMENT 
Compression test was carried out using a universal testing machine shown in Figure 6.  The 
aspect ratio of specimens was 2.5 following the previous work on the uniformity of measured 
stress and strain in compression test [6,7].  Test was conducted until 5% strain was reached.  
Strain was measured by using four strain gauges placed at the specimen centre in a pitch of 90 
degrees.  Stress was a nominal stress.  Cross head speed was 1mm/min. 
 

 
Figure 6: Machine and prepared specimen for compression test 

Lubricant was prepared according to the previous work [8,9].  Soap mixed with powdered 
mild detergent for washing was placed on the specimen surface prior to the test. 

 
Figure 7: View of lubricant 
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4 RESULT 

4.1 Stability of experiment 
No specimen flew as a bullet and the compression test was stable, but buckling occurred in 
accordance with the increase the index of parallelism (δ /d).  Examples of normal and 
buckled specimens are shown in Fig. 8.  All the specimens were observed under the back light 
after the test and the specimen was esteemed buckled when an opening was observed. 
 

    
Figure 8: Comparison of non-buckled and buckled specimens 

Figure 9 shows the influence of the index of parallelism (δ/d) on buckling.  Ordinate is the 
buckling index.  The buckling index is 1 when buckling occurs on all the specimens and 0.5 
when buckling occurs on 50% specimens and 0 when no buckling occurs.   The critical value 
of the index of parallelism (δ/d) may be 7/1000 above which buckling occurs.  
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Figure 9: Influence of inclination of end surface upon on buckling 

4.2 Stress-strain curves
Figure 10 shows the positions of four strain gauges placed in the circumferential direction at 
the specimen centre.  No-1 gauge was placed on the longest portion of specimen and No-3 
gauge on the shortest portion.  Examples of four stress-strain curves are drawn in Figure 11.  
They were drawn by using the signals of four gauges, and three curves in Figure 11b are 
drawn by using the average strains.  Three stress-strain curves in Figure 11b are almost the 
same and it can be recommended to take an average value of measured strains. 

Figure 10: Illustrated image of placement of strain gauges 

(a) Example of specimen with no buckling 
 

(b) Example of buckled specimen 
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Figure 11: Influence of inclination of end surface upon on stress-strain curves 

The tangents of elastic region of stress-strain curves in Figure 11a lie in a wide range and it is 
unrealistic.  However the tangents in Figure 11b measured within the stress range of -200 and 
-300MPa was a reasonable value of 206GPa. 
 
Figure 12 is a comparison of stress-strain curves among specimens with different value of the 
index of parallelism (δ/d).  It may be concluded that difference in the index of parallelism 
does not seriously influence the measured stress-strain curve as long as the value of index lies 
within the range of under (6/1000).    
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Figure 12: Comparison of raw stress-strain curves for all none buckling specimens

5 NUMERICAL ANALYSIS

5.1 Conditions for analysis
In order to examine the precision of measured stress and strains elastic-plastic FEA were 
carried out on the compression tests.  The stress-strain curve was that given in Figure 11b.  
The stress-strain curve was assumed point-symmetric on the tension side.  The parameter 
changed in the analyses was the inclination index δ of the end surface in Figure 6 and the 
response of specimen was examined.
 
Figure 13 shows an example of 3D initial mesh for the analysis.  The centre portion was 
divided into 6 times 6 small squares.   The outside layer was divided into 5 thin layers and the 
division in the circumferential direction was 24.  The mesh division in a cross section was 156.  
The mesh division in the longitudinal direction was 24, and the total number of elements was 
3744.  Displacement constraint was given in the axial direction on all the nodes on the lower 
end surface and upper surface was compressed by a rigid ram as shown in Figure 14. 
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(b) Comparison of average stress-strain curves on 
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Figure 13:  Illustrated image of dividing mesh

Compression

Rigid body 

 
Figure 14: Loading procedure 

5.2 Distribution of stress 
Figure 15 shows examples of distribution of axial stress on the elastic and plastic stages for a 
specimen with the index (δ/d) of 6/1000 on the centre plane of specimen.  On the elastic 
stage, there is a clear distribution of stress according to the inclination of end surface, but it 
gradually fades out on the plastic stage.  The average value of stress is equal to the 
compressive force divided by the cross sectional area of the centre plane. 
 

   
Figure 15: Examples of stress distributions on elastic and plastic stages 

5.3 Distribution of strain
Figure 16 shows examples of distribution of axial strain on the centre plane of the specimen 
on the elastic and plastic stages.  Figure 18-(a) and (b) show the distributions on the elastic 
and plastic stages respectively.  Similarly to the distribution of axial stress distribution of 
axial strain on the elastic stage is slightly large but it gradually fades out on the plastic stage.  
There is also a distribution of other strain components but the intensity of those components is 
much smaller than that of the axial strain. 

(a) Elastic stage (0.18% compression) (a) plastic stage (1.5% compression) 



124

JUNKI MIYAGAWA, SHIGERU OHBA, MASAYOSHI AKIYAMA. 

 8

   
Figure 16: Comparison of Distribution of strain in elastic stage and plastic stage 

5.4 Stress-strain curve 
Figure 17 shows four stress-strain curves drawn for each calculated stress and strain on the 
four points placed in the same pitch of 90 degrees around the specimen corresponding to the 
measuring points of strain in the compression test in a laboratory.  As was expected four 
stress-strain curves on the elastic stage are totally different, but those are nearly the same on 
the plastic stage.  Three average stress-strain curves drawn by using the average value of two 
strains all the four strains show an excellent matching one another.  The Young’s modulus of 
the average stress-strain curves sampled within the stress range of -200 and -300 GPa was 
201GPa. 
 

         
(a)  Comparison of four stress-strain curves      (b) Comparison of average stress-strain curves 

Figure 17: Comparison of average stress-strain curves（Inclination 6/1000）

Figure 18 is a comparison between the analytical and measured stress-strain curves on the 
compression side.  The material is a medium carbon steel with 0.45 mass % carbon content.  
Good agreement has been achieved and it may be concluded that by taking the average value of at 
least two strains around the circumferential direction of specimen.  Especially excellent matching 
is obtainable when the stress state is plastic.   
 

 
Figure 18: Comparison of result of experiment and numerical analysis

(a) Elastic stage (0.18% compression) (b) Elastic stage (1.5% compression) 
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6 CONCLUSIONS 
In the present work influence of parallelism of end surfaces on specimen for compression test 
on the precision of stress-strain curve on the compression side was evaluated numerically and 
experimentally.  None of the specimens of which parallelism ranged from 1/1000 to 48/1000 
suddenly flew as a bullet throughout the test, but buckling was observed when the parallelism 
exceeded 7/1000.  If average strain is adopted on the centre plane of the cylindrical specimen 
the stress-strain curve obtained is almost the same as the true stress-strain curve of the 
material.  The number of signals of strain should be at least two that face each other in the 
circumferential direction in a pitch of 180 degrees.  If the number is four by placing the strain 
gauge in a pitch of 90 degrees, stress-strain curve drawn by using this average strain is exactly 
the same as the true stress-strain curve.  It is specified in ASTM E9-89a that the parallelism of 
end surfaces must lie within a range of 0.5/1000, but this specified value can be until 6/1000 
as long as the strain is measured in the circumferential direction on the centre plane in the 
same pitch of 90 or 180 degrees.  In the present work influence of parallelism of end surfaces 
on specimen for compression test on the precision of stress-strain curve on the compression 
side was evaluated numerically. 
 

ACKNOWLEGEMENT
This project was carried out with the financial assistance of The Amada Foundation, Japan, 
and the authors would like to express their deep gratitude for the support. 
 

REFERENCES 
[1] Shinji Fukui, Hideaki Kudo, Kiyota Yoshida, and Kunio Abe. Methods of Obtaining the 

Stress-Strain Curves of Ductile Metals for Large Strain Region, The reports of the 
Institute of Science and Technology, The University of Tokyo, No.8, Vol.3 (1954), 
pp.135-151. 

[2] M. Akiyama, Proposal of a project for the prediction of anisotropy, ISO TC67/SC5, 
Washington, U.S.A., (2004). 

[3] ASTM International, Designation: E9-89a (Reapproved 2000), pp.90-98. 
[4] Rockfield Software Limited, URL: www.rockfield.co.uk 
[5] Toru Araki, Heat-treatment Technology of Steel(in Japanese), Vol. 8 of Lecture Series on 

Iron and Steel Engineering, Asakura Publishing Co., Ltd,  (1969), pp.1-20. 
[6] Atsushi Ichijo, Masayoshi Akiyama, Numerical Re-examination of Simple Compression 

Test, Proceedings of COMPLAS X, (2009).  
[7] Atsushi ICHIJO, Masayoshi AKIYAMA. Precision of Measured Stress and Strain in 

Compression Test for Cylindrical Specimen, to be published in SOSEI-TO-KAKOU. J. of 
The Japan Society for Technology of Plasticity, Vol.52, no. 604, (2011-5). 

[8] Hiroshi Ohyama,  Masayoshi Akiyama, Evaluation of Environment-Friendly Lubricant by 
Erichsen Test, Proceedings of COMPLAS X, (2009). 

[9] Hiroshi OHYAMA, Masayoshi AKIYAMA. Development and Evaluation of 
Environmentally Friendly Lubricant for Cold metal Working, SOSEI-TO-KAKOU. J. of 
The Japan Society for Technology of Plasticity, Vol.52, no.603, (2011-4), pp.474-479. 



126













＊




















            
      


         

           



 
             




             


            

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



127



 






            



            







     





 


    

            
             


 


     




             

              
θ
              







128



 


 






















 
















       

            

            


 
            

 
                 
        




           



 
 

α 
 
 
 

 



129



 




            

















 

 



 







  






 



             
   






130



 

 
  

ε


ε 


      ε    σ     


σ 


 

σ 


θ 

 






σ

ε

Result of tensile-compression test

εc

σ

ε


εσ

 
           

ε

           
          










∫ =θ

 　∫ −=   σσ



131



 



      ε       


ε
             
            
ε
 

σσε
σ σ          ε   


εεσ
σεσ

 




 

  

 σ 

  




γγγ 

χ,χχ 

















      








σ





 ε



















     








σ





ε








σεε 

−=



132



 

σ

ε

Result of tensile-compression test

It is necessary to interpolate this area







 
           


 
          
















    
ε















 σ


 σ



　
　
　
　



133



 




 
 


            


 


  


 




              



  





             





















     
θ  








 φ












134



 





              

            



            





135

ENERGY FRICTIONAL DISSIPATING ALGORITHM FOR
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Abstract. An Energy Frictional Dissipating Algorithm (EFDA) for time integration of
Coulomb frictional impact–contact problems is presented. Using the Penalty Method, and
in the context of a conserving framework, linear and angular momenta are conserved and
energy is consistently dissipated.

Published formulations were stable, forcing the energy dissipation to be monotonic in
order to prevent unstable energy growth. The shortcoming of many was that they were
not able to reproduce the real kinematics and dissipation of physical processes, provided
by analytical formulations and experiments. EFDA formulates a conserving framework
based on a physical energy dissipation estimator. This framework uses an enhanced
Penalty contact model based on a spring and a dashpot, enforcing physical frictional
energy dissipation, controlling gap vibrations and modifying the velocities and contact
forces during each time step. The result is that the dissipated energy, kinematics and
contact forces are consistent with the expected physical behavior.

1 INTRODUCTION

The numerically accurate analysis of frictional dynamic contact problems has been a
challenge for the last 30 years. Complex problems do not have analytical solution and due
to their high nonlinearity, non–smooth unilateral restriction and the presence friction, they
are hard to model. Therefore, numerical time–stepping schemes are developed to emulate
the conservative properties of the corresponding continuous problem.

Previous authors have addressed frictionless contact problems, for instance [7] focused
on iterative but no time–stepping formulations, [1] and [3] for implicit. These authors
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intended to create robust and stable algorithms for the enforcement of the contact con-
straints, while recent formulations have focused on frictional formulation and proposed
unconditionally positive energy dissipation. Ref. [3] developed a positive energy dissipat-
ing algorithm, stable for friction with the Penalty Method and showed an artificial energy
transfer between bodies–penalty springs in which the final energy was always lower than
the initial for Stick and Slip cases. Therefore the behavior of the simulation was not
consistent with the physical contact problem. Ref. [1] minimized that artificial energy
transfer between body and penalty spring. For the non–sliding situation the energy after
contact was equal to the initial and lower during contact while for the Slip case obtained a
rigorous positive energy dissipation. The dissipation in both references was not based on
a consistent conserving framework: the dissipation, although decreasing monotonically,
was not in accordance to that of the continuous problem. Ref. [5] developed a conser-
vative framework that enforced the impenetrability condition, eliminated the artificial
energy transfer between body–penalty spring and took into account the frictional dissipa-
tion through an energy estimator. This formulation used a contact velocity that modified
a predictor–corrector scheme, then the contact response agreed in velocities but not in
forces and positions, not being accurate for persistent contact.

This article presents an Energy Frictional Dissipating Algorithm (EFDA) based on the
frictionless algorithm of [2]. For Penalty contact problems, the new formulation conserves
momenta, simulates the kinematics, contact forces and dissipates energy consistently, ac-
cording to the physical problem in each time step. The algorithm key is a conservative
framework based on updating contact forces and momenta for every contact. The frame-
work takes into account dissipation by an energy estimator based on frictional Coulomb
law, and is able to enforce energy conservation for the Stick contact and the right dissi-
pation for the Slip contact.

2 DEFINITION OF THE PROBLEM AND GOVERNING EQUATIONS

2.1 Hamiltonian description of motion

The Hamiltonian Mechanics permit to obtain the equations of motion for multiple bod-
ies that interact by contact. This subsection briefly describes the Hamiltonian equations
for a continuous problem. Consider a manifold Q that describes the configuration of a
mechanical system whose phase space is P = T ⋆Q, the tangent space of Q. This space is
composed for each point of body i by positions Qi(x, y, t) and linear momenta P i(x, y, t)
as function of time t. The Hamiltonian function H

[
Qi(x, y, t), P i(x, y, t)

]
defines the

total energy of the system and is assumed to be separable in kinetic K(P i(x, y, t)) and
potential V (Qi(x, y, t)) energies, Eqs. 1.

2
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H
[
Qi(x, y, t), P i(x, y, t)

]
=

nbd∑

i=1

[
K

(
P i(x, y, t)

)
+ V

(
Qi(x, y, t)

)]

K
(
P i(x, y, t)

)
=

1

2

∫

Ωi

P i(x, y, t)2

ρ
dΩ

(1)

where nbd is the total number of bodies, Ωi the domain of body i and ρ the density. The
kinetic energy is a real function K : P → R and the potential V : Q → R is an arbitrary
function. The motion is governed by the Hamiltonian canonical equations, Eqs. 2.

Q̇
i
(x, y, t) =

∂H(x, y, t)

∂P i =

∫

Ωi

P i(x, y, t)

ρ
dΩ

Ṗ
i
(x, y, t) = −

∂H(x, y, t)

∂Qi = −∇V
(
Qi(x, y, t)

)

(2)

The continuum variables from Eqs. 2 may be discretized, giving Eqs. 3.

Qi(x, y, t) =

nnod∑

A=1

NA(x, y) qA(t) ; P i(x, y, t) =

nnod∑

A=1

NA(x, y) pA(t) (3)

For the rigid bodies used in the current paper, this discretization is based on first order
shape functions NA(x, y); for the elastic case they may be extended to higher order. For
these first order functions, the discretization is based on only one node, nnod = 1, usually
defined at the center of gravity xi, yi of each particle. The nodal displacements and linear
momenta of all bodies i to k are grouped in the vectors q(t), p(t). For each body i, the
discretization Eqs. 3 applied to Eqs. 2 produce the system of equations:

q̇i = M−1
i pi ; ṗi = f i

c + f i
ext (4)

where M i is a diagonal mass matrix, with entries: M i =
∫

Ωi ρ [NA(x, y)]tNA(x, y) dΩ.

Although contact forces f i
c are applied in the contact points, the discretization considers

an equivalent force applied to the nodes. The same thing can be said for the external
forces f i

ext.

3 NEW ALGORITHM FORMULATION AND ENERGY–MOMENTUM

CONSERVATION

The aim of this section is the discretization in time of Eqs. 4. The new equations will
enforce the impenetrability condition and discretely inherit the conservation properties

3
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through the conserving framework of section 4. The main three characteristic of this
algorithm are: i) energy conservation for normal contact, ii) consistent dissipation for
tangential Slip and iii) conservation for tangential Stick.

3.1 Time–discrete formulation

The frictional development of EFDA is based on the Simo–Tarnow’s algorithm from
[6], an energy–momentum conserving time integration scheme. This scheme is a discrete
approximation of a Hamiltonian system (Eqs. 5) in time configuration n+1/2. Considering
the interval [tn, tn+1], the first set of equations of this algorithm relates displacements qi

n,
qi

n+1 and linear momenta pi
n, pi

n+1; the second, is the discrete approximation of second
Newton’s law at n + 1/2:

q̇i = M−1
i pi

→
qi

n+1 − qi
n

∆t
= M−1

i pi
n+ 1

2

ṗi = f i
cN + f i

cT →
pi

n+1 − pi
n

∆t
= f i

cN n+ 1

2

+ f i
cT n+ 1

2

(5)

where ∆t = tn+1 − tn, qi
n ≈ qi(tn), pi

n ≈ pi(tn), qi
n+1 ≈ qi(tn+1), pi

n+1 ≈ pi(tn+1) and
pi

n+1/2 = (pi
n+1+pi

n)/2. The terms f i
cN n+1/2 and f i

cT n+1/2 are the discrete approximations
of the resulting normal and tangential contact force vectors.

In order to obtain a conserving and a right kinematic response for contact between two
bodies i, k, in EFDA additional linear momenta pik

cN n+1/2, pik
cT n+1/2 and contact forces

f ′ik
cN n+1/2, f ′ik

cT n+1/2 (updating variables) are added to Eqs. 5, giving Eqs. 6. For these
four variables, in the following the subscript n + 1/2 will be omitted for simplicity. The
role of these new variables is to enforce bodies’ energy conservation for normal contact
and conservation–consistent dissipation for tangential, respectively:

qi
n+1 − qi

n

∆t
= M−1

i

[

pi
n+ 1

2

+

nbd∑

k=1
k �=i

(
pik

cN + pik
cT

) ]

= M−1
i

(

pi
n+ 1

2

+ pi
cN + pi

cT

)

pi
n+1 − pi

n

∆t
=

nbd∑

k=1
k �=i

(
f ik

cN + f ′ik
cN + f ik

cT + f ′ik
cT

)
= f i

cN + f ′i
cN + f i

cT + f ′i
cT

(6)

The expressions for the updating variables are now formulated in local contact coor-
dinates and transformed to global by the unit normal and tangential vectors N ik

n+1/2,

T ik
n+1/2, both at the contact point. To obtain from Eqs. 6 a conservative solution for

Stick and dissipative for Slip, the updating variables must fulfill the discrete conserving
equations defined in section 4. These variables are defined for both contact directions as:

4
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NORMAL

pik
cN =

ψik
2N

2
N ik

n+ 1

2

N ik
n+ 1

2

t
(pi

n+1 − pi
n); f ′ik

cN =
ψik

1N

2
N ik

n+ 1

2

KN (gik
Nn+1 − gik

Nn)

TANG. STICK

pik
cT =

ψik
2T

2
T ik

n+ 1

2

T ik
n+ 1

2

t
(pi

n+1 − pi
n); f ′ik

cT =
ψik

1T

2
T ik

n+ 1

2

KT (gik
Tn+1 − gik

Tn)

TANG. SLIP

pik
cT = 0 ; f ′ik

cT = 0; f ik
cT = −µ Ψ

∣
∣f ik

cN + f ′ik
cN

∣
∣ T ik

n+ 1

2

(7)

where KN , KT are user–defined penalties for normal and tangential contact, gik
Nn+1, gik

Nn,
gik

Tn+1, gik
Tn normal and tangential gaps at n and n + 1, Ψ = ±1 the Slip direction, µ the

friction coefficient and ψik
1N , ψik

1T , ψik
2N and ψik

2T proportionality parameters of the updating
variables. Notice that pik

cN , f ′ik
cN , pik

cT , f ′ik
cT (at n + 1/2) enforce the conservative response

for normal and tangential Stick contacts. On the other hand, for Slip pik
cT = f ′ik

cT = 0 since
no tangential penalty spring is present; the new Coulomb friction force f ik

cT is computed
with the absolute value of the total (contact plus updating) normal contact forces. The
normal and tangential–Stick contact forces f ik

cN , f ik
cT are defined in Eqs. 8 using the [4]

derivative, providing a discrete expression that conserves the artificial penalty energy.

f i
cN =

nbd∑

k=1
k �=i

f ik
cN =

nbd∑

k=1
k �=i

V (gik
Nn+1) − V (gik

Nn)

gik
Nn+1 − gik

Nn

N ik
n+ 1

2

=

nbd∑

k=1
k �=i

KN N ik
n+ 1

2

(gik
Nn+1 + gik

Nn)

f i
cT =

nbd∑

k=1
k �=i

f ik
cT =

nbd∑

k=1
k �=i

V (gik
Tn+1) − V (gik

Tn)

gik
Tn+1 − gik

Tn

T ik
n+ 1

2

=

nbd∑

k=1
k �=i

KT T ik
n+ 1

2

(gik
Tn+1 + gik

Tn)

where V (gik
Nn+1) = KN(gik

Nn+1)
2/2, V (gik

Nn) = KN(gik
Nn)2/2 are the normal and V (gik

Tn+1) =
KT (gik

Tn+1)
2/2, V (gik

Tn) = KT (gik
Tn)2/2, the tangential penalty potential contact energies.

4 DISCRETE LINEAR, ANGULAR MOMENTUM CONSERVATION AND

CONSISTENT BODY ENERGY DISSIPATION

This section develops the discrete conserving framework of EFDA to obtain the body
energy conservation for normal contact and conservation–dissipation for tangential.

4.1 Discrete linear momentum balance

The discrete variation of the linear momentum of EFDA is defined through the second
of Eqs. 6, the discrete counterpart of second Newton’s law. Therefore, for body i the
resultant of the normal contact forces f i

cN , f ′i
cN plus the tangential f i

cT , f ′i
cT is equal to the

discrete linear momentum balance between n and n+1. Also, the total linear momentum

5
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balance (Eq. 8) is the summation over that of each body and equals the resultant of the
contact forces on nbd.

ptot
n+1 − ptot

n

∆t
=

nbd∑

i=1

(

f i
cN + f ′i

cN + f i
cT + f ′i

cT

)

=

nbd∑

i=1

nbd∑

k=1
k �=i

(

f ik
cN + f ′ik

cN + f ik
cT + f ′ik

cT

)

(8)

Given two bodies i, k in contact, due to the AR principle: f ik
cN = −f ki

cN , f ′ik
cN = −f ′ki

cN ,
f ik

cT = −f ki
cT , f ′ik

cT = −f ′ki
cT for Stick and f ik

cT = −f ki
cT , f ′ik

cT = f ′ki
cT = 0 for Slip. Then, the

right term of Eq. 8 is zero in all situations and ptot
n+1 = ptot

n .

4.2 Discrete angular momentum balance

We again redefine the variables qi
n+1, qi

n as the positions of the contact point. From
the second of Eqs. 6 and multiplying by the cross product ×(qi

n+1 − qi
n), the discrete

angular momentum balance for a body i is:

pi
n+1 − pi

n

∆t
× (qi

n+1 − qi
n) =

J i
n+1 − J i

n

∆t
=

nbd∑

k=1
k �=i

(

f ik
cN + f ′ik

cN + f ik
cT + f ′ik

cT

)

× (qi
n+1 − qi

n) (9)

Invoking the AR principle and expressing the position’s increments as function of the
normal gap (qi

n+1 − qi
n) − (qk

n+1 − qk
n) = gik

Nn+1/2 (N ki)t, the total angular momentum
balance for nbd is:

J tot
n+1 − J tot

n

∆t
=

nbd∑

i=1

nbd∑

k=i+1

(

f ik
cN + f ′ik

cN + f ik
cT + f ′ik

cT

)

× gik
Nn+ 1

2

(N ki)t
(10)

Since vectors f ik
cN + f ′ik

cN , and the normal gap are collinear, their cross product is zero.
The product between f ik

cT + f ′ik
cT and this gap is also zero since the tangential contact

forces depend on the tangential gap: after some algebra we arrive to the triple product
(T ik

n+1/2)
t T ik

n+1/2 × gik
Nn+1/2(N

ki)t that is zero since the first vector is orthogonal to the
cross product.

4.3 Discrete total bodies’ energy balance

This equation is obtained by premultiplying both Eqs. 6 by (pi
n+1−pi

n)t and −(qi
n+1−

qi
n)t respectively, then added for all contacting bodies nbd. After some algebra:

6
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∆Ekin =

nbd∑

i=1

(pi
n+1 − pi

n)t M−1
i pi

n+ 1

2
︸ ︷︷ ︸

∆Ei
kin

= −

nbd∑

i=1

nbd∑

k=1
k �=i

[

− (qi
n+1 − qi

n)t f ik
cT

︸ ︷︷ ︸

∆Efik

cT

]

+

nbd∑

i=1

nbd∑

k=1
k �=i

[

(qi
n+1 − qi

n)t f ik
cN

︸ ︷︷ ︸

∆Efik

cN

− (pi
n+1 − pi

n)t M−1
i pik

cN
︸ ︷︷ ︸

∆Epik

cN

(ψik
2N )

− (pi
n+1 − pi

n)t M−1
i pik

cT
︸ ︷︷ ︸

∆Epik

cT

(ψik
2T )

− (qi
n+1 − qi

n)t f ′ik
cN

︸ ︷︷ ︸

∆Ef ′ik

cN

(ψik
1N )

− (qi
n+1 − qi

n)t f ′ik
cT

︸ ︷︷ ︸

∆Ef ′ik

cT

(ψik
1T )

]

(11)

where ∆Ei
kin = Ei

n+1 − Ei
n is the kinetic body energy balance between n and n + 1

when bodies are rigid and external forces are not applied. Then, ∆Efik

cN

, ∆Efik

cT

are the

contact forces energy balance and ∆Epik

cN

(ψik
2N ), ∆Epik

cT

(ψik
2T ), ∆Ef ′ik

cN

(ψik
1N ), ∆Ef ′ik

cT

(ψik
1T ),

all functions of the proportionality parameters, are the updating variables energy balance.
This equation is the conserving framework that relates the total bodies’ energy balance

with that of the updating variables. The role of energy conservation for normal contact is
included in the terms ∆Efik

cN

, ∆Ef ′ik

cN

(ψik
1N ), ∆Epik

cN

(ψik
2N ), while dissipation–conservation

for Slip and Stick is included in the terms ∆Efik

cT

, ∆Ef ′ik

cT

(ψik
1T ), ∆Epik

cT

(ψik
2T ). Therefore,

the energy loss is always consistent since the dissipation is included in the energy balance.
Notice that ∆Ekin is the total energy for all bodies. Since the energy related to normal

contact is conserved, ψik
1N , ψik

2N may be positive or negative, and ∆Epik

cN

, ∆Ef ′ik

cN

add or

subtract energy. The same can be said for ψik
1T , ψik

2T for the Stick and Slip cases:
STICK: the energy is conserved since the contact force does not create–dissipate

tangential work. This condition is enforced by zeroing the right part of Eq. 11:

0 =

nbd∑

i=1

nbd∑

k=1
k �=i

[

∆Efik

cT

+ ∆Efik

cN

+ ∆Epik

cN

+ ∆Epik

cT

+ ∆Ef ′ik

cN

+ ∆Ef ′ik

cT

]

(12)

This equation provides infinite relationships that satisfy the total bodies’ energy con-
servation for ψik

1N , ψik
2N , ψik

1T , ψik
2T . Using the AR principle and the reciprocities ψik

1N = ψki
1N ,

ψik
2N = ψki

2N , ψik
1T = ψki

1T and ψik
2T = ψki

2T , Eq. 12 may be decoupled for the normal (Eq. 13)
and tangential (Eq. 14) contacts between bodies i, k as:

(pi
n+1 − pi

n)t M−1
i pik

cN
︸ ︷︷ ︸

∆Epik

cN

(ψik
2N )

+ (pk
n+1 − pk

n)t M−1
k pki

cN
︸ ︷︷ ︸

∆Epki

cN

(ψik
2N )

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ik
cN

︸ ︷︷ ︸

∆Efik

cN

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ′ik
cN

︸ ︷︷ ︸

∆Ef ′ik

cN

(ψik
1N )

= 0
(13)

7
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(pi
n+1 − pi

n)t M−1
i pik

cT
︸ ︷︷ ︸

∆Epik

cT

(ψik
2T )

+ (pk
n+1 − pk

n)t M−1
k pki

cT
︸ ︷︷ ︸

∆Epki

cT

(ψik
2T )

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ik
cT

︸ ︷︷ ︸

∆Efik

cT

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)
t
]

f ′ik
cT

︸ ︷︷ ︸

∆Ef ′ik

cT

(ψik
1T )

= 0
(14)

Both imply that the energy transferred to the normal and tangential penalty springs is
recovered by the updating variables. The energies ∆Epik

cN

, ∆Epik

cT

enforce the total bodies’
energy conservation, while ∆Ef ′ik

cN

, ∆Ef ′ik

cT

adjust the contact forces to the conservative
solution.

SLIP: from physical considerations, the total energy dissipated by friction must be
equal to the increment of total energy, En+1 − En = −

∑nbd

i=1

∑nbd

k=1
k �=i

∆Efik

cT

. This equal-

ity is enforced by EFDA zeroing the last summation of Eq. 11. Also, ∆Epik

cT

(ψik
2T ) =

∆Ef ′ik

cT

(ψik
1T ) = 0 and ψik

1T = ψik
2T = 0 since there is no penalty spring in the tangential di-

rection, see the Slip condition in Eq. 7. Therefore, the equation that provides the infinite
(therefore undetermined) relations between ψik

1N , ψik
2N is:

nbd∑

i=1

nbd∑

k=1
k �=i

[

(pi
n+1 − pi

n)t M−1
i pik

cN
︸ ︷︷ ︸

∆Epik

cN

(ψik
2N)

+ (qi
n+1 − qi

n)t f ik
cN

︸ ︷︷ ︸

∆Efik

cN

+ (qi
n+1 − qi

n)t f ′ik
cN

︸ ︷︷ ︸

∆Ef ′ik
cN

(ψik
1N )

]

= 0 (15)

that represents a normal contact energy balance for all bodies. As in the previous case,
this balance is enforced for every contact; using again AR, reciprocities ψik

1N = ψki
1N ,

ψik
2N = ψki

2N and decoupling Eq. 15 for every contact, one arrives to relationships between
ψik

1N , ψik
2N :

(pi
n+1 − pi

n)t M−1
i pik

cN
︸ ︷︷ ︸

∆Epik

cN

(ψik
2N )

+ (pk
n+1 − pk

n)t M−1
k pki

cN
︸ ︷︷ ︸

∆Epki

cN

(ψik
2N )

+

[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ik
cN

︸ ︷︷ ︸

∆Efik

cN

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ′ik
cN

︸ ︷︷ ︸

∆Ef ′ik
cN

(ψik
1N )

= 0
(16)

The condition at the beginning of the SLIP item and the last equation, enforce both
the energy conservation of the normal contact and the dissipation for tangential contact.

5 DYNAMIC CONTACT, ENHANCED PENALTY METHOD

For every contact, Eqs. 13, 14, 16 provide a non–unique relation between ψik
1N , ψik

2N

and ψik
1T , ψik

2T respectively that automaticaly conserve or dissipate consistently the total

8
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energy for the tangential Stick and Slip cases. Using modal analysis decomposition, [2],
it is possible to obtain the second order dynamic equation associated with the descriptive
algorithm of Eqs. 6, defining an enhanced penalty contact model. The model described by
Eqs. 17 consists of a spring and dashpot that control the gap and the penetration velocity,
respectively.

0 = q̈Nn+1/2 +

2ξNωN
︷ ︸︸ ︷

ω2
N ∆t

ψ1N + ψ2N

2
q̇Nn+1/2 + ω2

N qNn+1/2

0 = q̈Tn+1/2
︸ ︷︷ ︸

Inertia

+

2ξT ωT
︷ ︸︸ ︷

ω2
T ∆t

ψ1T + ψ2T

2
q̇Tn+1/2

︸ ︷︷ ︸

Dashpot

+ ω2
T qTn+1/2

︸ ︷︷ ︸

Spring

(17)

The variables qNn+1/2, qTn+1/2 represent the particle motion in normal and tangential
direction. The dashpots are controlled by the user–defined parameters ξN , ξT , a penaliza-
tion for penetration velocities that approximately enforce the consistency Kuhn–Tucker
condition. Eqs. 17 provide the relations that can be easily generalized for any contact
between rigid bodies i, k:

ψik
1N + ψik

2N =
4ξN

Ωik
N

; ψik
1T + ψik

2T =
4ξT

Ωik
T

(18)

where Ωik
N = ωik

N ∆t, Ωik
T = ωik

T ∆t, ωik
N =

√

KN/m, ωik
T =

√

KT /m, and m is the largest
of the two contacting masses. The combination of Eqs. 13, 14, 16 with Eq. 18 provide the
unique explicit expressions for ψik

1N , ψik
2N and ψik

1T , ψik
2T . The insertion of these expressions

in Eqs. 6 enforces a conservative response for Stick and consistent dissipative for Slip.

6 NUMERICAL SIMULATIONS

6.1 Elliptical particle Carom problem

In this subsection, the trajectory of the successive impacts of a rigid ellipse inside a
one–meter square is simulated. The ellipse, of axes 15/6 cm is initially positioned at
(0.45, 0.1) m, inclination α = 50◦ as seen in Fig. 1 top, and it is subjected to initial
velocity Vx = 1, Vy = −0.4 m/s in direction θ = −22◦, without spin. The friction angle is
φ = 15◦ and the rest of the numerical parameters are the same as those in the previous
simulation. To visualize the rotation of the ellipse, the orientation is defined by the largest
semiaxis.

Figs. 1 depict the evolution of trajectory (top), linear velocities (left), rotational ve-
locity and energy (right) from EFDA and from the analytical solution reproduced in the

9
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Figure 1: Carom problem with an elliptical particle: trajectory (top), linear velocities (bottom left),
rotational velocity and total energy (bottom right). In the three, analytical (symbols) and numerical
(lines) distributions coincide.

Appendix. First, the ellipse impacts against the bottom side of the box and consequently
rotates since the line of action of the resultant contact force does not intersect the center
of gravity, Figs. 1 top and bottom right. The initial Vx is larger than Vy, therefore, the
contact point Slips along the horizontal side dissipating energy. Successive impacts de-
crease the tangential (with respect to any side) velocity, Fig. 1 bottom left. It is important
to note that impacts may be conservative for one contact and dissipative for others: the
velocity relation changes in every impact. This can be appreciated in Fig. 1 bottom right,
where for impacts at t ≈ 1.8, t ≈ 3.2 s the energy is conserved, and at others dissipated,
such as those before t ≈ 0.4 and at t ≈ 3.5, t ≈ 3.7 s. Numerical and analytical results
coincide perfectly since both EFDA and the analytical formulation are developed enforc-
ing the energy conservation for normal contact and conservation–consistent dissipation
for tangential.

6.2 The concave pendulum problem

The motion decay of two symmetrical positioned rigid disks resting on a semicircular
rough surface under the action of gravity is analyzed, Fig. 2. In this problem, there are
two sources of energy dissipation: friction between disk and surface, and frictional impact
between disks. After every impact both disks periodically return to a lower height, until
the motion stops. The disk and surface radii are 0.1, 0.5 m respectively, the friction angle
is φ = 15◦, the initial position is defined by the angle γt0 = 45◦ and the initial velocity is
zero.

In Figs. 3 left and right, results at the center of gravity are shown for only one of the
disks, since the problem is symmetric. The left graphic depicts the polar position γ and
velocity γ̇, while the right one, the total energy E and the rotational velocity ω.

With the prescribed initial conditions, both disks slide from the beginning (dissipating
energy) and eventually impact right at the bottom at t ≈ 0.3 s. Before this first impact,

10
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Figure 3: Pendulum problem. Evolution of center of gravity position γ, velocity γ̇, rotational velocity ω

and energy E with time t.

ω and γ̇ increase (in modulus), while E decreases. At the moment of the first impact, γ̇
and ω suddenly increase and reverse their values (abrupt change in the distributions) and
the total energy E decreases also suddenly. As expected, the angular velocity ω reaches a
maximum when the velocity of the contact point is zero VC = 0 at troll ≈ 0.44 s, then the
disks start rolling and stop dissipating energy by friction. During rolling ω, γ̇ decrease to
zero at t ≈ 0.54 s the disks achieves its maximum height for the oscillation and therefore
γ is maximum. Immediately, the disks continue rolling although downwards, increasing
γ̇ and ω until t ≈ 0.82 s, when a new impact occurs. This sequence repeats continuously
with a motion decay after every impact; the simulation stops when the energy loss is
smaller than a fixed tolerance.
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7 CONCLUSIONS

- The development of an energy frictional dissipating algorithm for contact problems
(EFDA), that conserves momenta and dissipates energy according to the frictional
Coulomb law, is presented. The key of EFDA is that conservation–dissipation is
consistently enforced in a conserving framework through the modification of the
contact kinematics with an additional linear momentum and a contact force.

- The energy of the normal contact is also conserved, therefore EFDA accurately
obtains the real normal contact force and therefore, the real tangential contact force
for the Slip case. This consistent energy conservation–dissipation ensure stability of
the algorithm.

- For the more complex situation of the pendulum problem (two disks on a curved
rough surface), EFDA also shows good stability simulating the impacts, transitions
from sliding to rolling and motion decay until rest.
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Abstract. A general theory for the Curve-To-Curve contact is applied to develop a
special contact algorithm between curves and rigid surfaces. In this case contact kine-
matics are formulated in the local coordinate system attached to the curve, however,
contact is defined at integration points of the curve line (Mortar type contact). The cor-
responding Closest Point Projection (CPP) procedure is used to define then a shortest
distance between the integration point on a curve and the rigid surface. For some simple
approximations of the rigid surface closed form solutions are possible. Within the finite
element implementation the isogeometric approach is used to model curvilinear cables
and the rigid surfaces can be defined in general via NURB surface splines. Verification
of the finite element algorithm is given using the well-known analytical solution of the
Euler-Eytelwein problem – a rope on a cylindrical surface. The original 2D formula is
generalized into the 3D case considering an additional parameter H-pitch for the helix.
Finally, applications to knot mechanics are shown.

1 INTRODUCTION

In many engineering devices such capstan and belt drives frictional interaction between
structure and ropes, cables or belts can be modeled as the interaction between rigid
surfaces and deformable curvilinear beams or ropes without loss of tolerance. Several
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developments are required for this problem: a robust cable finite element and a contact
algorithm for the Curve-To-Rigid Surface contact interaction. The isogeometric approach,
see [1], is employed together with a special finite beam element formulation allowing both
finite rotations, see in [2] in order to obtain cable finite elements. The theory for Curve-
To-Curve contact interaction developed in [3] is applied to obtain a contact algorithm
describing the contact between a deformable curve (representing either the center-line of
the beam or an edge of a solid body) and a rigid surface.

The classical Euler-Eytelwein solution of the belt friction problem, see e.g. in [4], is first
employed to verify the developed algorithm. The solution of this problem was reported by
Euler in his Remarks on the effect of friction on equilibrium and has been first published
by the Berlin Academy of science [5] in 1769. Since the first time publishing the Euler
solution by Eytelwein [6] in his Handbuch der Statik fester Körper in 1808 the problem is
spread through the practical applications and became known as Euler-Eytelwein problem
in many books of technical mechanics. Here we are proposing a generalization of the
classical 2D solution into the 3D case under the assumption that the rope is forming a
spiral line on a rigid cylinder. This solution in due course is used for verification.

Finally, combination of both Curve-To-Curve and Curve-To-Rigid Surface contact al-
gorithms allows to step into modeling of more complex see-man knots (beginning of study
see in [7]) such as the clove-hitch knot. Numerical examples are illustrating the tying-up-
processes.

2 CURVE-TO-RIGIDANALYTICAL SURFACE CONTACTALGORITHM

The theory for Curve-To-Curve contact developed in [3] is employed to obtain a contact
algorithm between a deformable curve and a rigid surface as follows. A rigid surface is
assumed to have arbitrary analytical description, e.g. via NURBS surfaces. All contact
parameters for the Curve-To-Rigid Suface algorithm are defined similar to the Curve-
To-Curve contact algorithm in the Serret-Frenet frame, see [3], obtained by the tangent
vector τ , the normal vector ν and the bi-normal β of the curve line, see Fig. 1. A vector
e is defining the shortest distance.

In order to describe contact between deformable curves and rigid surfaces a Segment-
To-Analytical-Surface (STAS) algorithm, discussed in [9], is modified using the projection
of the integration points which is set up on the “slave” curve onto the rigid “master”
surface. The combination of this strategy with the Curve-To-Rigid (analytical) Surface
contact algorithm leads to the following definition of the coordinate system on the master
surface:

ρs(ξ) = r(α1, α2) + pn(α1, α2), (1)

where ρs(ξ) is defining an integration point positioned on the mid-line of the curvilinear
beam element, r(α1, α2) is parameterization of the rigid “master” surface. The integration
point ρs(ξ) is found in the direction of the normal n(α1, α2) to the rigid “master” surface.
The shortest distance between integration points and the surface denoted as p plays

2
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Figure 1: Curve-To-Curve contact algorithm is defined in the Serret-Frenet frame for both curves.

the role of a penetration. The Closest Point Projection (CPP) procedure, which is the
standard contact local searching algorithm now turns into the determination of the surface
convective coordinates α1, α2 defined by equation (1). In general, Newtons method is
exploited to solve eqn. (1) defining then a point on the rigid surface and the penetration
p between this surface and the selected integration point S. An analytical solution is
possible for some surfaces – one of the important examples for further verification is the
contact of a curve with a rigid cylindrical surface. Here, the rigid cylindrical surface with
the radius R is given as r = RC + zez + Reϕ(ϕ) with the normal vector n = eϕ(ϕ), see
Fig. 2.

The distance p and thereby penetration into the cylinder is defined as

p =

{
�RC − ρs −

(
(RC − ρs) · ez

)
ez� − R – for an outward normal

R − �RC − ρs −
(
(RC − ρs) · ez

)
ez� – for an inward normal

(2)

It should be noticed that for the contact between the cylinder and a cable with a circular
cross-section with radius Rcable, the penetration is, of course, computed as penetration =
p− Rcable.

A coordinate z is used as a measure of tangential interactions for the definition of
frictional interaction.

3
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Figure 2: Contact with a rigid cylinder given by an analytical equation.

The contact integral is representing then the virtual work of contact traction along the
curve L and is computed numerically using the integration formula of Lobatto or Gauss
type depending on modeling purposes. Thus, e.g. the part responsible only for the normal
contact is represented by

δW =

∫

L

Nδpds. (3)

For the derivation of tangent matrices results from the Curve-To-Curve contact approach,
see in [3], are employed directly. Thus, the tangent matrix derived from the linearized
part of eqn. (3) is given as

KN =

∫

L

εr A
T [e⊗ e]Ads (4a)

+

∫

L

N AT

{

k cosϕ1

(1− rk cosϕ)
τ ⊗ τ −

1

r
g ⊗ g

}

Ads. (4b)

Here, N is a normal contact force, εr is a normal penalty parameter, e is a vector defining
the shortest distance, g = τ×e is an orthogonal vector, r is the shortest distance between
the integration point and the rigid surface, k is the curvature of the curve, ϕ is the angle
between the normal curve vector ν and the unit vector of the shortest distance e (e = e1
in Fig. 1 and e = −eϕ in Fig. 2). For all geometrical parameters see Fig. 1. A is an
approximation operator for the curve line. The frictional tangential force T is computed

4
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via the return-mapping algorithm. For the derivation of the tangential force T and other
parameters including the tangent matrices and more details see [3].

3 GENERALIZATION OF THE EULER-EYTELWEIN FORMULA INTO
THE 3D CASE CONSIDERING PITCH H

q

dsβ
ν

τ

R

R−( + d )R

The equilibrium equation of the elementary part of the rope with length ds, see Fig. 3,
is given in the following vector form

dR

ds
= q (5)

The force vector R can be expanded in the natural Serret-Frenet coordinate system used
in the differential geometry of curves, see e.g. in [8], built by the unit tangent τ , the unit
normal ν and the unit bi-normal β vectors

R = Tτ +Nν + Bβ, (6)

with T – a tangential force, N – a normal force, and B – a bi-normal force. The full
derivative of the force vector includes also a part due to changing the basis vectors τ , ν,
β and is obtained via the Serret-Frenet formula, see e.g. in [8] and the application for
this problem in [11]. Taking this formula into account, the projection of eqn. (5) onto the
axes τ , ν, β results then in the system of ordinary differential equations:







dT

ds
+ kN = qτ – equilibrium in τ direction

dN

ds
− kT + κB = qν – equilibrium in ν direction

dB

ds
− κN = qβ – equilibrium in β direction

(7)

where k is the curvature and κ is the torsion of the curve, which are in general functions
of the arc-length parameter s.

5
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3.1 Solution of the equilibrium equation for a spiral line (helix)

Now we consider a special case with the following conditions:

(i) the rope is positioned on the rigid surface.

(ii) the rope is loaded only by tangential forces T0τ 0 and T1τ 1 at both ends.

(iii) the rope is beginning to slide preserving its geometrical shape, i.e. only a motion
along τ is possible. Thus the form of the helix is conserved.

(iv) sliding is subjected to the Coulomb friction law such that T (s) = µN(s), where µ is
a coefficient of friction.

Thus, due to condition (iii), the first equilibrium equation in (7) is transferred into the
equation of motion according to D’Alemberts principle with

qτ = −ρ
∂2u

∂t2
, (8)

where u is a tangential component of the displacement and ρ is the linear mass density.
However, equilibrium along ν and β axis is fulfilled and we consider the absence of the
distributed forces qν = 0, qβ = 0. The problem is then described by the system of ordinary
differential equations: 





dN

ds
− kT + κB = 0

dB

ds
− κN = 0

(9)

with the following initial conditions at s = 0 resulting from condition (ii):

T (0) = T0, N(0) = N0, B(0) = 0. (10)

Now, we consider a case with a constant curvature k and a constant torsion κ of
the curve. This is a case of the spiral line – a helix – on the cylinder. The system of
equations (9) is transformed into a single differential equation of second order by taking
the derivative of the first equation in (9):

d2N

ds2
− k

dT

ds
+ κ

dB

ds
= 0 (11)

and then using the second equation in (9) we obtain

d2N

ds2
− k

dT

ds
+ κ

2N = 0. (12)

6
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Now taking into account the sliding condition (iv) we obtain a second order differential
equation :

d2N

ds2
− µk

dN

ds
+ κ

2N = 0 (13)

with the initial conditions:

N(0) = N0,
dN(0)

ds
= kT0. (14)

The solution of the ordinary differential equation (13) is obtained by using the character-
istic equation

λ2 − µkλ+ κ
2 = 0 (15)

λ1, 2 =
µk ±

√

µ2k2 − 4κ2

2
(16)

Depending on the determinant D = µ2k2 − 4κ2 three solutions are possible. We consider
these values for the spiral line (helix). The geometrical characteristics for this line are
defined as follows, see Fig. 3

X

Y

Z

D

B

A

O

H

ϕ
α

Figure 3: Spiral line (helix) with a pitch H .
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Parametrization of the spiral line (helix):

r =







R cosϕ
R sinϕ

H

2π
ϕ+ const







. (17)

Within 0 ≤ ϕ ≤ 2π the line is making a full turn around the OZ-axis raising by the
pitch z = H with the following geometrical items: arc-length of the spiral line (helix)

s =
�

R2 +
�
H
2π

�2
ϕ, ϕ ∈ [0, ...); curvature of the helix k = R

R2 +

�
H

2π

�2 ; torsion of the

spiral line (helix) κ = H/2π

R2+





H

2π





2 . Then positivity of the determinant can be expressed

via the geometrical parameters of the helix as

D ≥ 0 =⇒ = µk ≥ 2κ =⇒ µ ≥
H

πR
. (18)

Omitting details of transformations we discuss the expressions for the force ratio
T

T0
for all three possible cases.

3.1.1 Case 1. Positive determinant D > 0, µ >
H

πR

Since with H = 0 the determinant is positive D > 0, then this case is representing a
spiral line with a very small pitch H in comparison with the radius R. The solution is
given by the exponential functions as:

T

T0
=

�
µk

2ω
sinhωs+ coshωs

�

e

µk

2
s
, (19)

with ω

ω =

�

µ2k2 − 4κ2

2
. (20)

If we consider the 2D case with H = 0 in eqn. (19) the classical Euler-Eytelwein
for the rope on the cylinder is recovered

T

T0
=

�

sinh
�µϕ

2

�

+ cosh
�µϕ

2

��

e

µϕ

2 = eµϕ. (21)

8
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3.1.2 Case 2. Negative determinant D < 0, µ <
H

πR

The case is representing either a case with a spiral line with large pitch H , or with a
small coefficient of friction. The solution is given by the trigonometrical and exponential
functions:

T

T0
=

[
kµ

2ω̃
sin ω̃s+ cos ω̃s

]

e

µk

2
s
, (22)

with ω̃

ω̃ =

√

4κ2 − µ2k2

2
. (23)

3.1.3 Limit case 3. Determinant is zero D = 0, µ =
H

πR

This case can be obtained just by the limit process with ω → 0 with the solution in
eqn. (19) or in eqn. (22) as

lim
ω→0

T

T0
=

[
kµ

2
s+ 1

]

e

µk

2
s
. (24)

A numerical computation for the cases with D > 0, D = 0, D < 0 and the classical
Euler formula with H = 0 is presented in Fig. 4 for the angle ϕ ∈ [0, 2π]. The computation
is given with a coefficient of friction µ = 0.3 and radius R = 1.0 for the following cases:

• Classical Euler case H = 0;

• Positive determinant D < 0 with H = 0.75

• Zero determinant D = 0 with H = µπR = 0.9424

• Negative determinant D < 0 with H = 1.2

One can see, that if the pitch H is increasing then the ratio of forces T/T0 is decreasing,
thus, the standard 2D Euler case is representing the upper limit of the forces ratio T/T0

with regard to the pitch H .
The derived formula is used further for the verification of the Curve-To-Rigid Suface

contact algorithm.

4 APPLICATION TO KNOTS

Both the Curve-To-Curve (CTC) contact algorithm, see in [3], [7], and the developed
Curve-To-Rigid-Surface (CTRS) contact algorithm are used to model the Clove-Hitch
knot, see Fig. 5, presented also in [10].

9
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Figure 4: Comparison of all cases with determinant D > 0, D = 0, D < 0 and the classical Euler formula
with H = 0.

The developed model allows to describe the tying-up mechanics of the Clove Hitch
knot: during the tying up both loops of the knot are approaching each other. The upper
loop of the knot is enforcing this motion. The knot is tying up and is not sliping because
of the large frictional forces appearing between the two approaching loops.

5 CONCLUSIONS

- A special Curve-To-Rigid-Surface (CTRS) contact algorithm is developed in the
current contribution based on the application of the Curve-To-Curve contact theory
and Segment-To-Analytical Surface (STAS) contact algorithm.

- Rigid surfaces can be approximated with arbitrary NURBS surfaces – in this case
an iterative solution of the corresponding Closest Point Projection (CPP) procedure
is necessary to define the contact point as well as the penetration.

- An analytical closed form solution for the CPP procedure is possible for some simple
cases e.g. for a cylinder.

- The Euler-Eytelwein problem is generalized into the 3D problem as a frictional
sliding of a spiral line (helix) on a cylinder. It is shown that consideration of the
pitch H leads to the reduction of the force ratio T/T0. The formula is used as a
basis for the verification of the Curve-To-Rigid-Surface (CTRS) contact algorithm.

10
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(a) Untied knot (b) Model of the untied knot

(c) Tied knot (d) Model of the tied knot

Figure 5: Illustration and finite element model of an untied and tied Clove-Hitch knot

- The developed Curve-To-Rigid (analytical) Surface (CTRS) contact algorithm to-
gether with the Curve-To-Curve (CTC) contact algorithm is applied to study the
kinematics of the tying up of the Clove Hitch knot.
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Abstract. The main objective of this paper is to evaluate the elastic input energy of 

unreinforced masonry structures by means of the input energy spectrum. The energy is a 
novel approach which allows evaluating in a global and easily way the performance of the 
masonry structures. Structures modeled with non frame elements require of a great number of 
2D or 3D elements, thereby making the calculation of the input energy a complicated issue. In 
this context, a new formulation that calculates the input energy using an input energy 
spectrum and the balance of energy is proposed. Two examples of application of unreinforced 
masonry structures were considered to evaluate the input energy and compare it with the 
proposed formula. The formula proposed shows interesting results that allowed identify the 
key features of the accelerograms that influence the input energy into structures.  
 
1 INTRODUCTION 

There are several methods proposed in the literature to quantify the severity, intensity or 
earthquake damage potential. Currently, all terms are intended to measure the same property 
of the ground motion: its effect on the structure. The only observed effect of ground motion 
on the structure is the permanent damage, so this measure is usually assessed by the degree of 
correlation with the observed damage. This can lead to a mistake, because the amount of 
damage depends on the qualities in building on the site. For this reason, macro-seismic scale 
of Modified Mercalli Intensity is not a reliable measurement of destructiveness potential 
(Orosco and Alfaro, 2008), though it is very used to describe the distribution of damage to the 
affected area. A rational correlation between a measure of intensity and observed structural 
damage could be established only if in the affected site buildings were uniformly designed in 
accordance with standard building code. 
 

Unreinforced masonry buildings are structures with a particularly complex structural 
behavior. This complexity is given by the mechanical properties of the masonry, specially, by 
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the low tensile strength of the material. Taking into account the uncertainties in the masonry, 
it is not easy to deal with a dynamic analysis by finite element programs, even with the 
current structural analysis programs. The masonry is one of the most complex materials to be 
represented numerically on an analytical model, due to the variability of behavior, type of 
material and workmanship. This characteristic of material, together with the unreinforced 
masonry structures are usually represented by a large number of elements, causes that a 
dynamic analysis utilizes high computing resources, taking several days, even weeks to be 
achieved (Lourenço, 2002). 

 
Generally, most of the simplified analyses establish that the response of the structure can 

be calculated by considering the fundamental mode. The unreinforced masonry structures do 
not meet this requirement, because a single mode is not sufficient to determine an 
approximate response. To interpret the structure’s response, two parameters are reviewed: 
displacement and base shear. However, the unreinforced masonry structures exhibit the 
phenomenon of softening, which excludes the base shear as a reliable indicator of the 
structural response. In the same way, the displacement has the problem that does not reflect 
the overall behavior of the structure, because every part of the structure may have different 
values. So, it is necessary to use other parameters. In this paper, the use of the energy as the 
main parameter to assess the potential damage of an earthquake is proposed. 

 
Energy is a physical quantity that can be represented by a scalar, an appropriate quantity to 

synthesize the behavior of the structure. The main problem lies in figuring out how the input 
energy is distributed into the structure. At the end of an earthquake, all the input energy must 
have been dissipated by the structure through some dissipation mechanism. Some energy is 
absorbed by the structure through elastic dissipation mechanisms, such as viscous damping, 
and another part is absorbed by the mechanisms of inelastic energy dissipation, which is 
responsible of the structural damage. Therefore, the energy of a structure will be dissipated at 
the end of an earthquake in some kind of energy.  

 
This paper addresses analysis of historic structures by using the concept of energy. Both, 

input energy and robust models (macroelements) for masonry structures, that are currently 
available, can be successfully used for the analysis of historic structures. For evaluating 
churches, it will be necessary evaluate each macroelement that it is composed of. In this paper 
just macroelement façades is analyzed. Façades of two typical churches from Mexico were 
selected. Input energy for different earthquakes will be shown and studied. 

2 DESTRUCTIVINESS POTENTIAL OF EARTHQUAKES  
This section is a review of proposed parameters for evaluating the potential damage of the 

earthquakes. Structural seismic analysis requires that the seismic action is properly defined for 
the purposes of obtaining reliable results. It is common to specify such a dynamic load using 
response spectra or acceleration histories, according to the selected method of analysis. 
Idealization of the action must reflect the characteristics of motions at the site of construction. 
Intensity measures discussed here are evaluated considering the peak acceleration, duration of 
strong motion and frequency content of earthquake ground motion. 
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2.1 Housner intensity 
Housner (1952) proposed as a measure of the intensity the area under the pseudo-velocity 

spectrum in the range of 0.1 to 2.5s periods, for 5% damping ratio (Eq. 1). 

        
   
   

(1) 

Its biggest shortcoming is the inability to consider the effect of duration of strong motion. 
Spectral velocity is insensitive to the duration, while the energy entered to the structure 
increases monotonically with duration. On the other hand, the influence of the ratio    , or 
the duration of the pulse in case of impulsive excitation, is well represented by the velocity 
spectrum. The frequency content of the earthquake is implicitly represented by the spectral 
distribution of the pseudovelocity. 

2.2 Arias intensity 
 Arias (1970) introduced the measure of the intensity of ground motion (Eq. 2) as: 

   
 
    

       
 

(2) 

Where   is the duration of the registration of ground acceleration     . Arias intensity (    
is closely connected with the root mean square acceleration and corresponds to the area below 
the total energy spectrum absorbed by the system of a single degree of freedom (     at the 
end of the earthquake excitation. The    is not sensitive to frequency content and long 
acceleration pulses of the excitation. However, the accumulated energy of    brings out the 
impulsive character of the earthquake. 

2.3 Araya destructive potential  
 Araya and Saragoni (1985) modified the Arias intensity to take into account the frequency 

content (Eq. 3). Defined the destructiveness potential      as: 

   
  
   

(3) 

In this expression,    is the number of crossings per unit of time. 

2.4 Energy dissipation Index 
The parameters explained above depend only of earthquake characteristics and have 

implicit in the definition considerations of energy since they are directly related to the mean 
square acceleration. However, the structural response depends of the structural characteristics 
and the site where the structure is based. Therefore, damage potential indexes must 
considering explicitly the structural response. In view of this, Sucuoglu and Nurtug (1995) 
proposed an index of the destructiveness of an earthquake based on the energy dissipated by a 
system of one degree of freedom (Eq. 4), which is expressed as, 
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Where    can be interpreted as the average energy dissipated by the spectral velocity of the 
system equivalent to      subject to earthquake motions. The energy dissipated by a simple 
oscillator during the seismic action is sensitive to the parameters that describe dynamic 
characteristics of the earthquake: effective duration, peak values and frequency content. 
However, damage potential index is sensitive to the    , to peak values, spectral content, but 
does not show a direct relationship to the duration of the earthquake. 

2.5 Some remarks of these formulae 

The input energy of family of linear     systems can be taken as a measure of potential 
earthquake damage. An attempt was make to consider the hysteretic energy dissipation to 
measure the intensity of the earthquake, but that is only true to quantify structural damage but 
not the damage potential of earthquake. The damage potential is the ability of the seismic 
excitation to cause damage, while the damage does depend heavily on structural 
characteristics. Seismic excitation with a given damage potential may cause different levels of 
damage on different systems, depending on the structural characteristics of the system. When 
using the input energy all the energies are included into, so that is the reason for proposes a 
formula to evaluate input energy. Additionally, the input energy combines the structural and 
earthquake characteristics.  

3 NEW FORMULATION TO ASSESS THE EARTHQUAKE DEMAND 
A new formulation is proposed to assess the damage seismic potential and to know the 

demand imposed on the structure. This equation expresses the balance of energy of the 
structure and allows us to interpret their earthquake demand from the concept of energy. The 
equation governing a     system subject to a horizontal seismic ground motion comes from 
the dynamic equilibrium equation, as shown in Equation 5. 

                         (5) 

Where   is the mass;   the damping;   the stiffness of the system;      ,      ,      are the 
acceleration, velocity and relative displacement, respectively;       is the ground 
acceleration. If equation 5 is multiplied by the differential increment of relative displacement 
   (or     ) and integrating it throughout the duration of earthquake      , it is obtained a 
equation, which contains the integrated or cumulative vibration and represents the energy 
balance (Akiyama, 2003). The energy balance of     system for a given time   is, 

         
          

          
           

 
 

(6) 

                       

Where   (input energy) is the work imposed by the dynamic forces at time  ,     the 
kinetic energy,     the energy of dissipation by damping and,     the elastic strain energy. 
On the range of periods ranging from 0.2 to 5.0s, the relative input energy values are quite 
similar to the values of absolute input energy (Uang and Bertero, 1990). Therefore, it is no 
necessary for any differentiation between both energies. The input energy in the elastic range 
for a     can be calculated by adding the input energy contribution of each mode of 
vibration, for example for the mode 1, then, 
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When the structure is composed of several degrees of freedom, by adding the energy of 
each node, the total energy of the system is obtained (Eq. 8). 

                 
 
                  

 
                   

 
   

                 
 
 

 
   

                 
 
                  

 
                   

 
   

                 
 
 

 
   

 

                 
 
                  

 
                   

 
   

                 
 
 

 
   

                       
 
                   

 
                   

 
   

   
 
   

               
 
 

 
   

 
   

 

 

 

 

 

 

(8) 

Where     is the total input of energy multi-degree of freedom       system,   is the 
damping ratio or fraction of critical damping, and   is the natural circular frequency of 
vibration. Substituting the modal expansion of the displacement      , the velocity        
and the acceleration        of each mode, we have the following general equation to 
determine the input energy for a structure that behaves in the elastic range: 
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Grouping common terms and using the orthogonality properties of natural modes, 

                            
 
              

 
              

 
   

   
 
      

                     
 
 

 
   

 
   

          
   

 
     

                  
 
            

   
 
   

                        
 
 

 
   

 
                   

   
 
          

 

 

 

 

(10) 

(11) 

Where       is the total input energy normalized respect to the mass of       system. 
    are the generalized modal coordinates of each node,   is the participation factor, and 
      is the spectral input energy of a SDF system for each period   . Equation 10 and 11 
determine the elastic energy input from modal dynamic characteristics of the structure. 
 

Should be noted that the equations 10 and 11 are applied along the earthquake acts, this 
means that, if it is necessary to calculate the input energy to an earthquake applied in the 
direction    , modal coordinates and participation factors are used of the direction    . 
Likewise, along the direction "Y" and “Z". When apply two accelerograms simultaneously in 
different directions, it is necessary calculates the input energy for each direction and sum both 
to obtain the total input energy. 
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4 NUMERICAL EXAMPLES  
The churches built in Mexico during the Colonial Era, between the 16th and 18th centuries, 

are typical structures of unreinforced masonry. These buildings vary in size and in 
architectural style; however, it is possible to find a general basic typologies. An important 
factor which influenced the architectural style was the experience of the ancient builders due 
to the seismic activity of the country. Generally, in the Pacific's coast and more specifically in 
the State of Oaxaca, the recurrent destruction of the first constructions caused an evolution of 
the churches towards edifications of not much height, with big buttresses and little outer 
ornamentation. By this reason, the churches of Oaxaca are rectangular, with one nave. On the 
other hand, regions where the seismic activity is smaller, the churches remained higher and 
slender. It is the reason the churches of the State of Puebla are bigger, with a plant of Latin 
cross. Both churches have a simple façade that has attached one or two small towers 

 
The façades are one of the most vulnerable parts of the churches due to the bell towers and 

their belfries. Hence, this section presents the analysis of two façades. These models do not 
belong to any particular church but are representative of the global features of churches in 
both states. Both façades were analyzed applying different earthquakes of significant 
magnitude that occurred worldwide in different dates. The structural analysis program 
SAP2000 was used to obtain the input energy of models and compare them with the proposed 
formula. 

4.1 Models for analysis  
 Two finite element models were performed; which correspond to the typical churches of 

the states of Oaxaca and Puebla (Fig. 1). Geometrically, the façade of Oaxaca’s church has a 
lower height than Puebla’s. Other important difference that stands out is the height of the 
towers of the façade of Puebla. The towers are relatively higher compared to the central part 
of the façade. The finite element model of Oaxaca's façade has 1002 elements and 2204 
degrees of freedom, whereas the Puebla’s façade has 1578 elements and 3482 degrees of 
freedom. The mechanical characteristics of the masonry material are: Elascity´s modulus = 
1962 MPa; mass density = 1600 kg/m3; Poisson´s ratio = 0.20.  

   
Figure 1: Dimension and finite element models of façades; State of Oaxaca (left), and Puebla (right). 

Table 1 shows the modal characteristics of both façades. The Oaxaca's façade have a 
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fundamental period lesser than Puebla's façade, but both have approximately equal 
participating mass ratios (Mass %). Considering only ten modes, mass percent is 90.73 to 
Oaxaca and 91.34 to Puebla. It is necessary to indicate that considering only the first mode, 
the response of facades will be not approximated. This shows that both facades are different 
in modal characteristics. Analyses of both façades showed the influence of the modal 
characteristics in the input energy. 

Table 1: Modal characteristics of façades 

 Oaxaca Puebla 

Mode Period MPF Mass(%) Period MPF Mass (%) 

1 0.12016 16.2058 61.43 0.26563 26.1514 61.95 
2 0.08352 0.0002 0.00 0.17979 0.0001 0.00 
3 0.05939 8.8028 18.13 0.13182 15.1881 20.90 
4 0.04417 0.0036 0.00 0.08989 0.00012 0.00 
5 0.04145 3.9645 3.68 0.08149 7.1166 4.59 
6 0.03480 0.0068 0.00 0.05256 0.0001 0.00 
7 0.02823 0.0045 0.00 0.04719 4.2646 1.65 
8 0.02462 5.6116 7.37 0.04637 0.0010 0.00 
9 0.02131 0.7029 0.12 0.03953 4.9854 2.25 

10 0.02029 0.0005 0.00 0.03894 0.0003 0.00 

4.2 Earthquakes  
The façades were analyzed by applying the earthquakes of different sites of the world. 

Table 2 summarized the earthquake characteristics. These earthquakes differ in terms of 
location, magnitude, duration and peak ground acceleration.  

Table 2: Earthquake Characteristics 

Earthquake Site 
registration 

Duration  
(s) 

PGA 
(m/s2) 

Magnitude Event Date 

Oax990615 Oaxaca 70.00 1.07 6.5 Puebla 15-VI-1999 
Oax990930 Oaxaca 50.00 1.86 7.5 Oaxaca 30-IX-1999 
Pue990615 Puebla 47.50 1.95 6.5 Puebla 15-VI-1999 
Pue990930 Puebla 100.00 0.42 7.5 Oaxaca 30-IX-1999 
Gem760915 Gemona 9.50 6.23 6.5 Friuli 15-IX-1976 
Kob950116 Kobe 20.00 5.87 6.9 Kobe 16-I-1995 
Sct850918 SCT. D.F. 90.00 1.75 8.1 Michoacan 18-IX-1985 
Stu760506 Sturno 45.00 3.22 6.5 Friuli 6-V-1976 
Tol760506 Tolmezzo 12.00 2.89 6.5 Friuli 6-V-1976 
Bol991211 Bolu 16.00 8.07 7.3 Turkey 11-XII-1999 

 
These accelerograms have different features that allow reviewing their influence on the 

structures. Some are very similar in time and other in acceleration. The largest peak ground 
acceleration is from Turkey, but it has shortest duration, compared to the rest of the 
earthquakes, that mean it is an impulsive earthquake motion. On the other hand, the 



166

Meza J. Miguel and Peña Fernando. 

 8 

Pue990930 earthquake has longest duration, but the peak ground acceleration is lower.  

4.3 Analysis and earthquake evaluation   
Figure 2 shows the energy spectra for different earthquakes used. It can be seen for long-

period structures, the SCT850918 earthquake demand much more energy than other 
earthquakes. This is consistent with the damage observed in 1985 in Mexico City, where the 
period of the structures was amplified by the soil type where they are built. Gem760915, 
Kob950116 and Bol991211 earthquakes are demanding greater energy for low-periods 
buildings (0.6-1.0s). Coincidentally these earthquakes also have the largest ground 
acceleration. Bol991211 earthquake motion has a longer duration and higher acceleration than 
the Gem760915 and Kob950116 earthquakes, but as it can see in Figure 2, it demanded less 
energy. This indicates that the duration and maximum ground acceleration are not parameters 
that dominated at all the energy input of structures. Fundamental periods is plotted to locate 
the energy demand on the façades, according the figure 2 (left) this would not have a high 
energy demand for any earthquake. The figure 2 (right) display a close up of the spectra that 
shows the location of both fundamental periods. 

  
Figure 2: Spectra´s input energy of earthquakes (left), figure amplification (right). 

Figure 3 shows, as an example, the energy of the earthquake in Bol991211 obtained with 
SAP2000 analysis program and the energy obtained with the proposed formula. The energy is 
not normalized, because the SAP2000 analysis program gave no normalized energies. As can 
be seen in the figure 3 the energy calculated with the formula 10 is near to the energy 
obtained with the SAP2000. It should be appreciated that the formula gives the energy at the 
end of the earthquake. The history of earthquake input energy shows a peak value around the 
6s, which is slightly larger than the final input energy, the formula do not reflect those peaks. 
However, this increase is produced by the strain energy which is recoverable when elastic, but 
when the behavior is inelastic, peak strain energy is converted into hysteretic energy and 
reflected at the end of the duration of earthquake. The advantage of the formula is that it is 
possible to know the input energy at the end of earthquake duration, including all type of 
energies. Moreover, the formula can exclude the influence of mass; the normalized energy can 
be converted into equivalent velocity (Sucuoglu and Nurtug, 1995). 
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Figure 3: Comparison between energy obtained with the proposed formula and the SAP2000 software  

 
Figure 4: Demand of energy for the façades from Oaxaca and Puebla 

Figure 4 shows the energy demand for both façades, obtained with the proposed formula. 
The highest energy demand was caused by the Oax990930 earthquake. On the other hand, the 
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demand high energy to Puebla’s façade. According to results and the earthquake magnitude 
(Table 2), there are no relation between input energy and earthquake magnitude. All of them 
have an approximated magnitude of 7.5, but the input energies are not approximated. Table 3 
shows the comparison between both input energies. The error between the SAP2000 program 
and the formula is in the range 0 to 10%. Energies obtained with the code SAP2000 were 
always bigger than the formula. Because the formula considers only the 90% of the mass of 

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18

En
er

gy
 (k

N
-m

)

Time (s)

Bol991211

Formula

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Et
i/

m
 (m

2/
s2

)

Earthquake

Oaxaca

Puebla



168

Meza J. Miguel and Peña Fernando. 

 10 

the structure at take into account only ten modes. However, the results between both were 
very approximate and can be considered equal. It is clear that taking more modes in the 
calculations, the error will tend to zero. 

Table 3: Comparison of input energy 

  Oaxaca   Puebla  

Case Formula Sap2000 Error (%) Formula Sap2000 Error (%) 

Oax990615 4.01 4.10 2.20 76.17 76.61 0.57 
Oax990930 21.96 22.87 3.98 94.70 96.20 1.56 
Pue990615 3.69 3.78 2.38 84.60 85.04 0.52 
Pue990930 0.14 0.14 0.00 4.90 4.93 0.61 
Gem760915 11.16 11.43 2.36 130.81 131.57 0.58 
Kob950116 5.55 5.99 7.34 163.63 166.48 1.71 
Sct850918 0.07 0.07 0.00 3.25 3.29 1.22 
Stu760506 9.32 9.51 2.00 202.86 204.00 0.56 
Tol760506 2.72 2.77 1.81 89.94 90.40 0.51 
Bol991211 6.67 6.84 2.49 106.27 106.86 0.55 

5 CONCLUSIONS 
A novel formula to assess the destructiveness potential of earthquakes by using the input 

energy was proposed. It is very easy to calculate the maximum energy input with the 
proposed formula, because only needed the modes of vibrating of the structure and the energy 
spectrum. 

 The results showed that an earthquake not have the same destructiveness potential for two 
different structures. The duration and maximum acceleration of an earthquake are not 
parameters that dominate at all the energy input of structures. In general, the proposed 
formula to calculate the input energy gave a much better approximation than the modal time-
history analysis. The proposed formula to calculate the input energy is only valid for the 
linear elastic range, since the formula does not include damage and elastic energy spectrum is 
used.  
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Abstract. This work is a comparative between stress and strain results obtained from Minor 
Destructive Tests (MDT) for several load tests on a sandstone masonry wall performed in 
laboratory, and the numerical results obtained from finite element models, in order to draw 
conclusions about the challenges and kindness of the experimental technique employed.  
Laboratory tests correspond to simple flat jack tests performed on a masonry wall.  
In regard to the model, a macromodel has been used, assuming it consists of a single 
isotropic material with elastic behavior, pretending to be a first approximation from which 
the results can be refined. The parameters characterizing the material have been taken from 
laboratory results obtained from double flat jack tests. It is therefore a two-way analysis, 
where laboratory results are compared with those obtained from numerical calculation, and 
these, in turn, are fed with previous results.  
By numerical modeling we obtain the stress distribution on the wall, resulting, first, from the 
load application, and after, induced by the pressure on the flat jack. Thus, we can compare 
the stress distribution resulting from the application of the load with the values obtained from 
the simple flat jack tests to validate them, and then study the evolution of stress and strain the 
wall during the test in order to achieve a better understanding of the process. 

1 INTRODUCTION 
The purpose of this work is to do a comparison between the experimental results obtained 

in the laboratory, concerning the state of stress and deformations of a masonry wall, and the 
theoretical ones, obtained from numerical modeling. The laboratory tests carried out were part 
of the Doctoral Thesis “Theoretical - Experimental Research about Minor Destructive Tests 
(MDT) applied to the Mechanical on-site Characterization of Historical Masonry Structures” 
[1]. 

For this, the study is focused on a masonry wall modeling the simple flat jack tests [2], [3], 
[4], [5], [6], [7]. 

With this aim, a macromodel of the wall has been used, assuming it consists of a single 
homogeneous material [9], [10], [11]. The parameters characterizing the material have been 
obtained, in turn, from the laboratory results from the double flat jack test. It is therefore an 
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analysis, bidirectional, in which laboratory records are compared with those obtained from 
numerical calculation, and these, in turn, fed with previous results. 

2 TEST DESCRIPTION 
The simple flat jack test, whose results are intended to be validated in this study, consists 

of a minor destructive test to obtain an approximate stress distribution in a structural element. 
To do this, the steps are: 

• Mark on the wall two rows of control points. Measure the distance between them. 
• Make a groove on the wall in the middle plane between the two rows of the control 

points.
• Measure the new distance between points (which will be closer after the groove’s 

execution). 
• Introduction of the flat jack in the groove and pressure’s applying. 
• Measure the distance between the points of control until it recovers the initial. 

According to the test’s methodology, the pressure applied on the flat jack at the moment in 
which the distance between the control points is recovered can be related with the existing 
stress on the wall before the test. 

For this study, this test has been reproduced in the laboratory by applying a vertical load on 
a masonry wall. In Figure 1 some photographs of the test developed are shown. 

General view of the masonry wall. Measure of the initial distance between the control 
points.
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Implementation of the groove. Pressure’s application on the flat jack.

Measure of the distance’s evolution between the 
control points.

View of the groove, the flat jack and the control points 
considered.

Figure 1. Photographs of the laboratory tests carried out. 

3 INITIAL DATA 
To model the behavior of the wall it has been considered that it consists of a single linear 

material behavior, elastic and isotropic. This has been defined by the values of the Modulus of 
Elasticity (E) and Poisson's ratio (n) obtained in the laboratory from double flat jack tests 
performed in the sandstone masonry. The values used in the calculation are: 

E=3,11.109 N/m2

n=0,19
The density (r) was estimated from a specimen of sandstone, which dominates the wall 

material under study. The value obtained was: 
r=2227 kg/m3
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The loads considered have been the weight of the wall and the load applied on the upper 
side of the wall. To determine the weight, the value of the density referenced was taken, and 
to determine the vertical load it was taken into account the load supplied by the hydraulic 
jacks and the beam’s weight that is used for a better distribution of loads. With the addition of 
these values the load applied is: 

P=90.430,4 kp=904.304 N 
With this load it results the following pressure applied on the upper side of the wall: 

p=2.917.109,68 N/m2

4 CALCULATION METHODOLOGY 
For the numerical modeling of the experiments conducted in the laboratory, the program 

used has been ANSYS v11 [8]. 
The first step given was to define a model with the geometry of the masonry wall tested in 

laboratory whose main dimensions are shown in Figure 2. 

Z

X

Y

15
8,5

205,5

31

20,5 43 142

34,9

93
,91

1,5
4

Posición carga en FJS-A

205,5

15
8,5

P=90,430.4 kp

Figure 2. Wall’s geometry (cm). 

The next step was to define a space discretization which consists on dividing the solid wall 
in elements within the different parameters are evaluated (stresses, displacements, etc). The 
element’s types used were SOLID45, when the discretization is performed with hexahedral 
elements, and type SOLID92 for tetrahedral elements. In both cases these elements are three 
dimensional, whose degrees of freedom correspond to the movements in three directions at 
each of its nodes (UX, UY, UZ).  

As boundary conditions, it is considered coerced the displacement in the three directions 
on the base of the wall. 

With these considerations three different approximations have been developed. A first one 
considering a hexahedral groove covering the entire wall’s wide, a second one considering the 
real groove and jack’s shape with the jack’s pressure applied on all its surface and a third one 
considering the jack’s pressure applied only on a fraction of its surface.  

In Figure 3 images of the models used are shown. The first model was used in the first 
calculation (considering a hexahedral groove) and the second one for the other two 
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(considering the real shape of the groove). The real shape for the groove and for the flat jack 
was obtained after the laboratory test, removing the upper part of the wall marking the outline 
of both the groove and the flat jack. In Figure 4 these outlines are represented. 

In the three cases the steps given have been the followings: 
• Obtaining the stress distribution after the application of the load on the upper face 

of the wall. 
• Implementation of the groove (by removing the corresponding elements). 
• Flat jack’s pressure application by steps. 
• Stress and strains’ distribution for each pressure step. 
• Comparison between the results obtained from the numerical calculations and the 

ones obtained in laboratory. 
Each of these steps will be described in detail in the next sections. 

Figure 3. Models used for the calculations. 

Figure 4. Groove and flat jack’s outlines. 
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5 INITIAL STRESS DISTRIBUTION 
As explained above, the first step given was to obtain the stress distribution after the load’s 

application in order to know, before the calculation, the approximate result we should arrive 
to. The results obtained are shown graphically in Figure 5. 

Figure 5. Stress distribution after the load’s application. 

From the calculations done we obtain that the approximate stress at the groove’s height is 
24,0.105 N/m2. According to the test methodology, this value should be similar to the pressure 
applied to the flat jack for which the distance between the control points is recovered. 

6 IMPLEMENTATION OF THE GROOVE 
In the calculations the implementation of the groove consists on the elimination of the 

elements corresponding to its volume. With this, we obtain a new stress distribution and a 
vertical displacements distribution in which we can appreciate the decrease in the distance 
between the control points. 

In Figure 6 we represent the stress distributions for the two models used, once the elements 
of the groove have beene removed, and in Figure 7 the distributions for the vertical 
displacements. 
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Figure 6. Stress distributions after the implementation of the groove for the two models: hexahedral groove and 
real shape of the groove. 

Figure 7. Vertical displacements distributions after the implementation of the groove for the two models: 
hexahedral groove and real shape of the groove. 

7 PRESSURE’S APPLICATION AND STRESS DISTRIBUTIONS OBTAINED 
In the next calculation’s steps given, a pressure is applied on the flat jack’s surfaces. In 

these steps is when the differences between the three calculations done are more obvious. In 
the first one the pressure is applied in a hexahedral surface which covers all the wall’s wide, 
in the second one the pressure is applied only in the surface that corresponds to the real shape 
of the flat jack, and at last, in the third calculation, the pressure is applied in a portion of this 
surface which corresponds to an approximation of the contact surface obtained in the 
laboratory tests. In Figure 8 the area of the pressure’s application is represented for each case. 
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Figure 8. Different areas considered for the pressupre’s application 

For the third case, the surface in which the pressure is applied was obtained from the 
laboratory test, placing a tracing sheet on the flat jack so that the pressure’s surface would be 
represented on it. In Figure 9 we can see the area used for this calculation. 

Figure 9. Area of pressure application 

For these three different hypotheses we have obtained the stress distributions for two flat 
jack’s pressures: one corresponding to the initial stress obtained at the groove’s height 
(24,0.105 N/m2), which should be the value for which the distance between the control points 
should be restored (Step 9); and other corresponding to the real pressure for which this 
distance coincides with the initial one measured (Step 10). 

In Figure 10 the results for the stress distributions in each case are shown. 
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STEP 9 
p=24.105 N/m2

STEP 10

First
calculation

Second
calculation

Third
calculation

Figure 10. Stress distributions for the three calculations done for two flat jack’s pressures. 

Analyzing the different figures, we can notice that for Step 9, the stress distribution in the 
first and second calculations is similar to the initial one, even if the distance between the 
control points is not completely recovered. It doesn’t occur the same in the third case, in 
which an area with tensile stresses appear around the groove. 

In what concerns to Step 10, results for the first and second calculations are closer although 
it should be noticed a compression area around the groove, due to the pressure applied with 
the flat jack, bigger, and therefore less realistic, in first calculation. Again the stress 
distribution obtained with the third calculation doesn’t reproduce the expected behavior of the 
wall during the test. 
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8 COMPARISON BETWEEN EXPERIMETAL AND NUMERICAL RESULTS 
In the test carried out in laboratory, the resulting stress was 34,9.105 N/m2, value higher 

than the theoretical one expected (24. 105 N/m2). Comparing it with the results obtained from 
the numerical simulation, we can conclude that the first approximation gives us a very similar 
value (35. 105 N/m2) so it could be used to get a sufficiently accurate result. 

However, the second calculation carried out gives us a nearest result to the theoretical one 
(30. 105 N/m2).

The third calculation is not useful to simulate the test as it considers an area in which the 
pressure is applied too small to reproduce the real behavior of the wall during the test. 

9 CONCLUSIONS 
After all the calculations done, we can conclude that the simple flat jack test gives a 

reasonable result for the stress level in a masonry wall.  
In what concerns to the numerical simulation, the results are also sufficiently. Anyway, it 

is important to emphasize that the calculation carried out is a first approach, having used a 
macromodel and considering an isotropic material with linear elastic behavior. It is expected 
that considering plastic behavior, nonlinearity and anisotropy, would improve the accuracy of 
the results achieved. 

Even if the results obtained are not exactly the existing ones, we should not forget that the 
objective of this type of test is to obtain an order of magnitude of the stress situation of the 
wall with the least destructive testing possible, without considering it necessary, in general, to 
get the exact value of the stress at one point. 

It is remarkable that in onsite tests the results would be even more accurate, taking into 
account that effects due to boundary conditions, as the size of the wall, disappear in a real 
wall. 
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Abstract. In this work we investigate the seismic strength, behavior, and performance
of the hybrid masonry structural system. The computational modeling efforts aim to
characterize the inelastic behavior of hybrid masonry panels. In particular, we study the
influence of the boundary conditions (gap or no gap, reinforced or bearing contact zone),
the story shear, overturning moment, and the influence of the panel aspect ratio.

Several computational models with various levels of complexity are used in our study
in an effort to identify the simplest model capable of capturing the salient features of
these structural systems. A non-linear (plastic) constitutive model for the simulation of
masonry is considered; this constitutive model is coupled with a damage mechanics model
to simulate both the inelastic deformation of masonry in normal compression and tension
and the damage due to cracking and micro-cracking.

In what we call type I hybrid masonry, the masonry does not make direct contact with
the beams or columns of the steel frame. The frame and the masonry are connected only
through connector plates. The hybrid masonry provides many advantages, such as im-
proving the resistance to seismic loads, impeding the extent of the damage in the masonry
and so on. There is no gap between beam and masonry for Type II, so the masonry shares
the gravity load with the steel frame and benefits from the vertical compression. Type
III is an extension of Type II systems with the addition of connectors along the sides of
the panel, which resist vertical shear forces. For Type II and Type III hybrid masonry,
because the beam is in contact with the masonry, another very important aspect needs
to be considered for the numerical simulation: we require a contact formulation capable
of modelling the transfer of normal and tangential forces between steel and masonry.

Preliminary computational results are presented in this paper that will be in the future
correlated with laboratory test results from the large-scale tests done at the University of
Illinois at Urbana Champaign.
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1 INTRODUCTION

Reinforced masonry panels can be designed as stiff, strong and ductile panels, inter-
acting with the surrounding steel frame to resist lateral seismic forces. In the hybrid
masonry structural system, the panels are not only used to provide spatial functionality
in a building, but they also be enhance the seismic performance. This structural system
is designed in such a manner that steel frames are attached to masonry panels and will
transfer part of the loading (e.g., gravity forces, story shears and overturning moments)
to the masonry. The panel itself can be reinforced with horizontal and vertical bars. In
what we call type I hybrid masonry, the masonry does not make direct contact with the
beams or columns of the steel frame. The frame and the masonry are connected only
through connector plates.

The hybrid masonry system improves the resistance to seismic loads and limits the
extent of the damage. Because of the panel reinforcement, the deformation in the masonry
is small. Two other systems, designated as Type II and Type III may be considered. There
is no gap between beam and masonry for Type II, so the masonry share the gravity load
with the steel frame and benefits from the vertical compression. Type III is an extension of
Type II systems with the addition of connectors along the sides of the panel, which resist
vertical shear forces. For the simulation of Type II and Type III hybrid masonry, due
to the transmission of forces between the steel frame (beams) and the masonry panels
through direct contact, a formulation capable of modelling the transfer of normal and
tangential forces between steel and masonry needs to be considered for the numerical
simulation.

For the numerical simulation we use FEAP [1], an open source finite element code,
which provides a framework for finite element simulations; specific constitutive models
and solution schemes are included via user functions. The formulations used in this study
are a mix of FEAP original elements and user routines.

The rest of this paper is organized as follows: In the next section we briefly introduce
various computational models that will be utilized in our study. The following section then
introduces some preliminary numerical simulations. Through several parametric studies
we investigate the influence of nonlinearity, of damage and of panel aspect ratio on the
transfer of loads between the frame and the panel. The paper concludes with a summary
of the important features of computational models for hybrid masonry, a discussion of
the influence of nonlinearities and damage on the distribution of loads between the frame
and the panels and a discussion of future work.

2 COMPUTATIONAL FRAMEWORK

An isotropic model is used to describe the linear elastic constitutive behavior of the
steel frame. The formulation can account for shear deformation. Extensions to large
deformations are also available (with or without shear effects). Through the built-in
FEAP elements, we also have access to a more complex model for the frame that includes

2
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plasticity and also accounts for geometric nonlinearities. For this option the inelastic
behaviour is accounted for in the bending and axial effects but the element retains elastic
response in the transverse shear terms.

The masonry panels are modeled with 2D plane strain or plane stress continuum ele-
ments. Constitutive models ranging from linear elasticity to large deformation plasticity
are considered. The damage and the plastic deformation effects are included in a homoge-
nized framework. From a numerical implementation point of view, the standard predictor
corrector approach is used. In a first step, an elastic predictor is calculated. Then a
plastic corrector is used to obtain the stress by an implicit Euler backward integration
scheme. The stress can be expressed [2] as

σn+1 = σn +D(∆εn+1 −∆εpn+1) = σtrial
n+1 −∆λn+1D

∂g

∂σ
|n+1, (1)

where subscripts indicate the step number, σ and ε are the stress and strain tensors, ∆λ is
the increment of the plastic multiplier rate, and g is the plastic potential. Considering the
additional equation enforcing the yield condition, we have a system of nonlinear equations
having as unknowns the stress and the plastic multiplier rate that can be solved at every
integration point using a local Newton-Raphson iteration. Different plastic potentials can
be used to model masonry, such as the J2 or Mohr-Coulomb flow rule [2, 3].

Figure 1: Uniaxial stress-strain curve based on an exponential softening model

Due to the brittle behavior of masonry, the computational framework should also in-
clude a damage mechanics model to simulate both the inelastic deformation of masonry in
normal compression and tension and the damage due to cracking and micro-cracking. An
effective simulation of the progressive deterioration of the mechanics properties of masonry
panels under increasing loading can be obtained in the conventional framework of contin-
uum damage mechanics. For this study, a scalar damage model is adopted with a single
parameter, the damage coefficient d used to evaluate the effective stress σd = (1 − d)σ
(where σd is the stress in the damaged configuration, and σ is the stress corresponding to

3
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an undamaged state). A possible expression for d [4] that models the case of exponential
softening is given below and requires the definition of two parameters, ε0, the strain at the
peak stress and εf a strain parameter controlling the initial slope of the softening branch
(Figure 1).

d(ε) = 0 if ε < ε0 (2)

d(ε) = 1− ε0
ε
exp(− ε−ε0

εf−ε0
) if ε0 < ε (3)

In this context, d has the role of a reduction factor that accounts for the effect of
damage in the material: d = 0, corresponds to a state where no damage is present in the
material, while d = 1 represents a completely damaged state. In other words, d can be
seen as the ratio of damaged area to the total cross sectional area [5].

Figure 2: Distribution of damage in a simply supported unnotched beam subject to a concentrated load
at mid span ( blue: no damage to dark red: complete damage/ crack)

Figure 2 shows the distribution of damage in a simply supported beam under a con-
centrated load captured with our current implementation of such formulation (using a
local damage model). This implementation is used for all numerical results that include
damage presented in the next section. Work is currently underway to extend this model
to a nonlocal model in order to avoid the mesh size effects that are characteristic for local
formulations.

In the case of the type I hybrid masonry, there is no direct contact between the masonry
and the steel frame. The transmission of loads can only occur through the masonry-frame
(beam) connectors in this case. Type II and III hybrid systems however, reduce or even
eliminate the gaps and direct contact becomes possible. Two fundamentally different
approaches can be used to model contact in the finite element framework. The traditional
formulation uses the so-called node-to-surface approach where the contact constraints are
enforced strongly at every node in contact. This approach is computationally efficient but
numerically not very robust, in particular, in the presence of large sliding or of significant
difference in the stiffness properties of the bodies in contact. An alternate approach
relies on the use of a mortar formulation [6, 7]. Both formulations are available as user
subroutines in our code.

4
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3 NUMERICAL RESULTS

We present in this section some preliminary numerical results obtained for a reduced
scale (1:5) model that will be used by our collaborators at the University of Illinois,
Urbana-Champaign to calibrate the experimental setup for the full-scale systems testing
planed for the near future. The first study that we performed investigated the effect

Figure 3: Reduced scale model of a type I hybrid masonry wall: Geometry (left) and finite element
discretization (right)

of material and geometrical nonlinearities on the distribution of loads between the steel
frame and the masonry panel. The structure presented in Figure 3 is of type I (no loads
are transferred through direct contact). The connectors are in this example considered
to transfer loads both vertically and horizontally. A controlled displacement loading se-
quence is considered. Three cases were simulated that consider different material behavior
for steel and masonry: (1) linear elastic, (2) small deformation plasticity, and (3) large
deformation plasticity.
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Figure 4: Overturning moment for the masonry panel

Figure 5: Ratio of overturning moment frame/masonry

6
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Figures 5 and 4 show the total overturning moment of the masonry panel and the ratio
of moments as functions of the lateral displacement at the second story beam. It is clearly
seen that, while some loads are transmitted to the masonry panel in this system, there
is a limited range of displacements for which the contribution of masonry in the overall
behavior is significant. In the large deformation range, a significant percentage of the
overturning moment has to be resisted by the steel frame. A more realistic assumption
was used next, where it is assumed that the connectors transfer only horizontal loads to
the masonry and that the masonry can undergo damage.

Figure 6: Ratio of overturning moment frame/masonry (left) and distribution of damage (right)

Figure 6 indicates that at relatively small lateral displacements, the ability of the
masonry panel to provide resistance to the overturning moment is lost and quite rapidly
the whole load needs to be supported by the frame. At this stage, we can only use
such simulations for qualitative analyses since most material parameters that we used as
input are approximate values for simple masonry. When experimental data will become
available from the hybrid systems testing, the material parameters will be calibrated and
quantitative conclusions will be drawn.

4 CONCLUSIONS

A computational framework for the analysis of hybrid masonry systems was established.
The effect of nonlinearity on the structural response of a small scale hybrid masonry wall
was investigated in this preliminary study. We studied both material nonlinearities (by
using elasticity and plasticity models) and geometrical nonlinearities by also incorporating
the effect of large deformations. The influence of damage in the masonry panel on the
overall distribution of the overturning moment was investigated. The crack pattern is
significantly influenced by the refinement of the mesh. Such mesh size effects associated
with the use of local damage formulations require the investigation/ implementation of a

7
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nonlocal damage algorithm to alleviate the stress softening problem. Future simulations
of type II and type III systems will also require use of contact formulations.
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Abstract. The paper is concerned with the development and verification of the com-
putational algorithm enabling the progressive failure simulation that takes into account
plasticity effects in addition to the damage progression to be performed for composite
materials and structures.

The numerical approach is based on the combined elastoplastic damage model that
accounts for the irreversible strains caused by plasticity effects and material properties
degradation due to the damage initiation and development. The strain-driven implicit
integration procedure is developed using equations of continuum damage mechanics, plas-
ticity theory and includes the return mapping algorithm. A tangent operator that is
consistent with the integration procedure is derived to ensure a computational efficiency
of the Newton-Raphson method in the finite element analysis. The algorithm is imple-
mented in ABAQUS as a user-defined subroutine. Prediction of the damage initiation
in the laminated composite takes into account various failure mechanisms making use of
Hashin’s failure criterion. The plasticity effects in composite material are modelled using
the approach developed by C. T. Sun and J. L. Chen.

The efficiency of the modelling approach and computational procedure is verified using
the analysis of the progressive failure of composite laminates made of carbon fibre rein-
forced plastic and subjected to in-plane uniaxial tensile loading. It has been shown that
the predicted results agree well with the experimental data.

1 INTRODUCTION

Laminated composite materials are widely used in aerospace, civil engineering, military
vehicles, marine and many other industries due to their high strength and stiffness to
weight ratios, good fatigue resistance and high energy absorption capacity. In many
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applications, the progressive failure analysis of composite laminates is required to predict
their mechanical behaviour under various loadings.

The development of an appropriate constitutive model for fibre reinforced composite
materials normally involves the consideration of their mechanical response prior to the
initiation of damage, the prediction of damage initiation and the modelling of postfailure
behaviour. Continuum damage mechanics (CDM) provides a tractable framework for
modelling damage initiation and development, as well as stiffness degradation. It is based
on mesoscale, where a laminate is regarded as consisting of orthotropic plies. Several
material models using continuum damage mechanics have been reported in literature [1–6].
Most of the CDM-based material approaches are based on elastic-damage models which
are suitable for modelling the mechanical behaviour of elastic-brittle composites that
do not exhibit noticeable nonlinearity or irreversible strains prior to the initiation of
damage development. However, they may be insufficient in describing the nonlinear or
plastic behaviour that some thermoset or thermoplastic composites might exhibit under
transverse and/or shear loading. For example, research undertaken by Xiao [7] shows that
material models that do not take into account the plastic features of composites failures
might underestimate the energy absorbtion capacity of composite structures.

In addition to plasticity effects, material properties deterioration under loading is an-
other significant feature of composite laminates. Defects such as fibre rupture, matrix
cracks, fibre/matrix debonding developing in a ply do not lead to the collapse of a lam-
inate immediately as they come up. These defects can accumulate gradually within the
laminates. As a consequence, the material properties degrade progressively. Thus, the
consideration of postfailure behaviour is important for an accurate prediction of failure
loads.

Physically, the nonlinearity and/or irreversible deformations of fibre reinforced com-
posites stem from the various mechanisms, such as the nonlinearity of each individual con-
stituents, damage accumulation resulting from fibre or matrix cracking, and fibre/matrix
interface debonding. Drucker [8] has proposed that such micromechanical phenomena can
be described macroscopically within the framework of the plasticity theory. In combined
plasticity and damage theories, the plastic strain represents all the irreversible deforma-
tions including those caused by microcracks. This approach is adopted in this study using
an equivalent form of Sun and Chen plastic model [9]. The Hashin’s failure criterion [10]
is adopted to characterize the damage initiation and development.

Once damage initiates in the material, local stresses are redistributed in the undamaged
area. As a result, the effective stresses in the undamaged area are higher than the nominal
stresses in the damaged material. Plasticity is assumed to be developed in the undamaged
area of the damaged material. So the effective stresses are used in the plastic model. Since
the nominal stresses in the postfailure branch of the stress-strain curves decrease with the
increase in strain, the use of these stresses in the failure criteria does not provide the
prediction for further damage growth. Thus, the effective stresses are also applied in the
Hashin’s failure criteria.

2
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2 ELASTOPLASTIC DAMAGE CONSTITUTIVE MODEL

The constitutive model is presented for an elementary orthotropic ply and consists of a
plastic part which describes the plastic behaviour of composites under transverse and/or
shear loading, failure criteria that are used to predict the thresholds for damage initiation
and growth, and damage evolution laws that account for the development of damage.

2.1 Stress-strain relationship

Damage affects the behaviour of fibre-reinforced composite materials considerably. Ma-
terial properties, such as elastic moduli and Poisson’s ratio, degrade due to damage ac-
cumulation and growth. These effects are taken into account by introducing damage
variables in the stiffness matrix using the CDM-based approaches. For example, the
relation between the nominal stress and effective stress under uniaxial loading is given as

σ = (1 − d)σ̄ (1)

where σ = P/A0 is the Cauchy nominal stress (P is the normal internal force applied to
the resisting surface, A0 is the original area), σ = P/Aeff is the effective stress (Aeff is the
effective resisting area of the damaged surface).

For composite materials exhibiting plasticity response, the total strain tensor ε is
decomposed into the elastic and plastic strain parts εe and εp as

ε = εe + εp (2)

where the plastic strain εp represents all the irreversible deformations including those
caused by microcracks.

According to the continuum damage mechanics theory, the stress-strain relationships
for the damaged and undamaged composite materials are written in the following forms:

σ = S(d) : εe; σ̄ = S0 : εe (3)

where bold-face symbols are used for variables of tensorial character and symbol (:) de-
notes inner product of two tensors with double contraction, e.g. (S(d) : εe)ij = S(d)ijklε

e
kl,

where the summation convention is applied to the subscripts; σ, σ̄ are the Cauchy nom-
inal stress tensor and effective stress tensor (both are the second order tensors); S0 is
the fourth-order constitutive tensor for linear-elastic undamaged unidirectional laminated
composite; S(d) is the one for the associated damaged material. The explicit form of S0 is
determined by elasticity theory for orthotropic materials. The form of the S(d) adopted
in this model is similar to that presented by Matzenmiller et al. [2]

S(d) =
1

D









(1 − d1)E
0
1 (1 − d1)(1 − d2)ν

0
21E

0
1 0

(1 − d1)(1 − d2)ν
0
12E

0
2 (1 − d2)E

0
2 0

0 0 D(1 − d3)G
0
12









(4)
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where D = 1 − (1 − d1)(1 − d2)ν
0
12ν

0
21, d1, d2, d3 denote damage developed in the fibre

and transverse directions, and under shear (they are scalar damage variables that remain
constant throughout the ply thickness); E0

1 , E0
2 , G0

12 and ν0
12, ν0

21 are the elastic moduli
and Poisson’s ratios of undamaged unidirectional composite laminae.

In order to track the different failure mechanisms, namely, matrix microcraking and
fibre rupture developed in the composite ply under tensile and compressive stresses, the
damage variables are given as follows:

d1 =

{

d1t if σ1 ≥ 0

d1c if σ1 < 0
d2 =

{

d2t if σ2 ≥ 0

d2c if σ2 < 0
(5)

where d1t, d1c denote damage developments caused by tension/compression in the fibre
direction, and, d2t, d2c denote damage developments caused by tension/compression in
the transverse direction.

It is assumed that the shear stiffness reduction results from the fibre and matrix crack-
ing. To take this into account, the corresponding damage variable d3 is expressed as:

d3 = 1 − (1 − d6)(1 − d1t) (6)

where d6 represents the damage effects on shear stiffness caused by matrix cracking.
As mentioned before, all the irreversible deformations are represented by the plastic

strain εp. These effects are allowed for by the plastic model which includes the yield
criterion, plastic flow rule, hardening variable flow rule, and the hardening law.

2.2 Plastic model

In the damaged materials, internal forces are resisted by the effective area. Thus, it
is reasonable to assume that plastic deformation occurs in the undamaged area of the
damaged composites. According to this, the plastic flow rule and hardening law are
expressed in terms of effective stresses σ̄, equivalent plastic strain ε̃p, and equivalent
stress σ̃, which are based on the effective stress space concept.

The plastic yield function is given by:

F (σ̄, ε̃p) = F p(σ̄) − κ(ε̃p) = 0 (7)

where F p is the plastic potential; κ is the hardening parameter which depends on the
plastic deformations and is expressed in terms of equivalent plastic strain ε̃p.

Due to its simplicity and accuracy, an equivalent form of the one-parameter plastic
potential for plane stress condition proposed in [9] is adopted in this study to describe
the irreversible strains exhibited by composites under transverse and/or shear loading:

F (σ̄, ε̃p) =

√

3

2
(σ̄2

2 + 2aσ̄2
3) − σ̃(ε̃p) = 0 (8)

where a is a material parameter which describes the level of plastic deformation developed
under shear loading compared to the transverse loading, σ̄2 is the effective stress in the
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transverse direction, σ̄3 is the effective in-plane shear stress, and σ̃(ε̃p) is the isotropic
hardening law for composites materials. Selecting the plastic criterion in the form of
Eq.(8) improves efficiency and accuracy of the computational algorithm.

The equivalent stress is expressed in terms of σ̄2 and σ̄3 as follows [9]:

σ̃ =

[
3

2
(σ̄2

2 + 2aσ̄2
3)

] 1

2

(9)

Assuming the associated plastic flow rule for composite materials, the plastic strain
rate ε̇p is expressed as:

ε̇p = λ̇p∂σ̄F (10)

where λ̇p ≥ 0 is a nonnegative plastic consistency parameter; hereafter ∂xy = ∂y/∂x.
Substituting Eq.(8) into Eq.(10), the following explicit form of plastic strain rate is

derived:





ε̇p
1

ε̇p
2

ε̇p
3



 = λ̇p∂σ̄F = λ̇p








0
3
2

σ̄2√
3
2 (σ̄2

2+2aσ̄2
3)

3aσ̄3√
3
2 (σ̄2

2+2aσ2
3)








(11)

In a similar fashion, the associated hardening rule is also assumed for the equivalent
plastic strain rate and is presented as follows:

˙̃εp = λ̇php = λ̇p∂ε̃pF (12)

where hp defines the evolution direction of the equivalent plastic strain.
The equivalent plastic strain rate can be obtained from the equivalence of the rates of

the plastic work per unit volume W p

Ẇ p = σ̄ : ε̇p = σ̃ ˙̃εp (13)

Substituting Eq.(11) and Eq.(9) into Eq.(13), the following relation is derived

˙̃εp = λ̇p (14)

It follows from the comparison of Eq.(12) and Eq.(14) that the value of hp is unity.
Note that this result does not hold if the original quadratic form of the Sun and Chen
yield criterion is adopted [9]. As a result, the application of the original yield criterion
involves more computational efforts in the integration procedure. The current approach
based on the use of Eq.(8) is free from this deficiency.

For the sake of simplicity, an isotropic hardening law expressed in terms of effective
plastic strain ε̃p is adopted in this study. The following formulation of the isotropic
hardening law proposed by Sun and Chen [9] is used to represent the equivalent stress
versus equivalent strain hardening curve:
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κ(ε̃p) = σ̃(ε̃p) = β(ε̃p)n (15)

where β and n are coefficients that fit the experimental hardening curve. These parameters
together with the material parameter a are determined using an approach based on the
linear regression analyses of the off-axis tensile tests performed on the unidirectional
composite specimens [9, 11].

2.3 Damage model

2.3.1 Damage initiation and propagation criteria

In order to predict the initiation and propagation of each intralaminar failure of the
material and evaluate the effective stress state, the loading functions are adopted in the
form of Hashin’s failure criteria [10]. The damage initiation and propagation criteria fI

are presented in the following form:

fI(φI , rI) = φI − rI ≤ 0 I = {1t, 1c, 2t, 2c, 6} (16)

where φI is the loading function and rI is the damage threshold corresponding to each
failure mechanism. The damage threshold rI controls the size of the expanding damage
surface and depends on the loading history. The damage development in the material
initiates when φI exceeds the initial damage threshold rI,0. Further damage growth occurs
when the value of φI in the current stress state exceeds rI in the previous loading history.
The damage variable d6 represents the damage effect on shear stiffness due to matrix
fracture caused by a combined action of transverse and shear stresses. However, the
compressive transverse stress has beneficial effects on the matrix cracking. Thus, it is
reasonable to assume that the damage effects are governed by the tensile matrix cracking
only, i.e. f6=f2t.

According to Hashin’s failure criteria, the loading functions for different failure mech-
anisms are given as:

φ1t =

(
σ̄1

Xt

)2

(σ̄1 ≥ 0) (tensile fibre damage mode)

φ1c =

(
σ̄1

Xc

)2

(σ̄1 < 0) (compressive fibre damage mode)

φ2t =

(
σ̄2

Yt

)2

+

(
σ̄3

Sc

)2

(σ̄2 ≥ 0) (tensile matrix damage mode)

φ2c =

(
σ̄2

Yc

)2

+

(
σ̄3

Sc

)2

(σ̄2 < 0) (compressive matrix damage mode)

(17)

where Xt and Xc are the tensile and compressive strengths in fibre direction; Yt and Yc

are the transverse tensile and compressive strengths; Sc is the shear strength.
Once the damage initiation is predicted, the evolution of damage variable dI is deter-

mined by the damage flow rule and the damage evolution law.

6
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2.3.2 Damage evolution

Under damage loading (i.e. when Eq.(16) is converted to equality) the damage con-
sistency condition ḟ(φI , rI) = 0 is satisfied. Then the following expressions for damage
thresholds rI can be derived:

rI = max{1, max{φτ
I}} I = {1t, 1c, 2t, 2c, 6} τ ∈ [0, t] (18)

Since damage is irreversible, the damage evolution rate should satisfy the following
condition: ḋI ≥ 0. The exponential damage evolution law is adopted for each damage
variable and expressed in the following form [12]

dI = 1 − 1
rI

exp(AI(1 − rI)) I = {1t, 1c, 2t, 2c, 6} (19)

where AI is parameter that defines the exponential softening law. This parameter is
determined by regularizing the softening branch of the stress-strain curve to ensure the
computed damage energy within an element is constant and thus avoid mesh dependency.
The regularization is based on the Bazant’s crack band theory [13]. According to this,
the damage energy dissipated per unit volume gI for uniaxial loading or shear is related
to the critical strain energy release rate GI,c along with the characteristic length of the
finite element l∗ as follows

gI =
GI,c

l∗
I = {1t, 1c, 2t, 2c, 6} (20)

The critical strain energy release rates G2t,c and G6,c in this work are referred to as the
intralaminar mode I and mode II fracture toughness parameters. The parameter G2c,c

is the intralaminar model I fracture toughness under compression. The parameters G1t,c

and G1c,c correspond to the mode I fracture energies of fibre breakage under tension and
compression, respectively. The ways of identification of these parameters including the
characteristic length l∗ are described in [4, 14].

The damage energy dissipated per unit volume for uniaxial stress conditions is obtained
from the integration of the damage energy dissipation during the damage process:

gI =

∫ ∞

0

YI ḋIdt; YI = − ∂ψ

∂dI

; ψ =
1

2
σ : ε I = {1t, 1c, 2t, 2c, 6} (21)

where YI is the damage energy release rate, ḋI is the rate of damage development defined
as ḋI = ddI/dt, and ψ is the Helmhotlz free energy. Equating Eq.(20) and Eq.(21), the
parameter AI is calculated numerically.

The loading/unloading stress strain curves of the present elastoplastic damage model
are shown in Figure 1. Under longitudinal loading, the material is assumed to exhibit
linear elastic brittle behaviour and the irreversible strain is not developed. Beyond the
damage initiation, the elastic modulus E1 is assumed to degrade gradually. It is assumed,
that under transverse and shear loading, the irreversible deformations are exhibited prior
to the damage initiations, however, there is no stiffness degradation. Beyond the damage
initiation points, both irreversible deformations and stiffness degradations are taken into
account. 7
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(a) longitudinal (b) transverse (c) in-plane shear

Figure 1: Loading/unloading stress-strain curves.

3 NUMERICAL IMPLEMENTATION

The proposed elastoplastic damage material model is embedded in Abaqus/Standard
finite element software package using the user-defined subroutine UMAT. The numerical
integration algorithms updating the Cauchy nominal stresses and solution-dependent state
variables are derived as well as the tangent matrix that is consistent with the numerical
integration algorithm ensuring the quadratic convergence rate of the Newton-Raphson
method in the finite element procedures.

3.1 Integration algorithm

The solution of the nonlinear inelastic problem under consideration is based on the
incremental approach and is regarded as strain driven. The loading history is discretized
into a sequence of time steps [tn, tn+1], n ∈ {0, 1, 2, 3...} where each step is referred to
as the (n + 1)th increment. Driven by the strain increment �ε, the discrete problem in
the context of backward Euler scheme for the elastoplastic damage model can be stated
as: for a given variable set {εn, ε

p
n, ε̃

p
n, σ̄n, σn, rI,n, dI,n} at the beginning of the (n + 1)th

increment, find the updated variable set {εp
n+1, ε̃

p
n+1, σ̄n+1, σn+1, rI,n+1, dI,n+1} at the end

of the (n + 1)th increment. The updated stresses and solution-dependent state variables
are stored at the end of the (n + 1)th increment and are passed on to the user subroutine
UMAT at the beginning of the next increment.

The effective stress strain relationship Eq.(3), the yield criterion Eq.(8), the associated
plastic flow rule Eq.(10), and the hardening power law Eq.(15) constitute the nonlin-
ear plastic constitutive material model. Using the backward Euler implicit integration
procedure, the corresponding integration algorithm is formulated as follows:

εn+1 = εn + �ε

εp
n+1 = εp

n + �λp
n+1∂σ̄n+1

F p
n+1

ε̃p
n+1 = ε̃p

n + �λp
n+1

σ̄n+1 = S0 : (εn+1 − εp
n+1)

Fn+1 = F (σ̄n+1, ε̃
p
n+1) ≤ 0

(22)

where �λp
n+1 = λ̇p

n+1�t is the increment of the plastic consistency parameter.

8
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The closest point return mapping algorithm is employed to solve this nonlinear coupled
system. The solutions {εp

n+1, ε̃p
n+1, σ̄n+1} are the converged values at the end of the

(n + 1)th increment. They ensure that upon yielding, the determined stress state lies
on the yield surface and prevent the drift from the yield surface due to the unconverged
solutions obtained from the forward Euler integration scheme.

The nonlinear system Eq.(22) is linearized and solved iteratively using the Newton-
Raphson scheme. The iterations are performed until the final set of state variables
{σ̄(k+1)

n+1 , ε
p,(k+1)
n+1 , ε̃

p,(k+1)
n+1 } in the (k+1)th iteration fulfil the yield criterion F (σ̄

(k+1)
n+1 , ε̃

p,(k+1)
n+1 ) ≤

TOL, where TOL is the error tolerance which is set to 1 × 10−6.
Substituting the effective stresses σ̄n+1 into the damage model, the damage variables

are updated. According to Eq.(3), the Cauchy stresses are calculated as σn+1 = S(dn+1) :
εe

n+1.

3.2 Consistent tangent stiffness matrix

The consistent tangent matrix for the proposed constitutive model is derived in the
following form:

dσn+1

dεn+1

= [Mn+1 + S(dn+1)] : C0 : Salg
n+1 (23)

in which Mn+1 can be presented in the indicial form as follows:

Mik|n+1 =
∂S(d)ijε

e
j

∂εe
k

∣
∣
∣
∣
n+1

= εe
j

∂S(d)ij

∂dp

∂dp

∂rt

∂rt

∂φt

∂φt

∂σ̄q

∂σ̄q

∂εe
k

∣
∣
∣
∣
n+1

p, q, k = {1, 2, 3}; t = {1, 2}(24)

where matrix Mik of is asymmetric. This results in the asymmetry of the consistent
tangent matrix of the elastoplastic damage model. In Eq.(23), C0 is the compliance
matrix of the undamaged composite materials and Salg

n+1 is the consistent tangent matrix
for the discrete plastic problem Eq.(22). The latter is expressed as:

Salg
n+1 =

dσ̄n+1

dεn+1

= S̃n+1 −
(S̃n+1 : ∂σ̄F p

n+1) ⊗ {S̃n+1 : ∂σ̄Fn+1}
∂σ̄Fn+1 : S̃n+1 : ∂σ̄F p

n+1 − ∂ε̃pFn+1

(25)

where S̃n+1 = (C0 + �λp
n+1∂

2
σ̄σ̄F p

n+1)
−1, �λp

n+1 is the increment of plastic consistent
parameter in the (n + 1)th increment, (⊗) denotes a tensor product.

3.3 Viscous regularization

Numerical simulations based on the implicit procedures, such as Abaqus/Standard,
and the use of material constitutive models that are considering strain softening and
material stiffness degradation often abort prematurely due to convergence problems. In
order to alleviate these computational difficulties and improve convergence, a viscous
regularization scheme has been implemented in the following form [5]:

ḋv
m =

1

η
(dm − dv

m), m = {1, 2, 3} (26)

9
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where dm is the damage variable obtained as described previously, dv
m is the regularized

viscous damage variable, and η is the viscosity coefficient.
The corresponding regularized consistent tangent matrix is derived as:

dσn+1

dεn+1

∣
∣
∣
∣
v

= [M v
n+1 + S(dv

n+1)] : C0 : Salg
n+1; M v

n+1 = M(dv
n+1) ·

�t

η + �t
(27)

4 NUMERICAL RESULTS AND VERIFICATIONS

Numerical simulations of the progressive failure of 12 sets of T300/1034-C carbon/epoxy
composite laminates with different geometries and different layups, containing a central
circular hole and subjected to uniform in-plane tensile loading, were performed using the
numerical procedure presented in previous sections. Three material layups were consid-
ered, namely, [0/(±45)3/903]s, [0/(±45)2/905]s, [0/(±45)1/907]s with the material prop-
erties listed in Table 1 along with other model parameters used in the finite element
simulations. The geometry of the laminates is illustrated in Figure 2(a). The hole diame-
ters D and widths of the laminates W are listed in Table 2. The predicted failure stresses
σu (σu = Pu/(WH), Pu is the failure load) were compared with the experimental results
reported by Chang et al. [15] along with the numerical results obtained by Chang and
Chang [16], Tan [17], and Maimı́ [4]. As shown in Table 2, the results demonstrates that
the predicted failure stresses correlate well with the test data and generally more accurate
in comparison with predictions made by Chang [16], and Tan [17]. Figure 2(b) illustrates
the comparison of the load versus displacement curves corresponding to the cases labeled� in Table 2.

(a)
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Figure 2: (a) Geometry of the laminate (L = 203.2 mm, H = 2.616 mm); (b) load vs. displacement
curves.
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Table 1: Material properties of T300/1034-C and plastic model parameters

E0

1
E0

2
G0

12
ν0

12
Xt Xc Yt Yc Sc

146.8 GPa 11.4 GPa 6.1 GPa 0.3 1730.0 MPa 1379.0 MPa 66.5 MPa 268.2 MPa 58.7 MPa

G1t,c G1c,c G2t,c G2c,c G6,c a β n η

89.83 N/mm 78.27 N/mm 0.23 N/mm 0.76 N/mm 0.46 N/mm 1.25 567.9092 0.272405 0.0002

Table 2: Comparison of the tensile failure stresses of T300/1034-C carbon/epoxy laminates

Failure stress σu MPa Error %

Lay-up Label D (mm) W (mm) Present Chang † Tan † Maimı́ Test data Present Chang Tan Maimı́

[0/(±45)3/903]s a 3.175 19.05 293.07 227.53 275.75 — 277.17 5.74 -17.91 -0.5 —

[0/(±45)3/903]s b 6.35 38.1 252.22 206.84 275.79 — 256.48 -1.66 -19.35 7.53 —

[0/(±45)3/903]s c 3.175 12.7 269.05 206.84 262.00 — 226.15 18.97 -8.54 15.85 —

[0/(±45)3/903]s d 6.35 25.4 238.30 � 179.26 248.21 263.1� 235.80 � 1.06 -23.98 5.26 11.6

[0/(±45)2/905]s a 3.175 19.05 239.13 193.05 186.16 — 236.49 1.12 -18.37 -21.28 —

[0/(±45)2/905]s b 6.35 38.1 214.30 172.37 186.16 — 204.08 5.00 -15.54 -8.78 —

[0/(±45)2/905]s c 3.175 12.7 216.28 165.47 172.37 — 177.88 21.58 -6.98 -3.10 —

[0/(±45)2/905]s d 6.35 25.4 205.83 � 151.68 158.58 200.1� 185.47 � 10.98 -18.22 -14.50 7.7

[0/(±45)1/907]s a 3.175 19.05 171.03 144.79 227.53 — 190.98 -10.45 -24.19 19.13 —

[0/(±45)1/907]s b 6.35 38.1 150.36 124.11 227.53 — 158.58 -5.18 -21.74 43.48 —

[0/(±45)1/907]s c 3.175 12.7 154.96 124.11 213.74 — 134.45 15.25 -7.69 58.97 —

[0/(±45)1/907]s d 6.35 25.4 135.67 � 103.42 199.95 148.2� 159.96 � -15.19 -35.34 25.00 -7.4

† Chang and Chang [16] and Tan [17].
� The load vs. displacement curves of these two sets of simulations are shown in Figure 2(b)

5 CONCLUSIONS

An elastoplastic damage constitutive model capable of simulating progressive failure
of composite laminates has been developed. The model takes into account various fail-
ure mechanisms and plasticity effects. The corresponding numerical method based on
the finite element formulation was developed and applied to the solution of the related
nonlinear problems. The approach has been verified using numerical simulations of the
progressive failure of the various laminates containing the central through hole. It has
been shown that the proposed solution procedure provides sufficiently accurate predic-
tions of the failure loads for the composite laminates made from the carbon fibre reinforced
plastic.
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Abstract. The Mori-Tanaka averaging scheme is introduced in the place of demanding
finite element analysis to assess the time-dependent macroscopic response of asphalt mix-
ture as a part of the multi-layered road construction. In this computational framework
the Mori-Tanaka method [1] is chosen to substitute the macroscopic constitutive model,
which is not available in general. Instead we expect that the local constitutive laws of
individual phases are known which allows for the derivation of macroscopic stresses and
an instantaneous homogenized stiffness matrix of an asphalt layer through homogeniza-
tion. The choice of the Mori-Tanaka method is supported by micromechanical analysis of
a real microstructure of Mastic Asphalt mixture showing reasonable agreement with fi-
nite element simulations employing certain statistically equivalent periodic unit cell. This
makes the application of the Mori-Tanaka method particularly attractive owing to com-
putationally demanding nonlinear analysis of the layered system with subsoil deformation
being governed by one of the available constitutive models for soils. Comparison with ap-
plication of the macroscopic constitutive model for asphalt mixture, provided by detailed
multi-scale homogenization, is also presented.

1 INTRODUCTION

As seen in Fig. 1(a), asphalt mixtures represent in general highly heterogeneous mate-
rial with complex microstructure consisting at minimum of mastic binder, aggregates and
voids. When limiting our attention to Mastic Asphalt mixtures, used typically in traffic

1
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(a) (b) (c)

Figure 1: (a) A real microstructure of an asphalt mixture, (b) Original binary image, (c) Improved binary
image

arteries of substantial importance, the fraction of voids becomes negligible. A binary
image of such a two-phase material system plotted in Fig. 1(b) is then readily available.

Our contribution integrates various aspects of micromechanical modeling into a rela-
tively simple, yet reliable and efficient computational scheme. The solution strategy relies
on uncoupled multiscale homogenization approach and combines advanced simulation
based homogenization techniques enabling detailed analysis of a certain representative
volume element (RVE), here presented in the form of so called statistically equivalent pe-
riodic unit cell (SEPUC), and classical micromechanics based averaging techniques such
as the Mori-Tanaka (MT) method in search for a reliable macroscopic constitutive law
enabling a computationally efficient analysis of full scale structures.

Rendering the desired macroscopic constitutive model that describes the homogenized
response of Mastic Asphalt mixture (MAm) to general loading actions thus endeavors
to the formulation of a suitable micromechanical model on individual scales and to as-
sociated experimental work being jointly the building blocks of the upscaling procedure.
Three particular scales shown in Fig. 2 are considered in the present study. It will be
assumed that at each computational level the homogenized response can be described by
the nonlinear viscoelastic generalized Leonov (GL) model, see [5, 6] for details . While
mastic properties are derived from an extensive experimental program [7], the macro-
scopic properties of MAm are fitted to virtual numerical experiments performed on the
basis of first order homogenization scheme. To enhance feasibility of the solution of the
underlying nonlinear problem a two-step homogenization procedure is proposed. The in-
troduced concept of Virtual Testing Tool (VTT) make possible to avoid expensive and
often intricate large scale laboratory measurements and takes into account details of the
microstructure of the analyzed heterogeneous material. The VTT is currently in the
forefront of engineering interest [6].

2
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Figure 2: Three distinct scales of Mastic Asphalt mixture

2 VIRTUAL TESTING TOOL

The concept of VTT introduced in [6] assumes the experimental program to be carried
out only on the level of the individual constituents - stones and mastic. Although the
mastic-phase itself is a composite consisting of a filler and a bituminous binder, it is as-
sumed in the present study to be well represented by a temperature and rate dependent
homogeneous isotropic material. Since limiting our attention to moderate and elevated
temperatures exceeding 0◦C the GL model is exploited to provide for experimentally ob-
served nonlinear viscoelastic behavior of bituminous matrices. The required experimental
program to calibrate the model parameters on the one hand and on the other hand to
address the homogenized macroscopic response is outlined in [7, 6].

2.1 Response of mortar from virtual experiments

In the framework of VTT approach we introduce a virtual set of experiments to arrive
at a homogenized master curve and associated temperature and stress dependent shift
factors on the scale of mortar. The concept of first order homogenization of periodic
fields outlined in [7] is given the preference to deliver the homogenized creep response of
the mortar phase at different temperature and stress levels. The mortar-phase naturally
arises through the process of removing aggregates from original microstructure, Fig. 1(b),
passing 2.26 mm sieve. Simplified periodic hexagonal array model plotted in Fig. 2 allows
us to derive the model parameters on the mortar-scale by running a set of virtual numerical
experiments. The selection of this geometrical representation of the mortar composite is
purely an assumption building upon the conclusion that at least for the mastic-phase and
low-temperature creep the response is independent of the filler shape and mineralogy [4].

First, a uniformly distributed range of temperatures from 0◦C to 100◦C was considered
to provide for a temperature dependent viscoelastic behavior of mortar loaded in shear by
the remote stress Σyx = 1kPa. Individual curves plotted in Fig. 3(a) were then horizontally
shifted to give the homogenized creep compliance master curve seen in Fig. 3(b).

The stiffening, observed for high temperatures, is attributed to a volumetric locking

3
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(a) (b)

Figure 3: (a) Creep data at different temperatures for reference stress Σxy = 1kPa, (b) Master curve for
reference temperature T = 40◦C

owing to a very low shear modulus approaching to zero. This in turn yields the Poisson
ratio close to 0.5 in a finite zone of the binder phase that is progressed over the entire
unit cell as seen in Fig. 3(b).

The second set of creep experiments was conducted at two different temperatures and
two different levels of the remote stress Σxy. The two representative results, [40◦C, 10kPa]
and [0◦C, 20kPa], are plotted as solid lines in Fig. 3(b). The indicated horizontal shifts
identified with the corresponding star-lines then supplement the necessary data for the
derivation of stress dependent shift factor aσ. Note that prior to shifting the curves the
result derived for 0◦C was thermally adjusted to be consistent with the 40◦C master curve.

2.2 Response of MAm from virtual experiments

Derivation of the macroscopic creep compliance master curve for a Mastic Asphalt
mixture follows the general scheme sketched in the previous section. A SEPUC also seen
in Fig. 2, is selected to predict the macroscopic response of MAm, where large aggregates
are bonded to a mortar-phase being homogeneous and isotropic. The elliptical shape of
aggregates has already been successfully used in detailed micromechanical simulations
presented in [2]. The issue of constructing SEPUC by comparing the material statistics,
e.g. the two point probability function, of the most appropriate representative of the
real microstructure and the periodic unit cell is suggested in [9, 7, 6]. The underlying
optimization problem was solved with the help of the evolutionary algorithm GRADE [3].

To address this issue, four SEPUCs all having the same statistics but different geo-
metrical details, were subjected to a remote shear strain rate Ėxy = 10−4. The resulting
homogenized stress-strain curves for temperature T = 20◦C are shown in Fig. 4(a). Al-
though no “perfect match” is observed, the difference in estimated load bearing capacities
is not exceeding 10%. On the contrary, the distribution of local fields varies considerably

4
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(a) (b)

Figure 4: (a) Macroscopic response for various SEPUCs T = 20◦C, Ėxy = 10−4, (b) Master curves on
individual scales for reference temperature T = 40◦C

as seen in Fig. 5. While a highly localized distribution of shear strain γm
xy in the mortar

phase, identified with the lowest bearing capacity in Fig. 4(a), is evident in Fig. 5(a), the
variation of this quantity in Fig. 5(c) shows a rather distributed character consequently
resulting in a slightly stiffer response on the macroscale.

(a) (b) (c) (d)

Figure 5: Distribution of local shear strain: (a) SEPUC 6, (b) SEPUC 37, (c) SEPUC 43, (d) SEPUC 48

Although certainly more accurate, the detailed finite element simulations are in general
computationally very expensive and often call for less demanding alternatives such as
the Mori-Tanaka method outlined in [7]. Unfortunately, the corresponding results also
plotted in Fig. 4(a) clearly expose essential limitations of the two-point averaging schemes,
unable to capture localization phenomena observed in composites with a highly nonlinear
response of the binder phase [8]. The presented results in Fig. 4(a) correspond to a
classical formulation with the localization and transformation tensors calculated only
once being functions of elastic properties of individual constituents (MT-original), and to
the formulation where these tensors are updated after each time step taking into account
increasing compliance of the mortar phase with time (MT-improved). Note that even the
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latter case produces much stiffer response, although at a fraction of time, when compared
to the FE results. A certain improvement has been achieved when putting on the same
footing the localized character of matrix deformation, recall Fig. 5, and debonding of
stone aggregates, both reducing the stress transfer from the matrix phase into the stones.
This issue is addressed in Section 2.3.

Regarding the “similarity” of macroscopic response from various SEPUCs, the SEPUC
No. 43 was selected to provide data needed in the calibration of the macroscopic GL
model. Virtual numerical tests identical to those in the previous section were again
performed to give first the homogenized master curve displayed in Fig. 4(b). The response
of the homogenized asphalt mixture to the applied remote shear strain labeled as “Leonov
macro” appears in Fig. 4(a) suggesting a reasonable agreement at least for this type of
loading. Further applications are available in [6].

2.3 Augmented Mori-Tanaka method

Fig. 4(a) revealed essential limitations of the two-point averaging schemes hidden in
their inability to properly capture the correct stress transfer between phases when highly
localized deformation in the matrix is encountered. Here, we attempt to minimize this
impact of the MT method on macroscopic predictions by introducing a damage like pa-
rameter ω into the local constitutive equation of stones thus controlling the amount of
stress taken by stones. The stress increment in the stone phase is calculated as

∆σs = ωLs : ∆εs, (1)

where the damage parameter ω being equal to one for intact material and zero for fully
damaged material assumes the form

ω =

[
τ teq
Nτ0

/

sinh

(
τ teq
Nτ0

)]M

, (2)

where τeq is the current equivalent deviatoric stress and M,N are model parameters. In
the present study, these were found by comparing the MT predictions with the results
provided by the homogenized macroscopic Leonov (MGL) model under strain control
condition for the prescribed macroscopic shear strain rate Ėxy.

Comparison of the resulting macroscopic predictions including the results from various
SEPUCs are available in Fig. 6(a) whereas evolution of damage parameter ω is plotted
for illustration in Fig. 6(b). Considerable improvement of the behavior of MT method is
evident particularly when compared to the original predictions presented in Fig. 4(a).

Another strong motivation for mastering the MT method, apart from avoiding the
mesoscopic virtual tests, is the possibility to estimate at least the local phase averages.
These estimates are compared separately with predictions from individual SEPUCs in
Fig. 7. Realizing that parameters of the damage model were fitted against the homoge-
nized response the agreement of local fields is quite satisfactory. A closer match might be

6
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(a) (b)

Figure 6: (a) Macroscopic response for various SEPUCs, MGL model and MT method, (b) variation of
damage parameter ω: T = 20C, Ėxy = 10−4 s−1

(a) (b)

(c) (d)

Figure 7: Phase averages of local fields from various SEPUCs and MT method, T = 20C, Ėxy = 10−4

s−1: (a) SEPUC 6, (b) SEPUC 37, (c) SEPUC 43, (d) SEPUC 48
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expected if deriving the damage model parameters directly from the local matrix stress
averages provided one of the periodic unit cell.

(a) (b)

Figure 8: Macroscopic response for reference temperature T = 40C (a) Stress control: loading–creep–
unloading–recovery, (b) Strain control: loading–relaxation–unloading–recovery

At last we inspected the predictive capability of the MT method for loading conditions
dominating the creep or relaxation response. The creep response is examined in Fig. 8(a).
As expected, there is almost a perfect match between the results found from the MGL
model and the finite element analysis of SEPUC No. 43. Considerable deviation of the
results provided by SEPUC No. 6 agrees well with already observed deviations evident in
stress control conditions. What is, however, more disturbing are the predictions pertinent
to the Mori-Tanaka method associated especially with the interval of constant load (creep
response). Its inability to predict a correct creep behavior is quite pronounced. The
loading, as well as, unloading branches controlled by the damage parameter ω are on the
other hand captured relatively well. Somewhat better agreement is provided by strain
control loading visible in Fig. 8(b).

3 SUMMARY

Although research interests on flexible pavements have been quite intense in the past
two decades, the field is still very much in development and will certainly witness consid-
erable activity in the coming decade particularly in connection to hierarchical modeling
and micromechanics. Within this framework, the present work provides theoretical tools
for the formulation of macroscopic constitutive law reflecting the confluence of threads
coming from experimental work, image analysis, statistical mechanics and traditional
disciplines of micromechanics and the first order computational homogenization. Here,
the totally uncoupled multiscale modeling approach is favored to enable an inexpensive
analysis of real world large scale structures, which is the principle objective of our work.

8
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The results from the proposed two-step homogenization scheme, promoted the SEPUC
as a suitable computational model and in combination with the finite element formulation
of the first order homogenization method to set a plausible route for the nonlinear vis-
coelastic homogenization. It is often desirable to identify local stress and strain fields in
individual phases of the composite developed for various macroscopic loading conditions.
However, fully coupled analysis employing detailed microsctructures, e.g SEPUC, is still
often computationally prohibitive. Therefore, a simple Mori-Tanaka averaging scheme
was examined to either support or decline its use in the framework of efficient coupled
multiscale analysis. The presented results are in favor of this approach but at the same
time suggest caution in applications where strong creep behavior is expected.
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Abstract. The strain rate dependence of the plastic yield and failure properties displayed by 
most metals affects energies, forces and forming limits involved in high speed forming 
processes. In this contribution a technique is presented to assess the influence of the strain rate 
on the forming properties of steel sheets. In a first step, static and high strain rate tensile 
experiments are carried out in order to characterize the materials strain rate dependent 
behaviour. In a second step, the phenomenological Johnson-Cook model and physically-based 
Voce model are used to describe the constitutive material behaviour. The test results are 
subsequently used to calculate the forming limit diagrams by a technique based on the 
Marciniak-Kuczynski model. With the developed technique, static and dynamic forming limit 
diagrams are obtained for a commercial DC04 steel and a laboratory made CMnAl TRIP 
steel. The results clearly indicate that increasing the strain rate during a forming process can 
have a positive or negative effect. 

 
1 INTRODUCTION 
In forming processes such as magnetic pulseforming, hydroforming and explosive forming, 
high rates of deformation are obviously obtained. However, also in more conventional sheet 
forming techniques, such as deep drawing, roll forming and bending, locally strain rates are 
occurring deviating from the ones occurring in static material tests. As the strain rate increases 
most materials present significantly higher plastic flow stresses, however much lower 
deformation levels. Other materials combine an increase in flow stresses with an increase in 
elongation values (Van Slycken et al., 2006). Materials which experience no strain rate 
sensitivity at all are exceptional. In the study here a commercial and laboratory made steel are 
considered. The commercial DC04 (EN 10027-1) is an unalloyed deep-drawing steel. This 
steel grade is frequently used in the production of body components in the automotive 
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industry. The laboratory made CMnAl-TRIP steel is a multiphase steel in which, under 
certain conditions, the austenite phase transforms to martensite during plastic straining [1]. 

In a first step, static and dynamic tensile experiments are carried out using a classical tensile 
test device and a split Hopkinson tensile bar facility respectively. The stress-strain curves 
obtained for the two steels clearly show that their mechanical behaviour is strain rate 
dependent. With increasing strain rate, plastic stress levels increase, however, as opposed to 
the TRIP-steel, for the DC04 steel the deformation capacity decreases. Subsequently, to allow 
simulation of forming processes, Johnson-Cook and Voce material model parameters are 
determined [2]. Finally, the influence of the strain rate on the forming limits is assessed using 
the uni-axial tensile test results. Indeed, performing multi-axial experiments at high strain 
rates is not obvious. Prediction of the initiation of necking in the steel sheets subjected to 
multi-axial strain states is based on the Marciniak-Kuczynski model. The thus obtained 
forming limit diagrams show a non-negligible effect of the strain rate. For the DC04 material, 
the reduced ductility at higher strain rates is reflected into an unfavourable downward shift of 
the forming limit diagram. Certainly, the left-hand side is adversely affected. The behaviour 
of the TRIP steel is as opposed to that of DC04: the dynamic FLD is higher than the static 
one.

2 EXPERIMENTAL PROGRAM

2.1 EXPERIMENTAL SETUPS
Static and dynamic tensile experiments are carried out at room temperature (around 22˚C).

test bench. The static experiments are carried out on a classical screw driven 
electromechanical Instron tensile machine according to the European standard specifications 
EN 10002-1:2001. A tensile specimen, with a gage length of 120mm, is used in the tests. The 
tensile tests are carried out with an initial strain rate of 5.6 10−4s−1, in the gage section of the 
specimen, which is increased to 5.6 10−3s−1
For the dynamic experiments the split Hopkinson tensile bar (SHTB) setup of the department 
of Materials Science and Engineering at the Ghent University in Belgium is used. A 
schematic representation of the setup is given in the Figure 1, a photograph in the Figure 2.

at 3.4% of deformation until rupture. 

Figure 1: Schematic representation of split Hopkinson tensile bar device at Ghent University

The setup consists of two long bars, an input bar and an output bar, between which a 
specimen is sandwiched. For tensile tests a tube-like impactor is put around the input bar and 
is accelerated towards an anvil at the outer end of the input bar. Thus a tensile wave, the so-
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called incident wave, is generated and propagates along the input bar towards the specimen. 
The incident wave interacts with the specimen, generating a reflected wave and a transmitted 
wave. The strain histories εi(t), εr(t) and εt(t) corresponding to respectively the incident, 
reflected and transmitted wave are usually measured by means of strain gages at well chosen 
points on the Hopkinson bars. The history of the stress, the strain and the strain rate in the 
specimen are derived from the measured waves, using the following expressions [3]:

( ) ( )b b
t

s

A Et t
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σ ε= (1)
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with Eb the modulus of elasticity of the Hopkinson bars, As and Ab the cross section area of 
the specimen and of the Hopkinson bars respectively, Cb the velocity of propagation of 
longitudinal waves in the Hopkinson bars and Ls the gage length of the specimen. Uib and Uob
are the displacements of the interface between the specimen and, respectively, the input bar 
and the output bar; Vib and Vob are the corresponding velocities. 

Figure 2: SHTB setup at Ghent University. Its total length is 11m.

The DC04 sheet steel has a thickness of 1.5mm, the TRIP-steel 1.2mm. Specimens are cut 
by spark erosion along the rolling direction. Geometry and dimensions used for the split 
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Hopkinson tensile bar experiments can be found in Figure 3.

Figure 3: Geometry of test specimen used for the SHTB experiments. The 4mm wide section, with a gage length 
of 5mm, is actually submitted to the high strain rate load.

3.2 Results
Several static and dynamic tests have been carried out. In Figure 4 representative engineering 
stress-strain curves can be found. For the DC04 steel the static and dynamic curves have a 
different overall shape. For the static curve a clear strain hardening is observed during the first 
stages of plastic deformation and uniform elongation is achieved after 24% of deformation. 
The dynamic curves on the other hand, show a very high yield stress, again followed by few 
strain hardening. Between the dynamic curves differences are less pronounced.
The static and dynamic engineering stress-strain curves for the CMnAl TRIP steel are very 
similar. The stress increases, however not as much as for the DC04 steel. The main effect of 
the strain rate is seen in the higher uniform elongation during dynamic loading: ±30% vs 
±22%. 

Figure 4: Representative static stress-strain curve and dynamic curves obtained for the investigated steels

3 MODELLING OF THE HIGH STRAIN RATE BEHAVIOUR
The experimental results are used to model the constitutive material behaviour. Two 

different frequently used models are used: Voce law and the Johnson-Cook model [2]. Voce 
law describes the relation between the stress σ and plastic strain εp. The model contains only 
three parameters σ0, K and n which can easily be determined from only one experiment.



225

P. Verleysen, J. Peirs and L. Duchêne.

4

Hopkinson tensile bar experiments can be found in Figure 3.

Figure 3: Geometry of test specimen used for the SHTB experiments. The 4mm wide section, with a gage length 
of 5mm, is actually submitted to the high strain rate load.

3.2 Results
Several static and dynamic tests have been carried out. In Figure 4 representative engineering 
stress-strain curves can be found. For the DC04 steel the static and dynamic curves have a 
different overall shape. For the static curve a clear strain hardening is observed during the first 
stages of plastic deformation and uniform elongation is achieved after 24% of deformation. 
The dynamic curves on the other hand, show a very high yield stress, again followed by few 
strain hardening. Between the dynamic curves differences are less pronounced.
The static and dynamic engineering stress-strain curves for the CMnAl TRIP steel are very 
similar. The stress increases, however not as much as for the DC04 steel. The main effect of 
the strain rate is seen in the higher uniform elongation during dynamic loading: ±30% vs 
±22%. 

Figure 4: Representative static stress-strain curve and dynamic curves obtained for the investigated steels

3 MODELLING OF THE HIGH STRAIN RATE BEHAVIOUR
The experimental results are used to model the constitutive material behaviour. Two 

different frequently used models are used: Voce law and the Johnson-Cook model [2]. Voce 
law describes the relation between the stress σ and plastic strain εp. The model contains only 
three parameters σ0, K and n which can easily be determined from only one experiment.

P. Verleysen, J. Peirs and L. Duchêne.

5

)1(0
pneK εσσ −−+= (4)

The Voce flow rule does not explicitly describe the material’s strain rate and temperature 
dependence. Both can be taken into account by making the model parameters strain rate 
and/or temperature dependent.

The Johnson-Cook phenomenological model does take into account strain rate and 
temperature dependent material behaviour:
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The first term of the right hand side describes the isothermal static material behaviour. 
Consequently, the parameters A, B and n are determined using the static tensile tests. The 
initial (for ε<3.4%) strain rate during the static tensile test is the reference strain rate 0ε used 
in the second term, expressing the strain rate hardening with parameter C. The last factor, 
including m, represents thermal softening. C and m are calculated using the high strain rate 
tensile tests. 

The quasi-adiabatic temperature increase in the specimen during high strain rate plastic 
deformation is calculated using the following formula:

∆𝑇𝑇𝑇𝑇 = 𝛽𝛽𝛽𝛽
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 ∫ 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝 (6)

In this equation ρ is the mass density, c the specific heat and β the Taylor-Quinney 
coefficient indicating the fraction of plastic work converted into heat. This β-value is usually 
assumed to have a value between 0.9 and 1. Constant values for c and β can be used regarding 
the modest temperature range acquired during these tests. During the high strain rate tests the 
temperature will gradually change from room temperature to approximately 100̊C depending 
on the material. 

In table 2 values for the parameters of Voce model σ0, K and n and Johnson-Cook model 
A, B, n, C and m can be found. The parameters are calculated by a least square method. For 
the Voce law two sets of parameters are given: one for the static behaviour at room 
temperature and one for a dynamic, adiabatic experiment at 1000s-1

In Figure 5 a comparison is made between experimental and modelled stress-strain curves. 
Both models succeed in describing the experimental behaviour. The Voce model appears to 
perform better than the Johnson-Cook model which is not surprising regarding the use of two 
Voce law parameter sets for the static and dynamic loading compared with one parameter set 
for the JC model. Indeed, the large differences between the overall shape of the static and 
dynamic stress strain curves complicates modelling of the material behaviour with one 
parameter set. Nevertheless, the agreement between the experiments and models is very good. 
Because the Voce model performs better at higher strains, it will be used for calculation of the 
FLDs in the next section.

.
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Table 2: Values for the Voce and Johnson-Cook material model parameters

Model Parameter DC04 CMnAl TRIP

Voce
(static/dynamic)

σ0 163.5/383.1(MPa) 394/501
K 226.2/137.5 468/574
n 13.2/31.7 9.2/5.4

Johnson-Cook

A (MPa) 162 394
B (MPa) 598 1395

n 0.6 0.72
C 2.623 0.013
m 0.009 0.62

Figure 5: Experimental static and dynamic tensile curves and curves simulated with the Johnson-Cook 
model for the DC04 (left) and the TRIP (right) steel

4 CALCULATION OF STRAIN RATE DEPENDENT FLD

4.1 Marciniak-Kuczynski method
The uniaxial tensile test results at different strain rates are used to predict the forming 

limits of the studied steel grades. Onset of necking under the multi-axial strain conditions 
occurring in forming processes is predicted using the well-known Marciniak–Kuczinski 
model [5]. 

In the Marciniak-Kuczynski (MK) method, it is assumed that an initial imperfection is 
present in the sheet metal. The imperfection is modelled by a band b of smaller thickness than 
the surrounding zone a, as schematically represented in Figure 6. The orientation of the band 
is characterized by the angle ψ. The initial imperfection can originate from a real thickness 
variation, surface roughness, a local variation of the strength or a combination. Physical 
meaning of this assumption is given in [6]. The imperfection parameter, f0, is defined as the 
ratio of the reduced thickness tb0 to the initial thickness of the sheet ta0 (f0=tb0/ta0). During a 
biaxial straining process, the imperfection zone deforms more than the uniform zone. 
Therefore, the strain path of the imperfection zone is continuously ahead of the strain path of 
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the uniform zone. At a certain point, when the strain localization takes place, the difference 
between the strain path of the imperfection and the uniform zone begins to increase 
drastically. If the ratio of strain in the zone b to that of the perfect sheet reaches a presumed 
critical value, the sheet is considered to have failed. This critical value has low impact on the 
calculated forming limit because the strain in zone a does not change much once there is 
strain localization in b. The failure strain is calculated for different orientations of b. The 
lowest failure strain from these calculations is the forming limit. Once the strain localization 
is detected, the sheet metal is assumed to have failed.

Figure 6: Schematic representation of the Marciniak-Kunczynski sheet with imperfection

In this study, the critical ratio of the strain increment in the region b to that of the region a 
is 4. The Voce hardening law fitted to the experimental stress-strain curves (see previous 
section) and von Mises yield criterion are adopted. Instead of optimizing the the imperfection 
parameter f0

4.2 Static and dynamic FLDs

, itis set on 0.99 for both materials for reasons of comparability.

The results of the FLD calculations are shown in Figure 7. Each chart presents a graph for 
static and a graph for dynamic (1000s-1) deformation of the sheet.

Figure 7: Comparison of static and dynamic FLD’s for the considered steels
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8

5 CONCLUSIONS
The influence of the strain rate on the forming properties of the commercial steels DC04 

and a laboratory made CMnAl TRIP steel is studied. Static and high strain rate tensile 
experiments are performed to assess the influence of the strain rate on the mechanical 
behaviour. Going from static to dynamic loading rates, the plastic stresses increase. 
Concerning deformation before necking values are roughly halved for the DC04 steel. In
contrast, the TRIP steel shows an increase of uniform strain when dynamically loaded. 
Subsequently, the Johnson-Cook and Voce models are used to describe the strain rate and
temperature dependent constitutive behaviour of the studied steels. These constitutive models 
combined with the corresponding material parameters can be used to calculate the energies 
and forces occurring in a high speed forming process.

Finally, the influence of the strain rate on the forming limits is assessed using the uni-axial 
tensile test results. Prediction of the initiation of necking in the steel sheets subjected to multi-
axial strain states is based on the Marciniak-Kuczynski model. The resulting forming limit 
diagrams show a non-negligible effect of the strain rate. The reduced ductility at higher strain 
rates is reflected into an unfavourable downward shift of the forming limit diagrams for the 
DC04 steel grade. For the TRIP steel, an important upward trend in the forming limits can be 
observed if the strain rate is increased.
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Abstract. In this paper the deep-drawing sheet steel DC04, representative for sheet-bulk
metal forming processes, is characterized through uni- and biaxial tensile and compres-
sion tests. The orthotropic plastic material parameters for the Hill 1948 yield surface are
identified in two different ways. The first one utilizes uniaxial tensile experiments with
specimen in three angles to the rolling direction of the sheet (0, 45 and 90 degree) and
the plastic material parameters are calculated through the Lankford coefficients. Second
a Finite Element Model Updating (FEMU) procedure is introduced. By taking the mea-
sured full-field displacement data and the forces of the biaxial tensile experiments better
fitting parameters are identified at reasonable experimental costs.

1 INTRODUCTION

In engineering disciplines the complexity of produced parts and therewith of manufac-
turing processes increases steadily. In addition the product life cycle of many products
gets shorter, which results in a need of reliable and fast numerical simulations. This coin-
cides with the need of material parameters being optimized for the utilized material, load
type and constitutive law.
The goal of our research is to present a procedure to get optimal material parameters
at modest experimental costs. The chosen material, a deep-drawing sheet steel (DC04),
which is representative for sheet-bulk metal forming processes, is characterized through
uni- and biaxial tensile and compression tests. The plastic material parameters are iden-
tified in two different ways. At first the direct approach is taken, which uses the exper-
imentally measured values of the different tests for the calculation of the yield surface.
Then our Finite Element Model Updating (FEMU) procedure is introduced, applied and
the results are discussed.
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2 EXPERIMENTAL SET-UP AND DATA ACQUISITION

The used sheet metal is fabricated in a cold-rolling process and therefore shows or-
thotropic elastic and plastic material characteristics. To capture and verify this behavior,
experiments based on different load types were performed, see fig. 1. For the uniax-
ial tensile test standardized specimen1 were utilized. To prevent buckling the uniaxial
compression test is performed on micro-specimen using hydraulic clamping with bearing
extensions. In the biaxial tension and compression experiments a self-designed specimen
is employed. Utilizing bearing plates, with friction reduction plates made out of TeflonR©,
in the biaxial compression tests, the initial compression yield point can be determined
without buckling of the structure. The machines for the uniaxial testing are based on an

Figure 1: Specimen for the experimental testing

electro-mechanical principle. For the biaxial loading type a hydraulic machine is utilized
where the cylinders of the vertical and horizontal axis can be controlled separately.

For the identification of the plastic material parameters with our FEMU procedure full-
field displacement data and the experimentally determined forces of the experiments are
essential. Therefore the deformation of the specimen during the experiments is captured
with an optical full-field measurement system. On each specimen a stochastic spray pat-
tern is applied which deforms with the specimen. In the course of the experiment a certain
amount of pictures of the deforming specimen is taken and the full-field displacement data
can be calculated through Digital Image Correlation (DIC).
There, a homogeneous mesh is layed onto the stochastic spray pattern in the initial state
of the analysis. The elements are fitted to the deformed state by minimizing the deviation
of the brightness distribution from previous to actual state. Having the elements in each
state, the displacement field is identified.
Combined with each picture taken through the full-field measurement system the present
force level is captured.

1Tensile Specimen DIN 50125 – H12.5×50 of 2.0mm sheet steel DC04

2
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3 MATERIAL CHARACTERIZATION

The analyzed material shows orthotropic elastic and plastic characteristics without
rate dependency. As sheet steel with a width of 2.0 mm is used, the plane stress element
formulation is assumed to be valid. Having large deformation at small strains, the total
strain ǫ can be decomposed additively out of the elastic ǫel and the plastic part ǫpl. In
rate form this equation reads as

ǫ̇ = ǫ̇el + ǫ̇pl. (1)

The elastic behavior is linear, utilizing Hooke’s Law σ̇ = Cǫ̇el = C(ǫ̇ − ǫ̇pl), with the
stress tensor σ̇ in rate form and the compliance tensor C−1. The linearly independent,
orthotropic elastic material parameters are identified by an iterative FEMU procedure to
be E1 = 199, 290 MPa, E2 = 212, 996 MPa and ν12 = 0.3356. More detailed information
can be found in [5]. The shear modulus G12 is defined as mean value.

C−1 =





1
E1

−
ν12

E1

0

−
ν21

E2

1
E2

0

0 0 1
G12



 ,
ν12

E1
=

ν21

E2
, G12 =

E1E2

E1 + E2 + 2ν12E2
(2)

For the solution of the inelastic part of the problem further equations have to be
defined. To be able to describe the actual state internal variables Φi are applied. With
their evolution equations

Φ̇i = ḣi(σ, θ,Φ), (3)

the yield function F (σ, θ,Φ) = 0 and the associative flow rule

ǫ̇pl = µ̇
∂F

∂σ
, (4)

with the plastic multiplier µ̇, is defined. The plastic multiplier has to meet the following
conditions

µ̇F = 0, µ̇ ≥ 0, F ≤ 0. (5)

As common practice for deep-drawing sheet steel, the orthotropic yield surface is mod-
eled with the Hill 1948 ansatz [1]. It reads as:

F = a1(σ2 − σ3)
2 + a2(σ3 − σ1)

2 + a3(σ1 − σ2)
2 + 3a4σ

2
31 + 3a5σ

2
23 + 3a6σ

2
12 − 2σ̄2

F. (6)

The variables a1 to a6 describe the shape of the yield surface and σ̄F represents the current
equivalent flow stress. For the plane stress configuration the Hill 1948 yield surface in the
principal axes σ1, σ2 is described through an ellipse symmetric to the coordinate origin.
The yield function reduces to

F = a1σ
2
2 + a2σ

2
1 + a3(σ1 − σ2)

2 + 3a6σ
2
12 − 2σ̄2

F. (7)
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The remaining parameters a1, a2, a3 and a6 can be determined directly through evaluation
of the Lankford coefficients r(0◦), r(45◦) and r(90◦) from uniaxial tensile tests [1]. The
Lankford coefficients, also called anisotropy parameters, are obtained by

r(d) =
ǫ
(d)
width

ǫ
(d)
thickness

, d = 0◦, 45◦, 90◦. (8)

The index d stands for the values of tensile tests with specimen from angles of 0, 45 and
90 degree to the rolling direction of the sheet metal.

The evolution of the yield surface, the hardening of the material, is modeled through
a Hockett-Sherby law

σ̄F(ǭpl) = σ̄∞ − [σ̄∞ − σ̄0] exp (A · ǭB
pl). (9)

In this equation σ̄F represents the current equivalent flow stress, ǭpl the current equivalent
plastic strain, σ̄∞ the equivalent stress to which the yield curve converges, σ̄0 the equiv-
alent initial yield stress and A and B are further material parameters. The parameters
vary for the different load types and are fitted individually with a curve fitting algorithm.

Utilizing the performed uniaxial tensile experiments the Hill 1948 initial yield surface
for our sheet steel can be identified. It is plotted in fig. 2 and labeled as Lankford. In this
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Figure 2: Experimentally determined Hill 1948 and Best-Fit yield surfaces

stress-stress diagram (fig. 2) also the initial yield stresses for the different experiments
are plotted. To verify that the Hill 1948 yield surface is a sufficiently good model for
our material a general ellipse equation is fitted to the experimental yield values. The

4
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Best-Fit ellipse is obtained by a Least-Squares Fit using the Galerkin-Method to solve
the overdetermined system of equations. The mid-point of the fitted ellipse lays almost
in the coordinate origin as in the Hill 1948 model and the ellipse fits the data points very
well.
Comparing the Lankford to the Best-Fit yield surface, a discrepancy for the biaxial yield
stress can be found. To get a better fitting yield surface, without performing a large
amount of experiments, our iterative FEMU procedure is utilized.

4 IDENTIFICATION PROCEDURE

For the identification procedure simulations of the performed experiments are set up.
Here the biaxial tension test is chosen and modeled in the commercial Finite Element
Method (FEM) software tool MSC.Marc. As having sheet metal, four-node, isoparamet-
ric, bilinear, plane-stress quadrilateral elements are utilized. The total amount of degrees
of freedom is reduced by employing symmetric boundary conditions. The rolling direction
is modeled through a rotation of the element coordinate system and the experimentally
measured forces are applied as boundary condition, see fig. 3.

, Boundary Conditions

Optimization points

Elements and grid pattern

x1

x2

x3

Figure 3: Modeled region of the biaxial tensile specimen

As we do have the measured full-field data sets and the simulations, the FEMU proce-
dure for the parameter identification can be set up. Basic principles of the FEMU method
and an overview over existing identification methods can be found in [2].
For our procedure the experimentally measured displacements u1 and u2 are required at
a certain subset of nodes of the FE mesh. These optimization points are indicated in
red in fig. 3. The values are calculated through a coordinate transformation and a data
interpolation of the experimentally determined displacements.

The schedule of the FEMU procedure is depicted in fig. 4. It is controlled by an
optimization routine which starts the FEMU procedure with a pre-defined set of initial
material parameters. In our case the variational parameters are a1, a2, a3 and a6 of the
plane stress Hill 1948 yield surface, see equation (7). With these parameters a FEM simu-

5
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Optimization Routine Optimized Material
Parameters

Initial
Parameters

Updated
Parameters

FEM Simulations Experiments

Numerical Displacements
and Forces

DIC Displacements
and Measured Forces

Objective Function

Start Iteration

Stop

Figure 4: Schedule of the iterative FEMU procedure using experimental data

lation is run and the numerically and experimentally determined displacements and forces
are processed by the objective function. Depending on the used optimization algorithm,
a resulting vector or a scalar value is passed back to the optimization routine. If a certain
stopping criterion is missed, the material parameters are updated and another iteration
is initiated. Otherwise the optimized material parameters are identified which define the
Hill 1948 yield surface.

The FEMU procedure is performed utilizing the biaxial tensile tests and their simula-
tion.

5 PROCEDURE VERIFICATION

To verify the convergence of our identification procedure two optimization algorithms
with different initial starting points are utilized [3]. The first algorithm is a gradient-
free Nelder-Mead Simplex Method [4]. The utilized objective function f(x) = ΦU(x) +
ΦK(x) is a sum of the weighted least-squares sums of the experimentally and numerically
determined displacements (10) and the forces (11).

ΦU(x) =
1

2NM

M∑

i=1

N∑

j=1

2∑

k=1

wU,k

[

(u
(exp)
k )ij − (u

(num)
k (x))ij

]2

(10)

ΦK(x) = wK
1

M

M∑

i=1

[
(K(exp))i − (K(num)(x))i

]2
(11)

In the equations (10) and (11) u
(...)
k are the displacements, K are the forces and wU,1,

wU,2 and wK are the weighing factors. The indices stand for the steps in the numerical
simulation (i), the number of optimization points (j) and the space directions (k).
The second optimization algorithm is the gradient-based Levenberg-Marquardt Trust Re-
gion Method [4]. An approximation of the objective function is minimized in a certain

6
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Trust Region r, see equation (12).

min
s

1

2
�J(x)s + v(x)�2

2, subject to �s� ≤ r (12)

vi(x) =

{

wU,k

[

(u
(exp)
k )i − (u

(num)
k (x))i

]

, for 1 ≤ i < l.

wK

[

(K(exp))i − (K(num)(x))i

]

, for l ≤ i < m.
(13)

The parameter vi(x) is a column vector of the weighted least-squares sums of the forces

and the displacements and J(x) =
[

∂vj

∂xi

]

is its Jacobian. The value l is the number of

steps times the number of optimization points and (m− l) represents the number of steps.
As no gradient is accessible in the used commercial FE code it is calculated through an
evaluation of Finite Differences.

In order to show that the above described identification setup is reasonable and to test
the FEMU procedure a numerical experiment is performed. An orthotropic Hill 1948 yield
surface which is conform to the Best-Fit ellipse is defined. Boundary conditions equal
to the measured ones of the biaxial tensile tests are applied and the resulting displace-
ments and forces are recorded. Then a FEMU procedure is initiated. The numerically
determined forces and displacements are taken as input-data and the parameters a1, a2,
a3 and a6 are re-identified. Table 1 shows the pre-defined material parameters and the
identified ones with the FEMU procedures with their standard deviations. Two runs were
performed. In the first FEMU procedure the gradient-based Levenberg-Marquardt opti-
mization algorithm is utilized. In order to verify the convergence of our procedure, three
different initial starting parameter sets are employed, see fig. 5. The three runs converge
to the same results with a small standard deviation (table 1). In the second FEMU cycle

Table 1: Identified material parameters of the numerical example from gradient-free and gradient-based
methods with standard deviation

a1 a2 a3 a6

Pre-defined Parameters 9.38e-01 9.49e-01 1.02e+00 1.10e+00
Ident. Param. gradient-based 9.40e-01 9.51e-01 1.02e+00 1.09e+00
Standard Deviation 1.82e-03 2.12e-03 2.77e-03 2.05e-02
Ident. Param. gradient-free 9.32e-01 9.43e-01 1.02e+00 1.09e+00
Standard Deviation 5.07e-03 5.42e-03 4.22e-03 3.29e-02

the gradient-free Nelder-Mead Simplex optimization algorithm is employed. This algo-
rithm is started with three different initial material parameter sets. It converges to the
values shown in table 1. However, the number of function evaluations needed to converge
is higher than the one of the gradient-based algorithm and convergence is reached only if
the initial parameters are within a small region around the optimal values.

7
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Figure 5: Numerical biaxial tension experiment, gradient-based method: a) Initial and identified yield
surfaces. b) Variational parameters over iteration number.

6 IDENTIFIED PARAMETERS

Having verified that our FEMU procedure is capable of identifying the proper or-
thotropic plastic material parameters the experimentally determined displacements and
forces of three biaxial tension tests are employed as input data. As in the numerical
example the FEMU procedure is run with the two optimization algorithms starting from
different initial material parameter sets. Fig. 6a) depicts that four different starting sets
are utilized. Comparing fig. 6b) to fig. 5b) it is obvious that the convergence with the ex-
perimental data set is faster. This effect is caused by the inhomogeneities in the measured
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Figure 6: Biaxial tension experiment, gradient-based method: a) Initial and identified yield surfaces. b)
Variational parameters over iteration number.

data. As being not perfectly biaxially loaded over all time steps, like in the numerical
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example, and using three different experimental data sets in one FEMU procedure the
iteration number decreases.
The identified material parameters for the Hill 1948 yield surface are written down in
table 2. The standard deviations of the gradient-free optimization cycles are smaller than
the gradient-based ones. However, convergence with the gradient-free method is reached
only if good starting parameter sets are chosen.

Table 2: Identified material parameters of the experimental data sets from gradient-free and gradient-
based methods with standard deviation

a1 a2 a3 a6

Ident. Param. gradient-based 9.18E-01 9.30E-01 9.82E-01 6.49E-01
Standard Deviation 4.82E-04 6.28E-04 6.36E-03 2.37E-02
Ident. Param. gradient-free 9.18e-01 9.30e-01 9.78e-01 6.64e-01
Standard Deviation 1.61e-03 6.82e-04 1.57e-03 6.11e-03

Fig. 7 depicts the via FEMU identified Hill 1948 yield surface together with the Lank-

ford and Best-Fit surfaces. Especially the biaxial yield stress is represented more ac-
curately as through the Lankford yield surface. Therewith only biaxial tensile tests are
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Figure 7: Identified Hill 1948 yield surface

needed to be able to identify the initial yield surface almost as precisely as performing
various different tensile and compression experiments and fitting a general ellipse to this
data set.

9



250

Stefan Schmaltz, Kai Willner

7 CONCLUSION AND OUTLOOK

The paper characterizes the orthotropic plastic behavior of the sheet steel DC04 through
uni- and biaxial tension and compression tests. The plastic material parameters for the
Hill 1948 yield criterion are identified directly and by an iterative FEMU procedure em-
ploying full-field displacement data and forces from experiments. Utilizing this FEMU
procedure the amount of experiments needed for the material characterization is mini-
mized, while the accurateness of the identified material parameters is maximized.
In order to accelerate the convergence and to increase the precision more complex spec-
imen resulting in inhomogeneous loading are to be generated. Furthermore a combined
anisotropic and kinematic hardening function has to be implemented to be able to repre-
sent the hardening behavior of the sheet metal more accurately.
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Abstract: The objective of this article is to present a comparison of the results achieved for 
the Equal Channel Angular Extrusion – ECAE – process, using a so called “quick start” 
approach, followed by simulation using material parameters defined by Swift´s [1] and 
Voce´s [2] relations. The comparison was made considering extrusion force, equivalent 
stresses and equivalent plastic strain quantities. Two angles (90 and 120o), two channel 
concordance radii relations (0.2, 2 and 2, 5mm) and two friction coefficients (0.05 and 0.15) 
were used. ANSYS 12.1 commercial package was applied for this work. 
 
 
1 INTRODUCTION 

Equal Channel Angular Extrusion – ECAE – is a powerful deformation technique that was 
first studied and developed by Segal in 1981 [3]. It is an innovative process that allows 
engineers and researchers to obtain improved mechanical properties for some materials, by 
forcing its passage through an angular channel with constant cross section. The improvement 
of the mechanical properties is a result of severe plastic deformation with consequent grain 
refinement. The advantage of this process is that the cross section of the material remains 
constant, and reduced forming forces are required when comparing to other cold working 
processes. 

In recent years many researchers have investigated angular extrusion processes under 
experimental and numerical perspectives. Some works are focused on experimental 
techniques aiming to optimize die and process conditions and evaluate different materials. 
Numerical techniques and commercial FEM – Finite Element Method – packages have also 
been used to study specific details of the process in order to obtain better processing 
conditions and improved material characteristics. 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 
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Krishnmaiah et al. [4] applied the ABACUS commercial FEM package to study the process for 
99.8% pure normalized cooper, in order to evaluate the influence of the friction coefficient on the die 
filling and in other mechanical properties. In their analysis, four-node elements in plane strain mode, 
with reduced integration were applied.

Aour et al. [5] numerically investigated polymer extrusion applying MARC FEM software,   
using also four-node elements and reduced integration. The work aimed at evaluating the 
results of the process in the form of equivalent plastic strain and process characteristics, such 
as channel angle, internal and external radii, friction coefficient and number of passages 
through the die. 

Son, Jin and Im [6] applied FEM to investigate the influence of friction on the load 
required to perform the extrusion through an angular channel, and also on the strain 
distribution in the workpiece. In this case a mixed formulation was used, with linear 
tetrahedral elements, and constant shear friction. In this work, a remeshing process based on 
an effective strain measure was also applied. 

Lee et al. [7] performed a non-isothermal 3D simulation of a titanium workpiece to 
evaluate the effect of process parameters on the strain distribution. Rotation of the workpiece 
in 90 and 180º between passages through the die was considered. In the 3D formulation of the 
problem, hexahedral and tetrahedral elements were used to model the workpiece and channel, 
respectively. A constant friction model was used combined to a rigid-thermo-visco plastic 
constitutive relation for the material. 

Hu, Zhang and Pan  [8] used FEM to optimize the die structure for the ECAE process for a 
magnesium alloy (AZ31). In their work, a rigid die was considered, and the workpiece was 
described by an elastic-perfectly plastic material. As process parameters, the friction 
coefficient, angle between channels and internal and external radii were accounted for. 

Nagasekhar et al. [9] performed a comparative analysis between FEM simulation and 
experimental approach in order to verify the effectiveness of the computational model. The 
authors used pure cooper, which mechanical properties were evaluated using a standard 
stress-strain test. The result of the work is focused on the load required to perform the 
process. The simulation was performed using explicit 3D ABACUS software. Some process 
parameters, like the Coulomb friction coefficient, were also varied through the analysis. The 
authors also applied tetrahedral elements with reduced integration and adaptive meshing. 

Kaushik, Karaman and Srinivasa [10] used FEM simulation to study the Cooper powder 
pressing with the ECAE process. In their work, the explicit ABACUS software was used. The 
material porosity was modeled using the Gurson [11] and Duva & Crow [12] models. The 
authors used the friction coefficient and interaction conditions as process parameters. They 
applied 2D and 3D formulations to evaluate specific process details. 

Semiatin and Delo [13], studied the deformation and failure of several difficult-to-work 
alloys, like commercial-purity titanium and AISI 4340 steel during ECAE process. Their 
work was mostly experimental, but FEM was applied in order to study specific failure modes 
and the effects of chilling on non-uniform flow during non-isothermal ECAE. 

Yang and Lee [14], used the commercial package MARC to analyze strain conditions after 
ECAE. They varied the channel angle and the extrusion direction during consecutive passages 
through the process. The effect of friction was also evaluated. 

As it can be noticed, numerous works and analysis have been performed in recent years 
using FEM simulation as the main analysis tool. Different classes of materials were evaluated, 
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and, in certain cases, experimental material evaluation was performed in advance to verify 
their mechanical properties. In most cases, the analysis aims to assess process characteristics 
for the different materials using numerical approach. In addition, the brief survey showed that, 
in simulations using a single passage, the main parameters that affect the workability of the 
materials in general, are the angle between the channels, the friction coefficient and the 
internal and external concordance radii. 

In the industry perspective, in the search for new materials, optimized components and 
new strategies to design metal forming operations, oftentimes research engineers are 
confronted with no detailed material data to start the tooling development. In such conditions, 
it is not uncommon to use material properties, such as Young’s modulus, Poisson’s ratio, 
yield and ultimate stresses and elongation at rupture, obtained from general material libraries, 
tables, standards and even internet sources. This strategy is sometimes referred as “quick 
start” and has been used when no stress-strain curve for the material is available. For sure,
there are some errors to be considered when taking this approach, instead of devising 
experiments to evaluate mechanical parameters of the material, and yield stress curves, such 
as Swift´s [1] and Voce´s [2] relations. This activity takes time and consumes laboratory 
resources. 

The objective of this article is to present and discuss a comparison of numerical 
experiments performed for a given carbon steel, using constitutive parameters determined via 
classical approaches and parameter identification techniques. The Swift´s [1] parameters were 
determined using tensile tests by assuming uniform stress-strain distribution within the 
specimen, whereas a parameter identification technique [15] was used in conjunction with a 
modified Voce´s [2] equation. 

2 HARDENING MODELS 
The “quick start” using FEM usually considers two hardening models: elastic-perfectly 

plastic and bilinear hardening [16]. The former requires only three properties, which can be 
easily found for general materials in many references (books and internet sites): the Young’s 
modulus, Poisson’s ratio and Yield Strength. The model considers that, once the equivalent 
stress in the simulation reaches the material yield stress, the material presents perfect 
plasticity. The latter requires two additional properties: Ultimate Stress and Elongation at 
breakage. This makes it possible to establish the bilinear hardening model for the material, 
computing the Tangent Hardening Modulus and approximating the real material hardening 
behaviour by two linear curves, as shown in Figure 1. 

The material chosen for this analysis is the same used in Stahlschmidt et al. [17], which is 
a cold rolled carbon steel without further heat treatment. In the work, the authors used a 
parameter identification methodology based on optimization, to determine hardening 
parameters of a modified Voce [2] yield stress curve. The basic properties considered for the 
“quick start” hardening models were obtained from MatWeb website [18] and are presented 
in the Table 1. 



254

R. Puff and M. Vaz Jr. 

4

Figure 1: Two “quick start” approaches considered in the analysis. 

Table 1: Mechanical properties for the “quick start” approach. 

Material Symbol Value 
Young Modulus E 200GPa 
Poisson Ratio ν 0.3 
Yield Stress σY 530MPa 

Ultimate Stress U 625MPa 
Elongation e 12% 

According to [17], the Swift’s [1] hardening model is defined as: 

( )n
piy εεσσ += 0 ,     (1) 

where σi, ε0 and n are the material parameters. Also from the same reference [17], Voce’s 
modified hardening model is defined as: 

( ) ( )[ ]ppy δεσσζεσσ −−−++= ∞ exp100 ,     (2) 

in which σ0, σ∞, δ and ζ are the hardening parameters obtained by an identification technique 
based on an Hybrid Genetic–BFGS optimization method [17]. Table 2 shows the hardening 
parameters for both equations, determined by using tensile tests with specimens prepared 
according to the Brazilian NBR-ISO 6892 standard.  

Table 2: Material parameters identified by Stahlschmidt et al. [17], for the cold rolled steel used in this analysis. 

Swift’s yield curve Voce’s yield curve 
σi 1175.7 MPa σ0 425.9 MPa 
ε0 0.0018733* σ∞ 720.66 MPa 
n 0.1821 δ 34.9928 
  ζ 552.25 MPa 

*value corrected to accomplish for the elastic curve 
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3 SIMULATION DETAILS 
All the simulations were performed with the use of the commercial FEM software ANSYS, 

version 12.1. A 2D approach using axis-symmetric formulation was used to model the NBR-
ISO specimen, and plane strain for the ECAE process. The geometry selected for the ECAE 
workpiece was a square section with 10mm edge, and length of 40mm. The extrusion distance 
inside the die was 35mm in order to achieve a significant portion of the workpiece extruded. 
The element used in the simulations was an eight-node, non-linear quadratic element, 
referenced in ANSYS [16] as PLANE183. The die was modeled as rigid walls without heat 
transfer. Thermal effects were also not considered in the workpiece. The contact between the 
workpiece and die walls was modeled using Augmented Lagrangean´s Method [16], which is 
a combination of the pure penalty method in the tangential direction and pure Lagrange’s 
Method in the normal direction [16]. Initially, it uses the contact stiffness state in the 
equilibrium. Afterwards, the resulting penetration is minimized by using the Lagrangean part 
of the algorithm. Coulomb friction was used to model the friction between the workpiece and 
die, which allows shear stresses on both contact surfaces.  

4 RESULTS AND DISCUSSION 

4.1 Results for the NBR-ISO workpiece 
As a first analysis, in order to evaluate comparatively the different hardening rules, a 

simulation was performed for one of the geometries evaluated by Stahlschmidt et al. [17]. 
Figure 2 shows results for the equivalent plastic strain, plotted in the final stage of 
deformation. It is possible to observe that Voce´s model was the only one that could truly 
predict the actual deformation process of the workpiece. This is mainly because it is able to 
predict the final deformation region of the stress/strain curve, in which there is the neck 
formation and consequently the stress reduction. Nevertheless, it is also important to evaluate 
the loading force, once it is a major feature in stress analysis carried out by engineers in 
industry. Therefore, Figure 3 presents the comparison among the four models in terms of 
Force x Elongation. In this case, one first observation is that the elastic-perfectly plastic and 
bilinear models predict loading forces unrealistically smaller than the forces measured in the 
tensile tests [17]. As already observed by Stahlschmidt et al. [17], use of Swift´s model brings 
a better correlation, and Voce’s model provides the best numerical results. Due to the best 
agreement with the experiments, when addressing the ECAE process, the latter should be 
considered as the reference when comparing the results obtained by using the other yield 
curves. 

4.2 Simulation of the ECAE process 
Most references describe the main influencing variables on the ECAE process as the angle 

between the channels, the inner and outer radii and the friction coefficient between the 
workpiece and the channel walls. According to the analysis performed by Krishnmaiah et al.
[4]; Son, Jin and Im [6] and Hu, Zhang and Pan [8], a “soft” process would be performed 
using an angle of 120o together with larger inner and outer radii and low friction coefficient. 
Considering the aforementioned conditions, two cases were evaluated, as indicated in Table 3. 
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Table 3: The “soft” and “hard” simulation parameters chosen for the comparison. 

Parameter “soft” process “hard” process 
Angle 120o 90o

Radii 2 and 5 0.2 and 2 
Friction coefficient 0.05 0.15 

  
The evaluated results were: 
• Equivalent plastic strain and von Mises stress plotted on the deformed configuration. 
• The extruding force and integrated work. 
• The equivalent strain at the middle of the workpiece in the short and the long 

direction. 
• The equivalent von Mises stress in the same directions. 

Figure 4 presents the equivalent plastic strain and von Mises stress plotted on the deformed 
configuration for the “soft” process simulation. It can be clearly observed the region where 
the shear of the workpiece is taking place. Also, there is some major strain concentration at 
the upper side of it. One can also notice high von Mises stress concentration at the shear 
region and at the upper side. 

0.00  0.11  0.22  0.33   0.44   0.55   0.66   0.77  0.88  1.00   

a)  Elastic-perfectly-plastic 

b)  Bilinear 

c) Swift 

d) Modified Voce 

Figure 2: Normalized equivalent strain,        
(ε - εmin) / (εmax - εmin), plotted on the 
deformed configuration. 

Figure 3: Force x Elongation curves for the 
hardening models compared to the 
experimental results [17].
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Figure 4: Results for the “soft” condition plotted on the deformed configuration for the modified Voce’s model. 

Figure 5 presents the equivalent plastic strain and equivalent von Mises stress plotted on 
the deformed configuration for the “hard” process simulation. In this case, the 45o shear of 
the workpiece can be clearly observed, as well as the much higher strains and stresses 
compared to the “soft” condition. The maximum plastic strain achieved in this case is around 
1.6, against 0.86 for the “soft” condition. The maximum von Mises stress is 1468 MPa, 
against 1060 MPa for the “soft” condition. It shows that the chosen “soft” and “hard”
conditions are representative for the purpose of this analysis. 

   

Figure 5: Results for the “hard” condition plotted on the deformed configuration for the modified Voce’s 
model. 

When comparing the results of the extrusion force for the two conditions and four 
hardening models considered, it can be observed in the figure 6 that, as expected, there is a 
huge difference between the “soft” and “hard” maximum forces necessary for performing 
the extrusion. For the “soft” condition, Figure 6a, Swift’s model presents a fairly good 
agreement with modified Voce’s equation, considering the latter as reference. Nevertheless, 
the bilinear model presented some qualitative similarity, but a lower force level. In the same 
case, elastic-perfectly plastic’s model presented much lower results. The force results for the 
“hard” condition are presented in Figure 6b. It can be observed that Swift´s and Bilinear 
models present good correlation with Voce’s equation, however, the results for the elastic-

0.860189 

0.764612 

0.669036 

0.573459 

0.477883 

0.382306 

0.286730 

0.191153 

0.095577 

0.000000 

a) Equivalent plastic strain 

b) 

1060.000 

 945.943 

 831.518 

 717.093 

 602.668 

 488.243 

 373.819 

 259.394 

 144.969 

  30.544 

b) Von Mises Equivalent stress 

0.0014       0.3503        0.6992         1.048         1.397 
      0.1759        0.5248        0.8737        1.223        1.572 

a) Equivalent plastic strain 

70.65         381.1        691.6         1002         1312 
       225.9         536.3        846.8         1157         1468 

b) Von Mises equivalent stress 
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perfectly plastic’s model were markedly unrealistic.  
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Figure 6: Comparison of the simulated extruding force using the four hardening models. a) “soft” condition. b) 
“hard” condition. 

Table 4: Simulated extrusion work for the two conditions and four hardening models. 

Extrusion work [J] 
Condition Voce Swift Difference 

[%] 
Bilinear Difference 

[%] 
Elastic-perfectly 

plastic 
Difference 

[%] 
“soft” 12.3 12.9 4.9 10.6 -13.8 7.0 -43.1 
“hard” 44.1 43.1 -2.3 44.0 -0.2 13.3 -69.8 

As a resume of the observations, it is better to represent the total extrusion work, shown 
comparatively in Table 4. It can be observed that Swift´s and Bilinear models presented 
acceptable differences lower than 5% in the most cases. For the “soft” condition, Bilinear 
model presented a higher discrepancy of 13.8%, but still acceptable for a “quick start”
approach. In the other hand, Elastic-perfectly plastic model presented discrepancies higher 
than 40%, which are completely unacceptable. 

Figure 7a and b, show the equivalent plastic strain distribution along the centerlines of the 
workpiece for the “soft” condition. It can be observed that, for both horizontal and vertical 
directions, there is a good agreement of Voce’s, Swift’s and Bilinear models. Elastic-perfectly 
plastic model predicts higer plastic strain levels, and a more uniform distribution. The reason 
lies on the fact that once the yield stress is reached during the simulation process, a further 
increase on the load would cause continuous plastic deformation without any hardening. For 
the “hard” condition, Figure 7c and d,  one may notice that in the horizontal direction, the 
plastic strain at the lower and upper regions of the workpiece was more affected by the 

a) b) 
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models, whereas a smaller effect was observed inside the workpiece. In the vertical direction, 
major differences were found at the lower part, which is the region directly affected by the 
initial deformation experienced by the workpiece when introduced in the angular channel. It is 
reasonable to expect that the hardening rule is more influent in this region. 
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Figure 7: Equivalent plastic strain for the two conditions along the horizontal and vertical centerlines. a) “Soft”
condition – horizontal. b) “Soft” condition – vertical. c) “Hard” condition – horizontal. d) “Hard” condition – 

vertical. 
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Figure 8: von Mises equivalent stress for the two conditions along the horizontal and vertical centerlines. a) 
“Soft” condition – horizontal. b) “Soft” condition – vertical. c) “Hard” condition – horizontal. d) “Hard”

condition – vertical. 

The comparison has also been performed for the stress results, once, in many cases, it is 
important to evaluate the residual stresses present in the workpiece after each passage through 
the angular channel. It can be observed in Figure 8a and b that, for the “soft” condition, 
Swift’s and Bilinear models yield good agreement with the reference along horizontal and 

a) b) 

c) d) 
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vertical directions; however the Elastic-perfectly plastic model presented a huge difference. 
The same behaviour can be observed  in Figure 8c and d for the “hard” condition. Although 
presenting much higher stress levels, there is also for this condition a good agreement with the 
reference for Swift’s and Bilinear models, whilst the Elastic-perfectly plastic material 
presented larger differences. 

12 CONCLUSIONS 
Within the industrial perspective, when conceiving new forming operations, designing new 

mechanical components or using new materials, research engineers generally use a modeling 
strategy known as “quick start”. In such cases, in a first stage, material is described in a 
simplified manner in order to obtain preliminary results used to validate or not the design 
concept. In a second stage, experiments aiming at determining material parameters are 
designed and new round of simulations are performed aiming at achieving the primary design 
objectives. This work is inserted within this framework, which aims to assess simplified 
material models against a more complex constitutive relation and determine how accurate are 
the results obtained using such models. 

-  The ECAE process was used in this article to compare four different yield curves: 
modified Voce, Swift, Bilinear and Elastic-perfectly plastic. The main objective was to 
determine whether a simpler yield curve could be used in conjunction with the ECAE process, 
which in turn, is recommended to achieving better mechanical properties for materials. 

- Voce’s and Swift’s parameters were taken from Stahlschmidt et al. [17], which were 
determined by applying optimization methods. In the reference, Voce’s hardening model 
presented the best agreement with the experimental results and was used in the present work 
as a reference for comparison. 

- The results were compared based on three information normally required during the 
planning phase of the ECAE process: the required extrusion force and work, plastic strains 
and residual stresses present in the workpiece. 

- Swift’s equation presented good correlation with the reference (modified Voce) in most 
cases, but as well as the latter, requires initial experimental testing for determining parameters 
for the simulation. 

- The Bilinear model requires only the knowledge of five properties: Young Modulus; 
Poisson’s ratio; Yield and Ultimate stresses and elongation, which, in most cases, can easily 
be found in the literature or web sites. This approximation presented a fairly good correlation 
with Voce’s model. Therefore, it is a good choice for this initial evaluation of the ECAE 
process and its desired results. 

- The elastic-perfectly plastic´s model presented a very poor agreement with Voce’s 
results, thereby indicating that it is a bad choice, mainly for the type of material considered in 
the analysis. Some hardening needs to be considered with the risk of making poor predictions 
for the process planning. 
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Abstract. The finite elements method (FEM) represents a useful tool for simulating ma-
chining processes, nevertheless numerical models are very sensible to the adopted material
model and related constants. The paper reports a novel approach for the identification
of the material parameters of the Johnson-Cook (JC) plasticity model, which is currently
utilized in modeling material behavior during machining operations thanks to its capa-
bility to account for the material sensitivity to strain, strain rate, and temperature. The
presented approach is based on the use of the Nelder Mead Method (NMM) to identify
both the parameters of the simplified JC model and the friction factor of the Tresca law.
NMM is a non-linear heuristic technique that affords to find local minima. Compared to
the evolutionary approach typically used in parameter identification, the main benefit of
this method consists in the low number of iterations necessary to achieve a good match
between the experimental and numerical process outputs.
The reference process is the Orthogonal Tube Cutting (OTC) test of AISI 304 thin tubes.
Although the AISI 304 is a well-known material and many data are available in literature,
its reported JC parameters are characterized by a large dispersion, making necessary to
develop a robust parameter identification procedure to have reliable material data to cal-
ibrate the numerical model.
OTC tests were carried out on an instrumented lathe and their numerical model developed
through the commercial FEM software DeformTM 2D v.10.1. The optimization problem
was implemented in the language programming Ruby. The comparison between exper-
iments and numerical results was made with regard to the cutting force, the tool-chip
contact length, and the chip morphology.
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1 INTRODUCTION

In the last decades, many efforts have been made in modeling machining processes, and
different approaches have been used implying the development of statistical processes,
theoretical and numerical models. Among the latter, the finite elements method (FEM)
is the more utilized, since it is capable to handle a large number of process inputs and to
represent as well several outputs, such as the temperature distribution in the workpiece,
chip and tool, forces, chip morphology, residual stresses [1], and tool wear [2]. On the
contrary, numerical models of machining operations can be computationally expensive
and are highly sensible to the model parameters, especially as regards the rheological
and tribological data. In machining operations the workpiece is in fact highly stressed in
the primary and secondary shear zones, and it undergoes strains higher than 200 % at
strain rates of more than 106 1/s. However rheological and tribological data are generally
unknown at high strains and strain rates, therefore it is necessary to develop a robust
strategy to identify these model unknowns.
The workpiece flow stress model commonly used for machining simulations is the Johnson-
Cook constitutive equation [3]. It correlates the flow stress to the workpiece temperature,
strain, strain rate, and is represented by the following equation:

σ(T, ε, ε̇) = (A+ B εn)

[

1 + C ln

(
ε̇

ε̇0

)] [

1−
(

T − Tr

Tm − Tr

)m]

(1)

where T (oC) is the workpiece temperature, Tm (oC) the melting temperature, Tr

(oC) the room temperature, ε the plastic strain, ε̇ (1/s) the strain rate, A (MPa) the
yield strength, B (MPa) and n the hardening modulus and the hardening coefficient
respectively, C the strain rate sensitivity, and m the thermal softening coefficient. The
friction model commonly used for machining simulations is the Tresca law due to high
local pressure involved at the tool-workpiece contact. The Tresca law is represented by:

τ = t τmax (2)

where τ (MPa) is the tangential friction stress, τmax (MPa) the maximum admissible
tangential stress, and t the friction factor.

The reference process utilized in this paper for the identification of the Johnson Cook
parameters is the Orthogonal Tube Cutting (OTC) test carried out on AISI 304 thin
tubes. The scientific literature reports different approaches for the identification of the
Johnson Cook parameters of the stainless steel AISI 304. Chandraserkaran et al. [4]
demonstrated that the Split-Hopkinson pressure bar test can achieve a limited range of
strains and, for this reason, this kind of test cannot be used in the parameter identifi-
cation of the material model for machining processes. They stated that to identify the
correct flow stress law at high strains and strain rates a combination between numerical
simulations and experimental tests must be used. Lee et al. [5] combined quasi static and
dynamic compressive tests with FEM simulations to fit the measured flow stress with the
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Johnson Cook law, at three different strain rates, up to 103 1/s. Higher strain rates, up
to 5 × 104 1/s, where achieved by Vural et al. [6] developing a new shear compression
specimen. Nevertheless, even when modeling the same material, it is possible to find in
literature that different sets of material parameters have been used in process simulations
[7]-[9].
The sets of the JC parameters found in literature for the stainless steel AISI 304 were
used in the FEM simulations of the OTC test, and a comparison between their outputs
and the OTC results is presented in this study. The observable parameters are the cutting
force, the chip thickness and curvature, and the tool-chip contact length. Very different
results were obtained, proving that it is necessary to identify the material model param-
eters and the tribological factor through a more robust method. Shrot [11] utilized FEM
machining simulations and the Levenberg-Marquardt optimization algorithm to identify
the coefficients A, B and n of the equation 1. The hypotheses assumed in the Shrot’s
study deal with the process considered adiabatic and the neglection of the friction phe-
nomena, which, however, can hardly describe the mechanical phenomena characterizing
the real cutting processes.
The purpose of this work is to develop an approach dedicated to the simultaneous identi-
fication of the rheological and tribological parameters to be implemented in the numerical
model of a machining operation. This is achieved by minimizing, through a customized
Nelder Mead Method (NMM) [12], the sum square error between the calculated cutting
force and chip morphology through FEM simulations, and those measured in an exper-
imental OTC test. NMM is a simplex-based technique that can require a low number
of iterations to converge to local minima, compared to the derivatives and evolutionary
approaches typically used in parameter identification. On the contrary, NMM is highly
sensible to the initial simplex, thus some considerations were made in choosing the start-
ing simplex.

2 EXPERIMENTAL SET-UP

The OTC test consists on a rotating tube and a translating tool with a feed rate or-
thogonal to the cutting speed. The test was carried out on an industrial lathe (figure
1). The tube was made of AISI 304, its external diameter was 50 mm and its wall 1
mm thick. The tool was made of high speed steel (HSS) with a TiN coating, its rake
angle was 18◦ ± 2◦ and its inclination angle zero. The process parameters were chosen
accordingly to the data sheet given by the tool manufacturer, setting the cutting speed
to 26,77 m/min, and feed rate to 0.09 mm/rev.
The chosen observables parameters were the cutting force, the chip thickness and curva-
ture, and the tool-chip contact length. The force was measured by means of a KistlerTM

multicomponent dynamometer 9257B placed below the toolholder (figure 1). The ac-
quired average value of the cutting force was 182 N , identified at the attainment of the
test steady state condition. The chip thickness and curvature were evaluated at the
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Figure 1: The experimental set-up used in the OTC test (left) and the measured chip (right).

Figure 2: The tool flank at ESEM microscope (left) with a particular of the tool wear with the worn area
and the AISI 304 sticking zone (right).

ESEM microscope: seven different sections of the chip were considered measuring an av-
erage thickness of 105 µm, while the curvature radius was 1.51 mm−1. Also the tool-chip
contact length was measured at the ESEM microscope, by considering the tool wear after
several cuts. In figure 2 it is possible to associate the clearest zone on the insert flank
to the worn area. Focussing the attention to the wear zone, two different regions can be
distinguished: the one nearest to the cutting edge is the real worn area in which the TiN
coating has been removed, while the second one is evident due to the sticked AISI 304
deposited during the cut. The latter is not a worn zone and for this reason is not consid-
ered in the measurements. The average chip contact length was 250 µm.

3 NUMERICAL MODEL

Due to the reduced feed rate compared to the thickness of the tube, it was possible to as-
sume a plane strain condition for the above described machining process. A bi-dimensional
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Figure 3: The OTC test model implemented in DeformTM 2D.

numerical model was implemented in the commercial FEM software DeformTM 2D (figure
3), which solves the thermo-mechanical problem using a Lagrange implicit method. The
time step was set to 5 µs and the cutting length was 5 mm to ensure the achievement
of the steady state condition. The process parameters were chosen accordingly to those
used in the experimental test: depth of cut of 0.09 mm, cutting speed of 26,77 m/min,
tool rake angle of 18◦. The tool was considered as a rigid material and the workpiece as
a plastic one since the residual stresses were not chosen as observables parameters.
An adaptive mesh was used, with tetrahedral quadratic elements. At the beginning of
the simulation the workpiece was discretized with 1700 elements and the tool with 1600
elements, but due to the adaptive re-meshing, the number of the workpiece elements at
the end of the simulation was approximately 3500. One finer mesh window was set on the
workpiece moving together with the tool to have always an higher number elements in the
workpiece zone nearest to the cutting edge: in this zone the length of the element edge
was set to 6 µm. Null horizontal and vertical speeds were imposed at the workpiece’s
bottom and left edges. Moreover, the workpiece edge at left was considered at room
temperature (i.e. 20◦C) and the others exchanged heat with the environment or the tool.
The convection coefficient was set equal to 10 W/m2 K. Accordingly to the literature
review, the heat transfer coefficient between the workpiece and the tool was set equal to
3000 W/m2 K. The used friction model was the Tresca law by considering that in OTC,
as it is for the machining processes, the real and the apparent contact areas between the
chip and the tool are almost equal.
Two model features remain unknown and must be determined: the friction factor of the
Tresca law, and the workpiece material parameters of flow stress law (i.e. the five material
parameters of the JC model). The identification of these parameters was performed by
using the optimization algorithm proposed in the next section.
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3.1 Model sensitivity to JC parameters from literature

In order to analyze the model sensitivity to the rheological parameters, numerical
simulations of the OTC test with the above described model were carried out by using
the JC parameters found in literature for AISI 304 and the experimental flow stress law
implemented in the DeformTM’s material library. The further parameters were used in
modeling different processes with different strain rates. As it can be seen in table 1, the
J-C parameters differ significantly from each other. For all the simulations, the friction
factor was set equal to 0.9, representative of dry conditions [13].
The table 2 summarizes the results obtained with the simulations carried out. Due to
the high percentage error associated to all the calculated observables, neither the set of
parameters available in literature nor the data of the DeformTM’s material library could
be considered valid for developing a reliable numerical model.

Table 1: JC parameters for AISI 304 from literature.

Processes Strain rates A B C n m
Ocana Pulse laser microforming 103 350 275 0.022 0.36 1.0

Aquaro [8] Peen forming > 106 239 522 0.1 0.65 0.63
Mori [9] Impulsive loads 103 310 1000 0.07 0.65 1

Table 2: Results from the simulations carried out with the JC parameters from literature.

Output Measurements Ocana [7] Aquaro [8] Mori [9] Deform
Cutting force [N ] 182 118 394 425 238

Error % - 35 116 133 31

Chip thickness [mm] 0.105 0.241 0.369 0.460 0.3348
Error % - 129 251 338 219

Chip contact length [mm] 0.250 0.173 0.501 0.617 0.3259
Error % - 308 100 147 219

Chip curvature [1/mm] 1.510 0.524 0.0 0.0 0.01
Error % - 65 100 100 99
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4 OPTIMISATION ALGORITHM

The block diagram 4 schematizes the optimization software architecture, which uti-
lizes two programming environments: Ruby [14] and DeformTM 2D. The further has been
chosen in this study since it is an object-oriented programming language, it is freeware,
and thanks to its capabilities in handling regular expressions and blocks it is possible to
develop a compact-high efficient code. In the following section a brief introduction to
the modified Nelder Mead Method (NMM) and to the processing procedure developed in
Ruby is presented.

4.1 The modified Nelder Mead Method

The optimization is carried out through the Nelder Mead Method. This is a simplex
method useful for local minimization and it was implemented in a simplified version. Typ-
ically, NMM starts from an initial simplex and moves the vertices, accordingly to its image
value, in the direction of the minimum. Four different operations can be performed to
change the vertices: reflection, expansion, contraction and shrink. At each minimization
step, the centroid M of hyper-face opposed to the worst point and the reflected point R
are computed through the equations 3 and 4 respectively:

M =

∑N
i=1 Vi

N − 1
(3)

R = 2M −W (4)

where Vk is the k-th vertex of the simplex with N vertices and W is the vertex with the
highest image. The reflection consists in moving the worst vertex on the opposite side of
the line between the two best vertices. The expansion acts as the reflection, but the new
vertex is moved farther, and it is performed when the new reflected vertex is lower than
the lowest point in the simplex. The expanded point E can be evaluated by:

E = 2R−M (5)

If the reflected vertex is higher or equal than the worst point in the simplex, then a
contraction is executed. The contracted point C1 is equal to:

C1 =
W +M

2
(6)

The last possible condition is that the reflected point is higher than the second best vertex
and lower than the worst vertex. If these conditions are satisfied, a different contraction
is performed:

C2 =
W +R

2
(7)
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In the presented algorithm the shrink was not implemented because this operation requires
two evaluations of the target function at each optimization step. As a consequence, the
convergence would become slower than for the standard method, even if the algorithm
would require a lower number of simulations to achieve a satisfactory solution. The
convergence criteria is based on the simplex norm, i.e. the sum of the differences of all
possible combinations of vertices values.
In the developed numerical model, six unknowns have to be determined, meaning that
the dimension of the simplex is seven. Since the solution found by NMM is strongly
dependent from the first simplex choice, the first set of vertices was composed by the JC
parameters found in literature [8]-[9] (with a friction factor t of 0.9) and others five points
randomly chosen. The starting simplex is reported in table 3.

Table 3: The starting simplex used for the optimization.

Vertex No. A B C n m t
1 350 275 0.022 0.36 1.000 0.60
2 310 1000 0.070 0.65 1.000 0.50
3 1000 1500 0.014 0.36 1.000 0.90
4 239 522 0.100 0.65 1.000 0.70
5 129 85 0.023 0.97 0.458 0.40
6 784 812 0.459 0.51 0.196 0.69
7 649 1136 0.372 0.73 0.207 0.80

4.2 The optimization procedure

The main tasks performed by the Ruby Optimization Procedure (ROP) are to run the
optimization and to interact with DeformTM in batch mode, giving the chance to auto-
mate the pre-processing phase, simulation execution and post-processing analysis.
The output of the optimization step is a configuration file used as input for the numerical
model. The ROP runs the pre-processor to generate the model database file, representing
the numerical model. Then the ROP executes DeformTM 2D and waits until the simula-
tion comes to an end.
If no errors occur at the end of the simulation, the procedure extracts the nodal coordi-
nates of the final geometry of the chip. Then the nodes on the external and internal chip
edges are identified (figure 4). The chip thickness is estimated as the difference between
the radius of the circumferences interpolating the points on external and internal chip
edges. The mean radius between these two circumferences gives the chip curvature. The
chip contact nodes are identified by the contact boundary condition applied on them,
and they are used to calculate the tool-chip contact length. Finally, the cutting force
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Figure 4: The scheme of the optimization software developed under DeformTM 2D and Ruby environments
(left). The identified chip contact nodes, external and internal edges (right).

is obtained by calculating the average of the cutting force values when the steady state
conditions are reached. The target function is defined as the sum of the percentage error
between the measured outputs and the calculated ones. Penalty functions are used to
avoid negatives rheological and tribological parameters. Let Ym and Yc be the vectors of
four elements containing respectively the measured outputs and the calculated ones, and
let X be the vector of six elements with the optimized parameters, the target function
can be evaluated as:

f(X) =
4∑

i=1

|Ymi − Yc i|
Yc i

+
6∑

j=1

min(0, Xi)
2 (8)

The first term in the equation represents the percentage error, and the second one the
penalty function applied to all the rheological and tribological parameters. The algorithm
ends when the simplex norm is less than 10.

5 RESULTS

After 20 iterations the optimization algorithm converged to the solution, being the last
norm of the simplex 1.18. The convergence plot is reported in figure 5, where it can be
seen that the simplex norm tends to zero. In the same figure the comparison between
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the measured cutting force and the calculated one is shown: the fitting is satisfactory
expecially if it is compared with the results obtained with the sets of Johnson-Cook
parameters reported in literature and with flow stress data of the DeformTM’s material
library (see table 1). Figure 6 shows a qualitative comparison between the experimental
chip morphology and the numerically calculated one: the results are acceptable. The set
of Johnson-Cook parameters of the best vertex is reported in table 4, while the outputs
calculated with these parameters are in table 5.

Table 4: The optimized set of parameters.

A B C n m t
740 630 0.28 0.53 0.26 0.61

Table 5: The outputs obtained with the optimized set of parameters.

Cutting Chip Chip contact Chip
force [N ] thickness [mm] length [mm] curvature [1/mm]

Measured 182 0.11 0.25 1.51
Calculated 197 0.13 0.12 2.01
Error % 8 20 51 33

Figure 5: The convergence plot (left), the comparison between the measured cutting force and the
calculated one (right).
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Figure 6: The measured chip (left) and the calculated one (right).

6 CONCLUSIONS

In this paper a numerical model of the orthogonal tube cutting test and a procedure
for the material rheological parameters identification have been presented. The numerical
model was developed in DeformTM 2D and the optimization procedure was implemented
in the programming language Ruby. The analyzed outputs were: the cutting force, the
chip thickness and curvature, and the contact length between the tool and the chip.
The coefficients of the Johnson Cook constitutive model and the friction factor of Tresca
law were identified at the same time by minimizing the percentage error between the
measured outputs and the calculated ones. Through the Nelder Mead Method, after 20
iterations, an optimal set of rheological and tribological parameters was found, and the
calculated outputs were compared with experimental ones. The results can be considered
acceptable compared to the ones obtained with sets of Johnson-Cook parameters available
in literature. However, the evaluation of chip morphology is still not satisfactory: more
analyses are going on to decrease the errors. Nevertheless, the developed approach can
represent a useful tool in identifying the rheological behaviour of materials processed at
high strain rates.
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  Magnesium alloys, Drawing Process, Fracture, Workability, Finite Element 
Simulation. 

 Due to high compatibility and solubility in human organism, special magnesium 
alloys are applied in bioengineering. Production of surgical threads to integration of tissue can 
be application of these types of alloys. This sort of application calls for fine wires with 
diameters from 0.1 to 0.9 mm. The warm drawing process in heated dies was proposed to 
increase the workability of the Mg alloys. The purpose of this paper is development and 
experimental validation of a mathematical model of a warm drawing process of wires made of 
MgCa0.8, Ax30 and ZEK100 alloys and determination of optimal parameters with the 
objective function defined as maximum of workability. The first part of investigation is 
focused on development of a numerical model, which is based on FE solution. The second 
part of paper is focused on experimental upsetting and tensile tests. Basing on these tests the 
flow stress and fracture models were obtained. The materials models are implemented into the 
Authors’ FE code, which is dedicated to modelling of drawing processes. For experimental 
verification of model the thermo visual analysis of wire drawing and tests of mechanical 
properties of wire were performed. With help of model the dependence between technological 
parameters of drawing and ductility function was obtained. The technical problem defined as 
determination of optimal drawing velocity, which is helpful to obtain the temperature in 
deformation zone taking into account fracture criterion, was solved. The optimum drawing 
schedule for Mg alloys was proposed.  
 
 

Magnesium alloys with high biocompatibility are applied in medicine because of their 
high compatibility and solubility in the human body [13]. The production of surgical threads 
by wire drawing is an example of an application of these types of materials (for example, 
MgCa08, Ax30 and ZEK100 alloys), which act as alternatives to bioinert materials such as 
titanium, tantalum or 316L steel. Corrosion research performed on Mg alloys in vivo showed 
the possibility for implant solubility, which could eliminate implant extraction [3]. Some 
promising properties of the special Mg alloys with respect to these applications include its 
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 2 

strength and biological stability, which make it suitable for a longterm implantation and are 
the focus of interest in [4]. However, the magnesium alloys have low technological plasticity 
during cold deformation; therefore, the drawing of thin wires is difficult [5]. In work [6] a 
new manufacture technology of wire made of Mg alloys is proposed. In this technology the 
metal is heated by a hot die and the process of warm deformation is performed. The 
description of this process is represented in the papers [68].   

The model of ductility is very important element of FE program for simulation of Mg 
alloys wire drawing. It enables the optimization of the process of wire drawing on the basis of 
simulations. The problem of prediction of fracture for the magnesium alloys is described in 
the literature [911]. However, these works account only for few parameters of drawing, such 
as the die angle and the reduction ratio. Aluminium and zinc containing magnesium alloys 
(eg. AZ31, AZ80) are the wellinvestigated materials, which have a bigger technological 
plasticity than MgCa0.8 and Ax30 alloys [11]. The yield stress and fracture models of the 
latter alloys for warm deformation are not available in the literature.  

The purpose of this paper is the development of mathematical models of yield stress and 
ductility for MgCa0.8, Ax30 and ZEK100 alloys, implementation these models into FE code 
[12] and simulations of wire drawing processes in heated die. Experimental validation of 
model is based on thermo visual measurement of wire temperature during drawing. The 
practical conditions of drawing processes for thin wire made of Mg alloys are proposed in the 
paper.  

 
The FE code Drawing2d developed by A. Milenin [1214] is used. The FE model solves a 

boundary problem considering such phenomena as metal deformation, heat transfer in die and 
wire, metal heating due to deformation and friction.  

 
Solution of boundary problem is obtained using variation principle of rigidplastic theory: 

∫∫ ∫∫ −+=
SV V

iiis dSvdVξσdVdtJ
i

ττ

ξ

σξξεσ 00
0

),,(  
 

(1) 

where: iξ  − effective strain rate, sσ  − yield stress, iε  − effective strain, t − temperature, V 
– volume, 0σ  − mean stress, 0ξ  − volumetric strain rate; S – contact area between the alloy and 
the die, τσ  − friction stress, τv  − alloy slip velocity along area of die.  

The friction stress is determined according to law:  
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where: trf  − friction coefficient, nσ  − normal stress on contact between the alloy and the 
die. 

The stress tensor ijσ  is calculated on the basis of strain rate tensor ijξ  according to 
following equation:  
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The stationary formulation of the boundary problem is used. The strain tensor ijε  is 
calculated by integration of strain rate tensor along the flow lines:  
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where: )( pτ  − time increment, )( p
ijξ  − strain rate tensor determined according to equation:  
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where: N − finite element shape functions, ijnξ  − nodal strain rate tensor for current finite 
element, nnd – number of nodes in element.  

The points of flow lines are determined on the basis of the values of the velocity at point p, 
which are calculated according to the formula:   
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The calculation of the position of the next point (p+1) of flow line is carried out according 
to the equation: 
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i

p
i

p
i vxx  (7) 

 
This problem was solved by applying the following method. The passage of the section 

through the zone of deformation was simulated. For this section at each time step the non
stationary temperature problem was examined: 
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where: isdQ ξσ9.0=  – deformation power, c – specific heat; ρ – alloy density, τ – time, λ  
– thermal conductivity coefficient (the following values are used for MgCa0.8, Ax30 and 
ZEK100 alloys: c = 624 J /kgK, ρ = 1738 kg /m3, λ  = 126 J /mK). Heat exchange 
between the alloy and the die is defined as:  

( )dieconv ttq −=α  (9) 

where: diet  – die temperature, α  – heat exchange coefficient.  
The generation of heat from the friction is calculated according to the formula:  

ττσ vq fr 9.0=  (10) 

 
The model of temperature distribution in the die is based on the solution of Fourier 
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equation in the cylindrical coordinate system: 
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where: Qh – power of the heating element.  
The heat Qh is generated in the finite elements, which correspond to the position of heating 

device. The boundary problem is solved on the basis of the variation formulation of equation 
(11). For the areas, which are in contact with the metal, the temperature of the alloy is 
obtained from the solution of the thermal problem for the metal.  

 

 
For obtaining the model of flow stress the loaddisplacement curves from upsetting tests 

were used. Model of yield stress sσ  was proposed as a modified HenzelSpittel equation:  
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where: A, m1  m9 – empirical coefficients.  

 
The key parameter, which presents fracture, is called ductility function [8]. This parameter 

is defined by the following formula:  
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where: k – triaxility factor, sk σσ /0= .  
Critical deformation function ( )ip tk ξε ,,  is obtained on the basis of experimental results for 

the upsetting and the tension tests. In the Drawing2d FEM code [10] equation (13) is 
implemented as an integral: 
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where: τ − time of deformation, )(mτ  − time increment, )(m
iξ  − the values of the strain rate 

in the current time, m – a index number of time step during numerical integration along the 
flow line.  

The numerical integration of function (14) along the flow lines is carried out according to 
formulas (4)(7). The following function of critical deformation is proposed:  

( ) ( ) 4
321 expexp d

ip tdkdd ξε −=  
(15) 

The wire breaking outside the deformation zone was modeled by follow criteria (for 
drawing with out braking):  
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where: yσ  − drawing stress.  

 
In the present paper, the flow stress and fracture models for MgCa0.8 (Mg 99.2 %, Ca 0.8 

%), Ax30 (Mg 96.2%, Al 3.0%, Ca 0.8%) and ZEK100 (Mg 98%, Zn 1 %, rare earths 0.5 %, 
Zr 0.5 %) alloys were obtain. Upsetting and tensile tests were performed on the Zwick Z250 
machine at the AGH University of Science and Technology. Results of the upsetting tests 
were used to determine the flow stress model and results of both tests were used for 
identification of fracture (workability) model.  

 
Cylindrical samples ø8 mm, h = 10 mm were used for upsetting tests. The sample for the 

tensile tests is presented in the figure 1. Conditions and selected results of experiment are 
presented in table 1 (upsetting tests) and table 2 (tensile tests). For the upsetting samples 1u 
and 2u (table 1) the destruction of the sample wasn’t occurred.  



: Shape of sample for tensile tests 
 
The coefficients in equation (12) were determined using the inverse approach [1516] with 

the least squares method. The objective function was formulated as the rootmeansquare 
difference between experimental and predicted loads. The following values of coefficients 
were obtained:  

MgCa0.8:  A=447.4; m1=0.0007542; m2=0.4485; m3=0.2867; m4=0.0001899;  
m5=0.009392; m6=2; m7=0.8318; m8=0.0004359; m9=0.007962.  
Ax30:  A=656.5; m1=0.001210; m2=0.4445; m3=0.05207; m4=0.0006153;  
m5=0.009350; m6=2; m7=0.5107; m8=0.0002455; m9=0.01805.   
ZEK100:  A=656.5; m1=0.001210; m2=0.4445; m3=0.05207; m4=0.0006153;  
m5=0.009350; m6=2; m7=0.5107; m8=0.0002455; m9=0.01805.  
Parameters d1d4 of equation (15) were obtained using fracture test for different values of 

itk ξ,, , which are described above. Interpretation of results of tensile and upsetting tests was 
done using the inverse algorithm [16]. The FEM models of all tests were made for 
determining conditions of fracture initiation ( itk ξ,, ). Change of values itk ξ,,  during 
deformation was calculated in that part of the sample, where initiation of fracture occurred in 
test. Ductility function for each test was calculated on the basis of formulas (14) and (15). The 
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difference between experimental and calculated value of ductility function at the moment of 
the fracture is used as the objective function. The minimum of the objective function is 
reached by a variation of the coefficients. The following values of coefficients were obtained:  

MgCa0.8:  d1 = 0,03313;  d2 = 2,130;  d3 = 0,01167;  d4 = 0,3130.  
Ax30:  d1 = 0,04517;  d2 = 1,172;  d3 = 0,01109;  d4 = 0,1725.  
ZEK100:  d1 = 0.05503;  d2 = 0.1388;  d3 = 0.01036;  d4 = 0.1216.  
 

: Conditions and results of upsetting tests for MgCa08, Ax30 and ZEK100  

Sample 

Initial 
temper
ature, 

0C 

Tool 
velocity, 
mm/min 

The deformation, 
which corresponds 
to destruction of 

sample, mm 
(MgCa0.8 /Ax 30/ 

ZEK100) 

Samples  
(MgCa0.8 /Ax 30 / ZEK100)  

1u 300 60 6.08* / 6.8* / 5.13* 

   

2u 300 600 5.79* / 6.5* / 5.77* 
   

3u 250 60 6.70 / 6.9 / 4.33 
   

4u 250 600 5.0 / 6.7 /4.33  

  

5u 200 60 3.40 / 3.8 / 3.01  

   

6u 200 600 2.80 / 2.85 / 2.27  
   

7u 100 60 2.2 / 1.8 / 1.61  

   

8u 20 10 1.9 / 1.5 / 1.63  

    
*The destruction of the sample did not occur 
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: Conditions and results of upsetting tests for MgCa08, Ax30 and ZEK100 

Sampl
e 

Initial 
temperat
ure, 0C 

Tool 
velocity, 
mm/min 

The elongation, which corresponds to destruction of 
sample, mm 

(MgCa0.8 / Ax30 / ZEK100) 
1t 300 60 22.5 / 12.8 / 16.9  
2t 300 600 16.0 / 12.8 / 13.37 
3t 250 60 14.0 / 10.5 / 14.15 
4t 250 600 8.50 / 9.4 / 10.68 
5t 200 60 6.4 / 7.2 / 11.35 
6t 200 600  / 6.15 / 9.42  
8t 20 10 2.66 / 4.15 / 3.78  

Ductility functions for MgCa08 alloy is presented on figure 2. The obtained models of 
materials were implemented in the FEM model of the wire drawing.  

















      

















a)


















      
















b) 
: Ductility function for MgCa08: a) k=0.3; b) k=0.3 

 
An experimental study of the process of wire drawing was performed for the purpose of 

the verification of mathematical model. The following data were used in experiment:   
 Initial diameter of wire d0 = 1 mm; final diameter of wire d1 = 0.92 mm; 
 Length of calibration part of tool 0.3d1; die semiangle 5°; 
 Drawing velocity in range 10 ÷ 500 mm /min; tool temperature in range 250 ÷ 410 °C; 

Variants of tests for MgCa0.8 magnesium alloy are shown in table 3. For the verification 
of the wire temperature at the output from the zone of deformation the data of infrared camera 
were used. The measurement results for the alloy are shown in table 3 for MgCa0.8.  

: Variants of drawing parameters and measurement results of temperature wire and tool with the 
infrared cameras  for MgCa0.8  

Variant 1 2 3 4 5 6 
V, mm/s 10 10 100 200 200 500 

tdie, C 410 350 350 340 260 250 
Comment wire breaking passed passed passed passed passed 

Tool temperature (thermocouple) [C] 410 350 350 340 260 250 
Temperature of tool (infrared camera) [°C] 440 365 360 340 260 225 (oscillation) 
Temperature of wire (infrared camera) [°C]  320 310 290 210 190 
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The selected results of the numerical simulation of variants 1 and 2 from the table 3 are 
shown on figure 3. The calculated temperature of metal for variant 2 was 311 0C. The 
temperature, obtained in the experiment was 320 0C. The break of wire was observed for 
variant 1 in the experiment. The results of calculation for this variant show an increase in the 
deformation at the end of the wire (figure 3, d), which corresponds to the break of wire.  

Experiment show that numerical model is working correctly that why can be used to design 
drawing schedule.  

 a)  b)  

  c)  d) 
: Results of numerical analysis of drawing process of MgCa0.8 magnesium alloys: a,b – distribution of 
temperature, c,d – distribution of strain intensity for drawing process a,c variant 2 of table 3 and b,d variant 1 of 

table 3  

 
After implementation of the models (12)(15) into the FEM code Drawing2d, the simulation 

of the wire drawing was performed. Example of results is shown above. The initial wire 
diameter was 0.5 mm. The following parameters of the process were changed: velocity (0.01  
2.0 m/s), die semiangle (40, 50 and 60). Final diameter of wire was 0.44 mm (elongation 
1.29). Temperature of die was 400 0C. On figure 4 dependence between ductility function, 
temperature of wire in exit crosssection, drawing force, relative drawing stress and die semi
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angle, drawing velocity was shown. Smaller values of ductility function in this case related to 
die semiangle 40. The critical technological parameter was a drawing velocity. If drawing 
velocity is small (not more 0.010.05 mm/s), the drawing process is possible, because time of 
contact between metal and hot die is relatively long and temperature of metal is above 250 0C. 
From other side, for velocities 0.010.05 mm/s gives minimums of drawing load and relative 
drawing stress was observed (figure 4,c and figure 4,d). Conclusion of those simulations is 
existence of optimum drawing parameters from point of view of fracture, wire braking and 
wire temperature.  

The next step of research was related to determinate of drawing maps for Mg alloys by 
numerical simulations. The value of ductility function (13), value of wire braking criteria (16) 
and temperature conditions were accepted as the objective functions. On figure 5 developed 
drawing maps for MgCa08 was shown. Figure 5,a is related to possible variants of drawing 
from point of view satisfaction of criteria (13). According this relationship, if drawing 
velocity increase, the possible elongation must be smaller (decreased). The breaking 
prognoses is shown on diagram in figure 5,b. In this case, if velocity increases, temperature of 
wire decreases and wire in exit of die is stronger in compare with metal in deformation zone. 
That’s way possibility of braking decrease for biggest values of drawing velocity. The 
mechanism of influence temperature on wire breaking is complicit. From one side, increasing 
of temperature is related to increase of plasticity. This phenomena is take into account in 
diagrams on figure 5,a. From another side, high temperature of metal is related to high 
temperature of metal after deformation zone and special case of wire braking. This braking 
was observed in experiment for variant 1 in table 3. The summary map was shown on figure 
5, d.  
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 Dependence between ductility function (a), temperature of wire in exit crosssection (b), drawing force 

(c), relative drawing stress (d) and die semiangle, drawing velocity  
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 a) b) 

c) d) 
 Maps of possible elongations per pass: (a) – because the fracture criteria (13); (b) – because the 

relationship σy/σs criteria (wire breaking); (c) – because temperature conditions; (d) – summary map 

With help of these maps, the follow drawing schedule was proposed: 
1.000→0,921→0,849→0,782→0,720→0,663→0,611→0,563→0,518→0,478→0,440→0,40
5→0,373→0,344→0,317→0,292→0,269→0,248→0,228→0,210→0,193→0,178→0,164→0
,151→0,139→0,128→0,118→0,109→0,100 with drawing velocity 0.01 m/s. The angle of die 
was 4o and friction coefficient 0.03. According this schedule wire from MgCa08 (figure 6) 
and Ax30 were produced in laboratory of AGH University of Science and Technology.  

 
: Wires from MgCa08 after drawing, d=0.16 mm  
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 Experimental  theoretical methodology to determinate parameters of empirical yield 

stress and ductility models of MgCa0.8, Ax30 and ZEK100 alloys were developed.  
 Ductility of MgCa0.8, Ax30 and ZEK100 alloys is strongly dependent on 

temperature and strain rate.  
 Experiment show that numerical model is working correctly that why can be used to 

design draft schedule. Verification shows that parameters of yield stress function and 
ductility model were correctly calculated.    
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Abstract. This paper presents a study of the influence of the mechanical properties of 
materials on the surface indentation geometry and on the depth-sensing indentation results 
with a Knoop indenter. Three-dimensional numerical simulations of this indention test were 
performed for several materials, with different mechanical properties, using the in-house finite 
element simulation code, DD3IMP. In order to obtain accurate results, the numerical model of 
the Knoop indenter was prepared, taking into account the optimization of the finite element 
mesh. 

1 INTRODUCTION 
Depth-sensing indentation tests have been employed like a standard technique for the 

mechanical characterization of bulk and composite materials. Experimental hardness tests are 
mainly performed using pyramidal Vickers and Berkovich indenters. The Knoop indenter 
differs from Vickers indenter merely in the indenter pyramid shape. The Knoop indenter 
geometry, with lozenge-based pyramid, leads to a more extended and shallower indentation 
impression than the Vickers indenter with square-based pyramid geometry. This makes the 
Knoop indentation attractive for determining the intrinsic thin film hardness 1 and for 
material anisotropy determination. 

At our knowledge, studies of depth-sensing indentation using the Knoop indenter are 
unusual and further investigation is needed. Few examples are the experimental work 
conducted by Riester et al. [2, 3] and the numerical studies performed by Li Min et al. [4] and 
Giannakopoulos et al. [5]. 

Due to the scarce number of experimental and numerical studies, concerning the Knoop 
indenter, their enlargement could become very valuable in the characterization of some type 
of materials, such as thin films and anisotropic materials. In this context, the goal of the 
present study is to contribute for an improved understanding of the influence of the materials 
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mechanical properties on the indentation geometry and, consequently, on the mechanical 
properties evaluation by the Knoop hardness test. 

2 THEORETICAL ASPECTS 
The Knoop indenter has a pyramid-shaped geometry with apical angles of 130° and 172.5°, 

and a base with one diagonal, L, 7.11 times longer than the other, m, [6]. The Knoop indenter 
geometry is shown in Figure 1. 

 
Figure 1: Geometry of the Knoop Indentation  

The Knoop indenter contact area, A, as a function of the indentation depth, is given by: 
,h4.65tantanh2A 2

c21
2
c                                                                (1) 

where ch  is the indentation contact depth and θ1=65°, θ2=86.25° are the semi-apical angles of 
the indenter. 

Marshall et al. [7] investigated the Knoop indentations and observed that, during the 
unloading period, the short diagonal of indentation (m) contracts, due to the elastic recovery, 
while the long diagonal (L) remains unchanged (see Figure 2). 

 
Figure 2: The short diagonal m reduces to m´, the long diagonal remains unchanged L=L´ after unloading 

In the study of Marshall et al. [7], an equation for the recovered indentation size, which 
takes into account the indenter’s geometry and the material mechanical properties, was 
proposed: 

,
E
H45.0

11.7
1

L
m





                                                                     (2) 

where H is the hardness and E is the Young’s modulus. Based on Marshall et al. [7] work, the 
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H and E values obtained by traditional methods are overestimated due to the substantial 
elastic recovery of the short diagonal compared with negligible elastic recovery of the long 
axis direction. In order to improve the mechanical properties results, an iterative procedure 
based in Equation (2) was proposed [7]: the initial values of H and E are calculated by the 
traditional methods and the ratio H/E is adjusted until convergence. 

In this context, the aim of the current study is to investigate the Knoop indentation test. A 
detailed study concerning to the Knoop indentation surface geometry, at maximum load and 
after unloading, is performed. To attain this objective, three-dimensional numerical simulation 
of several fictitious materials was performed. 

3 NUMERICAL SIMULATION AND MATERIALS 
In order to perform the numerical simulations of the Knoop hardness test, the finite 

element DD3IMP in-house code was used. This code was developed to simulate processes 
involving large plastic deformations and rotations, considers the hardness tests a quasi-
statistic process and makes use of a fully implicit algorithm of Newton-Rapson type [8,9]. 
The code allows the three-dimensional numerical simulations of the hardness test using any 
type of indenter geometry and takes into account the friction between the indenter and the 
deformable body. A detailed description of the DD3IMP simulation code has previously been 
given [10]. 

The test sample used in the numerical simulations of the indentation test has both radius 
and thickness of 40 m. Figure 3 shows a global view and a detail of the indentation region of 
the finite element mesh. The discretization was performed using three-linear eight-node 
isoparametric hexahedrons. Due to geometrical and material symmetries in the X=0 and Z=0 
planes, only a quarter of the sample was used in the numerical simulation of the Knoop 
hardness test. The finite element mesh was composed by 17850 elements. The mesh 
refinement was chosen in order to provide accurate values of the indentation contact area, and 
consequently of the mechanical properties. 

In all the numerical simulations, the contact with friction between the indenter and the 
deformable body was considered, with a Coulomb’s coefficient equal to 0.16 [10]. 

 

Figure 3: Finite element mesh for the test sample used in the numerical simulations.  
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The Knoop indenter geometry was modelled using parametric Bezier surfaces, which allow 
a fine description of the indenter tip, namely an imperfection such as the one that occurs in the 
real geometry, similar to the case of the Vickers indenter [11]. The model of the indenter has a 
tip imperfection, which consists in a plane normal to the indenters’ axis with an area equal to 
0.0032 m2. Figure 4 shows a global view of the Knoop geometry and a detail of the indenter 
tip. 

 

 
Figure 4: Knoop indenter modelled with Bezier surfaces. (a) general view; (b) detail of the indenter tip 

Due to the tip imperfection, the indenter area function disagrees from the ideal. The 
following equation provides the Knoop indenter area function used in the analysis of the 
numerical results: 

0032.0h9152.0h4377.65A c
2
c                                                               (3) 

The numerical simulations of the Knoop hardness test were carried out on 10 fictitious 
materials, up to the same maximum indentation depth, m 2.0hmax  . Table 1 resumes the 
mechanical properties of the materials considered. The plastic behaviour of the materials was 
modelled considering that the true-stress, , and the logarithmic plastic strain, , relationship 
was described by the Swift law: n

0 )(k  , where k, 0 and n (strain hardening 
parameter) are material constants (the material yield stress is given by: n

0y k ). The 
constant 0 was considered to be 0.005 for all materials. 

Table 1: Mechanical properties of the fictitious materials used in the numerical simulations 

Material y (GPa) n E (GPa)  maxf h/h  
M1 2 

0.01 

200 

0.3 

0.83 
M2 10 0.49 
M3 20 0.28 
M4 2 

0.3 
0.70 

M5 6 0.41 
M6 20 0.15 
M7 10 0.01 

400 

0.66 
M8 20 0.49 
M9 2 0.3 0.82 
M10 20 0.24 

z x 
y 

(a) (b) 
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3 RESULTS AND DISCUSSION 
The fictitious materials considered (see Table 1) had two different Young’ modulus (200 

GPa and 400 GPa). Two different cases of work-hardening coefficient, n (on one side, the 
materials were assumed elastic-perfectly plastic (n  0) and by the other side, the materials 
had high work-hardening coefficient (n=0.3)), and different yield stress values y  were 
studied. In order to study the mechanical properties influence on the results of the Knoop 
indentation, the surface indentation profiles were analysed along both diagonals, the long 
diagonal, L, and the short one, m, as shown in Figures 5 and 6, respectively. Moreover, these 
figures show the indentation profiles at the maximum load (open symbols) and after 
unloading (solid symbols). 

  

  
Figure 5: Surface indentation profiles at the maximum load along the longer diagonal, L, for the following 

materials: (a) M1, M2 and M3; (b) M4, M5, M6; (c) M7 and M8; (d) M9 and M10 

Figures 5 and 6 show that the “sink-in” appears on the indentation surface at the maximum 
load, except in case of the M1 material, where the surface tends to form “pile-up”. This fact 
certainly is related with a ratio hf/hmax equal 0.83 (where fh  is the indentation depth after 
unload and, hmax the indentation depth at the maximum load) and the low value of the work-
hardening coefficient. In fact, in case of Vickers indentation, the indentation profiles are 
related to the hf/hmax ratio and the “pile-up” formation appears when this ratio is higher than 
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0.8, for low values of the work-hardening coefficient (n ≈ 0). So, the current results for the 
Knoop indentation are in agreement with previous studies for Vickers indenter [10]. It should 
be noted that, for a given material, the hf/hmax ratio does not depends on the indentation depth 
and has a correlation with the value of the H/E ratio, between the hardness and the Young’s 
modulus, which slightly depends on the work-hardening coefficient (the hf/hmax ratio 
decreases when the H/E ratio increases). 

  

  
Figure 6: Surface indentation profiles at the maximum load along the short diagonal, m, for following materials: 

(a) M1, M2 and M3; (b) M4, M5, M6; (c) M7 and M8; (d) M9 and M10 

After unloading, for materials with the same value of Young’s modulus (E=200 GPa, 
Figures 5, 6 (a, b); E=400 GPa, Figures 5, 6 (c, d)), the surface indentation profiles show an 
elastic recovery along both diagonals that increases with the increase of the material yield 
stress, y, and the work-hardening coefficient, n. Figures 5 and 6 also show that the increasing 
of the Young’s modulus value leads to a decrease of the elastic recovery. Moreover, in the 
case of the short diagonal, for the materials M1 and M7, the indentation surface tends to form 
“pile-up”. This is probably connected with the small elastic recovery. 

As a general conclusion, the results presented in Figures 5 and 6 show that both indentation 
diagonals have elastic recover after unloading, as opposed to the conclusion by Marshall et al. 
[7]. In this context, the application of Equation (2) for the determination of the mechanical 
properties, namely the hardness and the Young’s modulus, cannot be quite appropriate. This 
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becomes critical for materials with high work-hardening coefficient and higher values of the 
H/E ratio, between the hardness and the Young’s modulus. 

4 CONCLUSIONS 
- This is an exploratory study concerning the numerical simulation of the Knoop 

indentation tests, in order to understand how to obtain accurate results concerning 
the mechanical properties of materials, namely the hardness and the Young’s 
modulus; 

- The surface indentation profiles shows “sink-in” formation for all materials except of 
ones with the hf/hmax ratio slightly higher than 0.8; 

- Elastic recovery for both diagonals of Knoop indentation is observed, although the 
elastic recovery along the short diagonal is inferior than the one along the long 
diagonal; 

- The recovery along the indentation diagonals should be considered for determination 
of the mechanical properties by Knoop indentation test, especially for materials with 
high work-hardening coefficient and high ratio between the yield stress and Young’s 
modulus; that is, it may be worth reexamining the use of the traditional equations for 
hardness and Young’s modulus evaluation, providing that an adequate value of 
correction factor of indenter geometry is considered. 
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Abstract. Parameter identification is a technique which aims at determining model 
parameters based on a combination of experimental and numerical procedures. This work 
addresses identification of material parameters for elastic-plastic problems using optimization 
methods. Firstly, a comparative study is presented in which optimization techniques based on 
Genetic Algorithms, Univariate, Steepest Descent and BFGS methods are discussed. 
Identification of Carbon steel parameters based on tensile tests illustrates application of the 
BFGS, GA and GA-BFGS hybrid methods. 

 
 
1 INTRODUCTION 

In recent years, the development of robust computational models has made possible to 
efficiently simulate a wide range of metal forming processes. Such progress has been 
translated into the release of commercial packages able to simulate forming processes such as 
forging, rolling, deep drawing and extrusion amongst many others. However, the success of 
the simulations is directly linked to the capacity of constitutive models and respective 
parameters to accurately represent the experimental behaviour of the material. In general, 
industries have determined such parameters by means of mechanical tests described in 
technical standards using the assumption of homogeneous deformation. For instance, the 
material parameters obtained using tensile tests are determined for strains up to the necking 
onset, thereby severely limiting the level of plastic strain above which the results are no 
longer valid. Therefore, use of such material parameters in the simulation of metal forming 
operations involving large plastic strains would compromise the results.  

The numerical-experimental technique known as parameter identification has emerged as 
the best approach to determine material parameters at large strains. The recent literature 
shows many works on the determination of constitutive parameters of elastic-plastic 
problems1. The investigation presents further studies on the application of optimization 
strategies to this class of problems. In a first part, a comparative study of the Univariate 
technique, gradient-based methods and Genetic Algorithms (GA) is discussed based on 
experimental data available in the literature. In a second part, a hybrid strategy combining GA 
with a gradient-based optimization method is assessed. The technique is illustrated for tensile 
tests of cylindrical specimens prepared according to the ASTM and NBR technical standards. 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 
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2 PARAMETER IDENTIFICATION AND THE OPTIMIZATION PROBLEM 
Conceptually, parameter identification consists of finding a set of parameters, defined in 

this work as p, which minimizes the difference between an experimental measure and a 
corresponding computed response with respect to a given norm. In this work, the computed 
response is obtained by solving the direct problem using a non-linear finite element 
approximation whereas the experimental response corresponds to measurement of selected 
variables of the experiment.  

Parameter identification, therefore, can be formulated using optimization techniques, 
which consists of finding a minimum of the general problem 
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in which p ∈ Rn is the design vector (a vector containing n design variables), inf
ip , and, sup

ip , 
are upper and lower bounds of the design variables, respectively, go(p) is the objective 
function to be minimized, subjected to equality, hl(p), and inequality gj(p) constraints. 

The initial problem is complemented by the definition of the objective function, which in 
this work is based on the relative quadratic difference between experimental and computed 
response evaluated over the deformation process, so that 
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10 /)(1 pp ,                                          (2) 

where RExp is the experimental response, RMEF(p) is the corresponding numerical response 
computed using a set of design variables p, and N is the number of experimental points. In the 
present case, the measured and computed tensile loading are used to evaluate go(p), and the 
hardening parameters correspond to p. Therefore, in the identification process, the loading 
curve is computed using Finite Elements based on a given set of hardening parameters. The 
optimization process subsequently changes p, so that, at the end of the identification 
procedure, go is minimum.  

The literature shows several principles upon which optimization methods are based for 
multidimensional problems2,3,4. The most common approaches are mathematical 
programming techniques, evolutionary methods and, to a lesser extent, the univariate 
approaches. The gradient-based algorithms fall within the former, in which the gradient of 
go(p) with respect to p is computed at each iterative step. Gradient-based algorithms, 
therefore, requires a continuous and twice differentiable objective function and constraints 
(the Hessian must be continuous). A disadvantage of such methods is the influence of the 
initial parameters on the process when the problem is noncovex. Moreover, the nonconvexity 
of parameter identification problems favours existence of multiple local minima.  

Evolutionary methods consist of optimization algorithms based upon a generic population
and use concepts inspired in biological mechanisms. The idea behind all variants of 
evolutionary algorithms is that each candidate plays the role of an individual, part of a 
population, and that some individuals are selected to generate the next generations. Selection 
and evolution of the population takes place by a recursive application of operators mimicking 
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biological evolution, such as mutation and combination. Besides no requirement of 
differentiability of the objective function and restrictions, the advantage of evolutionary 
algorithms is their theoretical capacity to determine the global minimum despite the existence 
of multiple local minima and plane regions (very small gradients). However, their obvious 
disadvantage lies on the high computational cost due to the large number operations required. 

In addition to the gradient-based algorithms and evolutionary methods, the univariate 
strategy can also be used to multidimensional problems. In this case, a one-dimensional 
optimization technique is used to minimize one design variable at a time, seeking to produce a 
sequence of improved approximations to the minimum point.  

2.1 Univariate methods 
The concept of the method is described in Rao3 for general optimization problems. In this 

method, one seeks to produce improved approximations to the minimum point by changing 
only one design variable at time and assuming that the remaining variables are constant 
during the process. The procedure is repeated successively for each design variable until a 
global convergence criterion is reached. This strategy requires application of a one-
dimensional optimization method, giving rise to several possible combinations. In this work, 
this strategy is used is conjunction with the Golden Section one-dimensional strategy2. It is 
worthy to mention that the Golden Section method does not require computation of the 
gradient of the objective function. Convergence for the present implementation of the 
Univariate method is established by the mean quadratic relative difference of the current and 
previous set of material parameters, )( pφ  (please, see Eq. (6)). 

2.2 Gradient-based methods 
Gradient-based methods are iterative in their essence, so that, at each iteration a new set of 

design variables are determined leading to minimization of the objective function. The 
iterative procedure is repeated until convergence is reached. The optimization literature 
indicates many mathematical strategies to account for the gradient in the iterative process. 
This work addresses the Steepest Descent and modified Newton with Hessian matrix 
computed using the BFGS equations.   

For the sake of objectivity, this section presents a summary of the methods and the reader 
is referred to Arora2 and Rao3 for further insights on general purpose optimization methods.  
In this class of problems, the necessary conditions for a design vector p be a local minimum 
are established by the Karush–Kuhn–Tucker conditions (or KKT conditions). Most parameter 
identification techniques constitute unconstrained problems and the KKT conditions require 
only a null gradient of the objective function at the optimum point. Therefore, in order to 
ensure that p* is a local minimum, )(0 pg is expanded in a Taylor series in the neighbourhood 
of p* so that 

dpQdpp *)(
2
1*)()( 00

Tgg =− ,     where    0p =∇ *)(0g   and   *ppd −= ,         (3) 

in which p is sufficiently close to p*, Q  is known as Hessian matrix and corresponds to the 
second derivative of the objective function with respect to the design variables, and d is the 
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search direction in the design space. Noticeably, since 0*)()( 00 ≥− pp gg , the procedure 
leads to a minimum p* only if the Hessian is positive definite. Therefore, Equation (3) 
suffices to ensure that p* is a local minimum. Convergence for gradient-based optimization 
techniques are usually defined by the norm of the gradient of the objective function, 

( ) ||)(|| 0 pp g∇=φ , however, in this work, some comparative examples adopt the same 
criterion established for the Univariate method (please, see section 3.1). 

Steepest Descent method: The Steepest Descent method uses the negative of the gradient of 
the objective function as a search direction based on the fact that, in a given point p, the 
direction opposite to )(0 pg∇  is the direction of fastest decrease of the objective function2. 
The optimization process is iterative so that the design variables at iteration k+1 are computed 
using the gradient of the objective function and the optimum step length, α. In the present 
case, a normalized search direction, d, is used, so that   

)()()()1( kkkk dpp α+=+           and            ||)(||)( )(
0

)(
0

)( kkk gg ppd ∇∇−= .           (4) 

Computation of the gradient of the objective function, ∇go(p), known as sensitivity analysis, 
can be accomplished by using analytical, semi-analytical or numerical strategies. In this work 
∇go(p) is computed using central finite differences. The optimal step size, α, represents the 
scaling along the search direction, being computed by solving a one-dimensional 
minimization problem and assuming that ∇go(p) is orthogonal to the search direction. In the 
present implementation, the Golden Section method is utilised to calculate α along the search 
direction.  

Newton’s method: The classical Newton’s method is derived from the second-order 
expansion of the objective function in a Taylor series by assuming that the gradient of the 
objective function is null for iteration k+1. Contrasting to the Steepest Descent algorithm, 
Newton’s method presents a quadratic rate of convergence in the vicinity of the optimal point. 
However, to ensure convergence under such condition, the Hessian must remain positive 
definite and computation of the optimum step size must be included. Therefore, the modified 
Newton’s method using a normalized search direction can be represented as  

)()()()(
0

)(
0

1)()()()1( ||)(||)( kkkkkkkkk gg dpppQpp αα +=∇∇−= −+ .                    (5) 

An evident drawback of the modified Newton’s method is the requirement to calculate the 
Hessian matrix at each iteration. The search for alternative approaches to evaluate the Hessian 
gave rise to the so-called Quasi-Newton methods, which use approximations of Q-1 computed 
from the gradient of the objective function. In this work, the strategy proposed by Broyden, 
Fletcher, Goldfarb and Shanno2 (BFGS) was used to calculate the inverse of the Hessian.

2.3 Evolutionary methods 
Evolutionary methods are heuristic search strategies inspired in natural phenomena and 

biological mechanisms. One of the most widely used methods is the Genetic Algorithm (GA), 
which attempts to mimic natural evolution of a generic population4. In such techniques, the 
optimization process evaluates only go(p) and does not require a continuous and differentiable 
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objective function. When convexity can not be ensured in advance, as most parameter 
identification problems, GA methods yield good approximation to obtaining the global 
minimum within the design space. In addition, the algorithm can be easily parallelized, 
making possible to use multiprocessor and distributed computing. It is relevant to mention 
that GAs have been used in areas as widely different as economics, task scheduling, Computer 
Aided Design (CAD), state assign problems, robot trajectory generation, routing in 
telecommunications network  and many others. Application of GA to parameter identification 
is a relatively new endeavour, especially when addressing finite strain elastic-plastic 
problems. The recent works of Chaparro et al.5, Munõz-Rojas et al.1,6 and Aguir et al.7
illustrate application of GA to this class of problems.  

Genetic Algorithms account for two fundamental steps: selection and reproduction. The 
former is the process of choosing parents for reproduction, whereas the latter creates offspring 
from one or two parents.  Initially, the initial population, i.e. a set of design vectors 
containing the material parameters {p1 , p2 , ... , pni}, is randomly generated within the design 
space. In general, the literature designates each design vector, pi, as an individual (or 
phenotype). The number of individuals of a population, ni, is a variable of the method defined 
a priori. The most usual structure of GA encodes the design vector (or an individual) in a 
binary string upon which the genetic operations can be easily applied. The gene of an 
individual corresponds to a single material parameter, and is represented by a number of 
binary units (1 or 0) – number of bits. The accuracy of the search is determined by the number 
of bits used to encode a gene (or a single material parameter).    

Generation of the initial population is followed by computation of the objective function 
for every individual and application of the selection. The fitness proportionate selection, also 
known as roulette-wheel selection, was used in this work to select parents. This method 
assigns a proportion of the roulette wheel according to the value of the objective function, i.e. 
smaller objective functions yield larger proportions, thereby increasing the probability of 
selection after a random rotation of the roulette wheel.  

The formation of a new generation is completed by application of the genetic operators of 
combination and mutation to the selected individuals. In the process of combination, two new 
individuals (referred as offspring) are generated from a random combination of genes of pre-
selected parents. The mutation operation randomly alters the values of genes of the individual 
according to a given rate. Mutation prevents the GA to reach an early convergence to a local 
minimum. The processes of selection and reproduction are subsequently applied to form new 
generations until a convergence or stopping criterion is reached. 

2.4 GA-BFGS hybrid method 
Hybrid methods can be generally defined as a combination of two or more optimization 

methods. This strategy is mainly used to improve the accuracy of results and convergence of 
the optimization process. The literature shows just a few works devoted to application of 
hybrid approaches to parameter identification of elastic-plastic problems. Ponthot and 
Kleinermann8 investigated application of the conjugate gradient, BFGS, a modified Globally 
Convergent Method of Moving Asymptotes, Levenberg-Marquardt and Gauss-Newton
optimization methods to identification of hardening parameters of a von Mises material. The 
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authors discussed also several possible combinations of the aforementioned methods aiming 
at avoiding local minima.  

Hybrid approaches combining Genetic Algorithms and gradient-based optimization 
procedures were proposed by Chaparro et al.5 and Muñoz-Rojas et al.1,6. Chaparro et al.5
combine a Genetic Algorithm and the Levenberg-Marquardt method to determine hardening 
parameters of anisotropic materials. Muñoz-Rojas et al.1,6, aiming at the GTN damage model, 
proposed a combination of GA with either Sequential Linear Programming or Globally 
Convergent Method of Moving Asymptotes methods. In both works the Genetic Algorithm is 
used with the objective of reducing the design space of the gradient based method by 
providing initial parameters closer to the global minimum. A hybrid identification procedure 
using artificial neural networks was developed by Aguir et al.7 as an alternative to the finite 
element calculations to evaluate the objective functions within the Genetic Algorithm. The 
authors used also a multi-objective strategy to account for experimental results for uniaxial 
and biaxial tensile tests.    

In addition to the positive characteristics highlighted is section 2.3, GA can be used to 
assess the design space, making possible to define new lateral restrictions of the search 
region. On the other hand, stringent convergence requirements, large initial population, 
generations and number of bits demand higher computing resources and processing time. 
Therefore, aiming at improving the efficiency of the optimization process, a hybrid strategy 
combining GA and the modified Newton – BFGS gradient-based method is proposed. The 
procedure can be described as follows: (i) Initially, the Genetic Algorithm is applied seeking 
to reduce the search region of the gradient-based method (i.e. improve estimation of the initial 
parameters). This strategy intends to circumvent the well-known convergence problems and 
convergence to local minima associated with defining initial parameters in gradient-based 
methods. There are no established rules on defining the best initial population size or other 
GA-related parameters. (ii) The second step consists of using the modified Newton – BFGS
method with initial parameters, p(0), given by the best individual (i.e. smallest value of the 
objective junction) provided by the last generation of the GA. This strategy has proven to be 
robust and accurate since the modified Newton – BFGS method presents high convergence 
rate in the neighbourhood of the optimal point. 

3 NUMERICAL EXAMPLES AND DISCUSSIONS 

The parameter identification techniques, including the convergence process, depend upon (i) 
the finite element approximation, (ii) the optimization method, (iii) the finite element mesh 
(iv) the number of increments of the non-liner mechanical solution, (v) the initial parameters, 
and (vi) the convergence or stopping criteria. The following sections address some of the 
aforementioned aspects for the identification techniques summarized in section 2. The first 
example presents an assessment of the identification strategies (i) Univariate – Golden 
section, (ii) Gradient-based – Steepest Descent, (iii) Gradient-based – modified Newton-
BFGS and (iv) Genetic Algorithm, using experimental data available in the literature. 
Emphasis is placed on the BFGS method, for which effects of the number of mechanical 
increments and mesh size is discussed. The second example shows application of the modified 
Newton – BFGS method and hybrid GA-BFGS strategy to determining constitutive parameters 
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based on uniaxial tensile tests. The effects of the specimen geometry and initial parameters 
are also investigated. 

3.1 Assessment of individual techniques 
The experimental load vs. displacement curve presented by Ponthot and Kleinermann5, 

corresponding to a special steel used in piping manufacture for the nuclear industry (Steel A-
533, Grade B, Class 1), is adopted as reference in this example. The initial radius and 
reference length of the specimen are r = 6.413 mm and 0 = 26.67 mm (2 0 = 53.34 mm is the 
gauge length), respectively. The problem is assumed isothermal and axisymetrical. The finite 
element mesh used in the simulations attempts to reproduce reference [8] and contains 400 
elements and 451 nodes with refinement at the necking region. The same yield stress curve 
was utilised in this example, 

( ) ( )[ ]ppY δεσσζεσσ −−−++= ∞ exp100 ,                                        (6) 

in which σ∞, σo, ζ and δ are the parameters to be determined. The Young modulus and 
Poisson’s ratio are assumed E = 206.9 GPa and ν = 0.29, respectively. The initial set of 
material parameters for each method is presented in Table 1. Noticeably, the Steepest Descent
and BFGS methods require only initial values, whereas the Univariate and GA techniques 
demand a search interval delimited by maximum and minimum values. The GA parameters 
used in this example are the following: population of 80 individuals, parameters encoded with 
20 bits, 85 % of combination probability and 5 % of mutation. 

Table 1.  Initial and maximum/minimum values. 

Method  σσσσ∞∞∞∞  [MPa] σσσσo  [MPa] ζζζζ  [MPa] δδδδ [m/m] Step size 
BFGS 

Steepest Descent Initial 650 500 325 20 0.5 

Univariate – Golden Section 
Genetic Algorithm 

Maximum 
Minimum 

800 
500 

600 
400 

400 
250 

30 
10 

- 
- 

The perturbation adopted by the Steepest Descent and BFGS methods is defined by 
multiplying the initial parameters by a constant factor 6102 −×=f . The different nature of the 
optimization strategies used in this work recommends specific convergence or stopping 
criteria. However, in an attempt to harmonize the convergence assessment, a global quadratic 
measure of the relative uncertainty interval was used for the Univariate, Steepest Descent and 
BFGS methods. Notwithstanding, the characteristics of the GA prevent definition of similar 
stopping criterion. Therefore, in the present simulations, the stopping criterion for the GA is 
the difference of go(p) computed for the worst and best individual. Thus 

Univariate, Steepest Descent, BFGS:    ( ) 3

1

2

)1(

)()1(
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in which pi is an individual parameter, n is the number of constitutive parameters and 
superscripts k and l indicate the iteration step and generation number, respectively. It is 
relevant to mention that assessment of the convergence for gradient-based methods can also 
be defined by using the norm of the gradient of the objective function. 

Table 2.  Final parameters and process convergence data. 

Method σσσσ∞∞∞∞  [MPa] σσσσo  [MPa] ζζζζ  [MPa] δδδδ [m/m] g(p) CPU / CPUBFGS

Genetic Algorithm 667.63 434.77 254.75 20.002 0.00956408498 21.52 
Univariate – Golden Section 669.23 479.91 250.00 16.314 0.00986779019 17.39 

Steepest Descent 668.02 450.60 252.53 18.764 0.00938025222 9.67 
BFGS 678.19 471.25 218.13 15.524 0.00881813074 1 

Ponthot and Kleinermann8 657.7 458.5 311.4 18.868 - - 

Table 2 presents the final parameter set, objective function and relative CPU time (with 
respect to the BFGS method) for each identification technique, whereas Figure 1 shows the 
corresponding loading curves. Ponthot and Kleinerman’s8 parameters are also indicated in 
Table 2. For the initial parameter set given in Table 1, the BFGS presented the best results 
owing to the smaller objective function (i.e. smaller relative errors between the experimental 
and numerical loading curves) and smaller processing time (i.e. higher convergence rate). It is 
relevant to mention that, despite its best performance, the BFGS method is highly sensitive to 
the initial parameters, as discussed in section 3.2. The initial GA internal parameters (number 
of bits and population size) lead to a relatively smaller objective function. However, the large 
number of evaluation of the objective function imposes a prohibitively high CPU time when 
using single-processor computing. In this example, the Univariate method required also high 
processing time without any significant gain in the objective function. The advantage of such 
method is its dependence on the maximum/minimum initial interval instead of a parameter 
set.  

40

50

60

70

80

0.00 0.05 0.10 0.15 0.20 0.25
Elongation

Te
ns

ile
 L

oa
d 

[k
N

]

Experimental

Genetic Algorithm

BFGS

Stepeest Descent

Univariate

Figure 1: Loading curve. 
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3.2 Hybrid methods: Genetic Algorithm and BFGS technique 
The best results provided by the BFGS optimization technique recommends further 

investigation on its application to parameter identification. However, the well-known 
dependence of gradient-based optimization methods on initial parameters and possibility of 
many local minima suggest use of alternative optimization techniques to estimate improved 
initial parameters for the BFGS method. This work uses a Genetic Algorithm in an attempt to 
determine initial parameters for the BFGS method closer to the global minimum. In this 
section, a brief assessment of the influence of the initial parameters in the identification 
process is presented, followed by the application of the GA-BFGS hybrid approach. 
Furthermore, the effects of the specimen geometry are also discussed. 

Aiming at evaluating the effects of variations of geometry in the parameters, tensile tests 
were performed using specimens prepared according to the American ASTM E 8M-01 and 
Brazilian NBR ISO 6892 standards (referred in this work as ASTM and NBR, respectively). 
Figure 2(a) shows the ASTM and NBR specimens. The Brazilian NBR defines specimens 
with diameter and gauge length mmd 1.010 ±=  and mm15.0700 ±= , respectively, 
whereas the ASTM establishes mmd 2.05.12 ±=  and mm2.05.620 ±= . Six NBR and 
ASTM specimens were prepared and tested, so that the corresponding median tensile load x 
elongation curves, shown in Figure 2(b), were used in the identification process. 

Figure 2: (a) Specimens prepared according to NBR and ASTM standards; (b) Tensile loading. 

Table 3.  Initial and maximum/minimum values. 

Method  σσσσ∞∞∞∞  [MPa] σσσσo  [MPa] ζζζζ  [MPa] δδδδ [m/m] Step size 

BFGS 
Case (1) 
Case (2) 
Case (3) 

1050 
700 
250 

900 
600 
210 

750 
500 
180 

50 
30 
10 

0.5 

GA – BFGS  Hybrid method Maximum 
Minimum 

1050 
250 

900 
210 

750 
180 

50 
10 

- 
- 

The geometrical models used in the simulations were defined according to actual 
measurements of the specimens. In this example radial symmetry and axisymetry were also 
assumed. A finite element mesh of 200 elements and 231 nodes, with progressive refinement 
at the centre region, was used for both NBR and ASTM specimens. The Young modulus and 
Poisson’s ratio were E = 200 GPa and ν = 0.3, respectively.  

(a)                                                                                                                         (b) 
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Table 3 shows the initial parameters used for the BFGS optimization strategy and the 
search region defined for the GA-BFGS hybrid method. The same set of initial parameters was 
used for identification based on NBR and ASTM specimens. The perturbation in this example 
was defined as in section 3.1. On the other hand, in this case, convergence for the BFGS was 
assessed by the norm of the gradient of the objective function, i.e. ( ) 6

0 102||)(|| −×=∇= pp gφ .  
Results obtained by sole application of the BFGS method are presented in Table 4 for 

Cases (1) to (3). One can observe that parameters obtained for Case (2) are close for both 
ASTM and NBR specimens. As well remarked in the literature, convergence for the BFGS
optimization strategy is strongly dependent upon the initial parameters. No convergence was 
achieved in Cases (1) and (3) for the NBR and ASTM specimens within 50 iteration steps. 
Evolution of |||| 0g∇ , shown in Figure 3, illustrates the convergence process for all cases.  

Table 4.  Parameters determined for ASTM and NBR specimens using the BFGS optimization method. 

Method Case σσσσ∞∞∞∞  [MPa] σσσσo  [MPa] ζζζζ  [MPa] δδδδ [m/m] g0(p) CPU 

ASTM 
Case (1) 
Case (2) 
Case (3) 

– 
708.40 

– 

– 
421.98 

– 

– 
592.60 

– 

– 
35.424 

– 

No convergence
0.00266693349 
No convergence 

2 h 11 m 
38 m 

1 h 52 m 

NBR 
Case (1) 
Case (2) 
Case (3) 

– 
720.65 

– 

– 
426.61 

– 

– 
552.82 

– 

– 
35.042 

– 

No convergence
0.00480087739 
No convergence

2 h 26 m 
37 min 

2 h 14 m 

The GA – BFGS hybrid method is introduced as a possible solution for the convergence 
problem (owing to initial parameters) of gradient-based optimization strategies. Initially, in a 
first stage (A), the Genetic Algorithm is applied aiming at obtaining a point close to the global 
minimum (thereby avoiding local minima). The second stage (B) consists of application of the 
BFGS method to search for a minimum even closer to the global minimum.  

           
Figure 3: Evolution of  ||∇g0 || for the initial set of parameters given in Table 3 for the BFGS method. 
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Table 5.  Final parameters determined for ASTM and NBR specimens using the GA – BFGS hybrid approach. 

Method Stage σσσσ∞∞∞∞  [MPa] σσσσo  [MPa] ζζζζ  [MPa] δδδδ [m/m] g(p) CPU
(A) GA 731.72 440.00 505.95 26.540 0.01200340080 1 h 26 m

ASTM 
(B) BFGS 708.40 421.98 592.60 35.429 0.00266693349 32 m (*)

(A) GA 737.98 437.30 469.74 31.075 0.00802597455 1 h 57 m
NBR 

(B) BFGS 720.65 426.61 552.82 35.042 0.00480087739 30 (*)

(*) The total CPU time are: ASTM = 1 h 58 m and NBR = 2 h 27 m.  

In this example, the parameters used for the GA are as follows: population of 60 
individuals, parameters encoded with 10 bits, 85 % of combination probability and 5 % of 
mutation. It is interesting to note that smaller number of bits leads to “convergence” 
(difference between go(p) of the worst and best individuals, εGA) at smaller number of 
generations, but with larger errors. In this case, larger errors are not relevant since the 
parameters obtained by applying the GA are used only as an initial approximation for the 
BFGS method. The stopping criterion used in this example is εGA = 10-2.  

Table 5 presents the parameter set obtained after stages (A) and (B) for ASTM and NBR 
specimens. The initial parameter set for the BFGS method, stage (B) of Table 5, were 
obtained after the GA reaches the stopping criterion. It is worthy to note that stricter stopping 
criteria would require larger number of generations, as indicated in Figure 4, without any 
improvement of the overall performance of the identification process.  
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Figure 4: Evolution of the GA during Stage (A) and indication of the stopping creteria.

Case (2) of Table 4 (both ASTM and NBR) and Table 5 show that the GA – BFGS hybrid 
method yields the same parameters as the direct application of the BFGS technique. 
Therefore, it is possible to infer that such set of parameters indeed represent the global 
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minimum of the problem. Although the direct application of the BFGS method required less 
CPU time, its success is strongly dependent upon the initial parameters. On the other hand, in 
spite of requiring additional processing time, no convergence problems were observed when 
using the GA – BFGS hybrid method. 

3 FINAL REMARKS 
Parameter identification has become an essential task when developing new constitutive 

models. Direct measurement of constitutive parameters is not always possible thereby 
recommending use of inverse problem strategies, which in turn, are based upon optimization 
methods. In a first part, this work addressed identification procedures based on the Univariate
approach, Steepest Descent and BFGS gradient-based methods and a Genetic Algorithm. A 
comparison of the aforementioned identification strategies shows that the BFGS method 
provided the best results (lower CPU time and objective function). However, this technique, 
as all gradient-based optimization methods, are strongly dependent upon the initial parameters 
and, therefore, liable to convergence problems, as discussed in a second example. Therefore, a 
GA-BFGS hybrid approach is proposed, i.e., the GA is applied first in order to estimate initial 
parameters for the BFGS method closer to the global minimum. The strategy was able to 
circumvent the convergence problems when attempting to determine material parameters of 
Carbon steel.  
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Abstract. Machining one of the most common manufacturing processes within the industry 
but it is also a process with extreme conditions in the vicinity of the cutting insert. Due to 
diversity of physical phenomena involved machining has proven to be complex and difficult 
to simulate. The chip formation process is in the vicinity of the cutting insert associated with 
highly localized severe deformations accompanied by high local temperatures rise. 
Furthermore, the strain rate can in the primary zone be very high (>50000 s-1), far beyond 
what can be reached with conventional mechanical material tests. Therefore, the possibility to 
extrapolate the material model outside the calibration range with respect to strain rate is a 
wanted feature. It is recognized that the mechanical behavior at high strain rate differs 
considerably from that observed at low strain rates and that the flow stress increase rapidly 
with the strain rates above ~1000 s-1. The predictive abilities outside as well as inside the 
calibration range of the empirical Johnson-Cook plasticity model and a dislocation density 
based model are compared and discussed with reference to AISI 316L stainless steel. The 
results clearly show the difficulty of obtaining a comprehensive material model that predicts 
the material behavior across the loading conditions that can occur in machining with good 
accuracy and that the accuracy of extrapolation is uncertain. 

1 INTRODUCTION 
Machining is a well recognized manufacturing process and one of the most common within 

the industry. Understanding of the material removal process is highly important and the 
ability to simulate machining are several, including determination and optimization of cutting 
tools design, cutting parameters, residual stresses and cutting process robustness to name a 
few. Machining has however proven to be particularly complex to simulate due to several 
numerical as well as modelling complications [1]. The work piece material during machining 
is forced to quickly change flow direction at the cutting edge vicinity to subsequently form a 
chip. These prerequisite give mainly rise to two main deformation zones, which are usually 
called the primary and the secondary deformation zone [1]. A third deformation zone can also 
be identified opposite the flank of the insert [2]. The major shearing of the work piece 
material takes place in the primary deformation zone and in addition to severe plastic 
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deformation and dissipated heat generations the strain rate can reach > 50000 s-1 within this 
zone [3]. The secondary deformation zone occurs in the contact between the chip and the 
insert after the material has gone through the first deformation zone. Due to the severe contact 
conditions with sticking and sliding at high pressure the local temperature is high within this 
zone. Heat is generated due to plastic generation and friction. Hence during machining the 
workpiece material locally experience severe strains, high strain rates and high temperatures 
causing hardening and softening. A material model must handle the involved complex 
interactions phenomena as plasticity, friction, heat generation, heat flow, material damage and 
microstructural changes of the workpiece material in order to be able to handle a wide range 
of strains, strain rates and temperatures.  

The calibration of any material model is usually done based on data from material testing 
covering the relevant range of loading conditions of the intended application. The magnitude 
of strains, strain rate and temperatures involved in machining are however several orders 
higher than can be generated from conventional material tension and compression testing. 
Despite the fact that Split-Hopkinson is a technology that is becoming more common and that 
a strain rate of 10000 s-1 with large plastic strains [4] can be reached it is not sufficient to 
reach the extreme conditions that arise in the area around the cutting insert. Therefore the 
possibility to extrapolate the material model outside the calibration range without loss of 
accuracy is a highly wanted feature. This is not entirely trivial since materials exhibit different 
strain hardening and softening characteristic at different strain, strain rate and temperatures 
and that a marked increase in the strain rate sensitivity has been noticed for strain rates higher 
than approximately 1000 s-1 [5,6]. This significant increased strain rate sensitivity has been 
interpreted to different mechanisms for example increased dominance of dislocation drag [5], 
enhanced rate of dislocation and twin generation [6].  

Considerable amount of work has been devoted to develop material models. The models 
can be divided into two major categories, empirical material models and physically based 
material models. The empirical models are solely based on curve fitting without any 
interpretation of the underlying physics and the deformation mechanisms. Hence the need for 
material data is relatively small which together with few parameters making them easy to use. 
The Johnson-Cook, J-C, plasticity model is an empirical material model that has been widely 
used to characterize the material response and is commonly used in FE-simulation of metal 
cutting. The physical based material models are on the other hand related to the underlying 
physics of deformation and the evolution of the microstructure. The predictive capabilities 
beyond the calibration range are therefore expected to be larger and more suitable for 
simulation of manufacturing processes involving large range and severe conditions of 
deformation, deformation rate and temperature. The predictive abilities outside as well as 
inside the calibration range of the empirical J-C plasticity model and a dislocation density 
based model, physical based, are in this study compared and discussed with reference to 316L 
stainless steel.   

2 MATERIAL MODELS 

2.1 Johnson-Cook plasticity model 
The flow stress response of the J-C plasticity model is a multiplication of the individual 

strain, strain rate and temperature effects and is written 
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where pε is the effective plastic strain, pε is the effective plastic strain rate, refε represents a 
reference strain rate, Tmelt is the melting temperatures, Troom is the room temperature. 
Parameters A, B, C, n and m are fitted user defined material parameters.   

2.2 Dislocation density model 
Dislocations and their motions have a decisive role in inelastic deformation of metals and 

alloys, especially at room temperatures. Their motion through the crystals of a polycrystalline 
material and their interaction is however a complex phenomenon. The model presented here 
assumes that dislocation glide is the dominant contribution to plastic straining. Climb is also 
included. The dislocation density model includes a coupled set of evolution equation for the 
state variables, dislocation density and vacancy concentration, in order to keep track of the 
hardening/softening behavior of the material [7,8,9].  

The macroscopic flow stress is assumed to consists of additive components as in this case 
consists of three components according to 

dragGy σσσσ ++= * (2)

where σG and σ* are the long-range athermal component respectively the short-range 
contributions to the flow stress. The last component, σdrag, accounts for phonon and electron 
drag. The first component, σG, is the stress needed to overcome the long-range interactions 
lattice distortions due to the dislocation substructure and grain boundaries. The second 
component, σ*, is the stress needed for the dislocation to pass through the lattice and to pass 
short-range obstacles. Thermal vibrations will then also assist the dislocation when passing 
these obstacles. The long-range stress component is commonly written as 

iG Gbm ρασ = (3)

where m is the Taylor orientation factor, α is a proportionality factor, G is the temperature 
dependent shear modulus, b is the magnitude of Burgers vector and  ρi is the immobile 
dislocation density.  

The short-range stress components may be written as, 
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where ∆f0 denote the required free energy needed to overcome the lattice resistance or 
obstacles without assistance from external stress, τ0 denote the athermal flow strength 
required to move the dislocation past barriers without assistance of thermal energy, 
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refε denote the reference strain rate. The exponent p and q characterize the barrier profiles and 
usually have values between 10 ≤≤ p respectively 21 ≤≤ q .  

The component that accounts for phonon and electron drag is written as [8] 

p
pedrag

TCCG εσ 





 +=

300

(5)

where T denotes the temperature, G the shear modulus, Ce and Cp is the electron drag 
respectively the phonon drag coefficient. 
     The evolution of the structure is considered to consist of a hardening and a recovery 
process. The total dislocation density may be characterized by the creation process, the 
immobilization process where dislocation get stucked, the re-mobilization process where the 
opposite occur and the annihilation process [7]. The total dislocation density in this model is 
considered to consist of both immobile dislocation density and mobile dislocation density. 
The used model assumes that the mobile dislocation density is stress and strain independent 
and much smaller than the immobile ones. Hence the evolution equation is written 

)()( −+ −= iii ρρρ  (6)

where index i denotes the immobile dislocations. It has been observed that dislocation tends 
to cluster into cells and subgrains during plastic deformation [10] and forming LEDS (Low-
Energy Dislocation Structures) [11]. This structure evolution influences both the hardening 
and the recovery. The increase in immobile dislocation density is assumed to be related to the 
plastic strain rate and may therefore be written according to 

p
i b

m ερ 
Λ

=+ 1)( (7)

where Λ denote the mean free path which is a function of the size of the grains and the 
dislocation subcell diameter. The mean free path is assumed to be a combination of the 
distance between the grain boundaries, g, and the dislocation subcell diameter, s, as 
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where s is defined as 
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Reduction in dislocation densities may occur by different processes eg by dislocation glide 
and/or climb. This model takes into account the recovery by dislocation glide and climb. The 
former is described by  

p
ii ερρ  Ω=−)(

(10)

where Ω is a recovery function which may depends on the temperature and strain rate. 
Altough in this model only of the temperatur. Recovery by climb is describe by 
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where cv is the vacancy fraction, eq
vc is the thermal equilibrium vacancy concentration, Dv is 

the diffusivity and cγ is a calibration parameter. More details are found in [9]. 

2.3 Calibration procedure 
The calibration of the presented dislocation density model and the J-C model was based 

upon uniaxial compression tests of SANMAC 316L at low strain rates, with a maximum 
strain rate and elevated temperature of 10 s-1 respectively 1300 °C, and at high strain rates, 
with a maximum strain rate and elevated temperature of 9000 s-1 respectively 950 °C. The 
temperatures were measured during the test at the low strain rates while computed assuming 
adiabatic heating for the tests at higher strain rates.  The tests at the higher strain rates were 
performed via a Split-Hopkinson pressure bar (SHPB). The actual parameter determinations 
were done by an error minimization method via a developed toolbox in Matlab in 
combination with a subset of test data. 

The parameters that need to be determined in the dislocation density model are shown in 
Table 1. Of these are the parameters Kc and Ω temperature dependent. A linear interpolation 
has been used between each test temperature and therefore each one of them has 9 values to 
be calibrated. Thermal expansion, Young’s modulus, Poisson’s ratio and shear modulus are 
also needed along with other physical constants. More details are given in [9]. The five 
parameters to be determined for the J-C model are given in section 2.1. 

Table 1: Parameters to be determined in the dislocation density model 

α   Kc   s∞  ρi0   Ω   cγ   τ0  f0   p   q   Cr
sc Crh Ni

sc Nih  Cp   Be/Bp

3 RESULTS AND DISCUSSIONS 
The dislocation density model has shown to give an overall good agreement with measured 

stress-strain curves in the strain rate range from 0.01 to 10 s-1 and from room temperature up 
to 1300 °C [9]. But if this material model with the optimized parameters at low strain rates are 
extrapolated and compared with measured stress-strain curves at high strain rates the same 
good agreement are not obtained. This was shown in [12]. Hence this discrepancy indicates 
that new physics are entering during deformation at these high strain rates and extrapolation 
from these conditions did not work. The observed increased strain rate sensitivity has been 
interpreted to different mechanisms for example increased dominance of dislocation drag [5], 
enhanced rate of dislocation and twin generation [6]. In an attempt to improve the 
predictability of the model throughout the strain rate range from low to high the physical 
phenomena dislocation drag has been implemented followed by a re-calibration of the model 
with given conditions. Some examples of measured stress-strain curves compared with 
predicted response of the dislocation density model at low strain rates and high strain rates are 
shown in Figure 1 at some different temperatures. The presented strain rate is the average 
strain rate. 
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a)

b)
Figure 1: Measured stress-strain curves and predicted response of the dislocation density model, lines, a) at 

low strain rates and b) high strain rates. Note: the vertical sequence of the curves fall with increased strain rate 
and reduced temperature. 
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The consistency at low strain rates is still good but the same consistency is not obtained at 
high strain rates. The predicted responses at 500 °C are little to high while little too low at 
room temperatures within the high strain rate range. Hence, dislocation drag followed by the 
re-calibration is not sufficient in order to cover the whole strain rate range from low to high. 
This indicates that additional and/or other deformation mechanisms are active and that the 
underlying dominated deformation mechanism changes. This will not be discussed further 
here. However, it is possible to get a relatively good consistency within the high strain rates 
range. Figure 2 shows the results from a re-calibration of Kc and 0f∆  based on data at high 
strain rates.  

Figure 2: Measured stress-strain curves and predicted response of the dislocation density model, lines, where 
the latter is re-calibrated based on high strain rate data. Note: the vertical sequence of the curves fall with 

increased strain rate and reduced temperature. 

The J-C plasticity model did not show the same consistency as the dislocation density 
model when subjected to the entire test data at low strain rate in [9] and it also failed to 
predict the material response at high strain rates with good agreements [12]. Better agreement, 
but far from satisfactory, was obtained if the parameters where re-calibrated based on only 
high strain data. The parameter and the predicted response are shown in Table 2 and Figure 3. 
The predicted responses at 950 °C and at room temperature are too low together with 
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significant differences in the work hardening rate at the latter temperature. 

Table 2: Parameters for J-C plasticity model within the high strain rate range 

Case A B n C refε m 
High 245 MPa 580 MPa 0.587 0.117 1 s-1 0.733 

Figure 3: Measured stress-strain curves and predicted response of the J-C plasticity model, lines, where the 
latter has been re-calibrated based on high strain rate data. Note: the vertical sequence of the curves fall with 

reduced strain rate and increased temperature. 

The reliability of extrapolation has so far proven to be uncertain. Although a wide 
available strain rate data range with a maximum strain rate of about 10000 s-1 extrapolation to 
even higher strain rates is needed to cover the loading conditions that may appear in 
machining simulations. Lack of material data at these extreme strain rates means that it is 
neither possible to calibrate or check the predictability range of the material model and it 
makes it even more uncertain. Despite this an extrapolation to strain rates up towards 50000s-1

were performed based on the calibrated dislocation density model and the J-C plasticity model 
at high strain rates shown in Figure 2 and 3. The results are shown in Figure 4 together with 
presented results from SHPB-testing of 316L at a plastic strain of 0.1 and room temperature in 
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[12]. The difference in the predicted results between the dislocation density model and the J-C 
model, when extrapolated to these extreme strain rates, is noticeable. The predicted strain rate 
sensitivity is higher in the latter and has an appearance that complies with the current 
perception of increased strain rate sensitivity > 1000 s-1 but how precisely the extrapolation 
corresponds with the behavior of the material is difficult to say. More research is still needed. 

Figure 4: Measured flow stress, presented in [12], and predicted flow stress of the dislocation density model and 
the J-C plasticity model as function of strain rate at true strain of 0.10, 0.30 and room temperature. The 

dislocation density model and the J-C model are based on calibration at high strain rate data. 

4 CONCLUSION 
- The J-C plasticity model did not show the same good ability as the dislocation 

density model to reproduce the material behavior in the strain rate range and 
temperature range from 0.01 to 10 s-1 respectively from room temperature to 1300 
°C. Neither the dislocation density model without phonon drag nor the J-C model 
predicted the material behavior at high strain rates particularly well when 
extrapolated. 

- Inclusion of phonon and electron drags within the dislocation density model 
improved the accuracy in the high strain rate range without any major changes in its 
prediction capability at low strain rates as the effects of phonon and electron drags 
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are small at these strain rates. The predictability is much better than the J-C plasticity 
model. However, we still consider the agreement with measurements to be somewhat 
unsatisfactorily. The discrepancy may be due to other deformation mechanisms or 
can be due to uncertainties and assumptions in the SHPB-testing. 

- Extrapolated dislocation density model, calibrated with stress-strain data at high 
strain rates, shows higher strain rate sensitivity within the strain rate range of 10000-
50000 s-1 than the extrapolated J-C plasticity model calibrated within the same data 
range. This is due to the linear dependency on strain rate for the phonon-term 
whereas the J-C model has a logarithmic dependency. However, we have not data 
available to validate the predictable ability. 

- The work clearly shows the difficulty of obtaining a comprehensive material model 
that predicts the material behavior across the loading conditions that can occur in 
machining with good accuracy. 
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Abstract. Incremental sheet forming (ISF) is a very promising technology to manufacture 
sheet metal products by the CNC controlled movement of a simple forming tool. It is 
considered as an innovative and flexible sheet metal forming technology for small batch 
production and prototyping, which does not require any dedicated die or punch to form a 
complex shape. Although incremental sheet forming is a slow process, the cost reduction 
linked to the fact that punches or dies are avoided, makes it a very suitable process for low 
series production, in comparison with the traditional stamping or drawing processes. This 
paper investigates the process of single point incremental forming of aluminum truncated 
cones and square pyramids geometries both experimentally and numerically. Concerning the 
numerical simulation, the finite element models are established to simulate the process by 
using a static implicit finite element code ABAQUS/Standard. In this article, the reported 
approaches were mainly focused on the influence of some crucial computational parameters. 
The influence of several parameters will be discussed: the initial sheet thickness and the 
workpiece geometry. The output of the simulation is given in terms of the punch forces 
evolution generated in this forming process and the final geometry. A comparison between 
the simulation results and the experimental data is made to assess the suitability of the 
numerical models. Experimental and numerical results obtained allow having a better 
knowledge of mechanical responses from different parts manufactured by SPIF with the aim 
to improve their accuracy. Predicted results show good agreement with experimental data for 
these geometries of the cones and pyramids. It is also concluded that the numerical simulation 
might be exploited for optimization of the incremental forming process of sheet metal. 
 
 
1 INTRODUCTION 

Single point incremental forming (SPIF) is an innovative process which allows to produce 
complex sheet components by CNC movement of a simple tool, with or without the combined 
use of simple dies [1]. Blank material is completely clamped by a simple frame and an 
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hemispherical punch is used as deforming tool (Figure 1). In this context, Single Point 
Incremental Forming may constitute a suitable industrial alternative, especially if one or few 
parts have to be produced, since no expensive dies are required. In the mean time, process 
mechanics is mainly characterised by stretching condition [2]: therefore a relevant sheet 
thinning occurs, which penalizes process suitability. More in detail, sheet thinning in the 
deformed zone may be approximated through the well known sine law, which relates the final 
thickness to the slope of the formed surface [3]. Actually some relevant deviations from this 
simple model are highlighted carrying out simple SPIF experiments. 

Figure 1: Single point incremental forming SPIF 

Many papers have been published on the incremental forming process of sheet metal, most 
of which are concerned with the experimental work [4-6]. In this context and since the 2005 
review article, Ham and Jeswiet [7,8] performed an experimental investigation on the effects 
of process variables on formability of various aluminum alloys in a systematic way using two 
factorial designs of experiments. They used the maximum formable angle as the measure of 
formability. Process variables studied included feed rate, spindle rotation speed, step size and 
forming angle. It was reported that faster spindle rotation speed improves formability and step 
size has little effect on the maximum forming angle, whereas the material thickness, tool size 
and the interaction between material thickness and tool size have a considerable influence on 
maximum forming angle. Kopac and Kampus [9] presented in their work the process 
controlled by CNC milling machine-tool together with CAD/CAM Master Cam system and a 
smooth forming tool. With experimental testing and measurements the limits of forming 
without a full-size model were defined. By using a simple full-size model and the concept 
where the sheet metal can move vertically in the clamping device, better results and products 
were obtained. An evaluation of the maximum slope angle of simple geometries was carried 
out by Capece Minutolo et al. [10] by means of an incremental forming process of aluminum 
alloy sheets. In their applications, maximum slope angle of frustums of pyramid and cone has 
been evaluated. This evaluation has been performed by an experimental tests program, that 
has foreseen the carrying out of geometries for different slope angles, up to the observation of 
fractures. In the specific case, afterwards the mechanical characterization and the evaluation 
of the sheets formability, frustums of pyramid and cone, with different slope angles, have 
been carried out, up to the appearance of fractures in the sheet. Numerical simulation of 
incremental forming of sheet metal has been also carried out in some papers [11,12], in which 
however the tool path is relatively simple. Effect of tool path on the deformation behavior has 
not been discussed. Since there is no article to which can be referred for the practical use of 
the numerical simulation for this process, the authors think that it is of great worth to check its 
applicability from the view point of making the production process more efficient. Very 
recently some researchers have focused their attention on modelling and numerical simulation 
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in incremental forming. Hirt et al. [13] presented in their work two major process limits, 
namely the limitation on the maximum achievable wall angle, and the occurrence of 
geometric deviations. They proposed some forming strategies and process modelling for CNC 
incremental sheet forming to overcome these process limits, including the processing of tailor 
rolled blanks. Additionally, finite element modelling of the process is presented and discussed 
with respect to the prediction of the forming limits of ISF. In 2004, Bambach et al. [14] 
developed a finite element modelling of the ISF process. In particular, the outcome of 
different multistage strategies is modelled and compared to collated experimental results 
regarding aspects such as sheet thickness and the onset of wrinkling. Moreover, the feasibility 
of modelling the geometry of a part is investigated as this is of major importance with respect 
to optimizing the geometric accuracy. Experimental validation is achieved by optical 
deformation measurement that gives the local displacements and strains of the sheet during 
forming as benchmark quantities for the simulation. The numerical simulation may provide 
technical support to the designers only if the simulation time is comparable with the trial and 
error tests. With this aim, both experimental tests and three-dimensional FE model of single 
point incremental forming (SPIF), derived by the application of an explicit approach, have 
been developed by Ambrogio et al. [15] and a suitable application for the process design has 
been defined in their applications. Single point incremental forming (SPIF) suffers from 
process window limitations which are strongly determined by the maximum achievable 
forming angle [16]. In this subject, an experimentally explored multi-step tool paths strategy 
is reported and the resulting part geometries compared to simulation output. Sheet thicknesses 
and strains achieved with these multi-step tool paths were verified and contributed to better 
understanding of the material relocation mechanism underlying the enlarged process window. 
In the present research, deformation behaviour of sheet metal in single point incremental 
forming process (SPIF) is numerically simulated using a static implicit finite element code 
ABAQUS/Standard. Furthermore, several incremental forming tests were carried out on Al 
3003-O Aluminum Alloy blanks utilizing a properly designed fixture mounted on a 3-axis 
controlled CNC milling machine equipped with a special tool. The objective of this study is to 
investigate the effects of two commonly varied forming process parameters on the force 
required to form the sheet metal. These are the initial sheet thickness and the workpiece 
geometry. A useful control of the process by determining and monitoring the forces between 
the punch and the sheet is aimed. The effect of the initial thickness variation on the evolution 
of the efforts provided by tool is studied in addition to the influence of the final workpiece 
geometry on the thickness distribution of final product is also considered. 

2 EXPERIMENTAL PLATFORM 
The research activity was carried out through the two following phases: first of all a set of 

experiments [17], characterized by different geometrical conditions, were carried out using a 
3-axis CNC vertical milling machine (Figure 2) as a platform to develop the ISF process. The 
forming tool consists in a cylindrical rotating punch with 10 mm diameter and hemispherical 
end shape which it was used simply as a tool (one-point incremental forming). The tool path 
was specified on the CNC milling machine through a part program: for each test a subroutine 
has been developed to describe the tool trajectory from CAM procedure depending on the 
testing conditions. Such trajectory includes both the movement in the horizontal plane (i.e. the 
x-y table of the milling machine) and the tool depth at each loop along the Z-axis. The blank, 
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which had square shape and dimensions equal to 200 mm×200 mm, was clamped using a 
properly designed framework; in this way the punch determines the extension of the blank 
which undergoes plastic deformation due to the punch movement. 

Figure 2: The experimental equipment for SPIF experiments (three-axis milling machine tool - SPIF tooling 
system) [17] 

To analyse the punch load, the force measuring set-up is shown in figure 2. It consists of a 
table type force sensor which was mounted between a steel fixture and the milling machine 
work-surface. This was a Kistler 9265B six-component force dynamometer and connected to 
it was a complementary Kistler 5017A 8-channel charge amplifier. The measuring system 
also includes charge amplifiers, data acquisition cards and a PC. The sampling rate in force 
measurement was 50 Hz. 

3 NUMERICAL MODELLING OF SINGLE POINT INCREMENTAL FORMING 
In this study we consider the single point incremental forming operations (SPIF). It is a 

progressive sheet metal forming operation characterised by large displacements and strains, 
and located deformations. The punch is a simple smooth ended tool with a diameter far 
smaller than the dimension of the part being made. Proceeding in an incremental way, the tool 
is moved along contours which follow the shape of the final geometry as described by CAD 
and CAM of CATIA software. It is very difficult in general to predict the forming loads 
applied by the tools and the thickness strain distribution of the final state of a deformation 
after the accumulation of numerous incremental deformation passes. Recently, finite element 
method (FEM) has facilitated the calculation of the punch forces during the whole 
deformation process and the thickness strain. In this investigation, elasto-plastic analysis of 
SPIF process by finite element method (FEM) was performed using a finite element code 
ABAQUS© software capable of handling large deformation. Finite element models are 
established to simulate aluminum truncated cones and pyramids. 

3.1 The parts geometry of the applications 
Reported simulations are mainly based on the production of simple workpiece geometry, a 

right truncated cone at 40 mm depth with circular base having the initial diameter of D = 180 
mm. The second model shape to undertake the numerical study represents a truncated 
pyramid at 40 mm depth starting from the square base side length of l = 180 mm. These 
geometries for both the frustums of cone and pyramid are carried out with different 
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thicknesses and slope angles beginning from a square sheet with a side of 200 mm. The tool 
paths, whose examples are reported in figure 3, are characterized, for the frustums of cone, by 
a sequence of circular coils, the first of which presents D = 180 mm, while the feed along an 
edge has a step size p = 0.5 mm; for the frustums of pyramid, a sequence of square coils 
generates the tool path, the first of which presents l = 180 mm, and the feed along a Z 
direction has a step size p = 0.5 mm. For both of them, the maximum drawing depth is z = 40 
mm. 

Figure 3: Geometries and dimensions carried out for some parts formed (a) Representative conical frustums with 
tool path and (b) Representative frustums square pyramid with tool path 

The standard process parameters applied are 0.5 mm vertical step size, 10 mm tool 
diameter, 50° wall angle and the standard material used is 1.2 mm thick Al 3003-O [17]. 
Unless the parameter is being varied, these will be the constant values used. 

3.2 Contour tool path generation using CATIA software 
The determination of the trajectory defining the tool path becomes increasingly difficult 

depending strongly on the complexity of the final geometry of parts and the minimization of 
the incremental step size. In fact, the implementation of the trajectory in numerical model 
remains very difficult if a traditional methods based on manual calculation will be considered. 
Within the framework, we have to generate the trajectory describing the desired geometries 
characterizing the truncated cones and pyramids. Therefore in the present study, the parts 
were modelled in a commercial 3D CAD-CAM software CATIA V5R17, and the trajectories 
to control the tool motion in order to form the desired shapes were automatically generated 
with the CAM module. This software generates the tool path after defining all the parameters 
that characterize the working operation such as the tool dimensions, the step depth, etc... The 
path generation is automatic: the software evaluates and identifies the best tool path for the 
operation we want to do. Finally the 3D CAD/CAM uses a specific postprocessor to convert 
the trajectory of the tool so obtained into a numerical file. Figure 4a1 shows the trajectory, 
described by the tool during the forming of frustum of cone. In the analysis, the tool path is of 
type discontinuous represented by a series of contours generated along the Z-axis of the cone. 
A detailed view on the discontinuity zone is displayed in figure 4b1. The geometrical shape of 
a pyramidal model and the corresponding discontinuous tool path are reported in figure 4a2. In 
the same manner as the first geometry of the conical model, a zooming view on the 
discontinuity zone of the trajectory is presented by figure 4b2. It is characterized by square 
tool paths with constant step depth forming a pocket. In the case, the forming tool moves from 
the top to the bottom of the pocket, in which it follows a series of consecutive Z constant 

 D = l = 180 mm 
 Z = 40 mm 
 d = 10 mm 
α = 50° 

 p = 0.5 mm 

(b)(a)

X Y

Z
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Figure 4: (a1) Discontinuous trajectory for conical model; (b1) A detailed view on the discontinuity zone; (a2) A 
tool path for pyramidal geometry: discontinuous trajectory and (b2) A detailed view on the discontinuity zone 

contours with fixed step depth ∆z constant during all the tool path. The steps shown are in 
sequential order and they are for incremental, unidirectional steps. 

3.3 Description of the numerical model 
As sheet metal forming involves large material rotation as well as strain, suitable algorithm 

should be employed in the FEA. In this investigation, a three-dimensional, elasto-plastic FE 
model is set up for the simulation of the SPIF process. Therefore, static simulations were 
conducted in this work by using the implicit FE package Abaqus/Standard like calculation 
algorithm capable of handling large deformation. Figure 5a reports the developed numerical 
model for the process in the initial position of tools. It shows the undeformed sheet modelled 
in this context. Modelling the interaction between the tool and the sheet is one of the most 
important considerations necessary to simulate the incremental forming process correctly. The 
punch, the blank-holder and the backing plate are modelled by adopting the assumption of an 
analytical rigid body hypothesis, while the sheet material is considered as elastic-plastic 
object. Since in the experiments the sheet was flooded with lubricant, the contact at the 
interface between sheet and tools follows Coulomb's friction law: 

f nτ = µσ (1)

(b2)(a2)

(b1)(a1)



324

First R. Bahloul, Second H. Arfa and Third H. BelHadj SalahC. 

7

where fτ is friction shear stress, nσ  is normal stress at interface and µ  is the friction 
coefficient. Friction conditions between the forming tool and the sheet metal part have been 
accounted by considering sliding friction with a small relatively friction coefficient equal to 

pµ = 0.09 . On the other hand, the value of the friction coefficient at the contact interfaces of 
blank-holder, sheet and designed backing plate is chosen to be equal to bµ = 0.15 . Concerning 
the processing conditions including a punch displacement, the tool is considered as a rigid 
body and the corresponding boundary conditions are related to the defined path. 

Figure 5: (a) Three-dimensional numerical simulation of single point incremental forming of sheet metal and (b) 
The finite element meshing configuration of the initial blank 

Due to the 3D tool path movement, a fully three-dimensional spatial analysis has been 
realized. The finite element meshing configuration of the initial blank is shown in figure 5b. 
As a consequence, quadrilateral shell elements with 4 nodes and 6 degrees of freedom per 
node (S4R) and five Gaussian reduced integration points through the thickness direction were 
used. This is suitable for nonlinear material models and widely used in the forming problems 
of large deformation and large rotation. Al 3003-O sheets with a size of 200 mm×200 mm 
have been considered for different thicknesses. In the FE model, the global size of elements is 
1.25 mm×1.25 mm and the blank was initially meshed with 25600 finite shell elements and 
25901 nodes. In this way, for each node, both displacements and rotations (i.e. 6 degrees of 
freedom for each node) are taken into account. Furthermore, the element is subjected to both 
tractions and moments at each step of the deformation path. All simulations were performed 
on Windows XP PC Core 2 Quad with 2.5GHz processor and a read/write memory 
performance of 2096 Megabytes. The CPU time required to simulate the single point 
incremental forming process of truncated cone or square pyramid mentioned previously takes 
on average 5 days. 

4 RESULTS AND DISCUSSION 
This section provides information about the results obtained in the frame of the present 

work, with regards to the influence of different process parameters on the characteristics of 
the parts produced by incremental sheet forming and the comparison between the results 
predicted by the numerical model and the ones obtained experimentally. The objectives of 
these studies are to identify and analyze the effects of the principal geometrical parameters 
related to the initial sheet thickness, the wall angle and the part shape on the characterization 
of the process. 

Punch 

Blank-holder

Backing plate

Sheet 

Finite element type = S4R 
 Number of elements = 25600
 Number of nodes = 25901 



325

First R. Bahloul, Second H. Arfa and Third H. BelHadj SalahC. 

8

4.1 Force components acting on traveling punch during the incremental forming 
process 

The graphs of figure 6 summarize the time plot of punch forces attained during the single 
point incremental forming process of the Al 3003-O Aluminum Alloy blanks. The evaluations 
of the magnitude of the loads provided by the punch in incremental CNC sheet metal forming 
process were investigated by applying two approaches: experimental analysis and numerical 
modelling on forces determination for improving knowledge of single point incremental 
forming. Both figures 6a1 and 6a2 represent the evolution of the three force components 
measured and predicted by experimental and numerical approaches respectively throughout 
the incremental forming process by producing a cone with standard process parameters by 
using a 10 mm diameter tool. The tool path used in this part of analysis follows a 
discontinuous trajectory. The initial thickness of the sheet metal before its working is fixed at 
a value equal to 1.2 mm. As it can be concluded from these graphs, a typical force curves start 
at zero once forming is initiated. As the tool pushes deeper into the metal, the force quickly 
increases until a depth is reached where the forces tend to remain approximately constant.  

Figure 6: Experimental and numerical results for punch forces during the SPIF process by producing a cone with 
standard process parameters (ai) Evolution of three forces components (Fx, Fy and Fz) exerted on the sheet metal 

(bi) A detailed views of the forces measured experimentally and predicted by numerical simulation 

This occurs for a number of reasons. Firstly, the tool does not have a contact area that is 
fully evolved until a number of contours have been made, and secondly, any effect induced by 
starting near the edge of the backing plate must be overcome. Comparing the force 
components measured in the experiment shown by figure 6a1 and the force diagram calculated 
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by using FEA described in figure 6a2, it can be said that the force patterns in the X and Y 
directions are not equal. This is due to sheet anisotropy and non-symmetric deformation 
mode. With an aim of validating the developed numerical model, we chose to make a 
localized enlargement of the preceding figures (Figures 6a1 and 6a2). This was meant to 
establish a more detailed comparison of the results determined by means of the two 
experimental and numerical approaches. Detailed views of the measured and simulated force 
components for two contours are demonstrated by figures 6b1 and 6b2. It can be observed 
from these two results that after completion of one contour, the Fz component first drops to 
zero when the tool finishes a contour radius and it moves to the next one, before reaching its 
peak value at the step down. It finally stabilizes when the tool moves along the contour. Fx
and Fy forces change between their minimum and maximum values in a sinusoidal way 
according to the tool position relative to the dynamometer axis within one contour. A 
comparison of the numerical efforts of various components illustrated in figure 6b2 shows a 
fairly good agreement with collated experimental data (Figure 6b1). In fact, it can be noted a 
resemblance on the shape levels of curves into various representations. Except that we expect 
a minimal error of approximately 8% between the experimental amplitudes and those which 
are obtained from numerical calculations. 

The square pyramid shaped box was formed on CNC milling machine, and it has been 
modelled by means of FEA. The force components were measured in X, Y and Z directions. 
Figures 7a and 7b show a detailed view of the experimental measures and the numerical 
prediction of three forces components (Fx, Fy and Fz) for two contours of the pyramid tool 
path. Unlike the forces in figure 6, Fx and Fy forces are approximately constant with changing 
sign depending on the tool position relative to the dynamometer. When the tool travels along 
the x-axis of the dynamometer, the Fx force reaches its maximum value, while the Fy force is 
at its maximum when the feed direction corresponds to the y-axis of the dynamometer. When 
the Fx/Fy force is at the maximum value, which corresponds to friction as well as to the 
limited forming action in the feed direction, the corresponding Fy/Fx force maintains an 
intermediate level. As it can be seen from the comparison of figures 7a and 7b, the force 
values are generally in agreement, except for high peak values in numerical study. 

Figure 7: A detailed views of the forces Fx, Fy and Fz for two contours of the pyramid tool path (a) Experimental 
investigation (b) Numerical prediction 

Note that the time in figures 7a and 7b is not in scale, i.e. the comparison can be made 
considering the patterns of load curves. Generally these peaks occur in the corners of the 

Numerical simulation: discontinuous trajectory 
Step depth ∆∆∆∆z = 0.5 mm_d= 10 mm_wall angle α = 50°_t= 1.2 mm
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pyramid when the tool is making the vertical step downwards, as the tools’ moving direction 
changes rapidly. Moreover, we find the points of discontinuity of the trajectory. The latter 
correspond to the zero values of the efforts and the resumption of a new cycle when a new 
incrementing is controlled by the tool. 

4.2 Influence of sheet thickness: force trend at the variation of initial sheet thickness 
In order to make a comparison between the results obtained for conical and pyramidal 

geometry, we chose to represent all force vector sum curves in the same figure. Examples of 
the Abaqus predicted total forces acting on the traveling tool during forming operation are 
presented in figure 8 for cones and pyramids parts formed by using 1.2, 1.5 and 2 mm thick. 
From figure 8, it can be seen that the resultant forces for cones and pyramids evolve according 
to identical trends. The force vector sums for pyramids are of the same order of magnitudes as 
for cones for identical process parameters, although the individual Fx, Fy and Fz force 
components show different patterns. First of all, the instantaneous simulated force value 
depends on the sheet thickness as shown in figure 8. Besides, a strong correlation exists 
between the forming load and the thickness: to put it in a more detailed way, the increase in 
the above-mentioned geometrical parameter leads to the increase of the numerically predicted 
load as well. 

Figure 8: Simulated force curves for cones and pyramids parts formed using 1.2, 1.5 and 2 mm thick Al 3103-O: 
a comparison between the two parts geometry for discontinuous tool path 

Figure 9 shows the results obtained in the force measurements performed in the way 
described previously, in comparison with the values of the magnitude of force required to 
form a given part predicted by the FEM process model. As the sheet thickness increases, it is 
apparent that this magnitude also rises. That is, the magnitude of force is directly proportional 
to the initial sheet thickness and fits well with the linear trends shown in the figure. As it can 
be noticed, experimental values are slightly lower than predictions, but results are very good, 
showing a discrepancy between the experimental results and the predictions of the model. The 
results obtained by two approaches make it possible to give the relative variation of the force 
amplitude compared to the experiment and expressed by: ( )Exp Num Exp∆ (%) = - / ×100F F F F 

  
. 

They are 2% and 3%, respectively for the smallest and greatest values of sheet thickness (1.2 
mm and 2 mm). Consequently, the peak load evolution curve determined by the numerical 
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approach is thus in good agreement with the experimental one. 

Figure 9: Influence of initial sheet thickness on the peak magnitude of the forming loads acting on the punch 

5 CONCLUSIONS 
This paper investigates the process of single point incremental forming of truncated cones and 
pyramids formed of an aluminum alloy sheet Al 3003-O both experimentally and 
numerically. In the first part of this paper, a deeper assessment of the process was developed 
following a set of numerical simulations and experimental tests in order to find the influence 
of some relevant process parameters, on the estimation and the repartition of the forming 
force components and to make a comparison between them. The obtained experimental and 
numerical results are found to be in agreement for the two models: conical and pyramidal 
geometries. In the second part of the work, a campaign of numerical tests has been carried out 
in a parametric form by varying systematically at each test the initial value of the sheet 
thickness during forming process. In this investigation, three FE simulations of the considered 
process were performed for the conical and pyramidal models, each having varied the 
material thickness. In particular, this study examines the effect of the considered geometrical 
parameter on the evolution of the resultant forming forces acting on the traveling tool. The 
results of the tests were analyzed quantitatively, and some observations were made as follows 
below: 
o The forming force tends to increase with the sheet thickness, and this cannot be a 
negligible aspect. 
o For a better comparison between the two conical and pyramidal shapes we chose to 
represent in the same figure the evolution of the corresponding resultant force curves 
parameterized in sheet thickness. According to the obtained results, it could be noted that the 
different efforts evolve in the same way. In fact, when the sheet thickness is increased, the 
forces will increase accordingly. 
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Abstract. The progressive degradation of quasi-brittle materials can be reproduced
efficiently by means of damage models. The presence of microcracks in the media gives a
nonlocal aspect to the evolution of damage. By interacting with each other under loading,
it leads to stress amplification (singularity) or decrease (shield effect) at a given location.
In the framework of damage models, the nonlocal integral method [1] or the gradient
enhanced media [2] introduce this notion of interactions between points by means of an
internal length.

However, they are still some pending issues regarding these methods [3] (e.g., treatment
of free boundaries, description of the damage state close to complete failure). In this paper,
a modification of the nonlocal integral regularization method is proposed. The influence of
a point on its neighbourhood is evolving during the loading and its intensity and direction
depend on the stress state it encounters.

Through several numerical simulations, we show that our proposition improves the
treatment of free boundaries and gives physically sound damage and strain field in the
fracture process zone up to complete failure. The latter being a key parameter of durability
analysis.

1 INTRODUCTION

Quasi-brittle materials show the presence of microcracks in their media. Under load-
ing, these microcracks interact with each other, leading to nonlocal interactions. During
the cracking, strain localization appears with a size and an orientation of the localized
band as well as its evolution that can be directly linked to the nonlocal interactions due
to microcracks.
In continuous media, the microcracks are not explicitly represented. As a consequence,
additional generalized constitutive equations need to be introduced in the models to take
into account the nonlocal character of the propagation and coalescence of microdefects.
These models replace the local internal variable by its nonlocal counterpart. For the
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nonlocal gradient model [2], the nonlocal internal variable fulfills a differential equation
whereas for the nonlocal integral model [1], the nonlocal internal variable is a weighted
spatial average.
In addition to restoring the objectivity of the numerical modeling for strain softening
behavior, these models aim at describing the behavior of quasi-brittle materials for mi-
crocracked area which do not degenerate into a widely opened crack and size effect through
the introduction of an internal length.
However, several drawbacks arise from the original models (e.g., description of the kine-
matic fields in the FPZ, damage initiation in crack tip-problem, description of the inter-
actions in the vicinity of boundaries). To overcome these problems, we propose a new
nonlocal integral method in which the weighting is enhanced by introducing the influence
of the stress state on the interactions.
First, the original model associated to a damage model is recall. Then, the stress based
nonlocal model is presented. Finally, several tests are performed addressing the different
drawbacks quoted previsouly.

2 NONLOCAL DAMAGE MODEL

2.1 Continuum damage theory

A scalar isotropic damage model for describing the non linear behavior of concrete
under monotonic loading is used. The general stress-strain relationship is:

σij = (1−D)Cijkl : εkl (1)

where σij and εkl are the components of the Cauchy stress tensor and the strain tensor,
respectively (i, j, k, l ∈ [1, 3]) and Cijkl are the components of the fourth-order elastic
stiffness tensor.
The evolution of D is driven by an equivalent strain εeq that quantifies the local defor-
mation state in the material. Among several definitions, we consider here the equivalent
strain defined by Mazars with its corresponding evolution law [6].
The damage scalar variable D is a function of the internal variable Y . This parameter
equals the damage threshold εD0

initially. Its evolution is governed by the Kuhn-Tucker
condition:

εeq − Y ≤ 0 , Ẏ ≥ 0 , Ẏ (εeq − Y ) = 0 (2)

Mazars has introduced a local measure εeq of the strain tensor defined by:

εeq =

√
√
√
√

3∑

i=1

〈εi〉
2
+ (3)

〈εi〉+ denotes the positive principal strains. This model considers that damage is driven
by positive strains, i.e. extension. It allows to accurately reproduce the behavior of

2
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quasi-brittle materials such as concrete. In this model, damage is determined as a linear
combination of two damage variables (Eq. 4): Dt and Dc which are damage due to tension
and compression respectively [6]:

D = αtDt + αcDc (4)

The parameters αt and αc depend on the stress state (e.g. αt = 1 in pure traction). The
damage evolution is characterized by the following exponential law:

Dc,t = 1−
εD0

(1− Ac,t)

Y
−

Ac,t

exp(Bc,t(Y−εD0
))

(5)

At, Bt, Ac and Bc are the parameters governing the shape of the evolution law. The
constitutive relation exhibits strain softening and as a consequence, needs a regularization
technique.

2.2 Original integral nonlocal approach

In the nonlocal damage model, the equivalent strain given in Eq. 3 is replaced by an
average equivalent strain εeq over a volume Ω in the equation governing the growth of
damage as defined by Pijaudier-Cabot and Bažant [1].

εeq(x) =

∫

Ω
φ(x− s)εeq(s)ds
∫

Ω
φ(x− s)ds

(6)

φ(x − s) is the weight function defining the interaction between the considered point
located at x and the neighboring points located at s. The most used nonlocal weight
function is taken as the Gauss distribution function:

φ(x− s) = exp

(

−

(

2 ‖x− s‖

lc

)2
)

(7)

where lc is the internal length of the model.

2.3 Stress based nonlocal integral approach

In the proposed approach, the point of view of the calculation of nonlocal quantities
is slightly different. We no longer consider what a point located at x can receive but

what a point located at s can distribute. The nonlocality is defined as a quantity given
by each point located at s along its principal stress direction with an intensity depending
on the level of the principal stress. We introduce in the nonlocal regularization both
the notion of directionality as shown by Pijaudier and Dufour [7] in the limited case of
the vicinity of boundaries and the variation of the intensity depending on the state of
loading in the structure. The stress field allows the direct description of the presence of
free boundary and the development of fracture process zone that are at the origins of

3
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the modification of the nonlocal interactions. During the calculation, the evolution of
the interactions between points is considered through a single scalar ρ that, multiplied
by the characteristic length lc, defines the internal length of the model. This internal
length evolves from zero for stress-free material up to lc when maximum principal stress
is reached. It is important to notice that this coefficient depending on the stress state of
the distributed points does not introduce any parameter in the model.
Let us denote σprin(s), the stress state of the point located at s, expressed in its principal
frame. The vectors forming this frame are u1(s), u2(s), and u3(s) with the associated
principal stresses σ1(s), σ2(s) and σ3(s).

σprin(s) =
3∑

i=1

σi(s)(ui(s)⊗ ui(s)) (8)

where ⊗ is the tensor product. We define an ellipsoid centered at point s, corresponding
to a homothety of the original interaction domain with a ratio |σi(s)

ft
| along principal stress

direction ui(s). ft denotes the tensile strength of the material.
The choice of ft leads to no modification of the interactions at the tensile stress peak,
in the direction associated to the maximum tensile stress. The characteristic length lc
associated to the material defines the maximum size of the domain of interactions and
so the internal length ρlc of the stress based nonlocal model can not exceed this value.
As a consequence, we need to limit in compression the value of ρ to one under loading
directions for which |σi(s)| is higher than ft.
By using the spherical coordinates (ρ, θ and φ), the following equation describes the
ellipsoid associated to the stress state of the point located at s (Fig. 1).

ρ(x,σprin(s))
2 =

1

f 2
t

(
sin2 ϕ cos2 θ

σ2

1
(s)

+ sin2 ϕ sin2 θ
σ2

2
(s)

+ cos2 ϕ
σ2

3
(s)

) (9)

where θ is the angle between u1 and the projection of (x− s) onto the plane defined by
u1 and u2 and ϕ is the angle between u3 and (x − s). Considering, these angles, we
obtain:

cos θ =
u1.(u3 ∧ ((x− s) ∧ u3))

‖u3 ∧ ((x− s) ∧ u3)‖
sin θ =

u2.(u3 ∧ ((x− s) ∧ u3))

‖u3 ∧ ((x− s) ∧ u3)‖
(10)

cosϕ =
u3.(x− s)

‖x− s‖
sinϕ =

(x− s).(u3 ∧ ((x− s) ∧ u3))

‖(x− s)‖ . ‖u3 ∧ ((x− s) ∧ u3)‖

where ∧ is the vector product and “.” is the scalar product. The weight function now
reads:

φ(x− s) = exp

(

−

(
2 ‖x− s‖

lc ρ(x,σprin(s))

)2
)

(11)
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Figure 1: Definition of the ρ coefficient giving the influence of s on x

with ρ(x,σprin(s)) equal to the radial coordinate of the ellipsoid defined previously in the
direction (x− s).
The intensity of the influence of a point at s on its neighborhood depends on the magnitude
and direction of the principal stresses at s.

3 INITIATION OF FAILURE

In the framework of nonlocal elasticity, Eringen and coworkers [4] have pointed out
that the point encountering the maximum stress is not located at the crack tip. Simone
and coworkers [3] have extended this study to nonlocal damage models, showing that the
bad description of the nonlocal field leads to a wrong initiation of damage. To illustrate
this problem and to compare the numerical solution of the original and the stress based
nonlocal method, a notched plate under tension is studied (Fig. 2) with a pre-existing
crack of length h = 0.0005 m. Due to symmetry, only half of the specimen is described.

 

free boundary

 

representing the notch

 

2h 

2
h
 

A B 

Figure 2: Compact Tension Specimen (CTS)

The notch is described geometrically by letting free the boundary. The influence of the
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internal length of the model on the location of the maximum nonlocal equivalent strain
is studied. The following parameters are used for the material: E = 1000 MPa; ν = 0.2;
lc = 0.0001, 0.0002 or 0.0005 m.
The equivalent strain defined by Mazars is calculated from the strain field obtained under
an imposed displacement. The nonlocal equivalent strain is then computed according
to Eq. 3. The evolution along the line AB in front of the crack is given on Fig 3 for
both nonlocal methods. These results, obtained by Simone et al., show a shift of the
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Figure 3: CTS: Evolution of the nonlocal equivalent strain along AB. (a) Original nonlocal method; (b)
Stress based nonlocal method.

maximum nonlocal equivalent strain with the original nonlocal method leading thus to a
wrong location of damage initiation. Furthermore, this shift is proportional to the internal
length.
In the original nonlocal method, the domain of interactions depends only on the distance
between points. So, a point at the crack tip will be influenced in the same way by points in
the shadow zone of the notch than by points in front of the notch. Since the strain gradient
is smaller in front of the notch than at the back, the maximum nonlocal equivalent strain
is shifted to the notch front.
For the same test, with the stress based nonlocal method, the shift is null whatever the
characteristical length lc chosen. Indeed, the points in the shadow zone of the notch no
more influence the point at the crack tip since they encounter a low stress state.
This study shows the capability of the stress based nonlocal method to correctly locate
the inception of material nonlinearities in mode I problem with a pre-existing crack. This
result is a key issue for size effect analysis.

4 SIZE EFFECT ANALYSIS: 3 POINT BENDING TEST

Size effects have been widely studied in the past regarding concrete structure and it is
a key issue when one wants to transcript the material behavior identified at the scale of
a laboratory specimen to a real structure.
The use of nonlocal models allows to reproduce this size effect by introducing an internal
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length. However, we can observe that the parameters obtained depend a lot on the
geometry and the stress state. Indeed, it has been shown the original nonlocal model show
discrepancies when we compare results from one type of test to another (e.g. notched and
unnotched beam) [5]. A first attempt to improve the results regarding size effect has
been made by Krayani and coworkers [5]. By modifying the area of regularization close
to free boundaries, a better redistribution of the state parameter was obtained leading to
an improvement of the results.
We compare the original and the stress based nonlocal damage formulation through 3
point bending test on unnotched and notched beams with three geometrically similar
sizes. The specimens with constant depth (b = 1 m), various heights (D = 80, 160,
320 mm) and corresponding lengths (L = 3D) are referred to as small, medium and
large beam, respectively. Simulations are performed in 2D plane stress conditions. The
model parameters used for these simulations are the same as the one in [5] : E = 3.85×
104MPa, ν = 0.24, At = 0.95, Ac = 1.25, Bt = 9200, Bc = 1000, εD0

= 3.0× 10−5 and
lc = 10 mm.

4.1 Size effect on unnotched specimens

From the peak load Pu, we estimate the nominal strength σN , according to the elastic
beam theory (Tab. 1):

σN =
9

2

Pu

bD
(12)

We notice that the results are quite close to each other, since the main difference is

Table 1: Unnotched beam: Peak load and nominal strength for the two nonlocal methods

Original nonlocal Stress based nonlocal
D(mm) Pu(kN) σN (MPa) Pu(kN) σN (MPa)

80 65.732 3.70 64.380 3.62
160 123.792 3.48 122.240 3.43
320 240.440 3.38 218.360 3.07

only for the interactions perpendicular to the lower free boundary. With the stress based
nonlocal model, the interactions are along lines parallel to the bottom side of the beam
thus to a smaller domain of interactions and a lower peak load.
We use now the Bazant’s size effect law for the case of unnotched beams [8]:

σN = fr∞

(

1 +
Db

D

)

(13)

where Db and fr∞ are constants. These two constants are obtained from a linear regres-
sion.
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Table 2: Unnotched beam: Identification of Db and fr∞ for the two nonlocal methods

Original nonlocal Stress based nonlocal
Db(mm) 10.34 18.31

fr∞(MPa) 3.30 2.98

4.2 Size effect on notched specimens

The size effect analysis is now performed on notched specimen with a 0.2D high notch
located at mid-span. From the peak load Pu, we estimate the nominal strength σN ,
according to the elastic beam theory (Tab. 3):

σN =
9

2

Pu

bD(0.82)
(14)

Again using the Bazant’s size effect law for notched beams [8]:

Table 3: Notched beam: Peak load and nominal strength for the two nonlocal methods

Original nonlocal Stress based nonlocal
D (mm) Pu (kN) σN (MPa) Pu (kN) σN (MPa)

80 42.316 3.72 35.630 3.13
160 64.426 2.83 59.130 2.60
320 97.454 2.14 94.440 2.07

σN =
Bfr∞

√
(

1 + D
D0

) (15)

where B is a dimensionless geometry-dependent parameter and D0 is a characteristic
size. For each formulation, D0 and Bfr∞ are obtained from a linear regression. B can

Table 4: Notched beam: Identification of D0 and Bfr∞ for the two nonlocal methods

Original nonlocal Stress based nonlocal
D0(mm) 42.42 110.87

Bfr∞(MPa) 6.25 4.08

be calculated according to Rilem recommendations (B = 1.08) [9]. One can compare
the values of Bfr∞ obtained with unnotched and notched specimen and give an error
committed by the model regarding the description of size effect. Indeed, fr∞ is a parameter

8
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Table 5: Comparison of the values Bfr∞ obtained from unnotched and notched specimens for the two
nonlocal method

Bfr∞(MPa) Original nonlocal Stress based nonlocal
Computed from unnotched 3.56 3.21

Fit from notched 6.25 4.08
Relative error 76% 27%

relative to the material and should not be affected by size effect. Another mean to observe
the consistency of the formulations regarding size effect is to use the Bazant’s universal
size effect law [8]:

σN =
Bfr∞

√
(

1 + D
D0

) .

(

1 +

((

η +
D

Db

)

.

(

1 +
D

D0

))−1
)

(16)

We consider in this formula the parameters linked to the unnotched specimen as known
with the first analysis and we fit the value of D0 in order to retrieve the values of the
nominal strength of the notched specimens. The best fits are obtained for D0 = 300 mm
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Figure 4: Fits of the universal size effect law on notched specimens for the original nonlocal method
(ORNL) and the stress based nonlocal method(SBNL)

with the original nonlocal formulation and D0 = 255 mm with the stress based nonlocal
formulation. A better fit of the universel size effect law on the notched beam results is
obtained with the stress based nonlocal model. It confirms the results obtained with the
first method of error estimator in the description of size effect.
This analysis shows the internal length, that is linked to the size of the FPZ and allows
to describe size effect, depends on the material through a characteristical length lc as it is
defined in the original version but also on the stress state as it is introduced in the stress
based nonlocal model.
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5 CRACKING EVOLUTION IN A 3 POINT BENDING TEST OF A
NOTCHED BEAM

The efficiency of the stress based nonlocal method to describe the failure process of
quasi-brittle material is explored through the comparison with experimental results on the
evolution of crack opening along the height of a notched beam under three point bending
test (3PBT). This beam tested at the GEM laboratory in Nantes by the second author
is depicted in Fig. 5(a) with the associated mesh used for the numerical investigation.
This beam has been modeled in 2D under plane stress conditions. The loading has been

(a) (b)

Figure 5: Three point bending test: (a) Mesh of the specimen. (b) Axis of the crack opening.

applied via displacement control. Both nonlocal methods have been successively used
with the same set of parameters for the damage model describing concrete (see Eq. 5): E
= 30,000 MPa; ν = 0.24; εD0

= 0.00004; β = 1.06; At = 0.9; Bt = 4000; Ac = 1.25; Bc

= 1000 and lc = 0.008 m.
The beam is composed of isoparametric elements with linear interpolation. A peculiar
attention was taken to describe finely the notch tip where stress concentration occurs.
Image correlation technique was used during the experiment to follow the strain local-
isation process. Fig. 5(b) gives the orientation and the origin along the height of the
beam of the measured cracking. We compare hereafter these experimental results with
the one obtained from numerical calculations using the post treatment method proposed
by Dufour and coworkers [10]. Fig. 6b, c and d show the crack opening along the height at
different CMOD levels. One can observe that for the lowest CMOD considered, we have a
cracking prediction close between the original and stress based nonlocal method. We are
still in a diffused microcracking far from the crack tip that leads to a strain field similar
between both methods. During the localisation process, the stress level and the internal
length of the stress based nonlocal decreases, as a consequence we obtained a sharper
strain profile that is closer to the one of a macrocrack for higher CMOD [11]. It leads so
to a better estimation of the crack opening. A reason for the constant shift (error around
10%) between the experimental and the numerical results regarding the crack opening
can be due to the 2D approximation used for the calculation. Indeed, experimentally, the
crack opening was measured on surface and we can expect to have different values in the
depth.
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Figure 6: 3PBT: Crack opening along the height of the beam at different loading level. (a) 50 µm; (b)
100 µm and (c) 200 µm

6 CONCLUSIONS

We have proposed in this paper a modification of the integral nonlocal model in order
to adapt the regularisation close to free boundary and during the cracking process. The
stress state of each point is used during the calculation in order to create an evolution of
the interaction between points. Each point interacts with its neighborhood in function of
the intensity and direction of its principal stress values. All these improvments are made
with no additional parameter that would be difficult to calibrate and the computational
cost is similar to the original nonlocal method since the connectivity maxtric is identical.
This can be easily implemented in any FE code that already includes nonlocal approach.
The modification has been illustrated through several examples. The stress based nonlocal
approach provides a better solution to model damage initiation. The proposed approach
is capable to perfectly locate the damage initiation which is badly estimated with any
other regularisation techniques. This result is a key issue when considering size effect
analysis. The proposed approach gives a better description of size effect compared to the
original one.
Furthermore, damage and strain profiles across a fracture process zone are more physically
sounded. The result objectivity is conserved and our proposal allows to obtain a weak
discontinuity that gets close to strong discontinuity upon mesh refinement. As a result the
estimate of crack opening is much improved. This is a key issue as information on crack
opening is a hot topic in structural engineering for durability analysis or the leakage rate
estimation for confining vessels. It has been shown that continuous modelling can provide
this kind of information. By improving the FE calculation and more particularly by
taking into account the effect of a damaged zone on its vicinity, crack opening estimation
are greatly improved.
In future works, loaded interface between two materials and loaded boundaries will be
investigated. This will be of great interest for structural analysis with interaction between
a crack in concrete and rebars.
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Abstract. Complex degradation processes of partial saturated media like soils during
post-peak regime are strongly dependent on humidity, stress state, boundary conditions
and material parameters, particularly porosity. To realistically and objectively describe
the dramatic change from diffuse to localized failure mode or from ductile to brittle ones,
accurate constitutive theories and numerical approaches are required. In this paper, a
non-local gradient poroplastic model is proposed for partial saturated media based on
thermodynamic concepts. A restricted non-local gradient theory is considered, following
(Mroginski, et al. Int. J. Plasticity, 27:620-634) whereby the state variables are the
only ones of non-local character. The non-local softening formulation of the proposed
constitutive theory incorporates the dependence of the gradient characteristic length on
both the governing stress and hydraulic conditions to realistically predict the size of the
maximum energy dissipation zone. The material model employed in this work to describe
the plastic evolution of porous media is the Modified Cam Clay, which is widely used
in saturated and partially saturated soil mechanics. To evaluate the dependence of the
transition point between ductile and brittle failure regime in terms of the hydraulic and
stress conditions, the localization indicator for discontinuous bifurcation is formulated for
both drained and undrained conditions, based on wave propagation criterion.
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1 INTRODUCTION

The mechanic of porous media constitutes a discipline of great relevance in several
knowledge areas like the Geophysics, the Civil Engineering, the Biomechanics and the
Materials Science. The main purpose of the mechanic of porous media is the deformation
modelling and pore pressure prediction, when the body is been subjected to several exter-
nal actions and physical phenomena. By the way, the complexity of the real engineering
materials implies that for its appropriate modelling they should be included in the concept
or theory of partially saturated porous media with cohesive-frictional properties diverse.
Besides, the failure behaviour of engineering materials during monotonic loading processes
demonstrate a strong dependence on both the stress state and the hydraulic conditions
governed during the process. In spite of this fact most of the proposals for continuous
formulations of engineering materials like concrete and soils are based on non-porous
continua theory [9, 12]. In fact, the traditional formulations commonly accepted by the
scientific community for the study of this kind of materials are experimental evidences
founded, and a consistent elastoplastic thermodynamic framework is not fully consid-
ered [8, 14, 18]. Although it provides a general useful approach for a lot of engineering
problems.

Even though noteworthy theoretical developments based on the theory of porous media
were recently presented [4, 5, 10]. Nevertheless, it can be observed a necessity of new
non-local formulations based on the theory of porous media in order to solve the critical
problem of uniqueness loss of the numerical solution in post-peak regime or in pre-peak
regime when the volumetric elastoplastic behavior is non-associate.

In this work the thermodynamically consistent formulation for gradient-based elasto-
plasticity by [22] that follows general thermodynamic approach by [19] for non-local dam-
age formulation is extended for porous media. Main feature of present proposal is the
definition of a gradient-based characteristic length in terms of both the governing stress
and hydraulic conditions to capture the variation of the transition from brittle to ductile
failure mode of cohesive-frictional porous materials with the level of confinement pressure
and saturation. Relevant items in this work are, on the one hand, the particularization
of the proposed thermodynamically consistent theory for non-local elastoplastic porous
media to partially saturated soils. On the other hand, the formulation of the discontin-
uous bifurcations condition and related failure indicator as well as their evaluations for
different hydraulic conditions.

2 POROUS MEDIA DESCRIPTION

Porous media are multiphase systems with interstitial voids in the grain matrix filled
with water (liquid phase), water vapor and dry air (gas phase) at microscopic level [6, 9]
(see Fig. 1a).

Key argument to reconcile continuum mechanics with the intrinsic microscopic discon-
tinuities of porous like materials composed by several interacting phases, is to consider
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them as thermodynamically open continuum systems (see Fig. 1b). Thus, their kinemat-
ics and deformations are referred to those of the skeleton. Contrarily to mixture theories
based upon an averaging process [13, 14], the representation of porous media is made
by a superposition, in time and space, of two or more continuum phases. In case of
non-saturated porous continua we recognize three phases, the skeleton, the liquid and the
gaseous phases.

Figure 1: Porous media description. a) Microscopic level ; b) Macroscopic level

2.1 Stress tensors

The mechanical behavior of partially saturated porous media is usually described by
the effective stress tensor σ′, as follows

σ′ = σ − δpw = σn + s (1)

being σ, s = δ (pa − pw) and σn = σ − δpa the total, net, and suction stress tensors,
respectively, while δ is the Kronecker delta. Moreover, pa and pw are the gas and water
pore pressures, respectively. In several geotechnical problems the gas pore pressure can
be considered as a constant term that equals the atmospheric pressure [18]. In these cases
the suction tensor is counterpart to the water pore pressure, p.

2.2 Flow theory of poroplasticity

Plasticity is a property exhibited by various materials to undergo permanent strains
after a complete process of loading and unloading. Hence, poroplasticity is that property
of porous media which defines their ability to undergo not only permanent skeleton strains,
but also permanent variations in fluid mass content due to related porosity variations. To
characterize current stages of thermodynamically consistent poroelastoplastic media and
to describe their irreversible evolutions, internal variables such as the plastic porosity φp

or the plastic fluid mass content mp must be considered in addition to the plastic strain
εp, and the irreversible entropy density sp.

Assuming the additive decomposition of Prandtl-Reuss type to the thermodynamic
variables into elastic and plastic parts
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ε̇ = ε̇e + ε̇p

ṁ = ṁe + ṁp

ṡ = ṡe + ṡp
(2)

Both, the rate of skeleton plastic strains ε̇p and the rate of plastic fluid mass content
ṁp are related to the irreversible evolution of the skeleton. Indeed, let φ̇p be the rate of
plastic porosity

φ̇p =
ṁp

ρfl0
(3)

with ρfl0 the initial fluid mass density.

3 GRADIENT-POROPLASTICITY

In this section the fundamentals of the thermodynamically consistent gradient plasticity
theory for porous media by Mrognski, Etse and Vrech (2011) [15] are shortly described.

3.1 Dissipative stress in non-local porous media

Based on previous studies developed by [6, 19], we assume that arbitrary thermo-
dynamic states of the dissipative material during isothermal processes are completely
determined by the elastic strain tensor εe = ε − εp, and the internal variables qα with
α = s, p for solid or porous phase, respectively, which are considered here as scalar vari-
ables. When considering poroplastic materials the elastic variation of fluid mass content
me = m−mp needs also to be included as a thermodynamic argument of the free energy,
see [6]. Also, in order to capture non-local effects produced by monotonic external actions
on each phase of the porous media we further assume that the gradient of the internal
variables ∇qα, are the only ones of non-local character [15, 19, 22]. The extension to more
than two scalar internal variables is straightforward. Hence, both qα and ∇qα will appear
as arguments in the Helmholtzs free energy

Ψ = Ψ (εe,me, qα,∇qα) (4)

While the Clausius-Duhem inequality (CDI),

∫

Ω

1

θ
[(σ − ρ∂εeΨ) : ε̇+ (p− ρ∂meΨ) ṁ+ ρ∂εeΨ : ε̇p + ρ∂meΨṁp+

−
∑

α

ρ∂qαΨq̇α −
∑

α

ρ∂∇qαΨ∇q̇α

]

dΩ ≥ 0 (5)
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where σ is the stress tensor, p is the pore pressure and ρ the mass density. Also, a following
compact notation for partial derivative was adopted, ∂x (•) = ∂(•)

∂x
. By, integrating the

gradient term by parts and using de Divergence Theorem results

∫

Ω

1

θ
[(σ − ρ∂εeΨ) : ε̇+ (p− ρ∂meΨ) ṁ+ ρ∂εeΨ : ε̇p + ρ∂meΨṁp+

+
∑

α

Qαq̇α

]

dΩ +

∫

∂Ω

∑

α

Q(b)
α q̇α d∂Ω ≥ 0 (6)

Where the dissipative stressesQα andQ
(b)
α defined in the domain Ω and on the boundary

∂Ω, respectively, as

Qα = −ρ∂qαΨ−∇ · (ρ∂∇qαΨ) in Ω (7)

Q(b)
α = −ρ∂∇qαΨn on ∂Ω (8)

where introduced.
In the standard local theory it is postulated that the last inequality of Eq. (6) must

hold for any choice of domain and for any independent thermodynamic process. As a
result, Colemans equation are formally obtained like in local plasticity.

σ = ρ∂εeΨ (9)

p = ρ∂meΨ (10)

D = σ : εe + pṁp +
∑

α

Qαq̇α ≥ 0 in Ω (11)

D(b) =
∑

α

Q(b)
α q̇α ≥ 0 on ∂Ω (12)

In case of p = 0 above equations takes similar form to those obteined by [19, 22] for
non-porous media. Also, from Eqs. (11) and (12) it can be concluded that the dissipative
stress Qα can be decomposed into the local and non-local components

Qα = Qloc
α +Qnloc

α = −ρ∂qαΨ− ρ∇ · (∂∇qαΨ) (13)

3.2 Thermodynamically consistent gradient-based constitutive relationship

Based on previous works [19, 22], the following additive expression is adopted for the
free energy density of non-local gradient poroplastic materials

Ψ (εe,me, qα,∇qα) = Ψe (εe,me) + Ψp,loc (qα) + Ψp,nloc (∇qα) (14)
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with the elastic energy density,

ρΨe = σ0 : εe + p0me +
1

2
εe : C0 : εe +

1

2
M (B : εe −me)2 (15)

Ψp,loc and Ψp,nloc are the local and non-local gradient contributions due to dissipative
hardening/softening behaviors, which are expressed in terms of both the internal variables
and their gradient, qα and ∇qα, respectively.

3.3 Non-local plastic flow rule

For general non-associative flow and hardening rule, we introduce the dissipative po-
tential Φ∗ such that non-associative flow and hardening rules are defined

ε̇p = λ̇∂σΦ
∗ = λ̇mσ ; ṁp = λ̇∂pΦ

∗ = λ̇mp ; q̇α = λ̇∂QαΦ
∗ = λ̇mQα (16)

where mσ = ∂σΦ
∗ , mp = ∂pΦ

∗ and mQα = ∂QαΦ
∗, being Φ∗ the plastic dissipative poten-

tial. To complete problem formulation in Ω, the Kuhn-Tucker complementary conditions
are introduced as follow

λ̇ ≥ 0 ; Φ (σ, p, Qα) ≤ 0 ; λ̇Φ (σ, p, Qα) = 0 (17)

3.4 Rate constitutive equations

In the undrained condition and considering the additive decomposition of the free
energy potential in Eq. (14) and the flow rule of Eq. (16), the following rate expressions
of the stress tensor σ̇ and pore pressure ṗ are obtained

σ̇ = C : ε̇− λ̇C : mσ −MBṁ+ λ̇MBmp (18)

ṗ = −MB : ε̇+ λ̇MB : mσ +Mṁ− λ̇Mmp (19)

being M the Biot’s module, B = bI with b the Biot coefficient and I the second-order
unit tensor, and C = C0 +MB⊗B, whereby C0 is the fourth-order elastic tensor which
linearly relates stress and strain.

After multiplying Eq. (19) by B and combining with Eq. (18), a more suitable expres-
sion of the rate of the stress tensor for drained condition is achieved

σ̇ = C0 : ε̇−Bṗ− λ̇C0 : mσ (20)

while the evolution laws of the local and non-local dissipative stress in Eq. (13) results

Q̇loc
α = −λ̇H loc

α mQ (21)

Q̇nloc
α = l2α∇ ·

(

Hnloc
α ∇λ̇mQα + λ̇Hnloc

α · ∇Qαm
2
Q

)

(22)

6
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where m2
Q = ∂2Φ∗/∂Q2. Thereby, local hardening/softening module H loc

α have been
introduced as well as the new non-local hardening/softening tensor Hnloc

α as defined in
[19]

H loc
α = ρ

∂2Ψp,loc

∂q2α
, Hnloc

α = ρ
1

l2α

∂2Ψp,nloc

∂∇qα∂∇qα
(23)

with Hnloc
α a second-order positive defined tensor. For the characteristic length lα three

alternative definitions can be given, see [16, 19, 20]. On the one hand, it can be defined as
a convenient dimensional parameter so as H loc

α and Hnloc
α will get the same dimension. On

the other hand, lα can be interpreted as an artificial numerical stabilization mechanism
for the non-local theory. Alternatively, as a physical entity that characterizes the material
microstructure. In this last case, and for calibration porpuse, specific numerical analysis
on the representative volume element (RVE) need to be performed at micro scale level.

4 MODIFIED CAM CLAY CONSTITUTIVE MODEL FOR GRADIENT
PLASTICITY

The modified Cam Clay plasticity model was originally proposed by [17] for normally
consolidated clays. However, due to accurate predictions of consolidated clay mechanical
behavior obtained with this model and the reduced number of involved parameters it has
been extended to a wide range of soils including unsaturated soils [1, 3].

The main characteristics of the modified Cam Clay plasticity model are:

a- The yield function is an ellipse on the (σ′, τ) plane

b- The volumetric component of the plastic strain on the Critical State Line (CSL) is
null while the plastic flow develops under constant volume

c- Associated plasticity is assumed

The yield function is defined by

Φ (σ′, τ, Qα) =

(

σ′ +
τ 2

m2σ′

)

−Qα (24)

where σ′ = I1/3 − βp is the effective hydrostatic stress, τ =
√
3J2 the shear stress, m

the CSL slope and Qα thermodynamically consistent dissipative stress equivalent to the
preconsolidation pressure pco. Also I1 and J2 are the first and second invariants of the
stress tensor and the deviator tensor, respectively.

To avoid overestimation of the volumetric compressibility coefficient K0 by the conven-
tional critical state model a non-associated flow rule was introduced by [11, 2]. Thereby,
the following plastic potential function is proposed

7
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Φ∗ (σ′, τ, Qα) = η
(
σ′2 − σ′Qα

)
+

( τ

m

)2

(25)

The η coefficient is a restriction function limiting the influence of the volumetric pres-
sure on the softening regime,

η = η0 +
a

(

1 +m exp
(

−(σ+βp)
υ

))

1 + n exp
(

−(σ+βp)
υ

) (26)

being a, n and m internal parameters of the exponential function, η0 = 1 and υ =
abs (pco/2).

The thermodynamic consistency is achieved by assuming the following expression for
the dissipative part of the free energy in Eq. (14)

ρΨp (εp,∇εp) = ρΨp,loc (εp) + ρΨp,nloc (∇εp) = − 1

χ
p0coexp (χε

p)− 1

2
l2αH

nloc∇2εp (27)

where εp is the volumetric plastic strain of the continuous solid skeleton expressed as a
function of the internal variables which describe the plastic evolution of the porous and
solid phases, in terms of the plastic porosity φp and the plastic volumetric strain of soil
grain εps, respectively

εp = φp + (1− φ0) ε
p
s (28)

From Eq. (13) the following expressions for local and non-local dissipative stresses are
obtained

Qloc
α (εp) = −ρ∂εpΨ = p0coexp (χ (φp + (1− φ0) ε

p
s)) (29)

Qnloc
α (∇εp) = −ρ∇ · (∂∇εpΨ) = l2sH

nloc
s ∇2εps + l2pH

nloc
p ∇2φp (30)

where ls and lp are the characteristic length for solid and porous phase, respectively.

5 INSTABILITY ANALYSIS OF POROUS MEDIA

The global failure in a continuous media is generally preceded by local discontinuities
taking place in areas or regions where the constituent material is subjected to a post-
pick stress state. A large number of materials failure studies have been developed in
the framework of continuous mechanics. Thereby, a succession of events that begins at
microscopic scale and cause the progressive deterioration of the medium, which is initially
treated as a continuous one, until transforming it in a discontinuous medium. Therefore,
the following failure shapes are defined:

8
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1. Discrete failure: this type of analysis lies beyond to the continuum mechanics and
belongs the fracture mechanics. The discontinuity is presented in the displacement
velocity field, i.e. [[u̇]] �= 0 1

2. Localized failure: this analysis is characterized by the continuity in the displacement
velocity field, while its gradient exhibits the discontinuity, i.e. [[u̇]] = 0 and [[ε̇]] �= 0

3. Diffuse failure: this behaviour is generally presented in ductile materials. In this
case the both velocity and deformation rate remains continuous, i.e. [[u̇]] = 0 and
[[ε̇]] = 0.

These concepts of the solids mechanics can be appropriately extrapolated to the me-
chanics of porous media considering that the medium is composed by a solid skeleton
surrounded, in the general case, by several fluids phases. The influence of these fluids
phases is taken into account by its corresponding pore pressure.

Considering the Kuhn-Tucker complementary condition, the incremental constitutive
equations Eq. (18) and Eq. (19), and the decomposition of the dissipative stress rate Eq.
(21) and Eq. (22), the following expression for the plastic multiplier can be obtained

λ̇ =
(

Φ̇e + Φ̇nloc
)

/h (31)

with

Φ̇nloc = l2α∂QαΦ
{

∂QαΦ
∗
[

Hnloc
α ∇2λ̇+∇Hnloc

α ∇λ̇
]

+ 2∂2
Qα

Φ∗∇QαH
nloc
α ∇λ̇

}

(32)

Φ̇e = Φ̇e
s + Φ̇e

p = (∂σΦCε̇−M∂pΦBε̇) + ṁ/ρfl0 (M∂pΦ− ∂σΦB) (33)

h = hs + hp + H̄ = ∂σΦC∂σΦ
∗ +M(−∂σΦB∂pΦ

∗ − ∂pΦB∂∗
σ + ∂pΦ∂pΦ

∗) + H̄ loc
α (34)

with H̄ loc
α = H loc

α ∂QαΦ∂QαΦ
∗.

Since we shall only concerned with the possibility of bifurcations in the incremental
solution, the difference between two possible solutions of σ̇ must satisfy the homogeneous
equilibrium equations, i.e. ∇σ̇ = 0 .

An infinitive domain is considered and the solutions for the displacement rate u̇, the
plastic multiplier γ̇ and the mass content γ̇ are expressed in terms of plane waves, as
follows [19]

1[[•]] is the jump operator, defined by [[•]] = •+ − •−

9
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u̇ (x, t) = U̇ (t) exp

(
i2π

δ
n · x

)

(35)

γ̇ (x, t) = Ṁ (t) exp

(
i2π

δ
n · x

)

(36)

λ̇ (x, t) = L̇ (t) exp

(
i2π

δ
n · x

)

(37)

being x the position vector, n is the normal direction of the wave and δ is the wave length.
Also, U̇ , Ṁ and L̇ are spatially homogeneous amplitudes of the wave saolutions.

Upon introducing the Eq. (31) into the incremental constitutive equations, Eq. (18),
satisfying the equilibrium equation on the discontinuity surface, and considering the as-
sumed solutions given in Eqs. (35)-(37), it is concluded that this equation is satisfied for
each x if

(
2π

δ

)2

n ·
{

C0 − C0∂σΦ
∗ ⊗ ∂σΦC

0

h+ h̄nloc

}

· n U̇ = 0 (38)

for drained conditions (ṗ = 0), and

(
2π

δ

)2

n ·
{

C− C∂σΦ
∗ ⊗ ∂σC

h+ h̄nloc
−M2∂pΦ

∗B⊗B∂pΦ

h+ h̄nloc
+

M

(
C∂σΦ

∗ ⊗B∂pΦ

h+ h̄nloc
+

∂pΦ
∗B⊗C∂σΦ

h+ h̄nloc

)}

n U̇ = 0 (39)

for undrained conditions (ṁ = 0), where h̄nloc is the generalized gradient module.

h̄nloc = h̄nloc
s + h̄nloc

p = n ·
[
l2s

(
∂QsΦ∂QsΦ

∗Hnloc
s

)
+ l2p

(
∂QpΦ∂QpΦ

∗Hnloc
p

)]
· n

(
2π

δ

)2

(40)

By calling Ad,nloc and Au,nloc to the expressions into the bracket of Eq. (38) and Eq.
(39), respectively, the acoustic tensor for gradient-regularized plasticity under drained
and undrained conditions are deduced. It is clear that these expressions differs from the
local counterpart only by the additional term h̄nloc. Thereby, when lα = 0 the acoustic
tensor for local plasticity is recovered, Ad,loc = Ad,nloc and Au,loc = Au,nloc.

6 CONCLUSIONS

In this work a general thermodynamically consistent gradient constitutive formulation
to describe non-local behaviour of porous media is proposed. The proposal is an extension
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of the gradient-based thermodynamically consistent theories by [19] and [22] for non-
porous continua particularized to the Modified Cam Clay constitutive model. Porous
materials in this work are modelled from the macroscopic level of observation. They
are considered to defined open thermodynamic systems characterized by the presence of
occluded sub regions.

Discontinuous bifurcation theory to predict localized failure modes is consistently ex-
tended to porous media. As a result, the analytical expression of the localization tensor
for gradient regularized plasticity in porous media is obtained. This failure indicator is
particularized for both drained and undrained hydraulic conditions.
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Abstract. The present paper deals with nonisothermal plasticity at finite strain. Both isotropic 
and kinematic hardening are included through a non-associative model of Armstrong-
Frederick-type. The model proposed in the present contribution is based on the recent works 
[1, 2]. Within the papers [1, 2], a variationally consistent update was proposed. This update 
allows computing the state of a thermomechanical solid by minimizing a certain energy 
potential. The non-trivial extension of [1, 2] to non-associative evolution equations was 
realized through the introduction of an extended principle of maximum dissipation augmented 
by a suitable parameterization of evolution equations. The latter formulation was recently 
presented in [3] within the context of isothermal plasticity. Recently, these authors have 
extended this approach to non-isothermal plasticity [4]. The predictive capabilities of this 
model are critically analyzed and demonstrated in the present contribution. 

 
 
1 INTRODUCTION 

Thermomechanically coupled problems were traditionally solved by decoupling the total 
problem into two sequential steps – the mechanical step in which the temperature is held fixed 
and the thermal step in which the configuration is fixed. The cornerstone of the 
aforementioned isothermal step was the radial return method. For capturing the heat 
dissipation due to plastic deformation, the most common model is the empirical rule of Taylor 
and Quinney. Unfortunately, this approach can violate the second law of thermodynamics, 
particularly if cyclic plasticity is considered. A further shortcoming of this approach is that the 
resulting thermomechanically coupled problem does not show a variational structure, cf.  [1]. 
A variationally consistent reformulation of the thermomechanically coupled problem was 
recently given in [1]. In the present paper, the formulation presented in [1] is extended to non-
associative evolution equations. This extension is based on a modified principle of maximum 
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dissipation. Concerning isothermal plasticity, such a principle was advocated in [3].

2 A NOVEL VARIATIONALLY CONSISTENT FORMULATION FOR 
THERMOMECHANICALLY COUPLED PROBLEMS

Without going too much into detail, the variational principle governing the 
thermomechanically coupled problem as originally proposed in [1] and further elaborated in 
[4] is defined by the incremental potential

( ) 1

0

1 1 1
+

+ + +
  = − −Θ − +    ∫ ∫

n

n

t

inc n n n n n t
B

I E E N N Ddt dV
(1)

0

1 , 1 , 1n n n
B

t dV tP tPχ + + Θ +− ∆ − ∆ + ∆∫ F .

Here, E is the internal energy, D is the dissipation, N is the entropy, Θ is the so-called external 
temperature, χ is a Fourier-type dissipation potential, PF is a potential defining the mechanical 
power associated with external forces, ΘP is the counterpart potential for temperature effects, t
denotes the time and 0B is the domain of the considered body. As shown in [1], the state of a 
deforming body can be described by the stationary conditions of functional (1) for standard 
dissipative solids (solids fulfilling the normality rule).

For a family of constitutive models showing non-associative evolution equations, the 
framework proposed in [1] was extended in [4]. This extension is also the focus of the present 
paper. Conceptually and in line with [3], the idea is an extended principle of maximum 
dissipation. More precisely, the dissipation functional D, the flow rule and the evolution 
equations are chosen independently. For enforcing evolution equations different than those 
implied by the unconstrained principle of maximum dissipation, the concept of pseudo 
stresses is employed here. Such stresses are denoted as Σ in what follows. These stresses are 
inserted into the desired flow rule. By doing so, all constraints such as plastic 
incompressibility are automatically fulfilled, cf. [3].

Using the aforementioned parameterization, the unknown deformationϕ and the unknown 
temperature Θ at time 1+nt can be computed from the saddle point problem 

( ) { }
1 1 11

1 1 , ,
, arg inf sup inf

n n nn

n n incN
I

ϕ λ
ϕ

+ + ++

+ + ∆Θ
Θ =

Σ
.

(2)

Here, ∆λ is the integrated plastic multiplier. Problem (2) can be conveniently solved in a 
staggered fashion. For that purpose, a minimization with respect to the fully locally defined 
variables is performed first. This gives rise to the local constitutive update

( )
1 11 1

1 1 ., ., ,
, , arg inf

n nn n
n n inc const constN

N I
ϕλ

λ
+ ++ +

+ + = Θ =∆
∆ =

Σ
Σ


 . (3)

It can be conveniently solved by applying Newton-type procedures. Subsequently, the stresses 
follow from the relaxed energy as partial derivatives with respect to the conjugate strain 
variable. 
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3

3 EVOLUTION LAWS AND YIELD FUNCTION
When minimization problem (3) is to be solved, the evolution equations and the stresses 

have to be specified. 
For defining the stresses, the Helmholtz energy is introduced via the classical Legrende-

Fenchel transformation 

( ) ( ), , inf , ,
N

E N N Ψ Θ = − Θ Fα F α , (4)

where α is a set of strain-like internal variables describing plastic deformation. If the set of 
internal variables is specified as { }, ,p

k iα=α F α , the Helmholtz energy reads

{ }, , ,e
k iαΨ = ΘFα , where ,e pF F are the elastic and the plastic part of the deformation 

gradient. Based on Ψ , the stresses are introduced in standard manner, i.e., as derivatives of Ψ with 
respect to the deformation gradient.  

Having defined the stresses, the internal dissipation inequality can be written as (see [4])

int : : 0p
k k i iD Qα= + + ≥Σ L Q α  , (5)

where pL is plastic velocity gradient, Σ is the Mandel stress tensor and ,k iQQ are stress-like 
internal variables conjugate to the strain-like kinematic hardening variable kα and the strain-
like isotropic hardening variable iα , respectively. 
With (5) the temperature evolution can be defined from the balance of energy. After a 
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where c is the heat capacity at constant strain, H is the outward heat flux vector and QΘ is heat 
source per unit mass. The last term governs thermoelastic heating and it is frequently 
neglected.  

According to (5), the internal dissipation depends crucially on the considered state. For 
distinguishing between plastic and elastic deformation, the by now classical a yield function is 
considered. In the present paper, this yield function is assumed to be of the type
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Finally, the evolution equations are defined. For that purpose and in line with the 
framework of generalized standard solids, a plastic potential is introduced. In the present 
paper, this potential is of the type
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The evolution equations are gradients of g . More precisely, 

, ,
k

p p
k iλ φ λ φ α λ= ∂ = − + ∂ = −Σ QLα L   . (10)

(10) is supplemented by the standard Karush-Kuhn-Tucker conditions. 
In the case of a von Mises yield function and applying the concept of pseudo stresses Σ ,

(10) can be re-written as

Dev Dev, ,
Dev Dev k

p
k iλ λ λ φ α λ= = − + ∂ = −Q

Σ ΣLα
Σ Σ

 
 

 
.

(11)

If the yield function is now combined with the dissipation inequality (5), the internal 
dissipation takes the form

0

int 0 : 0eq
k

k
D Q

φ φλ λ
= ∂
= + ≥

∂
Q

Q
.

(15)

Accordingly, the second law of thermodynamics is automatically fulfilled, if the plastic 
potential (9) is convex. That can be guaranteed by using a convex yield function (which is the 
case for the von Mises model) and a convex functionφ .

4 EXAMPLE AND CONCLUSIONS
For demonstrating the efficiency of the discussed framework, the cyclic tension test is 

numerically analyzed, cf. [3, 5]. In line with [1, 2] adiabatic conditions are considered. The 
material response is defined by a Helmholtz energy of the type

( ) ( ) ( ) ( ) ( ),e p
kW U J T M JΨ = + + Θ + Θ +ΨCα , (16)

where the potential ( )eW C defining the elastic deviatoric response as a function of the 

deviatoric elastic right Cauchy-Green tensor e
C , the potential ( )U J depending on the 

Jacobian determinant of the deformation gradient characterizing the elastic volumetric
response, the part ( )ΘT associated with thermal effects, the part ( ),ΘM J related to 
thermoelastic effects and the potential ( )Ψ p

kα corresponding to kinematic hardening are
chosen as

( ) ( )[ ]3tr
2
1

−= eeW CC µ , ( ) ( )21 1 1 ln
2 2

U J J Jκ  = − −  
,

(17)

( ) ( )0 0
0

lnT cθ
 Θ

= Θ −Θ −Θ Θ 
, ( ) ( ) ( )[ ]JUJM ′−Θ−Θ=Θ α3, 0 , 1 :

2
p

k kcΨ = α α .

Thermal softening is accounted for by a temperature-dependent initial yield stress of type

( ) ( ) ( )0 0 0 0 01eqQ yθ θ ω θ θ = − −  . (18)
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The plastic response is completed by a von Mises yield function

( ) 0, , DevΘ = − − eq
k k Qφ Σ Q Σ Q (19)

including kinematic hardening and the evolution equations and the flow rules are defined by 
the gradients of the convex plastic potential

( ) ( ) ( ) ( ) 21, , , , ;
2

Θ = Θ + =k k k k k
bg
c

φ φ φΣ Q Σ Q Q Q Q
(20)

with respect to their dual variables. Finally, the thermal problem is governed by the Fourier 
dissipation potential

1 GRAD GRAD 
2

kχ = Θ ⋅ Θ .
(21)

The material parameters used in the numerical simulations are summarized in Tab. 1.

Table 1: Material parameters

µ, GPa κ, GPa α, GPa b
80 173.333 51.15 10−⋅ 8.5

c, GPa y0, MPa c0, N/mm2K ω0, K-1

1.9 244.95 3.7518 0.002

Within the variational framework, the part of the mechanical dissipation which is 
transferred to heat is consistently governed by the first law of thermodynamics. However, by 
assuming the classical Taylor-Quinney coupling, a Taylor-Quinney factor can be computed as 
a post-processing step, cf. [1]. The respective results for the first loading stage are shown in 
Fig. 1. Accordingly and as already mentioned in [1], the assumption of a constant factor is not 
in line with the first law of thermodynamics. More precisely, the evolution of this factor is 
highly non-linear. That confirms that the classical Taylor-Quinney assumption is not valid in 
general and can usually only be justified by a mean value of the more complex and physically 
more sound evolution shown in Fig. 1. Such problems can be conveniently and naturally 
solved by using the advocated variationally consistent thermomechanically coupled model.

Figure 1: Evolution of the Taylor-Quinney factor as predicted by the variationally consistent model
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Abstract. The focus of this contribution is on a novel, improved technique for energy
minimization in atomic simulations and its adaption to a variationally consistent formu-
lation of the quasicontinuum (QC) method. The optimization algorithm called FIRE for
Fast Inertial Relaxation Engine can be understood as a modification of the Steepest De-
scent (SD) method, which improves SD by accelerating the system in the direction of the
force, making the minimization more aggressive. The performance of FIRE is assessed
in the example of nanopillar compression with respect to efficiency and stability against
competitive optimization methods.

1 MODELING

1.1 Fully nonlocal QC method based on energy calculation in clusters.

The main conceptual ingredients of the fully nonlocal QC-method which drastically
reduce the computational burden of fully atomistic models are visualized in Fig. 1. Firstly,
it is a finite element discretization (’coarse-graining’) reducing the number of degrees of
freedom in the crystal. Secondly, and even more important for reducing the computational
costs, it is the calculation of atomic energies Ek at lattice sites k in spherical sampling
clusters Ci of radius Rc defined as Ci = {k : |Xk − Xi| ≤ Rc(i)} instead of in the entire
crystal. The energy of each cluster is multiplied with a weighting factor ni accounting
for the energy contributions of atoms outside the cluster. The summation over all mesh
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Figure 1: Approximations in the cluster-based QC method: (Left) Finite element discretization of the
crystal where atoms in the interior of elements smoothly follow the deformation of the representative
atoms (mesh nodes) by linear interpolation. (Right) Energy sampling in spherical clusters.

nodes i ∈ Lh and therefore over all clusters yields the QC-approximation of the total
energy

EQC =
∑

i∈Lh

ni

∑

k∈Ci

Ek . (1)

The atomic energies Ek are calculated using pair functionals of the Embedded Atom
Method (EAM). Note, that the cluster radius Rc is a purely numerical parameter control-
ling the accuracy of the cluster summation rule, whereas the cut-off radius is a physical
parameter and cannot be arbitrarily chosen. The weighting factors ni are calculated such
that the sum of the shape function values in the clusters multiplied with the weighting
factors equals the sum of the shape function values at all lattice sites in the crystal, it
reads ∑

i∈Lh

ni

∑

k∈Ci

ϕj(Xk) =
∑

k∈L

ϕj(Xk) ∀ j ∈ Lh . (2)

Stable equilibrium configurations of the crystal are minimizers of the total energy and
correspond to configurations for which the resultant force at every finite element node a
is zero, hence

min
{xa}

EQC =⇒ fQC
a = −∂EQC

∂xa

= 0 ∀ a ∈ Lh . (3)

For more details about the cluster-based QC method, we refer to [7] and [4], a compar-
ison with the QC method based on Cauchy-Born elasticity can be found e.g. in [5] and
[6].

2
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1.2 Energy minimization based on acceleration and inertia

Energy minimization in atomic simulations at zero temperature is used to find the (in-
herent) equilibrium structure of a solid without the ”noise” of thermal vibrations. When
the equilibrium structure is searched at finite temperature, an established technique is to
carry out molecular dynamics (MD) calculations, but then, to remove continuously ki-
netic energy from the system, a process called numerical ”quenching”. In [1] a simple MD
scheme for structural relaxation was proposed which belongs to this class of minimizers.
The algorithm dubbed FIRE for Fast Inertial Relaxation Engine (FIRE) crucially relies
on inertia as its precursor Quick-Min (QM) does, see [2], but makes effective improve-
ments. The strategy to descent to a minimum of the total energy is to follow an equation
of motion given by

v̇(t) = 1/m F (t) − γ(t)|v(t)|
[

v̂(t) − F̂ (t)
]

, (4)

with mass m, velocity v = ẋ, force F = −∇EQC(x), and where the hat denotes a
unit vector. Hence, the strategy is to accelerate in a direction that is ”steeper” than
the current direction of motion via the function γ(t), if the power P (t) = F (t) · v(t)
is positive. To avoid uphill motion the algorithm stops as soon as the power becomes
negative. The parameter γ(t) must be chosen appropriately but should not be too large,
because the current velocities carry information about the reasonable ’average’ descent
direction and energy scale, see [1]. The numerical treatment of the algorithm is based
on an MD integrator like the Velocity Verlet algorithm providing the propagation of the
trajectories due to conservative forces. The MD trajectories are continuously readjusted
by a mixing rule of the velocities according to

v → (1 − α)v + αF̂ |v| (5)

which follows from an Euler-step of the second term on the right in eq. (4) with time step
size ∆t and α = γ∆t. The propagation rules for the FIRE algorithm can be summarized
as follows (initialization: set values for ∆t, α = αstart, the global vectors x and set v = 0):

1. MD integrator: calculate x, F = −∇EQC(x) and v using any common MD inte-
grator (here: Velocity Verlet); check for convergence.

2. calculate force power P = F · v.

3. set v → (1 − α)v + α|v|F̂ .

4. if P > 0 and the number of steps since P was negative is larger than Nmin, increase
the time step ∆t → min(∆tfinc, ∆tmax) and decrease α → αfα.

5. if P ≤ 0, decrease time step ∆t → ∆tfdec, freeze the system v → 0, and set α back
to αstart.

6. Return to MD integrator.

3
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The FIRE-parameters used in the present work are set to Nmin = 5, αstart = 0.1,
finc = 1.1, fdec = 0.5 and fα = 0.99.

Remark.
The differences of FIRE compared with its precursor QM are twofold. Both algorithms
take dynamical steps starting in the direction of the steepest descent. Furthermore they
both reset the velocity if the force and velocity are in opposite directions. The first
difference is, however, that FIRE employs variable time step sizes. The second difference
is that QM projects the velocity onto the force vector according to

v → (v · F̂ )F̂ (6)

whereas FIRE only projects a component of the velocity in the force direction, while
maintaining momentum in other directions, see eq.(5), which avoids to adjust the direction
of descent too hastily.

2 EXAMPLE: COMPRESSION OF A NANOPILLAR

Figure 2: Nanopillar compression, (left) lateral cross sectional view of the discretization, (center) outer
face, (right) cross sectional view of discretization reveals the approximation of the circle by a polygon
due to the small size of the fcc pillar.

The single-crystalline, fcc nanopillar made of aluminum is of cylindrical shape and
exhibits height H = 64 a0, diameter D = 16 a0 with lattice constant a0 = 4.032 Å. Crys-
tallographic < 001 >-axes align with cartesian X-, Y - and Z-axes. The pillar is supported
at the bottom in z-direction and all faces are free surfaces. After initial relaxation of the
crystal without the presence of external forces, the top surface is loaded by a compressive
force, which is mediated by displacement control in z-direction. For a proper geometry
description the curved surface is in full atomic resolution, whereas the interior of the pillar

4
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is initially coarse-grained by finite elements. The cluster radius in the simulations is set
to Rc = a0/

√
2, for the energy calculation an EAM-potential for aluminum is used.

The novel FIRE minimizer is tested against the performance of the Steepest De-
scent (SD) method, a nonlinear version of the Conjugate Gradient (CG) method and
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The total
deformation range can be decomposed into three distinct ranges.

(I) For surface relaxations the energy landscape is typically rather flat, the process
of energy-minimization using conventional optimization algorithms tends to get
trapped in shallow holes representing local energy minimizers as indicated by resid-
uals toggling up and down but cannot go below an accuracy threshold. FIRE in
contrast, by virtue of its inertia can pass these local minima and can achieve vir-
tually arbitrary accuracy. For the surface relaxation in the present example the
performance of FIRE is in between L-BFGS and the CG method, the convergence
of SD is very slow, see the top diagram in Fig. 3.

(II) The range of elastic compression is very ample and extends to a maximum com-
pressive strain of 7.7%. The reason is that the pillar exhibits no initial dislocations
which can serve as carriers of plastic deformation. Therefore, the present compres-
sion simulation probes the strength of the material rather than giving an example
of classical, dislocation-mediated plasticity on the nanoscale. The diagram in the
center of Fig. 3 belongs to a single loading step which is representative for the per-
formance of the minimization algorithms in the entire elastic deformation range.
FIRE performs better than the other optimizers and is even considerably faster
than L-BFGS.

(III) At the point of material instability, where strain localizes in a crystallographic slip
band coinciding with a {111} plane, CG and SD diverge, whereas L-BFGS and
FIRE can pass the point of bifurcation. Here, FIRE is faster than L-BFGS, see the
bottom in Fig. 3.

2.1 A note on the mechanics of nano-/micropillars

The mechanics of small-sized (diameter D in the range of approximately 100 nm –
2 µm), single-crystalline pillars has attracted considerable interest in recent years. The
reason is that for these pillars subject to compression a size-dependence of the flow stress
in the sense of ”smaller is stronger” has been measured, which was first reported in [3].
This behavior seems to be at odds with an earlier understanding, according to which
size-dependence requires structural obstacles to dislocation motion like grain-boundaries
or other interfaces (cf. Hall-Petch relationship). A single-crystalline specimen with a
deformation state assumed to be quasi-homogeneous in contrast, was not expected to
exhibit that size-dependence.

5
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Figure 3: Convergence diagrams for different optimizers at characteristic deformation stages of the
compressed nanopillar (left), contour plots for displacement component uz [Å] (right).
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Figure 4: Compression of single-crystalline fcc nano-/micropillar. Deformed pillar right before (Left) and
right after bifurcation (centre) with contour plots for II(devE) > 0.3 in QC-simulation for Al and (right)
in the experiment of a Ni-micropillar, picture from [3].

Note, that for the present simulations one atom has been removed from the middle of
the pillar’s surface in order to attract stress at that local defect and thereby to trigger
localization. This can be best seen in the left of Fig. 4, where atoms are displayed that
exhibit a value for the second invariant of the Green-Lagrangian strain tensor II(devE) >
0.3. Note that right before localization the largest deviatoric strain is observed at the site
where the atom is removed. Nevertheless, localization starts from the intersecting surfaces
at the loaded top, Fig. 4 (center), which indicates that this geometrical defect is stronger
than the artificially introduced surface defect. Furthermore the contour plot of II(devE)
in Fig. 4 reveals that right after the first microband has formed, a second slip system is
activated.

3 CONCLUSION

Summarizing, in its modified formulation within the quasicontinuum method, FIRE is
competitive with, in some cases superior to well-established efficient minimization algo-
rithms like L-BFGS. Beyond its superior behavior with respect to efficiency and stability
FIRE is easy to implement and can be operated intuitively. These benefits and promising
results suggest to use FIRE in various other models, especially when stability issues are
a major concern.
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Abstract. A modeling approach of the shear localization in thermoviscoplastic materials
is developed in the framework of an energy-based variational formulation. The shear band
structure in the layer (1D) sustaining a simple shearing deformation has been analysed in
stationary and transient regimes. Starting from the optimization problem characterizing
our variational formulation, we seek an approximate solution by way of a semi-analytical
approach to predict the profiles of velocity and temperature in the band and obtain the
evolution of some characteristic parameters, such as shear band width and maximum
temperature, showing a good consistency with the solution obtained by the finite element
method. Indeed, the results converge to the steady solution, in agreement with the
canonical analytical solution [1].

1 INTRODUCTION

We have recently proposed a variational formulation of coupled thermo-mechanical
boundary-value problems [2], allowing to write mechanical and thermal balance equations
under the form of an optimization problem of a scalar function. This formulation applies
to a wide range of material behaviors, possibly irreversible and dissipative, as long as
they fit in the framework of Generalized Standard Materials [3]. The proposed variational
structure brings several advantages. Beyond unifying a wide range of constitutive models
in a common framework, the variational formulation also presents interesting mathemat-
ical properties. Among these, an important property is that of symmetry, inherent to
all variational formulations, but which lacked to alternative coupled thermo-mechanical
formulations previously proposed in the literature.

An adiabatic shear band is an intense shearing zone appearing in large plastic defor-
mation with thermal instability at high strain rates. It’s encountered in many engineering
problems: forming processes and impact loading of metallic materials, but also in thermo-
plastic polymers. Understanding and predicting their onset and evolution is critical since
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they usually are a precursor to macroscopic ductile fracture. Much work has thus been
published on the topic. Molinari ([1], [4]), Wright ([5]) have derived the analytical expres-
sions for velocity and temperature profiles (1D) in the steady state, but the results are
based on specific constitutive relations. In general, the small width of the shear band and
the material softening effect associated with the local heating bring a lot of difficulties to
numerical simulations, such as mesh dependence, model quality and interactions between
multiple bands. Many methods (XFEM [6], meshless method [7], interface element [8],
· · · ) have been used for bypassing these problems. However, it is necessary to know the
approximate domain of the shear band width in most of these approches. Here, we aim
at constructing a semi-analytical model able to predict the internal structure of an adia-
batic shear band and its evolution with time (and loading), starting from the variational
formulation described in [2]. Indeed, thermo-mechanical coupling effects and conduction
play a fundamental role in determining the velocity and temperature profiles within an
adiabatic shear band.

2 Variational model in the steady state

We simplify the shear band model as its 1D problem illustrated in Fig.1: a layer of
thickness 2H subjected to a simple shearing force. The velocity imposed on the boundary
is V0, and isothermal conditions (T = T0) at y = ±H are considered. The material is
chosen as a steel having thermoviscoplastic properties with parameters of the material
described in [1]. Here, the elastic and the hardening effects are neglected to simplify the
model. First, we consider the problem in case of the steady state, when the stress and
the entropy in the layer are stationary.

2.1 Variational formulation

Figure 1: 1D shear band problem [1]

Using the total pseudo-potential function proposed by Yang et al.[2], and combined

2
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with the stationary conditions, the power density function is reduced to :

Φ(V, T ) =

∫ H

−H

Ψ∗(
T

Θ
V,y; Θ)− χ(−T,y

T
; Θ)dy

where Ψ∗ is a dissipation pseudo-potential describing the viscoplasticity with thermal
softening:

Ψ∗(
T

Θ
V,y; Θ) =

1

m+ 1

τ0
(γ̇0)m

exp

[

−β

((

Θ

T0

)

− 1

)](

V,y
T

Θ

)m+1

m ∈ [0, 1] (1)

Parameters m and β are the strain rate sensitivity exponent and the thermal softening
coefficient, and τ0 and γ̇0 are the reference stress and strain rate. Θ(y) is the equilibrum
temperature introduced to satisfy the symmetry property of the power density function.
χ is a thermal conduction pseudo-potential obeying the Fourier law:

χ(−T,y

T
; Θ) =

1

2
λΘ

(

T,y

T

)2

(2)

where the parametrer λ is the thermal conductivity. Thus the problem of the shear band
(Fig. 1) can be described as an optimization problem of the power density function:

inf
V

max
T

{Φ(V, T )} (3)

Taking variation with respect to the velocity, we can obtain the mechanical equilibrium
equation, while the heat equation is obtained from stationarity condition on T . In addi-
tion, thermal equilibrium requires that Θ = T .

2.2 Semi-analytical method

Considering boundary conditions in the 1D problem:

V |±H = V0; T |±H = T0;

and taking advantage of the solutions obtained by Leroy and Molinari [1], the profiles of
velocity and temperature can be written as follows with parameters h and Tmax:

V (y) = V0
tanh(y/h)

tanh(H/h)
, T (y) = Tmax − (Tmax − T0)

ln(cosh(y/h))

ln(cosh(H/h))
(4)

where h is the shear band width, and Tmax is the central temperature. We introduce a new
parameter Tmax to replace the material parameters used in [1], since this change avoids
the limitation to specific constitutive relations and gives us a more general description of
velocity and temperature in the layer.

Finally, the variational model of the shear band in the steady state is restated as
follows:

inf
h
max
Tmax

{Φ(h, Tmax)} (5)

3
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2.3 Results

In our calculations, a trust region method is used in view of the strong non-linearity
of the Euler-Lagrange equations of (5). Table (1) shows the shear band widths and
the central temperatures for different material parameters, in good agreement with the
analytical solutions.

Table 1: Shear band width and central temperature (dimensionless) (β = 0.38;V0 = 0.1108 m/s)

variational model [h Tmax] analytical [h Tmax]
m = 0.12;κ = 1/0.242373

[
0.312643 775.026

] [
0.312643 775.020

]

m = 0.012;κ = 1/0.403788
[
0.031073 896.626

] [
0.031072 896.656

]

m = 0.06;κ = 1/0.3218
[
0.153552 851.299

] [
0.153552 851.303

]

Fig. 2 illustrates the influence of the imposed velocity V0 on h and Tmax. With the
velocity increased, the shear band width h decreases and the central temperature in the
band increases. Obviously in a thermal softening material, a higher strain rate causes a
smaller band width, and also brings more dissipation and heat generation in the band. In
addition, the time of the formation of the shear band is so short that the heat cannot go
out of the layer by conduction, leading to a higher central temperature.

3 Variational model in transient regime

For thermoviscoplastic materials under high strain rates, the rapid evolution of the
shear band and its small width complicate numerical simulations. In this section, we will
extend the stationary variational modeling to transient regime, establishing a variational
update form of the 1D shear band problem.

3.1 Incremental variational formulation

The variational framework proposed in Yang et al.[2] also includes a time-discretized
incremental variational problem, and it can be applied to the 1D shear band problem,
yielding an incremental optimization problem. In particular, considering a time increment
[tn, tn+1], and assuming that [Fn, Tn,F

p
n] is known, we proceed to obtain the variational

update at time tn+1. F is the gradient of deformation, and we consider the conventional
multiplicative decomposition:

F = FeFp

If the material satisfy the Von Mises law, the gradient of plastic deformation Fp
n+1 verifies

the following equalities:
Fp

n+1 = exp[(εpn+1 − εpn)M]Fp
n
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Figure 2: Influence of the imposed velocity V0 about the shear band width and the central temperature

tr(M) = 0, M ·M =
3

2
where εp is the cumulated plastic deformation. In general, F is written:

Fn+1 = I+
∂−−→un+1

∂−→x
Considering the 1D shear band problem, it reduces to:

Fn+1 =





1 ∂un+1

∂y
0

0 1 0
0 0 1





Following [2], the total pseudo-potential for the thermo-mechanical coupled problem is
then:

Φn =

∫ H

−H

[

Wn −∆tχ

(

1

Tn+1

∂Tn+1

∂y

)]

dy

where Wn is the optimized potential about εpn+1 and M:

Wn (Fn+1, Tn+1;Fn, Tn,F
p
n, ε

p
n) = inf

εpn+1
,M
[W

(

Fn+1, Tn+1,F
p
n+1, ε

p
n+1

)

−W (Fn, Tn,F
p
n, ε

p
n) + ηn (Tn+1 − Tn)

+

∫ tn+1

tn

Ψ∗
(

Tn+1

Tn

∆εp

∆t
;T (t)

)

dt] (6)

where W
(

Fn+1, Tn+1,F
p
n+1, ε

p
n+1

)

is the free energy, which includes the elastic energy,
stored plastic energy and the heat storage capacity of the material [9]. In addition, the
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notations Ψ∗ and χ are the same as previously: the dissipation pseudo-potential and the
Fourier pseudo-potential. The entropy ηn is defined by :

ηn = −W,Tn (Fn, Tn,F
p
n, ε

p
n)

and ∆εp = εpn+1 − εpn. Note that W appears as a thermo-elastic pseudo-potential. Indeed
Piola-Kirchhoff stress can be written as:

∂Wn

∂Fn+1

= pn+1

and the heat equation in the adiabatic form is given by taking variation about T :

∂Wn

∂Tn+1

= −∆η +
∆t

Tn+1

Dint

where Dint is the internal dissipation.
In view of the above variational framework, the incremental 1D problem of the shear

band described in Fig.1 is written as:

inf
un+1

max
Tn+1

Φn (un+1, Tn+1; un, Tn,F
p
n, ε

p
n) (7)

When the time step tends towards 0, Euler-Lagrange equations of (7) are consistent with
continuous mechanical and thermal equilibrum equations.

3.2 Numerical validation

In this section, we will use the finite element method (FEM) and a semi-analytical
method to simulate the evolution of velocity and temperature in the layer. On the one
hand, FEM gives us a more precise simulation of the formation of the shear band. How-
ever, it cannot avoid the difficulty of mesh dependence, the domain where the shear band
occurs requiring a very fine mesh; on the other hand, the semi-analytical method, al-
though less precise in early stages of shear band formation, shows a good convergence of
the shear band width and is consistent with the results obtained by FEM. In addition, it
has a better efficiency compared with FEM.

3.2.1 Finite element method

Thanks to the symmetry of the total pseudo-potential, the tangent matrix of the FEM
is also symmetrical, which is different from the traditional thermal-mechanical problem,
and this character brings some algorithmic advantages. In the FEM model, elasticity and
thermal capacity are considered [9]. But hardening effect is neglected for comparing with
analytical results. Because of the thermal softening in the dissipation pseudo-potential,
we choose the following form for its time-discretization [10]:

1

�t

∫ tn+1

tn

Ψ∗
(

Tn+1

Tn

∆εP

∆t
;T (t)

)

dt ≈ Tn

Tn+1

Ψ∗
(

Tn+1

Tn

∆εP

∆t
;Tn

)

+
∆T

Tn+1

Ψ∗
(

Tn+1

Tn

∆εP

∆t
;Tn+α

)
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The parameter α is choosen equal to 0.5. In the latter simulation by the semi-analytical
method, we also use this form to approximate the dissipation, but α is choosen equal to
0.

Fig.3 gives us the results for profiles of velocity and temperature in the layer (H =
1.25mm,V0 = 0.01108m/s, T0 = 300K). As time increases, profiles of velocity change
from a linear form to a nonlinear form, and step by step concentrate in the central zone,
arriving at a steaty state when time reaches 0.1 s. The stationary shear band width is
0.247 mm, and Tmax = 395K.

Figure 3: Evolution of the profiles of velocity and temperature(V0 = 0.01108m/s)

We also analyse the evolution of the shear band when the imposed velocity is 1m/s
(Fig.4). Compared with V0 = 0.01108m/s, the time when the material reaches a steady
state is shorter, the shear band width is smaller (h = 0.014583mm), and the central
temperature is higher (Tmax = 2047K), which is in agreement with the analytical solution.
In addition, we can observe a heat affected zone in the process of the formation of the shear
band because of the locally lower strain and the local annealing due to the temperature
increase [4]. This transient effect is less obvious in the case of V0 = 0.01108m/s.

For illustrating the evolution of shear band width and comparing it with the semi-
analytical method, we choose two parameters to measure the shear localization: the
kinematic width hv from the velocity distribution and the thermal width hT from the
temperature distribution. Refering to the analytical formulation, they are calculated by:

hVn+1
such that Vn+1(hVn+1

) � V0 tanh(1)

hTn+1
such that

2m

β
log(cosh(

H

hTn+1

)) =
Tmax

T0
− 1

Fig.5 presents the convergence of the kinematic width and the thermal width when H =
1.25mm,V0 = 0.01108m/s, T0 = 300K. With the time increased, the two widths decrease
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Figure 4: Evolution of the profiles of velocity and temperature (V0 = 1m/s)

gradually and tends towards the same stationary value, which is consistent with the
analytical solution.

Figure 5: Convergence of the shear band width (V0 = 0.01108m/s)
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3.2.2 Semi-analytical method

The strong shear localization causes difficulties in the simulation of the shear band by
FEM. Indeed, it is necessary to have an approximation of the width before constructing
the mesh. Therefore, we follow an idea initially proposed by Yang et al.[8], who derived
a simple model of shear bands based on a linear velocity and a Gaussian temperature
profiles. Neglecting the heat affected zone, and supposing that at each time step the
distributions of velocity and temperature satisfy the canonical solutions, we write at
t = tn+1:

V (y) = V0
tanh(y/hn+1)

tanh(H/hn+1)
, T (y) = T0 −

2m

β
T0 ln

cosh(y/hn+1)

cosh(H/hn+1)
(8)

where m, β are the material parameters, the same as the analysis in the steady state. We
then obtain the incremental optimization problem for the 1D shear band (Fig.1) as:

stat
hn+1

Φn(hn+1) (9)

It is important to note that, in contrast to previous approaches, the shear band width
figures among the unknowns, and will be determined by computation. It is an important
feature, since this width is controlled by the combined effect of internal dissipation and
conduction, and we will use an example to illustrate that it can evolve as the shear band
evolves towards its stationary structure.

In general, there is no shear band in the plane at the initial time, so we choose:

h0 = H

Fig.6 shows us the evolution of velocity profiles and temperature profiles compared
with the analytical stationary solutions whenH = 1.25mm,V0 = 0.01108m/s, T0 = 300K.
Here the time step is chosen as �t = 1e − 3s. Results obtained by the semi-analytical
approach are consistent with those obtained by FEM. In addition, returning to Fig.5,
we can get the comparison about the convergence of shear band width. The widths
evolutions are in agreement with the results by FEM. Furthermore, computation time
is reduced compared to that of FEM. Therefore the semi-analytical method presents a
higher efficency besides not requiring a mesh.

4 CONCLUSIONS

Considering a simplified 1D model of shear band in thermoviscoplastic materials, we
have developped an energy-based variational semi-analytical approach to predict shear
band internal structure. In stationary or transient regimes, the shear band width and
the central temperature are determined and in good agreement with the work of Leroy
et al.[1]. Compared with the finite element method, we not only got the validation of
the variational modeling in the analysis of the formation of the shear band, but have also
shown the efficiency and feasibility of the proposed semi-analytical method.

9
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Figure 6: Evolution of the profiles of velocity and temperature by semi-analytical method (V0 =
0.01108m/s)
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Abstract. In the present contribution, the thermodynamical and variational consis-
tency of cohesive zone models is critically analyzed. Starting from cohesive zone models
suitable for fully reversible deformation, the restrictions imposed by the second law of
thermodynamics are investigated. It will be shown that a naive modeling approach leads
to a contradiction of the dissipation inequality, even if a purely elastic response is desired.
Based on such findings, a thermomechanically consistent model including dissipative ef-
fects is proposed. This model is finally recast into a variationally consistent form. Within
the resulting model, all state variables are naturally and jointly computed by minimizing
an incrementally defined potential. The predictive capabilities of this model are demon-
strated by means of selected examples.

1 INTRODUCTION

Cohesive interface models dating back to the pioneering works [1, 2, 3] represent one of
the most powerful and versatile tools available for the analysis of material failure. Within
such models, the stress vector acting at a crack, usually given in terms of the crack width,
resist the separation of the bulk material across the crack.

While the number of different cohesive interface models in the literature is tremendous
(for an overview, see [4, 5] and references cited therein), interface laws specifically designed
for material failure at finite strains are still relatively rare – particularly for anisotropic
solids. However, geometrically nonlinear effects and anisotropic mechanical responses do
play an important role in many applications, e.g., in delamination processes, cf. [6].

Clearly, considering a geometrically exact description, the constraints imposed by the
fundamental principles of constitutive modeling such as those related to the principle

1
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of objectivity are not automatically fulfilled and thus, they require special attention.
However and as shown in [7], such principles are often not carefully considered. More
precisely, except for the framework presented in [7], the existing cohesive zone models
described with respect to the current, i.e., deformed, configuration which account for an
anisotropic mechanical response, do not fulfill all of the aforementioned physical principles.
Particularly, the second law of thermodynamics is not fulfilled. In the present paper, a
physically sound framework complying with these fundamentals of physics is discussed.

2 KINEMATICS

In what follows, a body Ω is considered to be separated during deformation into the
two parts Ω− and Ω+ by means of a crack or a shear band denoted as ∂sΩ, i.e., Ω =
Ω− ∪ Ω+ ∪ ∂sΩ. The orientation of ∂sΩ with respect to the undeformed configuration is
locally defined by its normal vector N . In line with standard notation, the normal vectors
are postulated as N− = −N+ = N .

The motion of the sub-bodies Ω− and Ω+ is described by the deformation mapping ϕ

which can be written as ϕ = id + u with id being the identity mapping and u being the
displacement field. Denoting u± as the displacement field in Ω+ and Ω− and Hs as the
Heaviside function of ∂sΩ, a displacement field u characterizing a crack or a shear band
is discontinuous and thus, it is of the type

u = u− +Hs

(
u+ − u−

)
. (1)

With Eq. (1), the displacement discontinuity �u� at ∂sΩ can be defined as

�u� = u+ − u− ∀X ∈ ∂sΩ. (2)

Since the deformation in Ω− and that in Ω+ are in general uncoupled, the normal vectors
n− and n+ on both sides of a crack are usually not parallel. For this reason, a fictitious
intermediate configuration x̄ between x− and x+ is frequently introduced as

x̄ = (1− α) x− + α x+, α ∈ [0; 1]. (3)

In most cases, α is set to α = 1/2.

3 CONSTITUTIVE MODELING

3.1 Elastic interfaces

In the most general case, the mechanical response of an elastic interface can be defined
by means of a Helmholtz energy of the type

Ψ = Ψ(�u� ,a1, . . .an). (4)

Here, ai are structural vectors describing the material’s symmetry. By introducing the
surface deformation gradient associated with the fictitious intermediate configuration of

2
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a deformed crack as

F̄ = (1− α) F − + α F +, α ∈ [0; 1], (5)

Eq. (4) can be re-written as

Ψ = Ψ(�u� ,F−,F+,A1, . . .An), with Ȧi = 0. (6)

Here, Ai are the vectors obtained by applying a pull-back to the spatial vectors ai. With
Eq. (6), the rate of the Helmholtz energy is computed as

Ψ̇ =
∂Ψ

∂ �u�
· ˙�u� +

∂Ψ

∂F̄
:
[

(1− α) Ḟ
−
+ α Ḟ

+
]

. (7)

It bears emphasis that the deformation gradients F ± and the displacement discontinuity
�u� are only weakly coupled (F+ = F−+GRAD �u�)). Hence, the stress power consists of
three terms in general. By introducing two stress tensors P± of first Piola-Kirchhoff type
being conjugate to the deformation gradients F ±, the stress power can thus be written
as

o
w= T · ˙�u� + P− : Ḟ

−
+ P+ : Ḟ

+
. (8)

Consequently, by applying the standard Coleman & Noll procedure, cf. [8], the constitu-
tive equations

T =
∂Ψ

∂ �u�
, P− =

∂Ψ

∂F − = (1− α)
∂Ψ

∂F̄
, P+ =

∂Ψ

∂F + = α
∂Ψ

∂F̄
(9)

are derived. As a result, two boundary-like laws are also implicitly defined by the
Helmholtz energy (6) in addition to the classical constitutive model (9)1, see also [9].
These additional tensors are required for thermomechanical consistency. This can be seen
more explicitly by ignoring them. In this case, the dissipation reads

D = T · �u̇� − Ψ̇ = −
∂Ψ

∂F̄
:
[

(1− α) Ḟ
−
+ α Ḟ

+
]

�= 0. (10)

Consequently, the dissipation would be non-vanishing, even in case of a hyperelastic-type
model. It bears emphasis that these additional stress tensors have not been considered in
any of the existing cohesive zone models.

3.2 Dissipative effects

In this section, the hyperelastic model described before is combined with damage me-
chanics. For that purpose, a Helmholtz energy of the type

Ψ =

n∑

i=1

n∏

j=1

(1− d
(j)
i ) Ψi(�u� ,F +,F−) (11)
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is adopted. Here, d
(j)
i ∈ [0; 1] are damage variables. The underlying idea corresponding to

Eq. (11) is that the energy is decomposed into that related to the different relevant failure
modes. One typical example is given by the decomposition of the energy into mode-I and
mode-II/III failure energies. Application of the Coleman & Noll procedure to Eq. (11)
yields the stress response

T =
n

∑

i=1

n
∏

j=1

(1− d
(j)
i )

∂Ψi

∂ �u�

P−=(1− α)

n
∑

i=1

n
∏

j=1

(1− d
(j)
i )

∂Ψi

∂F̄

P+= α
n

∑

i=1

n
∏

j=1

(1− d
(j)
i )

∂Ψi

∂F̄
,

(12)

together with the reduced dissipation inequality

D =
◦
w −Ψ̇ =

n
∑

i=1

n
∑

j=1

n
∏

k=1,k �=j

(1− d
(k)
i ) Ψi(�u� ,F+,F−) ḋ

(j)
i ≥ 0. (13)

Since the elastic energies Ψi are assumed to be non-negative and d
(j)
i ∈ [0; 1], the second

law of thermodynamics is automatically fulfilled, if d
(j)
i is monotonically increasing, i.e.,

ḋ
(j)
i ≥ 0. (14)

For fulfilling Ineq. (14) and also for accounting for cross-softening, the damage evolution
is defined as

d
(j)
i = d

(j)
i (κj). (15)

with
κi(tn+1) = max{κi(tn); Ψi(tn+1)}, κi(t = 0) = κi(0). (16)

Accordingly, κi is the history of the maximum stored elastic energy related to failure
mode i and thus, it is monotonically increasing. Hence, if d

(j)
i (κj) is also chosen as a

monotonically increasing function, the second law of thermodynamics is automatically
fulfilled. The term cross-softening results from Eq. (15) and means that mode-I crack
opening leads to a reduction in the shear stiffness as well.

4 VARIATIONAL CONSTITUTIVE UPDATES

Following [7], the variational principle

inf I∂sΩinc , I∂sΩinc :=

tn+1
∫

tn

E dt = Ψ(tn+1)−Ψ(tn) +

tn+1
∫

tn

D dt. (17)
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is equivalent to the proposed constitutive modeling framework. Thus, all state variables
follow naturally from energy minimization. More explicitly,

(κ1(tn+1), . . . , κn(tn+1)) = arg inf I∂sΩinc (�u�n+1 , F̄ n+1, κ1(tn+1), . . . , κn(tn+1))
∣

∣

u=const
.
(18)

Finally, the reduced potential as implicitly introduced by Eq. (18) defines the stress re-
sponse in the hyperelastic-like manner

T =
∂Ĩ∂sΩinc

∂ �u�
, P± =

∂Ĩ∂sΩinc

∂F ± , with Ĩ∂sΩinc = inf
{κi}

I∂sΩinc . (19)

With these notations, the total energy (work) of the considered structure is given by

Itotal = Itotal(ϕ) =

∫

Ω

ĨΩinc dV − Iext +

∫

∂sΩ

Ĩ∂sΩinc dA (20)

where the potential Iext is associated with external forces, while the potential ĨΩinc is the
bulk’s counterpart of the interface-related potential Ĩ∂sΩinc . As straightforward compu-
tations shows that a minimization of potential (20) results in the classical equilibrium
conditions in weak form, i.e.,

δItotal = 0 =

∫

Ω

P : δF dV −
∂Iext
∂ϕ

· δu+

∫

∂sΩ

[

T · δ �u� + P± : δF±
]

dA, ∀δu (21)

Here, Eqs. (12), together with P := ∂F Ĩ
Ω
inc, has been inserted. The term ∂Iext/∂ϕ is a

generalized force. Eq. (21) can be conveniently discretrized by finite elements. Further
details are omitted here. They can be found in [7] and will be discussed in the respective
presentation.
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Abstract. In this paper we consider the mixed variational formulation of the quasi-static
stochastic plasticity with combined isotropic and kinematic hardening. By applying stan-
dard results in convex analysis we show that criteria for the existence, uniqueness, and
convergence can be easily derived. In addition, we demonstrate the mathematical similar-
ity with the corresponding deterministic formulation which further may be extended to a
stochastic variational inequality of the first kind. The aim of this work is to consider the
numerical approximation of variational inequalities by a “white noise analysis”. By intro-
ducing the random fields/processes used to model the displacements, stress and plastic
strain and by approximating them by a combination of Karhunen-Loève and polynomial
chaos expansion, we are able to establish stochastic Galerkin and collocation methods.
In the first approach, this is followed by a stochastic closest point projection algorithm
in order to numerically solve the problem, giving an intrusive method relying on the in-
troduction of the polynomial chaos algebra. As it does not rely on sampling, the method
is shown to be very robust and accurate. However, the same procedure may be applied
in another way, i.e. by calculating the residuum via high-dimensional integration meth-
ods (the second approach) giving a non-intrusive Galerkin techniques based on random
sampling—Monte Carlo and related techniques—or deterministic sampling such as collo-
cation methods. The third approach we present is in pure stochastic collocation manner.
By highlighting the dependence of the random solution on the uncertain parameters, we
try to investigate the influence of individual uncertain characteristics on the structure
response by testing several numerical problems in plain strain or plane stress conditions.

1 Introduction

The deterministic description of the inelastic behaviour [4, 10] is not applicable to
heterogeneous materials due to the uncertainty of corresponding characteristics at the

1
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micro-structural level. Namely, the deterministic approach has one disadvantage: the
description of the material parameters is given by the first order statistical moment called
a mean value or mathematical expectation. However, such representation neglects the
most important property of material characteristics — their random nature. Due to this
reason, we consider a mathematical model which approximates material parameters as
random fields and processes in order to closely capture the real nature of the random
phenomena.

The history of the stochastic elastoplasticity begins with the work of Anders and Hori
[1]. They declared elastic modulus as the source of the uncertainty and treated all fol-
lowing subsequent uncertainties with the help of a perturbation technique. Thereafter,
Jeremić [6] introduced the Fokker-Plank equation approach based on the work of Kav-
vas [85], who obtained a generic Eulerian-Lagrangian form of the Fokker-Plank equation,
exact to second-order, corresponding to any nonlinear ordinary differential equation with
random forcing and random coefficient. In other words, Jeremic and his co-workers have
obtained the deterministic substitute of the original stochastic partial differential equa-
tion. However, these methods are or mathematically very complicated to deal with or not
enough accurate to be used for. Namely, the perturbation technique is limited only on
the problems described by small variation of input properties. Its another disadvantage is
known as a “closure-problem ” or dependence of the lower-order moments on the higher-
order moments. Similarly, the Fokker-Planck method predicates the mean behaviour
exactly but it slightly over-predicates the standard deviation of the solution. The main
reason for this are the Dirac delta initial conditions. The error may be minimised only by
a better approximation of the Dirac initial condition on the expense of the computational
cost.

In this paper we introduce the spectral stochastic finite element methods into the
uncertainty quantification of stochastic elastoplastic material. The difficulty arising in
this case comparing to other problems considered until now is the tensorial representation
of some material characteristics such as constitutive tensor. Thus, we introduce the new
method which is able to overcome this difficulty.

2 STRONG FORMULATION OF EQUILIBRIUM EQUATIONS

Consider a material body occupying a bounded domain G ∈ R
d with a piecewise smooth

Lipschitz continuous boundary ∂G on which are imposed boundary conditions in Dirichlet
and Neumann form on ΓD ⊆ ∂G and ΓN ⊂ ∂G respectively, such that ΓD ∩ ΓN = ∅ and
∂G = Γ̄N ∪ Γ̄D. The probability space is defined as a triplet (Ω,B,P), with B being a σ-
algebra of subsets of Ω and P a probability measure. The balance of momentum localized
about any point x in domain G in time t ∈ T := [0, T ] leads to an equilibrium equation

2
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and boundary conditions required to hold almost surely in ω, i.e. P-almost everywhere:

div σ + f = 0 on G,
σ · n = g, on ΓN , (1)

u = 0, on ΓD

where u and v denote the displacement and velocity fields over G, f the body force, σ
stress tensor, n the exterior unit normal at x ∈ ΓN , and g a prescribed surface tension.
For the sake of simplicity we use homogeneous Dirichlet boundary conditions and under
the assumptions of small deformation theory we introduce the strain ε(u) = Du, with
the linear bounded operator defined as a mapping D : u1(x)u2(ω) → (∇Su1(x))u2(ω)
[10, 5, 4].

3 VARIATIONAL FORMULATION

The strong formulation is not suitable for solving and thus one introduces the mixed
formulation of elastoplastic problem, given by next theorem:

Theorem 3.1 There are unique functions, w ∈ H1(T ,Z∗) and w∗ ∈ H1(T ,Z∗) with
w(0) = 0 and w∗(0) = 0, which solve the following problem a.e. t ∈ T :

∀z ∈ Z : a(w(t), z) + 〈〈w∗(t), z〉〉 = 〈〈f(t), z〉〉 (2)

and
∀z∗ ∈ K : 〈〈ẇ(t), z∗ − w∗(t)〉〉 ≤ 0. (3)

Here a(w(t), z) represents the bilinear form, w is the primal variable, z is the test function,
f(t) the loading, w∗ the dual variable and the duaility operator 〈〈·, ·〉〉 is defined as:

〈〈y1,y2〉〉 = E

(
∫

G
y1 · y2 dy

)

. (4)

The first equation represents the equilibrium equation, while the second is the flow rule
describing the rate of change of the plastic deformation. If the stress stays inside the
domain K one has elastic response, otherwise the response is plastic.

4 STOCHASTIC CLOSEST POINT PROJECTION

Computationally the solution of the elastoplastic problem collapses to the (iterative)
solution of a convex mathematical programming problem, which has goal to find the
closest distance in the energy norm of a trial state to a convex set K of elastic domain,
known as a closest point projection. In other words, one search for:

Σn(ω) = arg min
Σ(ω)∈K

I(ω), (5)

3
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where I is given as:

I := arg min
Σ∈K

1

2
〈〈Σtrial −Σn,A

−1 : (Σtrial −Σn)〉〉 (6)

in the time step n described by an implicit Euler difference scheme. Here, Σtrial describes
the trial stress leading to the typical operator split of the closest point projection algorithm
into two steps: elastic predictor and plastic corrector.

Predictor step The predictor step calculates the polynomial chaos expansion of dis-
placement uk

n (in iteration k) by solving the equilibrium equation Eq. (1) [9, 8]. The
displacement is then used for the calculation of the strain increment �Ek

n and the trial
stress Σk,tr

n assuming step to be purely elastic. If the stress Σk,tr
n lies outside of the admis-

sible region K we proceed with the corrector step. Otherwise, Σk
n = Σk,tr

n represents the
solution and we may move to the next step.

Corrector step The purpose of the corrector step is to project the stress outside
of admissible region back onto a point in K. To do this, we define the corresponding
Lagrangian to a minimisation problem Eq. (5):

L(ω) = I(ω) + λ(ω)ϕ(Σ)(ω), (7)

where the function ϕ(Σ)(ω) represents the yield function describing the convex set K :=
{Σ(ω) ∈ S | ϕ(Σ) ≤ 0 a.s. in Ω}. Hence, the standard optimality conditions [7] become:

0 ∈ ∂ΣL = ∂ΣI(ω) + λ∂Σϕ(ω) a.s.. (8)

The problem of closest point projection becomes complicated since we deal with uncer-
tain parameters, i.e. polynomial chaos variables (PCV), which require the introduction
of the polynomial chaos algebra called PC algebra.

5 NUMERICAL RESULTS

Two test problems in plane strain conditions are considered: rectangular strip with
hole Fig. (1) under extension and Cooke’s membrane Fig. (2) excited by a shear force on
the right edge. The finite element discretisation is done using eight-nodded quadrilateral
elements. For random parameters are declared the shear and bulk modulus, yield stress
and the isotropic hardening. Due to the positive definiteness of these properties, we
model them as lognormal random fields, i.e. the piecewise exponential transformation of
a Gaussian random field with prescribed covariance function and correlation lengths.

5.1 Plate with Hole

The geometry and the boundary conditions for this particular problem are given in
Fig. (1). The extension force is of deterministic nature, and in the initial state doesn’t
depend on the parameter ω. However, in each iteration it gets mixed with the uncertainty
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Figure 1: Geometry of the problem: plate with hole

of input parameters and hence becomes random. The randomness in input parameters
depend on the choice of the values of the standard deviations as well as correlation lengths.
The more large correlation length is, the less random field oscillates. Two representative
examples of input random fields are given in Fig. (2), where the values of correlation
lengths are chosen as moderate, 3 times less then the dimension of a plate.

Figure 2: Two realisations of input random fields: shear modulus and yield stress

Solving the equilibrium equation, one obtains the displacement as a solution. In Fig. (3)
we compared it with the initial configuration as well as with the deterministic value.
Further more, we have calculated the shear stress, whose first two statistical moments are
given in Fig. (4). Similarly, the Von Mises stress gives the statistical moments in Fig. (5).

The problem is solved in few different ways: by a pure sampling technique such as
Monte Carlo or Latin Hypercube sampling [3], then by intrusive stochastic Galerkin
method relying on white noise analysis and corresponding algebra [9] and non-intrusive
variant of this method which uses the sparse grid collocation points [2]. The accuracy of
these methods in the mean sense is almost the same, and hence we give the comparison
of the variance convergence in Fig. (6). As one may notice, the normalised residual error
is the smallest in a case of latin hypercube technique, while the intrusive method has the
same convergence rate until certain error. In that point the method converges satisfying
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less strict criteria. The reason is the numerical error introduced by a polynomial algebra,
as well as in the span space of the basis functions needed for the local Galerkin projections.

Figure 3: Comparison of the mean value of the total displacement in stochastic configuration with the
deterministic and initial value

Figure 4: The shear stress σxy: mean vaalue and standard deviation

Figure 5: Von Mises stress: the mean value and standard deviation
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Figure 6: Comparison of the converegence of variance between latin hypercube sampling (LH), intrusive
stochastic Galerkin method (ppGM) and non-intrusive stochastic Galerkin method (ccGM)
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In practice very often one has to calculate the probability of stress taking the value
less than some critical point. In Fig. (7) we show three probabilities schemes with respect
to three different yield stress values. If the value is bigger, one has smaller probability to
exceed the limit, which is expected.

Figure 7: The probability excideence for different values of yield stress: σy = 200,σy = 250 and σy = 300

5.2 Cooke’s membrane

The Cooke’s membrane is subjected to load in y direction on the right boundary and
constrained on the left as it is shown in Fig. (8). As in previous case, the random pa-
rameters are chosen in the same way, just with different mean values, and hence standard
deviations.

The comparison of the mean displacements is given in Fig. (9), and as one may notice
the difference is large enough not to be neglected.

The influence of the correlation lengths on the structure response is given in Fig. (10)
and Fig. (11) for the xx component of deformation. In the case of large covariance
lengths the random field fluctuates less and the response is more similar to deterministic
one. However, in a case of small correlation lengths the field of compression grows into
the larger area.

Besides the mean stastistics of the response structure, one may show the variance of
the deformation εxx in Fig. (12).

6 CONCLUSION

The idea of random variables as functions in an infinite dimensional space approximated
by elements of finite dimensional spaces has brought a new view to the field of stochastic
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Figure 8: Geometry of the problem: Cooke’s membrane

Figure 9: Comparison of the mean values of the displacement for initial, deterministic and stochastic
configuration
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Bojana V. Rosić and Hermann G. Matthies

Figure 10: The mean value of deformation εxx for the large covariance length lc = 20

Figure 11: The mean value of deformation εxx for the small covariance length lc = 2

Figure 12:

10
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elastoplasticity. In this paper, we have proposed an extension of stochastic finite element
method and related numerical procedures to the resolution of inelastic stochastic problems
in the context of Galerkin methods. In some way this strategy may be understood in a
sense of model reduction technique due to the applied Karhunen Loève and polynomial
chaos expansion. A Galerkin projection minimises the error of the truncated expansion
such that the resulting set of coupled equations gives the expansion coefficients. If the
smoothness conditions are met, the polynomial chaos expansion converges exponentially
with the order of polynomials. In contrast to the Monte Carlo the Galerkin approach,
when properly implemented, can achieve fast convergence and high accuracy and can be
highly efficient in particular practical computations.
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Abstract. Bio-membranes are the basic separation structure in animal cells. Their com-
plex behaviour, rich physical properties, formation and dynamics have been the object
of experimental and theoretical investigation for biologists, chemists and physicists for
many years. Bio-membranes are made out of several kinds of lipids self-assembled in a
fuid bilayer, which presents a fluid behaviour in-plane and solid out-of-plane (curvature
elasticity). Vesicles are closed fluid membranes, which play an important role in bio-
physical processes such as transfer of proteins, antibodies or drug delivery into the cells.
Vesicles serve as simplified models of more complex cell membranes, as well as the basis
for bio-mimetic engineered systems. Bio-membranes only exist in solution and intimately
interact with the surrounding fluid, which owing to the characteristic sizes and velocities,
can be modeled with the incompressible Stokes equations. The aim of our work is to
simulate the dynamics of the interaction between a bio-membrane and the fluid media
surrounding. We take as basis our previous work on bio-membrane simulations [1], in
which the solution of the fourth order PDE governing the bending elasticity of a vesicle
is tackled with a phase-field or diffuse interface approach. The nonlinear, fourth-order
PDE governing the phase field are conveniently solved using the local maximum-entropy
(LME) approximants, a type of meshfree shape functions [2]. We merge the phase field
model with the Stokes fluid media to treat naturally the coupling between the viscous
forces in the fluid, the elastic forces due to the membrane, and the various constraints in
the problem. The dynamics arise from a variational principle, and dictate the Lagrangian
motion of the particles, convecting the phase field.
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1 INTRODUCTION

Biomembranes or biological membranes have been object of experimental and theoretical
investigation for biologists, chemists and physicists during many years. Biomembranes
are composed by several kinds of lipids self-assembled in a fluid bilayer , which presents a
liquid behaviour in-plane and solid out-of-plane. Vesicles are closed biomembranes which
play an important role in biophysical processes and serve as simplified models of cell
membranes to study aspects of the interaction between the lipid bilayer structure and
the surrounding fluid. To simulate the dynamic behaviour of a vesicle both biomembrane
solid structure and surrounding fluid have to be properly modelled. The Canham-Helfrich
bending energy model is normally used to describe the solid behaviour, while the fluid is
modelled as a Stokes flow. Two different approaches can be used to describe the equations
for equilibrium shapes of vesicles in the continuum media approach, sharp-interface and
phase-field or diffuse-interface models. In this work a phase-field model proposed by Du
et al. [4] is used. This kind of models represent the interface between the inner and
outer fluid as a diffuse-interface whose thickness is controlled by a transition parameter
e. The derived equations are highly non-linear and involve fourth-order spatial partial
differential operators. The weak form of the equations necessitates piecewise smooth
and globally C1 continuous basis functions because products of second derivatives are
involved in the integration of the variational formulation. The equations are discretized
with LME [1] approximation schemes because they present interesting features such as
positivity, monotonicity, variation diminishing property (the interpolation is not more
wiggly than the data) and smoothness (C∞). Adaptivity strategies are also required
to make computationally affordable the phase-field approach. The fluid is commonly
modelled as a Stokes flow because the Reynolds number is low. The idea is to apply the
same numerical scheme to compute both the phase-field bending energy and the bulk effect
of the fluid field surrounding the membrane. It is well-known that the Stokes problem
lacks pressure stability if velocity and pressure are described with the same interpolation
space, which demands a stabilization method to handle the problem. We borrowed finite
element method (FEM) stabilization strategies to develop a LME stabilizing method. The
structure of this paper is as follows. Section 2 introduces the formulation of the phase-
field model and its numerical treatment. The capability of the adaptive strategy is also
illustrated. In Section 3, we describe the Stokes flow problem and the stabilizing LME
method, whose performance is tested through numerical benchmarks. Some concluding
remarks are collected in Section 4.

2 MODEL OF THE BIOMEMBRANE: A PHASE-FIELD APPROACH

The phase-field model of a biomembrane is presented in this section. The numerical
treatment, which includes discretization, nonlinear solver and adaptivity strategy, is also
introduced. A numerical example of a dumbbell shape is set to evaluate the performance
of the proposed scheme.

2
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2.1 Problem formulation and numerical treatment

The phase-field model describing the equilibrium shapes for vesicles can be possed as
an energy constrained-minimization problem:

Minimize

E(φ) = fE
k

2ε

∫

Ω

[

ε∆φ +
(

1

ε
φ + C0

√
2
) (

1 − φ2
)]2

dΩ (1)

subject to

V (φ) =
1

2

(

V ol(Ω) +
∫

Ω
φ dΩ

)

= V0 (2)

A(φ) = fA

∫

Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]

dΩ = A0 (3)

where φ is the phase-field, ε the transition parameter, C0 the spontaneous curvature,
fE = 3

8
√

2
, fA = 3

2
√

2
, k the bending rigidity, V0 and S0 the volume and area constraints,

respectively.
These equations are discretized with LME approximation schemes, augmented La-

grangian methods are used to impose the linear and nonlinear constraints, while L-BFGS
and Newton-Rahpson techniques are applied to solve the nonlinear problem. An adaptive
algorithm based on Centroidal Voronoi Tesselations [5] is proposed to reduce the computa-
tional cost. A detailed explanation about the approximants, the discretization procedure,
the numerical strategy to solve the problem and the adaptive algorithm is given in [6].

2.2 Numerical example

The energies computed for the dumbbell equilibrium shape considering different values
of ε and several levels of refinement for uniform grid of points can be seen in Table
1. The number of nodes for each grid and the values of the average nodal spacing h̄
(average element size in FEM terminology) are denoted in the first and second column,
respectively. The remaining columns correspond to the values of energies for different
values of transition parameter ε.

It is remarkable that the accuracy of phase-field results is intrinsically associated to
the value of the transition parameter ε, which is in turn directly related with the size
of the discretization: we consider that the relation ε ≥ 2h is quite reasonable. In Table
1 it is shown that values of energy converge for each fixed ε (columns) and the error
becomes gradually less as the grid of points is refined. The largest errors are presented
by the values of the upper supra-diagonal, and it happens because they do not fulfill the
mentioned relation between the transition paremeter and the discretization size.

The effect of the adaptive strategy applied to a grid of 6124 points is shown in Figures
1 and 2, respectively. Former illustrates the grid of points, while latter the phase-field

3
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# nodes h̄ ε = 0.05 ε = 0.04 ε = 0.03 ε = 0.02 ε = 0.01

6124 0.024 9.29504 9.15560 – – –
12271 0.017 9.30167 9.15918 9.00361 – –
24597 0.012 9.30627 9.16106 9.00310 8.87045 –
49145 0.0084 9.31053 9.16315 9.00362 8.86669 –
98388 0.0059 9.31307 9.16407 9.00331 8.86445 8.81432
146545 0.0048 9.31439 9.16421 9.00217 8.86005 8.77677
296344 0.0034 9.31650 9.16512 9.00251 8.86033 8.77359

Table 1: Energies of the dumbbell equilibrium shape for different uniform grids of points and several
values of ε.

solutions. The value of the transition parameter ε, and thus the value of the average nodal
spacing h̄, is decreased in each step. The accuracy obtained at the end of the process
reaches that obtained with a uniform grid of 296344 points.

The effect of the adaptive strategy applied to a grid of 6124 points is shown in Figures
1 and 2, respectively. Former illustrates the grid of points, while latter the phase-field
solutions. The value of the transition parameter ε, and thus the value of the average nodal
spacing h̄, is decreased in each step. The accuracy obtained at the end of the process
reaches that obtained with a uniform grid of 296344 points.

Figure 1: Adapted grid of 6124 points corresponding to the dumbbell equilibrium shape. The average
nodal spacing h̄ decreases from left to right.

Three-dimensional views of the dumbbell equilibrium shape are illustrated in Figure 3.

4



401

C. Peco, A. Rosolen and M.Arroyo

Figure 2: Phase-field density for different grids of 6124 points corresponding to the dumbbell equilibrium
shape.

3 MODEL OF THE FLUID: STOKES FLOW

The Stokes flow problem and the stabilization with LME approximation schemes are
explained in this section. The performance of the method is illustrated with classical
benchmark tests.

3.1 Introduction

The Stokes problem can be formulated in general form as:

−ν�u + ∇p = f in Ω ∇ · u = 0 in Ω u = ud on Γd (4)

where v is the velocity, p the pressure, f the vector of body forces, ν the kinematic
viscosity, and Ω ⊂ Rd.

Let be V = H1
0 (Ω)d and Q = L2(Ω)/R the velocity and pressure spaces, respectively.

Then, the weak form is set to find u ∈ V and p ∈ Q such that:

a(u, v) − b(p, v) = l(v) v ∈ V b(q, u) = 0 q ∈ Q (5)

This weak form is widely studied in literature, and it is well-known that the existence
and uniqueness of the solution require equations to satisfy the Ladyzhenskaya-Babuška-
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Figure 3: 3D view of the dumbbell equilibrium shape.

Brezzi (LBB) condition. This rule states that the following inf-sub condition has to
be fulfilled to guarantee the stability of the system (matrix of the system derived non
singular):

inf
q∈Q

sup
v∈V

b(q, v)

‖q‖Q‖v‖V

≥ Kb > 0 (6)

This condition holds true if b(q, v) = (q,∇ · v), q ∈ Q = L2(Ω)/ R and v ∈ V =
H1

0 (Ω)d, properties which are always kept by the Stokes problem at a continuous level.
Unfortunately, when the equations are discretized with restrictive spaces, that is, Qh ⊂
Q and Vh ⊂ V , the LBB condition can fail and the pressure become unbounded. In
particular, it is proven that using the same discretization space for both pressure and
velocity results in a loss of stability, which is the cardinal issue of numerical methods for
solving the Stokes problem.

3.2 Stabilization of Stokes equations

Main strategies to deal with this obstacle are mixed formulations and stabilization of
Stokes equations. The mixed formulations tackle the problem by seeking admissible pairs
of spaces that fulfill the inf-sup condition. Stabilization techniques use a discretization
based on a single space for both pressure and velocity, and add terms to the original weak
form to give coercivity to the resulting matrix.

We are interested in the coupled problem posed by the bending model of biomembranes
and the Stokes flow in which they are immersed. LME approximants present nice charac-
teristics to solve the phase-field governing the structure behaviour and, to earn simplicity
in the numerical scheme and reduce the computational cost, we find convenient to use the
same discretization space for the fluid problem.

6
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Stabilization techniques have undergone a large and satisfactory development in the
FEM context [3]. We develop a LME stabilization method inspired in FEM stabilization
ideas. Because of the noticeable differences between FEM and LME, the application of
the FEM based methods is not direct and redefinition of parameters is needed. The
discretization of the Stokes problem leads to the following system:

[
K −DT

D 0

] [
U
P

]
=

[
F
0

]
(7)

where K comes from the Laplacian velocity and it is definite positive, while D corresponds
to the pressure terms and introduces the inestability to the total matrix. To stabilize the
system we need to add an extra term to the weak form [3]:

∫

Ω
τ P(w, q) R(u, p) dΩ (8)

where R(u, p) is the residual or strong form of the problem (which ensures the consistency
of the new weak form), τ is a parameter which controls the measure of the stabilization
to be applied and P is a partition of the differential operator. Different choices of this
partition lead to different stabilization methods.

To summarize the effect of the stabilization methods and to provide an integrated way
of implementation in the code, the following general term becomes adequate from now on
[2]:

∫

Ω
τ1 (−αν∆w + β1∇q) (−ν∆u + ∇p − f) dΩ (9)

where α and β1 are parameters that take values 1, 0,−1 the former, and 1,−1 the latter.
The different combinations of the values enable the user to jump from one stabilization
method to another while mantaining the same term structure.

This last expression can be developed in a larger group of terms to add their discretized
matrices to the original matrix form of the Stokes problem, resulting:

[
K + αKst −DT − αDT

st

β2D − β1Dst β1Lst

] [
U
P

]
=

[
F − αF ′

st

β1F
′′
st

]
(10)

where β2 = −β1 and Lst is a positive definite matrix since comes from a pressure Laplacian.
This matrix gives to the global matrix the stabilization needed to be non singular and
subsequently provide a solution for the system.

The parameter τ is a stabilization parameter that have to be defined by the the method,
an which usually involves a constant to be calibrated by the user. In FEM, some expres-
sions that work element wise have been developed, performing very well. Since in LME
we work with a set of points instead of a mesh, some redefinition of the parameter has to
be worked out. In FEM, the normal parameter to use is the nodal spacing. In meshless
methods, this nodal spacing is usually interpreted as a the range of the shape functions,

7
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creating functions-wise parameters. Here we propose an expression based on this concept
but defining a pointwise parameter, which show a fairly direct way for implementation
and excellent results in simulations.

τ1 =
C

ν
ρ̄2; (11)

where ρ̄ is the mean over the neighbors, Nρ̄ =
∑N

i=1 ρi with 1, 2, .., N the list of neighbors
of gauss point.

3.3 Numerical examples

We select and apply the GLS-LME stabilization technique (α = 1 and β1 = 1) to the
classical Poiseouille and Colliding flows benchmark tests for the Stokes problem. Here we
only illustrate the performance of the method for the Colliding flow, but similar results
were obtained for the Poiseouille problem. Since these tests have analytical solution we
can accurately compare the results of the simulations.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 4: Definition of the Colliding flow problem.

The essential boundary conditions of the problem are plotted in Figure 4. The velocity
field is illustrated in the Figure 5 without the application of stabilizing method (left) and
after stabilization (right). Although we have illustrated the solutions corresponding to
a coarse grid of points for clearness purposes, the observed patterns are maintained in
refined grids. The velocity stabilized solutions do no present a strange physical behaviour
when compared with the analytical one. The same behaviour can be seen in the Figure 6
where we plot the pressure for the solution without stabilization. Disproportionate values
of pressure and oscillations are observed. This anomalous behaviour dissapears after the
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stabilization and the obtained solution recovers the smoothness, matching the analytical
field.

0 0.5 1 1.5 20

0.5

1

1.5

2

0 0.5 1 1.5 20

0.5

1

1.5

2

Figure 5: Colliding flow velocity stabilization: (left) Velocity field with no stabilization computed with
225 nodes, and (right) Velocity field stabilized computed with GLS-LME, 225 nodes and γ = 1.0.

Figure 6: Colliding flow pressure stabilization: (left) Pressure field with no stabilization computed with
625 nodes, and (right) Pressure field stabilized computed with GLS-LME, 625 nodes and γ = 1.0.

This fact is reflected in detail with the recovery of the optimal rate after the stabilization
in the convergence charts for L2 norm, as it is illustrated in the Figure 7.

Another set of simulations have been run over an unstructured grid in order to test
the capability of the point-wise τC parameter introduced before. As can be observed
in 7, both for pressure and velocity the optimal slopes are recovered. This important
result enables the use of this fairly direct implementation parameter to manage adaptive
processes which are needed in high accurate or tridimensional computations.

9
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Figure 7: Colliding flow velocity stabilization: (left) Velocity field with no stabilization computed with
225 nodes, and (right) Velocity field stabilized computed with GLS-LME, 225 nodes and γ = 1.0.

4 COUPLING STRATEGY AND NUMERICAL EXAMPLES

Once the main two ingredients of the numerical simulation have been tested and per-
formed separately, a coupling strategy have to be set in order to generate and efficient
algorithm which can represent the evolution of a biological process. The idea we present
here is a change of scope from a phase-field eulerian approach to a fully lagrangian one
where the phase-field no longer will be solved over a stacionary set of points, but will
be considered as a material property which is transported within the fluid and therefore
solved in terms of its final position. This inmediately generates a coupled monolithic
algorithm where the Stokes equations are solved considering the potential forces coming
from the phase-field bio-membrane.

We state the dynamic problem form a variational standpoint (stokes) by setting an
optimization over the total system incremental energy Ẇ (biomembrane bending energy
change and Stokes bulk fluid dissipation)

Ẇ = Ė + D (12)

Being E the bending elastic energy of the biomembrane in terms of a phase-field φ,
and D the dissipation, which become described as:

E =
k

2ε

∫

Ωt

(ε �t φt + (
1

ε
φt + c0

√
2)(1 − φ2

t ))
2dΩt (13)

D =
∫

Ωt

2µ∆: ∆ + κ(∇ · v)2dΩt (14)

Where ∆ = 1
2
(∇v + ∇vT ) − 1

3
I(∇ · v) and Ωt the space domain at time t.

This expression can be worked out taking into account the incompressibility of the
media, leading to the following simplified expression

10



407

C. Peco, A. Rosolen and M.Arroyo

D =
∫

Ωt

µ|∇v|2dΩt (15)

Which will be used from now on as the dissipation expression for the bulk Stokes fluid.
We discretize the original time interval for a process in smaller time steps [t0..tk, tk+1..tend],

and calculate the evolution between two generic states tk and tk+1, by applying a mini-
mization over the incremental energy,

∆Ek→k+1 =
∫ tk+1

tk

Wdt ≈ Wk→k+1∆t (16)

We define,

Wk→k+1 = Ėk→k+1 + Dk→k+1 (17)

The differential equation is

∂ϕ∂tE(ϕ, ϕt) + ∂ϕḊ(ϕt) = 0 (18)

If we use a classic alpha-method to integrate through time, we have

˙Wk→k+1 = θ ˙Wk+1 + (1 − θ)Ẇk (19)

The aim of the algorithm is to minimize the whole energy action at a given step, setting
all the expressions in terms of an unknown deformation mapping. The calculations will be
brought to the reference state, in which the spatial discretization will take place, by means
of mesh-free shape functions. A numerical simulation over an axisymmetric cilinder with
a bio-membrane embedded can be observed in figure 8, where the forces of the elastic
potential coming fron the phase-field can be seen over the fluid domain, governing the
evolution for the shape, which can be identified following the line where forces are stronger.

5 CONCLUSIONS

We explain how the biomembranes structural behaviour can be modeled through an
energy constrained-minimization phase-field problem. We indicate algorithms to solve
the problem and also propose an adaptive strategy based on LME approximants and
Centroidal Voronoi Tessellations. We illustrate the performance of the proposed method
with a representative example of a dumbbell equilibrium shape.

We propose a stabilization technique inspired in the well-known FEM stabilization
methods to solve the Stokes problem with LME. We design a pointwise stabilization pa-
rameter suitable for the new environment and we illustrate the capability of the proposed
scheme in the classical Colliding flow benchmark problem.

We present a coupling algorithm based on a lagrangian variational approach which
enable us to represent the dynamics of an evolution by means of a monolithic scheme,
using the deformation mapping to solve both the membrane and the fluid.

11
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Figure 8: Elastic forces over fluid domain of 6124 nodes and γ = 0.8.
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Abstract. We present a new, fully deterministic method to compute the updates for pa-
rameter estimates of quasi-static plasticity with combined kinematic and isotropic hard-
ening from noisy measurements. The materials describing the elastic (reversible) and/or
inelastic (irreversible) behaviour have an uncertain structure which further influences the
uncertainty in the parameters such as bulk and shear modulus, hardening characteristics,
etc. Due to this we formulate the problem as one of stochastic plasticity and try to iden-
tify parameters with the help of measurement data. However, in this setup the inverse
problem is regarded as ill-posed and one has to apply some of regularisation techniques in
order to ensure the existence, uniqueness and stability of the solution. Providing the apri-
ori information next to the measurement data, we regularize the problem in a Bayesian
setting which further allow us to identify the unknown parameters in a pure deterministic,
algebraic manner via minimum variance estimator. The new approach has shown to be
effective and reliable in comparison to most methods which take the form of integrals over
the posterior and compute them by sampling, e.g. Markov chain Monte Carlo (MCMC).

1 INTRODUCTION

The deterministic description of the properties of heterogeneous material and their
parameter identification are not quite suitable having in mind the uncertainties arising at
the micro-structural level. Thus, we may consider them as unknown and try to identify
from the given experimental data in a Bayesian manner. By measuring some quantities
of interest such as deformation, one cannot estimate the material characteristics (Young’s
modulus, shear and bulk modulus, etc) straightforwardly since the problem is ill-posed and
suffers from the issues of the existence, uniqueness and stability of the solution. In order

1
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to regularize the problem, we may give additional information next to the measurement
data in a form of distribution function of unknown characteristics — so called a priori
information. This kind of regularization technique is known as Bayesian.

In recent studies [2, 8, 9, 11, 13, 21], the Bayesian estimates of the posterior density
are taking the forms of integrals, computed via asymptotic, deterministic or sampling
methods. The most often used technique represents a Markov chain Monte Carlo (MCMC)
method [5, 9, 13], which takes the posterior distribution for the asymptotic one. This
method has been improved by introducing the stochastic spectral finite element method
[14] into the approximation of the prior distribution and corresponding observations [11,
13]. This group of methods is based on Bayes formula itself. Another group belongs
to so-called ’linear Bayesian’ [6] methods, which update the functionals of the random
variables. The simplest known version represents the Kalman-type method [4, 1, 3, 22].

In order to avoid the sampling procedure required by previous methods, we describe
the minimum variance estimator based on ’white noise’ analysis. Starting with a prob-
abilistic model for the uncertain parameters (the maximum entropy principle) we cast
the identification problem in a direct algebraic estimation framework, which has shown
to be effective and reliable. In this way not only that the sampling at any stage of the
identification procedure is avoided but also the assumption of gaussianity.

The paper is organized as follows: in first section we briefly describe the forward
problem 1, then we introduce the update procedure concentrating on one parameter,
i.e. shear modulus and give the numerical results for two test problems in plain strain
conditions.

2 FORWARD PROBLEM

Consider a material body occupying a bounded domain G ∈ R
d with a piecewise smooth

Lipschitz continuous boundary ∂G on which are imposed boundary conditions in Dirichlet
and Neumann form on ΓD ⊆ ∂G and ΓN ⊂ ∂G respectively, such that ΓD ∩ ΓN = ∅

and ∂G = Γ̄N ∪ Γ̄D [20, 7, 10]. The probability space is defined as a triplet (Ω,B,P),
with B being a σ-algebra of subsets of Ω and P a probability measure. The balance of
momentum localized about any point x in domain G in time t ∈ T := [0, T ] leads to an
equilibrium equation and boundary conditions required to hold almost surely in ω, i.e.
P-almost everywhere:

div σ + f = 0 on G,
σ · n = g, on ΓN , (1)

u = 0, on ΓD

where u and v denote the displacement and velocity fields over G, f the body force, σ
stress tensor, n the exterior unit normal at x ∈ ΓN , and g a prescribed surface tension.
For the sake of simplicity we use homogeneous Dirichlet boundary conditions and under

1The paper with this subject is also part of the proceedings, search for authors
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the assumptions of small deformation theory we introduce the strain ε(u) = Du, with
the linear bounded operator defined as a mapping D : u1(x)u2(ω) → (∇Su1(x))u2(ω).

The strong form of equilibrium equation given by Eq. (1) may be reformulated in
a variational setting, which includes the uncertain parameters such as the elastic and
hardening properties, yield stress, loading etc. These quantities are modeled as ran-
dom fields/processes approximated by polynomial chaos and Karhunen Loève expansions
[14], which further allow the use of the stochastic Galerkin projection procedures in low-
rank and sparse format [16]. In other words, the problem collapses to the constrained-
stochastic optimization one, where the closest distance in the energy norm of a trial state
to the convex set of the elastic domain is found by a stochastic closest point projection
algorithm[15, 19].

3 ESTIMATION OF SHEAR MODULUS VIA DIRECT GENERAL BAYESIAN
APPROACH

In the scope of this paper we show the procedure of identifying one representative
property q of elastoplastic material called shear modulus, often denoted by G. As this
property is regarded as positive definite, we take the lognormal distribution with appro-
priate covariance function as a corresponding a priori information and solve the forward
problem in Eq. (1) in order to obtain the solution (stress, displacement, etc.). The func-
tional of the solution represents the ’forecast’ measurement y further used in the update
procedure. Besides this, one employs the information gathered by experimental (here
simulated) measurements which are disturbed by some additional independent noise ε.

Let us define the random variable q as a measurable mapping [18]:

q : Ω → Q, (2)

where Q is a deterministic Hilbert space. If we denote the space of random variables
with finite variance as S := L2(Ω), then Q-valued random variables belong to a space
L2(Ω,Q) := Q ⊗ S, obtained as a tensor product of corresponding deterministic and
stochastic spaces.

According to previous definitions, we may define the linear measurement as a random
variable/field:

z = ŷ + ε, (3)

where
ŷ = Y (q, u), ŷ ∈ Y (4)

represents some functional of the solution linear in parameter q. The measurement error
is here assumed to be Gaussian with prescribed covariance Cε. Thus, the measurement is
random and belongs to a subspace Y0 ⊆ Y := Y ⊗ S.

In the same manner, the a priori information qf belongs to a closed subspace Qf ⊂ Q,
allowing the prediction of the observation y via linear mapping H : Q → Y , i.e.

y = Hqf , y ∈ Q0 = H∗(Y0). (5)

3
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Collecting these two informations, we are able to estimate the posterior qa ∈ Q as the
orthogonal or minimum variance projection of q onto the subspace Qf + Q0 [18, 17, 12]:

qa(ω) = qf (ω) +K(z(ω)− y(ω)), K := Cqfy (Cy + Cε)
−1 (6)

where qf is the orthogonal projection onto Qf , K the “Kalman gain”operator and C
appropriate covariances.

In order to numerically compute the previous estimate Eq. (6) one introduces a projec-

tion operator P , which projects the parameter set onto the subspace Q̂ := QN ⊗SJ . Here
QN is a finite element discretization of a deterministic space Q and SJ the discretization
of the stochastic space, obtained by taking the polynomial chaos expansion (PCE) of the
solution space as the ansatz function. The projection of Eq. (6) then reads:

q̂a(ω) = q̂f (ω) +K(ẑ(ω)− ŷ(ω)), (7)

giving the PCE of posterior q̂a(ω) as the final estimate, from which all other further
properties, such as statistical moments, probability density functions, etc. are efficiently
computed.

4 NUMERICAL RESULTS

Two test problems in plane strain conditions are considered: rectangular strip with hole
Fig. (1) and Cooke’s membrane Fig. (6). Due to lack of measurement data, we describe
the virtual reality by constant value of shear modulus (deterministic truth), and simulate
experiment by measuring the shear stress as the most suitable quantity (depends linearly
on parameter). The measurements are preformed in all nodal points (including boundary
conditions) obtained by finite element discretization of the domain of consideration with
the help of eight-noded quadrilateral elements.

4.1 Plate with hole

Figure 1: Geometry of the problem: plate with hole

The update procedure is performed as a sequential row of several measurements and
updates. In each sequential step the loading is changed by its intensity and sign in
prescribed manner. In this particular example the loading changes such that the force is
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first of extension type, and then compression. The identification starts by measuring the
shear stress Fig. (2) in the sensors positions, assuming the a priori distribution Fig. (3)
as a lognormal random field and then updating the parameter to qa which is in the next
update taken as a priori distribution. This new update is characterized by a new loading
and hence new measurement set of data. This cycle repeats until the convergence is
achieved.

Figure 2: The shear stress as a measurement

Figure 3: Apriori G - one realisation

The posterior distribution with each update changes in the direction of the truth, which
is reflected in the convergence given by a RMSE (root mean squared error) between the

5
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Figure 4: Relative RMSE of variance [%] after 4th update in 10% equally distributed measurement points

PCEs of the posterior q̂i
f and truth q̂t in each update i:

εi =
‖q̂i

f − q̂t‖L2(Ω)

‖q̂t‖L2(Ω)

, i = 1, .., I (8)

As one may see in Fig. (4) the error decreases with each update, such that in 4th step
one obtains the error circa 2% in almost all points besides the corners where it increases a
bit. The possible explanation of such behavior is the existence of the boundary conditions
imposed in these nodes.

Figure 5: Comparison of apriori and posterior distribution

The comparison of probability density functions of prior and posterior after first update

6
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lead us to the same conclusion, since the posterior is much more narrowed and goes in
the direction of the truth which is deterministic.

4.2 Cooke’s membrane

Figure 6: Geometry of the problem: Cooke’s membrane

The Cooke’s membrane is subjected to load in y direction on the right boundary and
constrained on the left as it is shown in Fig. (6). The identification of shear modulus is
done in the similar manner as in previous example, by sequential procedure. Thus, the
measurement in each update changes since the loading alters according to some prescribed
scheme. This change one may see in Fig. (7) from the first up to the third update.

After the third update in Fig. (8) one may notice that the initial lognormal field changes
to a uniform value of shear modulus over spatial domain with the small variation on the
boundary (see Fig. (9)). The same conclusion is made by calculating the root mean square
error as before (see Fig. (10)), as well as comparison of probability density functions, see
Fig. (11).

5 CONCLUSION

The mathematical formulation of the stochastic inverse elasto-plastic problem is re-
cast via projection of the minimum variance linear Bayesian estimator onto the polyno-
mial chaos basis. The update requires one solution of the stochastic forward problem
via stochastic Galerkin method based on model reduction techniques together with the
stochastic closest point projection method. The estimation is purely deterministic and
doesn’t require sampling at any stage, as well as assumption of linearity in the forward
model and Gaussian statistics.

7



417

Hermann G. Matthies and Bojana V. Rosić

Figure 7: The measurment mean value in a case of plate with hole

Figure 8: The realisations of apriori of shear modulus and its update
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Figure 9: Change of variance of shear modulus from apriori to 3rd update

Figure 10: RMSE [%] of variance after first update for the case when mean is larger 30% than truth
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Figure 11: Comparison of apriori and posterior distribution
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REFERENCES

[1] Jeffrey L. Anderson. An ensemble adjustment Kalman filter for data assimilation.
Monthly Weather Review, 129:2884–2903, 2001.

[2] M. Arnst, R. Ghanem, and C. Soize. Identification of Bayesian posteriors for coef-
ficients of chaos expansions. Journal of Computational Physics, 229(9):3134 – 3154,
2010.

[3] Craig H. Bishop, Brian J. Etherton, and Sharanya J. Majumdar. Adaptive sampling
with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly
Weather Review, 129(3):420–436, March 2001.

[4] Geir Evensen. The ensemble Kalman filter for combined state and parameter esti-
mation. IEEE Control Systems Magazine, 29:82–104, 2009.

[5] D. Gamerman and H. F. Lopes. Markov Chain Monte Carlo: Stochastic Simulation
for Bayesian Inference. Chapman and Hall/CRC, 2006.

[6] Michael Goldstein and David Wooff. Bayes Linear Statistics - Theory and Methods.
Wiley Series in Probability and Statistics. John Wiley & Sons, Chichester, 2007.

[7] W. Han and B. Daya Reddy. Plasticity: Mathematical Theory and Numerical Anal-
ysis. Springer, New York, 1999.

[8] S. B. Hazra, H. Class, R. Helmig, and V. Schulz. Forward and inverse problems in
modeling of multiphase flow and transport through porous media. Computational
Geosciences, 8(1):21–47, 2004.

[9] D. Higdon, H. Lee, and C. Holloman. Markov chain Monte Carlo-based approaches for
inference in computationally intensive inverse problems. Bayesian Statistics, (7):181–
197, 2003.
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Abstract. This paper describes the application of a domain decomposition technique for
multiscale modelling of fracture behaviour in masonry. The use of multiple domains allows
for a difference in employed mesh sizes for the macro- and mesoscale. For domains which
play a crucial role in the failure process, we apply a mesoscale level meshing, while less
critical components can be modelled by a less computationally expensive macroscale mesh.
The crack behaviour is modelled by using the GFEM method, while the joint degradation
is described using a plasticity based cohesive zone model, with a smooth yield surface.
For the purpose of domain decomposition, we propose the use of a FETI method.

1 INTRODUCTION

The design of masonry structures, as it is done today, is still based on codebooks and
rules of thumb, which often lead to a lack of control over safety factors and non-optimal
structure dimensions. As such, it would be useful to develop reliable numerical tools that
predict the behaviour of masonry structures.

The majority of numerical tools currently available for constitutive description of
masonry structures are proven to be accurate on small scale structures, but when used on
large scale structures, excessive computational effort is required and numerical instabili-
ties occur [14, 7, 5]. Hence, in order to lower the computational cost it is more efficient to
focus on regions of the masonry structure where cracks occur. It is also known that the
mortar phase is relatively weak, which due to the periodic arrangement of the phases leads

1

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



423

K. Heyens, B. Vandoren and L. Schueremans

Macroscale domains

Mesoscale domains

Load P

FETI mesh

Interface

Figure 1: Multiscale approach masonry wall subjected to compression forces

to a stiffness degradation along preferential orientations, i.e. the crack path in masonry
(often) follows the joints. A domain decomposition method can be employed to decompose
the masonry structure into several domains, and concentrate our computational efforts
on the domains which undergo inelastic behaviour.

It is possible to adopt such a technique in two different ways to describe a multiscale
model for masonry structures. The first approach consists of initializing the discretized
masonry structure as a coarse grid consisting of several domains. Once a domain meets
a given criterion, indicating the occurrence of inelastic behaviour, it will be isolated and
evaluated on a mesoscale using a finer background mesh. Afterwards, the results from the
mesoscale computation will be integrated into the macroscale parent grid using a domain
decomposition technique. An other way to use the domain decomposition technique is
to define the regions in the discretized structure where possible inelastic behaviour could
occur beforehand. These domains will be meshed at mesoscale, while the remainder of
the structure will be meshed with a coarse grid on macroscale.

In this contribution the second approach will be presented, as illustrated in Figure 1.
As shown in the figure, the mesoscale domains are concentrated under and above the
window, since under uniform compression the inelastic behaviour most likely will occur
in those regions. The evaluation at macroscale is done with an homogenized stiffness, as
described in [14], and the mesoscale crack behaviour is modelled using a discontinuous
model based on the Generalized Finite Element Method (GFEM) [18, 10, 5]. Crack
growth is given by a plasticity based cohesive zone model, in terms of tractions and
displacements. This approach does not constitute a completely new method, but rather
an application of domain decomposition techniques on masonry structures, in order to
reduce the computational effort and increase the numerical stability within the inelastic
regions. The proposed method will serve as a good basis for the future development of

2
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Figure 2: (a) GFEM cells in masonry; (b) background mesh

the automated ’detect-and-refine’ approach we have mentioned earlier.

2 THE GENERALIZED FINITE ELEMENT METHOD

The generalized finite element method belongs to the numerical family of discontinuous
models. These models are classified as discontinuous, because displacements are repre-
sented as discontinuities.
The basic idea of this approach is to enhance the displacement field by discontinuous func-
tions that allow for jumps along the discontinuity surface. A key feature of this method is
that the behavior of the crack can be completely captured within the discontinuity, while
the surrounding continuum remains elastic. Such a discontinuous function can be added
using the partition of unity property of finite element shape functions ϕi [1, 20].

n∑
i=1

ϕi(x) = 1 ∀x ∈ Ω (1)

When using GFEM, it is necessary to know the possible locations of the crack path before
computation. This results in a topology which consists of a number of cells Si, defined
by possible cracks. Within the partition of unity method, the discontinuity information
is processed on the level of a cell [18]. The displacement field for a cell reads

u(x) = û(x)+

NH∑
i=1

H iũ(x) (2)

where: û(x) equals the regular set of displacements en ũ(x) equals the enhanced set of
displacements.

Hi =

{
1 if x ∈ Si

0 otherwise
(3)

It is logical to use the GFEM to describe crack behaviour in masonry walls, as the topology
of a masonry wall is mostly known, and it is easy to fit a background mesh where the
joints coincide with boundaries of an element boundary (see Figure 2).

3
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Figure 3: Decomposition in two domains with interface forces λ

3 THE DOMAIN DECOMPOSITION APPROACH

In this section a basic formulation of the Finite Element Tearing and Interconnecting
(FETI) method is introduced, a method which belongs to the family of dual domain de-
composition methods. Here the given formulation is adopted for a finite element analysis,
further details on this method can be found in Farhat et al. [6].

Consider a body divided in two domains (Ns = 2) as shown in Figure 3, each domain Ω(s)

has a displacement field u(s) and after discretization the local equilibrium reads,

K(s)u(x)(s) = f (s) (4)

where (s) is the number of the respective domain, K(s) the stiffness matrix and f (s) the
external force vector. For the two domains given in Figure 3, the continuity of the solution
field is given by:

u(1) = u(2) at ΓI (5)

When incorporating the continuity requirement of (5) with (4), the solution reads




K(1) 0 B(1)
T

0 K(2) B(2)
T

B(1) B(2) 0









u(1)

u(2)

λ



 =





f (1)

f (2)

0



 (6)

where the matrices B(s) contain the values +1 or -1 at those positions that correspond to
the interface of the respective domain Ω(s), and Lagrange multipliers λ are introduced to
enforce the compatibility constraints. Since the domains can be part of the macroscale,
where the displacement field is continuous or part of the mesoscale, where a discontinuity
can be incorporated in the displacement field [1, 5]. This results in two expressions of the
displacement vector,

u(x)(s) =

{

û(x)(s) if x ∈ macroscale

û(x)(s) +
∑NH

i=1 H iũ(x)
(s) if x ∈ mesoscale

(7)
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To solve the interface problem, we solve this for the local displacement field u(x)(s)

u(x)(s) = K(s)+
(
f (s) −B(s)Tλ

)
−R(s)α(s) (8)

where K(s)+ is the inverse of the stiffness matrix for a domain Ω(s) with no rigid modes
or a generalized inverse if the domain s is floating, in which case R(s) are the rigid body
modes. α(s) are the amplitudes of the rigid body modes [13].

4 A PLASTICITY BASED COHESIVE ZONE MODEL

In a cohesive zone model, the fracture behaviour is regarded as a gradual phenomenon
in which separation takes place across a cohesive zone. Such a cohesive zone does not
represent any physical material, but rather the cohesive forces which occur when material
elements are being pulled apart [2, 20].

The constitutive relationship for the cohesive zone is defined in terms of tractions and
separations. First, the basic equations of the plasticity theory in the traction space are
presented. Next, the proposed material model will be discussed, based on the plasticity
yield surface which was proposed in earlier work [9].

4.1 The cohesive zone model

In this study, the plasticity theory is embedded in a finite element environment using
a cohesive zone model. Hence, it is necessary to describe the mathematical relation
between the tractions T and separations ∆, each with a normal and tangent component.
Following classical elasto-plasticity, the total deformation rate vector of a discontinuity
can be decomposed in two parts, an elastic and a plastic component:

∆̇ = ∆̇e + ∆̇p (9)

where the elastic deformation rate is related to the traction rate by the elastic stiffness
matrix D as

Ṫ = D∆̇e (10)

A definition of a yield surface is used to bound the elastic region, and can be used as
a fracture criterion. As the constitutive model is expressed in terms of tractions and
separations, the yields surface needs to be defined in the traction space {Tn, Tt}, where
Tn stands for the normal component of the traction vector, and Tt for the tangential
component of the traction vector. A suitable mathematical description for a smooth yield
surface F is given by a cubic Bézier function [9, 19], as illustrated in Figure 4.

4.2 Proposed material model

All simulations of plastic deformation are based on the notion of a yield function f ,
such that f < 0 in the elastic regime, f = 0 on the yield locus, and f > 0 when plastic

5



427

K. Heyens, B. Vandoren and L. Schueremans

Figure 4: Cubic Bézier curve with two control points {A,B} and two hinge points {H1,H2}

deformation occurs. Our employed yield function is described by

f(T ,T µ) =
√

T 2
n + T 2

t −
√

(T µ
n )

2 + (T µ
t )

2 (11)

In case f > 0, the computed traction vector T (t) is located outside the yield surface, and
plastic deformation occurs. For the adopted yield surface, its evolution throughout the
computation is governed by the decrease of tensile strength, compression strength and co-
hesion. The decrease of compression strength is not implemented and remains constant in
this work, since the influence of the decrease of tensile strength and cohesion in masonry
cracking is substantial in comparison with the decrease of compression strength.

The decrease of tensile strength and cohesion are given by the following expressions:

ft = f p
t
· exp

[

−βn · f p
t

GI
f

·∆pl
n

]

; ∆pl
n =

t
∫

0

∆̇pl
n dt (12)

c = cr +

(

C

cp
− cr

)

· exp

[

−βt · C
cp

GII
f

· (∆pl
t )

]

; ∆pl
t =

t
∫

0

∆̇pl
t dt (13)

where f p
t is the initial tensile strength, GI

f the mode I fracture energy, GII
f the mode II

fracture energy, cp is the value of the cohesion obtained before plastic deformation occurs,
cr is the residual cohesive strength and C

cp
is the initial cohesive strength. The material

parameters βnand βt control the rate of softening for each internal variable. ∆pl
t and

∆pl
n are respectively the tangent- and normal plastic deformations of the displacement

vector ∆.
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5 IMPLEMENTATION NON-LINEAR ANALYSIS

The algorithms described in the previous sections are implemented in a Matlab en-
vironment. An algorithm outline of the implemented code considering the non-linear
analysis with a domain decomposition technique is presented in Table 1.

6 CONCLUSIONS

In this paper, we have presented a multiscale approach to modelling masonry fractures
using a domain decomposition technique. The fracture behaviour is based on a plasticity
cohesive zone model with a smooth yield surface, and discontinuities are incorporated
using the Generalized Finite Element Method. Implementation of the algorithms was
done in a Matlab environment and the domains are chosen in such way that there is a
minimal computational effort.
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Algorithm outline of the non-linear conversion analysis
For each loading step ∆t do:

1. Initialize solution field ∆u
(s)
0

and interface connectivity B(s)

2. Compute strain ∆εni ←− ∆u
(s)
i and the displacement jumps ∆i ←− ∆u

(s)
i in the

cohesive zones for each integration point n in Ω(s).

3. Compute stress ∆σn
i ←− ∆εni and the tractions Ti ←− ∆i in the cohesive zones

for each integration point n in Ω(s).

check if f < 0 else plastic deformation occurs

4. Compute internal force vector ∆f
(s)
int,i

5. Update internal force vector f
(s)
int,i+1

= f
(s)
int,i +∆f

(s)
int,i

6. Apply prescribed displacements or forces.

7. FETI solver

compute rigid body modes R(s).

compute Lagrange multipliers λi and the amplitudes α
(s)
i .

update external force vector with interdomain forces f
(s)
ext,t+∆t

= f
(s)
ext,t+∆t

−
B(s)Tλi

Compute displacements increment δu
(s)
i+1

= K
(s)+

i

(
f

(s)
ext,t+∆t

− f
(s)
int,i+1

)
−

R(s)α
(s)
i

8. Update displacement vector u
(s)
i+1

= ∆u
(s)
i + δu

(s)
i+1

9. Assemble domain quantities u
(s)
i+1

in global quantities ui+1

10. check for convergence ‖ δui+1 ‖≤ ε· ‖ ∆u1 ‖ Else go to 2 if criterion is met go to
the next loading step

Table 1: Algorithm outline of the non-linear conversion analysis
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[1] I. Babuška and J. M. Melenk. the Partition of Unity Method. International Journal
for Numerical Methods in Engineering, 40(4):727–758, February 1997.

[2] R. Borst, M. Gutiérrez, Garth N. Wells, J. Remmers, and H. Askes. Cohesive-
zone models, higher-order continuum theories and reliability methods for computa-
tional failure analysis. International Journal for Numerical Methods in Engineering,
60(1):289–315, May 2004.

[3] K. De Proft. Combined experimental - computational study to discrete fracture of
brittle materials. PhD thesis, Vrije Universiteit Brussel, 2003.

[4] K. De Proft. Modelling masonry using the partition of unity method. In VIII
International Conference on Computational Plasticity, 2005.

[5] K. De Proft, K. Heyens, and L.J. Sluys. Mesoscopic modelling of masonry failure.
Proceedings of the ICE - Engineering and Computational Mechanics, 164(1):41–46,
March 2011.

[6] C. Farhat and F. Roux. A method of finite element tearing and interconnecting
and its parallel solution algorithm. International Journal for Numerical Methods in
Engineering, 32(6):1205–1227, October 1991.

[7] G. Giambanco. Numerical analysis of masonry structures via interface models. Com-
puter Methods in Applied Mechanics and Engineering, 190(49-50):6493–6511, Octo-
ber 2001.

[8] M. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear
Systems 1. Journal Of Research Of The National Bureau Of Standards, 49(6), 1952.

[9] K. Heyens, K. De De Proft, and L. J. Sluys. A smooth yield surface based on
interpolation of bezier curves for masonry modelling. In X International Conference
on Computational Plasticity, pages 2–5, 2009.

[10] K. Heyens and L. Schueremans. A meso-scale model for masonry. Technical report,
KULeuven, 2010.

[11] B. Kim, Y. Sakai, and A. Sakoda. Modeling Masonry Structures using the Applied
Element Method. Young, pages 581–584, 2003.

[12] O. Lloberas-Valls, D. Rixen, A. Simone, and L. J. Sluys. Applications of domain
decomposition techniques for the multiscale modeling of softening materials. Inter-
national Journal, pages 1–4, 2009.

9



431

K. Heyens, B. Vandoren and L. Schueremans

[13] O. Lloberas-Valls, D.J. Rixen, A. Simone, and L.J. Sluys. Domain decomposition
techniques for the efficient modeling of brittle heterogeneous materials. Computer
Methods in Applied Mechanics and Engineering, 200(13-16):1577–1590, March 2011.

[14] P. Lourenço. Computational strategies for masonry structures. PhD thesis, Delft
University of Technology, 1996.

[15] J. Oliver. Strong discontinuities and continuum plasticity models: the strong discon-
tinuity approach. International Journal of Plasticity, 15(3):319–351, March 1999.

[16] J. Oliver. From continuum mechanics to fracture mechanics: the strong discontinuity
approach. Engineering Fracture Mechanics, 69(2):113–136, January 2002.

[17] D. Rixen. Extended preconditioners for the FETI method applied to constrained
problems. International Journal for Numerical Methods in Engineering, 54(1):1–26,
May 2002.

[18] A. Simone, C. a. Duarte, and E. Van der Giessen. A Generalized Finite Element
Method for polycrystals with discontinuous grain boundaries. International Journal
for Numerical Methods in Engineering, 67(8):1122–1145, August 2006.

[19] H. Vegter and A. Vandenboogaard. A plane stress yield function for anisotropic sheet
material by interpolation of biaxial stress states. International Journal of Plasticity,
22(3):557–580, March 2006.

[20] G. N. Wells and L. J. Sluys. A new method for modelling cohesive cracks using
finite elements. International Journal for Numerical Methods in Engineering, (June
2000):2667–2682, 2001.

10



432

TWO-SCALE PARAMETER IDENTIFICATION FOR
HETEROGENEOUS ELASTOPLASTIC MATERIALS

U. SCHMIDT∗, J. MERGHEIM AND P. STEINMANN

∗Chair for Applied Mechanics
University of Erlangen-Nuremberg

Egerlandstr. 5, 91058 Erlangen, Germany
e-mail: ulrike.schmidt@ltm.uni-erlangen.de

www.ltm.uni-erlangen.de

Key words: Homogenization, Parameter Identification, Inverse Problem, Multi-Scale,
Computational Plasticity

Abstract. The aim of this paper is to describe a method for identifying micro material
parameters using only macroscopic experimental data. The FE2 method is used to model
the behavior of the complex materials with heterogeneous micro-structure. The resulting
least squares problem, with the difference of the simulated and the measured macroscopic
data in the objective function, is minimized using gradient-based optimization algorithms
with respect to the microscopic material parameters. The gradient information is derived
analytically within the discretized scheme.

1 INTRODUCTION

Advanced materials are characterized by their heterogeneity and diverse functionality
at multiple scales. In order to use and employ these new materials and exploit their whole
potential a good understanding of the functioning and mechanism is necessary. Mechan-
ical modeling of heterogeneous materials is an essential part of this, but still presents
a challenge for computational mechanics. Computational homogenization is designed to
handle heterogeneity at different scales.

The concept of (computational) homogenization requires separated scales, that means
macro phenomena appear on a much larger length scale than the micro scale and its
phenomena. Thus the material behavior of each macroscopic point is determined by an
underlying microscopic domain. It is assumed that there exists a subdomain of finite vol-
ume on the micro scale, which is representative for the mechanical behavior of the entire
microscopic domain, thus often called representative volume element (RVE). In contrast
to the macro scale, the material behavior on the micro scale is determined directly by a
constitutive law and the micro material parameters. The mechanical equilibrium equa-
tions at macro and micro scale are further complemented by a scale linking condition,
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often called macro homogeneity condition. An appropriate choice of the boundary con-
dition on the microscopic scale leads to the formulation for the macroscopic stresses and
strains as the volumetric means (or more general, some adequate boundary integrals) of
their microscopic counterparts.

Since the micro material parameters are an important ingredient for this two-scale
simulation, knowledge of the parameters and its acquisition is quite an important topic.
Classical parameter identification and its macroscopic experiments are well established
and one might want to utilize this experience, when given the task to identify microscopic
material parameters. Ultimately, the task at hand is to identify microscopic material
parameters using only macroscopic experiments.

The identification of micro parameters in a two-scale homogenization problem is also
investigated in [1, 2, 3], using numerical sensitivities or gradient-free optimization tech-
niques together with miscellaneous homogenization techniques. This paper couples clas-
sical parameter identification [4] and computational homogenization, more precisely the
FE2 method [5]. Gradient-based optimization is used to solve the resulting two-scale
parameter identification problem.

In a previous work [6] a two-scale parameter identification using analytical gradient-
information was investigated for elasticity, which yields simplifications and less computa-
tional costs compared to the present extension to plasticity. The main focus of this work
is on the derivation of the gradient information in a two-scale FE scheme.

The paper is structured as follows: In section 2 a short overview of the direct problem,
the FE2 method and a fix of notation is given. In section 3 the two-scale parameter
identification problem is defined and the gradient information derived. An example in
section 4 illustrates the functionality of the method. The paper is concluded in the last
section with a discussion and an outlook on further investigation.

2 DIRECT PROBLEM

For the equilibrium at the macro domain Ω̄ we have a standard quasi-static problem (1)
with body forces b̄ and stresses σ̄ and adequate boundary conditions. Herein macroscopic
quantities are marked by an overbar. At the micro scale neglecting body forces leads to
the equilibrium equation (2) in the micro domain Ω(X̄) at the macroscopic point X̄. The
continuous formulation is complemented by the macro homogeneity condition (4). The
micro boundary condition on e.g. the displacements u (3) links the macro strain ε̄ to
the microscopic scale. The up-scaling of the micro stresses leads to the definition of the
macro stresses (5) as the boundary integral of the dyadic product of the reference point
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and the tractions t at the micro scale. In summary:

∇ · σ̄ = b̄ in Ω̄ with ū|∂Ω̄D
= ūp, (σ̄ · n̄)|∂Ω̄N

= t̄p (1)

∇ · σ = 0 in Ω(X̄) with appropriate b.c., e.g. (2)

u = X · ε̄ on ∂Ω(X̄) (down-scaling) (3)

(δε̄ : σ̄)(X̄) =

∫

Ω(X̄)

δε : σ dV (4)

σ̄(X̄) =

∫

∂Ω(X̄)

X⊗ t dA (up-scaling) (5)

The material behavior on the micro scale is modeled by the common von Mises plasticity
for small strains with linear isotropic hardening, whereas the material behavior on the
macro scale is solely determined by the micro scale and has no constitutive law of its
own. The micro material parameters are compression modulus K and shear modulus µ
for the elastic part and yield stress σY and hardening modulus h for the plastic part.
For the convenience in the subsequent analysis the parameters are summarized in vector
α = (K,µ, σY , h).

Application of the standard FE2 method [5] results in the vectorial residuals R̄(ū(α),α)
and R(u(ε̄(α),α),α) on the macro and micro scale, respectively. The residuals vanish
in equilibrium (6), (7). The discrete down-scaling (8) is now defined at each boundary
node j of the RVE. The discrete macroscopic stresses can be computed as the sum over
the boundary nodes of the discrete quantities (9).

After application of the FE2 method, the following discrete equations for the direct
problem are important for the parameter identification:

R̄(ū(α),α) = 0 (6)

R(u(ε̄(α),α),α) = 0 (7)

uj = Xj · ε̄(α) (8)

σ̄ =
∑

j

Xj ⊗ fj (9)

A short remark on the microscopic boundary conditions: There are other appropriate
choices besides the ’linear displacement’ boundary condition given here. The ’periodic’
(periodic fluctuations and anti-periodic tractions) boundary condition is often chosen.
However, the resulting discretized problem can be transformed in such a way that the
structure is the same as for the system resulting from the ’linear displacement’ boundary
condition. After the transformation of the system to contain only the independent nodes
one has prescribed displacements uJ = XJ · ε̄ at the nodes J spanning the RVE, while
the forces on the remaining nodes vanish.
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3 INVERSE PROBLEM

3.1 Problem formulation

The objective function measures the difference between simulated and measured dis-
placements ū and forces f̄ of the macro scale. Both contributions have weighting factors,
wu and wf , to compensate for dimension differences.

f = wu

∑
i

‖ūi(α)− ūmeasured
i ‖2 + wf

∑
j

‖f̄j(α)− f̄measured
j ‖2 (10)

Displacements and forces can be measured at different points, which is indicated by the
different indices i and j. The goal is to identify the microscopic material parameters,
which minimize the difference for the given data. Then the task at hand can be described
as a minimization problem under certain constraints, namely that the material parameters
are feasible and the mechanical equilibria on micro and macro scale are satisfied.

min f(α) s.t. α is feasible and ū,u in equilibrium (11)

The model with the identified parameters can be validated if the objective function is suf-
ficiently small also for a separate data set of measured displacements and forces resulting
from a different experiment.

3.2 Gradient information

In order to employ gradient-based optimization techniques to minimize the objective
function, the gradient information is required. Due to better convergence behavior and
lower computational costs the analytical derivation is preferred over a numerical calcula-
tion, e.g. using finite differences. The necessary gradient information is calculated as a
total derivative of the objective function with respect to the parameter vector α, denoted
by d

dα
.

df

dα
= wu

∑
i

(ūi(α)− ūmeasured
i ) · dūi(α)

dα
+ wf

∑
j

(f̄j(α)− f̄measured
j ) · df̄j(α)

dα
(12)

A look at the macroscopic residual R̄(ū(α),α) = R̄int(ū(α),α)−R̄ext(α) = 0, consisting
of an internal part R̄int and an external part R̄ext, is necessary in order to determine
the derivatives of the simulated quantities. The force term fj in the objective function
incorporates the external forces contained in R̄ext in an way appropriate to the experiments
and available measurements. The degrees of freedom (DOFs) of the macroscopic residual
are partitioned into prescribed displacement DOFs (p) and remaining DOFs (r). Here the
remaining DOFs contain DOFs at internal nodes, where the body forces are prescribed
and DOFs at the boundary, where tractions are prescribed. The vectorial residual at
the macro scale is differentiated w.r.t. the material parameters, the partial derivatives
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are denoted as ∂
∂ū

and ∂
∂α

, respectively. The assumption, that the prescribed terms are

independent of the material parameters, i.e. dūp

dα
= 0, dR̄

ext
r

dα
= 0, finally leads to

0 =
∂R̄int

p

∂ūr

· dūr

dα
+

∂R̄int
p

∂α
−

dR̄ext
p

dα
(13)

0 =
∂R̄int

r

∂ūr

· dūr

dα
+

∂R̄int
r

∂α
(14)

With the assumption that K̄rr := ∂R̄int
r

∂ūr
, a part of the stiffness matrix of the direct

problem, is regular, we can calculate the derivative of the displacements w.r.t. the material
parameters:

dūp

dα
= 0,

dūr

dα
= −K̄−1

rr · ∂R̄
int
r

∂α
(15)

Furthermore, one can calculate the total derivative of the macroscopic external forces

from (13) using K̄pr :=
∂R̄int

p

∂ūr
and equation (15) as

dR̄ext
r

dα
= 0,

dR̄ext
p

dα
=

∂R̄int
p

∂α
− K̄pr · K̄−1

rr · ∂R̄
int
r

∂α
(16)

Now it can be seen, that the determination of the derivatives is similar to solving the
linearized direct problem with an artificial load ∂R̄int

∂α
. In order to construct this arti-

ficial load vector, the partial derivative of the macroscopic stresses w.r.t. microscopic
parameters will be determined in the following. The element-wise contributions to the
internal residual consist of the derivatives of the macro shape functions, summarized in
the B-matrix B̄T

e (independent of material parameters) and the macro stresses σ̄(ε̄,α)|e

∂R̄int(ū,α)|e
∂α

=

∫

Ω̄e

B̄T
e · ∂σ̄(ε̄,α)|e

∂α
dV (17)

In the classical one scale parameter identification the derivative of the stresses can be
obtained by differentiating the constitutive law. However, the use of a two-scale modeling
scheme in the present work necessitates further calculations at this point. By definition
(9) we calculate the macro stresses as the sum of dyadic products of the reference position
and the reaction forces at boundary nodes and thus its derivative can be expressed as

∂σ̄(ε̄,α)

∂α
=

∑

j

Xj ⊗
∂fj(ε̄,α)

∂α
(18)

Clearly, it is necessary to calculate the derivatives at the micro scale. Starting once again
with the vectorial residual, but now for the microscopic problem, and its total derivative
w.r.t. the material parameters, we use the partitioning into prescribed displacement DOFs
and prescribed force DOFs. An illustration is given in figure 1.

5
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nodes with prescribed displacement

remaining nodes with prescribed forces

dependent node with prescribed disp.

dependent node with prescribed force

Figure 1: Schematic distribution of prescribed displacements/forces for ’linear displacement’ (left) and
’periodic’ (right) boundary conditions in 2D

On the micro scale the prescribed forces do not depend on the material parameters,
but the prescribed displacements do. The prescribed displacements on the micro scale
depend on the macro strain and therefore on the material parameters. Their derivative
follows from equation (8) as

dup

dα
= Xp ·

dε̄

dα
. (19)

Therefore, the total derivative of the micro residual can be expressed as

0 =
dR

dα
=

∂Rint

∂u
· du
dα

+
∂Rint

∂α
− dRext

dα
(20)

=

(
Kpp Kpr

Krp Krr

)
·
(
Xp · dε̄

dα
dur

dα

)
+

(
∂
∂α

Rint
p

∂
∂α

Rint
r

)
−

(
d
dα

Rext
p

0

)
. (21)

The derivative of the internal residual w.r.t. the displacement ∂Rint

∂u
is the stiffness matrix

K of the direct micro problem, containing the submatrices Kpp,Kpr,Krp,Krr related
to prescribed or remaining nodes, respectively. One can reformulate the second line
associated with the prescribed force DOFs in (21) by using the assumption that Krr is
regular and arrive at an expression for the total derivative of the displacements.

0 = Krp ·Xp ·
dε̄

dα
+Krr ·

dur

dα
+

∂Rint
r

∂α
(22)

⇒ dur

dα
= −K−1

rr ·
(
Krp ·Xp ·

dε̄

dα
+

∂Rint
r

∂α

)
(23)

Inserting this in the first line of (21) and reordering of the terms leads to

dRext
p

dα
= Kpp ·Xp ·

dε̄

dα
−Kpr ·K−1

rr ·
(
Krp ·Xp ·

dε̄

dα
+

∂Rint
r

∂α

)
+

∂Rint
p

∂α
(24)

=
(
Kpp −Kpr ·K−1

rr ·Krp

)
·Xp ·

dε̄

dα
−Kpr ·K−1

rr · ∂R
int
r

∂α
+

∂Rint
p

∂α
(25)

When we express
dRext

p

dα
by means of partial derivatives

dRext
p

dα
=

∂Rext
p

∂ε̄
· dε̄
dα

+
∂Rext

p

∂α
(26)

6
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we can identify by comparison of coefficients the following terms

∂Rext
p

∂ε̄
=

(
Kpp −Kpr ·K−1

rr ·Krp

)
·Xp (27)

∂Rext
p

∂α
=

∂Rint
p

∂α
−Kpr ·K−1

rr · ∂R
int
r

∂α
. (28)

The sum to calculate the macro stress is constructed over the boundary nodes, where

displacements are prescribed, i.e.
∂fj
∂α

=
(

∂Rext
p

∂α

)
j
. Therefore we only need (28) to con-

struct the partial derivative of the macro stresses. It remains to calculate the partial
derivative of the internal residual w.r.t. the material parameters. For this the internal
variables like plastic strain, back stress and hardening evolution are summarized in the
vector β. The inelastic material model is dealt with by using a recursive strategy to dif-
ferentiate w.r.t. the material parameters, described in detail in [4]. The key point of this
strategy is to view the stress and internal variables β as dependent on the current and
last load steps as well as the material parameters, i.e. σk = σk(εk, εk−1,βk,βk−1, α), and
βk = βk(εk, εk−1,βk−1, α), and differentiate accordingly. The partial derivatives needed
for parameter identification consider all dependencies but the strain of the current step,

i.e. ∂σk(εk,α)
∂α

and ∂βk(εk,α)
∂α

. The total derivatives from the last step are a vital ingredient
for this calculation and are constructed at the beginning of the current step using the
results from the last step. The total derivative of the microscopic displacements w.r.t.
the material parameters (23) can be constructed by means of the partial derivatives

∂ur(ε̄(α),α)

∂α
= −K−1

rr · ∂R
int
r

∂α
,

∂ur(ε̄(α),α)

∂ε̄
= −K−1

rr ·Krp ·Xp (29)

as dur

dα
= ∂ur

∂ε̄
· dε̄
dα

+ ∂ur

∂ε
, once dε̄

dα
is known. Thus, we have a classical parameter identi-

fication step in the integration points. The special dependency of the prescribed micro
displacements on the material parameters resulting from the two-scale homogenization
scheme influences only the global microscopic equations (23) and (25).

3.3 Algorithm

The iteration procedure to calculate micro material parameter derivatives of displace-
ments and forces at macroscopic scale and its steps are illustrated by the following scheme.

INIT (k = 0): Initialize the derivatives of the macro displacements dū0

dα
= 0. Fur-

thermore, initialize the derivatives of the micro displacements ∂u0

∂α
= 0, ∂u0

∂ε̄0
= 0, and of

the micro internal variables ∂β0

∂α
= 0, ∂β0

∂ε0
= 0 on all micro domains.

ITERATION

I) set k → k + 1, known: dūk−1

dα

7
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II) after macro equilibrium calculations, on each macro element for each integration
point:

A) construct dε̄k−1

dα
from dūk−1

dα

B) invoke subproblem on micro scale for each integration point

i) known: dε̄k−1

dα
, ∂u

k−1

∂α
, ∂u

k−1

∂ε̄k−1 ,
∂βk−1

∂α
, ∂β

k−1

∂εk−1

ii) construct duk−1

dα
= ∂uk−1

∂ε̄k−1 · dε̄k−1

dα
+ ∂uk−1

∂α

iii) after micro equilibrium calculations, on each micro element for each inte-
gration point:

a) construct dεk−1

dα
from duk−1

dα

b) construct dβk−1

dα
= ∂βk−1

∂εk−1 · dεk−1

dα
+ ∂βk−1

∂α

c) calculate ∂σk

∂α
, ∂β

k

∂εk
, ∂β

k

∂α
and save ∂βk

∂εk
, ∂β

k

∂α
for next step

d) calculate ∂Rint,k|e
∂α

iv) assemble global artificial load vector ∂Rint,k

∂α

v) determine ∂uk

∂α
, ∂u

k

∂ε̄k
(29), ∂fk

∂α
(28) and save ∂uk

∂α
, ∂u

k

∂ε̄k
for next step

vi) calculate ∂σ̄k

∂α
(18) from ∂fk

∂α
and give it back to macro scale

C) use ∂σ̄k

∂α
to calculate ∂R̄int,k|e

∂α
(17)

III) assemble global artificial load vector ∂R̄int,k

∂α

IV) solve for dūk

dα
(15), df̄k

dα
(16) and go to step I).

4 NUMERICAL EXAMPLE

In a first investigation on the functionality of the proposed multi-scale method for
parameter identification, reidentification for numerical examples is considered. Therefore
the numerical simulations are carried out for given material parameters on the micro
scale. Then the optimization algorithm is employed to solve the problem for several
starting points.

The example setting is illustrated in figure 2. The geometry at the macroscopic scale
is a punched disk, which is elongated in five steps to a total of 1.5 % elongation. The hole
has a radius of 1 mm and is centered at the quadratic disk with base length 4 mm and
thickness 1 mm. The microscopic domain consists of a cube with an ellipsoidal void. The
ellipsoid with radii a = 4.8, b = 3.2, c = 4.0 is placed at the center of a cube with base
length 10. ’Linear displacement’ boundary conditions were employed.

We assume a microscopic material law of von Mises plasticity with linear isotropic
hardening. For the reference solution the material parameters at the micro scale are
given as K = 73.53, µ = 28.20, σY = 0.30, h = 15.00 in GPa. The displacements at the

8
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Ω̄

X̄ Ω(X̄)

Figure 2: Example setting

front and back as well as the resultant force on top and bottom of the macro disk are the
entries in the objective function. The optimization algorithm lsqnonlin from MATLAB’s
Optimization Toolbox is used to minimize the optimization problem. Four starting points
are presented: 1 (80.47, 31.63, 0.27, 16.86), 2 (84.23, 34.07, 0.28, 18.50), 3 (69.26, 33.93,
0.23, 17.85), 4 (88.90, 30.61, 0.25, 15.94).
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Figure 3: Optimization characteristics

Results for each stating point are shown in figure 3. The plot on the left depicts
the infinity norm of the gradient of the objective function against the iterations of the
optimization. The decrease indicates the convergence to a stationary point. The plot
on the right depicts the maximal relative error of the identified material parameters with
respect to the reference parameters, also against the iterations of the optimization. In both
plots the y-axes use a logarithmic scale. As can be seen, the optimization convergences
and the identified micro parameters indeed coincide with the reference parameters.

5 CONCLUSIONS

In this paper the coupling of classical parameter identification and the FE2-method
is described. The gradient information of the objective function is derived leading from
macroscopic derivatives down to microscopic derivatives. A calculation scheme covering

9
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the main steps within the recursive approach at the two scales is shown. The example
illustrates that the correct material parameters of the micro scale, both elastic and plastic
ones, can be identified using only the macroscopic data. The optimization converges
successfully in a small to moderate number of steps. Thus we conclude that the two-scale
parameter identification can be solved using the proposed scheme.

However, more research into the stability and robustness of the method is required.
The method relies on observable nonlinear effects at the macro scale. If the plastic effects
on the micro structure appear only very locally confined, the effects on the macro scale
may become negligible small and therefore pose only insufficient data.

Furthermore, for improving the computational costs we will investigate the effects of
separate identification of elastic and plastic materials as well as the effects of the coupling
of 2-D macro to 3-D micro simulations.
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Abstract. This contribution deals with a comparative investigation of two 3D mate-

rial models for concrete. The models under consideration are a modified version of the

Extended Leon model and the damage-plasticity model proposed by Grassl and Jirásek.

The results of extensive comparisons of the model response with test data motivated some

modifications of both concrete models, in particular, regarding the evolution of damage.

1 INTRODUCTION

Several 3D constitutive models for concrete were proposed in the last decade. E.g.,

Pivonka [2] developed a modified version of the Extended Leon model [1], which is formu-

lated within the framework of plasticity theory, and applied it to the numerical simulation

of pull-out tests of anchor bolts. Schütt [3] proposed a non-smooth multi-surface damage-

plasticity model and employed it for the analysis of composite structures. Huber [4]

compared a 3D multi-surface plasticity model for concrete with a 3D gradient enhanced

damage model. Recently, a 3D concrete model, based on a combination of plasticity

theory and damage theory, was proposed by Grassl and Jirásek [5].

This contribution focuses on a comparative investigation of the modified Extended

Leon model [2] and the damage-plasticity model [5]. To this end, the models are im-

plemented into the commercial FE-analysis program system ABAQUS [6] by means of a

return mapping algorithm, which is enhanced by substepping and error-control in order

to improve robustness and accuracy of the stress update.

The results of extensive validation of the model response by material tests motivated

some modifications of both concrete models, in particular, regarding the evolution of

1
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damage. Furthermore, the numerical simulation of a well-known 3D benchmark test

demonstrates the capabilities of an enhanced version of the damage-plasticity model for

the analysis of concrete structures.

2 3D CONSTITUTIVE MODELS FOR CONCRETE

2.1 Modified Extended Leon Model

The Extended Leon model is a single-surface plasticity model with nonlinear hardening

and softening. It was developed by Etse [1] and modified later by Pivonka [2]. The latter

version is described and employed in this paper.

The yield function of the Extended Leon (EL) model

fEL(σm, ρ, θ; αh, αs) =

[
1 − qh(αh)

f 2
cu

(
σm +

ρ r(θ)√
6

)2

+

√
3

2

ρ r(θ)

fcu

]2

+

+
q2
h(αh)

fcu

ms(αs)

(
σm +

ρ r(θ)√
6

)
− q2

h(αh) qs(αs) (1)

is formulated in terms of the hydrostatic stress σm, the deviatoric radius ρ, the Lode

angle θ, the strain-like internal hardening variable αh and the strain-like internal softening

variable αs; fcu denotes the uniaxial compressive strength of concrete and r(θ) a deviatoric

shape function, with the limiting cases of a triangular and circular yield function in the

deviatoric plane.

The plastic strain rate is described by a flow rule, which is associated in the deviatoric

plane and non-associated in the meridional plane.

Hardening behavior of the Extended Leon model is described by the normalized strength

parameter

qh(αh) =

{
qh0

+ (1 − qh0
)
√

αh (2 − αh) if αh < 1

1 if αh ≥ 1
, (2)

where qh0
= fcy/fcu denotes the initial value of qh, which represents the ratio of the elastic

limit stress under compressive loading, fcy, and the uniaxial compressive strength.

The evolution law of the strain-like internal hardening variable is given as

α̇h(σ
m, ρ, θ; αh, αs) =

‖ε̇p‖
xh(σm)

= γ̇ hh(σ
m, ρ, θ; αh, αs) (3)

with xh(σ
m) denoting the hardening ductility parameter, which increases with increasing

hydrostatic pressure. Hence, the rate of the internal hardening variable αh is decreasing

for increasing values of the confining pressure.

2
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Softening behaviour is controlled by the decohesion parameter

qs(αs) =

{
1 if αh < 1

e−(αs/αu) if αh ≥ 1
, (4)

which is driven by the strain-like internal softening variable αs; αu = GI
f/(lchar ftu) is

employed for regularizing the softening behavior with GI
f as the specific mode I fracture

energy of concrete, lchar as the characteristic length of the finite element and ftu as the

uniaxial tensile strength.

The evolution law of the strain-like internal softening variable αs is defined as

α̇s(σ
m, ρ, θ; αh, αs) =

‖〈ε̇p〉‖
xs(σm)

= γ̇hs(σ
m, ρ, θ; αh, αs) , (5)

with xs(σ
m) denoting the softening ductility parameter depending on the maximum value

of the mean stress.

The friction parameter ms in (1) is defined as

ms(αs) =

{
m0 if αh < 1 ,

mr − (mr − m0) qs(αs) if αh ≥ 1
, (6)

where m0 and mr are the initial and the residual friction parameter, respectively.

2.2 Damage-plasticity model by Grassl and Jirásek

The damage-plasticity model by Grassl and Jirásek [5] is a single-surface model with

nonlinear isotropic hardening, formulated within the framework of plasticity theory, and

nonlinear isotropic softening, described on the basis of damage theory. The yield function

of the damage-plasticity (DP) model is given in terms of the effective mean stress σ̄m,

the effective deviatoric radius ρ̄ and the effective Lode angle θ̄ and the strain-like internal

hardening variable αp:

fp,DP (σ̄m, ρ̄, θ̄; αp) =

[
1 − qh(αp)

f2
cu

(
σ̄m +

ρ̄√
6

)2

+

√
3

2

ρ̄

fcu

]2

+

+
m0 q2

h(αp)

fcu

(
σ̄m +

ρ̄√
6
r(θ̄)

)
− q2

h(αp) . (7)

The shape of the yield function in the deviatoric plane is controlled by a deviatoric shape

function r(θ̄); m0 denotes a friction parameter. The plastic strain rate is described by a

flow rule, which is non-associated in both the deviatoric and the meridional plane.

3
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Figure 1: Yield surface of the damage-plasticity model by Grassl and Jirásek, plotted in the principal
stress space for five different states during hardening

Hardening is described by the normalized strength parameter

qh(αp) =

{
qh0

+ (1 − qh0
) αp

(
α2

p − 3αp + 3
)

if αp < 1

1 if αp ≥ 1
. (8)

The evolution of the strain-like internal hardening variable is given as

α̇p(σ̄
m, ρ̄, θ̄; αp) =

‖ε̇p‖
xh(σ̄m)

4 cos2(θ̄) = γ̇hp(σ̄
m, ρ̄, θ̄; αp) (9)

with the hardening ductility parameter xh(σ̄
m), defined in a different manner from the

Extended Leon model (cf. [5]). The yield surface (7) in the principal stress space is shown

for five different states during hardening in Fig. 1.

Softening material behavior of the damage-plasticity model is described by an isotropic

damage law. The damage loading function is formulated in the strain-space as

fd,DP (ε, εp; αd) = ε̃(ε, εp) − αd , (10)

where ε̃ represents the equivalent strain and αd the strain-like internal softening variable.

Since the original version of the evolution law of the damage variable produces sharp

bends of compressive stress-strain curves at the transition from hardening to softening, it

is replaced in the present work by

ω(σm
d ; αd) = 1 − X(σm

d )
1(

1 +
αd

εf,t

)2 − [1 − X(σm
d )] e−(αd/εf,c)

2

(11)

4
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with εf,t and εf,c controlling the slope of the softening curve and

X(σm
d ) =





0 if σm
d ≤ −fcu

3
3σm

d

fcu
+ 1 if − fcu

3
< σm

d < 0

1 if σm
d ≥ 0

(12)

determining the weight of the second and third term in (11) on the damage variable.

Since σm
d is equal to the effective mean stress at the onset of softening, X is a constant

parameter. For tensile loading with σm
d ≥ 0 the shape of the softening curve is controlled

only by the hyperbolic function which results in a steeper initial descent of the softening

envelope. In contrast, for compressive loading with σm
d ≤ −fcu

3
the shape of the softening

curve is controlled only by the quadratic exponential function. Thus, the sharp bend of

stress-strain curves at the transition from hardening to softening, produced by the original

damage law, is avoided. For −fcu

3
< σm

d < 0 multi-axial combined tension-compression

loading is controlled by a combination of both functions.

The rate of the strain-like internal softening variable is given as

α̇d =




0 if αp < 1

ε̇p,vol

xs(ε̇p,vol)
if αp ≥ 1

, (13)

where ε̇p,vol = ε̇p
ij δij denotes the volumetric plastic strain rate and the softening ductility

parameter xs(ε̇
p,vol) controls the evolution of the strain-like internal softening variable.

3 STRESS UPDATE ALGORITHM

For both concrete models the implicit backward Euler method is employed for inte-

grating the constitutive rate equations. The resulting nonlinear system of equations is

solved at each integration point for the stresses, the internal variables and the consistency

parameters by means of Newton’s method. The consistent (damage-)elasto-plastic tan-

gent moduli are employed for achieving a quadratic rate of asymptotic convergence at the

structural level.

In order to increase the robustness of the stress update for larger strain increments

the return mapping algorithm is enhanced by a substepping method proposed by Pérez-

Foguet et al. [7]. It is characterized by subdividing the total strain increment of the

time step under consideration into m subincrements and performing the return mapping

algorithm consecutively for all subincrements of the total strain increment by analogy

to the well known single step method. Fig. 2 shows a comparison of the robustness of

the single-step return mapping algorithm with the subincremented version of the return

mapping algorithm for a set of trial stresses consisting of a grid of 51× 51 equally spaced

points. The grid is defined by σtrial
m = [−80, 20] N/mm2, ρtrial = [0, 40] N/mm2 and

5
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Figure 2: Iso-error maps for the stress update by the single-step Newton method (left) and the Newton
method with subincrementation (right); white dots indicate points with failure of convergence

θtrial = π/3. For all stress points of this grid the initial values of the stresses, internal

variables and damage variables are chosen as zero.

Fig. 2 clearly shows that in contrast to the single-step stress update, the stress up-

date with subincrementation converges for all investigated trial stresses. In the hardening

region the relative errors of the stresses are increasing with increasing distance from the

boundary of the elastic domain, indicated in Fig. 2 by the black curve. In the softening do-

main the relative errors are larger than in the hardening domain because the nonlinearity

of the underlying problem in tension is more pronounced than in compression.

In order to avoid larger integration errors as shown in Figure 2 (right), the size of

the initial subincrement is determined according to a user-defined error threshold value

for the stresses. To this end, for the time step under consideration two solutions for the

stresses are computed based on different subincrement sizes. If the relative error of the

stresses is smaller than the user-defined threshold value, then the solution is accepted,

otherwise the number of subincrements is increased.

The single step integration and the subincrement integration mainly differ by the com-

putation of the consistent tangent moduli, since the latter method requires additional

terms resulting from the variation of the stresses and internal variables of the previous

subincrement [7, 8] and, in addition, the consistent tangent moduli for the actual subin-

crement depend on those of the previous subincrement. Hence, computing the consistent

elasto-plastic tangent moduli for the substepping method is more expensive than com-

puting those for the single-step method.
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4 VALIDATION AND APPLICATION

The modified Extended Leon model by Pivonka and the damage-plasticity model by

Grassl and Jirásek were validated by experimental data of several test series on con-

crete specimens subjected to different stress paths, which are available in the literature.

The investigation is documented in [8]. This validation confirmed the superiority of the

damage-plasticity model. In the following, exemplarily, only a comparison of the results

of triaxial compression tests with different levels of confinement, described in [9], with the

respective model response is presented.

In a further validation step the modified damage-plasticity concrete model is applied

to the numerical simulation of well-known 3D benchmark tests, including cylindrical con-

crete specimens subjected to torsional loading, cyclic loading tests of RC squat bridge

columns and tests on beam-shaped concrete specimens, subjected to combined bending

and torsional loading. In the following, only the latter benchmark test is addressed briefly.

The analysis of all benchmark tests is documented in [8].

4.1 Validation by material tests

The material parameters of the concrete specimens, tested by Imran and Pantazopoulou

[9], are given in Table 1. In this table GI
f is estimated according to [10] from the maximum

aggregate size of dmax = 10 mm.

Table 1: Material parameters for the triaxial compression tests according to [9]

parameter (mean) value

Ec 30000.00 N/mm2

νc 0.15

fcu 47.40 N/mm2

ftu 4.74 N/mm2

GI
f 0.0780 Nmm/mm2

Fig. 3 shows a comparison of experimental data and the computed response for triaxial

compression tests with different levels of confinement. The peak stresses at different levels

of confinement are predicted well by both models. However, the modified Extended Leon

model (ELM) underestimates both, the axial and lateral strain, in particular, for higher

levels of confinement.

In contrast to the modified Extended Leon model, the damage-plasticity model (DPM)

by Grassl and Jirásek yields good agreement of measured and predicted axial and lateral

strains for different levels of confinement. A further slight improvement is achieved by

the enhanced softening law (11), as the artificial sharp bends are eliminated (DPM-enh.).

7
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Figure 3: Experimental and numerical results of triaxial compression tests according to [9]

4.2 Benchmark test: the PCT-3D test

In the PCT-3D tests, conducted at the University of Innsbruck, prismatic concrete

specimens with dimensions of 180 × 180 × 600 mm were subjected to combined bending

and torsional loading. The test layout is described in detail in [11]. Fig. 4 shows the

FE-mesh of the concrete specimen, the support rollers and the load application roller.

The concrete specimen and the steel components are discretized by altogether 69372 3D

isoparametric 20-node elements with reduced numerical integration.

A notch of isosceles triangular shape of 60 mm length in both vertical and horizontal

direction with a notch width of 5 mm was provided at midspan of the specimen at the

tensile faces for triggering crack initiation. At an offset of 30 mm from the front face

of the specimen a concentrated vertical load was applied to the load application roller,

which resulted in combined bending and torsional loading. In the numerical simulation

after application of the dead load the concentrated load is applied by prescribing a vertical

displacement at a single node of the load application roller.

The material parameters are summarized in Table 2. The uniaxial tensile strength and

the specific mode I fracture energy of concrete are estimated according to [10].

The scatter of the experimental results regarding the load-crack mouth opening curve

and the respective mean value as well as the numerical results for the PCT-3D test are

8
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support�roller

load�application�roller

support�roller

Figure 4: Finite element mesh of the PCT-3D test

Table 2: Material parameters for the numerical simulation of the PCT-3D test

concrete steel

param. mean value stand. dev. param. mean value

ρc 2449 kg/m3 ρs 7850 kg/m3

Ec 37292 N/mm2 ± 2055 Es 210000 N/mm2

νc 0.19 ± 0.014 νs 0.30

fcu 40.1 N/mm2 ± 0.83

shown in Fig. 5. In the numerical simulation the onset of cracking is predicted at the center

of the base of the triangular notch. With increasing vertical displacement of the point

of load application, the crack starts propagating along the base of the triangular notch

and subsequently along the top face towards the rear face. At peak load the predicted

crack extends from the notch to the rear side of the specimen. In contrast to the front

face, at the top face the crack propagates in one row of elements (see Fig. 6). However,

in the experiments a slightly curved crack was observed at the top face. Hence, the

present model shows some mesh induced bias as a consequence of the employed smeared

crack approach. Nevertheless, the overall structural behavior is predicted very well by the

present model.

5 CONCLUSIONS

The comparison of the response of two constitutive models for concrete, consisting of a

modified version of the Extended Leon model by Pivonka and the damage-plasticity model

by Grassl and Jirásek, conducted for several sets of experimental material data, clearly

revealed the superiority of the damage-plasticity model. Both models were implemented

9
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Figure 5: Measured and computed load-crack mouth opening displacement curves for the PCT-3D test

Figure 6: Predicted crack pattern at failure of the PCT-3D test (SDV 9 ≡ ω, deformations 50-fold
magnified)

10



452

Bernhard Valentini and Günter Hofstetter

into the commercial finite element program ABAQUS, employing the return mapping

algorithm, enhanced by substepping and error control, for the stress update. Several

benchmark tests conducted on concrete specimens with loadings producing pronounced

3D stress states were analyzed to thoroughly check both the model response and the

robustness of the stress update algorithm. The benchmark tests confirmed the capabilities

of the enhanced version of the damage-plasticity model for solving large-scale problems in

Civil Engineering. An example for the latter is the numerical simulation of an ultimate

load test on a 3D model of a concrete arch dam on a scale of 1:200. It allowed a comparison

of the predicted response with test data. The finite element mesh, shown in Fig. 7,

comprises both the arch dam and the adjacent rock foundation. It consists of about

267 000 3D linear finite elements with altogether 914 000 degrees of freedom. The test

setup, the numerical model and the comparison of the predicted response with the test

data are described in detail in [8].

Figure 7: Finite element mesh of the arch dam model
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Abstract. The present paper is concerned with the development of an effective finite
element tool for the simulation of crack propagation in thin structures, induced by contact
or impact against sharp objects. In particular the purpose is the refinement and further
development of a recently proposed finite element approach for the simulation of the blade
cutting of thin membranes [1]. Standard cohesive interface elements are not suited for the
simulation of this type of cutting, dominated by the blade sharpness and by large failure
opening of the cohesive interface. The new concept of “directional” cohesive element, to
be placed at the interface between adjacent shell elements, where the cohesive forces can
have different directions on the two sides of the crack whenever the cohesive region is
crossed by the cutting blade, was introduced in [1] for elastic 4-node full-integration shell
elements with dissipation localized inside the interface elements, in the framework of an
explicit dynamics formulation. In the present paper the computational efficiency of the
proposed approach is investigated by considering applications to different test problems,
modifying the shell element kinematics. Some considerations about a reduced integration
solid-shell element are here reported; the interaction between this kind of element and
directional cohesive elements is under study.

1 INTRODUCTION

Thin structures are typically modeled using shell finite elements. Since many years,
most explicit commercial finite element codes (see e.g. Abaqus and LS-Dyna) offer the
possibility to simulate crack propagation in shells by eliminating from the model those
finite elements where developing damage has reached a critical threshold. While this
approach provides good results for the simulation of diffused damage due to explosions or
crashes against large obstacles, it is not convenient for the simulation of the propagation
of isolated cracks in large structures or of localized damages produced by sharp obstacles

1
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(see e.g. [2]). This type of problems appear to be better tackled by approaches based
on the use of cohesive fracture models, capable to transmit cohesive forces across either
an intra-element or inter-element displacement discontinuity [3],[4]. Among the different
types of crack propagation problems in thin structures, the mechanics of cutting a shell
with a sharp object or tool has attracted particular attention in view of its engineering
interest [5]. Standard cohesive interface elements are not suited for the simulation of this
type of cutting, dominated by the blade sharpness and by large failure opening of the
cohesive interface. The new concept of “directional” cohesive element, to be placed at
the interface between adjacent shell elements, where the cohesive forces can have different
directions on the two sides of the crack whenever the cohesive region is crossed by the
cutting blade, was introduced in [1] for elastic shells with dissipation localized inside the
interface elements, in the framework of an explicit dynamics formulation. In the present
paper the proposed approach is briefly summarized and used to simulate the cutting of a
thin rubber sheet, on the basis of the experimental test discussed in [6]. In [1] the interface
element was applied in conjunction with full integration 4-node shell elements (MITC4
elements [7]). For future application to elastoplastic laminated shells, the kinematics of
a computationally effective reduced integration solid shell element is discussed and its
possible use in the present explicit dynamics context is investigated.

2 COHESIVE ELEMENTS

2.1 Model description

In standard finite element approaches to fracture, based on the introduction of a co-
hesive interface between adjacent shell elements, due to the crack propagation opposite
cohesive forces develop across the displacement discontinuity. The direction of the oppo-
site forces depends only on the direction of the displacement jump and on the adopted
cohesive law. When the material is quasi-brittle and/or the impacting object is blunt,
there is no interference between the object and the cohesive region because the ultimate
cohesive opening displacement is much smaller than the typical size of the cutter. On the
contrary, when the material is very ductile or the cutting blade is sharp, it may well hap-
pen that the blade intersects the trajectory of the cohesive forces, giving rise to inaccurate
predictions of the crack propagation. For these reasons, a new concept of “directional”
cohesive interface element, where the cohesive forces acting on the crack opposite faces
have different directions when the process zone is crossed by the cutting blade, has been
proposed in [1] and is briefly recalled below.

The implementation of these “directional” cohesive elements follows the following steps.
When the selected fracture criterion is met at a given node, the node is duplicated and
it is assumed that cohesive forces F±

i are transmitted between the newly created pair
of nodes i± by a massless “cable”, i.e. a truss element ad hoc introduced in the model
in correspondence of each pair of separating nodes. In the current implementation, the
cohesive cables are attached to nodes lying in the middle surface of the shell. Contact of
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Figure 1: Cohesive forces between detaching elements.

(a) (b)

Figure 2: Cutting of a rubber sheet: (a) test setup and (b) experimental results.

cable elements (which are geometric entities) against the cutting blade is checked. When
a point of a cable element is detected to be in contact with the blade, the cable element is
subdivided into two elements by introducing a joint in correspondence of the contact point
(see Fig. 1). The force transmitted by the cables depends on their length (rather than on
the distance between opposite crack nodes as in standard cohesive elements) according to
the adopted cohesive law. When the current total cable length exceeds the limit value,
the cable is removed and no forces are anymore transmitted between the opposite nodes.

2.2 Model validation

In order to validate this new approach, the force-controlled cutting of a pre-tensioned
rubber sheet is simulated. The test setup and the recorded [6] cutting force at unstable
propagation onset are shown in Fig. 2 for varying pre-tensioning and rubber sheet width.
The test geometry and mesh shown in Fig. 3a have been considered, with length L =

3
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(a) (b)

Figure 3: Cutting of a rubber sheet: (a) dimensions and mesh of the rubber sheet and
(b) cohesive law and blade shape.

40mm, width D = 32mm, thickness t = 0.1 mm, initial defect a = 5 mm, Young
modulus E = 1 MPa, Poisson ratio ν = 0.45 and the cohesive law shown in Fig. 3b.
Imposing a transverse tensile strain of 18%, a cutting force at unstable crack propagation
equal to about 150 N/m is expected to be obtained (see circled dot in Fig. 2b).

The numerical results of the explicit dynamics simulation are shown in Fig. 4. The
first plot shows the evolution of the vertical reaction force at the lateral clamps. The first
part of the plot concerns the initial pre-tensioning phase. The second part concerns the
cutting phase. The second plot shows the time evolution of the contact force at the blade
tip. As it can be observed, this oscillates about the experimentally measured value of
0.015 N, which confirms the good accuracy of the simulation.

3 SOLID-SHELL ELEMENTS

The MITC4 shell elements used in the previous example need four integration points
in the shell plane and at least two integration points along the thickness for a total of
eight integration points. The introduction of material non-linearities, requires a higher
number of Gauss points, leading to increasing computational costs.

Several types of 8-node solid-shell elements have been recently proposed in the liter-
ature. Among these, the SHB8PS element proposed by Abed-Meraim and Combescure
[9] has eight nodes, only one integration point in the plane and an arbitrary number of
integration points, with a minimum of two, distributed along the thickness direction and
it is based on the assumed strain stabilization proposed by Belytschko and Bindeman[8].
Combescure’s element is here reconsidered with some modifications aimed at improving its
computational effectiveness, especially in explicit dynamics analyses (see [9] for a detailed

4
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Figure 4: Cutting of a rubber sheet. Numerical results: vertical reaction force evolution
at lateral clamps (upper plot); evolution of contact force at cutter tip (lower plot).

SHB8PS element presentation).

3.1 SHB8PS element

SHB8PS is a hexahedral, 8-node, isoparametric element with three-linear interpolation.
It makes use of a set of nint integration points distributed along the ζ direction in the
local coordinate frame as shown in Fig. 5.

Figure 5: SHB8PS reference geometry, integration points location and nodal coordinates.

Indicating with di and xi the vectors of nodal displacements and coordinates for each
element, Belytschko and Bindeman have shown that the nodal displacements can be

5
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expressed as :

di = a01s+ a1ix1 + a2ix2 + a3ix3 + c1ih1 + c2ih2 + c3ih3 + c4ih4 (1)

where
sT = (1, 1, 1, 1, 1, 1, 1, 1)
hT
1 = (1, 1,−1,−1,−1,−1, 1, 1)

hT
2 = (1,−1,−1, 1,−1, 1, 1,−1)

hT
3 = (1,−1, 1,−1, 1,−1, 1,−1)

hT
4 = (−1, 1,−1, 1, 1,−1, 1,−1)

aji = bT
j · di, cαi = γT

α · di, i, j = 1 . . . 3

and γα and the mean form bi of Flanagan and Belytschko [10] are defined as (N being
the shape functions):

γα =
1

8

[

hα −
3

∑

j=1

(hT
α · xj)bj

]

, α = 1, . . . , 4

bi =
1
Ωe

∫

Ωe
N,i(ξ, η, ζ)dΩ, i = 1, 2, 3

(2)

Defining the four functions

h1 = ηζ, h2 = ζξ, h3 = ξη, h4 = ξηζ (3)

this allows to express the discrete gradient operator relating the strain field to the nodal
displacements as

∇(u) = B · d with

B =

















bT
x + hα,xγ

T
α 0 0

0 bT
y + hα,yγ

T
α 0

0 0 bT
z + hα,zγ

T
α

bT
y + hα,yγ

T
α bT

x + hα,xγ
T
α 0

0 bT
z + hα,zγ

T
α bT

y + hα,yγ
T
α

bT
z + hα,zγ

T
α 0 bT

x + hα,xγ
T
α

















(4)

For a set of nint integration points (I = 1, . . . , nint), with coordinates ξI = ηI = 0, ζ �= 0,
the derivatives hα,i (α = 3, 4; i = 1, 2, 3) vanish, so that (4) reduces to a matrix B12 where
the sum on the repeated index α only goes from 1 to 2, leading to six hourglass modes in
the element stiffness matrix Ke:

Ke =

∫

Ωe

BT ·C ·BdΩ =

nint
∑

I=1

ω(ζI)J(ζI)B
T (ζI) ·C ·B(ζI) (5)

where ω(ζI) are Gauss’ weights, J(ζI) is the geometry Jacobian, and C the matrix of
elastic moduli.
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The stabilization of the hourglass modes is obtained assuming a modified compatibility
operator B̄:

B̄ = B12 +B34 (6)

whereB34 is a stabilization term, computed in a co-rotational system, having the following
expression [9]:

B34 =





























4
∑

α=3
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T
α 0 0
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4
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T
α 0
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0 0 0
0 0 0
0 0 h4,xγ

T
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(7)

The elastic stiffness matrix is then given by the sum of the following contributions:

K12 =

∫

Ωe

BT
12 ·C ·B12dΩ =

nint
∑

I=1

ω(ζI)J(ζI)B
T
12(ζI) ·C ·B12(ζI) (8)

KSTAB =

∫

Ωe

BT
12 ·C ·B34dΩ +

∫

Ωe

BT
34 ·C ·B12dΩ +

∫

Ωe

BT
34 ·C ·B34dΩ (9)

The stabilization terms are evaluated in a co-rotational system allowing to compute the
integrals analytically, in this way improving accuracy and saving computing time.

3.2 Enhanced Assumed Strain EAS

Solid-shell elements are well known to be affected by volumetric locking and by the so-
called Poisson thickness locking. Volumetric locking occurs when the material approaches
incompressibility. Poisson thickness locking reveals itself in out-of-plane bending, e.g.
about the η-axis (see Fig. 6). The analytical solution of the problem leads to a transverse
normal strain εζζ , which is constant within the shell plane but linear in the thickness
direction ζ, while the assumed displacement model leads to εζζ constant through the
thickness. To avoid Poisson thickness locking and volumetric locking, the strain terms
εξξ, εηη and εζζ must be modeled through the thickness by polynomials of the same order.
This can be achieved by enhancing the strain component εζζ in ζ direction by use of the
EAS concept, as proposed e.g. in [11] and [12]. The covariant strain enhancement is
expressed as

εenh = BenhWenh (10)

where
Benh = [0, 0, ζ, 0, 0, 0]T (11)
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and Wenh is the enhancement degree-of-freedom of the considered element, which enriches
εζζ linearly in ζ. The computationally inexpensive EAS approach avoids to make use of
the modified plane-stress elastic tensor, used to this purpose in [9], which requires the
definition of an additional material co-rotational reference frame.

Figure 6: Bending about η-axis.

Application of the enhanced SHB8PS element to the cantilever plate strip under a tip
load proposed in [13] (see Fig. 7) produces the results shown in Fig. 8.

(a) (b)

Figure 7: Cantilever plate strip: (a) geometry and load; (b) mesh.

Table 1: Plate strip parameters

L B T E
10 mm 1 mm 0.1 mm 107 N/mm2

The plate strip is characterized by the geometric and material parameters reported in
Table 1. The small-displacements out-of-plane bending behavior in the near incompress-
ible limit is studied. The mesh consists of 16 regular elements while a total tip force of
40 N is applied in 10 time steps. Poisson’s ratio is varied between ν = 0 and ν = 0.499,
and load vs. displacement diagrams are shown in Figs. 8. It can be noted that while
the SHB8PS element without any correction of the behavior in the thickness direction is

8
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Figure 8: Cantilever plate strip under tip load: (a) SHB8PS element without EAS en-
hancement; (b) with EAS enhancement.

sensitive to Poisson’s ratio variations (Fig. 8a), complete insensitivity of the response is
shown by its enhanced version (Fig. 8b). A similar insensitivity is also obtained using the
modified plane-stress elastic tensor as proposed in [9], though at the cost of computing a
new co-rotational frame at each increment.

3.3 Element modification for explicit dynamics

For application to problems of the type considered in section 2, with contact and crack
propagation, explicit dynamics approaches are usually preferred. However, the incorpo-
ration of solid-shell elements into an explicit code leads to very small time increments
due to the element small thickness compared to the in-plane dimensions. Time-step sizes
of the same order of magnitude of those required by normal shell elements, such as the
MITC4 used in section 2, can be obtained by means of a variable transformation, where
new translational and rotational degrees of freedom in the element middle plane are in-
troduced according to the following definition:

ui =
ua + ub

2
i = 1, . . . , 4 a = 1, 2, 3, 4 b = 5, 6, 7, 8 (12)

φi =
ub − ua

2
i = 1, . . . , 4 a = 1, 2, 3, 4 b = 5, 6, 7, 8 (13)

(14)

where a = 1, 2, 3, 4 and b = 5, 6, 7, 8 indicate nodes belonging to the lower and upper
element faces, respectively, as depicted in Fig. 5. In this way it is possible to introduce
a selective scaling of masses corresponding to the φi degrees of freedom, as is usually
done in shell elements [14]. The effectiveness of this provision is studied by simulating
the cantilever beam described in Fig. 9, impulsively loaded by a uniformly distributed
transverse load. The beam has length L = 10 mm, a rectangular cross section of width

9
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(a) (b)

Figure 9: Impulsively loaded cantilever beam: (a) Finite element undeformed/deformed
mesh and (b) applied load.

B = 2.5 mm and thickness T = 0.0074 mm, Young modulus E = 1768 MPa, Poisson
ratio ν = 0.3, density ρ = 3 · 10−9 T/mm3. The problem has been analyzed using three
different types of elements: MITC4, SHB8PS and improved SHB8PS. The stable time
increments obtained in the three cases according to Gerschgorin’s theorem are reported
in Table 2. It can be seen that the SHB8PS with transformed degrees of freedom leads to
a stable time step of the same order of the MITC4, two orders of magnitude smaller than
the standard SHB8PS. The displacement evolution of the beam tip, obtained by MITC4
and improved SHB8PS elements, is shown in Fig. 10. An almost complete agreement
between the two analyses can be observed.

Table 2: Stable time increments

Element type Time increment
MITC4 5.17 · 10−7 s
SHB8PS 7.26 · 10−9 s

Improved SHB8PS 5.95 · 10−7 s

4 CONCLUSIONS

The development of an effective numerical tool for the simulation of the cutting process
of thin membranes has been discussed. It has been shown how the cutting of a rubber pre-
tensioned membrane can be accurately simulated by using “directional” cohesive elements
in conjunction with standard shell elements. In a more general case, inelastic dissipation
due to plasticity and delamination takes place in the cutting region of thin laminates. The
description of these nonlinear phenomena is more conveniently achieved by using solid-
shell elements. Reference has been made to the SHB8PS element [9], recently proposed

10
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Figure 10: Impulsively loaded cantilever beam: tip displacements evolution obtained by
MITC4 and SHB8PS elements.

in the literature. Two modifications of the element have been proposed to improve its
performance: the adoption of an enhanced strain approach in the thickness direction, to
avoid volume locking and Poisson’s thickness locking, and a linear variable transformation,
to allow for mass scaling and consequent increase of the time-step size in explicit dynamics.
The application of this modified solid-shell element to cutting problems is currently in
progress.
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Abstract. To simulate numerically a failure process, a new kind of model which combines
the two traditional approaches (damage and fracture mechanics) has been proposed in the
literature. The basic idea of these hybrid strategies is to employ regularised continuous
models to describe the first stages of failure and discontinuous models to deal with the
possible development of cracks.

Here, a new combined approach is presented. In order to describe damage inception
and its diffuse propagation, an implicit gradient-enhanced continuum model based on
smoothed displacements is used, where two different displacement fields coexist: (a) the
standard displacements uuu and (b) the gradient-enriched displacement field ũ̃ũu, which is the
solution of a partial differential equation with uuu as the source term. Once the damage pa-
rameter exceeds a critical value, the continuous model is coupled to a discontinuous one.
The eXtended Finite Element Method (X-FEM) is used to describe the growing cracks,
whose direction of propagation is prescribed by the steepest descent direction of the dam-
age profile and whose cohesive law is defined according to an energy balance. Therefore,
the energy not yet dissipated by the continuous bulk is transmitted to the cohesive inter-
face thus ensuring that the energy dissipated by the structure remains constant through
the transition.

1 INTRODUCTION

To simulate numerically failure of quasi-brittle materials, two different kinds of ap-
proaches have usually been employed: (a) damage mechanics, which belongs to the family
of continuous models and (b) fracture mechanics, which belongs to discontinuous models.
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On the one hand, if damage mechanics analyses are carried out, the first stages of a
failure process can be described. But these continuous models, which are characterised by
a strain softening phenomenon, do not correctly reflect the energy dissipated in the frac-
ture process zone [1]. Numerically, if stress-strain laws with softening are used, physically
unrealistic results are obtained. To overcome this limitation, regularisation techniques
may be employed to introduce non-locality into the model, either by integral-type [2, 3]
or gradient-type [4, 5] approaches. However, if continuum models are used to describe
the final stage of failure, numerical interaction between the physically separated parts of
the body remains thus obtaining unrealistic results.

On the other hand, by means of fracture mechanics analyses, the last stages of failure
may be described. These discontinuous models, which are based on the cohesive zone
concept [6], can deal with evolving cracks and material separation but do not allow to
describe neither damage inception nor its diffuse propagation [7].

In order to achieve a better description of the entire failure process, a new kind of
model which combines these two traditional strategies has emerged [8–12]. The basic
idea of these hybrid strategies is to use damage mechanics in order to characterise strain
localisation and the accumulation of damage and fracture mechanics in order to deal with
the possible formation of evolving macrocracks.

In this work, a new contribution in this direction is presented, see Figure 1. A gradient-
enhanced damage model based on smoothed displacements [13] is used for the continuum.
When the damage parameter exceeds a critical threshold Dcrit, this regularised continuum
model is coupled to a discontinuous one: a propagating crack, which is modelled by means
of the X-FEM [14, 15], replaces the damaged zone and avoids formation of spurious dam-
age growth. The discontinuity is completely characterised by the regularised continuum.
On the one hand, the crack evolves according to the direction dictated by the steepest
descent direction of the already formed damage profile. On the other hand, its cohesive
law is defined by means of an energy balance in such a way that the energy which would
be dissipated by the continuum is transferred to the crack.

An outline of this paper follows. The new continuous-discontinuous methodology is
formulated in Section 2. In Section 3, the energy criterion used to define the cohesive
crack is presented. To validate the proposed methodology, a three-point bending test is
carried out in Section 4. In order to restrict attention to the proposed energy balance, a
local continuum bulk is considered in Section 4.1. In Section 4.2, the same benchmark
test is carried out with a non-local continuum bulk. The concluding remarks of Section 5
close this paper.

2 MODEL FORMULATION

2.1 Discontinuous displacements

Consider the domain Ω bounded by Γ = Γu ∪Γt ∪Γd, as shown in Figure 2. Prescribed
displacements are imposed on Γu, prescribed tractions are imposed on Γt and the boundary

2



468

Elena Tamayo-Mas, Antonio Rodŕıguez-Ferran

Figure 1: Proposed continuous-discontinuous strategy.

Γd consists of the boundary of the crack.

Figure 2: Notations for a body with a crack subjected to loads and imposed displacements.

By means of the X-FEM, the displacement field uuu can be decomposed as

uuu (xxx) = uuu1 (xxx) + H (xxx)uuu2 (xxx) in Ω̄ = Ω ∪ Γ (1)

where uuui (xxx) (i = 1, 2) are continuous fields and

H (xxx) =

{
1 if xxx ∈ Ω̄+

−1 if xxx ∈ Ω̄− (2)

is the Heaviside function centred at Γd. The continuous part uuu1 (xxx) corresponds to the
displacement field without any crack, while is the discontinuous displacement H (xxx)uuu2 (xxx)
the additional field that models the crack.
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A similar decomposition holds for the smoothed displacements �u�u�u
�u�u�u (xxx) = �u�u�u1 (xxx) + H (xxx)�u�u�u2 (xxx) (3)

where �u�u�ui (xxx) (i = 1, 2) are continuous fields.

2.2 Governing equations

The strong form of the equilibrium equation and boundary conditions for the body Ω̄
without body forces is given by

∇ · σσσ = 000 in Ω (4a)

σσσ · nnn = t̄tt on Γt (4b)

σσσ ·mmm = t̄ttd on Γd (4c)

uuu = uuu∗ on Γu (4d)

where σσσ is the Cauchy stress tensor, uuu∗ is a prescribed displacement, t̄tt is the load on the
boundary and t̄ttd is the load on the discontinuity surface. Note that nnn is the outward unit
normal to the body and mmm is the inward unit normal to Ω+ on Γd, see Figure 2.

For convenience, and to complete the strong form of the mechanical problem, only an
isotropic damage model

σσσ (xxx) = [1 − D (xxx)]CCC : εεε (xxx) (5)

is considered, where εεε (xxx) = ∇suuu (xxx) is the small strain tensor, CCC is the fourth-order
tensor of elastic moduli and D is the isotropic damage parameter (0 ≤ D ≤ 1 and
Ḋ ≥ 0). Nevertheless, the gradient formulation based on smoothed displacements may
be extended to other models such as plasticity [16].

In order to regularise the problem, the second-order diffusion partial differential equa-
tion

�u�u�u − �2∇2�u�u�u (xxx) = uuu (xxx) in Ω \ Γd (6)

is coupled with the mechanical equations. Both for the standard and the enhanced dis-
placement fields, combined boundary conditions

�u�u�ui · nnn = uuui · nnn
∇ (�u�u�ui · ttt) · nnn = ∇ (uuui · ttt) · nnn

}
on Γ

�u�u�ui ·mmm = uuui ·mmm
∇ (�u�u�ui · ttt) ·mmm = ∇ (uuui · ttt) ·mmm

}
on Γd (7)

where i = 1, 2, are proposed: Dirichlet boundary conditions are prescribed for the nor-
mal component of the displacement field whereas non-homogeneous Neumann boundary
conditions are imposed for the tangential one. These combined conditions satisfy the nec-
essary properties for regularisation: (a) reproducibility of order 1 (uuu = �u�u�u if uuu is a linear
field), (b) displacement smoothing along the boundary and (c) volume preservation [17].
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2.3 Variational formulation

The space of trial standard displacements is characterised by the function defined in
Eq. (1), where

uuu1,uuu2 ∈ Uuuu =
{
uuu | uuu ∈ H1(Ω) and uuu |Γu = uuu∗} (8)

with H1(Ω) a Sobolev space. Analogously, the space of admissible displacement variations
is defined by the weight function ωωω (xxx) = ωωω1 (xxx) + H(xxx)ωωω2 (xxx) with

ωωω1,ωωω2 ∈ Wuuu,0 =
{
ωωω | ωωω ∈ H1(Ω) and ωωω|Γu = 000

}
(9)

Following standard procedures, the equilibrium equation (4a) can be cast in a varia-
tional form, thus leading to

∫
Ω
∇sωωω1 : σσσ dΩ =

∫
Γt

ωωω1 · t̄tt dΓ ∀ωωω1 ∈ H1(Ω) (10a)

∫
Ω
H∇sωωω2 : σσσ dΩ + 2

∫
Γd

ωωω2 · t̄ttd dΓ =
∫

Γt
Hωωω2 · t̄tt dΓ ∀ωωω2 ∈ H1(Ω) (10b)

where at the discontinuity Γd,

˙̄tttd = f (�u̇uu�) (11)

with f relating traction rate ˙̄tttd and displacement jump rate �u̇uu�.
Similarly to the equilibrium equation, the regularisation PDE (6) is also cast in a weak

form. Characterising the space of trial smoothed displacements �u�u�u by the function defined
in Eq. (3), with uuu1,uuu2 ∈ Uuuu, one obtains
∫

Ω

ωωω1 · (�u�u�u1 + H�u�u�u2) dΩ + �2
∫

Ω

∇ωωω1 :
(
∇�u�u�u1 + H∇�u�u�u2

)
dΩ + 2�2

∫

Γd

ω1
t

(
∇

(
uuu2 · ttt

)
·mmm

)
dΓ =

=

∫

Ω

ωωω1 · (uuu1 + Huuu2) dΩ + �2
∫

Γ\Γd

ω1
t

(
∇

(
uuu1 · ttt

)
·nnn + H∇

(
uuu2 · ttt

)
·nnn

)
dΓ (12a)

∫

Ω

ωωω2 · (H�u�u�u1 + �u�u�u2) dΩ + �2
∫

Ω

∇ωωω2 :
(
H∇�u�u�u1 + ∇�u�u�u2

)
dΩ + 2�2

∫

Γd

ω2
t

(
∇

(
uuu1 · ttt

)
·mmm

)
dΓ =

=

∫

Ω

ωωω2 · (Huuu1 + uuu2) dΩ + �2
∫

Γ\Γd

ω2
t

(
H∇

(
uuu1 · ttt

)
·nnn + ∇

(
uuu2 · ttt

)
·nnn

)
dΓ (12b)

∀ωωω1,ωωω2 ∈ Wuuu,000, where ttt is the unit tangent to the boundary.

2.4 Finite element discretisation

In combined strategies, the transition between the continuous and the discontinuous
approach takes place when a critical situation is achieved. In a damaging continuum
approach, for example, this critical situation occurs when the damage parameter at one
integration point exceeds a critical damage value set a priori. Employing an extended
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∇
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∇
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∇
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integration point exceeds a critical damage value set a priori. Employing an extended
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finite element strategy to prevent remeshing and other kinds of techniques, Eq. (1) and
(3) read, in the domain of an element with enhanced nodes,

u(xxx) = N(xxx)u1 + H(xxx)N(xxx)u2 (13a)

�u(xxx) = N(xxx)�u1 + H(xxx)N(xxx)�u2 (13b)

where N is the matrix of standard finite element shape functions, u1, �u1 are the basic
nodal degrees of freedom and u2, �u2 are the enhanced ones. The discrete format of the
problem fields leads to the four discrete weak governing equations

∫

Ω

BTσσσ dΩ =

∫

Γt

NT t̄tt dΓ (14a)

∫

Ω

HBTσσσ dΩ + 2

∫

Γd

NT t̄ttd dΓ =

∫

Γt

HNT t̄tt dΓ (14b)

(M + �2D)�u1 + (MH + �2DH)�u2 = (M + �2CCCΓ\Γd,nnn)u1 + (MH + �2(CCC
Γ\Γd,nnn
H − 2CCCΓd,mmm))u2 (14c)

(MH + �2DH)�u1 + (M + �2D)�u2 = (MH + �2(CCC
Γ\Γd,nnn
H − 2CCCΓd,mmm))u1 + (M + �2CCCΓ\Γd,nnn)u2 (14d)

where B is the matrix of shape function derivatives and

M =

∫

Ω
NTNdΩ D =

∫

Ω
∇NT∇NdΩ (15a)

MH =

∫

Ω
HNTNdΩ DH =

∫

Ω
H∇NT∇N dΩ (15b)

CCCΓ,nnn =

∫

Γ
NT ttttttT

[
∂N
∂x

nx +
∂N
∂y

ny

]
dΓ CCCΓ,nnn

H =

∫

Γ
HNT ttttttT

[
∂N
∂x

nx +
∂N
∂y

ny

]
dΓ (15c)

Some remarks about the discretisation:

- Eq. (14a) is the standard non-linear system of equilibrium equations, while Eq.
(14b) deals with the contribution of the crack, which is multiplied by a factor of two
due to the chosen definition of the Heaviside function, see Eq. (2).

- Matrices M and D are the constant mass and diffusivity matrices already obtained
in [13]. The enriched matrices MH and DH are also constant, once the finite element
is cracked.

- Matrices CCCΓ\Γd,nnn, CCC
Γ\Γd,nnn
H and CCCΓd,mmm contain contributions from the combined bound-

ary conditions (7). Since Dirichlet boundary conditions are prescribed for the nor-
mal component of the displacement field on Γ, the normal component of the weight
function ωωω vanishes on the boundary thus leading to∫

Γ

ωωω∇�u�u�u · nnn dΓ =

∫

Γ

ωt∇ (�u�u�u · ttt) · nnn dΓ =

∫

Γ

ωt∇ (uuu · ttt) · nnn dΓ (16a)

Again, CCCΓd,mmm is multiplied by a factor of two because of the Heaviside function.

- The symmetry of the resulting discretisation is due to the property HH = +1,
which is derived from Eq. (2).
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3 ENERGETICALLY EQUIVALENT CRACKS

In the proposed strategy, the transition between the continuous and the combined
approach takes place when a critical situation is achieved, whose definition depends on
the underlying continuous model. If a damage model is considered, the transition takes
place when the damage value exceeds a critical threshold Dcrit. Once this critical value
is reached, a crack described by a cohesive law is initiated, damage value is fixed to Dcrit

and the bulk material unloads.
We propose to characterise the evolving crack by the regularised bulk. On the one hand,

the direction of propagation must be determined. Although in a regularised continuous
model, the crack growth cannot be analytically derived, the background can be used to
deduce it. Here, the discontinuity is extended according to the steepest descent direction
of the damage profile, thus avoiding the use of special tracking techniques. On the other
hand, the cohesive law must be defined. The strategy here used is based on the idea that
the energy which would be dissipated by a continuum approach is conserved if a combined
strategy is used, see [8, 9].

Consider first the continuous approach and a damaged band λD. Then, in this zone of
the structure, the dissipated energy can be expressed as

ΨC =

∫

λD

ψC dΩ =

∫

λD

∫ tf

0

σσσC · ε̇εεC dt dΩ (17)

where the subscript C stands for Continuous strategy and ε̇εεC is the tensor of the strain
rate.

Consider now the combined approach. In λD, the dissipated energy can be decomposed
into two contributions

ΨCD = Ψbulk
CD + Ψcrack

CD =

∫

λD

∫ tf

0

σσσCD · ε̇εεCD dt dΩ + Ψcrack
CD (18)

where the subscript CD stands for Continuous-Discontinuous strategy, Ψbulk
CD is the dissi-

pated energy of the bulk and Ψcrack
CD is the fracture energy.

Hence, imposing energy balance

ΨC = ΨCD (19)

see Figure 3, the fracture energy

Ψcrack
CD = ΨC − Ψbulk

CD (20)

is computed and can be transferred to the crack at the moment of the transition.
In order to estimate the fracture energy, different techniques can be employed. In [9], an

analytical estimation of Ψcrack
CD , and thus, of the crack stiffness, is computed. Nevertheless,

with this procedure, the fracture energy is overestimated. Indeed, by means of these
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3 ENERGETICALLY EQUIVALENT CRACKS
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of the damage profile, thus avoiding the use of special tracking techniques. On the other
hand, the cohesive law must be defined. The strategy here used is based on the idea that
the energy which would be dissipated by a continuum approach is conserved if a combined
strategy is used, see [8, 9].

Consider first the continuous approach and a damaged band λD. Then, in this zone of
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Figure 3: Energy balance.

(a) (b)

Figure 4: Energy not yet dissipated in the damage band which is transmitted to the cohesive crack and
is dissipated by the continuous-discontinuous model, considering that by the continuous strategy, (a) all
the points of λD download following the softening branch and (b) points of λD download following both
softening and elastic branches.

assumptions, in all points across the damage band λD, the energy ΨC −Ψbulk
CD depicted in

Figure 4(a) is transferred to the crack. However, in some of these points, the continuous
strategy would dissipate less energy, see Figure 4(b).

As suggested by this discussion, we propose to employ a new methodology which takes
into account, for each point across the damage band λD, the unloading behaviour (both
softening and secant) of the continuous bulk. Since the continuous unloading branch is
only known up to the activation of the continuous-discontinuous strategy, we propose
to approximate it by the tangent to the transition point. By means of this strategy,
the dissipated energy Ψcrack

CD is more accurately estimated, although it cannot be exactly
computed. Again, as in [9], the accuracy of this strategy increases considerably if the
crack is activated at a later stage of the failure process.

4 APPLICATION TO A THREE-POINT BENDING TEST

The new methodology is illustrated on a three-point bending test. In order to cause lo-
calisation, a weakened region is considered, see Figure 5. The test is carried out according
to a simplified Mazars criterion and the trilinear softening law

D =




0 if 0 ≤ Y ≤ Y0
Yf

Yf−Y0

(
1 − Y0

Y

)
if Y0 ≤ Y ≤ Yf

1 if Yf ≤ Y

(21)
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Based on this damage evolution, the linear traction-separation law

t̄ttd =

{
t̄n
t̄s

}
= T

{
�uuu�n

�uuu�s

}
+

{
tcrit
0

}
=

(
Tn 0
0 0

){
�uuu�n

�uuu�s

}
+

{
tcrit
0

}
(22)

is prescribed, where imposing Ψcrack
CD =

∫ ∞
0

tn d�uuu�n, Tn = −1
2

t2
crit

Ψcrack

CD
.

Figure 5: Three-point bending test: problem statement.

The geometric and material parameters for this test are summarised in Table 1.

Table 1: Three-point bending test: geometric and material parameters.

Meaning Symbol Value

Length of the specimen L 3 mm
Width of the specimen h 1 mm

Young’s modulus E 30 000 MPa
Idem of weaker part EW 27 000 MPa
Damage threshold Y0 10−4

Final strain Yf 1.25 × 10−2

Poisson’s coefficient ν 0.0
Critical damage Dcrit 0.995

4.1 Local bulk

First, and in order to focus on the proposed energy balance, a local continuum damage
model is considered. The force-displacement curves and the damage profiles with the
deformed meshes are shown in Figure 6. For comparison purposes, three kinds of results
are shown. On the one hand, the continuous (C) results are plotted. On the other hand,
two different continuous-discontinuous (CD) results are shown: the ones obtained with
(a) the analytical estimation of the dissipated energy and (b) the proposed methodology,
which does not overestimate the fracture energy. As seen, it increases the accuracy when
estimating Ψcrack

CD .
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Poisson’s coefficient ν 0.0
Critical damage Dcrit 0.995

4.1 Local bulk

First, and in order to focus on the proposed energy balance, a local continuum damage
model is considered. The force-displacement curves and the damage profiles with the
deformed meshes are shown in Figure 6. For comparison purposes, three kinds of results
are shown. On the one hand, the continuous (C) results are plotted. On the other hand,
two different continuous-discontinuous (CD) results are shown: the ones obtained with
(a) the analytical estimation of the dissipated energy and (b) the proposed methodology,
which does not overestimate the fracture energy. As seen, it increases the accuracy when
estimating Ψcrack

CD .
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(a) (b)

(c) (d)

Figure 6: Three-point bending test with a local damage bulk: (a) force-displacement curves; final dam-
age profiles with deformed meshes (×50) obtained with (b) the C strategy, (c) the CD strategy which
overestimates the fracture energy and (d) the CD strategy based on the new proposed methodology.

4.2 Non-local bulk

As a second test, the same benchmark example is carried out with a non-local damage
bulk. Results are shown in Figure 7. Again, three kinds of results are shown. As seen,
the proposed methodology allows to estimate properly Ψcrack

CD making the continuous and
the continuous-discontinuous strategies energetically equivalent.

5 CONCLUSIONS

A new strategy to simulate an entire failure process is proposed: a gradient-enriched
formulation based on smoothed displacements is enhanced with a discontinuous interpo-
lation of the problem fields in order to describe its final stages, where macroscopic cracks
can arise.
The main features of this new combined strategy are summarised here:

• The gradient-enhanced approach with smoothed displacements is able to obtain
physically realistic results. Combined boundary conditions must be imposed on the
boundary to solve the regularisation PDE.

• At the end of each time step, the strategy checks if the critical situation is achieved.
If the transition criterion is satisfied, a discrete crack whose properties depend on
the underlying continuous, is introduced.

– This evolving crack propagates across the bulk according to the direction de-
termined by the already damage profile.

10
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(a) (b)

(c) (d)

Figure 7: Three-point bending test with a non-local damage bulk: (a) force-displacement curves; final
damage profiles with deformed meshes (×50) obtained with (b) the C strategy, (c) the CD strategy which
overestimates the fracture energy and (d) the CD strategy based on the new proposed methodology.

– The cohesive law is defined through an energy balance: the energy remaining to
be dissipated by the continuum approach is transmitted to the cohesive zone.

• Once the crack is introduced, both standard displacements uuu and gradient-enhanced
displacement field ũ̃ũu may admit discontinuities.
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(a) (b)

(c) (d)

Figure 7: Three-point bending test with a non-local damage bulk: (a) force-displacement curves; final
damage profiles with deformed meshes (×50) obtained with (b) the C strategy, (c) the CD strategy which
overestimates the fracture energy and (d) the CD strategy based on the new proposed methodology.

– The cohesive law is defined through an energy balance: the energy remaining to
be dissipated by the continuum approach is transmitted to the cohesive zone.

• Once the crack is introduced, both standard displacements uuu and gradient-enhanced
displacement field ũ̃ũu may admit discontinuities.
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Abstract. In phase field models for fracture a continuous scalar field variable is used to
indicate cracks, i.e. the value 1 of the phase field variable is assigned to sound material,
while the value 0 indicates fully broken material. The width of the transition zone where
the phase field parameter changes between 1 and 0 is controlled by a regularization pa-
rameter. As a finite element discretization of the model needs to be fine enough to resolve
the crack field and its gradient, the numerical results are sensitive to the choice of the reg-
ularization parameter in conjunction with the mesh size. This is the main challenge and
the computational limit of the finite element implementation of phase field fracture mod-
els. To overcome this limitation a finite element technique using special shape functions is
introduced. These special shape functions take into account the exponential character of
the crack field as well as its dependence on the regularization length. Numerical examples
show that the exponential shape functions allow a coarser discretization than standard
linear shape functions without compromise on the accuracy of the results. This is due to
the fact, that using exponential shape functions, the approximation of the surface energy
of the phase field cracks is impressively precise, even if the regularization length is rather
small compared to the mesh size. Thus, these shape functions provide an alternative to
a numerically expensive mesh refinement.

1 INTRODUCTION

Variational formulations of brittle fracture as suggested by Francfort and Marigo [1]
overcome some of the limitations of classical Griffith theory. However, a direct discretiza-
tion of such fracture models is faced with significant technical difficulties. A regular-
ized approximation by means of Γ-convergence as presented by Bourdin [2] offers a new
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perspective towards the computational implementation of the model. The core of the
regularization is the approximation of the total energy functional, in which a continuous
scalar field variable is introduced to indicate cracks, i.e. the value of 1 is assigned to
sound material and a value of 0 indicates fracture. With this crack field the regularized
model resembles a phase field model for fracture, where additionally a Ginzburg–Landau
type equation is used to describe the evolution of the crack field and cracking is addressed
as a phase transition problem. Similar phase field fracture models have been introduced
e.g. in [3, 4, 5, 6, 7, 8]. Differing in technical details all of these models introduce a
regularization length which controls the width of the transition zone where the crack field
interpolates between broken and unbroken material; i.e. the smaller the regularization
parameter, the smaller the transition zone and the higher the gradients of the crack field
in the vicinity of the cracks.

Numerical implementations are faced with the difficulty that the spacial discretization
has to be fine enough to resolve these high gradients of the crack field, which leads to
high computational costs for small values of the regularization parameter. On the other
hand the regularization length needs to be chosen sufficiently small in conjunction with
the global geometric dimension of the sample in order to get reasonable results. The most
common approach to meet the requirement for a sufficiently fine resolution on the one
hand and to keep the computation time within bounds on the other hand are adaptive
mesh refinement techniques as used e.g. in [9], where the mesh is only refined where it is
necessary, i.e. in the vicinity of a crack. Another approach to increase the efficiency of
the computations was introduced in [5], where Fourier transforms are used to solve the
linear part of the problem. However, this technique restricts the simulations to problems
with periodic boundary conditions.

In this work we follow a different approach which is inspired by [10], where exponential
finite element (FE) shape functions are introduced as an alternative to an extensive mesh
refinement in the simulation of extrusion processes. These special shape functions qualita-
tively capture the shape of the solution and thus allow a much coarser discretization than
the standard discretization using linear shape functions. In contrast to the simulation
of the extrusion process, where the exponential shape functions are used in one distinct
direction only, the discretization of the crack field in a two dimensional setting requires
an extension of the concept to the full 2d case.

2 A PHASE FIELD MODEL FOR FRACTURE

2.1 Governing Equations

The present phase field model of fracture is based on a regularized version of the
variational formulation of brittle fracture by [1] which was introduced in [11]. The core
of the regularization is the approximation of the total energy of a cracked linear elastic

2
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body Ω, with the stiffness tensor C and the cracking resistance Gc, by the functional

E(ε, s) =

∫

Ω

ψ(ε, s) dV =

∫

Ω

1

2
(s2 + η)ε · (Cε)

︸ ︷︷ ︸

=ψe(ε,s)

+Gc

(
1

4ǫ
(1− s)2 + ǫ|∇s|2

)

︸ ︷︷ ︸

=ψs(s)

dV . (1)

This energy as well as the energy density ψ are functions of the linearized strain tensor
ε = 1

2
(∇u+ (∇u)T ), i.e. the symmetric part of the gradient of the displacements u and

the continuous scalar crack field s, which takes the value 1, if the material is undamaged,
and 0 if there is a crack. The degradation of the elastic energy in the bulk Ee =

∫

Ω
ψe dV

upon cracking is modeled by the factor (s2 + η), where the small positive parameter η is
introduced to obtain an artificial rest stiffness ηC at fully broken state (s = 0) in order
to circumvent numerical difficulties. The parameter ǫ, appearing twice in the surface en-
ergy Es =

∫

Ω
ψs dV , has the dimension of length and controls the width of the transition

zone between broken and unbroken material, where s interpolates between 0 and 1.

If body forces and inertia terms are neglected, the mechanical part of the problem is
described by the local balance law for the Cauchy stress tensor σ

divσ = 0 , (2)

plus the according boundary conditions σn = t∗n on ∂Ωt, where n is the outer normal
vector, and the material law (3) derived from the energy density ψ

σ =
∂ψ

∂ε
= (s2 + η)Cε . (3)

Interpreting s as order parameter of a phase field model, its evolution in time is assumed
to follow a Ginzburg–Landau type evolution equation, where ṡ is proportional to the
variational derivative of the energy density ψ with respect to s.

ṡ = −M ·
δψ

δs
= −M

[

sε · (Cε)− Gc

(

2ǫ∆s +
1− s

2ǫ

)]

(4)

The mobility factorM is a positive constant, which controls the dissipation in the process
zone. For sufficiently large values of M the solution of the evolution equation can be
considered as stationary. In order to take into consideration the irreversible character of
cracking, s(x, t) is fixed to 0 for all future times t > t∗ if it becomes 0 at any time t∗.

2.2 Evolution Equation in 1d

In a 1d setting, the evolution equation for a stationary (ṡ = 0) crack field reduces to

s′′ −
s

4ǫ2
= −

1

4ǫ2
, (5)
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Figure 1: 1d stationary crack field

if elastic contributions are neglected. With boundary conditions s(0) = 0 and s′(±∞) = 0
the analytic solution of Eq. (5) is given by

s(x) = 1− exp

(

−
|x|

2ǫ

)

(6)

Figure 1 illustrates the impact of the regularization length ǫ on the crack field s(x).
The smaller ǫ gets, the higher gradients and curvatures of the solution s(x) appear in the
vicinity of the crack at x = 0. The limit ǫ→ 0 yields a discontinuous function, which is 0
at x = 0 and 1 elsewhere.

3 NUMERICAL IMPLEMENTATION

3.1 Weak Forms

Starting point for the FE implementation of the coupled problem of mechanical balance
equation (2) and evolution equation (4) are the weak forms of these field equations. With
virtual displacements δu and δs, they read

∫

Ω

∇δu · σ dV =

∫

∂Ωt

δu · t∗n dA (7)

with prescribed surface traction t∗n on part ∂Ωt of the boundary and

∫

Ω

[

δs
ṡ

M
−∇δs · q + δs

(

sε : [Cε] +
Gc
2ǫ

(s− 1)

)]

dV = 0 (8)

with q = −2Gc ǫ∇s. The normal flux q · n is assumed to vanish on the boundary ∂Ω.

3.2 Finite Element Discretization

In a 2d setting the weak forms of the field equations (7) and (8) are discretized with 4
node quadrilateral elements with 3 degrees of freedom (ux, uy, s) per node. The displace-
ments u, the crack field s, as well as their virtual counterparts δu and δs are approximated
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by shape functions Nu

I , N
s
I , N

δu
I , and N δs

I , which interpolate the respective nodal val-
ues ûI , ŝI , δûI , and δŝI . Using Voigt–notation - denoted by an underline in the following -
the approximations read

u =

N∑

I=1

Nu

I ûI , s =

N∑

I=1

N s
I ŝI , δu =

N∑

I=1

N δu
I δûI , and δs =

N∑

I=1

N δs
I δŝI . (9)

Accordingly the approximations of the gradient expressions yield

ε =
N∑

I=1

[Bu

I ]ûI , ∇s =
N∑

I=1

[Bs
I ]ŝI , δε =

N∑

I=1

[Bδu
I ]δûI , and ∇δs =

N∑

I=1

[Bδs
I ]δŝI , (10)

where the derivative matrices

[Bu

I ] =





Nu

I,x 0
0 Nu

I,y

Nu

I,y Nu

I,x



 , [Bs
I ] =

[
N s
I,x

N s
I,y

]

, [Bδu
I ] =





N δu
I,x 0
0 N δu

I,y

N δu
I,y N δu

I,x



 , and [Bδs
I ] =

[
N δs
I,x

N δs
I,y

]

(11)

are obtained from the derivatives of the shape functions.

By a standard argument for finite element approximations the nodal values δûI and δŝI
of the virtual quantities δu and δs drop out of the system of equations, leading to the
nodal residuals

[RI ] =

[
Ru

I

Rs
I

]

=

∫

Ω





[Bδu
I ]Tσ

N δs
I

ṡ

M
− [Bδs

I ]
Tq +N δs

I

(

s εT· (C ε) +
Gc
2 ǫ

(s− 1)

)



 dV . (12)

The time integration of the transient terms is performed with the implicit Euler method.
Together with the nonlinear character of the phase field model this yields a nonlinear
system of equations, which has to be solved in every time step ∆t. This is done with
a Newton–Raphson algorithm, which requires the derivation of the consistent tangent
matrix

[
SIJ

]
which has the following structure:

[
SIJ

]
=

[
KIJ

]
+

1

∆t

[
DIJ

]
. (13)

The stiffness matrix
[
KIJ

]
and the damping matrix

[
DIJ

]
are obtained by derivation of

the nodal residuals
[
RI

]
with respect to the nodal values (ûJ , ŝJ) and (ˆ̇uJ , ˆ̇sJ), respec-

tively.

[
KIJ

]
=

∫

Ω





[Bδu
I ]T (s2 + η)C [Bu

J ] [Bδu
I ]T2sC εN s

J

N δs
I 2s(C ε)T [Bu

J ] 2Gc ǫ [B
δs
I ]

T [Bs
J ]+N

δs
I

(

εT·Cε+
Gc
2 ǫ

)

N s
J



dV (14)
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Figure 2: Node and edge numbering of the quadrilateral element in global (left) and natural coordinates
(right)

and
[
DIJ

]
=

∫

Ω

[
0 0

0
1

M
N δs
I N

s
J

]

dV . (15)

If the same shape functions are chosen for the approximation of actual values and the
virtual quantities, i.e. Nu

I = N δu
I and N s

I = N δs
I , the system matrix

[
SIJ

]
becomes sym-

metric. This is due to the fact, that the constitutive law (3) as well as the evolution
equation (4) are derived from a potential. Different shape functions however, render a
non-symmetric system matrix

[
SIJ

]
.

4 EXPONENTIAL SHAPE FUNCTIONS

The standard implementation with 4 node quadrilateral elements makes use of the
linear Lagrangian shape functions

N lin
I (ξ, η) =

1

4
(1 + ξIξ)(1 + ηIη), I = 1, ..., 4 (16)

with (ξI , ηI) according to Fig. 2 for all the shape functions Nu

I , N
δu
I , N s

I , and N
δs
I as well

as for the approximation of the geometry in the isoparametric concept

x =

N∑

I=1

N lin
I x̂I . (17)

In [12] it is shown that triangular elements with linear shape functions overestimate the
surface energy by a factor

f(h/ǫ) = 1 + h/4ǫ , (18)

where h is the edge length of the elements. As a sufficiently good approximation of the
surface energy is crucial in order to obtain reasonable results, this yields the necessity of a
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Figure 5: Solution of the 1d stationary evolution equation with n = 4 (left), n = 8 (middle) and n = 16
elements (right)
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Figure 6: Evaluation of the surface energy

in Fig. 5. While there is almost no visible error in the solutions with exponential shape
functions, the linear shape functions fail to adequately resolve the transition zone even
for the smallest tested element size h = L/16.

5.2 Surface Energy of an Edge Notched Sample

For the first numerical assessment of the 2d exponential shape functions, the station-
ary evolution equation is solved on the domain L× L under the constraint s(x, y) = 0
if (x, y) ∈ [0, L/2]× {0}. Again, the regularization length is set to ε = 0.01L, and no
mechanical loads are applied. A regular mesh with square elements is used for the dis-
cretization.

Figure 6 shows an evaluation of the surface energy Es associated with the computed
crack field. Regular meshes within the range of 2× 2 to 400× 400 elements were used
for the discretization. The results are compared to the error estimate (18) for the tri-
angular elements with linear shape functions (black dotted line). The reference solution
Es = 0.51017344300GcL was computed with standard linear shape functions and a non-
uniform mesh with square elements of edge length h = 7.1429 · 10−4L in the vicinity the
crack. The performance of the tested linear shape functions is slightly better than it is to
be expected from the error estimate. However, especially for discretizations with only few
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Figure 7: Simulation setup: contour plot of initial crack field (left) and finite element mesh (right)

elements both versions using the exponential shape functions perform significantly better.
A crucial point for the performance of the exponential shape functions is a sufficiently
precise computation of the integrals in the residuals (12), the stiffness matrix (14), and the
damping matrix (15). For standard linear 4 node elements, usually the Gauß quadrature
formula with 2 integration points per direction is used to compute the integrals. Yet,
the performance of the exponential shape functions can easily be improved by employing
a higher order quadrature method, e.g. a quadrature with 10× 10 Gauß points as was
used to obtain the results in the right plot of Fig. 6. Thus, a major part of the error
in the surface energy computed with exponential shape functions and 2× 2 Gauß points
(Fig. 6, middle) is due to the quadrature error.

5.3 Peel Off Test

In this simulation the performance of the exponential shape functions is tested under
mechanical loading, i.e. the whole set of coupled equations has to be solved..e. the whole
set of coupled equations has to be solved. The mixed formulation (lin/exp) yields an
unsymmetric system matrix, which is computationally more expensive. As the results
obtained by the pure exponential formulation in sections 5.1 and 5.2 are very similar,
the mixed formulation is dismissed in the following. The sample depicted in Fig. 7 is

loaded by a linear increasing displacement load u∗(t) =
√

GcL
2µ

· t. A dimensional analysis

shows that with this scaling of the displacements, the geometric length L and the cracking
resistance Gc can be factored out of the equations. If additionally the mobility M is chosen
large enough to assume quasi-static cracking, the solution of the coupled problem only
depends on the ratio of the Lamé constants λ/µ (here: λ = µ) and the regularization
parameter ε in conjunction with L (here: ε = 0.0005L). The discretization in x-direction
is done with 150 elements. A varying number of n elements plus one row of elements of
fixed height, to model the initial crack, discretize the structure in y-direction, see Fig. 7.
Gauß quadrature with 5× 5 integration points was used for the integration.

The two left plots in Fig. 8 show the evolution of the elastic energy with respect to
the load factor t for different values of n. The elastic energy increases with the loading
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Figure 8: Elastic energy and failure load

until rupture occurs and it drops to zero. Impressively, the simulation with only n = 2
elements in y-direction already gives a qualitatively good result, when the exponential
shape functions are employed. Using the standard linear shape functions, no rupture
is observed in the simulation with n = 2 elements up to a load factor of t = 3, which
is about twice the actual critical loading. Also the simulation with n = 16 elements still
overestimates the critical loading by far. Only the simulations with more elements produce
as accurate results as the simulations with the exponential shape functions. The right
plot of Fig. 8 compares the computed failure loads. The overestimation of the critical load
value of the linear shape functions stems from the overestimation of the surface energy
associated with the initial crack.

6 SUMMARY

The aim of this work was to provide an alternative to expensive mesh refinement in
finite element simulations of a phase field model for fracture in cases where the regular-
ization parameter is very small. To this end special shape functions, which capture the
analytical stationary solution of the 1d crack field, were derived and implemented into a
2d element of a finite element code. Through their dependence on the ratio of element size
and regularization parameter, the exponential shape functions are able to adjust to the
crack field for virtually arbitrarily small values of the regularization length. This allows
for computations with very small values of the regularization parameter, which would
require an extensive mesh refinement, when standard linear shape functions are used.
The effectiveness of the proposed technique has been demonstrated in numerical examples.
In all simulations the usage of the exponential shape functions resulted in a considerable
reduction of the level of refinement, yet their full potential only reveals itself if a suf-
ficiently precise quadrature method is employed for the computation of the occurring
integrals.

REFERENCES

[1] Francfort, G. A. and Marigo, J.-J. Revisiting brittle fracture as an energy minimiza-
tion problem. J. Mech. Phys. Solid. (1998) 46:1319–1342.

11



489

Charlotte Kuhn and Ralf Müller

[2] Bourdin, B., Francfort, G. A. and Marigo, J.-J. Numerical experiments in revisited
brittle fracture. J. Mech. Phys. Solid. (2000) 48:797–826.

[3] Aranson, I. S., Kalatsky, V. A. and Vinokur, V. M. Continuum field description of
crack propagation. Phys. Rev. Let. (2000) 85:118–121.

[4] Karma A., Kessler, D. A. and Levine, H. Phase-field model of mode iii dynamic
fracture. Phys. Rev. Let. (2001) 87:45501.

[5] Eastgate, L. O., Sethna, J. P., Rauscher, M., Cretegny, T., Chen, C.-S. and Myers,
C. R. Fracture in mode i using a conserved phase-field model. Phys. Rev. E (2002)
65:036117.

[6] Brener, E. A. and Spatschek, R. Fast crack propagation by surface diffusion. Phys.

Rev. E (2003) 67:016112.

[7] Spatschek, R., Hartmann, M., Brener, E., Müller-Krumbhaar, H. and Kassner, K.
Phase field modeling of fast crack propagation. Phys. Rev. Let. (2006) 96:015502.

[8] Miehe, C., Welschinger, F. and Hofacker, M. Thermodynamically consistent phase-
field models for fracture: Variational principles and multi-field fe implementations.
Int. J. Numer. Meth. Eng. (2010) 83:1273–1311.

[9] Welschinger, F., Hofacker, M. and Miehe, C. Configurational–force–based adaptive
fe solver for a phase field model of fracture. In PAMM (2010) 10:689–692.

[10] LaZghab, S., Aukrust, T. and Holthe, K. Adaptive exponential finite elements for
the shear boundary layer in the bearing channel during extrusion. Comput. Meth.

Appl. Mech. Eng. (2002) 191:1113–1128.

[11] Bourdin, B. Numerical implementation of the variational formulation of quasi-static
brittle fracture. Interfaces Free Bound. (2007) 9.

[12] Bourdin, B., Francfort, G. and Marigo, J.-J. The variational approach to fracture.
J. Elasticity (2008) 91:5–148.

[13] Amor, H., Marigo, J.-J. and Maurini, C. Regularized formulation of the variational
brittle fracture with unilateral contact: Numerical experiments. J. Mech. Phys. Solid.

(2009) 57:1209–1229.

[14] Kuhn, C. and Müller, R. A new finite element technique for a phase field model of
brittle fracture. J. Theor. Appl. Mech (2011) in press.

12



490

FINITE DEFORMATION DAMAGE MODELLING IN
CHALLENGING APPLICATIONS - FORMING LIMIT

DIAGRAMS AND LIFE TIME ANALYSIS FOR A ROCKET
THRUST CHAMBER

VIVIAN TINI∗, IVAYLO N. VLADIMIROV∗, YALIN KILICLAR∗ AND
STEFANIE REESE∗

∗RWTH Aachen University
Institute of Applied Mechanics

Mies-van-der-Rohe Str. 1, D-52074 Aachen, Germany
e-mail: stefanie.reese@rwth-aachen.de, www.ifam.rwth-aachen.de

Key words: Finite Deformation Damage, Forming Limit Diagram at Fracture, Lifetime
Analysis, Rocket Thrust Chamber

Abstract. This paper presents the coupling of a recently developed finite anisotropic
elastoplastic constitutive model with isotropic ductile damage. The feasibility of the
model for failure prediction purposes is presented in two challenging applications. The
first one concerns the prediction of forming limit diagrams at fracture (FLDF) by means
of finite element simulations of the so-called Nakajima stretching test. In the second
application, the model is utilized in a thermomechanical analysis of a rocket combustion
chamber segment. In both applications, the potential of the model for failure prediction
purposes is discussed.

1 INTRODUCTION

In some engineering applications, such as in forming processes of metal sheets, it is
common to have more than ten percent of plastic strain at failure. On applications
involving polymers, failure can occur at a very large value of strain, i.e. a few hundred
percent. In these cases, small strain damage formulations are no longer sufficient to
provide a reliable failure prediction. For this purpose, a continuum damage formulation
in the framework of finite deformations is necessary.

In this paper, the coupling of an anisotropic finite elastoplastic constitutive model
with isotropic damage will be introduced. The complete derivation of the anisotropic
elastoplastic model has been published recently [1]. The triple multiplicative split of the
deformation gradient is performed to incorporate nonlinear kinematic hardening according
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of finite element simulations of the so-called Nakajima stretching test. In the second
application, the model is utilized in a thermomechanical analysis of a rocket combustion
chamber segment. In both applications, the potential of the model for failure prediction
purposes is discussed.

1 INTRODUCTION

In some engineering applications, such as in forming processes of metal sheets, it is
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to the Armstrong-Frederick concept [2]. The most important steps of the derivation and
the extension of the model to include isotropic damage will be presented in Section 2.

The model is implemented as a user subroutine UMAT into the Abaqus finite element
analysis software. Upon successful numerical validations by means of a number of uniax-
ial, multiaxial, monotonic and cyclic loadings, the model is applied to challenging finite
element simulations which will be described in Section 3 and Section 4.

In Section 3 the application of the model to generate forming limit diagrams at fracture
(FLDF) will be discussed. The prediction of FLDF is especially important when forming
is limited by fracture rather than necking. In cases where the strain path approaches
equibiaxial stretching, ductile fracture due to void formation might be induced before the
onset of localized necking. In such situations it is essential to predict the occurence of
fracture. For this purpose, the simulation of the so-called Nakajima stretching test are
performed. The results are used to generate the forming limit diagrams at fracture.

The second application concerns failure which occurs at the cooling channel wall of a
rocket thrust chamber. The extreme thermomechanical loadings during the operation of
the rocket lead to the thinning and bulging of the cooling channel wall, which eventually
causes the so-called ”dog house” failure mode [3]. A transient heat transfer analysis is
performed to obtain the temperature history of the modelled chamber segment. After-
wards a series of static analyses is performed to obtain the stress-strain field as well as
the cyclic evolution of the damage. The computation results show the potential of the
model to predict the end shape of the cooling channel wall.

2 FINITE STRAIN DAMAGE MODELLING

This part will summarize the most important steps of the derivation of the anisotropic
elastoplastic model and its coupling with an isotropic damage variable following the prin-
ciple of strain equivalence as elaborated by Lemaitre [4].

The constitutive model uses the triple multiplicative decomposition of the deformation
gradient F = Fe Fpe Fpi into elastic (Fe), plastic-elastic (Fpe) and plastic-inelastic (Fpi)
parts. The additional multiplicative split of the plastic part of the deformation gradient
into elastic and inelastic parts is performed for the modelling of nonlinear kinematic
hardening according to the Armstrong-Frederick concept [2]. This split can be physically
motivated by taking into account the dislocation-induced lattice rotations and stretches
and local plastic deformations on the microscale.

Based on the principle of material objectivity and the concept of material isomorphism
the Helmholtz free energy per unit volume can be written in the form

ψ = ψe (Ce, D) + ψkin (Cpe , D) + ψiso (κ,D) (1)

where Ce = FT
e Fe = F−T

p CF−1
p represents the elastic right Cauchy-Green deformation

tensor and Cpe = FT
pe Fpe = F−T

pi
Cp F

−1
pi

the elastic part of the plastic right Cauchy-
Green tensor. The first part ψe describes the macroscopic elastic material properties.
The terms ψkin and ψiso represent the amounts of stored energy due to kinematic and
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isotropic hardening, respectively. The variable κ refers to the accumulated plastic strain.
The scalar D represents the isotropic ductile damage variable, where D = 0 holds for a
virgin (undamaged) material point and D = 1 for a completely damaged material point.

The constitutive equations of the model are obtained from the derivation based on the
Clausius-Duhem form of the second law of thermodynamics −ψ̇ + S · 1

2
Ċ ≥ 0. Inserting

the Helmholtz free energy and differentiating with respect to time yields

− (
∂ψe

∂Ce

· Ċe +
∂ψkin

∂Cpe

· Ċpe +
∂ψiso

∂κ
κ̇+

∂ψ

∂D
Ḋ) + S · 1

2
Ċ ≥ 0 (2)

The specific forms of the energy contributions ψe, ψkin and ψiso are given as ψe =
(1−D) ψ̄e, ψkin = (1−D) ψ̄kin and ψiso = (1−D) ψ̄iso, where

ψ̄e =
µ

2
(trCe − 3)− µ ln (

√

detCe) +
Λ

4
(detCe − 1− 2 ln (

√

detCe) (3)

ψ̄kin =
c

2
(trCpe − 3)− c ln (

√

detCpe) (4)

ψ̄iso = Q (κ+
e −β κ

β
) (5)

are the parts of the Helmholtz free energy corresponding to the undamaged state. Note
that due to the Neo-Hookean form of ψ̄e the material model is capable of describing finite
elastic strains. Here µ and Λ refer to the Lamé constants and c is the stiffness-like kine-
matic hardening parameter. The expression for ψ̄iso corresponds to the saturation-type
isotropic hardening rule of Voce [5] where Q and β are the isotropic hardening parame-
ters. The relation for the second Piola-Kirchhoff stress tensor S = 2F−1

p (∂ψe/∂Ce)F
−T
p

is obtained by making use of standard arguments [6].
The numerical implementation of the model is carried out in the reference configuration.

The constitutive equations obtained from the thermodynamically consistent derivation are
summarized below:

• Stress tensors

S = (1−D)
(

µ (C−1
p −C−1) +

Λ

2
(detC (detCp)

−1 − 1)C−1
)

(6)

S̄ =
1

1−D
S (7)

X = c (C−1
pi

−C−1
p ) (8)

Y = CS̄−Cp X, Ykin = Cp X (9)

• Evolution equations
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Ċp = λ̇
sym

(

Cp

(
A [(YD)T ] + (AT [YD])T

)D
)

√

YD · (A [(YD)T ])
(10)

Ċpi = 2 λ̇
b

c
YD

kin Cpi , κ̇ =

√

2

3
λ̇ (11)

Ḋ = λ̇

√

2

3

1

1−D

(
Y

s

)k

H(κ− pD) (12)

• Yield function

Φ =
√

YD · (A [(YD)T ])−
√

2

3
(σy0 +Q (1− e −β κ)) (13)

• Fourth-order anisotropy tensor

A = a1 I + a2 M1 ⊗M1 + a3 M2 ⊗M2 + a4 (M1 ⊗M2 +M2 ⊗M1) (14)

+ a5 D1 + a6 D2

Dα
ijkl =

1

2
(Mα

ikδjl +Mα
jlδik +Mα

il δjk +Mα
jkδil), α = 1, 2 (15)

Mi = Ni ⊗Ni, i = 1, 2 (16)

• Kuhn-Tucker conditions

λ̇ ≥ 0, Φ ≤ 0, λ̇Φ = 0 (17)

Here, Cp = FT
p Fp and Cpi = FT

pi
Fpi are right Cauchy-Green deformation-like tensors, X

is the back stress tensor in the reference configuration, Y (not to be confused with the
scalar quantity Y thermodynamically conjugate to D) and Ykin represent non-symmetric
second-order stress tensors. A is the fourth-order orthotropy tensor in the reference
configuration written in terms of the second-order structure tensors M1 and M2. N1

and N2 are the privileged directions of the material in the reference configuration. The
pre-factors ai (i = 1, ..., 6) can be determined based on the classical Hill coefficients as
elaborated in [7].

The evolution of the isotropic damage variable in (12) is applied following the work of
Lemaitre [4]. Here, s and k are two positive material parameters describing the rate at
which damage evolves. The Heaviside step function H(κ− pD) with properties H = 0 if
κ < pD and H = 1 if κ ≥ pD is utilized here to describe the threshold pD where damage
begins to evolve. The scalar Y is defined in [8] as the energy density release rate and is
given here as
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Y =
Rν

2E
YD · (A [(YD)T ]) (18)

where Rν is the so-called triaxiality function:

Rν =
2

3
(1 + ν) + 3(1− 2ν)

(
1/3 trY

√

YD · (A [(YD)T ])

)2

(19)

In (18), E = µ(3Λ + 2µ)/(Λ + µ) represents Young’s modulus of elasticity and ν =
Λ/2(Λ + µ) the Poisson’s ratio.

The coupling between the anisotropic elastoplastic model and the Lemaitre-type iso-
tropic damage model is carried out according to the effective stress concept: S̄ = 1/(1−
D)S. S̄ is the local effective stress which increases as damage develops in the mate-
rial. Further, the stress tensor Y that appears in the yield function (13) depends on
the effective stress S̄. Through the yield function and the plastic flow rule the plastic
deformation as well as the hardening internal variables are also affected by the damage
development in the material. In this way, a coupled framework of finite strain anisotropic
damage-elastoplasticity is obtained, where the damage behaviour strongly depends on the
anisotropically evolving plasticity in the material. Thus, the damage evolution shows in-
duced anisotropy although from the mathematical point of view the damage formulation
is isotropic.

The internal variables of the coupled damage-plasticity model are Cp, Cpi , κ and
D which describe the evolution of plastic deformation, kinematic hardening, isotropic
hardening and damage, respectively. The tensor-valued evolution equations are discretized
by a type of the exponential map algorithm (see [9]) that satisfies plastic incompressibility
and uses the spectral decomposition to evaluate the exponential tensor functions in closed
form. The discretization of the scalar evolution equations for κ and D is performed by
the classical implicit backward Euler scheme.

3 THE NAKAJIMA STRETCHING TEST

This section discusses the application of the coupled damage-elastoplasticity model to
simulate the so-called Nakajima test where six specimens are used to obtain six distinct
points of the FLDF. The test represents a stretching operation up to fracture used to
experimentally determine forming limit diagrams. The tools used in the Nakajima test
include a hemispherical punch, a blankholder (Fig. 1(a)) and a die (Fig. 1(b)). For the
simulation, six different blank specimens with varying width of the middle section (15,
25, 35, 45, 55 and 100 mm) are created. The corresponding Nakajima tests are performed
for each specimen. The major and minor strains recorded at the end of each of these
simulations correspond to a point on the FLDF. The specimens with widths of 15, 45
and 100 mm correspond essentially to strain states of uniaxial, plane and biaxial tension,
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(c) Die and deformed blank.

Figure 1: Tools for the Nakajima test.

respectively. The specimen with a width of 15 mmm is depicted in Fig. 1(b) and in
Fig. 1(c) in the undeformed and deformed configuration, respectively.

The material degradation in the element where failure occurs can be seen from the
stress-strain curves up to fracture in Fig. 2. The corresponding evolution of the damage
variable are shown in Fig. 3. Contour plots in Fig. 4(a) to Fig. 4(f) shows the bottom
view distribution of damage for each specimen.
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Figure 4: Damage distribution from the six Nakajima test specimens.
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Figure 4: Damage distribution from the six Nakajima test specimens.
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Finally, the FLDF can be constructed by
recording the major and minor strains for
the ruptured element and by plotting them
as points in the limit strain space. The six
Nakajima test simulations give six combi-
nations of major and minor strains ranging
from uniaxial tension to biaxial tension. The
FLDF is shown in Fig. 5. The major strain
is 0.246 whereas the minor strain is 0.347. It
is worth noting, that this difference occurs
due to the considered plastic anisotropy in
the FE computations.

4 THERMOMECHANICAL ANALYSES OF A ROCKET COMBUSTION
CHAMBER SEGMENT

This section discusses the application of the presented model for the lifetime prediction
of a rocket combustion chamber segment. Fig. 6(a) shows a typical rocket combustion
chamber. The schematic cross section of the chamber is shown in Fig. 6(b). The outer
wall is made out of nickel alloy. The cooling channel walls are made out of copper alloy.
The hot gas resulting from the combustion of the propellants (liquid oxygen and liquid
hyrogen) flows through the center of the chamber. The coolant (liquid hydrogen) flows
through the small cooling channel passages. There can be up to 360 cooling channels in
the circumference direction. The geometry of the modelled segment is the quasi Vulcain
geometry following the work of Kuhl et al. [10]. First of all, a transient thermal analysis
of the combustion chamber segment is performed to obtain the temperature field of the
entire chamber segment. The obtained temperature history is then used as input for the
user subroutine in the static analyses.

4.1 Transient heat transfer analysis

Convective thermal boundary conditions are employed at the inner and outer radii as
well as in the cooling channel similar to the work of Riccius et al. [11]. The left and right
sides have zero flux boundary conditions to ensure symmetry of the thermal field. The
thermal cycle described in Table 1 is applied in the analysis. Fig. 7 shows some snapshots
of the temperature field resulting from the transient thermal analysis.

4.2 Static analyses

The goal of the static analysis is to see the feasibility of the implemented damage
model to describe the dog-house failure mode qualitatively. The pressure cycle in Table 2
is applied as load in the static analyses. For the static analyses 8-node brick elements
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(a) A typical
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tion chamber.

(b) A schematic cross section of
a typical rocket combustion cham-
ber.

(c) Modelled seg-
ment of the quasi
Vulcain thrust
chamber at the
throat.

Figure 6: Schematic cross section of a typical rocket combustion chamber and the modelled segment.

Phase Time [s] Thotgas [K] Tcoolant [K]
Pre-cooling 0 - 2 40 40
Hot run 3 - 603 950 40
Post-cooling 604 - 605 40 40
Relaxation 605 - 620 293.15 -

Table 1: Thermal cycle applied for the transient thermal analysis.

Figure 7: Temperature distribution at different phases of the assumed operational cycle:
(a) pre cooling (b) hot run (c) post cooling (d) relaxation.

with reduced integration were applied. The critical area of interest is the cooling channel
wall at the hot gas side. Two different meshes were used. The coarser and the finer mesh
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Phase Time [s] Photgas [MPa] Pcoolant [MPa]
Pre-cooling 0 - 2 0 2
Hot run 3 - 603 10 14.5
Post-cooling 604 - 605 0 2
Relaxation 605 - 620 0 0

Table 2: Pressure cycle applied for the static analyses.

have in total 1338 and 4014 elements respectively. Fig. 8 shows the discretization of the
hot gas side wall using both meshes. The corner of the cooling channel passage is rounded
with 0.1 mm fillet radius.

Figure 8: (a) Mesh 1 with 1338 elements.
(b) Mesh 2 with 4014 elements.

Figure 9: Damage distribution obtained from
the static analyses: (a) Mesh 1 at the 16th cycle.

(b) Mesh 2 at the 13th cycle.

Figure 10: The cyclic evolution of
the damage over time.

The damage distribution obtained from the analyses
are shown in Fig. 9. The computation using Mesh
1 could be performed up to 16 cycles. Applying
Mesh 2 the computation could be performed up to
13 cycles. As the damage increases, the local itera-
tion within the user subroutine requires smaller and
smaller time steps. The corresponding cyclic dam-
age evolutions over time are shown in Fig. 10. Here
it can be seen that with the coarser mesh, the dam-
age evolves slightly faster, in comparison to the one
obtained using the finer mesh.

This indicates a mesh dependency of the result. On the one hand this phenomenon
could be attributed to the well-known localization effect in elastoplasticity coupled with
damage. Another possible explanation is that simply the mesh is still too coarse to yield
a converged result. An investigation which clarifies these issues is under way. In any case,
improvement of the robustness of the computation shall enable the computation of more
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(a) Predicted
end shape of the
cooling channel
segment.

(b) The dog-house failure
mode occured in a NARloy-
Z thrust chamber [12].

(c) The dog-house failure
mode occured in an OFHC
thrust chamber [12].

Figure 11: The predicted end shape of the channel segment from the simulation and the dog-house
failure mode.

loading cycles. It is important to eliminate the convergence problem in the solution of the
time discretized equation system to determine the internal variables. Fig. 11(a) shows the
predicted end shape of the cooling channel segment. The grey area represents the area
mostly affected by damage. Fig. 11(b) and Fig. 11(c) show cross sections of combustion
chambers made out of NARloy-Z copper alloy and OFHC (oxygen free copper) alloy
respectively. It is concluded by Hannum et al. [12] that depending on the liner material,
the causes of the failure are different. In a NARloy-Z combustion chamber, the hot gas
side wall does not bulge so much towards the chamber. Failure is then caused by low
cycle fatigue. In an OFHC combustion chamber, the wall becomes significantly thinner.
Cracking occurs after a necking phenomenon.

5 CONCLUSIONS

The coupling of a finite anisotropic elastoplastic model with isotropic ductile damage
has been presented. The implementation of the model for finite element simulations in two
challenging applications has shown the good potential of the model for failure prediction
purposes.
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Abstract. The modeling of strain localization requires the use of different scales to
describe the evolution of the material of the overall structure and the material inside the
localized region. Focusing on the Gurson-Tvergaard-Needleman material we develop a
multiscale formulation that uses strong discontinuity modes to model the development of
a localization zone and the material degradation and void growth inside it. We present a
strong discontinuity mode formulation able to capture the band kinematics that consists
of a combination of sliding and opening modes. Then we derive an heuristic inter-scale
factor to set a proper connection between the localized and the continuum scales.

This approach describes the evolution of the accumulated plastic strain and the void
content inside and outside the localization band. The localization scale evolution is ef-
fectively controlled by the proposed heuristic rule. To illustrate on the formulation ca-
pabilities, a test case is presented and the behavior of the inter-scale connection factor
is analyzed. The resulting formulation does not require a specific mesh refinement to
model strain localization, provides mesh independent results and can be calibrated using
experimental results.

1 INTRODUCTION

The Gurson-Tvergaard-Needleman plasticity model1–5 incorporates to the standard
�2 plasticity model the material degradation that is due to the nucleation, growth and
coalescence of voids. This material model is usually used for modeling ductile fracture
phenomena, where the void content is used as an indicator of crack initiation.

1
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Most ductile fracture processes are preceded by a strain localization, that takes place
in a narrow band shaped region. In most cases the band width results much smaller than
the problem domain, therefore forcing the two opposing sides of the region to open and/or
slide relatively to each other (depending on the material considered). This inserts in the
problem domain a kinematic mechanism that conditions its response.

Due to that, the modeling of strain localization phenomena via finite element formu-
lations requires to use different scales for the description of the global deformation in
the continuum and the localized deformation inside the localization bands and to use of
physically meaningful laws to describe the evolution of the material inside the latter ones.

These issues have been addressed in the literature by many numerical techniques: the
enhanced strain field method6,7 the extended finite element method (X-FEM),8,9 the
strong discontinuity approach10 and the embedded strong discontinuity modes.11,12 The
last two techniques were applied in the framework of G-T-N materials13,14

2 THE G-T-N MATERIAL MODEL

The Gurson plasticity model was first developed by Gurson.1,2 It has been modified
through time to adjust the model parameters3,4 and received new inclusions like the
addition of a void coalescence mechanism.5 The complete set is known as the Gurson-
Tvergaard-Needleman (G-T-N) material model. Herein we recall the equations required
for the present development.15

The G-T-N yield surface, �Φ, depends on the hydrostatic stress, ��ℎ, the �2 equivalent
stress ��� , the volume void fraction, ��, and the actual yield stress,���,

∗

�Φ
(
��ℎ,

� ��,
� �,� �̄�

)
=

(
���

���

)2

+ 2 �� �1 cosh

(
3

2
�2

��ℎ

���

)
− 1− �� 2 �21 = 0 (1)

��ℎ =
1

3
�� : �g, (2)

��� =

√
3

2
�s : �s, (3)

being �s the deviatoric stress tensor and �g the metric tensor. The parameters �1 and �2
were set to fit the experimental results. We adopt �1 = 1.5 and �2 = 1 for the present
study.

During yielding �Φ = 0; hence we can obtain an equivalent stress that takes into account
the void effect,

��̄2 = ���
2
(
1 + �� 2 �21 − 2 �� �1 cosh

(
��
))

(4)

∗We indicate the tensorial product between two tensors as a b (in other references it is indicated as
�
⊗

�) and the number of underlines indicates the tensor order.
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For the evolution of ��� we adopt an implicit hardening law from,15

���

0��

=

(
���

0��

+
3 �
0��

��̄�
)�

(5)

where 0�� is the initial yield stress, ��̄� is the equivalent plastic strain (to be defined in
Eqn. (11)), � is the hardening exponent and � is the elastic shear modulus.

The increment of void volume fraction is attributed to:

∙ Growth of existing voids driven by the bulk plastic deformation,

�� �����ℎ =
(
1− ��

)
��� : �g. (6)

∙ Nucleation of new voids driven by the accumulated plastic strain evolution,16

������������ = �� ��̄� (7)

with:

�� =
��

��

√
2�

���

[
−1

2

(
��̄� − ��

��

)2
]
, (8)

where, �� is the void volume fraction of nucleation particles, �� its standard devi-
ation and �� the mean strain for void nucleation. We adopt �� = 0.1, �� = 0.04
and �� = 0.3.

∙ Coalescence of voids is modeled by modifying �� once a critical void fraction,
���������, is reached.

5

The evolution of the internal variables, �� and ��̄� , of the G-T-N material depends
on the volumetric

(
��ℎ

)
and distortive

(
���

)
equivalent plastic strains. Those equivalent

strains are defined decomposing the plastic strain increment as follows,

�� = �+Δ��� − ��� =
1

3
��ℎ

�+Δ�g + ���
3

2

�s
���

, (9)

Hence the increment between � and �+Δ� of the void volume fraction and the equivalent
plastic strain becomes,

�+Δ�� − �� = � =
(
1− �+Δ��

)
�� : �+Δ�g + �+Δ�� �̄� , (10)

�̄� = �+Δ��̄� − ��̄� =
�+Δ��ℎ ��ℎ + �+Δ��� �

�
�

(1− �+Δ��) �+Δ���

. (11)
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3 FINITE ELEMENT FORMULATION

3.1 Displacement and strain decomposition

We solve the nonlinear elastoplastic problem using an incremental procedure where we
decompose the strain and displacement increments from time � to time �+Δ� as,

�+Δ�� = ��+ � ∧ �+Δ�� = ��+ �,

and discretize the continuum using the standard element shape functions,17 H, and the
nodal displacements, U,

� = H �+Δ�U−H �U = HU.

At the elements where the localization indicator triggers a discontinuity, we decompose
the displacement field into continuous and localized contributions,11,12

� = ���������� + ���������� = H U��������� +H U��������� (12)

Assuming infinitesimal strains analysis, we also decompose the deformation increment
into elastic and plastic components. Since we assume the localization behaves as rigid-
plastic, the elastic deformation only contributes to the continuum scale, and the plastic
deformation contributes to the continuum and to the localized scales. Hence,

� = �� + �� = ��
���������

+ ��
���������

+ ��
���������

. (13)

The displacement ���������� has to be designed as to reproduce the localized deformation
kinematics, thus we adopt,11

���������� = H U��������� = H � Θ (14)

where Θ are the nodal displacements corresponding to the strong discontinuity mode to
be defined later in this work and � is the increment of a scalar parameter which is part
of the problem unknowns. The evolution of this parameter is written as,

�+Δ�� = �� + �. (15)

Replacing Eqn. (14) into Eqn. (12) results,

� = H U = H (U− � Θ) +H� Θ. (16)

Thus the resulting strain fields, using Voight notation, are,

���������� = ����������� + ����������� = B (U− � Θ) (17)

���������� = ����������� = B U��������� = B � Θ (18)

were B is the adopted element strain-displacement matrix.
Summarizing this derivation, we now can build a strong discontinuity mode,Θ, that can

generate a localized displacement field ���������� with a related strain field strain �����������.

4
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Figure 1: Continuous with an active localization.

3.2 Localization definition

A localization line in plane problems can be characterized by a line with normal �n and
a propagation direction �m along which the displacement jump,19 ����������, is found (i.e.
if �n ∥ �m =⇒ the kinematics is Mode I and if �n ⊥ �m =⇒ the kinematics is Mode
II). In Fig. 1 we draw a schematic representation of the above definitions, considering a
general displacement jump; the band has no width.

To describe the induced localization strain we use the Maxwell conditions, so we ne-
cessitate that the discontinuity jump satisfies,6

∇ u��������� = � �n �m

where � is a scalar increment of the discontinuity jump. Hence the strain jump becomes,

��
���������

=
1

2
�
(

�n �m+ �m �n
)

(19)

3.3 Bifurcation analysis

It has been shown18,19 that the triggering of bifurcation in the material behavior and
the respective band orientation can be determined from the singularity of the acoustic
tensor, which is defined as,

�Q = �n ⋅ tCEP⋅ �
n (20)

where tCEP is the constitutive tensor.

The bifurcation condition requires that,6,18

�Q ⋅ �m =

(
�n ⋅ tCEP⋅ �

n

)
⋅ �m = 0 (21)

what is satisfied when,

det
(

�Q
)
= det

(
�n ⋅ tCEP⋅ �

n

)
= 0. (22)
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Figure 2: Base of modes for a 9-node element in the isoparametric element space.

Eqn.(22) implies that at least one of �Q eigenvalues to be zero and the respective

eigenvector �m to be the band growth direction according to Eqn.(21). Since it is difficult
to precisely determine when Eqn.(22) is satisfied during an incremental procedure we use,6

det
(

�Q
)
= det

(
�n ⋅ tCEP⋅ �

n

)
≤ 0 (23)

and the growth direction can be obtained from the eigenvector �m belonging to the small-
est eigenvalue of �Q.

3.4 Strong discontinuity modes definition

To build a strong discontinuity mode, �Θ, able to model the localization when scaled
by �, we use a base of displacement modes, �Ψ�, constituted by two shear modes and a
volume change mode11,12,14 . Subindex � = �...��� indicates the deformation mode.

To construct each of them, we use three different sets of nodal coordinates, �Φ�, and
the unstrained nodal coordinates

(
��, ��

)
and build them as,

�Ψ�
� =

[(
�Φ�

�

)
�
− ��

]
e� +

[(
�Φ�

�

)
�
− ��

]
e�. (24)

In the above equation (e�; e�) are orthonormal base vectors shown in Fig.2 along the
(�, �) natural directions and the upper index � = 1...� indicates the node. As an il-
lustrative example we plot the displacement modes in the element isoparametric space
coordinates (r,s) for a 9-node element in Fig.2. To complete the definition we generalize
Eqn.(24) in the (�1, �2) structural coordinate system using the element shape functions
ℎ�,

�Ψ�
� =

[
ℎ�

((
�Φ�

�

)
�
,
(
�Φ�

�

)
�

)
��
� − ��

�

]
e� . (25)

With this displacement modes, �Ψ�, we compute their respective strains at the element
center,

�� = B�
�Ψ� (26)

6
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Figure 3: Continuous with an active localization band

where B� is the strain-displacements matrix calculated at the element center. By linearly
combining the above defined strain fields we obtain the ����������� defined in Eqn. (19),

����������� = ���� + ������ + �������� ., (27)

where �� parameters have to be determined.
Therefore the modes �Ψ� can also be linearly combined and normalized to get the

localization strong discontinuity mode, �Θ,

�Θ =
��

�Ψ� + ���
�Ψ�� + ����

�Ψ���

∣��
�Ψ� + ���

�Ψ�� + ����
�Ψ��� ∣

(28)

3.5 Element equilibrium equations

We apply the virtual work principle in order to obtain the finite element equations. In
Fig. 3 we show a scheme of a solid with a localization line and the localization line forces
(band forces). For the equilibrium at time �+Δ� we get,
∫

�

� [����������]
� �+Δ����������� �� + � [U���������]

� �+Δ�F��������� =

∫

�

�u� �+Δ�p ��. (29)

Replacing Eqns. (12), (14) and (17) into Eqn. (29) and since �U and �� are arbitrary
we obtain set of equations12 that has to be solved iteratively; therefore, a Newton-Raphson
scheme is implemented at the global level. The parameters � are condensed at the element
level.

The only undefined variable is �+Δ�F��������� for which we propose11 that,

�Θ� �+Δ�F���������

�Θ� �F���������

=
�+Δ��̄���������

��̄���������

, (30)

where the localization equivalent stress �+Δ��̄��������� is unknown. To calculate it, we relate
the localization volumetric and distortive equivalent plastic strains to the band incremen-
tal parameter �, through a set of positive factors � and �. These factors relate the
continuum and the localization scales. Hence,

(
��ℎ ���

)2
= �2�2 , (31)

7
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Figure 4: Scheme of a band in a localized element

(
��� ���

)2
= �2�2. (32)

To determine the inter-scales factors we request the distortive dissipated energy in the
band to be equal to the energy dissipated by the distortive part of the localization mode.
For this we calculate a purely distortive strong discontinuity mode, �Θ�, as was done for
the localization mode �Θ, hence,

∫ �+Δ��

��

Θ�
�

�F �� =

∫

����

∫ �+Δ���� ���

���� ���

� �̄��� ��
�
� ���

����� . (33)

The same reasoning is applied to the hydrostatic contribution, but with the volumetric
strong discontinuity mode, Θℎ.

To solve Eqn.(33) and the respective volumetric equations, we construct an heuristic
rule for what we depict in Fig 4 an element shaped domain that has a localization line
across it. The localization line splits the domain in two subdomains that slide along the
localization line. Assuming unitary thickness, the volume of material comprised in the
localization is,

���� = ℎ �, (34)

where ℎ is a reference bandwidth and � is the band length across the element.
Using in Eqn.(33) an Euler backward time integration scheme together with Eqn. (34)

and the corresponding volumetric equations leads to,

� �Θ�
�

�+Δ�F = �+Δ��̄��� �
�
� ���

ℎ � , (35)

and
� �Θ�

ℎ
�+Δ�F = �+Δ��̄��� �

�
ℎ ���

ℎ � . (36)

8
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Figure 5: Test case notched sample

Replacing ��� ���
and ��ℎ ���

definitions into Eqns. (31) and (32) we get the inter-scales
factors,

� =

∣∣∣∣
�Θ� �+Δ�

� F���

ℎ � �+Δ��̄���

∣∣∣∣ , (37)

� =

∣∣∣∣
�Θ� �+Δ�

ℎ F

ℎ � �+Δ��̄���

∣∣∣∣ . (38)

Now that a proper scale is defined for the band strains, we determine ��ℎ���
and ������

from Eqns. (31) and (32). Finally we determine the internal variables increments using
Eqns. (5), (10) and (11), and replace them into Eqn. (4) to get �+Δ��̄��������� .

The ℎ parameter is added in Eqn. (34) to incorporate a regularization that takes into
account the strain concentration inside the band. It is a bandwidth yet not a physical one.
It can be interpreted as the width a band should have in order to have uniform strains
inside the band with the same overall effect to the continua. This allows for parameter h
to control the unloading path of the structure, as it is shown in the next section.

4 NUMERICAL EXAMPLE

To test our finite element formulation we use a plane strain pure traction test. A
specimen with a central notch, used to fix the initiation of the localization, is considered
as shown in Fig. 5. The element adopted for the analysis is a 4 node quadrilateral
with mixed interpolated tensorial components (QMITC4)20,21 and due to the specimen
symmetry only one quarter is modeled. For time evolution we use imposed displacements
with automatic time stepping up to a 4% of elongation. To focus on strain localization
and not in material fracture or crack opening phenomenon, the analyzes are stopped when
�� grows beyond 2/3. The material parameters are set to � = 200���, �� = 600���.
Nor initial void volume fraction nor hardening are considered.

9
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Figure 6: Load displacement results

Figure 7: ����� and ��̄���� for some meshes

Two mesh densities are analyzed each for two h parameters (Eqn. 34) are used. In
the load-displacement plot shown in Fig. 6 it can be seen that the use of a continuous
formulation (standard finite elements) leads to mesh dependent results, while the use of
the present formulation shows no mesh dependency. The parameter h has the role of
scaling the material deterioration inside the band, thus controlling the load downslope.
Sample band plots of the ����� and

��̄���� variables are shown in Fig. 7.

5 CONCLUSIONS

We have applied the strong discontinuity modes formulation11,12,14 for modeling strain
localization in G-T-N materials. The required inter-scales connection, between the con-
tinuum and the localization scales is achieved using an equivalent dissipated work criteria
distinguishing between distortive and volumetric contributions. We introduced a length-
scale (h) to heuristically model the material damage evolution inside the band. This
h-parameter controls the damage-induced unloading behavior and therefore it can be de-
termined from actual experimental data. The resulting formulation does not require a

10
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specific mesh refinement to model a localization, provides mesh independent results and al-
lows the control of the downslope part of the load-displacement path via the h-parameter.
The actual implementation uses the same order of the Gauss integration required for cal-
culating the element stiffness matrix and does not introduce extra d.o.f. in the assembled
numerical model.

We gratefully acknowledge the support of TENARIS and ITBA for this research.
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Abstract. The Vickers indentation technique is commonly used to investigate the frac-
ture toughness of ferroelectric single crystals. Experiments show that the radial cracks
perpendicular to the poling direction of the material propagate faster than the parallel
ones. Using a phase-field model, we perform numerical simulations to show this anisotropy
attributed to interactions between material microstructure and radial cracks. This model
is based on a modified regularized formulation of the variational brittle fracture and do-
main evolution in ferroelectric materials.

1 INTRODUCTION

Ferroelectric materials exhibit strong electro-mechanical coupling which make them
ideal materials for use in electro-mechanical devices such as sensors, actuators and trans-
ducers. To assure optimum reliability of these devices, understanding of the fracture
behavior in these materials is essential. The complex nonlinear interactions of the me-
chanical and electrical fields in the vicinity of the crack, with localized switching phenom-
ena, govern the fracture behavior of ferroelectric materials. Experimental techniques have
been used to study fracture in ferroelectrics, including Vickers indentation to investigate
the fracture toughness anisotropy [1–5]. Experiments show that cracking along the poling
direction of the material has a shorter length and consequently a higher effective fracture
toughness than that normal to the poling direction.

In this paper we introduce a model able to capture the anisotropic crack growth under
Vickers indentation loading. This anisotropy is obtained by linking the crack propagation
with the microstructural phenomena. The model treats in a coupled phase-field energetic

1
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fashion both the brittle crack propagation and the microstructure evolution. We have
recently presented a model, showing that the interaction of the microstructure and the
crack leads to a slow-fast crack propagation behavior observed in experiment [6]. In
Ref. [7], we have introduced a modification in the formulation to endow the phase-field
model with the ability to simulate the aforementioned anisotropic crack growth. We
present here the highlights of that work.

The theory of the coupled phase-field model is summarized in Section 2. Simulation
results are presented and discussed in Section 3. The last Section is the conclusion of this
paper.

2 PHASE-FIELD MODEL

The proposed approach to brittle fracture in ferroelectrics relies on the coupling of
two energetic phase-field models, namely a time-dependent Ginzburg-Landau model for
ferroelectric domain formation and evolution [8], and a variational regularized model of
Griffith’s fracture [9]. The electro-mechanical enthalpy density h is written as [6]

h(ε,p,E, v) = (v2 + ηκ) [U(∇p) + W (p, ε)] + We(ε, v) + χ(p) − ε0

2
|E|2 − E · p

+ Gc

[
(1 − v)2

4κ
+ κ|∇v|2

]
, (1)

where p is the polarization, E is the electric field defined as E = −∇φ, φ is the electrical
potential, Gc is the critical energy release rate or the surface energy density in Griffith’s
theory and κ is a positive regularization constant to regulate the size of the fracture
zone. The scalar field v provides a diffuse representation of the fracture zone, v = 1 and
v = 0 indicating unbroken and broken material, respectively. The parameter ηκ is a small
residual stiffness to avoid the singularity of the elastic energy in fully fractured regions
of the domain. The domain wall energy density U , the electroelastic energy density W
and the phase-separation potential χ in Eq. (1) are given in Ref. [7]. Note that here the
energy functional W does not include the elastic energy and it is only associated with
coupling terms between the strain and the total polarization p. The elastic energy density
We is written in [9] as

We(ε, v) = κ0
tr−(ε)2

2
+ (v2 + ηκ)

(
κ0

tr+(ε)2

2
+ µ εD · εD

)
, (2)

where κ0 and µ are the bulk and shear modulus of the material, respectively. The
decomposition of the trace of the strain tensor ε in positive and negative parts are
tr+ = max(tr(ε), 0) and tr− = max(−tr(ε), 0) and εD are the deviatoric components
of the strain tensor. This decomposition is introduced to prevent crack nucleation, propa-
gation and interpenetration in compressed regions by accounting for asymmetric behavior

2
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in traction and compression. Note that here only the expansion and shear terms are
multiplied by the jump set function (v2 + ηκ).

The stresses and electric displacements are derived from the electrical enthalpy as
σ = ∂h/∂ε and D = −∂h/∂E. This particular formulation of the phase-field model
encodes the traction-free, electrically permeable and free-polarization boundary conditions
of a sharp-crack model [6].

The time evolution of the system results from the gradient flows of the total electro-
mechanical enthalpy with respect to the primary variables v and p, assuming that the
displacement and the electric field adjust immediately to mechanical and electrostatic
equilibrium (with infinite mobility), i.e.

α

∫

Ω

ṗiδpidΩ = −
∫

Ω

∂h

∂pi

δpi dΩ, (3)

β

∫

Ω

v̇δvdΩ = −
∫

Ω

∂h

∂v
δv dΩ, (4)

0 =

∫

Ω

σijδεij dΩ, (5)

0 =

∫

Ω

DiδEi dΩ, (6)

where 1/α > 0 and 1/β > 0 are the mobilities of the processes. The weak form of the
evolution and equilibrium equations is discretized in space with standard finite elements.
Equations (3) and (4) are discretized in time with a semi-implicit scheme. A simple
algorithm to solve the coupled system in a straightforward staggered approach is presented
in Ref. [6].

3 NUMERICAL SIMULATIONS

We consider a rectangular domain with boundary conditions as shown in Fig. 1. The
indentation is included in the model by considering a square inner boundary. The inden-
tation faces are pulled by a monotonically increasing mechanical load w and electrical
potential φ = 0 is considered for these faces. The outer four edges of the simulated region
are assumed to satify the following conditions: (1) σ · n = 0, (2) ∇φ · n = 0 and (3)
∇p · n = 0, where n is the unit normal to the outer edges. The vertical initial polariza-
tion p0 = (0, 1) is assigned to the sample in Fig. 1. The normalized dimensions of the
domain are 200×200 (L = 40). The constants are chosen to fit the behavior of single
crystals of barium titanate (BaTiO3). The normalized constants are presented in Ref.
[6]. The nomalized critical surface energy density is chosen as G′

c = 15.6. Fifty load
steps are computed with load increments of ∆w = 5 × 10−2. The normalized time step
∆t′ = 10−2 leads to convergent and accurate solutions for the time integration of gradient
flow equations in Equations (3) and (4). The simulations are carried out using the finite
element library of the Kratos multi-physics package [10].
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Figure 1: A schematic of the computational model.

Fig. 2 presents two snapshots of the crack propagation. The fracture zone grows along
the four radial directions by increasing the load step as shown in two sample load steps
w = 1.5 and w = 2.5.

The value of surface energy (integral over the domain of the last term in Eq. (1)) is
obtained and presented in Fig. 3 for each of the four equal zones marked in Fig. 2(b). The
surface energies of zones 1 and 3 follow nearly the same path. This also holds for zones 2
and 4. Interestingly, the surface energies of zones 2 and 4 are smaller than zones 1 and 3,
i.e. the cracks propagating parallel to the polarization are shorter than those propagating
perpendicularly. This is a clear evidence of the anisotropic crack propagation in agreement
with experimental observations [1–5].

Fig. 4 presents the contours of polarization components in the load step w = 1.8. The x
components of the polarization vectors indicate wing-shaped domains or twins around the
tip of the parallel cracks in Fig. 4(a). This kind of ferroelastic domain switching is induced
by the high tensile stresses near the crack tip which tend to elongate the material in the
x direction in front of the parallel cracks. Since the polarization vectors are initialized
in the direction of the tensile stresses near the perpendicular cracks, Fig. 4(b) does not
show any twin formation around these cracks. Due to the absence of ferroelastic domain
switching, the perpendicular cracks propagate longer than parallel ones and the fracture
toughness is lower in the perpendicular direction to the initial polarization. The domain
switching-induced toughening is also reported in other experiments of crack propagation
in BaTiO3 [11, 12].
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Figure 2: Contour plots of the field v for two snapshots of the fracture evolution at load steps (a) w =
1.5 (b) w = 2.5. Four equally large areas around the corners of the indentation are considered to obtain
the surface energy evolution of the four radial cracks (zones 1 − 4) shown in Fig. 3.
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Figure 3: Evolution of the normalized surface energy of four zones as a function of the load step.
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Figure 4: Distribution of polarization components in an area near the indentation in the load step w =
1.8 (a) x and (b) y components. Black lines in (a) indicate the position of the cracks (v = 0). Domain
orientations are indicated with arrows.

4 CONCLUSIONS

We present a general formulation of coupled phase-field model based on variational
formulations of brittle crack propagation and domain evolution in ferroelectric materials.
Using this model, the simulation of Vickers indentation crack growth in ferroelectric single
crystals is performed. The simulation results show that radial cracks parallel to the poling
direction of the material propagate slower than perpendicular ones, which is in agreement
with experimental observations. Ferroelastic switching induced by the intense crack-tip
stress field is observed near the parallel cracks, which is believed as the main fracture
toughening mechanism in ferroelectric materials.
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Abstract. In this contribution we describe a methodology for the multiscale analysis of
heterogeneous quasi-brittle materials. The algorithm is based on the finite element tearing
and interconnecting FETI [1] method cast in a non-linear setting. Adaptive multiscale
analysis is accounted for with the use of selective refinement at domains that undergo non-
linear processes. We focus on the micro-to-macro connection method which constitutes
the strategy to handle incompatible interfaces arising from the connection of non-matching
meshes. The behaviour of standard collocation and average compatibility techniques is
assessed for a multiscale analysis of damage propagation in a quasi- brittle material.
The choice of the connection strategy has an influence on the overall response and the
computational cost of the analysis.

1 INTRODUCTION

The adopted methodology to enforce interscale relations in multiscale analysis cer-
tainly influences the overall mechanical response. Early examples of interscale relations
in multiscale approaches are found in classical homogenization theory [2]. In this context,
closed-form expressions are derived in order to synthesize effective properties from a het-
erogeneous microstructure. Examples of such techniques constitute the constant strain
and stress assumptions at the microscale. Such assumptions, in combination with Hill’s
energy condition [3], lead to the well known Voigt and Reuss bounds. The study of com-
plex microstructures undergoing non-linear behaviour has resulted in more sophisticated
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homogenization techniques. In many cases, a closed-form expression can not be explicitly
derived, however, numerical and computational homogenization techniques [4, 5, 6] are
used to synthesize “on the fly” the constitutive behaviour of a representative microstruc-
tural sample. Constant strain and stress assumptions together with periodic conditions
are well established micro-to-macro transition strategies which evolve from the earlier
classical homogenization theory.

Similar strategies concerning interscale relations can be employed in concurrent mul-
tiscale techniques [7, 8, 9]. In these methodologies, coarse and fine scale regions are
processed simultaneously. Hence, interscale constraints are designed to connect two in-
compatible meshes. The simplest choice corresponds to the well established collocation
technique. Several weak versions of the collocation approach are represented by the fam-
ily of mortar methods [10, 11]. Their effect in the multiscale analysis of elastic large
scale structural analysis has been investigated in [12]. However, the influence of such
constraints on the adaptive multiscale analysis of damage growth is accounted for in the
present study.

2 MULTISCALE APPROACH

The multiscale approach adopted in this manuscript is based on an extension of the
FETI framework presented in [13]. Below, the basic formulation and the adaptive multi-
scale features are summarized for completeness.

2.1 Basic formulation

Consider a body Ω with heterogeneous underlying structure and boundary conditions
depicted in Figure 1. The body Ω is divided into Ns non-overlapping domains Ω(s) con-
nected by the interface ΓI.

In a general concurrent multiscale analysis, where coarse (c) and fine (f) material
resolutions co-exist, the resulting interface satisfies ΓI = Γ cc

I ∪Γ ff
I ∪Γ cf

I , where the super-
scripts denote coarse to coarse mesh connection (cc), fine to fine mesh connection (ff)
and coarse to fine mesh connection (cf). Note that in the present approach Γ cc

I and Γ ff
I

are conforming whereas Γ cf
I is non-conforming except for the common nodes. These nodes

are referred to as independent since they all meet a corresponding pair at the adjacent
mesh. Dependent nodes are found at the non-conforming interfaces Γ cf

I and their nodal
solution can be expressed as a function of the solution field at independent nodal points.

Continuity of the incremental solution field δu at the interface ΓI between two different
adjacent domains s and p reads

δu(s) = δu(p) at ΓI, (1)

and is satisfied with the introduction of linear multipoint constraints (LMPC). The set of
LMPC is cast in a matrix form using modified Boolean matrices B̄(s). These matrices are
constructed by row-wise concatenation of the tying relations between independent and
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Ω

λλλ

Γ cf
I Γ ff
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λλλ , µµµ : Lagrange multipliers

Figure 1: Beam with heterogeneous solid Ω (top). Decomposition in Ns domains (bottom).

dependent interface nodes as

[
B̄(1) . . . B̄(Ns)

]
=

[
B(1) . . . B(Ns)

C(1) . . . C(Ns)

]
. (2)

The matricesB(s) correspond to the standard signed Boolean matrices of the FETI method
while C(s) contains the LMPC concerning dependent nodes.

Enforcement of the above mentioned continuity constraints is accomplished by the
introduction of a heterogeneous Lagrange multiplier field

δΛΛΛ =

[
δλλλ
δµµµ

]
(3)

in which δλλλ accounts for the independent nodes while δµµµ represent the forces acting to
constrain the dependent nodes.

The final linearized system of equilibrium equations for the decomposed solid with
different resolutions can be written as




K(1) 0 0 B̄(1)T

0
. . . 0

...

0 0 K(Ns) B̄(Ns)T

B̄(1) . . . B̄(Ns) 0







δu(1)

...
δu(Ns)

δΛΛΛ


 =




f
(1)
ext − B̄(1)TΛΛΛ− f

(1)
int

...

f
(Ns)
ext − B̄(s)TΛΛΛ− f

(Ns)
int

0


 , (4)

where K(s),f
(s)
ext and f

(s)
int refer to the tangent stiffness matrix, external and internal force

vectors, respectively.
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The augmented system in (4) is transformed into an interface flexibility problem fol-
lowing a standard FETI implementation [1].

2.2 Adaptive multiscale modeling

A multiscale analysis starts with a set of coarse scale domains with effective prop-
erties for the elastic bulk. Such effective properties can be computed with the use of
classical homogenization theory [2] or numerical homogenization techniques [4, 14] on a
Representative Volume Element (RVE) [3].

Adaptivity is accounted for by monitoring or anticipating the need for a highly detailed
analysis at particular regions. Since our focus is directed to a study of crack growth and
coalescence in brittle heterogeneous materials, a methodology is employed to anticipate
the initiation of such phenomena and trigger a fine scale analysis in these particular
regions. The resolution is upgraded domain-wise by mesh refinement when non-linearities
are expected at domain Ω(s). Consequently the interface tying relations need to be re-
computed each time after a zoom-in. The reader is referred to the work in [13, 15] for a
detailed formulation of strain/stress-based predictors for non-linear behaviour and zoom-
in techniques for domain decomposition analysis.

3 STRONG AND WEAK MICRO-TO-MACRO CONNECTIONS

In the present approach, the interscale relations are defined employing a set of LMPC
at non-conforming interfaces. These constraints enforce continuity of the incremental
solution field δu(x) through the interface Γ cf

I . A general weak form for such compatibility
condition reads

∫

Γ cf

I

w(x)(δuf(x)− δuc(x)) dΓ cf
I = 0, ∀x ∈ Γ cf

I , (5)

where w(x) represents a weighting function. By setting w(x) equal to the Dirac function
δ(x) at all nodes, the standard collocation method is recovered. In this view the relations
concerning independent (ind) and dependent (dep) nodes at the interface depicted in
Figure 2 read

uf
ind,i = uc

ind,i, i = 1, 2, (6a)

uf
dep,i = uc(xi), i = 1, nf. (6b)

Note that the selection of linear or bilinear coarse scale elements leads to a linear dis-
tribution of the displacement field at the interface. Consequently, the resulting strains
are constant at Γ cf

I between independent nodes. For this reason, such interscale rela-
tions present similarities with the constant strain approach typically adopted in classical
homogenization theory.

Other choices of the weight function w(x) lead to the so-called mortar methods [10].
In the present study, w(x) is set to a constant which is an adequate choice for the case of
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Figure 2: Strong and weak micro-macro connections.

linear shape functions as argued in [12]. The resulting relations are referred to as average
compatibility in the remaining of the text and read

uf
ind,i = uc

ind,i, i = 1, 2, (7a)
∫

Γ cf

I

(uf(x)− uc(x)) dΓ cf
I = 0. (7b)

The set of constraints in (7) enforce continuity of the solution field in a weak sense for the
interface segment bounded by the independent nodes, the independent nodes satisfying
the strong compatibility (7a). This can be adequate when the fine scale solution field at
the interface cannot be properly captured with the coarse scale shape functions. For this
reason there is a gain in flexibility at the non-conforming interface. Note that the weak
constraint in (7b) is obtained by choosing a constant distribution of Lagrange multipliers
w(x) in the standard weak form of interface compatibility used in the FETI method. In
this view, the interscale relation based on average compatibility preserves some similarities
with the constant stress assumption in the classical homogenization theory.

Besides the nature of strong and weak compatibility constraints, the number of equa-
tions involved in (6) and (7) are significantly different. Enforcement of collocation con-
straints (6b) at the interface Γ cf

I requires a set of nf ×Ndof equations (refer to Figure 2),
nf being the number of dependent nodes and Ndof the number of degrees of freedom per
node. However, the number of equations concerned in (7b) is Ndof. Both collocation and
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Figure 3: Set-up of the multiscale domain decomposition analysis.

average compatibility constraints can be cast in a matrix form for each domain Ω(s) as

C(s)u(s) = 0. (8)

The matrices C(s) are used in the assembly of the modified Boolean matrices B̄(s) as
shown in (2). Since the number of rows of C(s) depends on the micro-to-macro connection
method, the size of the resulting interface problem becomes lower for the choice of average
compatibility constraints.

4 EXAMPLES

A multiscale analysis of an L-shape specimen with heterogeneous mesostructure is per-
formed using the presented domain decomposition framework. The specimen is meshed
using a coarse discretization and partitioned into 27 non-overlapping domains. The un-
derlying heterogeneous structure consists of a number of regularly distributed steel fibers.
Computations are performed considering a two-dimensional slice of the structure in which
plane strain conditions are assumed. The regular distribution of fibers allows the retrieval
of effective elastic properties from a simple unit cell which is treated as an RVE. The
problem set-up is summarized in Figure 3. Non-linear behaviour is linked to crack nu-
cleation and propagation in our study and is simulated by means of a gradient-enhanced
damage model [16]. Tensile failure is modeled adopting a Mazars [17] definition for the
equivalent strain ε̃. An exponential evolution of damage ω with the maximum strain κ
is considered. A summary of the material parameters is given in Table 1. The non-local
equivalent strain ε̃nl is adopted as the internal variable invariant used to construct the
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Material parameters Soft inclusion Matrix Coarse bulk

E Young’s modulus [N/mm2] 20.0× 102 40.0× 103 Effective
ν Poisson’s ratio [−] 0.2 0.2 Effective
ε̃nl Non-local equivalent strain [−] Mazars Mazars Mazars
κ0 Damage initiation threshold [−] 5.0× 10−5 8.5× 10−5 5.0× 10−5

c Gradient parameter [mm2] 1.5 1.5 1.5
ω(κ) Damage evolution law [−] Exponential Exponential [−]
α Residual stress parameter [−] 0.999 0.999 [−]
β Softening rate parameter [−] 400 400 [−]

Table 1: Material parameters.

0 1ω

Figure 4: Evolution of damage growth during multiscale analysis.

non-linear domain predictor [13]. Upon increasing load, damage grows and propagates
from the re-entrant corner of the L-shape specimen as shown in Figure 4. The interscale
relations used in this analysis correspond to the collocation constraints (6). Due to the
adaptive nature of the interface it is possible to capture the development of non-linearity
satisfying continuity of the solution throughout the complete specimen.

The load-displacement curves depicted in Figure 5 show the sensitivity of the method
to different elastic effective properties for the coarse bulk. In these tests, collocation is
adopted at Γ cf

I and the effective elastic moduli are retrieved by classical homogenization,
i.e. Voigt, Reuss and Mori-Tanaka averaging schemes, and computational homogeniza-
tion, i.e. fully prescribed forces, displacements and periodic boundary conditions. All
multiscale analyses (gray area) are plotted together with the direct numerical solution
(DNS). The agreement between multiscale analyses and DNS depends on the choice of
effective elastic properties for the coarse bulk. The differences between multiscale analysis
and DNS are higher in the pre-peak region since the overall behaviour is dominated by
the chosen effective elastic properties. However, in the post-peak region, these differences
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from the re-entrant corner of the L-shape specimen as shown in Figure 4. The interscale
relations used in this analysis correspond to the collocation constraints (6). Due to the
adaptive nature of the interface it is possible to capture the development of non-linearity
satisfying continuity of the solution throughout the complete specimen.

The load-displacement curves depicted in Figure 5 show the sensitivity of the method
to different elastic effective properties for the coarse bulk. In these tests, collocation is
adopted at Γ cf

I and the effective elastic moduli are retrieved by classical homogenization,
i.e. Voigt, Reuss and Mori-Tanaka averaging schemes, and computational homogeniza-
tion, i.e. fully prescribed forces, displacements and periodic boundary conditions. All
multiscale analyses (gray area) are plotted together with the direct numerical solution
(DNS). The agreement between multiscale analyses and DNS depends on the choice of
effective elastic properties for the coarse bulk. The differences between multiscale analysis
and DNS are higher in the pre-peak region since the overall behaviour is dominated by
the chosen effective elastic properties. However, in the post-peak region, these differences
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Figure 5: Load-displacement curves for the DNS and multiscale analysis.

become smaller due to the fact that non-linear areas are fully considered.
An assessment of collocation and average compatibility interscale relations is carried

out by comparing the damage field between multiscale analysis and DNS at ultimate
loading stage (Figure 9). The absolute error in ω is defined as

Eω = |ωDNS| − |ωMult| , 0 ≤ Eω ≤ 1. (9)

A small increase of Eω is observed for the average compatibility constraint although
differences remain in an acceptable range. The error Eω is higher around the domain
interfaces where a steep damage gradient needs to be captured. The overall cost of
the interscale relation in the multiscale analysis is found by computing the size of the
interface problem (Figure 7). The active interface is defined as the ratio between the
number of degrees of freedom involved in the interface Γ at load step t and the maximum
number obtained by considering all fine scale domains. In both collocation and average
compatibility the active interface grows with the activation of fine scale domains. However,
the interscale relations based on average compatibility constraints lead to a lower active
interface and this has a beneficial impact on the overall cost of the analysis.

5 CONCLUSIONS

A multiscale domain decomposition framework for the analysis of heterogeneous quasi-
brittle materials is presented. The multiscale strategy provides results which are in agree-
ment with a reference DNS and results in a much lower computational cost. The analyses
are influenced by the choice of the effective elastic properties for the coarse bulk and the
micro-to-macro connection strategy. The tests performed on a steel reinforced L-shape
specimen reveal that both interscale relations give similar results although the accuracy is
higher for the collocation constraint. However, average compatibility techniques provide
a cheaper overall cost which might be preferred in large scale computations.
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Abstract. Development of predictive capabilities of forming failure can help not only to 
reduce the experimental effort of formability characterization but also to accelerate the 
development of new or improved sheet metal alloys. This paper presents a comparative study 
on prediction of failures in sheet metals which leads to undesirable localized straining and/or 
fracture during the stamping process. The theoretical diffuse and localized necking models 
were applied. Several classical fracture criteria were also studied in the finite element 
analysis. All these models were used to predict the onset of failure and compare with the 
experimental cases. Comparison and validity of different failure criteria was discussed.  

 
1 INTRODUCTION 

In sheet metal forming analysis, the criterion using Forming Limit Diagram (FLD) is 
widely used for failure prediction since it was originally introduced by Keeler (1965) and 
Goodwin (1968) [1, 2]. FLD has been commonly applied to evaluate the formability of sheet 
metals for diagnosing the possible production problems in sheet metal stamping. It indicates 
the limit strains corresponding to the onset of localized necking over a range of major-to-
minor strain ratios. Although the concept of FLD is simple, its experimental implementation 
is not trivial. Therefore, analytical and numerical predictions of FLD have been intensively 
studied as the alternative methods. Recently, ductile fracture criteria have been used to 
determine the limit forming states [3]. The limit states were calculated by plugging the values 
of stress and strain histories obtained from the simultaneous finite element simulations into 
the integral form of different ductile fracture criteria. Several successful predictions for the 
fracture process have been reported. Some fracture criteria can be used to determine the FLD 
successfully whereas some others fail with this effort. 

This paper presents a comparative study on prediction of failures in sheet metals which 
leads to undesirable localized straining and/or fracture during the stamping process. More 
detailed discussion on each single topic can be found in [4, 5]. The theoretical diffuse and 
localized necking models according to Swift-Hill (1952) and Stören-Rice (1975) were 
applied. Several classical fracture criteria such as Rice-Tracey (1969), Cockcroft-Latham 
(1968), Brozzo et al. (1972), Oh et al. (1979), and Wilkins et al. (1980) were also studied in 
the finite element analysis. All these models were used to predict the onset of failure and 
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compare with the experimental cases. To determine the FLD experimentally, we conducted 
the Nakajima tests following the ISO 12004-2 standard [6].  

2 EXPERIMENT SETUP 
In order to determine the FLD of metal sheet, limiting dome height (LDH) tests were 

performed. The die set of the NUMISHEET ‘96 benchmark model was used. Experimental 
setup including the formability tester and the die set is depicted in Fig. 1. Four kinds of 
specimens were cut into so-called Nakajima specimens from the same material sheet, the 
narrowest widths of which were 25, 50, 75 and 175mm, with a length of 175mm in the rolling 
direction. Fig. 2 shows different blank shapes used in this study. The ASIAS scanning system 
was used to measure principal strains.  

The formability tester Die set  
Figure 1: The formability tester and die set 

 
Figure 2: Blank shapes of the LDH test 

3 FAILURE CRITERIA  

3.1 Necking criteria 
Under significant plastic deformation the onset of localization, which is often referred to as 

diffuse necking, occurs. Diffuse necking, which ends the initially uniform deformation in a 
wide thin sheet, involves contraction in both the lateral and width directions. The diffuse neck 
is accompanied by contraction strains in both the width and thickness direction and develops 
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gradually thus still allowing considerable extension [7]. Diffuse necking is usually predicted 
by, e.g. the Considère (1885) and Swift-Hill (1952) criteria [8]. Upon further deformation the 
necking region further localizes in an infinitesimal band which is related to the material 
instability or the localized necking. During localized necking the specimen thins without 
further width contraction [7]. Localized necking can be predicted by, e.g. the model of Hill 
(1952). Different approaches to predict necking have been introduced from different 
perspective views of the phenomenon, e.g. maximum load, zero extension line, bifurcation 
from point vertex on the yield surface or pre-existing imperfections. 

Critical thinning or thickness reduction is commonly used in press shop to determine the 
necking and it is assumed that necking occurs when the thickness strain is around 18–20% 
[9]. Even though that critical thinning criterion is frequently used in industry, there is not 
much research has done into this area. 

3.2 Fracture criteria 
Based on general observations from ductile tests that the load carrying capacity is reduced 

during the process, the materials are considered to be damaged. Damage indicators and 
damage rules for the ductile materials have been defined in different ways. It is postulated that 
fracture occurs when the damage, D, exceed a critical value. In the normalized form, the 
condition of fracture is expressed as: 

1D = (1)

Cockcroft and Latham (1968) developed a ductile fracture criterion based on the concept 
of “true ductility” [10]. Cockcroft-Latham stated that fracture will not occur until the product 
of maximum principal stress and equivalent strain is accumulated to a critical value. The 
reduced form of the Cockcroft-Latham criterion is given by: 

1C-L 0
crit.

1 f
pD d

D

e
s e= ò (2)

where 1s  is the highest tensile stress, pe  is the equivalent plastic strain, fe  is the equivalent 

fracture strain. The critical value, C-L
crit.D , is determined experimentally. Brozzo et al. (1972) 

modified the Cockcroft-Latham criterion fracture condition to express the effect of principal 
stress and hydrostatic stress [11].

1
B 0

1crit.

21
3( )

f
p

m

D d
D

e s
e

s s
=

-ò (3)

where 1 2 3( + + )/3ms s s s=  is the hydrostatic stress. The Cockcroft-Latham criterion was 
later modified by Oh et al. (1979) to have the so-called normalized form as given below [12]: 
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1
Oh 0
crit.

1 f
pD d

D

e s
e

s
= ò (4)

Wilkins et al. (1980) suggested a damage function that includes a hydrostatic pressure 
weighting term, w1, and an asymmetric-strain weighting term, w2. Fracture is postulated to 

occur when the damage function D exceeds a critical value DC over a critical material volume 

RC, leading to discontinuous macro crack creation and stepwise growth [13]. The criterion is 
rewritten in the normalized form as: 

1 2W 0
crit.

1 f
pD w w d

D

e
e= ò (5)

The hydrostatic pressure weighting term accounts for the growth of holes during loadings 
that consists of large stress triaxiality and small strain. The asymmetric-strain weighting term 
accounts for the observation that, after initiation, the holes can link up as a band if subsequent 
loading is shear. The two weighting terms are defined by: 

1
1

1 m

w
a

a

s

æ ö÷ç ÷ç= ÷ç ÷÷ç -è ø
; ( )2 2w A

b
= - (6)

where a is a constant and relates to a so-called limit pressure, Plim; A is the asymmetric-strain 
factor. These terms are calculated by: 

lim

1
a
P

= ; 2 2

3 1

max ,
s s

A
s s

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
, 1 2 3s s s³ ³  are deviatoric stresses (7)

4 RESULTS AND DISCUSSION 
The aluminum alloy (AA6061-T6) sheet of 0.8mm thickness was used to prepare 

specimens for the experimental tests in this paper. The mechanical properties and material 
constants are obtained from the tensile test of flat type dog-bone and shear specimens as 
shown in Fig. 3. The inverse method was applied to determine the failure strains at fracture of 
the tensile specimen using finite element simulation. The analysis was conducted with the 
assumptions that the material is isotropic and follows the von Mises plasticity theory.

The fracture uniaxial tensile test of the dog-bone specimens could not only provide the 
information about stress-strain relation and the fracture strains of the material but also help to 
calculate the material parameters through the inverse method with stress and strain result 
outputs of a parallel finite element simulation. As an example, the thickness strain record of 
the loaded specimen was used to identify the critical thinning value which was later applied as 
a criterion to predict failure. Such process is illustrated in Fig. 4 which shows the bifurcation 
point as failure occurs. 
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Figure 3: Dog-bone and shear specimens

Figure 4: Determination of the failure point using the thickness strain record

The experiment data and the FLD of AA6061-T6 obtained from the reference paper [14] 
are given in Fig. 5. The experimental data and the reference FLD agree pretty well except for 
the proximity of biaxial stretch mode. The calculated limit strains using necking criteria 
together with the experimental FLD from reference [14] are shown in Fig. 6. The left-hand 
side of the experimental FLD is parallel to the calculated curve for localized necking by Hill’s 
criterion. For positive values of e2, the calculated curve using Swift’s criterion has similar 
shape and is in accord with the experimental one. In both sides, the experimental curve is 
higher than the analytical ones. The Stören-Rice curve approaches the experimental FLD in 
the modes of uniaxial tension and biaxial stretch. But for plane strain condition, it predicted 
the limit strain that is far below the true value. It reflects a fact that necking has developed 
much earlier than it can be detected as depicted in Fig. 6 (a). An identical observation was 
reported for the forming limit diagram of a low-carbon steel [7]. 

Applying the inverse method for the finite element simulation of the tensile test of this 
material, the flat type dog-bone specimen failed at about 21.5% thickness strain. Limit strains 
of the 17.5, 20, 22.5 and 25% thickness strains conditions were also obtained from the finite 
element simulation and shown in Fig. 6 (b). On the left side of FLD, necking occurs when the 
thickness strain is about 20%. It is reasonable to predict localized necking occurs before the 

Bifurcation 
point 
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critical value of thickness strain at which the material was failed in the tensile test. However, 
the thinning criterion underestimated failures on the right hand side of FLD. 

Figure 5: The forming limit diagram: experimental results and the reference FLD 

Figure 6: Predictions of the FLD: (a) with necking criteria, (b) with thinning criterion

Comparison between limit strain due to ductile fracture criteria and that of the 
experimental FLD is given in Fig. 7. Only predictions with the criteria proposed by Rice-
Tracey, Brozzo et al., Oh et al., and Wilkins et al. are presented. More criteria including the 
proposed criterion by the present authors are discussed in [5]. The calculated strains of all 
models are located on or above the FLD. This makes sense as necking, which is followed by 
fracture, occurs earlier than the observed fracture. Among the four investigated fracture 
models in this study, the Wilkins et al. criterion is able to predict pretty well the forming 
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limit. Other models seem to overestimate the failure strains. Besides, as can be seen from Fig. 
7, the distance from the fracture points to the FLD following Wilkins et al. is relative small 
reflecting the experimental observation that soon after necking fracture occurs. Especially, for 
uniaxial and biaxial stretch modes fracture follows almost right after necking. 

Figure 7: Predictions of the FLD using ductile fracture criteria

5 SUMMARY 
Failures in the LDH tests were predicted by several necking and ductile fracture criteria in 

order to establish a calculated FLD and then compare that with the experimental curve. The 
following conclusions were made: 

- Swift and Hill necking criteria underestimated the limit strains but these calculated 
curves have the similar shape with the FLD. 

- The left side of the FLD was well predicted by thinning and the Wilkins et al. criterion. 
- Whereas the neighbor of uniaxial and biaxial stretch modes can be calculated by Stören-

Rice criterion, the prediction for plane strain condition is far to be satisfied.
- In all cases, the ductile fracture criteria tended to overestimate the failure which is 

initiated by necking in practice. Even though the calculated FLD is not well shaped, the 
prediction by the Wilkins et al. fracture criterion for the low ductility material in this 
study is acceptable.

- At the current time the work on sensitivity of the forming limit with different yield 
conditions is undertaken. 
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Abstract. This work proposes a generalized theory of deformation which can capture
scale effects also in a homogenously deforming body. Scale effects are relevant for small
structures but also when it comes to high strain concentrations as in the case of localised
shear bands or at crack tips, etc. In this context, so-called generalized continuum formu-
lations have been proven to provide remedy as they allow for the incorporation of internal
length-scale parameters which reflect the micro-structural influence on the macroscopic
material response. Here, we want to adopt a generalized continuum framework which is
based on the mathematical description of a combined macro- and micro-space [8]. The
approach introduces additional degrees of freedom which constitute a so-called micromor-
phic deformation. First the treatment presented is general in nature but will be specified
for the sake of an example and the number of extra degrees of freedom will be reduced
to four. Based on the generalized deformation description new strain and stress measures
are defined which lead to the formulation of a corresponding generalized variational prin-
ciple. Of great advantage is the fact that the constitutive law is defined in the generalized
space but can be classical otherwise. This limits the number of the extra material param-
eters necessary to those needed for the specification of the micro-space, in the example
presented to only one.

1 Introduction

Decades ago, it has been recognized that for some materials the kinematics on meso-
and micro-structural scales needs to be considered, if the external loading corresponds

1
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to material entities smaller than the representative volume element (RVE) and the sta-
tistical average of the macro-scopical material behaviour does not hold anymore. In this
sense the fluctuation of deformation on micro-structural level as well as relative motion
of micro-structural constituens, such as granule, crystalline or other heterogeneous ag-
gregates, influence the material response on macro-structural level. Consequently, field
equations based on the assumption of micro-scopically homogeneous material have to be
supplemented and enriched to also include non-local and higher-order contributions.

In particular, generalized continua aim to describe material behaviour based on a deeper
understanding of the kinematics at smaller scales rather than by pure phenomenologi-
cal approximation of experimental data obtained at macro-scopical level. The meso- or
micro-structural kinematics and its nonlocal nature is then treated either by incorporat-
ing higher-order gradients or by introducing extra degrees of freedom. For the latter,
the small-scale kinematics at each material point can be thought to be equipped with a
set of directors which specify the orientation and deformation of a surrounding a micro-
space. This results in a micromorphic continuum theory [3], if the directors are allowed
to experience rotation, stretch and change of angles to each other.

Geometrically nonlinear micromorphic formulations are sparsely found in literature,
e.g. in [5] issues related to material forces of in the hyperelastic case were discussed,
or in [7] micromorphic plasticity two-scale models have been proposed addressing micro-
structural damage as well as granular material behaviour.

So far formulations of generalized continua are faced with two major problems. The
first one relates to the fully non-linear and inelastic material behaviour. Classical in-
elastic formulations are based on decompositions of strain measures. Since generalized
continua exhibit more than one strain or deformation measure the question arises as to
how these can be decomposed into elastic and inelastic parts. Few suggestions were made
in [11, 4, 2]. These formulations remained, however, less satisfactory since the decomposi-
tion of the two deformation measures were, strictly speaking, independent of each other,
which raises many questions regarding the adequate formulation of evolution laws for the
inelastic parts. The second problem relates to the observation of scale effects also in a
homogenously deforming specimen. Cosserat and higher gradient theories cannot predict
such scale effects, because the extra strain measures are identically zero for homogenous
deformation. Furthermore, it is desirable to set out from a general and unified formula-
tion of continua with meso- and micro-structure. We propose a framework based on the
mathematical concept of fibre bundles embedded into a generalized continuum formula-
tion. More specifically, we want to consider the Cartesian product of the macroscopic
and further meso- or microscopic spaces and, accordingly, the generalized deformation is
composed of a macro-, meso- and/or micro-components. In principle, every point of the
macroscopic space would have an infinite number of degrees of freedom and dimensions.
In practice, the number of degrees of freedom is finite corresponding to the chosen level of
accuracy. In this sense the micromorphic continuum appears just as special approximation
of the general case [8]. From the micromorphic deformation description nonlinear strain

2
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measures are derived and corresponding stress measures are defined which allow for the
formulation of generalized variational principles and corresponding Dirichlet boundary
conditions.

The paper is organized as follows. In Sec. 2 the theory of the generalized continuum is
outlined. Subsequently, in Sec. 3 a generalized micromorphic principle of virtual work is
proposed. The approach allows for the incorporation of any conventional constitutive law,
this fact is exemplified using an inelastic material law. Details of the inelastic formulation
are elaborated in Sec. 4.1 and Sec. 4.2. Finally, the excellent performance is demonstrated
by an example of scale effects in homogenously deforming body as well as by that of a
shear band formation in Sec 5.

2 Generalized deformation and strain

The basic idea is that a generalized continuum G can be assumed to inherit the mathe-
matical structure of a fibre bundle. In the simplest case, this is the Cartesian product of a
macro space B ⊂ E(3) and a micro space S which we write as G := B × S . This definition
assumes an additive structure of G which implies that the integration over the macro- and
the micro-continuum can be performed separately. The macro-space B is parameterized
by the curvilinear coordinates ϑi, i = 1, 2, 3 and the micro-space or micro-continuum
S by the curvilinear coordinates ζα. Here, and in what follows, Greek indices take the
values 1, ... or n. The dimension of S denoted by n is arbitrary, but finite. Furthermore,
we want to exclude that the dimension and topology of the micro-space is dependent on
ϑi. Each material point X̃ ∈ G is related to its spatial placement x̃ ∈ Gt at time t ∈ R by
the mapping ϕ̃ (t) : G −→ Gt . For convenience but without loss of generality we identify
G with the un-deformed reference configuration at a fixed time t0 in what follows. The
generalized space can be projected to the macro-space in its reference and its current
configuration by

π0(X̃) = X and πt (x̃) = x (1)

respectively, where π0 as well as πt represent projection maps, and X ∈ B and x ∈ Bt.
The tangent space T G in the reference and current configuration, respectively, are defined
by the pairs (G̃i × Iα) and (g̃i × iα), respectively, given by

G̃i =
∂X̃

∂ϑi , Iα =
∂X̃

∂ζα
, g̃i =

∂x̃

∂ϑi and iα =
∂x̃

∂ζα
, (2)

where the corresponding dual contra-variant vectors are denoted by G̃i and Iα, respec-
tively. The generalized tangent space can also be projected to its corresponding macro-
space by

π∗
0(G̃i) = Gi and π∗

t (g̃i) = gi (3)
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respectively, where the tangent vectors Iα are assumed to be constant throughout S for
simplicity. Note that the definition of a projection map is not trivial. The tangent of
the projection map defines the geometry of the extra space and so the metric which is
to be used to evaluate the integral over the generalized space. The concept is rich in its
structure.

Now, we assume that the placement vector x̃ of a material point P (X̃ ∈ G) is of an
additive nature and is the sum of its position in the macro-continuum x ∈ Bt and in the
micro-continuum ξ ∈ St as follows

x̃
(
ϑk, ζβ, t

)
= x

(
ϑk, t

)
+ ξ

(
ϑk, ζβ, t

)
. (4)

Thereby, the macro-placement vector x defines the origin of the micro co-ordinate system
such that the micro-placement ξ is assumed to be relative to the macro-placement. The
definition of the generalized continuum and so of the extra degrees of freedom depends
directly on the choices to be made for the micro deformation ξ

(
ϑk, ζβ, t

)
. The theory is

based on the fact that the dependency on the micro co-ordinates ζβ must be determined
apriori. Specific choices define specific continua. The following quadratic ansatz

x̃ = x
(
ϑk, t

)
+ ζα

(
1 + ζβ χβ

(
ϑk, t

))
aα

(
ϑk, t

)
. (5)

results adequate strain measures of full rank shown in [10]. The vector functions aα

(
ϑk, t

)
and scalar functions χα, with their corresponding micro co-ordinates ζα, are independent
degrees of freedom. The number α must be chosen according to the specific topology of
the micro-space as well as depending on the physical properties of the material due to its
intrinsic structure.

In computations we have to deal with four additional independent functions per micro
co-ordinate. These are the three components of the vector aα as well as the independent
displacement-like functions χα. Note, however, aα as well as χα are constant over S. While
the functions χα contribute to the definition of the strains, their special importance lies in
the fact that they allow for the complete definition of linear distribution of strain in the
extra dimensions. Also, it is important to realize that the dimension of the micro-space
does not have to coincide with the dimension of the macro-space.

Now we proceed to define the strain measures. Taking the derivatives of x̃ (Eq. 5) with
respect to the macro-coordinates ϑi as well as with respect to the micro co-ordinates ζα,
the generalized deformation gradient tensor can be expressed as follows

F̃ =
[
x,i

(
ϑk, t

)
+ ζα ζβ χβ,i

(
ϑk, t

)
aα

(
ϑk, t

)

+ ζα
(
1 + ζβ χβ

(
ϑk, t

))
aα,i

(
ϑk, t

) ]
⊗ G̃i +

[
aα

(
ϑk, t

)
+ ζβ

(
χβ

(
ϑk, t

)
aα

(
ϑk, t

)
+ χα

(
ϑk, t

)
aβ

(
ϑk, t

)) ]
⊗ Iα . (6)

Similar to its classical definition, a generalized right Cauchy-Green deformation tensor
based on Eq. (6) is formulated as C̃ = F̃T F̃ and neglecting higher order terms in ζα and
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respectively, where the tangent vectors Iα are assumed to be constant throughout S for
simplicity. Note that the definition of a projection map is not trivial. The tangent of
the projection map defines the geometry of the extra space and so the metric which is
to be used to evaluate the integral over the generalized space. The concept is rich in its
structure.

Now, we assume that the placement vector x̃ of a material point P (X̃ ∈ G) is of an
additive nature and is the sum of its position in the macro-continuum x ∈ Bt and in the
micro-continuum ξ ∈ St as follows

x̃
(
ϑk, ζβ, t

)
= x

(
ϑk, t

)
+ ξ

(
ϑk, ζβ, t

)
. (4)

Thereby, the macro-placement vector x defines the origin of the micro co-ordinate system
such that the micro-placement ξ is assumed to be relative to the macro-placement. The
definition of the generalized continuum and so of the extra degrees of freedom depends
directly on the choices to be made for the micro deformation ξ

(
ϑk, ζβ, t

)
. The theory is

based on the fact that the dependency on the micro co-ordinates ζβ must be determined
apriori. Specific choices define specific continua. The following quadratic ansatz

x̃ = x
(
ϑk, t

)
+ ζα

(
1 + ζβ χβ

(
ϑk, t

))
aα

(
ϑk, t

)
. (5)

results adequate strain measures of full rank shown in [10]. The vector functions aα

(
ϑk, t

)
and scalar functions χα, with their corresponding micro co-ordinates ζα, are independent
degrees of freedom. The number α must be chosen according to the specific topology of
the micro-space as well as depending on the physical properties of the material due to its
intrinsic structure.

In computations we have to deal with four additional independent functions per micro
co-ordinate. These are the three components of the vector aα as well as the independent
displacement-like functions χα. Note, however, aα as well as χα are constant over S. While
the functions χα contribute to the definition of the strains, their special importance lies in
the fact that they allow for the complete definition of linear distribution of strain in the
extra dimensions. Also, it is important to realize that the dimension of the micro-space
does not have to coincide with the dimension of the macro-space.

Now we proceed to define the strain measures. Taking the derivatives of x̃ (Eq. 5) with
respect to the macro-coordinates ϑi as well as with respect to the micro co-ordinates ζα,
the generalized deformation gradient tensor can be expressed as follows

F̃ =
[
x,i

(
ϑk, t

)
+ ζα ζβ χβ,i

(
ϑk, t

)
aα

(
ϑk, t

)

+ ζα
(
1 + ζβ χβ

(
ϑk, t

))
aα,i

(
ϑk, t

) ]
⊗ G̃i +

[
aα

(
ϑk, t

)
+ ζβ

(
χβ

(
ϑk, t

)
aα

(
ϑk, t

)
+ χα

(
ϑk, t

)
aβ

(
ϑk, t

)) ]
⊗ Iα . (6)

Similar to its classical definition, a generalized right Cauchy-Green deformation tensor
based on Eq. (6) is formulated as C̃ = F̃T F̃ and neglecting higher order terms in ζα and

4
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extracting only the dominant parts of C̃ (constant and linear in ζα) we arrive at

C̃ =
(

x,k · x,l + ζα (aα,k · x,l + x,k · aα,l)
)

G̃k ⊗ G̃l

+
(

x,k · aβ + ζα aα,k · aβ + ζα x,k · (χα aβ + χβ aα)
)(

G̃k ⊗ Iβ + Iβ ⊗ G̃k
)

+
(

ζα (χγ aα · aβ + χβ aα · aγ) + 2 ζα χα aβ · aγ + aβ · aγ

)

Iβ ⊗ Iγ = C+ ζαKα .(7)

Note in order to obtain Eq. (7) the geometry of the micro-space must be specified. Specif-
ically, one has to decide about the projection map π∗

0(G̃i) which defines the transition
from the tangent vectors G̃i, defined in the generalized space, to the tangent vectors Gi,
defined in T B.

3 Generalized principle of virtual work

A micromorphic variational principle is established based on the generalized strain
tensor C̃ (Eq. 7). From a non-linear boundary value problem in the domain B × S
considering the static case and considering only mechanical processes, the first law of

thermodynamics provides the following variational statement

δΨ−Wext = 0 . (8)

The external virtual work Wext is defined in the Lagrangian form as follows

Wext (u) =

∫

B

b · δu dV +

∫

B

lα · δaα dV +

∫

∂BN

t(n) · δu dA+

∫

∂BN

q(n)α · δaα dA (9)

where the external body force and moment b and l, respectively, acting in B and the
external traction and surface moment t(n) and q(n), respectively, acting on the Neumann
boundary ∂BN are obtained by integrating corresponding quantities over the micro-space
S. For more details refer to [10].

With Eq. (7) the internal virtual power in the Lagrangian form is given by

δΨ =

∫

B

∫

S

ρ̃0
∂ψ(C̃)

∂C̃
dS dV =

∫

B

1

2

{

S : δC+Mα : δKα

}

dV , (10)

with the force stress and the higher-order size-scale relevant stress

S
(
ϑk

)
=

1

VS

∫

S

2 ρ̃0
∂ψ(C̃)

∂C̃
dS , M

(
ϑk

)
=

1

VS

∫

S

2 ζα ρ̃0
∂ψ(C̃)

∂C̃
dS . (11)

Then, substituting Eqs. (10) and (9) into Eq. (8) we end up with a micromorphic varia-
tional principle:

∫

B

{

S : δC+Mα : δKα

}

dV −Wext = 0 . (12)
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The generalized principle of virtual work is supplemented by essential boundary condi-
tions, the so-called Dirichlet boundary conditions

u = hu on ∂BD , aα = hγ,α on ∂BD , (13)

where hu and hγ,α are prescribed values at the boundary ∂BD.

4 The inelastic formulation

As discussed in the introduction, the inelastic constitutive law can be any classical one
which is now to be defined at the level of the micro-continuum. In what follows we adopt
and tailor to our purposes the formulation of finite strain inelasticity based on unified
constitutive models as developed in ([9]). While the choice is convenient we stress that
any alternative inelastic law could serve the purpose as well.

4.1 Generalized kinematics of the elastic-inelastic body

A point of departure for an inelastic formulation constitutes the multiplicative decom-
position of the generalized deformation gradient Eq. (6) into an elastic and an inelastic
part

F̃ = F̃eF̃p. (14)

For metals, the above decomposition is accompanied with the assumption F̃p ∈ SL+(3,R)
which reflects the incompressibility of the inelastic deformations, where SL+(3,R) denotes
the special linear group with determinant equal one.

The following generalized right Cauchy-Green-type deformation tensors are defined

C̃ := F̃T F̃ , C̃e := F̃T
e F̃e , C̃p := F̃T

p F̃p . (15)

Since the deformation gradient F̃ is also an element of GL+(3,R) with positive deter-
minant, we can attribute to its time derivative a left and right rate

˙̃F = l̃F̃ , ˙̃F = F̃L̃ . (16)

Both rates are mixed tensors (contravariant-covariant). They are related by means of the
equation

L̃ = F̃−1 l̃F̃ . (17)

Since F̃p ∈ SL+(3,R) we can define a right rate according to

˙̃Fp = F̃pL̃p (18)

which proves more appropriate for a numerical treatment in a purely material context.
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4.2 The constitutive model

4.2.1 General considerations

Let τ̃ be the generalized Kirchhoff stress tensor. Consider the expression of the internal
power in terms of spatial and material tensors, respectively

W = τ̃ : l̃ , W = Γ̃ : L̃ (19)

where l̃ is defined in Eq. (16a). The comparison of Eq. (19a) with (19b) leads with the
aid of Eq. (17) to the definition equation of the material stress tensor Γ̃:

Γ̃ = F̃Tτ̃ F̃−T . (20)

The tensor Γ̃ is, accordingly, the mixed variant pull-back of the generalized Kirchhoff

tensor. It coincides with Noll’s intrinsic stress tensor and determines up to a spherical
part the Eshelby stress tensor.

A common feature of inelastic constitutive models is the introduction of phenomeno-
logical internal variables. We denote a typical internal variable as Z. Assuming the
existence of a free energy function according to ψ = ψ(C̃e, Z), the localized form of the
dissipation inequality for an isothermal process takes

D = τ̃ : l̃− ρ̃ref ψ̇ = Γ̃ : L̃− ρ̃ref ψ̇ ≥ 0 , (21)

where ρref is the density at the reference configuration. This inequality can be transferred
to (see [10])

D =

(
Γ̃− 2ρ̃refC̃F̃−1

p

∂ψ(C̃e, Z)

∂C̃e

F̃−T
p

)
: L̃

+2ρ̃refC̃F̃−1
p

∂ψ(C̃e, Z)

∂C̃e

F̃−T
p : L̃p − ρ̃ref

∂ψ(C̃e, Z)

∂Z
· Ż ≥ 0 .

By defining Y as the thermodynamical force conjugate to the internal variable Z

Y := −ρ̃ref
∂ψ(C̃e, Z)

∂Z
, (22)

and making use of standard thermodynamical arguments, from Eq. (22) follows the elastic
constitutive equation

Γ̃ = 2ρ̃refC̃F̃−1
p

∂ψ(C̃e, Z)

∂C̃e

F̃−T
p = 2ρ̃refF̃

T
p C̃e

∂ψ(C̃e, Z)

∂C̃e

F̃−T
p (23)

as well as the reduced local dissipation inequality

Dp := Γ̃ : L̃p + Y · Ż ≥ 0 , (24)

where Eq. (22) has been considered. Dp is the plastic dissipation function. From Eq. (24)
follows as an essential result that the stress tensor Γ̃ and the plastic rate L̃p are conjugate
variables. Observe that the tensor L̃p is defined in Eq. (18).

7
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4.2.2 The elastic constitutive model

Further we assume that the elastic potential can be decomposed additively into one
part depending only on the elastic generalized right Cauchy-Green deformation tensor C̃e

and the other one depending only on the internal variable Z

ψ = ψe(C̃e) + ψZ(Z) . (25)

Defining the logarithmic strain measure

α := ln C̃e , C̃e = expα (26)

and assuming that the material is elastically isotropic, one can prove that the relation
holds

C̃e
∂ψe(C̃e)

∂C̃e

=
∂ψe(α)

∂α
, (27)

where ψe(α) is the potential expressed in the logarithmic strain measure α. Eq. (23)
results then in

Γ̃ = 2ρref F̃
T
p

∂ψe(α)

∂α
F̃−T

p . (28)

Note that ψe is an isotropic function of α. The last equation motivates the introduction
of a modified logarithmic strain measure

ᾱ := F̃−1
p αF̃p . (29)

Since the following relation for the exponential map holds

F̃−1
p (expα)F̃p = exp ᾱ, (30)

Eq. (28) takes

Γ̃ = 2ρref
∂ψ(ᾱ)

∂ᾱ
. (31)

It is interesting to note that Eq. (30) together with Eqs. (26), (15a), and (15c) lead to a
direct definition of ᾱ. The relation holds

ᾱ = ln(C̃−1
p C̃). (32)

For computational simplicity a linear relation is assumed and therefore the elastic consti-
tutive model Eq. (31) takes its final form

Γ̃ = K tr ᾱT 1+ µ devᾱT (33)

8
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where

ᾱT = ln(C̃C̃−1
p ) , (34)

and K is the bulk modulus and µ the shear modulus.
It should be stressed that the reduction of the elastic constitutive law to that given

by Eq. (31) results in a considerable simplification of the computations necessary for the
formulation of the weak form of equilibrium and its corresponding linearisation. The only
assumption we used was the very natural one of having an internal potential depending
on C̃e. The following reduction is carried out systematically.

4.2.3 Inelastic constitutive model

The presented framework of generalized continua allows for the application of any set of
classical constitutive laws. In what follows we confine ourselves to a unified constitutive
law of the Bodner and Partom type as generalized in the first author’s previous work
(see e.g. [9]). We concluded from Eq. (24) that the tensors Γ̃ and L̃p are conjugate.
Essentially we have to consider the stress tensor Γ̃ as the driving stress quantity, while
the plastic rate for which an evolution equation is to be formulated is taken to be L̃p.
This leads to the following set of evolution equations

L̃p = φ̇νT , Ż =
M

Z0
(Z1 − Z)Ẇp , Ẇp = ΠdevΓ̃φ̇(ΠdevΓ̃, Z) , ν =

3

2

devΓ̃

ΠdevΓ̃

ΠdevΓ̃ =

√
3

2
devΓ̃ : devΓ̃ , φ̇ =

2
√
3
D0 exp

[
−
1

2

N + 1

N

(
Z

ΠdevΓ̃

)2N
]
. (35)

Here, Z0, Z1, D0, N,M are material parameters. The choice of the transposed quantity
in Eq. (35a) reflects the form given by associative viscoplasticity, when the classical flow
functions are generalized and formulated in terms of nonsymmetric quantities.

5 Numerical examples

In this section two numerical examples are presented to demonstrate the applica-
bility of the micromorphic theory. In this specific case the micro-deformation and so
micro-continuum are assumed to be one-dimensional, i.e. we consider only α = 1 in
Eq. 5). There vector a in the generalized reference configuration is defined to be par-
allel to the x−axis. The material parameters, typical for metals, are chosen as follows:
K = 1.64206E02 N/mm2, µ = 1.6194E02 N/mm2, D0 = 10000 1/sec, Z0 = 1150 N/mm2,
Z1 = 1400 N/mm2, N = 1 and M = 100. The inelastic parameters are reported in the
literature for titanium; e.g. [1].
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5.1 Simple tension

The first example is a thin sheet of dimensions 26 × 10 subjected to simple tension.
One quarter of the sheet is discretised using 5× 5 enhanced 4-node finite elements of the
type developed in [9], which, in this specific case, are equivalent to three-dimensional en-
hanced 8-node elements with thickness 1. The aim here is to illustrate size-scale effects in
the viscoplastic regime at homogenous deformations. We consider four different internal
length-scale parameters, denoted by h, which are nothing but the size/length of the mi-
crospace S, and take them to be of the values 0.12, 0.15, 0.18 and 0.20mm. The time step
used is 0.1sec for the displacement at the top increasing by a velocity of 0.02N/sec. While
the specimen is under force loading with no prescribed displacements at the loading side,
the computations are carried out displacement-controlled with the value of the external
loading being scaled and determined to provide the prescribed displacement velocity.

The corresponding load-displacement graphs are depicted in Fig. 1. With increasing
internal length-scale parameter it can be clearly seen that the onset of the plastic defor-
mation takes place at larger loading values. During the plastic deformation the relative
loading offset between the curves is maintained.

Now, this case of simple tension particularly illustrates the attractiveness of the pro-
posed generalized theory as it predicts scale effects also in a homogenously deforming
specimen. In fact alternative theories, such as micropolar (Cosserat) or strain gradient
approaches, lack the means to predict this kind of scale effect. This is clear, because
the former necessitates the rotation gradient and the latter the deformation gradient of
higher order not to vanish. In this example, however, both of them do not arise and
consequently, no scale effects would be observed.

10
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Figure 3: final deformed configuration displaying the shearband formation using 30× 60 elements

5.2 Shearband formation

The second numerical example is the same as before in terms of geometry, loading,
and time step - a thin sheet under tension. Shearbanding is initialized by decreasing the
material parameter Z0 by 10% within the first element (at the centre of the specimen).
The internal length is considered to be h = 0.1mm. One quarter of the sheet is modeled
using 20 × 30 and 30 × 60 4-node elements of the type described above. From the load-
displacement curve in Fig. (2) it is clear that heavy softening related to the shearband
formation takes place. This softening is independent of the mesh since both meshes give
essentially the same results. The deformed configuration is pictured in Fig. (3).

Note that the constitutive law is of the viscoplastic type. However, the Bodner-Partom
model covers in the limit the time-independent case as well. The present choice of material
parameters together with the applied loading velocity renders the time-dependent effect
rather very small. Also, from the previous example we can conclude that the scale effect
due to the micromorphic formulation is dominant here.

6 Conclusion

A general framework for a micromorphic continuum has been developed which is espe-
cially attractive for non-linear material behaviour. This approach motivates research into
experimental verification of the mentioned extra degrees of freedom which is still elusive
at large. While it is clear that generalized degrees of freedom and the internal lengths
as well as the scale effects associated with them are related to the internal structure of
the material, the direct deformation mechanisms at the micro-scale giving rise to such
degrees of freedom are widely subject to intensive research in many areas of mechanics

11



551

S. Skatulla, C. Sansour and H. Zbib

and physics with many open questions. It is very likely that more than one mechanism
could lead to a certain type of degrees of freedom. While these questions are beyond the
scope of the present work we do acknowledge their importance. Multi-scale modelling and
experimentation will be at the heart of any answer.
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Abstract. A technique to solve the periodic homogenization problem is described 
systematically in this work. The method is to solve the cell problems by imposing eigenstrains 
in terms of a thermal or a piezoelectric strain to the representative volume element (RVE). 
Homogenized coefficients are then calculated from stress solutions of those cell problems. As 
a dual approach, an imposed stress field can also be applied to solve the cell problems. 
Numerical examples of characterization mechanical properties of complicated microstructure 
materials are examined. The obtained results show good agreements with the published data. 
Comparisons show that the technique in this study can be effectively used to characterize the 
mechanical properties of complex microstructured materials.  

 
1 INTRODUCTION 

Mechanical properties of complex microstructured materials can be characterized with the 
homogenization method which is a process of finding a homogeneous ‘effective’ material that 
is energetically equivalent to a microstructured heterogeneous material [1]. That means an 
object of the equivalent homogenized material behaves in the same manner as the origin one 
when it is subjected to usual loadings. Specifically, homogenization method aims to calculate 
effective elastic properties of highly heterogeneous media by averaging over an assumed 
statistical homogeneous volume. The conditions for such a volume to be chosen as a 
Representative Volume Element (RVE) are sufficiently large at the microscale and 
sufficiently small at the macroscale and structurally typical of the entire composite material 
on average [2]. For different approach, the RVE size affects the obtained results [3, 4]. 
However, when the ratio of the RVE size to the body dimensions under consideration tends to 
zero the results converge to exact solution. Among various approaches to predict the effective 
properties of composites, the mathematical homogenization method with the periodicity 
assumption over a basic cell (or a representative volume element) is preferable due to its 
rigorous mathematical background and the ease to implement [5-7]. Based on this method, 
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different approaches can be used to obtain the equivalent properties of the highly 
heterogeneous periodic media. Researches on the homogenization problems are devoted to 
either making an in-house code [5, 6] or writing user-subroutines in commercial softwares [8] 
to study some particular cases. These approaches, on one hand, are flexible and facilitated to 
the researchers and skillful software users, but on the other hand, can be burdensome to 
engineers who have less skill. 

In the present work we focus on a so-called eigenstrain technique to solve the 
homogenization problems using commercial FEM softwares. The eigenstrain technique solves 
the basic cell problems by applying a prescribed eigenstrain as a given local macroscopic 
scale strain at the material point associating with the basic cell. In co-operation with 
commercial FEM softwares, the eigenstrain technique can solve the homogenization problems 
regardless of using any user-subroutine. The method is then used to characterize the 
mechanical properties of some composite materials having complex microstructures. 

2 THE HOMOGENIZATION PROBLEM 
Generally, there are two different scales associated with microscopic and macroscopic 

behaviors to describe a microstructured heterogeneous composite material [9, 10]. The first 
one is a macroscale, denoted by the slowly varying global variables x , at which the 
heterogeneities are invisible. The other is for the material micro-architecture of 
heterogeneities size and referred as the microscale, denoted by the rapidly oscillating local 
variables y . To model a structure of such kind of material using the finite element method 
(FEM) one should utilize models with very fine mesh so that the details at the microscale size 
of heterogeneities can be captured. That leads to a very expensive computational cost and 
sometimes it is impossible to perform the analysis due to extremely high requirements of 
computer resources. Instead, a so-called homogenization process can be used to characterize 
the heterogeneous material as a homogenized one and then, the equivalent material properties 
are used in the simulation of the whole structure as in a normal FEM analysis [7]. 

Figure 1: The macroscale and microscale of the homogenization problem 

2.1 The problem formulation 
From the asymptotic expansion [7, 11], the homogenized elasticity tensor can be 

determined explicitly by: 

0

1

f 
g 

Ω
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( )1 kh
ijkh ijkh ijrs rs

Y

a a a e dy
Y

hom ( ) ( ) ( )= +ò y y c (1) 

where,  { };0 , 1,n
i iy Y i n= Î £ £ =Y y  , Y  is the “volume” of the unit cell, 

( )1
d· = ·ò

Y

y
Y

 denotes the arithmetic mean over the unit cell Y .

khc  in (1) is the solution of the cell problem:

( ) ( ) ( )

 is -periodic

kh
ijrs rs ijkh

j j
kh

a e a
y y

ìï ¶ ¶ï- =ïï ¶ ¶íïïïïî

y y

Y

c

c
(2) 

with the periodicity condition defined by: If ( ) : -periodicivÎy Y y Y  or 

( ) ( )periv VÎy Y  then ( )iv y  takes equal values on the opposite faces of Y .

Generally, we can obtain the solution kh
E =v c  by solving the six cell problems and then 

compute the homogenized elasticity coefficients according to (1). As an alternative, the 
homogenization problem (2) with periodicity conditions can be formulated in the following 
forms: 

For a given macroscopic strain E ,

( ) ( )
( ) ( ) ( )

per

per

   

,  

Find V such that
P

J J

ìï Îïïíï £ " Îïïî

E
E

E E E

v Y

v v v V Y

where ( ) ( )( ) ( )( )1
+ +

2
J d= òE

Y

v a E e v E e v y
Y

(3) 

Note that the problems (2) and (3) are equivalent. Moreover, the variational formulation 
(3) is equivalent to a problem of minimization with constraints: 

( ) ( )
( ) ( ) ( )

per    min

1
,

2

Find V such that J

J

ìï Î ïïïíï = -ïïïî

v Y v

v a v v l v

where ( ) ( ) ( )1
, d= ò E

Y

a v v ae v e v y
Y

; ( ) ( )1
d=- ò

Y

l v aEe v y
Y

(4) 

Again, by solving 6 problems of formulation (3) or (4) with the imposed macroscopic 

strains ( ) ( )1
2

kh
ij ik jh ih jkij
E T d d d d= = + , where ijd  is the Kronecker delta symbol; the 
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homogenized coefficients are determined by: 

( )( )hom 1 1
kh

kh kh kh
ijkh ij ija d ds s= = = +ò ò T

Y Y

y a T e v y
Y Y

(5) 

2.2 Periodicity conditions 
Due to the periodicity of the composites, the microscopic displacement and stress fields are 

the Y  periodic solution. In the homogenization, the periodic boundary conditions must be 
imposed on the RVE to reflect the repeatability of the microstructure. For the symmetric 
inclusion or RVE, the periodic boundary condition leads to the ordinary constraints on the 
boundary of the RVE [6, 12]. For the non-symmetric inclusion or RVE, appropriate multi-
point constraints are imposed on the displacements of nodes on the boundary of RVE in order 
to produce the periodic boundary conditions [12, 13].  

The internal constraints among nodal degrees of freedom can be expressed by a set of 
constraint equations that must be introduced into the finite element equations. That is, the 
periodic boundary conditions can be treated as a set of constraint equations. To specify 
identical displacement for corresponding nodes on opposite edges, the elimination method can 
be used [12, 14]. The pairs of nodes on the opposite edges of the RVE can be linked by a 
constraint equation so that the opposite edges have identical deformed shapes. The periodicity 
conditions can be described by two sets of indices: 

{ }1 1 1 1
1 2, ,..., Mi i iI = , { }2 2 2 2

1 2, ,..., Mi i iI = (6) 

and a set of M constraint equations: 

1 2 1,2,...,
k ki i

k Mu u= = (7) 

The multi-point constrains for RVE can be equivalently expressed in the matrix form by [12] 

=Pu 0 (8) 

where P  is the transformation matrix whose entries are equal to zero except 
1 21 i I I= " Î ÈijP

{ }1 2 1 1,2,...,
k ki i

k M= - " ÎP

{ }2 1 1 1,2,...,
k ki i

k M= - " ÎP

(9) 

For the system of N  degree of freedom (DOF) with M  constraint equations, the resulting 
transformation matrix should be ( )N N M  . Figure 2 illustrates the periodicity conditions 
with constraints on the boundary of the RVE in a 2D case with 2 DOFs at each node. The 
arrows represent the coupling degrees of freedom for identical nodes on opposite sides. The 
displacements at corner nodes are fixed. 
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Y Y
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Y Y
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Figure 2: The periodicity constraints on boundary of a 2D RVE  

Let 1u  be the free components of u , and 2 3,u u  the components that are linked by the 
periodicity conditions. Then, we have the cell problem in discretized form: 
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u Pu 0
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N
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The elimination method to handle the periodicity conditions is easy to implement. 
However, the bandwidth of the stiffness matrix is seriously increased. It is recommended to 
use the skyline or sparse storage method for a better computing performance. Commercial 
FEM softwares supply utilities to handle with such constraint. The CP command in ANSYS®

and MPC function in MSC. PATRAN® can be used to define the periodicity conditions. 
Moreover, for particular problems with symmetric microstructure, only a part of the unit cell 
is modeled and the periodicity conditions can be reduced to the conventional boundary 
conditions [6]. A study on alternative methods and comparison of computing time among 
them can be found in [15]. Method to ensure strain-periodicity for a hexagonal unit cell by 
imposing the kinematic boundary conditions is also introduced [16]. 
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2.3 The eigenstrain technique 
The eigenstrain terminology is first defined by Mura [17] to indicate non-elastic strains as 

thermal expansion, phase transformation, initial strains, plastic strains, etc. The eigenstrain 
method is named due to the fact that this technique solves the basic cell problems of 
homogenization by applying an eigenstrain as a given local macroscopic scale at the material 
point associating with the basic cell. The fact that the elementary macroscale strain state is 
achieved by applying an appropriate eigenstrain makes this method distinct to the isostrain 
method in which specific displacements are imposed on the boundary to obtain the 
macroscale strain states. The displacements imposed on the corresponding boundary in the 
cell problems to achieve the elementary macroscale strain states are 

kl
i ik lyf d= (11) 

The corresponding macroscale (average) strain components due to the imposed 
displacements are given by 

( ) ( )

( )1 1
2 2

1

1 1

kl kl kl
ij

klkl
j kl kli

i j j i
j i

ij
ij Y

Y Y

T e

n n
y y

e dy
Y

dy ds
Y Y

ff
f f

f f

¶

= =

æ ö¶ ÷ç¶ ÷ç ÷= + = +ç ÷ç ÷¶ ¶ç ÷çè ø

ò

ò ò
(12) 

It is worth noting that, for the isostrain method, the periodicity condition of the fluctuating 
displacement in the cell problem doesn’t hold strictly, i.e. 

( ) 0¹ve kl (13) 

This is because the imposed displacements constraint to obtain the elementary macroscale 
strain and the periodicity condition constraint cannot be applied simultaneously on the same 
boundary.

To achieve at the same time the macroscale elementary strain state and the periodicity 
condition, the eigenstrain method shows to be a most suitable way. An applied eigenstrain 
plays the role of the macroscale elementary strain and the periodicity condition discussed in 
Section 3 will be satisfied by constraining the displacements of nodes on the boundary. 
The eigenstrain klT can be either a thermal strain as in [18] or a piezoelectric strain: 

kl kl kl
thermal T= = DT e a        or kl kl kl

piezo= = ET e d (14) 

where kla  is the thermal expansion coefficient vector, TD  is the temperature difference, kld
is the piezoelectric strain matrix and E  is the electric field vector. For example, to obtain the 
macroscale strain state 11T  the corresponding thermal expansion coefficient is 

{ }11 1,0,0,0, 0, 0
T

=a  and the temperature 1TD =  if the eigenstrain is chosen as a thermal 
strain. If a piezoelectric strain is applied then the piezoelectric strain matrix is  
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1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Té ù
ê ú
ê ú= ê ú
ê ú
ê úë û

d (15) 

and the electric field vector is { }1,0,0
T

=E . Similarly, the other macroscale strain states can 
be achieved by applying an appropriate eigenstrain with the corresponding fictitious material 
properties kla  or kld . In general, the steps to solve the cell problems with a commercial FE 
software using the eigenstrain technique can be summarized as follows 

1. Build the model of the basic cell. 

2. Define and assign the material properties for each constituent. 

3. Control the meshing process so that nodes are identical located on opposite faces/sides 
of the cell model. 

4. Apply the periodicity conditions. 

5. Assign the fictitious material properties to the whole model to achieve a desired 
elementary macroscale strain state (the eigenstrain). 

6. Solve the problem. 

7. Calculate the homogenized elasticity coefficients using stresses at Gauss points of the 
elements according to: 

( ) ( ) ( )

hom

1

1

1

kl
ijkl ij

NGP
kl
ij GP GP GP

GP

a dy

y w y J y

s

s
=

=

= å

ò
YY

Y

(16) 

where ( )kl
ij GPys  is the stress component, ( )GPw y  and ( )GPJ y  are the weight and 

Jacobian at the sampling points GPy , respectively.  

3 NUMERICAL EXAMPLES 
In this section, two numerical examples are investigated to validate the proposed 

technique. The demonstrations are done by using various commercial softwares. 

3.1 Composite material with randomly distributed spherical particle 
The unit cell model is first generated by GeoDict2009® (licensed by Dr. Andreas 

Wiegmann at ITWM, Germany, www.geodict.com) and then transferred into the FE 
environment, e.g. MSC. PATRAN® as shown in Figure 3. The particle volume fraction is 
30%, the radius of particles to unit cell length size ratio is chosen as L/D = 10/3 [19]. The 
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material properties of constituents are given in Table 1. 

Table 1. Material properties of constituents 

E (GPa) n 
Particle 450 0.17 
Matrix 70 0.3 

     
(a) The GeoDict2009® model             (b) The FE model showing inclusions 

Figure 3: The GeoDict2009® model and the FE model of the RVE 
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Figure 4: Converged results with respect to the mesh density 

The GeoDict2009® program generates voxel (cubic) elements with the periodic option in x, 
y and z direction to guarantee the periodicity constraints of opposite faces. Calculation has 
been made with different mesh configurations and reported in Figure 4. Due to the random 
property of the distribution of particles in the model and the usage of voxels to approximate 
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the spherical geometry, the obtained results have a slight difference compared to the referred 
ones. However, the discrepancy is acceptable, about 7%, 3% and less than 1% for the 
25x25x25, 50x50x50 and 75x75x75 mesh configurations, respectively. 

Although the GeoDict2009® model approximates the geometry with certain errors by using 
voxel elements, we can have a benefit of using such cubic elements. The homogenized 
coefficients determined by equation (16) are now evaluated with less effort by using the 
constant value 1/8 of the element volume for the Jacobian. 

3.2 Glass/alumina two phase material with imperfect bonding 
In previous example, matrix and inclusion in the composite are assumed to be perfectly 

bonded and, therefore, there is no separation between them. However, consideration of the 
damage of the interface is necessary to accurately predict the behavior of multiple phase 
composites. One of the methods to consider the debonding at the interface is to use interface 
elements (or cohesive elements) which are currently provided in several commercial 
softwares to simulate the onset and propagation of delamination. These elements have zero 
thickness and are modeled at the interface of the constituents of a composite material. The 
constitutive behavior of these elements is usually expressed in terms of tractions versus 
relative displacements between the top and bottom edge/surface of the elements (traction-
separation curves). Several constitutive laws have been proposed in the literature to express 
the behavior of these elements [20].  

(a)       (b) 

Figure 5: (a) The RVE model; (b) A typical exponential traction-separation curve to model the decohesive 
phenomenon at the fiber/matrix interface 

In this example we characterize the properties of the glass/alumina composite with 
consideration of the imperfect bonding of the constituents. The model in this example is based 
on the reference [21] where the isostrain method is used to obtain the homogenized properties. 
The cohesive elements are modeled along the interface of constituents. A typical FE model of 
the RVE with the fiber volume fraction of 45% is shown in Figure 5a. The matrix (Em = 68 
GPa, nm =0.21) and the fiber (Ef  = 340 GPa, nf = 0.24) are considered as isotropic 
materials. A typical exponential traction-separation curve, shown in Figure 5b, is applied for 
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the constitutive behavior of the cohesive elements. The maximum normal traction at the 
interface is tmax = 1000MPa, the corresponding critical normal and shear opening 
displacement are dn = dt = 1 mm. These two cohesive parameters are identified from the 
experiment work in [21].  

Figure 6: Elastic modulus of the composite with different fiber volume fractions 

An increase of the fiber volume fraction, in a natural way, increases the elastic modulus of 
the material as shown in Figure 6. The imperfectly bonded interface made the structure softer 
and, therefore, the predicted modulus is smaller than that in the case of the perfectly bonded 
interface. When a perfect bonding is assumed, the prediction using the current method and the 
one in the reference are very close to each other up to a value of the fiber volume fraction 
about 20%. After that value, the results by the isostrain method in [21] are always higher than 
the predictions by the eigenstrain method in this study. The gaps keep increasing when the 
fiber volume fraction is larger. In the case of the imperfect bonding at the interface, results 
from the current method and the reference one are both well matched to the experimental 
data.

4 CONCLUSIONS 
The eigenstrain technique to characterize mechanical properties of complex 

microstructured materials is presented in the current study. The method can be applied with 
conventional FE softwares. Numerical examples have been investigated to verify the method. 
The main advantage of this method is simplicity and applicability for engineers who have less 
programming skills to use any commercial software at hand to characterize the mechanical 
properties of multiphase composite materials with complex microstructure regardless of using 
any user-subroutine. 
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Summary Thermal measurements under multiaxial cyclic loadings are used herein to predict 
multiaxial fatigue properties. Two models describing random microplasticity activation via a 
Poisson Point Process. The thermal response is interpreted as the “mean” behaviour of the 
microplastic activity, whereas the fatigue limit relies on the weakest link assumption. The first 
model is based upon a yield surface approach to account for stress multiaxiality at a 
microscopic scale. The second one relies on a probabilistic modelling of microplasticity at the 
scale of slip-planes. Both models are identified on thermal results and a uniaxial mean fatigue 
limit, and then validated using fatigue limits as well as thermal responses in the case of 
tension-torsion loadings on tubular specimens made of medium carbon steel. They predict 
well hydrostatic stress, volume and proportional multiaxial effects. The model with 
microplasticity described at the scale of slip-planes also offers a good prediction of non-
proportional mean fatigue limits (~ 5% error) whereas the other model is less predictive 
(~ 17% error). 

1 INTRODUCTION 

The thermal measurements under cyclic loadings, usually referred to as “self-heating 
tests,” [1-10] offer a neat and pragmatic way to predict high cycle fatigue properties without 
the drawback of the long-lasting traditional fatigue tests. Several models, from early empirical 
to recent approaches [11] based on microplasticity activation have been proposed to better 
understand and consolidate this link. 

This paper focuses on two of these two-scale models developed for multiaxial loadings. 
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The first model is based upon a yield surface approach [12,13] to account for stress 
multiaxiality at a microscopic scale. The second one relies on a probabilistic modelling of 
microplasticity at the scale of slip-planes [14-16]. 

Both probabilistic descriptions are based on a Poisson Point Process. With this type of 
approach, the thermal response is linked to the “mean” behaviour of the microplastic activity, 
whereas the fatigue limit relies on the weakest link assumption. For the presented models, this 
implies that the fatigue limit is eventually described by a well-known Weibull model, which 
directly explains the influence of the stress heterogeneity and the volume effect on the fatigue 
results. From a thermal point of view, the influence of the stress heterogeneity is also taken 
into account, but with different formulae. Last, the influence of the hydrostatic stress is also 
described, thanks to the chosen intensity of the Poisson Point Process. For the first model, this 
intensity depends on the mean hydrostatic stress, and the normal stress to the considered plane 
for the second model.  

Both models are validated using fatigue limits as well as thermal responses in the case of 
tension-torsion loadings on tubular specimens made of medium carbon steel. Both thermal 
effects and mean fatigue limit predictions are in good agreement with experimental results for 
proportional and non-proportional tension-torsion loadings. The conceptual difference 
between the two models implies a major difference of prediction capacity when non-
proportional loadings are concerned, the mean fatigue limit prediction error of the critical 
shear stress approach being three times less than that with the yield surface approach. A 
notable advantage of the proposed models is that their identifications do not require non-
proportional fatigue results, though they can predict them. 
 
2 PROBABILISTIC BASIS OF THE MODELS 

In metallic polycrystalline alloys, the physical process of damage initiation is usually 
governed by intragranular microplasticity. At that scale, the microplastic activity is not 
homogeneous because of local stress fluctuations (grain orientation and surrounding 
influence) and local plastic threshold. To model the onset of microplasticity, a set of 
elastoplastic sites randomly distributed within an elastic matrix is considered. For the sake of 
simplicity, no spatial correlation is considered herein. HCF damage is assumed to be localized 
at the mesoscopic scale and is induced by microplastic activity (in the grains whose 
orientation is favourable). The distribution of active sites (i.e., sites where microplasticity 
occurs) of volume Vs is modelled by a Poisson Point Process [17-21]. The probability of 
finding k active sites in a domain Ω of volume V reads 

( ) [ ] [ ] Vλexp
k!
VλΩP *

k*
*
k −

−
=  

(1) 

where !*  is the intensity of the Poisson Point Process and !*V  is the mean number of active 
sites. The intensity of the process depends on the loading level, and its form is detailed later. 
The relationship between the stress tensor in a site where microplasticity occurs, ! , and the 
macroscopic stress tensor !  is given by the localisation law [22,23] 

! = !" 2µ 1""( )!p  (2) 
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where pε  is the corresponding plastic strain tensor (assumption of additive decomposition of 
strain with an elastic and a plastic part) and µ the shear modulus. !  is given by Eshelby’s 
analysis of a spherical inclusion in an elastic matrix [24].  

3 ELASTOPLASTIC BEHAVIOUR 

3.1 Yield surface approach 
The assumptions of the first model are chosen so that it presents a reduced number of 

parameters and closed-form formulae as its uniaxial predecessor [4]. Microplasticity is 
modelled at a microscopic scale and is described by a yield surface, normality rule and linear 
kinematic hardening 

f = J2 S!X( )!! y " 0

!" p = !# #f
#S

!X = 2
3
C !" p and X " p = 0( ) = 0

 

(3) 

where J2 is the second stress invariant, S the deviatoric stress tensor, X  the back stress, C the 
hardening parameter,! y  the yield stress and !!  the plastic multiplier. 

The magnitude of the intrinsic dissipated energy ! !0
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where α, m and V0 S0
m are three material parameters, and I1,m the mean hydrostatic stress over 

a given cycle. Von Mises’ equivalent stress amplitude is chosen because of the isotropy of the 
material tested hereafter. The power-law dependence is chosen because the onset of 
microplasticity follows a power-law of the applied stress [25] and because this form leads to a 
Weibull model when combined with the weakest link assumption [4,11]. The hydrostatic 
stress dependence is introduced to account for the mean stress effect on self-heating 
measurements and on fatigue properties. 

It is now possible to calculate the global (mean) dissipated energy Δ in a domain Ω of 
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where pε  is the corresponding plastic strain tensor (assumption of additive decomposition of 
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volume V, i.e., first calculate the intrinsic dissipated energy ! !0
eq,! y( )  of one site, integrate it 

over the whole population of active sites [11] to obtain the total dissipated energy ( )eq
0ΣD , 

and then integrate it over the whole domain Ω. In the case of uniform proportional loading, 
this calculation is straightforward and a closed-form solution is found [26] 
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where h is a parameter gathering the different thermal-related parameters. 
This expression is identical to uniaxial homogeneous situation, except that uniaxial stress 

amplitude is changed to !effdiss , the effective dissipative stress amplitude, where Gm+2 is a 
dissipation heterogeneity factor. The latter factor can be calculated in the case of proportional 
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and requires a numerical integration for non-proportional loadings. 

3.2 Critical shear stress approach 

From now on and for the sake of clarity, every variable of the present model having an 
equivalent in the yield surface approach is denoted with !! , e.g. !0

eq and !!0
eq . Microplasticity is 

here modelled at the scale of slip planes based on Schmid’s criterion 

0- y ≤ττ , 
(8) 

with τy  the critical shear stress and ! =" : a  the (resolved) shear stress for the considered 
direction defined by 

 )nmmn(
2
1a tt +=

, 

(9) 

where n  is the direction normal to the considered plane, and m  the in-plane slip direction. 
The shear stress τ for the considered direction is related to the macroscopic shear stress T by 
the same localization law as before [15]  

pγβ)(1µTτ −−= , 
(10) 

where ! p is the plastic slip ( !! p = " p a ). One direction thus becomes active when the shear 
stress amplitude T0  is greater than the critical shear stress ! y , which is assumed to be a 
random variable.  

The same sequence of calculation is needed to express the global dissipated energy !! , 
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except that now an angular integration over all directions in space is necessary. The intensity 
of the Poisson Point Process follows a power law of the macroscopic shear amplitude 
integrated over all angular directions in space (defined by the solid angle ! ) [15] 

( )
( )( )∫+

= dΘΘ2T
Iα~S~V~

1λ~ m~

0m~

max1,00 , 
(11) 

where !m , !!  and !V0 !S0( )
m

 are three parameters depending on the considered material, and 

I1,max the maximum hydrostatic stress over a given cycle. The global dissipated energy !!  is 
expressed in a similar way as for the first model  
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where !h  is a parameter gathering the different thermal-related parameters of the model. The 
dissipation heterogeneity factor is defined as 
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where )2m~( +κ  represents the distribution of activated directions. 
The definitions of equivalent stresses are not the same for the two models ( eq

0Σ is von 

Mises’ equivalent stress, whereas eq
0Σ
~  is Tresca’s equivalent stress). Moreover the expression 

of !Gm+2 is different from Gm+2 since it includes the integration of the distribution of activated 
directions. This implies a numerical calculation, and a complete closed-form solution is no 
longer available. Aside from this little drawback, the hypotheses of this model make it 
intrinsically more relevant from a non-proportional point of view as will be shown in the next 
sections. 
 
4 SELF-HEATING RESPONSE 

The thermal response of the model corresponds to the “mean” point of view of the 
previous described microplastic onset, i.e., the temperature is linked to the global dissipated 
energy. The * notation is used in the following equations of the section to clarify that they 
may be used for any of the two models (heat conduction equation is the same in both cases). 
Since the uniformity of the temperature in the specimen is a relevant assumption in the 
present case [27], the mean dissipation Δ* is introduced in the following simplified heat 
conduction equation 

c
f *
r

eq ρ
Δ

τ
θ

θ =+ , (14) 
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where refspecimen TT −=θ  is the mean temperature variation with respect to the reference 
temperature refT , τeq a characteristic time depending on the heat transfer boundary conditions 
[28], ρ the mass density, c the specific heat and fr the loading frequency. The thermoelastic 
term is not considered since it vanishes over one cycle and only mean steady-state 
temperatures are needed. For both models, the mean (uniform) steady-state temperature 
θ reads  
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This expression is similar to that for uniform tensile loading except for *
effdissΣ term, and only 

three parameters are needed to describe the thermal response.  
 
5 HIGH CYCLE FATIGUE RESPONSE 

The weakest link theory is considered to describe the fatigue limit. The failure probability 
is then given by the probability of finding at least one active site in domain Ω. From 
Equation (1), the failure probability is thus given for both models by 
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5.1 Yield surface approach 

By using Equation (5), the failure probability is related to the loading amplitude 
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which corresponds to Weibull’s model [29,30]. This expression is simplified using a stress 

heterogeneity factor Hm, defined by 
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Equation (16) becomes 
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where meff VHV =  denotes the effective volume. From this expression, and as for the previous 
self-heating models proposed by the authors [4], the fatigue limit features are derived 
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where ∞Σ  is the mean fatigue limit, ∞Σ  the standard deviation and CV the coefficient of 
variation. 

The stress Hm and dissipation Gm+2 heterogeneity factors have intrisincally different 
meanings. However their expressions are very similar in the case of proportional loadings [see 
equations (18) and (7)]. Moreover the high value of the exponent m (m = 12 for the present 
material) induces very close values of these factors, even more for loadings with uniform 
mean hydrostatic stresses. This means that the combined effects of direction and 
heterogeneity of loading are nearly the same for fatigue and self-heating results, which makes 
easier the interpretation of self-heating results. 

On the contrary, Hm and Gm+2 can be very different for non-proportional loadings. 
Considering two uniform loadings with the same equivalent stress amplitude and the same 
mean hydrostatic stress, the first one proportional and the second one non-proportional, Hm 
factors are identical but Gm+2 factors can be very different. 

5.2 Critical shear stress approach 
With the second model the failure probability corresponds to the probability of finding at 

least one active slip direction in the given volume. The failure probability is thus related to 
the shear stress amplitude by 
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A stress heterogeneity factor mH~~  is again introduced, 
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so that equation (20) becomes 
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Last the mean fatigue limit is expressed (CV is the same as for the previous model)  
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Last the mean fatigue limit is expressed (CV is the same as for the previous model)  
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Note that 2m~G
~

+  and m~H
~  are a priori different because of the influence of the hydrostatic 

stress. The values of these factors are however again nearly identical because of the high 
value of m~  for proportional and non-proportional loadings. 

The identication of m* is performed using equation (15), so that the values of m and m~  are 
identical, and so the relative fatigue scatter is the same for both models (i.e., same CV value). 
The mean fatigue limits are different because equations (20) and (24) account for the 
influence of several parameters on fatigue properties in different ways. 
 
6 EXPERIEMENTAL APPLICATION 

Both models depend on three parameters to predict the fatigue limits, and a last one to 
account for self-heating under cyclic loadings. They are applied to the case of AISI 1045 
medium carbon steel tubes under tension-torsion loadings. In that case, the macroscopic stress 
tensor depends only on the radius r of the specimen and is defined by 

 !zz = !11, 0 sin(2!frt)+!m

 !!z =!12, 0
r

Re

sin(2!frt +" )
 

(25) 

where Σ11,0 and 3 Σ12,0 = tan(φ) Σ11,0 are the tensile and shear stress amplitudes, ϕ the phase 
lag between shear and normal stresses, Σm the mean tensile stress, and Re the external radius 
of the specimen. The hydrostatic pressure is uniform over the volume of the specimen, so that 
the two heterogeneity factors of the both models have the same expression for proportional 
loadings, i.e. mm HG =  and m~m~ H~G~ = . In the next section, the identification procedure is 
presented, and a comparison of predictions with experimental fatigue results. 

6.1 Identification 
Identification is based on self-heating curves obtained with the same procedure as for 

previous self-heating tests [4,11,12,27]. During the test, the amplitude of loading is step-wise 
constant, and increases once the differential temperature is stabilised. One pure torsion 
loading and one pure tension with non-zero mean stress are applied. The steady-state 
temperature is plotted as a function of the loading amplitude in Figure 1. As for other steels 
[4,11,12,27], each curve has a first part that shows virtually no change in temperature, 
whereas in the second part the temperature increases significantly with the stress amplitude. 
This transition is reported to be a rather good estimation of the mean fatigue limit for steels in 
uniaxial homogeneous case [4,6,7,8]. Moreover it has been shown that the gradual increase of 
temperature is linked to the fatigue scatter [4]. The relatively short duration of self-heating 
tests (in comparison with traditional fatigue tests) makes them not only interesting for 
academic studies, but also very attractive for industrial purposes. 

Both models depend exactly on the same parameters, namely, m * describes the scatter of 
fatigue results and the slope (in a log-log plot) of the self-heating temperature response, η ∗ a 
scale parameter for the thermal response, α * accounts for the effect of the mean hydrostatic 
stress on self-heating and fatigue properties, and V0

* S0
*( )
m*

 the scale parameters for the fatigue 
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response. All parameters are identified using the 2 self-heating tests and one fatigue limit that 
may concern any type of geometry or loading. Figure 1 shows the identification for both 
approaches. 

 

	  
(a) 

	  
(b) 

  
(c) (d) 

Figure 1: Identification of m and α  using torsion (a) and tension with mean stress (b) self-heating curves. 
Identification of !m  (c) and !!  (d) using the same curves. 

No non-proportional loading results are needed for this identification. Any couple of 
loading paths may be used to identify parameters m*, η∗  and α∗ as long as their mean (resp. 
maximum) hydrostatic stresses over a given cycle are different.  

The last (scale) parameter of each model is obtained by using a mean fatigue limit and 
Equation (20) for the yield surface approach, or Equation (24) for the critical shear stress 
approach. This value is obtained for tensile loadings (φ = 0° and Σm = 0) when fatigue limits 
are evaluated for 5 x 106 cycles. Staircase tests are performed on 15 smooth and round 
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loading paths may be used to identify parameters m*, η∗  and α∗ as long as their mean (resp. 
maximum) hydrostatic stresses over a given cycle are different.  

The last (scale) parameter of each model is obtained by using a mean fatigue limit and 
Equation (20) for the yield surface approach, or Equation (24) for the critical shear stress 
approach. This value is obtained for tensile loadings (φ = 0° and Σm = 0) when fatigue limits 
are evaluated for 5 x 106 cycles. Staircase tests are performed on 15 smooth and round 
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samples machined from the same steel bar as before. Stress steps are equal to 10 MPa. The 
measured mean fatigue limit is 262 MPa. 

6.2 Validation 
Models are first validated from a thermal point of view. A pure tension (zero mean stress) 

and a non-proportional (constant von Mises’ equivalent stress at mean radius 
(φ = 48°, ϕ = 90°)) self-heating tests are performed. Figure 2 shows self-heating curves as a 
function of von Mises (a), yield surface (b) and critical shear stress (c) equivalent stress 
amplitudes. For both models all curves collapse onto one another when the definition of the 
equivalent stress is used. This result means that both hydrostatic stress and non-proportional 
thermal effects are well predicted. 

Mean fatigue limit prediction is then checked using three different series of staircase tests 
(target: 5 x 106 cycles). The first one is a pure torsion loading, the second one a proportional 
loading (φ = 48° and Σm = 0) and last one a non-proportional loading (φ = 48°, ϕ =90°). 
Comparison between experimentally obtained mean fatigue limits and predicted ones is 
shown in Table 1, using the relative prediction error defined as 
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are in good agreement with experimental results, except for the yield surface model, which is 
non-conservative for non-proportional loading. 
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Figure 2: Thermal validation: self-heating curves for different equivalent stress amplitude. 

Table 1: Fatigue validation. Relative prediction errors of both models. 

Loadings (Σm = 0) Prop. (φ = 90°) Prop. (φ = 48°) N-prop. (φ = 48°, ϕ = 90°) 

eq
0Σ (MPa) 277 267 205 

Critical shear stress model 6% 7% -5% 

Yield surface model 9% 6% -17% 
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7 CONCLUSION 
The present paper was focused on a comparison of two multiscale models whose 

parameters are tuned thanks to self-heating data, and subsequently used to predict multiaxial 
high cycle fatigue properties. The first model uses an equivalent stress to account for stress 
multiaxiality at the microscopic scale, whereas the second one relies on a description of 
microplasticity at the scale of slip-planes. 

Both thermal and fatigue behaviours are well described by each model. They account for 
the influence of the stress heterogeneity, the volume effect and the hydrostatic stress. Relative 
errors are small for each experimental validation, even though the “identification cost” is low 
(and the same for each model), thanks to the information extracted from the self-heating tests. 

The distinction between the yield surface and critical shear stress approaches is nearly 
impossible from a thermal point of view (see Figures 2 (b) and (c)), whereas an important 
difference appears as along as non-proportional fatigue limit is concerned. The interest of the 
critical shear stress approach is clearly shown, lowering (in absolute value) the prediction 
error from –17% to –5% without the addition of new parameters. This is due to its 
microplastic activation description, combining probabilistic onset and slip-planes approach, 
which leads to very close dissipation and stress heterogeneity factors. 

A next step of this work will be the prediction of multiaxial fatigue life with the critical 
shear stress approach and the application to industrial cases.  
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Abstract. The multiscale resolution continuum theory (MRCT) is a higher order continuum 
mechanics. A particle is represented by a point that is deformable. This enables the possibility 
to include the effect of microstructure features in the continuum model on the deformation 
behavior through additional nodal variables for the higher order scale. This reduces the need 
for a very fine mesh in order to resolve microstructure details. It is possible to further reduce 
the computational effort by keeping the additional degree of freedoms to a minimum by 
tailoring the theory to specific phenomena. The latter is illustrated in a simplified context for 
an elastic material with damage.  

 
 
1 INTRODUCTION 

The multiscale resolution continuum theory (MRCT) is a higher order continuum 
mechanics theory. It is a generalization of the micromorphic theory [1-3]. MRCT introduces 
length scales useful for application to localization problems. It has additional nodal 
parameters for the information about the deformation on the microstructural scale. This 
relieves the problem of having an extremely fine mesh. However, still very small elements are 
required and this together with the additional nodal variables adds to the computational 
burden. This paper demonstrates the method for an elastic material with brittle damage. 

2 BACKGROUND 
The multiscale approach belongs to the field of generalized continuum theories. Cosserat 

already 1909 introduced a generalized continuum. The Cosserat continuum, also named 
micropolar, introduced higher order terms. There are several papers [4-7] that describe 
different variants of generalized continuum theories. Eringen is the originator of the 
micromorphic theory and summarized his work in [1]. The micromorphic continuum includes 
the relative deformation of a subdomain at a specific point. Thus the particle represented by a 
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point is deformable. This enables the possibility to include the effect of microstructure 
features in the continuum model on the deformation behavior. The size of the subdomain 
determines a length scale li that influences the behavior at a given point. This domain is called 
a microdomain. The right superscript, i, denotes the level or scale of the microdomain as 
explained in the next section.  

Eringen [1] indicated the possibility of formulating a theory for higher grades of continua 
but limited his description to the first grade. Germain [8] used a more elegant approach by 
utilizing the principle of virtual power. He showed how to include higher order terms in the 
deformation of the RVE. Liu with co-workers [9, 10] have developed a multiscale resolution 
continuum theory based on nested scales. The starting point for their derivation is also the 
principle of virtual power. The use of embedded RVEs or length scales facilitate the 
formulation of scales of higher order in the Multiscale Continuum Resolution Theory 
(MCRT). 

3 MULTISCALE CONTINUUM RESOLUTION THEORY 

The starting point for deriving the MCR theory is the principle of virtual power [11, 3, 10]. 
The internal virtual power is decomposed into a homogeneous and inhomogeneous part. The 
latter is due to the local stress variation within N nested RVEs within a point.  
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, where l0  is the spatial velocity gradient and 
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σ 0 is the Cauchy stress tensor on the 
macroscopic scale. The corresponding quantities, 
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i  and 
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i , are set up for each 

microdomain i. The scales are assumed to be separable so that 
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A linear varying spatial velocity gradient within each subscale is assumed.  
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m l
i x + y( ) = l i x( ) + gi x( )⋅ y i (3) 
where yi is a local coordinate system at x in the microdomain. The term 
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l i  gives the 
microstrain and 
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gi  is its gradient. This leads after some manipulations to  
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Thus it is assumed that the microstresses and their couples can be related to the symmetric 
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part of the relative velocity gradient, 

€ 

di −d0 , and second velocity gradient gi , respectively. 
We use a hypoelastic approach. Notice that we limit the description to elastic deformations. 
The macroscopic stress update is written as 

€ 

σ0
∇

=Cσd
0 (7) 

where 

€ 

[ ]∇ denotes an objective rate. 

€ 

Cσ  is the elasticity tensor. The microstresses are 
updated by 
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i di "d( )+C!m
i gi  (8) 

and the couples are updated by 
mi( )

!
=C!m

i di "d( )+Cm
i gi  (9) 

Including the external virtual power and setting the total virtual power to zero leads to the 
following coupled equations of motion [3] 
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where v0 is the macroscopic velocity field, ρ is the macroscopic density, ρi is the density in 
microdomain i, and  

€ 

γ i is the micro-acceleration defined as 
! i = !li + li ! li  (11) 

and the inertia tensor is 
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I i =
1
Ωi ρ iy i ⊗ y idΩ
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4 SIMPLIFIED MCRT FOR ELASTIC-DAMAGE MODEL 

It is possible to reduce the computational cost by adapting the theory to specific 
phenomena. Kadowaki and Liu [12] demonstrated this for the case of granular media. We are 
here considering an elastic material with local softening/fracture with one additional scale 
(N=1). Elastic behavior is assumed. The damaged regionin the microdomain, gray in Figure 1, 
is assumed to completely lose its strength.  Then homogenized the constitutive equation is 
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1
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Ω1
∫ =Cσ 1−ω( )  (13) 

where 

€ 

ω  is the fraction of the damaged volume in the microdomain. The coupling matrix 
may be non-zero when the damage is unsymmetric in the microdomain. We assume it is 
symmetric and thus have 
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where 
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with 
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The parameters yi
±  are the distances from origin to where damage has reached into the 

microdomain, see Figure 1. We have symmetric damage in the current one-dimensional 
implementation, ie. 

€ 

yi
+ = yi

−. The damage can be unsymmetric for when several stress or 
strain components are used. The subscript i denotes the coordinate direction of the normal to 
this surface. 

 
Figure 1: Two-dimensional view of damage volumes (gray) that are growing into the microdomain. 
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where R is the number of dimensions of the problem. We have R=1 in the case below. 
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Computing the gradients from the first derivatives of the microstrain over a finite element 
reduces the number of independent nodal degrees of freedom (dof) further. Thus the three 
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dimensional finite element will have six (three displacements and three normal microstrains) 
unknowns for each node. The one-dimensional example below has only two dofs per node.  

Different damage criterion can be applied. A simple linear increase in damage when the 
macroscopic strain exceeds a given criterion and the damage becomes complete (

€ 

ω =1) when 
a fracture strain is reached. 

5 FINITE ELEMENT IMPLEMENTATION 

The implementation of the above outlined theory is shown for a one-dimensional rod with 
two nodes. 

5.1 Kinematics 
The finite element interpolation of nodal velocities and rate of microstrains is written as 
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Nn
0  and 
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1  indicates that we may use different functions to interpolate the microstrain than 

the nodal velocity, or use different number of integration points when evaluating them. This is 
not utilized in the following.  
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The needed rates of the macroscopic strain, microstrain and its gradient can now be written 
as 
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5.2 Kinetics 
Kinetic variables that are energy conjugate kinetic with those in Eq. (25) are   
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Their (objective) rates are obtained from the constitutive model as described below. We 
want to continuously update their values, as they are needed for the internal force 
calculations. 

5.3 Constitutive equations 

We specialize the matrices in section 4 for the uniaxial stress case. Then we have 
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The higher order constitutive relations are given by 
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The objective rates are equal to time rates in case of one-dimensional formulation, as we 

have no rotations. The microdomain properties are calculated based on assuming elastic 
behavior and a damaged zone without and stiffness. Symmetry of damaged region gives 
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The microstrain elasticity is 
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where it has been used that the fraction of damage material, 
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The microcouple constitutive relation is 
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The extended constitutive matrix becomes then 
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5.4 Element internal force vector 
The internal forces are computed as 
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Where a is the area of the cross-section of the rod. The internal forces can be split it up into 
macroscopic forces and microscopic forces 
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5.5 Element tangent stiffness matrix 
The tangent stiffness matrix is  

€ 

K =
d Fint −Fext( )

dV
=
dFint
dV

 (38) 

where 

€ 

Fint  is the global internal force vector and 

€ 

Fext  is the external forces. V is the global 
vector of nodal values corresponding v in Eq. (20). It is approximated by computing the 
element contribution as 
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We use a fixed damage during an increment and update between the increments. This 
requires small time steps but removes this nonlinearity from the iterative process and 
simplifies the derivation of the consistent constitutive matrix in Eq. (39). The stiffness matrix 
can be split into three separate contributions. The macroscopic part is 
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The coupling matrix is 
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The higher order contribution is 
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6 RESULTS 

The formulation in the previous section has been implemented in Matlab™. A rod is 
subject to tension by prescribing opposite motions of each end. The microstress 

€ 

βxx
1  is set to 

zero at the ends, ie microstrain is equal to the macroscopic strain there. The used properties 
are given in Table 1. A simple damage model is used. It is  

€ 

ω =
ε 0 −ε init

ε fracture −ε init
 (44) 
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The symbol 

€ 

 denotes that the expression is zero for negative arguments. The damage is 
only applied in the center region of the rod, 

€ 

x ∈ −0.005L,0.005L[ ]. x is the coordinate of the 
integration point at the center of the element. The model is set up so that there is always one 
element centered around x=0.  

The macroscopic stress for the problem follows the analytic solution 

€ 

σ 0 = E 0 ln 1+
u
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (45) 

where u is the total elongation of the rod and L=0.1 m is its initial length. The logarithmic 
strain definition has been used. 

The results below are plotted at different instances in time. The strain computed according 
to Eq. (44) is 0.0, 0.26, 0.47, 0.64, 0.79, 0.91, 1.03, 1.13, 1.31 and 1.39 for each of the lines, 
respectively. The macroscopic strain and stress are shown in Figure 2. All plots are based on 
averaged nodal values when they show element data. The number of elements was 101 and 
the center element is subject to damage. The overall strain and stress follow the analytic 
solution. The localization in the center element is obvious. The micro-stress and damage can 
be seen in Figure 3. The damage weakens the microdomain and the micro-stress decreases.  

Splitting the element in the centre of the rod into four elements gives 
Table 1: Used material properties 

E0 2.1011 Pa 
E1 = E0 
l1 2. 10-6 m 
εinit 0.05 

εfracture 0.30 
 

 

  
Figure 2: Macroscopic strain and stress during loading. 
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Figure 3: Micro-stress and damage during loading. The crosses in the damage plot denote values at element 
center. There it can be seen that the damage reaches 0.9. 

7 DISCUSSIONS 
Hardening and softening behavior of materials depends in a wide range of scales. Despite 

this, macroscopic models have been successfully used to describe the hardening behavior of 
materials. However, softening behavior that is determined by the weakest link in the material 
poses a challenge for these models. Model that brings in a length scale is one step forward in 
creating convergent finite element models. The MCRT is an approach that does this and also 
reduces the need for a very fine mesh in the localization zone. However, this is at the 
additional cost of additional nodal degree of freedoms. Therefore, it is of particular interest to 
develop constitutive models for the microdomain with a minimum of higher order degrees of 
freedoms for specific problems. The preliminary evaluated damage model is one example. 
The convergence behavior of the model need be evaluated as well as the effect on the 
condition number of the stiffness matrix for different combinations of element sizes and size 
of microdomain.  
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Abstract. In this paper, so as to reproduce the dynamic recrystallization, the dislocation-
crystal plasticity model devotes to a deformation analysis and multi-phase-field one to 
nucleus growth calculation. First, we place a few nuclei on the parent grain boundaries, i.e., 
high dislocation density site. Next, carrying out the simulation, dislocations start to 
accumulate in accordance with the deformation. Introducing the energy of dislocations stored 
locally in the matrix into the phase-field equation, the placed nuclei begin growing. In the 
region where the phase transitions from the matrix to the recrystallized phase, the values of 
dislocation density, crystal orientation and slip are reset. Moreover, applying the above 
information to the hardening modulus and crystal bases of the crystal plasticity model, the 
deformation is calculated again. With the progress of deformation, the dislocation density 
increases even inside the growing nuclei. Also, on the basis of the results obtained by the 
multiphysics simulation, we discuss the microstructure formations dependent on applied 
deformation.  
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1 INTRODUCTION 

The mechanical properties of metals are significantly affected by microstructures formed 
during recrystallization in rolling processes. Especially, the nucleus growth that occurs during 
the warm- or hot-rolling is known as the dynamic recrystallization (See fig. 1). First, applying 
plastic deformation to materials, cell structure is formed and then, subgrains are formed by 
pair annihilation and rearrangement of dislocations in the dynamic recovery stage. Next, in 
the nucleation stage, subgrain groups on the boundaries between parent grains coalesce to 
nuclei due to grain boundary migration. This mechanism is called bulging. During this 
process, stress-strain curve describes the hardening because of dislocation accumulation due 
to plastic deformation shown in fig. 2. However, once nucleus growth starts and recrystallized 
phase expands, decrease of dislocation density causes softening of materials. If a further 
deformation is given to the materials, the stress-strain curve sifts to the rehardening due to 
dislocation accumulation in the recrystallized new phase. With this mechanism, stress-strain 
curve during dynamic recrystallization is known to have multi-peaks. For control of 
mechanical properties in materials design, it is industrially important to predict numerically 
the dynamic recrystallization. 

In the previous work [1], the authors developed a simple multiphysics model of the 
dynamic recrystallization by coupling the KWC type phase-field model and dislocation-
crystal plasticity one that can express the dislocation accumulation by calculating GN crystal 
defects (GN dislocation density and GN incompatibility). Also, we conducted a computation 
for a single nucleus on the basis of this model. However, it cannot predict the growth of a 
number of nuclei because the KWC type phase-field model hardly deals with different nuclei. 
In addition, there still exists a problem about how to update the crystal orientation of the 
region that change into recrystallized phase from matrix since the initial orientation was given 
to such area in the previous simulation. 

So as to work out the above problems, in this study, we adopt a multi-phase-field model to 
extend the material model to an enhanced type suitable for a lot of nuclei. Therein, a 
modification is conducted for the free energy of bulk to be a double well type considering the 
stored dislocation energy as a driving force of recrystallization. Next, we develop a 
multiphysics model combining the multi-phase-field model and dislocation-crystal plasticity 
one through the crystal orientation and the dislocation density. Using the present model, a 
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numerical simulation is carried out assuming a FCC polycrystal with a few nuclei on the 
parent boundaries subject to a compressive load in hot-rolling. In this calculation, the current 
orientation considering deformation is given to the region where the phase changes into 
recrystallized phase from matrix. 

2 MATERIAL MODELS 

2.1 Phase-field model 

In order to express the growth of a number of nuclei, the multi-phase-field model is 
adopted in this study. By use of the model, it is possible to calculate growth of a lot of grains 
simultaneously. Setting the order parameter for grain   as (0 1)    , and considering 
the interface field [2] defined as        and sum of   all over the phases, such 
as 1


  , the evolution equation of   is obtained as 

2 2 2

1 1( )

1 ( , ) ( , ){ ( ) }
2

N NM f f
t N

    
   

 
   

      
   

  
     

     (1)

where N is the total number of the grains, M 
  the mobility of the interface between grains 

  and   and   the diffusion constant of the interface between grains   and  . For the 
free energy of bulk ( , )f    , the function is employed such that  

( , ) ( , ) ( ) {1 ( , )} ( ) ( , )r mf p f p f W q                      (2)

where W   is the energy barrier between grains   and  . In addition, ( )rf   and ( )mf   are 
stored dislocation energies in recrystallized grain and matrix, respectively. Because of 

( ) ( )r mf f  , Eq. (2) can rewritten in the form  

( , ) {1 ( , )} ( ) ( , )f p f W q                (3)

where ( )f   is the difference between stored dislocation energies in recrystallized phase and 
matrix defined as ( ) ( ) ( )m rf f f    . Using the local stored energy of dislocations sE , 

( )f   can be represented as ( ) s s sf E E E      . For simplify, we set s sE E   when the 
phase   is the recrystallized grain and   the matrix, and s sE E    when the phase   is the 
matrix and   the recrystallized phase, where sE  is the local energy of stored dislocation 

Figure 2 Illustration of stress-strain curve during 
dynamic recrystallization 
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calculated by  

( *) 2
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     (4)

where ( *)  is the dislocation density for the slip system *  (explained later.),   the shear 
modulus and b  the magnitude of burgers vector. First, we consider a bi-phase problem to 
obtain ( )p   and ( )q  . The conditions that ( )f   is the double well function with the driving 
force of sE  are (0) sf E , (1) 0f  , (0) 0f    and (1) 0f   . On the above conditions, 

( )q   is determined as 2 2( ) (1 )q     . While, we choose ( )p   as 
1 1 2( ) {(2 / ) (2 / ) 3}(1 )p e e e e e e          . Moreover, replacing   and 1   with   and 

  respectively to extend these functions to suitable forms for a multi phases problem, 
( , )p     and ( , )q     are obtained as follows. 
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2.2 Dislocation-crystal plasticity model 
The elastic-viscoplastic constitutive equation of crystal plasticity model is given by 
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P  and ( *)  denotes the Mandel-Kratochvil rate of Cauchy stress, the 

anisotropic elastic modulus tensor, deformation rate tensor, Schmid tensor and the slip for slip 
system *, respectively. The evolution equation of flow stress ( *)g   and the hardening 
modulus ( * *)h    dependent on dislocation density are written in the forms 
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where ( * *)   is the interaction matrix, ( *)L   the dislocation mean free path, and a and c the 
numerical parameters. A model depending on dislocation density is adopted for ( *)L  . The 
dislocation density ( *)  is defined by ( *) ( *) ( *) ( *) ( *)

0 G R
    

        , where ( *)
0
  is the 

initial dislocation density, ( *)
G
  and ( *)

  the norms of GN dislocation density tensor and GN 
incompatibility tensor, respectively and ( *)

R
  the density of annihilated dislocations [3]. 

3 SIMULATION METHOD 

In the multiphysics simulation, crystal deformation and nucleus growth are taken into 
account simultaneously. First, the dislocation-crystal plasticity simulation is conducted for 
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prediction of formation of subdivisions and micro shear bands induced by plastic compression. 
On the basis of the information of nucleation obtained by the above calculation, it is 
reproduced that the nuclei generated at a nucleation site start to grow by the driving force, i.e., 
the stored dislocation energy, through the phase-field simulation. The evolution of order 
parameter due to nucleus growth can be obtained. During this process, in the area where the 
phase transition from matrix to new phase, the dislocation density should be initialized so as 
to be the value of sufficiently annealed metal. The information of nucleus growth such as the 
dislocation density is introduced into the dislocation-crystal plasticity simulation again. The 
dislocation density and the crystal orientation are changed by deformation. Giving the updated 
information back to Eq. (1), the nucleus growth simulation can be carried out. The 
information of dislocation density is introduced into Eq. (1) through the stored dislocation 
energy expressed by Eq. (4). Same operations are repeated, and dynamic recrystallization 
simulation is conducted. 

4 SIMULATION RESULTS AND DISCUSSIONS 
In this simulation, 10% compressive deformation is applied to 80m×80m polycrystal 

aluminum plate under plane strain condition. Considering hot worming process, 2 nuclei are 
placed on the parent grain boundaries in the initial condition (See figs. 3). The Asaro’s 2-slip 
model is employed and the values of the initial dislocation densities in the matrix and the 
nuclei are 2

0 1 m    and 2
0 0.001 m   , respectively (See fig. 4). In this study, the 

dislocation-crystal plasticity simulation is carried out by FEM and multi-phase-field model by 
FDM so that the developed dynamic recrystallization model is calculated by the FEM-FDM 
hybrid analysis. The number of the finite elements is 2682 and the number of the finite 
difference grid 40401. In this paper, following 2 cases of simulations are performed: (a) the 
case that the recrystallization area has the initial crystal orientation and (b) the case that the 
recrystallization area has the current crystal orientation, i.e., the crystal orientation averaged 
among the values of neighbor elements. 

Figure 5 depicts stress-strain curve obtained by this simulation. In the both cases of 
simulations, stress-strain curves with oscillations are observed, in which the hardening and 
softening occur by deformation and by grain growth, respectively. In fig. 5, the arrow of (a) 
shows the result of the simulation in the case that the recrystallization area has the initial 

Figure 4 Initial distribution of 
dislocation density 
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prediction of formation of subdivisions and micro shear bands induced by plastic compression. 
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hybrid analysis. The number of the finite elements is 2682 and the number of the finite 
difference grid 40401. In this paper, following 2 cases of simulations are performed: (a) the 
case that the recrystallization area has the initial crystal orientation and (b) the case that the 
recrystallization area has the current crystal orientation, i.e., the crystal orientation averaged 
among the values of neighbor elements. 

Figure 5 depicts stress-strain curve obtained by this simulation. In the both cases of 
simulations, stress-strain curves with oscillations are observed, in which the hardening and 
softening occur by deformation and by grain growth, respectively. In fig. 5, the arrow of (a) 
shows the result of the simulation in the case that the recrystallization area has the initial 
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crystal orientation while (b) the result of the simulation in the case that the recrystallization 
area has the current crystal orientation. It can be seen that the case (b) describe slightly higher 
rate of hardening than the case (a). The above difference might be explained that the 
simulation (b) shows higher rehardening rate than (a) because the deformation is taken into 
account in the simulation (b) more than (a). Also, fig. 6 describes the temporal distributions of 
crystal orientation. In the both results from the simulations (a) and (b), the nuclei grow along 
the parent grain boundaries where the dislocations store significantly, shown as the arrows in 
figs. 6 (a) (ii) and (b) (ii). Furthermore, figs. 7 are the enlarged figures of the rectangulars in 
figs. 6 (a) (iv) and (b) (iv). Figures 7 (i) and (ii) denote the distributions of dislocation density 
and crystal orientation, respectively. From figs. 7 (a) (i) and (b) (i), it is noted that the 
distributions of dislocation density are similar to each other. On the other hand, from the 

0 
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Figure 6 Distributions of crystal orientation 
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distributions of crystal orientation in figs. 7 (a) (ii) and (b) (ii), the growing nucleus at the 
lower left is not affected by deformation while the one in fig. 7 (b) is affected by deformation. 
Here, the white lines in fig. 7 (b) (i) mean nucleus-matrix boundaries and the boundaries 
between the recrystallized area whose crystal orientation does not change from its initial 
crystal orientation and the one whose crystal orientation does change from its initial crystal 
orientation. The area surrounded by white lines would be a nucleation site if the grain 
boundary misorientation were higher than 15°. 

5 CONCLUSIONS  
- Simulating dynamic recrystallization by coupling the multi-phase-field model and the 

dislocation-crystal plasticity model, it can be reproduced that a few nuclei grow 
responding to the distribution of dislocation density and crystal orientation. 

- Givining the averaged value of neighbor elements to the region that transitions to 
recrystallized phase from matrix, it can be possible to calculate considering the 
change of crystal orientation due to deformation. 
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Abstract. Since plastic deformation of polycrystal sheet metal is greatly affected by its initial 
and plastic deformed textures, multi-scale finite element (FE) analysis based on 
homogenization with considering micro-polycrystal morphology is required [1].  We 
formulated a new crystal plasticity constitutive equation to introduce not only the effect of 
crystal orientation distribution, but also the size of crystal grain and/or the effect of crystal 
grain boundary for the micro-FE analysis.  The hardening evolution equation based on strain 
gradient theory [2], [3] was modified to introduce curvature of crystal orientation based on 
crystallographic misorientation theory.  We employed two-scale structure, such as a 
microscopic polycrystal structure and a macroscopic elastic/plastic continuum.  Our analysis 
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code predicts the plastic deformation of polycrystal metal in the macro-scale, and 
simultaneously the crystal texture and misorientation evolutions in the micro-scale.  In this 
study, we try to reveal the relationship between the plastic deformation and the microscopic 
crystal misorientation evolution by using the homogenized FE procedure with the proposed 
crystal plasticity constitutive equation.  The crystallographic misorientation evolution, which 
affects on the plastic deformation of FCC polycrystal metal, was investigated by using the 
multi-scale FE analysis.  We confirmed the availability of our analysis code employing the 
new constitutive equation through the comparison of a uniaxial tensile problem with the 
numerical result and the experimental one. 

1 INTRODUCTION 
Recently, multi-scale finite element (FE) analyses code are developed to evaluate 

macroscopic material properties such as the strength, the yield loci and the formability, by 
employing a realistic three-dimensional (3D) microscopic polycrystal structure obtained by 
using the scanning electron microscopy and the electron backscattering diffraction (SEM-
EBSD) measurements [4].  The experimental determination, interpretation, and the numerical 
simulation for polycrystal texture analyses at the micro-scale have been attracting the 
attention of researchers in the field of sheet metal forming [5-6].  Further, the progress of 
computer technology, such as parallel computing [7], promises an unprecedented means for a 
large-scale numerical calculation in this multi-scale analysis for the industrial applications.  
For the crystal plasticity constitutive equation, the isotropic and kinematical hardening 
evolutions are introduced [8].  In our two-scale homogenization theory to assess the sheet 
material formability, a realistic 3D representative volume element (RVE) is employed, which 
is determined by SEM-EBSD measurement. 

Until now, we have found many “virtual” RVE models, such as Voronoi polyhedron grain 
models, but they do not have the necessary crystal grain characteristic of location, size or 
orientation in 3D space.  Since the deformation and hardening are very much affected by the 
neighboring crystal grains, orientation and the grain size themselves. 

In this study, a new hardening evolution equation is proposed for assessment of crystal 
orientation rotation and misorientation evolution.  Our model is considered misorientation 
between adjacent regions across a boundary.  This involves a model, which assumes a simple 
geometrical relationship between crystal slip systems responsible for the rotation and 
misorientation. 

2 ELAST/VISCO-CRYSTAL PLASTICITY CONSTITUTIVE EQUATION BASED 
ON MISORIENTATION THEORY 

2.1 Definition of equivalent misorientation 
We calculated curvature of crystallographic misorientation to express geometrically 

necessary (GN) dislocation storage [9].  When the GN dislocation is stored during plastic 
deformation, sheet metal shows work hardening.  Thus, consideration of misorientation into 
hardening evolution equation is able to analyze sheet metal forming and to assess the 
deformation characterization accurately. 

We defined the three normal orthogonal coordinate systems for calculation of 
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crystallographic misorientation as shown in Fig. 1.  One is the sample coordinate system (ei -
xi). The second is the crystalline coordinate system (ii - yi), and third is (111) plane coordinate 
system (ji - i).  Relationship between the sample coordinate system and the crystalline 
coordinate system, the representative (111) plane coordinate system are expressed as 

j
j
iij

j
ii , ejei  , where j

i
j
i  ,  are coordinate transformation matrices. 

Sample coordinate system; ( ei – xi )

e2: RD
e1: TD
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Figure 1: Definition of the three normal orthogonal coordinate systems 

In the Fig. 2, j1, j2 and j3 express  112 ,  101  and  111  vectors on the (111) plane 
coordinate system (ji - i), which belongs with the crystalline coordinate system (ii - yi).  Rate 
of [111] direction 3j  is defined by using ji as follow: 

  jj b3  (1)

where b( = 1, 2) is the second fundamental metric tensor, which corresponds to a 
curvature tensor of crystal orientation, and is expressed as follows: 




 
j

j





 3b  
(2)

 jjb  b  (3)

The curvature tensor b corresponds to rate of normal direction of tangential plane, and is 
transformed by the coordinate transformation matrices 

lk  ,  to the sample coordinate 
system as follows: 

lkkllklk bb eeeeb  
  (4)
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klklb jj  ,3  (5)

where klb  is misorientation tensor.  Equivalent misorientation K is defined by the second 
invariant value of b as follow: 

klkl bbK
2
1

  (6)

This scalar value K depends on crystal orientation distribution and grain size. 

2.2 Introducing equivalent misorientation into crystal plasticity constitutive equation 
In this study, the equivalent misorientation caused by crystal orientation distribution is 

introduced into the crystallographic homogenized multi-scale FE procedure, which is based 
on the dynamic explicit scheme [1].  The strain rate dependent crystal plasticity constitutive 
equation [2, 8] is employed to the micro-FE analysis.  The crystalline viscoplastic shear strain 
rate )(a  of the power law form defined on the slip system (a) is expressed as follow: 

   
 

 

 

 

m
m

a

a

a

a
aa

gg
























1

0
   (7)

where  a  is the resolved shear stress,  ag  is the reference shear stress,  a
0  is the reference 

shear strain rate, and m is the coefficient of strain rate sensitivity. In this study,  a
0  = 0.033 

and m = 0.01 are employed for FCC metal, respectively. 
The equivalent misorientation K is introduced into the hardening evolution equation as 

follow: 

     










N

b

b
ab

a γhCKC
C

g
1

21
2

tanh
tanh

1
  (8)

where N is the total number of slip systems for the FCC crystal N = 12, C1 and C2 are 
constants of hardening parameters.  The hardening coefficient abh  for the nth power equation 
is expressed as follows:  

      abababab hqhqh   1  (9)

     1
00

 nCnChh   (10)

where the matrix abq  is introduced to describe the self and latent hardenings.  The  is the 
accumulated shear strain over all the slip systems, 0h  is the initial hardening modulus, and n
and C are the hardening exponent and the hardening coefficient, respectively.  These values 
including C1 and C2 in Eq. (8) are determined by the parameter identification calculation 
through the comparison with the experimental results. 

When K = 0, which is uniform crystal orientation distribution condition, the hardening 
evolution equation (8) becomes the conventional equation as follow: 
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ab

a hg
1

  (11)

3 NUMERICAL RESULTS 

3.1 Material parameter identification by using 3D-EBSD measured polycrystal model 
We obtained distribution of crystal orientation in a 3D parallelepiped box region of the 

aluminum alloy sheet metal A5182-O by SEM-EBSD measurement, which is a material of the 
NUMISHEET 2008 benchmark problem [10], and developed a RVE-FE model as shown in 
Fig. 2.  The RVE-FE model is 5×5×5 voxel FEs by using 8-node solid element with 1000 
Gaussian integration points.  The crystal orientation distribution of the sheet metal measured 
by SEM-EBSD is assigned into the integration points on the RVE-FE model. 

Figure 3 shows comparison of stress-strain curves obtained by the experiment of the 
rolling direction (RD) tensile test and its multi-scale FE analyses by using identified 
parameters as summarized in Table 1.  In the multi-scale FE analyses, proportional loading is 
applied to macro-FE model, which consists of one 8-node solid element, combined with the 
micro RVE-FE model to obtain the homogenized stress.  It is good agreement of stress-strain 
relationships between the experiment and FE analyses.  In the multi-scale FE result by 
misorientation theory, the critical (initial) resolved shear stress (CRSS) 0 and the initial 
hardening modulus 0h  are smaller than conventional ones due to effect the misorientation 
hardening parameters C1 and C2.
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Figure 2: RVE-FE model of A5182-O (111×111×111m3)
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Figure 3: Relationships between true stress and true strain of experimental and identification results 
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Table 1: Material parameters obtained by multi-scale FE analysis 

n 0 [MPa] h0 [MPa] C 0 [MPa] C1 C2

Misorientation 0.19 13.0 49.0 17.0 0.10 5.0 0.8 
Conventional 0.19 15.0 72.0 17.0 0.10 – – 

ND

TD RD

:Tensile direction 
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 (a) Bicrystal models (b) Tricrystal model 

Figure 4: Initial crystal orientation angle  distributions of micro-models 

Table 2: Euler angle (1, , 2) and crystal orientation angle 

1  2 
Grain 1 –12.3° 54.5° 44.7° 0.3° 
Grain 2 12.5° 57.7° 43.3° 3.2° 
Grain 3 89.6° 69.0° 8.84° 34.7° 

3.2 Multi-scale analysis by using bicrystal and tricrystal micro-models 
In order to consider the newly developed constitutive equation based on misorientation 

theory, simple initial crystal models, such as bicrystal and tricrystal models are employed to 
the micro-FE analysis, as shown in Fig. 4.  Three crystal orientations are selected from the 
SEM-EBSD crystal orientation distribution of A5182-O sheet metal as summarized in Table 2. 
Micro-FE model is 111×111×111m3 volume with 5×5×5 FEs, which is same as the 
polycrystal A5182-O RVE-FE model.  A crystal orientation angle  is defined as angle 
between crystal [111] direction and normal direction (ND) of sheet metal.  Consequently, a 
low tilt angle boundary model as shown in Fig. 4 (a-1) and high tilt angle boundary models as 
shown in Fig. 4 (a-2) and (a-3) are constructed in the bicrystal models, respectively.  In 
addition, tricrystal model as shown in Fig. 4 (b) is also constructed.  It has mixed with low 
and high tilt angle boundaries.  Figure 5 shows initial equivalent misorientation distribution 
on the center cross-section surface of the ND direction (ND = 55.5m) of micro-models.  The 
tilt angle is clearly described by the equivalent misorientation distribution. 

Figure 6 shows comparison of stress-strain curves obtained by the multi-scale FE analyses 
of the RD tensile problem by using three types of bicrystal models and the tricrystal model.  
The material parameters of A5182-O polycrystal sheet metal are used for these models.  In the 
tilt angle 0°-3° bicrystal model, the highest stress is achieved because the model has larger 
amount of active slip systems by smaller  value than the others, which means the crystal 
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(111) plane coincides with sheet plane.  The 35° single crystal model is the lowest stress.  The 
high tilt 0°-35° and 3°-35° bicrystal models, and the 0°-3°-35° tricrystal model are 
combination behavior between the low tilt model and the 35° single crystal model.  

Figure 7 shows texture evolution on {111} pole figures compared with the initial texture 
and after 0.5 tensile deformation.  The textures are evoluted to toward preferred orientation of 
tensile deformation such as the Copper orientation {112}<111>.  The crystal angle  is also 
rotated by tensile deformation as shown in Fig. 8.  According to crystal angle rotation, 
equivalent misorientation distribution is also changed as shown in Fig. 9.  In the 0°-3° low tilt 
angle bicrystal model, grain boundary is disappearance and crystal binding each other.  In the 
high title angle bicrystal models 0°-35° and 3°-35°, however, grain boundary has been 
remained during tensile deformation. 

Since there is a triple point in the tricrystal model and interaction of each grain, the 
subgrain growth and localization of misorientation are occurred as shown in Fig. 9 (b).  
Figure 10 shows history of crystal angle  rotation of tricrystal model during tensile 
deformation.  While the crystal = 35° as red solid line did not almost rotate, crystals = 0° 
and 3° as blue and purple solid lines rotated toward 15° and then low tilt angle boundary 
between 0° and 3° is disappeared.  It could predict physical evidence that crystal rotations and 
misorientation effect on material hardening by using our multi-scale analyses with the new 
hardening evolution equation. 
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Figure 5: Initial equivalent misorientation distributions of micro models 
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Figure 7: Texture evolution on {111} pole figures 
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Figure 8: Distributions of Crystal orientation angle  evolutions at 0.5 tensile strain 
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Figure 9: Distributions of equivalent misorientation evolutions at 0.5 tensile strain 

4 CONCLUSIONS 
We suggest the new hardening evolution equation based on crystallographic misorientation 

and carried out tensile analyses.  Misorientation evolution and forming subgrain boundary 
were expressed.  We conclude that consideration of misorientation is necessary for crystal 
plastic analysis. 
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Figure 10: Crystal rotation histories of tricrystal model 
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MultiScaleAnalysis,CrystalPlasticity,PeriodicBoundaryCondition.

Thehomogenizationmethodconsideringcrystalplasticitywastakenasaprediction
methodofmechanicalpropertiesaftermetalforming.Copperandlowcarbonsteelweretaken
as raw materials. It was experimentally clarified that low carbon steel showed stronger
Bauschinger effect than copper. At the first trial of analysis, the homogenization method
considering crystal plasticity showed a similar behavior to that of copper of single phase
metal rather than low carbon steel. However, addition of small amount of carbide in low
carbon steel inside the crystals, just as in the actual steel, significantly improved the
predictionaccuracy.

 

Materialsaresubjectedtovariousprocessesofplasticdeformationbeforeshapedintofinal
products.Themechanicalpropertieswouldbeaffectedby thehistoryofdeformation in the
previousprocesses.Itwouldbeimportanttopredictthemechanicalpropertiesinadvancein
terms of safety and strength assessment for the final products. Even in the middle of

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 
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manufacturing, thepredictionofmechanicalpropertieswouldbehelpful for thedecisionof
appropriateworkingconditionsinthefollowingprocesses.

There are many numerically description methods proposed by many researchers for
description of mechanical properties during deformation. For example, mixed hardening
combines work hardening and kinematic hardening [1].Armstrong and Frederic [2], and
Chaboche[3]proposednumericalmodelswhichcandescribecomplexhistoryofstressstrain.
These phenomenological methods would supply only numerical description of kinematic
hardening. On the other hand, multiscale analysis considering crystal plasticity would be
anothertrendfortheexplanationofappearanceofkinematichardeningaswellasquantitative
prediction [4]. Although efficiency of these proposed description have been discussed in
literature, itwouldstillbemeaningful toexamine theapplicabilityof theanalyses inmetal
forming.

In the present research, the homogenization method considering crystal plasticity was
takenasapredictionmethodofmechanicalpropertiesaftermetal forming.Copperand low
carbon steel was taken as raw materials. Analyses were tried to predict local mechanical
properties after metal forming, taking nosing as an example, after identifying material
constantans.Firstly,materialconstantswhichwereneededintheanalysis,wasidentifiedby
tension test. Macro scale analysis was conducted on tube nosing to pick up deformation
historyatlocalpointsofnosedtubes.Basedonthecalculatedhistoryinmacroscale,multi
scaleanalysiswascarriedoutforthepredictionoflocalmechanicalpropertiesofnosedtubes.

 

 
Homogenizationmethodwasapplied inacubeof representativevolumeelement (RVE).

Crystal plasticitywas considered and a periodic boundary conditionwas applied. Figure 1
showstheanalysismodels.Thereare54crystalsintheRVE.Theorientationofcrystalswas
given at random.Thematerial properties of 54 crystals are all the same except the crystal
orientationforCase1.Whileactualcopperisasinglephasemetal,lowcarbonsteelincludes
carbide,thoughitissmallamount.Case2inFigure1isthefiniteelementmodelofdualphase
metal.WhileCase1wasappliedforcopperandthelowcarbonsteel,Case2wasforthelow
carbonsteel.Case2recreatedthelowcarbonsteel,wherebytheamountofcarbideisequalto
that of actual low carbon steel. The volumes which are surrounded by white lines denote
carbide,whiletheremainderpartdenotesferrite.












:analysismodel







Case1 Case2
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In the analysismodel, a periodic boundary condition is applied assuming eachREV of

crystalgrainsisdimensionlesspointandinfinitenumberofgrainsexistsatonepointinmacro
scale.Figure2showsconceptualdiagramofperiodicboundarycondition.Materialconstant
for thegrain shouldbedetermined in advance for the executionof analysis. InCase1, the
identification of coefficientswas carried out by comparing the analytical and experimental
resultsinuniaxialtensiontest.InCase2,identificationoncarbidewasfirstlytriedreferring
mechanical properties of carbide in the literature [5]. Identification on ferrite was
continuouslycarriedoutbycomparingstressstraindiagramsofthewholelowcarbonsteelin
the numerical and experimental uniaxial tests. n the analysis model, a periodic boundary
conditionisappliedsothatitmightbeassumedeachrepresentativevolumeofcrystalgrains
isdimensionlesspointandinfinitenumberofgrainsexistsatonepointinmacroscale.Figure
2showsconceptualdiagramofperiodicboundarycondition.Materialconstantfor thegrain
shouldbedeterminedinadvancefortheexecutionofanalysis.



















:Conceptualdiagramofperiodicboundarycondition

 
Forthedescriptionofcrystalplasticity,thefollowingPeirce’sequation[6]wasemployed.
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ThecommercialcodeELFEN[7],whichwasdevelopedbyRockfieldSoftwareLimited,

Swansea, was used for the analysis of tube nosing. This analysis assumes that the
macroscopicanalysis.MicroscopicanalysiswascarriedoutbythecommercialcodeAbacus,
whichwasdevelopedbySIMULIA.

 
Mechanicalpropertiesoflowcarbonsteelweredeterminedbyuniaxialtensiletest,which

was sectioned out from the parent bar rod, which is annealed in advance. The specimen
geometryisshowninFigure3.Afternosing,thesamegeometryoftestpiecewassectioned
out along circumferential direction as show in Figure 4, for evaluation of mechanical
properties after the metal forming. Stressstrain diagrams of raw materials were
experimentallyobtained.


 




:Specimenfortensiletest:Positionsoftensiontestspecimen

 
Thestressstraindiagramwasnumericallyobtainedandcomparedwithexperimentalresult
as shown in Figure 5.Identification was conducted on the following parameters; peed
dependenceparameter,slipratio[s1],initialhardeningparameter0[MPa],saturationstress
τs[MPa], yield stress τ0[MPa], hardening parameter , difference parameter θ. For the
examinationoftheeffectofmaterialparametersincrystal,aseriesofnumericalanalyseswas
carried out by changing these parameters, based on the values determined in the previous
section.

Thecombinationofparameters fornumericalexaminationswasgivenasTable1.These
analyticalparameterswereadjustedsothatcalculatedstressstraindiagrammightbecomethe
same value as experimental one in the uniaxial tensile test. Stressstrain diagrams were
shown in Figure 5.Copper has a higher hardening ratio than low carbon steel.While low
carbon steel reached uniform elongation at ε = 0.07, copper still hardenwith increase of ε
whenε isover0.1.Numerical identified andexperimentaldiagramsare ingoodagreement
whenεislessthan0.1.
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:EXP.andFEMresultoftensiletest


:Calibratedparametersforanalyses
Material copper Lowcarbonsteel

Analysismodel Case1 Case1 Case2
Slippingvelocitydependenceparameter  30.0 30.0 30.0

Averagelevelofslippingvelocity /s1 0.001 0.001 0.001

Hardeningparameterininitialstage 0/MPa 100 380 380(200)
Saturationstress s/MPa 72 315 265(2400)
Yieldstress 0/MPa 25.5 285 255(1200)
Hardeningparameter  1.0 1.0 1.0



 
Figure6andFigure7showsstressstraindiagramsobtainedbyexperimentandanalysisof

thetestpiecessectionedoutofnosedtubes.Nosingratioκdefinedby


(5)

was changed form… to…., where0: initial diameter of tube,1: tip diameter after

nosing.
Some differences were experimentally observed between copper and the low carbon

materialonthebehaviourofstressstraindiagramattendantuponnosingratioκ.Flowstress
of copper increased with increase of nosing ratio κ, which would be attributed to strain
hardening.Ontheotherhand,itisnoteworthythatwithincreaseofnosingratioκ,flowstress
decreased in spite of accumulation of strain for the low carbon steel, which is dual phase
metal.
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:EXP.andFEMstressstraindiagrams.ofCopperafternosing
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:EXP.andFEMstressstraindiagramsofLowcarbonsteelafternosing


:Proofstressafternosing[MPa]
Copper EXP. Case1 Case2

Nosingratioκ=4.8% 157 161  
Nosingratioκ=7.2% 175 176  
Lowcarbonsteel EXP. Case1 Case2

Nosingratioκ=4.9% 552 716 591
Nosingratioκ=6.7% 585 733 592


ThenumericalmethodofCase1predictedwellthebehaviourofstressstraindiagramfor

copper.The flowstress increaseswith increaseofnosing ratio.However,Case1couldnot
predict the stressstrain behaviour for the low carbon steel. On the other hand, Case 2
predictedwellthebehaviourofstressstraindiagramofthelowcarbonsteel.Inotherwords,
2nd phase of material, which might be included in a small amount, would affect the
mechanicalpropertiesaftermetalforming.Itisneededtoconsidertheexistenceof2ndphase
material,andthatconsiderationconsiderablyenhancesthepredictionaccuracyinanalysis.

Table 2 shows proof stress obtained by the experiment and the analysis. The value of
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analysisisimprovedbyconsideringthe2ndphasematerialofcarbide.Case1predictedproof
stressofcopperwithinerrorof3.8%.Case2predicted thatof the lowcarbonsteelwithin
errorof7.1%.

 
 Predictionofmechanicalpropertiesofnosedmetallictubewasattemptedforcopper

andlowcarbonsteel,whichiswidelyemployedinindustry.Thepredictedvaluewas
comparedtoexperimentalresults.

 Itwasnoteworthythatflowstressdecreasedattendantuponintensityofdeformation,
inspiteofaccumulationofstraininthecaseof thelowcarbonsteel,whichisdual
phasemetal.

 Thehomogenizationmethodwithconsiderationofcrystalplasticitywasadoptedfor
thepredictionofmechanicalproperties.

 Thenumericalmethodpredictedwellthestressstrainbehaviourofcopper.
 It was needed to consider the existence of the 2nd phase material for accurate

prediction for the low carbon steel. The consideration considerably improved
accuracyofanalysis.

 Homogenizationmethodwithcrystalplasticitypredictedproofstresseswithinerror
of7.2%.
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Abstract. Multiscale model for hot–working, which can investigate the macroscopic me-
chanical behavior based on the microstructure evolution, has been developed by coupling
the finite element (FE) method and phase–field (PF) method. Here, the microstructure
evolutions in dynamic recrystallization are simulated by the multi–phase–field-dynamic
recrystallization (MPF–DRX) model. The microscopic simulations are performed in every
element used in the finite element simulations to calculate the macroscopic mechanical
behaviors.

1 INTRODUCTION

During hot–working of low–to–medium stacking fault energy metal, the dynamic re-
crystallization (DRX) occurs, where the plastic deformation due to dislocation accumula-
tion and the nucleation and growth of recrystallized grain occur simultaneously [1]. The
macroscopic mechanical behavior during DRX shows a characteristic stress – strain curve,
or single and/or multiple peak curves are generated depending on the initial grain size,
the strain rate and the temperature [2]. Because these macroscopic stress – strain curves
are largely affected by the microstructure evolution, it is key for the working process de-
sign to develop a multiscale numerical model for the hot–working. There are roughly two
kinds of multiscale method: one is by finite element method [3, 4, 5, 6, 7], which mainly
focuses on the macroscopic mechanical behavior, and the other is by grain growth model
[9, 10, 11, 12, 13, 14, 15, 16, 17], which focuses on the microstructure evolution.

In finite element simulations considering the DRX microstructure evolution during
hot–working [3, 4, 5, 6, 7], the information of microstructure, such as average grain size,
recrystallization volume fraction, stored energy (or dislocation density) and so on, is incor-
porated into the model through the constitutive equation and the DRX microstructural
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information is updated as a function of strain, strain rate and temperature. To increase
the accuracy of these models in more practical hot–working, it is key to properly incor-
porate the information of DRX microstructure evolutions, which largely depends on the
stress and thermal history, into the constitutive equation.

In DRX simulations using grain growth model [9, 10, 11, 12, 13, 14, 15, 16, 17], the
nucleation and growth of DRX grains, or realistic DRX microstructure evolution, are sim-
ulated and the macroscopic stress–strain curve is calculated from the average dislocation
density in the computational domain. As a grain growth model, Cellular Automata (CA)
is widely employed [9, 10, 11, 12, 13, 14, 15]. We have developed the MPF–DRX model
[16, 17] using multi–phase–field (MPF) method instead of CA and confirmed that the
MPF-DRX model can be applied to the transient deformation where strain and temper-
ature change rapidly during deformation [18].

In this study, we develop multiscale DRX model coupling above two types of DRX
models, where the DRX microstructure evolution is simulated by MPF–DRX model and
the macroscopic mechanical behavior is calculated by large deformation finite element
analysis, where the conventional J2–flow theory is used as the constitutive equation.

2 COUPLING OF MPF–DRX MODEL AND FE METHOD

Figure 1 shows an image of the multiscale simulation using MPF–DRX model and FE
method.

Finite Element Mesh
Computational domain for 

MPF-DRX

Figure 1: Image of multiscale simulation

The MPF–DRX simulations are performed in all finite elements used in FE simulation.
Because the crossed-triangle element is employed in the present FE simulation, in the
example of Fig.1, the computational domains with 196 numbers ( = 7×7×4 ) are prepared
and the MPF–DRX simulations are performed in all 196 domains. The equivalent strain
rate ˙̄ε and temperature T , which are different in every element, are transferred from

2



612

Tomohiro Takaki

FE simulation to MPF–DRX simulation and the tangent modulus dσ̄/dε̄ which is the
slope of the uniaxial stress–strain curve is transferred from MPF–DRX simulation to FE
simulation.

3 MPF–DRX MODEL

In the MPF–DRX model [16], the grain growth driven by stored energy is simulated
by the MPF method [21] and the local dislocation density evolution due to plastic de-
formation and dynamic recovery (DRV) is expressed by the Kocks–Mecking (KM) model
[19]. A macroscopic stress-strain curve is obtained from the Bailey–Hirsch equation [20]
using average dislocation density in all computational domain.

3.1 MPF model

A polycrystalline system including N grains is indicated by N phase–field variables.
The ith grain is indicated by the phase field φi, where φi takes values of 1 inside the ith
grain, 0 inside the other grains, and 0 < φi < 1 at the grain boundary. The evolution
equation of φi is expressed by [21]

φ̇i = −
n∑

j=1

2Mφ
ij

n

[
n∑

k=1

{
(Wik − Wjk) φk +

1

2

(
a2

ik − a2
jk

)
∇2φk

}
− 8

π

√
φiφjΔfij

]
. (1)

where n is the number of phase–field variables larger than 0 at the lattice point, aij,

Wij, and Mφ
ij are the gradient coefficients, the height of double–well potentials and the

phase–field mobilities related to the grain boundary thickness δ, grain boundary energy
γ and grain boundary mobility M , respectively, by

aij =
2

π

√
2δγ, Wij =

4γ

δ
, Mφ

ij
=

π2

8δ
M. (2)

Here, δ, γ and M are assumed to be constant at all boundaries and Eq.(2) is true only
for i �= j and the diagonal components are zero. The driving force Δfij can be obtained
as Δfij = 1/2μb2(ρi − ρj), where μ is the shear modulus, b is the magnitude of the
Burgers vector, and ρi and ρj are the dislocation densities in ith and jth adjacent grains,
respectively.

3.2 Dislocation evolution and macroscopic stress

The accumulation of dislocations due to plastic deformation and DRV is expressed by
the KM model [19] as the relationship between the local dislocation density ρi in the ith
grain and the true strain ε;

dρi

dε
= k1

√
ρi − k2ρi. (3)

Here, the first term on the right–hand side expresses the work hardening, where k1 is a
constant that represents hardening. The second term is the DRV term, where k2 is a

3
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function of the temperature T and the strain rate ε̇. [9] . Macroscopic stress is related to
the average dislocation density ρ̄ as

σ = αμb
√

ρ̄, (4)

where α is the dislocation interaction coefficient of approximately 0.5. From eqs. (3) and
(4), a macroscopic stress–strain curve can be determined.

3.3 Nucleation of DRX grains

It is assumed that the nucleation of recrystallized grains occurs only with the bulging
of a grain boundary in the present model. Therefore, when the dislocation density at a
grain boundary exceeds its critical value ρc, or

ρc =

(
20γε̇

3blMτ 2

)1/3

, (5)

nuclei are in placed at a grain boundary by following the nucleation rate per unit area of
a grain boundary [9]

ṅ = cε̇d exp(−ω

T
), (6)

where τ = 0.5μb2 is the line energy of a dislocation, l is the mean free path of mobile
dislocation expressed by l = 10/(0.5

√
ρ0), [9] and c, d and ω are constants.

4 FINITE ELEMENT METHOD

To evaluate the macroscopic mechanical behavior during hot–working process, the
elasto–plastic large deformation simulation is performed by finite element method. Here,
the conventional J2–flow theory is employed as the constitutive equation, where the elastic
strain rate ε̇e

ij and plastic strain rate ε̇p
ij are derived from the generalized Hook’s low and

the flow low and the Mises yield function, respectively. The relation between the Jaumann

rate of Kirchoff stress Sij and strain rate ε̇ij is indicated as follow:

Sij =

(
De

ijkl −
2G

g
σ′

ijσ
′
kl

)
ε̇kl, (7)

where De
ijkl, σ′

ij and G are the elastic coefficient tensor, the deviatoric Cauchy stress
tensor and shear modulus expressed as G = E/ {2 (1 + ν)}, respectively. In addition, g is
expressed by

g =
2

3
σ̄2

(
1 +

h

2G

)
, σ̄2 =

3

2
σ′

ijσ
′
ij, (8)

where, taking into account the uniaxial test and non–compressibility,

1

h
=

3

2

(
1

Et

− 1

E

)
, (9)
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can be obtaind. Here, Et is the tangential coefficient in the true stress and true strain
curve, or Et = dσ/dε, and is calculated in the MPF–DRX simulation. Therefore, in
the present FE simulation, we don’t need the uniaxial constitutive equation obtained by
uniaxial test, which is required in the normal FE simulation.

Because the strain rate dependency is contained in the MPF–DRX simulation, the
strain rate independent constitutive equation is used in the FE simulation. In this study,
furthermore, an isothermal condition is assumed and, therefore, the thermal conduction
equation is not shown here.

5 NUMERICAL SIMULATIONS

To confirm the accuracy of the present model, the uniaxial compression simulations in
a plane stress condition of copper [18] are performed for a single crossed–triangle element.
The constant strain rates ε̇ are set to be 0.001, 0.003, 0.01, 0.03 and 0.1/s in the isothermal
condition T = 800 K. The time step is determined as Δt = Δx2/

(
4a2Mφ

)
from Eq.(1).

Because the strain increment Δε is calculated as Δε = ε̇Δt, Δε changes depend on the ε̇.
Young’s modulus E is derived as E = 0.5αμbk1 from Eqs.(3), which is a gradient of true
stress and true strain curve at ε = 0, and (4) and Poisson’s ration is set to be 0.3.
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Figure 2: Stress–strain curves calculated by MPF–DRX model and FE method

Figure 2 shows the true stress and true strain relations for five different strain rates.
Although the present simulation is compression, stress and strain are indicated as positive
value. From Fig.2, the characteristic stress–strain curves in DRX, where the transition
from the multiple peaks to the single peak occurs with increasing the strain rate, can
be observed. Red lines are the results of MPF–DRX simulation and blue lines are the
results of FE simulation used the results of MPF–DRX simulation. The good agreements
between red and blue lines are confirmed especially in slow strain rate region.

Figure 3 shows the DRX microstructure evolution for ε̇ = 0.01/s. The color indicates
the DRX cycle defined in Ref. [17].
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(a) ε = -0.1 (b) ε = -0.2 (c) ε = -0.5 (d) ε = -1.0

Figure 3: DRX microstructure evolutions (ε̇ = 0.01)

From Figs.2 and 3, it is confirmed that the present model can simulate the microstruc-
ture evolution and the macroscopic mechanical behavior simultaneously. However, the
results shown in Figs.2 and 3 can be calculated only by the MPF–DRX model. The
novel point of the present coupling model is that the model can simulate the different mi-
crostructure evolution for every finite element in the nonuniform deformation simulation.

6 CONCLUSIONS

The novel multiscale model, which can evaluate the macroscopic mechanical behavior
based on the microstructure evolution considering the DRX in hot–working process, has
been developed. Here, the MPF–DRX model has been incorporated into the large de-
formation FE method with the conventional J2 flow theory as the constitutive equation.
The uniaxial compression simulations using one crossed–triangle element were performed
to confirm the accuracy of the developed model.

As future work, the model will be extended to the nonuniform and nonisothermal
deformation condition.
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Abstract. For a new insight on the mechanical properties of oxide dispersion strength-
ened (ODS) steels from atomistic viewpoints, we have implemented molecular dynamics
simulations on the interaction between Y2O3 nanocluster and dislocation in bcc Fe. There
is so far no all-round interatomic potential function that can represent all the bonding
state, i.e. metal, ion and covalent systems, so that we have adopted rough approxi-
mation. That is, each atom in Y2O3 is not discriminated but treated as “monatomic”
pseudo-atom; and its motion is represented with the simple pairwise potential function
as same as Johnson potential for Fe. The potential parameters are fitted to the energy
change in the hcp infinite crystal, by using the ab-initio density functional theory (DFT)
calculation for explicitly discriminated Y and O. We have set edge/screw dislocation in
the centre of periodic slab cell, and approached it to the “YO” monatomic nano-cluster
coherently precipitated in bcc-Fe matrix. The dislocation behavior is discussed by chang-
ing the size and periodic distance of the nano-cluster. Among the many useful results, we
have obtained a conclusion that the edge dislocation is strongly trapped by YO sphere
larger than the diameter of d = 0.9 nm, while the screw dislocation shows various behav-
ior, e.g. it cuts through the precipiate without remarkable resistance if the dislocation
line tension is high, or it changes the slip plane leaving jogs at the position anterior to
the precipiate with loose line tension.
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1 INTRODUCTION

Oxide dispersion strengthened (ODS) steels are potential next-gen materials for fuel
cladding tubes at nuclear power plants. For the engineering application and further de-
velopments of desired steels, it is urgent to understand the key mechaism of their superior
properties against neutron irradiation and high temperature. Starting from the pioneer-
ing report for alloying elements and mechanical alloying process of ODS steels in 1989 [1],
experimental studies have revealed the relationship between internal microstructure and
mechanical properties [2], improvement of tensile and creep properties by extremely fine
Y-Ti-O clusters with Ti addition [3], quantitative evaluation of nanosized oxides [4], and
so on. So far the fine oxides, of a few nanometer size, are expected to prevent the free
dislocation motion; however, due to the complexity of mechanical alloying and recrys-
talization process, it is still difficult to show the direct evidence even with the recent
advancement of experimental technique such as TEM in situ test.

Computational approach would be one answer to tackle these difficulties. In the field of
physics of crystal plasticity, various dislocation-obstacle problems have long been discussed
using molecular dynamics (MD) and discrete dislocation dynamics (DDD) simulations;
and we have also discussed the dislocation motion in γ/γ′ microstructure in Ni-based su-
peralloys [5, 6]. However, there is no suitable potential function which can represent all the
bonding state, i.e. metal, ion and covalent systems with sufficient number of atoms needed
for deformation simulation. Of course the ab-initio density functional theory (DFT) cal-
culation can treat mixing of any atom species, however, the calculation is so far limited to
very small system at most a few hundred atoms. Thus quite a few atomistic simulations
can be found for ODS steels except for lattice Monte Carlo (LMC) simulation, in which
atom position is restricted on regular lattice site, so that the limited combination of lo-
cal bonding can be precisely determined by ab-initio DFT calculation. Alinger et al. [7]
performed the LMC simulation of Fe-Y-Ti-O system and discussed the structure and mor-
phology of precipitated nanocluster. Hin et al. [8] simulated more realistic precipitation
by kinetic LMC, considering the different diffusion mechanism (O atoms by interstitial
jumps and Fe and Y atoms by vacancy jumps). Both studies apply finer lattice mesh
than the usual bcc lattices and their results should be appreciated as accurate prediction
based on DFT data. However, we would confront to drastic increase in the combination
of local bonding if we applied these DFT-LMC analysis to many alloy elements system for
real ODS steel design. Moreover, we never apply these DFT-LMC scheme to disordered
structure, such as dislocations and grain boundaries, since we should consider enormous
mesh much more than the number of atoms involved. From an engineering point of view,
we need an atomistic simulator in which the potential functions have differentiable form
for dynamic simulation and they are also easy to fit for new elements interest. The 2-body
potential form is the simplest way and there are many resources fitted for various elements;
however, obviously we would fail to represent the bonding between oxygen and metallic
atoms if we fitted them separately in the 2-body form. Thus, in the present study, we don’t
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Figure 1: Rhombohedral unit cells for hcp structure.

distinguish the Y and O atoms in Y2O3 but treat as “monatomic” pseudo-atom of YO,
in the fitting of Johnson potential parameters against the DFT calculation for explicitly
discriminated Y and O. By virtue of this rough approximation, we can easily implement
atomistic simulation using conventional resources, e.g. Johnson potential parameters for
Fe, keeping the rough characteristics of oxides such as lattice parameters and bulk mod-
ulus. Although we cannot validate the physical meaning of the isolated pseudo-atom nor
discuss the formation and structure of new oxidation products, we can perform MD sim-
ulation on the interaction between edge/screw dislocation and oxide nano-cluster. In the
present study, we show the brief fitting process and MD simulations of edge/screw dislo-
cation approaching the nano-clusters coherently precipitated in bcc-Fe matrix, changing
the size and distances of precipitates.

2 POTENTIAL FITTING PROCEDURE

DFT calculations for potential fitting are implemented using the Vienna Ab-initio
Simulation Package (VASP) developed by Kresse and Hafner [9]. Although the Y2O3,
M2X3 type metal oxide, is reported to form the C-rare earth oxide structure [10], it is very
difficult to directly consider such a low-symmetric irregular structure by DFT calculation.
Thus we have roughly approximated the structure of Y2O3 by simple hcp lattice, which is
close to the corundum structure or the second candidate of M2X3 metal oxide. Figure 1
shows the rhombohedral unit cells for hcp lattice. The supercell for DFT calculation
has one Y-atom and one O-atom at the lattice point as shown in Fig. 1(a). Keeping the
atom position at the lattice point, or statically, we have changed the lattice parameter
a and performed DFT calculation to obtain the energy–lattice parameter curve. The
ultrasoft pseudopotential [11] is adopted and the exchange correlation term is treated in
the formulation of GGA (generalized gradient approximation) [12]. The cutoff energy and
number of k points are 296.9 eV and 15 × 15 × 15, respectively.

Johnson potential expresses the system energy, Etot, by the following form:

Etot =
∑

i

∑
j>i

[
−C1(rij − C2)

3 + C3rij − C4

]
(1)
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Figure 2: Free-energy curves against lattice expansion/compression by DFT calculation for discriminated
Y and O in the hcp structure and by Johnson potential fitted as monatomic YO mean-atom.

Table 1: Potential parameters for Fe and YO pseudo-atom.

Element Range [nm] C1 C2 C3 C4

0.19 < rij < 0.24 2.1960 3.0979 2.7041 7.4365
Fe 0.24 < rij < 0.30 0.6392 3.1158 0.4779 1.5816

0.30 < rij < 0.344 1.1150 3.0664 0.4669 1.5480
YO 0.19 < rij < 0.344 0.523 3.090 0.194 1.560

here rij is the distance between atoms i and j, and the potential parameter C1 ∼ C4

should be found for yttria oxide. We have expressed the infinite YO hcp crystal with
monatomic YO pseudo-atoms in Fig. 1(b) under the periodic boundary, and fitted its
energy change to the DFT result (Fig. 2). By this fitting process, the equilibrium lattice
length and the bulk modulus, or energy change rate against lattice expansion/compression,
are precisely represented for monatomic YO pseudo-atoms. On the Fe-YO interaction,
simple arithmetic average rule is adopted, i.e., (CFe

i +CYO
i )/2. All the potential parameters

are listed in Table 1.

3 SIMULATION ON EDGE DISLOCATION

3.1 Simulation procedure

Figure 3 shows the dimensions and introduction of edge dislocation. The x, y and
z axes are orinented to the [111], [1̄12] and [1̄10] directions in the bcc structure. For
the precipitate–edge dislocation problem, we have replaced Fe atoms with YO ones, in
the sphere at the position shown in Fig. 3(a). That is, the precipitate has initially bcc
structure or coherently precipitated in the bcc matrix. Different sphere diameter d is
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Figure 3: Simulation model for edge dislocation.

considered, i.e., 0.6, 0.9, 1.5, 3.0 and 5.0 nm. The edge dislocation is also introduced by
eliminating one atomic plane as shown in Fig. 3(b). The periodic boundary condition
is applied in the x and y axes, i.e. dislocation motion and line directions, while the z
boundary is basically free surface but also has restriction for deformation control. The
initial structure is relaxed by MD calculation of 100 000 fs under T = 10 K. Then, we
apply the small displacement of 1.0×10−6 nm at every MD step in the [111] direction
for upper z surface atoms and in the opposite for lower ones, in order to approach the
edge dislocation to the precipitate. For comparison, we have also performed same shear
simulation without precipitate. Furthermore, we have also implemented same simulation
with different cell length Ly in the y direction to check the effect of the periodic distance
between the precipitates. Note that the temperature is so far intentionally controlled to
very-low value since we would include not only the mechanical effects but also thermal
fluctuation under high temperature, and we couldn’t seperate the both effects if we had
started from high temperature.

3.2 Results and discussion

Figure 4 summarizes the result of simulations with the cell length of Ly=11.2 nm.
Fig. 4(a) shows the position of dislocation core while Fig. 4(b) does the shear stress, τzx,
on the simulation cell. The abscissa is time and the shear simulation starts from t = 0 fs.
The position of dislocation core is evaluated from the atoms with high energy as marked
in Fig. 5(a), one example of dislocation motion. In the figure, only the dislocation and
precipitate are visualized with a certain threshold for potential energy. Back to Fig. 4(a),
the dislocation begins to glide around t = 20 000 fs and reaches to constant speed before
t = 50 000 fs, if there is no precipitate anterior to the dislocation (thick solid line). The
shear stress also peaks out and shows constant flow stress at that point of steady motion
(Fig. 4(b)). In the case of the YO diameter of d = 0.6 nm, the position–time and stress–
time curves are very similar to those of without precipitate (dashed lines). That is, the
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Figure 4: Change in the core position and shear stress (edge dislocation, Ly = 11.2 nm).
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Figure 5: Motion of edge dislocation on the slip plane (d = 1.5 nm, Ly =11.2 nm).
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Figure 6: Position–time curves with different periodic length between precipitates (edge dislocation).

edge dislocation receives no resistance from such small precipitates of d = 0.6 nm. On the
other hand, the dislocation motion is clearly affected by the YO precipitate larger than
d = 0.9 nm, as previously shown in Fig. 5 for d = 1.5 nm. In the approaching process, the
precipitate attracts the edge dislocation as shown in Fig. 5(c). On the other hand, the
edge dislocation should largely bend to unlock the pinning (Fig. 5(e)). Both of them are
the evidence that the YO precipitate has attractive effect on the edge dislocation. These
tendency becomes more remarkable with the precipitate size, as indicated Arrows ⃝1 and
⃝3 in Fig. 4(a). It is also noteworthy that the increased shear stress is first relaxed by
the collision of dislocation and precipitate as indicated Arrows ⃝4 in Fig. 4(b), while the
unlock stress of Arrow ⃝5 drastically increases with the precipitate size.

Figure 6 shows the position–time curves with different simulation cells of Ly = 4.9, 11.2
and 25.2 nm. Fig. 6(b) is identical to Fig. 4(a). On Fig. 6(a), there is no space between
YO precipitates of the diameter d = 5 nm in the smallest cell length Ly = 4.9 nm, so that
we omit the simulation. The diameter d = 3 nm might be still large for the cell length
Ly = 4.9 nm, since there is large oscillation around t = 150 000 fs where the trapped
dislocation is unlocked and proceeds again. With the larger periodic distance or larger
spacing between precipitates, the locked dislocation can largely bend. Thus the unlock
time becomes shorter as shown with Arrow in Figs. 6(b) and 6(c) with the help of line
tension of largely bent dislocation. On the other hand, the smallest precipitate d = 0.6 nm
is always similar to the case without precipitate, despite of the precipitate spacing.

4 SIMULATION ON SCREW DISLOCATION

4.1 Simulation procedure

Figure 7 shows the simulation model for screw dislocation. The slab cell looks like same
as the previous simulation; however, the slip plane is set normal to the [1̄12] direction
(y-axis) and periodicity is only set to the [111] direction (x-axis). As mentioned later, the

7



625

K. Yashiro, T. Mutsukado, M. Tanaka, A. Yamaguchi, K. Koga, T. Segi and T. Okuda

9
.8

0
[n

m
]

5.2[nm]

15.0[nm]

Y2O3 Cluster

y[112]
_

x[111]

z[110]
_

3.26[nm] 10.5[nm]1.24[nm]

b

2

9[nm]

(a) Dimensions of simulation cell (b) Displacement control for screw dislocation

_ b
2

Figure 7: Simulation model for screw dislocation.

screw dislocation tends to change the slip plane so that we adopt narrow periodic length
Lx = 5.2 nm as the standard length. Atoms in the upper and lower half of z < 3.26 nm
from the front edge (Area ⃝1 ) are alternately shifted in the x-axis, with the magnitude of
b/2 (b; Burgers vector). Atoms in Area ⃝2 are also linearly shifted to connect the slipped
and non-slipped area. As same as the previous simulations, the initial configuration is
relaxed with 100 000 fs MD calculation under T = 10 K, for both cases with and without
YO precipitate. The maximum diameter of the precipitate is d = 3 nm. Then, small
displacement of 3.0 × 10−6 nm is applied in the [111] and [1̄1̄1̄] directions alternately on
the upper and lower surfaces of the cell, to proceed the screw dislocation by the xy shear.

4.2 Results and discussion

Figure 8 shows the position–time and shear stress-time curves in the cell width of
Lx = 5.2 nm. The horizontal dashed line in Fig. 8(a) indicates the center of YO precipitate.
Also, the vertical broken lines in Figs. 8(a) and 8(b) mark the same time points. Contrary
to the edge dislocation, there is no remarkable difference even with the large (d ≥ 0.9 nm)
precipitate. Figure 9 shows one example of dislocation motion in the simulation of d =
1.5 nm. Despite of the similar line tension as the previous Fig. 6(a), the screw dislocation
feels no resistance to cut through the precipitate, leaving high energy atoms around the
YO atoms. On the other hand, if we use the wider simulation cell of Lx = 10.4 nm,
the dislocation shows various motion as indicated in the position of dislocation core in
Fig. 10(b). Here Fig. 10(a) is identical to Fig. 8(a). The mechanism for the variation in
Fig. 10(b) is different case by case; for example, the screw dislocation changes its slip
plane and drags the jog-like high energy atoms at the point far away from the precipitate,
and passes the precipitate–matrix interface as shown in Fig. 11 of d = 0.9 nm. In the
case of d = 3.0 nm, the screw dislocation does change the slip plane too, but is attracted
and trapped by the precipitate and leaves Orwan loop like defect around the precipitate

8
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Figure 11: Motion of screw dislocation (Lx=10.4 nm, d = 0.9 nm).
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Figure 12: Motion of screw dislocation (Lx=10.4 nm, d = 3.0 nm).

(Fig. 12). Thus, it is difficult to obtain a clear tendency for the interaction between screw
dislocation and YO precipitate. In addition, it also should be noted that the present
model for screw dislocation has a large difference against the previous edge dislocation;
that is, the simulation cell is not periodic in the glide direction and might be too small
to mimic the dislocation motion in bulk. In this manner, more sophisticated model is so
far needed for screw dislocation, and the present report could be a help for refinement.

5 CONCLUSIONS

We have performed various molecular dynamics simulations on the interaction between
edge/screw dislocations and nanosphere of yttria oxide in bcc Iron, targetting the phenom-
ena in oxide dispersion strengthened (ODS) steels. Since there is no all-round interatomic
potential functions that can represent all the bonding state, i.e. metal, ion and covalent
systems, we have adopted rough approximation that each atom in yttria oxide is not dis-
tinguished but treated as “monatomic” pseudo-atom, and its motion is represented with
the simple pairwise potential function as same as Johnson potential for Fe. The potential
parameters are fitted to the energy change in the hcp infinite crystal, by using the ab-
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initio density functional theory (DFT) calculation against explicitly discriminated Y and
O. We have observed various dislocation behavior by changing the diameter and periodic
distance of the coherently precipitated YO cluster using a periodic slab cell. Although it is
also clarified that we might need refinement of the simulation model for screw dislocation,
still we have obtained many useful insight on the dislocation/yttria oxide interaction, e.g.
(1) YO cluster larger than 0.9 nm strongly attracts and traps edge dislocation, (2) highly
tensioned screw dislocation easily cut through the precipitate without resistance, and (3)
loose screw dislocation shows complicated behavior by changing the slip plane, at the
point far away from the precipitate.
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Abstract. The multiscale mechanical behaviors of Ferrite-Pearlite steel were predicted
using Numerical Material Testing (NMT) based on the finite element method. The mi-
crostructure of Ferrite-Pearlite steel is regarded as a two-component aggregate of Ferrite
crystal grains and Pearlite colonies. In the NMT, the macroscopic stress-strain curve
and the deformation state of the microstructure were examined by means of a two-scale
finite element analysis method based on the framework of the mathematical homogeniza-
tion theory. For the NMT of Ferrite-Pearlite steel, constitutive models for Ferrite crystal
grains and Pealite colonies were prepared to describe the anisotropic mechanical behavior
at the micro-scale.

1 INTRODUCTION

The macroscopic material behavior is governed by the microstructure. The numerical
homogenization approach was to evaluate the macroscopic material behavior from its
microscopic information with a computational method, namely the finite element method.
The feature of this methodology is that the morphology of the microstructure can be
explicitly modeled with finite elements. Then the interaction between each component can
be mechanically taken into consideration. In addition, the microscopic model undergoes
the numerical examination under idealized macroscopic and microscopic states over and
over again, which is almost impossible when carrying out actual experiments. In this
study, the computational framework used to examine the material behavior is called
Numerical Material Testing (NMT).

The key element to the success of such a numerical homogenization approach is to be
able to describe the microscopic mechanism realistically in the form of a computational
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model. Special attention has to be paid to constitutive models for each component of
the microstructure in order to describe the microscopic material behavior. It should
be noted that the microscopic material behavior is anisotropic even if the macroscopic
material behavior is isotropic, making the standard constitutive models for macro-scale
problem completely unsuitable to the microscopic components in general. The single
crystal plasticity model is a well-known microscopic constitutive model for a metallic
material, which expresses the crystallographically-defined plastic anisotropy.

Turning to the application of the computational approach based on the continuum
mechanics into steel, various studies have been made on the numerical evaluation of the
mechanical behavior because of the practical importance of steel as a structural material.
General carbon steels are characterized with the precipitation of Cementite, which is an
iron carbide, in various forms. A typical microstructure of Ferrite-Pearlite steel is depicted
in Figure1, which is composed of several Ferrite crystal grains and Pearlite blocks. And
a Pearlite block contains some Pearlite colonies characterized by the lamellar structures
of Ferrite and Cementite phases. Such hierarchical heterogeneity is the dominant factor
of the strength and the deformation characteristic.

In this study, we apply the framework of an NMT to evaluate and model the hierarchical
mechanical behavior of Ferrite-Pearlite steel. Both anisotropic linear elasticity and single
crystal plasticity models can be employed to describe the mechanical behavior of Ferrite
crystal grains. However, the anisotropic constitutive model for Pearlite colonies has yet to
be proposed. The constitutive model is newly formulated in reference to the results of the
NMT for the microscopic lamellar structures composed of Ferrite and Cementite phases:
that is, the NMT is carried out to produce mechanical behavior for the formulation of
microscopic constitutive equations which can be substituted for the constitutive theory. In
this sense, it is possible to approach the evaluation of mechanical behavior using physical
computations as first principle calculations although the applicability of this approach is
limited to elastic regions, given the limits we have.

2 HOMOGENIZATION METHOD AND CONSTITUTIVE MODEL FOR
FERRITE CRYSTAL

2.1 Homogenization approach based on finite element method

In the two-scale finite element analysis method [1], a representative volume element
(RVE) of the microstructure is discretized with finite elements and the microscopic bound-
ary value problem (BVP) is simultaneously solved with the macroscopic BVP in the two-
scale BVP. We here reduce the macroscopic BVP to a point-wise stress-strain relationship.
Then the two-scale BVP turns into a problem to evaluate the material behavior of a nu-
merical specimen represented as a microscopic finite element model under the control of
the macroscopic stress or strain, i.e. this framework is regarded as Numerical Material
Testing (NMT) based on the finite element method [2].

With this framework, we can evaluate both the macroscopic material response and
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20. µm 
1.0 µm 

(a) Ferrite-Pearlite steel (b) Pearlite block

Figure 1: Microstructure of Ferrite-Pearlite steel. The Microstructure of Ferrite-Pearlite steel is com-
posed of several Ferrite crystal grains and Pearlite blocks. Pearlite block contains some Pearlite colonies
characterized with the lamellar structure of Ferrite and Cementite phases.

the deformation state of a microstructure. By conducting a series of numerical material
tests, the macroscopic material response of the microstructure is examined in detail. In
this study, we employ the computational approach to develop an anisotropic constitutive
model depending on the morphology of the intended microstructure and identify the
material constants of the constitutive model.

2.2 Elastic-plastic constitutive model for Ferrite single crystal

An anisotropic linear elasticity and a single crystal plasticity are introduced to capture
the anisotropic mechanical behavior of a single crystal.

Here, we use the single crystal plasticity based on the representative characteristic
length [3]. In this constitutive model, the critical resolved shear stress (CRSS) is charac-
terized with the representative characteristic length, which in turn represents the domi-
nant strengthening mechanics. In addition, the yield-point elongation and the hardening
behavior can be described with the evolution of the dislocation density.

3 ELASTIC-PLASTIC CONSTITUTIVE MODEL FOR PEARLITE COLONY

3.1 Finite element model for Pearlite colony

The finite element model of the Pearlite colony is defined as shown in Figure2, where
the white elements indicate the Ferrite phase and the others are Cementite phases. It
is assumed that the Ferrite and Cementite lamellar structures are completely parallel
with each other, the boundary between them does not slip, and this finite element model
satisfies the geometrical periodicity boundary condition. Also, the normal vector, m0,
of the lamella is set as heading in the direction of Y3 at the initial configuration for the
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Ferrite

Cementite0.884

0.116

Y1

Y2

Y3

m0

Figure 2: Finite element model of Pearlite colony. The white and shaded areas indicate the Ferrite and
Cementite phases, respectively. The normal vector of the lamella indicates m0 at the initial state.

formulation of the constitutive model. Here we employ the crystallographic orientation
relationships of Bagaryatskii [4] as below:





(001)Cementite // (211)Ferrite
[100]Cementite // [0− 11]Ferrite
[010]Cementite // [−111]Ferrite

(1)

In addition, the mechanical character of the Cementite phase is considered as an elastic
material, whereas this does not seem to be true in the finite strain range as mentioned
later.

3.2 Numerical Material Tests for Pearlite colony

The macroscopic elastic-plastic material behavior was investigated with an NMT for
the microscopic finite element model of the Pearlite colony.

3.2.1 Elasticity

The components of the fourth order elastic tensor were estimated with finite element
analyses of the RVE (Figure2). Before that, however, the elastic constants of both the
Ferrite and Cementite phases must be prepared for computation. For the Ferrite phase,
the values were taken from the experimental database. The metastability of Cementite,
however, makes it extremely difficult to estimate the elasticity of Cementite phase. The
first-principles calculations in this study were performed by the projector augmented wave
method [5, 6] as implemented in the Vienna ab-initio simulation package (VASP) [7, 8].
The elastic constants estimated from the calculation are presented as below, where the
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Table 1: Components of fourth order elastic tensor for Pearlite colony.

Component Ĉ
e
1111 Ĉ

e
2222 Ĉ

e
3333 Ĉ

e
1122 Ĉ

e
2233 Ĉ

e
1133 Ĉ

e
1212 Ĉ

e
1313 Ĉ

e
2323

[GPa] 302. 313. 292. 98. 100. 115. 69. 94. 74.

Component Ĉ
e
1112 Ĉ

e
1113 Ĉ

e
1123 Ĉ

e
2212 Ĉ

e
2213 Ĉ

e
2223 Ĉ

e
3312 Ĉ

e
3313 Ĉ

e
3323

[GPa] 0. 0. -26 0. -26 1. 0. 0. 27.

Component Ĉ
e
1213 Ĉ

e
1223 Ĉ

e
1323

[GPa] 0. 0. 0.

anisotropy is orthotropic in type.

Ĉ
e(Fe3C)
1111 = 397.0GPa Ĉ

e(Fe3C)
2222 = 364.0GPa Ĉ

e(Fe3C)
3333 = 317.GPa

Ĉ
e(Fe3C)
1122 = 168.GPa Ĉ

e(Fe3C)
2233 = 183.3GPa Ĉ

e(Fe3C)
1133 = 154.GPa

Ĉ
e(Fe3C)
1212 = 66.GPa Ĉ

e(Fe3C)
1313 = 138.GPa Ĉ

e(Fe3C)
2323 = 142.GPa

(2)

Using the finite element model presented in Figure2 and the elastic constants, the
components of the elastic tensor of Pearlite colony were numerically evaluated, with the
macroscopic deformation modes corresponding to each strain component imposed on the
finite element model of the microstructure. The resulting values are give in Table1, where
the anisotropy is described with twenty-one independent elastic constants.

3.2.2 Plasticity

After determining the elastic material behavior of the Pearlite colony, the next step
was to evaluate its plasticity with an NMT based on the finite element method. Here it
is assumed that the Cementite phase is elastic. Also, the elastic-plastic material behavior
of the Ferrite phase was characterized with the constitutive model explained in Section
2.2. The material constants of the plasticity of the Ferrite phase were found after trial
and error by comparing between a result of an experimental axial tensile test for a Fer-
rite single-phase steel and the macroscopic stress-strain curve of the corresponding NMT.
Considering the rotational symmetry of the lamellar structure for the third coordinate
axis, five macroscopic deformation modes, i.e. the five components of macroscopic dis-
placement gradient listed below, were respectively imposed on the finite element model
of the microstructure of Pearlite colony (Figure2) until there was sufficient large strain to
describe the macroscopic plastic behavior:

H̃11, H̃12, H̃13, H̃31, H̃33, (3)

which are two types of uniaxial deformation mode and three types of simple shear defor-
mation mode.

5
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Figure 3: Macroscopic stress-strain curves of Pearlite colony.

The resulting macroscopic, or homogenized, equivalent stress-strain curves are illus-
trated in Figure3, where the equivalent stress is the Mises stress and the equivalent strain

is defined with Henky strain ϵ =
1

2
ln
[
FF T

]
as

ϵ∗ :=

√
2

3
dev [ϵ] : dev [ϵ]. (4)

As it can be seen, the results clearly indicate strong anisotropic plastic behavior, which is
extremely stiff after yielding except in the case of the simple shear deformation modes H̃13

and H̃31. The response of H̃13, the interlamellar shear deformation mode, is particularly
close to the material behavior of the Ferrite phase.

With regard to the microscopic investigation, three representative deformation states
and stress values at a macroscopic equivalent strain of 10 % are depicted in Figure4 with
the equivalent stress values of each phases. It needs to be pointed out that the stress values
of the Cementite phase are unrealistically high in these results except for the interlamellar
shear deformation mode. It is quite likely that such a high stress state induces some
dissipation mechanics, e.g. in the plastic behavior of the Cementite phase or debonding at
the boundary between the Ferrite and Cementite phases. Although some studies have been
carried out with the aim of observing such microscopic material behavior, the deformation
mechanism of the Cementite phase at finite strain is still controversial. Regardless of the
cause of the dissipation behavior, the plastic deformation of the Ferrite phase appears
to be released from the constraint and also the macroscopic yielding stands out on the
macroscopic, or homogenized, stress-strain curve of Pearlite colony.

6
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5.10 GPa

(a) H̃33 (uniaxial tensile) (b) H̃13 (simple shear) (c) H̃31 (simple shear)

Figure 4: Microscopic deformation state of Pearlite colony. The stress states are homogeneous in each
phase and the equivalent stress values are written in the Figure.

3.3 Plastic constitutive model for Pearlite colony

Based on the characterization of the anisotropic material behavior using the NMT,
we propose the anisotropic plastic constitutive model for the Pearlite colony. In this
study, the plastic behavior of the Pearlite colony is defined as two-stage yielding behavior;
interlamellar shear yielding and the yielding of overall microstructure. That is, the plastic
constitutive model for the Pearlite colony is described with two yield functions consisted
of an anisotropic interlamellar shear plasticity and a standard isotropic metal plasticity.
For the Kirchhoff stress τ and the plastic internal variables ζ(α) (α = 1, 2), the two yield
functions are defined at current configuration as below:

ψ(1) := |s · (τm)| −
(
τ
(1)
Y + h11ζ

(1) + h12ζ
(2)
)
≤ 0 (5)

ψ(2) :=

√
3

2
dev[τ ] : dev[τ ]−

(
τ
(2)
Y + h21ζ

(1) + h22ζ
(2)
)
≤ 0 (6)

where τ
(α)
Y is the initial yield stress for the α-th yield function (α = 1 or 2) and hαβ (α, β =

1 or 2) is the hardening coefficient containing cross-hardening. The first yield function
ψ(1) represents the slip behavior on the lamellar structure. The slip direction vector s
and the normal vector m are pushed forward from the intermediate configuration with
the elastic deformation gradient F e as

s = F es0, m = F e−Tm0, (7)

where s0 and m0 are respectively the slip direction vector and the normal vector of the
lamella at the intermediate configuration. With equation (7), the yield functions at the

7
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intermediate configuration are given as below:

ψ(1) :=
���T̂ : (s0 ⊗m0)

���−
(
τ
(1)
Y + h11ζ

(1) + h12ζ
(2)
)
≤ 0 (8)

ψ(2) :=

√
3

2
dev[T̂ ] :

(
dev[T̂ ]

)T

−
(
τ
(2)
Y + h21ζ

(1) + h22ζ
(2)
)
≤ 0 (9)

The slip direction vector s0 is determined as the unit vector which indicates the direction
of the innerlamellar component of the traction force vector T̂m0 on the lamella, i.e. it
is defined with the normal vector m0 and the stress state T̂ as below:

s0 :=
t√
t · t , t := T̂m0 −

{
m0 ·

(
T̂m0

)}
m0 (10)

In equations (8) and (9), only h22 is defined as a non-linear function of ζ(1) to express the
non-linear hardening behavior:

h22 :=
(
h0
22 − h∞

22

)
exp

[−pζ(2)
]
+ h∞

22, (11)

where p is a sensitivity of the exponential function, h0
22 is the initial value of h22 and

h∞
22 is the corresponding convergent value. In this study, we are not concerned with the

strengthening effect of lamellar spacing, but it is possible to introduce the effect on the
material constants of the initial strength and the hardening behavior.

Finally, the proposed constitutive model was examined by making a comparison be-
tween its response and the results of the NMT of the Pearlite colony. The equivalent
stress-strain curves are evaluated for three deformation modes corresponding to the com-
ponents of the displacement gradient, H11, H13 and H31, where it is assumed that the
vector m0 is directed to the coordinate axis direction Y3 in the same way as the finite el-
ement model in Figure2. Here the plastic behavior of the interlamellar shear deformation
mode is determined from NMT, and the constants of isotropic hardening were found by
trial and error as they were for the Ferrite phase. The results are shown in Figure5.

4 NUMERICAL ANALYSIS FOR FERRITE-PEARLITE STEEL

The NMT based on finite element method was performed to predict the mechanical
behavior of Ferrite-Pearlite steel with the constitutive models discussed in Section 2 and
3, and the computational results were compared with the experimental results.

4.1 Setting of finite element model of microstructure

We set the finite element models of the microstructure for Ferrite-Pearlite steel to carry
out the following NMT.

The basic finite element model given in Figure6 is assumed to satisfy the geometrical
periodicity condition and is composed of fifty-four blocks. In this finite element model,
each block has an idealized geometry of truncated octahedrons and is discretized by eighty

8
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Figure 5: Stress-strain curves of constitutive model of Pearlite colony. The vector m0 is set up as an
unit vector directed to third coordinate axis.

standard isoparametric hexahedron finite elements. In addition, each block is recognized
as either Ferrite or Pearlite. The properties of the blocks are randomly arranged in
accordance with the volume fraction of the Ferrite-Pearlite steel under consideration,
where the discretely-distributed microstructure of Ferrite-Pearlite steel is supposed as
Figure1(a); the finite element model shown in Figure6 is made of 33 percent Pearlite.
If the property of a block is Ferrite, the block is recognized as a single grain. If it is
Pearlite, the block is equally divided into eight colonies as illustrated in Figure6. That
is, Pearlite always exists as an aggregate composed of some Pearlite colonies. Anisotropic
elastic-plastic constitutive models for Ferrite single crystals and Pearlite colonies, which
are presented in Section 2 and 3, are employed for the corresponding components. As
mentioned before, some material constants of plasticity were determined to reproduce the
stress-strain curves in experimental axial tensile tests as the results of the homogenization
analyses. The orientations of each Ferrite crystal grain and Pearlite colony, i.e. the
crystallographic orientations and the direction of the normal vector of the lamella, are
provided in a random fashion.

4.2 Numerical results and validation

First, we investigate the elastic constants of Ferrite single-phase steel (Pearlite volume
fraction 0 percent) and full Pearlite steel (Pearlite volume fraction 100 percent) with
an NMT for the microstructure shown in Figure6, which is the same as the NMT used
for the Pearlite colony. The almost isotropic material behaviors are evaluated in this
computations. The results were acceptable values of the Young modulus and Poisson’s
ratio for each steel, as estimated as below:

E(Ferrite) ≃ 200. GPa ν(Ferrite) ≃ 0.296
E(Pearlite) ≃ 216. GPa ν(Pearlite) ≃ 0.288

(12)

9
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Ferrite grain

Pearlite block

  (8 colony)

Pearlite colony

Y1

Y2

Y3

Figure 6: Finite element model of microstructure of Ferrite-Pearlite steel. The finite element model is
composed of 54 blocks. Each block has an idealized geometry of a truncated octahedron and is recognized
as a Ferrite crystal grain or a Pearlite block equally divided into eight colonies.

Obviously, the elasticity of Ferrite-Pearlite steel takes a value intermediate between these.
Next, we performed a series of numerical experiments in which the volume fraction

of Ferrite/Pearlite was changed. Macroscopic uniaxial tensile deformation was imposed
to the finite element model of Ferrite-Pearlite microstructure in the corresponding Y1

direction, as illustrated in Figure6. The resulting macroscopic stress-strain curves are
almost isotropic because Ferrite and Pearlite blocks are randomly arranged in the finite
element model of the microstructures. The macroscopic, or homogenized, axial stress-
strain curves of five cases are presented in Figure7, where the experimental results of
three cases, Pearlite volume fraction 0 percent, 38 percent and 100 percent, are illustrated
together by the dashed lines. Here we prepare a tensile test specimen of Ferrite-Pearlite
steel which consists of almost the same scale of lamellar spacing with the corresponding
specimen of full Pearlite steel to cut off a strengthening effect of the lamellar spacing.

The numerical results for Pearlite with a volume fraction of 0 percent and 100 percent
is obiously similar since the material constants of the results of the NMTs reproduce
the experimental results. Furthermore the experimental stress-strain curve of the Ferrite-
Pearlite steel with a volume fraction of 38 percent is close to the numerical result with a 33
percent volume fraction. Therefore it is concluded that this NMT successfully predicted
macroscopic mechanical behavior.

For the composite case (Pearlite volume fraction 33 percent, i.e. the finite element
model Figure6), the distributions of equivalent stress and maximum principal strain are
depicted in Figure8 at the point where the macroscopic axial strain is 15 percent. In
this figure, the stress states are significantly different between Ferrite grains and Pearlite
blocks. Compared to the arrangement of Ferrite grains and Pearlite blocks in Figure6,
the Ferrite grains underwent more plastic deformation than the Pearlite blocks due to the

10
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Figure 7: Macroscopic axial stress-strain curves of Ferrite-Pearlite steel. The solid and the dash lines
indicate numerical and experimental results respectively.

higher yield strength of the Pearlite blocks.

5 CONCLUSIONS

We have predicted multiscale mechanical behavior of Ferrite-Pearlite steel with the
hierarchical Numerical Material Testing using a deductive approach. A first principle
calculation was performed to estimate the components of fourth order elastic tensor of
the Cementite phase. With the elastic tensor, an NMT based on the finite element
analysis was conducted to evaluate the anisotropic mechanical behavior of a Pearlite
colony. Based on the resultant homogenized mechanical behavior of the Pearlite colony,
an anisotropic plastic constitutive model for Pearlite colonies proposed to enable the NMT
for Ferrite-Pearlite steel to be carried out. Finally, both the macroscopic and microscopic
mechanical behavior of Ferrite-Pearlite steel was predicted with the NMT. We were thus
able to demonstrate that this numerical approach provides acceptable results at both the
macro- and micro-scale.
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Abstract. In order to investigate the effects of stress around dendrite neck cased by the 
convection and gravity on the dendrite fragmentation, the novel numerical model, where 
phase-field method, Navier-Stokes equations and finite element method are continuously and 
independently employed, has been developed. By applying the model to the dendritic 
solidification of Al-Si alloy, the maximum stress variations by melt convection and gravity 
with dendrite growth were evaluated. 
 
 
1 INTRODUCTION 

Dendrite plays especially important role for formation of solidification microstructure of 
metallic alloy, because it determines the size and shape of solidified grains. Therefore, it is 
essential for high quality casting to predict and control the dendritic morphology with high 
accuracy.  

In casting, the final microstructure in the ingot is formed through two different dendritic 
growths. One is columnar structure, in which the dendrites grow preferentially oriented 
perpendicular to the mold walls, and the other is equiaxed structure, in which the dendrites 
grow in all space directions. In particular, the equiaxed grain structure has a dominant 
influence on the mechanical characteristics of casting product, because it controls the size of 
solidification microstructure. One of the sources of the equiaxed grains is thought to be the 
dendrite fragmentations caused in columnar region.  

It is reported that the dendrite fragmentation occured by local remelting and the 
mechanical fragmentation due to the melt flow is not important for grain refinement [1] 
except for rapid solidification [2]. Recently, studies using in-situ and real-time observations 
reported that the mechanical stress caused by the melt convection and the gravity promotes 
the dendrite fragmentation [3]. However, its detail mechanism is not yet elucidated.  

In this study, in order to reveal the effects of mechanical stress caused by the convection 
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and gravity on dendrite fragmentation, we developed a new simulation model and investigate 
the stress in dendrite neck. The coupling simulations by phase-field method, Navier-Stokes 
equations and finite element method are performed. In this simulation, first, realistic dendritic 
morphologies are simulated by phase-field method and, successively, the flow fields around 
the dendrite are simulated by Navier-Stokes equations. Lastly, the stresses in dendrite caused 
by melt convection and gravity are calculated by finite element method. The variations of 
maximum stress occurred at the dendrite neck with dendrite growth are discussed.  

2 NUMERICAL PROCEDURE AND MODELS 

2.1 Numerical procedure 
The dendritic growth of Al-Si alloy and the flow field of solution around the dendrite in 

forced flow are simulated. And then, the stresses in dendrite caused by the flow and gravity 
are calculated. The calculations are performed in the order of phase-field method, Navier-
Stokes equation and finite element method. 

At first, the dendrite morphologies during solidification of Al-Si alloy are simulated by the 
phase-field method. Next, the fluid flow around the dendrite is simulated by using two-phase 
Navier-Stokes equations and the pressure distributions acting on the dendrite surface are 
calculated. Lastly, the stress distributions in the dendrite caused by the fluid flow and gravity 
are simulated by using finite element method. In the following, the phase-field model and the 
two-phase Navier-Stokes equation are explained in detail. 

2.2 Phase-field model 
The dendritic growth of Al-Si alloy in isothermal condition is simulated by the phase-field 

method. The evolution equation of phase field variable , which takes 1 in a solid and 0 in a 
liquid, is expressed by 
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where,  is the time and a is the gradient coefficient considering interface anisotropy by the 

equation  )cos(1)(  kaa  , where is the angle between x-axis and interface normal, 
is the strength of anisotropy and  is the anisotropy mode of =4. in the Eq. (1) is 
expressed by 

    cTTS
W m  1

2
15

. (2)

Here, S is the transformation entropy, T is the temperature, Tm is the temperature on the 
linearized liquidus line expressed by rLm TcmT  , where mL is the liquidus slope, c is the 
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solute concentration, Tr is a reference temperature. In addition, a ，W and M  in Eq.(1) 
can be related to the material parameters by following equations: 

,3
b

a 
 ,6


bW  M

a
WM

6
2

 ,
(3)

where, is the interface thickness,  is the interface energy, is the interface mobility, and 
 21tanh2 1  b  is a constant related to interface thickness, where = 0.1 is employed. 

The concentration c in Eq.(2) is calculated by the following diffusion equation 
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where, k is the partition coefficient given by k =cs /cL , where cs and cL are the concentrations 
in solid and liquid, respectively. The concentration c is defined by

  LS ccc   1 . (5)

Diffusion coefficint D in Eq.(4) is indicated by  




k
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1
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where, Ds and DL are diffusion coefficients of solid and liquid, respectively. 

2.3 Two-phase Navier-Stokes model 
The melt convection around dendrite in forced flow is simulated by the following two-

phase Navier-Stokes equations using phase-field parameter [4, 5].  
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Here, u and v are velocities in x and y direction, respectively. is the flow density, p is the 
pressure, and is the kinetic viscosity. Note that, in the liquid of 0, Eqs. (7) - (9) reduce to 
the normal single-phase Navier-Stokes equations for a Newtonian fluid with a constant 
density and viscosity. The last term on the right hand side of Eq.(8) and Eq.(9), or Fdx and Fdy,
are employed to account for the dissipative viscous stress in the liquid due to interactions with 
the solid in the diffuse interface region and expressed by 
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uhF d
Ldx 2

2 )1(




 , (10)

vhF d
Ldy 2

2 )1(




 , (11)

where, L is the kinetic coefficint, is the thickness of interface which is expressed by =
x, where x is the lattice size. The hd is a dimensionless constant which is determined by 
numerical experiment.  

3 NUMRICAL RESULTS 

3.1 Dendritic growth simulations by phase-field method 
By coupling Eq.(1) and Eq.(4), dendritic growths of Al-Si alloy under isothermal 

condition are simulated. Figure 1 shows the computational domain and initial conditions.  

Figure 1 : Computational domain and boundary conditions 
for dendritic growth simulation by phase-field method 

Initially, all regions are filled with the undercooled liquid (= 0), and temperature and 
concentration is set to be T = 886 K and c = 0.06, respectively. To simulate the dendritic 
growth from the bottom of computational domain which images the mold wall, one semicircle 
seed with radius 6x is putted on the bottom of the region. Computational domain with 
100m×100m is divided into 1000×1000 finite different lattices. Therefore, the lattice size 
x = y is to be 100 nm. The zero Neumann boundary conditions are employed on all 
boundaries for both andc. In the present simulations, we focus on the growth of first 
dendrite arm. Therefore, the concentration fluctuation which is usually used in the dendritic 
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growth simulation to form second arm is not taken into consideration. The employed material 
parameters for Al-Si alloy are shown in Table1. 

Table 1 : Physical properties 

Figure 2 : Variations of dendrite morphologies 

Figure 2 shows the numerical results of dendrite growth process during solidification 
simulation. It is observed that Al-Si alloy dendirte grows keeping the thin shape and the width 
of the thinest portion of dendrite neck is almost constant during growth. Therefore, it is 
concluded that the Al-Si dendrite has a shape which easily cause the stress concentration at 
the dendrite neck by the convection and gravity.
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3.2 Fluid flow simulations around dendrite by two-phase Navier-Stokes equations 
Next, the melt convection around the dendrite shown in Fig. 2 is calculated by using two-

phase Navier-Stokes equations of Eqs.(7) - (9). Then, those equations are solved by artificial 
compressibility method [6], where the inertial term is discretized by third-order weighted 
ENO scheme and the viscous term is computed by using second-order accurate central-
difference scheme. 

Figure 3 : Computational domain and initial conditions for simulation of melt convection around the dendrite 

Figure 3 shows the computational domain and boundary conditions. The uniform forced 
flow U0= 0.01 m/s, which is normal melt flow velocity in casting [7], is applied on the left 
side of the domain and the pressure on the right side are fixed to p0 = U02Pa]. The other 
boundary conditions are shown in Fig.3. Reynolds number is set to be Re = 5. The 
dimensionless constant hd in Eq.(10) and Eq.(11) was determined as hd = 5.0×106 by 
performing numerical experiments so as that the fluid velocity at  = 0.5 is to be zero. For 
reducing the computational cost, the coarse finite difference lattices of 500×500 (x = 200 
nm) are employed. 

Numerical results at steady-state condition are shown in Figs. 4 and 5. Figure 5 shows the 
fluid flow velocities by both color and vectors and Fig. 4 shows pressure distributions. In both 
figures, figures (a), (b), (c) and (d) correspond to those of Fig. 2. From Fig.4, the vortex 
occurred at the right side of dendrite becomes larger as the dendrite grows. Therefore, the 
negative pressure is generated at the right side of dendrite. On the left surface of dendrite, the 
compressive pressures are generated and its magnitude increases with growing the dendrite. 
The fluid pressures acting on the dendrite surface are transferred to the next stress simulation. 
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Figure 4 : Variations of fluid flow velocity with dendrite growth 

Figure 5 : Variations of pressure distribution with dendrite growth 
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3.3 Finite element simulations of stress in dendrite 
The stresses in dendrite caused by the convection calculated in the previous section and the 

gravity which acts in vertical direction of dendrite first arm are simulated by finite element 
method using four node isoparametric elements as plane stress problem. 

Figure 6 : Computational domain and boundary conditions for finite element simulation 
 to calculate stress field in dendrite

Figure 6 shows the computational domain and boundary conditions. From the results of 
phase-field simulation shown in Fig. 2, the finite difference lattices with > 0.1 are taken out 
and are used as elements for the stress evaluation by finite element method. In the interface, 
the Young’s modulus is set to change smoothly as E, where E is Young’s modulus in solid 
phase. Both displacements in x and y directions on the bottom of the computational domain, 
which corresponds to the mold wall, are constrained. l shown in Fig.6 is the dendrite length. 
The pressure distributions on the dendrite surface caused by the convection are transformed to 
the nodal forces by following equations:

 cos)( 0 xppFx  , (12)

 sin)( 0 yppFy  , (13)

where,  is the angle between x-axis and interface normal. Equations (12) and (13) are 
calculated in the range 0.1 <  < 0.5 and the nodal forces are applied to the nodes having 
nearest to 0.5.  

The body force due to gravity is introduced to all nodes by the nodal force calculated by

gyxF Lsg )(   , (14)

where, s and L are the density in solid and liquid, respectively, and g is the gravitational 
acceleration. The employed material parameters using finite element method are as follows:
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Young’s modulus E = 4.5 GPa, Poisson’s ratio = 0.3, the gravitational acceleration g = 9.8 
m/s2, the solid density s = 2.68×103 kg/m3 , and the liquid density L = 2.4×103 kg/m3 [8]. 

(a) Convection  (b) Gravity

Figure 7 : Variations of maximum stress caused at dendrite neck by convection and gravity 

Figure 7 shows the variations of maximum stress caused at dendrite neck by convection 
and gravity. The abscissa is the dendrite length l and the ordinate is the maximum equivalent 
stress. From Fig.7, the maximum stress by convection is much higher than that of gravity. In 
the present simulations, the forced flow is set to be 0.01 m/s which is normal melt flow 
velocity in casting. On the other hand, the most severe condition is set for the gravity, because 
the gravity acts in the perpendicular direction to the dendrite axis. Considering these points, it 
is concluded that the gravity has less influence on the fragmentation comparing to the melt 
convection. However, we need further investigations for larger dendrite with many secondary 
arms. 

4  CONCLUSION 
In order to investigate the effects of stress around dendrite neck cased by the convection 

and gravity on the dendrite fragmentation, the novel numerical model, where phase-field 
method, Navier-Stokes equations and finite element method are continuously and 
independently employed, has been developed. By applying the model to the dendritic 
solidification of Al-Si alloy, the maximum stress variations by melt convection and gravity 
with dendrite growth were evaluated. As a result, it was concluded that the convection is more 
important for the maximum stress in dendrite than the gravity.  
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Abstract. In this study, a numerical prediction method by combining the crystal plasticity 
finite element method, the multi-phase-field method and the homogenization method is 
developed to predict microstructure formation and mechanical property of the dual-phase 
(DP) steel efficiently. With the developed method, the austenite – to – ferrite transformation 
from the deformed austenite phase is simulated and the mechanical properties of the DP steel 
which includes the predicted microstructure are investigated. 

 

1 INTRODUCTION 

The mechanical property of ferrite () + martensite (') dual-phase (DP) steel is largely 
characterized by distribution of the microstructure. It is also well-known that the refinement 
of  grain size by thermo-mechanical controlled processing (TMCP) is quite essential to 
improve strength of the DP steel. Therefore, to understand the austenite-to-ferrite ( - ) 
transformation behavior in deformed  phase during the TMCP is quite important to control 
the mechanical property of the DP steel. However, since the  -  transformation is influenced 
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by several factors, e.g. chemical composition, transformation temperature,  grain size and 
strain applied by the TMCP, it is difficult to predict the transformation behavior only by 
experiments.  

Recently, it has been well-recognized that the multi-phase-field method (MPFM) is a 
powerful simulation tool to predict microstructure evolutions in polycrystalline materials [1]. 
The most attractive advantage of the MPFM is to simulate morphological change of 
microstructures. Therefore, if we utilize digital data of the microstructure morphology 
simulated by the MPFM as input data for finite element (FE) simulation, systematic 
simulation model for steel design can be realized [2]. This will enable us to predict the 
microstructure formation and the mechanical property of the DP steel efficiently.  

Therefore, the purpose of this study is to develop a numerical prediction method by 
combining the crystal plasticity FE method (CPFEM), the MPFM and the homogenization 
method. In this paper, we simulate the  -  transformation from the deformed  phase and 
evaluate the mechanical properties of the DP steel which includes the predicted 
microstructure. Then, the effects of the distribution of  phase on macro- and microscopic 
deformation behavior of the DP steel are studied. 
2 SIMULATION METHOD 

The procedures to simulate the  -  transformation from the deformed  phase and evaluate 
the mechanical property of the DP steel are as follows: First, to simulate the hot plastic 
forming of Fe-C alloy, simulation of compression deformation of polycrystalline  phase is 
conducted by the CPFEM based on the strain gradient crystal plasticity theory. Second,  
nucleation rate and nucleation site of the  phase in the deformed  phase are estimated based 
on the classical nucleation theory. Third, the -  transformation during continuous cooling 
process is simulated by the MPFM with the estimated nucleation condition. Finally, we 
perform numerical simulation of uniaxial tensile test of the DP steel by the CPFEM based on 
the homogenization method with the simulated microstructure. 

2.1 Strain gradient crystal plasticity theory 

In order to simulate plastic deformation behavior of polycrystalline  phase during the hot 
plastic forming, we employ the following crystal plasticity constitutive equation [3], 
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Here, ijS


, e
ijklD , ij , ij and    are the Jaumann rate of Kirchoff stress tensor, the elastic 

modulus tensor, the strain tensor, the Cauchy stress tensor and the plastic shear strain rate on 
the slip system , respectively. Also,  

ijP  and  
ijW  are the schmid tensor and the plastic spin 

tensor, respectively.  
 Since we use the strain rate dependent crystal plasticity constitutive equation [4], the plastic 

shear strain rate is defined as follows:  
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where   0  is the reference shear strain rate and the resolved shear stress    is calculated by 
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  ijijP . The evolution equation of the critical resolved shear stress (CRSS)  g  is 

chosen as,  
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Here,  
0g , a, , b~  and  are the initial critical resolved shear stress, the shear elastic 

modulus, the magnitude of burgers vector and the dislocation interaction coefficient, 
respectively. The accumulated dislocation density is given as follows:  

       GNSSa   (4) 

where  SS and  GN  are the statically stored dislocation (SSD) density and the geometrically 
necessary dislocation (GND) density, respectively. In this study, the following evolution 
equation for the SSD density is used.   
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And, the GND density is evaluated as,  
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where   edgeGN , and   screwGN ,  are the edge and screw components of the GND density, 
respectively. With the accumulated dislocation density a, the stored energy Estore can be 
derived as 
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2.2 Modeling of  nucleation behavior 

In this study, the potential nucleation sites (i.e., grain boundary corner, grain boundary edge, 
grain boundary face and deformation band) and the nucleation rate at each nucleation site are 
estimated by using the results of the hot plastic forming simulation.  
According to the classical nucleation theory, the nucleation rate of  phase Ji is described as, 
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  (8) 

where di(t) is density of the potential nucleation site, where upper subscription i means kind of 
the above mentioned nucleation sites (i = c, e, f and d). Since the nucleation site is consumed 
with progression of the transformation, di(t) is defined as a function of time t. * is the 
frequency coefficient which is assumed to be related to the temperature-dependent carbon 
diffusion coefficient in the  phase as * = D. Z, k, T and C are the Zeldovich parameter, 
the Boltzmann constant, the temperature of the system and the carbon concentration in the  
phase, respectively. Also, i is the geometry coefficient of nucleation site i. The chemical 
driving force for the nucleation GV(C, T) can be caluculated based on the CALPHAD 
method.  
The density of the potential nucleation site di(t) in Eqn.(8) is calculated by di(t) = Ni(t) / S 

where Ni(t) and S are number of potential nucleation site and area of the system, respectively. 
Ni(t) is determined using the number of grain n which is explained in next section and the 
misorientation . That is, a computational grid satisfying n = 4 is considered as a potential 
nucleation site on the grain boundary corner. Similarly, position of the potential nucleation 
sites on the grain boundary edge (n = 3) and the grain boundary face (n = 2) is determined. 
For the nucleation sites in the deformation band, we assume that high-angle grain boundary 
region which is given as n = 1 and  > 15˚ or the region in which the stored energy Estore is 
more than a critical value Ecri is possible site. As a result, time interval for the  nucleation at 
each nucleation site is given by inverse of Eqn. (8). For all nucleation sites, order of the  
nucleation is determined by order of the magnitude of the stored energy.  



656

A. Yamanaka and T. Takaki. 

 5 

2.3 Multi-Phase-Field method 

The -  transformation during the continuous cooling is simulated by the generalized 
MPFM proposed by Steinbach et al [5]. In the MPFM, the total free energy of the system, G, 
is defined as the Ginzburg-Landau free energy functional which is given by the sum of the 
gradient energy, potential energy and bulk free energy as,  
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Here, we use N phase field variables, i (i = 1,2,3, …, N). i describes the fraction of the i th 
grain. The phase field variables vary smoothly across the interface from i = 1 in the i ith 

grain to i = 0 in other grain. All phase field variables satisfy the constant, 
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1  at all 

points. aij and Wij are the gradient coefficient and potential height, respectively. These 
parameters are related to the interfacial energy and interfacial thickness.  
By assuming the total free energy decreases monotonically with time, the evolution equation 

of the phase field variable is written as, 

    
 

















 


 n

k

n

l
ik

k
j

i
j

l
jklil

l
jklilik

i
j EaaWWM

nt 1 1

2 8
2
12 




   (10) 

where n is the number of phase fields in the arbitrary point and is given by 


N

i in
1
 . Here, 

i is a following step function, which is expressed as i =1 in a region 0 <i ≤ 1 and i = 0 in 
other region. The magnitude of the transformation driving force, Eij, is given by sum of the 
reduction of the chemical free energy and the stored energy obtained by the CPFEM 
simulation as Eij = Echem + Estore. The chemical driving force is described as Echem = ST 
at the - interface, where S and T are the entropy difference between the  and  grains 
and the undercooling, respectively.  
 To simulate the diffusion of carbon atoms during -  transformation, the total carbon 

concentration C is defined as a linear function of the local carbon concentration ci weighted 
by the phase-field variables i. The local carbon concentration is given by the 

  


n

j jjiii kckc
1

 . Here, ki is the partition coefficient of carbon atoms. Hereafter, we 

consider an  +  two-grain system (N = 2) for simple description. Therefore, when 1 and 2 
correspond to the  and  phases, respectively.  
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The diffusion equation for total carbon concentration is expressed by the sum of diffusion 
fluxes of carbon atoms in the i th grains Ji as,  

 222111 cDcDCDJ
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Here, Di is diffusion coefficient of carbon atom in the i the grain.  
In this study, the undercooling T and the partition coefficient ki are evaluated by using a 

linearized phase diagram of Fe-C alloy.  

2.4 Homogenization method 

In this study, we employ the homogenization method proposed by Grudes et al to investigate 
the mechanical properties of the DP steel which contains the simulated  phase. By using the 
homogenization method, the micro- and macroscopic deformation behaviors of the steel 
depending on heterogeneous microstructure morphology can be simulated.   
  In the homogenization method, we consider the two-scale boundary value problem for the 
micro- and macroscopic scales as shown in Fig.1. The microstructure in the steel is assumed 
to be a periodic array of representative volume elements (RVEs). In this study, The RVE 
describes heterogeneous distribution of the microstructure obtained by the MPFM. xi and yi (i 
= 1 and 2) are macro- and microscopic coordinates, respectively. These scales are related to 
each other as yi = xi /  with a parameter . By using these two coordinates, the velocity can 
be described by the following asymptotic expansion with :  

          yxuyxuyxuyxu iiii ,,,, 22100   (12) 

Here, we use the first order approximation as,  
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where  yxui ,0 represents the homogenized macroscopic velocity. mn
i  and i are the 

characteristic velocities which corresponds to components of macro-velocity gradient tensor, 
respectively. With Eqns.(12) and (13), the velocity gradient Lij is given by,  
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According to the updated Lagrange formulation and the strain gradient crystal plasticity 
theory explained in previous section, the principle of virtual work is written as,  
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To accomplish the homogenization formulation, we take the limit of  to zero and 
employing the following integral formula,  
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where is  a so-called Y-periodic function. The integral sing   Y
dYyx

Y
,1 means the 

volume average of function in a RVE By substituting Eqn. (14) into Eqn.(15) and 
introduce Eqn.(16), we can derive the governing equations for the macro- and microscopic 
regions, respectively.  

      



























Y
l

ka

a

a
ijiS iY

l

k

k

l

l

k
ijkl dYd

x
ufR

Y
dSuPdYd

x
u

y
u

x
uC

Y

02

1

0
010 11  


  (17) 

      



























Y
k

la

a

a
ijY

k

l

k

l

l

k
ijkl dYd

y
ufR

Y
dYd

y
u

y
u

x
uC

Y

12

1

110 11  

 

(18) 

Since we obtain the velocity of displacement in the micro- and macro scale by solving 
Eqns.(17) and (18) with the finite element method, the variation of strain and stress in the 
steel can be calculated.  
 

 
Figure 1: Schematic explanation of two-scale boundary value problem 

3 SIMULATION RESULTS 

Figure 2 shows the simulation model used in the hot plastic forming simulation. The 
computational region is meshed with 128 x 128 crossed-triangle elements. The size of a finite 
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element is set to be X = Y = 0.5 m. Since a two-slip system is assumed for simplicity, the 
crystal orientation is defined by the rotation angle  as shown in Fig.2(b). The initial 
polycrystalline structure of the phase consists twenty grains with random crystal orientations. 
These  grains are compressed up to strain of  = 0.2 at a strain rate of 10-3 s-1. In this study, 
we assume the plain strain problem and the periodic boundary condition. The temperature is 
assumed to be 1150 K which is lower than the recrystallization temperature of steels, 1173 K.  

 

 

Figure 2: Simulation model for compression deformation of polycrystalline  phase and definition of 

crystal orientation  in a two-slip system 

 
Figure 3: Distributions of (a) crystal orientation and (b) stored energy in deformed  phase 
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Table 1: Parameters for  nucleation 
Geometry coefficient, c 1.30 × 10-6 [J3/m6] 
Geometry coefficient, e 5.00 × 10-8 [J3/m6] 
Geometry coefficient, fand g 2.10 × 10-6 [J3/m6] 
Zeldovich constant, Z 0.05 
Parameter,  75 

 

 

Figure 4: Distributions of (a)  and  grains and (b) carbon concentration during -to- transformation 

Figure 3 shows the distributions of crystal orientation and stored energy in the deformed  
phase at different strains. As shown in Fig.3(b), the stored energy is increased with the 
increasing strain. In particular, the strain energy tends to concentrate near grain boundaries, 
because dislocations accumulate at the grain boundary. On the other hand, it is found that the 
region which exhibits high strain energy and large crystal rotation is formed with in some  
grain interiors. This indicates the deformation band is introduced in the  phase by the plastic 
forming. Also, it is clearly shown that large crystal rotation is occurred in the deformed  
phase. 

Based on the simulated deformed  phase, the - transformation is simulated. The 
distributions of crystal orientation and stored energy shown in Fig.3 are mapped on the 
computational region for the MPF simulation. The initial temperature and initial carbon 
concentration of  phase are set to be 1110 K and 0.2 wt%, respectively. The parametes for 
the  nucleation are summarized in Table 1. The computational region is meshed with 144 x 
112 finite difference grid. The size of the grid is set to be x = y = 0.5 m. In this simulation,  
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Figure 3 shows the distributions of crystal orientation and stored energy in the deformed  
phase at different strains. As shown in Fig.3(b), the stored energy is increased with the 
increasing strain. In particular, the strain energy tends to concentrate near grain boundaries, 
because dislocations accumulate at the grain boundary. On the other hand, it is found that the 
region which exhibits high strain energy and large crystal rotation is formed with in some  
grain interiors. This indicates the deformation band is introduced in the  phase by the plastic 
forming. Also, it is clearly shown that large crystal rotation is occurred in the deformed  
phase. 

Based on the simulated deformed  phase, the - transformation is simulated. The 
distributions of crystal orientation and stored energy shown in Fig.3 are mapped on the 
computational region for the MPF simulation. The initial temperature and initial carbon 
concentration of  phase are set to be 1110 K and 0.2 wt%, respectively. The parametes for 
the  nucleation are summarized in Table 1. The computational region is meshed with 144 x 
112 finite difference grid. The size of the grid is set to be x = y = 0.5 m. In this simulation,  
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Table 2: Material parameters for uniaxial tensile test 
Elastic constants, C11 , C12, C44 C11 = 237 [GPa] 

C12 = 141 [GPa] 
C44 = 116 [GPa] 

Poisson’s ratio,  0.345 
Reference shear strain,   0  0.001 [1/s] 
Initial CRSS,   0  200 [MPa] ( phase) 

380 [MPa] (' phase) 
Strain rate sensitivity constant, 1/m 0.05 
Parameter, a 0.4 
Shear modulus,  80.7 [GPa] 

Length of burgers vector, b~  0.2624 [nm] 

Initial dislocation density, 0 10 -10 [1/m] 
Dislocation interaction matrix, ij 1.0 (all componets) 

 
we assume the critical value of stored energy Ecri for the  nucleation to be Ecri = 15 MPa, 
because it is difficult to determine this value from experiments.   

Figure 4 shows the evolutions of  and  grains and the variation of carbon concentration 
during  transformation. The temperature is decreased from 1110 K to 1010 K with cooling 
rate of T = 5 K/s. We can see that inhomogeneous nucleation of  phase is occurred during 
the continuous cooling. At 1090 K, it is found that some  grains are newly formed and these 
 grains tend to locate at grain boundary corner and edge. With decreasing temperature due to 
the cooling, more  grains are nucleated on the grain boundary face and the grain interior. 
According to the distribution of  phase at 1010 K, it is demonstrated that the formation of  
phase is concentrated on the grain boundary of the  grains with large stored energy.  
 The uniaxial tensile test of the DP steel is conducted with the CPFEM based on the 
homogenization method. In this study, the RVE is modeled with the simulated microstructure 
shown in Fig.4(d). Here, the untransformed  phase after the continuous cooling is assumed to 
be transformed into uniform ' phase by quenching to room temperature. Size of the RVE is 
same as that of the computational domain for the MPFM simulation. In the tensile test, the 
system is deformed up to a true strain of 0.1 at a strain rate of 10-4 s-1. Although the crystal 
structure of  and ’ phases is body-centered cubic, we consider only 12 slip systems on 
{110} plane along <111> direction for simplicity. The material parameters and physical 
values for  and ’ phases are listed in Table 2.    
  Figure 5 indicates the calculated macroscopic stress-strain (SS) curve of the DP steel. 
Similar to the experimental results, the obtained SS curve exhibits continuous yielding 
behavior and high strain hardening behavior.   
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Figure 5: Macroscopic stress-strain curve of the DP steel  

 
Figure 6: Distributions of (a) equivalent stress and (b) equivalent plastic strain for different strains 

In this study, since we employ the homogenization method, not only the macroscopic 
mechanical response, but also the microscopic deformation behavior of the DP steel can be 
investigated. Figure 6 shows the distributions of the equivalent stress and equivalent plastic 
strain in the DP microstructure at different macroscopic strains ( = 0.02, 0.05 and 0.10), 
respectively. As shown in Fig.6(a), the stress is increased with increasing macroscopic strain 
and concentrated in the harder ’ phase near the  /’ interface. On the other hand, the plastic 
strain is generated along the aggregated softer  phase. The simulation results confirm that 
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the stress concentration at the ' phase is main mechanism of high strength and high strain 
hardening behavior of the DP steel.  

4 CONCLUSIONS 

- A numerical prediction method by combining the crystal plasticity finite element 
method, the multi-phase-field and the homogenization method is developed to predict 
the microstructure formation and the mechanical property of the DP steel efficiently. 

- With a developed method, the  -  transformation from the deformed  phase is 
simulated by the MPFM and the uniaxial tensile test of the DP steel by the CPFEM 
based on the homogenization method with the simulated microstructure 

- Through numerical simulations, the effects of the distribution of  phase on macro- 
and microscopic deformation behavior of the DP steel which includes the predicted 
microstructure are clarified.  
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Abstract. We have attempted to comprehend the deformation behavior of amorphous
metals by the local lattice instability analysis that discusses the positiveness of atomic
elastic stiffness coefficients, Bα

ij, or the second-order derivatives of atomic energy com-
position. In the present study, we discuss the stability-switching, or transitions between
detBα

ij ≥ 0 and detBα
ij < 0, by the “probabilistic” fluctuation and the “deterministic” me-

chanical load. No-load equilibrium, tension, compression and simple shear are performed
on an amorphous nickel by molecular dynamics simulations. The positive and negative
stability-switching, or “stabilization” and “destabilization”, occur due to the “probabilis-
tic” fluctuation even at the equilibrium state. The number of detBα

ij < 0 atoms shows
almost constant while the distribution of detBα

ij < 0 atoms indicates different morphol-
ogy at each observation time. Ratios of switched atoms with stability-switching under
tension, compression and shear are larger than that under the equilibrium because the
local structural relaxation produces simultaneously both positive and negative stability-
switching. Atoms with negative and positive stability-switching show increases and de-
creases of atomic volume, respectively; while only positive switching shows the decreases
in local volumes, evaluated with the atomic volumes of surrounding atoms within the
cutoff radius, according to the incidence of “deterministic” structural changes.
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1 INTRODUCTION

Amorphous metals have short and middle range order such as an icosahedral atomic-
cluster [1, 2]. These atomic scale structures play important roles in the formability and
deformability of amorphous metals. On the other hand, it is difficult to understand
universally deformation behaviors of these in disordered or inhomogeneous structure. We
have discussed the mechanical characteristic of local structure by local lattice instability
analysis (LLIA) [3] in molecular dynamics (MD) simulations. LLIA is expected to extract
the universal mechanism of deformation because the local stability on LLIA is consistently
determined only by the positive definiteness of atomic elastic stiffness coefficients, Bα

ij.
We have so far shown that amorphous metals have many detBα

ij < 0 atoms even at the
equilibrium state [4, 5] by LLIA. In our previous report [5], we have discussed the changes
in detBα

ij < 0 atoms in monatomic amorphous metals during uniaxial tension. Under
the tension, it is considered from the comparison of stress components on detBα

ij ≥ 0
and detBα

ij < 0 atoms that the local stress reduction occurs by transitions between each
other. Then we have picked up atoms that have actually switched between detBα

ij ≥ 0
and detBα

ij < 0. As a result, we have concluded that the stress relaxation is not caused by
a straightforward image of “stabilization” or “destabilization”, but by “shuffle of atomic
arrangement” which involves positive and negative stability-switching.

In the present study, we perform compression and simple shear in addition to tension.
In order to explore further relationship between deformation and the stability-switching
based on LLIA in amorphous metals, we discuss the stability-switching by the “proba-
bilistic” fluctuation and the “deterministic” mechanical load, and evaluate the changes of
atomic and local volume on the stability-switching.

2 LOCAL LATTICE INSTABILITY ANALYSIS

Wang et al. have proposed the evaluation of lattice stability at finite strain and tem-
perature, on the basis of the positive definiteness of elastic stiffness coefficients [6, 7]. The
elastic stiffness, or stress-strain, coefficients are written as [8]

Bijkl ≡
(

∂σij

∂εkl

)
= Cijkl +

1

2
(σilδjk + σjlδik + σikδjl + σjkδil − 2σijδkl) , (1)

where δij is Kronecker’s delta. The stress, σij, and the elastic coefficients, Cijkl, are defined
as

σij =
1

V

(
∂U

∂ηij

)
, Cijkl =

1

V

(
∂2U

∂ηij∂ηkl

)
. (2)

Here U is the internal energy and V is the volume of crystal at the equilibrium. Note that
the differentiation in Eq. (2) is for the infinitesimal virtual strain, ηij, at the equilibrium
state under the external load. The Bijkl combines the stress and actual strain, εij, from
the load-free reference state. In the linear elasticity region, Bijkl is identical to Cijkl

2
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but it is not equivalent in the nonlinear elasticity or finite strain region. That is, Bijkl

represents the gradient at the stress-strain surface in the six dimensional strain spaces,
whether the system is in the linear or nonlinear elasticity. Thus we can easily imagine
the physical meaning of the Wang’s stability criteria; it is the point where the crystal
loses the deformation resistance. The symmetric part of the tensor of Eq. (1), Bsym

ijkl ≡
(Bijkl + Blkji)/2, dominates the lattice stability [6, 7]. The symmetric tensor Bsym

ijkl is
represented by the 6 × 6 matrix, Bij (i, j = 1 ∼ 6), in the Voigt notation [8]. Thus the
instability criterion could be written as detBij < 0.

The system energy, Etot, can be divided into the contribution of each atom, Eα, in
the framework of the embedded atom method (EAM) [9]. The atomic stress, σα

ij, and
the atomic elastic coefficient, Cα

ijkl, are defined as the 1st and 2nd order derivatives of
Eα against local strain perturbation, respectively. Thus, we can calculate the atomic
elastic stiffness coefficients, Bα

ijkl, at any time and configuration in the MD simulation,
using Eq.(1). The symmetric part of Bα

ijkl is also used for stability analysis, so that we
denote the local instability condition as detBα

ij < 0 (i, j = 1 ∼ 6), according to the Voigt
notation.

3 SIMULATION PROCEDURE

An amorphous nickel is made by usual melt-quench simulation under the periodic
boundary condition in all directions. The interatomic potential adopted is the EAM
by Voter and Chen [10]. The total number of atoms is 108,000. A nickel crystal is
melted during 10ps MD calculation at the temperature of T = 3000K. The temperature
is quenched to 10K with the cooling rate of −5 × 1013K/s. The no-load calculation is
performed during 200ps at T = 10K after the melt-quench simulation. Then, tension,
compression and simple shear are applied on the amorphous nickel under the periodic
boundary. The tension or compression is performed by uniform expansion or contraction
of the distance of each atom in the z -direction. The strain rates of tension and compression
are 1.0 × 108/s. The cell length in the transverse directions is also controlled to cancel
the normal stress originated by the Poisson’s contraction/expansion. On the other hand,
simple shear is performed by transition from the cubic cell to the monoclinic one. The
cell length of x and y direction are fixed; and the system volume is unchanged during the
shear deformation. The strain rate is also set to 1.0 × 108/s in engineering strain. The
temperature is kept at 10K by velocity scaling during all the deformations.

4 RESULTS AND DISCUSSION

4.1 No-load calculation

Figure 1 shows a change in a potential energy during no-load calculation after the melt-
quench simulation. The potential energy drastically decreases on the initial stage of the
calculation because the structural relaxation continues from the melt-quench simulation.
The decrease stops at 50ps, while there is a slight plateau of energy from 20ps to 30ps.

3
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Figure 1: Change in the potential energy during
the no-load calculation.
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Figure 3: Distributions of detBα
ij < 0 atoms at t = 100ps and 200ps in the no-load calculation.

This change is caused by the nucleation of a fractional crystalline structure; only 0.1%
atoms are evaluated as “crystal” by this change. The potential energy remains unchanged
after 50ps. Thus, the amorphous nickel has reached an equilibrium state.

Figure 2 shows a change in the ratio of detBα
ij < 0 atoms during the no-load calculation.

We have evaluated the elastic stiffness coefficient, Bα
ij, of all atoms on each 1ps. N inst/N

is “momentary” ratio of detBα
ij < 0 atoms, where N inst and N are a number of detBα

ij < 0
atoms and a total number of atoms, respectively. N inst/N slightly decreases from 0ps
to 20ps on the initial stage, while there is no change of N inst/N by the nucleation of a
crystalline structure. The ratio of detBα

ij < 0 atoms seems mostly unchanged and vibrates
at around 12.7% during the energy equilibrium after 50ps. Thus, the amorphous nickel
contains many “unstable” atoms of detBα

ij < 0 even in the no-load equilibrium, and the
ratio is almost constant. Figure 3 shows snapshots of the amorphous nickel at t = 100ps

4
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and 200ps. Distributions of detBα
ij < 0 atoms are indicated by red circles. There is no

difference between atomic structure of Fig.3(a) and (b) because this amorphous metal has
achieved equilibrium from t = 50ps. On the other hand, we can find a difference in the
distribution of detBα

ij < 0 or red atoms. That is, although the ratio of detBα
ij < 0 atoms

is almost constant in Fig.2, it is not always true that the distribution of detBα
ij < 0 is

same. We can understand that the stability-switching such as detBα
ij ≥ 0 ↔ det Bα

ij < 0
occurs even in the equilibrium state.

Then we have picked up atoms that have actually switched between detBα
ij ≥ 0 and

detBα
ij < 0 for each time interval of ∆t. Figure 4 shows changes in ratios of these atoms,

where Nposi/N and Nnega/N are the ratio of atoms with the positive change from detBα
ij <

0 to detBα
ij ≥ 0 and the negative change from detBα

ij ≥ 0 to detBα
ij < 0, respectively.

We have evaluated the stability-switching by comparing of “momentary” values of detBα
ij

before and after time intervals as ∆t =1ps, 5ps or 10ps. Nposi/N shown with heavy lines
and Nnega/N shown with thin lines are almost the same path. At the initial stage of
relaxation before t = 50ps, ratios of Nposi and Nnega decrease and its decrease rate varies
according to the evaluation time interval. This difference by the time interval disappears
at 70ps. Moreover, all the ratios of Nposi and Nnega converges with 2.0% after 70ps.
Two horizontal dotted lines describe upper and lower limits of the stability-switching
after 70ps. We can understand that these ratios of stability-switching are caused by the
“probabilistic” fluctuation such as the subtle change in local mechanical condition by the
atomic perturbation or thermal vibration. Under the non-equilibrium state before 70ps,
Nposi/N and Nnega/N show higher value than the upper limits under the equilibrium,
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and vary according to the time interval because one-way stability-switching caused by
“deterministic” nonequilibrium change is added to the ratio of the “probabilistic” changes.

4.2 Tension, compression and shear

Figure 5 shows stress-strain curves and changes in the ratio of detBα
ij < 0 atoms under

the tension, compression and shear. The scale of stress is indicated in the right axis. Stress
and strain in the compression are shown by absolute value for comparison. Stresses show
linear increases on the initial stage in every deformation. Gradients of stress-strain curves
in the tension and compression are almost the same. After the linear increase, stress-strain
curves become nonlinear, and alternate between increase and decrease showing zigzag
response. We have evaluated detBα

ij < 0 of all atoms at each 5ps, which correspond to the
strain of 0.0005. Ratios of these atoms, N inst/N , show the increasing tendency in every
deformations. On the other hand, the ratio in tension shows a peak around εzz = 0.037
shown with a vertical broken line in Fig.5(a).

Figure 6 indicates the changes in the ratio of atoms that show stability-switching. As
shown in Fig.4, we investigate the switching of positiveness of detBα

ij for several time in-
tervals. In this figure, ∆t = 5ps and 10ps, or ∆εzz, ∆γzx = 0.0005 and 0.001, are selected
as intervals for comparison of detBα

ij. Stress-strain curves are also shown. Horizontal
dotted lines describe upper and lower limit of the stability-switching under the equilib-
rium state (Fig.4). Changes in Nposi/N and Nnega/N are shown by heavy lines and thin
ones, respectively; while they are almost same just like in the no-load calculation of Fig.4.
However, note that the accumulation of slight difference between them leads increase of
detBα

ij < 0 atoms under deformations (Fig.5). Nposi/N and Nnega/N stay in the upper
and lower zone of equilibrium state in the initial stage. Then, they jump up from the
upper limits around vertical dash-dotted lines shown with (A), and vary according to the
time interval. These strains correspond with transition points from linear to nonlinear on
stress-strain curves. After these strain, the tension and compression show larger ratios of
stability-switching than the upper limit of equilibrium state. On the other hand, the ratios
under the shear sometimes return to ratio zone of the equilibrium state. The Nposi/N and
Nnega/N jump up again from the upper limits at vertical dash-dotted lines in Fig.6(c).
The gradient of stress-strain curve also changes at these points. If we assume the ratio
of “probabilistic” stability-switching is not changed under the deformation, the increase
beyond the upper dotted line suggests the incidence of “deterministic” stability-switching
by structural changes such as collapses of atomic cluster shown in our previous report
[4]. In addition, occurrences of “deterministic” structural change induce differences of
stability-switching according to time intervals, as shown in the non-equilibrium of Fig.4.
In tension and compression of Figs. 6(a) and (b), the difference by time intervals after
(A) almost disappear at vertical dash-dotted lines. Gradients of stress-strain curves also
change at these lines. These suggest that the stress relaxation is caused by “shuffle of
atomic arrangement” which involves positive and negative stability-switching simultane-
ously. Vertical dashed lines indicate the remarkable peak of Nposi/N and Nnega/N . These

6
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ones, respectively; while they are almost same just like in the no-load calculation of Fig.4.
However, note that the accumulation of slight difference between them leads increase of
detBα

ij < 0 atoms under deformations (Fig.5). Nposi/N and Nnega/N stay in the upper
and lower zone of equilibrium state in the initial stage. Then, they jump up from the
upper limits around vertical dash-dotted lines shown with (A), and vary according to the
time interval. These strains correspond with transition points from linear to nonlinear on
stress-strain curves. After these strain, the tension and compression show larger ratios of
stability-switching than the upper limit of equilibrium state. On the other hand, the ratios
under the shear sometimes return to ratio zone of the equilibrium state. The Nposi/N and
Nnega/N jump up again from the upper limits at vertical dash-dotted lines in Fig.6(c).
The gradient of stress-strain curve also changes at these points. If we assume the ratio
of “probabilistic” stability-switching is not changed under the deformation, the increase
beyond the upper dotted line suggests the incidence of “deterministic” stability-switching
by structural changes such as collapses of atomic cluster shown in our previous report
[4]. In addition, occurrences of “deterministic” structural change induce differences of
stability-switching according to time intervals, as shown in the non-equilibrium of Fig.4.
In tension and compression of Figs. 6(a) and (b), the difference by time intervals after
(A) almost disappear at vertical dash-dotted lines. Gradients of stress-strain curves also
change at these lines. These suggest that the stress relaxation is caused by “shuffle of
atomic arrangement” which involves positive and negative stability-switching simultane-
ously. Vertical dashed lines indicate the remarkable peak of Nposi/N and Nnega/N . These
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Figure 5: Changes in the ratio of detBα
ij < 0 atoms

and stress-strain curves under the tension, com-
pression and shear.
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Figure 6: Changes in the ratio of atoms that have
switched their stability for ∆t and stress-strain
curves under the tension, compression and shear.
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Figure 7: Comparison between atom motions and distribution of atoms that have switched their stability
during εzz = 0.035 ∼ 0.037 under tension.
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Figure 8: Comparison between atom motions and distribution of atoms that have switched their stability
during γxz = 0.05 ∼ 0.052 under shear.

　

correspond with the valley of stress-strain curves because stress relaxations weaken due
to reduction of the shuffles.

We have considered a relationship between the local deformation and the stability-
switching. Figures 7 and 8 show (a) the magnitude and direction of migration of each
atoms with small vector and (b) the distribution of atoms that have switched between
detBα

ij ≥ 0 and detBα
ij < 0, during εzz = 0.035 ∼ 0.037 in the tension and γxz =

0.055 ∼ 0.056 in the shear, respectively. These periods just correspond to spans from
the onset point of the increment of Nposi and Nnega, as shown with vertical dash-dotted
lines in Fig.6, to the peak points of stress-strain curves. The trajectory and distribution
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are shown only thin part in the simulation cell, in which the atoms show the largest
migration during these periods. Colored circles in Figs.7(b) and 8(b) are atoms with
stability-switching only once for each strain interval of 0.0005 during these observation
periods; green atoms have negatively switched and blue ones have positively done. Some
atoms switch their stabilities more than once, but these are mainly caused by probabilistic
changes. Thus, these atoms are not shown in Figs.7(b) and 8(b) because we want to
understand the relationship between the local deformation and the stability switching.
We can find remarkable atom rearrangements as shown with ellipsoids in Figs.7(a) and
8(a). These regions have many atoms with stability-switching in Figs.7(b) and 8(b).
This demonstrates that the “shuffle of atomic arrangement” simultaneously produce both
positive and negative stability-switching. Note that these periods are before the peaks of
stress-strain curves. The emergence of these local events leads to the global deformation.
It is suggested the possibility that we can evaluate the origin of global deformation by the
observation of the stability switching.

4.3 Volume changes by the stability-switching

In order to understand structural changes by the stability-switching, we evaluated a
volume change of Voronoi polyhedron of each atom under tension, compression and shear.
Voronoi polyhedra are determined by nearest neighbor atoms of center atom. Thus, we
can regard the Voronoi volume, Vα, as an atomic volume of atom α. Variations of Voronoi
volume by the stability-switching are determined as follows;

∆V posi
α =

1

Nposi

Nposi∑
i

{Vi(t) − Vi(t − ∆t) − ∆V all
α },

∆V nega
α =

1

Nnega

Nnega∑
i

{Vi(t) − Vi(t − ∆t) − ∆V all
α }, (3)

where Nposi and Nnega are the number of atoms with positive and negative stability-
switching for the time interval of ∆t. ∆V all

α is determined by a system volume, V , as

∆V all
α =

1

N

N∑
i

{Vi(t) − Vi(t − ∆t)} =
1

N
{V (t) − V (t − ∆t)}. (4)

We uniformly remove the effect due to affine deformation from each atom because the
system volume changes under the tension and compression. ∆V all

α in the shear is zero,
all of the time. Figure 9 shows changes in ∆V posi

α and ∆V nega
α under the tension, com-

pression and shear. The interval for evaluation of stability-switching is ∆t = 10ps, or
εzz, γxz = 0.001. Vertical lines shown in Fig.6 are indicated again in this figure. Shapes
of the changes in ∆V nega

α are similar to those in the ratio of stability-switching previously
shown in Fig.6, while ∆V posi

α are opposite in sign to ∆V nega
α . So that, the volume increase

and decrease are induced by the negative and positive stability-switching, respectively.

9
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Magnitudes of ∆V posi
α and ∆V nega

α rise just behind vertical dash-dotted lines as shown by
arrows, and peaks of these also correspond with dashed lines. It is suggested that the vol-
ume change by “deterministic” stability-switching are larger than that by “probabilistic”
one. Volume changes of ∆V posi

α and ∆V nega
α almost get balanced out each other because

ratios of Nposi and Nnega almost coincide with each other.
We can understand the volume change of an atom by the stability-switching. On the

other hand, structural changes on the amorphous metal occur in dozens of atoms, as
shown in Figs.7 and 8. We evaluate the changes in local volume around atoms with the
stability-switching,

∆V posi
rc =

1

Nposi

Nposi∑
i

Nrc

i∑
j

{Vj(t) − Vj(t − ∆t) − ∆V all
α }

∆V nega
rc =

1

Nnega

Nnega∑
i

Nrc

i∑
j

{Vj(t) − Vj(t − ∆t) − ∆V all
α } (5)

where N rc
i is the number of atoms in a sphere centering on atom i at time of t. A

radius of this sphere is 0.48nm, which correspond with a cutoff radius for calculation
of EAM interaction. Thus, ∆V posi

rc and ∆V nega
rc mean volume changes of the spherical

region around atoms with negative and positive stability-switching. Figure 10 shows
changes in the ∆V posi

rc and ∆V nega
rc under the tension, compression and shear. ∆V nega

rc has
a tendency of volume increase, and ∆V posi

rc do that of volume decrease; however, these
are not symmetric about the x-axis. Values of ∆V posi

rc exhibit a clear declining trend
just behind vertical dash-dotted lines as shown by arrows, and almost peaks of these
correspond with dashed lines. On the other hand, we cannot find clear correspondences
between ∆V nega

α and vertical lines. Here, these changes in ∆V posi
rc are not caused by only

an atomic volume change of the center atom. Note that scales of y-axis in Fig.10 are larger
than those in Fig.9. Thus, the positive stability-switching, or “stabilization”, produces
a local volume decrease with surrounding neighbor atoms. Both positive and negative
stability-switching under the deformations occur at the same region, as previously shown
in Figs.7 and 8. Thus the negative stability-switching occurs in order to absorb the volume
decrease by the stabilization.

5 CONCLUSIONS

In order to explore further relationship between deformation in amorphous metals and
changes in the atomic stability determined by the positiveness of atomic elastic stiffness
coefficients, Bα

ij, we have discussed stability-switching as detBα
ij < 0 ↔ detBα

ij ≥ 0 in
an amorphous nickel under several deformations. First, detBα

ij of all atoms are evaluated
during the no-load calculation after the melt-quench simulation. The negative and positive
stability-switching occur due to the “probabilistic” fluctuation even at the equilibrium
state, and the number of detBα

ij < 0 atoms shows almost constant while the distribution

10
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Figure 9: Changes in variation of atomic volume
by the stability-switching under the tension, com-
pression and shear.
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of detBα
ij < 0 atoms changes from time to time. Then, tension, compression and simple

shear are applied on the amorphous nickel in order to discuss the stability-switching
by “deterministic” mechanical load. We have revealed the following facts : (1) The
number of detBα

ij < 0 atoms shows the increasing tendency under deformations. (2)
Ratios of atoms with stability-switching under deformations is larger than that under the
equilibrium because the local structural relaxation produces simultaneously both positive
and negative stability-switching. (3) Atoms with negative and positive stability-switching
show increases and decreases of atomic volume, respectively. Moreover, magnitude of both
volume changes rise according to the incidence of “deterministic” stability-switching. (4)
The negative and positive stability-switching also produce increases and decreases of local
volume, evaluated with the atomic volumes of surrounding atoms within the cutoff radius,
respectively; while only positive switching shows the correspondence between the change
of local volume and the incidence of “deterministic” stability-switching.
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Abstract. The finite element method (FEM) is widely used for structural analysis in
engineering. In order to predict the behaviour of structures realistically, it is important
to understand and to describe the material behaviour. Therefore, extensive material
tests have to be conducted. For highly inelastic materials, such as uncured rubber, the
characterisation of the behaviour requires a quite complex rheology. Rheological models
are used to describe time-dependent mechanical material behaviour (stress-strain-time
dependencies). The mapping of the real material behaviour by such models is only possible
with restrictions. However, the evaluation of these models at each integration point within
the FEM needs time consuming internal iterations in most cases. In order to describe the
material behaviour without model restrictions and to reduce computational cost, the aim
of this work is the development of a procedure which enables structural analyses without
a specific constitutive material model. In this paper, a neural network is used in order to
describe uncured rubber behaviour as a model-free approach.

1 INTRODUCTION

Rubber products are essential components of technical systems for example in mobility.
Tires, braking systems and engines are not imaginable without rubber parts. Elastomeric
material mainly consists of natural or synthetic rubber. Other ingredients are e.g. sulphur,

1
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carbon black, softener and antioxidants. All these components influence the properties
and the behaviour of rubber material significantly. Rubber material is temperature de-
pendent. For low temperature, the constitutive behaviour is nearly elastic whereas for
rising temperature, rubber offers a viscoelastic feature. Irreversible deformation occurs
for higher temperature or for large deformations. Beside, rubber material withstands
large deformations with little damage effects. It is a thermal and electrical isolator and
has a huge damping capacity. Hence, rubber material is a useful and flexible applicable
material.

Rubber develops its intended properties after curing under high pressure and tempera-
ture. Before the curing process starts, the uncured rubber is formed into a mould in order
to obtain the designated shape of the product. Mostly, this forming process of uncured
rubber takes place in a curing press. A monitoring of this process is difficult and quite
expensive.

Using simulation tools based on the finite element method (FEM) enables a visualisa-
tion of such forming processes. In order to predict the behaviour of forming procedures
within the FE simulation realistically, it is important to understand and describe the be-
haviour of green rubber material. Uncured rubber is characterised by elastic, plastic and
viscous constitutive response. The constitutive behaviour can be analysed by appropriate
material tests. Viscoelasticity is characterised by time- and history-dependent behaviour
(see [1, 2, 3, 4]). If a specimen of viscoelastic material is loaded by a constant stress,
the strain within the specimen will grown over time (creep). The stress within the same
specimen will decrease over time (relaxation) if it is loaded at a constant strain. For a re-
alistic description of the elastomer, extensive compression, tensile and pure shear tests are
conducted to generate different states of loading. The viscous effects are characterised by
means of relaxation and cyclic tests. Furthermore, the irreversible part of the deformation
is determined with the help of a special kind of tensile test.

Usually, specific material models are developed, which are able to represent the consti-
tutive behaviour. The selection and validation of adequate material models as well as the
development of new formulations is often time consuming. Highly inelastic materials, such
as uncured rubber, are characterised by a quite complex rheology. The time-dependent
mechanical behaviour (stress-strain-time dependencies) is described by rheological mod-
els. In most cases, these approaches require time consuming internal iterations at each
integration point within the FE procedure. After the selection of a suitable model, its
parameters have to be identified. The identification is realised by parameter fitting pro-
cedures which are in fact an optimisation process.

The selection and development of a material model as well as the identification of ma-
terial parameters require a lot of computational cost and manpower. Furthermore, the
material models are an idealisation of reality and, therefore, this representation is always
a reduction of properties and information. Additionally, the computational cost due to
internal iteration within the rheology of the material model slow down FE simulations
significantly. Hence, the goal of the authors’ work is the development of a procedure which

2
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enables structural analyses without an explicit constitutive approach. Such a procedure
can be used for different types of materials and, hence, the development of different mod-
els for different materials is no longer required. In this approach, the material behaviour
is described by an artificial neural network (ANN). Commonly, ANN are used for differ-
ent tasks in engineering [5], e.g. response surface approximation, parameter and system
identification. Here, the representation of material behaviour by ANN and the implemen-
tation into the FEM are of interest (see e.g. [6]). For the description of time-dependent
material behaviour, the authors’ decided to use a recurrent neural network (RNN) [7].
The architecture of these ANN enable the consideration of inelastic time-dependent ma-
terial features. The network parameters are identified using directly data (representing
stresses and strains) obtained from tests. One benefit of this approach is the reduction
of computational cost, because no internal iteration at the integration points is required.
RNN can be adapted to different kinds of constitutive behaviour, which reduces the de-
velopment time for material representations. Additionally, a higher accuracy is expected
because of the direct implementation of material test results into the FE model with no
reduction of information.

2 EXPERIMENTAL INVESTIGATIONS

The material properties of an uncured rubber can be observed by appropriate material
tests. For an intensive study of the following material tests, it is referred to [8]. A
realistic description of material properties requires extensive testing. Therefore, tensile,
compression, and shear tests are carried out. In Figure 1, the specimens of the different
material tests are shown. All types of specimen are punched and cut out of rubber plates

Figure 1: Cross-section and projection of the specimens

with a thickness of 2 mm and 6.3 mm, respectively.
The tensile tests are conducted using a standardised specimen [9]. In the middle of this

3
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specimen, the cross-sectional area is smaller than at its edge, in order to preserve a uniaxial
state of stress. The displacements of the undisturbed and uniform deformation region
of the specimen are measured by an external displacement transducer. The reference
length l0 of the undisturbed region is 15 mm. The complete test equipment is shown
in Figure 2a. In order to obtain the temperature dependency of the material, all tests
are pursued at three different temperatures (T = 25◦C, 65◦C and 105◦C). At first,
single stage tensile tests are conducted until breaking elongation is achieved. Inelastic
properties can be obtained under consideration of cyclic and relaxation tests. Every
cyclic test consists of five load cycles. One load cycle consists of a loading phase and a
following unloading period. The unloading is completed when the measured force is equal
to zero. After every cycle, the strain is increased by 20%. Hence, the maximum strain
of the specimen within the cyclic test is 100%. The relaxation tests take place in three
load steps. At the beginning of every load step, the strain is increased by 30%. After
achieving the current load level, the strain is kept constant for 900 s. Within that time,
stress relaxation takes place. Finally, a cyclic test with a holding time after the unloading
of every cycle is conducted. The holding time is 240 s. Within this time, the viscoelastic
part of deformation is reversed and only the irreversible deformation is stored in the
material. Under consideration of these material tests, the irreversible and viscoelastic
part of deformation can be quantified.

The compression tests are carried out with cylindrical specimen. The diameter is
28 mm and the total height is 18.9 mm. The contact surface between the specimen and
the testing machine is rough. By means of physical and numerical tests, it is shown that
within the specimen a uniaxial state of stress exists for a strain up to −40%. The test
equipment is presented in Figure 2b. Also for the compression tests, single stage and

Figure 2: Test equipment for: (a) tensile test; (b) compression test; (c) simple shear test

cyclic tests are carried out. The single stage tests have a maximum strain of −75%. The
cyclic tests consist of seven load cycles. In every load cycle, the strain increases by −10%
and, hence, the maximum strain within this test series is −70%.

4
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Finally, simple shear tests are developed in order to gain information on the uncured
rubber material behaviour for a different state of stress. The used specimen is a cuboid
with a square base area (20 mm × 20 mm) and a height of 6.3 mm. Two of these specimen
are fixed in the frame of the test equipment (compare Figure 2c). Between the two
specimen, a rough aluminum plate is placed. The frame is fixed and the aluminum plate
is loaded. The distance between the frame and the aluminum plate is defined as the
opening. During the different shear tests, the opening has a value of 4 mm and 5 mm,
respectively. For this kind of material test, also single stage tests and a cyclic test are
carried out. Within the single stage tests, the aluminum plate is driven by 5 mm and the
total displacement of the plate within the cyclic test is 5.3 mm. The cyclic test consists of
five load cycles and, hence, the displacement of the aluminum plate increases by 1.06 mm
for every load cycle.

3 MATERIAL DESCRIPTION BY ARTIFICIAL NEURAL NETWORKS

3.1 Recurrent neural networks

Recurrent neural networks enable, among others time-dependent approximations of
different classes of structural analysis. The computation is time efficient and, hence, it
can be used especially for the approximation of time-dependent structural behaviour (see
e.g. [10, 11]). Here, a RNN is used instead of a material model in a FEM code.

For the formulation of stress-strain-time dependencies, a network architecture accord-
ing to [7] is used. These RNN consist of M layers (input, M −2 hidden and output layer).
Each layer m has a number of neurons, which are linked by synaptic connections to the
neurons of the following layer m + 1. The number of input and output neurons is defined
by the number of strain and stress tensor components. For 3D material formulations,
six input and six output neurons are required. The experimentally obtained data series
are discretised into equidistant time steps n. In each time step, the j = 1, . . . , 6 strain
components are transferred to input signals [n]x

(1)
j and the output signals [n]x

(M)
k of the

network define the k = 1, . . . , 6 stress components. The hidden and the output neurons
are connected additionally to context neurons in order to capture time-dependent material
behaviour. This approach enables to consider all j = 1, . . . , 6 current strain components
and the whole strain history for the computation of each stress component of time step
n.

The signals of RNN are computed layer by layer. The output signal of neuron k in
layer m is obtained by

[n]x
(m)
k = ϕ

(
J∑

j=1

[
[n]x

(m−1)
j · w(m)

kj

]
+

I∑
i=1

[
[n]y

(m)
i · c(m)

ki

]
+ b

(m)
k

)
. (1)

The argument of the activation function ϕ contains the sum of all input signals [n]x
(m−1)
j

of the previous layer multiplied by the weights w
(m)
kj , the sum of all context signals [n]y

(m)
i
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multiplied by the context weights c
(m)
ki and the bias value b

(m)
k . Various types of activation

functions can be used (see e.g. [12]). In this application, the area hyperbolic sine activates
the hidden neurons and a linear function is selected for the output neurons.

The output signals of the context neurons are computed by the previous output signal
of the hidden or output neuron i multiplied by the memory factors γ

(m)
i and the previous

context signal [n−1]y
(m)
i multiplied by the feedback factor λ

(m)
i summarised by

[n]y
(m)
i = [n−1]x

(m)
i · γ(m)

i + [n−1]y
(m)
i · λ(m)

i . (2)

The memory factors and the feedback factors are defined as values of the interval [0, 1].
A feed forward network is obtained as a special case of the presented RNN, if all memory
factors are zero.

The analytical determination of the algorithmic tangential stiffness for the element
stiffness matrix requires to evaluate the partial derivatives

[n]Ckj =
zsc

k

xsc
j

· ∂[n]x
(M)
k

∂[n]x
(1)
j

(3)

of the output signals [n]x
(M)
k with respect to the input signals [n]x

(1)
j . The parameters

xsc
j and zsc

k are scaling factors of the input and output signals, respectively. The partial
derivatives are computed by multiple applications of the chain rule (see [12]). They can
be computed layer by layer similar to the output signals.

3.2 Modification of neural network output quantities for application in FEM

Within the RNN approach, input quantities are mapped onto system responses (output
quantities). For the introduced application of the RNN, the elements of the strain tensor
(input quantities) are mapped onto the elements of the stress tensor (output quantities).
The usage of a RNN instead of a material model requires a modified strain and stress
tensor as input and output quantities. This adaptation of the strain and the stress tensor
is necessary to ensure an interaction between FEM and RNN. In order to solve the non-
linear and inelastic FE problem, an incremental iterative solution is employed.

The used FE code needs the Cauchy stress tensor [n]σ. All stress and strain tensors
of the following derivation are tensors at the time step n. For simplification, the index of
the time step [n]• is omitted in the tensor notation.

In classical continuum mechanics, the Cauchy stress tensor σ (b) can be given in de-
pendency on the Finger tensor b = FFT . The dilatation J = detF is an indicator for
the compressibility of the material. For J ≈ 1, the material is nearly incompressible. The
dilatation is given in dependency on the deformation gradient F. The Cauchy stress ten-
sor σ is mainly calculated by the Finger tensor b and, therefore, the Finger tensor should

be used as input of the RNN and the scaled output signals zsc
k · [n]x

(M)
k deliver Cauchy

stresses σ. In order to preserve the functionality of the RNN, the inputs xsc
j · [n]x

(1)
j are

substituted by the difference of Finger tensor and identity tensor b − 1.

6
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The tangent moduli

= 2 J−1b
∂σ J b−1

∂b
b (4)

are defined as the derivatives of the Cauchy stress tensor σ with respect to the Finger
tensor b. Finally, the tangent moduli in the current configuration

= 2 J−1b ·
(

J b−1 · ∂σ

∂ (b − 1)
: I + σ ·

[
J

2

(
b−1 ⊗ b−1

)
− J b−1 · I · b−1

])
· b (5)

are derived in dependency on the partial derivatives of the network outputs with respect
to the network inputs ∂b−1 σ, the Cauchy stress tensor, the Finger tensor and the forth
order identity tensor I. The derivative ∂b−1 σ is equivalent to the tangential stiffness
[n]Ckj of the RNN. The Cauchy stress tensor and the derivatives are obtained from the
RNN algorithm. These output quantities can be used directly to calculate the tangent
moduli in Eq. (5) which is consistent with the FEM.

3.3 Verification of approach by FE simulations

The described approach has to be verified via FE simulations. If the RNN is able
to represent the behaviour of a real rubber material, then it has to represent also the
behaviour of a non-linear elastic material model. Here, the Yeoh material description [13]
is chosen as one typical model. The typical upturn at large strain can be represented by
the Yeoh formulation.

Within a training procedure, the unknown network parameters, i.e. the weights, the
bias values and the context weights, have to be determined. These unknowns are chosen
by the comparison of training data and network responses. The aim of the training is
to find network parameters which provide a minimised difference between training data
and network response. A more detailed explanation of the training algorithm is given in
Section 3.5.

In this example, 2000 different states of strain are randomly found. The corresponding
stresses are calculated by the chosen Yeoh material model. Hence, 2000 different states of
strain and corresponding stresses define the data set of 2000 strain-stress dependencies.
Subsequently, the data set is divided into two parts. 1000 strain-stress dependencies are
used for the training and the other 1000 are used in order to validate the quality of the
identified network parameters. This kind of validation is a part of the training procedure.

After the implementation of the authors’ approach, explained in Section 3.1 and 3.2,
two different examples are carried out for verification. The conducted uniaxial tensile and
shear test are pictured in Figure 3. The geometry of the uniaxial test sample is a cuboid
with a square base area of 4 mm × 4 mm and a height of 20 mm. It is discretised by
40 solid elements with 8-nodes per element. The boundary conditions enable a uniaxial
behaviour of the test sample. The load is applied in two steps. In the first step, the top of
the test sample is driven by 20 mm in y-direction (see Figure 3) and, in the second step,

7
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Figure 3: FE simulations: uniaxial and shear test

the top is deformed into the initial condition. The geometry of the shear test sample is
a cube with an edge length of 20 mm. Here, likewise 8-node solid elements are used for
discretisation. The shear test sample consists of 125 elements. The nodes at the top and
at the bottom of the shear test sample are fixed in all three directions. The shear test
also consists of two load steps. In the first step, the top of the test sample is deformed by
20 mm in x-direction (see Figure 3) and, in the second step, the top is driven back into
the initial condition.

In Figure 4, results of the simulation using Yeoh material formulation and the RNN are
shown for the tensile and shear test. The pictured stress-time dependencies represent the
stresses in the middle of the test samples. For the uniaxial test, the stress σ22 in loading

Figure 4: Comparison of Yeoh material model and RNN approach

direction is chosen for the comparison of the two approaches. The shear component σ12

8
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is used to compare both shear test results. The differences between the two formulations
are marginal in both cases. The behaviour of the Yeoh model can be represented by the
RNN.

The training of the RNN delivers quite good results. The consideration of additional
state of strains, especially with a focus on shear strains, even would improve the train-
ing and, therefore, the simulation results. For this example, the quality of the RNN is
acceptable. It could be shown, that the approach is ready for implementation into a FE
code.

3.4 Preparation of material test results for training of neural network

The usage of the RNN instead of a material model for a real material requires the
training of the network parameters in dependency on the material behaviour. All training
data are based on the results of the material tests (compare with Section 2). Therefore,
the material test results have to be prepared for training of the neural network.

The testing machines deliver time-dependent displacements u and forces F . For all
uniaxial tests, the strain ε = u/l0 is equal to the ratio of displacement and reference
length. The stretch λ is equal to the sum of 1 and the strain ε. The stress component
Pu is defined as the ratio of the force F and the reference cross-sectional area A0 of the
specimen. For the interpretation of shear tests, the shear angle and the shear stress are
necessary. The required shear angle γ = u/Sb is the ratio of the displacement u of the test
machine and the opening Sb (see Figure 5). The shear stress Ps is calculated by dividing
the measured force F by the square base area (20 mm × 20 mm) of the specimen.

Figure 5: Shear angle in dependency of displacement u and opening Sb

Uncured rubber material is nearly incompressible. Hence, the deformation gradient is
defined as

F =




λ γ 0
0 λ−1/2 0
0 0 λ−1/2


 . (6)

Based on this deformation gradient, the Finger tensor can be calculated. For the uniaxial
tests, the shear angle γ is set to zero and for the shear tests, the stretch λ is equal 1. The
required Cauchy stress tensor σ = J−1 PFT is a function of the deformation gradient
F and the first Piola-Kirchhoff stress tensor P. The component P11 of the first Piola-
Kirchhoff stress tensor P is equal to the force in uniaxial direction Pu and the component
P12 is equal to the shear stress Ps.

9
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3.5 Training and validation results

The determination of the unknown network parameters is achieved by a training pro-
cedure. This training procedure is an optimisation approach, comparable to identification
tools for material parameter fitting. Therefore, the differences between test results and
output values of the RNN are computed for all output neurons. The sum of these differ-
ences is equal to the objective function which has to be minimised by the optimisation
procedure. Before the optimisation and training, respectively, starts, test data are divided
into two parts. One part of data is used for the training and the other data set is used to
validate the network quality.

In Figure 6, results of the network training and validation are shown for a uniaxial
state of stress at a temperature of 25◦C as an example. The stresses σ11 of the main

Figure 6: Stress-time dependency: material tests, training and validation results

loading direction versus time are plotted for four different tests. One single stage and
one cyclic tensile test as well as single stage and one cyclic compression test are used.
The cyclic tensile test has been used for validation. For the training, the other three test
results are employed. The three tests which have been used for the training deliver quite
good results. Especially, the time dependency of the cyclic tests can be represented by
the RNN in an adequate way. Whereas the first three cycles of the validation curve match
very well, it differs for the last two cycles.

The presented training and validation are first results. The improvement of the training
results and the application of the RNN in complex FE simulations will be shown.

10
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4 CONCLUSIONS

- The characterisation of material behaviour of uncured rubber requires an intensive
study and extensive material tests. For each structural analysis (e.g. FE simulation),
a realistic description of the material is fundamental in order to obtain realistic and
consistent results.

- The feasibility of the usage of an RNN to substitute a classical continuum mechanical
material model within the FEM is shown. A required modification in order to
gain consistent tangent moduli and the appropriate preparation of the material test
results for the training are explained. The application of the RNN instead of a
material model could be shown by first FE simulations.

- Finally, first results of the functionality of the RNN are presented. Training and
validation are shown for a representative state of strain.

- The neural network approach can be extended further to consider temperature de-
pendencies of the uncured rubber.
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Abstract. Direct manufacturing technology using Selective Laser Sintering (SLS) on 
thermoplastic powders allows obtaining final parts in a short time, with classical polymer 
density and a high flexibility of shape and evolution of parts. The physical base of this 
process is the coalescence of grains, which initiates the densification of powder during SLS. 
This study presents a 2D C-NEM simulation of the whole process. We firstly focus on the 
chosen method and its advantages. We present the simulation details and validate the 
modeling through a 2D infinite cylinders coalescence simulation. The mesh of the grain 
interface is continuously adapted to the local curvature to better capture the coalescence 
phenomenon. We are able to simulate the sintering of twelve particles laying on a support 
within some hours. 

 
1 INTRODUCTION 

1.1 Selective laser sintering process 
Polymer Parts obtained by direct manufacturing with laser sintering technology present 

porosities [1] which significantly reduce their mechanical resistance [2]. This porosity is due 
to the air between polymer powder grains which remains trapped into the material while 
polymer is melting. As the process needs to be performed with temperature variations, air 
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volume evolutions have to be taken into account, influencing directly the density of the 
material. It is also important to be able to predict the conditions in which porosity volume will 
be minimal. 

The important material parameters acting in the process are the viscosity, the surface 
tension and the laser absortivity of the polymer. 

Parts manufacturing by SLS is difficult for some reasons. Firstly, the polymer powder 
degrades while performed in the machines [3] maintained at high temperatures for some 
hours. It is also difficult to predict the polymer solidification, which depends on the cooling 
conditions as semicrystalline polymers are mainly used [4]. 

Among all articles cited here, it appears that the main controllable process parameters 
influencing the final material can be classed in order of importance [5]: layer thickness, laser 
speed, pre-heating powder bed temperature and laser power (most important). Some of these 
results have been confirmed through a finite element model [6]. Some other parameters are 
discussed as laser beam diameter, hatch distance and layering conditions. It seems clear that 
the use of a CO2 laser (10.6 μm) to melt the polymer powder is recommended.  

All these parameters are often connected. For example, when particle size is decreased, the 
layering becomes difficult [4]. Among all articles cited here, studies concerning the influence 
of each process parameters and their relation on the final material can be found. 

In parallel to the experiences, it is important to simulate the process for a better 
understanding of the parts characteristics. Simulating the process will enable to choose the 
best parameters for the manufacturing and predict the performances of SLS polymer parts, 
and as soon as the simulation is functional, have this information faster. 

1.2 Physics of coalescence 
The first coalescence model has been made by Frenkel [7] and improved a few years later 

by Eshelby [8]. Describing the evolution of the coalescence with three parameters (Figure 1), 
the neck radius y, the particles radius a, and the angle θ, they could quite well predict the 
evolution of the coalescence phenomenon in time (Equation 1) . 

 
        

 
   (1) 

They could show that the coalescence is driven by the surface tension Γ while the viscosity 
η and the initial particles radius a0 slow the phenomenon, introducing a dimensionless time τ 
(Equation 2). 

    
   

 (2) 

 
Figure 1: Shape of two cylinders during coalescence - Definition of parameters. 

 
Other works have been done later [9,10] by taking into account a viscoelastic behaviour for 
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the polymer. 
The presence of numerous necks on a particle induces effects in the kinetics of 

coalescence. It has been shown experimentally that the arrangement of particles has an effect 
on the coalescence rate [11]. 

1.3 Coalescence simulations 
Finite element simulations of capillary driven flows have been done to evaluate the 

influence of grain sizes and several growing necks on particles. 
One of the first finite element simulations [12] from 1995 is based on axisymmetric 

isothermal assumptions and shows the influence of multiples aligned particles in the 
coalescence phenomenon.  

The first 3D finite element simulation of complicated initial geometries [13] confirmed the 
necessity to go further to understand the sintering of particles. In parallel to the previous 
study, authors presented [14] very well numerical difficulties like mesh distortions for large 
deformations (fluids) and front tracking methods. These methods are very useful in the cases 
of capillary flows to well describe the interface but can induce border inaccuracy and wrong 
surface tension evaluation. Furthermore, sintering problems seems to induce difficulties in 
convergence of iterative methods due to the matrix form and the mesh distortion increases 
these difficulties, then, it is necessary to remesh the domain. However, it is difficult to remesh 
a border which has no analytical definition. 

Rotomolding process presents similarities to SLS. Main differences are the heating 
conditions, the polymer in SLS process melted by the laser action, from the free side of the 
powder layer. A study presents a isothermal simulation of the densification of spheres [15] 
trying to characterize the evolution of the air trapped into the material. The size of particles 
and rheology of material influence the bubbles size and the air trapped into cavities is 
supposed to diffuse through the polymer after the closure of cavities. 

Finally, studies [16,17,18] show that the polymer viscoelasticity has an influence at the 
early stage of coalescence. Globally, the elasticity influence seems not to have a strong effect 
on the coalescence rate. 

1.4 Objectives 
The aim of this work is to simulate the SLS process in 2D to study the coalescence of a 

significant set of grains and to be able to know if the simulation can be extended to the 3D. 
We first present all the details of our computation and results. To validate the modelling, 

we simulate the isothermal coalescence of two same size particles and compare it to a 2D 
coalescence model based on Frenkel-Eshelby 3D one. Then the coalescence of a set of grains 
is simulated in anisothermal conditions. 

2 MODELLING LASER SINTERING 

2.1 C-NEM Simulation 
The C-NEM method [19,20] (Constrained Natural Element Method) is mainly based on 

usual Voronoï cells around nodes. The main advantage of this method is to take into account, 
in streams interpolations, the participation of all nearest neighbours around a point on the 
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domain. As a consequence, the mesh is not constrained as it is in a current finite element 
method (FEM). Performing FEM, it is important to have no distorted elements in the mesh. 
The remeshing of the whole domain is frequently needed, which is computer time consuming. 
In a C-NEM computation, the nodes can move without any problem and is also well adapted 
for process simulations, as the domains have often large deformations. 

The C-NEM method used here is defined by the fact that the velocity is interpolated by 
constrained Sibson natural element shape functions φ while the pressure P is assumed 
constant by cell interpolated by the shape functions ψ. The weak formulation integration is 
done by nodal integration and the velocity gradient is done using the SCNI method (Stabilized 
Conform Modal Integration). 

Taking this into account, the problem is discretized and the velocity u, pressure p and 
temperature T expressions are developed (Equations 3,4,5) with their nodal values. 
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where x and y are the coordinates on the domain, Ui and Vi the nodal velocities on    and   , Ti 
the nodal temperature,    and    the nodal shape functions and Nd the number of nodes. 

2.2 Basic equations 
In high viscosities capillarity flows, velocities are very small, then inertial terms can be 

neglected and the polymer can be considered as a Newtonian viscous fluid. 
The basic equations which drives the fluid movements are given (the local equilibrium - 

Equation 6) using the deformation tensor D (Equation 7). 
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where σ is the strain tensor, fd the volume force in the domain, D the deformation tensor and 
  the viscosity. 
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2.3 Computation of equations on the discretized domain 
The basic equations are integrated on the domain introducing the variational formulation 

(Equation 8,9) depending on the vectors U and P. 

              
 

                  
 

                   
  

        
 

    

    
 
 
 
    

 

 
 
                 
                 

    

  
    

  
 

    

  
    

  
 

    

  
    

  

 

 

 
 

 

(8) 

where   is the local curvature and n the normal vector on the surface. 

              
 

      (9) 

By introducing the vector   (Equation 10) which enables to regroup all the degrees of 
freedom in one vector, the system can be defined with one matrix (Equation 11). 
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Details on the matrix K and the vector F are given in Equations 12 and 13. 
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2.4 Displacement boundary limit conditions 
During SLS simulation, the displacement boundary limit conditions will be set by 

representing the true limit conditions of the powder tray. The three rigid body displacements 
are blocked. 

However, to be able to simulate the coalescence of particles with no displacement 
boundary limit conditions, three Lagrangian conditions (Equations 14,15,16) are added in the 
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2.3 Computation of equations on the discretized domain 
The basic equations are integrated on the domain introducing the variational formulation 

(Equation 8,9) depending on the vectors U and P. 
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system, Equation 11 is used to block the 3 rigid body movements. 
The two translations on x and y are blocked through a global condition on the displacement 

of the domain, which has to be null (Equations 14,15). 
          (14) 

          (15) 

where Voli is the Voronoï cell area in 2D, around node i. 
The z rotation is blocked through a global condition on the rotation of the domain 

(Equation 16). 

 
            

     
 

  

   
   (16) 

where G is the gravity center of the domain, which remains constant during the coalescence, 
ui the velocity of the node Mi. 

As fluids are considered, the global conditions on all nodes are needed to not deform the 
domain. 

2.5 Time step calculation 
While simulating coalescence, a too large time step induces small inaccurate local 

curvatures on the border. This induces bad movements which influence the rest of the 
simulation. 

The time step is also constrained with movements, by limiting the local rotation of the two 
segments joining each node of the border to an angle value of some degrees. 

2.6 Cavities (Volume, Pressure) 
At the beginning, the pressure was set on the border of the domain. The air in the cavities 

was assumed compressible and cavities presented oscillating volume variations. To avoid 
these problems, the only solution was to strongly decrease the time step 

Simulating the sintering of a Polyamide 12 of about 1000 Pa.s of viscosity, no significant 
pressure variations were observed in cavities. The pressure will also be assumed constant. 

We decided to use the perfect gas law, calculating the cavities volumes at each time step 
according to the temperature variation. 

Knowing the theoretical volume of the cavity, a Lagrangian condition is created in the 
system (Equation 17) for each cavity, imposing its derivative. 

    
    

      
  

       
    

       
    

     
  

  
  

   
 

             

(17) 

where xi and yi are the components of the velocity of the node i. 
As the time step is linked to the velocity of the nodes, it is not determined before the 

resolution of the system and the time step is chosen as the maximum value on some precedent 
time steps to avoid node oscillations. 

2.7 Mesh 
Node density should not be important except on the border of the domain to well take into 
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account the surface tension. The initial mesh is indeed adapted to the curvature on the border, 
nodes are created and deleted depending on the local curvature during the simulation. 

2.8 Surface tension modeling 
The surface tension effect (Equation 18) has to be discretized. 

                 
  

 (18) 

The nodal curvature is determined by the radius of the circle passing by the considered 
node and its two neighbors (Figure 2). 

 
Figure 2: Surface tension calculation on discretized domain 

2.9 Numerical details 
The system to solve (Equation 19) presents three degrees of freedom per node (U,V,P). 

                (19) 
The iterative methods GMRES and PCG were used but it was difficult to get the 

convergence. We separate the pressure and the velocity (Equation 20,21), and add a 
compressible coefficient of 106 Pa.s into the matrix C to keep the quasi-incompressible 
behavior of the polymer. 
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The system obtained has a length of 66% of the initial one (Equation 22) and iterative 
methods converge well to the solution. 

                    (22) 
This method gives the same results than considering that the polymer is compressible in 

the local equilibrium equations. 
The displacements of the nodes are calculated through a Taylor development at second 

order (Equation 23) by calculating the acceleration on two time steps (Equation 24). 

                          
 

  (23) 

      
           

   (24) 

2.10 Heating conditions 
SLS process is performed in a complex transient thermal situation. The temperature is set 

on the stage and the vertical sides (Figure 3). Air convection at the upper surface of the 
polymer is modelled by a heat exchange coefficient. The laser heats the material during its 

Laser 
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pass. The polymer coalescence is considered in the studied area. 

 
Figure 3: Thermal and displacement limit conditions of the simulation 

 
The cavities are supposed not to exchange energy, and their temperatures are calculated by 

a mean calculation on their surface and nodal temperatures. Their temperature changes induce 
volume changes, pressure assumed constant (Section 2.6). 

The viscosity, which is dependent on the temperature, is applied through an Arrhenius law 
(Equation 25), and its maximum value (solid material) is limited with a high viscosity of 
10.000 Pa.s, which seems to be enough to limit coalescence. 

       
 
   (25) 

As done for the mechanical behaviour of the polymer (U,V,P), a thermal numerical 
resolution of the temperature of the domain is performed beginning with the local equilibrium 
equation (Equation 26). 

             (26) 

where λ is the thermal conductivity, P the heat source, ρ the volume mass and c the heat 
capacity 

By introducing three parameters (Equation 27), and performing a variational formulation 
on the domain, the system to solve and its details are obtained (Equation 28 & 29): 
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Evaluating the derivative of temperature with time by a Taylor development at order 1 
(Equation 30), the new nodal temperature (Equation 31) is calculated by an implicit method. 

Air convection 
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2.11  Laser action 
The first test was to set a volume action into the whole height of the polymer to validate 

the principles, and then a more realistic model has been employed by applying a Gaussian 
repartition of the power flux on the surface [21]. 

It was necessary to find the nodes directly under laser beam (Figure 4). 

 
Figure 4: Nodes under laser action (Black) 

 
The idea of the algorithm is the following. Working on the free surface of the domain, 

nodes are considered from the left to the right. Firstly cut the whole top surface exposed on 
one part to the laser, in different sections, depending on the x displacements changes (left to 
right and right to left) and under the edges of the laser field. Then identify all sections likely 
to be exposed to laser (surface whose direction is from left to right). Among these sections, 
determine which of the nodes under the laser is the highest, and begin the work from the 
section containing this node. All the nodes which will be considered here are under direct 
laser action. To the left (respectively to the right), and until crossing the laser beam boundary, 
identify whether the laser boundary is on the section or not. If not, proceed to the next section 
considering respectively the first node of next section as the first node of the section which is 
on the left (respectively right) of the last one of the studied section, and repeat the same work 
on the new section until crossing the laser demarcation. Finally, consolidate all the sections 
made by more than one node and manage some details on the sections extreme nodes, 
depending on whether the sections go up or down. 

The laser time steps are adapted and the possibility to interpose movements during the 
laser pass is considered. 

3 SIMULATION RESULTS 
The simulation is computed on Matlab. The functions which have to be rapid 

(hydrodynamic and rigid matrix creation) are function written in C language called in Matlab. 

3.1 Two cylinders coalescence 
The first simulation is performed on the isotherm coalescence of two infinite cylinders in 

Laser beam 
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order to validate the simulation [22]. A 2D model has been developed and the coalescence 
parameters y and a have been defined on the simulation to try to represent as well as possible 
the model. Good agreements were found between the model and the simulation. 

3.2 Process simulation 
We finally simulated the process taking into account the parameters exposed in Table 1 on 

a Polyamine 12. Applying the laser action on a non heated domain (Figure 5), it is seen that 
the laser/material interaction conduces to very high temperatures (15000°C) and it has been 
confirmed on COMSOL. The laser power has also been decreased from 5 W (normal SLS 
power) to 5.10-7 W to obtain a more realistic increase of temperature under laser action of 
about 100 °C to 200°C. This decrease of power induces the necessity to heat the domain from 
the sides to melt the polymer and see an evolution of the melting. 

 
Figure 5 Laser action on polymer 

Table 1: Process simulation parameters 

Process parameters Value Material parameters Value 
Initial polymer temperature 150 °C Cylinders diameter 100  μm 

Border temperature 350 °C Polymer Thermal conductivity 0.25 W.m-1.K-1 
Air temperature 150 °C Polymer density 1100 Kg.m-3 

Exchange convection coefficient 13 W.m-1.k-1 Air density 1.2 Kg.m-3 
Laser power 5.10-7 W Gravity 9.81 m.s-2 

Laser beam diameter 200 μm Surface Tension 0.03 N.m-1 
Laser velocity 1 m.s-1 Polymer heat capacity 1700 J.Kg-1.K-1 

Laser reflectivity 4 % Arrhenius K (PA 12) 
Arrhenius E (PA 12) 

3.5*10-6 
75647 

 
Our results are presented simulating the sintering of 12 particles of Polyamide 12 lying on 

a support (Figure 6). The domain is heated from the bottom and the sides. The heat exchange 
with the air occurs. After 5 seconds, the laser is passing from the left to the right very rapidly 
(some ms), and symmetric displacements conditions are applied on both sides. 

The principles are validated and the calculation specificities are exposed in table 2. 
Depending on the chosen parameters, mesh and time step conditions particularly, the 
calculation time can be much different, but results may be inaccurate. The best parameters are 
difficult to find at this time and work must be done to choose them. 
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Figure 6: Captures of simulation evolution (a - solid polymer, b - laser pass, c - melted polymer) during the SLS 

process applied on 12 cylinders. 
 
Furthermore, as the laser action is false and induces a high temperature on some local 

nodes, the movements become very high due to discontinuities and very low values of 
viscosities. This induces very small displacement time steps to limit local movements, which 
increase a lot the calculation time. The calculation presents 700 time step before laser pass 
(5s), 4500 time step during laser pass, and 2000 for the next 5 seconds. Without laser action, 
the same simulation gives a calculation time of 5.92 hours for 4362 time step.  

Table 2: Calculation specificities for the presented simulation 

Matlab R2009B 64 bits Nodes in final mesh 4381 
Windows 7 64 bits Number of movement time step 9067 

RAM memory DDR3 3*8 Go Calculation duration 8.9 h 
Processor Intel Core i7-950 Laser pass calculation duration 0.57 h 

Motherboard ASUS P6T7 Volume conservation 100.0097 % 

12 CONCLUSIONS 
Selective laser sintering process is a complicated process in which thermal conditions are 

never the same for each layer. However, in chosen conditions, we are able to simulate the 
process in spite of the laser/material interaction, which has now to be improved. 

At this time, the main difficulties consisted to obtain the iterative methods convergence, a 
well adapted mesh depending on the curvature, and the better choice on the time step to avoid 
to large mesh deformation inducing mesh distortions and next calculations. 

After performing experiments with a CO2 laser on polymer powder to characterize a Beer-
Lambert law for the laser/material interaction, we will program it and begin simulations of 
multi grains conditions in 2D. In parallel, we will perform experiments on multi grains layers 
of polymer powders in a heat chamber to compare the simulation results with the experiments, 
and identify the multigrain influence on coalescence. 
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†CIBER de Bioingenieŕıa, Biomateriales y Nanomedicina (CIBER-BBN)

Key words: Soft tissue, Microsphere, Affine deformations, damage and blood vessels

Abstract. Enormous progress has been made during recent years in the phenomenolog-
ical modelling of soft tissue. In general, three important softening phenomena associated
with biological tissues may be distinguished. First, there is the dependence of the me-
chanical response on the previously attained maximum load level. This is quite similar
to the well-known Mullins effect in rubber-like materials. Another typical phenomenon
known as permanent set is characterized by residual strains after unloading. Finally, there
is the softening behaviour resulting from fibre rupture and matrix disruption associated
with material damage. There are several phenomenological constitutive models able to
describe the failure of soft tissues from a macroscopic point of view. In this contribution a
three-dimensional micro-sphere-based constitutive model for anisotropic fibrous soft bio-
logical tissue is presented, including elastic anisotropy as well as inelastic effects (softening,
preconditioning and damage). The link between micro-structural inelastic contribution
of the collagen fibers and macroscopic response is achieved by means of computational
homogenization, involving numerical integration over the surface of the unit sphere. In
order to deal with the random distribution of the fibrils within the fiber, a von Mises
probability function is incorporated, and the mechanical behavior of the fibrils is defined
by an exponential-type model. The inelastic effects in soft biological tissues were modeled
by internal variables that characterize the structural state of the material.

1 INTRODUCTION

Enormous progress has been made during recent years in the phenomenological mod-
elling of soft tissue. In general, three important softening phenomena associated with
biological tissues may be distinguished. First, there is the dependence of the mechanical
response on the previously attained maximum load level. This is quite similar to the
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well-known Mullins effect in rubber-like materials. Another typical phenomenon known
as permanent set is characterized by residual strains after unloading. Finally, there is the
softening behaviour resulting from fibre rupture and matrix disruption associated with
material damage [15, 3, 30].

There are several constitutive models able to describe the failure of soft tissues [17, 20,
25, 40, 5, 34, 37, 36, 38, 21, 11]. Balzani et al. [5] assumed that discontinuous damage
occurs in arterial walls and mainly along the fiber direction. Rodŕıguez et al. [34, 33]
introduced a stochastic-structurally based damage model for fibrous soft tissues. Only
a few constitutive models have been derived to describe the loading-unloading softening
behavior of soft tissues [15, 10, 33, 12, 29, 21, 31]. Franceschini et al. [15] and Horgan and
Saccomandi [19] proposed an isotropic pseudoelastic model for soft tissues using isotropic
and anisotropic elastic strain energy functions respectively. Calvo et al. [10] proposed
an uncoupled directional damage model for fibred biological soft tissues that considers
different damage evolutions for the matrix and for the different fiber families. In Li and
Robertson [21] two damage mechanisms are coupled in a multiplicative manner. Peña
et al. [31] showed that continuum damage mechanics models can reproduce the softening
behavior during unloading or reloading only for low dissipative effects. Ehret and Itskov
[12] presented a model that reproduces the softening behavior including all the tissue
dissipative effects (permanent set also). However, the main drawback of this model is its
use of non-standard invariants that leads to a very complicated approach. The model
is not able to reproduce the damage process. Peña and Doblare [29] present a very
simple pseudo-elastic anisotropic model to reproduce the softening behavior exhibited
in soft biological tissues without permanent set. However the pseudo-elastic model is
not able to reproduce the failure region as a result of the bond rupture and complete
damage while Continuum Damage Mechanics (CDM) and other models can. Finally,
Peña [27] developed a phenomenological model that includes all these phenomena in a
macro-estructural approach.

The high complexity of biological tissues requires mechanical models that include in-
formation of the underlying constituents and look for the physics of the whole processes
within the material. This behavior of the micro-constituents can be taken into macro-
scopic models by means of computational homogenization. It is in this context where the
microsphere-based approach acquires high relevance. [24], [23] and [16] used the micro-
sphere approach with emphasis on elastomers. Later [2] focus on the anisotropy of the
soft biological tissues.

In this contribution a three-dimensional micro-sphere-based constitutive model for
anisotropic fibrous soft biological tissue is presented, including elastic anisotropy as well
as inelastic effects (softening, preconditioning and damage). The link between micro-
structural inelastic contribution of the collagen fibers and macroscopic response is achieved
by means of computational homogenization, involving numerical integration over the sur-
face of the unit sphere. In order to deal with the random distribution of the fibrils within
the fiber, a von Mises probability function is incorporated, and the mechanical behavior of

2
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the fibrils is defined by an exponential-type model. The inelastic effects in soft biological
tissues were modelled by internal variables that characterize the structural state of the
material.

2 MICROSTRUCTURAL APPROACH FOR HYPERELASTIC MEDIA

2.1 KINEMATICS

Let B0 ⊂ E3 be a reference or rather material configuration of a body B of interest. The
notation ϕ : B0 ×T → Bt represents the one to one mapping, continuously differentiable,
transforming a material point X ∈ B0 to a position x = ϕ(X, t) ∈ Bt ⊂ E3, where Bt

represents the deformed configuration at time t ∈ T ⊂ R. The mapping ϕ represents
a motion of the body B that establishes the trajectory of a given point when moving
from its reference position X to x. The two-point deformation gradient tensor is defined
as F(X, t) := ∇Xϕ(X, t), with J(X) = det(F) > 0 the local volume variation. It is
sometimes useful to consider the multiplicative decomposition of F

F := J1/3I · F̄. (1)

Hence, deformation is split into a dilatational part, J1/3I, where I represents the second-
order identity tensor, and an isochoric contribution, F̄, so that det(F̄) = 1 [14]. With
these quantities at hand, the isochoric counterparts of the right and left Cauchy-Green
deformation tensors associated with F̄ are defined as C̄ := F̄T · F̄ = J−2/3C.
Furthermore, let r be a vector in the reference configuration. The so called push-forward
operator, associated to the motion, maps this vector field in t̄ ∈ Ω, in the deformed
configuration. Assuming that r is affected only by the isochoric part of F

t̄ = F̄ · r = J−1/3t with ‖t̄‖ = λ̄ = J−1/3 ‖t‖ , (2)

where t̄ represents the isochoric push-forward of the material vector r and λ̄ the isochoric
stretch in the direction of r [18].

2.2 HYPERELASTIC FRAMEWORK

The free energy density function is given by a scalar-valued function Ψ defined per unit
reference volume in the reference configuration and for isothermal processes. [14] pos-
tulated the additive decoupled representation of this SEDF in volumetric and isochoric
parts as

Ψ = Ψvol + Ψich. (3)

As discussed in the introduction, soft biological tissues are a highly non-linear anisotropic
materials. To differentiate between the isotropic and the anisotropic parts, the free energy
density function can be split up again as

Ψ = Ψvol + Ψiso + Ψani, (4)

3
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where Ψvol describes the free energy associated to changes of volume, Ψiso is the isotropic
contribution of the free energy (usually associated to the ground matrix) and Ψani takes
into account the isochoric anisotropic contribution (associated to the fibers) [35]. This
strain-energy density function must satisfy the principle material frame invariance

Ψ(C,M,N) = Ψ(Q · C,Q · M,Q · N)for all[C,Q] ∈ [S3
+ × Q3

+]. (5)

The second Piola-Kirchhoff stress tensor is obtained by derivation of (3) with respect to
the right Cauchy-Green tensor [22]. Thus, the stress tensor consists of a purely volumetric
and a purely isochoric contribution, i.e. Svol and Sich, so the total stress is

S =Svol + Sich = 2
∂Ψvol(J)

∂C
+ 2

∂Ψich(C̄,M,N)

∂C

=2

[
∂Ψvol(J)

∂J

∂J

∂C
+

∂Ψich(C̄,M,N)

∂C̄

∂C̄

∂C

]
= J pC−1 + 2

∑
j=1,2,4,6

P :
∂Ψich

∂Īj

∂Īj

∂C̄
, (6)

where the second Piola-Kirchhoff stress S consists of a purely volumetric contribution
and a purely isochoric one. Moreover, one obtains the following noticeable relations
∂CJ = 1

2
JC−1 and P = ∂CC̄ = J−2/3[I − 1

3
C ⊗ C−1]. P is the fourth-order projection

tensor and I denotes the fourth-order unit tensor, which, in index notation, has the form
IIJKL = 1

2
[δIKδJL + δILδJK ]. Application of the fourth-order projection tensor P furnishes

the physically correct deviatoric operator in the Lagrangian description, so that [P : (·)] :
C = 0 [13]. Note that it is possible to obtain the Cauchy stress tensor by applying the
push-forward operation to (6) σ = J−1χ∗(S) [22].
Based on the kinematic decomposition of the deformation gradient tensor, the tangent
operator, also known as the elasticity tensor when dealing with elastic constitutive laws,
is defined in the reference configuration as

C =2
∂S(C,M,N)

∂C
= Cvol + Cich = 4

[
∂2Ψvol(J)

∂C ⊗ ∂C
+

∂2Ψich(C̄,M,N)

∂C ⊗ ∂C

]
. (7)

Note that its spatial counterpart of (7) is obtained from the application of the push-
forward operation to (7) c = J−1χ∗(C)[8].

2.3 MICROSPHERE BASED MODEL

During the last years the most widely used approach for modeling anisotropy in soft tissues
has been representing fiber directions by means of an invariant formulation. Lately, the
use of statistical distributions has increased, being this latter also adopted in the present
work. Furthermore, a microsphere-based approach has been used at a micro scale level.
The microsphere approach tries to capture micro-structural information and transfer it
into the macroscopic behavior via a homogenization scheme over the unit sphere U2. In
this approach, U2 is discretized into m directions {ri}i=1...m that are weighted by factors

4
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{wi}i=1...m, where 〈r〉 ≈
∑m

i=1 wiri = 0 and 〈r ⊗ r〉 ≈
∑m

i=1 wiri ⊗ ri = 1
3
I. So an integral

over the unit sphere U2 can be approximated by

〈(•)〉 =
1

4π

∫
2

(•)dA ≈
m∑

i=1

wi(•)i. (8)

The term 4π is a normalization factor, result of the surface integral
∫ θ

0

∫ φ

0
sin(θ)dθdφ over

the unit sphere. The unit vectors can be expressed in terms of the spherical coordinates
θ ∈ [0, π) and φ ∈ [0, 2π) as r = sin(θ)cos(φ)ex+sin(θ)sin(φ)ey+cos(φ)ez with {ex, ey, ez}
the reference Cartesian system. Previous works [6, 1, 2] have used and compared different
number of integration directions for isotropic and anisotropic functions and, in view of
the results therein, 368 directions will be used in all the problems simulated in this work
that demonstrated to provide sufficiently accurate results for relatively highly anisotropic
materials (see [1]).
As detailed above, the anisotropic part of the SEDF is related to the fibers in the material.
In a general situation with N families of fibers the anisotropic part of the SEDF can be
expressed as

Ψani =
N∑

j=1

Ψj
f =

N∑
j=1

[
1

4π

∫
2

nρfψfdA

]

j

, (9)

where Ψj
f is the strain energy density function for the j-nth fiber family, n the chain

density, ρf a statistical value associated with the fibrils dispersion and ψf the free energy
density function of the fibril. We will adopt an affine assumption for the integration
directions (compare [24]), in spite of the model used for the micro fibers, as for example
a non-affine eight-chain model [4]. Since an analytical integration of (9) is not possible in
general, a discretization of this equation is used

Ψani ≈
N∑

j=1

[
m∑

i=1

nρiw
iψ(λ̄i)

]
, (10)

where λ̄i and ψ(λ̄i) are the stretch ratio and the free energy density function associated
to each integration direction.
In order to obtain the macroscopic contribution to the Kirchhoff stresses and the elasticity
tensor for a family of fibers, the SEDF has been written in terms of stretches, rather than
the classical invariant’s function [26]. The equations for the Kirchhoff stress and the
elasticity tensors in the spatial configuration are expressed as:

τ f =
m∑

i=1

[nρiψ
′
iλ̄

−1
i t̄ ⊗ t̄]wi (11)

and

cf =
m∑

i=1

[nρi[ψ
′′
i − ψ′

iλ̄
−1
i ]λ̄−2

i t̄ ⊗ t̄ ⊗ t̄ ⊗ t̄]wi (12)

5
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where ψ′
i and ψ′′

i are the first and second derivative of the fibril energy function with
respect to λi. Additional details are given in Appendix A.

2.4 MATERIAL BEHAVIOR

The definition of a given material in the hyperelastic framework is associated therefore to
establishing a free energy density function for each part of the above discussed splitting.
Here, we have used

Ψ = Ψvol(J) + Ψiso(Ī1) + Ψani(n, ρ, λ̄), (13)

Ψvol(J) =
1

D
ln2(J), (14)

Ψiso(Ī1) = µ[Ī1 − 3] and (15)

Ψani(n, ρ, λ̄) = 〈nρfψf〉 . (16)

The matrix is known to be composed of an important water content, which results in
an almost incompressible behavior, so the volumetric part of the energy density function
enforces the quasi-incompressibility constraint depending on the value of the penalty
parameter D (14). The matrix contributes to the overall behavior through the volumetric
and the isotropic parts of the energy density function (15).
The contribution of each single collagen fibril in the micro scale is here assumed as a
first approach, to be defined by an exponential-type function, widely used in macroscopic
approaches [18]. In [1] a comparison between this phenomenological function and the
worm-like chain model in the microsphere framework is discussed. Note that, although the
integration directions are mathematically identified with the homogenization directions,
they can be physically associated to the contribution of a fibril. The free density energy
associated to each fibril or, equivalently, to each integration direction, is assumed as

nψj
i (λ̄i) =




0, if λ̄i < 1
k1

2k2

[
exp(k2[λ̄

2
i − 1]2)

]
if λ̄i ≥ 1

(17)

2.5 THE VON MISES ORIENTATION DISTRIBUTION FUNCTION

Regarding the anisotropic part of the model (16), a statistical distributions of the fibrils
around a preferential orientation is considered through a von Mises statistical function.
This orientation distribution function is denoted by ρ and has some interesting properties
such as symmetry ρ(r; a) = ρ(−r; a) and rotational symmetry with respect to the preferred
orientation a, which can be expressed as ρ(Q · r; a) = ρ(r; a) ∀Q ∈ Q3

+. Note that a could
be oriented in any direction of the space leading to a mismatch angle w = arccos(r · a).
A π-periodic von Mises orientation density function (ODF) (18) has been adopted in this
work to take into account the fibrils dispersion [1]

ρ(θ) = 4

√
b

2π

exp(b[cos(2θ) + 1])

erfi(
√

2b)
, (18)

6
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where the concentration parameter b ∈ R+ is a measure of the anisotropy. b → 0 represents
an isotropic material, and b → ∞ a transversally isotropic one. Erfi(x) is the imaginary
error function approximated by a sufficiently large number of terms within its MacLaurin
series expansion, which can be written as

erfi(x) ≈ π−1/2

[
2x +

2x3

3
+

k∑
j=3

x2j−1

a(j)

]
, (19)

with a(j) = 0.5[2j − 1][j − 1]! [39] provides a 60 term expansion, sufficiently accurate
for values of b ≤ 20. Figure 1 shows the spherical representation of two distributions for
different values of b.
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15
20
25
30
35

(b) b=10

Figure 1: Shape of the von Mises ODF for b=1 and b=10.

3 INELASTIC CONSTITUTIVE MODEL

The experimental results suggest that just like the elastic properties, the inelastic
behavior of soft tissues is also characterized by anisotropy [3, 31, 28, 30]. Accordingly,
a suitable constitutive model should account for this directional dependence and take
into account the different alteration mechanisms associated with this anisotropy. The
phenomenological inelastic model should include the Mullins effect, the permanent set
resulting from the residual strains after unloading, and the fibre and matrix disruption
associated to supraphysiological loads or strains [9].

3.1 Hypothesis of the model

To model these inelastic processes, we apply the following considerations:

7
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• We have modified the equation (17) by the parameter wi

nψj
i (λ̄i) =





0, if λ̄i < 1
k1

2k2

[
exp(k2[λ̄

2
i − wi]

2)
]

if λ̄i ≥ 1
(20)

that governs the anisotropic contribution to the global mechanical response of the
tissue only when stretched, that is, λ̄2

i > wi [27].

• Finally, we modified this parameter that changes independently from each direction
to take into account structural alterations along the fiber direction. With this
modification, we can reproduce at the same time the softening behavior and the
permanent set presented in this kind of tissue.

The second law of thermodynamics asserts a non-negative rate of entropy production.
Using standard arguments based on the Clausius-Duhem inequality [22]

Dint = −Ψ̇ +
1

2
S : Ċ ≥ 0 (21)

yields

Dint = −
N∑

j=1

[
m∑

i=1

∂ψi
j,0(λ

i
)

∂wi

ẇi

]
≥ 0 (22)

where the thermodynamic forces are

fwi
= −∂ψi

j,0(λ
i
)

∂wi

(23)

The thermodynamic force fwi
is conjugated to the internal variable wi, so the process

could be controlled by fwi
instead of wi (see e.g. [10]).

3.2 Evolution of the internal variables

For the softening variables wi, we consider the following criteria

Υi(C(t), Γit) =
∂ψi

j,0(λ
i
)

∂λ
i − Γit = Γi − Γit ≤ 0 (24)

where Γi =
∂ψi

j,0(λ
i
)

∂λ
i is the softening stress release rate at time t ∈ R+ and Γit signifies the

softening threshold (stress barrier) at current time t for matrix and fibers

Γit = max
sr∈(−∞,t)

∂ψi
j,0(λ

i
)

∂λ
i (25)

8
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The equation Υi(C(t), Γit) = 0 defines a softening surface in the strain space. With
these means at hand, we finally propose the following set of rate equations for an evolution
of the softening variables

ẇi
.
=

{
κiΓ̇it if Υ = 0 and Ni : Ċ > 0

0 otherwise
(26)

Let us now consider softening functions of the simple form

wi = κiΓit + 1 (27)

where κi is the only parameter to define the softening mechanism in each fiber direction.

4 NUMERICAL EXAMPLE

The principal aim of this section is to illustrate the performance and the physical
mechanics involved in the above presented model. With this purpose, a uniaxial test of
an incompressible biological tissue is computed in this example. Only one family of fibres
is defined along the X direction. The softening evolution is formulated in (27). The tissue
was subjected to stepwise uniaxial loading in fiber direction with five stretch controlled
cycles where the stretch was 1.4, 1.6, 1.8, 2.0, 2.2.

µ k1 k2 w0

i κi

0.28 1.1226 1.5973 1.1 0.003

Table 1: Material, damage and softening parameters for uniaxial simple tension.µ and k1 are in MPa,
and other parameters are dimensionless

Figure 2 shows the results. It is possible to observe the softening phenomena during
unloading that increases when the maximum load increases showing the typical Mullins’
effect observed in soft biological tissues. Finally, the permanent set is presented in the
model when the stress are null, and, again the residual stretch increases when the maxi-
mum load increases.

5 CONCLUSIONS

The aim of this work is to present the complete formulation of a softening model within
an anisotropic microsphere-based approach in order to a better characterization of this
phenomenon in biological soft tissues. We consider the weight factors wi ( as internal
variables characterizing the structural state of the material with different evolution rule
in each integration direction of the microsphere. The limitations of the study include:
(1) the need for a suitable experimental plan to obtain the many parameters involved;
(2) the softening behavior of biological tissues is also related to viscoelastic effects; (3)
one numerical problem concerning the finite element implementation should be addressed.

9
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1 1.25 1.5 1.75 2 2.25
0

50

100

150

200

250

300

350

400

450

λ

σ 
(M

P
a)

κ
i
=0.003

Figure 2: Uniaxial stress response under cyclic uniaxial tension in X direction.

This is related with the necessity of regularizing the ill-posed numerical problem [7] where
the loss of ellipticity/hyperbolicity of the governing equations with softening can lead
to pathological mesh-sensitivity [32]. In spite of these limitations, the one dimensional
character of the constitutive equations applied at the micro-level offers huge possibilities,
due to its simplicity and the possibility of incorporating other micro-structural variables.
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Estefańıa Peña, Pablo Sáez, Manuel Doblaré and Miguel A. Mart́ınez

[15] Franceschini, G., Bigoni, D., Regitnig, P., and Holzapfel, G. A. (2006). Brain tissue
deforms similarly to filled elastomers and follows consolidation theory. J Mech Phys
Solids, 54:2592–2620.

[16] Göktepe, S. and Miehe, C. (2005). A micro-macro approach to rubber-like materials–
part iii: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids,
53:2259–2283.

[17] Hokanson, J. and Yazdami, S. (1997). A constitutive model of the artery with dam-
age. Mech Res Commun, 24:151–159.

[18] Holzapfel, G. A. (2000). Nonlinear Solid Mechanics. Wiley, New York.

[19] Horgan, C. O. and Saccomandi, G. (2005). A new constitutive theory for fiber-
reinforced incompressible nonlinearly elastic solids. J Mech Phys Solids, 53:1985–2025.

[20] Hurschler, C., Loitz-Ramage, B., and Vanderby, R. (1997). A structurally based
stress-stretch relationship for tendon and ligament. ASME J Biomech Eng, 119:392–
399.

[21] Li, D. and Robertson, A. M. (2009). A structural multi-mechanism damage model
for cerebral arterial tissue. ASME J Biomech Eng, 131:101013 1–8.

[22] Marsden, J. E. and Hughes, T. J. R. (1994). Mathematical Foundations of Elasticity.
Dover, New York.

[23] Miehe, C. and Göktepe, S. (2005). A micro-macro approach to rubber-like materials–
part ii: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids,
53:2231–2258.

[24] Miehe, C., Göktepe, S., and Lulei, F. (2004). A micro-macro approach to rubber-like
materials–part i: the non-affine micro-sphere model of rubber elasticity. J Mech Phys
Solids, 52:2617–2660.

[25] Natali, A. N., Pavan, P. G., Carniel, E. L., Luisiano, M. E., and Taglialavoro, G.
(2005). Anisotropic elasto-damage constitutive model for the biomechanical analysis of
tendons. Med Eng Phys, 27:209–214.

[26] Ogden, R. W. (1996). Non-linear Elastic Deformations. Dover, New York.

[27] Peña, E. (2011). Prediction of the softening and damage effects with permanent set
in fibrous biological materials. J Mech Phys Solids, page Accepted.

[28] Peña, E., Alastrue, V., Laborda, A., Mart́ınez, M. A., and Doblare, M. (2010).
A constitutive formulation of vascular tissue mechanics including viscoelasticity and
softening behaviour. J Biomech, 43:984–989.

12



712
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Summary. This paper is focused on developing the theory which describes the Mullins effect 
in human arterial tissue. Cyclic uni-axial tensile tests were performed to obtain data 
characterizing the Mullins effect in arterial tissue. 

In order to account anisotropy of arterial tissue, longitudinally as well as circumferentially 
resected samples of human aorta were tested. Each sample underwent repeated (four times) 
loading and unloading to a certain value of maximum stretch. This limiting stretch increased 
in several consecutive steps.  

The arterial wall is considered as hyperelastic, locally orthotropic, incompressible material. 
A strain energy function is adopted in the limiting fiber extensibility form. Description of 
primary material response, followed by material stress softening in the repeated cycles, is 
based on pseudo-elastic constitutive model proposed by Dorfmann and Ogden. This theory is 
developed using anisotropic form of the softening variable. The primary loading curve and the 
fourth unloading curve of each set of cycles are chosen for regression analysis. The model 
with thus estimated parameters successfully fits experimental data and is suitable for 
application in biomedicine. 

 
 
1 INTRODUCTION 

Due to cardiac cycle, arteries are subjected to cyclic loading and unloading in their 
physiological conditions. In vitro, mechanical response of arteries is mostly realized by cyclic 
inflation tests and tensile tests. Some irreversible effects are observed during these tests. One 
of them is known as the Mullins effect (Fig.1). This softening phenomenon is characterized 
by the following features: when a so called virgin material (previously undeformed) is loaded 
to a certain value of deformation (under uniaxial tension), stress–stretch curve follows so 
called primary loading curve (Fig.1 – green curve). Subsequent unloading (Fig.1 – yellow and 
red curve) exhibits stress softening. Next reloading follows the former unloading curve until 
the previous maximum stretch is reached. At this moment the loading path starts to trace the 
primary loading curve.  

Purely elastic response of soft tissues is often modeled within the framework of 
hyperelasticity, see [1, 2] for examples. Concerning with the Mullins effect, soft tissue is most 
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frequently modeled within two conceptions. The first one is based on Continuum Damage 
Mechanics (CDM). The CDM describes the Mullins effect using a system of internal 
variables reflecting irreversible effects. See e.g. Peña et al. [3], who considered the internal 
variables corresponding to separated contribution of the matrix and the fibers in a model of 
arterial wall. 

 The second conception results from theory of pseudo-elasticity. Ogden and Roxburgh [4], 
Beatty and Krisnaswamy [5] and Dorfmann and Ogden [6] formulated pseudo-elastic models 
of the Mullins effect in rubber-like materials. Such a model describes irreversible behavior 
incorporating softening variable, which is included into the strain energy density function 
(SEDF). Peña and Doblaré [7] suggested an anisotropic extension of the pseudo-elastic model 
of Ogden and Roxburgh [4] with anisotropic form of softening variable. The variable is 
different for matrix and fibers, which are arranged in two preferred directions. This model 
successfully described the softening behavior of sheep vena cava under uniaxial tension.  

The aim of this paper is to extend the theory of pseudo-elasticity developed by Dorfmann 
and Ogden [6]. The pseudo-energy function in limiting fiber extensibility form [8] is used. 
Contrary Dorfmann and Ogden, the anisotropic form of the softening variable is suggested.  

2 METHODS 
In order to illustrate the Mullins effect in human aorta, cyclic uniaxial tension tests were 

performed on MTS Mini Bionix testing machine (MTS, Eden Prairie, USA). Two samples of 
human thoracic aorta were resected from cadaveric donors with the approval of the Ethic 
Committee of the University Hospital Na Kralovskych Vinohradech in Prague. Respecting 
anisotropy of the aorta, samples were resected in the circumferential and longitudinal 
directions. The arteries were stored in physiological solution at a temperature of about 5°C till 
the beginning of the experiment. Post mortem interval was about 40–48 hours. The 
temperature during the test was 23°C.   

An extension and loading force were measured by MTS testing machine. Five levels of 
maximum stretch were performed during the tests: m = 1.1, m = 1.2, m = 1.3, m = 1.4 and m
= 1.5, where m is the maximum ratio between current length l and referential length L. 
Recorded data are shown in Fig. 1. 

Each level represented four-cycle of loading. Considering the incompressibility of the 
tissue, loading stresses were obtained according to the following relation: 

F F l

s L B H
σ

⋅
= =

⋅ ⋅

(1)

where F denotes applied force and s the current cross-section. B and H denote width and 
thickness of a sample in the reference configuration. 
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Figure 1: Stress–strain response of the human thoracic aorta under cyclic uniaxial tension . Maximum stretch 
has increased after 4 cycles due to stabilizing mechanical response of the aorta. Colored points correspond to 

cycles used within regression analysis 

3 MODEL 
Primary response of the artery was modeled as an incompressible, hyperelastic, locally 

orthotropic continuum. Deformation was described with the deformation gradient F, which 
was assumed in the form of: 

1
,1 2

1 2
,F diag λ λ
λ λ

=
 
 
 
 

(2)

where i are principal stretches. Strain energy density function for incompressible 
rectangular sample embodied in x1x2 plane of Cartesian coordinate system x1x2x3, is expressed 
in form: 

)()( 40aniso10iso0
IWIWW += (3)

which reflects the microstructure of an transversally isotropic material, composed of a 
ground isotropic matrix and fibrous network. Ii are the principal invariants of the right 
Cauchy-Green tensor. 

SEDF is incorporated in limiting fiber extensibility form as follows [8]: 

2 2 2 2 2
2 2 1 2

1 2 2 2
1 2

( cos sin 1)1
( 3)  ln 1

2
0 f 2

f

c
W J

J

λ β λ β
λ λ µ

λ λ

+ −
= + + − − −

 
 
 

(4)

where  and c  are stress-like material parameters, Jf +1 is the limiting stretch of the 
reinforcing fibres,  is an angle of enforcing fibres with coordinate axis x1. 
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Let us assume that sample is loaded in the direction of coordinate axis x ( = 1,2). 
Corresponding Cauchy stresses in the direction of (unidirectional) loading are: 

1, 2,
0

0

W
p ,   α α

α

σ λ α
λ

∂
= − =

∂

(5)

where p0 denotes a Lagrange multiplier associated with the incompressibility constrain 
123=1. The Eq. (5) describes stresses at the “virgin” material (primary loading). Within 
unloading a stress softening occurs, and stresses should be reduced by a factor : 

1,2,=−
∂

∂
= α

λ
λησ

α
ααα    p,

W0
(6)

The softening variable  may be active or inactive and this change from inactive to active 
state is induced when unloading is initiated: 

)(

1
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max

ααααα

ααα

ληηλλ
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=→<

=→= (7)

The reduction of stresses (Mullins effect,  < 1) occurs as soon as the actual energy W0 is 
less than maximum value Wm attained during the whole previous deformation history. The 
stress reduction increases with the increasing difference Wm - W0 and is approximated by the 
following empirical formula: 

( )1 ( , )
1 m 0 1 2W W

f
k s

r

α
α

α

λ λ
η

−
= −

(8)

where f(t) can be any monotonically increasing and bounded function, e.g. Error function 
Erf(t) [4]. Resulting model has 6 parameters: c, , , Jf, r, s that should be identified by 
experiments.  

We suggest material parameter k in the form which incorporates material anisotropy, in 
the meaning of the Young modulus of the material in the initial (virgin) reference 
configuration. Its advantage is in not increasing number of material parameters: 

1

),(2

2
==∂

∂
=

21

210W
k

λλλ
λλ

α
α

(9)

4 RESULTS  
Due to the testing machine design, only displacements in loading directions ( =1 and =2) 

were measured. Displacements in the transversal direction were eliminated using the 
boundary conditions of zero transversal stresses. Parameters p0 and p were determined from 
Eq.  (5, 6) considering 3 = 0.  
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Primary loading curve and fourth unloading curve for m = 1.1 and m = 1.2 were included 
in the regression analysis. Assuming the idealized Mullins effect, following reloading was 
identified with previous unloading. Primary material responses of loading with m > 1.2 were 
not considered because of their non-convexity in longitudinal samples (see Fig. 1). Regression 
analysis was performed using weighted least square method in Maple (Maplesoft, Waterloo, 
Canada).  

Using form of the softening variable expressed by Error function, we estimated parameters 
Jf, c, , sin2, r and s that are summarized in Table 1.  Experimental and numerical results for 
loading and unloading of the thoracic aorta are shown in Fig. 2. Regression results were also 
checked on the condition I4 >1. Because I4 models reinforcement with collagen fibers they 
may contribute to the stored energy only in tensile strains. It was found that this condition was 
satisfied in all data points. 

Figure 2: Comparison of the experiment and numerical model of loading and unloading curves in human 
thoracic aorta with maximum stretches of  m = 1.1 and m = 1.2.  Numerical simulations have been performed 
using the pseudo-elastic model with anisotropic form of the softening variable. The softening variable has been 

designed in form incorporating Error function. 

Table 1: Material parameters of the pseudo-elastic model 

5 DISCUSSION 
The strain-induced stress softening in human aorta has been described by means of the 

stress reduction factor . Particular mathematical form of  has been adopted from the 
pseudo-elasticity theory introduced by Dorfmann and Ogden [4] who successfully described 
the Mullins effect in particle-reinforced rubber. We used anisotropic form of the softening 

sample Material parameter 
Jf  [1] 0.0786 
c [Pa] 96401 
[Pa] 116744 

sin2 [1] 0.5863 
s[1] 2.47E-5 

Thoracic 
aorta 

r[1] 3.2058 
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variable in contrast of these authors. It means that model is able to reflect dependence of the 
stress softening on the direction in which the tension is applied. 

The main advantage of the present model is a small number of material parameters. Only 2 
of the proposed 6 parameters belong to the pseudo-elastic theory. The anisotropic model 
suggested by Peña and Doblaré [7] fits the data using 7 pseudo-elastic material parameters. 

However present study has some limitations.  The first one is due to the limited number of 
experimental data. Also the design of the experiment does not enable to measure transversal 
stretches. Finally, the model in the present form is not able to describe permanent strains 
usually observed during cyclic experiments. 

In spite of all these limitations, experimental and numerical simulations show good 
agreement. 

6 CONCLUSIONS 
Under cyclic loading conditions, large strain-induced softening (known as the Mullins 

effect) was observed during uniaxial tension of human thoracic aorta. Purely elastic response 
of arterial tissue was successfully fitted using SEDF in limiting fiber extensibility form. The 
Mullins effect was modeled within the theory of pseudo-elasticity. The pseudo-elastic model 
of Ogden and Roxburgh [4] has been extended by applying anisotropic form of the softening 
variable. This has been suggested in the form incorporating Error function. The model 
described experimental data successfully and is applicable to model the Mullins effect in 
arterial tissue.  
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Summary. This paper presents the analysis of the internal structure and organization of 
components within the vein wall. Dominant directions and statistical distribution of collagen 
fibers undulation were investigated in digitalized histological sections from media and 
adventitia layer of human vena cava inferior. 

Orientations of collagen fibers were analyzed by the in-house developed software Binary 
Directions. Digital images were converted to binary pixel maps with collagen fibers 
enhanced. The software employs an algorithm of the Rotation Line Segment to determine 
significant directions in digital images. It was found that collagen fibers are aligned in 
circumferential direction in media layer. Contrary to that in adventitia fibers are arranged in 
longitudinal direction. In contrast to elastic artery, no evidence of helically reinforced 
composite structure was found.  

Second goal was to find out which statistical distribution, usually using in structural 
models (Gamma, Beta or Weibull), fits to the undulation distribution of collagen fibers. 
Collagen waviness was characterized by a probability density function for the strain necessary 
to straighten a crimped fiber. Computer analysis of the end-to-end and contour length was 
performed using Nis-Elements software. The statistical analysis suggests that the waviness of 
collagen fibers is identical in media and adventitia It was found that the average strain 
necessary for straightening collagen fibers is 0.24±0.11 (±SD) and that all three probability 
distributions fit straightening strains very well and can be used in structural models. 

 
 
1 INTRODUCTION 

In recent years a big increase in interest in constitutive models of biological tissues based 
on their microstructure was noticed. Biological tissues comprise a large number of different 
cells, matrix proteins and bonding elements. For effective development of structural 
constitutive models, good understanding of internal structure and organization of the material 
is necessary. 

According to [3], the gross mechanical response of soft tissues is attributed to the 
mechanical properties and geometrical arrangement of the tissues components: fiber families 
(collagen and elastin) and ground substance. The fibers are oriented in different directions and 
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have different undulation (waviness) in the tissue. Upon loading, the fibers lose their 
waviness and start to carry a load [1]. It is assumed that gradual recruitment of collagen fibers 
under a deformation leads to a typical non-linear behavior of soft tissues.    

A number of investigators have analyzed the fiber orientation and crimp distribution to 
implement them into structural mechanical models [1, 3, 6, 9]. This paper deals with 
histomorfometrical analysis of internal structure of the vein wall. Dominant directions and 
distribution of undulation of collagen fibers were investigated in histological sections from 
media and adventitia layer of human vena cava. 

2 METHODS – COLLAGEN FIBERS ORIENTATION 
Histological sections were obtained from abdominal vena cava inferior. The orientation of 

sections and the definition of collagen fiber angle  are shown in Fig. 1. Specimens were 
routinely fixed in 10% buffered formaldehyde, embedded in paraffin, cut, and stained with 
orcein. Digitalized images were evaluated by in house developed software BinaryDirections 
with implemented algorithm of the Rotating Line Segment (RoLS).  

 
Figure 1: Definition of the angle . 

Digital images were converted to binary pixel maps by tresholding of RGB filter which 
transforms stained collagen to white (logical unity) pixels and non-collagen components to 
black (logical zero) pixels. Binary conversion was realized by software NIS-Elements 
(NIKON INSTRUMENTS INC., USA, New York). Final orientations were obtained by 
averaging results from 5 histological sections from each layer (media and adventitia). 

2.1 ROLS Algorithm 
Exact mathematical formulation of the Rotating Line Segment (RoLS) was described in 

details in [2]. Histological section converted to binary pixel map canbe viewed as the matrix 
with elements uniquely corresponding to pixels. Elements are equal to either zero or unity 
depending on the pixel color. The algorithm explores neighborhood of each non-zero pixel 
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(called target pixel) in the image using the rotating line segment. The neighborhood of the 
target pixel is a square represented by NxN submatrix M, where N is an odd integer. Now, 
imaginary line segment is rotated step by step around the midpoint of the neighborhood. Each 
rotating step, , of the line segment is represented via additional NxN matrix, say L. L has 
only non-zero elements in positions corresponding to the rotated line segment.  

The aim of RoLS is to find dominant directions in an image. This procedure is based on so-
called matching coefficient, C(). The matching coefficient is normalized number of non-zero 
pixels shared with the line segment and neighborhood of target pixel at given rotating step : 
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Normalization procedure is related to length of square neighborhood N and number of pixels 
creating the line segment, l.     

There are two ways how to obtain relevant information about directional frequency of non-
zero (collagen) pixels in the neighborhood of target pixel. First, one can reduce information 
from pixels neighborhood to the most frequent angle (rotation step with the greatest C()) and 
create histogram over the entire image (all target pixels). The second way is to consider C() 
as a function of  in each pixel and averaged these functions through all target pixels. 
Obtained results may depend on N, therefore analyses should be repeated with different 
values of N and the N should be chosen with respect to characteristic dimensions of structures 
observed in images (eyes of expert are the best optimization tool, as usually). 
Image-based determination of tissue architecture may employ many kinds of algorithms and 
mathematical methods. Presented algorithm, RoLS, is similar to the so-called volume 
orientation (VO) method which operates with point grid and seeks for the longest intercept in 
target volume. VO was first described in Odgaard et al. [4]. It was found to be suitable within 
an analysis of bone architecture. Interested reader can track details in [5] or recent review [7]. 

2.2 Test images 
Test binary images were evaluated by BinaryDirections before processing histological 

sections to verify that this software is a suitable instrument for fibers orientation analysis.  
Selected tested images and results are shown in Fig. 2. 

Evaluating of testing images showed that software BinaryDirection is convenient for 
determining dominant directions in binary image. 
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Figure 2: Tested binary images and empirical probability density for evaluated images. 

3 METHODS – COLLAGEN FIBERS UNDULATION 
The fiber waviness was characterized statistically by a probability density function for the 

strain s necessary to straighten a crimped fiber, Fig. 3. 

 
Figure 3: Axial fiber strain S. 

Strain S is defined: 

1s
s

o

L
L

   , 
 

(3) 

where Lo is end-to-end length of the fiber, and Ls is the contour length of the fiber. 
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Computer analysis of the end-to-end and contour length was performed manually using NIS-
Elements (NIKON INSTRUMENTS INC., USA, New York), Fig. 4. 

 
Figure 4: Digital image from media. Measuring of lengths Lo and Ls by Nis-Elements. 

Statistical computations were performed in Maple 13 (Maplesoft, Canada, Waterloo). The 
aim was to find out suitable statistical model for s probability distribution. Following 
distributions were considered: 

Weibull distribution 
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where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. 

Beta distribution 
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where B is Beta function and , >0 are shape parameters. 
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where  is Gamma function, k>0 is the shape parameter and >0 is the scale parameter. In all 
distributions 0s  . 

4 RESULTS 

4.1 Collagen fibers orientation 
Fig. 5 – Left panel shows an example of digital image from media and definition of angle 

. The same image converted to a binary pixel map is in Fig. 5 (Right panel). The sensitivity 
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of the results to the length of rotating line segment is shown in Fig. 6. It was found that the 
usage of different lengths of the rotating segment N{61 pix, 121 pix, 181 pix, 201 pix} have 
not significant effect on the distribution of angle . Final results for images processed in 
BinaryDirections from media and adventitia are shown in Fig. 7. 

 
Figure 5: Left: Histological section from media layer stained with orcein. Collagen fibers are stained in blue. 
Right: Binary pixel map created from histological image in left panel. White color represents collagen fibers. 

 
Figure 6: Left: Empirical probability density function for selected section from media for 4 lengths of line 

segment. Right: Empirical probability density function for selected section from adventitia for 4 lengths of line 
segment. 
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Figure 7: Resulting averaged empirical probability density function for axial cut from media (red) and adventitia 

(blue). 

It was found that collagen fibers in media are aligned in circumferential direction. Contrary 
to that fibers in adventitia are oriented in longitudinal direction.  

4.2 Collagen fibers undulation 

Strains s were evaluated for media and adventitia separately. The Chi-Square Goodness-
of-fit test was performed to decide if the data may be considered as drawn from one statistical 
sample. The test suggested that it is possible to merge the data from media and adventitia 
together (P-value = 0.74). 

The histogram of obtained strains necessary for the straightening and the fit of 
experimental data by the Weibull, Beta and Gamma probability distribution, Fig. 9. The 
average value of straightening strain is s =0.24 ± 0.1 (±SD). It was found that all three 
probability distributions fit experimental strains very well. The best fit was achieved with the 
Beta distribution (α = 4.20, β = 12.58). 
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Figure 8: Fitting of obtained strains s (from media and adventitia) by Weibull, Beta and Gamma probability 

distribution. 

5 DISCUSSION 
The analysis of the histological images from human abdominal vena cava showed that 

collagen fibers are in media oriented in the circumferential direction with very compact 
organization of the collagen. Conversely, in adventitia collagen is aligned with the 
longitudinal direction with sparse arrangement of fibers.  

This arrangement of components within the vein wall differs from arrangement for 
example in aorta. This may be a consequence of another type of loading, where skeletal 
muscles are helping venous return mechanism. There is also lower blood pressure in veins 
than in arteries. Our results suggest that collagen fiber form unidirectional structure in each 
layer of the vein. 

The distribution of undulation of collagen fibers in human vena cava can be fitted by all 
three considered statistical distributions. The Beta distribution fits the best. The statistical 
analysis suggests that the waviness of collagen fibers is identical in media and adventitia. It 
was found that the average strain necessary for straightening collagen fibers is 0.24. These 
results differ from findings by Sokolis [8], who investigated the waviness of medial collagen 
in vena cava inferior in New Zealand rabbits (averaged s =0.57). It suggested species-
dependent waviness.  
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Abstract. We developed a two-scale approach for modeling large-deforming perfused
media with the 3-compartment microstructure. An incremental formulation based on
the updated Lagrangian configuration and the Biot-type continuum model is introduced.
Equations of the model express mechanical equilibrium and the volume fluid redistribution
(the Darcy law), assuming both the fluid and solid phases are incompressible. This
linearized system was treated by the homogenization method assuming locally periodic
structures. The local reference cell involving geometrical representations of the blood
vessels evolves in time due to large deformation. The homogenized model is implemented
using a finite element code and a numerical example is presented.

1 INTRODUCTION

Modeling of tissue perfusion is one of the most challenging issues in biomechanics.
There are several hurdles originating in structural arrangement of the so-called perfusion
tree, necessity of bridging several scales, the blood flow descriptions depending on the
scale, and fluid-structure interactions. We focus on modeling the perfusion of deforming
tissue parenchym. At the level of small vessels and microvessels, the perfusion can be
described using the Darcy flow in a double-porous structure consisting of 3 compartments:
two disconnected channels (small arteries and veins) and the matrix (microvessels and
capillaries), represented as the dual porosity, where the permeability is decreasing with
the scale parameter the size of the microstructure. In some kinds of tissues, the coupling
between flow (fluid diffusion) and deformation is quite important, cf. [7] where the case
of linear deformation is described. In this short communication we present a perfusion
model of the homogenized large deforming medium whereby the incremental formulation
based on the updated Lagrangian formulation is employed.

The computational algorithm can be characterized as the cycle comprising the following
steps: 1) for given reference microstructure - the local configuration (LC) - compute
the local response functions and the effective constitutive parameters, 2) compute the

1

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



730

Eduard Rohan and Vladimı́r Lukeš

macroscopic response (MR) for given external loads, 3) compute the deformation and
stresses at each reference microstructure using MR and update the LC. This algorithm is
now implemented in the Sfepy code [1] and tested on 2D examples.

2 LARGE DEFORMING MEDIA AND HOMOGENIZATION

Problems involving nonlinear partial differential equations are difficult to solve in gen-
eral, therefore, their homogenization by asymptotic analysis with respect to the scale of
heterogeneities is quite cumbersome, in general. We follow an approach which is based on
homogenization of linear subproblems arising from an incremental formulation associated
with the numerical treatment, see [8] and [3, 4, 5]. The homogenization procedure can be
described by the following steps:

• A reference configuration at time t is considered. The configuration is defined by
locally periodic structure and by the reference state in the form of bounded two-scale
functions.

• The homogenization is applied to the linear subproblem: given the configuration at
time t, compute the increments associated with time increment ∆t, see Section 2.2.
The locally periodic microstructure (see Section 2.1) and the reference state define
the oscillating coefficients of the linearized equations. Then the standard homog-
enization [2] can be applied, such that on solving local microscopic problems, the
characteristic responses are obtained and the homogenized coefficients can be eval-
uated at any “macroscopic position” x, as reported in Sections 3.1 and 3.2.

• The homogenized subproblem can be solved at the macroscopic level, thus the in-
crements of the macroscopic response are obtained, see Section 3.3.

• In order to establish new microscopic configurations at time t + ∆t and at “any”
macroscopic position, the macroscopic response is combined with the local micro-
scopic characteristic responses to update the local microscopic states, see Section 3.4.
Then the next time step can be considered and the whole procedure repeats.

In contrast with linear problems, where the microscopic responses are solved only once
(even though they can depend on time [6, 7]), in nonlinear problems the local microscopic
problems must be solved for any iteration (time step) and at “any” macroscopic point,
[3, 4, 5]. In fact, the homogenization leads to a two-scale domain decomposition: the
macroscopic domain is decomposed into locally representative cells where the microscopic
problems must be solved. The data (i.e. the solutions) are passed between the two levels
after any iteration (the time increment step), so that the problem remains fairly two-scale
during the whole solution procedure. This is the major difficulty which affects directly
the complexity of the numerical treatment.

2



731

Eduard Rohan and Vladimı́r Lukeš

2.1 Locally periodic microstructures and scale separation

Homogenization methods based on the asymptotic analysis of a system of partial dif-
ferential equation employ the concept of locally almost periodic microstructures. Let ε
be the scale which is the ratio between the “microscopic” and the “macroscopic” charac-
teristic lengths. Later we shall need material parameters defined in the local microscopic
cell Y ε using the coordinate split

x = ξε + εy , y ∈ Y ε(x) ,

where ξε is the lattice coordinate. The unfolding operation denoted by ,̃ which enables to
rewrite any function of x as a function of two variables: φε(x) = φ̃ε(ξε, y). The assumption
of the local periodicity means that for ε → 0 the following holds:

(i) Y ε(x) → Y (x) ,

(ii) φε(x) → φ̃(x, y) for a.a. x ∈ Ω and y ∈ Y (x),

where Y (x) is the local reference cell. The scale separation is achieved in the limit
ε → 0. It means that the macroscopic position x ∈ Ω is associated with a local periodic
microstructure — a periodic array of cells, which are defined by translations of Y (x).

Obviously, a real problem is characterized by a given finite scale ε0, so that the “abso-
lute” scale separation does not hold. However, the limit problem obtained as ε → 0 and
its solution computed by solving the homogenized equations (see below) can be employed
to construct an approximation of the original problem featured by ε0. For this some
postprocessing based on averaging operators can be used.

We shall introduce the following decomposition of Y into the sectors of primary and
dual porosities, cf. [7]. Let Yα, α = 1, 2 be two disjoint subdomains of Y with Lipschitz
boundary, such that ∂αYα := Yα ∩ ∂Y �= ∅ is formed by mutually homologous points of
∂Y , see Fig. 1 (right); this is necessary to have connected channels. The periodic array
obtained by translating Yα forms a connected domains.

Further by Y3 = Y \(Y1∪Y2) we denote the “matrix”, which thus separates the channels
Y1 and Y2. Domain Y3 is associated with the dual porosity, where the permeability is very
small, see equation (4). By Γβ = ∂Yβ ∩ ∂Y3 we denote the channel-matrix interface.

2.2 Updated Lagrangian formulation

In order to define the weak formulation for the linearized deformation-diffusion prob-
lem, we need some preliminaries. Let ∂DΩ ⊂ ∂Ω be the part of the boundary where
the zero displacements are prescribed. Now we define V 0(Ω) = {v ∈ W 1,2(Ω)3 | vi =
0 on ∂DΩ, i = 1, . . . , 3} for 3D problems.

In what follows we denote by superscript ε all the quantities which vary with hetero-
geneities. The micromodel incorporates the following material parameters. The elasticity
tensor Deff ε

ijkl is the Truesdell rate of the effective Kirchhoff stress τ eff,ε
ij , which is associated

3
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with a given strain energy function. Denoting by F ε
ij the deformation gradient, Jε =

det F ε
ij. Both Deff ε

ijkl and τ eff ε
ij are functions of F ε

ij, namely τ eff,ε
ij = µε(Jε)−2/3 dev(F ε

ikF
ε
jk).

The Green-Lagrange strain w.r.t. the updated configuration consists of the linear part
e = (eij) and the nonlinear part η = (ηij). The porous properties of the medium are
described by the symmetric positive definite permeability tensor Kε

ij.
The incremental “algorithmic” approach of time stepping is adhered to formulate the

evolution problem for the porous medium. We consider the subproblem of computing the
new configuration at time t + ∆t, given a finite time step ∆t and the configuration Cε,(t)

at time t, which is determined by the triplet {Ω, F ε
ij(x), pε(x)}(t) for x ∈ Ω.

Let Lnew(v) be the functional involving the instantaneous boundary and volume forces
at time t + ∆t. The finite increments of displacement ∆uε ∈ V 0(Ω) and hydrostatic
pressure ∆pε ∈ L2(Ω) verify the variational equations (1)-(2) which express respec-
tively the balance of stresses – quasi-static equilibrium equation (notation: I = δij,
II = 1/2(δikδjl + δilδjk), η(v) = (∂vk/∂xi)(∂vk/∂xj), ID = (Dijkl) and τ = (τij))∫

Ω

[IDeff,ε : e(∆uε)] : e(v ε)(Jε)−1dx +

∫

Ω

τ eff,ε : δη(∆uε; v ε)(Jε)−1dx

−
∫

Ω

∆pε divv εdx +

∫

Ω

pε∇(∆uε) : (II − I ⊗ I ) : ∇v εdx

=L(v ε) −
∫

Ω

τ ε : e(v ε)(Jε)−1dx ∀v ε ∈ V (Ω) ,

(1)

where the total Kirchhoff stress is τ ε
ij = −Jεδij pε + τ eff,ε

ij , and the Darcy flow in the
dual-porous structure

∫

Ω

qε div∆uεdx + ∆t

∫

Ω

K ε · ∇(pε + ∆pε) · ∇qεdx = 0 , ∀qε ∈ H1(Ω) . (2)

3 PERFUSION IN LARGE DEFORMING POROUS MEDIA

The material parameters in deformed configuration depend on the deformation gra-
dient F ε

ij(x). Within the updated Lagrangian formulation we use the coordinates in the
deformed reference configuration. At the microscopic scale, we establish the local deformed
configuration: For x ∈ Ω, let F̃ij(x, y), y ∈ Y (x) be the two-scale limit of the deformation
gradient associated with the mapping of the corresponding initial (undeformed) reference
cell onto Y (x). Then the local microscopic configuration at time t is the triplet

C(t)(x) = {Y (t)(x), F̃
(t)
ij (x, y), p̃(t)(x, y)|y ∈ Y (t)(x)} . (3)

We assume that at any such configuration we may establish locally periodic material
parameters. The permeability is defined using the dual porosity ansatz (for homogeniza-
tion) characterized by ε2 scaling of the permeability coefficients in the “matrix”:

Kε
ij(x) :=

{
K̃α

ij(x, y) y ∈ Yα, α = 1, 2 ,

ε2K̃3
ij(x, y) y ∈ Y3 .

(4)

4
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Obviously, tensors K̃ij depend on the material deformation and should be modified
from one time level to the next one using F̃ , as will be discussed in Section 3.4.

Further we define tangent modulus ÃA = (Ãijkl) which depends on F̃ij (through D̃eff
ijkl

and τ̃ eff
jl ) and on the interstitial fluid pressure p̃,

Ãijkl(x, y) =
(
D̃eff

ijkl + τ̃ eff
jl δki + J̃ p̃ (δjkδil − δijδkl)

)
, (5)

where all quantities denoted by˜are expressed for x ∈ Ω as locally periodic functions of
y ∈ Y (x).

3.1 Asymptotic expansions and corrector basis functions

The linearized problem can be treated using standard homogenization methods, such
as the periodic unfolding, the two-scale convergence, or even the asymptotic expansion
methods. The fluctuating fields ∆uε and ∆pε can be expressed by the following asymp-
totic expansions:

∆uε(x) = ∆u0(x) + ε∆u1(x, y) + O(ε2) ,

∆pε(x) =
∑

α=1,2

χα(y)
(
∆p0

α(x) + ε∆p1
α(x, y) + O(ε2)

)
+ χ3(y) (∆p̃3(x, y) + O(ε)) , (6)

where y ∈ Y (x), χs(y), s = 1, 2, 3 are characteristic functions of subdomains Ys and all
functions are Y-periodic in variable y. For this we established appropriate spaces:

H1
#(Yα) = {v ∈ H1(Yα) , v is Y-periodic,

∫

Yα

v = 0} ,

H1
#0(Y3) = {v ∈ H1(Y3) , v is Y-periodic, v = 0 on Γα} .

(7)

The fluctuating parts of the displacements and pressures are expressed in terms of the cor-
rector basis functions: we introduce Y-periodic functions ωrs, ωα,uP ∈ H1

#(Y ), πrs, pP ∈
H1

#0(Y3), πα ∈ H1
#(Y3), ηk

α ∈ H1
#(Yα),

∆u1 = ωrs∂x
s ∆ur +

∑
α=1,2

ωα∆p0
α + uP ,

∆p̃3 = πrs∂x
s ∆ur +

∑
α=1,2

πα∆p0
α + pP ,

∆p1
α = ηk

α∂x
k∆p0

α , α = 1, 2 ,

(8)

due to the “channel-matrix interface” conditions, πα = δαβ on Γβ.

3.2 Local microscopic problems

We shall need the following notation to introduce the local microscopic problems:

aY (u , v) =

∫

Y

Ãijkl∂
y
l uk∂

y
j viJ̃

−1dy , cYk
(p, q) =

∫

Yk

(K̃ k · ∇yp) · ∇yq dy , (9)

5
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where k = 1, 2, 3. These bilinear forms depend on C(t)(x) for x ∈ Ω, see (3). The following
microscopic problems must be solved:

1. Correctors w.r.t ∂x
s ∆ur: find (ωrs, πrs) ∈ H1

#(Y ) × H1
#0(Y3) satisfying

aY (ωrs + Πrs, v) − 〈πrs, divyv〉Y3
= 0 , ∀v ∈ H1

#(Y )

〈q, divy[ω
rs + Πrs]〉Y3

+ ∆t cY3
(πrs, q) = 0 , ∀q ∈ H1

#0(Y3) .
(10)

2. Correctors w.r.t ∆pα: find (ωα, πα) ∈ H1
#(Y ) × H1

#(Y3) satisfying

aY (ωα, v) − 〈πα, divyv〉Y3
=

∫

Γα

v · n [α] dSy , ∀v ∈ H1
#(Y )

〈q, divyω
α〉Y3

+ ∆t cY3
(πα, q) = 0 , ∀q ∈ H1

#0(Y3) ,

πα = δαβ a.e. on Γβ .

(11)

3. Particular responses for given τ̃ and p̃3: find (uP , pP ) ∈ H1
#(Y ) × H1

#0(Y3) such
that

aY

(
uP , v

) − 〈
pP , divyv

〉
Y3

= −
∫

Y

τ̃ : ey(v)J−1dy , ∀v ∈ H1
#(Y )

〈
q, divyu

P
〉

Y3

+ ∆t cY3

(
pP , q

)
= −∆tcY3

(p̃3, q) , ∀q ∈ H1
#0(Y3) .

(12)

4. In the channels α = 1, 2 the corrector basis functions ηk
α, k = 1, 2, 3 satisfy:

cYα

(
ηk

α + yk, q
)

= 0 , ∀q ∈ H1
#(Yα) . (13)

3.3 Macroscopic equations of the time increment

The microscopic responses introduced in (10)-(13) are employed to compute the ho-
mogenized coefficients Aijkl, Bij, G

β
α, Cβ

ij, Qij and the stress Sij which are now listed; they
constitute the homogenized (macroscopic) equations:

• Effective visco-elastic modulus (involving time step ∆t)

Aijkl =
1

|Y |aY

(
ωkl + Πkl, ωij + Πij

)
+ ∆

1

|Y |tcY3

(
πkl, πij

)
. (14)

• Effective Biot poroelasticity tensor

Bα
ij =

|Yα|
|Y | δij +

1

|Y |
〈
πα, divyΠ

ij
〉

Y3

− 1

|Y |aY

(
ωα, Πij

)
, (15)

6



735

Eduard Rohan and Vladimı́r Lukeš

• Averaged total Kirchhoff stress (in the updated reference configuration)

Sij =
1

|Y |
∫

Y

τ totJ−1dy . (16)

• Effective retardation stress

Qij =
1

|Y |
[
aY

(
uP , Πij

) − 〈
pP , divyΠ

ij
〉

Y3

]
, (17)

• Effective channel permeability (of the sector β):

Cβ
ij =

1

|Y |cYβ

(
πl + yl, πk + yk

)
, (18)

where πl solves the autonomous local problem (13).

• Perfusion coefficient – inter-sector permeability

Gα
β =

1

|Y |
∫

Γα

(
K 3 · ∇yπ

β
) · n [3] dSy +

1

∆t

1

|Y |
∫

Γα

ωβ · n [α] dSy , (19)

• Effective discharge due to deformation of the reference state (in the updated con-
figuration)

geff
α =

1

|Y |
∫

Γα

(
K 3 · ∇y(p

P + p̃3
) · n [3] dSy +

1

∆t

1

|Y |
∫

Γα

uP · n [α] dSy , (20)

The macroscopic incremental problem is solved for displacements ∆u0 ∈ V (Ω) and
pressures ∆p0

β ∈ H1(Ω), β = 1, 2 which satisfy the following equations:

Equilibrium equation:
∫

Ω

(
Aijkl∂l∆u0

k −
∑

α=1,2

Bα
ij∆p0

α

)
∂jv

0
i dx =L(v 0) −

∫

Ω

(Qij + Sij) ∂jv
0
i dx (21)

for all v 0 ∈ V 0(Ω) ,

Diffusion equations: for β = 1, 2,
∫

Ω

q0
β

(
Bβ

ij∂j∆u0
i +

∑
α=1,2

Gβ
α∆p0

α

)
dx +

∫

Ω

Cβ
kl∂l(∆p0

β + p0
β) ∂kq

0
βdx = −

∫

Ω

geff
β q0

βdx ,

(22)

for all q0
β ∈ H1(Ω). The homogenized problem involves two diffusion equations describing

perfusions in the two compartments labeled by β = 1, 2. This is the direct consequence of
a) the dual porosity in Y3 and b) topology of the decomposition of Y with Y1 disconnected
from Y2.

7
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Figure 1: A macroscopic tissue 2D-sample with two labeled points (left), prescribed perfusion pressures
p1(t), p2(t) as constant along two different faces (center) and the 2D microstructure (right).

3.4 Updating the local microstructures

We shall now explain the time stepping algorithm which is used to compute deformation
of the medium and fluid redistribution in the pores at discrete time levels. At a certain
time level (labeled by (t)), the macroscopic configuration is represented by the triplet

M(t) ≡ {Ω(t), F
(t)
ij (x), p

(t)
α (x)| x ∈ Ω(t)} and the microscopic configurations are given by

C(t)(x), are given, see (3). The coupled micro-macro algorithm involves the following
steps:

1. Given M(t) and C(t)(x) for x ∈ Ω(t), solve the microscopic problems (10)-(13), then
compute all the homogenized coefficients: Aijkl, Bij, G

β
α, Cβ

ij, Qij and stress Sij.

2. Compute ∆u0 and ∆p0
α by solving (21)-(22).

3. Update macroscopic configuration M(t) → M(t+∆t), Ω(t+∆t) := Ω(t) + {∆u0}.
4. For a.a. points x ∈ Ω(t) update C(t)(x) → C(t+∆t)(x +∆u0(x)); this step consists in:

(a) Updating deformation and deformed domain

∆u∗
i := (δirδjsyj + ωrs

i ) ∂x
s ∆u0

r(x) +
∑

α=1,2

ωα
i ∆p0

α(x) + uP
i ,

fij := δij + ∂y
j ∆u∗

i ,

Fij := fikFkj ,

Y (t+∆t)(x) := Y (t)(x) + {∆u∗} ,

(23)

where Fij is the total deformation gradient at the microscopic level.

(b) Updating pressure fields for x ∈ Ω(t):

• update the channel pressures:

∆p̃α = ∆p0
α + ε0η

k
α∂x

k∆p0
α ,

p̃(t+∆t)
α = p̃(t)

α + ∆p̃α ,
(24)

8
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where ε0 > 0 is a given scale of the microstructure.
• update the dual porosity pressure:

∆p̃3 = πrs∂x
s ∆u0

r(x) +
∑

α=1,2

πα∆p0
α(x) + pP ,

p̃
(t+∆t)
3 = p̃

(t)
3 + ∆p̃3 .

(25)

Now C(t+∆t)(x + ∆u0(x)) for x ∈ Ω(t) is constituted by (23)3,4 and (25)2.

5. Stop, when maximum time is reached, or return to step 1 with t := t + ∆t.

Material parameters depend on local strain and stress, in general, so they are defined
in the updated local microscopic configuration C(t)(x).

domain shear modulus µ [Pa] permeability coef. cperm [m2/(Pa·s)]
matrix Y3 1 × 106 1 × 10−9

channel Y1 6 × 105 1 × 10−8

channel Y2 4 × 105 2 × 10−8

Table 1: Material parameters at the microscale; the permeability is isotropic, Kk
ij = ck

permδij , in all
subdomains Yk, k = 1, 2, 3. Thus, for scale ε0 = 0.01, the matrix permeability is cε0,3

perm = ε2
0c

3
perm = 10−13.

4 EXAMPLE – PERFUSION IN 2D

The two-scale model of the perfusion is now implemented in the in-house developed FE
code SfePy , [1] which was developed using some techniques already tested on problems
of large deforming solids, as reported in papers [5, 3]. Here we report a simple simulation
in 2D, see Tab. 1 for the material parameters used at the microscopic scale. The specimen
is loaded just by two perfusion pressures varying in time and supported at three nodes
as illustrated in Fig. 1. The microstructure is (initially) periodic with the reference cell
Y containing two systems of curved channels. The material parameters defining the
microscopic problems are listed in Tab. 1; note that the “real permeability” in the dual
porosity Y3 is 10−4 times smaller, being the ε2

0-multiple, where ε0 = 0.01 in our situation.
(We used nonphysiological values for testing the model on “non-realistic” 2D examples;
in this case the elasticity in the channels must be taken larger.)

The simulation was performed with the time increment ∆t = 0.2 s, which is sufficiently
large to use the Q1-Q1 finite element discretization for both the displacements and the
pressures (note that too small step ∆t induces “numerical incompressibility” and another
mixed element would have to be used, like Q2-Q1). The microstructures are updated for
each Gauss point of the macroscopic domain (discretized using 16 elements, i.e. 16×4 = 64
microstructures updated at each time level, in our example), 30 time levels were evaluated.
The approximate wall-time of the simulation on one single-processor PC was ≈30 minutes.

Some numerical illustrations are displayed in Figs. 2-4. The tissue perfusion at a
macroscopic position x ∈ Ω can be deduced form the pressure difference, see Fig. 3.

9
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Figure 2: Deformation of the macroscopic specimen (left) and the local deformed configurations Y (xA)
and Y (xB) for the labeled positions. We recall the fixed corner points of the specimen, see Fig. 1.

Figure 3: Macroscopic distribution of two perfusion pressures p1 and p2 in the deformed domain Ω
(evaluated at the final time of the simulation).

5 CONCLUSIONS

We combined the double-porous media approach employed in homogenization of the
linear models [6, 7] with the large deformation description defined using the updated
Lagrangian formulation [5]. The fluid redistribution at the macroscopic scale between the
two channel systems is proportional to the difference of these pressures. At the microscopic
scale the fluid flows can be recovered using the corrector functions.

The fluid-solid interactions governed by the poroelasticity model of Biot are responsible
for viscoelastic effects observed at the macroscopic scale, which are represented in the
global macroscopic homogenized model by the retardation stress Qij. It is worth noting

that apart of the homogenized permeabilities Cβ
ij, all the other homogenized coefficients

of the incremental problem depend on the time step ∆t by virtue of the microscopic
problems (10)-(12). In the linear case, the homogenized model involves the homogenized
kernels of the time-convolution integrals, inducing the fading memory effects [6, 7].

Some effective strategy is required to tackle the number of the microscopic problems
that have to be solved at each time step to recover the effective (homogenized) material
constants. In [3] we have presented a parallel micro-macro algorithm, attempting to

10



739

Eduard Rohan and Vladimı́r Lukeš

address this issue.
The numerical simulations will be extended for 3D problems and some more realistic

data will be used to validate the homogenized model. Since experimental results are
unavailable, the model and the two-scale computational approach will be verified using
a “non-homogenized” model (the reference model) based on a direct FE discretization
of the system (1)-(2), whereby the geometry will be extremely complex (even for some
higher scale parameters ε0). To obtain a numerical solution for the reference model, some
domain-decomposition techniques will be employed, including parallel algorithms.

Acknowledgment This research is supported by research projects GACR 106/09/0740
and MSM 4977751303 of the Czech Republic.
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macro. point A macro. point B

Figure 4: Macroscopic quantities Sij , Qij and Fij evaluated in time at points A (left column) and B
(right column) of the macroscopic specimen.
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Abstract. This study suggests a method for computing the constitutive model for veins in 
vivo from clinically registered ultrasound images. The vein is modelled as a hyperelastic, 
incompressible, thin-walled cylinder and the membrane stresses are computed using strain 
energy. The material parameters are determined by tuning the membrane stress to the stress 
obtained by enforcing global equilibrium.  
In addition to the mechanical model, the study also suggests a preconditioning of the 
pressure-radius signal. The preconditioning computes an average pressure-radius cycle from 
all consecutive cycles in the registration and removes, or reduces undesirable disturbances. In 
order to overcome this problem, an approach is proposed that allows constitutive equations to 
be determined from clinical data by means of reasonable assumptions regarding in situ 
configurations and stress states of vein walls. The approach is based on a two-dimensional 
Fung-type stored-energy function that captures the characteristic nonlinear and anisotropic 
responses of veins. 

 
 

 
1 INTRODUCTION 

4.5% of the population is at risk of suffering a venous thromboembolism disease, with an 
approximate mortality rate of 11% ([2, 3]). Our general objective consists of studying a 
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serious pathology that has important consequences: deep vein thrombosis (DVT). The 
problems involved in modeling venous tissue have been largely ignored by biomechanics 
researchers, most of whose efforts have instead focused on determining constitutive models of 
the arterial tissue ([7, 11]). Venous and arterial walls have a similar structure and 
composition, the main difference between their respective walls being the thickness and fiber 
orientation of the medial zone. 

In this study, we determine a constitutive model of the venous wall tissue in its real life 
location inside the human body. In the future, we intend to study diseased venous walls and 
their relation to the origins of DVP. Some studies have modulated the mechanical properties 
of venous walls ([1, 9]), although these studies have only looked at these properties in 
laboratory conditions and in non-live tissue. 

Constitutive equations can be determined from experimental data regarding the diameter of a 
vessel segment that is subject to internal pressure and external axial force, and the load-free 
reference geometry of the vessel segment, including the wall thickness.
In the present study, if the membrane stresses are to be computed, two assumptions need to be 
made to overcome the limitations of the clinical data ([10]), 
(i) The in vivo conditions, the axial stretch of the vessel and the axial external force are 
constant and independent from internal pressure  
(ii) The ratio between the axial and circumferential stress is known at one internal pressure P.

2. METHODS 

2.1. Original Data 
To carry out the present study, we have used images captured by projecting ultrasound in real 
time, which is a typical method for clinically registering the pressure and radius. The 
ultrasound probe is lineal to 4.5 MHz and uses the MyLab Xview 70 high resolution image 
projection system (Esaote, Genoa, Italy). This new-generation ultrasound tool eliminates 
particles whilst preserving the information needed for diagnosis. We have used a time 
sequence of 10 seconds to register in a file of a healthy 40 year-old person. With this 
observation, we also obtain the internal pressure P.

2.2. Theoretical framework 
In general, veins and arteries have similar walls and a structure in three distinct layers: the 
intima, the media  and the adventitia. The media is the middle layer of the vein and consists of 
a complex three-dimensional network of smooth muscle cells, and elastin and collagen fibrils 
([4]). The mechanical properties of venous and arterial walls are different; for example, the 
pulsating behaviour of the arterial walls is absent from the venous walls. In venous walls the 
media layer is thinner than the arterial wall. Also, the fibre orientation of venous walls is not 
clear. Consequently, we use a non-fibre oriented model to approximate the constitutive 
equation of the venous wall. 
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In the femoral vein, the variation range of the pressure–inner diameter and the wall thickness 
at mean pressure is taken from clinical data. A two-dimensional (membrane) model 
describing the biaxial (i.e. circumferential and axial) response is to be determined. Employing 
a least-squares approach this can be achieved by minimizing the sum of the squared errors W: 

( ) ( )[ ]∑ −+−=
i

izzzziW 2mod2mod σσσσ θθθθ
(1)

In Eq.(1), the index i denotes the ith of the n data points, mod
θθσ  and mod

zzσ are the 
circumferential and axial Cauchy stresses predicted by the model, and θθσ  and zzσ  are the 
mean circumferential and axial Cauchy stresses of the wall computed directly from 
experimental data by enforcing equilibrium. 

Following the theory of hyperelasticity ([6]) the principal model stresses: 

θ
θθθ λ

ψλσ
∂
∂

=mod ;            
z

zzz λ
ψλσ
∂
∂

=mod

(2)

may be derived from the two-dimensional SEF ),( zλλψψ θ= and can be expressed in terms of 
the principal stretches θλ  and zλ  associated with the circumferential and axial directions, 
respectively. The circumferential and axial stretches are defined as mm Dd /=θλ  and 

Zzz /=λ ; whereby dm and Dm denote the actual and the referential (unloaded) mid-wall 
diameter of the vessel, and z and Z denote the actual and the referential length of a vessel 
segment. Note that Eq. (2) is only valid if the stress tensor and the strain tensor are coaxial. 
This is the case in the present study, which is restricted to axisymmetric geometry and 
boundary conditions. For ψ  a two-dimensional Fung-type SEF proposed by Von Maltzahn et 
al.(1984) is used as follows: 

)1(
2

−= QeCψ , (3)

where

22 2 zzzzzzz EcEEcEcQ ++= θθθθθθθ
(4)
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The SEF ψ  incorporates four constitutive parameters, C, θθc , zcθ  and zzc . The circumferential 
and axial Green–Lagrange strains θθE  and zzE  can be expressed in terms of the 
circumferential and axial stretches, that is, )1( 2

2
1 −= θθθ λE  and )1( 2

2
1 −= zzzE λ , respectively. 

Fung-type SEFs have been used successfully to model the mechanical responses of numerous 
veins from various species and anatomical sites. Substituting Eq.(4) for Eq.(2) leads to 
explicit expressions for mod

θθσ  and mod
zzσ  as functions of the principal stretches θλ , zλ and the 

constitutive parameters C, θθc , zcθ  and zzc . Note that ψ  is convex if and only if zzz ccc θθθ <2 ,
0>θθc  and 0>zzc  (for a derivation see [6]). 

The circumferential and axial mean wall stress θθσ  and zzσ  can be determined by enforcing 
global equilibrium. Thus, 

h
rP

=θθσ ,
π

πσ
)2(

2

hrh
FPr

zz +
+

= (5)

where h is the actual wall thickness, r is the actual inner radius, P is the transmural pressure 
and F is the external axial force. Substituting these expressions in θθσσ /zzk =  the external 
axial force F can be determined explicitly as: 

APkkPrF +−= )12(2 π (6)

where, according to assumption (ii), the stress ratio k is known for a particular pressure P
associated with the actual radio r and πrhA = .

2.3. Calculus 

The constitutive parametersC , θθc , zcθ  and zzc  have to be determined as variables from a 
nonlinear zero function in order to determine the minimum error function. We consider the 
function W as the function of error, we want to obtain the minimum of this function or the 
zero of this function’s derivative. To do so we will use the Levenberg-Marquardt method for 
the non-linear least squares problems [8]. Thus, we will considererC , θθc , zcθ  and zzc  as 
variables in the function W, that is ),,,( zzz cccCW θθθ , so that its minimum will be found in 
values that verify that 0),,,( =∇ zzz cccCW θθθ

that is: 
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(7)

where W∂ / x∂  are the partial derivative of function W by the variable x. Now we need to 
apply the Newton-Raphson method to the function W∇  in dimension 4: 

10)())((' )()()1()( ≥=∇+−∇ + kXWXXXW kkkk (8)

where 'W∇  is the Jacobian 44×  matrix. We take ),,,( 0000)0(
zzz cccCX θθθ=  where 

),,,( 0000
zzz cccC θθθ  are the values obtained in [10] for arteries. This is a linear system of 

equations for )1( +kX , and given that 'W∇  is a non-singular matrix, it can be solved using a 
normal lineal system method. 
A simple verification shows the local minimum property of the value obtained (we apply a 
small perturbation to our final value). 

3. RESULTS 

We obtain values for the constitutive parametersC , θθc , zcθ  and zzc ; and (using the 
constitutive model) we can obtain information on the unloaded referential geometry (inner 
diameter D) and the in situ boundary force F for each observation (see Table 1). 

Table 1: Computed inner diameter D; external axial force F; constitutive parameters C, θθc , zcθ  and zzc .

With the specified constitutive parameters summarized in Table 1, the SEFs turn out to be 
convex, which is a crucial property that ensures mechanically and mathematically reliable 
behaviour. Specific constitutive equations are obtained by substituting the constitutive 
parameters in Eq.(2). The relations between the pressure and the inner diameter computed 
from the constitutive models are approximately the same as the observed values (Fig.1). The 
biaxial response (Fig.2) shows the anisotropy and nonlinearity between the axial and 
circumferential stretches. 

 D(mm) F(N) C(kPa) θθc zcθ zzc
Femoral Vein 8.8 1.14 14.37 2.08 1.39 1.01 
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Figure 1:  Pressure–inner diameter cycles (marked by 
squares) from the values for the femoral vein. The 
solid line indicates the pressure–inner diameter 
relation predicted by the constitutive model. 

Figure 2:  Circumferential (thick lines) and axial (thin 
lines) Cauchy stress contours in the (mid-wall) stretch 
plane for the femoral vein from a non pathologic 
subject.

4. CONCLUSIONS 

This is the first attempt to provide constitutive equations for human veins and the femoral 
vein in particular. The mechanical behaviour of human arteries has already been described, 
but this is not the case for human veins. Consequently, we have used the results obtained in 
[9] to develop a new constitutive model for human veins.  
In this study we have tried to show a simple method for determining constitutive parameters 
for the biaxial stretch states of human vein walls (Fig.2) in a specific subject (Fig.1). 
The proposed approach is based on providing information about the axial values (axial 
stretch, external axial force and axial stress) that is not contained in clinical data. Evaluating 
the predictive capability of constitutive equations requires changes in the boundary 
conditions, that is, in the pressure and stretches. However, it is possible to alter the boundary 
conditions in a tolerable way. Obviously, future research in this area could compare several 
constitutive model approximations in various subjects, each one from a different risk 
population. Even so, the particular conditions for a specific patient can change; blood pressure 
can be elevated through exercise or diminished by pharmacological methods. The specificity 
of this method allows a specific model for each patient. 
These models try to characterize the nonlinear anisotropic material responses and the in-situ 
boundary conditions, because the original data are measurements of stretches in-situ. This fact 
will promote future research into potential thrombosis risk factors and parameters for 
monitoring pharmacological therapies, etc. Despite inherent limitations the present approach 
demonstrates a reasonable way to determine constitutive equations for human veins that 
would otherwise not be available.
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Abstract:  This work provides a simple framework to optimize the design of self 

penetrating neural interfaces. First, an assessment of interactions between electrodes and 

peripheral nerves is provided and related to the instantaneous elasticity of the tissue. Then, the 

elastic instability of electrodes is considered, because it is the main cause of failure of 

implants. The connection between the previous two sections, integrated with an assessment of 

a safety coefficient for in-vivo implants, allows to predict some important parameters of a 

reliable electrode: its maximum slenderness ratio (SR) and the minimum Young modulus of 

its main shaft.   

 

1 INTRODUCTION 

The use of neural interfaces with the peripheral nervous tissue (PNT) allows to develop 

neuroprosthetic  devices and hybrid bionic systems [1]. These devices can create an intimate 

and selective contact with the PNT, recording and stimulating from different fascicles into the 

nerves to restore the efferent and afferent neural pathways in an effective way. Several 

research groups started investigating the possibility of develop neural interfaces characterized 

by self penetrating electrodes vertically or longitudinally inserted into the tissue [2,3]. This 

approach seems to be promising because a quite low invasiveness is combined with a quite 

good selectivity. Unfortunately, the high slenderness ratio of these structure can make 

difficult their insertion into the PNT: the success of this task is strongly dependent from the 

biomechanical properties of the tissue, the geometry and the mechanical characteristics of the 

neural interface. Indeed, while a stiff electrode is necessary to enter the tissue, it could 

increase both the invasiveness and the probability of provoking damages into the nerve. For 

this reason, the design of effective and low-invasive self penetrating interfaces is a crucial 

task which requires an integrate design accounting for the PNT biomechanics influencing the 

interactions with the electrode structures. In the first part of this work a macroscopic approach 

is used to study  the interactions between peripheral nerves and structure with high 

slenderness ratio, in particular self penetrating electrodes. Simple mathematical models are 

used to quantify these interactions as explicitly depending from the tissue mechanics [4]. 
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These models are able to account for experimental studies [5,6]. In the second part of this 

work, the previously achieved framework is used to improve and integrate the design of self 

penetrating [7] (e.g. needle-like and shaft) neural interfaces as far as the choice of structural 

materials, giving elements to optimize the geometry and to maximize the insertion ability. 

 

2 METHODS 

2.1   Simple assessment of superficial interactions between electrodes and peripheral 

nerves 

 
Interactions  between electrodes and external surface of the peripheral nerves are quite 

complex. In this work the attention will be focused only on the initial phase of contact 

between the electrode tip and the tissue. Moreover, the velocity of the local dimpling of the 

tissue under the electrode tip is assumed to have a characteristic time considerably shorter 

than the relaxation time of the tissue: this allows to neglect viscoelastic effects.  With the 

previous assumptions, the tip force arising during the initial phase can be generally modelled 

using Equation (1): 

 

)](,,[),()()( ρα gznzEMfzF ℘=                 (1)   

 

where z is the dimpling of the tissue (which equals the electrode tip displacement), )(αf is a 

function of the half opening angle of the tip, ),( zEM is a function of the Young modulus of 

nerve and  z, )](,,[ ρgzn℘ is a polynomial of n degree in z and g(ρ), finally g(ρ) is a function 

the radius of curvature of the tip. To simplify the writing of Equation (1) some assumptions 

can be reasonably done. First, )(αf  is constant for a selected type of electrode. Then, in spite 

of ),( zEM could be non linear with z [4], it can be expanded in Taylor series around the point 

z=0 leading to ),(),( zEoEzEM += . Finally, zkzgzgzn 2

2)](,,2[)](,,[ +=℘=℘ ρρ [8], 

where k2∈ℜ is a constant accounting for the real geometry. As a consequence, Equation (1) 

can be approximated with: 

 

)()( 2

2

1 zkzEkzF +≈           (1.2)    

 

Equation (1.2) models the first phase of interaction as an indentation, and can assess the 

instantaneous elasticity of the external layer of peripheral nerves starting from experimental 

data [5,6]. 

 

2.2   Basic elements of rational design of self -penetrating electrodes 
 

Self-penetrating electrodes has to bear compressive forces arising in dimpling of 

external layer of nerves.  Since the main macroscopic cause of implantation failure is elastic 

instability, the investigation of buckling of needle-like and shaft structures is crucial to their 

effective design. To this aim, since both the approaching velocity is low (for careful 



750

Pier Nicola Sergi, Silvestro Micera. 

 3

implantations ∼  several mm/min), and the mass of the electrode is small, inertial effects can 

be neglected and the analysis can be performed in the quasi-static buckling framework.  

Moreover, since the main shaft is considerably longer than the tip high, the analysis will be 

focused on the first mode of buckling of the global structure. For slender electrodes the first 

buckling load can be generally written as [7]: 

 

2

2

)( L

JE
P n

cr
ω

ψ
=                (2) 

 

where J is the minimum second area moment of the cross section, En is the Young modulus of 

the electrode material, ψ  is the Legendre elliptic integral of the first kind, L the length of 

electrode, and ω the end-condition constant. In this case, since also small deflections result in 

a failure of implantation we have πψ →  and 27.0 ÷→ω , depending from the boundary 

conditions (pin-fixed and free-fixed). In particular, introducing in Equation (2) the slenderness 

ratios rLSr /=  for a circular shaft, and hLSh /=  for a prismatic one (where h is the 

electrode depth), and dividing Pcr for the cross sectional area of the main shaft,  it follows: 
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where Equations (2.1.1) and (2.1.2) holds respectively for circular and  prismatic sections, and 

γr=1.96÷16 and γh=5.88÷48 respectively for pin-fixed and free-fixed boundary conditions.   

Therefore, the structural condition for which the main structure can bear the maximum 

dimpling force is: 

 

 

 )( 0zFSFP globalcr ≥                                                                                                                   (3) 

 

 

where SFglobal is the global safety factor that will be assessed in the next paragraph, and z0 is 

the dimpling of the nerve when the piercing of the external layer happens. From Equations 

(1.2), (2.1), (2.1.1-2) and (3), an approximation of the maximum slenderness ratio for low z0 

can be written as: 
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where X stands for γr or γh respectively for circular or shaft electrodes, ),,( 02 zkmg is a 

polynomial of m degree in k2 and z0, and 





 +

2,
2

12
k

m
h  is a polynomial in k2. The more m 

increases, the more Sr approximates the exact value of the minimum slenderness ratio for any 

value of local dimpling. As illustration of the case m=5, the  values of  ),,( 02 zkm℘ are listed 

and plotted below: 
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Figure 1: Contour plot of g(5,k2,z0)  

 

 

2.3   Safety coefficient for in vivo insertions of self- penetrating electrodes 
 

Self penetrating electrodes have to be implanted in living peripheral nerves. As a 

consequence, at least in this final phase, the implantation has to assure good performances and 

reliability in time without ethically unacceptable complications (sources of pain, need of 

several surgical operations, etc.). Moreover, the surgical procedure of insertion in living 

peripheral nerves has to be totally safe for the patients, but also without any risk of damages 

for the electrodes. Unfortunately, from a purely mechanical point of view, the in vivo 
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insertion procedure is less studied and all possible causes of overloads are difficult to assess. 

Moreover, the range of mechanical stresses on the electrodes can largely change with the 

surgical set up. All these issues lead to the use of safety coefficients (SF) to assure the success 

of the implant without any damages of the electrodes in uncertain conditions. To approximate 

this coefficient some different factors have to be considered: the  material properties (e.g. 

mechanical properties of the main shaft of the electrode), the knowledge of the loading-

overloading conditions, the knowledge of the surgical environment. A possible way to assess 

the SF is to use the Norton’s approach [9], where all the previous factors are involved. 

 

 

Table 1: Coefficient of safety [9] as function of the material properties, loading conditions and working 

environment. 

Coefficient 

of safety 

SF1 - Material 

properties 

(from tests) 

SF2 - Loading 

conditions 

(knowledge) 

SF3 - Working 

environment 

1.3 
Well known / 

characteristic 

Verified by 

testing 

Same as 

material testing 

conditions 

2 
Well 

approximated 

Well 

approximated 

Checked, room 

temperature 

3 
Fairly 

approximated 

Fairly 

approximated 

Slightly 

demanding 

5+ 
Roughly 

approximated 

Roughly 

approximated 

Extremely 

demanding 

 

 

In our case self penetrating electrodes derive from  well-known microtechnological 

processes, with conventional  material, then the coefficient SF1, due to the material properties 

can be set to 1.3 (see Table 1). On the contrary, the surgical environment is in general 

unknown. Even if, with the use of special supports the stability of the insertion can be 

improved, nevertheless the contact conditions between the nerve and the surrounding 

environment  are still quite indeterminate. Furthermore, the pushing forces given by the 

surgeon during a manual insertion are difficult to achieve and liable to large changes related 

to its specific ability and experience. As a consequence, for SF2 (considering the knowledge 

of the loading conditions) the value of 5+ can be chosen. Finally, at least  for preclinical trials, 

the working environment is directly the body of a human being, and every damage to the 

residual nerve stump can further compromise the condition of the patient. Then, as well as 

ethically unacceptable, every damage can have a legal and financial impact. So, also for SF3 

the value of 5+ can be set. Following the standard approach the global safety coefficient can 

be obtained using Equation (6): 

 

 }3,2,1max{ SFSFSFSF =                                                                                                               (6) 
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Therefore in our case  SF=5+ (that is, 5 or larger values). 

 

 

3  RESULTS 
The previous simple approach helps to rationalize the design of self penetrating 

electrodes: in this paragraph will be analyzed both the choice of the minimum Young’s 

modulus of the electrode main shaft, once given its slenderness ratio, and the assessment of 

the maximum slenderness ratio for a given construction material.  Figure (2) shows how the 

minimum Young modulus depends on the maximum slenderness ratio through experimental 

values of piercing forces. Indeed, σcr can be defined starting from both Equations (3) and 

(1.2). As a consequence, it is related to both the peripheral nerve biomechanics and the 

geometry of the electrode. Therefore, if technical constraints fix the electrode geometry (and 

then SR), the main shaft material can be chosen in order to ensure the bearing of the 

maximum dimpling force. In this way, the failure of the implantation procedure can be 

avoided.    

 

 
 

Figure 2: This log-log plot shows the usefulness of biomechanical inputs, deriving form the interaction phase 

(σcr), to rationally assess the minimum Young modulus providing a safe utilization with a given slenderness 

ratio. Figure (2) illustrates the case of electrodes with a circular cross sectional area and pin-fixed boundary 

conditions.   

On the other hand, if biocompatibility issues constrain the choice of the material of 

electrodes, their SR can be chosen in order to avoid implantation failures. To this aim, Figure 
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Therefore in our case  SF=5+ (that is, 5 or larger values). 

 

 

3  RESULTS 
The previous simple approach helps to rationalize the design of self penetrating 

electrodes: in this paragraph will be analyzed both the choice of the minimum Young’s 

modulus of the electrode main shaft, once given its slenderness ratio, and the assessment of 

the maximum slenderness ratio for a given construction material.  Figure (2) shows how the 

minimum Young modulus depends on the maximum slenderness ratio through experimental 

values of piercing forces. Indeed, σcr can be defined starting from both Equations (3) and 

(1.2). As a consequence, it is related to both the peripheral nerve biomechanics and the 

geometry of the electrode. Therefore, if technical constraints fix the electrode geometry (and 

then SR), the main shaft material can be chosen in order to ensure the bearing of the 

maximum dimpling force. In this way, the failure of the implantation procedure can be 

avoided.    

 

 
 

Figure 2: This log-log plot shows the usefulness of biomechanical inputs, deriving form the interaction phase 

(σcr), to rationally assess the minimum Young modulus providing a safe utilization with a given slenderness 

ratio. Figure (2) illustrates the case of electrodes with a circular cross sectional area and pin-fixed boundary 

conditions.   

On the other hand, if biocompatibility issues constrain the choice of the material of 

electrodes, their SR can be chosen in order to avoid implantation failures. To this aim, Figure 
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(3) shows as starting from the Young modulus of a set material the maximum slenderness 

ratio can be found. Also in this case, the biomechanical input about the expected maximum 

forces (or dimpling) is crucial to univocally assess σcr and then the intersection points of 

interest. Both Figures (2) and (3) illustrate the procedure of choice for electrodes with circular 

section and pin-fixed boundary conditions.     
 

 

Figure 3: This log-log plot illustrates the importance of  the biomechanical assessment of the interaction phase 

(σcr)  to  rationally found the maximum slenderness ratio providing a safe implant with a given material. Figure 

(3) shows how to choose parameters for electrodes with a circular cross sectional area and pin-fixed boundary 

conditions. 

4 DISCUSSION 

4.1 From biomechanics to design of self penetrating electrodes: a possible path for safe 

implantations 

Several neural interfaces have been developed to control neuroprostheses and hybrid 

bionic systems . Among them, self penetrating electrodes seems to be promising because they 

represent an interesting trade-off between the needs for high selectivity and reduced 

invasiveness. However, no particular attention is usually paid to design their structures 

accounting for the biomechanical properties of the system to be interfaced. Furthermore, the 
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implantation of electrodes in the peripheral nerves is a complex surgical task: a great 

experience in insertion is required to avoid tissue damages (which could result in pain) and 

electrode breakage. The sum of these factors results in failure of implantations, also with 

already tested and commercialized products, in significant increases of surgical times and 

number of attempts, risks of damages for nerves and waste of expensive electrodes. 

Therefore, to rationally design self penetrating electrodes the knowledge of the surrounding 

environment is necessary. Indeed, the choice of structural materials, the geometry, and also 

the procedure of implantation depends on the magnitude of the reciprocal interactions 

between tissue and electrode. To quantify these forces appears to be “strategic” to provide 

useful information about the design process. To this aim, in section (2.1) a simple framework 

to assess these interactions was provided. However, it is an approximation and the more it is 

valid, the more the characteristic time of tissue local reaction are shorter than the relaxation 

one. In other words, this approximated framework only consider the local instantaneous 

elastic response of peripheral nerves. This is, of course, a limitation but for many real surgical 

procedures  it provides a suitable approximation. Moreover, a problem to be solved in 

electrode design is to balance the minimum stiffness able to enter the tissue and minimize the 

internal damages. A possible suitable solution is to minimize the stiffness considering all 

different designs having the first buckling load greater than a given force accounting for the 

maximum piercing force and the right safety factor. To this aim in section (2.2) the basic 

elements leading to a rational design of a self penetrating interface were provided, and in 

section (2.3) an assessment of a possible safety factor was presented. The synergistic use of 

these two parts allows to assess some useful design parameters of electrodes, as the SR and 

the Young modulus. This approach seems to be effective and is able to predict the outcome of 

real trials of surgical implantation [6].    
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Summary. Arteries in situ are subjected to the pretension developed upon the growth period. 
The magnitude of the pretension was shown to be age-dependent. Detailed statistics are, 
however, rare. This study was designed to expand our knowledge of the prestrain sustained by 
arteries during the lifespan. Age-related distribution of the longitudinal prestrain in the male 
abdominal aorta obtained within 93 regular autopsies is shown (age = 41.6±15.8 years; 
prestretch =1.174±0.099). Data indicate that the prestrain decreases nonlinearly during the 
aging. Bilinear regression function revealed the breakpoint in the prestrain–age dependency 
at age about 40. The comparison of this result with studies which document the nonlinearity 
in the pulse wave velocity–age dependency indicates that steep increase of the velocity is 
preceded by the loss of the pretension. It suggests that the pretension could play  
a compensation role within artery stiffening.             

1 INTRODUCTION 
Computational methods of biomechanics become increasingly directed to the so-called 

patient-specific analyses[1-2]. They can help in customized therapy. Such an approach, 
however, necessitates patient-specific (and pathology-specific) constitutive models, loading 
conditions and geometries to be known during computer modeling.  

Geometrical patient-specific models of tissues and organs can be obtained by modern 
computer imaging methods. It is well-known, however, that arteries in situ (under geometry 
observed with CT, MRI or IVUS in vivo) are not in the zero stress and strain state. Beside the 
blood pressure-induced loading there is significant residual stress acting in the circumferential 
direction[3-5]. In the longitudinal direction arteries exhibit significant pretension. This can be 
proved upon the excision of a sample. The sample will retract[6-9]. Hence direct incorporation 
of in situ geometry into the computational model can lead to nonrealistic results.    
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The existence of the longitudinal prestrain (pretension) is known more than a century[14]. 
Bergel[6] reported mean shrinkage of the excised samples of the canine arteries ranging 
between 32% - 42% (percentage of original length) depending on the position in the arterial 
tree. Han and Fung[7] confirmed this result. They reported monotonically increasing 
longitudinal prestretch (from 1.2 to 1.5) with the increasing distance from the heart. Learoyd 
and Taylor[8] measured 59 samples of arteries obtained from 12 human donors. Their results 
proved the position dependency of the prestrain. They also found negative correlation 
between the age and the prestrain[10]. 

The species and position dependency of the longitudinal prestrain seems to be explainable 
by means of the intramural collagen-to-elastin ratio[11]; the higher the ratio, the lower the 
prestrain. The key role of the elastin was proved by enzyme digestion and also in animal 
models with the elastin insufficiency[12,13,16].  

Recent papers have shown that the longitudinal prestrain is involved in the artery 
remodeling and adaptation. Jackson at al. [16] shown that elevated axial prestrain in rabbit 
carotid arteries was normalized within 7 days after the surgery. It was accompanied by 
increased endothelial and smooth muscle cell replication rate[16,17]. Also increased 
extracellular matrix content was observed. In contrast to the elevated longitudinal load the 
culturing under infraphysiological axial strain resulted in a mass loss and decreased cell 
proliferation[18].  

It is well known that arteries stiffen with increasing age. This process is called 
arteriosclerosis. Increased stiffness of conduit arteries results in the increase of the pressure 
pulse wave velocity (PWV)[19,22,23]. Elevated PWV, however, lead to early pressure wave 
reflections which contribute to the heart load. The artery wall exhibits nonlinear and 
anisotropic mechanical behavior. In such a material actual stiffness depends on actual 
strain/stress state[20,21]. Concerning these facts rather surprising hypothesis can be derived. 
Although the loss of the longitudinal strain is likely negative consequence of the aging, it 
reduces overall strain state of an artery. Reduced axial strain results in the reduction of actual 
stiffness. This mechanism could compensate for increased stiffness developed within 
arteriosclerosis. 

To test the hypothesis of the compensation ability we compared the age-related distribution 
of the longitudinal prestrain with the distribution of the pulse wave velocity in human aorta. It 
will be shown that progressive decrease of the prestrain magnitude in male abdominal aorta is 
followed by only small change at age above 40 years. Our data indicate that rapid increase of 
PWV is preceded by the period of the progressive loss of the prestrain.  

2 METHODS 
The statistics of 93 abdominal aortic longitudinal prestrains was collected within regular 

autopsies of male Caucasian cadavers of known age in the University Hospital Na 
Kralovskych Vinohradech in Prague. The longitudinal prestrain was quantified by the stretch 
ratio  defined in (1). l and L denote the length of the tubular sample (below renal arteries 
branching and above aortoiliac bifurcation) before  and after the excision.  

l
L

         (1) 
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It was hypothesized that the age-dependency of  can be expressed by means of stepwise 
linear function with the breakpoint, tk, corresponding to the loss of the compensation ability 
(2). 

                      
if   

     
if   

k

k

t tat b
t

t tct d



  

      (2) 

Where a, b, c, d are real parameters and t denotes the age [years]. The condition of continuity 
has to be added, atk + b = ctk + d, to obtain meaningful results.  

Constrained optimization problem was solved in Maple 13. It should be mentioned that 
besides parameters a, b, c and d, the position of the breakpoint, tk, was also the subject of the 
optimization. The final model was evaluated with generalized F-test. The null hypothesis,  
H0 : [a,b] = [c,d], was tested against the alternative HA : [a,b] ≠ [c,d]. 

The regression was accompanied with the correlation analysis exploring the link between 
the prestrain and additional cardiovascular indices. The correlations include carotid-femoral 
pulse wave velocity (cfPWV), distensibility of descending aorta (DDA), maximum strain of 
descending aorta (mS), central aortic systolic (SP), diastolic (DP) and pulse pressure (PP), and 
augmentation index (AI). Since there is no possibility to find out these quantities post mortem 
we had to incorporate data from the literature[23]. The data were obtained within MRI 
investigation and tonometry. Here we will not repeat details of the procedure. We only 
mention that mS was obtained as the relative change of the lumen area; DDA denotes the 
change in the lumen area with respect to minimal area and PP, and AI is the ratio between 
systolic pressure augmentation and PP. The simple correlation coefficients, R, were computed 
based on data averaged through decades of the life. 

3 RESULTS 
Data sample involved in our study consisted of 93 male subjects with age ~ 17—81 

(41.6±15.8) and prestretch ~ 1.023—1.417 (1.174±0.099); minimum—maximum (mean±SD). 
The study proved significantly decreasing prestrain upon increasing age. It was found that the 
stepwise linear model (2) fits prestrain–age relationship with lower sum of squares than 
simple linear. The parameters estimating resulted in a = -9.556·10-3; b = 1.520;  
c = -2.588·10-3; d = 1.241; and tk = 40 years. F-test proved that there are strong statistical 
evidences against the null hypothesis (the risk of true hypothesis rejection p < 0.0001). 
Results are depicted in Fig. 1. Fig. 2 shows the ratio between residual standard deviation 
(RSD) computed for optimal model and RSD obtained in models with tk in different positions 
(and different valaues of the parameters). 

Table 1 documents age-related mean values of the prestrain and data adopted from the 
literature[23]. Results suggest that especially non-dimensional indices are highly correlated. 
The correlation found for entire sample of the prestrain and age reached R = -0.856. It proves 
strong age-dependency of the prestrain. High correlation between the carotid-femoral pulse 
wave velocity and prestrain was also confirmed, R = -0.884.  
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4 DISCUSSION 
We postulated the hypothesis that decreasing longitudinal prestrain could compensate 

artheriosclerosis-induced stiffening of an artery. This compensation ability would be, 
however, limited with the initiative value of the prestrain developed within the growth period. 
The analysis suggests that the process of the prestrain decrease is not linear. The stepwise 
linear model revealed the breakpoint at age about 40 years.  

 
Table 1: Prestrain correlations. X denotes the number of our observations. Y denotes the number of observations 

involved in [23]. Used acronyms: cfPWV – carotid-femoral pulse wave velocity; DDA – distensibility of 
descending aorta; mS – maximum strain; AI – augmentation index; DP, SP and PP denote central diastolic, 

systolic and pulse pressure, respectively.  *The correlation between age and prestrain was based on non-averaged 
data. 

Number  
of samples 

X/Y 

Age 
[years] 

Prestretch 
[1] 

cfPWV 
[ms-1] 

DDA 
[10-3· 
kPa-1] 

mS 
[%] 

DP 
[mm 
Hg] 

SP 
[mm 
Hg] 

PP 
[mm 
Hg] 

AI 
[%] 

22/21 20-29 1.296 6.2 72 33 59 109 48 -10 
19/15 30-39 1.199 6.7 70 27 66 113 46 -4 
20/31 40-49 1.135 8.8 38 15 75 122 46 16 
18/16 50-59 1.091 9.5 29 11 77 134 55 31 
7/14 60-69 1.068 12.8 18 9 75 143 66 26 
5/14 70- 1.061 13.8 17 8 69 135 66 32 

Correlation -0.856* 1 -0.884 0.949 0.985 -0.828 -0.932 -0.748 -0.958 

 
Figure 1: Optimal stepwise linear regression. We suggested the hypothesis that progressively decreasing 

prestrain could compensate for overall stiffening of an artery. It would mean that only small increase in pulse 
wave velocity should be expected before the breakpoint.    
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Figure 2: Uncertainty of the breakpoint position. Breakpoint position can be affected with the data sample 
character. The graph shows rather flat character of the extreme. Hypothetical variability of the breakpoint 

position is outlined with the interval of 2.5% difference from the optimum.      

It has to be mentioned, however, that post mortem collected data may not correspond 
exactly to in vivo pretensions. There are some sources of differences: 1. influence of post 
mortem interval (PMI); 2. necessity of the removing tethering tissue during preparation; 3. 
absence of the blood pressure. Previous analysis proved that PMI does not correlate with the 
prestrain in our statistical sample[24]. Nevertheless, the removing of the tethering tissue and 
the absence of the blood pressure can cause that the in vivo prestrains are higher than herein 
reported. Bearing this in mind our data should only be considered as the estimations of the in 
vivo longitudinal prestrain. 

Thus the position of the breakpoint, identified here at 40 years, can also move depending 
on the specific statistics. To emphasize this fact we included Fig. 2. It shows the character of 
the change in RSD with relation to the breakpoint position. The minimum is rather flat which 
indicates an uncertainty of the estimation. 

Herein presented statistical analysis can not give evidences how much longitudinal 
prestrain affects PWV. It only proves that PWV and prestrain are correlated. The true link 
between the age, PWV and prestrain must be clarified by methods of the computational 
mechanics. They can incorporate constituent-based models to explain this link.    

Strong correlations between the prestrain, PWV and other indices were found. They, 
however, can be overestimated due to averaging of the data which has a smoothing effect. 
Nevertheless, Redheuil et al.[23] shown the breakpoint in the PWV-age and ascending aortic 
distensibility-age dependency  (see Fig. 2 in their study; http://hyper.ahajournals.org/cgi/ 
reprint/55/2/319) at age 50 years. Our study shown the breakpoint in the prestrain at age about 
40 years. The preceding loss of the prestrain before the increase of PWV is consistent with the 
hypothesis of the compensation ability.        
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Abstract. A new material model is proposed for the description of stress-softening ob-
served in cyclic tension tests performed on soft biological tissues. The modeling framework
is based on the concept of internal variables introducing a scalar-valued variable for the
representation of fiber damage. Remanent strains in fiber direction can be represented
as a result of microscopic damage of the fiber crosslinks. Particular internal variables
are defined able to capture the nature of soft biological tissues that no damage occurs
in the physiological loading domain. A specific model is adjusted to experimental data
taking into account the supra-physiological loading regime. For the description of the
physiological domain polyconvex functions are used which also take into account fiber
dispersion in a phenomenological approach. The applicability of the model in numerical
simulations is shown by a representative example where the damage distribution in an
arterial cross-section is analyzed.

1 INTRODUCTION

As a result of hypertension, overweight, rich alimentation, smoking, diabetes and stress,
biochemical and mechanical degenerative processes in arterial walls are followed by a lu-
men reduction referred to as stenosis. In severe cases such stenosis may result in heart
attacks, smoker’s legs or in strokes. To prevent such complications one frequently used
method of treatment is balloon dilatation accompanied by the implantation of a stent.

1
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Thereby, a balloon catheter is inserted into the affected artery and dilated with an in-
ternal pressure increase. After removing the balloon the luminal area remains enlarged.
During this procedure microscopic damage is induced in the vessel wall which is partly
responsible for the treatment success since it results in increased strains when unloading
to the state of physiological blood pressure again. Within the clinical context these effects
are referred to as controlled vessel injury, see, e.g., [5]. In order to improve insight into the
complex biomechanical processes during therapeutical interventions such as angioplasty
and for the optimization of treatment methods, the modeling of arterial tissues and re-
lated computer simulations are subject of current research.
Most experimental approaches dealing with the measurement of mechanical properties
of soft biological tissues are related to the analysis of loading within the physiological
domain. With respect to degenerative processes occurring during angioplasty especially
supra-physiological (therapeutical) loadings are required. These load levels are charac-
terized by loading conditions significantly higher than those that occur under normal
(physiological) conditions. In [19] first layer-specific experiments are performed under
supra-physiological conditions. In such experiments a pronounced softening hysteresis
is observed with respect to the stress-strain response. For the description of isotropic
softening there exist various models. One of the first representations of damage at large
strains is introduced in [20]. In order to describe damage, showing a saturating behavior
during repeated un- and reloading cycles for fixed maximum load levels, [13] introduced a
suitable model. An alternative phenomenological form of describing damage mechanisms
is linked with the notion of pseudo-elasticity. Thereby, the main idea is that different
loading branches are described by different strain-energy functions. As one of the first
works in this context one should mention [15]. With respect to soft biological tissues
a practical approach avoiding the usage of damage tensors is given in [17], where the
anisotropic damage can be described by scalar-valued variables. The model by [16] uses
scalar-valued variables as well and considers a stochastic framework on the basis of the
wavy structure of the collagen fibers. A model for the preconditioning of soft biological
tissues and the anisotropic Mullins effect is proposed in [7]. Another recent approach
provides the description of remanent strains after overstretch in the framework of finite
plasticity based on the assumption of remaining deformations at the micro-scale of the
fibers, see [9]. A particular damage behavior for the matrix material is taken into account
in e.g. [14] or [4]. These two contributions are formulated in terms of the continuum
damage mechanics, where the existence of an effective (ficticiously undamaged) strain en-
ergy function is postulated. Since this function is associated to the physiological regime,
where the response of soft biological tissues is hyperelastic, a polyconvex function should
be used because then the existence of minimizers of underlying variational problems is
guaranteed if additionally coercivity is ensured. In addition to that, quasiconvexity and
material stability are automatically fulfilled, cf. [18], where the first transversely isotropic
and orthotropic polyconvex functions are introduced. In [10] a first polyconvex model
for arterial tissues is proposed as an exponential function of the fourth mixed invariant
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of the right Cauchy-Green tensor and the structural tensor characterizing the material
symmetries. Further polyconvex models able to describe soft biological tissues which are
a priori stress-free in the (undeformed) reference configuration are proposed in, e.g., [1]
or [6].
Here, we focus on the construction of a new model able to describe the complex softening
hysteresis observed in experiments of soft biological tissues. The model is formulated in
terms of the continuum damage mechanics and reflects the anisotropic character of the
material. In addition to that, a rather low number of material parameters with physical
interpretability is introduced keeping the proposed model applicable. Please note that full
details regarding the model and numerical examples can be found in the original paper [3].

2 CONTINUUM MECHANICAL FRAMEWORK

In the reference configuration the body of interest is denoted by B ⊂ IR3 and parame-
terized in X; in the deformed configuration it is denoted by S ⊂ IR3 and parameterized
in x. The nonlinear deformation map ϕt : B → S at time t ∈ IR+ maps points X ∈ B
onto points x ∈ S. The deformation gradient F and the right Cauchy–Green tensor C

are defined by
F (X) := ∇ϕt(X) and C := F TF , (1)

with the Jacobian J := detF > 0. In case of hyperelastic materials we postulate the
existence of a strain-energy function ψ, defined per unit reference volume. In order to
obtain constitutive equations which satisfy a priori the principle of material objectivity,
the functional dependency ψ := ψ(C) is taken into account. Then we compute the second
Piola–Kirchhoff stresses and the Cauchy stresses by

S = 2∂Cψ and σ = J−1FSF T , (2)

respectively. A suitable framework for the description of anisotropic materials is the
concept of structural tensors. Therein, an additional argument tensor, the structural
tensor, is defined such that it reflects the symmetry group of the considered material.
We concentrate on fiber-reinforced materials, hence, we restrict ourselves to the cases of
transverse isotropy and to materials which can be characterized by a given number of
non-orthogonal preferred directions. In these cases we are able to express the material
symmetry of the considered body by a set of second-order structural tensors

M (a) := A(a) ⊗A(a) with a = 1...na , (3)

where na is the number of fiber directions. For the construction of specific constitutive
equations we focus on a coordinate-invariant formulation, thus, the invariants of the
deformation tensor and of the structural tensors are required. The explicit expressions
for the principle invariants of the right Cauchy–Green tensor are given by

I1 := traceC, I2 := trace[CofC], I3 := detC . (4)
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Let M (a) be of rank one and let us assume the normalization condition ||M (a)|| = 1 due
to |A(a)| = 1, then the additional invariants, the mixed invariants, are

J
(a)
4 := trace[CM (a)], J

(a)
5 := trace[C2M (a)] . (5)

For the construction of constitutive equations we obtain the possible polynominal basis
P1 := {I1, I2, I3, J

(a)
4 , J

(a)
5 }.

3 DAMAGE MODEL FOR SOFT BIOLOGICAL TISSUES

In arterial walls the tissues are basically composed of an isotropic ground substance
and mainly two embedded fiber families, which are typically arranged cross-wise helically.
This fiber-reinforcement can be taken into account by consideration of a strain energy
function of the type

ψ(I1, I2, I3, J
(a)
4 , J

(a)
5 ) := ψvol(I3) + ψiso(I1, I2, I3) +

2∑
a=1

ψti
(a)(I1, I3, J

(a)
4 , J

(a)
5 ) . (6)

The energy associated to the isotropic ground substance is represented by ψiso whereas
the fiber energy is denoted by ψti

(a). A weak interaction between the individual fiber
families is assumed and therefore the orthogonal response of the material is approximated
by the superposition of two transversely isotropic energies. The energy ψvol is a penalty
function accounting for the incompressibility constraint. Here, it is assumed that the
ground-substance is able to undergo significantly higher deformations before a dissipative
behavior is observed and therefore no damage is taken into account in the matrix. The
associated strain energy function is chosen as

ψiso = c1

(
I1

I
1/3
3

− 3

)
, (7)

where c1 > 0 is a stress-like material parameter. This function leads to an almost linear
stress-strain relationship which can be experimentally substantiated.
For the description of the damage-induced softening observed in experiments the main
damage evolution is assumed to be in the fibers since these are the main load-bearing
elements. Therefore, the transversely isotropic part is decomposed into the effective (fic-
ticiously undamaged) hyperelastic strain energy ψ0

(a) and a reduction term (1−D(a)) with

D ∈ [0, 1[ accounting for the microscopic damage evolution. In order to consider remanent
strains in the fibers when unloading the material a further decomposition into an external
and an internal function m and P is taken into account, respectively. Then we obtain

ψti
(a) := m(P (C, D(a))) with P = (1−D(a))ψ

ti,0
(a) − c , (8)
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wherein the constant value c represents the value of the effective energy in the reference
configuration. For the external and effective strain energy function we choose

m(P(a)) =
k1
2k2

{
exp

(
k2�P(a)�

2
)
− 1

}
, ψti,0

(a) = κ I1 + (1− 3 κ)J
(a)
4 , c = 1 (9)

such that for the undamaged case (D = 0) the well-known strain energy function [10]
together with the fiber dispersion approach introduced in [8] is obtained. This approach
is incorporated in order to account for distributed fiber orientations, which is controlled by
adjusting the parameter κ ∈ [0, 1/3]. If κ = 0 then a perfectly transversely isotropically
distributed orientation is obtained. Please note that the Macauley bracket �(•)� = 1

2
[(•)+

|(•)|] in (9)1 filters out positive values. Preliminary mechanical experiments of cyclically
overstretched soft biological tissues show that if the maximum load level is fixed in a cyclic
tension test, then the stress hysteresis converges to a “saturated” response curve. This
behavior has to be modeled by an appropriate choice of the damage function D, which
is assumed to depend on the fictitiously undamaged (effective) energy ψti,0

(a) , cf. [2], such
that evolution of damage is activated in the loading and reloading processes. This can be
achieved by defining the internal variable

β(a) :=
〈

β̃(a) − β̃ini
(a)

〉

with β̃(a) =

∫ t

0

〈

ψ̇ti,0
(a) (s)

〉

ds , (10)

with β̃ini
(a) being the internal variable at an initial damage state in order to make sure

that the damage evolution starts when entering the supra-physiological domain. Clearly,
β̃ini
(a) is the value of β̃(a) at each material point reached for the situation where the damage

evolution starts. In arterial walls this should be the case when the upper edge of “normal”
blood pressure is attained. The time associated to the loading history is denoted by
s ∈ IR+; t ∈ IR+ defines the actual loading situation. Then the internal variable (10)
enters the damage function

D(a)(β) = Ds,(a)

[

1− exp

(
ln(1− rs)

βs
β(a)

)]

with Ds,(a) ∈ [0, 1[, rs ∈ [0, 1[, βs > 0 ,

(11)
cf. [12]. Herein, the only material parameter βs is the value of the internal variable β
which is reached at a certain fraction rs of the maximal damage value Ds,(a) for a fixed
maximum load level. We consider a fraction of rs = 0.99 and thus, βs represents the
value of internal variable at a damage value which can be interpreted as saturated. The
response of the damage function (11) converges to a maximum value of damage Ds,(a),
which is in turn not a specified number but rather a function increasing the maximally
reachable damage value for increased maximum load levels. For convenience we consider
the same type of function and define

Ds,(a)(γ(a)) = D∞

[

1− exp

(
ln(1− r∞)

γ∞
γ(a)

)]

with D∞ ∈ [0, 1[, r∞ ∈ [0, 1[, γ∞ > 0 .

(12)
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The parameter γ∞ represents the value of the internal variable γ reached at the fraction
r∞ = 0.99 of D∞; D∞ denotes a predefined converging limit for the overall damage value.
In order to take into account that Ds,(a)(γ) remains unaltered for cyclic processes under
fixed maximum load levels we consider the internal variable

γ(a) = max
s∈[0,t]

〈
ψti,0
(a) (s)− ψti,0

(a),ini

〉
, (13)

which is defined as the maximum value of effective energy reached up to the actual state.
Herein, ψti,0

ini,(a) denotes the effective strain energy at an initial damage state obtained at
the limit of the physiological domain. This expression leads to the saturation criterion

φ(a) :=
〈
ψti,0
(a) − ψti,0

(a),ini

〉
− γ(a) ≤ 0 . (14)

Since D∞ will be usually a number close to 1, the proposed damage model gets along
with the two material parameters βs and γ∞, which have to be adjusted to experimental
data.
The second Piola-Kirchhoff stresses are then computed from

S = 2
∂ψ

∂C
= Svol + Siso +

2∑
a=1

Sti
(a) , (15)

with the individual abbreviations

Svol = 2
∂ψvol

∂C
, Siso = 2

∂ψiso

∂C
, Sti

(a) = m′(1−D(a))S
ti,0
(a) and S

ti,0
(a) = 2

∂ψti,0
(a)

∂C
. (16)

It is emphasized that in the physiological (hyperelastic) regime where D(a) = 0 the strain
energy function is polyconvex and coercive and ensures therefore the existence of mini-
mizers and material stability.

4 NUMERICAL EXAMPLES

In this section numerical examples are provided. First, the proposed model is adjusted
to uniaxial tension tests performed with test stripes taken from the media of a human
carotid artery in order to show that the model is able to capture the mechanical behavior
of arterial tissues. Second, a circumferential overstretch of an atherosclerotic artery is
simulated in order to analyze the distribution of damage through the arterial wall.

4.1 ADJUSTMENT TO EXPERIMENTAL DATA

Uniaxial tension tests are performed on two test stripes taken from the media of a
human carotid artery, where one stripe is extended in circumferential and the other one
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c1 k1 k2 α1 α2 κ βf D∞ γ∞ βs

[kPa] [kPa] [-] [kPa] [-] [-] [ ◦] [kPa] [kPa] [-]

physiological 6.56 1482.38 564.81 - - 0.16 37.03

supra-physiological 7.50 1266.57 400.0 - - 0.19 35.05 0.99 6.71 1e-8

Table 1: Material parameters of the proposed model for the media of a human carotid artery in the
purely physiological and in the supra-physiological loading domain.

in axial direction. The proposed model is adjusted to the experimental data by minimizing
the least-square function

r̄(α) =

ne∑
e=1

√√√√ 1

nmp

nmp∑
m=1

(
σexp(λ

(m)
1 )− σcomp(λ

(m)
1 ,α)

max[σexp]

)2

, (17)

wherein σexp and σcomp denote the experimentally measured and modeled Cauchy-stresses,
respectively; λ1 = F11 denotes the stretch in the tension direction which coincides with
the x1-direction. Two experiments, i.e. tension in circumferential and axial direction
(ne = 2) are considered and a number of nmp measuring points are taken into account.
The material parameters are arranged in the vector α and identified by minimizing r̄. In
order to incorporate incompressibility the penalty term ψvol = p(I3−1) is included in the
strain energy function, where p can be interpreted as a pressure-like Lagrange multiplier.
The angle between the fiber orientation and the circumferential direction is treated as
a fitting parameter and is defined to be βf . In order to weight the two experiments
in a representative manner the differences are normalized by the maximal values of the
experimental stresses reached for the actual loading cycle. For the minimization problem
sequential quadratic programming is applied.
In the first instance, only the hyperelastic, physiological regime is considered. Here, the
number of measuring points is nmp = 49 for the axial and nmp = 43 for the circumferential
tension test. The resulting hyperelastic material parameters are listed in the first row of
Table 1. Fig. 1a shows the corresponding hyperelastic stress-strain response of the model
compared with experimental data. As can be seen in this figure the model lead to an
accurate match of the experimental data. Furthermore, the model response is adjusted
to experimental data for significantly increased loadings such that the supra-physiological
domain can be analyzed. For this purpose cyclic uniaxial tension tests in circumferential
and axial direction are considered. The results of the experiments are shown in Fig. 1b.
A strong anisotropy as well as a pronounced softening hysteresis is observed.
For the least-squares fit the hyperelastic parameters given in Table 1 (physiological) serve
as estimators for the definition of suitable bounds for the hyperelastic parameters. Then,
the hyperelastic as well as the damage parameters are adjusted. Due to this procedure,
the fit provides the parameters given in the second row of Table 1. Fig. 1c shows the
resulting response of the proposed model. We observe a good qualitative and quantitative
correlation with the experiments.

7



771

Daniel Balzani, Gerhard A. Holzapfel and Sarah Brinkhues

4.2 NUMERICAL SIMULATION OF ATHEROSCLEROTIC ARTERY

In the following a numerical example for the anisotropic damage model described above
is given by a numerical simulation of an atherosclerotic arterial wall. A stenosis caused by
atherosclerosis is mostly treated by a balloon-angioplasty in combination with stenting. In
this context, a high internal (supra-physiological) pressure acts on the arterial wall during
inflating an inserted dilatation-catheter. The purpose of this section is to simulate such
an arterial overexpansion in a two-dimensional approximation which basically enables the
investigation of the influence due to the circumferential overstretch.
Therefore, a two-dimensional geometrical model with an average diameter of approxi-
mately one centimeter is used and computed with 6048 triangular elements with quadratic
ansatz functions. The model is constructed based on hrMRI (high resolution magnetic
resonance imaging). The considered cross-section is shown in Fig. 2a, where the dis-
cretization and the particular components are depicted.

The components of the artery are identified by hrMRI examination and histological
analysis, namely the nondiseased intima, fibrous cap (Ifc), i.e. the fibrotic part at the
luminal border, fibrotic intima at the medial border, calcification (Ic), lipid pool (Ilp),
nondiseased media, diseased fibrotic media and adventitia (Adv), cf. [11]. For the nu-
merical investigation the nondiseased intima with its less significant mechanical behavior
is neglected and the fibrotic intima at the medial border and the diseased fibrotic me-
dia are combined to fibrotic media (Mf). The parameters for the media originate from
Section 4.1 and the parameters for the adventitia are adjusted analogously to cyclic ex-
periments such that the parameters given in Table 2 (Adv) are obtained. Unfortunately,
for the fibrous cap and the fibrotic media no data is available for the supra-physiological
regime and therefore the model is adjusted to the physiological data given in [11] and the
same damage parameter identified for the media are taken. The lipid pool is assumed
to be a butterlike, incompressible fluid not able to sustain shear stress. For the nearly
rigid calcificated regions an average Youngs Modulus of 12(+-4.7) MPa is regarded. No
damage is considered within the calcification and the lipid regions, because here dam-
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Figure 1: Uniaxial tension tests of the media of a human carotid artery in circumferential (1) and axial (2)
directions: a) Comparison of the constitutive model response with experimental data in the physiological
range; Cyclic uniaxial tension tests: b) experimental data and c) results of the constitutive model.
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age plays a minor role. An overview of all parameters are listed in Table 2. For the
nondiseaed and fibrotic media, the adventitia and the fibrous cap, which sustain damage
evolution, the parameters rs = r∞ = 0.99 are taken into account. In order to enforce
the incompressibility constraint, the penalty function ψvol = ε1

(
Iε23 + I−ε2

3 − 2
)
is used,

where the parameters ε1 and ε2 are chosen such that detF = 1 ± 1% in the numerical
simulation. For the simulation, first an internal pressure of 24.0 kPa (=̂ 180.0 mmHg)
representing the upper edge of the physiological regime and simultaneously an axial pre-
stretch of 2% is applied. This situation is defined to be the initial damage state meaning
that damage evolution starts after a pressure higher than 24.0 kPa. In a further step the
internal pressure is increased up to 150.0 kPa (=̂ 1125.0 mmHg) in order to simulate the
overexpansion of the artery. After that the internal pressure is decreased till reaching a
pressure of p = 24.0 kPa again, i.e. the natural state after a balloon-angioplasty. Here, no
circumferential eigenstrains are considered because their order of magnitude is relatively
small compared to the stresses resulting from the overstretch and their influence on the
situation after the overstretch is assumed to be negligible. In Fig. 2b the distribution of
the normalized damage variable D(1)/maxD(1) is depicted at an internal blood pressure
of 180 mmHg after the overstretch. A damage concentration in the healthy part of the
media and the fibrous cap are observed. In addition to that the remaining strains under
physiological blood pressure are significant by comparing the cross-section area A of the
lumen before (A0 ≈ 0.11 cm2) and after (A ≈ 0.17 cm2) the overexpansion. The resulting
increase of the blood lumen due to the overstretch is 0.17/0.11 ≈ 1.5.
Remark: this simulation of an arterial wall can only be interpreted as an illustration that
the proposed model provided in this contribution is able to be implemented in finite-
element simulations. Although the qualitative distribution of damage may be reasonable
the quantitative results are not necessarily realistic due to the lack of experimental data

a)
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lipid pool

calcification

media

fibrous cap b)
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Figure 2: a) Cross section of the arterial model discretized with 6048 quadratic triangular finite elements;
the components are: adventitia (Adv), nondiseased media, fibrotic media (Mf), fibrous cap (Ifc), lipid
pool (Ilp), calcification (Ic); b) normalized damage variable D(1)/maxD(1) with maxD(1) = 0.1048 of a
loaded artery after overexpansion at an internal pressure of p = 24 kPa (180 mmHg).

9



773

Daniel Balzani, Gerhard A. Holzapfel and Sarah Brinkhues

c1 k1 k2 κ βf D∞ γ∞ βs

[kPa] [kPa] [-] [-] [ ◦] [kPa] [kPa] [-]

Adv 4.0 1640.23 115.63 0.097 45.60 0.99 10.84 7.36

Mf 21.12 1951.48 925.37 0.095 25.55 0.99 6.52 0.37

Ifc 24.12 4778.44 1023.59 0.12 53.18 0.99 6.52 0.37

Ic 2250.0 – – – – – – –

Ilp 2.5 – – – – – – –

Table 2: Hyperelastic and damage parameters of the other components.

and the two-dimensional approximation of the three-dimensional artery.

5 CONCLUSION

An anisotropic damage model for soft biological tissues was presented able to describe
stress-softening hysteresis and remanent strains in the collagen fibers after unloading. A
specific constitutive model was given and by defining suitable internal variables an un-
damaged physiological loading regime could be taken into account. The resulting strain
energy function is polyconvex and coercive in the physiological (hyperelastic) regime and
guarantees therefore the existence of minimizers of variational problems. The proposed
model has been adjusted to cyclic uniaxial tension tests of the media and adventitia of
a human carotid artery and an accurate matching was observed. Furthermore, a cir-
cumferential overstretch of an atherosclerotic artery was simulated in order to show the
performance of the proposed model in finite element calculations.
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Abstract. The paper’s objective lies in numerical modelling of pulsatile blood flow in
complete aorto-coronary bypass models reconstructed from CT data, especially in models
with individual and sequential bypass grafts. Unsteady blood flow is described by the non-
linear system of the incompressible Navier-Stokes equations in 3D, which is numerically
solved using developed computational algorithm based on the fully implicit projection
method and on the cell-centred finite volume method for hybrid unstructured tetrahedral
grids. Obtained numerical results are discussed with regard to distribution of velocity,
wall shear stress and oscillatory shear index at proximal and distal anastomoses, i.e., in
areas prone to development of intimal hyperplasia.

1 INTRODUCTION

According to the most recent European cardiovascular disease statistics[1] almost half
of affected people had either brain stroke or heart infarction. Considering also the in-
creasing number of patients and surgical treatments connected with stenosed or occluded
arteries, the understanding of cardiovascular disease origin and development is crucial
for its future prevention and treatment. In the case of ischemic heart disease, one of
possible surgical interventions is the implantation of venous bypass grafts, often creating
a detour between aorta and the damaged coronary artery branch. The failure rate of
implanted bypass grafts is mostly related to the development of intimal hyperplasia, an
abnormal healing process in the anastomosis region. It is typical for the thickening of tu-
nica intima leading to decrease in the arterial lumen and consequently to graft failure[2].
Nowadays atherosclerosis and intimal hyperplasia alike are hypothesized to be triggered
by non-uniform hemodynamics leading to morphological and metabolic changes within
the vessel wall[3]. Recirculation zones and low and oscillating wall shear stress are some of
the supposed triggering factors that are responsible for endothelium activation[4]. Beside

1
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clinical research, numerical investigation of bypass hemodynamics represents a valuable
insight into the problem and provide so better understanding of blood flow influence on
cardiovascular disease occurrence and development.

The objective of this paper is the modelling of pulsatile blood flow in patient-specific
aorto-coronary bypass models with emphasis placed on the hemodynamics study in in-
dividual and sequential types. We denote the individual type as the bypass with one
proximal and one distal (end-to-side) anastomosis and the sequential type as the one with
one proximal and two distal (side-to-side and end-to-side) anastomoses. As is apparent
from the presence of multiple anastomoses, the sequential bypass technique is often em-
ployed to connect several coronary arteries by one graft. However, a major unknown of
such bypasses lies in the resulting blood supply to each connected coronary artery and the
possibility of intimal hyperplasia formation at one or both established anastomoses. In
this regard, we perform a numerical analysis of pulsatile blood flow in two aorto-coronary
bypass models reconstructed from CT data provided by the University Hospital Pilsen,
Czech Republic. For results discussion, special emphasis is placed on the evaluation and
analysis of main hemodynamic factors such as distribution of velocity, wall shear stress
(WSS) and oscillatory shear index (OSI) in areas that may be prone to development of
intimal hyperplasia.

2 PROBLEM FORMULATION AND BYPASS MODELS

In comparison to other published papers, which mostly dealt with distal bypass parts,
especially the distal anastomosis[5], the present study considers complete aorto-coronary
bypass models with realistic geometry, i.e., both proximal and distal anastomoses are mod-
elled. In this way, the problem of boundary conditions may be adequately approached. In
human vessels, blood behaves as an incompressible non-Newtonian fluid. As is shown in
other studies[6], blood’s shear-thinning behaviour may be neglected in selected cases such

Figure 1: CT scans of individual aorto-coronary bypass model – position of the proximal end-to-side
anastomosis (left) and the distal end-to-side anastomosis (right)

2
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Figure 2: Individual aorto-coronary bypass model – (from left to right) primary reconstruction from
CT data, model after smoothing, tetrahedral computational mesh with denoted computational domain
boundaries

as in human aorta. Furthermore, previous numerical simulations of steady non-Newtonian
blood flow performed by the authors of this paper in an idealized coronary bypass model[7]

showed negligible non-Newtonian effects. Therefore, in the present study, blood’s com-
plex rheological properties are neglected and blood is assumed to be an Newtonian fluid.
Further, all numerical simulations of pulsatile blood flow are carried out for bypass models
with rigid and impermeable walls. The authors are aware that this assumption, especially
in connection with the elastic aorta, represents a relevant limitation of the current math-
ematical model. However, an improvement in relation to vessel compliance is planned in
one of their future studies.

For the purpose of the present study, two sets of CT data were provided by the Uni-
versity Hospital Pilsen, Czech Republic. The first data set contained the CT scans of an
individual graft, Fig. 1, whose proximal end was attached to the aorta and the distal one
was sewn to an occluded branch of coronary arteries. The corresponding primary model
after reconstruction in software Amira is shown in Fig. 2 together with the final smoothed
model and the unstructured tetrahedral computational mesh, which was generated in the
system Altair Hypermesh. Fig. 3 gives a detailed view at the mesh in the distal anas-
tomosis region and in the pre-anastomosis coronary bifurcation. For this bypass type,
following inlet and outlet boundary conditions are prescribed, see boundaries denoted in
Fig. 2,

3
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Figure 3: Individual aorto-coronary bypass model – view at the distal end-to-side anastomosis region
with coronary bifurcation

• aorta inlet ∂Ω
(A)
I and aorta outlet ∂Ω

(A)
O – time-dependent flow rate Q(t) and pres-

sure p(t), respectively, are applied. The values of flow rate and pressure are taken
from literature[8], Fig. 4;

• coronary artery outlet ∂Ω
(CA)
O – constant pressure equal to average arterial pressure

12 000 Pa is given;

• occluded coronary artery is treated as a rigid wall boundary ∂ΩW .

In order to perform numerical computations with non-dimensional primitive variables,
reference values have to be set. For the individual graft, the reference velocity U

(1)
ref is

Figure 4: Individual aorto-coronary bypass model – time-dependent flow rate Q(t) prescribed at the aorta

inlet ∂Ω
(A)
I

(left) and time-dependent pressure p(t) prescribed at the aorta outlet ∂Ω
(A)
O

(right)

4
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chosen to be equal to 0.1592m · s−1, corresponding to average aorta inlet flow rate, Fig. 4
(left), and the reference diameter is D

(1)
ref = 0.036m, corresponding to average aorta

diameter. According to prescribed boundary conditions[8], blood’s density and viscosity
are considered to be constant η(1) = 0.0049Pa · s and ̺(1) = 1055 kg ·m−3, respectively.

The second set of provided CT scans contained data of a sequential aorto-coronary
bypass with one side-to-side anastomosis and one end-to-side anastomosis, Fig. 5. The
figure shows the reconstructed bypass model and the unstructured tetrahedral computa-
tional mesh as well. Detailed view at both the side-to-side and end-to-side anastomoses is
given in Fig. 6. Since the authors of this paper have access to physiological data measured
within a real side-to-side anastomosis[9], first numerical simulations of pulsatile blood flow
in the sequential aorto-coronary bypass model are done for the side-to-side anastomosis

Figure 5: Sequential aorto-coronary bypass model – (from left to right) CT scan with denoted position of
the side-to-side anastomosis, primary reconstruction from CT data, model after smoothing, tetrahedral
computational mesh

5
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Figure 6: Sequential aorto-coronary bypass model – view at the distal side-to-side anastomosis (left) and
at the distal end-to-side anastomosis (right)

with following inlet and outlet boundary conditions, Fig. 6 (left),

• graft inlet ∂Ω
(G)
I and coronary artery inlet ∂Ω

(CA)
I – time-dependent flow rates

Q(t)(G) and Q(t)(CA), respectively, are applied according to literature[9], Fig. 7;

• graft outlet ∂Ω
(G)
O and coronary artery outlet ∂Ω

(CA)
O – constant pressure equal to

average arterial pressure 12 000 Pa is given.

Similarly to the case of individual graft, reference values have to be chosen. The reference
velocity U

(2)
ref = 0.1193m · s−1 is determined from average graft inlet flow rate, Fig. 7, and

the reference diameter D
(2)
ref = 0.0045m set equal to average graft diameter. According

to prescribed values of boundary conditions[9], blood’s density and viscosity are η(2) =
0.0037Pa · s and ̺(2) = 1060 kg ·m−3, respectively.

3 MATHEMATICAL MODELLING

3.1 Mathematical model

Let us consider a time interval (0, T ), T > 0 and a bounded 3D computational domain
Ω ⊂ R3 with boundary ∂Ω. According to assumptions established in the previous section,
coronary blood flow in this computational domain may be modelled as unsteady laminar
isothermal flow of incompressible Newtonian fluid that in the space-time cylinder ΩT =
Ω×(0, T ) is mathematically described by the non-linear system of incompressible Navier-

6
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Stokes (NS) equations written in the non-dimensional form as

∂vj
∂xj

=0 , (1)

∂vi
∂t

+
∂

∂xj
(vivj) +

∂p

∂xi
=

1

Re(s)
∂2vi

∂xj∂xj
i, j = 1, 2, 3, (2)

where t is the time, vi is the i-th component of the velocity vector v = [v1, v2, v3]
T corre-

sponding to the Cartesian component xi of the space variables vector x = [x1, x2, x3]
T , p is

the pressure and Re(s) = U
(s)
refD

(s)
ref̺

(s)/η(s), s = 1, 2 is the reference Reynolds number. For
the individual aorto-coronary bypass model and for the side-to-side anastomosis model,
we get Re(1) = 1 234.3 and Re(2) = 153.8, respectively.

3.2 Numerical method

The numerical solution of the non-linear time-dependent system of the incompressible
NS equations (1) – (2) is based on the fractional step method and the cell-centred finite
volume method formulated for hybrid unstructured tetrahedral grids, whose control vol-
ume Ωk is shown in Fig. 8. The principle of hybrid grid systems was proposed by Kim et
al.[10] Time discretization of the incompressible NS equations (2) is performed using the
implicit second order Crank-Nicolson scheme with linearization of the convective term.

Let us introduce a variable δv̂i = v̂i−vni , where v̂i is the intermediate velocity and vni is
the velocity computed at the time level n. Let us further introduce a pressure correction
function Ψ defined as Ψ = (pn+1 − pn)∆t, where pn+1 and pn are the pressure values
computed at the time levels n and (n + 1), respectively. After the discretization, we get

Figure 7: Time-dependent flow rates prescribed
at the graft inlet Q(t)(G) and at the coronary
artery inlet Q(t)(CA) of the side-to-side anastomo-
sis model

Figure 8: A tetrahedral control volume Ωk =
A1A2A3A4 with boundary ∂Ωk =

⋃4
m=1 Γ

m

k

7
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following system of equations

(δv̂i)k +
∆t

2|Ωk|

4∑

m=1

(
δv̂imV

n
m + vnim · jnm

k δv̂j m + 2vnimV
n
m

)
|Γm

k |

+
∆t

2|Ωk|

4∑

m=1

pnm · inm
k |Γm

k | =
∆t

2Re(s)|Ωk|

4∑

m=1

∂

∂nm
k

(δv̂im + 2vnim) |Γ
m
k | , (3)

(v̂i)k = (vni )k + (δv̂i)k, (4)
4∑

m=1

∂Ψ

∂nm
k

|Γm
k | =

4∑

m=1

v̂im · inm
k |Γm

k | ≡

4∑

m=1

V̂m |Γm
k |, (5)

(vn+1
i )k = (v̂i)k −

1

|Ωk|

4∑

m=1

Ψm · inm
k |Γm

k |, (6)

(pn+1)k = (pn)k +
1

∆t
(Ψ)k, (7)

V n+1
m = V̂m −

∂Ψ

∂nm
k

, (8)

where ∆t is the time step, |Ωk| is the volume of the control volume Ωk, k = 1, . . . , NCV ,
Fig. 8, (Φ)k = 1

|Ωk|

∫

Ωk
ΦdΩ is the integral average for an arbitrary flow quantity Φ over

control volume Ωk, |Γ
m
k |, m = 1, . . . , 4 is the area of the m-th face Γm

k of the control
volume Ωk,

inm
k is the i-th component of the outward unit vector nm

k = [1nm
k ,

2nm
k ,

3nm
k ]

T

normal to the face Γm
k and V̂m = v̂im · inm

k denotes the intermediate face-normal velocity at
the face Γm

k . Note that the values of face-normal velocity V n+1
m computed with the help of

Eq. (8) are used as values of face-normal velocity V n
m in Eq. (3) at the next time level. For

the determination of values δv̂im, v
n
im, p

n
m, Ψm and derivatives ∂Ψ

∂nm
k

, ∂
∂nm

k

(δv̂im + 2vnim) at

the m-th face Γm
k of the control volume Ωk, the application of an interpolation method is

used. For more details on the described numerical method, see Vimmr et al.[11] In relation
to paper’s objectives to model pulsatile blood flow, boundary conditions are prescribed
as

• inlet Γm
k ⊂ ∂ΩI : vim = vi I ,

∂vim
∂nm

k

∣
∣
∣
Γm
k

= 0, ∂Ψ
∂nm

k

∣
∣
∣
Γm
k

= 0, where the inlet velocity

vector components vi I are given in non-dimensional form for corresponding inlet
boundaries of both bypass models, see Sec. 2;

• outlet Γm
k ⊂ ∂ΩO: pmn

m
k − 1

Re(s)
∂vm

∂nm
k

= pOn
m
k , Ψm = 0, where pO is the prescribed

non-dimensional value of outlet pressure, see Sec. 2;

• rigid wall Γm
k ⊂ ∂ΩW : vim = 0, ∂Ψ

∂nm
k

∣
∣
∣
Γm
k

= 0.

8
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The solution of Eq. (3) leads to a system of linear algebraic equations ANS · xNS = bNS

for 3 ·NCV unknown values (δv̂i)k, i = 1, 2, 3, k = 1, 2, . . .NCV , where NCV is the number
of control volumes within the hybrid unstructured computational mesh. Similarly, the
solution of Poisson equation (5) for the pressure correction function leads to a system
of linear algebraic equations APoi · xPoi = bPoi for NCV unknown values (Ψ)k, k =
1, 2, . . .NCV . Since both systems of equations contain large sparse matrices ANS and
APoi, it is favourable to use an iterative solution. In our case, BICGSTAB method with
incomplete LU preconditioner is applied. This kind of methods is a standard part of the
MATLAB software. For the incomplete LU decomposition, the UMFPACK library is
used.

4 NUMERICAL RESULTS, DISCUSSION AND CONCLUSIONS

Let us note that in this section all numerical results are presented in their dimensional
form. For the case of individual aorto-coronary bypass, Fig. 9–10 show velocity vectors
at both the proximal and distal anastomoses at two time instants t1 = 0.055 s and t2 =
0.095 s, respectively. The position of both pre-systolic time instants within the the cardiac
cycle at the aorta is denoted in Fig. 4 for the values of inlet flow rate and outlet pressure. In
the case of proximal anastomosis, the presence of a ’bulge’ filled with a weak recirculation
zone seems to significantly affect velocity distribution and consequently the blood supply
to the distal anastomosis. Moreover, the present shape of the proximal junction region and
its close proximity to high-velocity aorta may enhance the risk of thrombus formation due
to the possibility of blood cells accumulation and platelet activation. Regarding the distal
anastomosis of the individual bypass model, the flow distribution between the pre- and

Figure 9: Velocity distribution within the individual aorto-coronary bypass model and velocity vectors
at the proximal end-to-side and distal end-to-side anastomoses at the time t1 = 0.055 s

9
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Figure 10: Velocity distribution within the individual aorto-coronary bypass model and velocity vectors
at the proximal end-to-side and distal end-to-side anastomoses at the time t2 = 0.095 s

Figure 11: Side-to-side anastomosis – selected velocity profiles (left) and corresponding WSS distribution
(right) at the time t1 = 0.264 s

Figure 12: Side-to-side anastomosis – selected velocity profiles (left) and corresponding WSS distribution
(right) at the time t2 = 0.717 s

10
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Figure 13: Formula used for the calculation of oscillatory shear index (OSI)[12] and OSI distribution at
the side-to-side anastomosis

post-anastomosis branch of the coronary artery appears to be relatively uniform. However,
due to this kind of stream division, blood remains almost motionless in a certain part of
the anastomosis near the arterial floor, which may prove to be a significant trigger of
intimal hyperplasia in this bypass model.

In relation to numerical simulation of pulsatile blood flow in the side-to-side anastomo-
sis model, velocity profiles at selected cross-sections with corresponding WSS distributions
are shown in Fig. 11–12 for two time instants t1 = 0.264 s and t2 = 0.717 s, respectively.
The time instants correspond either to systolic or diastolic phases of the cardiac cycle, see
Fig. 7. Since low WSS values are of main interest when dealing with intimal hyperplasia,
WSS distributions in Fig. 11–12 are displayed for a lowered range (1− 4Pa). The results
indicate a considerably non-uniform WSS stimulation of all bypass walls, especially in the
anastomosis region. This assumption is supported by the skewed shape of velocity profiles
in this area during systole, Fig. 11. Moreover, according to calculated WSS values, blood
supply to the coronary artery downstream from the anastomosis seems to be taking place
only before diastole. The influence of pulsatile blood flow on arterial wall stimulation in
relation to intimal hyperplasia development is usually recorded in the form of oscillatory
shear index[12]. The formula for its calculation and corresponding distribution at the side-
to-side anastomosis model is shown in Fig. 13, where OSI values equal to 0.5 indicate
a highly oscillating WSS and at the same time denote a bypass area prone to intimal
thickening.
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Abstract. In this work a numerical model for analysis of reinforced concrete structures under 
seismic load is presented. The model uses the combined finite-discrete element method; thus 
taking into account the discontinuous nature of the reinforced concrete at the failure stages. 
The application of the combined finite-discrete element method includes a number of 
deformable discrete elements that interact with each other, fracture, fragmentation and disjoint 
during the seismic load. To these a robust model for reinforcement bars has been added. 
Interaction solutions between bars and concrete have also been developed and implemented 
into the open source Y2D combined finite-discrete element code. This way it is possible to 
describe initiation of the cracks, crack propagation and fracture which are important 
mechanisms in the analysis of reinforced concrete structures under seismic load. Through 
numerical examples these have been demonstrated and tested using reinforced concrete 
structure under an experimentally recorded earthquake accelelogram. 

1 INTRODUCTION 
The development of the numerical models for simulation of the response of reinforced 

concrete structures under seismic load, taking into consideration non-linear behaviour of the 
concrete and reinforcement, makes possible the results of high accuracy almost equivalent to 
the results obtained by expensive laboratory experiments. One of the main causes of concrete 
non-linear behaviour is cracking. A reliable model for simulation of the opening and closing 
the cracks is especially important in the structures under seismic load because a significant 
part of seismic energy is lost in cracking. The most of the models described in literature is 
based on finite element method where the cracking is described with smeared crack models or 
with embedded models where the cracks are modelled as discontinuity within the elements by 
enriching interpolation function. In contrast to the finite elements, in discrete models cracks 
are simulated as discontinuities of displacement between two elements.  

A numerical model for analysis of reinforced concrete structures under seismic load 
developed in this work is based on combined finite-discrete element method [1].  

Transition from continua to discontinua in the combined finite discrete element method 
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occurs through fracture and fragmentation processes. A typical combined finite discrete 
element method based simulation may start with a few discrete elements and finished with 
very large number of discrete elements. Fracture occurs through alteration, damage, yielding 
or failure of microstructural elements of the material.   

There has been a number of fracture models proposed in the context of both discrete 
element methods and combined finite discrete element method. Some of the models are based 
on a global approach applied to each individual body, while others used a local smeared crack 
approach or local single-crack approach. In this work a model for plane crack initiation and 
crack propagation in concrete is used [2]. The model combines standard finite element 
formulation for the hardening part of the constitutive law with the single-crack model for the 
softening part of stress-strain curve. Finite elements are used to model behaviour of the 
material up to the ultimate tensile strength while a discrete crack model is used for modelling 
of the crack opening and separation along edges of finite elements. 

In this work an embedded model of reinforcing bars [3,4] is implemented in Y2D 
combined finite-discrete element code. The concrete structure is discretized on triangular 
finite elements, while the reinforcing bars are modelled with linear one-dimensional elements 
which can be placed in arbitrary position inside the concrete finite elements. The main 
assumption of the model is that the concrete tensile strength will be exceeded before the yield 
stress will achieved in steel. The behaviour of the structure is linear-elastic up to the opening 
of the crack. After that joint elements in concrete as well as in reinforcing bar are occurred. 
The concrete and reinforcing bars are analyzed separately, but they are connected by the 
relation between the size of the concrete crack and strain of the reinforcing bar [5,6]. Cyclic 
behaviour of the steel during the seismic load is modelled with improved Kato’s model [7]. 

The formulation which has allowed the introducing of the seismic load modelled by an 
earthquake accelelogram is developed in this model.  

2 MODELLING OF THE REINFORCED CONCRETE STRUCTURE  
In this work an embedded model of reinforcing bars [3,4] is implemented in Y2D code 

based on combined finite-discrete element method. The concrete structure is discretized on 
triangular finite elements, while the reinforcing bars are modelled with linear one-dimensional 
elements which can be placed in arbitrary position inside the concrete finite elements. The 
model of the reinforced concrete structure with the embedded reinforcing bar is shown in 
Figure 1.  

In the first step the reinforcement is modelled as bar AB (Figure 1.). Intersection between 
the sides of concrete finite elements and reinforcing bars gives the reinforcement finite 
elements. The behaviour of the structure is linear-elastic up to the opening of the crack. In that 
phase the triangular concrete element and line element of reinforcing bar behave as one body. 
The deformation of the triangular element influence to the deformation of the reinforcing 
bars. When the crack in concrete appears, joint element in concrete as well as joint element in 
reinforcing bars is occurred. 
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Figure 1: Discretization of reinforced concrete structure 

3 NON-LINEAR MATERIAL MODEL IN JOINT ELEMENTS  

3.1 Basic crack model 
A model of discrete crack in reinforced concrete element with joint elements of concrete 

and reinforcing bar described in previous section is shown in Figure 2.  

 
Figure 2: Discrete crack: crack initiation and crack development in concrete 

3.2 Concrete model in joint element 

In this work the combined finite-discrete element method uses the concrete model [2] 
which is based at crack initiation and crack propagation of mode I loaded cracks. The model 
is developed on the basis of experimental stress-strain curves for concrete in tension [8]. 
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The area under the stress-strain curve consists of two parts (Figure 3). Part ″A″ is used for 
modelling of the concrete behaviour up to the crack opening while part ″B″ represents strain 
softening after the tensile strength is exceeded. The assumption of the discrete crack model is 
that the cracks coincide with the finite element edges. The total number of nodes for each of 
the finite element meshes is doubled and the continuity between elements is realized through 
the penalty method. Separation of the edges induces a bonding stress, which is a function of 
the size separation δ (Figure 3.).   

Figure 3: Strain softening stress-strain and stress-displacement curves 

No separation of the adjacent elements occurs before the tensile strength is reached, i.e. 
0=tδ . The edges of two adjacent elements are held together by normal and shear springs 

(Figure 4.) Procedure of the separation of the elements and complete relationship for the 
normal and shear bonding stress are given in [2]. 

Figure 4: Normal and shear springs between the finite elements 

3.3 Steel material model in reinforcement joint element 
The main assumption of the model is that the concrete tensile strength will be exceeded 

before the yield stress will achieved in steel. The behaviour of the structure is linear-elastic up 
to the opening of the crack. After that joint elements in concrete as well as in reinforcing bar 
are occurred. The concrete and reinforcing bars are analyzed separately, but they are 
connected by the relationship between the size of the concrete crack and strain of the 
reinforcing bar.  

In this work a model of the relationship between the concrete crack size and strain of the 
reinforcing bar developed by Shima [5] and Shin [6] is applied. The model is based on 
experimental strain-slip curves and represents well approximation of the behaviour of 
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reinforcing bar with the expressed plastic strain caused by cyclic loading. 
The steel strain-slip relation before the yielding of reinforcing bar is given by expressions: 

)35006(s ss εε +=  (1)
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where )( sss ε=  is normalized steel slip, D is bar diameter and cf ′  is concrete strength.  
Normalized slip in the post-yield range is given by expression: 

epl sss += . (3)

where es  is slip in the elastic region and pls  is slip in the yield region. A strain distribution 
along the reinforcing bar in the post-yield region is shown in Figure 5 where seε  is a strain at 
the yield boundary point on the elastic region and spε is a strain at the yield boundary point on 
the yield region. 

 

 
 

Figure 5: Strain distribution along the reinforcing bar in the post-yield range 

If the deformation of concrete is ignored, the steel slip can be determined by integration of 
steel strain along the reinforcement axis. Normalized plastic steel slip in the yield region is 
given by an expression:  
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(4)

where ymax / σσβ =  represents the gradient of the line shown in Figure 5., maxσ is the 
maximum stress in reinforcing bar under tensile loads, maxs  is a function of maxε  and 

)35002(s ss
*
y εε += .  

In this paper non-linear material model for steel is based on experimental stress-strain 
curve and it is shown on Figure 6a. Cyclic behaviour of the steel during the seismic load is 
modelled with improved Kato’s model [7] (Figure 6.b). 
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        a)  Stress-strain relation for steel                 b) Cyclic behaviour of steel 

Figure 6: Material model for steel 

4 EXAMPLES 

4.1 Reinforced concrete beam 
Reinforced concrete beam (Figure 7.) subjected to self weight is analyzed in order to 

verified implemented model of the reinforcing bars in static conditions. The span of the beam 
is 6.0 (m). Analysis is performed with two discretization presented in Figure 7. The midspan 
deflection, the stress in the concrete and the stress in the reinforcing bar in the marked point 
are analyzed. The results obtained by numerical model are compared with the analytical 
results in the Table 1.  

 
Figure 7: Reinforced concrete beam

Table 1: Comparison of numerical solutions with analytical ones 

 Analytical  Numerical - 2h Numerical - 4h 
Midspan deflection 

(mm) 1.351 1.15 1.350 

Concrete stress 
(N/m2) 1.65⋅106 1.40⋅106 1.65⋅106 

Stress in reinforcing 
bar (N/m2) 11.60⋅106 9.89⋅106 11.56⋅106 

 
Presented results show that the numerical solutions is very close to the analytical ones 

for the discretization 4h. 
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4.2 Analysis of steel behaviour in joint element of reinforcing bar 
A simple example of reinforced concrete structure consists of 3 triangular finite elements 

with a reinforcing bar is analyzed. The length of triangular finite element side is 1.4 (m) and 
the cross-section area of reinforcing bar is 0.05 (m2). Compressive concrete strength is 30 
(MPa) while the characteristics of the steel are σy=275⋅106(N/m2), σu=430⋅106(N/m2), 
εsh=0.005, εu=0.01. The structure is subjected to initial velocity of 80 (m/s). The applied time 
interval is ∆t=0.3⋅10-5s.  

Figure 8 shows initial stage of the structure and stage of the structure after the cracking 
of reinforcing bar. Stress-strain relation in joint element of reinforcing bar, which is presented 
in Figure 9, shows cyclic behaviour of the steel. 

 

 
a) Initial stage 

 

 
b) Stage after the cracking of reinforcing bar 

Figure 8: Reinforced-concrete element subjected to initial velocity 

 
Figure 9: Stress-strain relation in reinforcing bar 
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5 CONCLUSIONS 
- This paper presents a new numerical model for analysis of reinforced concrete 

structures under seismic load based on combined finite-discrete element method. The 
model combines standard finite element formulation for the hardening part of the 
constitutive law with the single-crack model for the softening part of stress-strain 
curve. 

- An embedded model of reinforcing bars is implemented. The concrete structure is 
discretized on triangular finite elements, while the reinforcing bars are modelled with 
linear one-dimensional elements which can be placed in arbitrary position inside the 
concrete finite elements. 

- The main assumption of the model is that the concrete tensile strength will be 
exceeded before the yield stress will achieved in the steel. The behaviour of the 
structure is linear-elastic up to the opening of the crack. After that joint elements in 
concrete as well as in reinforcing bar are occurred. Interaction solutions between bars 
and concrete have also been developed and implemented into the open source Y2D 
combined finite-discrete element code. Cyclic behaviour of the steel during the 
seismic load is modelled with improved Kato’s model. 
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Abstract. The new microplane model M6f for fiber reinforced concrete features several
improvements over the earlier versions: (i) An explicit volumetric-deviatoric split to no
split transition formulation in tension which eliminates spurious contraction under tension
that the earlier models suffered; (ii) tension-compression load cycles are now correctly
simulated using the loading/unloading rules prescribed in the transition function; (iii) a
new micro- macro stress equilibrium equation in which the work of volumetric stresses on
deviatoric strains and the work of deviatioric stresses on volumetric strains are explicitly
accounted for is introduced to correctly model the pressure sensitive dilatant behavior of
low to normal strength concretes; (iv) the volumetric boundary is made a function of the
maximum principal strain difference in addition to the volumetric strains, so as to extend
the data fitting capability to lower strength concretes; (v) the cohesion in the friction
boundary now approaches zero linearly, instead of asymptotically with growing tensile
volumetric strains, so as to generate an earlier decaying tail in the uniaxial tension and
compression. The material behavior has been verified against various test data from the
literature. The fits have been improved compared to the previous versions of the model.

1 INTRODUCTION

The microplane models, which range from M0 to M6 developed since 1984 primarily
for the constitutive behavior of concrete, are hierarchically semi-multiscale models [1],
because the angular interactions of inelastic phenomena are captured explicitly whereas

1
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the interactions at a distance cannot be captured as a result of lumping the inelastic phe-
nomena into a single material point. Consequently, the microplane models have already
featured some of the properties of the now fashionable multiscale models. In certain im-
portant respect, the hierarchical multiscale models for quasibrittle fracture are no better
than the microplane models [1] because both miss the microcrack interactions at a dis-
tance and fail to predict the size of the fracture process zone (or the localization limiter),
while both can capture the angular interactions.

Microplane models have a number of advantages over the conventional tensorial models.
Through the microplane concept, the constitutive model can be specified in terms of
vectors instead of stress and strain tensor invariants [3] which removes the dependence
on the invariants of stress and strain tensors. The principle of frame indifference is still
satisfied, albeit approximately, by virtue of using microplanes that sample without bias
all possible orientations in the three-dimensional space. The constitutive laws specified on
the microplanes is activated by employing either the kinematic or the static constraints.
It is well known that for quasi-brittle materials such as concrete, the softening behavior
can only be captured if the kinematic constraint is employed [3]. A selective activation
of the constitutive behavior on various microplanes results in a macroscopic constitutive
behavior equivalent to multisurface plasticity, one or several surfaces on each microplane.
Thus, the advantages of the multisurface plasticity, such as capturing the vertex effect
and frictional shear with apparently non-associated dilatancy [4, 5], are also exhibited by
the microplane models.

The latest of the microplane models for fiber reinforced concrete reported in this paper
features several improvements over the earlier version [6]. To remove the spurious lateral
contraction under tension, the traditional volumetric-deviatoric split formulation [4] grad-
ually becomes the formulation without a split [3], in a form proposed by G. di Luzio as a
function of increasing tensile strains. Thus, under tension, the new model predominantly
behaves as a model without volumetric-deviatoric split. Also, with the new formulation,
the model correctly features extensional damage as observed in the loading-unloading
tensile-compressive tests reported in the literature.

Furthermore, the experimental data reported on specimens of low strength concretes
[7], which could not be fitted well with the earlier versions of the model, can now be
fitted well. To this end, the volumetric-deviatoric coupling is extended to the volumetric
boundary. To account for the cross coupling of shear and dilatancy more accurately,
the macro-micro stress equilibrium equation is also modified: The normal microplane
stress is now treated directly as the sum of the volumetric and deviatoric parts without
any additional constraints. Thus, the requirements of vanishing work of the deviatoric
stresses on the volumetric strains, and of the volumetric stresses on the deviatoric strains,
which was postulated in models M4, M5 and M5f, is now removed [4, 9, 10]. As a result,
the predictive capabilities of the model have been drastically improved.

2
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2 BASIC CONSTITUTIVE EQUATIONS OF MICROPLANE MODEL

Microplane models for concrete are defined using the kinematic constraint, which means
that microplane strains are projections of the strain tensor on the microplanes [3, 4, 9, 10]:

εN = ninjεij = Nijεij (1)

where ni are the components of the microplane normal vectors and i, j = 1, 2, 3 are the
indices of the cartesian coordinate system. Alternatively, a static constraint in which
the stress tensor is projected on the microplanes to yield the microplane stresses is also
possible, but this approach is useful mainly for modeling hardening type inelastic behavior
in which no softening can take place. For the modeling of softening, it is essential to use
the kinematic constraint as given by Eq.1 [?, 3].

The projection of the strain tensor on the microplane system results in microplane shear
strain vectors. However, to be able to fit some of the unconventional experimental data
on concrete, it was found essential that the microplane shear strain vectors be represented
with respect to in-plane orthogonal directions given by the randomly generated in-plane
microplane vectors �m and �l. Thus, the shear strains on the microplanes are defined as

εM =
1

2
(nimj + njmi) εij = Mijεij; εL =

1

2
(nilj + njli) εij = Lijεij (2)

To separate the normal response into its volumetric and deviatoric parts, which is
necessary for being able to model linear elasticity by means of the microplane model [4],
we define the relations

εN = εV + εD; σN = σV + σD (3)

where εV = εkk/3 and εD = (Nij − δij/3)εij. The microplane volumetric and deviatoric
stresses σV and σD as well as the microplane shear strains σM and σL must be prescribed
as functions of the microplane strains. These relations are the microplane constitutive
laws which must be determined through data fitting:

σV = FV (εV , σI , σIII) ; σD = FD (εD, εV ) ; σL = FT (εL, εV , σN) ; σM = FT (εM , εV , σN)
(4)

Although the constitutive relation for the microplane shear strain components σL and σM

are given by the same shear law in Eq.4, this is actually not strictly necessary; one may
assume an in-plane orthotropy of microplanes and prescribe different shear laws for the
two orthogonal shear components on the microplane as well.

When the microplane constitutive laws depend on some measure of stress, they be-
come implicit. For the modeling of highly inelastic frictional behavior, it is desirable to
achieve explicit microplane constitutive laws which would be free of iterations. Explicit
constitutive laws are always sought in the development of microplane models. However,
in some constitutive laws, it was inevitable to introduce stresses as the independent vari-
ables. For example, the shear behavior must involve the normal stresses because in the

3
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inelastic range it is the friction that is modeled, which is by definition a function of the
normal stresses. For volumetric behavior, it is simpler to define the deviatoric effects in
terms of the principal stress difference.

2.1 Normal Boundaries

The normal boundary governs the tensile fracturing behavior of the model. It is ex-
pressed as:

σb
N = FN(εN) = Ek1c1 exp

(
− 〈εN − c1c2k1〉
k1c3 + c4 〈−σV /EV 〉

)
(5)

2.2 Deviatoric Boundaries

The deviatoric boundaries simulate the spreading and splitting cracks under compres-
sion. They are given by:

σb+
D = F+

D (εD) =
Ek1β1

1 + (〈εD − β1β2k1〉 / (k1c17β3))
2 (6)

σb−
D = F−

D (−εD) =
Ek1β4

1 + (〈−εD − β4β5k1〉 / (k1β3))
2 (7)

where

β1 = c18 exp (− (f ′
c/E − f ′

c0/E0)) tanh (c19 〈−εV 〉 /k1) (1 + χ1) + χ1 + c5 (8)

where χ1 = k9 tanh(c29Vf );

β2 = c6 exp (− (f ′
c/E − f ′

c0/E0))min [exp (c20 〈−εV /k1〉) , c21] (9)

β3 = c22 exp (− (f ′
c/E − f ′

c0/E0)) tanh (c19 〈−εV 〉 /k1) (1 + χ2) + χ2 + c7 (10)

where χ2 = k10 tanh(c29Vf );

β4 = c23 exp (− (f ′
c/E − f ′

c0/E0)) tanh (c19 〈−εV 〉 /k1) (1 + χ1) + χ1 + c8 (11)

β5 = c9 exp (− (f ′
c/E − f ′

c0/E0))min [exp (c20 〈−εV /k1〉) , c21] (12)

The functions χ1, χ2 represent the contribution of the fibers to resist the compressive
splitting and slip cracks. The compressive strength may be calculated using the ACI
formula in MPa f ′

c = (E/5150.226)2 if it is not given.

2.3 Frictional Yield Surface

The frictional yield surface simulates the shear behavior of the model. It is given by:

σb
T = FT (−σN) =

ETk1k2c10 〈−σN + σ0
N〉

ETk1k2 + c10 〈−σN + σ0
N〉

(13)

4
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where
σ0
N = 〈ETk1c11 − c12 〈εV 〉〉 (14)

Under compression, the best data fits are obtained when the shear boundary is applied
to the microplane shear components before the peak load is reached, especially in fitting
the strength envelopes. In model M6f, a formulation that transits from application of
the shear boundary to the microplane shear components to the microplane shear resul-
tant is introduced. The formulation involves calculating the in-plane microplane shear
components twice, once by applying the shear boundary to the microplane shear compo-
nents, and once by applying it to the microplane shear resultant. Then, the transition
formulation can be expressed as:

σL = σ̂Lφ̃+ σ̄L

(
1− φ̃)

)
; σM = σ̂M φ̃+ σ̄M

(
1− φ̃)

)
(15)

where the quantities with ˆ are those obtained by applying the shear boundary to the
microplane shear components, and the quantities with ¯ are those obtained by applying
the shear boundary to the microplane shear resultant; the transition parameter is defined
as:

φ̃ = exp (c27 〈εV − c28〉) (16)

2.4 Volumetric Boundary

The volumetric boundary simulates the pore collapse and expansive breakup of the
material. It is given by :

σb
V = F−

V (−εV ) = −Ek1k3 exp

(−εV
k1β6

)
(17)

where

β6 =
k5 (σI − σIII)

k1 (1 + 〈−σV /EV 〉) + k4 (18)

and σI = maximum principal stress; σIII = minimum principal stress.

2.5 Unloading and Stiffness Degradation

The unloading behaviors of concrete under tension and compression are radically dif-
ferent. Under tension the unloading slope is close to the secant modulus, and under
compression, on the average it is close to the elastic slope. For σI > c26, where c26 is
a tensile stress threshold, the tension-tension and the tension-compression load cycles
can be successfully obtained using the loading-unloading rules prescribed in terms of the

5
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transition function φ as follows:

φ(εN) =







exp
(

−c24

√
〈
εN/k1 − c25 +min(εunlI , c25)

〉)

if εN/k1 < εunlI −min(εunlI , c25)

exp
(

−c24

√
〈
εunlI − c25

〉)

if εunlI −min(εunlI , c25) ≤ εN/k1 < εunlI

exp
(

−c24
√

〈εN/k1 − c25〉
)

if εN/k1 ≥ εunlI

(19)
where εunlI is the value of the maximum principal strain at the initiation of unloading and
it is a history parameter. When σI ≤ c26, there is no tension and thus φ = 1.

The loading with a transition from split to no split, along with the unloading, are
depicted in Fig. 1(a). For the initial virgin loading, the load path with a transition to no
split formulation is the path [ABDC]. At any given point where the unloading starts, for
example at point D, the unloading path is given by [DEFA]. This results into a transition
from the no split formulation into the split formulation. The subsequent loading passing
into the tension zone follows the path [AFEDC]. The length |DE| = c25.

As in model M4, the unloading under triaxial compression at high pressures is governed
by the unloading rule of the volumetric boundary given by Cu

V (−εV ,−σV ) =
EV (c13/(c13 − εV ) + σV /(c13c14EV )). As in model M4, the unloading under compression
at low confining pressures is governed by the unloading rules of the deviatoric and frictional
boundaries. The unloading rule for the compressive deviatoric boundary is givenby Cu

−D =
(1− c15)ED + c15E

s
D where Es

D = min(σD/εD, ED) for σDεD > 0 and Es
D = ED for

σDεD ≤ 0. The unloading rule for the tensile deviatoric boundary is given by Cu
+D =

(1− c16)ED + c16E
s
D.

The unloading rule of the friction boundary is that the unloading slope is the same as
the deviatoric unloading slope; thus

Cu
T =

{
Cu

−D if Cu
D = Cu

−D

Cu
+D if Cu

D = Cu
+D

(20)

2.6 Fiber Constitutive Relation

When the cracks are of the opening mode, the contribution of fiber to the crack bridging
stress is given by a simplified form of Kholmyansky’s equation [11]:

σf
N

E
=







k6k1 〈εN/k1〉 exp (−k7 〈εN/k1〉) if εN/k1 < 1/k7
k6k1/k7 exp (−1) if 1/k7 ≤ εN/k1 < k8
k6k1 〈εN/k1 − k8 + 1/k7〉 exp (−k7 〈εN/k1 − k8 + 1/k7〉) if k8 ≤ εN/k1

(21)
and the fiber and the matrix are assumed to be coupled in parallel. Thus the result is

σbf
N = σb

N + σf
N (22)

where σbf
N =total normal boundary for fiber reinforced concrete, σb

N =boundary for plain
concrete matrix and σf

N =contribution of the fiber given by Eq.21.

6
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2.7 Thermodynamic Dissipation

The thermodynamic dissipation can be formulated as the energy dissipated by devia-
toric, volumetric and shear stresses in the case of formulation with a deviatoric-volumetric
split. In the case of the formulation without a split, it can be formulated as the energy
dissipated by the normal and shear stresses. Under isothermal conditions, the energy
dissipated by a microplane stress is given by

Tsint =

∫ ε

0

σdε− σ2

2Cu
(23)

where Es ≤ Cu ≤ E with Es = secant modulus. When the loading switches to unloading
before reaching any of the boundaries, the response is elastic, and thus such the load
cycles do not increase dissipation. When the boundaries are reached during loading,
energy dissipation takes place as given by Eq.(23). The unloading slope is assumed to be
constant although it has a slight curvature for the volumetric boundary. Thus, the energy
dissipated by the deviatoric, volumetric, normal and shear stresses may be expressed as

TsDint =

∫ εD

0

σDdεD +

∫ εv

0

σDdεV − σ2
D

2Cu
D

; TsVint =

∫ εD

0

σV dεD +

∫ εv

0

σV dεV − σ2
V

2Cu
V

TsNint =

∫ εN

0

σ∗
NdεN − (σ∗

N)
2

2Cu
N

; TsLint =

∫ εL

0

σLdεL − σ2
L

2Cu
T

; TsMint =

∫ εM

0

σMdεM − σ2
M

2Cu
T

Consequently, the total energy dissipation per unit volume of material is, in model M6f,
approximately given by

T s̃int = T
3

2π

∫

Ω

[
(sDint + sVint)φ+ sNint(1− φ) + sLint + sMint

]
dΩ (24)

3 MICRO-MACRO STRESS EQUILIBRIUM

3.1 The model with volumetric-deviatoric split

The microplane model with volumetric-deviatoric split in the new microplane model
M6 is defined as in the model M2:

2π

3
σijδεij =

∫

Ω

[σDδεD + σV δεV + σMδεM + σLδεL] dΩ +

∫

Ω

[σDδεV + σV δεD] dΩ(25)

2π

3
σijδεij =

∫

Ω

[(σD + σV )(δεN − δεV ) + (σV + σD)δεV + σMδεM + σLδεL] dΩ (26)

2π

3
σijδεij =

∫

Ω

[σNδεN + σMδεM + σLδεL] dΩ (27)

⇒ σij =
3

2π

∫

Ω

[σNNij + σMMij + σLLij] dΩ (28)

7
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where σN = σV + σD. The last integral on the right hand side of Eq.(25) did not exist
in the model M4, because it was postulated that the work of deviatoric stresses on the
volumetric strains and the work of volumetric stresses on the deviatoric strains did not
exist. Thus the volumetric stresses were work-conjugate to only the volumetric strains
and the deviatoric stresses only to the deviatoric strains.

However, the triaxial compressive test data for low strength concretes, for which the
behavior is more dissipative and ductile than the normal strength concretes, could not be
fitted using the model M5f. It was found out that, these test data could be fitted easily if
an explicit volumetric-deviatoric coupling could be assumed. Thus, the macro-micro stress
equilibrium formula employed in model M5f has been replaced with that employed in M2
and M3, given by Eq.28. In general, it was found out that, as the strength of concrete
increases, such a coupling must have lesser effect because the material becomes more
brittle, with a progressively shrinking cohesive zone. For very high strength concretes,
the size of the cohesive zone essentially becomes sub-millimeter, and the crack surfaces
become smoother. This means that the frictional nature of the material becomes much
less significant as the strength of the concrete increases compared to the normal strength
concrete.

3.2 The model without volumetric-deviatoric split

The macro-micro stress equilibrium equation for the kinematically constrained mi-
croplane model without volumetric-deviatoric split can be written as 2π

3
σ∗
ijδε

∗
ij =∫

Ω
[σ∗

Nδε
∗
N + σ∗

Mδε∗M + σ∗
Lδε

∗
L] dΩ, leading to

⇒ σ∗
ij =

3

2π

∫

Ω

[σ∗
NNij + σ∗

MMij + σ∗
LLij] dΩ (29)

where ε∗N = Nijε
∗
ij, ε∗M = Mijε

∗
ij, ε∗L = Lijε

∗
ij; σ∗

N = F∗
N(ε

∗
N), σM = F∗

T (ε
∗
M , σ∗

N) and
σ∗
L = F∗

T (ε
∗
L, σ

∗
N). In this model, the microplane normal stress is directly calculated as a

function of the microplane normal strains.

3.3 The model with transition

The present model, model M6f, employs an explicit transition formulation, in which
the model with a split given by Eq.28 gradually transits to the model without a split
given by Eq.29;

σij =
3

2π

∫

Ω

[{σ∗
N (1− φ) + σNφ}Nij + σMMij + σLLij] dΩ (30)

where σM = σ∗
M and σL = σ∗

L. The transition function φ for monotonic loading is defined
as

φ(εN) =

{

exp
(

−c24
√

〈εI/k1 − c25〉
)

if σI > c26

1 if σI ≤ c26
(31)

and thus is active only under tension.
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4 RESULTS AND DISCUSSION

The simulations to predict experimental data for Harex and PVA fiber reinforced
concretes under uniaxial tension are shown in Fig.1(b),(c) [8]; and those for steel fiber
reinforced concretes under uniaxial compression and triaxial compression are shown in
Figs.1(d)-(f) [7] respectively. The agreement between the data and the predictions is
quite satisfactory. The model parameters, their values and their brief descriptions, are
shown in Table 1. The “c” parameters are fixed parameters which do not change from
one concrete to another; the “k” parameters may change from one concrete to another
and thus they must be calibrated for each given concrete. Although there seem to be
too many parameters, only 5 of them are free parameters for the concrete matrix and
another 5 free parameters are for the fiber effect on the opening, splitting and slipping
type fracture which must be supplied by the user of the model. For most low to nor-
mal strength concretes, the values provided in Table 1 should be sufficient. For others,
identification of these free parameters (k1 to k5) using test data conducted on specimens
of the concrete under consideration may be necessary. For various types of fibers, the
values of free fiber parameters (k6 to k10) are already determined as shown in Table 1. If
a new type of fiber used, these values should be recalibrated by fitting uniaxial tension
and uniaxial compression test data.

Table 1: Parameters of the model M6f, their typical values and their meanings.

par. value meaning
f ′
c0 15.08MPa reference compressive strength

Ec0 20GPa reference elastic modulus

c1 0.46 controls the uniaxial tensile strength

c2 2.76 controls the roundness of the peak in uniaxial tension

c3 4 controls the slope of the postpeak in uniaxial tension

c4 70 controls the slope of the postpeak tail in uniaxial compression

c5 2.5 controls the vol. expansion under compression

c6 1.3 controls the roundness of the peak in vol. expansion under compression

c7 50 controls the slope of the initial postpeak in uniaxial compression

c8 8 controls the peak strength in uniaxial compression

c9 1.3 controls the peak roundness in uniaxial compression

c10 0.73 controls the effective friction coefficient

c11 0.2 initial cohesion in frictional response

c12 7 · 103 controls the change of cohesion with tensile vol. strains

c13 0.02 controls the unloading slope at high hydrostatic compression

c14 0.01 controls the unloading slope at low hydrostatic compression

c15 0.4 controls the unloading slope of the compressive dev. boundary

c16 0.99 controls the unloading slope of the tensile dev. boundary

c17 0.082 controls the tensile cracking under compression

9
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Table 1 – continued from previous page

par. value meaning
c18 4 controls the vol. expansion for low strength concretes

c19 0.012 controls the vol. expansion rate for low strength concretes

c20 400 controls the roundness of vol. expansion for low strength concretes

c21 13 controls the roundness of vol. expansion for low strength concretes

c22 3.5 · 103 controls the roundness of vol. expansion for low strength concretes

c23 20 controls the roundness of vol. expansion for low strength concretes

c24 0.12845 controls the rate of transition from split to no split

c25 0.7576 controls unloading under tension

c26 1.7 · 10−4 tensile stress treshold for initiation of split to no split transition

c27 1 · 103 rate of transition from shear boundary over shear components to over resultant

c28 5 · 10−4 threshold of vol. strain to start the above transition

c29 100 fiber contribution to resist splitting and slipping

k1 1.5 · 10−4 radial scaling parameter

k2 500 controls the horizontal asymptote value in the frictional boundary

k3 15 controls the shape of the volumetric boundary

k4 150 controls the shape of the volumetric boundary

k5 2 controls the triaxial hardening for low strength concretes at low pressures

k6 0.357 fiber law vertical scaling

k7 0.2345 fiber law softening rate

k8 5.09 controls the length of fiber law horizontal plateau

k9 0.25 fiber contribution to resist splitting and slipping

k10 240 fiber contribution to resist splitting and slipping

Vf 0.02 fiber volume fraction

5 CONCLUSIONS

A new, improved microplane model, called M6f, for mechanical behavior of fiber rein-
forced concretes has been reported. The new model improves upon its predecessors (i) by
eliminating the spurious contraction under tension that the earlier models suffered, (ii)
by predicting the tension-compression load cycles correctly, unlike the earlier versions,
(iii) by extending range of experimental data fitted to lower strength concretes. The
model performance has been calibrated and verified against numerous test data from the
literature.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) the loading/unloading rule under tension; test data with its prediction by the
model M6f for (b) Harex [8], (c) PVA [8], (d),(e) and (f) carbon steel fiber [7] reinforced
concrete.
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Abstract. The aim of this work is to study the effects of steel reinforcement array inside the 
RC beam-column connection as it is subjected to cyclic loading, through the numerical 
simulation of the joint adopting different stirrup’s arrays: in order to simulate a real case of 
study, two specimens extracted from an experimental test of 12 RC beam-column connections 
reported in literature are modelled in the FEAP code. About numerical simulations based on 
the Finite Element Method (FEM), the non linear response of the RC beam-column 
connection is evaluated taking into account the non linear thermodynamic behaviour of each 
component: for concrete, it is used a damage model; for steel reinforcement, a classical 
plasticity model is adopted; for steel-concrete bonding, a plasticity-damage model is applied. 
At the end, the experimental structural response is compared to the numerical results, as well 
as the distribution of shear stresses and damage inside the concrete core of the beam-column 
connection, which are analyzed for a low and high confinement. 

 
 
1 INTRODUCTION 

Nowadays, Reinforced Concrete (RC) is one of the most important hybrid materials used 
in the construction industry and consequently its efficient behaviour depends on different 
aspects basically related to structural design and constructive techniques. Both of them must 
fulfil with local regulatory requirements for structural security which, given the complex 
nature of RC, adopt a lot of technical simplifications in design rules and construction codes in 
order to reduce the effects of uncertainties. In the case of structural design, the 
accomplishment is done by specifying the geometrical dimensions of the structural element as 
well as the quantification and location of the respective steel reinforcement. Theoretically, the 
respect of these specifications must assure the loading capacity of the structural element, or in 
other words, a good transference of internal efforts and stress between concrete and steel bars. 
However, in some occasions a blind application of these design specifications complicates 
unnecessarily the construction work of the structural elements, in particular the beam-column 
connections, which are at the same time, the key-points for the structural stability of the whole 
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system. In the other hand, the unreasoned removing of steel bars might reduce dramatically 
the resistance of the joint, particularly in the event of an earthquake.  

Being the beam-column connection the main point of transmission of forces between 
horizontal elements (beams) and vertical elements (columns), it should provide enough 
stiffness to the structural system and because of this, there is a high concentration of stresses 
that potentially might produce any damage in concrete and/or plastic deformations on steel 
bars. That is the reason why beam-column connection is one of the most risky points of 
failure in RC structures. 

 
By the way, modern design is strongly dependent of the numerical method adopted for 

structural analysis –typically a standard finite element code- and the better prediction of the 
real response (efforts and displacements) is directly derived from the computational 
capabilities of the code. Modelling of any mechanical problem should include not only the 
definition of a set of load combinations, but also the selection of a proper finite element 
associated to efficient material models as well as a good representation of the real boundary 
conditions. Perhaps due to the complexity of a complete modelling, the local study of any RC 
connection is practically disregarded by structural engineers, while steel reinforcement array 
is basically proposed from practical recommendations extracted from limited experimental 
tests. In consequence, the quantity of steel reinforcement inside the connection might be 
overestimated or simply poor distributed. 

 
The aim of this work is to study the effects of steel reinforcement array inside the RC 

beam-column connection as it is subjected to cyclic loading, through the numerical simulation 
of the joint adopting different stirrup’s arrays and quantities. About numerical simulations 
based on the Finite Element Method (FEM), we evaluated the non linear response of the RC 
beam-column connection taking into account the non linear thermodynamic behaviour of each 
component: for concrete, we adopted the concrete damage model proposed by Mazars [1]; for 
steel reinforcement, we used a classical plasticity model with Von Mises criterion; for steel-
concrete bonding, an elastic-plastic-damage model [2,10] is applied. In order to calibrate the 
modelling, we adopted as an experimental reference the results reported by [3] for a RC 
beam-column connection. 

1.1 Basic concepts about beam-column connections 
According to [4], the beam-column connections may be classified following two criteria: 
- by the geometrical configuration of reinforcement, 
- by the local behaviour of the whole joint.  
 
In the first case, there are internal joints (if the steel bars of beams pass across the joint) 

and external joints (when the steel bars of beams are anchored into the joint). For the second 
case, there are elastic joints (if plastic articulations appear into the structural element –beam 
or column-) and inelastic joints (if any non linearity appears into the connection). The 
mechanisms of failure of the beam-column connection identified by different authors [5, 6, 7, 
8, 9] are the following: 
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- Beam reinforcement anchorage is not enough inside the joint and the bar slips, 
- Shear forces developed into the joint activate the inelastic response of the core of 

concrete. 
- A poor transference of shear forces may produce a failure plan between the joint and 

the beam, or between the joint and the column.  
In general, the most accepted criteria of failure out of the connection is the SC-WB (Strong 

Column – Weak Beam), which means that any plastic articulation should appear on the beam 
instead of on the column. 

 
2 ESSENTIAL COMPONENTS FOR THE NON-LINEAR MODELLING 

2.1 The experimental test of reference 
The experimental work carried out by Alameddine and Ehsani [3] consisted in reproducing 

the structural response of an external beam-column joint subjected to cyclic loading in order 
to verify the recommendations of the ACI-ASCE-352 code. The tests were classified in three 
groups of four specimens (see figure 1-a), each group with a specific concrete high resistance. 
Each specimen was designated by two letters and a number, indicating the level of the 
maximal joint shear stress (first letter), the level of confinement induced by the number of 
stirrups (second letter) and the value of the compressive strength. For example, the LH11 
denomination designates a specimen with a Low shear stress, High confinement level, and a 
compressive strength of 11 ksi. In other words, these three variables were observed and 
studied: 

a) The compression strength of concrete (55.8 MPa (8 ksi), 73.8 MPa(11 ksi) and 93.8 
MPa  ( 14ksi) respectively);  

b) The maximal value of the shear stress into the connection, with a minimal value of 7.6 
MPa (1100 psi) and a maximum of 9.7 MPa (1400 psi); and  

c) The contribution of the stirrups by improving the confinement of the core of concrete 
(see Table 1 for stirrup characteristics). 

Table 1: Reinforcement on the transversal section of specimen’s elements 

Specimen LL LH HL HH 
As1c 

    
2 # 8, 1 # 7 2 # 8, 1 # 7 3 # 8 3 # 8 

As2c 
    

2 # 7 2 # 7 2 # 8 2 # 8 
As3c 

    
2 # 8, 1 # 7 2 # 8, 1 # 7 3 # 8 3 # 8 

As1b 
    

4 # 8 4 # 8 4 # 9 4 # 9 
As2b 

    
4 # 8 4 # 8 4 # 9 4 # 9 

Number of stirrups 
   

4 6 4 6 
t 

    
1.2 1.8 1.2 1.8 

hs/db,col 
    

20 20 20 20 
Development length ldh (inches) required for f’c=8,000 (psi) 

(Recommendations 1985) 8.9 8.9 10.0 10.0 

Development length ldh (inches) 10.5 10.5 10.5 10.5 
Notes:  

1 psi = 6.89 kPa; 1 inch = 25.4 mm; L: Low; H: High; 
the first letter indicates the level of shear stress; the 

second letter indicates the level of confinement. 
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Based on a cyclic controlled displacement test (see figure 1-b), the initial displacement in 

the free edge of the beam was of ± ½ inches (13 mm), being increased  in ± ½ inches (13 mm) 
in each cycle of loading; during the test a small axial load was applied in the top of the 
column. 

 
At the end of the test, they reached distortions up to 7% corresponding to a maximum 

displacement of 4 ½ inches (114 mm), concluding that: 
- Elevated shear stresses reduce significantly the load capacity of the connection. 
- The value of the ultimate shear stress recommended by the ACI-ASCE-352 for the 

joint was lower than the value observed in the experimental tests for high resistance 
concrete. 

- The increment of transversal reinforcement reduces the deterioration into the 
connection, avoiding the failure of the reinforcement anchorage. 

 

 

 

(a) (b) 
Figure 1: Description of the experimental test: (a) dimensions of the specimen, in inches; (b) Mounting of the 

experimental test 

2.2 Brief description of the non linear models adopted for different material behaviours 
One of the main ideas of this research was to adopt and combine different non linear 

models based on a thermodynamic formulation, in order to include in the structural response 
the effects of the different dissipative phenomena associated to each inelastic material 
behaviour. 
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Concrete behaviour: the non linear damage model of Mazars. 
The model of Mazars [1] was specially conceived for the particular behaviour of concrete, 

which is different in compression compared to traction. As any other model of damage, this 
model is based on the calculation of an effective stress (equation 1) which is function of two 
scalar damage variables,    and    -traction and compression damage respectively- (equations 
2,3). Nevertheless, instead of building the surface of failure in the space of stresses, this one is 
built in the space of strains, needing the calculation of an equivalent strain (equation 4). 
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In the last equations,                 are model parameters which can be determined from 
experimental tests; for this work, their values are presented in Table 2. 

Table 2: Material parameters for the damage model of Mazars 

   1.446 
     1570 

    7.428E-05 

   0.97 
     8000 

f'c (PSI)   81 
Confinement index   1.06 

ft (PSI)   407.49 

Steel behaviour: a classical non linear plasticity model with hardening. 
For the steel bars, a classical elasto-plastic model based on Von Mises Criterion was 

chosen, which includes isotropic hardening. 

Bond behaviour: a non linear plasticity-damage model based on a non-width finite element. 

An elastic-plastic-damage model for bonding [10] was adopted in the formulation due to 
its various advantages: a) thermodynamics formulation, written in stress-strain terms; b) 
capacity of coupling between: “cracking and frictional sliding”, and “tangential and normal 
stresses”; c) able to take account of confinement influence and lateral pressure; d) great 
stability for monotonic and cyclic loading. This model was already used in the prediction of 
the structural response of tie tests [2], and its robustness is supported by a 2D non-width 
interface element, which is fully described in [11]. 
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3 NUMERICAL ANALYSIS OF THE BEAM-COLUMN CONNECTION 

3.1 Hypothesis, limitations and strategy of the proposed modelling  
In order to make our simulations, we have chosen the finite element code FEAP v.7.4 [12], 

an open-source code with license in which is possible to implement user material models and 
user finite elements. The models of Mazars and bonding were specifically integrated into the 
code, but the last one is only available for a 2D formulation. For this reason and due to the 
limitations in memory capacity, we have decided to model in a 2D-space the beam-column 
connection, which may provide acceptable results –in comparison with 3D models- if some 
simplifications are made. For example, in a real RC structural element, the steel reinforcement 
forms a cage embedded into the concrete, inducing a particular concentration of stresses in the 
concrete around each bar; however, taking into account that bending is acting only in one 
plane, and assuming that the most important shear stresses might be developed in the same 
plane, it is possible to “homogenize” the steel reinforcement in layers for a 2D simulation. In 
the case of the stirrups, only the branches parallel to the bending plane are taken into account, 
modelled with one truss element whose transversal section corresponds to the total area of the 
stirrups. Because the concrete cannot develop large rotations, any possible geometrical non 
linearity was not considered into the model. 

 
In which concerns to the adopted strategy, we followed the next steps: 
 
a) Selection of the experimental reference 
b) Definition of the cases to simulate:  

o only longitudinal steel without stirrups;  
o with minimal quantity of stirrups;  
o with the quantity of stirrups indicated in experimental test, 

c) Cases with bond material model (still in progress): 
o Bonding included only in the flexural steel 
o Bonding included in all of the reinforcement 

d) Comparison of results 

3.2 Construction of the model 
According to the proposed strategy, among the 12 corner-reinforced concrete beam-

column subassemblies reported in the experimental reference, we selected the LL11 and 
LH11 specimens, having both of them the same geometrical and material properties, except 
for the number of stirrups inside the core of concrete (four stirrups for “Low confinement”, 
and six stirrups for “High confinement”). 

  
The basic model was constructed in a 2D space based on a plane strain formulation, using 

QUAD4 elements (4-node quadrangular element with 4 integration points) for the concrete 
body and TRUSS2 elements (2-node bar element) for the steel reinforcement. Initially, the 
reinforcement was modelled with QUAD4 elements as well, but due to their minimal 
dimensions, there were some numerical problems by a non-realistic excessive concentration 
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of stresses around the union between longitudinal steel and the stirrups. In which concerns to 
the bonding, two non-width interface elements were initially placed between the concrete 
QUAD4 element and the steel QUAD4 element –one on each side of the steel-, but due to the 
numerical instabilities mentioned previously, they were replaced by a unique interface 
element linking the steel rebar to the concrete elements: this numerical solution is still in 
progress. 

 
About boundary conditions, bottom face of the column is fully-restrained, while the top 

face was constrained only in the transversal direction because a constant axial load was 
applied and distributed at the same face. By the way, the free edge of the beam is restrained in 
the axial direction, with a cyclic displacement imposed in its transversal direction (see figure 
2-a). 

 
In the experimental test, at least eight displacement transducers were positioned in order to 

follow the evolution of displacements over the concrete face of the joint (see figure 2-b). In 
the same way, we followed the numerical evolution of these points, in order to construct the 
corresponding load-displacement response. 

 

 
 

(a) (b) 
Figure 2: Meshing of the beam-column connection: (a) boundary conditions and reinforcement array; (b) points 

of observation of the stress-strain relationship according to the experimental tests. 
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(a) (b) 

  
(c) (d) 

Figure 3: Load-displacement structural response of the beam-column connection: (a) experimental curve for 
specimen LL11; (b) experimental curve for specimen LH11; (c) numerical curve for specimen LL11; (d) 

numerical curve for specimen LH11. 
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Figure 4: Shear stress distribution on specimen LL11 (low confinement) for a displacement of 3.5 inches. 

  
Figure 5: Shear stress distribution on specimen LH11 (high confinement) for a displacement of 3.5 inches. 
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Figure 6: Damage distribution on specimen LL11 (low confinement) for a displacement of 3.5 inches. 

 
 

Figure 7: Damage distribution on specimen LH11 (high confinement) for a displacement of 3.5 inches. 
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4 DISCUSSION OF RESULTS 
In the next paragraphs, we will discuss the numerical results of the modelling coupling the 

nonlinear behaviour of steel and concrete. It should be mentioned that they do not include the 
bonding cases, which are still in progress. So on, first at all we compare the structural 
response of the two specimens, both experimental and numerical, in figure (3). Figures (3-a) 
and (3-c) correspond to the LL11 specimen, in which the maximal load capacity was reached 
between 40 and 45 kips for a displacement near to two inches. For the LH11 specimen, 
figures (3-b) and (3-d) show a maximal load capacity near to 60 kips, very close to three 
inches of displacement. By comparing experimental curves with numerical results, it can be 
appreciated that some key-values are very similar (maximal load capacity associated to the 
lateral displacement), but their shapes are far away from any similitude. In numerical curves, 
all the unloading branches go directly to the origin, without any accumulated permanent 
displacement as it is observed in the experiments. Typically, the origin of these permanent 
displacements is associated to the crack friction on concrete. For cyclic loads, the damage 
model of Mazars includes only the slope variation of the elastic unloading, since cracks on 
concrete are closed as soon as there is a reversibility of loading, assuming no friction on 
cracks. Because of this, it is not possible to reproduce numerically any dissipative boucle or 
permanent deformation. This was already explained by Ragueneau et al. [13], who presented 
a modified version of Mazars model which includes these effects. 

 
Figures (4) and (5) show the distribution of shear stresses inside the specimens. In both of 

them, the concentration of stresses is determined by the disposition of the stirrups, being 
greater the affected area when the reinforcement is lower inside the core. In fact, when no 
stirrups are placed inside the core, the damage is reached almost immediately, even if the 
longitudinal bars of the column and beams pass through the joint. Other relevant points 
observed in numerical simulations are the following: (a) in both cases, the highest value of 
shear stress was reached on the beam, and not in the column or in the connection; (b) when 
the number of stirrups is increased inside the core, the principal damage is placed out of the 
core, exactly in the plane of connectivity between the beam and the core of the connection 
(see figure 7); and (c) if the constant axial load on the column is not included in the 
modelling, the resistance of the beam-column connection decreases substantially (according 
to [14]). 

 
In general, all the simulations stopped as soon as a non convergence condition was 

reached. Sometimes this problem was solved by reducing the time step, in particular in the 
picks of the displacement when unloading started. From a physical point of view, this non 
convergence corresponds to the instant when a set of concrete elements reaches a high level of 
damage. Figures (6) and (7) show the level and distribution of damage in concrete for both 
specimens respectively. Apparently, damage is higher in LH11 specimen, but in reality is 
better distributed along the stirrups, although the numerical value seems to be elevated. The 
implementation of bond elements must reduce this effect on the concrete body, as it was 
demonstrated in [2], due to the redistribution of stresses induced by bonding, which allows a 
small slip between steel bars and concrete, avoiding a false premature degradation of concrete 
as it is observed in these simulations. 
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5 CONCLUSIONS 
In this work, we have focused in modelling the non linear structural response of a beam-

column connection subjected to cyclic loading. Thus, we have: (a) modelled different cases of 
beam-column connection and reproduced their experimental structural response, including 
different material models for steel and concrete (elasto-plastic and damage models 
respectively); (b) corroborated the influence of the stirrups in the resistance of the connection; 
and (c) analyzed the damage distribution inside the core of the connection. 
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Université Paris-Est/IFSTTAR
58 boulevard Lefebvre

75732, Paris cedex 15, France
e-mail: michael.peigney@ifsttar.fr

Key words: Computational Plasticity, Shape memory alloys, Thermomechanical cou-
pling, Linear complementarity problem

Abstract. Shape Memory Alloys (SMA) offer new perspectives in various fields such as
aeronautics, robotics, biomedicals, or civil engineering. Efficient design of such innovative
systems requires both adequate material models and numerical methods for simulating
the response of SMA structures. Whereas much effort has been devoted to developing
constitutive laws for describing the behaviour of SMAs, the structural problem (i.e. the
simulation of a three-dimensional SMA structure) has received far less attention, in spite
of substantial difficulties notably due to the strong thermomechanical coupling and the
presence of physical constraints on the internal variables. The time-discretization of the
evolution problem obtained is not obvious, and special care must be taken to avoid con-
vergence difficulties and ensure robustness of the numerical schemes. Computation time
and ease of implementation (for instance in an existing finite element code) also are ma-
jor issues that need to be addressed. In this communication are presented some recent
results in that direction. A central result is a recent time-discretization scheme for the
thermomechanical problem. A variational formulation is attached to the corresponding
incremental problem, allowing one to prove the existence of solutions for a large class
of usual SMA models. The variational nature of the problem at hand also calls for an
easy implementation in an existing finite element code, building on well-established de-
scend algorithms. Using that approach, the solution of the thermomechanical incremental
problem is typically obtained by solving a sequence of linear thermal problems and purely
mechanical (i.e. at prescribed temperature) nonlinear problems. That approach is fairly
general and applies for a wide range of SMA models. The numerical scheme for solving
the purely mechanical problem, however, strongly depends on the particular model that
is used. In a micromechanical modelling of SMAs, the phase transformation is described
locally by an internal vectorial variable which is physically constrained to satisfy a set
of inequalities at each point. We show that the corresponding incremental problem can
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be recast as a linear complementarity problem, for which efficient algorithms (such as
interior-point methods) are available. That reformulation essentially consists in a change
of variables. In terms of variational formulation, that approach amounts to replace a con-
vex but non-quadratic minimization problem with an equivalent quadratic minimization
problem.

1 COUPLED THERMOMECHANICAL EVOLUTIONS

We consider the evolution problem of an arbitrary SMA structure, in quasi-statics
and under the assumption of small strains. The structure occupies a domain Ω and is
submitted to body forces f d and tractions T d, the latter being applied on a portion ΓT

of the boundary. Prescribed displacements ud are imposed on ΓU = ∂Ω − ΓT . The
temperature θ is set equal to θd on a portion Γθ of ∂Ω, and the heat flux qd is imposed
on a portion Γq such that Γq ∩ Γθ = ∅ . On the remaining part Γr = ∂Ω − Γq − Γθ of
the boundary, the heat flux is given by K ′(θ − θR) where K ′ is a (positive) heat transfer
coefficient between the system and its environment. The functions f d, T d, ud, θd, qd

describing the thermomechanical loading depend on the position x and on the time t.
In the domain Ω, the heat flux q is supposed to satisfy the Fourier’s law with a thermal
conductivity K. The displacement, stress and temperature are denoted by u, σ and θ
respectively.

In a mesoscopic modelling of SMAs, the local state of the material is described by the
variables (ε, ξ, θ) where ε is a strain and ξ is a (possibly vectorial) internal variable
tracking the phase transformation. That variable ξ must generally satisfy a condition of
the form ξ ∈ T where T is a given bounded set (see Section 3 for an explicit example).
Denoting the free energy of the material by w and the dissipation potential by φ, the
evolution of the system is governed by the following system (see [2] and references therein
for more details) :

σ =
∂w

∂ε
, B = −∂w

∂ξ
, s = −∂w

∂θ
(1.1)

ε = (∇u + t∇u)/2 (1.2)

−K∇θ.n = qd on Γq, −K∇θ.n = K ′(θ − θR) on Γr (1.3)

u ∈ Ku , σ ∈ Kσ , ξ ∈ Kξ , θ ∈ Kθ (1.4)

B = Br + Bd (1.5)

Br ∈ ∂IT (ξ) , Bd ∈ ∂φ(ξ̇) (1.6)

K∆θ + Bd.ξ̇ − θṡ = 0 (1.7)

2
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where the sets Ku, Kσ, Kξ, Kθ are defined by

Ku = {u|u = ud on Γu}
Kσ = {σ|div σ + f d = 0 in Ω; σ.n = T d on ΓT}
Kξ = {ξ|ξ ∈ T in Ω}
Kθ = {θ|θ = θd on Γθ}

(2)

In (1), IT is the indicator function of the set T (equal to 0 in and infinite outside) et ∂
denotes the subdifferential [1]. In the heat equation (1.7), the thermomechanical coupling
is embedded both in the entropy-related term θṡ (which contains the latent heat effect)
and in the dissipative term Bd.ξ̇.

2 TIME-DISCRETIZATION OF THE EVOLUTION PROBLEM

2.1 Incremental problem

To solve a system such (1), one generally resorts to a space- and time-discretization
strategy. The space discretization is generally supplied by a finite element method. The
time discretization consists in introducing a finite time-step problem for estimating the
solution (u,σ, θ) at a given time t0 + δt, supposing that (u0, σ0, θ0) at time t0 are known.
For the system considered, a common finite time-step problem is supplied by the back-
wards Euler scheme, which can be formulated as follows:

(u, ξ, θ) verifies (1.1)-(1.4) at t0 + δt (3.1)

B = Br + Bd (3.2)

Br ∈ ∂IT (ξ) , Bd ∈ ∂φ
(
(ξ − ξ0)/δt

)
(3.3)

Kδt∆θ − θ0(s − s0) + Bd.(ξ − ξ0) = 0 (3.4)

where s0 = s(ε0, ξ0, θ0). A major drawback of this scheme is that the existence of a
solution to (3) is not guaranteed. Let us develop this point: if θ is known, then the purely
mechanical finite-step problem (3.1-3) has a solution. Similarly, if (u, ξ) is fixed, then the
thermal problem (3.4) also has a solution. However, one cannot ensure the existence of
a solution (u, σ, θ) to the coupled thermomechanical problem (3.1-4). This is intimately
connected to the non-existence of a variational formulation corresponding to (3).

Such difficulties can be avoided by using the following finite time-step problem:

(u, ξ, θ) verifies (1.1)-(1.4) at t0 + δt (4.1)

B = Br +
θ

θ0
Bd (4.2)

Br ∈ ∂IT (ξ) , Bd ∈ ∂φ
(
(ξ − ξ0)/δt

)
(4.3)

Kδt[∆θ +
∇θ0

θ0
.∇(θ0 − θ)] − θ0(s − s0) + Bd.(ξ − ξ0) = 0 (4.4)

3
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It can be verified that - just as the more intuitive scheme (3) - the incremental problem
(4) is a consistent time-discretization of (1), in the sense that (3) coincides with (1) in the
limit δt → 0 [3, 4]. Motivation of the scheme (3) is that a variational formulation can be
given, allowing one to study the existence of solutions. More precisely, it can be proved
that solutions of (3) are solutions of the following variational problem

find (u, ξ, θ) ∈ Ku ×Kξ ×Kθ such that for all (u∗, ξ∗, θ∗) ∈ Ku ×Kξ ×Kθ :
0 ≤ ∂F [u, ξ, θ].(u∗ − u, ξ∗ − ξ, θ∗ − θ)

(5)

where F(u, ξ, θ) = Fe(u, ξ, θ) + Fd(ξ, θ) + F θ(θ) and

F e(u, ξ, θ) =

∫

Ω

w(ε(u), ξ, θ) dω −
∫

Ω

f d.u dω −
∫

ΓT

T d.u da

Fd(ξ, θ) = δt

∫

Ω

φ
( θ

θ0

ξ − ξ0

δt

)
dω

Fθ(θ) =

∫

Ω

θs0 dω + δt

∫

Ω

K(−1

2

1

θ0
‖∇θ‖2 + (

‖∇θ0‖
θ0

)2θ) dω

−δt

∫

Γq

qd

θ0
θ da − K ′ δt

2

∫

Γr

(θ − θR)2

θ0
da

(6)

Assume in particular that (i) the free energy w is convex in (u, ξ) and concave in θ, (ii)
the dissipation potential φ is positively homogeneous of degree 1 (which corresponds to
a rate-independent dissipative behaviour). Note that those assumptions are satisfied by
a wide range of SMA models (see Section 3 for some examples). In such a situation, the
problem (5) can be rewritten as

max
θ∈Kθ

J(θ) (7)

where
J(θ) = Fθ(θ) + min

(u,ξ)∈Ku×Kξ

{F e(u, ξ, θ) + Fd(ξ, θ)} (8)

Moreover, the maximization problem (7) admits some solutions (provided adequate func-
tional spaces are chosen for Ku, Kξ, Kθ), which ensure existence of solutions to the ther-
momechanical incremental problem (4) .

2.2 A maximization approach

To solve a problem such as (3) or (4), a general strategy is to solve directly the lo-
cal equations using a Newton-Raphson algorithm. In such a framework, a partitioning
approach is often used: the mechanical and the thermal subproblems are decoupled and
solved successively until convergence. The global convergence of such methods is not
ensured, and in practice one can face difficulties of convergence when for instance the
initial guess is not close enough to the solution. Observe that, in the case of (4), such
strategies ignore the variational nature of the problem at hand. As an alternative, using

4
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the variational formulation of the problem, the solution of (4) can notably be found by
solving the maximisation problem (7). A lot of well-known methods can be used to solve
such a problem, some of them being built-in functions of scientific calculation softwares.
Such methods (such as BFGS for instance) are iterative and require the computation of
J and its gradient J ′ (or at least of an ascend direction). In this regard, note from (8)
that the calculation of J(θ) amounts to solve the minimization problem

min
(u,ξ)∈Ku×Kξ

F e(u, ξ, θ) + Fd(ξ, θ) (9)

for which the local equations (expressing the stationarity of the functional) read as

u ∈ Ku , σ ∈ Kσ , ξ ∈ Kξ

Bd ∈ θ

θ0
∂φ(

ξ − ξ0

δt
) , Br ∈ ∂IT (ξ)

σ =
∂w

∂ε
, B = −∂w

∂ξ
B = Bd + Br

(10)

Those equations correspond to the backwards Euler scheme for an isothermal problem,
with a dissipation potential set equal to (θ/θ0)φ. The calculation of J(θ) is thus equiva-
lent to solving a incremental problem at a fixed temperature field. It can be proved that
the calculation of the gradient J ′(θ) is equivalent to solving a linear thermal problem. As
a conclusion, using the variational framework described so far, the solution of the ther-
momechanical incremental problem can be obtained by solving a sequence of mechanical
problems at a fixed temperature field (for evaluating J(θ)) and linear scalar problems
(for evaluating J ′(θ)). Therefore, that methods allows for a simple implementation of
the thermomechanical problem, provided a solver for the isothermal problem is available.
That last point is the focus of the next section.

3 CASE OF MICROMECHANICAL SMA MODELS

3.1 Micromechanical modelling

In most of micromechanical models of monocrystalline shape memory alloys, the in-
ternal variable ξ is taken as (ξ1, · · · , ξn) where n is the number of martensitic variants
and ξi denotes the volume fraction of martensitic variant i. The volume fraction ξ0 of
austenite is given by ξ0 = 1 − ∑n

i=1 ξi. Since each volume fraction ξi (i = 0, · · · , n) must
be positive, the variable ξ is required to take values in the convex and closed subset T of
Rn defined as

T = {ξ ∈ Rn|ξi ≥ 0 ∀i; ξ.1n ≤ 1} (11)

where 1n is the vector of Rn with all its components equal to 1. Most of micromechanical
SMA models are based on free energy functions of the form

w(ε, ξ, θ) =
n∑

i=0

ξiwi(ε, θ) + hmix(ξ) (12)

5
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where w0(ε, θ) = (1/2)ε : L : ε is the free energy of the austenite (with L symmetric
positive definite) and

wi(ε, θ) =
1

2
(ε − εtr

i ) : L : (ε − εtr
i ) + c(1 − log

θ

θ0

) + λT
(θ − θT )

θT

(13)

is the free energy of the martensitic variant i. In (13), εtr
i is the transformation strain of

martensitic variant i, c is the heat capacity, θT is the transformation temperature, and
λT is the latent heat of the austenite → martensite transformation at temperature θT .
The term hmix in (12) is the interaction energy between the different variants. In the
following, we will consider interaction energy hmix of the form

hmix(ξ) =
1

2
(εtr.ξ) : L : (εtr.ξ) + (J − J tr).ξ +

1

2
ξ.H .ξ (14)

where H ∈ Rn×n is symmetric positive and J is a given vector of Rn. In such case, w is
convex in (u, ξ). Functions of the form (14) have notably been used in [5, 6] with H and
J equal to 0, in which case the obtained expression of w can be proved to be a rigorous
lower bound on the effective free energy that would be obtained from relaxation [5, 7].
Concerning the dissipation potential, a classical choice, directly inspired from crystalline
plasticity, is to take φ as

φ(ξ̇) = G+.〈ξ̇〉+ + G−.〈ξ̇〉− (15)

where 〈x〉+ is the positive vector whose component i is max(0, xi). Similarly, for any
vector x, 〈x〉− is the positive vector with components max(0,−xi). In (15), G+ and G−

are two given positive vectors of Rn.

3.2 Space discretization

In the following, we discuss the implementation of the general approach presented in
Section 2 for the class of micromechanical SMA models introduced in the preceeding
subsection. We focus on the problem (9), for which the temperature field θ is fixed. As
explained in Section 2, that purely mechanical problem is indeed the central building
block for solving the thermomechanical incremental problem.

The problem (9) is solved by a Galerking approach, i.e. (9) is replaced by

min
(u,ξ)∈K̃u×K̃ξ

F e(u, ξ, θ) + Fd(ξ, θ) (16)

where K̃u and K̃ξ are finite-dimensional subsets of Ku and Kξ, respectively. Any u ∈ K̃u

admits a representation of the form

u(x) = Mu(x).v (17)

where v ∈ RM and Mu : Ω �→ R3×M is a given function. The vector v would typically
correspond to the nodal displacement vector if the finite element method is used. The

6
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admissibility conditions u = ud on Γu might set restrictions on the admissible values of the
vector v. However, to simplify the presentation, we assume that ud = 0, so that the vector
v can be considered as free from any constraint. Concerning the space discretization of
ξ, we assume here that functions in K̃ξ are piecewise constant. More precisely, we assume

the existence of a decomposition Ω =
⋃N

i=1 Ωi such that any ξ ∈ K̃ξ takes a constant value
(denoted by ξi) on Ωi. In such case, functions ξ in K̃ξ can be written as

ξ(x) =
N∑

i=1

χi(x)ξi (18)

where χi is the characteristic function of Ωi and ξi ∈ T . The vector (ξ1, · · · , ξN) is
denoted by ξ.

Substituting (17) and (18) in the expression of F e + Fd, the problem (16) takes the
form

min
v∈RM ,ξ∈T N

1

2
v.K.v +

1

2
ξ.B.ξ − v.C.ξ − v.F u + ξ.F ξ + Φ(ξ − ξ0) (19)

where the matrices K and B are both symmetric positive definite, the former corresponding
to the standard stiffness matrix (see [10] for more details). The function Φ that appears
in (19) is the convex function defined by

Φ(ξ) =

∫

Ω

θ

θ0
φ(

N∑
i=1

χi(x)ξi)dω =
N∑

i=1

piφ(ξi) with pi =

∫

Ωi

θ

θ0
dω (20)

The function in (19) being quadratic with respect to v, the minimization with respect to
v in (19) can be performed in closed form. The problem (19) is found to reduce to

min
ξ∈T N

1

2
ξ.K′.ξ − ξ.F ′ + Φ(ξ − ξ0) (21)

with
K′ = B − CT .K−1.C , F ′ = CT .K−1.F u + F ξ (22)

It can be verified that the symmetric matrix K′ is positive [10]. Consequently, the function
to minimize in (21) is convex (but not quadratic) with respect to ξ. Using standard results
from convex analysis [1], the problem (19) can be rewritten as

−K′




ξ1
...

ξN




+ F ′ =




Br
1

...
Br

N




+




Bd
1

...
Bd

N




ξi ∈ T , Br
i ∈ ∂IT (ξi) , Bd

i ∈ pi∂φ(ξi − ξ0
i ) for i = 1, · · · , N

(23)

The issue of practically solving that problem is the focus of the next subsection.

7
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3.3 Formulation of a linear complementarity problem

The identity matrix of Rn×n is denoted by In, and E denotes the nN ×N matrix with
the following block structure

E =




1n 0 0

0
. . . 0

0 0 1n


 (24)

For latter reference, we also introduce the two vectors G̃
+

and G̃
−

of RnN defined by

G̃
+

=





p1G
+

...
pNG+





, G̃
−

=





p1G
−

...
pNG−





(25)

Consider now a solution (ξj, B
r
j , B

d
j )1≤j≤N of (23) and define

α+
j = pjG

+ − Bd
j , µ+

j = 〈ξj − ξ0
j〉+

α−
j = pjG

− + Bd
j , µ−

j = 〈ξj − ξ0
j〉−

γj = 1 − 1n.ξj

(26)

Since T takes the form (11) and Br
j ∈ ∂IT (ξj), there exists zj ∈ R and aj ∈ Rn [10] such

that
Br

j = zj1n − aj , zj ≥ 0 , aj ≥ 0 , aj.ξj = zj(1 − ξj.1n) = 0 (27)

Define

α± =




α±
1
...

α±
N


 , µ± =




µ±
1
...

µ±
N


 , a =




a1
...

aN


 , γ =




γ1
...

γN


 , z =




z1
...

zN


 (28)

Setting k = (3n + 1), we consider the two following vectors of Rk:

s =




α+

α−

ξ
γ


 , x =




µ+

µ−

a
z


 (29)

Using the relations (23), it can be verified that (x, s) are solution of the problem

Find x ∈ Rk and s ∈ Rk such that s = M.x + q , s ≥ 0 , x ≥ 0, s.x = 0 (30)

where M ∈ Rk×k and q ∈ Rk are defined by

M =




K′ −K′ −InN E
−K′ K′ InN −E
InN −InN 0 0
−ET ET 0 0


 , q =




G̃
+ − F ′ + K′.ξ0

G̃
−

+ F ′ − K′.ξ0

ξ0

1N − ET .ξ0


 (31)

8
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Conversely, it can easily be verified that any solution of (30) generates a solution of
the incremental problem (23), so that the two problems (23) and (30) are equivalent.
The motivation of that reformulation is that (30) is a standard problem in mathematical
programming. It is known as a Linear Complementarity Problem (LCP) and has been
extensively studied [8, 9]. In particular, efficient numerical algorithms, such as interior-
point methods, have been developed and are now available in various toolboxes. That
reformulation thus allows for an easy and efficient way of solving the incremental problem,
building on existing algorithms suited to large-scale problems. Is should be mentionned
that solving a LCP amounts to solve a quadratic minimization problem (with linear
constraints). As a consequence, the change of variables (26) allows us to turn the convex
but non quadratic problem (23) into an equivalent quadratic problem, easier to solve.
Some examples of numerical simulations are presented in [10].

It would be interesting to study if the proposed method could be extended to more
sophisticated micromechanical models, in order to account for crystalline texture [7] or
large strain effects [11].
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Structural adhesives often show large inelastic behaviour before failure [1]; however the 
modelling of the 3D elasto-plastic behaviour of adhesives is not straightforward. Indeed, 
advanced models taking into account the hydrostatic pressure dependency and defined under a 
non-associated formalism ([1- 4]) are needed for an accurate description of adhesive materials 
under a wide range of loads covering tension, shear, mixed tension/compression-shear loads. 
This study presents the assessment of two non-associated elasto-plastic models: the Exponent 
Drucker-Prager model, and the Mahnken-Schlimmer model [3], using a large experimental 
database obtained with a modified Arcan apparatus [5] on a structural adhesive. The aim is to 
develop a reliable numerical model in order to obtain good numerical predictions of the real 
behaviour of complex industrial type bonded assemblies.  
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In a context of the growing importance of composite in modern commercial aircrafts, bonding 
has kept gaining in importance in the design of airframe components over the last 40 years, 
and is now to be used extensively [6]. 
 
In order to model the local behaviour of a bonded assembly and to achieve a good prediction 
of crack onset within the adhesive, it is necessary to develop non-linear constitutive laws 
well-suited for adhesive materials.  
 
It is well known that the yielding and the plastic flow behaviour of epoxy adhesives depend 
on the hydrostatic stress component ([1-4], [7-12]). Besides, recent studies tend to prove that 
non-associated formalism ([3,4,11,12]) is also needed for a good description of the high ratio 
between the normal and the tangential non-linear deformations of adhesives subjected to 
mixed tensile/compression-shear loads. This makes the characterization and the 3D modelling 
of such behaviour under a wide range of loads all but straightforward, since several 
parameters have to be identified, which involves using several load test configurations. 
 
The aim of this paper is to present the identification and the validation of two elasto-plastic 
models using experimental results obtained by means of a modified Arcan test [5]. This test 
presents the advantages of requiring a unique apparatus mounted on a tension machine and 
only one type of bonded specimen design, while offering a wide range of proportional loads 
from tension, shear, mixed tension-shear and compression-shear with different ratios.  
Using these characterization results, a simplified inverse identification approach using FEA is 
proposed for two models: the Exponent Drucker-Prager model and the Mahnken-Schlimmer 
model [3]. Both of these models have been shown recently to be well suited for the modelling 
of adhesive materials ([3,11,12]) in a tension-shear domain.  
 
The particularity of this study lies in the fact that a whole wide range of proportional loads, 
including mixed compression-shear, are covered and that only experimental results obtained 
using a modified Arcan apparatus test results are used for the identification of the models and 
a first validation. 
 

2. EXPERIMENTAL RESULTS 
 

2.1 Presentation of the modified Arcan test used 
 

The adhesive considered for this study is the Redux 420 A/B of Huntsman [13], a bi-
component epoxy-based paste.  
 
The device used is the modified Arcan test presented in figure 1. It aims to load with different 
ratios of shear and tension or compression (given by γ the angle of load defined in figure 1-a) 
a single configuration of bonded assemblies loaded with a standard tensile testing machine. 
The bonded specimens (figure 1-b) are made of substrates in 2017 aluminium designed with 
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beaks all around the surfaces to be bonded according to the geometry presented in figure 1-c. 
A rounded shape is also applied to the adhesive layer at the edges by “cleaning” immediately 
after the application of the adhesive. This specific design enables us to significantly limit the 
influence of edge effects (i.e. stress concentrations) that can lead to premature crack onset and 
thus misunderstanding of the results. More details on the design and advantages of the system 
can be found in [4] and [5].  
 
The measurements were made using 3D video correlation [14]. This enables the displacement 
field to be recorded against the applied load at the centre of the bonded joint. Relative 
displacements between the two substrates in the two directions, called DT for the tangential 
one and DN for the normal one, at a given length from the adhesive layer are then post-
processed respectively against the tangential (FT) and normal (FN) transmitted load 
components.  
 

  

 

 

 
 

(a) (b) (c) 
Figure 1: Modified Arcan apparatus with the definition of the angle of load ratio: γ  Bonded assembly (a) and 
specific design of the beaks (b) to limit edge effects within the adhesive layer (c) geometry of the beaks. 

 

2.2 Experimental results 
 
The adhesive layer for all the specimens considered in this study was 0.4 mm thick and the 
load was imposed by a constant velocity of the crosshead of the tensile testing machine of 0.5 
mm/min. 
 
The results obtained are presented by the dotted lines in figure 4 for γ = 0° (tension load) and 
90° (shear) and in figures 5-a, 5-b and 5-c for γ =30°, 45° (mixed tension-shear) and 135° 
(compression-shear) respectively. In figure 5, N and T represent respectively the results 
obtained in the normal and the tangential directions.  
 
For mixed loads (30°, 45°, 135°) an important ratio between DN and DT can be noted. 
Indeed, when failure is reached, |DT/DN| is equal to 3.2 at 30° and 7 at 45°.  
The response of the bonded assembly also exhibits large inelastic behaviour and the relative 
tangential displacements at failure are in the order of the adhesive thickness. Because the 
substrates remain in their elastic domain, and assuming a constant strain rate between the 
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different load ratios, the behaviour can be first approximated as elasto-plastic for the adhesive 
considered here (under such conditions viscous effects can be neglected). 
The aim is thus to propose a 3D elasto-plastic model that enables the most accurate 
description of the adhesive material over the whole range of load ratios considered.  
 

3. INVERSE IDENTIFICATION OF THE EDP AND THE MS MODELS 
 
Two models were considered: the Exponent Drucker-Prager (EDP) model, as implemented in 
Abaqus FE code [15] and the Mahnken-Schlimmer (MS) model that has been implemented as 
a user subroutine in Abaqus as proposed by [3]. Both of them take into account the 
dependence of the yield surface and the flow rule on the hydrostatic stress component. They 
have been proved to be well-suited for the modelling of structural adhesive behaviour [1-3, 
11, 12] under tension-shear loads.  
 

3.1 Description of the constitutive laws 

 
The Yield functions of the EDP and the MS models are respectively given by 00 EDPF and 

00 MSF  with: 

 00 t
b
VM

EDP ppaF     (1)

 0
2

201
2

0 YpapYaF VM
MS    (2) 

  

where: p is the hydrostatic stress component, VM is the von Mises stress, and (a,b, pt0) and 
(a1, a2, Y0) are material parameters to be identified. 
 
They both have a quadratic form in the Mises stress- hydrostatic stress plane. However, the 
MS model is an ellipse-like surface whereas the EDP is an open parabola in the direction of 
negative hydrostatic stress component: hence, the yielding limit is never reached under a pure 
compressive hydrostatic load for the latter criteria. 
 
For the MS model, the hardening is given by the three parameters q, b and H, with: 
  

 v
be HeeqYY v   )1(0   where 

pl
vYe   :0   (3) 

  

For the EDP model, it is given by:  

 pt = a (t)
 b +  

t
3    where :t = 

0
~  + Kep (4) 

 

There are thus only two parameters, K and 
0

~ , to be identified. 
 



834

Julien Maurice, Jean-Yves Cognard, Romain Créac’hcadec, Laurent Sohier, Peter Davies, Georges Meirinhos, 
Stéphane Mahdi 

 5 

Considering the flow rule, the formalism proposed by the two models differs. For the EDP, 
the flow rule is always non-associated with the yield function.  
 

  tan)tan~( 22
0

peG VM
EDP   (5) 

 

The only parameter to identify is  , called the dilatation angle; e  has a default value of 0.1 
that will be kept unchanged in the following. 
 
For the MS model, both associated and non-associated formalisms are possible. However as 
demonstrated in [3], it is more convenient for thermodynamic consistency to choose the non-
associated one, reducing to *

2a  the only parameter to be defined: 
  

 2*
2

2 paG VM
MS     (6) 

 

Because the stress and strain states are multi-axial within the bonded layer, inverse 
identification of the models using 3D finite element analysis (FEA) is more appropriate. It 
consists of an optimization loop that enables the best parameter set to be found for a given 
model considering the experimental results obtained. 
 
The bonded specimens were modelled with appropriate geometry, loads and symmetry as 
presented in figure 2. A relatively coarse mesh was used within the adhesive layer since 
refining the mesh near the edges has no effect on the global response considered for the 
identification (relative displacement vs. applied load). Substrates were modelled assuming an 
elastic behaviour with a Young’s modulus of 70 GPa and a Poisson’s coefficient of 0.3.  
 

 

 
 
 
 
 

 

 
 
 

 
(b) 

 
(c) 

 (a) 
Figure 2 : Mesh of the Arcan bonded assembly : (a) Loads and boundary conditions (b) Global mesh (c) Beak’s mesh 

 

FT 
FN 

N2 

N1 

12
xx uu 

 

12
yy uu   



835

Julien Maurice, Jean-Yves Cognard, Romain Créac’hcadec, Laurent Sohier, Peter Davies, Georges Meirinhos, 
Stéphane Mahdi 

 5 

Considering the flow rule, the formalism proposed by the two models differs. For the EDP, 
the flow rule is always non-associated with the yield function.  
 

  tan)tan~( 22
0

peG VM
EDP   (5) 

 

The only parameter to identify is  , called the dilatation angle; e  has a default value of 0.1 
that will be kept unchanged in the following. 
 
For the MS model, both associated and non-associated formalisms are possible. However as 
demonstrated in [3], it is more convenient for thermodynamic consistency to choose the non-
associated one, reducing to *

2a  the only parameter to be defined: 
  

 2*
2

2 paG VM
MS     (6) 

 

Because the stress and strain states are multi-axial within the bonded layer, inverse 
identification of the models using 3D finite element analysis (FEA) is more appropriate. It 
consists of an optimization loop that enables the best parameter set to be found for a given 
model considering the experimental results obtained. 
 
The bonded specimens were modelled with appropriate geometry, loads and symmetry as 
presented in figure 2. A relatively coarse mesh was used within the adhesive layer since 
refining the mesh near the edges has no effect on the global response considered for the 
identification (relative displacement vs. applied load). Substrates were modelled assuming an 
elastic behaviour with a Young’s modulus of 70 GPa and a Poisson’s coefficient of 0.3.  
 

 

 
 
 
 
 

 

 
 
 

 
(b) 

 
(c) 

 (a) 
Figure 2 : Mesh of the Arcan bonded assembly : (a) Loads and boundary conditions (b) Global mesh (c) Beak’s mesh 

 

FT 
FN 

N2 

N1 

12
xx uu 

 

12
yy uu   

Julien Maurice, Jean-Yves Cognard, Romain Créac’hcadec, Laurent Sohier, Peter Davies, Georges Meirinhos, 
Stéphane Mahdi 

 6 

 

3.2 Identification of the models 
 
Due to the large number of parameters to be identified, 7 for the MS and 5 for the EDP plus 
the elastic constants, and considering that only inverse identification based on FEA is 
appropriate, a sequential and simplified approach, summmarized as follows, has been chosen: 
 
 

- Step 1: Identification of the elastic parameters of the adhesive: E (Young’s modulus) 
and  (Poisson’s coefficient) using modified Arcan test results at 0° and 90°. 

 
- Step 2: Identification of the yield surfaces based on experimental yield points obtained 

at 0°, 90° and 135°. 
 

- Step 3: Identification of the hardening functions and the flow rule parameters using 0° 
and 90°. 

 
 
Since only 90° (shear) and 0° (tension) results were completely used for the identification of 
the two parameters sets, a validation could be performed using experimental results at 45°, 
135° and 30°. 
 
 

 Identification of the Elastic parameters and the Yield surface (Steps 1 and 2) 
 
Young’s modulus and Poisson’s coefficient of the adhesive have been identified using a 
parametric study on the domain respectively covering: 1700 to 2200 MPa with increments of 
100 MPa and 0.3 to 0.45 with increments of 0.05. By comparing FE and experimental results 
at 0° and 90°, the set minimising a least-square type error has been found to be: E = 2100 
MPa and Nu= 0.35. 
 
It has been demonstrated that, once the elastic parameters are known, the Modified Arcan test 
results enable the experimental yield surface to be determined in the Mises stress- hydrostatic 
stress  plane [11]. Using this result, the yield functions were fitted using the ratio loads of 0°, 
90° and 135°. Figure 3 presents the comparison of this identification for the two models in the 
Mises stress- hydrostatic stress plane. 
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Figure 3: Comparison of the  identification of the yield surfaces using Arcan  test results at angles loads of 0°, 
45° and 135° and the experimental yield surface: (a) EDP model, (b) MS model 

 
Both of the criteria provide a good correlation over the wide range of loads considered: the 
yield points at 30° and 45°, which were not used for the identification, are slightly 
underestimated. 
The main difference is in the predicted yield point under pure hydrostatic tension (for such 
tests we have no experimental results). For the EDP model yielding occurs at 33 MPa 
compared with 42 MPa for the MS model. The identified EDP yield criterion has a higher 
sensitivity to peel loads than the MS yield criterion; this sensitivity being emphasized for von 
Mises stresses below 20 MPa for which the slope is almost vertical. 
 

 Identification of the hardening function and the flow rule (step 3) 
 
The third step consists of the identification of the complete response at 0° and 90° by 
optimizing the hardening and flow function parameters. 
 
Results are presented in figure 4-a and 4-b respectively for the EDP and the MS models. 
 
Both of the models enabled the experimental results to be fitted correctly. The rounded shape 
at 90° and the linear asymptotic part are described well, and the fact that the non-linear 
response is reduced to a small part of the curve at 0° whereas it is predominant in shear is well 
represented. 
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The main difference is in the predicted yield point under pure hydrostatic tension (for such 
tests we have no experimental results). For the EDP model yielding occurs at 33 MPa 
compared with 42 MPa for the MS model. The identified EDP yield criterion has a higher 
sensitivity to peel loads than the MS yield criterion; this sensitivity being emphasized for von 
Mises stresses below 20 MPa for which the slope is almost vertical. 
 

 Identification of the hardening function and the flow rule (step 3) 
 
The third step consists of the identification of the complete response at 0° and 90° by 
optimizing the hardening and flow function parameters. 
 
Results are presented in figure 4-a and 4-b respectively for the EDP and the MS models. 
 
Both of the models enabled the experimental results to be fitted correctly. The rounded shape 
at 90° and the linear asymptotic part are described well, and the fact that the non-linear 
response is reduced to a small part of the curve at 0° whereas it is predominant in shear is well 
represented. 
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Figure 4: Comparison of FE and experimental results at 0° and 90°: (a) EDP model; (b) MS model 
 

Table I: Parameter sets with the simplified identification approach for the Mahnken-Schlimmer and the EDP 
models 
  

Mahnken-Schlimmer  Exponent Drucker-Prager 

a1 a2 Y0 
*
2a  H q b 

0tp  a b K 0
~    

(-) (-) MPA (-) MPa MPa (-) MPa SI SI MPa MPa ° 
0.29 0.015 33.5 0.06 20 10 100 31.7  1.10-6 4.87 29.3 37.2 25 

              
 

4. VALIDATION AND DISCUSSION 
 
Using the previous parameter sets identified using only 0° and 90° results (Table I.), a 
comparison, acting as a first validation of this previous identification, has been conducted. 
 
Comparisons of FE and experimental results obtained considering the force vs. relative 
displacements in the normal and tangential directions are presented in figure 5. At 30° and 45° 
the precision of the two models regarding the experimental results are similar. As noticed for 
the identification of the yield surface, the yield points are underestimated leading to a poor 
estimation of the rounded shape. This is particularly emphasized at 45° for both of the 
models.  
Indeed, the stress-state is not uniform within the adhesive layer [5] and maximum stresses are 
encountered in the middle of the adhesive layer. Thus plasticity occurs progressively from the 
centre to the edges of the adhesive joint. An underestimation of the yielding thus leads to an 
underestimation of the transmitted load for a given relative displacement, since yielding 
spreads prematurely along the adhesive layer. 
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It could be interesting to perform an identification of the flow rule and hardening based on 
mixed tension-shear loads, using 0° and 90° results for validation. Indeed, because plasticity 
is not very developed at 0°, the identification domain remains limited and could be 
insufficient for an accurate identification.  
 
The main difference in the predicted results concerns the normal behaviour for a 
compression-shear load (135°, Figure 5-e and 5-f). On the one hand, both models reach 
almost the same level of accuracy in the tangential behaviour: the EDP model gives a more 
over-estimated load compared to the MS model. But, on the other hand, only the MS model 
gives a good representation of the FN vs. DN behaviour whereas the EDP model predicts a 
plastic dilatation that starts with plasticity and that does not correspond to the experimental 
observations. 
 
Such behaviour can be explained by the overall shape of the EDP flow rule given by ψ (the 
“dilatation angle”). Indeed, the EDP model only permits the flow direction to be towards 
positive hydrostatic stress whatever the position in the Mises stress - hydrostatic plane. On the 
contrary, the MS model, as identified in the previous section, gives flow directions that are 
symmetrical about the Mises axis for two points that are also symmetrical. This radically 
changes the behaviour in the normal direction when considering compression-shear loads 
which are load cases that are rarely taken into account for the characterization of structural 
adhesives since they are relatively difficult to obtain and are not considered as the most 
detrimental. However, as the stress-state in the adhesive spew fillet, which is often the 
location of crack onset, is multi-axial, a poor estimation of the behaviour over the whole 
domain of hydrostatic stresses can lead to inaccurate modelling of the stress state within this 
region, and misunderstanding when comparing different stress criteria for example.  

5. CONCLUSIONS 

This study aims to characterize and identify the 3D elasto-plastic behaviour of structural 
adhesive materials. Two models, taking into account the hydrostatic stress dependency and 
non-associated formalism, have been identified using experimental results obtained with a 
modified Arcan test and a simplified inverse identification approach. The main conclusions 
that can be drawn are the following:  

 
- The modified Arcan test is very efficient to characterize the behaviour of adhesive 

materials since it enables several load configurations to be applied to a bonded 
assembly using a unique specimen design and single test apparatus. In particular it 
allows the hydrostatic stress dependency to be highlighted. 
 

- Applied to the case of the Redux 420 A/B epoxy adhesive, it is very useful in the 
discrimination between different elasto-plastic models. 

 
- When considering structural adhesive elasto-plastic behaviour, characterization and 

validation on both the tension-shear and compression-shear domain are needed and 
particular care has to be taken in the choice of the flow rule. 
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- Optimisation of the identification procedure and study of the robustness of the inverse 

identification could lead to a better fitting of the experimental results. 
 

Application of a similar procedure for the case of adhesives films, that also show hydrostatic 
stress dependency [1] and are used in aircraft manufacturing, is in progress. Next, a validation 
on non-proportional cases will constitute a natural extension to this work in order to validate a 
Mahnken-Schlimmer type model. Finally, a damage and failure approach, based on the typical 
requirements of a design office will be implemented. 
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Abstract. In this contribution, an algorithm for numerical integration of the Leonov elasto-
viscoplastic model is proposed. The operator split methodology and the Newton-Raphson 
method are used to derive the state update algorithm and obtain the numerical solution of the 
discretized evolution equations.  Particular effort is devoted to the reduction of the number of 
required residual equations in order to have a more efficient numerical implementation. The 
consistent tangent module is expressed in a closed form as a result of the exact linearization of 
the discretized evolution equations. The performance of the algorithm is validated through 
comparison with existing experimental data.  
 

1    INTRODUCTION 
     As polymeric based materials can have a considerable role in structural applications, it is 
important to understand how their mechanical performance is affected by the molecular 
structure, the processing conditions and the geometry of the micro constituents. In order to 
have an optimal design, optimization of all aforementioned parameters would be highly 
desireable. Such an optimization would be impossible using only experiments. Consequently, 
other methods should be used for that goal. 
During the last few decades, many researchers have devoted their work to the development of 
constitutive models for different materials such as metals and polymers. Among others, 
Haward and Tackray [6] developed one of the earliest one dimensional constitutive models to 
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predict the behavior of polymeric materials. The model takes into account the strain rate 
dependency of the yield point and strain hardening. The three dimensional version of Haward 
and Tackray model was proposed by Boyce et al. [2]. A modified version of this model was 
later formulated by Wu and van der Giessen [13]. The other constitutive model which is able 
to predict the typical deformation behavior of polymeric materials is the generalised 
compressible Leonov model, which has been proposed by Baaijens [1] and extended by 
Tervoort et al. [9] and Govaert et al. [5].  
In order to analyze real problems, an efficient numerical integration algorithm of the 
constitutive relations, within the finite element framework, is necessary. Since the numerical 
treatment of the Leonov constitutive relations has not been, to the authors’ knowledge, 
presented in the open literature, an attempt is made to introduce an efficient numerical 
integration algorithm for the model. Therefore, in the next section, the constitutive relations of 
the Leonov model are presented. Section 3 deals with the numerical treatment of the 
constitutive relations. In the subsequent section, two numerical examples and their 
corresponding results are provided. Finally and based on the obtained results, section 5 
presents some conclusions made from this work.      

2   CONSTITUTIVE RELATIONS 
 

     In this section, the constitutive relations of the Leonov model, used in this work, are 
presented. In the Leonov model, the total stress is composed of driving and hardening 
stresses. 
 

                                                                                                                                         
 

The hardening stress is computed by the following relation: 
 

                                                                                                                                        
 

where e is the total deviatoric strain and H is the hardening modulus. 
 
2.1  Elastic part of the constitutive relations 
 

The relation between stress and strain in the elastic domain is given by: 
 

                                                                                                                                        (3) 
 

Here    is the elastic strain and D is the fourth order elasticity tensor (fourth order elastic 
constitutive isotropic tensor) that is defined as follows: 
 

                                                                        ,                                                   (4) 
 

where   is the second order identity tensor,    is a fourth order symmetric identity tensor and   
and   are the Lame´s elastic material constants. The Cartesian components of     are given by: 
 

                                                               
 
                                                               (5) 

 

In the case of separated deviatoric and volumetric stresses, the stress strain relations are given 
by: 
                                                                                                                                 (6) 
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predict the behavior of polymeric materials. The model takes into account the strain rate 
dependency of the yield point and strain hardening. The three dimensional version of Haward 
and Tackray model was proposed by Boyce et al. [2]. A modified version of this model was 
later formulated by Wu and van der Giessen [13]. The other constitutive model which is able 
to predict the typical deformation behavior of polymeric materials is the generalised 
compressible Leonov model, which has been proposed by Baaijens [1] and extended by 
Tervoort et al. [9] and Govaert et al. [5].  
In order to analyze real problems, an efficient numerical integration algorithm of the 
constitutive relations, within the finite element framework, is necessary. Since the numerical 
treatment of the Leonov constitutive relations has not been, to the authors’ knowledge, 
presented in the open literature, an attempt is made to introduce an efficient numerical 
integration algorithm for the model. Therefore, in the next section, the constitutive relations of 
the Leonov model are presented. Section 3 deals with the numerical treatment of the 
constitutive relations. In the subsequent section, two numerical examples and their 
corresponding results are provided. Finally and based on the obtained results, section 5 
presents some conclusions made from this work.      

2   CONSTITUTIVE RELATIONS 
 

     In this section, the constitutive relations of the Leonov model, used in this work, are 
presented. In the Leonov model, the total stress is composed of driving and hardening 
stresses. 
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where     is the total strain and    is the elastic deviatoric strain: 
                                                      

                                                                   
                                                  

 

where    is the deviatoric projection tensor.  
 
2.2  Yield criterion 
 

The yield function for the Leonov model is defined as follows: 
 

                                                                      ,                                                       (8)                   
 

where   is the effective stress and    is the uniaxial initial yield stress defined by: 
 

                                                                                
                                                                 (9) 

        
    

                       
                                              

 

where    is the total equivalent strain rate,    is the superimposed pressure of the analysis, R is 
the universal gas constant and   is the absolute temperature. The other parameters 
(          ) in relation (10) are material properties. 
 
2.3  Viscoplastic part of the constitutive relations 
 

The rate of the viscoplastic strain is obtained by the following relation: 
 

                                                                                     
                                                                        

 

where     is the viscoplastic strain; the second order tensor s is the deviatoric stress and   is 
the viscosity. The deviatoric stress is defined as: 
 
                                                                                                                         (12) 
  

where I is second order identity (unit tensor of order 2,        ) and p is the hydrostatic 
pressure defined by the following equation: 
 

                                                                     
           

                                                          
 

The viscoplastic flow rule in the Leonov model is characterized by the generalized Eyring 
equation. The viscosity is defined based on the Eyring flow relation and is defined as follows: 
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where   is effective stress,     is equivalent viscoplastic strain,   is hydrostatic pressure,   is 
the universal gas constant,   is absolute temperature and the other parameters 
(               ) are material properties. 
    
3    NUMERICAL IMPLEMENTATION 
 

     Operator split algorithms are widely used for numerical integration of constitutive 
equations in the context of elasto-plasticity and elasto-viscoplasticity. Numerical 
implementation of constitutive models through finite element codes basically includes a state 
update procedure and the computation of the consistent tangent operator. 
 
3.1  State update 
  

     Let us consider a typical time interval          . The set of variables       
    

     
    is 

known at time    and the main problem is to determine the same set           
      

       
    

at time     . The operator split algorithm comprises an Elastic predictor and a Return 
mapping algorithm which are described in this subsection. 
 
Elastic predictor 
In this stage, we assume that the material behaves purely elastically. The elastic trial strain at 
time step      is assumed to be given by: 
          
                                                                  

                
                                                            

 

The deviatoric part of the total strain is given by 
 

                                  
                 

              
            

               
                           

 

The trial deviatoric stress is given by: 
 

                                                                                
              

                                                               
 

where G is shear modulus. The hydrostatic pressure is computed by: 
 

                                                                                
              

                                                                
 

where   is bulk modulus and       
        is 

 

                                                                                 
                

                                                            
 

The trial accumulated viscoplastic strain is assumed to be frozen: 

                                                                                     
           

                                                               
 

After computing the aforementioned variables, checking the yield criterion determines 
whether the initial assumption based on being in the elastic domain is correct or not. If the 
yield function is satisfied, we are in the elastic domain, then we update the variables as 
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If the yield criterion is not satisfied, we are in the viscoplastic domain which needs a return 
mapping scheme to update the state variables. 
  
Return mapping  
By manipulating the constitutive relations, two residual equations are obtained. 
 

                                                                          
   
     

                                    

                                                                                                               
 

Where    is the time interval between two consecutive time steps. We will use the well-
known Newton-Raphson iterative procedure to solve our system of residual equations. To do 
so, the following matrix representation is presented: 
 

                                                                                                                                                            
 

where A is matrix of coefficients,   is the array of unknowns and finally B is the array of 
constants. The components of the aforementioned matrix and arrays are represented in the 
following form: 
 

                      

 
 
 
 
         

        
       

                
     

                
       

                
      

 
 
 
 
      

  

     
           

        
                

                  

 

After computing the accumulated viscoplastic strain,       , and the effective stress,     , the 
following variables should be updated as follows: 

                                         
        

                
                           

                                         

                                                         
 

    
    

             
                                                        

                                                            
    

    
             

         

                                               

 

It must be emphasized here that after implementing the aforementioned relations for the state 
update, it was observed that due to the behavior of the first residual equation, convergence 
was not achieved in many problems. Therefore, in order to achieve convergence, the first 
residual equation was transformed into a logarithmic version. The new residual equation has 
the following form: 

 

                                                                                  
 

Using the new residual led us to a remarkable improvement in the convergence rate of the 
state update procedure.  
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3.2  Consistent tangent operator 
 

     In order to complete the numerical implementation of the compressible Leonov model 
within an implicit quasi-static integration scheme, we need to obtain the consistent tangent 
operator. In other words, since the full Newton-Raphson scheme will be used within an 
implicit finite element implementation of the Leonov model, the tangent stiffness matrix must 
be computed. The tangent stiffness matrix is assembled using the tangent operators which are 
derived by consistently linearizing the state update relations. The tangent operator has the 
following definition:  
 

                                                                                      
      

                                                                 
 

In the elastic domain, the tangent operator is the following: 
 

                                                                 
                                                

 

Exact linearization of the constitutive telations and performing some algebraic manipulations 
result in the following closed form relation for viscoplastic tangent operator. 
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4    NUMERICAL EXAMPLES 
 

     In order to check the performance of the numerical implementation, two examples are 
considered. In the single element compression test, it is shown that the implementation can 
capture the effects of superimposed hydrostatic pressure and strain rate on the deformation 
behavior. Furthermore, it is illustrated that by changing the first residual to a logarithmic 
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function, the convergence rate of the implementation is considerably improved. In addition to 
the single element test, a compression test is numerically performed on a standard specimen 
and the results are compared with available experimental results. 
 
4.1 Single element test 
 

    A single element under compression is analyzed and true stress-strain curves are provided. 
A four node quadratic element with four Gauss points is used for the analysis. The dimensions 
of the element are (1 1 mm) and the displacement applied to the element is (0.5 mm). The 
material is assumed to be PET Copolyester 9921W (referred to as PET) and the material 
properties, taken from [12], are listed in Table 1.  
 
   Table 1: Material properties for PET 
 

 

The test is performed at room temperature, under different hydrostatic pressures and with 
different strain rates. Figures 1 and 2 show the effects of strain rate and hydrostatic pressure 
on deformation behavior, respectively. 
 

    

Figure 1: Stress strain curves for the single element compression test using PET at different 

strain rates under atmospheric condition (          ) 
 

Table 2 shows the number of required iterations for a typical increment and corresponding 
residuals for the two different approaches. It can be clearly observed that the logarithmic 
transformation (indicated as the second approach) has been extremely effective to improve the 
convergence rate of the state update algorithm. 
 
4.2 Standard specimen 
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The compression of a standard specimen is shown in Figure 3. In order to simulate the 
problem and due to symmetry , the simulation has been performed as a two-dimensional 
axisymmetric problem. 
 

 

Figure 2: Stress strain curves for the single element compression test using PET at strain rate 

of            under different superimposed pressures 
 

In fact, a rectangular with dimensions (4mm  2mm) has been analyzed with 8 quadratic 
elements with dimensions (1 1 mm). The applied displacement is (3 mm). It must be noted 
that the hydrostatic pressure for this test is assumed to be           , and the simulations 
have been performed assuming room temperature. 
Figure 4 shows results obtained from both simulations and experiments for the compressed 
cylinder made from PET at the strain rate of             . The experimental results are 
taken form [12].  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3: Schematic representation of the compressed cylinder (geometry, boundary conditions and loading) 

0E+0
1E+7
2E+7
3E+7
4E+7
5E+7
6E+7
7E+7
8E+7
9E+7

0 0.2 0.4 0.6 0.8 1

Tr
ue

 st
re

ss
 (P

a)

True strain 

                        
                
                           
 

4 mm 

4 mm   



849

M. Mirkhalaf, F. Pires and R. Simões. 

 8 

The compression of a standard specimen is shown in Figure 3. In order to simulate the 
problem and due to symmetry , the simulation has been performed as a two-dimensional 
axisymmetric problem. 
 

 

Figure 2: Stress strain curves for the single element compression test using PET at strain rate 

of            under different superimposed pressures 
 

In fact, a rectangular with dimensions (4mm  2mm) has been analyzed with 8 quadratic 
elements with dimensions (1 1 mm). The applied displacement is (3 mm). It must be noted 
that the hydrostatic pressure for this test is assumed to be           , and the simulations 
have been performed assuming room temperature. 
Figure 4 shows results obtained from both simulations and experiments for the compressed 
cylinder made from PET at the strain rate of             . The experimental results are 
taken form [12].  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3: Schematic representation of the compressed cylinder (geometry, boundary conditions and loading) 

0E+0
1E+7
2E+7
3E+7
4E+7
5E+7
6E+7
7E+7
8E+7
9E+7

0 0.2 0.4 0.6 0.8 1

Tr
ue

 st
re

ss
 (P

a)

True strain 

                        
                
                           
 

4 mm 

4 mm   

M. Mirkhalaf, F. Pires and R. Simões. 

 9 

A reasonable qualitative and quantitative agreement between numerical and experimental 
results can be observed.           
 
                 Table 2: Convergence table for two approaches   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
5   CONCLUSIONS 
 

    According to the results presented, it can be concluded that the numerical implementation 
is able to capture the effect of different parameters on the deformation behavior of polymeric 
based materials. Moreover, due to the considerable improvement on the convergence rate 
obtained by converting the first residual to a logarithmic function, it can be claimed that the 
transformation has been absolutely necessary. Finally, in view of the reasonable agreement 

 
Iteration no. 

 
1st approach residual 

 
2nd approach residual 

1 0.636690 9.231974 
2 2.435265E-2 0.135657 
3 2.486794 E-2 7.634257E-4 
4 2.540770 E-2 1.854449E-8 
5 2.597371 E-2  
6 2.656790 E-2  
7 2.719243 E-2  
8 2.784967 E-2  
9 2.854220 E-2  

10 2.927289 E-2  
11 3.004483 E-2  
12 3.086112 E-2  
13 3.172435 E-2  
14 3.263460 E-2  
15 3.358365 E-2  
16 3.435756 E-2  
17 3.538555 E-2  
18 3.579642 E-2  
19 3.485924 E-2  
20 3.049617 E-2  
21 2.015115 E-2  
22 6.934124 E-3  
23 6.409727 E-4  
24 4.919388 E-6  
25 2.867187 E-10  
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between simulations and experimental results, it seems that the Leonov model is able to 
predict the polymeric based materials behavior in compressive conditions adequately. 

 

 
 

Figure 4: Stress strain curve for the compressed cylinder at the strain rate            . Solid 
line shows numerical simulations and circles show experimental results. 
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Abstract. A model of higher-order single crystal plasticity is presented and reviewed in
order to develop a corresponding finite-element framework. Contrary to the underlying
model of Gurtin [Int. J. Plast. 24:702-725, 2008], here rather than the slip rate, the slip
and its gradient constitute primary micro state variables. The resulting rate-dependent
formulation accounts for size effects through the free energy depending on density of
geometrically necessary dislocations. The relationship to multifield theories of continua
with microstructure is pointed out. With the presented finite-element approach, the
corresponding fully coupled initial-boundary value problem is solved monolithically, and
features of the model are illustrated in two preliminary numerical examples.

1 INTRODUCTION

The size-dependent behaviour of polycrystalline materials such as metals at grain sizes
of the order of tens to hundreds of microns is well documented. Such behaviour stems
from heterogeneities in crystallites and arise, for example, due to the existence of grain
boundaries, as well as due to impurities, inclusions, and other imperfections in the crystal
lattices. The appropriate modelling of behaviour at the microstructural level requires a
knowledge of the underlying dynamics of dislocations, and proper incorporation of such
dynamics and associated length scales into the model. Dislocation-based crystal plasticity
formulations capture size effects largely by including dislocation behaviour through an

1
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averaged field description of dislocation populations in crystals. Some representative
works in an extensive literature include [17, 9, 13, 6, 10, 12, 18]. Typically, the mutual
interaction of dislocations are captured in a back-stress term that counteracts the resolved
shear stress driving the flow of dislocations on the lattice glide planes.

The objective of this contribution is to develop finite element approximations of a
model of single-crystal higher-order plasticity due to Gurtin [10]. The model is based on
the use of geometrically necessary dislocation (gnd) densities as a field variable. However,
in contrast to the treatment in [10], instead of the slip rate, the slip constitutes a micro
state variable. The relationship between gradient of slip and gnd density is nevertheless
constructed in a way that is consistent with the dissipation inequality. The slip together
with macroscopic displacements are the primary unknown variables of the problem. It is
shown that the formulation has a relationship to multifield theories [3, 4]. Conforming
finite element approximations are based on a fully coupled, monolithic approach to solv-
ing the governing equations of the rate-dependent initial-boundary value problems. The
article closes with two preliminary numerical examples.

2 A MULTIFIELD CRYSTAL PLASTICITY FRAMEWORK

The model of higher-order crystal plasticity largely follows that due to Gurtin [10].

2.1 Kinematics

The starting point for the description of kinematical relations is the standard multi-
plicative decomposition

F = F e · F p (1)

of the deformation gradient F = ∇Xϕ into elastic and plastic parts F e and F p respec-
tively. Here x = ϕ(X, t) describes the motion from the material to the spatial configura-
tion and ∇X is the material gradient. The plastic deformation is assumed to be isochoric
implying detF p = 1. It follows that J := det(F ) = detF e > 0.

The spatial velocity gradient l = ∇xv may be decomposed additively according to

l = Ḟ · F −1 = le + F e · L̂p · F
−1
e (2)

in which

L̂p = Ḟ pF
−1
p . (3)

The elastic Cauchy–Green tensor

Ĉe = F t
e · F e = F−t

p ·C · F−1
p (4)

characterizes the deformation of the intermediate configuration, quantities in which are
denoted here and henceforth by �̂.

2
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The motion of dislocations in a single crystal takes place on a set of nS defined slip
systems, whereby an orthonormal pair comprising a slip direction ŝ

α and slip-plane normal
vector m̂

α
(α = 1, . . . , N) in the intermediate configuration precisely defines the α-th

system. It is useful also to introduce the Schmid (projection) tensor Ẑ
α
= ŝ

α⊗m̂
α
, which

is trace-free. For edge dislocations, the slip line direction l̂
α
is defined by l̂

α
= m̂

α × ŝ
α,

so that {m̂
α
, ŝα, l̂

α
} form a local orthonormal basis. In case of screw dislocations, the slip

line and the slip direction coincide to ŝ
α.

The plastic distortion-rate tensor L̂p is determined by the slip rates acting on each of
the slip systems according to

L̂p =

nS∑

α=1

γ̇α ŝ
α ⊗ m̂

α
=:

nS∑

α=1

γ̇αẐ
α
. (5)

The slip direction ŝ
α, slip plane normal m̂

α
and dislocation line direction l̂

α
may be

mapped to their counterparts sα, mα and lα in the current configuration by setting

sα = F e · ŝ
α , mα = (F e)

−t · m̂
α
, lα = F e · l̂

α
. (6)

2.1.1 Dislocation densities

The dislocations and their interactions are accounted for by fields of spatial densities of
dislocations. In the spirit of Gurtin [10] we define both the total density of dislocations,
ρα
�
, and the – polar – density of geometrically necessary dislocations (gnd), κα

�
, per unit

length, i. e.,, normalized by the Burgers vector length.
According to Nye [14], only the geometrically necessary dislocations are relevant to the

occurrence of size effects. Following [2], the gnd relates to the gradient of slip as

κ̇α
�
= ∇xγ̇

α · pα = ∇X γ̇α · F−1
p · p̂α with p̂

α =

{

−ŝ
α for edge dislocations (� = ⊥)

l̂
α

for screw dislocations (� = ⊙) .

(7)

Here a pullback from the spatial form to the intermediate configuration has been carried
out. The respective subscript � ∈ {⊥,⊙} identifies either edge or screw dislocations.

Remark 1. The formulation by Gurtin [10] bases on the slip rate να as the primary

micro state variable, the gradient of which corresponds to the gnd rate. Contrarily, we

assume the slip itself and its gradient as primary micro quantities, for which we develop

the governing equations, the variational formulation and computational algorithm. Our

choice is particularly beneficial as it reduces the complexity of the computational treatment.

Remark 2. In [7] the relationship between GND density and slip gradient is assumed to

take the form

κα
�
= ∇̂γα · p̂α

3
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in which ∇̂ denotes the gradient with respect to the intermediate configuration. In the

absence of the notion of a placement vector in the intermediate configuration, the nature

of the gradient term is not clear. Likewise, a spatial relation of the form

κα
�
= ∇xγ

α · pα ,

which is used by some authors, does not imply nor is implied by (7).

2.2 Free energy, dissipation inequality, stresses and microstresses

Dissipation inequality. The spatial form of the local dissipation inequality is

D = σ : le +

nS∑
α=1

(ξα ·∇xγ̇
α + πα γ̇α)− J−1Ψ̇ ≥ 0 in Bt . (8)

In the material configuration this inequality reads

D0 = 1

2
Ŝe : L

p
v
(Ĉe) +

nS∑
α=1

(ξα0 ·∇X γ̇α + πα
0 γ̇

α)− Ψ̇ ≥ 0 in B0 (9)

with the Lie derivative Lp
v
(Ĉe) = F p

−t ·Ċ ·F−1
p =

˙̂
Ce+2[Ĉe ·L̂p]

sym [16] and ξα
0 = F−1 ·ξα.

The free energy Ψ̂ is assumed to depend on the elastic tensor Ĉe and the set �κ of dislo-
cation densities. This motivates the definition of a macrostress Ŝe and vector microstress
ξα
en according to

Ŝe = 2
∂Ψ̂

∂Ĉe

, ξαen := J−1 ∂Ψ̂

∂κα
�

pα . (10)

By assuming that the microstress is purely energetic (that is, ξα = ξα
en: see also [15]), the

dissipation inequality (9) reduces to

Dred =

nS∑
α=1

παγ̇α ≥ 0 , (11)

A flow rule for πα will be specified later.

Macro- and micro-force balances. Balance equations are derived from a principle of
virtual power [10]. The macroforce balance or equilibrium equation is expressed in terms
of the first Piola-Kirchhoff stress and the referential body force 0 as

DivP + f 0 = 0 in B0 . (12)

This equation is supplemented by the boundary conditions u = up on ∂Bu
t and P ·N = t

p
0

on ∂Bp
0 , in which ∂Bu

t and ∂Bp
0 are non-overlapping parts that cover the boundary ∂B0.

4
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The microforce balance is given for each slip system α in the spatial configuration by

div ξα − πα + σα = 0 on α in Bt (13)

In the material configuration this reads

Div ξα
0 − πα

0 + σα
0 = 0 on α in B0 . (14)

Here σα
0 is the resolved shear stress defined by

σα
0 =

[
Ĉe · Ŝe

]
: Zα (15)

and Div = F−1 : ∇X .
Dirichlet and Neumann boundary conditions are assumed to be γα = γp on ∂Bν

0 and

ξα
0 ·N = tξα0 on ∂Bξ

0 . For an overview on the choice of micro-hard and micro-free boundary
conditions, see e. g., [7] and references cited in this work.

Remark 3. The macro- and microforce balance equations may also be derived by adopting

a micromorphic or microfield continuum approach [11, 3], in which the energy functional

corresponding to the incremental problem is written as the sum of the free energy Ψ̂ and

the dissipative flow potential Υ , which generates the dissipative microforce through the

incremental form of the relation [15]

πα =
∂Υ

∂γ̇α
. (16)

2.3 Constitutive relations

Based on an underlying hyperelastic material, the crystal plasticity constitutive frame-
work relies on the choice of a free energy and the definition of a flow rule or dissipation
function.

2.3.1 Free energy

The free energy per reference volume is assumed to comprise an elastic or macro-energy
Ψ̂macro and a defect or micro-energy Ψ̂micro:

Ψ̂ = Ψ̂macro(Ĉe) +

nS∑
α=1

Ψ̂micro(κα
�
) . (17)

This yields the stress and energetic microstress via the definitions (10). For the sake of
simplicity, latent hardening effects are neglected in the energetic part, and will instead be
captured in the dissipative microforce via the flow rule .

5
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Due to the relatively small elastic deformations in crystal plasticity, it suffices to choose
for the macro-energy a St. Venant–Kirchhoff relation

Ψ̂macro =
λ

8
tr2(Ĉe − I) +

1

4
µ[Ĉe − I]2 . (18)

However, following Gurtin [10], the micro-energy is formulated for both edge and screw
dislocations as

Ψ̂micro(κα
�
) = 1

2

Ns∑
α=1

(C1κ
α
⊥)

2 +
(
C2κ

α
⊙

)2
. (19)

With the choices C1 =
µR2

8[1−ν]
and C2 =

µR2

4
, the relation of [8] is retrieved (see [7] for the

relationship between the two approaches).

2.3.2 Flow rule and slip resistance

Due to the physically well-established assumption that all dislocations are mobile all
the time, hence we choose a viscoplastic flow rule. Various options are available: for
example,

πα = Sα

(
|γ̇α|

γ̇α
0

)m

sgn(πα) . (20)

The slip resistance Sα is given in [10] by the evolution equation

Ṡα =
∑
β

hαβ(S)|γ̇β| (21)

in which hαβ is a matrix of hardening moduli and S denotes the array [S1, . . . , SnS
]t for

nS slip systems. See also [1] for further details.

3 NUMERICAL FRAMEWORK FOR CRYSTAL PLASTICITY

A conforming finite element approximation is used to solve the initial-boundary value
problem, with the displacement u and slips γα being the unknown variables.

Finite-element approximations. In a standard Bubnov–Galerkin approximation, the
test and trial functions of both unknowns are discretized with the same shape functions:
thus

uh =

nu
en∑

J=1

Nu
JuJ , δuh =

nu
en∑

I=1

Nu
I δuI , γh =

nγ
en∑

L=1

Nγ
LγL , δγh =

nγ
en∑

K=1

Nγ
KδγK , (22)

with provision for different orders of interpolation of the displacement and slips.

6
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Table 1: Algorithm for the crystal plasticity material routine

1. The approximate exponential map with a backward Euler approximations gives

F n+1
p = [I −Λn+1]−1F n

p where Λn+1 =

nS∑

α=1

∆γ
αẐ

α

2. Obtain elastic right Cauchy–Green deformation tensor Ĉe from

F n+1
e = F n+1 · (F n+1

p )−1 Ĉ
n+1

e = (F n+1
e )

t
· F n+1

e

3. Obtain the GND density from

κ
αn+1 = κ

αn + [∇X∆γ
α · F−1

p · ŝα]n+1

4. Obtain the stress, microstress and resolved shear stress from

Ŝ
n+1

e = 2
∂Ψ

∂Ĉ
n+1

e

, ξα0
n+1 = (Jn+1)−1(F n+1)−1

(
∂Ψ

∂κα

)n+1

, σ
α

0
n+1 =

[

Ĉ
n+1

e · Ŝ
n+1

e

]

: Ẑ
α

3. Obtain the microforce πα
0 from the evolution

π
αn+1 = S

α

(
|∆γ

α|

∆t γ̇α
0

)m

sgnπα

Finite-element residual and iterative solution. A spatial discretization of the weak
form of the macro and micro balance (12) and (14) yields the element residuals

ru h
0I (u

h) = fu h
0intI − fu h

0surI − fu h
0volI

.
= 0 (23)

rγα h
0K (γαh) = fγα h

0intK − fγα h
0surK

.
= 0 (24)

that have to vanish at equilibrium. The internal and external macro forces at nodes I are
assembled from the element contributions, which from the weak form of (12) are

fu h
intI =

nel

A
e=1

∫

B0

P ·∇XN
u
I dV, fu h

surI =
nel

A
e=1

∫

∂B0

t0N
u
I dA, fu h

volI =
nel

A
e=1

∫

B0

f0N
u
I dV (25)

Likewise, the internal and external micro forces stemming from (14) for each slip system
α are determined at nodes K as

fγαh
intK =

nel

A
e=1

∫

B0

ξα
0 ·∇XNγ

K + [πα
0 − σα

0 ]N
γ
K dV α = 1, . . . , nS (26)

fγα h
surK =

nel

A
e=1

∫

∂B0

t
ξ
0 N

γ
K dA α = 1, . . . , nS (27)

The energetic stresses P and ξα
0 are obtained from the free energy (10). The Schmid stress

(15) and the dissipative micro force (20) follow from an Euler-backward time integration
for the update on the plastic deformation, as summarized in Table 1.

7



859

C. B. Hirschberger, B. D. Reddy

With these ingredients, the time-dependent problem is solved incrementally for the
unknown u and γα using an iterative global Newton-Raphson iterative solution procedure

[
DuJ

ruh
0I DγL

ruh
0I

DuJ
rγαh
0K DγL

rγαh
0K

]
·

[
∆uJ

∆γL

]
= −

[
ruI

rγK

]
(28)

with tangent stiffness matrices D•r◦0 quantifying the sensitivity of the nodal residua ◦ ∈
{u, γα} with respect to the nodal unknowns • ∈ {u, γα}.

4 NUMERICAL EXAMPLES

The numerical algorithm for the present crystal plasticity framework is demontrated
in two benchmark-type problems. At this stage, the simulations are restricted to single
slip, with a extension to multiple slip as part of future work.

4.1 Single slip in a shear layer

We first study a shear layer with one slip system under an angle of θ = π/3, similar
to the problem studied for example in [12]. Omitting periodic boundary conditions, a
slip profile with little boundary influences is produced by choosing a relative broad shear
layer. Unit values are used for material parameters in these preliminary computations.

Macroscopically, a lateral displacement u1 is prescribed at top and bottom in opposite
directions, and homogeneous Neumann boundary conditions are prescribed on the other
two sides. To mimic the dislocation distribution within the shear layer, homogeneous
micro Dirichlet, i. e.,”micro-hard” boundary conditions, γ = 0, are chosen at the top and
bottom boundary. On the other hand the left and right boundaries obey homogenous
micro Neumann boundary conditions, tξα = 0, often referred to as ”micro free”.

Neglecting the lateral boundary region, we concentrate on the central region of the
boundary value problem. Within the shear layer with approximately homogeneous macro
deformation, the shear problem correctly reflects the zero slip at the boundaries and a
non zero slip over the height profile of the shear layer. Moreover, the gnd density is
larger near the boundaries which reflects the pile-up of positive and negative dislocations
against a dislocation-impenetrable boundary.

4.2 Single slip in a micro composite

The typical example of a model composite presented in [5] comprises a composite
material with rectangular elastic particles embedded in a plastically deforming matrix.
Such a double-symmetric problem can be reduced to the symmetric unit cell shown in
2(a). The elastic inclusions are modelled by prescribing zero slip within these subdomains,
and the cell is subjected to simple shear loading.

While the macroscopic displacement exhibits a slightly heterogeneous deformation,
the slip is, naturally, zero within the elastic inclusions and strongly heterogenous in the
plastic matrix material. The slip particularly localizes horizontally just above and below

8
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the inclusion. Due to the limitation to single slip and the modelling of gliding mechanisms
only, dislocations from the left bottom cannot propagate to the top right region (Fig. 2(e)).
Instead dislocations pile up against the elastic inclusions with different signs, as shown in
2(f).

5 CONCLUSION

In this short contribution, we present a multifield-type single crystal plasticity theory
at finite strain, similar to the formulation of [10]. The presented governing equations stem
from the choice of the the displacement, the plastic slip (rather than its rate [10]) and
its gradient as the primary macro and micro state variables. With a thermodynamically
consistent relationship between dislocation density rate and slip rate, the free energy,
however, is formulated in terms of the gnd density, which is directly related to the
gradient of slip. For this framework we provide a corresponding finite-element framework
that employs both the displacement and the plastic slip as primary nodal degrees of
freedom and hence is a strongly coupled problem. Results based on initial computations
indicate that the fully coupled algorithm based on a conforming finite element framework
is robust. Current work is concerned with the extension to multiple slip, and the use of
alternative forms of the hardening law based on total dislocation densities.
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Figure 1: Shear layer with single slip at θ = 60 and micro-hard boundary conditions for the slip.
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Figure 2: Micro composite unit cell with elastic inclusions and single slip at θ = 0.
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Abstract. In this study, uniaxial and multiaxial compression tests are conducted for studying 
the nonlinear deformation behaviors of a porous material during compression. In the results of 
uniaxial compression tests, the stress level in the plateau region is varied by the difference of 
direction but it is shown that this material has the character of transverse isotropicity. The 
multiaxial behavior of the material is also observed in this study. Equibiaxial pre-strained 
compression tests are adopted for the observation of the characteristics of the material. The 
results of these tests show that the pre-strain causes the porous material to harden, and the 
extent of the hardening depends on the difference of the amount of pre-strain.  
 
1 INTRODUCTION 

Low-density porous materials are useful to design the shock absorbing parts of various 
machines. The deformation analysis of the materials is needed in the design but it is difficult 
because of the nonlinearity caused by the crush of cellular structure in the materials.  

Then, the multiaxial behavior of compression process of the porous materials is evaluated 
by using equibiaxial compression testing in addition to the fundamental uniaxial compression 
testing for the formulation of FEM. Polystyrene foam is adopted to study the behavior and it 
is revealed that there is complex relationship between the compression direction. 

2 FUNDAMENTAT COMPRESSON 
Uniaxtial compression test is adopted to reveal the fundamental characteristics of the 

porous materials. The specimens are made by using the polystyrene foam “STYROFOAM” of 
Dow Chemical, Co. Ltd.  The dimensions of specimens are 30mm x 30mm x 10mm and 
talcum powder is sprinkled at their surfaces for lubrication in the testing. The three type of 
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direction is defined as shown in Figure 1. Every type of the specimens are compressed in their 
direction of height, and observed response is indicated in Figure 2. 

Figure 1: The three type of direction is defined by depending on machine direction of polystyrene form. 

Figure 2: Transverse isotropicity is observed in uniaxial compression test. Here,  

Uniaxtial compression test is adopted to reveal the fundamental characteristics of the 
porous materials. The specimens are made by using the polystyrene foam “STYROFOAM” of 
Dow Chemical, Co. Ltd.  The dimensions of specimens are 30mm x 30mm x 10mm and 
talcum powder is sprinkled at their surfaces for lubrication in the testing. The three type of 
direction is defined as shown in Figure 1. Every type of the specimens is compressed in this 
test and transverse isotropicity is observed as shown in Figure 2. Here, highest level of 
plateau stress is observed in the vertical direction of the foam. The stress responses are similar 
between longitudinal and transverse directions. 
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3 MULTIAXIAL COMPRESSION 

3.1 Procedure of compression 
Multiaxial compression testing indicated in Figure 3 is proceeded to investigate the 

complicated behavior of the materials [1]. Here, the polystyrene form adopted in former 
section is also applied for the investigation. 

The equibiaxial compression system indicated in Figure 3 can give pre-strain to the 
specimen. Here, Fig. (a)-(c) are the procedure of the multiaxial compression testing. In this 
Figure 3, settled specimen (a) is pre-strained at procedure (b), and compressed as shown at 
procedure (c).  

Figure 3: Multiaxial compression can be devied to three procedures (a)-(c).

3.2 Measurement of Stress Response 
The stress response of the specimen is measured in the every direction of x, y and z of 

testing system by using load cell and pressure sensors as shown in Figure 4. The load cell is 
used to measure the stress response in the final compression procedure of Figure 3 (c). On the 
other hand, pressure sensors are settled at pre-straining surface of the block in equibiaxial 
compressor as shown in Figure 4, and used to measure the response in pre-straining and final 
compression procedures of Figure 3 (b)-(c). 

Figure 4: Measurement system of stress responce. 
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3.3 Muliaxial Response 

3.3.1 Response in Pre-Straining 
The result measured in pre-straining procedure is shown in Figure 5.   This stress response 

is taken by using the pressure sensor on the block in equibiaxial compressor. The plateau 
stresses are observed in every direction of longitudinal and transverse even if little difference 
is also observed between them. This result indicates that the phenomena of plateau stress is 
occurred in the biaxial pre-straining process, and it is similar to the result of uniaxial 
compression which is shown in Figure 2.

Figure 5: Stress response measured in pre-straining procedure. 

3.3.2 Response in Final Compression 
In the final compression procedure, the response of compression stress is measured with 

the response of equibiaxial stress. 
Figure 6 shows the responses of compression stress observed in this procedure, and the 

variation caused by the difference of the amount of pre-strain can be observed here. 
Especially, the level of plateau stress is rise by pre-strain and the soften effect induced by the 
pre-strain is not observed in this direction. 
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Figure 6: The stress responses of compression observed in final procedure. 

The response of equibiaxial stress in final procedure is shown Figure 7. The variation 
induced by the difference of the amount of pre-strain is observed here, and it is shown that 
much pre-strain causes the stable level of plateau stress. On the other hand, the soften effects 
of this material are observed in the lower pre-strain conditions. This means that less pre-strain 
causes the instability of compression process of the porous materials even if the stable 
compression of the material can be observed in the condition of much pre-strain. Then, the 
maltiaxial condition of the low-density porous materials should be considered in the 
compression process with complex conditions of stresses.

Figure 7: Equibiaxial stress response in final procedure of compression. 
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12 CONCLUSIONS 
In order to study the behavior of multiaxial stress response of low-density porous materials, 

the compression test with multiaxial stress condition is conducted by developing the 
equibiaxial compressor [1]. Especially, the equibiaxial stress responses in the compression 
procedures are observed by the pressure sensor in the compressor. Then the instable 
phenomenon of the materials in multiaxial stress condition is observed by the conduction of 
the compression test of the materials. 

By considering the results of this result, the constitutive equations of the porous materials 
will be formulated to simulate the compression of them for the machine design which uses the 
materials. 
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Abstract. The implementation of a phenomenological, macroscopic model for TRIP-
steels in the finite element code ABAQUS is presented. The model takes into account both
the strain-rate dependent flow behaviour of the two phases, austenite (γ) and martensite
(α′), and the temperature and stress state dependent γ → α′ phase transformation. In
order to solve the system of nonlinear equations, which results from the implicit integration
of the constitutive model, the application of an affine trust-region approach is proposed
to compute strictly feasible solutions. Furthermore, model predictions are compared with
experimental results obtained from tensile tests on notched specimens.

1 INTRODUCTION

A common feature of many TRIP-steels is their favourable combination of high strength
and pronounced ductility. These properties also apply to a newly developed as cast TRIP-
steel [1] and are attributed to the inelastic deformation of the two phases austenite (γ) and
martensite (α′) and the strain-induced γ → α′ phase transformation, which accompanies
the deformation. The cast TRIP-steel possesses a fully austenitic, coarse grain initial
microstructure and the transformation proceeds by the formation of shear bands within
the grains and subsequent nucleation of martensite within these bands [2]. It has been
found that the transformation behaviour is rather sensitive to temperature and strain
rate [3]. Therefore, an adequate material model is required to describe the complex
material behaviour of the TRIP-steel.
An approach, which has been successfully applied to develop macroscopic models for
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TRIP-steels relies on the computation of effective properties of composites. Herein, TRIP-
steels are considered as composites with evolving microstructure [4], [5], [6]. In the current
paper, we also follow this approach and give an extension of the model proposed in [6]. The
composite approach is advantageous, because it allows insight into the stress and strain
levels in the single phases of the TRIP-steel as their constitutive response is explicitly
taken into account. However, the burden of such a procedure is the increased complexity
and possibly additional nonlinearity of the model due to the required homogenisation
process. Therefore, more elaborated numerical methods might be required to solve the
nonlinear equations, associated with the implicit integration of the constitutive model.
Besides the required starting point, the physical nature of the independent variables or
numerical considerations impose certain restrictions on these variables in order to exclude
infeasible solutions. In case of viscoplastic models, it has been shown by de Souza Neto [7]
that the commonly applied Newton’s method is not appropriate to handle such bounds.
In this paper an affine trust-region method [8] is applied to solve the bound constrained
nonlinear equations, which arise from the implicit integration procedure.
Throughout this paper symbolic notation is employed, where A andA denote fourth order
and second order tensors, respectively. The norm of A is defined as ‖A‖ =

√
A : A.

Vectors are given in matrix notation, i.e. the norm of a vector is described as ‖A‖ =√
ATA. The Jacobian of a vector function F(x) is introduced as F′ = ∂Fi

∂xj
. The fourth order

isotropic tensor and the Kronecker symbol are given as I = 1
2
(δikδjl+δilδjk)ei⊗ej⊗ek⊗el

and I = δijei ⊗ ej, respectively. The material time derivative is expressed as ˙( ) = d( )
dt

.

2 MATERIAL MODEL

In order to describe the response of the TRIP-steel under arbitrary large deformations,
the finite deformation theory is employed to formulate the corresponding constitutive
equations. An additive split of the rate of deformation tensor according to

D = De +Dvp +Dtrip (1)

is carried out. The elastic and the viscoplastic rates of deformation are denoted by
De and Dvp, respectively, whereas the rate of deformation associated with the phase
transformation is termed Dtrip. The assumption of small elastic strains, generally valid in
metal plasticity, allows to formulate the constitutive law as a linear, hypoelastic relation

�

Σ = C : De (2)

that connects the Jaumann rate of the Cauchy stress and the elastic rate of deformation
tensor [9]. In the case of isotropic elasticity the elastic modulus tensor

C = 2GI+ (K −
2

3
G)I⊗ I (3)

2
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is described in terms of the shear modulus G and the bulk modulus K. This approach
assumes identical elastic properties of the two phases austenite and martensite. The
viscoplastic rate of deformation is defined as

Dvp =
1

2
ΘhomS, (4)

where S denotes the deviator of the Cauchy stress and Θhom the viscoplastic compli-
ance of the two-phase composite, which is determined by homogenising the viscoplastic
response of the single phases. During phase transformation both volumetric and devia-
toric deformations occur. Therefore, the rate of deformation associated with the phase
transformation takes the form

Dtrip = ḟm

(
RN+

1

3
∆vI

)
. (5)

Herein, the volumetric transformation strain is denoted by ∆v, while

R = R0 +R1
Σ̄

σ∗
a

(6)

is the stress dependent magnitude of the deviatoric transformation strain, whose direction
is given in terms of the normalized stress deviator N = S/‖S‖. The von Mises equivalent

stress is computed as Σ̄ =
√

3
2
‖S‖. The transformation strain is controlled by the rate of

the martensite volume fraction ḟm.
Due to the significant difference in the flow behaviour of the two phases, their rate de-
pendent flow behaviour is modeled separately. Therefore, each phase is described by
a unified viscoplastic model of the von Mises type, i.e. the viscoplastic deformation is
strictly deviatoric. The viscoplastic equivalent strain rate is defined as

˙̄εvp(r) = ε̇0(r)

(
σ̃(r)

σy
(r)

)m(r)

, (7)

where σ̃(r), σ
y
(r) and ε̇0(r) denote the equivalent stress, the yield stress and the reference

strain rate of the phase r, which can be either austenite (a) or martensite (m). The
isotropic strain hardening of each phase is considered by using the power law

σy
(r) = A(r) + B(r)(ε̄

vp
(r))

q(r) . (8)

According to the variational principle for the homogenisation of nonlinear composites,
described in [10], the equivalent stresses σ̃(r) can be related to macroscopic equivalent
stress Σ̄ as

σ̃(r) = Σ̄

√
1

f(r)

∂Θhom

∂Θ(r)
. (9)

3
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This relation holds, if the composite consists of isotropic phases arranged in a statistically
uniform and isotropic manner. In order to evaluate this expression, a description of the
homogenised compliance Θhom in terms of the compliances of the single phases Θ(r) is
required. Here the bound

Θhom =
fm(

2
Θa

+ 3
Θ
) + fa(

2
Θm

+ 3
Θ
)

fm
Θm

( 2
Θa

+ 3
Θ
) + fa

Θa
( 2
Θm

+ 3
Θ
)
, (10)

as proposed by Hashin Shtrikman [11], is used. It should be noted that Θ = max(Θa,Θm)
and the volume fraction of austenite is defined as fa = 1−fm. The viscoplastic compliances
of the single phases

Θ(r) =
3

σ̃(r)

˙̄εvp(r) =
3ε̇0(r)
σ̃(r)

(
σ̃(r)

σy
(r)

)m(r)

(11)

correspond to a linearized form of Eq. (7).
In order to describe the phase transformation behaviour of the cast TRIP-steel, the macro-
scopic transformation model by Stringfellow [5] is extended. This model is inspired by the
experimental observation that martensite nucleates predominantly at shear band inter-
section, which have been formed prior to the nucleation event. Following the derivation
in [5], an evolution equation for the martensite volume fraction of the form

ḟm = (1− fm)(A ˙̄εvpa + B(ġ − ˙̄g)) (12)

is proposed. Herein, the thermodynamical driving force g for the martensite evolution

g = g0 − g1ϑ+ g2ϑ
2 + g3(∆vp+

√
2

3
RΣ̄) (13)

is taken as a function of the hydrostatic stress p = 1
3
Σ : I, the von Mises equivalent stress

Σ̄ and the normalized temperature ϑ

ϑ =
T −Mσ

s

Md −Mσ
s

, (14)

where T and Mσ
s correspond to the temperature and the start temperature for stress-

induced martensite formation, respectively. Md is the highest temperature, at which
martensite can be mechanically induced [12]. The mean transformation barrier ḡ is as-
sumed to depend on the viscoplastic equivalent strain in the austenite in the form

ḡ = ḡ0 + ḡ1ε̄
vp
a . (15)

This approach incorporates the effect that the energy required for the accommodation
of the martensite nuclei in the surrounding matrix material depends on the viscoplastic

4
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deformation of the austenite prior to the nucleation [13]. The parameter A that controls
the martensite formation due to an increase in nucleation sites is given as

A = aβn(fSB)
n−1(1− fSB)P . (16)

The formation of shear bands in austenite is modeled via the volume fraction of shear
bands fSB, whose evolution is described according to

ḟSB = (1− fSB)a ˙̄ε
vp
a . (17)

The rate of shear band formation a is taken as function of the temperature T and the
stress triaxiality h = p/Σ̄ in the form

a = a1 + a2T + a3T
2 − a4 arctan(h) . (18)

To account for the observation that under given values of the driving force and the trans-
formation barrier martensite is formed only at a certain fraction of potential nucleation
sites, the following function P is introduced.

P =
1

√
2πsg

g∫

−∞

exp

[

−
1

2

(
g′ − ḡ

sg

)2
]

dg′ (19)

The parameter B, which incorporates the change in martensite volume fraction due to a
change in the driving force and the transformation barrier is given as

B = β(fSB)
ndP

dg
H(Ṗ ) . (20)

It should be noted that β, n and H(Ṗ ) in equation (16) and (20) describe two geometrical
constants and the unit step function, respectively.

3 IMPLEMENTATION

3.1 Integration of the material model

The constitutive model, described in Sect. 2, is implemented in the finite element
program ABAQUS using the user subroutine interface UMAT. The applied incremental,
iterative solution strategy requires the integration of the rate form of the constitutive
equations in the context of finite deformations over a finite time increment ∆t = t|n+1−t|n.
In the following, quantities at the beginning and the end of the increment are indicated
by ()|n and ()|n+1, respectively, while the increments of these quantities are defined as
∆ = ()|n+1− ()|n. The integration is carried using the algorithm proposed by Hughes and
Winget [14], because it preserves the objectivity incrementally. When applied to a second
order tensor A, it takes the form

A|n+1 = ∆R ·A|n ·∆RT +∆A(∆E), (21)

5
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where ∆R and ∆E denote the increment in rotation and an approximation of the strain
increment, respectively. The last term of the right hand side corresponds to the change in
A as a result of the strain increment ∆E associated with ∆t. Under suitable assumptions
regarding the rotation of the principle axis of the strain, the time integration of Eq. (1)
yields the incremental relation

∆E = ∆Ee +∆Evp +∆Etrip. (22)

Due to its unconditional stability, the integration is carried out using a one-step implicit
integration scheme. Therefore, the inelastic strain increments are calculated by

∆Evp =
∆t

2
Θhom|n+1S|n+1 (23)

and

∆Etrip = ∆fm

(
R|n+1N|n+1 +

1

3
∆vI

)
. (24)

The stress increment is computed according to

∆Σ = C : (∆E−∆Evp −∆Etrip) (25)

after the stress at the beginning of the increment is rotated as described in Eq. (21).
The constitutive description of the viscoplastic behaviour of the single phases, which has
been introduced in Eq. (7),(8) and (11), is given in the discretized form as

˙̄εvp(r)|n+1 = ε̇0(r)

(
σ̃(r)|n+1

σy
(r)|n+1

)m(r)

(26)

Θ(r)|n+1 =
3ε̇0(r)

σ̃(r)|n+1

(
σ̃(r)|n+1

σy
(r)|n+1

)m(r)

(27)

σy
(r)|n+1 = A(r) + B(r)(ε̄

vp
(r)|n + ˙̄εvp(r)|n+1∆t)q(r) , (28)

while the equivalent stresses are computed as

σ̃(r)|n+1 = Σ̄|n+1

√
1

f(r)|n+1

∂Θhom

∂Θ(r)

∣∣∣∣
n+1

. (29)

The evolution of the martensite volume fraction over the time increment ∆t is approxi-
mated with

∆fm = (1− fm|n+1)(A|n+1 ˙̄ε
vp
a |n+1 + B|n+1(ġ|n+1 − ˙̄g|n+1))∆t . (30)

6
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The incremental change in the volume fraction of shear bands is obtained from

∆fSB = (1− fSB|n+1)a|n+1 ˙̄ε
vp
a |n+1∆t . (31)

Using Eq. (13) and (15) the rate of the driving force and the transformation barrier are
given at the end of the increment as

ġ|n+1 = −g1ϑ̇|n+1 + 2g2ϑ|n+1ϑ̇|n+1 + g3

(
∆vṗ|n+1 +

√
2

3

(
R + Σ̄

∂R

∂Σ̄

) ∣∣∣∣
n+1

˙̄Σ|n+1

)
(32)

˙̄g|n+1 = ḡ1 ˙̄ε
vp
a |n+1 , (33)

respectively.
According to Papatriantafillou [6], the nonlinear, implicit tensor equation (25) can be
efficiently solved by applying the integration algorithm proposed by Aravas [15] in the
case of pressure dependent plasticity models. We follow this approach and state the
resulting two nonlinear equation for the stress invariants.

p|n+1 = ptrial|n+1 −K∆E in (34)

Σ̄|n+1 = Σ̄trial|n+1 − 3G∆Ḡin (35)

The trial stress Σtrial is obtained from Eq. (25) by

Σtrial|n+1 = Σ|n + C : ∆E . (36)

The quantities ∆Ein and ∆Ḡin are defined as

∆Ein = (∆Evp +∆Etrip) : I = ∆v∆fm (37)

∆Ḡin =

√
2

3

(
∆Evp +∆Etrip −

1

3
I∆Ein

)
:

(
∆Evp +∆Etrip −

1

3
I∆Ein

)

= ∆fm

√
2

3
R|n+1 +

∆t

3
Θhom|n+1Σ̄|n+1 . (38)

In order to compute the stress at the end of the increment, ∆Ḡin and fm|n+1 are taken as
the primary unknowns and the Eq. (30) and (38) are reformulated as residuals.
The determination of the quantities at level of the single phases, namely ˙̄εvp(r)|n+1, Θ(r)|n+1,

σy
(r)|n+1 and σ̃(r)|n+1 requires the solution of the system of equations defined by (26)

to (29). According to the proposal in [6], the introduction of the ratio of the viscoplastic
compliance Xm = Θm

Θa
allows for a reduction of the two nonlinear equations (27) to a single

equation. In contrast to [6] the yield stresses in both phases are evaluated at the end of

7
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the increment. Therefore, equation (26) and (29) are included in (28), which leads to the
following system of equations

Xm|n+1 =
ε̇0m
ε̇0a

(σy
a |n+1)

ma

(σy
m|n+1)mm

(√
1

fm|n+1

∂Θhom

∂Θm

∣
∣
n+1

)mm−1

(√
1

fa|n+1

∂Θhom

∂Θa

∣
∣
n+1

)ma−1 (Σ̄|n+1)
mm−ma (39)

σy
a |n+1 = Aa + Ba




ε̄vpa |n +∆tε̇0a




Σ̄|n+1

√
1

fa|n+1

∂Θhom

∂Θa

∣
∣
n+1

σy
a |n+1





ma





qa

(40)

σy
m|n+1 = Am + Bm




ε̄vpm |n +∆tε̇0m




Σ̄|n+1

√
1

fm|n+1

∂Θhom

∂Θm

∣
∣
n+1

σy
m|n+1





mm





qm

. (41)

Note that the derivatives ∂Θhom

∂Θa
and ∂Θhom

∂Θm
also dependent on Xm and the solution of the

system of implicit equations requires iterative methods, which are described in Sect. 3.2.
Once the above equations are solved together with Eq. (30) and (38), the viscoplastic
and the transformation strain can be updated based on the trial stress and determined
quantities according to Eq. (23) and (24).
The use of an implicit integration scheme for the constitutive equations necessitates the
computation of the consistent material tangent, which is defined as

C
t|n+1 =

∂Σ

∂E

∣
∣
∣
∣
n+1

= C− C : M|n+1 : C . (42)

The tensor M|n+1 takes the form

M|n+1 =
1

3
∆v

∂fm
∂Σtrial

∣
∣
∣
∣
n+1

⊗ I+
3

2

(
∂∆Ḡin

∂Σtrial

∣
∣
∣
∣
n+1

⊗M|n+1 +∆Ḡin ∂M

∂Σtrial

∣
∣
∣
∣
n+1

)

. (43)

The derivatives of fm and ∆Ḡin with respect to the trial stress tensor are obtained by
implicit differentiation of the residual form of Eq. (30) and (38). The differentiation of
the normalized stress deviator M = S/Σ̄ is carried out consistent with [16]. Note that the
resulting consistent material tangent is unsymmetric due to the mutual coupling between
fm and ∆Ḡin.

3.2 Numerical solution of the nonlinear systems of equations

As mentioned in Sect. 3.1, iterative methods are required the solve the two systems of
equations (rI, rII), which are given by Eqs. (39) to (41) and Eq. (30) and (38), respectively.
Due to the choice of independent variables in the corresponding systems, the staggered

8



877
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solution procedure shown in Fig. 1 is proposed. In order to avoid iterates that are unphys-
ical due to the irreversible nature of the inelastic processes and may lead to numerical
difficulties, the following bounds are introduced (see Tab. 1).

Table 1: Bounds on variables

0 ≤ ∆Ḡin fm|n ≤ fm|n+1

0 ≤ Xm|n+1 σy
a |n ≤ σy

a |n+1

σy
m|n ≤ σy

m|n+1

rI(Xm, σa
y , σ

m
y ) = 0

rII(∆Ḡin, fm) = 0

Σ|n+1,C|n+1

Σ|n,∆E

Figure 1: Staggered solution algorithm

As Newton’s method is not intended for handling such bounds and truncating the New-
ton step may result in poor convergence when approaching a bound, an interior global
method proposed by Bellavia et al. [8] is used. This method belongs to the group of affine
trust-region methods and is able to solve problems of the kind

F(x) = 0 , l ≤ x ≤ u , (44)

where F is a system of nonlinear equations and x is the vector of independent variables,
while l and u denote given lower and upper bounds. As the use of such a method is not
commonly employed in the context of constitutive modelling, the method is briefly de-
scribed. When applying this method to solve Eq. (44), the computed steps are guaranteed
to sufficiently reduce the norm ‖F(x)‖ and to stay strictly inside the feasible region. This
requires the solution of an elliptical trust-region problem

min
q

{mk(q) : ‖Dkq‖ ≤ ∆k} (45)

at every iteration k, where

mk(q) =
1

2
‖Fk‖+ FT

kF
′
kq +

1

2
qTF′T

k F′
kq . (46)

The sufficient reduction is ensured by adjusting the step size of q via the trust-region radius
∆k, while the scaling matrix Dk, which measures the distance of the current iterate to the
bound, is used to adapt the current step q in order to generate feasible iterates. According
to [8] the method shows quadratic convergence even to solutions on the boundary of the
feasible region and is not much more computational expensive than a conventional Newton
iteration. Due to these favourable properties, the affine trust-region method is employed
in the solution of both systems of equations (rI, rII) that arise from the implicit integration
of the material model. The interested reader is referred to [8] for convergence proofs and
implementation issues.

9
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Table 2: Material parameters

Aa [MPa] Ba [MPa] qa Am [MPa] Bm [MPa] qm a1 a4
180 1564 0.83 1429 276 0.86 4.61 0.13

ḡ0 [ mJ
mm3 ] ḡ1 [ mJ

mm3 ] sg [ mJ
mm3 ] R0 R1 n β ∆v

207 20 178 0.0284 0.0574 2.61 1.4 0.04

Mσ
s [◦C] Md [◦C] K [MPa] G [MPa] g0 [ mJ

mm3 ] g1 [ mJ
mm3 ] g2 [ mJ

mm3 ] g3
20 100 123077 77419 330 71.6 0.56 1

σ∗
a ma ε̇0a [s−1] mm ε̇0a [s−1] a2 a3

387 30 0.001 40 0.001 0 0

4 RESULTS

The material model presented in Sect. 2 is applied to describe the deformation be-
haviour of a newly developed CrMnNi cast TRIP-steel [1]. The model has been calibrated
using data from both tensile and compression tests to account for the tension-compression
asymmetry included in the model. The mechanical tests were carried out at room tem-
perature under quasistatic loading conditions. Details of the employed parameter iden-
tification strategy are given in [17]. The identified parameters are included in the upper
half of Tab. 2. Furthermore, the constant parameters listed in the lower half of Tab. 2
are used, which were obtained either by thermodynamical calculation (g0, g1, g2), direct
measurement (K,G) or have been assumed as in case of temperature and strain rate de-
pendent material behaviour. In order to evaluate the capabilities of the calibrated model
to predict the deformation behaviour under different inhomogeneous triaxial stress states,
a series of notched tensile tests has been conducted. The corresponding specimens were
manufactured with notch radii R = {1, 2, 4, 8mm}. The measurements were accomplished
under displacement control at a constant rate of 0.5mm/min employing a servohydraulic
test machine MTS Landmark 100. During the test, force and displacement were recorded
utilizing the built-in load cell of the test machine and a MTS extensiometer. Addition-
ally, the notch radius and the diameter reduction at the notch root were measured during
deformation by an optical extensiometer. Consistent with the experiment, a gauge length
L = 35mm, an outer diameter D = 12mm and a diameter d = 6mm of the minimum
section of the notched tensile specimen were used in the finite element model to simulate
the notched tensile tests with the finite element code ABAQUS. Due to the symmetries
intrinsic to the problem, only the upper half of the specimen is modeled, employing linear
axisymmetrical elements (CAX4). The boundary value problem is depicted in Fig. 2. The
displacement in positive z-direction is uniformly prescribed at the top of the specimen
according to the experimental procedure. The experimentally determined force displace-
ment curves for different notch radii are shown in Fig. 3 together with the corresponding

10



879
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Figure 2: Notched tensile specimen Figure 3: Comparison between experiments (◦) and simulation

results of the simulation. Reasonable good agreement between the results from the simu-
lation and the experimental measurements is observed, although the model overestimates
the force displacement curve in case of low stress triaxialities. It can be concluded that
the model is able to capture the effect of stress triaxiality on the force displacement curve.

5 CONCLUSIONS

In the current paper the implementation of a macroscopic material model for TRIP-
steels into the finite element code ABAQUS has been presented. A staggered solution
procedure is used to solve the coupled systems of nonlinear equations, which result from
the implicit integration of the constitutive model. The computation of infeasible solutions
is avoided by applying an affine trust-region approach. The calibrated model is employed
to predict the force displacement curve of notched tensile tests. Reasonable good agree-
ment can be observed, if model predictions are compared to experimental results.
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Summary. This paper presents the influence of the plastic potential in the mechanical 
response of thermoplastic components. This study is based on a recently hyperelastic-
viscoplastic constitutive model developed for polymeric materials. Assuming a non-
associative plasticity framework different plastic potentials are considered in this study (e.g. 
isochoric, quasi-linear, parabolic and elliptic). The present model is intended to be used to 
characterize closer the matrix behavior of polymeric based composite materials under a 
micro-mechanics framework.    

 
 
1 THE MBR CONSTITUTIVE MODEL 

Polymers are increasingly being used in the transport industry, specially, in structural 
components related to passengers or pedestrian safety. In this direction, a new hyperelastic-
viscoplastic constitutive model for thermoplastics (under isothermal conditions) has been 
developed by Polanco-Loria et al.1 (see Fig. 1). The model is a physically-based constitutive 
model, involving the typical mechanisms of the elastic behavior of polymers, i.e. relative 
rotation around backbone carbon-carbon bonds and entropy change by un-coiling molecule 
chains. In addition, viscoplastic flow associated with relative movement between molecules is 
included. Historically, the development of this model goes back to the work by Haward and 
Thackray2 and further developed by Boyce3 and Boyce et al.4, who assumed that the total 
stress was the sum of an inter-molecular and intra-molecular contribution denoted Part A and 
Part B, respectively.  
 

Shortly, the elastic response of part A is described by a compressible Neo-Hookean 
material where the Cauchy stress tensor reads: 
 

1 ln ( )e e
A A Ae

A

J
J

λ µ = + − σ I B I  
(1) 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



882

Mario A. Polanco-Loria and Einar L. Hinrichsen.

2

In addition, yield condition assumes a pressure-sensitivity criterion based on the work of 
Raghava et al.5

2 2
1 1 2( 1) ( 1) 12

2
− + − +

= A A A
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I I Jα α α
σ

α

(2)

In order to control the plastic dilatation, a non-associative flow rule is introduced where a 
Raghava-like plastic potential   is defined as

2 2
1 1 2( 1) ( 1) 12

0
2

− + − +
= ≥A A A

A

I I J
g

β β β
β

(3)

With respect to the plasticity response of Part A (see Fig.1) the model was enhanced to 
include isotropic hardening/softening behavior according to Voce’s saturation model6:

( ) 1 expsat
T

pHR εσ σ − = − − 
(4)

where, R is the stress hardening level. The hardening/softening modulus is represented by 
H , the saturation and yield tensile stress by satσ and Tσ , respectively. Hence, for the 
hardening case sat

Tσ σ> while for the softening case sat
Tσ σ< .

The part B includes the deformation gradient B A= =F F F , representing the network 
orientation. The network resistance is assumed to be hyperelastic. The Cauchy stress-stretch 
relation is used as the original definition of Boyce et al. 4 :

1 * 21 ( )
3

R
B B

C N
J N

λ λ
λ

−  
= −  

  
σ B I

(5)

The constitutive model requires 11 parameters to be identified:

• Spring A represents the initial elastic stiffness with a Neo-Hookean formulation.
There are two elastic coefficients E (Young’s modulus) and ν (Poisson’s ratio).

• Friction element A models the yielding process with pressure dependency and a non-
associative flow rule. Three parameters in this friction element are needed: the 
uniaxial yield tensile stress Tσ , the pressure sensitive parameter α and the volumetric 
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plastic strain control parameter β . The hardening/softening behaviour necessitates 
two additional terms (see Eqn. 1):  and satH σ .

• Dashpot A is included to represent the rate dependence of the material. The visco-
plastic multiplier uses a linear (log scale) strain rate law characterized by two 
parameters:  the reference strain rate 0ε and the strain rate coefficient C .

• Spring B represents the elongation of the molecule chains, here modeled with a
hyperelastic law. Only the distortional stress-stretch relation is used here where two 
hardening coefficients RC and N need to be identified.

Network 
stretching

Stiffness

Flow

Plasticity

Part BPart A

σΑ FA σΒFB

σ Total

Part A 
(intermolecular)

Part B
(network)
ε

σ= σΑ+ σΒ

Figure 1:   Constitutive model with inter-molecular (A) and network (B) contributions

A complete description of the parameter identification process has been proposed 
elsewhere7. The model will be referred here as the modified Boyce-Raghava (MBR) model.

2 INFLUENCE OF THE PLASTIC POTENTIAL
The original work1 proposes a non-associative plastic potential (see Eqn. 3) to handle the 

volumetric plastic flow, commonly observed in polymers. The apparently drawback of such 
proposal is the dilation behavior under compressive stresses. For this reason, a closer study on 
the importance of such plastic potential is considered here. In addition to the classical 
isochoric assumption three different potentials, all of them giving the same volumetric plastic 
contribution, have been considered: quasi-linear, parabolic (Eqn. 3) and elliptic. All of them
can be calibrated to give the same plastic volumetric response in uniaxial tension. 
Qualitatively the quasi-linear model predicts less volumetric plastic strain than the parabolic 
and elliptic in the high triaxial state of stress. Only the elliptic model is capable of predicting 
compaction for negative pressures. This model however, requires an additional parameter. An 
illustration of the plastic potentials studied is indicated in Figure 2. 
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Figure 2: Different plastic potentials considered

3 EXPERIMENTAL DATA USING A PP COPOLYMER MATERIAL

3.1 Introduction
The experimental results of a commercial impact-modified PP used for injection molded 

automotive exterior parts are used for illustration purposes7. This PP compound is a 20 % 
mineral filled and rubber modified. A complete description of the parameter identification 
process was proposed by Polanco-Loria et al.7 and the predictions of the constitutive model 
(assuming the original parabolic law) are presented in Figure 3. The material parameters 
assumed for the PP copolymer are indicated in Table 1.

Table 1: Material parametrs for the PP copolymer

E MPa ν C 0ε 1/s Tσ MPa Satσ MPa H MPa RC MPa N β α

1500 0.4 0.08 2x10-4 14.0 11.5 8.0 1.60 5.0 1.47 1.17
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Figure 3: Uniaxial tensile stress-strain response and prediction of the “Poisson” ratio variation

3.2 Material calibration for the quasi-linear, elliptic and isochoric plastic flow rules
The material identification procedure was applied to the quasi-linear, elliptic and isochoric 

assumptions based on the experimental tension test results of Fig. 3. As one can expect, the
stress-strain response of these three models are similar, as illustrated in Fig 4. In this figure 
we included the numerical and experimental response of the isochoric model. The differences 
between these responses clearly indicates damage activity in form of void grow and crazes 
formation.
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Figure 4: Uniaxial tensile stress-strain response and prediction of the volumetric strains

The total volumetric strain response predicted by the models is also indicated in figure 4. 
Once again, the volumetric response of the parabolic, quasi-linear and elliptic is similar.
Large differences in the volumetric strain response between these models and the isochoric 
one (e.g. only predicts elastic strains) are observed (bleu line). 

Now, a more reliable comparison can be performed to assess the influence of the plastic 
potential in the mechanical behavior of thermoplastic components.
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4 CONCLUSIONS
- The study of the plastic potential on the mechanical response of thermoplastic 

components has been proposed.
- In addition to the isochoric assumption three potentials were considered: quasi-linear, 

parabolic and elliptic. With proper calibration all of them give the same response 
under uniaxial tension loading. 

- Several examples of thermoplastic components will be given at the oral presentation 
(e.g. beam and plates)

- The present model is part of a new development to characterize closer the matrix 
behavior of polymeric based composite materials under a micro-mechanics 
framework.

REFERENCES
[1] M. Polanco-Loria, A.H. Clausen, T. Berstad, and O.S Hopperstad “Constitutive model for 

thermoplastics with structural applications” International Journal of Impact Engineering, 
37, 12 (2010).

[2] R.N. Haward and G. Thackray, “The Use of a Mathematical Model to Describe Isothermal 
Stress-Strain Curves in Glassy Thermoplastics”. Proceedings of the Royal Society of 
London. Series A. Mathematical and Physical Sciences, 302, 1471 (1968).

[3] M.C. Boyce, “Large inelastic deformation of glassy polymers”, in Department of 
Mechanical Engineering. Massachusetts Institute of Technology: Boston, USA (1986).

[4] M.C. Boyce, S. Socrate, and P.G. Llana, “Constitutive model for the finite deformation 
stress-strain behavior of poly(ethylene terephthalate) above the glass transition”. Polymer, 
41, 6 (2000).

[5] R. Raghava, R.M. Caddell, and G.S.Y. Yeh, “The macroscopic yield behaviour of 
polymers”. Journal of Materials Science, 8, 2 (1973).

[6] Polanco-Loria M. and Clausen A.H., “An inverse modelling methodology for parameters 
identification of thermoplastic materials”  Keynote Lecture.  Proceedings of 23th Nordic 
Seminar on Computational Mechanics, NSCM-23, Editors: A. Eriksson and G. Tibert. 
KTH, Royal Institute of Thechnology. ISSN 0348-467X; Stockholm, Sweden, 21-22 
October, (2010).

[7] M. Polanco-Loria, H. Dayan and F. Grytten “Material parameters identification: An 
inverse modelling procedure applicable for thermoplastic materials” accepted for 
publication in Polymer Engineering Science (2011).



887

Mario A. Polanco-Loria and Einar L. Hinrichsen.

6

4 CONCLUSIONS
- The study of the plastic potential on the mechanical response of thermoplastic 

components has been proposed.
- In addition to the isochoric assumption three potentials were considered: quasi-linear, 

parabolic and elliptic. With proper calibration all of them give the same response 
under uniaxial tension loading. 

- Several examples of thermoplastic components will be given at the oral presentation 
(e.g. beam and plates)

- The present model is part of a new development to characterize closer the matrix 
behavior of polymeric based composite materials under a micro-mechanics 
framework.

REFERENCES
[1] M. Polanco-Loria, A.H. Clausen, T. Berstad, and O.S Hopperstad “Constitutive model for 

thermoplastics with structural applications” International Journal of Impact Engineering, 
37, 12 (2010).

[2] R.N. Haward and G. Thackray, “The Use of a Mathematical Model to Describe Isothermal 
Stress-Strain Curves in Glassy Thermoplastics”. Proceedings of the Royal Society of 
London. Series A. Mathematical and Physical Sciences, 302, 1471 (1968).

[3] M.C. Boyce, “Large inelastic deformation of glassy polymers”, in Department of 
Mechanical Engineering. Massachusetts Institute of Technology: Boston, USA (1986).

[4] M.C. Boyce, S. Socrate, and P.G. Llana, “Constitutive model for the finite deformation 
stress-strain behavior of poly(ethylene terephthalate) above the glass transition”. Polymer, 
41, 6 (2000).

[5] R. Raghava, R.M. Caddell, and G.S.Y. Yeh, “The macroscopic yield behaviour of 
polymers”. Journal of Materials Science, 8, 2 (1973).

[6] Polanco-Loria M. and Clausen A.H., “An inverse modelling methodology for parameters 
identification of thermoplastic materials”  Keynote Lecture.  Proceedings of 23th Nordic 
Seminar on Computational Mechanics, NSCM-23, Editors: A. Eriksson and G. Tibert. 
KTH, Royal Institute of Thechnology. ISSN 0348-467X; Stockholm, Sweden, 21-22 
October, (2010).

[7] M. Polanco-Loria, H. Dayan and F. Grytten “Material parameters identification: An 
inverse modelling procedure applicable for thermoplastic materials” accepted for 
publication in Polymer Engineering Science (2011).

JOHNSON-COOK PARAMETER IDENTIFICATION FROM
MACHINING SIMULATIONS USING AN INVERSE

METHOD

AVIRAL SHROT∗ AND MARTIN BÄKER†
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Abstract. The Johnson-Cook model is a material model which has been widely used for
simulating the chip formation processes. It is a simple 5 parameter material model which
predicts the flow stress at large strains, strain-rates and at high temperatures. These
parameters are usually identified by determining the flow stress curves experimentally,
and then using curve fitting techniques to find the optimal parameters to describe the
material behaviour. However the state-of-the-art experimental methods can only rely on
data obtained from strains of up to 50% and strain-rates of the order of 103 per second,
whereas in machining processes strains of more than 200% are reached at strain-rates of
the order of 106 or more. Therefore, the parameters obtained at much milder conditions
have limited applicability when simulating machining.

In this paper an inverse method of material parameter identification from machining
simulations is described. It is shown that by using the observables of a machining process
such as the chip shape and cutting forces, the underlying material parameters can be
identified. In order to achieve this, a finite element model of the machining process
is created and simulation is carried out using a known standard parameter set from
literature. The objective of the inverse method is to reidentify this set by using the chip
shape and cutting forces. An error function is created using the non-overlap area of the
chip shapes and the difference in the cutting forces. The Levenberg-Marquardt algorithm
is used to minimise the error function.

It has been shown before that multiple sets of Johnson-Cook parameter sets exist which
might give rise to indistinguishable chip shapes and cutting forces. In order to identify the
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parameter set uniquely, simulations are performed at widely varying cutting conditions
such as differing rake angles, cutting speeds and non-adiabatic conditions. Thus, material
parameters which represent the material behaviour over a wide range can be identified.

1 INTRODUCTION

In a conventional machining process the material from a workpiece is removed using a
harder tool material. Simulation of the material removal process by machining has been
extremely challenging due to the complex character of the process. The removed material
undergoes large plastic deformation (strains of more than 200%), at very high strain rates
(∼ 106 s−1 or more) and is accompanied by a temperature rise of hundreds of degrees
in the deformation zone. A number of material models have been suggested which take
into account the before mentioned issues. Identification of material parameters for such
models is usually done by material tests at varying strains, strain rates and temperatures.
Split Hopkinson Bar tests are widely used for conducting high strain rate tests. The
data obtained from such tests are used for parameter identification using curve fitting
techniques. However due to physical constraints the material is usually deformed only
upto 50% of plastic strain and at strain rates of the order of ∼ 103 - 104 s−1. Therefore
when simulating the chip formation process, strains and strain rates are extrapolated over
several orders of magnitudes leading to erroneous simulation results.

The issue of material parameter determination for machining process has been ad-
dressed by different researchers. Jaspers and Dautzenberg [1] had proposed using Split
Hopkinson Bar data for determining material parameters. However, the shortcomings
of this method have been discussed in the previous paragraph. The approach of Tounsi
et al.[2] and Shatla et al. [3] depends on using a theoretical model for estimating the
material parameters. Howeve,r the problem with this approach is that theoretical models
are difficult to verify under the extreme conditions of large strains, strain rates and high
temperatures. Another problem in such an approach is that material parameters can be
varied to obtain a good match between the simulation results and experiments for a par-
ticular set of cutting conditions. However, when the cutting conditions are varied widely,
the results fail to match outside the domain where they have been explicitly matched.

In this paper a method for inverse determination of material parameters is proposed. In
Section 2 the Johnson-Cook material model is briefly described. In Section 3 the inverse
identification problem is explained along with the description of the error function to be
minimised and the finite element model that is used. The results are presented in Section
4. Finally conclusions are drawn in Section 5 and the line of future work is also suggested.

2 JOHNSON-COOK MATERIAL MODEL

The Johnson-Cook Model [4] is a five parameter material model which is used to
describe material behaviour over a large range of strains, strain rates and temperatures.

2
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Due to its simplicity and the low number of free parameters, this model is widely used in
machining simulations. The flow stress σ is expressed as

σ = (A+ Bεn)︸ ︷︷ ︸
Elasto−P lastic term

[
1 + C ln

(
ε̇

ε̇0

)]

︸ ︷︷ ︸
V iscosity term

[
1−

(
T − Troom

Tmelt − Troom

)m]

︸ ︷︷ ︸
Thermal softening term

(1)

where ε is the plastic strain, ε̇ is the strain rate, ε̇0 is the reference strain rate. T is
the temperature of the material, Tmelt is the melting point of the material and Troom is
the room temperature. The empirical constants are as follows: A is the yield stress, B is
the pre-exponential factor, C is the strain rate factor, n is the work-hardening exponent
and m is the thermal-softening exponent.

3 INVERSE IDENTIFICATION PROBLEM

The cutting force, chip shape, chip temperature etc are observables in a machining pro-
cess. These quantities are a function of the material behaviour and the cutting conditions.
Using finite element simulations and keeping the cutting conditions identical to the ma-
chining experiment, it might be possible to inversely determine the material parameters.
In order to test this hypothesis, a standard material parameter set is inversely reidentified
using machining simulations. A standard simulation is done using a material parameter
set from literature and while keeping the cutting conditions constant, test simulations are
carried out in order to identify the standard parameter set. This methodology was also
adopted because this way it was possible to keep the cutting conditions the same in case
of standard simulations and the test simulations.

The material parameters for the test simulations were systematically varied during
the inverse identification process. The inverse identification was conducted in two stages
where the goal is to minimise the error function which is expressed as a sum of squares of
non-linear functions. In the first optimisation stage the Levenberg-Marquardt algorithm
was used and the converged set from this stage is used as the starting set during the second
stage for which the Simplex algorithm is used. In a Levenberg-Marquardt algorithm, the
parameters are changed in the direction of the steepest descent which is determined by
evaluating a Jacobian. The amount of variation in this direction is determined by a
damping parameter which is reduced during the course of the optimisation process so as
to have a faster convergence and is increased when close to the minimum so that the steps
become smaller and the minimum is not overstepped. In case of the Simplex algorithm,
a simplex crawls towards the minimum using a set of reflection, expansion, contraction
and reduction steps. An exhaustive explanation of the two algorithms can be found in
literature [5, 6, 7].

3
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3.1 Error Function

The aggregate error function takes into account the chip shape and the cutting force.
The area of non-overlap between two chips is used as a measure of the chip shape error.
The difference in the cutting force between the standard case and the test case is the
measure of the cutting force error. In order to find the chip shape error, the standard
chip and the test chip are superimposed and the region of interest where non-overlap
is to be found is bound by a window. This region is then discretised by a number of
horizontal lines. The intersection of the horizontal lines with the chip outlines is found
out which gives the length of the line intercepted between the chip outlines. Using the
distance between the discretising lines and the intercepted length, the elemental area of
non-overlap is found which is summed over all the elemental areas to give the chip overlap
error (Figure 1). The chip overlap error and the cutting force error are combined using
a weighting factor w, which is used to balance the contribution of the two factors in the
overall optimisation, to give an aggregate error function φi(x) (Equation 2). The value of
w used in this paper is 1/500 mm2 N−1. The error function χ2(x) is obtained by summing
the square of the aggregate error functions over all the observations (Equation 3).

φi(x) =
∣∣eAi (x)

∣∣ + w.
∣∣eFi (x)

∣∣ (2)

χ2(x) =
1

2

N∑
i=1

φ2
i (x) =

1

2

N∑
i=1

(∣∣eAi (x)
∣∣ + w.

∣∣eFi (x)
∣∣)2 (3)

L

∆y = L/(n+1)
∆x

Outline of Chip 1

Outline of Chip 2

Figure 1: Estimation of chip overlap error. The region of interest is discretised by n lines.

3.2 Finite Element Model

The two-dimensional adiabatic finite element model for machining simulation was made
using the commercial finite element software ABAQUS 6.9-1 and consisted of a rigid tool
meshed with R2D2 elements and a workpiece meshed with four node CPE4R elements

4



891

Aviral Shrot and Martin Bäker
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Figure 2: Finite Element Model showing the boundary conditions and the non uniform meshing

(Figure 2). The workpiece was partitioned into three regions such that the top region
formed the chip, the bottom region the machined workpiece and the intermediate region
comprised of damageable elements which were removed from the simulation after a critical
shear strain of 2.0 is exceeded. The cutting speed is fixed at 33.3 m/s and the simulation
is conducted for 0.040 ms during which 500 frames are recorded. Friction is neglected
throughout the simulation. In order to ensure that the optimisation takes into account a
wider range of cutting conditions, two different values of rake angles were used, viz. 1◦

and 10◦. The material properties used for the simulation have been shown in Table 1 and
Table 2. The thermal properties of the material have been taken from [8].

CP = 92.78 + 0.7454T +
12404× 103

T 2
J kg−1 K−1 (4)

Table 1: Material properties for HY 100 steel [9, 10, 11]

Density [kgm−3] 7860
Young’s Modulus [GPa] 205
Poisson’s Ratio 0.28

Table 2: Johnson-Cook parameters for HY 100 steel [9, 10, 11] used in the standard simulation

A [MPa] B [MPa] C m n Tmelt [K] Troom [K] ε̇0 [s−1]
316 1067 0.0277 0.7 0.107 1500 300 3300

5
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The elements on the workpiece after coming in contact initially with the tool get
badly crushed thereby reducing the characteristic length of such elements. This in turn
reduces the stable time increment and thus increases the total simulation time. As a
solution to this problem, the first 10% length of the workpiece is meshed with rectangular
elements of dimensions 8.5 × 6.25 m. The rest of the workpiece is meshed with square
elements of dimensions 6.25 × 6.25 m. The workpiece is finely meshed with 32 elements
across the uncut chip thickness. A C++ code is written to read the deformed chip shape
coordinates and the cutting force values. The values thus obtained are used with the
minimisation algorithms which are available in the GNU Scientific Library [12]. From the
two simulations which are conducted for the different rake angle values 15 observations,
from frames 486 to 500, are taken from each to evaluate the error function.

4 RESULTS AND DISCUSSIONS

In order to keep the problem moderately difficult, only 3 Johnson-Cook parameters,
viz. A, B and n, are reidentified. Three different starting parameter sets are chosen for
inverse identification. The first set is reasonably close to the standard parameter set, the
second and the third sets are far from the standard parameter set (refer Table 3).

Table 3: Standard and Starting parameter sets

A B n
Standard Set 316 1067 0.107

Starting Set Case 1 250 900 0.020
Starting Set Case 2 800 50 0.400
Starting Set Case 3 50 50 0.400

For the first stage of optimisation the Levenberg-Marquardt algorithm is chosen as it
gives faster convergence towards the standard set. Transformed optimisation parameters
are used as they were found to give better convergence [13].

4.1 Optimisation parameters

During a high speed machining process the material heats up due to the plastic work
done. Since the process is very fast, the heat cannot be conducted away from the shear
zone sufficiently quickly. The effective material behaviour due to the continuous heating
of the material can be expressed by using adiabatic stress-strain curves, which can be
drawn after taking into account the adiabatic heating of the material. The adiabatic
stress-strain curves can be used to explain the chip formation process [14] and therefore
they can also aid in determining the optimisation parameters for inverse determination.

Johnson-Cook parameters A and B can be varied from the standard values As and
Bs in order to estimate the deviations between the corresponding adiabatic stress-strain

6
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curves. The root mean squared error (Equation 5) between the curves expressed as

Erms(A,B) =
||σadia(A,B)− σadia(As, Bs)||√

M
(5)

is a measure of such deviations. Here σadia(A,B) is the set of points lying on the adiabatic
stress-strain curve from parameters A and B, As and Bs are the target Johnson-Cook
parameters and M is the total number of points. || • || is the Euclidean norm.

On plotting Erms w.r.t parameters A and B, a valley containing the minimum is seen
to run in the direction of (A− B) (Figure 3). Consequently the direction (A+ B) is the
direction of steepest ascent. New parameters K and L are defined such that

K = A+ B (6a)

L = A− B (6b)

Using the transformed parameters (Equations 6a and 6b), the Johnson-Cook equation
can be rewritten as

σ =

(
K + L

2
+

K − L

2
εn

)
f(ε̇, T ) (7)

where

f(ε̇, T ) =

[
1 + C ln

(
ε̇

ε̇0

)] [
1−

(
T − Troom

Tmelt − Troom

)m]
(8)

The effectiveness of using such modified optimisation parameters has been shown in
earlier papers [13, 15].

7
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4.2 Simulation results

The starting parameter sets for the inverse identification have been shown in Table 3.
In the first stage of optimisation Levenberg-Marquardt algorithm was used. The initial
chip shapes and cutting forces are different from the standard chip shapes and cutting
forces (specially in Case 3). The chip shapes at the end of each optimisation stage has
been shown in Figure 4 and Figure 5. The standard chip is represented in green and
the test chip in red. At the end of the first stage the chip shapes (Figure 4(a), 4(b) and
5(a), 5(b)) and cutting forces (Figure 6(a) and 6(b)) show substantial improvement. This
was found to work consistently well with all the three cases. The test adiabatic stress-
strain curves are also seen to come closer towards the standard adiabatic stress-strain
curve (Figure 7(a), 7(b) and 7(c)). At the end of the first stage the solution could not be
further improved by using the Levenberg-Marquardt algorithm.

(a) Starting set (b) Stage 1 (c) Stage 2

Figure 4: Chip shapes (rake +10◦) at different stages of optimisation for Case 3

In order to further improve the solution and checking the feasibility of reidentifying the
parameters robustly, a second stage of optimisation was carried out using the downhill
simplex algorithm. At the end of the optimisation, the chip shapes (refer Figure 4(c)
and 5(c)), the cutting forces and the adiabatic stress-strain curves were found to match
exactly (Figure 7(a), 7(b), 7(c)). Despite having a near perfect match of chip shapes,
cutting forces and adiabatic stress-strain curves, the converged Johnson-Cook parameter
sets are not unique [16]. Some non-unique parameter sets can be eliminated by using wide
ranges of cutting conditions.

5 CONCLUSION

In this paper a two stage inverse material parameter determination method was dis-
cussed. An error function was defined by taking into account the chip shape and the
cutting force. Levenberg-Marquardt and Downhill Simplex methods were used for the
minimisation of the error function. The two stage optimisation process is found to be

8
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(a) Starting set (b) Stage 1 (c) Stage 2

Figure 5: Chip shapes (rake 0◦) at different stages of optimisation for Case 3

(a) Rake angle = 0◦ (b) Rake angle = 10◦

Figure 6: Cutting force at the end of different stages of optimisation

Table 4: Converged parameter sets at the end of stage 1 and stage 2

Case 1 Case 2 Case 3
A B n A B n A B n

Stage 1 287.11 935.36 0.080 943.6 435.6 0.306 650.6 549.3 0.151
Stage 2 449.4 943.9 0.126 942.4 445.3 0.309 707.7 684.4 0.180

9
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Figure 7: Adiabatic stress-strain curves at different stages of optimisation

robust as the original chip shape and cutting force can be reidentified after starting from
substantially different initial parameter sets. It is also observed that after optimisation,
the adiabatic stress-strain curve of the converged parameter set matches that of the stan-
dard parameter set. It was also observed that the converged parameter sets were not
unique.

Thus using inverse identification techniques, it is possible to identify material parame-
ters. In order to eliminate some of the non-unique parameter sets, the cutting conditions
must be varied widely. Further work must be done in order to find the good search
directions which lead to quicker identification of material parameters. Such improved
optimisation strategies can substantially reduce the computational costs.
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Summary. A plastic torsional analysis of structural steel I-section members subject to torsion 
is presented in this paper. A method of plastic torsional analysis that is much simpler than 
elastic analysis is proposed, and it is validated against results obtained from advanced 
computational plastic models. The load factor at plastic collapse is obtained from the sum of 
the independent load factors for uniform-torsion plastic collapse and warping-torsion plastic 
collapse. The proposed plastic torsional analysis allows a method of plastic design to be used 
for torsion that is much simpler and more economical than first yield design. The use of 
plastic analysis and design will facilitate the design of steel torsion members and lead to more 
economical structures. 
 

1 INTRODUCTION 
Despite their importance, torsional actions are rarely considered in the design of steel 

structures, because of the difficulty in analysing them.  Torsion in a thin-walled steel member 
is resisted by a combination of the resistance to uniform torsion developed by shear stresses, 
and the resistance to warping torsion developed by equal and opposite flange bending and 
shear actions. While an elastic theory for combining these two torsional actions is well 
developed, its solutions are sufficiently difficult to discourage its use in routine design.  

Elastic analysis can be used for first-yield designs. However, this is likely to be extremely 
conservative, not only because of the significant difference between first yield in a cross-
section and its full plasticity, but also because of the unaccounted for but significant reserve 
of strength. This situation contrasts strongly with that in the design braced steel beams, where 
the use of plastic analysis not only simplifies the analysis of redundant beams, but also allows 
due account to be taken of both the difference between first yield and full plasticity, and of the 
plastic redistribution as the collapse mechanism forms. 

The results of advanced computational elastic-plastic analyses reported by Pi and Trahair1, 

2 and Pi et al.3 have validated a simple method of predicting plastic torsional collapse. In this 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 
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method, the full plastic collapse capacities of a member in torsion are evaluated separately for 
uniform and warping torsion, and then added together. This method allows a direct transfer of 
the methods of analysis for the plastic collapse of beams in bending to the plastic collapse of 
members under non-uniform torsion.  

This paper explains and demonstrates the use of this method of analysing the plastic 
collapse of members in torsion. The method is simple to use, and comparisons with 
experimental results and computational non-linear elastic-plastic analysis1-3 have 
demonstrated that it is conservative. The use of plastic analysis avoids the conservatism of 
first-yield analysis and design, because it accounts for the spread of plasticity across the 
critical sections and the redistribution of torsional actions. Design that is based on plastic 
analysis of torsion will lead to significant economies over first yield designs based on elastic 
analysis, and is much needed in design codes of practice for steel structures.  

 

2 TORSIONAL BEHAVIOUR 
2.1 Linear elastic behaviour 

For the linear elastic torsional analysis of steel beams, the steel is assumed to be linear and 
the twist rotations are assumed to be small, so that the twists are proportional to the applied 
torques as shown in Fig. 1.  
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The elastic methods of linear torsion analysis are well established4. The engineering 
method consists of two parts: cross-section analysis that relates the stresses to the stress 
resultants; and linear member analysis that relates the twist rotations and stress resultants to 
the applied torsional loading. The combination of these two parts allows the twist rotations 
and stresses to be predicted. The linear elastic method of torsion analysis is most logically 
used for serviceability design. Under service loading, most of the member remains elastic, and 
the linear elastic analysis closely predicts twist rotations. These and any related deflections 
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can then be assessed by comparing them with what are considered to be limiting values. 
Linear elastic torsion analysis is used less logically for strength design, because yielding 
usually takes place well before the ultimate torsion capacity is reached. Nevertheless, the 
absence of accepted methods of failure prediction has forced designers to use the linear elastic 
method to predict the stresses caused by the strength design loads and to compare them with 
limiting values that are usually related to the yield stress. This method generally gives very 
conservative strength predictions. 

When a member is subjected to a toque mz distributed uniformly along its length, the 
differential equation of equilibrium for linear analysis can be written as4 

zw mzEIzGJ =− )d/d()d/d( 4422 φφ ,    (1) 

where E and G are the Young’s modulus and shear modulus of elasticity, J is the section 
torsional constant, Iw is the section warping constant, φ  is the angle of twist rotation of the 
cross-section, and z is the coordinate along the member.  

Eq. (1) can be solved for different boundary conditions, which may include the kinematic 
boundary conditions such as twist rotation prevented ( 0=φ ), warping prevented 
( 0d/d =zφ ), warping free ( ), and the static boundary condition given by 0d/d 22 =zφ

zw MzEIzGJ =− )d/d()d/d( 33φφ     (2) 

where Mz is the toque acting at the beam ends. 
The linear elastic behaviour of a member in torsion is terminated by the occurrence of first 

yield at a point in the member as indicated in Fig. 1. First yield in ductile materials under 
combined normal and shear stresses is usually modelled using the von Mises (circular) 
interaction equation. When applied to combinations at a point of warping normal stresses fw 
due to warping torsion with shear stresses τu due to uniform torsion and warping shear stress 
τw due to warping torsion, this becomes 

1]/)[()/( 22 =++ ywuyw ff τττ  with 3/yy f=τ    (3) 

where fy is the normal yield stress and τy  is the shear yield stress. 
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The stresses fw and τu vary in different ways around the cross-section (Fig. 2(a) and 2(c)) 
and along the member, and so the point at which first yield occurs may be quite difficult to 
determine. However, the different locations of the maximum values of fw and τu often lead to a 
low value of one of these coinciding with the maximum value of the other. Consequently, a 
good approximation for first yield is often obtained by considering the separate conditions fw 
= fy and τu = τy. 

Numerical methods such as finite element methods can be developed based on Eq. (1) and 
material nonlinearity such as shown in Fig. 3 for the linear elastic-plastic torsional analysis 
(i.e. the geometrically linear and material nonlinear analysis). When strain hardening is 
neglected, the finite element result2 of the linear elastic-plastic torsional analysis is shown in 
Fig.1 by the dotted line, which indicates that the torque approaches a limiting value (the 
broken line) as shown in Fig. 1, which corresponds to plastic collapse of the cross-section.  

 
Figure 3: Stress-strain relationship for structural steel 

2.2 Nonlinear Elastic-Plastic Behaviour and Large Twists and Failure 
The normal stress/normal strain curve of structural steel is usually modelled as being 

elastic-plastic-strain hardening, as shown in Fig. 3. After first yield occurs, the torque-twist 
rotation relationship becomes nonlinear, as indicated in Fig. 1. The differential equations of 
equilibrium for nonlinear elastic-plastic torsion of I-section members are given by2 

0d/]2/)d/d()d/d([d 2 =+ zzEIzwAE P φ     (4) 

and 
zwP mzEIzzzEIzwAEzGJ =−++ )d/d(d/)}d/d)](2/)d/d()d/d({[d)d/d( 44222 φφφφ  (5) 

where A is the area of the cross-section and IP is defined by . AyxI
AP d)( 22∫ +=

The corresponding static boundary conditions are given by 

02/)d/d()d/d( 2 =+ zEIzwAE P φ ,    (6) 

and 
zwP MzEIzzEIzwAEzGJ =−++ )d/d()d/d)](2/)d/d()d/d([)d/d( 332 φφφφ . (7) 

The finite element result based the differential equations of equilibrium for the nonlinear 
elastic-plastic analysis given by Eqs. (4) and (5) is shown in Fig. 1 by the solid line, which is 
much higher than the limiting value (the broken line). Hence, it is conservative to use the 
limiting value of the toque as the plastic collapse toque. 
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The assumption of linear twist rotation analysis ignores the secondary longitudinal Wagner 
stresses5 fQ associated with the relative extensions of the fibres of the cross-section away from 
the axis of twist (Fig. 3(b)). At small twist rotations these stresses are secondary and have 
little effect as shown in Fig. 1. However, at large twist rotations, they lead to significant 
longitudinal tensions in the regions of the flange tips, which increases the resistance of the 
member to torsion, as shown in Fig. 1. Final failure of the member is by tensile rupture at the 
flange tips5 and at a torque that is significantly higher than the plastic collapse torque2. The 
plastic-collapse torque provides a quite conservative estimate of the strength of a member in 
torsion. Although this is not unlike the conservatism of bending plastic-collapse mechanisms 
of beams under moment gradient caused by strain-hardening effects, the degree of 
conservatism of torsion plastic-collapse mechanisms is significantly greater. 

 

3 PLASTIC-COLLAPSE ANALYSIS OF TORSION 
3.1 General 

In the simple method described here of analysing the plastic collapse of a member in 
torsion, independent analyses are made for the plastic collapse in uniform torsion and in 
warping torsion to determine their collapse load factors λup and λwp and the actual plastic 
collapse load factor λp is approximated using 

wpupp λλλ += .      (8) 

This very simple approximation assumes no interaction at plastic collapse between uniform 
and warping torsion, and assumes that the separate plastic collapse capacities are additive. 
The errors due to these assumptions are on the unsafe side when compared with more accurate 
linear elastic-plastic analyses2, but are very small and on the safe side when compared with 
accurate nonlinear elastic-plastic analyses2, because (1) the warping torsion shear strains are 
small; (2) the yielding and plasticity interactions between normal and shear stresses, which 
are described by circular interaction equations given by Eq. (3), are small; (3) sections that are 
fully plastic due to warping torsion often occur at different locations along the member than 
those that are fully plastic due to uniform torsion. The unsafe errors caused by these 
assumptions are more than compensated for by the conservatism of ignoring the strengthening 
effects of strain hardening, and the strengthening effects of the Wagner stresses at large 
rotations. 

3.2 Uniform-Torsion Plastic Collapse 
When uniform torsion provides the only method of resisting applied torques, a collapse 

mechanism develops when a sufficient number of cross-sections of the member become fully 
plastic in uniform torsion, as shown for example, in Fig. 4.  

These fully plastic sections are usually located at the supports where the reaction torques 
act. The sand-heap analogy2, 4 can be used to analyse a thin-walled open section to 
approximate the uniform-torsion plastic torque 
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)2/( 2∑≈ btM yup τ      (9) 

in which b and t are the width and thickness of each rectangular element of the cross-section. 
For an I-section, the uniform torsion plastic torque is given by 

( )[ ]6231 322
wwwffffyup ttbbttbM ++−= τ  ,   (10) 

in which bf  is the flange width; tf  is the flange thickness; bw is the web depth between 
flanges; and tw is the web thickness. 

An example of a uniform-torsion plastic-collapse mechanism is shown in Fig. 4. In this 
case, a general rigid-body twist rotation occurs when a uniform-torsion plastic hinge has 
formed at each end. In general, plastic hinges will develop progressively until the collapse 
mechanism forms. For the example shown in Fig. 4, the uniform-torsion plastic-collapse load 
factor is 

TM upup /2=λ .     (11) 

a L-a

T

(b) Uniform Torsion Collapse Mechanism

(a) Torsion Member

(c) Uniform Torque Distribution

MupMup

Mup

Mup

Prevention of warping ineffective
when M w= 0

T

 
Figure 4: Uniform torsion plastic collapse 

It is noted in Fig. 4 that preventing warping at the ends is ineffective in uniform torsion, 
because warping torsion is not accounted for. Other examples of uniform-torsion plastic-
collapse mechanisms are shown in Fig. 5. 

 
Figure 5: Uniform-torsion plastic-collapse mechanism 
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3.3 Warping Torsion Plastic Collapse 
When warping torsion provides the only method of resisting applied torques, a collapse 
mechanism develops when there are a sufficient number of warping hinges (frictionless or 
plastic) to transform the member into a mechanism. In the case of an equal-flanged I-section 
member, these warping hinges transform each flange into a flexural collapse mechanism, as 
shown in Fig. 6. Warping hinges often occur at supports or at points of concentrated torque. 
When there are distributed torques, then the location of the warping hinges may lie between 
points of concentrated torque, and may not be conspicuous. In this case, the location may be 
guessed, and the upper- and lower-bound techniques of plastic analysis4 are used to determine 
a sufficiently accurate collapse load factor. 

a L-a

T

Vfp1

Vfp2Vfp1+

Vfp2

Mfp

Mfp

(b) Warping Torsion Collapse Mechanism

(a) Torsion Member

(c) Top Flange Moment Distribution

Vfp1

Mfp MfpVfp2= a = L-a,

free to warp warping prevented

2

 
Figure 6: Warping torsion plastic collapse 

 
Figure 7: Warping torsion plastic collapse mechanism 
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The fully plastic bimoment Bp at which warping hinges form in an equal-flanged I-section 
is given as4 

hMB fpp =      with          and     4/2
ffyfp tbfM = fw tbh +=    (12) 

in which Mfp is the flange plastic moment and h is the distance between the flange centroids. 
The warping-torsion plastic-collapse load factor λwp of an equal-flanged I-section torsion 

member can be found from the flexural plastic collapse loads for the flanges, which can be 
analysed by the methods of analysing plastic collapse in flexural structures4.  An example of a 
warping-torsion plastic-collapse mechanism is shown in Fig. 6. In this case, there are 
frictionless hinges at the end that is free to warp, and general twist rotation occurs when each 
flange forms a collapse mechanism with plastic hinges at the other end and within the member 
length. In general, plastic hinges will develop progressively until the flange collapse 
mechanisms form. The warping plastic torque for the example in Fig. 6 is given by 

hVM fpwp =     with       
z

M
V f

fp d
d

=     (13) 

with the gradient of the flange moment dMf/dz being given by Mfp/a and 2Mfp/(L-a) (Fig. 
6(b)). Thus the warping torsion collapse load factor is given by 

⎟
⎠
⎞

⎜
⎝
⎛

−
+==

aLaT
hM

T
M fpwp

wp
21λ .    (14) 

Other examples of warping-torsion plastic-collapse mechanisms are shown in Fig. 7. 
 

4 A NUMERICAL EXAMPLE 
A 4,500 mm long torsion member and its torsional loading are shown in Fig. 8. The I-

section dimensions are bf =420 mm; tf =30 mm; bw =400 mm; and tw = 22 mm. The normal 
yield stress is fy = 250 N/mm2; and the uniformly distributed torque is 150 kNm/m. 

From Eq. (3), the shear yield stress is obtained as 34.1143/2503/ === yy fτ  N/mm2.  
The uniform torsion collapse toque can be obtained from Eq. (10), as 

( )[ ]
KNm81.53}6/222/22400)]4203/(201[30420{34.114

6231
322

322

=+×+×−×××=

++−= wwwffffyup ttbbttbM τ
  (15) 

while the warping torsion collapse toque can be obtained from Eq. (12) as 

KNm75.3304/304202504/ 22 =××== ffyfp tbfM .   (16) 

The uniform torsion collapse factor is the obtained from Eq. (11) as 

1594.0)450010150/(1081.532/2 36 =××××== TM upupλ .  (17) 
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Figure 8: Worked example 

 
The warping-torsion flange plastic-collapse mechanism is not obvious, but an upper-bound 

solution can be obtained by assuming that plastic flange hinges occur at mid-span, as shown 
in Fig. 8. In this case, a virtual work analysis of each flange mechanism leads to  

)4/δ)(/(δ 2 θλ LLhTW wp=      (18) 

for the external work done by the distributed flange loads T/Lh , and 

θδ3δ fpMU =       (19) 

for the internal work absorbed at the plastic hinges, in which  δθ is the virtual rotation of each 
half flange.4 An upper bound is obtained from the inequality δW ≤ δU, so that 

2/12 TLhM wpwp ≤λ .     (20) 

A lower bound is found by determining that at this load factor, the maximum flange 
moment is 25Mfp/24, so that 

22 /52.11)25/24(/12 TLhMTLhM wpwpwp =×≤λ ,   (21) 

which is very close to the exact solution4 

2
2 /66.11
)246(

TLhM
TL

hM
fp

fp
wp ≈

+
=λ .   (22) 

The warping torsion collapse factor can then be obtained as 

546.0
450010150

4301075.33066.1166.11
23

6

2 =
××

×××
==

TL
hM fp

wpλ .   (23) 

Finally, the torsion collapse factor is obtained from Eq. (8) as 

7054.0546.01594.0 =+=+= wpupp λλλ .    (24) 

 

5 CONCLUSIONS 

• Hand methods for the linear elastic analysis of the non-uniform torsion of thin-walled 
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 10

steel members are difficult to carry out, but first-yield methods of design based on 
elastic analyses are unnecessarily conservative. 

• This paper presents and demonstrates a very simple method of analyzing the plastic 
collapse of equal-flanged I-section members in torsion. The method can be used 
manually, and is no more difficult than the plastic-collapse analysis of beams in 
bending. Comparisons have demonstrated that the method produces predictions that 
are very close to those of more accurate linear elastic-plastic analyses, and 
substantially less than test results and predictions of nonlinear large-rotation elastic-
plastic analyses. 

• The use of plastic analysis avoids the conservatism of first yield analysis and design, 
because it accounts for the spread of plasticity across the critical sections and the 
redistribution of torque that occurs in redundant members after the first hinge forms. 
Designs based on plastic analyses of torsion will lead to significant economies over 
first yield designs based on elastic analysis. 
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Abstract. To make possible the description of deformation of materials with different
resistance to tension and compression, the rheological method is supplemented by a new
element, a rigid contact, which serves for imitation of a perfectly granular material with
rigid particles. By using a rigid contact in combination with conventional rheological
elements the constitutive equations of granular materials and soils with elastic-plastic
particles and of porous materials, like metal foams, are constructed.

1 INTRODUCTION

The theory of granular materials is among the most intensively developing fields of
mechanics because the area of its application is very wide. In spite of the fact that
the foundations of this theory have been laid even at the dawn of the development of
continuum mechanics in the classical works by Coulomb and Reynolds, by now the theory
is still far from completion. The main difficulties are caused by drastic difference in
behaviour of granular materials in tension and compression experiments. Essentially
all of known natural and artificial materials possess this property of heteroresistance
(heterostrength) to some extent. For some of them, differences in modulus of elasticity,
yield point, or creep diagram obtained with tension and compression are small to an
extent that they should be neglected. However, in the studies of alternating-sign strains
in granular materials, these differences may not be neglected. In addition, mechanical
properties of granular materials, as a rule, depend on a number of side factors such
as inhomogeneity in size of particles and in composition, anisotropy, fissuring, moisture
etc. This results in low accuracy of experimental measurements of phenomenological
parameters of models.

At the present time, two classes of mathematical models corresponding to two different
conditions of deformation of a granular material (quasistatic conditions and fast motion
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ones) have been formed [1]. The first class describes behaviour of a closely packed medium
at compression load on the basis of the theory of plastic flow. In the space of stress
tensors conical domains of admissible stresses rather than cylindrical ones, as in the
perfect plasticity theory, satisfy these conditions. In the second class, a loosened medium
modeled as an ensemble of a large number of particles in the context of the kinetic gas
theory is considered.

To study quasistatic conditions of deformation, the stress theory in statically determi-
nate problems which is applied in soil mechanics is developed. The case of plane strain is
best studied by Sokolovskii [2], and the axially symmetric case – by Ishlinskii [3]. Velocity
fields in these problems are defined according to the associated flow rule considered by
Drucker and Prager [4]. Mróz and Szymanski [5] showed that the special nonassociated
rule provides more accurate results in the problem on penetration of a rigid stamp into
sand. A common disadvantage of these approaches lies in the fact that, when unloading,
in the kinematic laws of the plastic flow theory a strain rate tensor is assumed to be zero,
hence, deformation of a material is possible only as stresses achieve a limiting surface.
From this it follows, for example, that a loosened granular material whose stressed state
corresponds to a vertex of admissible cone can not be compressed by hydrostatic pressure
since to any state of hydrostatic compression there corresponds an interior point on the
axis of the cone. This is in contradiction with a qualitative pattern.

Kinematic laws turn out to be applicable in practice in the case of monotone loading
only. Constitutive equations of the hypoplasticity in application to soil mechanics have
a similar disadvantage [6, 7], because tension and compression states in them differ from
one another in sign of instantaneous strain rate rather than in sign of total strain.

The equations of uniaxial dynamic deformation of a granular material, correct from
the mechanical point of view, being a limiting case of the equations of heteromodular
elastic medium [8], were studied by Maslov and Mosolov [9]. Phenomenological models
of a spatial stressed-strained state of a cohesive soil for finite strains were proposed by
Grigoryan [10] and Nikolaevskii [11]. The works [12, 13] are devoted to generalization of
fundamentals of the plasticity theory for description of dynamics and statics of granular
materials.

A spatial model of fast motions was proposed by Savage [14], who compared the solution
of the problem on channel flow with experimental results, in particular, with those of
Bagnold. Goodman and Cowin [15] developed a model for the analysis of gravity flow of
a granular material. Nedderman and Tüzün [16] constructed a simple kinematic model
which allows one to simulate an experimental pattern of steady-state outflow from funnel-
shaped bunkers.

Nevertheless there is no a simple mathematical model which can be applicable both in
the case of quasistatics and in the case of fast motions to describe the stagnant zones in
a granular flow. The efforts to construct such model give only some limited applications
for one-dimensional shear motions.
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Porous metals are new artificial materials that can find wide application in engineering,
thanks to the low density and good damping properties. The ability of porous metals
effectively absorb energy during plastic deformation opens up the prospects of their use
for production of the car bumpers and elements of the car body, so called “crushed”
zones. They can be also used in reducers and drives as destructible fuses which dissipate
the energy of dynamic impact, preventing the destruction of all mechanical system.

Similar to granular materials, their deformation properties significantly differ in ten-
sion and compression, which is typical virtually for all porous materials. Under tension,
the stages of elastic deformation of the skeleton and plastic flow up to fracture are distin-
guished. Under compression, the stages of elastic and plastic deformation of the skeleton
up to the collapse of pores, and the subsequent stage of elastic or elastic-plastic deforma-
tion of a solid, non-porous material are distinguished. In the case of small pore sizes, the
collapse may occur in the elastic stage with the appearance of plasticity only at sufficiently
high levels of loading at the last stage.

Currently the technology of production of metal foams on the basis of aluminum,
copper, nickel, tin, zinc and other metals is worked out. Extensive experimental researches
of mechanical properties of such materials are carried out. The diagrams of uniaxial
tension and uniaxial compression on an example of aluminum foam and porous copper
were obtained in [17, 18]. The paper [19] deals with problems of the wear resistance and
the cyclic fatigue of porous metals.

Theoretical results related to the construction of constitutive equations and to the
analysis on this basis of a spatial stressed-strained state of structural elements of a metal
foam, according to available publications, are practically not studied. Still more dif-
ficult to construct a universal model for the description of a spatial stressed-strained
state. Performing of adequate computations based on discrete models of a metal foam
as a structurally inhomogeneous material is possible only with using the multiprocessor
systems which have high speed and large amounts of RAM.

In this paper a simple method for constructing constitutive equations of granular and
porous materials based on the rheological approach is suggested.

2 GRANULAR MATERIALS

Rheology is the basis of the phenomenological approach to the description of a stressed-
strained state of materials with complex mechanical properties. As a rule, for the models
obtained with the help of rheological method, solvability of main boundary-value prob-
lems can be analyzed and efficient algorithms for numerical implementation can be easily
constructed. At the same time, with the use of conventional rheological elements (a spring
simulating elastic properties of a material, a viscous damper, and a plastic hinge) only, it
is impossible to construct a rheological scheme for a medium with different resistance to
tension and compression or for a medium with different ultimate strengths under tension
and compression. To make it possible, the rheological method is supplemented by a new
element, a rigid contact (see Fig. 1a), which serves for imitation of a perfectly granular
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Figure 1: Rheological models of a granular material: rigid (a), elastic (b) and elastic-plastic (c)

material with rigid particles [20]. Under compressive stresses this element doesn’t de-
formed. If stress is equal to zero then strain may be arbitrary positive value. Tensile
stresses aren’t admissible. Rheological models of perfectly elastic and elastic-plastic gra-
nular media are represented in Figs. 1b and 1c. In the case of compression such media are
either in elastic state or in plastic one, but in the case of tension the stresses are equal
to zero. By different combining these elements with viscous element, one can construct
rheological models of more complex media.

Mathematical model of a rigid contact (perfectly granular medium with rigid particles)
is reduced to the system of relationships

σ ≤ 0, ε ≥ 0, σ ε = 0.

It is possible to represent it in the form of variational inequalities

(ε̃− ε) σ ≤ 0, ε, ε̃ ≥ 0, (σ̃ − σ) ε ≤ 0, σ, σ̃ ≤ 0,

each of which assumes the potential representation

σ ∈ ∂φ(ε), ε ∈ ∂ψ(σ). (1)

Here φ and ψ – the potentials of stresses and strains – are the indicator functions, equal to
zero on cones C =

{
ε ≥ 0

}
and K =

{
σ ≤ 0

}
respectively, and equal to infinity outside

of these cones. These functions are denoted as δC(ε) and δK(σ). The symbol ∂ serves for
designation of a subdifferential, the arbitrary variable values are denoted by a wave.

Generalization of the model, schematically represented in Fig. 1a, on the case of a
spatial stressed-strained state is easily constructed on the basis of inclusions (1). For that
it is necessary to set the convex cone C in the space of strain tensors or the cone K in
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material with rigid particles [20]. Under compressive stresses this element doesn’t de-
formed. If stress is equal to zero then strain may be arbitrary positive value. Tensile
stresses aren’t admissible. Rheological models of perfectly elastic and elastic-plastic gra-
nular media are represented in Figs. 1b and 1c. In the case of compression such media are
either in elastic state or in plastic one, but in the case of tension the stresses are equal
to zero. By different combining these elements with viscous element, one can construct
rheological models of more complex media.

Mathematical model of a rigid contact (perfectly granular medium with rigid particles)
is reduced to the system of relationships

σ ≤ 0, ε ≥ 0, σ ε = 0.

It is possible to represent it in the form of variational inequalities

(ε̃− ε) σ ≤ 0, ε, ε̃ ≥ 0, (σ̃ − σ) ε ≤ 0, σ, σ̃ ≤ 0,

each of which assumes the potential representation

σ ∈ ∂φ(ε), ε ∈ ∂ψ(σ). (1)

Here φ and ψ – the potentials of stresses and strains – are the indicator functions, equal to
zero on cones C =

{
ε ≥ 0

}
and K =

{
σ ≤ 0

}
respectively, and equal to infinity outside

of these cones. These functions are denoted as δC(ε) and δK(σ). The symbol ∂ serves for
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the space of stress tensors. If one of these cones is known then another one is found as
conjugate:

K =
{

σ
�
� σ : ε ≤ 0 ∀ ε ∈ C

}

, C =
{

ε
�
� σ : ε ≤ 0 ∀ σ ∈ K

}

(the colon denotes the convolution of tensors). Corresponding potentials – the indicator
functions of cones C and K – are dual, i.e. they are determined one by another with the
help of the Young transformation

φ(ε) = sup
σ

{

σ : ε− ψ(σ)
}

, ψ(σ) = sup
ε

{

σ : ε− φ(ε)
}

.

Known experimental results on the deformation properties of compact sands confirm
the hypothesis about elastic state of a medium under stresses, close to hydrostatic com-
pression. Such stresses are interior points of the cone K. For an elastic granular medium
(Fig. 1b) ψ = σ : a : σ/2 + δK(σ), where a is the tensor of moduli of elastic compli-
ance of fourth rank, corresponding to the model of an elastic element. The constitutive
relationships (1) are reduced to the Haar–Karman inequality [20]

(σ̃ − σ) : (a : σ − ε) ≥ 0, σ, σ̃ ∈ K. (2)

Taking into account the symmetry and the positive definiteness of the tensor a, it is
possible to show that the solution of inequality (2) is the tensor of stresses σ = sπ,
equals to the projection of the conditional stress tensor s, determined from the linear
Hooke law a : s = ε, onto K with respect to the norm |σ|a =

√
σ : a : σ.

For a medium possessing plastic properties, rheological scheme of which is represented
in Fig. 1c, the strain tensor is decomposed into the sum of elastic and plastic components:
ε = εe + εp. The tensor of elastic strain satisfies the inequality (2), taking into account
the property of granularity of a medium. For the plastic strain rate tensor the constitutive
relationships of the flow theory

σ ∈ ∂η(ε̇p) (3)

are correct. Here η is the dissipative potential of stresses being a convex positive homo-
geneous function of the strain rates, the dot over a symbol serves to indicate the time
derivative. Homogeneity of this potential is the consequence of independence of the pro-
cess of plastic deformation on time scale. By virtue of this property, the dual potential
χ(σ) – the Young transformation of the function η(ε̇) – is equal to the indicator function
of the convex closed set

F =
{

σ
�
� σ : ε̇ ≤ η(ε̇) ∀ ε̇

}

.
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The boundary of F in the stress space defines the yield surface of a material. If the set F
is a cylinder with the axis of hydrostatic stresses then the volume strain of a medium
obeys the linearly elastic law. In the opposite case the model, being under consideration,
describes irreversible volumetric contraction.

The inclusion (3) in the equivalent form ε̇p ∈ ∂χ(σ) is reduced to the Mises inequality

(σ̃ − σ) : ε̇p ≤ 0, σ, σ̃ ∈ F. (4)

The variational inequality (2) for elastic part of the strain tensor and the inequality (4)
for its plastic part together with the equations of motion and the kinematic equations

ρ v̇ = ∇ · σ, 2 (ε̇e + ε̇p) = ∇v + (∇v)∗ (5)

form a closed model describing the dynamics of a granular medium. Here ρ is the density, v
is the velocity vector, ∇ is the gradient, an asterisk denotes the operation of transposition.

3 POROUS METALS

The porosity of a metal foam is determined as the ratio of the pore volume to the
volume of a porous material: ε0 = V0/V . If ρ is the density of initial (solid) metal,
then, ignoring the presence of gas in the pores, the density of a porous metal can be
calculated by formula: ρ0 = ρ (V − V0)/V . Consequently, ε0 = (ρ − ρ0)/ρ. For highly
porous materials the volume strain caused by the collapse of pores is much higher than the
concomitant strain of volume compression of the skeleton, therefore the pores disappear
when the volume strain is approximately equal to θ0 ≈ ((V − V0)− V )/V = −ε0.

Figure 2: Rheological scheme (a) and diagram of uniaxial elastic deformation of a porous metal (b)
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describes irreversible volumetric contraction.

The inclusion (3) in the equivalent form ε̇p ∈ ∂χ(σ) is reduced to the Mises inequality

(σ̃ − σ) : ε̇p ≤ 0, σ, σ̃ ∈ F. (4)

The variational inequality (2) for elastic part of the strain tensor and the inequality (4)
for its plastic part together with the equations of motion and the kinematic equations

ρ v̇ = ∇ · σ, 2 (ε̇e + ε̇p) = ∇v + (∇v)∗ (5)

form a closed model describing the dynamics of a granular medium. Here ρ is the density, v
is the velocity vector, ∇ is the gradient, an asterisk denotes the operation of transposition.

3 POROUS METALS

The porosity of a metal foam is determined as the ratio of the pore volume to the
volume of a porous material: ε0 = V0/V . If ρ is the density of initial (solid) metal,
then, ignoring the presence of gas in the pores, the density of a porous metal can be
calculated by formula: ρ0 = ρ (V − V0)/V . Consequently, ε0 = (ρ − ρ0)/ρ. For highly
porous materials the volume strain caused by the collapse of pores is much higher than the
concomitant strain of volume compression of the skeleton, therefore the pores disappear
when the volume strain is approximately equal to θ0 ≈ ((V − V0)− V )/V = −ε0.

Figure 2: Rheological scheme (a) and diagram of uniaxial elastic deformation of a porous metal (b)
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The simplest rheological scheme taking into account the main qualitative features of
deformation of porous metals is represented in Fig. 2a. In this scheme the behaviour
of a material under tension and under compression up to the moment of pores collapse
is simulated by an elastic spring with the compliance modulus a, and the increasing of
rigidity as the collapse of pores is simulated by a spring with the compliance modulus b.
Segments of the diagram of uniaxial deformation with a break at the point ε = −ε0 (see
Fig. 2b) are defined by the equations: σ = ε/a and σ = ε/a + (ε + ε0)/b. This scheme
describes an elastic process that occurs without the dissipation of mechanical energy.

Fig. 3a shows a more general rheological scheme with a plastic hinge. It is assumed
that under tensile stress σ+

s the skeleton goes into the yield state, and under compressive
stress −σ−

s the plastic loss of stability takes place. The corresponding diagram of uniaxial
deformation is a four-segment broken line (see Fig. 3b). Elastic stage is described by the
equation σ = ε/a, and the stage of elastic-plastic deformation of a solid material after
collapse of the pores is described by the equation σ = (ε + ε0)/b − σ−

s . Transitions of a
material in the unloading state are shown by arrows. The unloading of a porous material
occurs by the law dσ = dε/a, and the unloading of a solid material occurs by the law
dσ = dε (1/a + 1/b). Specific dissipative energy, which is released during the collapse of
the pores, is estimated by the product σ−

s ε0 in this model. The plastic flow, which occurs
in a solid material at higher level of compressive stresses, is not considered.

Figure 3: Rheological scheme (a) and diagram of elastic-plastic deformation of a skeleton (b)

In the general case of a spatial stressed-strained state, in accordance with the rheolo-
gical scheme in Fig. 3b, the stress tensor σ is equal to the sum of the tensors σp of plastic
stresses and σc of additional stresses acting after collapse of the pores. It is assumed that
these tensors are symmetric. Elastic compliance of a material at small strains is charac-
terized by the fourth-rank tensors a and b, satisfying the usual conditions of symmetry
and positive definiteness. The series connection of an elastic spring and a plastic hinge in
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the scheme corresponds to the theory of elastic-plastic flow of Prandtl–Reuss. Within the
framework of this flow theory the constitutive relationships are postulated in the form of
principle of maximum of the energy dissipation rate:

(σ̃ − σp) : (a : σ̇p − ε̇) ≥ 0, σ̃, σp ∈ F. (6)

Here ε is the actual strain tensor, F is the convex set in the stress space, bounded
by the yield surface of a material. Assuming that the deformation of the jumpers of
porous skeleton, distributed randomly on macrovolume of a material, can be described
with satisfactory accuracy as a bar model, let us define concretely the set of admissible
stresses:

F =
{

σ̃
�
� −σ−

s ≤ σ̃k ≤ σ+
s , k = 1, 2, 3

}

,

where σ̃k are the principal values of σ.
Constitutive relationships of a rigid contact are formulated as the variational inequality

(σ̃ − σc) : (εc + ε0) ≤ 0, σ̃, σc ∈ K. (7)

Here εc = ε − b : σc is the strain tensor of porous skeleton, ε0 = ε0 δ/3 is the spherical
tensor of initial porosity of a material, δ is the Kronecker delta. The transition of a
material from porous state to continuous one is modeled by the convex cone K. As
a simple variant of K one can use the Mises–Schleicher circular cone:

K =
{

σ̃
�
� τ(σ̃) ≤ æ p(σ̃)

}

,

where æ is the phenomenological parameter of a dilatancy, p(σ) = −σ : δ/3 is the hyd-
rostatic pressure, τ(σ) is the intensity of tangential stresses determined via the deviator
of the stress tensor σ′ = σ + p(σ) δ by means of the formula: τ 2(σ) = σ′ : σ′/2.

Taking into account these notations, the inequality (7) is converted to the form

(σ̃ − σc) : b : (σc − s) ≥ 0, σ̃, σc ∈ K. (8)

Here s is a tensor of conditional stresses, which is calculated by the law of linear elasticity
with initial strains: b : s = ε + ε0. If this tensor is admissible, i.e. if the inclusion
s ∈ K is fulfilled, then by (8) σc = s. If s /∈ K and for any σ̃ ∈ K the inequality
σ̃ : b : s ≤ 0 is valid, which means precisely that the sum of tensors ε + ε0 belongs to

the cone C =
{

ε̃
�
� σ̃ : ε̃ ≤ 0, σ̃ ∈ K

}

of admissible strains, dual to the cone K, then

as follows from (8) σc = 0. In the general case, the variational inequality (8) allows to
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determine the tensor σc = sπ as a projection of the tensor s onto K with respect to the
norm |s| =

√
s : b : s, and the above two variants for setting s are special cases when the

projection coincides with the original tensor and the projection is a vertex of cone. If the
projection belongs to a conical surface, then the formulas for calculating the projection
take the next form [20]:

p(σ) =
µ p(s) + æ k τ(s)

µ+ æ2k
, σ′ = æ p(s)

s′

τ(s)
(9)

(for an isotropic medium the tensor b of elastic compliance is characterized by two in-
dependent parameters – the volume compression modulus k and the shear modulus µ).
This variant is realized when both of the conditions s /∈ K and ε + ε0 /∈ C are fulfilled.
The cone C, dual to the Mises–Schleicher cone, is defined as

C =
{

ε̃
�
� æ γ(ε̃) ≤ θ(ε̃)

}

,

where γ(ε̃) =
√
2 ε̃′ : ε̃′ is the shear intensity, and θ(ε̃) = ε̃ : δ is the volume strain.

The inclusion ε+ ε0 ∈ C means that the rigid contact in rheological scheme is opened,
i.e. the pores are in the open state. When the collapse of pores take place, the limit
condition æ γ(ε) = ε0+θ(ε) is satisfied, which describes the dilatational volume increasing
of a material due to the shear strain.

Note that in the simulation of real porous metals it is necessary to take into account
a random character of distribution of a pore size, therefore the value ε0 can vary randomly
at each elementary portion of a sample (at each mesh of the grid domain). In principle,
the law of distribution of pores by size is completely determined by technology of the
production of metal foams, however in numerical computations (in order to describe
qualitatively the effect of random distribution of pores on the stressed-strained state of
a material) can be used, for example, the formula

ε0 = ε−0 + (ε+0 − ε−0 ) rand,

where ε±0 are the boundaries of porosity, rand is a built-in function of the uniform distri-
bution on the segment [0, 1].

4 UNIVERSAL FORM OF MODELS

Mathematical model describing the dynamic deformation of porous metal under small
strains and rotations of elements can be written in the next form:

ρ0 v̇ = ∇ · σ,
(σ̃ − σp) : (a : σ̇p −∇v) ≥ 0, σ̃, σp ∈ F,

b : ṡ = (∇v +∇v∗)/2, σ = σp + πK(s).

(10)
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Unknown functions are the velocity vector v and the tensors of plastic stresses σp and of
conditional stresses s. The initial conditions, describing the natural (stress-free) state of
a material, are formulated for the system (10) as

v
�
�
t=0

= 0, σp
�
�
t=0

= 0, s
�
�
t=0

= b−1 : ε0.

The boundary conditions can be given in the terms of velocities: v
�
�
Γ
= v0(x), as well as

in stresses: σ
�
�
Γ
·ν(x) = q(x), where ν is the outward normal vector, v0 and q are given

functions.
It turns out that the relationships (10) and the relationships (2), (4), (5) of mathe-

matical model of an elastic-plastic granular material can be represented in the universal
matrix form

(
Ũ − U

)
(

A U̇ −
n∑

i=1

Bi Uπ
,i

)

≥ 0, Ũ , U ∈ F. (11)

Here U is the unknown m-dimensional vector–function, A and Bi are the given matrices
whose coefficients are the density and the mechanical coefficients of a material, subscripts
after a comma denote partial derivatives with respect to spatial variables, superscript π
denotes the projection of vector U onto the cone K of admissible variations with respect
to the energy norm |U | = √

UAU , n = 1, 2, or 3 is the spatial dimension of the model.
The difference is that the vector–function U in the model of an elastic-plastic granular

material consists of the projections of the velocity vector v and the components of the
conditional stress tensor s. In the model of a porous metal it consists of the velocities and
the components of two stress tensors – the plastic stress tensor σp, which is constrained
by the plasticity condition, and the conditional stress tensor s.

The inequality (11) is very useful in constructing the numerical algorithms for the
solution of initial-boundary problems. A variant of such algorithm is considered in our
monograph [20]. In this monograph one can find the examples of numerical modeling of
the processes of an elastic-plastic waves propagation in a loosened granular medium.

5 CONCLUSIONS

- Rheological method is supplemented by a new element, a rigid contact, which make
it possible to describe mechanical properties of materials having different resistance
to compression and tension.

- By means of this method constitutive relationships of granular materials with rigid,
elastic and elastic-plastic particles are considered.

- Constitutive equations of metal foams of low porosity are obtained describing the
phases of elastic deformation and plastic loss of stability of a skeleton and the phase
of elastic deformation of a compact material after the pores collapse.
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Abstract. The numeric simulation of the mechanical behaviour of industrial materials
is widely used in the companies for viability verification, improvement and optimization
of designs. The eslastoplastic models have been used for forecast of the mechanical be-
haviour of materials of the most several natures (see [1]). The numerical analysis from this
models come across ill-conditioning matrix problems, as for the case to finite or infinites-
imal deformations. A complete investigation of the non linear behaviour of structures it
follows from the equilibrium path of the body, in which come the singular (limit) points
and/or bifurcation points. Several techniques to solve the numerical problems associated
to these points have been disposed in the specialized literature, as for instance the call
Load controlled Newton-Raphson method and displacement controlled techniques. Al-
though most of these methods fail (due to problems convergence for ill-conditioning) in
the neighbour of the limit points, mainly in the structures analysis that possess a snap-
through or snap-back equilibrium path shape (see [2]). This work presents the main ideas
formalities of Tikhonov Regularization Method (for example see [12]) applied to dynamic
elastoplasticity problems (J2 model with damage and isotropic-kinetic hardening) for the
treatment of these limit points, besides some mathematical rigour associated to the for-
mulation (well-posed/existence and uniqueness) of the dynamic elastoplasticity problem.
The numeric problems of this approach are discussed and some strategies are suggested to
solve these misfortunes satisfactorily. The numerical technique for the physical problem
is by classical Gelerkin method.
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1 INTRODUCTION

Elastoplastic models have been widely used to forecast the behaviour of rate indepen-
dent (in deformation sense) materials (see [1]). The numerical solution of these models
involves handling of ill-conditioned matrices, for finite or infinitesimal deformations (see
[?]). Such instabilities are due to the tangent operator being close to an identically null
forth order tensor operator at the neibourhood of critical or limit points.

A complete investigation of non linear structural behaviour involves following the bod-
ies equilibrium path through singular (limit) points and/or bifurcation points. In order
to solve the numerical problems associated to these points several techniques have been
considered in the specialized literature, for instance the so-called load controled Newton-
Raphson method and displacement controled techniques. Due to ill-conditioning con-
vergence problems, most of these methods fail, specially in the case of structures which
present (λ-load factor,u-displacement) snap-through or snap-back equilibrium paths ([2]),
as shown in figure (Fig.1).

Figure 1: Snap-through and snap-back behaviour

Aiming at transposing these difficulties, this study proposes use of the L-curve Tikhonov
regularization method ([14], [15], [6] and [12]). One of the objectives of the study is to
investigate the potential of this approach in the solution of elastoplastic problems of in-
finitesimal strain. An overview of elastoplastic contitutive model is shown in section 2.
Details about incremental approach are presented in section 3. In sections 4 and 5, it is
presented the L-curve Thikhonov regularization method and main properties are shown.
In section 6, a numerical problem case are presented to verify the efficacy of this proposed
approch and concluding remarks are made in section 7.

2 YIELDING AND HARDENING LAWS (THE ELASTOPLASTIC CON-
STITUTIVE MODEL)

A complete characterization of general elastoplastic model request definition of evolu-
tionary laws of internal variables, i. e., variables associated to dissipative phenomena (εp

and αk - associated with the kinematic hardening mechanism). The first point in this

2



934
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analysis is determination of the plastic multiplier λ̇ which is computed from consistence
condition (F = 0 and λ̇ > 0). Hence, from definition of αk, we obtain

λ̇ =
∂F
∂σ

: Dε̇
{

∂F
∂σ

: DN− ρ ∂F
∂αk

.
[
∂2Ψp

∂β2

k

]

H
} . (1)

More details about constitutive Lemaitre’s elastoplastic-damage simplified model with
isotropic hardening can be found in [4] and [3]. In this sense, the elastoplastic constitutive
model is described in following steps

Elastoplastic Constitutive Model
1. Strain Tensor Additive Decomposition

ε = εe + εp.
2. Free Energy Potential Definition

Ψ
(
εe, r, αD, D

)
= Ψe (εe, D) + Ψp

(
r, αD

)

where αD is the deviator part of α (backstrain tensor), r is the accumulated plastic strain,
D is the isotropic damage variable.
3. Constitutive equation for σ and thermodynamics forces βk

σ = ρ∂Ψe

∂εe
and βk = ρ∂Ψp

∂αk
.

4. Elastic-damage Coupling σ = (1−D)Dεe.
5. Yield Function/Dissipation Potential(Associative Approach)

Fp = ‖σ̃D − χD‖ − (R + σy) where σ̃D
eq =

{
3
2
σ̃D : σ̃D

} 1

2 ;
σ̃D = 1

(1−D)
{σ − σHI} and σH = 1

3
tr(σ).

6. Hardening and Evolutionary Plastic Laws

ε̇p = λ̇∂Fp

∂σ
, ṙ = −λ̇∂Fp

∂R
and Ḋ = λ̇∂FD

∂Y

where

F = Fp + FD with Fp = ‖σ̃D − χD‖ − (R + σy) and FD = Y 2

2S(1−D)
H(p− pd).

From these potentials it follows that

ε̇p = 3
2

λ̇
(1−D)

σD

σD
eq
, χ̇ = γ(χ∞ε̇p − χλ̇), Ṙ = b(R∞ −R)λ̇ and Ḋ = Y

S
ṗ H(p− pd).

Then

ṗ = λ̇
(1−D)

and Y =
(σ̃D)

2

2E

{

2
3
(1 + ν) + 3 (1− 2ν)

(
σH

σD
eq

)2
}

.

7. Consistence Condition under Plastic Yielding
(

λ̇ �= 0
)

F (σ, αk) ≤ 0, λ̇ ≥ 0, F (σ, αk) λ̇ = 0

and λ̇ Ḟ (σ, αk) = 0.

3
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3 INCREMENTAL FORMULATION

In this section we describe the incremental formulation of the problem between tn and
tn+1 instants. We consider that all state variables are known on Ωn and equilibrium
equations are imposed in Ωn+1. In this way, on tn+1, the weak formulation of the problem
can be written as:

Problem 1. Determine un+1 ∈ Kinu
o such that

� (un+1; v̂) = 0, ∀ v̂ ∈ V aruo , (2)

where

� (un+1; v̂) =

∫

Ωo

P (un+1) : ∇v̂dΩo −
∫

Ωo

ρo
(
b̄− ün

)
· v̂dΩo −

∫

Γt
o

t · v̂dAo. (3)

To solve above non linear problem in terms of un+1 is used the Newton method. Hence,
taking

u0
n+1 = un, k = 0 (4)

where k denotes the Newton method iteration step. Supposing the initial condition is
given by last increment step converged solution un, then on k-th iteration we have

uk+1
n+1 = uk

n+1 +∆uk
n+1. (5)

To determine ∆uk
n+1, one has

D�
(
uk
n+1; v̂

) [
∆uk

n+1

]
= −�

(
uk
n+1; v̂

)
, (6)

with

D�
(
uk
n+1; v̂

) [
∆uk

n+1

]
=

∫

Ωo

d

dε

[
P
(
uk
n+1 + ε∆uk

n+1

)]

ε=0
: ∇v̂ dΩo, (7)

where Ωo is fixed in space and it is supposing that ton+1
and b̄n+1 are non depended of u.

After some algebraic manipulations, we obtain

D�
(
uk
n+1; v̂

) [
∆uk

n+1

]
=

∫

Ωo

[
A
(
uk
n+1

)]
∇

(
∆uk

n+1

)
: ∇v̂ dΩo, (8)

where A (fourth order tensor) is the global tangent modulus, that is given by

[
A
(
uk
n+1

)]

ijkl
=

∂Pij

∂Fkl

∣
∣
∣
∣
u
k
n+1

. (9)

On the other hand,observing the problem from an Eulerian approach, it is defined a
couple of sets for each t ∈ S

Kinu(Ω) =
{
ui : Ω → R | ui ∈ H1(Ω), u (x, t) = ū (x, t) , ∀x ∈ Γu

}
; (10)

V aru(Ω) =
{
v̂i : Ω → R | v̂i ∈ H1(Ωt), v̂i (x) = 0, ∀x ∈ Γu

}
. (11)

Hence, the weak formulation of the problem can be written as

4
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Problem 2. Determine u (x, t) ∈ Kinu(Ω), for each t ∈ S, such that

∫

Ω

σ : ∇v̂dΩ =

∫

Ω

ρ (b− ü) · v̂dΩ +

∫

Γt

t · v̂dA, ∀ v̂ ∈ V aru(Ω), (12)

and in this case the tangent operator (or the global tangent modulus) can be described
as

[
A
(
uk
n+1

)]

ijkl
=

∂σij

∂εkl

∣
∣
∣
∣
u
k
n+1

. (13)

It is important to comment that in bouth cases (Lagrangian or Eulerian approach) the
global tangent modulus is defined by a rate of conjugated pairs.

4 THE TIKHONOV REGULARIZATION METHOD

After the Galerkin method discretization the problem described above belongs

min
f∈Rn

‖Af − g‖2, A ∈ R
n×n g ∈ R

n, (14)

where A (matrix representation for discretized tangent operator
[
A
(
uk
n+1

)]

ijkl
) has high

condition number (ill-conditioned and singular values decreasing to zero without a gap
on spectrum) on limit points neighbourhood (∂σij�∂εkl ≈ null fourth order tensor) due
to the shape of the equilibrium path response. The g consists to discretized vectorial
representation of −�

(
uk
n+1; v̂

)
. Unfortunately for the standard least square (LS) the

solution can be presented as fls = A†g (where A† denotes the pseudoinverse of A) has
serious numerical spurious error. In this sense, the Tikhonov regularization method is a
natural way to computate a solution less susceptible to numerical errors. The classical
Tikhonov method ([5] and [6]) consists in

min
f∈Rn

� (f) (15)

where � (f) = ‖Af−g‖2+ λ̃‖f‖2 and λ̃ > 0 is the regularization parameter. This problem
(15) is equivalent to research solution of the regularized normal equation

(ATA+ λ̃In)f = ATg, (16)

whose solution is fλ̃ = (ATA + λ̃In)
−1ATg, and In is the identity matrix n × n. Now

the problem is how to determine λ̃ parameter such that fλ̃ be the nearest solution of
the solution without numeric errors. A lot of techniques for the regularization parameter
choice were developed and they are presented in the specialized literature. hese techniques
can be organized in two classes: techniques that involves the pre-known (or estimative) of
the norm error e behaviour, as discrepancy principle (DP) evidenced in Morozov [8], and
techniques that do not explore this information. In this second class it can be cited the
L-curved method (see [9]), generalized cross-validation (GCV) (see [10]), weighted-GCV

5
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(W-GCV) (see [11]), and a fixed point method (FP-method) (see [12]). For an overview
of parameter-choice techniques for Tikhonov regularization method see [6] and recently
[12].

Considering SVD ofA, A = Ŝ1Ŝ2Ŝ
T
3 , where Ŝ2 ∈ R

n×n is a singular value diagonal ma-
trix, and Ŝ1, Ŝ3 ∈ R

n×n are unitary matrixes, with Ŝ3 non sigular matrix, the Thikhonov
problem (15) can be written as

(ATA+ λ̃In)fλ̃ = ATg ∴ fλ̃ = Ŝ3(Ŝ
2
2 + λ̃In)

−1Ŝ2Ŝ
T
1 g, (17)

or fλ̃ =
∑n

i=1

Ŝ2

2i

Ŝ2

2i
+λ̃2

Ŝ
T
1i
g

Ŝ2i

Ŝ3i with Ŝ2
2i

representing the i-th singular value, Ŝ1i is the i-th

colum vector of Ŝ1 and Ŝ3i is the i-th colum vector of Ŝ3.
Observing the problem (15), it is expected that the solution of this optimization prob-

lem converges to the solution of the equation Af = g as λ̃ tends to zero. In this sense,
some properties of Tikhonov regularization method are shown in following theorem

Theorem 1. Let A : R
n → R

n be bounded. For every λ̃ > 0 there exists a unique
minimum fλ̃ of (15). Furthermore, fλ̃ satisfies the normal equation

λ̃ 〈fλ̃, ω〉+ 〈Afλ̃ − g,Aω〉 = 0, ∀ω ∈ R
n, (18)

or, using the adjoint A∗ = AT : Rn → R
n of A,

(ATA+ λ̃In)fλ̃ = ATg. (19)

If, in addition, A is one-to-one and f ∈ R
n is the (unique) solution of the equation Af = g

then fλ̃ → f as λ̃ tends to zero. Finally, if f ∈ AT (Rn) or f ∈ ATA(Rn), then ∃c > 0

with ‖fλ̃ − f‖ = c
√

λ̃ or ‖fλ̃ − f‖ = cλ̃, respectively.

5 THE L-CURVE TECHNIQUE

In this section it is presented some ideas about the L-curve thechnique for choosing the
regularization parameter. In this sense, let fλ̃ for be the family of solutions of the method
of Tikhonov problem (15) and set

ϑ1λ̃ := ‖Af λ̃ − g‖2 and ϑ2λ̃ := ‖fλ̃‖
2. (20)

It can be verified that fλ̃ is a solution of the method of residuals (e1λ̃ :=
√
ϑ1λ̃) and

quasisolutions (e2λ̃ :=
√

ϑ2λ̃). Defining the bounded set

C :=
{
(c1, c2) ∈ R

2|∃f ∈ R
n with ‖Af − g‖ ≤ c1 and ‖f‖ ≤ c2

}
, (21)

it can be shown that the function λ̃ �→ e1λ̃ is increasing, λ̃ �→ e2λ̃ is decreasing and C
is a convex set with boundary given by the curve λ̃ �→ (e1λ̃, e2λ̃). Although if it cannot

6
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determine the rate
e1λ̃
e2λ̃

, it must be have to specify a method/technique to determine λ̃

in an optimal sense with using ϑ1λ̃ and ϑ2λ̃. In this way, the L−curve criterion consists
in determine λ̃ which maximizes the curvature in the typical L-shaped curve � : λ̃ ∈
(0,∞) �→ (ln (e1) , ln (e2)) ∈ R

2. The main motivation comes from the fact that in almost
vertical portion of �−graph for very small changes of λ̃ values corresponds to rapidly
varying to regularized solutions norm with very little change in ϑ1λ̃, while on horizontal
part of the graphic for larger values of λ̃ corresponds to regularized solutions norm where
the plot is flat or slowly decreasing, for more detail see [9]. From these arguments, the
L-curve corner is located in a natural transition point that links these two regions, for
more details and substantial results see [6].

The evaluation of second derivatives shows that curve is convex and steeper as λ̃
approaches to the smallest singular value. The L−curve consists of a vertical part where
e2 is near of the maximum value and adjacent part with smaller slope and the more
horizontal part corresponds to solutions dominated by regularization errors where the
regularization parameter is too large. In this sense, the problem is to seek the L−curve
point where the maximum curvature is reached.

Supposing L−curve is sufficiently smooth (in continuous sense) curvature κ
(

λ̃
)

can

be computed as

κ
(

λ̃
)

=
e
′
1e

′′
2 − e

′′
1e

′
2

((
e
′
1

)2
+
(
e
′
2

)2
) 3

2

, (22)

where (′) denotes a derivative with respect to λ̃ regularization parameter and any one
dimensional optimization method can be used to solve λ̃ for the maximum curvature
problem. It must be to point out that numerical effort involved in minimization is smaller
than SVD computation. Although, in many cases it is limited a finite set of points

on L−curve, hence the curvature κ
(

λ̃
)

cannot be computed as (22) . In a numerical

sense the L−curve consists of a number of discrete points corresponding to different
regularization parameter (λ̃) values at which we have evaluated e1 and e2. Thus, it is
defined a sufficiently smooth curve associated to the set of discrete points in such way
that the overall shape of L−curve is maintained. This procedure consists in determine
an approximating smooth curve for L−curve. A reasonable approach for this is a cubic
spline pair fitting for e1 and e2. Such a curve has some interesting properties as twice
differentiable, numerically differentiable in stable way and local shape preserving features.
It is important to comment that computational implementation of Tikhonov L−curve
regularization technique is based on criteria described in [7] and [9]. In the next section
we will point out the performance of proposed Tikhonov L−curve regularization method
for dynamic elastoplasticity problem.

7
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6 NUMERICAL EXAMPLE

The objective of presented numerical examples are to attest efficiency of the numerical
regularization technique proposed for the time evolutionary analysis in elastoplasticity
problems. Our implementation was made in MATLAB and results analysis are given
by a comparative response between regularized (Tikhonov L−curve parameter choice)
numerical solution and non-regularized numerical solution. The numerical examples pre-
sented here consists of 1-D low cycle fatigue applications and a monotonic load test. The
body initial length is 100 mm, its elasticity modulus is E = 2×105 MPa, Poisson ratio is
ν = 0.3, yielding limit is σy = 260MPa, kinematic hardening constants is χ∞ = 200MPa
(kinematic hardening amplitude) and γ = 2.0 (controls the kinematic hardening increase
rate), isotropic hardening constants is R∞ = 300 MPa (isotropic hardening amplitude)
and b = 1 (controls the isotropic hardening increase rate), and damage constants are
Pd = 0.0005 and Dc = 0.2 (critical value of damage). This last value depends upon the
material and the loading conditions. Dc represents the final decohesion of atoms is char-
acterized by a critical value of effective stress acting on the resisting area. It is important
to cite that Dc gives the critical value of the damage at a mesocrack initiation occurring
for unidimensional stress, usually Dc ∈ [0.2, 0.5]. A sketch of the problem cases may be
seen in figure below (see Fig.2).

Figure 2: Problem Case Domain Sketch

The load, in this example, is given by ū (x, t) = 0.8 sin2 (2πt) where t is in cycles. The
regularized numerical solution (rns) and the non-regularized numerical solution (nrns)
for analysis over t ∈ [0, 4] are computed under 10−4 tolerance value. A fictitious exact
solution (fes) was too construct for this application. A important fact that must be noted
is bouth numerical solution didn’t get to realize entire analysis over range t ∈ [0, 4]. The
”nrns” was capable to continue the analysis until t = 2.787 cycles. The ”rns-analysis”,
that use the Tikhonov regularization technique, can be cover range t ∈ [0, 3.137] cycles
with a excellent agreement with the ”fes” as presented in figure (Fig. 3) below.

The nrns-analysis failed due to ill-condition problems. At point t = 2.787 cycles the
condition number associated to the linearised system on Newton method iteration is
2.4 × 108. For this case the number of iteration extrapolated a lot allowed limit (500
iterations) with residual norm value oscillating in one belittles strip around 10−3. If we
grow up the allowed limit of iteration same pattern is the reached until 624710 iterations.
In following figure (4) it can be seen a good agreement between ”fes” and ”rns”. Note
that the rns-response was capable to reproduce the beginning of softening behaviour.

8
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Figure 3: Plastic Strain vs. Time

Figure 4: Total Strain vs. Time / Cauchy Stress vs. Time

In next figure (5) the hardening behaviour during analyzed time can be seen. Again,
a good agreement among the numerical results (”fes” and ”rns”) can be noted.

Figure 5: Isotropic Hardening vs. Time / Kinematic Hardening vs. Time

At this point, it is presented the responses about damage variable and storage plastic
strain (see Fig. 6). A perfect ”fes-rns” agreement has been noted in storage plastic

9
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strain behaviour. The damage variable evolutionary profile shows a little bit discrepancy
between ”fes” and ”rns” at t = 2.75 cycles (maximum difference) with 1.2% as relative
error. It is important to stand that there is a tendency to both graphs (”fes” and ”rns”)
coincides. The Tikhonov regularization process is setting to start when condition number
is equal or greater than 2.4 × 108. Other settings are tested but the same unexpected
pattern on rns-response was observed and non significant changes are noted.

Figure 6: Damage vs. Time / Storage Plastic Strain vs. Time

The Tikhonov regularization method allowed that the numerical analysis continues
until 3.06 × 108 as condition number. The regularization parameter computed for last
Newton’s iteration was λ̃ ≈ 0.0525 (see Fig. 7).

Figure 7: L−curve: e2 vs. e1/ L−curve (zoom): e2 vs. e1

7 CONCLUSION

In this work, it has discussed/analyzed the computational implementation of elasto-
plsticity problem. As mentioned above to treat the critical points on equilibrium-path
it was proposed a Thikhonov L-cruve regularization approach over Newton method. In
this sense it has prsented some theoretical results from Thikonov regularization method

10
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and your application over numerical dynamic elastoplastic problem as an efficient form
of transposing the numerical problems associated to ill-conditioning happened in neigh-
bourhoods of critical points.

It is important comment that the Thikonov L-curve regularization method approach
in elastoplastcity numerical analysis showed robustness, efficiency and potential as it can
be seen in the comparative numerical example here presented. The used tolerance conver-
gence criterion (10−4) was obtained after tests with larger and smaller tolerance values,
in that none differences in the pattern of the responses was noticed. In this numerical
example it was verified the consistency, performance and computational accuracy of the
approach proposed. In fact, there was an excellent agreement between the regularized nu-
merical response and fictitious exact solution, adding numerical stability and possibiliting
advances in the time of analysis over permanent deformation computational modelling.
Although, it is clear that new numerical experiments in terms of applications to explore
as problems involving time rate dependences (viscoplasticity) over permanent/plastic de-
formations.

Additionally it is important to point out that besides new applications, other choosing
parameters techniques (see [13] and [12]) must be investigated in terms of computational
efforts, accuracy and performance in relation to L-curve approach. In particular, some
experience is needed with large problems from distinct application requiring the use of
general-form Tikhonov regularization. These are the subject of a research that should be
continued.
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Abstract. Concrete provides with a variety of innovative designs, but two characteristics
have limited its use: it is brittle and weak under tension. One way to overcome this
problem is to add steel fibers into the concrete matrix, a technique introduced in the
70’s called Steel Fiber Reinforced Concrete (SFRC). Fibers shape, length and slenderness
characterize its behavior. It is also necessary to take into account the orientation and the
distribution of the fibers in the concrete matrix. Different flexural tests are reproduced
considering SFRC in order to characterize and analyze the influence of the fibers. In
the present work, a numerical tool for including fibers into plain concrete is presented.
The numerical approach considered is based on the idea of the Immersed Boundary (IB)
methods which were designed for solving problems of a solid structure immersed on a
fluid. Herein, the IB method is applied for SFRC considering the concrete accounting
for fluid and the steel fibers playing the role of the solid structure. Thus, the philosophy
of the IB methodology is used to couple the behavior of the two systems, the concrete
bulk and the fiber cloud, precluding the need of matching finite element meshes. Note
that, considering the different size scales and the intricate geometry of the fiber cloud,
the conformal matching of the meshes would be a restriction resulting in a practically
unaffordable mesh. Concrete is modeled considering a nonlinear model and to take into
account the whole process between fibers and concrete, the constitutive equations of the
fibers are based on analytical expressions available in the literature describing the pullout
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test behavior. The constitutive expressions depend on (1) the angle between each fiber
and the crack of the concrete specimen and (2) the shape of the fiber.

1 INTRODUCTION

The most used techniques to overcome the main drawbacks of plain concrete are the
reinforced concrete and the prestressed concrete. Another alternative which appeared in
the 70’s is the Steel Fiber Reinforced Concrete (SFRC) and consists of adding steel fibers
into the concrete matrix. The length, the shape and the slenderness of the steel fibers
characterize the behavior of the SFRC as well as the orientation and the distribution of
the fibers into the concrete matrix.

SFRC has a large range of applications in civil engineering (bridges, pipes, airport
runways, tunnel linings, pavements,...). The fracture energy and the residual strength
increase due to the presence of steel fibers into plain concrete, particularly, in tension.

Several tests have been carried out in order to study the tensile behavior of SFRC: (a)
direct tension tests ([1]), (b) indirect tension tests (splitting test ([2]) and Barcelona test
([3], UNE 83515)) and (c) bending tests of prismatic beam specimens, which are the most
used to characterize the post-cracking response of SFRC. These can be either based on
three point tests ([4], [5]) or four point tests ([6]).

Although experimental tests are usefull for characterizing the SFRC, a numerical tool
is needed for studying the behavior in more complex setups.

In the present work, a numerical approach for simulating the SFRC is presented avoid-
ing conformal meshes (too expensive and not affordable for large number of steel fibers)
and homogenized models (not accounting for the actual geometry of the fibers). Thus,
the proposed approach allows defining a mesh for the concrete bulk and another one for
the fiber cloud accounting for the actual geometry of the fibers. Moreover, the materials
for the concrete bulk and the fiber cloud are independent, but coupled following the ideas
of the Immersed Boundary (IB) methods ([9, 10, 11]).

In the proposed approach, the model for the concrete bulk can be any nonlinear material
which describes precisely the behavior of the plain concrete. However, for the example
presented in the current work a nonlocal Mazars damage model is chosen.

The constitutive equations of the steel fibers are defined accounting for the interaction
between the concrete and the fiber cloud. Therefore, they are different for each fiber
depending on the angle with the fracture pattern and their shape.

The application of the proposed approach is the simulation of the three point bending
test considering SFRC.

2
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2 NUMERICAL APPROACH FOR COUPLING STEEL FIBERS AND PLAIN
CONCRETE

The proposed approach for coupling the fiber cloud and the concrete bulk (introduced
in [8]) is based on the IB methods which were introduced for solving problems of a solid
immersed on a fluid (here, concrete is thought as the fluid and the fibers are like the
solid structure immersed in the fluid). The main idea of these methods is to neglect the
space occupied by the solid structure. The fluid is considered to occupy the whole domain
and the velocities of both solid and fluid are made compatible in the coinciding points.
Then, the effect of the solid in the fluid is accounted for by adding an interaction force.
The two systems (fluid and solid structure) are considered separately and compatibility
is enforced by adding the corresponding interaction forces. The discretization of the
problem is therefore simplified because the mesh of the whole domain (the fluid) may
be very simple (eventually a cartesian mesh) and the mesh for the solid body does not
require to be conformal with it. The models corresponding to the fluid and the solid are
defined independently.

Therefore, the problem of SFRC is discretized defining independently one mesh for the
concrete bulk and one mesh for the fiber cloud. The mesh for the concrete bulk is kept
simple while preserving the geometrical features of the sample. The discretization of the
fiber cloud is a series of straight bar elements (in the examples included in this work each
fiber is discretized with five elements). No conformity or geometrical matching is enforced
between the discretizations of the concrete bulk and the fiber cloud.

For a given discretization, the two materials of the concrete bulk and the fiber cloud
are defined independently and the equilibrium in both materials must be ensured.

The displacement compatibility between the displacement fields in the concrete bulk
and the fiber cloud, uc and us is expressed in algebraic form via the projection operator
Π: us = Πuc. This linear restriction is enforced via the Lagrange multipliers method.

3 MATERIAL MODELS

3.1 Concrete bulk

For modeling plain concrete, both continuous and discontinuous nonlinear models can
be considered (in [7] two different possibilities are considered for modeling the plain con-
crete for the Double Punch Test). In the current work, a nonlinear continuous model is
chosen: the nonlocal Mazars damage model.

The material parameters considered for characterizing the plain concrete are presented
in table 1.

3.2 Fiber cloud

The model considered for steel fibers accounts for the whole process of slipping and
debonding of the fiber into plain concrete and, precisely, allows capturing the whole
behavior between the fibers and plain concrete bulk. Therefore, an elasto-plastic angle

3



947

Alba Pros, Pedro Dı́ez and Climent Molins

Table 1: Material parameters for the nonlocal Mazars damage model

parameter value
Young Modulus E = 30 · 109Pa

Poisson coefficient µ = 0
Characteristic length lcar = 10−3m

At 1.2
Ac 1
Bt 2500
Bc 266
β 1.06

dependent model with softening is adopted for the steel fibers, described in [8].
The mesomodel expected for the steel fibers must define inside the whole interaction

process between concrete and fibers and characterize the behavior of the steel fibers.
Thus, the constitutive equations of steel fibers are deduced from experimental results and
analytical descriptions of pullout tests.

Pullout tests describes all the phenomena of the SFRC not only for straight fibers
(fiber debonding, matrix spalling, frictional sliding and fiber removal), but also for hooked
fibers (which are the same for the case of straight fibers but, with plastic deformations,
magnifying the matrix spalling effects).

Fortunately, there is a recent analytical phenomenological description of pullout tests
is available based on experimental results ([12] and [13]). These analytical expressions
depend on the angle between the fiber and the load direction and on the shape of the
fiber, which can be straight or hooked.

As mentioned in [8], the analytical expression of the pullout tests are translated into the
constitutive equations of the fibers. Thus, for each fiber, the angle between the fiber and
the fracture pattern is computed and depending on its shape, the constitutive equation
is defined.

For the most common cases (when the volumetric proportion of steel fibers into plain
concrete is ≤ 1%), the behavior described by one single fiber into plain concrete is enough
for describing the behavior of all the fibers in SFRC, without taking into account the
interaction between them. However, when the volumetric proportion of fibers is higher
than 1%, it could not be realistic.

4 3D EXAMPLE: THREE POINT BENDING TEST

Once the numerical tool is presented, a 3D example is presented: the three point
bending test. Figure 1 represents the scheme of the test.

The three point bending test is simulated considering plain concrete and hooked SFRC.

4
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Figure 1: Three point bending test scheme.

Figure 2: Fiber distribution into the specimen.

The distribution and orientation of the fibers is computed randomly. In figure 2, the fibers
distribution into the plain concrete specimen is represented. The properties of the fibers
are presented in table 2.

Table 2: Hooked fiber properties

length 50 · 10−3m
diameter 0.510−3m

In order to study the influence of the volumetric proportion of steel fibers, two different
volumetric proportions are considered: (a) 0.04% and (b) 0.3%.

The results are presented in figure 3 considering plain concrete and SFRC with hooked

5
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Figure 3: Three point bending test results considering (a) plain concrete, (b) SFRC (0.04%) and (c)
SFRC (0.3%).

fibers. The vertical load is represented depending on the vertical displacement.
With the presence of the steel fibers, the energy dissipation and the residual strength

increase, as expected. Moreover, the increase is higher when more fibers are considered.
For the case when the volumetric proportions is 0.3%, after the peak, some hardening is
observed, as it was expected observing the experimental results.

5 CONCLUDING REMARKS

Finally, the most important points are listed in order to conclude:

- A numerical tool for modeling SFRC is presented.

- It is possible to account for the actual geometry, distribution and orientation of the
fibers because the mesh of the concrete bulk and the mesh of the fiber cloud are
nonconformal.

- The materials corresponding to the concrete bulk and fiber cloud are independent,
but coupled imposing displacement compatibility.

- The constitutive model of the steel fibers accounts for the interaction between con-
crete and fibers.

- The three point bending test is reproduced considering both plain concrete and
SFRC. Moreover, different volumetric proportions of the steel fibers are considered

6
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- The influence of the steel fibers is observed in the example: the increase of the
energy dissipation and residual strength.
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1 INTRODUCTION 
Since their discovery by Lijima in 1991[1], carbon nanotubes (CNTs), are considered a 

new generation of reinforcement [2]. Their "nano" size structure makes them potentially free 
of defects, which provides them with excellent physical properties [3,4]. There are two main 
nanotube types: single wall nanotubes (SWNT) and multi wall nanotubes (MWNT). These 
last ones consist in several concentric walls, one inside the other. 

In a composite, one the most important factors that condition their mechanical performance 
is the interfacial tension between matrix and reinforcement. In general, the loads in a 
composite structure are introduced to the matrix and then are transferred to the reinforcement 
through the interface [5]. Therefore, the interface can be defined as the region, surrounding 
the reinforcement, where this stress transfer takes place. The properties of the composite 
depend on the properties of this region and its ability to transfer the load efficiently. 

This work proposes a new formulation to predict the mechanical properties and mechanical 
behaviour of nanotube-reinforced composites. The formulation is based on the mixing theory 
[6]. It obtains the behaviour of the composite from the mechanical performance of its 
constitutive materials: matrix, carbon-nanotube and the interface that bonds both of them. 

2 DESCRIPTION OF CONSTITUTIVE MODEL 
The theory presented in this work obtains the mechanical performance of the composite 

from the behaviour of the composite constituents, each one simulated with its own 
constitutive equation [7]. As it is written, the theory can be understood as a constitutive 
equation manager. This approach increases the versatility and simulation capability of the 
formulation. 

The model assumes that the composite is the combination of three different materials: 
matrix, CNTs and interface zone [8]. The interface corresponds to the matrix surrounding the 
CNTs. It is considered an independent component, with its own constitutive law. The function 
of the interface material in the model is to define the capacity of the matrix to transfer the 
loads to the reinforcement.  

Although the phenomenological performance of the composite completely justifies the 
definition of an interface material, its existence also justified by measurements performed on 
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CNTs reinforced composites. Differential Scanning Calorimetry (DSC) measurements, 
carried out in composites with semi-crystalline polymer as matrix material, show a linear 
increase of crystalline matrix as the nanotube volume fraction increases. This result suggests 
that each nanotube has a crystalline coating [9]. This phenomenon can be also seen in 
Scanning Electron Microscope (SEM) images such the ones shown in Figure 1. Such images 
revealed that the structures protruding from the fracture surface seemed to have larger 
diameters than the original MWCNTs used in the sample preparation [10].  

Figure 1: SEM image of nanomanipulation and fracture surface of composites [10].

A general description of the proposed procedure to simulate CNTs reinforced composites 
is shown in Figure 2. This figure shows that the composite is divided in several layers, each 
one containing nanotubes with a different orientation. All layers are coupled together using 
the parallel mixing theory. This division into layers allows taking into account the different 
orientations that may have the nanotubes in the composite. And, eventually, allows defining a 
composite with different materials in each layer (i.e. a foam core in a sandwich laminate). 

Figure 2: Representation of formation for reinforced composite.
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Each layer is defined by the volume content of matrix, interface and carbon nanotubes. The 
mechanical performance of each layer is obtained with a new mixing theory formulation, 
which consists in combining the mechanical performance of the three co-existing materials.  

First, the layer is split into matrix and a new material result of coupling the CNTs with the 
interface. The relation between the matrix and the CNTs-interface is established in terms of 
the parallel mixing theory; this is, they are assumed to have an iso-strain behaviour. On the 
other hand, CNTs and the interface zone are bonded together with a combination of parallel 
and serial mixing theories. The serial mixing theory states that all composite constituents have 
the same stresses. 

The formulation used to characterize the CNTs-interface material is based in the short fibre 
model developed by Car [12]. Figure 3 shows the scheme used to obtain the performance of 
the CNTs-interface material. According to this model, the load transfer from the interface to 
the nanotube is produced at both the ends of the reinforcement, through shear stresses. At the 
centre of the reinforcement there is no load transfer and, therefore, shear stresses are null. A 
simplified model can be defined in which the CNT-interface performance is defined with a 
serial mixing theory at the ends of the reinforcement (iso-stress behaviour) and with a parallel 
mixing theory at the centre of it (iso-strain behaviour). 

Figure 3: Different regions in the new material CNTs-interface. 

A parallel factor named Npar is defined to differentiate the two regions. This parameter, 
multiplied by the nanotube length, provides the length of the nanotube-interface element with 
a parallel behaviour. The length with a serial performance is defined by the complementary 
factor.

3 FORMULATION OF CONSTITUTIVE MODEL 
The Helmholtz free energy [13] of a material point subjected to small deformations can be 

described with the following thermodynamic formulation [14, 15]: 

ntl
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  ,;θ   (1)

where  is the deformation tensor,  the temperature and p; d; s} a set of inner variables, 
for example: p is the plastic deformation, d damage inner variable and s any other material 
internal variables. 

The model proposed to simulate the composite material consists on a combination of the 
different components of the composite, using the parallel and the serial mixing theories, as 
has been described in previous section. The expression of the Helmholtz free energy for the 
composite material may be written as: 
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where m, nt and iz are the specific Helmholtz free energy for the matrix, the nanotube and 
the interface components, respectively; par

ntiz~ and ser

ntiz~  states parallel and serial Helmholtz free 
energy of the news CNTs-interface material, km, knt and kiz are the volume fraction of each 
component, and Npar is a parallel factor and: 
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are the volume fractions of the composite components. These must verify: 

11  izntizntm kkkkk  (4)

The relation among the strain tensors of the different components is:  
ser
ntiz
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where  and m are the composite and matrix deformations, respectively;  par
ntiz  is the 

deformation of a new material, result of the combination of nanotubes with the interface, that 
has a parallel behaviour; and  ser

ntiz  is deformation of a nanotube-interface material that has a 
serial behaviour. 

The tangent constitutive tensor of the composite material may be derived from Eq. (2): 
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A parallel behaviour means that all composite constituents have the same value for this 
strain component and therefore: 
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A serial behaviour means that all composite constituents have the same value for this stress 
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component and therefore: 
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Replacing Eq. (7) and Eq (9) in Eq (6) it is possible to obtain a simplified expression of the 
tangent constitutive tensor: 

    ser
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3.1 Definition of the parallel factor Npar

The parallel factor is defined as: 

10,:  par

nt

parpar N
l
l

N  
(11)

where lnt is the length of the nanotube and lpar is function of geometry and mechanical 
properties of the nanotube and the interface.  

Based on the short fiber formulation defined in [5], the equation of tension distribution in a 
reinforcement considering perfect bond with the matrix is: 

    
  m

nt

nt
ntnt l

xlEx 


 






 


cosh
2cosh1

              




 



nt
ntnt

iz

r
bdE

G

1ln

2
2

  
(12)

where x represents the longitudinal positions in the reinforcement, the subscript “nt” and “iz” 
refers to the properties of nanotube and interface zone, respectively, and b is the thickness of 
interface.

Considering that lpar = lnt -2x and finding the positions “x” which verifies that the effective 
modulus obtained of integrate the tension distributions is equal to: 
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The parallel longitudinal can be written as: 

  ntpar ll 


coshcosh1
3
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4 CONSTITUTIVE MODEL FOR A SINGLE MATERIAL 
All models used in the formulation depart from Eq. (1). Therefore it is possible to use any 

constitutive law to describe the behaviour of the constituent materials defined: matrix, 
interface and CNTs. However, for the sake of clarity, in the following are defined three 
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specific models that will be used afterwards.  

4.1 Constitutive model for matrix material 
Matrix material is defined with an elastoplastic law. Therefore, the specific Helmholtz free 

energy for this material, considering uncoupled elasticity is:  

       pCpp peepeee    ::
2
1,

 

(15)

where the total deformation of the material tensor is split into its elastic, e and plastic, p

parts. This is:  
pe    (16)

The local form of the Clausius-Duhem inequality for this material can be expressed as: 
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where  is the stress tensor,  the entropy, and q the vector field of heat flow.
To ensure compliance with the second thermodynamic law it must be defined: 
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where P is the thermodynamic tensor associated with the internal variable tensor p.
Finally, the mechanical dissipation for a material point is: 

0.:  pP  p
pm   (21)

4.2 Constitutive model for interface material 
The interface region will be simulated with a damage material. In this case, the expression 

of the Helmholtz free energy is:  

          eeee
o
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The local form of the Clausius-Duhem inequality for this material can be expressed as: 
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To ensure compliance with the second thermodynamic law it must be defined: 

d
Dη

ee













 :::


  

(26)

where D is the thermodynamic scalar associated with the internal scalar variable d.
And, the mechanical dissipation for a material point is: 

0 dDdm
  (27)

4.3 Constitutive model for nanotubes 
Nanotubes are considered elastic, therefore the Helmholtz free energy is:  
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And the local form of the Clausius-Duhem inequality can be expressed as: 
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To ensure compliance with the second thermodynamic,  and  are defined as: 
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(32)

5 NON-LINEARITY OF THE PROPOSED MODEL 
In the proposed model, the composite performance is obtained from the mechanical 
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performance of its constituent materials. Therefore, if a constituent (i.e. the interface) is 
simulated with a non-linear law and the strains applied to it lead to a non-linear state, the 
whole composite will become non-linear.  

However, beyond the non-linear performance provided by the constitutive law used to 
simulate each constituent, the load transfer capacity in the interface region is also affected if 
the interface is damaged. This effect must be included in the formulation.  

According to Figure 3, the load transfer from the interface to the reinforcement is produced 
at the ends of the reinforcement. Therefore, initial interface damage will occur at the ends of 
the reinforcement, where there is larger stress concentrations, reducing the effective length of 
the nanotube. In other words, the parallel length of the nanotube is reduced based on the 
damage of the interface material. The new parallel length can be computed as:  

 dll o
parpar  1

 
(33)

where l o
par  is the initial length of the nanotube working in parallel and d is the interface 

damage. 
The addition of this new length, depending on the non-linear performance of the interface 

material, provides a non-linear response of the composite (see equation 10), even when matrix 
and the carbon nantotube reinforcement are in their linear range. 

6 NUMERICAL IMPLEMENTATION 
The proposed model has been implemented in PLCd [16] a finite element code that works 

with 3D solid geometries. The algorithm developed has been implemented as a new 
composite equation manager in the FEM code [17]. PLCd has already implemented the 
constitutive laws that will be used to predict the performance of the composite components 
(elastoplastic, damage and elastic). The formulation proposed has been written so that the 
constitutive laws of the constituents are seen as “black boxes”, that will compute the material 
stresses for a given strain.

7 RESULTS 
The elastic performance of the model presented in this work has been already validated, 

proving that it provides good results. The validation performed consisted in comparing the 
prediction made by the model, of different elastic parameters (Young modulus and shear 
modulus) for several CNTs reinforced polymers, with the data existing in literature for these 
same composites. A detailed description of this comparison is reported in [18]. 

The non-linear behaviour of the numerical model is validated hereafter, comparing the 
results provided by the model with experimental data obtained from M-Rect project (see 
acknowledgements). The matrix used is PEEK; Young’s modulus and shear modulus were 
measured: 3.9 [GPa] and 1.9 [GPa], respectively. The composite has a 3% weight of MWNT 
(Baytubes® C 70 P). However, measurements with X-ray showed an apparent 5% weight, 
this means that the nanotubes have a higher apparent diameter than the pristine one. 
Therefore, the b/rnt is calculated assuming that 2% weight extra is the coating polymer around 
the nanotubes. The Young’s modulus of the interface zone was estimated using the procedure 
proposed by Coleman et al. [19]. The data used for the estimation of the modulus is the one 
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defined by Díez-Pascual et al. [20,21], obtaining a final value  of 5 [GPa]. 
The properties used in the model for the CNTs were obtained considering them as solid 

cylinders with the same external diameter. To do so it is necessary to reduce their elastic 
modulus in order to have an equivalent material. The values used as effective Young’s 
modulus and effective shear modulus are Ent = 4.t/dnt.Eg and Gnt = [1- (1-2.t/dnt)4].Gg,
respectively [22]. The value of the properties used to get the effective properties were Eg = 1
[TPa], Gg = 0.44 [TPa] (the Young’ modulus and the shear modulus of graphite sheet), its 
thickness was considered to be t = 0.34 [nm]. 

Table 1: Project data for implementation of numerical model

Type dnt [nm] lnt [m] lnt/ dnt b/rnt Ent [GPa] Gnt [GPa] Npar 
MWNT 13 1 44 0.3 105 85 0.97 

The composite is defined with different layers in order to assign different CNTs 
orientations. Each layer contains a volume fraction of CNTs with a specific orientation. The 
constitutive model used for PEEK material is an elasto-plastic model, for the interface zone is 
an explicit scalar elasto-damage, and for the nanotube is an elastic model. The parameters that 
control the no-lineal behaviour on the interface zone were calibrated with the experimental 
data of project.

Figure 4 shows the mechanical performance of the model when the composite is loaded 
with a shear load. The simulation has been performed applying a controlled displacement 
load. The figure shows the strain-stress graph obtained for the composite (red line) and these 
same graphs for the interface material of the different layers in which the composite is 
divided. These last graphs show that the maximum stress in all interface materials do not 
exceed the defined threshold value of 15 MPa.  

Figure 4: Numerical behaviour for the model proposed in shear load. 
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Figure 4 shows that once the first interface material reaches its threshold value, the 
composite modifies its mechanical performance reducing its stiffness. This occurs because the 
interface itself reduces its stiffness due to damage, but also because damage in the interface 
reduces the parallel fraction of the CNTs-interface material (equation 33); hence, the 
participation of the CNTs in the composite is less significant. When all interfaces (in all 
layers) are completely damaged, the CNTs contribution to the composite stiffness and 
strength becomes null and the composite behavior is such as having just matrix material with 
some voids in it. 

The mechanical performance just described is better shown in figure 5, in which is 
represented the behaviour of the numerical model calibrated in a load-unload test. The PEEK 
curve shows the plastic behaviour of the numerical model. When it is unloaded, the composite 
curve shows not only plastic deformation, but also a variation in its stiffness produced by 
interface damage.   

Figure 5: Comparison of numerical and experimental results, load and unload curves. 

8 CONCLUSIONS 
- A new formulation has been presented, which is based on the mixing theory, 

developed to predict the mechanical performance of composites reinforced with 
carbon nanotubes. The model presented has the advantage of relating the CNTs and 
the matrix with an interface material. This makes possible to simulate the composite 
material by using constitutive laws defined for each composite component and the 
interaction between them. 

- The model was calibrate and compared with experimental data. The elastic properties 
predicted by the model, as well as the nonlinear behaviour estimated are in good 
agreement with experimental values.   
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Abstract. Significant progress has been made on computational contact mechanics over
the past decade. Many of the drawbacks that were inherent to the standard node-to-
segment element strategy, such as locking/over-constraint and non-physical jumps in the
contact forces due to the discontinuity of the contact surface, have been systematically
overcome. In particular, the formulation of the mortar finite element method [1], which
has allowed the establishment of efficient segment-to-segment approaches [2, 3] when ap-
plied to the discretization of a contact surface, has promoted significant advance. However,
the regularization schemes used with the mortar element (e.g. the Penalty method, the
Lagrange multipliers method or combination of them) still cause unwanted side-effects
such as: ill-conditioning, additional equations in the global system or a significant in-
crease in the computational time for solution. In order to circumvent these shortcomings,
Wohlmuth [4] has proposed the use of dual spaces for the Lagrange multipliers allow-
ing the local elimination of the contact constraints. As a consequence, the Lagrangian
multipliers can be conveniently condensed and no additional equations are needed for
the solution of the global system of equations. H’́ueber et al. [5], Hartmann et al. [6],
Popp et al.[7] and Gitterle et al [8]. have later combined this methodology with an active
set strategy and obtained improved results in terms of convergence rate. Despite the
successful application of the dual mortar formulation to contact problems, the advances
presented in the literature have, to the authors knowledge, only been employed for the
simulation of elastic problems. However, contact between bodies has a strong influence
in many applications (e.g., metal forming and cutting) where finite inelastic strains play
a crucial role. Therefore, the main goal of the present work is both the application and
assessment of the dual mortar method in problems where contact takes place coupled with
finite plastic strains.
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1 INTRODUCTION

The great majority of industrial processes involve plastic deformation of metallic bod-
ies. There are several manufacturing procedures to modify the shape (i.e. Extrusion,
U-Shaping, L-Shaping, Upsetting, etc) and they all share a common mechanism: the fric-
tional contact. The correct prediction of frictional forces is intimately related to the precise
computation of the normal contact forces. One of the most common methods to solve
a non-conforming contact contact problem is the standard node-to-segment Lagrangian
method. However the drawbacks inherent to the node-to-segment (NTS) approach, such
as locking/over-constraint and non-physical jumps in the contact forces due to the dis-
continuity of the contact surface, use to compromise the method’s results. Therefore, it
is possible to replace the strong pointwise non-penetration function by a weaker integral
condition through the use of dual spaces for the Lagrange multiplier [4]. This provides a
very efficient discretization approach for non-conforming meshes, and therefore, a more
accurate evaluation of the normal contact forces. The main goal in this work is to as-
sess how the Dual Mortar method behaves when the deformation field along the contact
surface evolves to the plastic zone. This paper is organized as follows: in Section 2, the
contact problem is presented by stating the boundary conditions, the contact kinematics
and the material model employed. In Section 3, the final equation system of the Dual
Mortar method is presented. Numerical examples comparing the Dual Mortar method
and the lagrangian method, are given in Section 4. Conclusion remarks are presented in
Section 5.

2 PROBLEM DEFINITION

Considering two solid bodies in the reference configuration, we denote them by Ωs and
Ωm, {Ωs ∪ Ωm = Ω : Ω ⊂ R

2}. The boundaries of subset Ω are divided in a contact zone
Γc, a Neumann part ΓN and a Dirichlet part ΓD, {Γc ∪ ΓN ∪ ΓD = Γ : Γ ⊂ R}. It is
assumed that ΓD has a non-zero measure. The boundary value problem, in terms of the
displacement vector u, is given as follows:

−∇ · (σ(u)) = f in Ω, (1)

u = 0 on ΓD (2)

σ (u)n = t, (3)

where f is the body forces over Ω and t are the prescribed tractions on the Neumann
boundary. The outward unit normal vector n on Γc is defined with respect to the slave
body Ωs. The stress tensor σ is obtained using the classical von Mises nonlinear model.
The yield function for the von Mises criterion can be defined as:

Φ(σ) =
√

J2 (S (σ))− τy, (4)

with J2 as the second principal invariant of the deviatoric stress tensor S = σ− pI, where
p is hydrostatic pressure, and τy as the shear stress tensor. The gap function g(X, t) is

2
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defined as the normal distance between a point x(1) over the slave surface (Γs) and a point
x(2) over the master surface (Γm) in the current configuration as

g(X, t) = −n[x(1)(X(1), t)] · [x(1)(X(1), t)− x̂(2)(X(2), t)]. (5)

Together with the normal contact pressure, λn (X, t), the gap function creates a set of
conditions known as the Kuhn-Karush-Tucker (KKT) conditions, which enforce a non-
penetration relation on the normal direction of Γc,

g(X, t) ≥ 0, λn ≤ 0, λng(X, t) = 0. (6)

In the tangential direction, the frictional conditions are given by the Coulomb’s law:

ψ := |tτ | − µ|λn| ≤ 0. (7)

Having stated these definitions, let v be virtual displacement vector and V the space of
test functions fulfilling the condition v = 0 on the Dirichlet boundary ΓD. Then, applying
the principle of virtual work to the boundary value problem and using the KKT conditions
(6), the energy problem is reduced to finding u ⊂ {us,um} ∈ V such that,

∂Π(u, δu) = ∂Πint,ext (u, δu) + ∂Πc (u, δu) = 0, (8)

where ∂Πint,ext (u, δu) represents the virtual work from the internal and external forces.
The contact virtual work, ∂Πc (u, δu), is obtained by the integration – over the slave side

– of the work done by the contact traction t
(1)
c ,

∂Πc (u, δu) = −

∫

Γs

t(1)c ·
(
δu(1) − δu(2)

)
dΓs. (9)

The next section presents the discretization procedures adopted for solving the contact
virtual work equation (9).

3 DISCRETIZATION

Since the lagrangian method has been extensively treated in the literature, the dis-
cretization procedure adopted for this method may be found in references such as Laursen
[9] and Wriggers [10]. The discretization using a dual basis for the lagrangian multipliers
adopted in this work is strongly based in the works of Hüeber et al. [5], Popp et al. [7]
and Gitterle et al. [8], however a remark – concerning the final equation system used –
must be made. Introducing the Lagrange multiplier, on the slave side, as the negative of
the contact traction λ = −t

(1)
c it is possible to rewrite equation (9) as,

δΠc (u, δu,λ) =

∫

γ
(1)

c

λ ·
(
δu(1) − δu(2)

)
dγ (10)

which represents a weak integral replacement of the strong pointwise non-penetration
condition. The matrix form of equation (8) was reduced to the following pure displacement
problem,

3
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[
KNN KNM KNI KNI

KMN + M̂T

AK̃AN K̃MM + M̂T

AK̃AM K̃MI + M̂T

AK̃AI K̃MA + M̂T

AK̃AA

KMA K̃IM K̃II K̃IA

0 M̃A S̃AI S̃AA

T̂AKAN T̂AK̃AN T̂AK̃AN − F̃AI T̂AK̃AN − F̃AI

] [
∆dN

∆dM

∆dI

∆dA

]

=

[
rN

rM + M̂T

ArA
rI
g̃A

T̂ArA

]

(11)

here, indexes N , M, I, A stands for the set of internal nodes, nodes on the mortar
side, inactive non-mortar nodes and active non-mortar nodes, respectively. The matrix K̃
corresponds to the summation of the standard tangent stiffness matrix K and the matrix
C̃, which contains the directional derivatives of both mortar matrices D and M. Matrix
S̃ contains the directional derivatives of the gap functions vector g̃, while the matrix F̃ is
obtained by assembling the tangent vector linearizations together with the current values
of the Lagrange multipliers. The matrices T̂ and M̂ are defined as, T̂ = D−1T and
M̂ = D−1M, respectively. Since friction is taken into account, the terms related to stick
and slip must be considered in the tangent matrix T. Finally, the residual force vector is
computed in terms of the vector of internal forces, fint, the vector of external forces, fext,
and the contact forces, fc, as follows,

r = fint(d) + fc (d, z)− fext = 0, (12)

where d represents the nodal displacements and the nodal values of the lagrangian mul-
tipliers, z, are recovered using the following relation,

z = D−1
(

−rI −KIN∆dN − K̃IM∆dM − K̃II∆dI

)

. (13)

The solution is undertaken using a sparse equation solver with the Newton-Raphson
method, were the residual forces are indirectly used as a control parameter. The outcome
is a fast and memory-optimized solver.

4 NUMERICAL EXAMPLES

In this section a set of three numerical problems is presented. The objective of those
analyzes is to compare the standard Lagrange method and the Dual Mortar method,
when plastic strain comes to play. Two normal contact problems are considered first
to evaluate which formulation provides better load transfer. The second example is a
classical Hertzian contact problem. Lastly, a conical extrusion problem is considered.
Three materials were employed in the simulations and their properties are detailed in
Table 1. All the examples employ the four node quadrilateral F-BAR finite element [11]
and two node linear mortar elements.

Table 1: Material properties.

Material E G ν σy Hardening law

Steel ANSI 9000 210 GPa 76 GPa 0.33 830 MPa σ = σy + 600 (ǫ)0.21

Al ANSI 201.0(†) 71.15 GPa 26 GPa 0.30 370 MPa σ = σy + 550 (ǫ)0.223

Al ANSI 771.0(‡) 69.8 GPa 26.12 GPa 0.32 31 MPa σ = σy + (ǫ) (G/100)

4
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4.1 Normal contact problems

This first case study is mainly concerned with the correct prediction of strains/stresses
in the normal direction, and therefore no friction is considered. Two contact problems
are chosen: the classical contact patch test (Fig. 1) and the block pile problem (Fig. 2).
The contact patch test [12] is the most commonly used benchmark to evaluate the load
transfer from the contacting surface (master surface) to the target surface (slave surface).
Here, a point load F = 7.2kN is applied on each node at the top of the structure. The
objective is to generate a constant uniaxial stress field in both contact bodies. By doing
this, the Ladyzhenskaya-Babuska-Brezzi (LBB) criteria (discrete version of the inf-sub
condition) should be satisfied. 
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Figure 1: Contact patch test.
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Figure 2: Block pile problem.

Another example typically employed to verify if the normal contact forces are correctly
computed, is solving the block pile problem [13]. It consists of an arrangement of several
blocks – with the same geometry – where a prescribed displacement (or distributed load)
over the top surface of the last block on the pile is applied. The structure is meant
to behave as an axisymmetric bar. Here, a prescribed displacement of δy = −15mm
is applied to the top surface of the upper block. Since no friction is considered, the
contacting surfaces should slide over each other, making the blocks deform alike. The
ANSI 9000 Steel (Table 1) was employed for both problems. Applying the Lagrange
Method to enforce the contact constraints in the first problem and using a single pass
NTS detection to create the contact pairs will produce the results shown in Fig. 3. The
displacement field, despite the excessive penetration of the contacting nodes at the corner
of the slave body, have a quite smooth pattern. However, the effective stresses are not
equally distributed over the structure and the formulation fails the test. The use of a
double pass NTS detection approach to reduce penetration leads to the locking of the
contacting surfaces. On the other hand, solving the contact constraints using the Dual
Mortar Method provides an exact displacement pattern and the stress field is constant,
see Fig. 4. The use of a non-linear material did not affect the quadratic convergence rate
of the relative residual force.

The solution of the block pile problem also emphasized the limitations of the NTS
approach, see Fig. 5. The pointwise nature of the contact enforcement, especially at the
block’s corner, made it very difficult to maintain the correct contact pairs. Eventually,

5
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Figure 3: Contact patch test - Lagrange.
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Figure 4: Contact patch test - Dual Mortar.

the corner nodes on the slave side went outside the limits of the master side domain.
When this happens, the slave node is no longer enforced. High levels of penetration are
reached, which also compromises the enforcement of the neighborings nodes. The results
obtained by the Dual Mortar method are shown in Fig. 6. The segment-to-segment
pairing, provided by the dual functions, compel the corner nodes to remain in contact.
The outcome is a smooth deformation of the entire structure and a uniform uniaxial stress
field.

4.2 Hertizian problem

The classical problem of Hertz is the second case of study. In this problem, a steel
cylinder is pressed into an aluminium† block. The initial contact area is very small
(non-conforming point contact) and a curved contact surface is present. The simulation
is conducted as a two-dimensional plane-strain analysis. Geometry of the problem and
finite element mesh are depicted in Fig. 7. Due to the symmetry, only half mesh is
analyzed. The block’s bottom surface is fixed. A friction coefficient of 0.1 was adopted
in this analysis. The great asset of this case study relies on the existence of an analytical
solution in the elastic domain. It is obtained from the Hertizian contact formulae for two

6
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Figure 5: Block pile problem - Lagrange.
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Figure 6: Block pile problem - Dual Mortar.

Figure 7: Hertizian problem.

cylinders, which defines the maximum contact pressure, Pmax, the contact width, a, and
the contact pressure along x-coordinate P as:

Pmax =

√

FE∗

2πR∗
, a =

√

8FR∗

πE∗
, P = Pmax

√

1−
(x

a

)

(14)

where the combined elasticity modulus, E∗, is obtained from the material parameters of
the punch (Ep) and the block (Eb) as follows:

E∗ =
2EpEb

Ep (1− ν2
b ) + Eb

(
1− ν2

p

)
.

(15)

and the combined radius, R∗, is evaluated from the radius of the cylinder, R1, and block,
R2, in a similar way, but since ⇒ R2 → ∞, the combined radius is reduced to the
cylinder’s radius,
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R∗ = lim
R2→∞

R1R2

R1 +R2

= lim
R2→∞

R1

R1/R2 + 1
= R1. (16)

In order to compare the numerical results and analytical solution, the analysis was
divided in two phases. In a first moment, a compressive point load F = 5kN is ap-
plied to the top of the cylinder. Under this load, only elastic strains will manifest, which
allows a direct comparison with the analytical solution. For the given numerical pa-
rameters, the expected results are: Pmax = 1577.32N/mm2 ; a = 2.018mm ; and

P = 1577.32
√

1−
(
x
a

)2
.

In the second phase of the analysis, the point load is raised to F = 12.5kN , which leads
to the appearance of plastic strains on both sides of the contact surface. The frictional
forces becomes more significant, making the limitations of the NTS discretization more
evident.

4.2.1 Elastic strains

In the first phase of the case study, the applied load yields a maximal Equivalent Stress
at x = 0 equal to 327kN/mm2. This pressure is below the yield stress of both material
employed, which assures that no plastic strains are in place. Also at this point, frictional
forces are negligible. The load is well transfered and a Relative Residual Norm of E-10
is quadratically achieved after 4 iterations for the Lagrange method and 3 iteration for
the Dual Mortar method. A comparison between the analytical solution and the results
provided by the numerical simulations is depicted in Fig. 8. Despite the oscillation of the
normal forces both results have a reasonable agreement.

Figure 8: Contact stress - Elastic strains. Figure 9: Contact stress - Plastic strains.
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4.2.2 Plastic strains

On to the second phase, under the action of a vertical force of 12.5kN, the contact
surface includes plastic deformation and the friction forces becomes considerably higher.
Results are shown in Fig. 9 and Table 2. The stress distribution predicted by the NTS-

Table 2: Results of Hertizian problem - Plastic strains.

Lagrange Dual Mortar
TOTAL Cylinder 0.433 0.431

DISPLACEMENT [mm] Block 0.432 0.431
AVERAGE Cylinder 0.184 0.182

DEFORMATION Block 0.416 0.431
CONTACT LENGTH [mm] 3.178 3.198

Increment Iteration Relative residual norm (%)
1 0.575085E-01 0.836091E-02

1 2 0.140132E-04 0.739726E-06
3 0.212436E-06 0.922262E-10
4 0.172358E-10
1 0.213476E-01 0.223108E-03

100 2 0.510660E-04 0.198341E-07
3 0.399832E-09 0.135704E-11
4 0.340939E-12
1 0.354716E-01 0.754524E-04

200 2 0.485938E-03 0.917062E-08
3 0.337746E-06 0.896271E-12
4 0.852251E-11

Lagrange method is no longer liable. Oscillations of normal forces reduced the results
accuracy. The convergence rate is also decreased. On the other hand, since the number
of contacting nodes increased, the results obtained using the Dual Mortar method have a
better distribution of loads over the contact surface. Normal and tangential forces follow
a relatively smoother pattern and convergence rate remained faster.

4.3 Conical extrusion

The problem undertaken in this example is an elasto-plastic stress analysis of an
aluminium‡ cylindrical billet. The billet is pushed a total distance of 177.8mm through
a rigid conical die which has a wall angle of 5 degrees, see Fig. 10. The objectives are
to predict the displacement of the billet material, the forces generated during the extru-
sion process and also the effective plastic strain distribution of the deformed billet. By
analyzing the evolution of these variables it is also possible to assess the performance of
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the Lagrangian Method and the Dual Mortar method when the contacting body is in the
presence of frictional forces and plastic strains.
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Figure 10: Conical extrusion - Geometry.
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Figure 13: Frictional forces.

The Equivalent Plastic Strain obtained by the Dual Mortar method is shown in Fig.
11. The higher plastic deformation is found at the upper left side of the billet with
a maximal value of 1.39. The final contact surface length is 257.33mm. A graphical
representation of the extrusion force (measured from the reaction at the billet bottom) is
shown in Fig. 12, the deviation between the two methods is very small. The convergence
rate achieved was similar to the one obtained in section 4.2.2. Nevertheless, the evolution
of the friction forces obtained by the Lagrangian method, see Fig. 13, shows the typical
oscilation, which is due to the finite element discontinuities along the contact surface. This

10



974

T. Doca, F.M. Andrade Pires and J.M.A. César de Sá

drawback is mitigated by the segment-to-segment approach of the Dual Mortar method,
which performs better.

5 CONCLUDING REMARKS

The results presented emphasize the benefits of using a dual basis for the lagrangian
multipliers. The evaluation of the gap function as a semi-continuous weak integral yields
a much better enforcement of constraints in the normal direction. This advantage leads
to a more accurate evaluation of the contact forces, not only in the normal direction but
also the reactions in the tangential direction as well. Additionally, it contributes to the
correct fulfillment of the additional nonlinearity sources, i.e. sharp contact, friction plastic
strain and friction forces. Furthermore, the superior correlation between the contacting
bodies will promote a smaller initial value for the residual forces which will lead to a faster
solution. The results suggest that the use of a higher order finite element/mortar element
would also improve the effectiveness of the method, especially when dealing with sharp
contact surfaces and curved surfaces. Such an improvement is necessary for solving contact
problems between solids with irregular surfaces and with a higher friction coefficient, which
may be a topic for future work.
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Abstract. Friction has a significant influence on the tool lifetime and the quality of
products in manufacturing processes. Real surfaces are always rough, so that for moderate
loads contact occurs only at surface roughness peaks. Thus the real contact area Areal

is smaller than the apparent contact area A0. Adhesive forces, which are an important
contribution to friction, can only be transferred within Areal. Consequently Areal has to
be determined in order to analyse the tribological behaviour of technical surfaces. The
halfspace approach is used because of its advantage in numerical effort compared to the
Finite-Element-Method. Due to the fact that contact pressures can be very large the
plastic deformation of roughness peaks has to be taken into account. Therefore a three-
dimensional plasticity algorithm is implemented into the halfspace model.

1 INTRODUCTION

Friction forces in dry metal contact are primarily caused by adhesion and ploughing [2].
Ploughing is the plastic deformation of a soft surface by a hard contact partner. It occurs
between contact partners of different hardness or in the presence of hard particles. Adhe-
sive forces can only be transferred in the real contact area Areal where material contact
occurs. The real contact area is usually smaller than the apparent contact area A0 because
technical surfaces are always rough and consequently only the peaks of surface roughness
are in contact. Therefore many researchers investigated the size of Areal. Archard [1]
found a linear relation between normal load and Areal for a hierarchy of elastic Hertzian
contacts. But the assumption of hierarchically Hertzian contacts is only an approximation
of real surface shape. Therefore a model based on halfspace theory, which can handle ar-
bitrary surfaces, has been introduced by Kalker [8]. However there is still the assumption
of purely elastic surface deformation which is not true for primal contact, where surfaces
are very rough. High roughness leads to a small real contact area, which leads to huge
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Abstract. Friction has a significant influence on the tool lifetime and the quality of
products in manufacturing processes. Real surfaces are always rough, so that for moderate
loads contact occurs only at surface roughness peaks. Thus the real contact area Areal

is smaller than the apparent contact area A0. Adhesive forces, which are an important
contribution to friction, can only be transferred within Areal. Consequently Areal has to
be determined in order to analyse the tribological behaviour of technical surfaces. The
halfspace approach is used because of its advantage in numerical effort compared to the
Finite-Element-Method. Due to the fact that contact pressures can be very large the
plastic deformation of roughness peaks has to be taken into account. Therefore a three-
dimensional plasticity algorithm is implemented into the halfspace model.

1 INTRODUCTION

Friction forces in dry metal contact are primarily caused by adhesion and ploughing [2].
Ploughing is the plastic deformation of a soft surface by a hard contact partner. It occurs
between contact partners of different hardness or in the presence of hard particles. Adhe-
sive forces can only be transferred in the real contact area Areal where material contact
occurs. The real contact area is usually smaller than the apparent contact area A0 because
technical surfaces are always rough and consequently only the peaks of surface roughness
are in contact. Therefore many researchers investigated the size of Areal. Archard [1]
found a linear relation between normal load and Areal for a hierarchy of elastic Hertzian
contacts. But the assumption of hierarchically Hertzian contacts is only an approximation
of real surface shape. Therefore a model based on halfspace theory, which can handle ar-
bitrary surfaces, has been introduced by Kalker [8]. However there is still the assumption
of purely elastic surface deformation which is not true for primal contact, where surfaces
are very rough. High roughness leads to a small real contact area, which leads to huge
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contact pressures, which in turn causes the plastic deformation of the surface. For run-in
surfaces the plastic behaviour is not significant, but for initial contact of rough surfaces
it determines the contact behaviour. Therefore the elastic halfspace model was enhanced
to an elastic-plastic model with a simple non volume conservative plasticity algorithm
[11, 12]. In this algorithm the maximum pressure is limited to the surface hardness which
is often set to three times the yield stress of the weaker contact partner, as observed
experimentally by Bowden and Tabor [2]. The use of the Finite-Element-Method for the
investigation of three-dimensional rough contact is impeded by its huge numerical cost. In
order to provide a fast and accurate elastic-plastic contact code the halfspace model was
extended to three-dimensional plasticity by Jacq et al. [6] and was applied to investigate
the contact in bearings. The same approach will be used here in the context of the contact
of rough surfaces in metal forming.

2 ELASTIC HALFSPACE MODEL

In order to account for the roughness of both contact partners the surface height h(x, y)
of the rough surface in the numerical model is the superposition of the surface roughness
of both contact partners z1(x, y) and z2(x, y).

h(x, y) = z1(x, y) + z2(x, y) (1)

The prescribed surface displacement in Areal is defined by the surface height, the maximum
surface height hmax and the normal approach d.

ūz = h(x, y)− hmax + d (2)

The normal displacement of the halfspace surface uz(x, y) due to a pressure p(ξ, η) on a
surface segment is calculated with the Boussinesq solution:

uz(x, y) =
1

πE∗

∫

Γ

p(ξ, η)

ρ
dΓ (3)

h
max

d

h

ū
z

a)

x

y

2b

2a

y
l

y
k

x
k

x
l

ξ

η

b)

Figure 1: Surface displacement (a) and discretisation (b) in the halfspace model
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ρ =
√

(xk − xl)2 + (yk − yl)2 (4)

The compliance of both contact partners is considered by using the composite elastic
modulus E∗:

1

E∗ =
1− ν2

1

E1

+
1− ν2

2

E2

(5)

The variational approach states that both total elastic strain energy and total comple-
mentary potential energy have a minimum for the true solution of a mechanical problem.
In the halfspace model the principle of total complementary potential energy is preferred,
because of its simplicity for the contact problem. The total complementary potential
energy V ∗ is given by [11]:

V ∗ =
∫

Ω

U∗(σij)dΩ−
∫

Γ

tiūidΓ (6)

The integral of the internal complementary energy density U∗(σij) over the bulk volume
Ω equates the internal complementary energy U∗

E, which equals the internal energy UE for
linear elastic materials. The second term is the integral of the surface tractions ti times
the prescribed surface displacements ūi over the surface Γ. This term simplifies to the
surface integral over the surface pressure p times the surface normal displacement uz for
the case of pure normal loading.

V ∗ = UE −
∫

Γ

pūzdΓ (7)

The internal energy can be expressed as:

UE =
1

2

∫

Γ

puzdΓ (8)

This leads to the following expression for the total complementary potential energy:

V ∗ =
1

2

∫

Γ

puzdΓ−
∫

Γ

pūzdΓ (9)

The halfspace surface is discretised intoM rectangular segments. The surface deformation
due to several segments in contact is calculated by summation over the contact pressure
times the compliance C

(zz)
kl :

uzk =
M∑

l=1

C
(zz)
kl pl (10)

C
(zz)
kl =

1

2πG

∫ a

−a

∫ b

−b

1− ν

ρkl
dη dξ (11)

with
ρkl =

√

(xk − xl − ξ)2 + (yk − yl − η)2 (12)
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ρ =
√
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mentary potential energy have a minimum for the true solution of a mechanical problem.
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because of its simplicity for the contact problem. The total complementary potential
energy V ∗ is given by [11]:
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∫
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∫
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tiūidΓ (6)

The integral of the internal complementary energy density U∗(σij) over the bulk volume
Ω equates the internal complementary energy U∗

E, which equals the internal energy UE for
linear elastic materials. The second term is the integral of the surface tractions ti times
the prescribed surface displacements ūi over the surface Γ. This term simplifies to the
surface integral over the surface pressure p times the surface normal displacement uz for
the case of pure normal loading.

V ∗ = UE −
∫

Γ

pūzdΓ (7)

The internal energy can be expressed as:

UE =
1

2

∫

Γ

puzdΓ (8)

This leads to the following expression for the total complementary potential energy:

V ∗ =
1

2

∫

Γ

puzdΓ−
∫

Γ

pūzdΓ (9)

The halfspace surface is discretised intoM rectangular segments. The surface deformation
due to several segments in contact is calculated by summation over the contact pressure
times the compliance C

(zz)
kl :

uzk =
M∑

l=1

C
(zz)
kl pl (10)

C
(zz)
kl =

1

2πG

∫ a

−a

∫ b

−b

1− ν

ρkl
dη dξ (11)

with
ρkl =

√

(xk − xl − ξ)2 + (yk − yl − η)2 (12)
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Using this discretisation the total complementary potential energy can be expressed as:

V ∗ =
1

2

M∑

k=1

pk

(
M∑

l=1

C
(zz)
kl pl

)

−
M∑

k=1

pkūz (13)

The derivative of this functional is set to zero in order find its minimum:

M∑

l=1

C
(zz)
kl pl − ūz = 0 =⇒ C(zz)p = uz (14)

To solve the contact problem the system of equations compliance matrix C(zz) times
pressure field p equals the surface displacement field uz is solved by the Gauss-Seidel
method. The resulting pressure field has to be free from negative entries. This is enforced
by applying the following condition:

pl ≥ 0 ∀ l ∈ 1, ... ,M (15)

3 ELASTIC-PLASTIC HALFSPACE MODEL

Elastic contact

Elastic stresses
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Residual stresses
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Elastic contact

Plasticity loop

Residual surface displacement
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Next loadstep

Relaxation
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Figure 2: Plasticity loop (a) and contact loop (b)

The elastic-plastic halfspace model was first introduced by Jacq [6] and starts with a
elastic contact simulation. The bulk underneath the contact is discretised into cuboids.
The stresses within the cuboids due to pressure on surface segments are calculated via
influence functions. If the equivalent stress in a cuboid exceeds the yield strength of
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the material plastic strains are calculated based on von Mises plasticity. These plastic
strains lead to residual stresses within the bulk, which are as well calculated by means of
influence functions. The residual stresses and the elastic stresses are superpositioned and
the calculation of plastic strains is repeated with the superpositioned stresses. If there is no
convergence in plastic strains the plasticity loop is reentered at the calculation of residual
stresses with relaxed plastic strains. Plastic strains in the bulk cause a deformation of
the surface which changes the geometry and pressure distribution of the contact. When
the plasticity loop, which is the inner loop, has converged the surface shape is updated
with the residual surface displacements. In the contact loop, which is the outer loop, the
final surface shape and contact distribution are found iteratively.

3.1 Elastic stresses

The elastic strains in the bulk due to a surface segment under uniform normal pressure
can be expressed by derivatives of the Boussinesq potential functions [7]. The stress
components due to the surface load are obtained by inserting derivatives of the strains
into Hooke’s law.
Boussinesq potential functions:

H1 =

∫

Γ

∫

p [z log (ρ+ z)− ρ] dξ dη (16)

H =
∂H1

∂z
=

∫

Γ

∫

p log (ρ+ z) dξ dη (17)

ρ =
√

(ξ − x)2 + (η − y)2 + z2 (18)

Displacements:

ux =
1

4πG

{

(2ν − 1)
∂H

∂x
− z

∂2H

∂x∂z

}

(19)

uy =
1

4πG

{

(2ν − 1)
∂H

∂y
− z

∂2H

∂y∂z

}

(20)

uz =
1

4πG

{

2 (1− ν)
∂H

∂z
− z

∂2H

∂z2

}

(21)

Stresses (Hooke’s law):

σxx =
2νG

1− 2ν

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)

+ 2G
∂ux

∂x
(22)

Finally the stresses in the bulk can be expressed as combinations of derivatives of the
Boussinesq potential functions:

σxx =
1

2π

{

2ν
∂2H

∂z2
− z

∂3H

∂x2∂z
+ (2ν − 1)

∂2H

∂x2

}

(23)
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the material plastic strains are calculated based on von Mises plasticity. These plastic
strains lead to residual stresses within the bulk, which are as well calculated by means of
influence functions. The residual stresses and the elastic stresses are superpositioned and
the calculation of plastic strains is repeated with the superpositioned stresses. If there is no
convergence in plastic strains the plasticity loop is reentered at the calculation of residual
stresses with relaxed plastic strains. Plastic strains in the bulk cause a deformation of
the surface which changes the geometry and pressure distribution of the contact. When
the plasticity loop, which is the inner loop, has converged the surface shape is updated
with the residual surface displacements. In the contact loop, which is the outer loop, the
final surface shape and contact distribution are found iteratively.

3.1 Elastic stresses

The elastic strains in the bulk due to a surface segment under uniform normal pressure
can be expressed by derivatives of the Boussinesq potential functions [7]. The stress
components due to the surface load are obtained by inserting derivatives of the strains
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4πG

{

(2ν − 1)
∂H

∂y
− z

∂2H

∂y∂z

}

(20)

uz =
1

4πG

{

2 (1− ν)
∂H

∂z
− z

∂2H

∂z2

}

(21)

Stresses (Hooke’s law):

σxx =
2νG

1− 2ν

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)

+ 2G
∂ux

∂x
(22)

Finally the stresses in the bulk can be expressed as combinations of derivatives of the
Boussinesq potential functions:

σxx =
1

2π

{

2ν
∂2H

∂z2
− z

∂3H

∂x2∂z
+ (2ν − 1)

∂2H

∂x2

}

(23)
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σyy =
1

2π

{

2ν
∂2H

∂z2
− z

∂3H

∂y2∂z
+ (2ν − 1)

∂2H

∂y2

}

(24)

σzz =
1

2π

{

2ν
∂2H

∂z2
− z

∂3H

∂z3

}

(25)

τxy = − 1

2π

{

(1− 2ν)
∂2H

∂x∂y
+ z

∂3H

∂x∂y∂z

}

(26)

τyz = − 1

2π
z
∂3H

∂y∂z2
(27)

τzx = − 1

2π
z
∂3H

∂x∂z2
(28)

3.2 Plasticity algorithm

The plastic deformation is calculated using a return mapping algorithm with an elastic
predictor step and a plastic corrector step. The utilised method was developed by Fotiu
and Nemat-Nasser [5] and is described nicely by Nélias [10]. The plastic deformation rate
is given by

ϵ̇p = γ̇ µ (29)

with the normalised tensor µ giving the direction of plastic strain and the effective plastic
strain rate γ̇

µ =
3 σ′

2 σvm

(30)

µ : µ =
3

2
(31)

The von Mises equivalent stress is defined as

σvm =

√

3

2
σ′ : σ′ (32)

and σ′ is the deviatoric part of the stress tensor. The equivalent total strain rate is
similarly defined by

ė =

√

2

3
ė′ : ė′ (33)

Using (33) the deviatoric part of the total strain rate can be expressed as

ϵ̇′ = ė η (34)

η : η =
3

2
(35)
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With the yield stress σy the yield function f can be given by

f = σvm − σy(γ) (36)

The Kuhn-Tucker conditions, which have to be fulfilled at all times, are defined as

f ≤ 0, γ̇ ≥ 0, f γ̇ = 0 (37)

Under the assumption of isotropic behaviour in the elastic regime the following condition
applies

σ′ = 2G (ϵ′ − ϵp) (38)

G is the shear modulus of the material. If µ and η are considered to be collinear it can
be shown that

σ̇vm = σ̇′ : µ = 3Gϵ̇− 3Gγ̇ (39)

It follows directly
∆σvm = 3Gϵ̇∆t− 3G∆γ (40)

The computation of plastic strains starts with the calculation of the elastic predictor, the
equivalent stress and the direction tensor µ of the deviatoric stress σ′. Then the yield
function f is calculated

f (n) = σ(n)
vm − σ(n)

y (41)

The Newton’s method is performed in order to execute the return mapping to the yield
surface. Therefore f is linearised along the plastic corrector direction.

f
(n)
L = f (n) + f (n)

,σvm
·∆σ(n)

vm + f (n)
,γ ·∆γ(n) = 0 (42)

f (n)
,σvm

= 0 f (n)
,γ = −σ(n)

y,γ (43)

Using the plastic corrector increment

∆σ(n)
vm = −3G ·∆γ(n) (44)

we can calculate the effective plastic strain increment

∆γ(n) =
f (n)

3G+ σ
(n)
y,γ

(45)

Then the stresses and effective strain are updated and the yield stress is recalculated

σ(n+1)
vm = σ(n)

vm − 3G ·∆γ(n) (46)

γ(n+1) = γ(n) +∆γ(n) (47)

σ(n+1)
y = σy(γ

(n+1)) (48)

The yield function is checked in order to ensure convergence

|f (n+1)| = |σ(n+1)
vm − σ(n+1)

y | < tol (49)

If if the convergence test fails the Newton-iteration is repeated, otherwise the plastic
strains are calculated

∆ϵp = ∆γ · µ (50)

7
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3.3 Residual stresses and surface displacement

Plastically strained cuboids in the halfspace lead to residual stresses. Chiu [3] solved
the problem of stresses due to uniform strains in cuboids in infinite space. The solution
for a halfspace is obtained by superposition of the stresses due to a cuboid in infinite
space, a mirror cuboid in infinite space and the elastic stresses due to a surface load [4].
The position of the cuboid relative to the halfspace surface corresponds to the position of
the strained cuboid. The mirror cuboid is situated at the mirror position to the halfspace
surface. Its strains in xz- and yz-direction are inverted. This superposition leaves the
halfspace surface free from shear stresses in the mentioned directions, which is a necessary
condition of a free surface. However there remains a normal stress on the surface. This
normal stress is removed by subtracting the elastic stresses due to this fictitious normal
pressure from the total stress field. Benchmarks for the influence functions for residual
stresses are found in Chiu’s papers and in [13].

x

y

ξ

x

x

x

y

y

y

z

z

ξ
m

= +

Figure 3: Superposition of stresses

Influence functions for the residual surface displacement can be found in [6] and [9].

4 RESULTS

4.1 Hertzian contact

Figure 4a shows the pressure distribution underneath the Hertzian contact of a rigid
ball of radius 40mm with an deformable plane. The analytical solution and the result of
the elastic halfspace simulation are in good agreement. The elastic-plastic result exhibits
a much smaller maximum contact pressure value and a larger contact radius due to the
plastic surface deformation. Figure 4b shows the radial distribution of the residual surface
deformation in the elastic-plastic simulation. There is a large indent at the centre of
contact. Due to plastic flow material builds up at the border of contact. The yield stress
in the plastic simulation is defined by the following relation: The material in the elastic-
plastic simulation has a Young’s modulus of 205 000MPa and Poisson’s number of 0.34.

8
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The yield stress depends on the equivalent plastic strain γ and is defined as:

σy = 200MPa+ 1550MPa · γ (51)
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Figure 4: Pressure distribution (a) and residual surface displacement (b)

4.2 Contact of rough surfaces

An example of a simulation of a real rough surface is presented here. Figure 5a shows
the rough surface before contact, whereas figure 5b shows the same surface after plastic
deformation due to contact loads. It can be seen that the highest surface peaks are reduced
in height and the surface shape is less rough after contact. Figure 6 shows the dependency
between the average normal pressure and the real contact area. For low contact pressures
there is no plastic deformation of the surface. Above approximately 100MPa plastic
surface deformation occurs and the real contact area in the elastic-plastic simulation is
higher than in the purely elastic calculation. The difference in Areal increases with the
contact pressure. The same material parameters as in the elastic-plastic simulation of the
Hertzian contact were used.

5 CONCLUSIONS

An elastic-plastic contact algorithm for the simulation of rough surfaces based on the
ideas of Jacq [6] was set up and tested with an analytical example and a simulation of
a rough surface. The present model has to be validated with a comparison to Finite-
Element-Method simulations. Then results of the real contact area for different surfaces
and pressures will be compared to the results of the simple non volume conservative
plasticity algorithm. The final aim of this research work is the simulation of friction in
metal forming. Metal forming is always done with lubrication, so that the modelling of
lubricant effects is necessary. The total contact area can be classified into the real contact

9
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Figure 5: Rough surface before (a) and after contact (b)
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Figure 6: Load-area curve in elastic-plastic and purely elastic contact

area, open lubricant pockets and closed lubricant pockets. A fist approach towards this
challenge will be the modelling of hydrostatic pressure in closed lubricant pockets.
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Abstract. The algorithm for numerical realization of boundary conditions of contact
interaction of deformable bodies taking into account a friction is worked out. Contact
conditions are formulated in the form of quasivariational inequality with one-sided con-
straint. This constraint corresponds to the condition of nonpenetration of deformable
bodies into each other. Dynamic interaction of elastic-plastic materials with beforehand
unknown, time-dependent zone of contact is described by the model taking into account
small strains and finite rotations. This model consists of the system of equations of mo-
tion, the Hooke law for elastic constituents of the strain tensor, the equation for the
rotation angle and the principle of maximum of the energy dissipation rate describing
the process of plastic flow. The transition of material from elastic state to plastic one is
determined by the Mises yield condition. Parallel shock-capturing algorithm is proposed
for implementation of the model on multiprocessor computer systems. It is based on a
combination of splitting methods with respect to physical processes and spatial variables.
The results of computations of an oblique impact of two deformable plates are represented.

1 INTRODUCTION

Dynamic contact problems of the theory of elasticity and plasticity with beforehand
unknown, time-dependent zone of contact have a wide field of applications connected
with the analysis of processes of impact and punching of obstacles, mechanical proces-
sing of materials, etc. As a rule, explicit in time procedures of the contact boundaries
computation are applied for numerical solution of such problems. But the use of these
procedures results either in intersection of deformable bodies or in violation of discrete
dynamic conditions in a contact zone. One of possible approaches to the modeling of
dynamic contact interaction is based on the formulation of boundary conditions of contact
in the form of variational and quasivariational inequalities [1, 2]. Such approach makes
possible to construct implicit iterative procedures, ensuring the fulfilment of geometric
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constraints in a contact zone, condition of non-negativity of normal contact pressure, and
condition of opposite directivity of the vectors of tangential velocity and tangential stress
at sliding.

2 BOUNDARY CONDITIONS OF CONTACT INTERACTION

2.1 Variational formulation of contact conditions

Let S+
c and S−

c be the parts of boundaries of two deformable bodies in the Lagrange
variables which include the whole contact zones

S±
t =

{

x± ∈ S±
c | x+ + u+(t, x+) = x− + u−(t, x−)

}

at each fixed instant t. Here u is the displacement vector, the superscripts ± denote quan-
tities related to different bodies. Under S+

c and S−
c are assumed such parts of boundaries

of interacting bodies in an initial undeformed state, material points of which are in con-
tact or are free of stresses at each following instant of time, whereas on the remaining
part of boundary the conditions of a rather general form are fulfilled but the contact is
impossible. In Fig. 1 the position of the boundaries of bodies at the initial instant of time
is shown by dashed lines and that of at the instant t −∆t is shown by solid lines (∆t is
a small time interval). An approximate constraint on velocities v± of the points x+ ∈ S+

c

and x− ∈ S−
c can be written in the following way:

(ṽ− − ṽ+) n̂ ≤ 1

∆t

�
�
�x+ + u+

| t−∆t − x− − u−
| t−∆t

�
�
�. (1)

This constraint is a condition of nonpenetration of deformable bodies into each other. The
boundary points involved in (1) are assumed to be related by a one-to-one correspondence
that depends on time as on a parameter. With this correspondence, the point x+ of the

Figure 1: Constraint in a contact zone of two deformable bodies
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contact zone S+
t is related to the point x− of S−

t , determined by equality of positions at
an actual instant of time:

x+ + u+(t, x+) = x− + u−(t, x−).

In the noncontact domains S±
c \S±

t the correspondence may be arbitrary. The unit vector
n̂, indicating a local direction of convergence of bodies, is given by

n̂ =







n− = −n+, if x± ∈ S±
t−∆t ,

x+ + u+
| t−∆t − x− − u−

| t−∆t
�
�
� x+ + u+

| t−∆t − x− − u−
| t−∆t

�
�
�

, if x± /∈ S±
t−∆t .

The right-hand side of (1), which is proportional to the distance between points at the
instant t−∆t, has the sense of maximal possible velocity of convergence. When solving
contact problems, the choice of a one-to-one correspondence for the approximate con-
straint (1) is one of the stages of constructing a computational algorithm.

The exact constraint on the velocity vectors is obtained from (1) by going to the limit
with respect to ∆t as ∆t → 0:

ṽ−n− + ṽ+n+ ≤
{

0, if x± ∈ S±
t ,

+∞, if x± /∈ S±
t .

(2)

Boundary conditions of contact interaction in the presence of a friction can be formu-
lated as follows [2]:

(ṽ− − v−) σ−
n + (ṽ+ − v+) σ+

n + F

(
σ+
nn̂ − σ−

nn̂

2

)(�
�
�ṽ+τ̂ − ṽ−τ̂

�
�
�−

�
�
�v+τ̂ − v−τ̂

�
�
�

)

≥ 0. (3)

Here σ±
n (t, x

±) is the stress vector acting on an area element of a deformed surface with

the normal n±, F (σnn) = min
{

f |σnn|, τ+s , τ−s
}

is a function that determines the limit

tangential stress of sliding friction, f is the friction coefficient, τ±s are the yield points
of materials, the vectors τ̂ and n̂ are orthogonal to each other. The arbitrary variable
vectors ṽ± as well as the vectors v± of actual velocities satisfy the constraint (1) at the
contact zones S±

c . The inequality (3) is quasivariational, since the constraints (1), (2)
depend on an unknown solution u±. It can be interpreted as the minimum principle for
power of normal stress in a contact zone. Equivalence between the inequality (3) and a
generalized friction law is established in [3].

3
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2.2 Velocities correction algorithm

Conditions of contact of deformable bodies can be represented in a form, convenient
for numerical realization:

(w̃ − w)A(w − w̄) + F
(

b(w − w̄)
)(

ω(w̃)− ω(w)
)

≥ 0. (4)

The approximate constraint (1) for velocities is reduced to the general form:

w̃ n ≤ h, w n ≤ h. (5)

Here the vector w consists of components of the velocity vectors v+ and v−, w̃ is an
arbitrary admissible variation of w, A is a positive-definite square matrix which relates
velocities and stresses, w̄ is the velocity vector corresponding to setting the conditions
of a free surface in a contact zone, n is the vector consisting of components of outward
normals to contacting surfaces, b = nA. In (4) ω(w) denotes the modulus of the difference
between the tangential components of velocities. This function can be represented in

the form ω(w) = max
l̃∈L

{

w l̃
}

= w l, where the bounded closed convex set L consists

of vectors which are orthogonal to a normal vector and whose length does not exceed

unity: L =
{

l̃ | l̃ ⊥ n, | l̃ | ≤ 1
}

. The vectors w and w̃, involved in the inequality (4),

satisfy the one-sided constraint (5): they belong to the convex and closed set of admissible

variations K =
{

w̃ | w̃ n ≤ h
}

. The scalar quantity h is defined by the distance between

corresponding points of contacting surfaces at an actual instant of time.
For numerical solution of the variational inequality (4) in boundary meshes of the

finite-difference grid the velocities correction algorithm is proposed [3]. The idea of this
algorithm is that in such boundary meshes of a grid, where contact is possible, a convergent
iterative process is constructed, on each step of which the projections of velocity vectors
and auxiliary vectors, determining the sliding direction, onto convex and closed sets of a
special form are successively calculated. If the friction forces are not taken into account
under the realization of contact conditions, then the iterations are not required.

Specifying the vector w = ŵ in the inequality (4), we fix the value of the function F :

F̂ = F
(

b(ŵ − w̄)
)

≥ 0. We obtain the more simple inequality

(w̃ − w)A(w − w̄) + F̂
(

ω(w̃)− ω(w)
)

≥ 0. (6)

The matrix A is positive-definite, the function ω(w) and the set K are convex, hence,
this inequality has a unique solution. So, one can construct a mapping Q : ŵ �→ F̂ �→ w,
such that the solution of (4) is its fixed point: w = Q(w). The fact that the mapping Q
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is contractive for a sufficiently small friction coefficient f < a/ |b| (a = min
|w|=1

{
wAw

})
is

proved in [3]. Thus, the solution of (4) can be determined by the method of successive
approximations, where at each step it is necessary to solve the inequality (6) with the
coefficient F̂ calculated from the previous approximation. To construct the solution of (6),
let us consider the following auxiliary inequality:

(w̃ − w)
(

A(w − w̄) + F̂ l
)

≥ 0. (7)

For given vector l ∈ L there exists a unique solution w ∈ K. A mapping R : l �→ w �→
�→ PL(l + αw) = l̃ (α > 0 is a constant, PL is a projector onto the set L with respect to
the Euclidean norm) is continuous, the set L is convex and compact. Hence, the Brouwer
theorem is valid, according to which R has a fixed point l ∈ L. The inequality (7) has a
solution which satisfies the condition l = PL(l + αw). One can show that this solution
satisfies (6) independently of α.

When constructing a solution of (6), an algorithm of the Uzawa type is applied. At
the m-th step of this algorithm the vector wm is determined as a projection of the vector
w̄m = w̄ − F̂ A−1lm onto the set K: wm = PK(w̄

m). In an explicit form

wm =

{
w̄m, if w̄mn ≤ h,

w̄m +
h− w̄mn

nA−1n
A−1n, if w̄mn > h.

(8)

Then the vector l is recalculated by the formula lm+1 = PL(l̄
m) where l̄m = lm + αwm,

or in an explicit form

lm+1 =







l̄m − βmn, if |l̄m − βmn| ≤ 1,
l̄m − βmn

|l̄m − βmn| , if |l̄m − βmn| > 1,
βm =

l̄mn

|n|2 . (9)

An initial approximation l0 is arbitrary. It is proved that the sequence of vectors wm

converges to the vector w as m → ∞ provided that α < 2 a/F̂ .
It should be noticed that recurrent calculation of iterations in the described algorithm

is performed on the basis of the contractive mapping Q and two nonexpanding operators
PK and PL. Such algorithm is stable with respect to round-off errors, i.e. going to the next
iteration step does not lead to increasing of computational errors. When implementing
this algorithm, it is sufficient to restrict oneself to the construction of the so-called diagonal
sequence, calculating at the m-th step of the method of successive approximations only
m iteration steps of the Uzawa algorithm.
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3 DYNAMIC DEFORMATION OF ELASTIC-PLASTIC BODIES

3.1 Mathematical model

To describe the process of dynamic deformation of elastic-plastic bodies, let us con-
sider geometrically nonlinear mathematical model taking into account finite rotations of
elements at small strains [4]. This model is based on the decomposition of the deforma-
tion gradients tensor into a product of orthogonal tensor of finite rotation and symmetric
strain tensor, which is identified with unit tensor. Under such assumptions in 2D case
the model can be represented in the form of the system of equations of motion

ρ v̇i = τij, j + ρ gi, (10)

the constitutive relationships of elastic-plastic deformation in the form of the principle of
maximum of the energy dissipation rate

(σ̃ij − σij)(σ̇ij − λ e δij − 2µ eij) ≥ 0 (11)

and the equation for the rotation angle

φ̇ =
1

2

(

(v2, 1 − v1, 2) cosφ− (v1, 1 + v2, 2) sinφ
)

. (12)

Here ρ is the density of a material, vi are the components of velocity vector, τij and σij are
the components of nonsymmetric and symmetric stress tensors, gi are the components of
vector of mass forces, λ and µ are the Lame parameters, e = e11+e22+e33 is the velocity of
volume deformation, δij is the Kronecker delta, i, j = 1, 2. Dot over a symbol denotes the
time derivative, subscripts after comma denote partial derivatives with respect to spatial
variables, summation over repeated indices takes place. Components of the strain rate
tensor have the form

e11 = v1,1 cosφ+ v2,1 sinφ, e22 = v2,2 cosφ− v1,2 sinφ, e33 = 0,

e12 = e21 =
1

2

(

(v2,1 + v1,2) cosφ− (v1,1 − v2,2) sinφ
)

.
(13)

The nonsymmetric stress tensor τ and the symmetric stress tensor σ are connected as
follows





τ11 τ12 0
τ21 τ22 0
0 0 τ33



 = R





σ11 σ12 0
σ12 σ22 0
0 0 σ33



 , R =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 . (14)
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The variational inequality (11) is fulfilled for all possible variations of the stress tensor σ̃
satisfying, as well as the tensor σ of actual stresses, the Mises yield condition

fs(σij) ≤ τs, (15)

where fs(σij) =
√

σ′
ijσ

′
ij / 2 is the convex symmetric yield function dependent on the

deviator components σ′
ij of stress tensor.

The system of basic equations and inequalities (10)–(14) can be represented in a uni-
form vector form [3]:

(�U − U)

(

A U̇ −
n∑

i=1

Bi U,i −G

)

≥ 0, U, �U ∈ W. (16)

Here U(t, x) is the m-dimensional vector–function composed of nonzero components of
the velocity vector v, the nonsymmetric stress tensor τ and the rotation angle φ. The
symmetric (m×m)-dimensional matrix–coefficients A and Bi, included in the variational
inequality, contain the parameters of elasticity of a material, the vector G is nonzero when
the mass forces are taken into account, �U is a varied vector, n is the spatial dimension of
the problem, W is the convex and closed set determined by the criterion of plasticity (15).

In the 2D case, being under consideration, U =
(

v1, v2, τ11, τ22, τ33, τ12, τ21, φ
)

. In the

3D case U =
(

v1, v2, v3, τ11, τ22, τ33, τ23, τ32, τ31, τ13, τ12, τ21, φ
)

.

3.2 Shock-capturing algorithm

The algorithm used for the numerical implementation of (16) is explicit in time and is
constructed as follows (see [3]). First, the problem of deformation of an elastic material
is solved at each time step. Next, the obtained solution is corrected to take into account
plastic properties of a material. The initial data U(0, x) = U0(x) are specified at t = 0.
The boundary conditions can be given in the terms of velocities as well as in stresses.

For the solution of elastic problem the two-cyclic splitting method with respect to the
spatial variables is used [5]. In the 2D case this method on the time interval (t, t + ∆t)
consists of 4 stages: the solution of a one-dimensional problem in the x1-direction on
(t, t +∆t/2), the similar stage in the x2-direction, repeated recalculation of the problem
in the x2-direction on (t + ∆t/2, t + ∆t), and repeated recalculation in the x1-direction.
The x3-direction is added and the splitting method includes 6 stages in the 3D case.
This structure of the splitting method ensures the stability of numerical solution in the
multi-dimensional case under implementation of the one-dimensional Courant condition.
One-dimensional systems of equations of the form

A U̇k = Bi Uk
,i +Gi (17)
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(k = 1, 2n is the number of the splitting stage, i = 1, n is the direction of splitting) in spa-
tial directions are solved by means of the explicit monotone difference ENO scheme of
the “predictor–corrector” type. Piecewise-linear splines, discontinuous at the boundaries
of meshes, are constructed by means of a special procedure of limit reconstruction, which
enables one to improve an accuracy of a numerical solution.

Plasticity of materials is taken into account by the splitting method with respect to
physical processes. Variational inequality (16) is solved at each mesh of a spatial grid with
using special algorithms for the correction of stresses [4]. After approximation of (16) we
obtain the inequality

(
�U − U

)
A
(
U − Ū

) ≥ 0, (18)

where U, �U ∈ W, and Ū is such that A ˙̄U =
n∑

i=1

Bi U,i + G. In terms of stresses the

correction procedure can be reduced to the form

σij =
2

1 + η
σ∗
ij −

1− η

1 + η
σ̄ij, σ∗

ij =







σ̄ij, if fs ≤ τs,

σ̄′
ij

τs
fs

+ σ δij, if fs > τs.
(19)

For η = 0 it is non-dissipative correction of the second order of accuracy, and for η = 1 this
procedure coincides with the well-known Wilkins procedure of the correction of stresses.

3.3 Parallel program system

Described computational algorithm is implemented as a parallel program system for
the solution of problems of the dynamics of elastic-plastic media on multiprocessor com-
puters [3]. This program system consists of a preprocessor program, a main program for
computation of velocities and stresses, subroutines for realization of boundary conditions,
including the conditions of contact interaction with friction, and a postprocessor program.
The programming was carried out in Fortran using the MPI (Message Passing Interface)
library and the SPMD (Single Program – Multiple Data) technology. The universality of
programs is achieved by a special packing of the variables used at each of computational
nodes of a cluster into large one-dimensional arrays. Computational domain is distributed
between the cluster nodes by means of 1D, 2D or 3D decomposition so as to load the nodes
uniformly and to minimize the number of passing data.

The parallelization is performed at the stage of splitting the problem with respect
to the spatial variables. Under the solution of one-dimensional systems of equations,
the data exchange between processors occurs at step “predictor” of the finite-difference
scheme with the help of shadow edges. At first each processor exchanges with neighboring
processors the boundary values of their data by means of the MPI Sendrecv function, and

8



995

Oxana V. Sadovskaya

(k = 1, 2n is the number of the splitting stage, i = 1, n is the direction of splitting) in spa-
tial directions are solved by means of the explicit monotone difference ENO scheme of
the “predictor–corrector” type. Piecewise-linear splines, discontinuous at the boundaries
of meshes, are constructed by means of a special procedure of limit reconstruction, which
enables one to improve an accuracy of a numerical solution.

Plasticity of materials is taken into account by the splitting method with respect to
physical processes. Variational inequality (16) is solved at each mesh of a spatial grid with
using special algorithms for the correction of stresses [4]. After approximation of (16) we
obtain the inequality

(
�U − U

)
A
(
U − Ū
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then calculates the required quantities in accordance with the difference scheme. Under
numerical realization of contact conditions, the correspondence between boundary meshes
of independent grids of interacting bodies is established and variational inequality (4) is
solved on a grid refinement, common for two contacting surfaces. Computation of the
whole contact boundary is produced by a separate processor, other processors send to
him data about their part of boundary and then they receive the final result.

For the organization of the control points, each processor generates binary files of
direct access, the total size of the files on the same time step can considerably exceed the
size of RAM of a single processor. The procedure of compressing of files, containing the
results of computations, is worked out, since the file size can be very large and for their
transportation along network the significant resources are required. Graphical output of
results is carried out with the help of special programs for usual personal computer.

4 OBLIQUE IMPACT OF PLATES

Numerical computations for the problem of an oblique impact of two deformable plates
were performed on a cluster. The problem of an oblique impact has great importance in
connection with an analysis of the process of explosion welding of metals. As a rule, this
process is accompanied by generation of the periodic strain waves at the contact boundary
of plates [6]. On the basis of computations the interconnection of wave formation in
explosion welding and mechanical loss of stability of the surface layer in the neighbourhood
of the contact point was established.

4.1 Problem statement

Let us consider an oblique impact of plates, situated at some angle γ to each other
(Fig. 2). One of plates is stationary and fixed from below, another plate falls on it with
a constant velocity V = (V1, V2). The lower boundary of the projectile plate and the
upper boundary of the fixed one are zones of possible contact, the remaining parts of the
boundaries are free of stresses. Lengths of both plates are equal to h1, thicknesses of the

Figure 2: Problem statement Figure 3: Distribution of computational load
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projectile plate and the fixed plate are h+
2 and h−

2 , respectively. The problem is conside-
red in a two-dimensional formulation. An example of the distribution of computational
domain between 23 processors is shown in Fig. 3.

4.2 Results of two-dimensional computations

In Fig. 4 one can see numerical results obtained by means of described computational
technique for the problem of an oblique impact of elastic-plastic plates. The collision
angle γ and the velocity Vc of a contact point are varied (Vc = V1−V2 ctg γ). Computations
were performed on 25 processors for steel plates of the length h1 = 10 cm and of the
thicknesses h+

2 = 0.5 cm and h−
2 = 2 cm. Finite-difference grids consist of 2000× 100 and

2000× 400 meshes for upper and lower plates, respectively.
The analysis of results shows, in particular, that the configuration of the plastic zone

depends essentially on the velocity Vc of a contact point: if this velocity exceeds the
velocity of the plastic shock waves cf , then this zone lies behind of a contact point (Fig. 4a),
otherwise the plastic zone is running ahead in relation to a contact point (Fig. 4b). In
the case of Vc < cf the elastic-plastic loss of stability of a surface layer may take place,
realizing as a hill of positive strain, which leads to the wave formation under an oblique
impact.

Figure 4: Configurations of plastic zones (a, b), level curves of the intensity of tangential stresses (c, d)

a), c) γ = 30, Vc = 4km/s, b), d) γ = 70, Vc = 2km/s

Figs. 5 – 7 illustrate the loss of stability under an oblique impact of two elastic plates.
Velocity of a contact point and thicknesses of plates are varied. Plates are the same length
h1 = 10 cm, the collision angle γ = 130 everywhere. Material of both plates is steel. The
upper plate is 3 times thinner than the lower plate in Figs. 5a, 6a, and 7b; both plates
are thick (with the same thickness h±

2 = 3mm) in Figs. 5b, 6b, and 7c; both plates are
thin (with the same thickness h±

2 = 1mm) in Fig. 7a.
If the velocity Vc of a contact point is less than the velocity cR of the Rayleigh waves,

then the loss of stability of the upper plate ahead of a contact point takes place (Fig. 5).
If Vc > cR, then the lower plate loses its stability behind of a point of contact (Fig. 6).
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Figure 5: Level curves of the stress τ22 (γ = 130, Vc = 1km/s)

a) thicknesses of plates h+
2 = 1mm, h−

2 = 3mm, b) plates of uniform thickness h+
2 = h−

2 = 3mm

Region of the loss of stability increases with time. Characteristic wavelengths and their
amplitude depend on the thicknesses of upper and lower plates, respectively. In both
cases, the adhesion of plates behind of a contact point is not taken into account. The
projectile plate moves from right to left, with time the right edge of this plate is reflected
from a contact surface and flies up. In the case of Vc < cR, the number of waves decreases
and the amplitude of waves increases with increasing the thickness of the upper plate,
besides the number of waves decreases with decreasing the velocity Vc. In the case of
Vc > cR, conversely, the number of waves decreases with increasing the velocity Vc.

In computations, the results of which are represented in Fig. 7, the contact surfaces
of plates are pasted together behind a point of contact. One can see that in this case
(Vc > cR) the number of waves decreases with increasing the thickness of the lower plate
and the amplitude of waves increases with increasing the thickness of the upper plate.

The results, presented in Figs. 5a, 6a, 7a, and 7b, were obtained on 20 processors,
and the results, presented in Figs. 5b, 6b, and 7c, were obtained on 30 processors. The
dimensions of grids in the plates are 5000 × 50 or 5000 × 150 meshes, depending on the
thickness of the plate.

Figure 6: Level curves of the stress τ22 (γ = 130, Vc = 3km/s)

a) thicknesses of plates h+
2 = 1mm, h−

2 = 3mm, b) plates of uniform thickness h+
2 = h−

2 = 3mm
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Figure 7: Level curves of the stress τ22 (γ = 130, Vc = 3km/s, pasting together of plates)

a) h+
2 = h−

2 = 1mm, b) h+
2 = 1mm, h−

2 = 3mm, c) h+
2 = h−

2 = 3mm

The computations were performed on the clusters MVS–1000/96 of the Institute of
Computational Modeling of SB RAS (Krasnoyarsk) and MVS–100k of the Joint Super-
computer Center of RAS (Moscow).
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(1972).

[2] Kravchuk, A.S. Variational and quasivariational inequalities in mechanics. MGAPI,
Moscow (1997).

[3] Sadovskaya, O.V. and Sadovskii, V.M. Mathematical modeling in the problems of
mechanics of granular materials. Fizmatlit, Moscow (2008).

[4] Sadovskii, V.M. Discontinuous solutions in dynamic elastic-plastic problems. Fizmat-
lit, Moscow (1997).

[5] Kulikovskii, A.G., Pogorelov, N.V. and Semenov, A.Yu. Mathematical aspects of the
numerical solution of hyperbolic systems of equations. Fizmatlit, Moscow (2001).

[6] Wave formation in oblique impacts: Col. of articles. Ed. by Yakovlev, I.V. et al.
Publishing house of the Institute of Discrete Mathematics and Informatics SB RAS,
Novosibirsk (2000).

12



999

Oxana V. Sadovskaya

Figure 7: Level curves of the stress τ22 (γ = 130, Vc = 3km/s, pasting together of plates)
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Abstract. In the micro-machine or precision machine, particles are often presented at contact 
interfaces. And these particles will affect the variation of plastic deformation of asperities and 
the contact temperature between the contact surfaces. In this paper, we used three-body 
microcontact model and contact temperature theory to evaluate elastic contact area, plastic 
contact area, elastic-plastically deformed contact area and contact temperature under the 
different particle sizes, velocities and applied loads conditions. The friction force is one of the 
main heat resources of contact temperature. Because friction coefficient is variable parameter 
in this work, the contact temperature rise between the contact surfaces is larger than that of 
assuming the constant friction coefficient conditions of CrMo steel for the different loads. The 
contact temperatures of particles and asperity increase when the velocity and applied load 
increase. The increases of particle size will give rise to the increase of particle temperature 
and decrease of asperity temperature on rough surface. The plastic deformed contact area 
increases when the particle size and particle density increase.  
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1 INTRODUCTION 
When the precision machine or the micro machine operate and the two surfaces make 

contact, will cause the asperity and particles has the elastic, elasto-plastic, or plastic contact 
deformation between surface roughness. The practical contact area is the sum of the areas of 
the contact surface summits and only a small part of the vision area [1, 2]. The most widely 
used stochastic model to predict the real contact area is that proposed by Greenwood and 
Williamson (GWmodel) [3]. The experimental observations of Pullen and Williamson (PW 
model) [4] showed that, in the plastic deformation state, volume is conserved by a rise in the 
non-contacting surface under extremely high loading. Chang et al. [5] proposed an elastic–
plastic microcontact model (CEB model) to study the contact properties of rough surfaces. 
Research using this model has shown that the GW model of fully elastic surface 
microgeometry and the PW model of fully plastic surface microgeometry have two limiting 
cases of the general elastic–plastic contact. Horng [6] proposed a generalized elliptic elastic–
plastic microcontact model (H model) that takes into account the directional nature of surface 
roughness for elliptic contact spots between anisotropic rough surfaces. This model can be 
simplified to become the GW, PW, on CEB model. Kogut and Etsion [7] (KE model) 
presented elastic–plastic asperity models to modify the shortcomings of the transition from 
elastic deformation to fully plastic deformation in other models.  

When two bodies slide relative to each other, the friction heat is expened at a restuiced 
number of contact spots between two surfaces or surface and particle. The maximum local 
temperature generated at the contact spot, called the flash temperature, is higher than that at 
the surrounding area. The flash temperature is one of the  reasons causing fatigue, high wear 
and failure of material. It produced at rubbing contact are of shot duration (say 10-3s or less) 
and occur only over small dimensions (say10-4m or less). They are therefore difficult to 
measure and, in the interpretation of almost all experiments, recourse is generally made to 
estimating their magnitude using the theory originally formulated by Blok [8] and Jaeger [9]. 
Geeim and Winer [10] considered the transient temperature rise in the vicinity of a 
microcontact. Tian and Kennedy [11] used the green function method to obtain Peclet 
numbers of the approximation of flash temperatures. Compared to isolated contact, there are 
selective few contributions in the literature on flash temperature in multiple contact conditions. 
Ling [12] develops a method for studying two comparably rough surfaces and generating the 
statistics of their interaction. Results show that, with time, the interaction between contacts 
mitigates the effects of velocity somewhat. Knothe and Liebelt [13] studied contact 
temperature and temperature fields of components by Laplace transforms and the Green’s 
functions. The results show that different kind of topography causes different rise of the 
maximum contact temperature for wheel-rail system. Up to now, very few work discuss the 
contact temperature for three-body contact situations. This work study a more generalized 
three-body contact temperature model and discusses the effect of each operating parameter on 
contact temperatures. 

2 ANALYSIS 
2.1 Microcontact model 

In the contact model, we made the following assumptions: 1. All surface asperities are far 
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apart and there is no interaction between them. 2. There is no bulk deformation, only the 
surface asperities deform during contact. 3. The diameter of spherical particles is D and much 
harder than the upper and lower contact surfaces, which deform plastically during contact 
with particles. 4. Slopes of surface asperities are negligibly small. Figure 1 shows the 
geometry of the three contacting bodies : surface 1, surface 2, and the particles. Here, z and d 
denote the asperity height and separation of surfaces, respectively. 

 
Figure 1: Geometry of three contacting bodies 

According to the paper [2], the tree-body microcontact model becomes: 
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(2) 

where As1s2 is the real total contact area of the two-body microcontact models. The total 
contact areas At, and the total contact load Ft of the three bodies can be obtained from Eq. (1) 
and (2). 

2.2 Friction model 
Our friction analysis model is based on the analyses of Komvopoulos et al. [14] and 

Bhushan et al.[15-16]. The friction is expressed as the sum of four components: surface 
asperity deformation (μd), plowing deformation by particles entrapped between contact 
surface (μa), adhesive friction (μs), and ratchet friction (μr) at the contact region. The total 
friction force and friction components become: 

μ = μd + μa +μs + μr=Ar τa + As1s2-s1a τs1s2 + As1a τs1a+ As1s2-s1a τs1s2 × tan2θ (3) 

where Ar, As1s2-s1a, and As1a are the real areas of contact during adhesion, two surface 
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deformation, and particle-surface 1 deformation, respectively. They are calculated from Eq(1). 
τa, τs1s2, and τs1a, are the shear strengths during adhesion, two surface deformation, and 
particle-surface deformation [16],respectively. 

2.3 Flash temperature model 
Frictions were made when the surface 1, surface 2, and particles made contact, and the 

energy consumed was mostly converted to heat. This caused an increase in surface 
temperature, and heat generated was determined using the following equation, 

Q=FV (4) 

Where  is the friction coefficient, V is the relative speed, and F is the normal load. The 
heat conductance quantity of a unit area was used to express the magnitude heat conductance. 

VP
a
FV

A
Qq m




 2  (5) 

A is the practical contact area and a is the contact radius. 
The Peclet Number (Pe) is a nondimensional speed parameter used to evaluate the 

movement rate of contact heat. It is defined as： 

K
CVaVaPe 22
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Where a is contact heat,  is the rate of heat diffusion (=K/C), K is the heat 
conductance coefficient,  is the density, and C is the specific heat. Different Peclet Numbers 
exist at different velocities. Tian and Kennedy [8] proposed a model whose maximum 
temperature could be applied to all Peclet Numbers. The average temperature increase of its 
spherical contact heat as expressed as 
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When Fai=Fas1,max, the maximum temperature when the abrasive particles made contact 
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Therefore, the increase of relative velocity will result in the increase of contact 
temperature. and the average temperature between the abrasive particle and workpiece is 
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3 RESULTS AND DISCUSSION 

This paper study three-body contact temperature for the different particle sizes, particle 
densities and the relative velocities. The maximum contact temperature, average contact 
temperature and deformation area between particle and asperity were calculated. The material 
used in the analysis was CrMo steel. 
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Fig.2 (a) shows the maximum contact temperature Tas1,max, average contact temperature 
Tas1,ave, and total friction coefficient total versus applied loads. It is interesting to note that the 
maximum contact temperature and average contact temperature increased linearly with 
increasing applied loads. The maximum contact temperature was higher than the average 
contact temperature for the different loads. Fig.2 (b) shows the surface and particle friction 
coefficients versus applied loads for the different particle size when Ψ = 1.5, Rq = 100 nm, 
and v = 0.2 m/s. The total friction coefficient is the sum of surface friction coefficient and 
particle friction coefficient. When particle size is 500 nm, and the intersection pressure of the 
particle and the surface friction coefficient is about 2 MPa; but when the particle size 
decreases to 300nm and 100nm, the intersection pressure of the particle and the surface 
friction coefficient increase to 5 MPa and 50 MPa. The bigger the size of particle, the larger 
the total friction coefficient. Fig.2 (c) shows the elastic, elastic-plastic and plastic deformed  
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Figure 2: (a) Contact temperature and total friction coefficient varying with applied loads;(b) The surface and 
particle friction coefficients varying with applied loads when different particle size;(c) The dimensionless real 
contact area components varying with applied loads; (d) The maximum contact temperature components varying 
with applied loads 
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real contact area of particles. the real contact area increased with increasing applied loads. 
The plastic deformed real contact area is larger than the elastic and elastic-plastic deformed 
real contact area. Results indicate that the real deformation contact area of particle is mainly 
affected by the plastic deformation. Fig.2 (d) shows three kinds of maximum contact 
temperature of particles for the different deformed areas. The maximum contact temperature 
of plastic deforming controls the maximum contact temperature. The trend of the maximum 
contact temperature is the similar with the deformation area in Fig.2 (c). It indicates that the 
particle plastic deformation area has a significant effect on the maximum contact temperature 
between two sliding surfaces.  

Fig.3 (a) and Fig.3 (b) are the different relative velocity’s relationship with average and 
maximum contact temperature for the particle density a=109m-2, surface roughness 
Rq=100nm, relative velocity v=0.2 m/s. The average contact temperature and the maximum 
contact temperature increase with increasing pressure and particle size. Because the increase 
of particle size will result in the increase of particle load and then increase the contact 
temperature of particle. It indicates that effectively control of the particle size between the 
contact interface of mechanical elements can reduce the contact temperature. 
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Figure 3: Relationship between particle contact temperature and applied loads of different particles size 

Fig.4 (a) and Fig.4 (b) are the different relative velocity’s relationship with average and 
maximum contact temperature for the particle size x=100nm, surface roughness Rq=100nm, 
relative velocity v=0.2 m/s. The average contact temperature and the maximum contact 
temperature increase with increasing pressure. Because the increase of particle density will 
result in the increase of particle load and then increase the contact temperature of particle. It 
indicates that decrease the wear debris between the contact interface of mechanical elements 
can reduce the contact temperature.  
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1005

Jeng-Haur Horng, Chin-Chung Wei, Yung-Yuan Chen and Shin-Yuh Chern 

 6 

real contact area of particles. the real contact area increased with increasing applied loads. 
The plastic deformed real contact area is larger than the elastic and elastic-plastic deformed 
real contact area. Results indicate that the real deformation contact area of particle is mainly 
affected by the plastic deformation. Fig.2 (d) shows three kinds of maximum contact 
temperature of particles for the different deformed areas. The maximum contact temperature 
of plastic deforming controls the maximum contact temperature. The trend of the maximum 
contact temperature is the similar with the deformation area in Fig.2 (c). It indicates that the 
particle plastic deformation area has a significant effect on the maximum contact temperature 
between two sliding surfaces.  

Fig.3 (a) and Fig.3 (b) are the different relative velocity’s relationship with average and 
maximum contact temperature for the particle density a=109m-2, surface roughness 
Rq=100nm, relative velocity v=0.2 m/s. The average contact temperature and the maximum 
contact temperature increase with increasing pressure and particle size. Because the increase 
of particle size will result in the increase of particle load and then increase the contact 
temperature of particle. It indicates that effectively control of the particle size between the 
contact interface of mechanical elements can reduce the contact temperature. 

1 10 100 1000
2 3 5 20 30 50 200 300 500

Pressure (MPa)

1E-003

1E-002

1E-001

1E+000

1E+001

1E+002

1E+003

1E+004

1E+005

M
ax

im
um

  C
on

ta
ct

  T
em

pe
ra

tu
re

J/m2, v=0.2m/s, Rq=100nm, a

x = 20 nm
x = 100 nm
x = 300 nm
x = 500 nm

            
1 10 100 1000

2 3 5 20 30 50 200 300 500

Pressure (MPa)

1E-004

1E-003

1E-002

1E-001

1E+000

1E+001

1E+002

1E+003

1E+004

A
ve

ra
ge

  C
on

ta
ct

  T
em

pe
ra

tu
re

J/m2,v=0.2m/s, Rq=100nm, a

x = 20 nm
x = 100 nm
x = 300 nm
x = 500 nm

 
Figure 3: Relationship between particle contact temperature and applied loads of different particles size 

Fig.4 (a) and Fig.4 (b) are the different relative velocity’s relationship with average and 
maximum contact temperature for the particle size x=100nm, surface roughness Rq=100nm, 
relative velocity v=0.2 m/s. The average contact temperature and the maximum contact 
temperature increase with increasing pressure. Because the increase of particle density will 
result in the increase of particle load and then increase the contact temperature of particle. It 
indicates that decrease the wear debris between the contact interface of mechanical elements 
can reduce the contact temperature.  

(a) (b) 

Jeng-Haur Horng, Chin-Chung Wei, Yung-Yuan Chen and Shin-Yuh Chern 

 7 

1 10 100 1000
2 3 5 20 30 50 200 300 500

Pressure (MPa)

1E-003

1E-002

1E-001

1E+000

1E+001

1E+002

1E+003

1E+004

1E+005

1E+006

M
ax

im
um

  C
on

ta
ct

  T
em

pe
ra

tu
re

J/m2, v=0.2m/s, x=100nm, Rq=100nm
η a = 107

η a = 108

η a = 109

η a = 1010

η a = 1011

      
1 10 100 1000

2 3 5 20 30 50 200 300 500

Pressure (MPa)

1E-003

1E-002

1E-001

1E+000

1E+001

1E+002

1E+003

1E+004

A
ve

ra
ge

  C
on

ta
ct

  T
em

pe
ra

tu
re

J/m2, v=0.2m/s, x=100nm, Rq=100nm
η a = 107

η a = 108

η a = 109

η a = 1010

η a = 1011

 
Figure 4: Relationship between particle contact temperature and applied loads of different particles density 

4   CONCLUSIONS 
- The trend of the maximum contact temperature of two surfaces is the similar with the 

particle plastic deformation area. It indicates that the particle plastic deformation area 
has a significant effect on the maximum contact temperature between two sliding 
surfaces. 

- In contact interface, the contact temperatures of particles and asperity increase when 
the velocity and applied load increase 

- The increase of particle size and density will result in the increase of particle load for 
three-body contact condition. It indicates that decrease the particle size or wear debris 
between the contact interface of mechanical elements can reduce the contact 
temperature. 
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Abstract. In this paper, the continuum damage mechanics model originally proposed by 
Lemaitre [1] is presented through an adaptive finite element method for three-dimensional 
ductile materials. The macro-crack initiation–propagation criterion is used based on the 
distribution of damage variable in the continuum damage model. The micro-crack closure 
effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu 
posteriori error estimator is employed in conjunction with a weighted superconvergence patch 
recovery (SPR) technique at each patch to improve the accuracy of error estimation and data 
transfer process. Finally, the robustness and accuracy of proposed computational algorithm is 
demonstrated by a 3D numerical example. 
 
 
1 INTRODUCTION 

The fracture of ductile materials is the consequence of a progressive damaging process and 
considerable plastic deformation usually precedes the ultimate failure. The numerical 
prediction of damage evolution and crack initiation–propagation can be described by the 
means of continuum damage approach. The continuum damage mechanics was originally 
developed to describe the creep rupture. It was first introduced by Kachanov [2] to describe 
the effects of an isotropic distribution of spherical voids on plastic flow. Gurson [3] proposed 
a model based on the theory of elasto-plasticity for ductile damage where the (scalar) damage 
variable was obtained from the consideration of microscopic spherical voids embedded in an 
elasto-plastic matrix. It was shown that the theory is particularly suitable for representation of 
the behavior of porous metals. Lemaitre [1] proposed a micro-mechanical damage model to 
simulate the physical process of void nucleation, growth and coalescence using continuum 
mechanics. Lemaitre and Chaboche [4] pointed out the fracture as the ultimate consequence 
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of material degradation process. The superconvergent patch recovery (SPR) method was first 
introduced by Zienkiewicz and Zhu [5] in linear elastic problems. The technique was applied 
in nonlinear analysis by Boroomand and Zienkiewicz [6], in which the strain was recovered 
by SPR in elasto-plasticity problems. An extension of SPR technique to 3D plasticity 
problems was presented by Khoei and Gharehbaghi [7]. A modified–SPR technique was 
applied by Khoei et al. [8] for simulation of crack propagation, in which the polynomial 
function was replaced by singular terms of analytical solution of crack problems in the 
process of recovery solution. The technique was improved by Moslemi and Khoei [9] and 
Khoei et al. [10] to estimate a more realistic error in LEFM problems and cohesive zone 
models by applying the weighting function for various sampling points. In the present paper, 
an adaptive finite element method is presented based on the weighted–SPR technique to 
model the damage of ductile material in 3D problems. 

2 NONLINEAR DAMAGE MODEL 
Damage in materials is mainly the process of initiation and growth of micro-cracks and 

cavities. Continuum damage mechanics discusses systematically the effects of damage on the 
mechanical properties of materials and structures as well as the influence of external 
conditions and damage itself on the subsequent development of damage. In this study, this 
nonlinear interaction is investigated via the Lemaitre damage constitutive model. In order to 
describe the internal degradation of solids within the framework of the continuum mechanics 
theory, new variables intrinsically connected with the internal damage process need to be 
introduced in addition to the standard variables. Variables of different mathematical nature 
possessing different physical meaning have been employed in the description of damage 
under various circumstances. The damage variable used here is the relative area of micro-
cracks and intersections of cavities in any plane oriented by its normal n as  

(n)
SD
S
Φ=                          

(1) 

where ΦS  is the area of micro-cracks and intersections and S  is the total area of the cross 
section. It is assumed that micro-cracks and cavities are distributed uniformly in all directions. 
In the isotropic case, the damage variable is adopted as a scalar. The behavior of damaged 
material is governed by the principle of strain equivalence which states that the strain 
behavior of a damaged material is represented by constitutive equations of the virgin material 
(without damage) in the potential of which the stress is simply replaced by the effective stress. 
By this assumption the effective stress tensor is related to the true stress tensor by 

1
1eff D

=
−

σ σσ σσ σσ σ                          
(2) 

In Lemaitre damage model the evolution of damage variable is assumed to be given by 

         0                    
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where r and s are material and temperature-dependant properties, 2 / 3 ε=p p
eqε is equivalent 

plastic strain, γɺ  is the plastic multiplier and is equal to the rate of equivalent plastic strain and 
p
Dε  is threshold damage where damage growth starts only at this critical value. Y is called 

damage energy release rate and is expanded by using the inverse of the elastic stress-strain 
law as 

1 2
2 2

22

2

1 1:[ ] :    [(1 ) : ( ) ]
2(1 ) 2 (1 )

2   (1 ) 3(1 2 )
2 (1 ) 3

eY tr
D E D

q p
E D q

ν ν

ν ν

−= − = − + −
− −

  
= − + + −  −    

Dσ σ σ σ σσ σ σ σ σσ σ σ σ σσ σ σ σ σ
                         
(4) 

where p  is the hydrostatic stress and q  is the equivalent von–Mises stress.As can be seen in 
above equation the damage rate depends on the stress state, plastic strain growth and 
instantaneous damage variable. The effect of damage variable on mechanical behavior of 
material is accounted in degradation of elastic modulus of material and its yield surface. 
Based on the equivalent strain principle this modification can be expressed as 

(1 ) e
eff D= −D D                          

(5) 

03 [ ( )]
2 (1 )

p
Y eqR ε

D
σΦ = − +

−
  s                          

(6) 

where De  and Deff  are the elastic modulus of material before damage and after damage, 
respectively, ΦΦΦΦ  is the modified yield surface, s  is the deviatoric stress tensor and R is the 
isotropic plastic growth function.  

2.1 Finite element implementation 
The accuracy of the overall finite element scheme depends crucially on the accuracy of 
particular numerical algorithm adopted. This section describes a numerical procedure for 
integration of the Lemaitre damage elasto-plastic model presented in preceding section, based 
on the well-known two-step elastic predictor–plastic corrector method. At each Gauss point, 
the values of state variables including the stress tensor nσσσσ , plastic strain tensor p

nεεεε ,  
equivalent plastic strain ( )p

eq nε and damage variable nD  are known at the start of interval, and 
for a given strain increment ∆ε , the value of variables are desired at the end of interval. At 
the first stage of computational algorithm the material behavior is assumed to be elastic, the 
yield surface at the end of interval can be then evaluated as 

01s3 [ ( ) ]
2 (1 )

p
Y

n
eq n

n
R ε

D
σ+Φ = − +

−
                         
(7) 

If 0ΦΦΦΦ ≤ , the assumed elastic behavior is correct and the damage variable and plastic strain 
remain unchanged. If 0ΦΦΦΦ > , the plastic corrector step must be applied to obtain the updated 
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state variables by simultaneously establishing four equations consisting of the plastic flow 
equation, equivalent plastic strain growth equation, damage growth equation, and the yield 
surface equation as  

1
1

1 1

s3ε ε
1 2 s

p p n
nn

n nD
γ +

+
+ +

∆= +
−
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(11)

The solution of these four nonlinear coupled equations simultaneously is a costly 
computational task. By performing relatively straightforward algebraic manipulations, the 
above system can be reduced to a single nonlinear algebraic equation for the plastic multiplier 
∆γ expressed as 

( )( ) 0
( )

s

n
Y

r
γ γω γ ω

ω γ
∆ − ∆ ∆ − + = ∆  

                           
(12)

where ω  is the integrity variable in contrast to damage variable and is evaluated by 

1 1
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where 1+
trial
nq  is the von–Mises equivalent stress obtained in the elastic predictor step. The 

damage energy release rate is a function of ∆γ calculated by 

[ ]2 2
1( )

( )
6 2

Y n nR pY
G K

σ γ
γ ++ ∆

∆ = +
  

                         
(14)

where 1+np  is the elastic predicted hydrostatic pressure without damage effect. Equation (12) 
can be solved by an iterative method such as Newton-Raphson method. By computing the 
plastic multiplier, the updated state variables can be obtained using four basic equations. 

2.2 Micro-crack closure effect 
From the micromechanical view, the damage can be considered as the degradation of material 
properties due to the evolution of voids and micro-cracks. The Lemaitre damage model 
discussed in previous section, suffers from an important drawback, since the effect of 
hydrostatic stress is captured by the damage energy release rate Y with equal response in 
tension and compression. On the other hand, the micro-cracks which open in tensile stresses 
may partially close at a compression stress state. Hence, after having been damaged in 
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tension, the material recovers its stiffness partially under compression. In this study, the stress 
tensor is decomposed into the positive and negative parts and the effect of compressive stress 
tensor is considered as a fraction of the effect of tensile stress tensor. In the process of 
decomposition, the stress tensor is first mapped to the principle directions to form a diagonal 
matrix with the principle stresses. This matrix is then decomposed to tensile and compressive 
stress tensors as 

+ −= +σ σ σσ σ σσ σ σσ σ σ   
                         
(15)

This decomposition is defined mathematically using the Macaulay bracket  as 
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(16)

The Macaulay bracket is a scalar function defined as 

     if  0
0     if  0
a a

a
a

≥
=  <   

                         
(17)

     By decomposition of stress tensor, each component affects the damage energy release rate 
separately. The effect of tensile component given in Section 2 remains valid, but the 
compression component has a more moderate effect with an experimental reduction factor of 
h . This value is called as the crack closure effect constant and has the value in the range of 
[0 1]− . Thus, the effect of compressive component of stress tensor can be superposed with the 
effect of tensile component of stress tensor by modifying equation (4) as 

    

2 2
2 2

1 (1 ) :  (1 ) :
2 (1 ) 2 (1 )

hY tr tr
E D E hD

ν ν ν ν+ + − −   = − + − − + − −   − −
σ σ σ σ σ σσ σ σ σ σ σσ σ σ σ σ σσ σ σ σ σ σ                          

(18)

By modifying the value of damage energy release rate, the remaining parts of the procedure of 
original Lemaitre model will not be changed. 

3 ADAPTIVE FINITE ELEMENT STRATEGY 
In numerical analysis of FE solution, it is essential to introduce some measures of error and 
use adaptive mesh refinement to keep this error within prescribed bounds to ensure that the 
finite element method is effectively used for practical analysis. To automate this process, 
several adaptive finite elements have been implemented to obtain an optimal mesh. Due to the 
localized material deterioration in the damaged body problems, many elements will be 
severely distorted producing unacceptably inaccurate solutions and this optimization takes a 
more important and necessary role. In order to obtain an optimal mesh, in the sense of an 
equal solution quality, it is desirable to design the mesh such that the error contributions of 
the elements are equally distributed over the mesh. This criterion illustrates what parts of the 
discretized domain have to be refined/de-refined and what degree of mesh fineness is needed 
to maintain the solution error within the prescribed bounds. The plastic deformation of 
problem necessitates transferring all relevant variables from the old mesh to new one. In 
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general, the procedure described above can be executed in four parts; an error estimation, an 
adaptive mesh refinement, an adaptive mesh generator, and the mapping of variables. 

3.1 Error estimation using weighted SPR technique 
In the error estimation process two main aims are followed: firstly, to determine the error for 
the chosen mesh and secondly, to reduce this error to a permissible value by an automatic 
adaptive remeshing. The discretization error for a state variable represents the difference 
between its exact and the finite element solutions. Thus, the error of typical state variable α
can be defined by ˆα α α= −e , with α  denoting the exact value of state variable and α̂  the 
value of state variable derived by a finite element solution. Since the exact value of state 
variables for nonlinear problems is not available, we use a recovered solution instead of exact 
ones and then approximate the error as the difference between the recovered values and those 
given directly by the finite element solution, i.e. * ˆα α α≈ −e , where *α  denotes the recovered 
value of state variable α .  

     Since the damage variable plays an important role in predicting the crack initiation and 
crack growth, its accuracy is very crucial in this process. Thus, the error is estimated based on 
the damage variable D . In order to obtain an improved solution, the nodal smoothing 
procedure is performed using the weighted superconvergent patch recovery (WSPR) 
technique, which was originally proposed by Moslemi and Khoei [9] to simulate the crack 
growth in linear fracture mechanics. The objective of recovery of the finite element solution is 
to obtain the nodal values of damage variable D  such that the smoothed continues field 
defined by the shape functions and nodal values is more accurate than that of the finite 
element solution. A procedure for utilizing the Gauss quadrature values is based on the 
smoothing of such values by a polynomial of order p  in which the number of sample points 
can be taken as greater than the number of parameters in the polynomial. In this case, if we 
accept the superconvergence at certain points of each element, the computed values of 
damage variable have the superconvergent accuracy at all points within the element. Thus, the 
recovered solution of damage variable *D  can be obtained as 

*D = Pa   
                         
(19)

where a  is a vector of unknown parameters and P  the polynomial base functions. Depending 
on the order of polynomial the technique is called as C0-SPR, C1-SPR, etc. It was shown by 
Khoei et al. [8] in crack growth problems that if the singular elements are used near the crack 
tip the modified–SPR technique, in which the polynomial function is replaced by the singular 
terms of analytical solution of crack problems leads to better results in the process of recovery 
solution. Since the isoparametric elements are employed here over the domain, the linear base 
functions are used for the recovery process. Hence, the vectors P  and a  are represented in 
their simplest form as 

      1, , ,x y z=P              1 2 3 4, , , Ta a a a=a   
                         
(20)

     The determination of the unknown parameters a  can be made by performing a least square 
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fit to the values of superconvergent, or sampling points. After finite element analysis, a patch 
is defined for each vertex node inside the domain by the union of elements sharing the node. 
At each node of interior patch center, the connected tetrahedral elements along with their 
nodes and Gauss points are obtained. The number of sampling points must be at least equal to 
number of parameters in the polynomial. In the standard SPR technique, all sampling points 
have similar properties in the patch, which may produce significant errors in the boundaries, 
particularly the edges of crack. In fact, for elements located on the boundaries, constraints and 
crack edges, which do not have enough sampling points, we need to use the sampling points 
of nearest patch. These new sampling points induce unreal value of damage variables in the 
patch and overestimate the value of error, which results in unreasonable mesh refinement in 
the boundaries of domain. Moslemi andKhoei [9] proposed the weighted–SPR technique by 
using different weighting parameters for sampling points of the patch. It results in more 
realistic recovered values at the nodal points, particularly near the crack tip and boundaries. 
Hence, if we have n  sampling points in the patch with the coordinates ( , , )k k kx y z , the 
function F  needs to be minimized in this patch as 

2*

2

1

1

( ) ( , , ) ( , , )

( , , ) ( , , )

i k k k k k k

k k k k k k

n

ik
k
n

ik
k

F w D x y z D x y z

w x y z D x y z

=

=

 = − 

 = − 

∑

∑

a

P a

⌢

⌢

  

                         
(21)

In order to incorporate the effects of nearest sampling points in the recovery process, the 
weighting parameter is defined as 1/=k kw r , with kr  denoting the distance of sampling point 
from the vertex node which is under recovery. The minimization of function F  with respect 
to a  results in the unknown parameters a  as  

    

1
2 2

1 1
( , )T T

k k

n n

ik k k k k
k k

w w D x y
−

= =

   =     
∑ ∑a P P P

⌢

  

                         
(22)

     It must be noted that the implementation of global coordinates may result in ill-conditioned 
coefficient matrix, hence it is preferred to use a local coordinate system in the patch. Once the 
components of the vector of unknown parameters a  are determined, the damage variables at 
nodal points inside the patch are computed by substituting their coordinates in equation (19). 
These nodal values *D  can be used to construct a continuous damage field over the entire 
domain at the next step, that is, for each element, the recovered damage variable is 
represented as an interpolation of nodal values using the standard shape functions N  in finite 
element analysis as 

* *D = N D   
                         
(23)

     The recovered damage variable obtained by above equation can be used to obtain a 
pointwise error in the domain. Since the pointwise error becomes locally infinite in critical 
points, such as crack tip, point constraint and point loads, the error estimator can be replaced 
by a global parameter using the norm of error defined as 
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( )
1

* * * 2( ) ( ) T
De D D D D D D d

Ω
= − = − − Ω∫

⌢ ⌢ ⌢

  
                         
(24)

     The above L2 norm is defined over the whole domain Ω . The overall error can be related 
to each element error by 

2 2

1

m

D D i
i

e e
=

=∑
  

                         
(25)

with i denoting an element contribution and m the total number of elements. The distribution 
of error norm across the domain indicates which portions need refinement and which other 
parts need de-refinement, or coarsening elements. 

3.2 Adaptive mesh refinement 
Once the error estimator process has been achieved it needs to implement a technique by 
which the solution can be improved. Since the total error permissible must be less than a 
certain value, it is a simple matter to search the design field for a new solution in which the 
total error satisfies this requirement. The simplest process is based on an equal error 
distribution among all elements as with such equal error distribution the results are most 
economical. In fact, after remeshing each element must obtain the same error and the overall 
percentage error must be less than the target percentage error, i.e.  

aim
aim

DD ee
D D

θ θ= ≤ =⌢ ⌢
  

                         
(26)

where aimθ  is the prescribed target percentage error. Hence, the aim error at each element can 
be obtained as 

( ) aimaim

1
D ie D

m
θ=

⌢

  
                         
(27)

     The rate of convergence of local error depends on the order of elements. The higher-order 
elements show faster convergence to the aim error. Thus, such elements need less refinement 
and new element size depend on its error norm and its order. Thus, the new element size can 
be evaluated as 

( )
( )  

1/

aim
new old

old

( ) ( )

p
D i

i i
D i

e
h h

e

 
 =
 
    

                         
(28)

where h is the average element size and p is the order of element. To obtain the nodal element 
size, a simple averaging between elements joining a node is used. As the mesh tends 
progressively to be optimal with the error uniformly distributed between elements this 
theoretical rate of convergence appears very effective. The above technique can be coupled 
with an efficient mesh generator which allows the new mesh to be constructed according to a 
predetermined size distribution. 
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3.3 Data transfer operator 
In the nonlinear FE analysis, the new mesh must be used starting from the end of previous 
load step since the solution is history-dependent in nonlinear problems. Thus, the state and 
internal variables need to be mapped from the old finite element mesh to the new one. The 
state variables consist of the nodal displacements and the internal variables, including the 
Cauchy stress tensor, the strain tensor, the plastic strain tensor and damage variable. Since 
these variables are transferred separately, it is important that the transfer of information from 
the old to new meshes is achieved with minimum discrepancy in equilibrium and constitutive 
relations. Hence, a minimum number of internal variables must be transferred and remaining 
variables are calculated by equilibrium and constitutive equations. In the case of internal 
variables which their values evaluated at the Gauss points of the old mesh, corresponding 
values at the Gauss points of the new mesh are desired.  

     The direct mapping of variables may lead to inconsistency between transferred variables 
and shape functions of the elements. In this case the process of data transfer can be carried out 
in three steps. In the first step the continuous internal variables are obtained by projecting the 
Gauss point components to the nodal values. In order to project the values of Gauss points to 
nodal points, the 3D weighted–SPR method is applied here, as described in previous section. 
In the second step, the nodal values of internal variables of old mesh are transferred to the 
nodes of new mesh. For this purpose, we must first determine which element in the old mesh 
contains the nodal point in the new finite element mesh. The nodal components in the old 
mesh are then transferred to the nodes of new mesh by applying the old shape functions of old 
elements and the global coordinates of the new nodes. The components of internal variables at 
the Gauss points of new mesh are finally obtained by interpolation using the shape functions 
of elements of the new mesh. These three steps are illustrated schematically in Figure 1. In 
addition, a transfer operator is employed that transfers the state variables, i.e. displacement 
field, from the old to a new mesh. This operator includes only the second step of the first 
operator where the nodal components in the old mesh are transferred to the nodes of new 
mesh. 

Figure 1: Three-step procedure of  the transfer operator 

4 NUMERICAL SIMULATION RESULTS 
In order to illustrate the accuracy and robustness of the proposed adaptive finite element 
method in three-dimensional damage mechanics, a classical tensile test of a cylindrical pre-



1016

Hamid Moslemi and Amir R. Khoei 

10

notched bar is simulated numerically. The geometry and boundary conditions of the specimen 
are shown in Figure 2. On the virtue of symmetry, only one-eighth of the problem is modeled. 
The specimen is subjected to the tensile prescribed displacement at the top edge. The bar is 
constructed by a low carbon steel in a rolled state with the following material properties; 

210 GPa=E  and 0.3ν = . The strain hardening is considered to be isotropic. The parameters 
of Lemaitre model for this specimen is taken as 1.0=s  and 3.5 MPa=r . This specimen was 
also simulated by de Souza Neto et al. [11] using 2D FE modeling to validate the performance 
of their constitutive model in damage mechanics. The vertical displacement is applied 
incrementally in 600 increments of 0.001 mm. The damage evolution is predicted by Lemaitre 
model until its value reaches to the critical damage value of 0.99=CD . 

Figure 2: The cylindrical notched specimen; The geometry  

       

           
Figure 3: The distribution of damage contours at various load steps; A comparison between the present 
3D model and result reported by de Souza Neto et al.[11]; a) 0.051 mmu = , b) 0.076 mmu = , c) 0.246 mmu =

(a) (b) (c) 

18mm 

40mm 
r=4mm 
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     In Figure 3, the distribution of damage contours are shown at three stages and compared 
wit h those reported by de Souza Neto et al. [11] in two dimensional modeling. It can be seen 
that the predicted damage contours are in good agreement with those obtained in reference 
[11]. It is interesting to note that the location of maximum damage is not fixed in the model 
and moves at different stages of loading. It can be observed that the maximum damage occurs 
in the outer part of the specimen at the first stages of loading, however – it moves toward the 
center of the bar by increasing the load. This can be justified by the fact that at early stages of 
loading the hydrostatic stress is low and the damage evolution is affected by the plastic flow. 
Thus, the damage grows in outer layers, where the maximum equivalent plastic strain occurs. 
However, by increasing the load, the hydrostatic stress increases and its effect becomes 
dominant. Hence, the damage critical point moves toward the center of the bar where the 
maximum value of hydrostatic stress occurs. In order to control the error of the solution, an 
adaptive FE mesh refinement is carried out to generate the optimal mesh. The weighted 
superconvergent patch recovery technique is used with the aim error of 5%. This process is 
carried out at two steps of 50 and 360, as shown in Figure 4. This figure clearly presents the 
distribution of elements on the specimen with the growth of damage. In Figure 5, the effect of 
adaptive strategy can be observed on the estimated error. Obviously, the adaptive mesh 
refinements result in a reduced estimated error and converge to the prescribed target error. 

                  
Figure 4: Adaptive mesh refinement technique for the cylindrical notched specimen; a) Initial FE mesh,            

b) Adapted mesh at 0.05 mmu = , c) Adapted mesh at 0.36 mmu =

Figure 5: The variation of estimated error with prescribed displacement during adaptive mesh refinement 

(a) (c) (b) 
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5 CONCLUSIONS 
In the present paper, an adaptive finite element method was presented for the three-

dimensional analysis of damage growth and crack initiation. The constitutive modeling was 
implemented within the framework of continuum damage mechanics. A simplified version of 
Lemaitre damage model was employed to estimate the damage evolution. The adaptive finite 
element technique was implemented through the following three stages; an error estimation, 
adaptive mesh refinement, and data transferring. The error estimation procedure was used 
based on the Zienkiewicz–Zhu error estimator and a weighted superconvergent patch recovery 
technique was employed. The accuracy and robustness of proposed computational algorithm 
in 3D damage mechanics were presented by a numerical example. The results clearly show 
the ability of the model in capturing the damage growth and crack initiation in complex 3D 
problem. In a later work, we will show how the proposed technique can be used in a 3D 
automatic simulation of crack propagation in the fracture of ductile materials. 

REFERENCES 
[1] Lemaitre, J. A continuous damage mechanics model for ductile fracture, Journal of 

Engineering Materials and Technology. (1985) 107:83–89. 
[2] Kachanov, L.M. Time of the rupture process under creep condition, Izvestiya Akademii 

Nauk SSSR, Otdeleniya Tekhnika Nauk. (1958) 8:26–31. 
[3] Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth – Part I: 

Yield criteria and flow rule for porous media, Journal of Engineering Materials and 
Technology. (1977) 99:2–15. 

[4] Lemaitre, J. and Chaboche, J.L. Mechanics of Solid Materials, Cambridge University 
Press, (1990).

[5] Zienkiewicz, O.Z. and Zhu, J.Z. The superconvergent patch recovery and a posteriori 
error estimates. Part I: The recovery technique, International Journal for Numerical 
Methods in Engineering. (1992) 33:1331-1364. 

[6] Boroomand, B. and Zienkiewicz, O.C. Recovery procedures in error estimation and 
adaptivity, part II: adaptivity in nonlinear problems of elasto-plasticity behaviour, 
Computer Methods in Applied Mechanics and Engineering. (1999) 176:127–146. 

[7] Khoei, A.R. and Gharehbaghi, S.A. The superconvergence patch recovery and data 
transfer operators in 3D plasticity problems, Finite Elements in Analysis and Design.
(2007) 43: 630–648. 

[8] Khoei, A.R., Azadi, H. and Moslemi, H. Modeling of crack propagation via an automatic 
adaptive mesh refinement based on modified superconvergent patch recovery technique, 
Engineering Fracture Mechanics. (2008) 75:2921–2945. 

[9] Moslemi, H. and Khoei, A.R. 3D adaptive finite element modeling of non-planar curved 
crack growth using the weighted superconvergent patch recovery method. Engineering 
Fracture Mechanics. (2009) 76:1703–1728. 

[10]Khoei, A.R., Moslemi, H., Majd Ardakany, K., Barani, O.R. and Azadi, H. Modeling of 
cohesive crack growth using an adaptive mesh refinement via the modified-SPR 
technique, International Journal of Fracture. (2009) 159:21–41. 

[11]de Souza Neto, E.A., Peric and  Owen, D.R.J. Computational Methods for Plasticity: 
Theory and Applications, Wiley, UK. (2008). 



1019

CYCLIC VISCOELASTOPLASTICITY AND FATIGUE
FRACTURE OF POLYMER COMPOSITES

ALEKSEY D. DROZDOV∗

∗Department of Plastics Technology
Danish Technological Institute

Gregersensvej 1, 2630 Taastrup, Denmark
e-mail: Aleksey.Drozdov@teknologisk.dk

Key words: Viscoelastoplasticity, Polymer/clay hybrids, Ratcheting, Fatigue

Abstract. Observations are reported on isotactic polypropylene/nanoclay hybrids with
various concentrations of filler ranging from 0 to 5 wt.% in cyclic tensile tests with a stress–
controlled program (ratcheting between minimum stresses σmin and maximum stresses
σmax). A pronounced effect of filler is demonstrated: reinforcement of polypropylene with
1 wt.% of nanoclay results in reduction of maximum and minimum strains per cycle by
several times and growth of number of cycles to failure by an order of magnitude. To
rationalize these findings, a constitutive model is developed in cyclic viscoelastoplasticity
of polymer nanocomposites. Adjustable parameters in the stress–strain relations are found
by fitting experimental data in relaxation tests and cyclic tests. It is demonstrated that
the model correctly predicts growth of maximum and minimum strains per cycle with
number of cycles and can be applied for evaluation of fatigue failure of nanocomposites.

1 INTRODUCTION

This paper is concerned with experimental investigation and constitutive modeling
of the viscoelastic and viscoplastic responses of polymer/clay nanocomposites in tensile
cyclic tests with stress-controlled programs.

A number of studies on the mechanical behavior of polymer/clay hybrids reveal notice-
able improvement of their properties due to the presence of nanoparticles [1, 2, 3]. This
enhancement remains, however, rather modest compared with what has been expected
from the effect of reinforcement a decade ago [3]. Keeping in mind these discrepancies
between expected and real mechanical properties of nanohybrids in conventional tensile
tests, it seems natural to focus on more sophisticated deformation programs, where the
effect of nanofiller becomes significant for applications. This approach was initiated in
[4, 5, 6] by demonstrating that reinforcement of polymers with nanoparticles dramatically
enhanced creep resistance and in [7, 8] by revealing a similar effect for ratcheting strain
in cyclic tests.

1
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The objective of this study is threefold: (i) to demonstrate that reinforcement of
polypropylene with nanoclay results in a strong decrease in maximum and minimum
strains per cycle observed in uniaxial tensile cyclic tests with a stress-controlled program,
(ii) to develop a constitutive model in cyclic viscoelastoplasticity of polymer nanocom-
posites that describes this phenomenon, and (iii) to rationalize physical mechanisms re-
sponsible for the improvement of fatigue resistance by comparison of material parameters
in the stress–strain relations.

2 EXPERIMENTAL RESULTS

Nanocomposites with isotactic polypropylene as a matrix [Moplen HP 400R (Albis
Plastic Scandinavia AB, Sweden)], maleic anhydride grafted polypropylene as a compati-
bilizer [Eastman G 3015 (Eastman Chemical Company, USA)], and organically modified
montmorillonite nanoclay as a filler [Delitte 67G (Laviosa Chimica Mineraria S.p.A.,
Italy)] were manufactured in a two-step process described in [6]. Nanohybrids with
clay/compabilizer proportion 1:2 and clay contents χ = 0, 1, 3, and 5 wt.% were prepared
by means of twin-screw extruder Brabender PL2000. Dumbbell specimens for tensile tests
(ASTM standard D638) were molded by using injection-molding machine Arburg 320C.

Uniaxial tensile tests were performed at room temperature by means of universal test-
ing machine Instron–5569 equipped with an electro-mechanical sensor for control of lon-
gitudinal strains. The engineering stress σ was determined as the ratio of axial force to
cross-sectional area of undeformed specimens.
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Figure 1: Maximum εmax and minimum εmin strains per cycle versus number of cycles n. Symbols:
experimental data in cyclic tests with ḋ = 10 mm/min, σmax = 25 MPa, σmin = 20 MPa (A) and ḋ = 100
mm/min, σmax = 30 MPa, σmin = 10 MPa (B) on nanocomposites with clay content χ wt.% (◦ χ = 0, •
χ = 1, ∗ χ = 3, � χ = 5).

Two series of experiments were conducted at room temperature. The first was aimed
to choose deformation programs that ensure the most pronounced effect of reinforcement.
It involved five ratcheting tests with various maximum stresses σmax, minimum stresses

2
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σmin and strain rates ε̇. In each test, a specimen was stretched with a fixed cross-head
speed ḋ up to a maximum stress σmax, retracted down to a minimum stress σmin with
the same cross-head speed, reloaded up to the maximum stress σmax with the cross-head
speed ḋ, unloaded down to the minimum stress σmin with the same cross-head speed, etc.
Some experimental data in cyclic tests are reported in Figure 1, where maximum strain
per cycle εmax and minimum strain per cycle εmin are plotted versus number of cycles n.
Observations show that for all experimental conditions, reinforcement of polypropylene
with nanoclay results in noticeable reduction in εmax and εmin. The strongest improvement
of fatigue resistance is reached when concentration of filler equals 1 wt.%.

The other series of tests was carried out for identification of parameters in constitutive
equations. It involved cyclic tests with a stress-controlled program and relaxation tests.
Each test was carried out on a new sample and repeated by twice to confirm reproducibility
of measurements. Based on observations in the first series of tests, we confine ourselves
to the analysis of nanocomposites with χ = 0 and 1 wt.%.

Ratcheting tests were performed with ḋ = 100 mm/min, σmax = 30 MPa, and σmin = 20
MPa. Experimental stress–strain curves (16 cycles of loading–retraction) and diagrams
εmax(n), εmin(n) are depicted in Figure 2.
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Figure 2: A—Stress σ versus strain ε. B—Maximum εmax and minimum εmin strains versus number of
cycles n. Circles: experimental data in cyclic tests on nanocomposites with χ = 0 (◦) and χ = 1 (•)
wt.%. Solid lines: results of numerical simulation.

Relaxation tests were conducted with a fixed strain ε = 0.1. In each test, a speci-
men was stretched with ḋ = 100 mm/min up to the required strain. Afterwards, ε was
preserved constant, and a decrease in stress σ was monitored as a function of time t. Fol-
lowing the ASTM protocol E–328 for short-term relaxation tests, duration of relaxation
tests trel = 20 min was chosen.

Observations in relaxation tests are reported in Figure 3, where engineering stress σ
is depicted versus relaxation time t′ = t − t0 (t0 stands for the instant when relaxation
starts). Following common practice, the semi-logarithmic plot is chosen with log = log10.
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Figure 3: Stress σ versus relaxation time t′. Symbols: experimental data in relaxation tests on nanocom-
posites with χ = 0 (◦) and χ = 1 (•) wt.%. Solid lines: results of numerical simulation.

Figure 3 shows that the viscoelastic response of nanocomposites is weakly affected by clay
content.

3 CONSTITUTIVE MODEL

With reference to the homogenization concept [9], a nanocomposite with a compli-
cated microstructure (a semicrystalline matrix reinforced with randomly distributed clay
platelets and their stacks) is replaced with an equivalent isotropic medium, whose me-
chanical response resembles that of the composite. An incompressible, inhomogeneous,
transient, non-affine network of polymer chains bridged by junctions is chosen as the
equivalent continuum. The incompressibility hypothesis is confirmed by observations in
uniaxial tensile tests with cross-head speed 200 mm/min, where longitudinal and trans-
verse strains were measured simultaneously. Poisson’s ratios of nanocomposites with
χ = 0 and 1 wt.% read 0.498 and 0.476, respectively.

3.1 Kinematics of plastic deformations

To describe plastic flow in the equivalent medium at small strains, the strain tensor for
macro-deformation ε̂ is presented as the sum of elastic strain tensor ε̂e and plastic strain
tensor ε̂p

ε̂ = ε̂e + ε̂p. (1)

With reference to conventional phenomenological models with two plastic elements con-
nected in series, the plastic strain tensor ε̂p is split into the sum of two components

ε̂p = ε̂(1)
p + ε̂(2)

p . (2)

The tensors ε̂
(1)
p and ε̂

(2)
p are presumed to describe inelastic deformations in the matrix

and inclusions, respectively.
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The strain rate for plastic deformation in the matrix is proportional to strain rate for
macro-deformation

dε̂
(1)
p

dt
= φ

dε̂

dt
, (3)

where the non-negative function φ (i) vanishes in the undeformed state (which means
that no plastic deformation occurs at very small strains), (ii) monotonically grows under
active loading and decreases under retraction (which reflects stress-induced acceleration
of plastic flow), and (iii) reaches its ultimate value φ∞ = 1 at large strains (when the
rates of plastic deformation and macro-deformation coincide). Changes in φ with time
are governed by the differential equation

dφ

dt
= ±a(1 − φ)2ε̇, φ(0) = 0, (4)

where the signs “+” and “−” correspond to loading and retraction, respectively, ε̇ =(
2
3

dε̂
dt

: dε̂
dt

) 1

2

stands for the equivalent strain rate for macro-deformation, and the coefficient

a adopts different values a1 and a2 under active deformation and unloading. For uniaxial
tension, loading and unloading are determined unambiguously. For an arbitrary three-
dimensional deformation, these processes are defined following [10, 11].

3.2 Heterogeneity of the network

An inhomogeneous transient polymer network is composed of meso-domains with vari-
ous activation energies for rearrangement of chains. The rate of separation of active chains
from their junctions in a meso-domain with activation energy u is governed by the Eyring
equation Γ = γ exp[−u/(kBT )], where γ is an attempt rate, kB denotes Boltzmann’s
constant, and T stands for absolute temperature. Introducing dimensionless activation
energy v = u/(kBT ), we obtain

Γ(v) = γ exp(−v). (5)

Denote by N concentration of active chains in the equivalent network [12]. The number
of active chains n0(v) in meso-domains with activation energy v (per unit volume) reads

n0(v) = Nf(v), (6)

where f(v) stands for a distribution function of meso-domains. With reference to the
random energy model [13], the quasi-Gaussian expression is accepted for this function

f(v) = f0 exp
[
−1

2

( v

Σ

)2]
(v ≥ 0), f(v) = 0 (v < 0). (7)

Parameters N , γ, and Σ are assumed to be independent of mechanical factors. The
pre-factor f0 is determined from the normalization condition

∫ ∞
0

f(v)dv = 1.

5



1024

Aleksey D. Drozdov

3.3 Rearrangement of chains

Rearrangement of a temporary network is described by a function n(t, τ, v) which equals
the number (per unit volume) of temporary chains at time t ≥ 0 that have returned into
the active state before instant τ ≤ t and belong to a meso-domain with energy v. The
number of active chains in meso-domains with energy v at time t reads

n(t, t, v) = n0(v). (8)

The number of chains that were active at the initial instant t = 0 and have not separated
from their junctions until time t is n(t, 0, v). The number of chains that were active at
the initial instant and detach from their junctions within the interval [t, t + dt] equals
−∂n/∂t(t, 0, v) dt, the number of dangling chains that return into the active state within
the interval [τ, τ + dτ ] is given by P (τ, v)dτ with

P (τ, v) =
∂n

∂τ
(t, τ, v)

∣∣∣
t=τ

, (9)

and the number of chains that merged (for the last time) with the network within the
interval [τ, τ + dτ ] and detach from their junctions within the interval [t, t + dt] reads
−∂2n/∂t∂τ(t, τ, v) dtdτ . Detachment of chains from their junctions is described by the
kinetic equations

∂n

∂t
(t, 0, v) = −Γ(v)n(t, 0, v),

∂2n

∂t∂τ
(t, τ, v) = −Γ(v)

∂n

∂τ
(t, τ, v), (10)

which mean that the number of active chains separating from their junctions per unit
time is proportional to the total number of active chains in an appropriate meso-domain.
Integration of Eq. (10) with initial conditions (6), (8), and (9) implies that

n(t, 0, v) = Nf(v) exp[−Γ(v)t],
∂n

∂τ
(t, τ, v) = Nf(v)Γ(v) exp[−Γ(v)(t − τ)]. (11)

3.4 Stress–strain relations

The strain energy of an active chain reads

w =
1

2
µ̄ε̂e : ε̂e, (12)

where µ̄ stands for rigidity of a chain, and the colon denotes convolution of tensors. The
strain energy of a chain that has last returned into the active state at instant τ < t is
determined by Eq. (12), where ε̂e(t) is replaced with ε̂e(t) − ε̂e(τ). The strain energy
density (per unit volume) of individual chains in a transient polymer network is given by

W1(t) =
1

2
µ̄
[∫ ∞

0

n(t, 0, v) dv ε̂e(t) : ε̂e(t)

+

∫ ∞

0

dv

∫ t

0

∂n

∂τ
(t, τ, v)

(
ε̂e(t) − ε̂e(τ)

)
:
(
ε̂e(t) − ε̂e(τ)

)
dτ

]
. (13)

6
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The first term in Eq. (13) equals the energy of active chains that have not been rearranged
within the interval [0, t]. The other term expresses the energy of chains that have last
merged with the network at various instants τ ∈ [0, t] and remained active until instant t.

At the nth cycle of cyclic deformation, the energy of interaction between chains and
nanofiller is described by the analog of Eq. (12)

W2 =
1

2
µ̃
(
ε̂(2)
p : ε̂(2)

p − ε̂(2)0
p : ε̂(2)0

p

)
, (14)

where the tensor ε̂
(2)
p describes irreversible deformation in stacks of clay platelets, ε̂

(2)0
p

coincides with ε̂
(2)
p at the instant when the strain rate for macro-deformation changes

its sign, and µ̃ > 0 accepts different values µ̃1 and µ̃2 under loading and unloading,
respectively. It is worth noting that the last term in Eq. (14) does not affect constitutive
equations as the strain energy is determined up to an arbitrary additive constant.

The strain energy density of the equivalent network equals the sum of strain energies
of individual chains and the energy of their interaction

W = W1 + W2. (15)

For isothermal volume-preserving deformation, the Clausius–Duhem inequality reads

dQ

dt
= −dW

dt
+ σ̂′ :

dε̂

dt
≥ 0, (16)

where Q stands for internal dissipation per unit volume, and σ̂′ denotes deviatoric part
of the stress tensor σ̂. Combining Eqs. (12)–(16) and using Eq. (11), we arrive at the
stress–strain relation

σ̂(t) = −p(t)Î+µ
(
1−φ(t)

)[
ε̂e(t)−

∫ ∞

0

f(v)dv

∫ t

0

Γ(v) exp
(
−Γ(v)(t−τ)

)
ε̂e(τ)dτ

]
, (17)

where µ = µ̄N , p is an unknown pressure, and Î stands for the unit tensor. Inequality
(16) is satisfied provided that

dε̂
(2)
p

dt
(t) = Sε̇

[
ε̂e(t) − Rε̂(2)

p (t) −
∫ ∞

0

f(v)Ẑ(t, v)dv
]
, (18)

where the coefficients R = µ̃/µ and S adopts different (but constant) values R1, S1 and R2,
S2 under loading and unloading, respectively. The function Ẑ(t, v) =

∫ t

0
Γ(v) exp[−Γ(v)(t−

τ)]ε̂e(τ)dτ is governed by the differential equation

∂Ẑ

∂t
(t, v) = Γ(v)[ε̂e(t) − Ẑ(t, v)], Ẑ(0, v) = 0. (19)

Stress–strain relation (17) together with kinematic equations (1), (2) and kinetic equations
(3), (4), (18), and (19) provide constitutive equations for the viscoelastoplastic behavior of

7
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polymer nanocomposites under cyclic deformation. These relations involve three material
constants, µ, γ, Σ, and six adjustable functions, a1, a2, R1, R2, S1, S2, with the following
meaning: (i) µ stands for an elastic modulus of a polymer nanocomposite, (ii) γ and Σ
characterize its linear viscoelastic behavior, (iii) a1 and a2 describe irreversible deformation
in the matrix under loading and unloading, (iv) R1, S1 and R2, S2 characterize plastic
flow in stacks of clay platelets under active deformation and retraction.

3.5 Adjustable functions

Evolution of material functions under cyclic deformation is described by the following
scenario.

The coefficients S1 and S2 reach their ultimate values within the first two cycles.
For active loading of a virgin specimen, S1 = 0, while for subsequent reloadings, S1 =
S1∞. Similarly, S2 adopts some value S20 for the first retraction, whereas for subsequent
unloadings, S2 = S2∞. The entire set of these coefficients is determined by three constants:
S20, S1∞, and S2∞.

The coefficients a1 and a2 are equilibrated within first 5–6 cycles. In subsequent cycles
of loading–retraction, they adopt their ultimate values a1∞ = a2∞ = a∞.

The coefficient R2 is a decreasing function of intensity of plastic strain εp =
(

2
3
ε̂p : ε̂p

) 1

2

at instants when transition occurs from active loading to unloading (εp = εmax
p ). This

function obeys the differential equation

dR2

dεmax
p

= −A2R
2
2, (20)

where A2 is a positive coefficient.
The coefficient R1 is split into the sum of two components

R1 = r + R, (21)

where evolution of r is induced by damage accumulation in stacks of clay platelets, and
R characterizes changes in energy of inter-particle interaction driven by plastic flow.

For a stress-controlled deformation program with fixed maximum and minimum stresses,
number of cycles n serves as a measure of damage accumulation. The effect of this measure
on r is described by the phenomenological equation

r = r0 exp(−αn), (22)

where r0 and α are positive constants. The decay in r with n occurs rather rapidly, which
implies that r vanishes after a transition period (about 10 cycles).

A decrease in R with plastic strain is governed by the differential equation

dR

dεmin
p

= A1(R∞ − R), (23)

8
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where A1 and R∞ are adjustable parameters, and εmin
p stands for intensity of plastic strain

εp at instants when transition occurs from retraction to reloading.
After an initial transition period, the viscoelastoplastic response of a nanocomposite

is determined by 10 material constants: µ, γ, Σ, A1, A2, a∞, r∞, R∞, S1∞, and S2∞.
Although this number is not small, it is substantially lower than the number of adjustable
parameters in conventional constitutive models for multi-cycle loading [15, 16, 17]. An
important advantage of the present approach is that the material constants are found by
fitting loading and unloading paths of stress–strain diagrams step by step, which implies
that not more than 3 parameters are determined by matching each set of observations.

4 FITTING OF OBSERVATIONS

Adjustable parameters in the constitutive equations are found by approximation of the
experimental data in Figures 2 and 3 following the algorithm described in [14]. Each set
of observations is matched separately. Material constants in the stress–strain relations
are listed in Table 1.

Table 1: Adjustable parameters for polypropylene/nanoclay hybrids

Parameter χ = 0 χ = 1 Parameter χ = 0 χ = 1
E (GPa) 2.04 2.48 γ (s−1) 0.10 0.34

Σ 10.9 11.7 S1∞ 4.70 14.4
S20 12.9 12.7 S2∞ 19.6 26.5
a∞ 9.13 9.56 A1 51.5 73.0
R∞ 6.84 2.53 A2 58.0 44.1

Figure 2 demonstrates good agreement between the observations in cyclic tests (cycles)
and the results of numerical analysis (solid lines). To reveal the quality of fitting, the
experimental stress–strain curves for the first two cycles and the 16th cycle are reported
in Figure 4 together with results of simulation. This figure confirms that accuracy of
approximation is not reduced with number of cycles.

5 DISCUSSION

To understand physical mechanisms responsible for substantial reduction in ratcheting
strain due to reinforcement of polypropylene, we compare adjustable parameters listed in
Table 1.

Reinforcement of polypropylene with 1 wt.% of nanoclay results in an increase in
Young’s modulus E by 22%, which reflects improvement of its elastic properties.

The effect of filler on viscoelastic properties appears to be of secondary importance.
It is observed as a weak broadening of the relaxation spectrum (Σ grows by 7%) and
an increase in the rate of rearrangement γ (by 3 times). The growth of relaxation rate

9
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Figure 4: Stress σ versus strain ε. Circles: experimental data in cyclic tests (the first two cycles and the
16th cycle) with σmax = 30 MPa and σmin = 20 MPa on nanocomposites with χ = 0 (A) and χ = 1 (B)
wt.%. Solid lines: results of numerical simulation.

does not seem dramatic, as log γ is conventionally employed in the Eyring or Arrhenius
relations.

The equilibrium rate of viscoplastic flow in the polymer matrix a∞ remains practically
unaffected by clay content (it increases by less than 5% due to the presence of nanoclay).

Rather substantial changes are observed in coefficients S1∞ and S2∞ that reflect evolu-
tion of plastic strain tensor ε̂

(2)
p (which serves as a measure of irreversible deformations in

stacks of clay platelets). Reinforcement of polypropylene with 1 wt.% of nanoclay results
in an increase in S1∞ by 3 times and in S2∞ by 35%. Keeping in mind that S1 and S2 are
proportional to rates of plastic flow under loading and unloading, respectively, one can
conclude that the effect of filler is stronger at loading than at retraction.

This result is confirmed by comparison of ultimate values R∞ of parameter R1 (which
provides a measure of energy of interaction between polymer chains and inclusions under
loading). A pronounced decay in R∞ (R∞ at χ = 0 exceeds that at χ = 1 wt.% by a
factor of 2.7) may reflect damage of stacks of clay platelets under cyclic deformation.

The coefficients A1 and A2 that describe reduction in R1 and R2 with plastic strain
adopt similar values (A1 at χ = 1 exceeds that at χ = 0 wt.% by 42%, while A2 at
χ = 0 is higher than A2 at χ = 1 wt.% by 32%). However, if the decrease in R1 and
R2 is analyzed as functions of n, the situation changes dramatically: after 16 cycles of
loading–retraction, R1 at χ = 0 exceeds that at χ = 1 wt.% by a factor of 3.3, whereas
R2 at χ = 1 exceeds that at χ = 0 wt.% by a factor of 2.5.

These estimates lead to the conclusion that strong enhancement of fatigue resistance
due to reinforcement may be ascribed to (i) a substantial growth of rates of plastic flow
in stacks of platelets which induces (ii) noticeable reduction in the energy of interaction
between polymer chains and inclusions.

10
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6 CONCLUDING REMARKS

Observations have been reported on polypropylene/nanoclay hybrids with various con-
centrations of filler in tensile cyclic tests with a stress–controlled program. Reinforcement
of polypropylene with nanoclay resulted in strong (by several times) reduction in ratch-
eting strain. Although substantial enhancement of fatigue resistance was observed at all
experimental conditions, the most pronounced improvement of mechanical properties was
reached when concentration of nanoclay equaled 1 wt.% at the highest value of maximum
stress σmax = 30 MPa.

A constitutive model has been developed in cyclic viscoelastoplasticity of polymer
nanocomposites. With reference to the homogenization concept, a nanocomposite is
treated as an equivalent polymer network with two characteristic features: (i) the plastic
strain tensor is split into the sum of two components that obey different flow rules, and
(ii) the strain energy density equals the sum of strain energies of individual chains and
the energy of interaction between chains and stacks of clay platelets.

Stress–strain relations are derived by using the Clausius–Duhem inequality. Adjustable
parameters in the constitutive equations are found by fitting the experimental data (16
cycles of loading–unloading for each set of observations). The model correctly describes
the stress–strain diagrams and evolution of maximum εmax and minimum εmin strains per
cycle with number of cycles n.

Comparison of material constants for polymer/clay hybrids leads to a conclusion that
enhancement of fatigue resistance may be attributed to acceleration of plastic flow in clus-
ters of nanoclay which induces noticeable reduction in the energy of interaction between
polymer chains and inclusions.

Acknowledgment

Financial support by the European Commission through project Nanotough–213436 is
gratefully acknowledged.

REFERENCES

[1] Tjong, S.C. Structural and mechanical properties of polymer nanocomposites. Mater.
Sci. Eng. R (2006) 53: 73–197.

[2] Pavlidou, S. and Papaspyrides, C.D. A review on polymer–layered silicate nanocom-
posites. Progr. Polym. Sci. (2008) 33: 1119–1198.

[3] Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J.,
Sternstein, S.S., and Buehler, M.J. Current issues in research on structure-property
relationships in polymer nanocomposites. Polymer (2010) 51: 3321–3343.

11



1030

Aleksey D. Drozdov

[4] Yang, J.-L., Zhang, Z., Schlarb, A.K., and Friedrich, K. On the characterization of
tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results
and general discussions. Polymer (2006) 47: 2791–2801.

[5] Lietz, S., Yang, J.-L., Bosch, E., Sandler, J.K.W., Zhang, Z., and Altstadt, V. Im-
provement of the mechanical properties and creep resistance of SBS block copolymers
by nanoclay filler. Macromol. Mater. Eng. (2007) 292: 23–32.

[6] Drozdov, A.D., Hog Lejre, A.-L., and Christiansen, J.deC. Viscoelasticity, viscoplas-
ticity, and creep failure of polypropylene/clay nanocomposites. Compos. Sci. Technol.
(2009) 69: 2596–2603.

[7] Wang, Z.D. and Zhao, X.X. Modeling and characterization of viscoelasticity of
PI/SiO2 nanocomposite films under constant and fatigue loading. Mater. Sci. Eng.
A (2008) 486: 517–527.

[8] Wang, Z.D. and Zhao, X.X. Creep resistance of PI/SiO2 hybrid thin films under
constant and fatigue loading. Composites A (2008) 39: 439–447.

[9] Drozdov, A.D. and Christiansen, J.deC. Cyclic viscoplasticity of high-density
polyethylene: Experiments and modeling. Comput. Mater. Sci. (2007) 39: 465–480.

[10] Bari, S. and Hassan, T. An advancement in cyclic plasticity modeling for multiaxial
ratcheting simulation. Int. J. Plasticity (2002) 18: 873–894.

[11] Xia, Z., Shen, X., and Ellyin, F. An assessment of nonlinearly viscoelastic constitutive
models for cyclic loading: The effect of a general loading/unloading rule. Mech. Time-
Dependent Mater. (2005) 9: 281–300.

[12] Tanaka, F. and Edwards, S.F. Viscoelastic properties of physically cross-linked net-
works. Transient network theory. Macromolecules (1992) 25: 1516–1523.

[13] Derrida, B. Random-energy model: limit of a family of disordered models. Phys. Rev.
Lett. (1980) 45: 79–92.

[14] Drozdov, A.D. Cyclic viscoelastoplasticity and low-cycle fatigue of polymer compos-
ites. Int. J. Solids Struct. (2011) 48: 2026–2040.

[15] Chaboche, J.L. A review of some plasticity and viscoplasticity constitutive theories.
Int. J. Plasticity (2008) 24: 1642–1693,

[16] Kang, G. Ratchetting: Recent progresses in phenomenon observation, constitutive
modeling and application. Int. J. Fatigue (2008) 30: 1448–1472.

[17] Sai, K. Multi-mechanism models: Present state and future trends. Int. J. Plasticity
(2011) 27: 250–281.

12



1031

NON INTRUSIVE TECHNIQUE BASED ON DISCRETE
ELEMENT APPROACH TO EXTRACT CRACK OPENING

FROM 3D FINITE ELEMENT COMPUTATIONS

B. RICHARD, C. OLIVER, A. DELAPLACE AND F. RAGUENEAU

Laboratoire de Mcanique et Technologie (LMT)
ENS-Cachan/CNRS/Universit Paris 6/PRES UniverSud
61 Avenue du Prsident Wilson 94230 Cachan, France

e-mail: Benjamin.Richard@lmt.ens-cachan.fr
e-mail: Cecile.Oliver@lmt.ens-cachan.fr

e-mail: Arnaud.Delaplace@lmt.ens-cachan.fr
e-mail: Frederic.Ragueneau@lmt.ens-cachan.fr

Key words: Crack opening, discrete element, continuum damage mechanics, non-linear
finite element, quasi-brittle material

Abstract. Closing the gap between damage and cracking is still nowadays an opened-
question. This study aims at proposing a post-process technique to extract local infor-
mation (crack openings) from continuous computations. In this paper, the approach is
exposed and first results are discussed.

1 INTRODUCTION

When dealing with the behavior of plain concrete or reinforced concrete structures, the
prediction of cracking remains a major issue. The effects of a crack on the durability of a
structure are a major concern as long as the predictivity improvement for the numerical
analysis is required. Not only the crack pattern but also crack features such as spacing,
openings, rugosity or tortuosity have to be assessed at a member scale [1]. Two levels of
analysis appear: the structure level and the crack level. Different approaches concerning
structural modeling accounting for local nonlinear behaviors can be used to tackle the
problems related to reinforced concrete structures subject to complex loading based on
plasticity theories [2] or damage mechanics [3]. The use of such models needs the intro-
duction of characteristic lengths to prevent the occurrence of spurious mesh dependency
related to strain softening. Based on differential or integral nonlocal theories for example
[4] or using viscosity approach [5], such characteristic lengths aim to smooth the discon-
tinuity over a certain vicinity. The identification of the characteristic lengths is a major
drawback when crack openings have to be quantified. Only a numerical post-treatment
allows recovering the discontinuity features of a crack in terms of displacements jump [6].

1
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Nevertheless, the problem remains unsolved in the case of multiple cracks as well as for
composite materials such as reinforced concrete. An explicit description of a crack can
be achieved using the discrete element methods [7]. The main physical mechanisms of
quasi-brittle materials failure are recovered such as spatial correlation, crack tortuosity
or scale effects. The mesh density needed for such modeling is nevertheless prohibitive
to treat the case of industrial structures. More recent advances in numerical analysis of
concrete structures have promoted the enhancement of finite element discretization by
directly introducing material discontinuities in the finite element formulations. Based on
shape functions finite elements kinematics enrichments [9] or nodal enhancements [10],
such frameworks allow to deal with displacement jumps and singular stress fields close
to the crack tip in case of strong discontinuity approach. For an industrial reinforced
concrete structure such as nuclear power plant containment vessels for which hundreds of
cracks may initiate and propagate, such numerical procedures would lead to excessive and
prohibitive CPU time consumptions. The cyclic loadings including crack closing are also
difficult to handle. The multiscale analysis introduces explicitly the two levels of interest:
the structure level and the crack level. If a general agreement for employing finite ele-
ment discretization at the macroscale is observed, the models employed at the local scale
describing strong nonlinearities and discontinuities can be numerous. One can use refined
meshing but homogeneous and continuous models [11], or introduce heterogeneities based
on a continuous or a discrete approach. Such methods need coupling operators based on
side-to-side modeling or overlapping domain [12]. An alternative procedure lies in the
direct geographic coupling of two models based on a finite element discretization far from
the zone of interest and a discrete modeling in the critical zone [13]. This kind of method
needs to previously anticipate the localization of the part of the structure which will need
a refine analysis with no possibility to extend the analysis without a complete remeshing.
The purpose of the present study is therefore to propose a technique allowing the use
of finite element models at a structural scale and a decoupled local analysis for some
interesting zones for which a local information is needed. In this paper, first numerical
results are shown and seem to be very encouraging for further works. In the first part,
the theoretical framework of the proposed non-intrusive approach is exposed and, in a
second part, numerical case studies are shown.

2 Combining finite and discrete element methods

The proposed decoupled strategy is obtained after a first analysis at macroscale, using
here a finite element approach. Then, depending on the problem, a Region Of Interest
(ROI) is defined, usually corresponding to the zones where the damage is developed.
Note that if a sequential analysis is performed, the size of the ROI could evolve with
the increasing of the loading. This ROI is then analyzed at the mesoscale, using here a
discrete element approach, with the boundary conditions extracted from the macroscale
computation applied on the non free surface of the ROI. The successive steps of the
strategy are summarized in the following: (i) computation of the whole domain at the

2
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macroscale, (ii) definition of the ROI to be analyzed at the mesoscale, (iii) definition of
the coupling operators between both scales along the non free surface of the ROI and (iv)
computation of the ROI at the mesoscale.

2.1 Definition of the Region OF Interest

The ROI that is reanalyzed at the mesoscale is a region where nonlinearities appear. In
this contribution, we choose a fixed ROI (although we could have considered an evolving
size of the region with respect to the evolution of the non linear region). Then, all
the nonlinear domain obtained at the last step of the macroscale computation must be
included in the ROI. This consideration allows avoiding any tricky coupling due to the
nonlinear behavior through the ROI boundary. The boundary ∂R of the ROI is split into
two parts: the free boundary ∂Rf and the boundary ∂Ru, where the boundary conditions
obtained at macroscale will be applied. As soon as the ROI is defined, the coupling
operators along ∂Ru between the two different scales are defined.

2.2 Coupling operators

The Dirichlet boundary conditions of the mesoscale computation are obtained from the
macroscale computation, all along the non-free surfaces ∂Ru of the ROI. The natural way
to transfer the displacement field from the macroscale to the mesoscale is to use the shape
functions of the finite elements used at the macroscale. Then, the displacement ūD(x

0
D)

at each nuclei x0
D of the cells related to the discrete model along the ROI boundary are

directly obtained with:

ūD(x
0
D) =

∑
j

Nj(x
0
D)uj (1)

where Nj are the shape functions of the finite element model, uj is the displacement
vector computed at macroscale. The equilibrium of the ROI is naturally fulfilled if the
same model is considered at macroscale and mesoscale. For two different models, one can
obtain a slight gap from equilibrium, that should be estimated a posteriori. Next, we
introduce an estimator of the gap between the continuous model and the discrete one.

2.3 Gap estimator

The advantage of this strategy, where the computation is performed twice (first at
macroscale and second at mesoscale), is that an estimator of the gap between the two
models is not limited to the ROI boundary but can be extended over the whole region.
Then, one can distinguish the different areas where the models are more or less in agree-
ment with each other. We propose a gap estimator based on the displacement fields
obtained with the two models. As the displacement field at the mesoscale is only com-
puted at the cells nuclei, we compute the gap estimator field at the cells nuclei, using the
shape functions of the finite elements in order to compute the macroscale displacement.
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The gap at the point x0
D is:

E(x0
D) =

||uD(x
0
D)−

∑
j Nj(x

0
D)uj||2

||uD(x0
D)||2

(2)

where uD is the displacement field obtained at mesoscale. Note that:

∀x0
D ∈ ∂Ru, E(x0

D) = 0

3 Continuum damage modeling for concrete

This section aims at giving an overview of the main features related to the concrete
model used. A detailed description can be found in [14]. Formulating a constitutive
model within the rigorous and consistent framework of the thermodynamically irreversible
processes requires the definition of a state potential. This functional must be positive,
convex and differentiable with respect to each variable. Moreover, this potential must
lead to a satisfying description of the local mechanisms related to quasi-brittle materials
such as the strong dissymmetry between the behaviors in tension and in compression, the
inelastic strains and the unilateral effect. To split the difficulties, the cracked behavior will
be assumed to be separated into two independent behaviors [15]: the hydro-static strain
mechanisms and the frictional sliding. For the hydro-static strain mechanisms, only cracks
opening and closing are considered. The frictional sliding is only treated on the deviatoric
part of the strain and stress tensors. These considerations lead to a decomposition of the
strain energy into two different parts, respectively due to the spherical and the deviatoric
components. This feature is one of the key points for taking into account damage and
sliding properly. A admissible state potential can be found (see [14]) and the positivity
of the corresponding intrinsic dissipation can be shown (see [16]).

4 Discrete modeling

A particle-based discrete model is used for the fine crack description. With this ap-
proach, the material is described as a particle assembly. A crack is naturally obtained if a
bond linking two particles breaks. A Voronoi tessellation is used, allowing an efficient and
easy mesh generation. The particle nuclei are randomly generated on a grid [17] in order
to control the boundary conditions. Cohesion forces can be equally represented either
by springs at the interface of neighboring particles or by beams linking the nuclei of the
particles. Euler-Bernoulli beams are chosen in the model used in this study. Then, four
parameters have to be identified: the length �b, the cross section area Ab, the inertia Ib
(or the adimensional parameter α = Ib/I0 where I0 is the inertia of the equivalent circular
section) and the elastic modulus Eb of the beam [18]. The first two parameters are pre-
scribed by the mesh geometry and are different for each beam. The last two parameters
are supposed equal for all beams and are identified in order to obtain the elastic properties
of the material, E and ν, respectively the Young’s modulus and the Poisson’s ratio [19].
Note that if necessary, one can compute contact forces between unlinked particles, for
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example for cyclic loading with crack opening and closing. The nonlinear behavior of the
material is obtained by considering brittle behavior for the beams. The simplicity of this
behavior is allowed because the model represents the material at a mesoscale, where just
a simple phenomenon, a crack opening in mode I, is represented. The breaking thresh-
old Pij depends not only on the beam strain but also on the rotations of the particles
(respectively i and j) linked by the beam. It is written as:

Pij

(
εij
εcr

,
θij
θcr

)
> 1 (3)

The critical strain εcr is identified by fitting the material tensile strength coming from
basic mechanical tests. Then, the critical rotation θcr is identified by fitting the material
compressive strength. Note that if the threshold depends only on the beam strains,
the material compressive strength is overestimated by the model. With this simple beam
behavior, one can obtain a reliable description of the material behavior, either for uniaxial
loadings or biaxial ones [20]. Our study focuses (i) on a fine description of the crack
pattern, and (ii) on the measurement of the crack opening. The crack pattern is defined
as the common side of the particles initially linked by the breaking beams. The opening of
the crack is computed by considering the relative displacement (uj − ui) of the unlinked
particles i and j. This approximation is justified by considering that the particles are
rigid bodies and that the material is unloaded close to the crack lips. The measure of
the opening between two particles i and j is projected on the normal nij of the local
discontinuity, and is expressed as:

eij =< (uj − ui).nij >+ (4)

where the dot stands for the scalar product.

5 Two-dimensional problem

We propose to test the proposed combining strategy on the single edge notched beam
experimentally and numerically analyzed by [21, 22]. This test is particularly interesting
because the loading ensures the rotation of the principal axes. Therefore, the main crack
rotates with the principal directions making their propagation interesting to study. Such
a crack pattern remains a major challenge for modeling assessments. We first focus
on describing the finite element modeling realized. Second, the elastic response and
the influence of the ROI size are analyzed and discussed. Last, we consider the crack
propagation problem that requires a robust management of nonlinearities.

5.1 Finite element computation

The beam is 440 mm long, 100 mm height and 50 mm thick. A 5 mm notch is created
on the top face, and a dissymmetric four-point bending test is carried out on the beam in
order to ensure the rotation of the principal axes. To control the ratio between the loads,
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a rigid trimmer has been modeled. A vertical displacement has been prescribed in such
a way that the ratios 10

11
and 1

11
are ensured. The domain occupied by the concrete beam

has been meshed by 394 three-node triangular elements. A coarse mesh has been chosen
allowing to capture the global nonlinear phenomenon (damage field) with a reasonable
computational cost. The local quantities of interest, such as stress singularities at the
notch tip guiding the crack initiation and propagation, should be accounted for in the ROI
using discrete modeling. The loading is controlled by displacement in order to improve
the numerical robustness of the finite elements computations (in the nonlinear regime, in
the following section). The concrete model used requires height material parameters: two
related to the elasticity mechanism, four related to the isotropic damage mechanism and
two related to the internal sliding. They have been identified with respect to the available
experimental information (see [14]). They have been deduced from the experimental
knowledge of the Young’s modulus (40000 MPa), the compressive stress (37.5 MPa) and
the tensile stress (2.70 MPa). The Poisson’s ratio has been assumed to be equal to 0.2.
Since the loading is purely monotonic, the material parameters related to the internal
sliding mechanism do not play an important role. Therefore, no specific attention has
been paid to identify them accurately. The characteristic length related to the non-local
approach has been chosen equal to 5 mm, which ensures that two or three finite elements
are included in the vicinity Ω(x, lc).

5.2 Elastic analysis

The proposed strategy is applied on the two following meshes. The first one is the mesh
we use at the macroscale. The second one is the mesh we use at the mesoscale. 26 000
particules (78 000 dofs) are used. The meso model parameters are identified by ensuring
the best force equilibrium when applying the boundary conditions computed from the
macro computation. The gap estimator is shown on figure 1. The maximum is 60%,
seemingly quite disappointing. The reason is obviously that a voluntary coarse mesh is
used at the macroscale, that leads to a poor approximation of the displacement field at
the macroscale. This effect is seen on the right hand side of figure 1, where a zoom is done
around the notch, showing the 2000× amplified deformed shape of the macro- and meso-
models. Local stress singularities due to cracks or notches conditioning crack initiation
and propagation will be catched thanks to the meso discrete model. Using threshold on
the gap estimator helps going deeper in the understanding of the numerical results. The
first step is a lower thresholding at a level of 15% (figure 2-left). It is clear that the
important gap is localized around the left side of the notch, where just one column of
triangular elements are used. On the other hand, a upper thresholding at a level of 5%
(figure 2-right) shows that the gap is lower almost everywhere on the ROI.
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Figure 1: The gap estimator for the elastic loading on the Geers beam (left) and a zoom on the deformation
(right).

Figure 2: The gap with a lower threshold (15% left) and a upper one (5% right).

5.3 Nonlinear analysis

The nonlinear analysis is performed using the R0-ROI. The main difference with the
elastic analysis is that the macroscale resolution is now carried out by an incremental-
iterative procedure, and different analyses at mesoscale should be done. An important
point is that it is not necessary to perform mesoscale reanalysis for each macroscale
computation step. The connectivity table between particles is initialized from the last
discrete computation, and the boundary conditions are derived from the corresponding
macroscale computation. For the 2D example considered in this paper, only three damage
states (figure 3-top) for a total of 40 steps have been reanalyzed at mesoscale, leading to
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the fine description of the cracking pattern in the center of the Geer’s beam (figure 3-
bottom). One can note the good agreement between the macroscale computation and
the mesoscale one. As expected, it can be noticed that the mesoscale analysis obviously
offers a finer description of the crack. In the final cracking pattern, one can distinguish a
macrocrack starting from the notch as well as microcracks starting from the lower loading
plate. It can be observed that the description of microcracking is not allowed only using
macroscale analysis. Finally, the deformed configurations at the mesoscale and at the
macroscale are presented in figure 4. Again a good agreement between both descriptions
is obtained, but the crack opening is directly obtained only with the mesocale analysis.

Figure 3: Damage maps and crack description obtained with discrete modeling.
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Figure 4: Deformation maps (×200).

6 Three-dimensional perpectives

We propose to apply the numerical strategy on a 3D problem. The protocol is strictly
identical to the one used for the 2D problem. The only difference is that ∂Ru is now a
surface compared to the line of the 2D case. We chose the PCT3D test proposed by Feist
et al [23]. The feature of this test is a real 3D crack propagation, due to the asymmetry
of the loading setup. The sample is a beam of 600 mm length, with a 180x180 mm square
section, supported by two horizontal sleeves. A triangular notch is done in an angle of
the mid section. The curves crack is obtained through an eccentric load.

Three damage states have been considered for the mesoscale reanalysis. These states
are shown in figure 5 for the front face and in figure 6 in 3D, with the corresponding
meso-scale results. Again, one can note the good agreement of the two analyses and
the more realistic description of the crack at meso-scale. The value of the crack opening
is given on the mesoscale cracking pattern (figure 6-right). Although the experimental
values are not known all along the crack, one can note the satisfactory agreement of
the numerical value (6.8 × 10−4 mm) with respect to the maximum experimental value
(8× 10−4 mm [23]) of the crack mouth opening displacement.

7 Conclusion

In this paper, an uncoupled numerical strategy dealing with a macroscale model and a
mesoscale one is presented. The aim is to obtain a fine description of cracking (opening,
length, tortuosity...) in certain regions of interest. The main concept is that a complete
computation at macroscale is done, and a reanalysis at mesoscale using the boundary
conditions computed at macroscale is carried out. The main features of the approach
are the following: (i) the strategy is non intrusive and therefore does not require any

9



1040

B. Richard, C. Oliver, A. Delaplace and F. Ragueneau

Figure 5: The damage patterns (top) obtained at macroscale and the correponding cracking pattern
(bottom) obtained at mesoscale after the reanalyses.

Figure 6: The 3D damage and cracking pattern obtained at the end of the loading.
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modification of the computational codes, (ii) a gap estimator between both approaches
can be estimated over the whole reanalyzed region and is not limited to the boundaries
and (iii) because of the uncoupled resolution, the computations at the different scales
can be naturally parallelized. The major drawback of the method is of course that the
force equilibrium between the two levels is not verified since the a displacement based
compatibility is used. Nevertheless, the different numerical results presented herein show
that the obtained results are satisfactory. A further study dealing with this point is still
under progress and will give quantitative results and discussions on this aspect.
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Abstract. In order to protect materials, thermally sprayed metallic coatings are applied
to the surface of structural components operating at high temperatures and in corrosive
media. The mesostructure of these coatings mainly consist of deformed flattened particles
partially separated by small oxide interface layers. In this study, the FEM implementation
of a representative volume element of a coating is presented focussing on the modelling
of interfaces. The structure is approximated as a hardcore Voronoi mosaic, based on
randomised seeds. While the particles are meshed with standard volume elements, cohe-
sive elements are used for the interfaces. A cyclic traction-separation law is implemented
to account for damage initiation and evolution under cyclic loading until failure. Com-
pared with experimental observations, the results of the FEM computation demonstrate
the applicability of the model to predict static and cyclic damage evolution as well as
delamination.

1 INTRODUCTION

Flame spraying is a widely used technology to apply metallic corrosion protection
coatings to components subjected to high temperature conditions. In particular, the
technology of high-velocity oxy-fuel flame spraying (HVOF) allows to produce coatings
with high-quality resistance properties in combination with high strength and low poros-
ity. The main bonding mechanism of thermally sprayed coatings is mechanical locking of
the initially globular particles after impact and deformation [1]. The flattened particles
separated from each other by thin oxide layers form the characteristic “pan cake” struc-
ture depicted in Fig. 1 a). Experimental observation [1] shows that crack initiation and
propagation occurs at the oxides when the coating is subjected to mechanical loading (s.
Fig. 1 b) ).
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In operation, thermal and mechanical loading cause thermo-mechanical fatigue (TMF)
which is amongst others a consequence of different coefficients of thermal expansion be-
tween substrate and coating. Since the fatigue life of the coating influences substrate
crack initiation as well as the corrosion resistance properties, the prediction of damage
and delamination is of high interest. The challenge of modelling the thermo-mechanical
behaviour including TMF is to characterise both coating particles and interface properties.

a) b)

Figure 1: SEM micrographs of HVOF-sprayed INC625 coatings a) cross-section (taken from [2]); b)
cracked surface after mechanical loading (taken from [1])

Throughout this study, we presume that damage initiation and evolution is restricted to
the interfaces either between substrate and particles or between several particles yielding
delamination and coating separation, respectively. Therefore, the theory of cohesive zones
enables a capable modelling approach. Cohesive zone models allow to describe separation
phenomena with the help of constitutive equations. By means of a traction-separation
law (TSL), the surface tractions of an opening crack are determined as function of the
separation vector and the local damage state, while the latter characterises the softening
behaviour. The position of the physical crack front and thus crack propagation is associ-
ated with vanishing tractions. The formulation of the TSL which constitutes the core of
a cohesive model is explained in more detail in section 3.

Cohesive zone models are denoted as monotonic if there is no distinction between
unloading and reloading paths under constant amplitude cyclic loading. In contrast, cyclic
cohesive zone models exhibit a pronounced hysteresis behaviour associated with energy
dissipation. Recently several cyclic cohesive models [3, 4, 5, 6, 7] have been developed,
based on the work of Roe and Siegmund [8, 9]. They introduce an explicit evolution
equation for the internal damage variable. History effects are accounted for as well as the
decrease of maximum attainable traction with ongoing cycling. The cohesive zone model
presented in section 3 adopts these features.

2 GEOMETRICAL REPRESENTATION

In this study the qualitative behaviour of the interfaces in sprayed coatings is analysed
through a representative volume element (RVE) comprising a substrate and a coating
section. Here we focus on the finite element model of the latter, which is obtained in

2
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three steps: (i) the geometric modelling of the sprayed particles; (ii) the generation of
the finite element mesh with standard continuum elements; (iii) the modelling of the
interfaces with cohesive zone elements.

Presuming that the formation of particles is well represented by aVoronoi-tessellation,
a number of seeding points is distributed randomly in a cube ranging in each direction
between -1 and 1 (s. Fig. 2 a) ). To prevent large differences in particle size, a minimum
distance between the seeding points is enforced by an additional hardcore Voronoi con-
dition. Periodical continuation is established according to [10]. Therefore, a supercube,
ranging in each direction between -3 and 3, is filled with 27 units of the previously identi-
cally seeded cubes. After the Voronoi-tessellation of the supercube has been generated
using MATLAB toolboxes, the centre cube with its pairwise identical lateral faces is cut
out (s. Fig. 2 b) ).

a)

b) c)

Figure 2: a) Distribution of five seeding points; b) Voronoi-tessellation; c) Voronoi-tessellation after
compression with a ratio of 0.5

As stated above, thermal spraying produces coatings composed of flattened particles
with a preferential direction perpendicular to the substrate surface. Unfortunately, the
procedure described above does not capture this feature, since the random distribution of
the seeding points is not constrained and the Voronoi-tessellation exhibits an isotropic
growth rule. Instead of affecting the tessellation algorithm, here the flat shape of the
particles is achieved by scaling the thickness of the tessellated cube. For this purpose,
a model parameter is introduced, which describes the flatness of the particles and the

3
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compression ratio of the former cube, respectively (s. Fig. 2 c) ).

Figure 3: a) RVE; b) Honeycomb structure of the cohesive zone elements within the RVE

The finite element discretisation is performed by a bottom-up procedure with the help
of the free libraries TRIANGLE 1 and TETGEN 2. Each particle is meshed separately
whereby edges and facets adjacent to each other get the same topology. Exemplarily, the
finite element model of a RVE is depicted in Fig. 3 a). The interfaces between particles and
between particles and substrate are meshed with cohesive zone elements (CZE). Thereby,
the single particles are connected to each other. Figure 3 b) shows the resulting honeycomb
structure of the cohesive zone elements within the RVE. It is worth mentioning that the
CZE are of zero-thickness type. The theory of cohesive zone elements will be explained
in more detail in the following section.

The modelling just presented is performed with a MATLAB-Script which organises
both the geometrical description and the finite element discretisation. It requires four
input parameters: (i) an averaged diameter of the initially globular particles to define
the number and the minimum distance of the seeding points, (ii) the compression ratio
to determine the flatness of the particles; (iii) the intrinsic length of the cohesive law
which limits the characteristic element length; (iv) the order of shape functions (linear or
quadratic) in both continuum and cohesive zone elements.

3 THE COHESIVE ZONE MODEL

The simulation of fracture processes with the help of cohesive zone models relies on the
hypotheses that damage evolution and progressive separation is limited to a distinct in-
ternal surface called cohesive zone. Cracks are constrained to propagate within this zone,

1http://www.cs.cmu.edu/˜quake/triangle.html
2http://tetgen.berlios.de/index.html
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while in the surrounding bulk material undamaged deformation is postulated to occur. In
this context fracture or delamination are the result of a continuous damage evolution to-
wards physical separation. The corresponding constitutive law relates the traction vector,
ti, to the separation vector, δj , also known as displacement jump vector. Considering the
principle of virtual work, the cohesive zone contributes δW c =

∫

Ac ti δδidA
c to the internal

work. Following the formulation given by [11] within the framework of finite elements,
cohesive zone elements are implemented as ABAQUS UEL subroutine.

3.1 Monotonic cohesive zone model

The key element of a cohesive zone model is the traction-separation law (TSL). It
relates the normalized effective traction τ to the normalized effective separation λ,

τ =
√

t2n + t2r + t2s/t0 (1)

λ =
√

〈δn〉2 + δ2r + δ2s /δ0 , (2)

whereby the indices n, r, and s denote the normal and the two tangential directions,
respectively. By using the MacAulay brackets, 〈x〉 = 1

2
(x + |x|), any contribution to

separation is prevented in pure compression mode.
Under monotonic displacement driven loading, the TSL describes a specific traction-

separation curve (TSC). The TSC consists of a monotonically increasing branch followed
by a monotonically decreasing one. The critical point at maximum is characterised by the
intrinsic model parameters cohesive strength, t0, and critical length, δ0. Loading above
δ0 results in initiation and evolution of irreversible damage. In the softening zone the
stiffness of the TSC decreases with increasing damage until the traction vanishes which
goes along with physical separation and advancing failure. Therefore, this branch of the
TSC is called “damage locus”. It forms an envelope of all admissible states. The damage
state at the damage locus is characterised by a damage variable D ranging between zero
at the apex of the TSC and one for infinite separation. The integral of the TSC equals
the specific fracture energy per unit area [12].

τ

0 1

1

λ

D = 0.9

0.7

0.5
0.3

0.1

Figure 4: Monotonic TSL: damage locus (solid) and unloading paths for different damage states (dashed)
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Usually, unloading is assumed to occur towards the origin of the TSC with unchanged
damage [13, 8, 6]. In contrast, here a weak non-linearity is admitted to reconcile the
unloading curve at zero damage and the first branch of the TSC, since below the critical
point reversible material behaviour is postulated. With ongoing damage evolution the
non-linearity is supposed to vanish (s. Fig. 4).

Throughout this paper we restrict to an exponential form of the TSC depicted in Fig. 4.
This approach was firstly proposed by Needleman and is well establish in the literature.
Motivated by interatomic potentials [14, 8, 6, 15, 16], a cohesive zone potential function,

Γ(λ,D) =
t0δ0
F (D)

[
e− [1 + λF (D)] e1−λF (D)

]
(3)

is assumed depending on the effective normalized separation and the damage variable D.
Inside Γ, the damage variable is embedded in a function, F , comprising all effects of the
non-linear unloading,

F (D) =
W((1−D)(ln(1−D)− 1)e−1)

ln(1−D)− 1
, (4)

wherein the Lambert W function implicitly defined by W(x)eW(x) = x is used. It can
easily be determined numerically using the iterative Newton algorithm (w = W(x),
iteration number i, Euler’s number e),

w(i+1) = w(i)−
w(i) e

w(i) − x

ew(i)(1 + w(i))
. (5)

According to [8, 6], the components of the traction vector are obtained by taking the
derivative of Γ with respect to the components of the separation vector,

tn =
∂ Γ

∂ δn
=

t0
δ0
〈δn〉F e1−λF , tr =

∂ Γ

∂ δr
=

t0
δ0
δrF e1−λF , ts =

∂ Γ

∂ δs
=

t0
δ0
δsF e1−λF . (6)

Consequently, the normalized effective traction (1) and thus the TSL are found as

τ = λF e1−λF . (7)

It is worth noting that the somewhat complicated looking function F (D) does not cause
any (numerical) problems when deriving the tangent stiffness for finite element analysis.
To complete the monotonic cohesive model, the relation between damage variable and
maximum effective separation, λmax, has to be given,

D =

{
0 , ∀ λmax ≤ 1

1− e1−λmax , ∀ λmax > 1
= 1− e−〈λmax−1〉 (8)

incorporating reversible and damaged states. Moreover, compressive loading has to be
considered. Here we assume that there is no frictional sliding. A simple contact model
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prevents interpenetration by magnifying the contact forces and stiffnesses with a high
penalty factor.

Figure 4 illustrates the loading and unloading behaviour of the monotonic TSL. It
is seen that the non-linearity of the unloading paths decreases with increasing damage.
Furthermore, considering cyclic loading with constant amplitude it is clear that this model
cannot predict fatigue crack growth, since damage accumulation arrests after the first
cycle. A capable extension of the model to allow damage accumulation even beyond the
damage locus is proposed in the following.

3.2 Cyclic cohesive zone model

In order to extend the monotonic cohesive model by cyclic damage accumulation, (8)
is replaced by an evolution law. The proposed power law approach, formulated again in
terms of effective cohesive zone quantities,

Ḋ = (1−D)

(
λ

1− ln (1−D)

)r

〈λ̇〉 (9)

incorporates the following assumptions and characteristics:

• Thermodynamics requirements Ḋ ≥ 0.

• Damage accumulation is restricted to the (re)loading portion of a load cycle.

• The damage locus remains an envelope of all admissible states. It forms a limit for
each loading path.

• The maximum attainable effective traction decreases as the damage increases.

D1

D0

τ

0

1

λλ0 λ1

Figure 5: Cyclic TSL: unloading with Ḋ = 0, D = D0 = const. and reloading with Ḋ > 0

The evolution equation described above allows to get a solution in closed form for
a displacement driven reloading stage starting at D = D0 and λ = λ0 after unloading

7
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with D = D0 = const. (s. Fig. 5). The resulting damage, D1, at an arbitrary effective
separation, λ1, reads as follows

D(λ1) = D1 = 1− exp

(
1−

r+1

√
λr+1
1 + [1− ln (1−D0)]

r+1 − λr+1
0

)
. (10)

A smooth transition from the cyclic to the monotonic CZE is realised by introducing
an endurance limit, which is the maximum effective traction for an infinite number of
cycles,

τe = (1−D)α [1− ln (1−D)] . (11)

Obviously, for an undamaged state the endurance limit equals the maximum effective
cohesive strength again indicating the reversible portion of the TSC. In contrast, for D
approaching one the endurance limit vanishes. In order to achieve a compact evolution
equation, the endurance limit is converted into an endurance separation with the help of
(7),

λe = −
1

F (D)
W((1−D)α(ln(1−D)− 1)e−1) . (12)

For α = 1 the model reduces to the monotonic TSL. The complete evolution equation
augmented by the endurance limit becomes

Ḋ = (1−D)

(
λ

1− ln (1−D)

)r 〈
λ̇ sign (λ− λe(D))

〉
. (13)

Besides the loading direction, now the comparison between current effective separation
and endurance separation, referring to the current damage state, decides about the oc-
currence of further damage evolution. Effective separations below λe enforce Ḋ = 0. The
analytical solution (10) is applicable when replacing λ0 by λe for λ0 < λe.

4 APPLICATION TO THERMO-MECHANICAL FATIGUE

In the following, the capability of the cyclic cohesive model to predict thermo-mechanical
fatigue of sprayed coatings is considered. For simplicity, both substrate and particles are
assumed to be of linear elastic materials. Damage is restricted to the cohesive zones
according to the cohesive model presented in section 3. For the purpose of qualitative
analyses, the computations are limited to one set of parameters, shown in Table 1. For
the material parameters of substrate and particles, the elastic properties of steel and the
NI-base alloy INC625 are assumed. The cohesive parameters are not available. Estimated
values are chosen in this way that there is a pronounced damage evolution even in the first
few cycles of a TMF analysis. The amount of damage growth during one cycle mainly
depends on the exponent r which is set here to a very low value, r = 2. By setting α = 50,
it is assumed that there is almost no endurance limit once the material is damaged. This
reduces cyclic damage arrest.

8
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Table 1: Parameters of the linear-elastic materials (substrate and coating particles) and cohesive law

substrate particles interface
ES = 210GPa EP = 180GPa t0 = 50MPa
νS = 0.3 νP = 0.3 δ0 = 1 · 10−4mm
αth
S = 12 · 10−6K−1 αth

P = 13 · 10−6K−1 r = 2
α = 50

In order to account for the periodic continuation of the RVE, the normal displacement
components with respect to the lateral faces are coupled between coating and substrate
(s. Fig. 6). A coupling of the in-plane displacement components at corresponding lateral
faces is not implemented so far.

For cyclic loading, the model is subjected to a homogeneous oscillating temperature
load with constant amplitude of 400K. Due to the slight misfit of the thermal expansion
coefficients and the Young’s moduli, cohesive zones develop depending on the specific
interface density and orientation. The distribution of the damage variable is depicted
in Fig. 7 after various cycles. After two cycles, damage initiation is observable at dis-
tinct positions. With ongoing cycling, these damaged areas increase, while the damage
level evolves towards one. This indicates that in this areas physical interface debonding
happens. Figures 7 d) and f) show crack branching and coalescence of the cracks with
progressing cycling. In summary, it can be stated that these numerical results match the
experimental observations qualitatively very well (compare Fig. 1 b) ).

Figure 6: Finite element model of the RVE with boundary conditions

9



1052

Stephan Roth and Meinhard Kuna

a) 2nd cycle b) 4th cycle

c) 5th cycle d) 6th cycle

e) 7th cycle f) 8th cycle

Figure 7: Damage distribution at the cohesive zone of the RVE under cyclic thermal loading

10
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5 SUMMARY AND CONCLUSIONS

In this feasibility study, we investigate the use of a cyclic cohesive model to predict ini-
tiation and evolution of fracture and delamination of sprayed coatings in the framework
of finite element analyses. The specific mesostructure of sprayed coatings is regarded
at the geometric modelling. Coating particles are represented by a randomly seeded
Voronoi-tessellation. Cohesive zone elements are used at the interfaces between coating
and substrate and between the coating particles, since damage initiation and evolution
are presumed to occur there. A cyclic cohesive model with four material parameters is
presented featuring an exponential damage locus and slight non-linear unloading. The
numerical simulations of a thermo-mechanical fatigue test demonstrate that this mod-
elling including a combination of geometrical issues and interfacial properties is able to
reproduce experimental observations.

Since throughout this qualitative study the cohesive parameters have been estimated,
future work has to be done concerning their identification. This implies a deeper investi-
gation of the intrinsic length scales of the model.

ACKNOWLEDGEMENT

This work was performed within the Cluster of Excellence ”Structure Design of Novel
High-Performance Materials via Atomic Design and Defect Engineering (ADDE)” that is
financially supported by the European Union (European regional development fund) and
by the Ministry of Science and Art of Saxony (SMWK).

REFERENCES

[1] Yilbas, B., Arif, A. and Gondal, M. Hvof coating and laser treatment: Three-point
bending tests. Journal of Materials Processing Technology (2005) 164-165:954–957.

[2] Bolelli, G., Lusvarghi, L. and Giovanardi, R. A comparison between the corrosion re-
sistances of some hvof-sprayed metal alloy coatings. Surface and Coatings Technology

(2008) 202(19):4793–4809.

[3] Abdul-Baqi, A., Schreurs, P. and Geers, M. Fatigue damage modeling in solder
interconnects using a cohesive zone approach. International Journal of Solids and

Structures (2005) 42(3-4):927–942.

[4] Geers, M., Ubachs, R., Erinc, M., Matin, M., Schreurs, P. and Vellinga, W. Multiscale
analysis of microstructural evolution and degradation in solder alloys. International
Journal for Multiscale Computational Engineering (2007) 5(2):93–103.

[5] Xu, Y. and Yuan, H. On damage accumulations in the cyclic cohesive zone model for
xfem analysis of mixed-mode fatigue crack growth. Computational Materials Science

(2009) 46(3):579–585.

11



1054

Stephan Roth and Meinhard Kuna

[6] Bouvard, J., Chaboche, J., Feyel, F. and Gallerneau, F. A cohesive zone model for
fatigue and creep-fatigue crack growth in single crystal superalloys. International

Journal of Fatigue (2009) 31(5):868–879.

[7] Liu, J., Yuan, H. and Liao, R. Prediction of fatigue crack growth and residual stress
relaxations in shot-peened material. Materials Science and Engineering: A (2010)
527(21-22):5962–5968.

[8] Roe, K. and Siegmund, T. An irreversible cohesive zone model for interface fatigue
crack growth simulation. Engineering Fracture Mechanics (2003) 70(2):209–232.

[9] Siegmund, T. A numerical study of transient fatigue crack growth by use of an
irreversible cohesive zone model. International Journal of Fatigue (2004) 26(9):929–
939.
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Abstract. A methodology for determining the local stress-strain curves of heterogeneous 
specimens is proposed. This methodology resorts to the same type of variables usually 
obtained in the experimental tensile test with the aid of the digital image correlation 
technique. This approach was successfully tested for heterogeneous specimens composed by 
several materials with dissimilar plastic properties.  
 
1 INTRODUCTION 

Describing the plastic deformation behaviour of heterogeneous materials is important for 
various applications where mismatch of material properties is involved, such as welding joints 
[1, 2], where the local variation in material properties has an impact on the overall mechanical 
response of the welded joints. 

In order to experimentally analyse the material response of heterogeneous samples, the 
digital image correlation (DIC) technique can be used for measuring the local material 
properties dissimilarities along the sample [4]. In recent years, several investigations have 
been performed on the application of the DIC technique to characterize the local mechanical 
behaviour in heterogeneous materials 2 - 4. 

The analysis of the DIC experimental results can be difficult and questionable, especially 
when the objective is to determine the local tensile stress-strain curve of the material. In this 
context, the finite element method is a very interesting tool to study this theme because it 
provides detailed data for a suitable description of the local mechanical behaviour which 
allows the development of approaches for its local characterization, including error 
estimation. 

The aim of this work is to study the mechanical behaviour of heterogeneous samples under 
uniaxial tensile test conditions, resorting to finite element analysis. 

2 NUMERICAL SIMULATION AND MATERIALS 
The three-dimensional numerical simulation in-house code, DD3IMP, was used .This code 

has been specifically developed to simulate sheet metal forming processes [5]. The model 
adopted considers only one eighth part of the 1 mm thick sheet tensile specimen due to 
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geometrical and material symmetries, as shown in Fig 1a. Five regions, accountable for 
different mechanical behaviours, were pre-defined in the sample with the respective 
boundaries distant from its centre 2, 4, 6 and 8mm (see Fig. 1a). Such configuration allows 
considering a sample with up to five different mechanical behaviours. In the present study, 
only two regions with different stress-strain curves were considered, and the results were 
analysed in the points (nodes) distant 0, 2, 4, 6, 8 and 18 mm from the centre of the specimen 
(in the next figures designated by: N 0mm, N 2mm, N 4mm, N 6mm, N 8mm and N 18mm, 
respectively), as it is shown on Fig. 1a. The tensile sample was discretized with 3D 8-node 
elements with an average in-plane size of 0.5 mm. The finite element mesh used in the 
numerical simulations was composed of 20 elements along Oy axis and 8 elements along Ox 
axis for each of the four zones A, B, C and D. The finite element mesh between the beginning 
of zone D and the end of the specimen was composed of 20 elements along Oy axis and 58 
elements along Ox axis. The specimen has two elements in half thickness. The finite element 
mesh considered for the tensile specimen is shown on Fig. 1b. 

 

(a) 

5 
m
m

32.5 mm

12.5 mm

10 m
m

 

(b) 

Fig.1. (a) Tensile specimen model with five possible regions accountable for different mechanical properties; the 
points considered in the results analysis are identified; (b) finite element mesh of the specimen. 

The plastic behaviour of the material is described by the von Mises isotropic yield criterion 
and the flow stress in tension described by the Swift equation: n

p0 )(K  , where   and 

p  are the equivalent stress and plastic strain, respectively, and K , 0 and n (work-hardening 
coefficient) are constants for a particular material. After the Swift equation, the yield stress 
value is: n

00 K ; the constant 0 was considered equal to 0.005, for all simulations. 
The mechanical properties of the materials composing the specimen are shown in Table 1, 

highlighting the change of only the yield stress, 0, value. M1 is the material used for the 
central region and materials M2, M3, M4, M5 and M6 are used alternatively for the exterior 
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region of the specimen. Specimens with different central region size, equal to 2, 4, 6 and 8 
mm, were considered in numerical simulations. The elastic behaviour is assumed as isotropic 
and it is described by the Young modulus E and the Poisson coefficient . 

Table 1: Mechanical properties of the heterogeneous samples analysed. 

Materials 0 (MPa) n E (GPa)  
M1 100 

0.25 72 0.33 

M2 150 
M3 200 
M4 250 
M5 300 
M6 350 

 

3 RESULTS AND DISCUSSION 

3.1 Methodology for Determination of Local Stress-Strain Curves 
The methodology for determining the local stress-strain curves consists of using the values 

of longitudinal deformation 1 (deformation in the axis direction of the specimen), in each 
node and their evolution during deformation, as a function of the applied force. In these 
conditions, it is possible to retrieve the value of the area of the cross section of the sample in 
each point and to determine the respective value of the normal true stress, 1, according to the 
following equations: 

1
0

e
A

A


                                                                                            (1) 

A
F

1                                                                                             (2) 

where A0 is initial area of the cross section of the specimen; A and F are the area and the 
applied load on the cross section of the specimen, at each moment of the deformation. The 
variable 1 can be experimentally obtained and correlated with F, using DIC results. 

The methodology was tested numerically on a homogeneous specimen, i.e. composed by a 
unique material 6. The local stress-strain curves obtained in different points of the specimen, 
using the proposed methodology, follows the local input curves described by the Swift law. 

3.2 Local Stress-Strain Curves: Influence of the Size of the Central Region 
Fig. 2 shows examples of the evolution of the load as a function of the displacement during 

the numerical simulation of the tensile test, with different central region sizes, equal to 2, 4, 6 
and 8 mm, for the case of the heterogeneous specimens considering the combination of 
materials M1-M3. The value of the maximum load decreases and the corresponding 
displacement value increases for increasing  lengths values of the central region. 
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Fig. 2. Load vs.displacement evolution for heterogeneous specimens considering the combination M1-M3 
with different central region sizes, equal to 2, 4, 6 and 8 mm. 

First of all, the strain paths and their evolution during plastic deformation of the 
heterogeneous specimens with different length of the central region were analysed. For this, 
the ratio 2/1 between transverse deformation, 2, and deformation along the axis of the 
specimen, 1, as a function of 1 was plotted, as shown in the examples of Fig. 3, for two 
specimens considering the M1-M3 materials combination. After the initial part of the curves, 
not all of the strain paths tend to plastic deformation in pure tension (2/1= -0.5). This is due 
to the fact that the heterogeneity of the plastic properties introduces constraints, which alter 
the strain path. In fact, these constraints cause the strain paths to tend to values of 2/1 
superior to -0.5, in case of the softer (central) region, and inferior to -0.5, in the case of the 
harder (exterior) region. When the points are away from the boundary between both materials, 
this effect decreases. Fig. 3 also shows that, in the exterior region of the specimen, the 
deformations attained are extremely low (inferior to 1%). 

 

  
(a) (b) 

Fig. 3. Strain paths (2/1) along the specimen axis as a function of respective longitudinal deformations, 1, for the 
specimens M1-M3. Boundary of the central region is distant from the specimen centre: (a) 2 mm and (b) 8 mm. 

The distribution of the longitudinal deformation, 1, in the surface of the specimen, 
immediately before the maximum load, was also studied for the cases where the boundary 
between two regions is distant from the centre of the specimen of 2 and 8 mm, as shown in 
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Fig. 4. Near the boundary between the two regions, the value of 1 tends to decrease, in the 
central region, and tends to increase in the exterior region. Moreover, the study of the 2/1 
ratio distribution in the surface of the specimen showed that its value is close to -0.5 (pure 
tension) near the periphery border and can drastically increase along its axis. 

 
(a) 

 
(b) 

Fig. 4. Distribution of the longitudinal deformation, 1, in the heterogeneous specimens, immediately before the 
maximum load, for specimens M1-M3. Boundary between materials is distant from the specimen centre: (a) 2 

mm and (b) 8 mm. 

Fig. 5 compares the local stress-strain curves, determined by the procedure described in the 
previous section, with the local input curves described by the Swift law. Examples, for the 
specimens combining the materials M1-M2 and M1-M3, are shown. In general, the results 
show that the methodology proposed in the present work allows the suitable determination of 
the local stress-strain curves. However, in some cases, the coincidence between the two 
curves is not conveniently obtained, as for the example in Fig. 5 (c), for the central point of 
the specimen. This is due to the strong constraint in this point which is more important for 
smaller sizes of the central region of the specimen (see Fig. 3). 
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Fig. 5. Local stress-strain curves in points of the heterogeneous specimens and corresponding local input curves 
for specimens: (a) and (b) M1-M2; and (c) and (d) M1-M3. Boundary of the central region is distant from the 

specimen centre: (a) and (c) 2 mm; and (b) and (d) 8 mm. 

3.4 Local Stress-Strain Curves: Influence of the Yield Stress Value 
Fig. 6 shows examples of the strain paths and their evolution during plastic deformation of 

the heterogeneous specimens, for all the material combinations studied, with two different 
central region lengths. The strain paths were determined in the points situated in the central 
region: in the centre of the specimen, for the case of the central region length equal 2 mm, and 
in the point distant 2 mm from the centre, for the case of the central region length equal to 4 
mm. The results are qualitatively similar for all cases: the ratio 2/1 is always higher than -0.5 
(corresponding to pure tension; see also previous section). Fig. 7 summarises the results of 
2/1, as a function of the difference between the yield stress values of the materials selected 
for the exterior and central regions of the specimen, 0 (results from Fig. 6, for high strain 
value: 1 at about 0.20). The value of the ratio 2/1 is higher for specimens with central region 
length equal to 2 mm than for the case of 4 mm length, due to the higher constraints in the 
first case. Also, for both specimens, the change of strain path, i.e. the withdrawal from the 
value 2/1 = -0.5 (pure tension), increases with the increase of the 0 value. Moreover, this 
withdrawal seems to be saturated when the values of 0 approaches 200 MPa (0 =300 
MPa). Fig. 8 compares the local stress-strain curves, determined by the procedure described in 
the present work, with the local input curves described by the Swift law, in the central region 
of the materials studied. The local curves were determined in the centre of the specimen for 
the case of the specimen with a central region length equal to 2 mm, and in the point distant 2 
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mm from the centre for the case of specimen with a central region length equal to 4 mm. The 
withdrawal of the local stress-strain curves from the respective input curve is visible after a 
deformation value   0.10, for specimens with central region length equal to 2 mm. Again, 
this is due to the strong constraint induced by plastic deformation heterogeneity in these 
specimens. 

  
(a) (b) 

Fig. 6. Strain paths (2/1) as a function of respective longitudinal deformations, 1. Boundary of the central 
region is distant from the specimen centre: (a) 2 mm and (b) 4 mm. 

 
Fig. 7. Strain path 2/1 evolution as a function of the difference between 0 for the materials in the central and 

exterior regions of the specimen, 0. 
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Fig. 8. Local stress-strain curves in points of the heterogeneous specimens and the stress-strain curves for 
materials M1. Boundary between materials is distant from the centre of specimen: (a) 2 mm and (b) 4 mm. 
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 8 

These results prove that the methodology proposed in the present work, for determining the 
local stress-strain curves, is appropriate. Small inaccuracies are observed, for cases with 
drastic changes of material yield stress between adjacent regions. 

4 CONCLUSIONS 
- This is an exploratory study concerning the possibility of determining local stress-

strain curves of heterogeneous materials, using the technique of digital image 
correlation; 

- Dissimilarity of the mechanical properties in the heterogeneous tensile specimen 
creates constraints which modify the strain path in relation to pure tension; 

- The intensity of constraints, defined by withdrawal of the strain path (2/1) relatively 
to pure tension (2/1=-0.5) increased near the boundary between regions with 
different plastic properties and decreases from the symmetry axis to the specimen 
border; 

- The methodology proposed for determining the local tensile stress-strain curves was 
numerically tested on heterogeneous samples. In some cases, the withdrawal between 
local curves and the ones of the material is visible due to the drastic variation of 
mechanical properties of adjacent regions of heterogeneous specimen. 

- This methodology uses the same type of results than the ones that can be 
experimentally obtained by DIC technique. 
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Abstract. After occurrence of an earthquake, one of the most important applications of recorded 
information in instrumented buildings is using these data in observation and estimation of 
damage in the structural systems of the building. A method using plastic hinge formation and 
wavelet analysis has been presented which directly makes use of rotational response history of 
frame nodes (rotation, angular velocity, angular acceleration) for extracting information of 
damage.  
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1 INTRODUCTION 
The estimation of severity of the damage has two main goals: (a) determining the stability and 

serviceability of structures after the earthquake, (b) getting timetable and its priority scheme for 
the damaged parts repairing. Topic of intensity of damage in structures subject to earthquake is a 
matter of major interest in most papers. The reason for this interest is that estimating the severity 
of damage with respect to onset and its position is difficult. One of the problems is that 
estimation of damage is a relative issue. In other words, although the damage severity of a 
member can be judged relative to the other members, but the damage influence and its severity, 
for example in a section of the structure cannot be estimated, correctly. Also, as these estimates 
are often based on vibration responses of system, substantive changes in response - for example, 
frequency of the lower modes - is the basis for damage detection. These changes are functions of 
intensity and distance of damaged part to the measured position. This means that small damage at 
the closer distance may have similar effects as a large damage at farther away which makes the 
detection more complicated. In some cases, relative damage estimation is also useful because it 
can be a basis for choosing a strategy to repair damaged areas. For calculating structural damage 
in members we can use Joint plastic rotation in beams and columns of a frame. First of all 
moment-curvature diagram is determined, and then the level of plastic rotation capacity is 
calculated. Campbell has presented a similar damage index [1]. 

 
2 WAVELET  

Wavelet is now a well known tool to detect damages. It defines a group of mathematical 
functions that are used to break down a signal to its frequency components. Wavelet functions 
have a limited bandwidth in time domain and frequency domain. Wavelets are transferred and 
scaled samples obtained by affecting a wavelet mother function on the main signal. 

Wavelet coefficients contain much information about the contents of the signal. Eqs. 1 to 4 
show main equations of wavelet transform method. Using a selected analyzing or mother wavelet 
function ψ(t), the continuous wavelet transform of a signal f(t) is defined as (M. Misti et al., 
2007)  [2]: 

  ,, ( ) ( )a bC a b f t t dt




  (1) 

1
2

, ( )a b
t bt a
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Discrete wavelet transform is similarly defined as follows: 

  ,, ( , ) ( ) ( )j k
n z

C a b c j k f n n


 
 
 

 
(3) 



1065

 F.  Raufi and O. Bahar  

in which ,j k
 is a discrete mother wavelet, which is defined as follows and sometimes also 

called binary analysis: 

/ 2
, ( ) 2 (2 )j j

j k n n k      (4) 

Selection of proper mother wavelet function is the first step in the wavelet analysis. The 
choice depends on the desired issue and can have a considerable effect on the results. In this 
study, discrete wavelet transform (DWT) employing "Bior 6.8" [3], is used. In DWT, scale 
parameter ‘a’ is chosen as a= 2J where J is an integer values J є Z. For a function f(t) є L2-space  
with a Fourier transform F(ω), a change in scale factor J is followed by a change in scale of 
frequency domain given by a= 2J. Signal decomposition in wavelet analysis is carried out by 
projecting the signal into a subspace of scaling and wavelets basis functions at different scales 
and their transmission.  

 
3  METHODOLOGY 
     Based on the definition of the Federal Emergency Management Agency (FEMA 356) [4] 
plastic formation at a joint of a steel frame in a Moment-Rotation curve has a clear transition 
point, "point A" in Fig. 1, that the member's elastic behavior ends and its inelastic behavior starts. 
After that, there is "point B", in which the member cannot carry more loads. In this situation the 
member has been sustained severe damages. In other words, there are two clear stages: (a) 
Passing from point “A” and (b) Passing from point “B”. Transition from point A is considered as 
the beginning of the plastic behavior and actually is the criterion for determining starting time of 
damage, while passing from point B can be considered as a criterion for determining severity 
changes, which leads to destructive damages.  
 

 
 
       
 

Fig.1. Moment - rotation behavior 
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Moving from point A to C can be estimated from response history of the nodes adjacent to the 
hinge. These changes cause permanent alteration in the responses of the joint and it would lead to 
a shift in the response base line of the adjacent node. For determining the value of this shift, using 
wavelet analysis, details can be removed from the response and an approximation can be 
achieved. Details will contain information for computing time of damage [5] and approximation 
will have information about the severity of damage. Details demonstrate passing from point A 
and approximation demonstrates if the response falls between A and B or it has passed B. 

 
To further clarify the above mentioned method, consider the frame shown in Fig. 2 under the 

loading shown in Fig. 3. Two cases are assumed: First, all members behaves within their elastic 
ranges such that no plastic hinges would be formed by increasing external load, F(t). In this case, 
the rotation time history response of node P, such as loading, has a linear gradient and increases 
constantly. Second, it is permitted that by increasing external load a plastic hinge initiates to form 
at a member. Again we analyzed the rotation response of node P. As it can be seen in Fig. 4, after 
plastic hinge formation, slope of the response function increases clearly. Also for this frame the 
occurrence time and their related values of the rotation for the end section of member AP in each 
states: A, B and C are speciifed in Fig. 4. 
 

 
 

 

 

 

 

Fig. 2. Simplified model of Plastic hinge formation (on the frame subjected to a horizontal load) 
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Fig. 3. Monotonic loading 

  
Fig. 4.   Time history response of node B in case of plastic hinge formation in a member 
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4 NUMERICAL ANALYSIS AND RESULTS 
Now, we aim to examine this procedure to a moment steel frame, Fig. 5, subjected to a 

random support excitation like an earthquake. This frame is a 5 meter length, 3 meter height 
simple frame with fixed bases and a uniform dead load about 2000 kg/m. Fig. 6 shows the strong 
ground motion recorded at Tabas, Iran. This earthquake was a huge earthquake measuring 7.8 on 
the Richter scale, which struck on September 16, 1978 in central Iran. 

  

 

 

 

Fig. 5. Schematic representation of main damage in the studied frame subject to Tabas excitation                   

  

  

Fig. 6. Normalized Tabas record with respect to its peak ground acceleration (PGA) 
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As can be seen in Fig.7 changes in the difference of two nodes is similar to the rotational 
response history of the plastic hinge formed between them. 

  
Fig. 7. Response difference and hinge rotation history 

 
 

Hence having behavioral curve and rotational response history of the plastic hinge the current 
place on the behavior curve can be determined. Where the intensity of damage does not reach the 
point B, in other words if it lies between points A and B, there will also be a shift in the base line 
which demonstrates plastic deformation and can be captured by “approximate signal”, Fig.8.  

 
In the case of intense damage, point B on the behavioral curve in Fig. 9, a total shift will occur 

in the base line which is visible in the wavelet approximation as well as the response itself. Also 
there will be an increase in the period of the structure which can be a criterion for determining 
intensity of damage.  
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Fig. 8. 4th approximation obtained from wavelet transformation of point 2 rotational response (intensity 

corresponding to points A to B) 

 

 
Fig. 9. Base line shift corresponding to point B 
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5 CONCLUSION 

Plastic deformation causes permanent shift in response time history. In moment frames this 
shift is well represented in the rotational response time histories of nodes which mean plastic 
rotation in adjacent hinges. Recognizing any change in differences of the rotational response 
histories of the two adjacent nodes has a similar pattern to the rotational response history of the 
plastic hinge forming between them.  

 
Shift in the base line is apparent in the “approximate” obtained from wavelet transform of the 

response. “Details” obtained from wavelet transform of the response could be used to determine 
damage onset while information on the severity of the damage can be estimated from 
“approximate”
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Abstract. The strain localization phenomenon that may occur during sheet metal forming 
represents a major cause of defective parts produced in the industry. Several instability 
criteria have been developed in the literature to predict the occurrence of these instabilities. 
The proposed work aims to couple a Gurson-type model to the Rice’s localization criterion. 
The implementation of the modeling is achieved via a user subroutine (Umat) in Abaqus/std 
using a Runge-Kutta explicit integration scheme. Finally, we show the effectiveness of the 
proposed coupling for the prediction of the formability of stretched metal sheets. 
 
 
1 INTRODUCTION 

Material instabilities in the form of shear bands represent one of the main phenomena that 
limit sheet metal formability. This instability in the plastic flow is still an issue for industry, 
since it is responsible for most of the defective parts after forming operations. Consequently, 
it is important to provide reliable and validated numerical tools able to predict the appearance 
of these plastic instabilities. The occurrence of localization through shear bands is often due to 
concentrations of deformation where damage is in excess. Thus, taking into account damage 
development during metal forming operations is essential to obtain reliable results. 

Two main approaches for damage descriptions were developed in the literature during 
these last four decades. The first one is known as the continuum damage mechanics approach 
(Lemaitre [1]) and is based on the introduction of a damage variable that can be scalar or 
tonsorial describing the surface density of defects. The second approach, physically motivated 
by micromechanics concepts, accounts for the effect of the hydrostatic pressure on the 
material behavior through the void volume fraction. In this contribution, the second approach 
for damage will be used, i.e., the so-called Gurson-Tvergaard-Needleman model (GTN) [2-4]. 

In order to predict the onset of strain localization, it is necessary to couple the constitutive 
model with a localization criterion. Several localization criteria have been developed in the 
literature, which differ in their theoretical foundations. Brunet et al. [5] used the GTN model 
coupled with the Modified Maximum Force Criterion (MMFC) (Hora et al. [6]) to predict 
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forming limit curves for different steel grades. The obtained numerical results were compared 
to experimental data showing good agreements. Besson et al. [7] have coupled the Rice 
localization criterion with the GTN model for the prediction of ductile fracture in notched 
bars. It was shown that the introduction of the effective porosity (f*) favors flat fracture under 
plane strain conditions. In the current work, the formability limits of metal sheets are 
investigated by means of the GTN-Rice modeling. 

The paper is organized as follows: the main equations that govern the GTN model are first 
reviewed; then the expression of the acoustic tensor is derived within a finite strain 
framework. In the results and discussion section, we show the effectiveness of the proposed 
modeling for the prediction of forming limit diagrams (FLDs). Finally, some concluding 
remarks are drawn as well as some directions for future work. 

2    PRESENTATION OF THE GTN MODEL 

The GTN model originally proposed by Gurson [2] and phenomenologically extended by 
Tvergaard [3], Tvergaard and Needleman [4] is perhaps one of the most popular damage 
models for the prediction of the ductile fracture (Sànchez et al., [8]). This damage model has 
shown its efficiency in particular for the prediction of the cup-cone fracture that usually 
appears during tensile tests of notched cylindrical bars. The approximate macroscopic yield 
criterion proposed by Gurson and driven from a limit analysis is given by the following 
relation: 

 
 

2
* *22

1 3
32 - 1 0
2

eq mqq f ch q f
 
          

       
(1) 

where  1 2Σ 3 2 :eq   Σ Σ  and  Σ 1 3m tr Σ  represent, respectively, the macroscopic equivalent 
stress and the macroscopic average stress. σ  is the yield stress of the fully dense matrix, here 
only isotropic hardening is considered using a Swift law defined as follows:  

0( )p nσ k ε ε         (2) 

where k , 0ε  and n  are parameters of the Swift hardening law and p is the equivalent plastic 
strain of the matrix material. The parameters q1, q2 and q3 were introduced by Tvergaard [9] 
in order to take into account the effect of interaction between cavities, and *f represents the 
effective porosity, which will be defined hereafter. For the isotropic GTN model, the plastic 
part of the macroscopic strain rate pD and the rate of equivalent plastic strain p  are assumed 
to be related by the equivalent plastic work expression as follows: 

           1 :p pf    D        (3) 

where f  represents the void volume fraction and    the macroscopic Cauchy stress tensor. 
This relation is exact for f=0 and is a reasonable assumption for porous materials with low 
hardening exponents [9]. The plastic strain rate is defined by the normality law as follows: 
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p
 D V        (4) 

such as λ  represents the plastic multiplier, and Σ Φ  V Σ
 
is the flow direction tensor. By 

injecting relation (4) into (3), one obtains the rate of equivalent microscopic stress given by 
the following relation: 

 1
p

p
d H

fd


 


  


V
     (5) 

Before coalescence, the evolution of porosity is mainly due to two phenomena: nucleation and 
growth. It is thus possible to express the porosity rate as follows: 

    n gf f f         (6) 

where nf  and gf  represent the porosity rate due to nucleation and growth, respectively. In this 
work, it is considered that nucleation is strain controlled; in this case the evolution law of nf  
due to particle fracture or particle-matrix debonding is given by the following relation [10]: 
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(7) 

where Nf  represents the volume fraction of inclusions likely to nucleate, N  the equivalent 
plastic strain for which half of inclusions have nucleate and Ns  the standard deviation on N . 
The porosity rate due to growth depends strongly on the stress triaxiality and is given by the 
following relation [9]: 

       1 ( )p
gf f tr  D

        
(8) 

The detection of the coalescence stage uses the phenomenological criterion introduced by 
Tvergaard and Needleman [7] by means of the effective porosity such as: 

    *
cr GTN crf f f f  

                   
(9) 

with 
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(10)    

where crf  represents the critical porosity and Rf  the void volume fraction at final fracture. 
Thus, when the material enters the coalescence phase, the introduction of effective porosity 
results in an accelerated degradation of its mechanical properties. 

3    ELASTO-PLASTIC TANGENT MODULUS 

In order to determine the expression of the elasto-plastic tangent modulus in the case of the 
GTN model, we apply the consistency condition given by the following relation: 
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is the flow direction tensor. By 
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Before coalescence, the evolution of porosity is mainly due to two phenomena: nucleation and 
growth. It is thus possible to express the porosity rate as follows: 
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where nf  and gf  represent the porosity rate due to nucleation and growth, respectively. In this 
work, it is considered that nucleation is strain controlled; in this case the evolution law of nf  
due to particle fracture or particle-matrix debonding is given by the following relation [10]: 
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where Nf  represents the volume fraction of inclusions likely to nucleate, N  the equivalent 
plastic strain for which half of inclusions have nucleate and Ns  the standard deviation on N . 
The porosity rate due to growth depends strongly on the stress triaxiality and is given by the 
following relation [9]: 
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The detection of the coalescence stage uses the phenomenological criterion introduced by 
Tvergaard and Needleman [7] by means of the effective porosity such as: 
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Let us now introduce the hypo-elastic law, which reduces in the co-rotational (material) 
frame to a simple material derivative: 

 : :e ep
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where eC  represents the isotropic elasticity tensor, and D  the strain rate tensor. Substituting 
equations (12) to (15) in the consistency condition, one can derive the expression of the 
plastic multiplier, which is given by the following relation: 
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where H  is a scalar variable such as: 
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substituting relation (16) in (15) gives the expression of the elasto-plastic tangent modulus as 
follows: 
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where 0   for elastic loading or unloading and 1   in case of strict elasto-plastic loading. 

4    INSTABILITY CRITERION 
In addition to the behavior model, prediction of forming limits requires the use of an 

instability criterion allowing detection of the onset of localization. The instability criterion 
selected in this work is the Rice localization criterion [11-12], based on the singularity of the 
acoustic tensor. As discussed in the introduction, the coupling of the GTN model with the 
Rice instability criterion has been considered in the literature mainly for the prediction of 
ductile fracture in cylindrical bars under plane strain conditions. However, to the authors’ 
knowledge, no attempt has been made for the prediction of FLDs within this constitutive and 
material instability framework. Thus, the originality of the present work is to demonstrate the 
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efficiency of such modeling in the prediction of forming limit diagrams. Then, the sensitivity 
of FLDs to the material parameters is investigated. The condition of localization, which can 
be derived from the Hadamard compatibility condition and the static equilibrium equation is 
given by the following relation: 

   det det 0   Q Ln n       (19) 

where Q  represents the acoustic tensor, n the normal to the localization band and L the 
tangent modulus which relates the nominal stress tensor to the velocity gradient (see Haddag 
et al. [13]). Its expression is given by the following relation: 

1 2 3
ep  L = C + L L L      (20) 

where L1, L2 and L3 are fourth-order tensors induced by the large strain framework, and given 
by the following relations [13]: 
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The implementation of the above-described behavior model is carried out via a user 
material routine UMAT in Abaqus/standard, by means of a Runge-Kutta explicit integration 
scheme. This time integration scheme offers a reasonable compromise between simplicity and 
computational efficiency. Another reason behind the choice of an explicit scheme is that 
localization occurs in the softening range, and often at small stress values where implicit 
integration schemes (Aravas [14]) may experience difficulties at this stage of the analysis. 
Indeed, in the softening regime, positive definiteness of the consistent tangent modulus might 
not be guaranteed by classical implicit schemes (Oliver et al., [15], Sànchez et al., [8]). 
Because our main objective in this work is to show the effectiveness of the proposed 
framework in predicting forming limit diagrams of sheet metals, the choice of the Runge-
Kutta time integration scheme is justified, despite the relatively higher computation times 
compared to implicit algorithms. 

5    RESULTS AND DISCUSSION 
In what precedes, the coupling of the GTN model with the Rice localization criterion was 

described. In this section, some results obtained by means of this coupling are shown. The 
material studied corresponds to a mild steel, mainly because of its widespread use in industry. 
The parameters related to this material were drawn from literature (see Brunet et al. [5]) and 
are reported in the following tables: 

 
 

Table 1: Mechanical properties and strain hardening parameters 

Material E (MPa) ν  k (MPa) 
0ε  n 
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Mild steel 
198000 0.3 551.1 9.54 10-3 0.279 

Table 2: Parameters of the damage model 

Material f0 sN 
Nε  fN fcr fR q1 q2 q3 

Mild steel 10-3 0.1 0.21 0.039 0.03 0.15 1.52 1.0 2.15 

Figure 1-a represents the evolution of the Cauchy stress versus the true strain up to the 
localization point for three strain paths, namely uniaxial tension (UT), plane strain tension 
(PST) and balanced biaxial tension (BBT). In the case of PST, localization occurs very early, 
as soon as the stress-strain curve starts to soften, whereas for the BBT loading path, 
localization occurs for very low stress values at the end of coalescence.  

 
(a)       (b) 

Figure 1: (a) Simulation of three loading paths up to localization; (b) Evolution of the minimum of the 
determinant of the acoustic tensor as a function of the deformation. 

Furthermore, localization takes place when the minimum of the determinant of the acoustic 
tensor is equal to zero (see equation (19)). In practice, during numerical computations this 
condition is not exactly met, and the value of det(Q) changes from positive to slightly 
negative (see Figure 1-b) during one loading increment (see also Besson et al. [7]).Figures 2-a 
to 2-d illustrate the effect of the coalescence parameters ( crf  and Rf ) on the moment of 
detection of localization in BBT strain path. One can notice that decreasing parameter Rf  
results in an increase of GTN , which makes it possible to detect localization in a premature 
way. On the other hand, increasing parameter crf  will delay the mechanism of coalescence 
and in some way the occurrence of strain localization. 

The modeling of coalescence phase is a major point when dealing with the proposed 
coupling. Indeed, Rudnicki and Rice [12] showed that for associative plasticity models (which 
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is our case); localization criterion can detect bifurcation only in the presence of softening 
behavior. Consequently, it is important to take into account the mechanism of coalescence.  

 
(a)                       (b) 

  
 (c)       (d) 

Figure 2: Effect of the coalescence parameters on the prediction of localization. 

This phenomenon has a considerable effect on the obtained forming limit diagrams, since no 
localization can occur with the proposed modeling during positive hardening behavior. Note 
that several authors [16-18] suggested that parameter GTN  should not be constant, but should 
rather depend on other parameters, such as the stress triaxiality, initial porosity, etc. Although 
the coalescence model taken in the current work is kept in its simplest form (i.e., with 
constant parameter GTN ), the extension of this modeling framework to more physically-based 
descriptions can be readily done in future investigations of sheet metal formability. 

5.1  Effect of the GTN parameters on the prediction of forming limits 
In this section, the effect of the GTN model parameters on the prediction of FLDs is 
investigated. These parameters are divided into three families; each family reproducing one of 
the three mechanisms leading to ductile fracture (i.e. nucleation, growth and coalescence). 
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The results of this parametric study will be shown by varying one parameter at the same time 
and the reference curve will be that obtained by the parameters given in Tables 1 and 2. Thus, 
we will analyze the effect of initial porosity and the parameters associated with nucleation and 
coalescence mechanisms. Figures 4-a, 4-b and 4-c represent, respectively, the sensitivity of 
the FLDs to parameters Nf , Ns  and N .  

 
(a)         (b) 

 
(c)     (d) 

Figure 3: Effect of nucleation parameters and initial porosity on the prediction of FLDs. 

The increase of Nf  (decrease in Ns  or N ) seems to have the same effect on the obtained 
FLD; indeed, the increase in fN (reduction in Ns  or N ) translates each point of the FLD 
downward, thus reducing the formability limits. The initial porosity is one of the most 
influential parameters of the GTN model, and many authors agree with its major importance 
(Pardoen and Hutchinson [18]). Figure 4.d represents the sensitivity of an FLD to the initial 
porosity; one can observe that the increase in initial porosity reduces the overall level of the 
FLD, and consequently reduces the material ductility.  

It was shown in the previous section that the effect of coalescence parameters on the 
moment of occurrence of localization is crucial. In what follows, we propose to study the 
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sensitivity of an FLD to these parameters. One notices on Figures 5-a and 5-b that variation of 
parameters crf  and Rf  strongly affects the shape of the FLDs. Indeed, this is mainly due to 
the role of each parameter in the coalescence modeling, since crf  indicates the onset of 
coalescence, whereas fR indicates the complete loss of carrying capacity. 

 
(a)      (b) 

Figure 4: Effect of coalescence parameters on the prediction of FLDs. 

6    CONCLUSIONS 
In this work, the combination of the GTN damage model and the Rice’s localization 

criterion, which is based on the singularity of the acoustic tensor, has been proposed for 
application to sheet metal forming. A preliminary parametric study was conducted for 
different loading paths, which leads to the following observations: Concerning the nucleation 
parameters, it seems that the increase of Nf  (decrease in Ns  or N ) tends to lower each point 
of the forming limit curve. An increase of GTN  parameter accentuates the softening slope 
during the coalescence stage, which leads to an earlier detection of localization. It was shown 
that the choice of the coalescence parameters is particularly crucial in the prediction of 
localization. For the coalescence parameters, the increase of crf  produces an upward 
translation of the FLD, while for Rf  we notice that its decrease will lower the overall level of 
the FLDs. 
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Abstract. In this paper, considering a cohesive zone model (CZM) for finite thickness
interfaces recently proposed by the authors, the stiffness of polycrystalline materials with
imperfect interfaces is characterized. Generalized expressions for the Voigt and Reuss
estimates of the effective elastic modulus of the composite are derived to interpret the
numerical results. Considering a polycrystalline material with a hierarchical microstruc-
ture, the interaction between interfaces at the different hierarchical levels is numerically
investigated. A condition for scale separation, which suggests how to design the optimal
microstructure to maximize the material tensile strength is determined. An original inter-
pretation of this phenomenon based on the concept of flaw tolerance is finally proposed.

1 INTRODUCTION

The upper and lower bounds to the effective stiffness of a composite material have long
been the subject of research (see [1] for an overview). Bounds to the effective properties
of heterogeneous solids were put forward by Voigt [2] and Reuss [3]. Eshelby [4] obtained
a compact solution that has been the basis for many approximation methods. Based on
variational principles, Hashin and Shtrikman [5] developed a refined model for the com-
putation of the effective properties. Several other models have been proposed to estimate
the effective properties and their bounds, including computational homogenization [6] for
linear and also nonlinear elasticity [7, 8]. Recent progress in this field regards the analysis
of random components, coupling homogenization methods with a statistical description
of randomness [9].
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Based on Hill’s work [10], the effective elastic modulus of a polycrystalline material
with perfectly bonded interfaces, Eeff, is bounded as follows:

ER ≤ Eeff ≤ EV, (1)

where the indices R and V stand for Reuss and Voigt estimates. The Reuss estimate
corresponds to isostress conditions, whereas the Voigt estimate is related to isostrain
conditions and are given by:

ER =

(

n
∑

i=1

vi

Ei

)−1

, (2a)

EV =

n
∑

i=1

viEi, (2b)

where the summation is extended to all the n material components and vi denotes the
volumetric fraction of the i-th component (

∑n
i=1 vi = 1). However, these estimates apply

in case of perfectly bonded interfaces, a situation which is often violated in engineering
applications.

In this paper, finite element simulations of polycrystalline materials with imperfect
interfaces governed by the cohesive zone model (CZM) are carried out. To interpret
the numerical results, a generalization of the Voigt and Reuss estimates in case of im-
perfect cohesive interfaces is proposed. In the second part of the paper, considering a
polycrystalline material with a hierarchical microstructure, the effect of interfaces at the
different hierarchical levels on the material tensile strength is investigated. The condition
for scale separation, often put forward in homogenization methods, is carefully checked
and it is found that it is not always fulfilled. When scale separation holds, the mate-
rial microstructure becomes flaw tolerant and the material tensile strength is maximized,
for given interface characteristics at the upper level. These results are useful for a bet-
ter understanding of the mechanisms leading to the superior mechanical properties of
hierarchical polycrystalline materials with respect to their conventional counterpart [11].

2 GENERALIZED VOIGT AND REUSS ESTIMATES OF THE EFFEC-
TIVE ELASTIC MODULUS IN CASE OF IMPERFECT INTERFACES

To understand how imperfect interfaces modify the bounds to the effective elastic
modulus of a heterogeneous material, let us consider the composite layouts shown in
Fig. 1. We assume that m material layers behave linear elastically and the remaining
q = n−m layers are finite thickness interfaces undergoing damage. Damage is related to
the deformation of the interface layer as proposed in [12]. Hence, an effective damage Di

is introduced for a generic interface layer i:

Di =

[

(

wi

wc,i

)2

+

(

ui

uc,i

)2
]αi/2

, 0 ≤ Di ≤ 1, (3)

2



1084

Marco Paggi and Peter Wriggers

Imposed tractions σ or displacements η

(a) (b) (c)

θ

δi
E i

ψi

E i

(d)

l i

h

Figure 1: A composite system subjected to imposed tractions or displacements with different orientations
of the interfaces with respect to the load direction.

where wi = δi − δe,i > 0 is the difference between the displacement of the i-th layer in the
direction perpendicular to the interfaces (Fig. 1(b))and a threshold value δe,i correspond-
ing to the onset of damage. The variable ui = ψi − ψe,i > 0 is the difference between
the displacement of the i-th layer in the direction parallel to the material interfaces (Fig.
1(b)) and its threshold value ψe,i. The parameters wc,i and uc,i are critical values of the
separations in the two orthogonal directions. For more details about the effect of the
parameter αi to the evolution of damage, the reader is referred to [12].

Considering the system in Fig. 1(a), isostrain conditions are simulated by imposing uni-
form horizontal displacements η on the vertical boundary on the right and fully restraining
the opposite boundary. The horizontal boundaries are traction-free. The horizontal axial
strain in each layer equals the average strain � = η/h, where the distance h is quoted in
Fig. 1(a). The stresses are different in the material regions and the average stress is:

σ =

n∑
i=1

viσi =

(
n∑

i=1

viEi

)
� =

(
n∑

i=1

viEi −
q∑

i=1

viDiEi

)
�, (4)

where the elastic modulus of the damaged interfaces is ED
i = (1 − Di)E1. A generalized

Voigt estimate considering damage in the finite thickness interfaces is therefore derived:

EG
V =

n∑
i=1

viEi −
q∑

i=1

viDiEi. (5)

For Di = 0, the classical Voigt estimate for the elastic modulus is recovered. However,
neglecting Poisson’s effects, it is interesting to note that the boundary conditions for this
problem lead to δi = 0 and ψi = 0. Consequently, no damage develops and the classical
Voigt estimate holds without any modification.

3
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Let us now consider the same problem but subjected to isostress conditions. They are
obtained by imposing a constant horizontal traction σ = σ on the vertical boundary on
the right (see Fig. 1(a)). The axial strain is different in the layers and its average is:

� =

(
n∑

i=1

vi

Ei
+

q∑
i=1

viDi

Ei(1 − Di)

)
σ. (6)

The effective elastic modulus gives the generalized Reuss estimate considering damage in
the finite thickness interfaces:

EG
R =

(
n∑

i=1

vi

Ei

+

q∑
i=1

viDi

Ei(1 − Di)

)−1

. (7)

The classical Reuss estimate is recovered when Di = 0. In this case, however, we cannot
exclude a positive relative tangential displacement ui and therefore Di > 0 in some finite
thickness interface.

A different direction of loading with respect to the layer assembly can also be analyzed
(see Fig. 1(c)). Vertical displacements or tensile tractions are imposed on the top hor-
izontal boundary. The opposite boundary is fully constrained and the lateral sides are
traction free. It is easy to verify that in this case both imposed displacement and imposed
traction boundary conditions lead to an isostress state. The mechanical system can be
idealized as a set of elastic springs (with damage) in series, whose effective stiffness can
be estimated using the generalized Reuss formula (7). In this case, damage is related to
a positive displacement wi.

The generalized Reuss estimate derived in this study can also be applied to the case
of zero-thickness interfaces governed by a standard cohesive zone model (CZM). The
additional contribution of the interfaces to the Reuss estimate is due to the displacement
discontinuities gT and gN in the tangential and normal directions, respectively. In case of
Fig. 1(a) with isostress boundary conditions, the displacement discontinuity (gap) is gT

and we have:

E =

(
n∑

i=1

vi

Ei
+

q∑
i=1

gT,i

h

)−1

. (8)

For the case in Fig. 1(c), the displacement discontinuity is represented by gN :

E =

(
n∑

i=1

vi

Ei
+

q∑
i=1

gN,i

h

)−1

. (9)

For an interface inclined by a generic angle θi �= 90◦ with respect to the direction of
loading (see Fig. 1(d)), mixed mode deformation occurs and both wi and ui contribute to
Di. For a standard CZM, Eq.(9) should be used, with gN,i determined in correspondence
of a given angle of mode mixity, θi = arctan(gT,i/gN,i).

4
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3 STIFFNESS OF HIERARCHICAL POLYCRYSTALLINE MATERIALS

In this section, the stiffness of a cellular polycrystalline material with imperfect in-
terfaces is numerically analyzed using the finite element method. One forth of a repre-
sentative volume element (RVE) of the hexagonal microstructure is shown in Fig. 2(a).
Zero-thickness interface elements are introduced between the linear elastic constant strain
triangular elements used to discretize the continuum. The constitutive response of the
interfaces is governed by the nonlocal CZM for finite thickness interfaces proposed in
[12]. An implicit solution scheme is adopted, which requires the computation of the
tangent stiffness matrix and the residual vector of the interface elements to be used in
a Newton-Raphson iterative scheme. Moreover, the treatment of the CZM requires a
nested Newton-Raphson loop to compute the cohesive tractions, see [13]. The RVE is
tested in uniaxial tension, imposing the displacements on the nodes belonging to the
vertical boundary on right.

Different bulk moduli EB for the grains are considered. For infinitely stiff grains,
EB → ∞, the deformability is only due to the cohesive interfaces. The obtained dimen-
sionless stress-strain curve is therefore that of the CZM of the inclined interface with
a rescaled abscissa gN/h, where h is the horizontal lateral size of the sample (see Fig.
2(b)). Reducing EB, the deformability of the continuum increases and the effect of the
interfaces is mitigated. The nonlinear CZM is responsible for the deviation from linearity
in the stress-strain diagram, as it can be quantified by comparing the solid lines with the
corresponding dashed lines in Fig. 2(b).
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(a) 1/4 of the RVE.

0.0

0.2

0.4

0.6

0.8

1.0

0 0.003 0.006 0.009 0.012
ε

σ/
σ p

E B=8.5 GPa

20

85

850

CZM (E B→∞)

(b) Average stress vs. strain response.

Figure 2: The effect of the bulk modulus EB on the average stress-strain response.

The computed tangent effective elastic modulus vs. σ/σp, where σp is the peak stress,
is shown in Fig. 3(a). The CZM response is the upper limit for Eeff, obtained for infinitely
stiff grains. The curves become progressively independent of σ/σp by reducing EB. Since
the specimen is subjected to isostress conditions, the obtained trend can be interpreted
according to Eq.(7) with n = 1 and q = 1. Using the shape of the CZM corresponding
to the angle of mode mixity induced by the hexagonal geometry (θ = 30◦), the analytical
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predictions are shown in Fig. 3(b). The perfect agreement with the numerically computed
curves in Fig. 3(a) is achieved.
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(a) Numerical results.

1

10

100

1000

0.0 0.2 0.4 0.6 0.8 1.0
σ/σp

E
(G

P
a)

8.5

20

85

850
CZM (E B→∞)

(b) Analytical predictions.

Figure 3: Tangent effective elastic modulus E vs. σ/σp

Two further levels of hierarchy are now considered. The macroscopic level (l = 1) is
the same as that analyzed in Fig. 2. Each grain is then partitioned into other cellular
grains, generating the material mesostructure (l = 2). This procedure is repeated once
more to obtain the material microstructure (l = 3) inside the mesogranules, see Fig. 4(a).
For the sake of simplicity, and without any loss of generality, the CZM parameters are
assumed to be the same at each level. The refinement of the material microstructure
leads to a decrease of the dimensionless effective elastic modulus E/EB for a given stress
level, see Fig. 4(b). The numerical predictions using Eq.(7) with a constant angle of
mode mixity equal to 30◦ are still a good approximation of the numerical results. More
accurate predictions can be obtained by considering the actual angle of mode mixity of
the various interfaces.

l =1 l =2 l =3

(a) Sketches of the hierarchical levels.
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Analytical
Numerical

(b) Numerical–analytical comparison.

Figure 4: Tangent effective elastic modulus E/EB vs. σ/σp for a system with l hierarchical levels.
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4 STRENGTH OF HIERARCHICAL POLYCRYSTALLINE MATERIALS

In this section we study focus on the effect of interfaces with different properties on
the tensile strength of hierarchical polycrystalline materials. Let us consider the finest
microstructure with hexagonal grains examined in the previous section as the level 1 (blue
interfaces in Fig. 5(a)). A two-level hierarchical microstructure is realized by considering
geometrically self-similar hexagonal mesogranules (level 2, red interfaces in Fig. 5(a))
embedding the hexagonal micrograins of the level 1. To do so, the interface characteristics
at the level 2 are modified in order to make them tougher than those at the level 1. This
condition alone is not sufficient to modify the crack pattern at failure and improve the
material response. In fact, it is still possible to find a subvertical crack path involving
only interfaces of level 1, as it happens without hierarchy. To involve the interfaces of the
level 2, all the properties of the interfaces of the hexagons containing a triple junction
have to be modified. This leads to the final configuration shown in Fig. 5(a).

(a) Interfaces at the 2 levels.
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gN/gNc
II

σ/
σII m
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Level 1
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(b) Shape of the CZMs.

Figure 5: CZMs of the interfaces at the different levels: level 1 (blue), level 2 (red).

The material response is now investigated by performing virtual tensile tests in the
horizontal directions and computing the peak stress σp of the average stress-strain curve.
The shapes of the Mode I CZMs of the interfaces at the levels 1 and 2 are shown in Fig.
5(b). The ratio between the peak cohesive tractions of the CZMs at the two levels is
constant and equal to σI

max/σ
II
max = 0.1. Different Mode I fracture energies (evaluated as

the area between the Mode I CZM curve) for the level 1 are considered, exploring a range
GI

IC/GII
IC from 0.1 to 0.5 (see the different shapes of the CZM of the level 1 in Fig. 5(b)).

Dimensional analysis considerations suggest the following dependency for the tensile
strength σp on the variables of the parametric analysis:

σp = σp

(
σI

max, G
I
IC , dII, EB

)
, (10)

where σI
max is the peak cohesive traction at the level 1, GI

IC is the Mode I fracture energy
of the interfaces at the same level, dII is the diameter of the mesogranules and EB is the
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bulk elastic modulus. Considering GI
IC and dII as the variables with independent physical

dimensions, the application of the Buckingham’s theorem of dimensional analysis yields:

σpd
II

GI
IC

= Φ

(
σI

maxd
II

GI
IC

,
EBdII

GI
IC

)
= Φ(s1, s2). (11)

Changing GI
IC, the dimensionless numbers s1 and s2 vary at the same time. It is therefore

convenient to introduce a combination of these dimensionless numbers and plot the results
of the parametric analysis as a function of it. Considering s = s2/s

2
1, we have:

s =
s2

s2
1

=
GI

ICEB

(σI
max)

2dII
=

lICZM

dII
. (12)

This dimensionless number is proportional to the ratio between the critical process zone
size at the level 1, lICZM, and the grain size of the mesograin, dII.

From numerical results (Fig. 6), the computed dimensionless tensile strength is an
increasing function of lICZM/dII up to lICZM/dII = 1, when a plateau is reached. A further
increase of the interface fracture energy of the level 1 does not permit us to increase
the tensile strength. This result can be explained according to a consideration of flaw
tolerance, as also proposed by Gao [14] for defects in bone-like materials. When the
interface cracks inside the mesogranule (having a size a ≤ dII) are such that lICZM >
dII, their maximum opening displacement lies within the range of cohesive interactions.
Therefore, no stress-free cracks develop in the mesogranule, which is able to tolerate the
intrinsic defects of any size. Fracture has to involve the upper scale interfaces at the
level 2 and the strength is maximized. Similar considerations have been put forward by
Carpinteri [15] for the problem of tension collapse that precedes brittle crack propagation
in a strip. These results are important for the application of homogenization techniques.
In fact, a separation of scales, leading to no interaction between the interfaces at the
different hierarchical levels is fulfilled only for lICZM/dII > 1.

The diagram in Fig. 6 can also be interpreted in a different way. For given material
interface properties at the level 1 (lICZM is fixed), the optimal geometry of the mesostruc-
ture corresponds to dII = lICZM. In this way, the interfaces at the upper level act as crack
arresters for the microcracks at the lower level. When this flaw tolerance condition is
achieved at a given level, the same reasoning can be repeated for the higher hierarchical
levels in order to obtain the optimal response for a given set of material properties.

5 CONCLUSION

In the present paper, the role of imperfect interfaces on the stiffness and strength
of hierarchical polycrystalline materials has been numerically investigated using finite
elements. The constitutive behavior of finite thickness interfaces has been modelled using
the nonlocal CZM recently proposed in [12, 13].

Numerical simulations show that the effective elastic modulus depends on the debond-
ing process occurring at the interfaces. Generalized Voigt and Reuss estimates accounting
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Figure 6: Dimensionless tensile strength vs. ratio between the critical process zone size and the diameter
of the mesogranules.

for such a form of nonlinearity are proposed for the computation of the bounds to the
tangent effective elastic modulus. The interplay between the interface deformability and
the elasticity of the bulk material has been numerically characterized.

Finally, the effect of interfaces at different hierarchical levels on the strength of a two-
level hierarchical material has been numerically investigated. The results show that the
condition for scale separation applies only for certain properties of the interfaces at the
lower level. If such a condition, represented by the inequality lICZM > dII, is fulfilled,
then the microstructure becomes flaw tolerant and the strength is ruled by the interfaces
characteristics at the upper level.

ACKNOWLEDGEMENTS

MP would like to thank the Alexander von Humboldt Foundation for supporting his
research stay at the Leibniz Universität Hannover during the year 2010.

REFERENCES

[1] Nemat-Nasser, S. and Hori, M. Micromechanics: Overall Properties of Heterogeneous
Solids. Elsevier, Amsterdam (1999).
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Abstract. Strip flatness and surface quality are crucial factors for the production of
high-quality cold-rolled metal strip. Tension leveling (employed as one of the final steps in
continuous galvanizing and finishing lines) improves strip flatness and minimizes residual
stresses by inducing small elasto-plastic strip deformations, while the strip is bent under
high tension stresses around multiple rolls with small diameters.

Simulations of tension leveling processes employing commercial Finite Element software
packages yield unacceptable computational costs: The small and coupled elasto-plastic
deformations occur simultaneously at concentrated regions along the strip bending line
and steady-state solutions cannot be reached before at least one strip cross-section has
passed through the entire process unit of the tension leveler.

In order to overcome these critical aspects, a new and alternative modeling approach,
based on the principle of virtual work and on a specialized “Arbitrary Lagrangian-Eulerian”
(ALE) formulation was elaborated. This novel concept utilizes “Parametric Shape Func-
tions” (PSF) that describe both geometry and strain distribution of the deformed strip.
The decoupling of the mesh movement from the material movement in the ALE descrip-
tion allows for the implementation of highly efficient contact algorithms, while the strip
length under consideration can be minimized. Compared to (already) optimized com-
mercial FEM-models, the PSF-model exhibits a drastic reduction of degrees of freedom
and computational costs (by a factor of 100 and more in typical test cases) while high
agreement of the key results is simultaneously maintained.
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1 INTRODUCTION

As the demand for perfect flatness and outstanding surface properties both of hot- and
cold-rolled strips rises continuously, tension leveling becomes an increasingly important
process step in the production of high-class metal strip. Tension levelers are typically
located at the exit of strip processing lines (for example continuous galvanizing or finishing
lines) to reduce flatness deficiencies like center and edge buckles or strip camber as well
as to minimize residual stresses of the finished strip. These often unacceptable quality
deficiencies are the result of an inappropriate material flow inside the roll gap during
hot- or cold-rolling operations or may occur due to plastic deformations after rolling (e.g.
during coiling or uncoiling).

Figure 1: Typical Tension Leveler Setup. Figure 2: Industrial Tension Leveler.

As depicted in Figure 1, a tension leveler typically consists of a set of bridle-rolls at
the inlet and outlet (large black & yellow rolls in Figure 2) and a process unit (green
machine block in Figure 2), which is located in-between the bridle-rolls. In this process
unit the metal strip is bent alternately under high tension stresses (in the range of 5-
70% of the yield strength, cp. [5]) around guide-rolls and process-rolls with particularly
small diameters (both roll types are typically undriven). The combined bending and
tensile stresses yield elasto-plastic strip deformations, which are comparatively small at
the strip centerline (where plastic strip elongations typically do not exceed a value of
about five percent), but may be locally considerably large (at the strip surfaces) due to
the superimposed bending strains.

The cumulative amount of the elasto-plastic centerline strain depends strongly on the
curvature peaks of the strip, which occur at the strip/roll contact points in typical tension
leveling setups. Observations at industrial tension levelers prove that the strip will not
approach the roll radii in many typical tension leveling cases – in particular when thick
strip, small rolls, low strip tension, small roll adjustments, high-strength materials or high
strip velocities (leading to pronounced inertial effects) are involved. In these cases, the
strip will exhibit line contact as opposed to surface contact and the curvature of the strip
will be smaller than the curvature of the roll in this point. The fast and precise prediction
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of the actual strip curvature distribution is therefore of high relevance to a reliable design
of tension leveling machines.

2 STATE OF THE ART & PROBLEM STATEMENT

First works dealing with aspects of the tension leveling process date back to the 1950s
and 1960s. At that time it was common in the scientific community to assume that the
strip would approach the curvature of the process-rolls in all strip/roll contact points (cp.
e.g. [2]). In the early 1970s, Sheppard and Roberts [3] were among the first researchers to
state that the actual bending radius of the strip in the contact point can be significantly
larger than the radius of the roll. In the mid 1970s, first attempts were made to empirically
predict the strip curvature at those rolls, where line contact occurs [4].

Hoffmann [5] proposed in his PhD thesis a basic, iterative model for the geometrical
fitting of the strip curvature distribution in a given roll system. Applying certain sim-
plifications and restrictions, a prediction for the shape of the strip bending line could be
made for different strip dimensions, materials and roll settings.

With the emergence of sufficiently fast mainframes in the late 1990s, the Finite Element
Method (FEM) allowed for the numerical determination of the strip curvature distribu-
tion. However, due to their excessive calculation times, most FEM analyses presented
in the literature still require problematic trade-offs between the model’s significance and
the computational cost efficiency and can therefore only be used to simulate few selected
tension leveling scenarios.

Nowadays, in many cases, tension leveling designs and roll adjustment strategies are
based on computationally expensive but still rough offline calculation models, which have
to be supplemented by trial and error procedures during the operation. In order to
improve the design of tension leveling machines, precise numerical methods are essential.
Key objectives of adequate models are the determination of the strip bending line, the
analysis of the reaction forces at the bending rolls, the required level of tension, the tension
losses due to plastic deformation as well as the power requirements of the drives (which
was elaborately analyzed by the authors in an associated research project, cp. [6]).

3 CHALLENGES USING COMMERCIAL FINITE ELEMENT PACKAGES

Finite Element Models yield all key results, but require unacceptable computational
costs. It could be shown in detailed analyses that both 3-D and 2-D (plane strain)
simulations, and both continuum and structural modeling concepts yield comparable and
reliable simulation results [7].

The numerical simulation of the tension leveling process utilizing commercial FEM
packages is particularly challenging, as the strip is deformed simultaneously at different
small regions along its bending line. This sequence of small elasto-plastic deformations
has to be treated as a coupled whole. Hence, in a Lagrangian formulation (where mesh
and material are coupled throughout the deformation process), the simulated strip has to

3
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be several times longer than the length of the leveler’s process-unit and the mesh needs
to be finely discretized along this entire strip length.

Large numbers of nodes and degrees of freedom, severely non-linear contact charac-
teristics (hard and frictionless, with frequent contact updates), a non-linear constitutive
law (elasto-viscoplastic, path-dependent, including the Bauschinger effect) and large strip
rotations cause unacceptable simulation runtimes (in the range of a few days for already
optimized, but still significant FEM models on modern mainframes) – making such models
inappropriate as efficient dimensioning tools for industrial applications.

4 PARAMETRIC SHAPE FUNCTION (PSF) MODEL

To reduce the unacceptable computational costs of FEM simulation models, a novel
modeling approach was pursued. On account of an in-depth analysis of the physical cor-
relations relevant for the tension leveling process, appropriate parametric shape functions
(PSF) could be identified, which describe both the strip’s geometry (i.e. its curvature)
and the strain state of the centerline along the Eulerian (i.e. actual) arc length of the
strip. The bending line is determined in 2-D (plane strain) employing a drastically re-
duced number of degrees of freedom as compared to concepts based on commercial FEM
software packages (as discussed above).

5 PROPOSED ARBITRARY LAGRANGIAN-EULERIAN FORMALISM

When handling the investigated problem, the application of the Arbitrary Lagrangian-
Eulerian (ALE) theory is very advantageous. In the ALE referential formulation, the mesh
speed v̂ can be chosen arbitrarily, which is a fundamental difference to both the Lagrangian
material formulation (where the mesh speed equals the material speed → v̂ = v) and the
Eulerian spatial formulation (where the mesh speed is zero → v̂ = 0).

Any arbitrary position along the bending line of a strip can be denoted in the ALE,
the Lagrangian and in the Eulerian formulation. In the Lagrangian material-based for-
mulation, the reference is the undeformed centerline of the strip, denoted as the material-
fixed arc length coordinate S. In the Eulerian space-based formulation, the arc length
is measured along the actual deformed centerline of the strip, which is represented as
the space-fixed arc length coordinate s. The “axial stretch” λ11,CL follows as differential
mapping from the Lagrangian to the Eulerian domain at time t

ds = λ11,CL · dS = (1 + ε11,CL) · dS (1)

and depends on the tangential centerline strain ε11,CL. Let us now introduce a special ALE
reference system with an ALE referential coordinate χ along the undeformed centerline of
the strip (cp. Figure 3). The referential coordinate χ of a certain material point (described
by S in the Lagrangian material-based reference system) is expressed as “particle name
difference”

χ(S, t) = S − SQ(t), (2)
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Figure 3: Correlations between Lagrangian, Eulerian and ALE referential domains.

Figure 4: Mapping between Lagrangian, Eulerian and ALE referential domains.

therefore,

dχ = dS and
∂

∂χ

∣

∣

∣

∣

t

=
∂

∂S

∣

∣

∣

∣

t

. (3)

The actual position of this point along the Eulerian space-based arc length s follows
from the integration of Equation 1 as

s(S, t) =

S
∫

SQ(t)

λ11,CL(S̃, t) · dS̃. (4)

In Equations 2 and 4, SQ(t) refers to the time-dependent material-based “particle name”,
which – at time t – enters the system at the Eulerian (hence, space-fixed) inlet surface Q.

According to the correlations presented in [1], the function ϕ denotes the nonlinear
mapping from the Lagrangian material domain to the Eulerian spatial domain, the func-
tion Φ represents the nonlinear mapping from the ALE referential domain to the Eulerian
spatial domain and the functionΨ designates the linear mapping from the ALE referential
domain to the Lagrangian spatial domain (cp. Figure 4).

Lagrangian → Eulerian: ϕ : (S, t) �−→ ϕ(S, t) = (s, t) (5)

ALE → Eulerian: Φ : (χ, t) �−→ Φ(χ, t) = (s, t)

ALE → Lagrangian: Ψ : (χ, t) �−→ Ψ(χ, t) = (S, t),
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then the mapping ϕ can be expressed by Φ and Ψ as

(s, t) = ϕ(S, t) = Φ(χ, t) = Φ
(

Ψ−1(S, t)
)

, (6)

with

ϕ(S, t) =









S
∫

SQ

λ11,CL(S̃, t) · dS̃

t









,Φ(χ, t) =









χ
∫

0

λ11,CL(χ̃, t) · dχ̃

t









(7)

and Ψ−1(S, t) =





S − SQ(t)

t



 .

The derivatives of ϕ with respect to the Lagrangian material based arc-length S and
time t follow from Equation 6 as

∂ϕ(S, t)

∂(S, t)
=

∂Φ

∂(χ, t)
· ∂Ψ

−1

∂(S, t)
, (8)

which can be re-written in matrix notation as
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 , (9)

with

v̂ =
∂s

∂t
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∣

∣
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=

χ
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∂λ11,CL
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∣

∣

∣

χ̃

· dχ̃ and w =
dχ

dt

∣

∣

∣

∣

S

= −dSQ

dt
, (10)

where v denotes the material speed, v̂ represents the nodal speed and w describes the
referential material velocity (i.e. the change rate of the “position” of a certain material
particle S in the ALE referential coordinate system χ).

Block multiplication of Equation 9 using Equation 10 leads to

v =
∂s

∂t

∣

∣

∣

∣

S

= v̂ +
∂s

∂χ
· w =

χ
∫

0

∂λ11,CL

∂t

∣

∣

∣

∣

χ̃

· dχ̃

︸ ︷︷ ︸

nodal movement:
transient phase only

+λ11,CL · w
︸ ︷︷ ︸

transient
phase &
steady
state

, (11)

which can be transformed into the definition of the convective velocity c (cp. again [1]),
which follows as

6
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c = v − v̂ =
∂s

∂χ
· w = λ11,CL · w. (12)

Note that the convective speed c will only coincide with w if ds/dS = 1, implying that the
mapping is purely translational, i.e. not exhibiting any axial stretches. Furthermore, the
nodal speed v̂ will vanish under steady state conditions for this special ALE formulation,
as ∂λ11,CL/∂t|χ∈[0,χEND] = 0 in a steady state. Hence, in the considered steady state, the

material speed and the convective speed coincide (v = c). The material time derivative
of a physical distribution f = fLAG(S, t) = fEUL(s, t) = fALE(χ, t) along the strip’s
bendingline can be written as

df

dt
=

(

∂

∂t

∣

∣

∣

∣

S

)

fLAG =

(

∂

∂t

∣

∣

∣

∣

s

+ v · ∂

∂s

)

fEUL =

(

∂

∂t

∣

∣

∣

∣

χ

+ w · ∂

∂χ

)

fALE. (13)

The ALE steady state condition follows as

∂f

∂t

∣

∣

∣

∣

χ

=

(

1

λ11,CL

· v − w

)

︸ ︷︷ ︸

=0 in the steady state
for this special ALE formulation

·∂f
∂χ

, (14)

which illustrates that the time derivatives at any ALE reference coordinate χ must vanish
in the considered steady state employing the presented special ALE description.

In special physical scenarios, the presented ALE formulation may be directly trans-
formed either into a purely Lagrangian or into a purely Eulerian formulation.

For the Lagrangian formulation, SQ(t) = const. In this case, the derivative ∂Ψ−1/∂(S, t)
reduces to the identity matrix I and Equation 8 turns into ∂ϕ/∂(S, t) = ∂Φ/∂(χ, t), which
requires that χ ≡ S − const. The ALE domain changes into a purely Lagrangian formu-
lation, where the material referential velocity as well as the convective velocity are zero
(w = c = 0), and the material speed and the mesh speed coincide (v = v̂).

In the Eulerian formulation, ds/dχ = λ11,CL = 1 and χ ≡ s. Analogously to above,
the derivative ∂Φ/∂(S, t) reduces to the identity matrix I and Equation 8 turns into
∂ϕ/∂(S, t) = ∂Ψ−1/∂(S, t). For this special case, the ALE domain changes into a purely
Eulerian formulation, where the actual material speed v equals both the convective speed
c and the material referential velocity w (v = c = w), and where the mesh speed v̂ is zero
(v̂ = 0) even in the transient phase of the simulation.

6 PARAMETERIZATION

Appropriate Parametric Shape Functions are essential both for the strip curvature κ
and the centerline strain ε11,CL distributions

7
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κ =
dθ

ds
and ε11,CL = λ11,CL − 1 =

∥

∥

∥

∥

dx

dχ

∥

∥

∥

∥

− 1, (15)

where θ denotes the strip section angle and x(χ) the strip centerline in real space. The sec-
tion angle θ determines the direction of the strip’s tangential unit vector t̂ = (cosθ, sinθ)T

as well as of the strip’s normal vector n̂ = (−sinθ, cosθ)T . The Bernoulli-Euler beam the-
ory is applied here, which requires that plane strip cross-sections remain plane and normal
to the strip centerline throughout the deformation.

The nodal interpolation scheme (i.e. the order of the shape functions used in-between
the parametric sampling points at the nodes) must be chosen carefully to comply with the
fundamental correlations of the local equilibrium conditions in curved rods. As outlined
in [8], the distribution of the bending moment M(s) along the actual Eulerian arc length s
must be continuous within the process unit of a tension leveler, however, the first derivative
dM/ds of the bending moment with respect to the arc length, as well as the shear force
distribution F12(s) are typically discontinuous at the contact areas. The distribution of
the concentrated tangential strip force F11(s) is typically continuous, if the rolls are not
driven.

Presuming a continuous, path-dependent, elasto-viscoplastic constitutive law (exclud-
ing special phenomena like a pronounced yield strength, recrystallization processes, crack
formations, etc.), then arbitrarily small tangential strip force and bending moment vari-
ations are the result of arbitrarily small cross-section strain variations. In this case, the
continuity condition of the bending moment distribution M(s) can be extended to the
strip curvature distribution κ(s), and the continuity condition of the tangential force
distribution F11,CL(s) also applies to the strip centerline strain distribution ε11,CL.

7 PRINCIPLE OF VIRTUAL WORK

The principle of virtual work is employed in order to identify the parameter set that
matches the solution. Only for this parameter set, the virtual internal strain energy δU
equals the virtual work of the external forces δW , hence, the principle of virtual work can
be written as

δU − δW = 0 =
n

∑

i=1

δPi ·

( l0
∫

0

(

F11 ·
∂ε11,CL

∂Pi

+M · ∂κ

∂Pi

)

· dχ̃

︸ ︷︷ ︸

virt. internal strain energy

− (16)

−
k

∑

j=1

FEXT,j ·
∂xEXT,j

∂Pi

︸ ︷︷ ︸

virt. work of external forces

−
l0
∫

0

(

q · ∂x

∂Pi

)

· dχ̃

︸ ︷︷ ︸

virt. work of distr. loads

)

,

8
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where Pi denote the shape function parameters (i ∈ [1, n], with n parameters in total),
l0 represents the modeled, undeformed strip length (χ ∈ [0, l0]), FEXT ,j (with j ∈ [1, k])
designate the concentrated external forces at the material points xEXT ,j and q(χ) repre-
sents the distributed loads along the bending line x(χ). Distributed loads may arise from
inertial and gravitational effects and can be computed as

q(χ) = −�∗(χ) ·
(
êy · g + n̂(χ) · v(χ)2 · κ(χ)

)
, (17)

where �∗ denotes the local mass per unit of strip length (�∗(χ) = � · b · h(χ) – with
strip width b and strip thickness h), where êy represents the unit vector in the global
y-direction, and where g stands for the gravitational constant.

8 CONTACT FORMULATION

In order to include nodal contact into the principle of virtual work, the undisturbed
system is extended by a contact term δWC (hence, δU − δW − δWC = 0).

Strip/roll contact is established at selected nodes by employing the Lagrange Multiplier
method. A contact identification algorithm detects those nodes that penetrate one of
the rolls. At these nodes, contact forces are determined by the additional Lagrangian
parameter λC,a (a ∈ [1, c] for c contact nodes).

The contribution to the virtual work can be written as

δWC =
n∑

i=1

δPi ·

(
c∑

a=1

(
FC ,a ·

∂xC(χa)

∂Pi

+
∂FC ,a

∂Pi

· ca
))

, (18)

where the nodal contact force FC ,a must be normal to the strip centerline, as frictionless
strip/roll contact is assumed

FC ,a = λC,a · n̂(χa) and
∂FC ,a

∂Pi

=
∂λC,a

∂Pi

· n̂(χa)− λC,a ·
∂θ

∂Pi

· t̂(χa). (19)

The contact condition ca (i.e. the side condition for the geometric distance, which vanishes
when the contact is established) can be written as the following kinematic constraint

ca = xC ,a − xR,a −�a · ra · n̂(χa), (20)

where xC ,a denotes the position of the node in contact, xR,a the center of the respective
roll in contact, �,a the contact orientation (�a = 1 if the strip normal vector n̂(χa) points
in the direction of the respective roll’s center point, and �a = −1 if n̂(χa) points into the
opposite direction) and where ra represents the respective roll radius.

9 PRESENTATION OF SELECTED RESULTS

A self-developed and customized simulation prototype (implemented in MATLABTM)
can now be used instead of computationally expensive FEM simulations (based on com-
mercial Finite Element packages). The CPU times for typical tension leveling scenarios

9
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Figure 5: Selected results for surface contact scenarios, in which strip exhibits surface contact.

could be reduced from some days (using commercial Finite Element packages) to a few
minutes (employing the self-developed PSF model).

Due to the advantageous parameterization along the referential ALE arc length of
the bending line, large strip rotations (of more than 180◦) can be handled without any
problem. Both line contact (where the peak curvature of the strip is smaller than the
curvature of the respective roll and therefore has to follow from the simulation) and surface
contact (where the strip’s curvature adopts the curvature of the respective roll) can be
handled by the implemented contact algorithm.

Figure 5 depicts the simulation results of a roll unit, where metal strip is deflected
under high tension around two undriven rolls of large diameters. From the strip bending
line (top left image in Figure 5) it follows that the strip is deflected twice by more than
180◦ as it runs around the rolls. The strip curvature distribution diagram (top right image
in Figure 5) exhibits the typical plateaus, where the strip’s curvature is restricted by the
curvature of the roll as upper bound (the roll radius is 640 mm in this case, hence the
strip’s curvature cannot exceed 1.6 · 10−3 mm−1). The bottom left diagram in Figure 5
depicts the residual strain distribution across the strip thickness, after the strip was bent
twice around both rolls. Note that the plastic compression at the bottom strip surface
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Figure 6: Strip curvature and tangential plastic centerline strain for a typical tension leveling scenario.

is due to the consideration of the material’s Bauschinger effect: after first elasto-plastic
strains have occurred at the strip bottom surface fibers (near the contact point with roll
1), the yield strength of the material is reduced when the direction of the deformation is
inverted from tension to compression (at roll 2). The contact force distribution diagram
(bottom right image in Figure 5) clearly displays the single contact force peaks at the
beginning and at the end of each strip/roll contact (labels 1 - 4) as well as the evenly
distributed sectional shear force f12 (proportional to the roll radius and the tangential
strip force F11 – cp. [8]) within the surface contact zone.

Figure 6 illustrates some simulation results of typical strip deformations within the
process unit of an industrial tension leveler. The red line illustrates the tangential strip
strain distribution, the green line shows the strip curvature distribution. Those strip
segments along the bending line, which exhibit plastic deformation, are highlighted as
bold lines. It becomes obvious that the largest tangential plastic strains occur within the
curved strip segments before the process-rolls (labels “B”, “C”, “D” and “E” in Figure
6). Minor plastifications can be observed after process-rolls “C” and “E” as well as near
guide-roll “A” and anti-crossbow roll “G”. From Figure 6 it becomes obvious, that less
than 20 % of the strip length in the process unit are deformed plastically in typical steady
state scenarios of the tension leveling process.

10 CONCLUSIONS

A thorough analysis of the physical correlations and mechanical aspects of tension
leveling scenarios is essential for the reliable and accurate design of the tension leveling
processes, machines and controls. The presented self-developed simulation prototype is
based on a special Arbitrary Lagrangian-Eulerian formulation and employs the Principle
of Virtual Work. Due to its optimized simulation algorithms and the decoupling of the
nodal from the material movement, it allows for short simulation runtimes (within the
range of a few minutes).

The model is currently used in large-scale parametric studies in the design phase of
industrial tension levelers. The direct benefits gained from the model are minimized plant
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investments, better plant performance as well as a reduction of energy costs.
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ABSTRACT. An enhanced iterative concept for the effective numerical simulation of flat hot 
rolling processes is presented. The underlying physical process is the forming of metal within 
a flat rolling stand, i.e. between a lower and an upper roll set, each of them consisting of one 
or more rolls. The strip material is described elasto-viscoplastically, whereas the roll stack is 
deformed elastically. The accurate coupling of the strip model with the routines for the elastic 
roll stack deflection is a precondition to get reliable results concerning profile transfer and 
incompatible residual strains inside the strip, which allows the prediction of flatness defects, 
such as buckling. Especially for thin, wide strips and heavy plates, where the aspect ratio 
width over thickness is extremely unfavourable, the determination of profile transfer and 
flatness obviously leads to extremely high calculation times with commercial FEM-programs. 
Therefore, a tailor-made FEM-code for the efficient simulation of the elasto-viscoplastic 
material flow inside the roll gap was developed and programmed in C++. It is based on 
pseudo-steady-state, fully implicit stress-update approaches, where the incremental material 
objectivity is satisfied exactly. The developed model is well suited for systematic parameter 
studies to investigate flatness defects in more detail and to develop enhanced flatness criteria 
for thin hot and cold strips and plates. 
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1 INTRODUCTION AND SURVEY 
For optimization and control, the development of highly sophisticated mathematical 

offline and online models in both hot and cold flat rolling is a vital precondition for 
manufacturing high quality products satisfying even the most challenging tolerance demands. 
Control of strip crown and shape can be considered to be among the most important 
technologies in flat rolling of strip and plate. Although the analysis of transient and steady-
state rigid-viscoplastic and elasto-viscoplastic forming processes is not new (cf. e.g. [1–7], 13, 
14), the high customer demands concerning productivity and product quality are the reason, 
why it is of utmost importance to attain a better understanding of the underlying process 
details, which requires highly sophisticated formalisms and optimized numerical simulation 
concepts and their application to process optimization and control purposes. During the last 
three decades, great efforts have been paid to competitive developments of new technologies 
to reduce or avoid profile errors and shape defects [11, 12]. The theoretical understanding of 
the underlying material flow behavior is the crucial foundation for the development of 
improved calculation tools for strip crown and shape evaluation in order to better meet the 
"offline task" of designing new machines including actuators and the "online challenge" of 
guiding and controlling flat rolling processes. 

The accurate and reliable prediction of lateral flow and strip spread can be considered to 
be one of the essential objectives of (steady-state) flat hot rolling simulations. It enables the 
pre-calculation of strip profile (thickness over width), of profile transfer functions, and 
relative strip crown changes [11, 12]. For the prediction of the material flow behavior of wide 
strips and plates in hot and cold rolling, highly sophisticated procedures are essential, which 
are able to couple the deformation of the rolled stock with the elastic response of the rolls. 
Especially for thin, wide strips, where the aspect ratio width over thickness is extremely 
unfavorable, the determination of profile transfer and flatness obviously leads to extremely 
high calculation times of several days with commercial FEM-programs, in particular, when 
the elasto-plastic strip models have to be coupled with elastic roll stack deflection models. 
Some critical details concerning the underlying formalism of the self-developed customized 
simulation models will be outlined in this paper. 

The tailor-made FEM-code for the efficient simulation of the elasto-viscoplastic material 
flow inside the roll gap is based on pseudo-steady-state and fully implicit stress-update 
approaches (cf. e.g. [6, 7]), where the incremental material objectivity is satisfied exactly. 
Special emphasis was put on the coupling of strip models with routines for the elastic roll 
stack deflection [8], which is a precondition to get reliable results concerning strip profile 
transfer and residual strain and stress distributions inside the strip [9, 10]. Such data allow the 
evaluation of strip-flatness based on buckling analysis and of the effectivity and adjustment 
ranges of profile and flatness actuators [11, 12]. The model is well suited for systematic 
parameter studies to investigate flatness of strips and plates in more detail and to develop 
enhanced flatness criteria for thin hot and cold strips. Of particular interest is the dependence 
of the longitudinal stress and strain distributions and of the corresponding specific rolling 
force-distributions across the strip width on the underlying constitutive elasto-viscoplastic 
laws including work hardening and softening between consecutive passes. 

The basic geometry of the rolling process under consideration consists of two rotating 
work rolls, which are supported by backup rolls (i.e. quarto flat rolling stand) and reduce the 
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thickness of the incoming steel strip or plate. During the rolling process, a considerable 
amount of force is exerted on the roll assembly, which deforms the rolls accordingly. Of 
particular interest is the pressure distribution between strip and work roll and also between 
backup roll and work roll to determine the actual elastic deformation of the roll assembly. The 
total elastic deformation of the roll stack can be determined very effectively and accurately by 
solving the 3D elastic Lame equations according to the method developed and patented by 
Siemens-VAI [8]. The determination is performed in cylindrical coordinates and utilizes 
systematic Fourier series expansions [16, 17]. As is well known [18] it suffices for hot rolling 
scenarios to take into account merely the radial surface displacement function ru  to describe 
the deformed work roll surface adequately. 

2 DISCUSSION OF THE UNDERLYING COUPLING CONCEPT 
Due to the high non-linearity of the whole problem, the coupling between roll stack and 

rolled stock has to be performed iteratively. The contact stress distribution resulting from the 
strip model serves as input for the determination of the deformed work roll surface, which can 
be performed very accurately and effectively by applying appropriate analytical and 
numerical methods. The new deformed work roll surface represents the “flow channel” for 
the next calculation step of the strip model. The routines for the elastic roll stack deflection 
have to be coupled with the modules for the strip-behavior via the a priori unknown deformed 
contact surface between the strip and work roll. Both the deformed contact surface and the 
corresponding 2D contact stress distribution have to be determined consistently and result 
from the coupling between the models for the strip and the roll-stack. The accurate coupling 
of the strip models with the routines for the elastic roll stack deflection is a precondition to get 
reliable results concerning profile transfer and residual stresses (cf. [9-12]) inside the strip, 
which allows the prediction of flatness defects, such as strip buckling.  

A systematic, iterative calculation concept is taken into consideration to treat the highly 
non-linear coupling between deformable bodies in metal forming in an efficient and accurate 
manner. For prescribed contact surface geometry, the strip-model determines the contact 
stress distribution in real space, which serves as input distribution for the roll stack deflection 
model. The resulting new work roll surface contour serves as new contact surface geometry, 
thus, enabling the strip model to perform the next iteration step. As the roll stack model is 
based on the theory of linear elasticity [16, 17] (but includes the non-linear contact between 
work- and backup-rolls), the load is applied onto the undeformed reference configuration. 
This necessitates a back-transformation of the real-space contact stress distribution onto an 
undeformed cylindrical surface, which will be performed systematically in the next section. 
The transformation concept is based on the postulation that infinitesimal surface traction 
vectors transform covariantly, analogously to the coordinate differentials. Therefore, it 
suffices to determine the underlying deformation gradient [1-5], which essentially generates 
this highly non-linear transformation. To actually perform the contact stress transformation, 
the knowledge of the radial surface displacement function ru  does not suffice to determine 
the full deformation gradient, as the partial derivatives ru r∂ ∂  evaluated at the surface r R=
are required as well. The determination of both ru  and the corresponding radial strain ru r∂ ∂
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at the cylindrical work roll surface is accomplished by a combination of analytical and 
numerical methods, the details of which will be published in a subsequent paper. 

3 NON-LINEAR CONTACT MAPPING CONCEPT 
The two-dimensional contact pressure distribution (both normal contact stress and 

tangential shear stresses) between strip and work roll, which can be calculated by an adequate 
strip-FE model for a given “flow-channel” (i.e. the deformed work roll contour), serves as 
input quantity for the determination of the corresponding elastic roll stack deformation. As 
pointed out above, a non-linear mapping of the contact stress distribution onto non-deformed 
(i.e. cylindrical) work roll boundaries has to be performed. This transformation of stress 
distributions between an Eulerian configuration (actually deformed real space scenario) and a 
corresponding Lagrangian (i.e. undeformed scenario) can be performed systematically by the 
transformation concept outlined in this section. 

The undeformed reference configuration corresponding to an undeformed cylindrical 
work roll, which serves as Lagrangian (upper index L) reference configuration here, can be 
represented in adequate cylindrical coordinates as 

( ) [ ] [ ]( )( ) , , sin , , cosL
C Cx r y x r y z rϑ ϑ ϑ= − −

 , (1)

where ( ) ( )2 2
C Cr x x z z= − + −  is the distance from the axis of the cylinder, y designates the lateral 

coordinate (direction of the axis of the undeformed cylinder) and ϑ  is the angular coordinate 
in azimuthal direction. Surface evaluations are performed at the value r R= , where R
denotes the undeformed work-roll radius. Obviously, the undeformed centre-line of the 
cylinder is represented by ( ), ,C Cy x y z→ . 

A suitable parameterization of the actually deformed configuration, i.e. the Eulerian 
(upper index E) representation reads 

( )
( )

( )
( )

, , sin

, , ,
, , cos

C r

E

C r

x r u r y

x r y y
z r u r y

ϑ ϑ
ϑ

ϑ ϑ

 − +   
=  
  − +   


(2)

where only the radial displacement field ( ), ,ru r yϑ  will be taken into account to describe the 
deviation from the undeformed reference configuration, which suffices for hot rolling 
scenarios. The transformation rule between the Eulerian (E) and Lagrangian (L) coordinates is 
given by the deformation gradient F


 (3x3 - matrix), which is defined by utilizing coordinate 

differentials as follows 
( ) ( )E Ldx F dx=

 
 . (3)

Taking into account that the cylindrical coordinate differentials ( ), ,dr d dyϑ  can be 
represented in terms of the Cartesian Lagrangian coordinates according to 

( )

( )

( )

sin 0 cos
cos 0 sin

0 1 0

L

L

L

dr dx
d r r d y
dy dz

ϑ ϑ
ϑ ϑ ϑ

 − −   
    = −     

        

(4)
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leads directly to the explicit representation of the deformation gradient F


 as a function of the 
cylindrical coordinates 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

cos sinsin cos

0 1 0

cos sinsin cos

E E E E E

E E E E
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ϑ ϑϑ ϑ
ϑ

              ∂ ∂ ∂ ∂ ∂ − − − +               ∂ ∂ ∂ ∂ ∂               

          ∂ ∂ ∂ ∂− − − +          ∂ ∂ ∂ ∂          

( )

,
Ez

ϑ

 
 
 
 
 
   ∂ 
     ∂    

(5)

where the involved partial derivatives of Eulerian coordinates in Equation 5 can be 
represented in terms of the radial displacement field ( ), ,ru r yϑ , e.g.  

( )
( )

1 sin
E

rx u
r r

ϑ
     ∂ ∂ = − +     ∂ ∂      

 . (6)

The deformation gradient F


 directly serves as basic operator to determine the 
transformation behaviour of covariant vector differentials, such as Eulerian and Lagrangian 
surface traction vectors, denoted by ( )Ep  and ( )Lp , respectively. As covariant vectors 
transform analogously to coordinate differentials represented in Equation 4, the underlying 
transformation rule reads 

( ) ( ) ( ) ( 1) ( )E L L EdP F dP dP F dP−= → =
     

 , (7)

where the infinitesimal Eulerian and Lagrangian force vectors are given by 

{ }( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ
T

E E E E E E E
NdP dS p dS Nσ σ= = +

  
(8)

{ }( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ,L L L L L L L
N TdP dS p dS Nσ σ= = +

  
(9)

where ( )LdS  and ( )EdS  denote the infinitesimal surface elements, on which ( )Lp  and ( )Ep  are 
acting. The vectors ( ) ( )ˆ ˆ,L EN N  are normal vectors to these surface elements, hence,  

( ) ( )ˆ 0E E

T
N σ⋅ =   and  ( ) ( )ˆ 0L L

TN σ⋅ = . 
Note that the infinitesimal surface vectors transform in a contravariant manner leading to 

( ) ( ) ( )E T LdS J F dS−=
 

(10)

with the functional determinant of the deformation gradient ( )detJ F=


. 
By taking the scalar product between covariant and contravariant vector differentials, one 

is immediately led to the representation 

( ) ( )( ) ( ) ( ) ( )E E L LdP dS J dP dS⋅ = ⋅
  

(11)

directly yielding the following scalar relation between the Eulerian and Lagrangian contact 
stress values 

( ) ( )2 2( ) ( ) ( ) ( )E E L L
N NdS J dSσ σ= . (12)
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Equation 12 enables the determination of the Lagrangian normal contact stress 
distribution, provided that the corresponding Eulerian values are known. Note that the 
knowledge of the Eulerian normal contact stress distribution ( )E

Nσ  suffices to determine the 
Lagrangian counterpart ( )L

Nσ , i.e. this quantity is not directly influenced by the Eulerian shear 
stress distribution ( )E

T
σ . A more detailed analysis based on Equation 12, yields the following 

explicit representation in terms of the (inverse and transposed) deformation gradient 

( ) { } ( )
2( ) ( ) ( ) ( )ˆ, ,L T L E

N Ny J F N yσ ϑ σ ϑ−=
  . (13)

The partial derivatives ru r∂ ∂  evaluated at the surface r R=  (i.e. the radial surface strains) 
are required explicitly to determine the deformation gradient F


. By utilizing sophisticated 

mathematical methods, essential details of which will be published in a subsequent paper, an 
analytical formula could be derived, which is valid exactly for planar surfaces and still a 
highly satisfactory approximation for cylindrical (i.e. curved) surfaces, at least for localized 
normalized contact stress distributions ( , )N yσ ϑ , as is the case for flat rolling of metal strip: 

( ) (1 )(1 2 ), , ( , )r
N

u r R y y
r E

ν νϑ σ ϑ∂ + −= ≅
∂

 . (14)

This formula for the determination of the radial surface strain is applied directly in 
numerical calculations and enables the correct non-linear mapping of the Eulerian contact 
stress distribution onto the Lagrangian frame of reference. 

4 ELASTO-VISCOPLASTIC STRIP MODELING CONCEPT 
For the numerical simulation of steady-state elasto-viscoplastic rolling processes, 

especially for thin wide strips, standard incremental approaches based on updated Lagrangian 
concepts are not very efficient and lead to very high calculation times. Therefore, an effective 
customized pseudo-steady-state algorithm was implemented, some basic ideas of which were 
proposed some years ago by Hacquin et al. [7]. The global algorithm is based on an iterative 
calculation of the stress and velocity fields inside the strip. The strip model is coupled with a 
consistent determination of the flow channel geometry (i.e. work roll surface) resulting from 
the deformation of the work roll surface loaded by the 2D-contact stress distribution obtained 
from the preceding strip calculation step. 

The elasto-viscoplastic constitutive law is based on the Prandtl-Reuss decomposition of 
the total rate of deformation tensor [ ]( ) ( ) ( )tot el plD D D= +

  
 into elastic and plastic parts, where the 

plastic part behaves incompressible for metal forming processes (at least in very good 
approximation), i.e. ( )( ) 0pltr D =


. For elastic parts, isotropic linear behaviour is assumed, 

whereas the plastic parts are treated according to Levy-Mises. For incremental constitutive 
laws, the stress-update has to be performed along material streamlines. For fixed velocity-
field and steady-state particle run-time values ( 1)n nt → +∆  between successive Gauss-integration 
points, denoted by n  and ( )1n+ , the new Cauchy stress-values can be determined according to 
the fully implicit prescription in Equation 15, which satisfies exactly the required incremental 
material objectivity (i.e. corotational stress formulation) even for large local rotations: 
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{ } { } ( )11 1 1exp exp n nn n n nW t W t tσ σ σ → ++ + +≅ − +
⊙   △ △ △  . (15)

The materially objective part of the Cauchy stress-rate (according to Jaumann-Kirchhoff) 
is denoted by the symbol ⊙ . For the case of isotropic elasticity, this constitutive law in rate 
representation reads 

( ) ( )( )
1 1 12 el

n n n nG D K tr D Iσ → + + +
 ′= + 

⊙   
 . (16)

The local rotation-tensor { }expR W t=
 

△  with TR R I=
  

 and TR R W=
  ɺ  (anti-symmetric 

spin-tensor W


) ensures the physically correct stress-update behaviour and avoids erroneous 
results, which occur when the infinitesimal rotation-tensor { }R I W t≅ +

  
△  is used in 

Equation 15. To determine the elasto-viscoplastic stress-increments along the material 
streamlines, operator splitting concepts (cf. Belytschko et al. [1]) are beneficial. The radial 
return method (cf. Simo and Hughes [2], Montmitonnet [6]) is based on the application of an 
elastic predictor, followed by a plastic corrector. Although the real local material rotations 
inside the strip forming zone (located inside the roll-gap) remain very small for flat rolling, 
the rotations corresponding to the elastic predictor may become pretty large when plasticity 
occurs, afterwards, an orthogonal back-projection onto the yield-surface is performed. 

( )

[ ] ( ) ( ){ }

!!

| |

0 v v

v v .

C

out out

N N T T
V S

F out out B in in OUT xx F OUT xxx x

tr D dV dS

A A

σ δ δ σ σ δ

σ δ σ δ δλ σ σ λ δ σ

= −  + ⋅   

 − − + − + 

∫∫∫ ∫∫
  

(17)

An extended variant of the principle of virtual power, Equation 17 serves as underlying 
weak representation for FE-discretization. For fixed geometry, both the velocity field v  as 
well as the contact stress distribution Nσ  (treated as independent Lagrange-parameter-field to 
ensure the impenetrability condition between strip and work-roll) are determined numerically. 
Concerning the tangential surface traction vector Tσ  in Equation 17, a velocity-regularized 
Coulomb frictional law (Kobayashi et al. [15]), in most cases truncated by the shear-yield 
stress, is employed. The prescribed mean back and front tensile stress values Bσ  and Fσ , 
respectively, are applied at the strip inlet ( inA ) and outlet ( outA ) cross sections far enough 
outside the roll gap. It turned out to be beneficial to apply an additional stabilization concept 
to match the prescribed front-tension value Fσ  at the strip exit cross section exactly. This task 
was accomplished by supplementing an additional Lagrange-parameter OUTλ  in Equation 17. 

5 CONSISTENT DETERMINATION OF RESIDUAL STRIP STRAINS 
A systematic evaluation of the intrinsic (i.e. incompatible) residual strains (and stresses) is 

performed by employing the logarithmic strain tensor H


 (Hencky strain-tensor), which is 
defined by 

lnH V=
 

    with  F V R=
  

(18)
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(multiplicative decomposition of the deformation gradient F


 into a stretch tensor V


 and a 
rotation-tensor R


). It can be decomposed exactly into elastic and incompressible plastic 

contributions even for large strains 
( ) ( )el plH H H = + 

  
    with    ( )( ) 0pltr H =


 . (19)

This tensor quantity can be determined by a materially objective streamline update 
concept similar to that for the Cauchy-stress tensor, as the Jaumann time derivative of the 
Hencky strain tensor equals the rate of deformation tensor 

H D=
⊙ 

    with    H H HW WH ≡ + − 
 

⊙ i     
 . (20)

For numerical purposes, discrete (i.e. finite) time increments t∆  appear. Therefore, it is 
essential to utilize a streamline-update prescription, exactly fulfilling incremental material 
objectivity  

( ) ( )1 1 1 1exp expn n n n nH tD W t H W t+ + + +≅ ∆ + ∆ − ∆
    

 . (21)

The knowledge of the Hencky-strains enables a systematic decomposition of the 
inhomogeneous deformation during rolling into thickness reduction, longitudinal and lateral 
contributions, which establishes the material flow basis for the determination of “suitably 
defined” transfer functions. Taking into account the plastic parts of the logarithmic Hencky-
strain distributions at the strip inlet and outlet cross-sections, denoted by upper indices (IN)
and (OUT), respectively, the deviations from the respective cross-sectional mean values read 

( ) ( ) ( )( ) ( ) ( ), , ,
ININ pl pl

ij ij IN ijH y z H x x y z Hδ  ≡ = −  
(22)

( ) ( ) ( )( ) ( ) ( ), , ,
OUTOUT pl pl

ij ij OUT ijH y z H x x y z Hδ  ≡ = −  
 . (23)

The strip transfer-distributions (averaged in strip-thickness direction) describing the non-
uniform plastic strain-redistributions during a rolling pass can be represented as 

Length transfer function: ( ) ( ) ( ){ }( ) ( )OUT IN
T xx xxL y H y H yδ δ≡ − (24) 

Width transfer function: ( ) ( ) ( ){ }( ) ( )OUT IN
T yy yyW y H y H yδ δ≡ − (25) 

Thickness transfer function: ( ) ( ) ( ){ }( ) ( )OUT IN
T zz zzT y H y H yδ δ≡ −  . (26) 

Note that due to the incompressibility constraint in Equation 19 one is led to the relation 

( ) ( ) ( ) 0T T TL y W y T y+ + ≡    , (27)

i.e. only two of these three strip transfer-functions are actually independent of each other. 
Further details concerning a systematic decomposition of the non-uniform thickness reduction 
across the strip-width into corresponding width- and length-contributions is scheduled for a 
subsequent paper. 
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6 SELECTED RESULTS FOR THE COUPLED PROBLEM 
By utilizing the iterative coupling concept and formalism as outlined above, essential 

information concerning the actual elasto-viscoplastic material flow behavior inside the strip 
can be determined. In this context, special emphasis was put on the convergence properties of 
the coupled system, which has to be solved iteratively. The initial contact surface chosen here 
refers to a uniform contact pressure distribution, which suffices to obtain convergency, 
although the final results deviate considerably from this simple initial choice. 

Iteration Rolling Force [MN] Spread [mm] C25 [µm] C40 [µm] C150 [µm]
1 20.646 8.140 281.471 216.515 78.722
2 21.502 6.188 264.367 194.884 67.160
3 21.818 6.367 243.890 165.660 44.577
4 22.272 6.141 227.249 144.718 33.312
5 22.353 6.099 214.098 127.141 20.231
6 22.601 6.011 204.366 115.003 16.643
7 22.631 6.054 198.078 106.360 11.284
8 22.752 6.054 194.893 102.429 11.372
9 22.779 6.083 192.558 99.068 9.314
10 22.837 6.089 191.504 97.845 9.756
11 22.871 6.092 190.385 96.342 8.777
12 22.901 6.097 191.341 97.357 9.765

Table 1: Convergence properties of the iterative coupling loop between strip and elastic roll stack. 

After each coupling iteration, a modified contact surface and a corresponding contact 
stress distribution (i.e. both normal and shear stresses) are determined. By systematic 
numerical investigations it could be shown that the initially considerable differences between 
results from consecutive iteration steps decrease very fast, as can be seen exemplarily from 
Table 1. After about nine to twelve iteration loops both the calculated geometric, velocity- 
and stress-distributions, and also the corresponding integral properties have converged 
satisfactorily in most cases considered. Beside the roll separating force, the resulting strip 
spread after the roll pass and the corresponding absolute strip-crown values Cxx  (measured a 
distance xx  away from the strip edge) are summarized in Table 1 for a typical test-case. 
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Figure 1: Deformed strip output thickness across 
the strip width after coupling iterations 1 to 12 
(only the upper right quarter is depicted).
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Figure 2: Specific rolling force distribution across the 
strip width after coupling iterations 1 to 12. 

The exemplary results as represented in Figures 1 - 4 refer to a flat hot rolling test-case, 
where a steel strip with initial width of 1000 mm and rectangular strip entry cross section is 
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reduced from 35 mm to 16.76 mm at the first stand of a hot finishing mill. Note that on 
account of assumed horizontal and vertical mid-plane symmetry properties only the upper 
work roll and the upper right half of the strip need to be simulated, i.e. only a quarter of the 
whole problem is represented here. 
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Figure 3: Intrinsic thickness transfer function, as 
defined by Equation (26).
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Figure 4: Corresponding length transfer function (i.e. 
incompatible longitudinal residual strains), as defined 
by Equation (24). 

Of particular interest is the resulting deformed strip thickness distribution in lateral (i.e. 
strip-width) direction in combination with the specific rolling force distribution, the latter of 
which follows immediately from the two-dimensional contact stress distribution by 
integrating it in azimuthal work roll direction. It can be seen from the data depicted in 
Figure 1 and Figure 2, that the results for the strip output cross-section and the specific rolling 
force, respectively, meet the expectations and converge satisfactorily. Additionally, the 
resulting residual thickness- and length-transfer distributions, averaged over the strip 
thickness and determined by evaluating the logarithmic plastic Hencky strain-tensor (as 
outlined in section 5) about five contact lengths downstream the roll-gap, and normalized to 
zero mean-value, are represented in Figures 3 and 4, respectively.  
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Figure 5: Deformed strip output thickness for test 
case 2. 
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Figure 6: Specific rolling force distribution for test 
case 2. 

The same quantities as in Figures 1 - 4 are depicted in Figures 5 – 8 for an additional 
finishing mill test case, where the strip is rolled from 3.26 mm to 2.29 mm, i.e. the strip aspect 
ratio (output width versus thickness) is now significantly higher than in the former test case. 
Therefore, for test case 2 the lateral material flow inside the roll gap is significantly inhibited, 
resulting in a drastic increase of the specific rolling force towards the strip edges, as can be 
seen in Figure 6. Due to the reduced support near the strip edge, the specific force sharply 
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drops only there, which is significantly different from the long range dropping effect, as 
depicted in Figure 2 for the first test-case. 
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Figure 7: Intrinsic thickness transfer function, as 
defined by Equation (26), for test case 2.
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Figure 8: Corresponding length transfer function, as 
defined by Equation (24), for test case 2. 

Note that for regions with high relative thickness reduction increased longitudinal strains 
are induced (corresponding to compressive residual stresses), as can be seen in Figure 4 and 
Figure 8. The convergence behaviour of the longitudinal strains is extremely critical due to 
the high sensitivity with respect to small local changes of geometric properties. 

7 CONCLUSIONS 
In the present study, a systematic iterative calculation concept was presented to treat the 

highly non-linear coupling between deformable bodies in metal forming in an efficient and 
accurate manner. Based on the underlying theoretical modeling concepts, as outlined in this 
paper, effective numerical simulation models, algorithms and tools were developed and 
programmed in C++. Special emphasis was put on the coupling of the strip models with the 
routines for the elastic roll stack deflection, which is a precondition to get reliable results 
concerning strip profile transfer and residual stress and strain distributions inside the strip. 
Such data allow the evaluation of strip-flatness and of profile adjustment ranges. The results, 
attained by utilizing this physically based and mechanically consistent model, were compared 
to data attained by commercial FEM-calculations (based on standard incremental formula-
tions) and will be validated and calibrated against practical data from an industrial hot 
finishing mill. Currently, the model is already in practical use by the industrial partners to 
attain deeper insight into the evolution of profile and flatness in hot rolling processes. 
Currently, the model is used for systematic parameter studies to investigate flatness properties 
in more detail and to develop enhanced flatness criteria for thin hot and cold strips as well as 
hot rolled heavy plates. In future, the model will constitute an essential basis for enhanced 
metallurgical process investigations. 
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Abstract. World-wide vehicles safety experts agree that significant further reductions in 

fatalities and injuries can be achieved as a result of the use of new energy absorbing materials. 

In this field, passive safety systems still have great potential to reduce fatalities and injuries, 

as in the case of using new lightweight energy-absorbing materials. On this work, the authors 

present the development of a procedure able to perform reliable panels of sandwich sheets 

with metallic foam cores for industrial applications. The mathematical model used to describe 

the behavior of sandwich shells with metal cores form is presented and some numerical 

examples are included. The numerical results are validated using the experimental results 

obtained from the mechanical experiments. Using the crushable foam constitutive model, 

available on ABAQUS, a set of different mechanical tests were simulated.  
 

 

1 INTRODUCTION 

Despite significant improvements in car safety in the last 25 years, the actual number of 

deaths and wounded arising from automobile accidents, in addition to all social and economic 

costs, remains unacceptable. Here, the passive safety systems still have great potential for 

development as a way to reduce deaths and injuries. On the other hand, from an 

environmental point of view, the use of materials optimized in terms of energy absorption, 

with a reduced weight, has a direct impact on the thermal efficiency, and consumption of the 

engines, thus emitting less greenhouse gases for the atmosphere. Within this framework, it 

makes sense the study and development of this new composite material, formed by two sheets 

of aluminium separated by a foam core of aluminium [1-2]. 
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2 CONSTITUTIVE MODEL 

To describe the plastic behavior of the metal foam in this work, the constitutive model 

proposed by Deshpande was used [8]. This model was chosen due to its capability to 

describe the behavior of porous metals and due to fact that the yield surface used on this 

model depends only on the plastic Poisson's ratio. 

 

2.1 Yield Surface 

Metal foams have an approximately linear elastic behavior for small strains. Metallic 

foams plastic deformation occurs when there is a change in volume, unlike solid metals. For 

metal foams the yield criterion can be formulated as follows: 

 

 ˆ withyσ σ≥  (1) 
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Where the equivalent stress is given by σ̂ , and eσ  is the von Mises equivalent stress. mσ  is 

the mean stress and is defined as 
1

3
m kkσ σ= . The shape of the yield surface is defined by α  

and y
σ  is the yield stress of the material [1]. 

Considering the stress plane mσ , versus stress equivalent eσ , from Figure 2 is possible to 

obtain the points 1, 3, 6, 8 that define the yield surface. These points were obtained by varying 

the pressure p, and the uniaxial load [8-9]. 

 

Figure 4: Definition of the yield surface Deshpande model. 
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2.1 Deshpande Model 

Based on the experimental results of the definition of the yield surface previously 

presented, but now considering a reference mσ →p, eσ →q, the model of Deshpande [10] 

can be summarized as follows: 

 

Elastic law: 

:
e e=σ D ε  

 

Yield Surface: 

2 2 2

2

1
( ) 0

1
3

p

y
q pφ α σ ε

α
 = + − =  

+  
 

 

 

Plastic evolution law: 
p γ=ε Nɺ ɺ  

 

Elastic evolution law: 
eε ε γ= − Nɺ ɺ ɺ  

 

 

Evolution of the equivalent plastic strain: 

2
:

3

pε γ= N Nɺ ɺ  

 

3 EXPERIMENTAL TESTS 

To validate the numerical model previously presented, uniaxial compression tests of 

samples obtained from the panels were performed. Figure 5 illustrates the experimental 

procedure, from which it was possible to record force/displacement values for this material, 

which are then compared with the numerical values. This mechanical test is one of the tests 

commonly used to characterize the mechanical behavior of metallic foams.  
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Tensile tests were also performed in order to evaluate the mechanical behavior of this 

composite material under traction. To this end specimens were cut from the panel with

dimension shown on Figure 6

 

Figure 6: Specimens used on the tensile test, according to ASTM E 8M

 

The following Figure shows de 

B

  

L

  A

  

G

  

W
  

, M.P.L. PARENTE, A.A. FERNANDES, A. SANTOS AND R. NATAL JORGE

5

 

Figure 5: Uniaxial compression test. 

tests were also performed in order to evaluate the mechanical behavior of this 

composite material under traction. To this end specimens were cut from the panel with

dimension shown on Figure 6. 
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Specimens used on the tensile test, according to ASTM E 8M

 

The following Figure shows de experimental setup used to conduct the tensile tests.

 

Figure 7: Experimental tensile test. 
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tests were also performed in order to evaluate the mechanical behavior of this 

composite material under traction. To this end specimens were cut from the panel with the 

G=50 mm, 

W=12.5 mm,  

R=20 mm, 

L=200 mm,  

A=75 mm,  

B=50 mm, 

≈20 mm,  

hickness [mm] 

Specimens used on the tensile test, according to ASTM E 8M-04. 

experimental setup used to conduct the tensile tests. 
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4 NUMERICAL SIMULATION

Numerical simulations of the same experimental tests were performed.

aluminum sheet an elasto-plastic behavior was assumed

Poisson ratio: 0.33 and points from the

foam core an elasto-plastic behavior was 

defined. The properties used to describe the metal foam behavior

0.354 GPa, Poisson ratio: 0.33, 

0.013 and points from the yield stress

by the uniaxial compression test is also used to describe the metallic foam behavior

11-12]. 

The numerical simulation

each specimen was represented numerically in order to minimize the computational effort, 

and improve the quality of the approximat

 

5 PRESENTATION AND DIS

Figure 8a shows the spciments before and after the compression test. It can be observed the 

high volume change by compression, suffered by the foam.

Figure 8b shows the deformed mesh obtained for the numerical simulation of the 

compression test. 
 

a) Final result of experimental compression test. 

 

 

Comparison of the results in terms of force

agreement between the numerical results obtained using the Deshpande model and 

experimental results. 

For the numerical test, the metal 

domain of elastic behavior, the foam quickly reaches its yield value. This can be 

physically interpreted as the beginning of the collapse of the cells that constitute the foam. 

This process is almost constant with some small variations in strength

, M.P.L. PARENTE, A.A. FERNANDES, A. SANTOS AND R. NATAL JORGE

6

NUMERICAL SIMULATIONS 

Numerical simulations of the same experimental tests were performed.

plastic behavior was assumed with Young module

points from the yield stress/plastic strain curve

plastic behavior was also assumed, based on the model previously 

he properties used to describe the metal foam behavior are the Young module

on ratio: 0.33, Compression Yield Stress Ratio: 1.71, plastic 

yield stress/plastic strain curve. The stress-strain curve obtained 

by the uniaxial compression test is also used to describe the metallic foam behavior

ns were conduct using the software ABAQUS. 

each specimen was represented numerically in order to minimize the computational effort, 

and improve the quality of the approximation given by the finite element method.

PRESENTATION AND DISCUSSION OF RESULTS 

a shows the spciments before and after the compression test. It can be observed the 

high volume change by compression, suffered by the foam. 

deformed mesh obtained for the numerical simulation of the 

 
a) Final result of experimental compression test.  b) Final numerical result.

Figure 8: Compression test. 

results in terms of force-displacements graph shows 

agreement between the numerical results obtained using the Deshpande model and 

the metal foam core assumes an important role. After a small 

domain of elastic behavior, the foam quickly reaches its yield value. This can be 

physically interpreted as the beginning of the collapse of the cells that constitute the foam. 

most constant with some small variations in strength
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Numerical simulations of the same experimental tests were performed. For the 

with Young module: 70 GPa, 

curve. For the metallic 

assumed, based on the model previously 

are the Young module: 

plastic Poisson ratio: 

strain curve obtained 

by the uniaxial compression test is also used to describe the metallic foam behavior [8, 

were conduct using the software ABAQUS. Only 1/8 of 

each specimen was represented numerically in order to minimize the computational effort, 

ion given by the finite element method. 

a shows the spciments before and after the compression test. It can be observed the 

deformed mesh obtained for the numerical simulation of the 

 
b) Final numerical result. 

displacements graph shows a good 

agreement between the numerical results obtained using the Deshpande model and 

role. After a small 

domain of elastic behavior, the foam quickly reaches its yield value. This can be 

physically interpreted as the beginning of the collapse of the cells that constitute the foam. 

most constant with some small variations in strength. After all the cells 
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have collapsed, the numerical specimen starts behaving as a solid, resulting on a rapid 

increase on the applied force for small increments of displacements.

A good agreement was obtained

results. This validates the use of the Deshpande constitutive model, used to describe the 

difficult behavior of plastic porous materials.

Figure 9 shows the speciments after the tensile tests experiments. The o

numerical and experimental results for the ten

the force/displacement curves of Figure 10

tensile test for an homogeneous solid metal, with an initial el

plastic behaviour. The high forces that leads to the rupture

supported by the two aluminum sheets, since the rupture of

much lower forces than those achieved during the experimental tensil

 

 

Figure 9: Specimens 

after the tensile test. 

Figure 

 

6 CONCULUSIONS 

A good agreement was verified

uniaxial compression test. It is possible to conclude that the model of Deshpande can be 

used to describe the plastic behavior associated with the metal foam

For the tensile test a good agreement between the numerical and experimental results 

was obtained. It is also still possible to conclud

responsible for the high force 

withstand tensile forces. 

Finally, and as a way to improve the numerical results, additional experimental studies 

would be needed in order to obtain the properties of the sheets separated from the foam, 

and an approach to study the anisotropy associated with both materials that co

these panels. 
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have collapsed, the numerical specimen starts behaving as a solid, resulting on a rapid 

applied force for small increments of displacements. 

obtained between the numerical results and 

validates the use of the Deshpande constitutive model, used to describe the 

difficult behavior of plastic porous materials. 

shows the speciments after the tensile tests experiments. The o

numerical and experimental results for the tensile tests are shown in Figure 10

/displacement curves of Figure 10, they appear to be similar to a typical curve of a 

tensile test for an homogeneous solid metal, with an initial elastic behaviour

. The high forces that leads to the rupture of the speciments are mainlly 

two aluminum sheets, since the rupture of the metal foam

much lower forces than those achieved during the experimental tensile tests

Figure 10: Force/displacement curve for the experimental and numerical 

tensile test. 

verified between the numerical and experimental 

t is possible to conclude that the model of Deshpande can be 

used to describe the plastic behavior associated with the metal foam cores

For the tensile test a good agreement between the numerical and experimental results 

was obtained. It is also still possible to conclude that the aluminum sheets are the main 

responsible for the high force achieved experimentally, due to the foam’s low ability to 

Finally, and as a way to improve the numerical results, additional experimental studies 

would be needed in order to obtain the properties of the sheets separated from the foam, 

and an approach to study the anisotropy associated with both materials that co
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shows the speciments after the tensile tests experiments. The obtained 
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, they appear to be similar to a typical curve of a 

haviour and a second 
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the numerical and experimental results for the 
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For the tensile test a good agreement between the numerical and experimental results 
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and an approach to study the anisotropy associated with both materials that constitute 
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Abstract. The exploitation of geothermal power is an innovative energy source with great potential.  
However the exploration for deep geothermal sources is still costly and high risk operations.  
Recently, an expandable tubulars technology for casing is proposed with the potential to construct 
monobore completions.  These lead to a smaller borehole and significantly reduce the cost of drilling 
process.  Technically the expandable tubulars will be initially reduced by a folded plasticity condition 
and be expanded again downhole.  In our studies, the performances of using them were studied in 
terms of reformability (foldability and expandability) and collapse resistance based on numerical 
approach. Elasto--plasticity models were investigated, conventional finite element method (FEM) was 
used for dicretizations combined with other necessary numerical algorithms.  The standard predictions 
of expandable tubular performance were finally proposed, the numerical results were also presented at 
the final part of this paper.  

 
 
1 INTRODUCTION 
   An innovative energy source such as geothermal is exploitation with very high potential.  In 
deep geothermal source, the operations include high cost and risk.  The major cost come from 
a part of drilling bore completion.  Recently, a new technology is being developed, namely 
expandable tubulars technology, the diameter of tubulars will be initially reduced by a folded 
plasticity condition and could be expanded again downhole.  This technology offered the 
expandable tubulars on using with maximizing through bore, reducing cost and improving 
productivity.   
   The fundamentals of mechanical reforming process involved an application of sufficient 
forces to overcome the yields strength of tubular material and taking the advantages of 
plastics deformation to reform a new geometry of tubular.  The reforming process consists of 
folding and expansion process.  The method of folding process is typically using contact with 
hard material.  The methods of expansion process have been established alternatively [6], 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 
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such as hydraulic pressure, cone expansion, rotary expansion or combination between them.  
With hydraulics pressure, the high pressure may require in some cases and the capacity of 
machine has to be considered.  It could be used for initial expansion process for other 
methods.  Cone expansion method is an extrusion process in which a tubular is subjected to 
the expansion forces acting around entire inner circumference.  The tubulars will be radially 
expanded when the cone move in axial direction.  The rotary expansion consist of a roller set 
which is discrete the position of expansion force in circumference.  To apply acting expansion 
force to entire inner circumference, the roller set will be moved in longitudinal axis.  The cone 
expansion and rotary expansion require minimizing frictions and vibrations of reforming 
system. 
   The concepts of productions are two possibilities of producing expandable tubulars.  The 
first may produce expandable tubulars directly from tube in which available in market.  This 
reforming process will include both folded reforming and expanded reforming. For the second 
concept, tubulars may be completely formed with expected geometry from factory directly, 
using them just complete only the expansion process. 
   As we have mentioned with some different of producing expandable tubulars or different of 
reforming methods.  With this expandable tubulars technology, drilling operation can now 
using smaller hole for drilling deeper vertical wells or it can be used for extending the holes 
horizontally to reach untapped reservoir.  In such a case, these expandable tubulars can 
provide very effective cost solutions and significantly save the drilling cost.   
   However to use expandable tubulars there still have some difficulties remaining.  There is 
plastics flow deformation during the reforming process.  Tubular structure will be reformed 
repeatly as folding and expansion, plastic behavior could be complicated.  The Bauschinger 
effect [2] occurs during plastics deformation process.  Tubular might be collapsed before the 
reforming process has completed.  Furthermore, after completing reforming process the high 
pressure resistance, namely collapse pressure must be examined.  This collapse pressure 
occurs due to different of pressure between inside and outside tubing.  The different of 
pressure could be very high pressure and making catastrophically deform to tubular, 
especially in the area of salt at downhole.   
   In this research work, we studied the reformability and collapse resistance of expandable 
tubular by using modeling of elasto-plasticity [4,5], combined with conventional finite 
element method (FEM) and necessary numerical algorithms.  The different geometries of 
expandable tubulars have been tested numerically combined with different types of steel, e.g. 
mild steel, TRIP steel and TWIP steel.  Note that TRIP is stand for Transformation Induced 
Plasticity and TWIP is stand for Twinning Induced Plasticity. 

2 REFORMING PROCESS FOR EXPANDABLE TUBULARS 
   The expandable tubulars includes plastic deformation due to reforming process (folding and 
expansion), also bending and straightening during transportations and installation process.  
After reforming process this tubular must satisfy the resistance of collapse pressure at 
downhole.  In Fig.(1) shown the overview of reforming process and collapse pressure 
resistance.  The tubulars begin with an initial geometry (G1), tubulars are perfectly round.  
These tubulars will be folded with plastic deformation at the folding process, typically this 
process could be done by pressing with hard material.  After folding process the tubulars have 
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reformed one time, the geometry is shown in (G2).  Now the diameters of tubulars are 
significantly reduced with no round geometry.  This will make the transportations more 
efficiently economically.  The tubulars may be deformed again by bending on reeling and 
unreeling process.  In order to prepare the tubulars for installation into drilling hole, the 
straightening is required.  These tubulars must be reversely deform again by bending until the 
straight tubulars have found or atleast having possibility to install into drilling hole, this is 
shown in (G3). 

Figure 1: Overview of reforming process and collapse pressure resistance for expandable tubulars 

   After the folded tubulars are installed into drilling hole, the expansion processes can be now 
started, may be with different methods as we have mentioned before.  The expansion process 
will make the tubular round with plastic deformation.  After installation the tubulars will be 
applied by namely collapsed pressure.  This pressure in some condition could make the 
tubulars catastrophically deform as in (G5).  There are clearly shown that the reforming 
process and collapse pressure resistance will make tubulars repeatly plastically deform.  The 
analysis of these tubulars requires the suitable model, especially plastic flow deformation.  
This elasto-plastic deformation model will be discussed in the next section. 

3 MODEL THEORY OF ELASTO-PLASTICITY 
   According to applied forces, material deforms with elastic properties until some magnitude 
of this force, stress may not increase but strain is significantly increased.  This is the physical 
phenomena for typical elasto-plastic model.  The strain rate   which describe the total 
deformation is divided into strain rate of elastic deformation     and strain rate of plastic 
deformation   , given by the following function.  
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        . (1) 

   On elastic deformation, the structural response is assumed to be derivable from strain 
energy (U), so that stress fields can be directly defined by gradient of strain energy respect to 
the elastics strain   /   .  In order to implement hardening law, it is a proper 
combinations of isotropic and kinematics hardening model.  The particular yield surface 
condition is described by   

      0  , (2) 

combine with the equivalent Mises stress     3/2  :   , where (:) 
denotes the tensor operator, S denotes the deviatoric stress tensor and  is the deviatoric 
part of back stress tensor and   denotes current yield stress. 
   During the plastic deformation, material behaves as flow plastically.  The plastics 
deformation can be obtain by namely the flow rule, it is given by   

    
  , (3) 

where   denotes flow potential and  is time rate parameter here the equivalent plastics 
strain rate is used. 
   Considering the hardening law, the nonlinear isotropic /kinematics hardening model is used 
to describe the stress evolution.  This consists of two components: one is the nonlinear 
kinematics hardening which describe the translation of yield surface in stress space through 
backstress [3]; another is an isotropic hardening in which describe the size of yield surface.  
The formulation is given by      

   1
        , (4) 

where C and  are material constant, when  is zero become the linear kinematics model and 
when C and  are zero so become the isotropic hardening model. 
   The model has been implemented in material property subroutine in Abaqus/CAE [1], 
combination with nonlinear finite element and some other numerical necessary algorithms in 
the computation.  The tool for standard prediction of plastic behavior for expandable tubular 
can be performed and simulated the mechanism of expandable tubular, which will be 
discussed in the next section. 
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4 NUMERICAL RESULS OF REFOMABILITY AND COLLAPSE RESISTANCE 

4.1 Expandability of folded tubulars 

   In this computation, we deal with expandability of folded tubulars.  The hydraulics pressure 
is used for expansion process.  The folded geometry may already be obtained by tubulars 
production manufacturing.   We start with the geometry G2 (see in Fig.(1)) and concerning 
only on expansions process The analysis of plastic deformation are performed with different 
tubular geometry and different material.  The main objective of this computation is to find out 
the mechanism of plastics deformation with different optimized geometry and different 
tubular material. 

Figure 2: Geometry of tubulars 

   The optimized geometries are obtained by our project partner [5] at Institute of Production 
Engineering and Machine Tools, University of Hannover.  The different geometries are 
shown in Fig. (2).  The parameters shown in Table (1) with the maximum outer diameter 
(OD), thickness (t) and maximum ovalidity (OD/t).  Tubular geometry is analyzed with 
different kind of tubular material. 

Table 1: Geometry parameters of Tubulars 

Max. OD (mm.) Thickness (mm.) Max. OD/t 

165.0 6.0 27.5

Table 2: Material properties 

Descriptions 
Modulus of Elasticity Poison's ratio Yields stress Rupture stress Max. Strain 

(N/mm^2)    (N/mm^2)  (N/mm^2)  % 

Mild steel 2.10E+05 3.00E-01 4.00E+02 5.00E+02 8.20E+00 
TRIP steel 2.10E+05 3.00E-01 4.80E+02 1.10E+03 5.00E+01 

TWIP steel 2.10E+05 3.00E-01 4.50E+02 6.99E+02 9.00E+01 
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Figure 3: Stress-strain curve for different steel materials

   There are mild steel, TRIP steel and TWIP steel, the mechanical properties can be found in 
Fig. (3) and Table (2).  Mild steel represents the steel which is normally used for tube and 
available in market, typically rupture strain is less than 20 %.  TRIP steel is used for 
representing high strength steel, the strength is higher than 1000 N/mm2   and rupture strain 
can reach 50 % approximately.  The TWIP steel is used for representing high deformation 
which is 90 % approximately.   
   For TRIP steel, the plastic flow process occurs with phase transformation from austenite to 
martensite.  The molecule builds the new structure during the plastics flow process, which is 
the reason why strength can be increased significantly.  Also the strain can be increased but 
only depending on new form of molecular structure.  For TWIP steel, the strength can be 
increased but smaller amount compare to TRIP, while rupture strain increase significantly due 
to the so-called Twinning effect.  TRIP and TWIP are now widely used in auto-industry. 

Table 3: Summary results. 

Descriptions Material 
Max. Stress  Pressure Evaluation 

deformation 
Expansion 

(N/mm^2)  (N/mm^2)  Ratio % 

Model 1 Set # I Mild steel 5.00E+02 5.71E+00 Rupture - 

Model 1 Set # II TRIP steel 6.05E+02 3.00E+01 Plastic -1,41E+01 

Model 1 Set # III TWIP steel 5.89E+02 3.00E+01 Plastic -1,41E+01 

Model 2 Set # I Mild steel 5.00E+02 8.16E+00 Rupture - 

Model 2 Set # II TRIP steel 7.23E+02 2.98E+01 Plastic 2,01E+01 

Model 2 Set # III TWIP steel 6.18E+02 3.00E+01 Plastic 1,96E+01 

Model 3 Set # I Mild steel 5.00E+02 6.61E+00 Rupture - 

Model 3 Set # II TRIP steel 8.46E+02 3.00E+01 Plastic 2,15E+01 

Model 3 Set # III TWIP steel 6.28E+02 3.00E+01 Plastic 2,06E+01 

Model 4 Set # I Mild steel 5.00E+02 4.33E+00 Rupture - 

Model 4 Set # II TRIP st eel 7,46E+02 3.00E+01 Plastic 2,27E+01 

Model 4 Set # III TWIP steel 6,30E+02 3.00E+01 Plastic 2,29E+01 
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Figure 4: Mechanism of expansion process for model 4; a) mild steel; b) TRIP steel; c) TWIP steel. 

   To obtain reasonable solutions with acceptable accuracy, high requirements towards the 
modeling technique and the numerical treatment are necessary. The nonlinearity in this 
computation includes geometrical nonlinearity due to the large deformations and the material 
nonlinearity which describes the nonlinearity of the material laws. The iterative Newton 
method is used to obtain the nonlinear solution, while the system equation solver is the direct 
method.  The element meshes are implemented with rectangular element type.  The 
resolutions are obtained with global mesh refinement, beginning with course mesh and then 
refine until convergence occur.    
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Figure 5: Expansion process at critical part of structure. 

   Concerning numerical results, the plastic strain occurred after the pressure was increased. At 
some pressure the tubular were reformed. Theoretically, if materials do not arrive at the 
rupture point when increasing the internal pressure; they should be reformed until the round 
geometry occurs. If they arrive rupture point, they will be damaged before the round 
geometries have formed. 
   Three different types of steel (mild steel, TRIP steel and TWIP steel) are considered.  The 
results showed very clearly that, for all model geometry of mild steel is damaged before round 
geometry could be formed. Oppositely, TRIP and TWIP steel can be formed until round 
geometry occur without any damages.  Concerning again maximum stress, the TRIP steel has 
higher magnitudes compared with TWIP steel at the same internal pressure. These came from 
the nonlinearity of the material, or TRIP steel is harder and TWIP steel can be reformed easier 
than TRIP steel. The results of the expansion process with different geometries and different 
materials are presented in Table (3). The expansion mechanisms can be found in Fig.(4) and 
in Fig.(5), where the critical part of the structure in the expansion process is shown. 

4.2 Testing of resistance collapse pressure  

Figure 6: Setting problem for collapse pressure test;  a) collapse pressure; b) 3456 rectangular meshes  
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   Extension from previous example (4.1) the numerical testing of collapse pressure resistance 
is investigated.  The main objective for this computation is to study the deformed mechanism 
of resistance collapse pressure and the influence of geometry imperfection on the capacity of 
resistance collapse pressure.  As we have mentioned when using expandable tubular 
downhole, it has a possibility to get high pressure due to movement of salt.  In this 
computation, the collapse pressure is applied directly from outside with perfectly uniform 
distribution, see in Fig.(6).  The tubular geometries are the same as in example (4.1).  For 
material properties, TWIP steel is used for this testing.  The expansive pressures are varied 
from lower magnitude (10 N/mm2) to higher magnitude (40 N/mm2), while the collapse 
pressure is linearly increased from zero to 40 N/mm2. 

Figure 7: Mechanism of expansion and collapse pressure; a) Initial geometry; b) Expansive pressure;                           
c) Unloading expansive pressure and d) Collapse pressure.  

   The results shown that, model 1 can be expanded with increasing expansive pressure until 
40 N/mm2 without damaged while others model were collapsed at expansive pressure about 
32 N/mm2 approximately.  In expansion mechanism the tubulars are expanded and slowly 
deform until plastic deformation occurred as shown in Fig.(7 b).  After that the expansive 
pressure is linearly unloaded the elastic deformation part can be reversely deformed, while the 
plastic deformation does not reverse as shown in Fig.(7 c).  Thus this geometry is the 
beginning form for analysis of resistance collapse pressure.  The different expansive pressure 
will give different final geometry, some of them are completely round some of them are not 
depending on the expansive pressure itself, in Fig.(9) shown the different final geometry of 
tubular with varying expansive pressure.  In Fig.(8) shown the results of collapse pressure 
when the expansive pressures are varied.  There is an interested observation that when the 
expansive pressure is increased the collapsed pressure is increased as well.  There could be 
explained that, when expansive pressure increase tubular is reformed and giving more a round 
geometrical property as shown in Fig.(9), until at some expansive pressure the tubular become 
completely round.  At this point tubular begin namely perfection geometry, this kind of 
geometry is completely round and it has more capacity for resistance collapse pressure.  
Oppositely, before arriving this perfection point the geometry has some geometrical 
imperfection, the geometry is not completely round.  Also it reduce the capacity of resistance 
collapse pressure as shown in Fig.(8). 
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Figure 8: The relations of expansive pressure and collapse pressure 

Figure 9: Tubular geometry after unloading expansive pressure of model 1 ; a) Expansive pressure 10 (N/mm2) ; 
b) Expansive pressure 20 (N/mm2) ; c) Expansive pressure 30 (N/mm2) ; d) Expansive pressure 40 (N/mm2)  

4.3 Expandability of folded tubulars with cone expansion 

   As we mentioned in examples (4.1) and (4.2) the expansion process have involved with 
hydraulics pressure.  In this example, we interested in cone expansion method.  Tubulars will 
be expanded by contact forces between cone expander and tubular, the cone expander has to 
be moved inside through tubing with the expected diameter.  The 10 % expansion rate is 
considered in these cases.  We interested on mechanism of model 1 with different material 
(mild steel, TRIP and TWIP).  The main questions are these 3 materials could be used with 
cone expansion method and what are the magnitudes of driving force for cone expander.  As 
the contact between cone expander and tubular are main consideration, the model of contact 
mechanics is included by penalty methods [3] with the Coulomb’s friction coefficient 0.1. 

   The results shown that mild steel damaged before cone expander has completely drived 
through the tubular, oppositely for TRIP and TWIP, did not damage and the cone expander 
can drive through the tubular.  Considering mechanism of expansion process, the expander is 
moved forward by driving force.  Due to the geometry of the cone, the tubular will be 
automatically expanded when the cone pass through.  The plastic deformation occurred and 
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reforming the round geometry while the elastic deformations did some reversely reform after 
the cone expander has already pass through.

Figure 10 : Expansion process with cone expander for model 1 
      
   In Fig.(10) shown the result of expansion process for model 1 with TWIP steel, the high 
plastic deformation occurred at red part.  Concerning the driving force in different material, 
the mild steel required low magnitude of driving force as this material is already damaged and 
cannot resist the force due to contact of the expander.  TRIP steel requires higher magnitude 
of driving force compare to TWIP steel.  This could be explained that TRIP steel has higher 
strength property compare to TWIP steel which has extremely high deformation property.  
This high strength property could make the cone expander difficult to drive forward and 
required driving force too high.  The comparison of driving force for different materials are 
shown in Fig.(11). 

Figure 11: Driving force for moving cone expander forward with different material. 
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5 CONCLUSIONS  
   The performance of using an innovaive expandable tubular technology was studied interm 
of reformability which including foldability and expandability, and collapse resistance based 
on numerical approaches.  Typical models of elasto-plasticity were investigated espcieally 
with the combined isotropic and kinematics model, in which the Bauschinger’s effect [2] can 
be taken into account.  The conventional nonlinear finite element method was used combined 
with the necesary numerical algorithm in order to solve the model and perform the standard 
tool for prediction of the expandable tubular performance.  According to the numerical 
results, there are some interested observation as :

• In term of material the high strength such as TRIP and TWIP steel are recommended 
to use for expandable tubular later than mild steel. 

• In term of geometry, imperfection geometry of expansion has significantly influence 
to the capacity of collapse pressure resistance.  The perfectly round geometry has 
significantly more capacity for resistance collapse pressure than the imperfection.  

• The imperfection of collapse pressure itself is also interested in term of the 
distribution pattern and the magnitude, it is still an open question in this field. 

• For the cone expansion type, the influence of friction is also interested; it will be 
investigated and published later. 
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Abstract. A recently proposed procedure for the simulation of cross roll straightening
allows to predict successfully the residual stress distribution in straightened bars as well
as their yield stress. Although the procedure allows also to make predictions about the
curvature of straightened bars, large discrepancies appear between predictions and exper-
iments. The present study aims at understanding the causes of these deviations. The
standard experimental setup for the measurement of curvature provides values on the
assumption of a constant in-plane curvature. Using a modified procedure for the predic-
tion of the curvature, this study shows that, according to the model, the curvature of
straightened bars is not constant and not in-plane. The reason for the deviation observed
between predictions and measurements is then obvious.

1 INTRODUCTION

Cross roll straightening is the last mechanical operation in the production process of
bright steel bars and aims principally at reducing: (1) the curvature and (2) the detrimen-
tal residual tensile stresses on, and close to, the surface of round bars. On the downside,
the operation may lead to a decrease of the yield stress of the bars. Modelling approaches
to describe the process can be grouped into two main categories: analytical procedures
and FE based procedures. The former ones (see e.g. [1, 2]) relie on the assumption of
straightening under pure alternate bending and cannot take into account such influences
as the lateral stamping applied by the rolls on the bar. The latter ones (see e.g. [3, 4])
are CPU cost intensive and, therefore, require the use of relatively rough meshes, making
them unable to predict subtle differences in e.g. the yield stress of straightened bars.

During cross roll straightening, the bar is bent and stamped between two rotating
rolls, a convex and a concave one, as shown in Figure 1. Apart from the geometry of the

1
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Figure 1: Sketch of the cross roll straightening process. The two main process parameters are the angle
α and stamping δ. XY Z are the principal axes of the global coordinate system.

rolls, the main process parameters are the angle α between the rolls and the bar and the
stamping δ, defined as the diameter of the bar minus the minimum distance between the
rolls. During straightening, the rolls rotate, inducing a forward motion of the bar and a
rotation about its main axis.

A mixed analytical-numerical modelling approach to cross roll straightening, based on
similar assumptions as the one introduced in [5], is presented in [6]. The procedure allows
to predict quantitatively the influence of the straightening parameters α and δ on the
yield stress of straightened bars. The predicted residual stress distribution is in qualita-
tive agreement with the measurements presented in [7].

In [6], only intermediate results about the prediction of the curvature of straightened
bars are presented. The predictions lie about an order of magnitude higher than the
experimental values and no satisfying explanation of this discrepancy is provided. The
present study aims at shedding light on the capabilities of the procedure regarding the
prediction of the curvature of bars after straightening.

2 PROCESS MODELLING

This section presents a summary of the modelling approach. A more detailed expla-
nation can be found in [6]. The main assumptions on which the procedure rely are the
following:

- a closing simulation, in which the bar is simply bent and stamped between two
static rolls (without rotation or forward feed), provides a decent approximation of
the total strain distribution in a bar during cross roll straightening. For example,
the influence of the rolling contact between the bar and the rolls can be neglected

- the total strain distribution in the bar depends marginally on the behaviour of the
material

2
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- the path of a material point of the bar during straightening can be computed ana-
lytically

The first step of the procedure is a closing simulation. This simulation is conducted
using a dynamic implicit scheme and the material behaviour is described using a linear
isotropic model. The results are the total strain distribution within the bar and the
bending line b (t). b (t), with t ∈ [0, 1], is a parameterised curve in the ZY plane passing
through the nodes lying on the neutral axis of the bar in the deformed configuration. A
coordinate system {ξ (t) , η (t) , ζ (t)} is associated to b (t)

eξ (t) =




1
0
0




eη (t) =
1

�b′ (t) �




0
b′z (t)
−b′y (t)


 (1)

eζ (t) =
1

�b′ (t) �




0
b′y (t)
b′z (t)




where b′ (t) is the directional derivative of b (t).

A sufficient number of points Pi are chosen over a cross section of the bar. Their helical
paths pi (t), having b (t) as neutral axis and a pitch κ = 2πrrod tan (α), are computed.
The solids lying on each path are identified. The sequence of the total strain tensors asso-
ciated to these elements builds the total strain history of each material point considered.
Total strain increments are defined as the differences between consecutive states along
a given path. Those strain increments are then integrated according to the constitutive
equations presented in Section 3.2. To compensate for eventual deviations from the state
of equilibrium, the internal variables obtained for each Pi are mapped to a corresponding
layer of solid elements and, applying adequate boundary conditions, the equilibrium is
sought using a one-step static implicit solution scheme.

For predictions regarding the evolution of the curvature of the bar, axis asymmetric
axial initial stresses are considered. An initial curvature κbs < σy/ (Errod) of a bar can be
reduced to a stress distribution over its cross section according to relation

σin
ζζ (η) = Eκbsη (2)

Considering σin
ζζ as initial stresses, the corresponding σout

ζζ stresses after straightening are
computed using the procedure described above. This stress distribution generates a mo-
ment Mξ̃ about an axis ξ̃

3
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Figure 2: σout

ζζ
stress distribution in a bar with an initial curvature κbs = 10−4 straightened with α = 18◦

and δ = 0.50 mm. The angle β is highlighted (β = −20◦ in the present case). The linear initial stress
distribution in the core of the bar is not affected by the plastification that takes place in the peripheral
layers.

Mξ̃ =

∫

A

σout
ζζ η̃dA (3)

where ξ̃η̃ is obtained by a rotation of ξη by an angle β around the axis ζ , as shown in
Figure 2. The moment Mmax

ξ̃
is

Mmax
ξ̃

= max
(
Mξ̃ (β)

)
(4)

The curvature after straightening is κas = Mmax
ξ̃

/ (EI).

3 MATERIAL MODELLING

3.1 Tension-compression tests

The material investigated in the context of this study is a SAE 1144 medium carbon
steel (�25 mm). As mentionned above, cross roll straightening induces a cyclic defor-
mation in the bar. The cyclic behaviour of the material is investigated by carrying out
tension-compression tests under total strain control with an amplitude ∆ε/2 = 1.5·10−2 at
a strain rate of approximately 5 ·10−3 1/s. The material exhibits a strong Bauschinger ef-
fect, cyclic softening and a small apparent tension-compression asymmetry. The term
apparent is used to highlight the fact that the phenomenon is more likely due to a
Bauschinger effect from the previous drawing operation than to a real (according to the
definition given in [8]) strength differential effect.

4
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Figure 3: Stress-strain curve obtained from a tension-compression test and corresponding values according
to the Chaboche model.

3.2 Constitutive equations

The total strain tensor is additively decomposed in an elastic strain and a plastic strain.
The elastic part of the strain tensor obeys Hooke’s law. The plastic strain components
are governed by the associated flow rule. The yield function is expressed as

F =
3

2
(s − a) : (s − a) − Y 2 (5)

where s is the deviatoric stress tensor and a is the backstress tensor. Y , the isotropic
hardening (or softening) part, is

Y = Q (1 − exp (−bp)) + σ0 (6)

where p is the accumulated plastic strain. a (i.e. its evolution equation) is decomposed
according to [9] as

a =
M∑
i=1

a(i) + a0 (7)

where a0 allows to take into account the initial asymmetry between tension and com-
pression in a non-evanescent manner. a(i) is defined through the (Armstrong-Frederick)
differential equation

da(i) =
2

3
Cidεp

− γia
(i)dp (8)

Figure 3 shows the fitted model on the experimental stress-strain curve; the correspond-
ing values of the parameters are given in Table 1. The material model is implemented
according to the radial return algorithm presented in [10]. For the closing simulation
mentionned in Section 2, a linear isotropic model is fitted on the first tension branch
(σy = 935 MPa and Etan = 3000 MPa).

5
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Table 1: Fitted parameters for the Chaboche model (E = 210 GPa and M = 3)

C1 C2 C3 γ1 γ2 γ3 Q b σ0 a33

44400 18100 1430 665 87 0 -214 5.5 757 7.7

Figure 4: Experimental setup used to measure the curvature of bars (L = 1 m).

4 PREDICTION OF RESULTING STRAIGHTNESS

The curvatures of 40 bars before and after straightening with α = 18◦ and δ = 0.50
mm are measured using the setup sketched in Figure 4. The setup is a common means of
assessing the curvature of bars in the industry and [11] presents measurements obtained
using a similar device, the dial gauge being replaced by a laser one. The maximum dial
gauge amplitude 2Υ is recorded and is converted into a curvature κ = 8Υ/L2 assuming
that the bar has a constant radius of curvature in a single plane. Experimental results
and corresponding predictions are plotted in Figure 5.

It appears from Figure 5 that the curvatures predicted by the model are about an order
of magnitude higher than the experimental values. A straightening effect can be predicted
when relatively large values of curvature before straightening are considered. When bars
with a small initial curvature are considered, such as the ones investigated in this study,
the predicted curvatures after straightening are larger than the ones before straightening.

In [11], the roller leveller straightening of coiled medium carbon steel wire (�6 mm)
is investigated both experimentally and numerically. In a roller leveller, the bar is re-
peatedly bent in a single plane. Considering a bar initially curved in a single plane and
straightening it in its plane of curvature leads to (1) a reduction of its main curvature
and (2) the appearance of a small out-of-plane curvature. In this case, the assumption
that straightened bars are curved in a single plane does not hold.

In order to verify the hypothesis of the constant in-plane curvature of the bars after
straightening for the present case, κas is computed for different sections over a distance κ

of the bar (κ = 25.52 mm for rrod = 12.5 mm and α = 18◦). The computations are made
with α = 18◦ and δ = 0.50 mm and two initial curvatures are considered: (1) κbs = 0 and

6
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Figure 5: The curvatures before (κbs) and after (κas) straightening (with α = 18◦ and δ = 0.50 mm) of 40
bars are measured. The values predicted by the model are also plotted. The model cannot, apparently,
predict curvatures below κas = 6.5 · 10−6 1/mm.

(2) κbs = 10−4 1/mm. The predicted curvatures as well as the corresponding angles β are
plotted in Figure 6.

It appears from the results obtained for κbs = 0 (Figure 6 (top)) that:

- the curvature of the bar after straightening is approximately constant (κas
≈ 6.6 ·

10−6 1/mm, which corresponds to the apparent limit highlighted in Figure 5)

- the angle β between the axis of principal curvature and the axis ζ completes a whole
rotation over a distance κ

According to the model, the shape after straightening of an initially perfectly straight
bar is hence a helix whose main axis is a straight line. Random numerical errors lead to
variations 2∆κas < 5 · 10−7 1/mm, which are acceptable considering the scattering of the
experimental data.

It appears from the results obtained for κbs = 10−4 1/mm (Figure 6 (bottom)) that:

- the curvature of the bar after straightening varies over a length κ

- the angle β varies in a ±30◦ strip

These results highlight the fact that the comparison made in Figure 5 between experi-
mental (global) values of curvature and predicted (local) curvatures is not relevant. The
assumption of a constant in-plane curvature after straightening does not hold. The exper-
imental setup pictured in Figure 4 is not sufficient to assess the curvature of straightened
bars.

7
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Figure 5: The curvatures before (κbs) and after (κas) straightening (with α = 18◦ and δ = 0.50 mm) of 40
bars are measured. The values predicted by the model are also plotted. The model cannot, apparently,
predict curvatures below κas = 6.5 · 10−6 1/mm.

(2) κbs = 10−4 1/mm. The predicted curvatures as well as the corresponding angles β are
plotted in Figure 6.

It appears from the results obtained for κbs = 0 (Figure 6 (top)) that:

- the curvature of the bar after straightening is approximately constant (κas
≈ 6.6 ·

10−6 1/mm, which corresponds to the apparent limit highlighted in Figure 5)

- the angle β between the axis of principal curvature and the axis ζ completes a whole
rotation over a distance κ

According to the model, the shape after straightening of an initially perfectly straight
bar is hence a helix whose main axis is a straight line. Random numerical errors lead to
variations 2∆κas < 5 · 10−7 1/mm, which are acceptable considering the scattering of the
experimental data.

It appears from the results obtained for κbs = 10−4 1/mm (Figure 6 (bottom)) that:

- the curvature of the bar after straightening varies over a length κ

- the angle β varies in a ±30◦ strip

These results highlight the fact that the comparison made in Figure 5 between experi-
mental (global) values of curvature and predicted (local) curvatures is not relevant. The
assumption of a constant in-plane curvature after straightening does not hold. The exper-
imental setup pictured in Figure 4 is not sufficient to assess the curvature of straightened
bars.
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Figure 6: Predicted curvatures after straightening (κas) and the corresponding angles to the axis ξ for
two different curvatures before straightening: κbs = 0 (top) and κ = 10−4 1/mm (bottom).

8
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5 CONCLUSIONS

The present study sheds light on the causes of the large discrepancy observed between
measurements and experiments in [6]. Using a standard experimental setup, the curvature
of bars is measured on the assumption of a constant in-plane curvature. Although drawn
bars may exhibit such curvatures, it is shown numerically that the assumption does not
hold for straightened bars. A meaningful link, if any, between predicted (local) and
measured (global) values is still to be established.
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Abstract. Aim of the present work is to improve the production of laserwelded flux cored 
wires with the help of Finite Element Analysis in Abaqus. This flux cored wires are used as 
welding consumables. To simulate the whole production process for every variety of input 
parameters is far too time-consuming particularly with regard to the filling. The production 
process is as following: after roll forming of a strip to a U-shape it is filled continuously with 
flux. This powder consists of up to 20 different substances. Afterwards the profile is closed to 
a tube and the edge is laserwelded. At last the diameter of the tube is reduced to 1.2 mm. The 
reduction step is investigated and subject of the present work. Observations have shown the 
most abrasion of the working dies in reduction steps where it is not expected due to the 
calculated true strain sequence. Therefore, the influence of the filling on the roll drawing 
process has to be taken into account. This is not easy because the process starts with loose 
multicomponent powder and ends with high compaction. It is hard to cover these demands 
with a single model for powder behaviour. So a phenomenological approach is established to 
solve the problem. The influence of the powder is described as a load which only appears in 
the projected contact area. Consequently, it becomes possible to study parameters on the 
reduction like different quantities of the multicomponent powder, the reduction sequence of 
the roll drawing process and the geometry of the rolls.  
 
1 INTRODUCTION 

Different powder models were studied to characterise the influence of the powder in the 
process. Soil mechanic models like Drucker-Prager/Cap describe lower compaction [1]. Many 
models exists which handle the powder as a metal matrix with porosity, like Shima and Oyane 
or Gurson [2]. These models are right at higher compaction [3]. At last there are models which 
calculate the behaviour of spheres under pressure [4,5]. This is far to time consuming for this 
kind of simulation. The production process leads to a high range in the compaction. Therefore 
one model could hardly reproduce the whole process. But it is impossible to fix a crossover 
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 2

between two models. Furthermore all of them focus on the strength of the compacted powder 
and the density distribution during production to predict cracks in the finished parts. This is 
not relevant in this case. At least the experiments to characterise the powder are mostly very 
complex and expensive [6,7]. This is the reason why a phenomenological approach is added to 
the finite element analysis. A lot of investigational work has been done on characterisation of 
drawing process with axially symmetric dies [8,9,10]. The roll drawing process using roller dies 
is less studied [11,12,13]. All the researchers concentrate in their work on the reduction of rods or 
tubes with or without mandrel. The problem in the present work is that at the beginning loose 
powder is added. During the reduction process the multicomponent powder (flux) is 
compacted and acts as some kind of mandrel to the process. This is tightening up the 
investigation of the production process. Beside the pass schedule and the filling, the geometry 
of the rolls plays an important role. Also the strain-hardening of the tube has to be considered. 
These parameters are interacting in the roll drawing process that’s why it is difficult to handle 
in the finite element analysis.  

2 ROLL DRAWING 
Metallographic specimens show the influence of the used amount of multicomponent 

powder. Due to varying bulk volumes the wall thickness in the final cross section differs. If 
there is no powder added the inner diameter vanish. Three examples are shown in Figure 1. 
The outer diameter stays the same.  

 

 
Figure 1: Cross section through the final product for three different filling volumes

(increasing from a to c), outer diameter 1.2 mm 
 
The wall thickness is measured in three different positions, because the inner outline is 

very rough. The mean is build as schown in Table 1. 
 

Table 1: Measured and Mean Wall Thickness
 

Sample 
ID

Measured Value 
[µm]

Mean
[µm]

sa 232 339 338 333 
sb 264 289 233 262 
sc 225 251 245 240 
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For the shown cross sections an axial elongation can be calculated, which reaches from 12 
up to 15. This leads to the assumption of an equlibrium between the compaction of the 
multicomponent powder, the reduction of the roll drawing process and the strain-hardening of 
the strip metal. These parameters influence the outcoming wall thickness.  

The strain-hardening of the outer strip material was determined with tensile tests. The 
extended formula of Ludwik [14] is used to calculate the flow stress (kf) for the deformed outer 
tube in every specific sequence of the reduction process.  

n
fAf Bkk ϕ+= (1)

The function is defined as following: kf is the true stress, kfA is the yield strength at φ=0, B 
is the yield strength at φ=1, n is the strain hardening exponent, φ is the true strain. An ideal 
plastic strain is defined by the sequence of the process. This is set as initial condition to the 
model to consider the hardening of the outer strip metal.  

3 INFLUENCE OF THE POWDER COMPACTION 
The compaction behaviour is studied with an isostatic press. Different equiaxed loads are 

applied on a weighted mass of the multicomponent powder in a rubber mould and the volume 
is detected. From the results the relative density under pressure is recorded. The compaction 
behaviour depends on many parameters like chemical composition, additives, particle size, 
particle shape and the mechanical properties of the full material [15,16,17]. Therefore the graph 
shown in Figure 2 is only valid for this special composition.  
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Figure 2: Measured Compaction and the Calculated Regression of the powder filling 

 
The compaction behaviour of the multicomponent powder is expressed mathematically. 

Literature gives correlations between powder compaction and surrounding pressure. For 
example Schatt [15] defines the pressure which is needed to compact the powder until no 
porosity is left (pmax). 



1148

B. Böck, B. Buchmayr, S. Wallner and G. Posch 

 4

m

rel

pp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
1

max

(2)

For cylindrical specimen can be calculated [16]  
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μi is set for the inner friction between the particles. r is the specimen radius. p stands for 
the pressure. ρrel is the relative density. σ are stress components (z direction and mean stress). 
kf is the yield strength of the powder as full material. m is the compaction exponent. A 
potential function is used to express the compaction of the powder. So it is valid to use a 
similar function to calculate the regression for the powder compaction (Figure 2).  

m
brel Bϕρρ += (5)

ρb stands for the bulk density of the powder. B is a factor which is adjusted to the 
compaction behaviour. This formula is used to calculate different quantities of the filling. 
From this the behaviour of any bulk volume under pressure can be calculated. The limits are 
given by the production process. Figure 3 shows an example for the correlation between 
volume and pressure for three different quantities of the multicomponent powder.  
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After each roller die package a cross section was taken to measure the inner and outer 
diameter of the tube. The area is calculated and multiplied with the elongation of the tube. 
This leads to the actual volume. Now a pressure which is needed to compact the 
multicomponent powder to this level can be assigned to the inner volume. So, a value for the 
inner pressure as a result of the powder compaction is found and added to the finite element 
analysis. Of course, the relationship of the inner and outer diameter is influenced by the 
quantity of the powder and its compaction. But as a compromise this is neglected and the 
inner volume is taken absolut.  

To fix the region in which the compaction of the powder lead to a pressure on the inner 
wall a finite element analysis has been started. The projected contact area is a far to rough 
estimate. A very soft material is taken instead of powder. The geometry is authentic to the 
production process. A region could be fixed following the stress distribution in a cut of the 
finite element analysis shown in Figure 4.  

 
Figure 4: Cut through the tube in the FEA with the stress distribution for the principal directions 

 
A few differences have to be considered between deformation of a soft full material and a 

powder. At first no tension can occur in powders like the axial stress distribution shows. A far 
smaller elastic springback appears in compacted powder. The contact area for friction is much 
higher between a rod and a surrounding tube. The powder does not compact under shear 
stresses, whereas full materials can yield. This is why this analysis is only valid for finding 
the region for backpressure and could not be a simplification for the whole process.  
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4 FEA MODEL 
For the first simulated roller die the tube is considered as a stress and strain free material. 

On later roller dies a strain-hardening is added. The influence of the multicomponent powder 
is included through a user defined subroutine. The load only appears in the roller dies. The 
tube between the roller dies is unaffected which agrees with reality. The welding seam is 
included in the tube geometry and carries a separate material property due to the laser welding 
process. A package with twelve roller dies is always simulated at once. Two dies have always 
the same geometry. They alternate between horizontal and vertical positions. Abaqus Explicit 
is used, with C3D8 elements. The outer strip is made out of a soft steel with low strength. In 
the welding seam a modified material property is installed, due to the rapid cooling in the 
laser welding process. Roll drawing is a cold forming process. Between the roller dies and the 
tube rolling friction appears. As a result not much heat occurs. That’s why the heat is 
neglected in the finite element analysis. Figure 5 show the start of the finite element analysis 
with the tube in front and the alternating roller dies in the back.  

 

 
Figure 5: FEA model of the roll drawing process 

 
Figure 6 shows the radial stresses due to the load of the powder defined in the user defined 

subroutine. This picture is taken from an analysis with no rolls to control the input.  

 
Figure 6: Stresses due to VDLoad 
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5 RESULTS

Figure 7 shows the equivalent stress and the principal stresses for the first roller die. The 
upper roll which is identical to the lower is hidden to get a free view on the welding seam. 
The ovality occurs due to the spread. The geometry of the rolls itself is round and ends in 40° 
tangents. Between 40° and 50° is common for pass design.  

 

 
Figure 7: First Roller Die with inner pressure, upper roll is removed, Mises and principal stresses

 

6 CONCLUSION 
The discussed procedures allows to simulate the complex relationship in this production. 

The model show good correlation to reality which proves its validity. Specific sequences can 
picked out to study the parameters like roll geometry, process variables and the reduction 
sequence. The reactions of the system as there are out-of-roundness, stress and strain 
distribution and twisting can be determined. Furthermore the Finite Element Analysis runs at 
reasonable computing times. 
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Abstract. A constitutive model for recrystallization has been developed within the framework 
of an existing dislocation-based rate and temperature-dependent plasticity model.  The theory 
has been implemented and tested in a finite element code.  Material parameters were fit to 
data from monotonic compression tests on 304L steel for a wide range of temperatures and 
strain rates.  The model is then validated by using the same parameter set in predictive 
thermal-mechanical simulations of experiments in which wedge forgings were produced at 
elevated temperatures.  Model predictions of the final yield strengths compare well to the 
experimental results. 

 
 
1 INTRODUCTION 

During high temperature manufacturing processes, metals undergo microstructural changes 
that can greatly affect material properties and residual stresses.  Some of the physical 
mechanisms that influence the strength of a material are strain hardening, recovery, 

                                                 
1 This work was performed at Sandia National Laboratories.  Sandia is a multiprogram laboratory operated by 
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract 
DEAC04-94AL85000. 
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recrystallization, and grain growth [1,2].  If the deformation conditions such as temperature 
and strain rate are not controlled properly during forging, welding, rolling, or other processes, 
the final part may have inadequate strength or residual stresses that could be detrimental to the 
life of the part [3].  In order to be able to optimize manufacturing processes using 
computational capabilities, it is necessary to have a physically-based constitutive model that 
captures the dominant strengthening and softening mechanisms.  Such a model with 
predictive capabilities can be used in an optimization scheme to reduce the number of design 
iterations required to produce a part that meets all strength and microstructural requirements. 

Recrystallization is a complex, inhomogeneous process in which nucleation and growth of 
new strain-free grains replace the worked microstructure of a strained material [4,5].  
Recrystallization is due to the motion of grain and subgrain boundaries.  As the boundaries 
move, they sweep away the dislocation structure, leaving a strain-free material with a very 
low dislocation density.  The nucleation of a new recrystallized grain is believed to be due to 
the growth of an existing deformation-induced subgrain [6].  At elevated temperatures, a 
subgrain with a lower level of stored energy will preferentially expand at the expense of 
neighboring subgrains.  The driving force for recrystallization is the difference in energy 
between the deformed and recrystallized state [7].  If the expanding subgrain reaches a critical 
size, it becomes a stable recrystallized grain. 

In [8], a constitutive model for static and dynamic recrystallization was developed in which 
no critical criterion was utilized to initiate recrystallization.  Rather, the kinetics of 
recrystallization are modeled based on the mobility of grain and subgrain boundaries under 
the driving force provided by the stored energy in the dislocation structure.  The theory is 
capable of modeling single and multiple-peak dynamic recrystallization. 

In this paper, coupled thermal-mechanical simulations are performed, including the effects 
of die chill, heat generated due to plastic dissipation, and conduction and strength evolution 
that occurs after compression but before quenching.  Uncertainties in processing conditions 
were considered and propagated through the simulations to determine uncertainties in final 
predicted strengths. 

A simplified version of the model is presented in the next section since we are primarily 
concerned with static recrystallization for high-rate forgings.  Parameter optimization is then 
discussed.  Finally, a comparison between model predictions and experimental results is 
provided. 

2 CONSTITUTIVE MODEL 
A treatment of the kinematics and thermodynamics of the model is documented in a full-

length manuscript under review [9].  The constitutive model is explained in detail in [8].  
Here, as in [10], a condensed treatment of the constitutive model is given for the simplified 
case of uniaxial stress and at most only once cycle of recrystallization. 

For uniaxial stress, let   represent the only non-vanishing component of the Cauchy stress 
tensor and   represent the axial component of the Eulerian strain tensor.  After making 
approximations for small elastic strains, it can be shown that the model reduces to the 
following set of equations, written here in the current configuration: 

( )pE     (1) 



1155

Arthur A. Brown, Timothy D. Kostka, Bonnie R. Antoun, Michael L. Chiesa, Douglas J. Bammann,  
Stephanie A. Pitts, Stephen B. Margolis, Devin O’Connor, Nancy Y.C. Yang. 

 2 

recrystallization, and grain growth [1,2].  If the deformation conditions such as temperature 
and strain rate are not controlled properly during forging, welding, rolling, or other processes, 
the final part may have inadequate strength or residual stresses that could be detrimental to the 
life of the part [3].  In order to be able to optimize manufacturing processes using 
computational capabilities, it is necessary to have a physically-based constitutive model that 
captures the dominant strengthening and softening mechanisms.  Such a model with 
predictive capabilities can be used in an optimization scheme to reduce the number of design 
iterations required to produce a part that meets all strength and microstructural requirements. 

Recrystallization is a complex, inhomogeneous process in which nucleation and growth of 
new strain-free grains replace the worked microstructure of a strained material [4,5].  
Recrystallization is due to the motion of grain and subgrain boundaries.  As the boundaries 
move, they sweep away the dislocation structure, leaving a strain-free material with a very 
low dislocation density.  The nucleation of a new recrystallized grain is believed to be due to 
the growth of an existing deformation-induced subgrain [6].  At elevated temperatures, a 
subgrain with a lower level of stored energy will preferentially expand at the expense of 
neighboring subgrains.  The driving force for recrystallization is the difference in energy 
between the deformed and recrystallized state [7].  If the expanding subgrain reaches a critical 
size, it becomes a stable recrystallized grain. 

In [8], a constitutive model for static and dynamic recrystallization was developed in which 
no critical criterion was utilized to initiate recrystallization.  Rather, the kinetics of 
recrystallization are modeled based on the mobility of grain and subgrain boundaries under 
the driving force provided by the stored energy in the dislocation structure.  The theory is 
capable of modeling single and multiple-peak dynamic recrystallization. 

In this paper, coupled thermal-mechanical simulations are performed, including the effects 
of die chill, heat generated due to plastic dissipation, and conduction and strength evolution 
that occurs after compression but before quenching.  Uncertainties in processing conditions 
were considered and propagated through the simulations to determine uncertainties in final 
predicted strengths. 

A simplified version of the model is presented in the next section since we are primarily 
concerned with static recrystallization for high-rate forgings.  Parameter optimization is then 
discussed.  Finally, a comparison between model predictions and experimental results is 
provided. 

2 CONSTITUTIVE MODEL 
A treatment of the kinematics and thermodynamics of the model is documented in a full-

length manuscript under review [9].  The constitutive model is explained in detail in [8].  
Here, as in [10], a condensed treatment of the constitutive model is given for the simplified 
case of uniaxial stress and at most only once cycle of recrystallization. 

For uniaxial stress, let   represent the only non-vanishing component of the Cauchy stress 
tensor and   represent the axial component of the Eulerian strain tensor.  After making 
approximations for small elastic strains, it can be shown that the model reduces to the 
following set of equations, written here in the current configuration: 

( )pE     (1) 

Arthur A. Brown, Timothy D. Kostka, Bonnie R. Antoun, Michael L. Chiesa, Douglas J. Bammann,  
Stephanie A. Pitts, Stephen B. Margolis, Devin O’Connor, Nancy Y.C. Yang. 

 3 

( )

sinh 1
( )

n

p c
Y




 
  

      
 

(2) 

1 (1 )X X     (3) 

1
1 1

1

( ) 1 ( ) pX
X d X

X

H R    



 



  
    

  
 (4) 

1 1/
1 1

r p
X Xh  

   (5) 

   1 2 2
1 1

1 1 1
m

X

c
bB a

X XX e e c c X X



  




 
        (6) 

p

pc
 


  (7) 

Equations (1) and (2) provide the elasticity relation and the flow rule for the plastic strain 
rate.  Equation (3) averages the isotropic hardening variable,  , between the unrecrystallized 
and recrystallized volume fractions, where the isotropic hardening variable in the 
recrystallized volume fraction is assumed to be zero.  Equation (4) is the evolution equation 
for the isotropic hardening variable in the unrecrystallized volume fraction, which has a 
hardening minus recovery format based on [11].  The hardening rate increases as the subgrain 
boundary spacing, represented by the misorientation variable  , decreases.  Equation (5), 
based on [12], tracks the misorientation variable, 1 X  , in the unrecrystallized volume 
fraction.  1 X   is inversely related to the average spacing between geometrically necessary 
boundaries.  Equation (6) describes the kinetics of recrystallization through a variable 
representing the volume fraction of recrystallized material, X.  The stored energy due to the 
dislocation structure, represented by 1 X   and 1 X  , drives the recrystallization kinetics.  The 
mobility of subgrain boundary motion increases with misorientation angle, which increases as 
the spacing between geometrically necessary boundaries decreases.  The last equation tracks 
the evolution of temperature due to adiabatic heating.  Here, it is assumed that 0.95  , i.e. 
95% of the plastic work is dissipated as heat.  In this work, coupled thermal-mechanical 
simulations are performed in which the constitutive model calculates the heat generated due to 
plastic work, which is passed to the thermal code for use as a source term in the energy 
equation.  Thus the temperature will also change due to conduction, radiation, and convection. 

The model in this form is only valid for static recrystallization, where the isotropic 
hardening variable in the recrystallized volume fraction is assumed to be zero.  For dynamic 
recrystallization, the recrystallized material will continue to harden with increased strain.  For 
a treatment of the model form capable of both static and dynamic recrystallization, see [8]. 

3 MODEL PERFORMANCE 
Material parameters were fit to data from monotonic compression tests on 304L steel for a 

wide range of temperatures and strain rates.  Three types of test data were included in the set 
used for parameter optimization.  Stress-strain data from single-stage compression at constant 
strain rate is shown in Figure 1.  The plot legends show the initial specimen temperature.   
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Figure 1: Stress-strain data from single-stage compression tests 
 
During straining at high rates, the temperature increases somewhat due to plastic 

dissipation.  Figure 2 shows stress-strain data from two-stage compression tests.  For each 
specimen, the first stage of compression was performed at elevated temperature, followed by 
a quench after approximately five seconds.  The second compression stage was conducted at 
room temperature.  Figure 3 contains recrystallized volume fraction data from single-stage 
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compressions tests followed by various hold times before quenching.  The data was 
determined from microstructure from etched samples of the compression specimens. 

Model parameters were optimized using the three types of data discussed above (see 
Appendix).  The results are shown in Figures 1 through 3.  The model captures the material 
response quite well over the full range of temperatures and strain rates. 

 

 
 

Figure 2: Stress-strain data from two-stage compression tests 
 

 
 

Figure 3: Recrystallized volume fraction data from compress-and-hold tests 

4 VALIDATION 
The theory has been implemented and tested in Arpeggio, Sandia’s code coupling of an 

implicit quasistatics code, Adagio [13], with a thermal code, Aria [14].  The model is then 
validated by using the same parameter set in predictive simulations of experiments in which 
304L stainless steel wedges were forged with a HERF machine at Precision Metal Products, 
Inc. (PMP).  Two wedge geometries, shown in Figure 4, were forged at 1500F and 1600F.  
For each forging, the wedge heated in a furnace to the nominal temperature, then transferred 
to a flat die, and compressed to a final height of one inch by a platen traveling at a rate of 
approximately 20 ft/s.  The forging was then transferred to a quench bath.  From the flattened 
forgings, tensile specimens were machined and tested.  Figure 5 shows the locations of the 
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tensile specimens.  For all wedges, specimen A was taken one inch to the right of the initially-
tapered edge.  The spacing between each specimen location was 0.52” for the short wedges 
and 0.64” for the tall wedges. 

A set of simulations were performed to account for uncertainties in the input parameters.  
Due to time constraints, for each nominal case, simulations were done to provide upper and 
lower bounds on the expected final yield strengths at the six specimen locations.  The 
uncertainties were based on measurements taken at PMP during forgings of different 
geometries.  The ingot temperature when transferred from the furnace is assumed to be within 
+-20F of nominal.  Radiation and convection were modeled for the estimated transfer time of 
1.7 to 3.7 seconds.  Conduction to the die was also modeled for 2.8 to 4.9 seconds before 
compression began.  After the wedge is flattened at 20 ft/s, conduction occurs for 0.5 to 2 
seconds before the wedge is removed for transfer to the quench bath, which takes between 
3 to 4.8 seconds.  To account for the uncertainty in the coefficient of friction, we ran the suite 
of simulations once with a coefficient of friction of 0.1 and once with frictionless contact.   

The plastic strain contours for a typical run (in this case, 1580F for the tall wedge with a 
coefficient of friction of 0.1) are plotted in Figure 6.  The plastic strain increases as one moves 
from position “A” to position “F”.  Figure 7 shows the temperature distribution immediately 
after the wedge is forged (t~4.5s) and immediately before it is quenched (t~8s).  Due to 
adiabatic heating, the temperature after forging is highest in the locations that see the highest 
strains, although the bottom of the wedge is somewhat cooler due to the die chill before 
forging, and further conduction after forging.  The dislocation density increases with plastic 
strain, as does the average misorientation angle across deformation-induced subgrain 
boundaries.  The rate of recrystallization increases with dislocation density and misorientation 
angle, so the recrystallized volume fraction increases from position “A” to position “F” in a 
trend similar to that of the plastic strain (see Figure 7).  The bottom of the wedge 
recrystallizes less due the lower temperature there.   

Figure 8 shows how the yield strength drops during recrystallization.  The room-
temperature yield strength distribution is calculated at two times, both under the assumption 
that the wedge is quenched instantaneously, i.e. as if the temperature drops immediately to 
room temperature.  The left plot in Figure 8 shows what the final strength would be if 
quenched immediately after forging, before recrystallization has a chance to evolve.  This is 
obviously not physically possible, but is shown for purposes of illustration.  The right plot 
shows the strength after 3.5s of post-forge conduction and recrystallization.  A comparison 
shows the importance that the amount of time it takes to quench a forging has when 
recrystallization is evolving. 

The final room-temperature, quasistatic yield strength predictions for the short and tall 
wedges are plotted in Figures 9 and 10, respectively.  The range of yield strengths predicted 
by the simulations based on the uncertainties in the input parameters are depicted by error 
bars; the experimental measurements are represented by “x” symbols.  Since recovery and 
recrystallization are thermally activated processes, the final strengths of 1500F forgings are 
higher than the 1600F forgings.  As strain increases (e.g. over positions A, B, and C), strength 
increases due to additional work hardening.  However, if the temperature is high enough, the 
additional work hardening can induce recrystallization, which causes the strength to drop at 
higher strains (e.g. over positions D, E, and F).  The simulations capture the general trends in 
the data very well.  The error in final yield strength predictions is plotted in Figure 11.  For 
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tensile specimens.  For all wedges, specimen A was taken one inch to the right of the initially-
tapered edge.  The spacing between each specimen location was 0.52” for the short wedges 
and 0.64” for the tall wedges. 
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strains, although the bottom of the wedge is somewhat cooler due to the die chill before 
forging, and further conduction after forging.  The dislocation density increases with plastic 
strain, as does the average misorientation angle across deformation-induced subgrain 
boundaries.  The rate of recrystallization increases with dislocation density and misorientation 
angle, so the recrystallized volume fraction increases from position “A” to position “F” in a 
trend similar to that of the plastic strain (see Figure 7).  The bottom of the wedge 
recrystallizes less due the lower temperature there.   

Figure 8 shows how the yield strength drops during recrystallization.  The room-
temperature yield strength distribution is calculated at two times, both under the assumption 
that the wedge is quenched instantaneously, i.e. as if the temperature drops immediately to 
room temperature.  The left plot in Figure 8 shows what the final strength would be if 
quenched immediately after forging, before recrystallization has a chance to evolve.  This is 
obviously not physically possible, but is shown for purposes of illustration.  The right plot 
shows the strength after 3.5s of post-forge conduction and recrystallization.  A comparison 
shows the importance that the amount of time it takes to quench a forging has when 
recrystallization is evolving. 

The final room-temperature, quasistatic yield strength predictions for the short and tall 
wedges are plotted in Figures 9 and 10, respectively.  The range of yield strengths predicted 
by the simulations based on the uncertainties in the input parameters are depicted by error 
bars; the experimental measurements are represented by “x” symbols.  Since recovery and 
recrystallization are thermally activated processes, the final strengths of 1500F forgings are 
higher than the 1600F forgings.  As strain increases (e.g. over positions A, B, and C), strength 
increases due to additional work hardening.  However, if the temperature is high enough, the 
additional work hardening can induce recrystallization, which causes the strength to drop at 
higher strains (e.g. over positions D, E, and F).  The simulations capture the general trends in 
the data very well.  The error in final yield strength predictions is plotted in Figure 11.  For 
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cases in which the experimental value lies within the prediction bounds, the error is zero.  
Otherwise, the error is calculated as the difference between the closest prediction bound and 
the experimental value, normalized by the experimental value.   

The uncertainties in the yield strength predictions are largest for higher temperature and 
higher strains because those conditions induce a higher rate of recrystallization.  When the 
rate of recrystallization is high, uncertainty in time before quenching causes uncertainty in the 
amount of recrystallization that occurs (see Figure 3) and hence in the final strength. 

5 CONCLUSIONS 
Coupled thermal-mechanical simulations were performed to predict the final yield strength 

in two wedge forging geometries for two nominal temperatures.  Uncertainty quantification is 
performed to account for unknown input parameters in the simulations.  The predictions 
match the experimental results fairly well for all combinations of temperature and geometry. 
 

 

 
 

Figure 4: Dimensions of the short and tall wedge designs 
 
 

                 

                           
 

     Figure 5: Locations of the tensile specimens for the short and tall wedge designs 
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Figure 6: Plastic strain contour plot for the tall wedge for a tall wedge initially at 1580°F  
 

 

 
 

Figure 7: Contour plots of the temperature immediately after forging and immediately before quenching 
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Figure 8: Contour plot of the recrystallized volume fraction for a tall wedge initially at 1580°F  
 

 
 

Figure 9: Contour plots showing the evolution of the room-temperature yield strength after forging 
 

 
 

Figure 9: Final yield strengths from simulation predictions and experiments for the short wedge 
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Figure 10: Final yield strengths from simulation predictions and experiments for the tall wedge 
 

 
 

Figure 11: The error in final yield strength predictions 

APPENDIX 
The set of parameters used in all the results presented here are as follows in SI units:   

 2.00 11 8.70 7 292E e e     Pa (8) 

   8.01 10 3.70 7 292e e     Pa 

 0.0918c   
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Abstract. The coupled hydro-mechanical state in geomaterials undergoing plasticity 
phenomena is here evaluated by means of the subloading surface model . The most important 
feature of this theory is the abolition of the distinction between the elastic and plastic domain, 
as it happens in conventional elastoplastic models. This means that plastic deformations are 
generated whenever there is a change in stress and a smoother elasto-plastic transition is 
produced. The subloading surface takes the role of a loading surface which always passes 
through the current stress point σ and keeps a shape similar to that of the normal yield surface 
and a similar orientation with respect to the origin of stress space. Additionally, the model 
allows for giving a smooth response in a smooth monotonic loading process and the stress is 
automatically drawn back to the normal-yield surface even if it goes out from that surface, 
leading to a more stable and robust calculation even for large loading steps. The plasticity 
algorithm has been implemented within the FE PLASCON3D research code, coupling hydro-
(thermo)-mechanical fields within a saturated porous medium (locally partially saturated) 
subjected to external loads. Applications to soils allow e.g. for assessing subsidence evolution 
at regional scale.  
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1 INTRODUCTION 

The three-dimensional behaviour of geomaterials is here analysed making specifically 
reference to soils undergoing compaction and ensuing surface subsidence due to gas 
withdrawal from a typical deep reservoir. 

Surface subsidence due to withdrawal of underground fluids occurs in many parts of the 
world, see for instance the case book of Poland [1]. Such surface settlement is a particular 
threat if it is experienced in low lying areas, close to the sea. Surface subsidence of this kind 
is almost exclusively understood in terms of drop of pressure in the aquifers or in the 
reservoir: i.e. withdrawal of these underground fluids results in a reduction of their pressure 
downhole; this in turn increases the part of the overburden carried by the skeleton of the 
reservoir rocks causing compaction. The compaction manifests itself, through deformation of 
the overlying strata, as surface settlement.  

In case of a single fluid (water) involved, compaction can easily be explained by the 
principle of Terzaghi [2] which states that the compression of a porous medium is controlled 
by changes of effective stresses, i.e. variations of the difference between total stresses and the 
pressure of the fluid in the pores. However, when more fluids are involved or more phases of 
the same fluid, the Terzaghi traditional expression of effective stress alone is not sufficient to 
completely justify measured compaction and the concepts of unsaturated soil mechanics with 
appropriate stress measures and elastoplasticity concepts are needed. Drop of reservoir 
pressure is not the only mechanism leading to reservoir compaction and suction effects must 
also be accounted for at least for some types of extracted fluids and some reservoir rocks.

Capillary effects and structural collapse are treated in [3]-[5] and seem to provide sound 
explanations for continuing surface settlements when reservoir pore pressures stabilise and for 
additional settlements occurring even after the end of gas production. However, it is to be said 
that for the investigated area here considered, undergoing subsidence, there is no direct 
experimental evidence on samples from the field to show the key effect of capillarity on 
subsidence itself and hence any additional consideration could be largely speculative with 
many assumptions that are not justified enough.  

Again, the discussion about the contribution of capillary effects when performing reservoir 
compaction and subsidence analyses at regional scale is out of scope for the present paper. 
The idea is to make use of unconventional plasticity [6] by means of the subloading surface 
model [7]-[11] for predicting softening behaviour of soil as well as reducing computational 
efforts when performing fully coupled hydro-mechanical subsidence analyses in three-
dimensional domains [12], as demonstrated below.  

It is to be said that, from a computational point of view, strain-softening may be associated 
to numerical procedures affected by a lack of convergence and the solution may depend 
strongly on the mesh adopted. Several techniques have been reported in literature, essentially 
when dealing with shear band formation and strain localization [13], [14], employed to obtain 
mesh size-independent shear banding (e.g. [15]). Mesh size-dependent hardening modulus 
procedures have been proposed by Pietruszczak and Mroz [16] and employed by a number of 
authors (e.g. Willam [17], Grammatikopoulou et al. [18]); enrichments or enhancements of 
the continuum models can be alternatively found [19]-[26] which include the non-local 
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formulation proposed by Eringen [27] and Kroner [28] and developed extensively by Bažant 
and Cedolin [29]. A complete review of softening plasticity models with internal variables 
regularized by non-local averaging of integral type can be found in Marotti de Sciarra [30],
where it is stated that the appropriate choice of the regularization operator and of the internal 
variables to model a non-local continuum need to be dealt with a combination of 
micromechanical analysis and experimental investigations; probably only experimental 
investigations can provide the validation of one choice or of the other. 

However, as evidenced in Yamakawa et al. [31], the accuracy and the convergence 
property of the subloading surface model (even if there incorporated into a stress-update 
algorithm for the Cam-Clay one), when e.g. used to reproduce over-consolidated soils 
experiencing softening, has been demonstrated for a single finite element and a plane mesh of 
2460 8-node quadratic elements as well; in the latter situation different mesh sizes have not 
been considered. The robustness of the model has been there proved by increasing the number 
of loading steps only, even when considering dilation with a decrease in deviatoric stress. 

Hence at present, essentially considering the main objectives of this paper as outlined 
before and in line with [31], it seems reasonable to prove the accuracy of the calculations 
presented here by comparing the numerical solutions for different mesh sizes and time steps 
as well; such a comparison is developed in the last Section, referring to the 3D subsidence 
analysis on regional scale. 

2 FLOW FIELD ANALYSIS 

It is here made reference to the coupled solution proposed in [32]-[36] to obtain the flow 
data necessary for a compaction analysis. This solution considers the mass balance equation 
in integral form for the fluids in the reservoir, which is then solved together with the state 
equation of gas via a three-dimensional consolidation analyzer, which uses an (a) equilibrium 
equation for the multiphase medium (solid + water or solid + gas) and a (b) mass balance 
equation for the water; the code has been upgraded to take into account possible plastic strain 
evolutions, following an unconventional plasticity approach, as exposed in the next Section. 

The material balance equation referring to the reservoir and the state equation of gas yield 
at each time step the average reservoir pressure pg when gas production and water inflow are 
known; this gas pressure is applied to the reservoir volume and the whole subsiding volume is 
then analysed by using the fully coupled equations (a) and (b). These equations give the flow 
of water across the reservoir boundary which is required in the material balance equation at 
reservoir level, and also its deformation, as well as of the overburden and underburden. 

The reader is referred to [36]-[37] for additional details. 

3 MODELLING PLASTICITY VIA THE SUBLOADING SURFACE MODEL 

The subloading surface model is a particular elasto-plastic model falling within the 
framework of unconventional elastoplasticity [6], an extended elastoplasticity theory such that 
the interior of the yield surface is not a purely elastic domain, but rather a plastic deformation 
is induced by the rate of stress inside the yield surface [7]-[11]. Its main features are briefly 

3
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recalled here. 
In the subloading surface model the conventional yield surface is renamed the normal yield 

surface, since its interior is not regarded as a purely elastic domain. The plastic deformation 
develops gradually as the stress approaches the normal yield surface, exhibiting a smooth 
elastic-plastic transition. Thus the subloading surface model fulfils the smoothness condition
[11], [39]-[41], which is defined as the stress rate-strain rate relation (or the stiffness tensor) 
changing continuously for a continuous change of stress rate. Strain accumulation is predicted 
for a cyclic loading with an arbitrary stress amplitude, where the magnitude of accumulated 
strain depends continuously on the stress amplitude because of the fulfillment of the 
smoothness condition. Inelastic deformation occurs immediately when the stress point once 
again moves outward the current yield surface. Zero diameter yield surface bounding surface 
models, nested surface models, and subloading models have this attribute, but do not display 
any purely elastic response [6].

A subloading surface is also introduced, which always passes through the current stress 
point σ and keeps a shape similar to that of the normal yield surface and a similar orientation 
with respect to the origin of stress space, i.e. σ = 0.

The ratio of similarity R is named normal yield ratio and governs the approach of the 
subloading surface to the normal one, i.e. if R = 0 the subloading surface is a point coinciding 
with the origin of the stress space, whereas 0 < R < 1 represents the subyield state and with R 
= 1 the stress lies directly on the normal surface. 

The subloading surface can be described by the scalar-valued tensor function 

f(σ) = RF(H) (1)

where the scalar H is the isotropic hardening/softening variable; in agreement with [10] the 
normal yield surface takes e.g. the form 
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in which F0 is the initial value of F, ρ' and γ the slopes of the normal consolidation and 
swelling curves respectively in lnυ-lnp space (υ being the specific volume and p = -tr(σ)/3). 

The extended consistency condition for the subloading surface is obtained by 
differentiating Eq. (1), which leads to 
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together with considering the evolution rule of the normal yield ratio, given by 
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where σ  is the proper objective co-rotational stress rate, ,  is the plastic strain rate & σEε && 1e −= pε&
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and U is a monotonically decreasing function of R satisfying the condition 
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The associated flow rule is assumed as 

Nε λ=p& (6)

where λ  is the positive proportional factor representing the increment of plastic deformation 
along the direction given by the normalized outward normal of the subloading surface N
(expressed as a second order tensor) 
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M  the plastic modulus. 
The loading criterion is finally given [41], [42]
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For additional details, see [37], [38].

4 APPLICATION CASE: 3D SUBSIDENCE ANALYSIS ON REGIONAL SCALE 

The numerical model has been first calibrated and subsequently validated against the 
results obtained by Siriwardane and Desai [43], the first dealing with the consolidation of a 
column of soil under a uniformly distributed load, the second with the consolidation of a soil 
strip in plane strain. For brevity reasons, the procedures and their results are not reported here; 
they have anyway allowed for defining a value for the plastic variables necessary to the 
subloading surface model (see below) so to reproduce the same behaviour as the one 
evidenced in [43] accounting for conventional plasticity. 

It is additionally to be said, as previously stated, that the main objective here is not to 
compare the material response by assuming conventional or unconventional plasticity models 
(about which it has been largely discussed in e.g. [40], [41]) but, on one side, to numerically 
confirm the capability of the subloading surface model in predicting softening behaviours and, 
on the other side, to be able to explain, via such a model, ongoing surface subsidence 
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(observed in reality) after shutdown of the wells. In fact, it has already been proved in [4] that 
conventional plasticity alone is not fully able to reproduce such a phenomenon. 

A typical subsidence problem of regional scale is here investigated, referring to a pools’ 
depth of burial ranging between 900 and 4000 m and an horizontal area involved of about 
19000 Km2 (Figure 1). In addition, the different pools are not scheduled to be put in production 
at the same time, which complicates the situation further. 

Figure 1: Location of gas pools in the Northern Adriatic Sea [44].

Particularly, the effects of the exploitation of four of the gas reservoirs shown in Figure 1,
located at three different depths and undergoing different production histories [45], are here 
analysed; the region covers an area of 40×40 km2 and has a depth of 1300 m; it is discretized 
by about 500 20-node isoparametric elements (additional analyses, as reported below, refer to 
980 and 2940 elements as well). Free flux on the horizontal and vertical boundaries of the 
investigated area is considered. The main material parameters are shown in Table 1 [35], [45];
the grains are assumed to be incompressible and the clayey layers to behave in agreement 
with the subloading surface model when accounting for plasticity effects. The geomechanical 
data have been obtained through analysis of master-logs at our disposal, which are 
representative of the investigated area, whereas the plastic variables have been taken from the 
calibration and validation tests, appropriately scaled to take into account the effect of depth.

As evidenced by Table 1 and Figure 2, some planimetric variability for the soil strata has 
been additionally introduced just to be closer to the real configuration of the subsoil, e.g. 
considering the available seismic section of [45]; so 7 macro-levels are present, including 15 
different soil strata. The exploitation points (wells) are assumed to be equally distributed 
above each reservoir such as to allow for the assumption of a constant drop of pressure inside 
them.  

The analysis has been pushed up to 30 years from the beginning of exploitations, when a 
general pressure recovery has already been attained; the results in terms of surface subsidence 
above each reservoir are shown in Figure 3, accounting for elasticity and unconventional 
elasto-plasticity as well. The effect of interaction among the different reservoirs can be seen 
from the shifting in time of the maximum subsidence value as compared with the minimum of 
reservoir pressure: this phenomenon is also to be partly ascribed to the presence of clay layers 
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confining the pools, but it is particularly evident when plasticity is introduced: as an extreme 
situation, maximum subsidence can not be reached even after 30 years; a “residual” delayed 
land subsidence has clearly appeared, so confirming the usefulness of the proposed 
unconventional plasticity model for modelling continuing surface settlements when reservoir 
pore pressures stabilize and for additional settlements occurring even after the end of gas 
production.

Table 1: Material data for subsidence analyses 
Soil stratum # E

[MPa] 
ν ki 

[m/day] 
Depths [m] 

1 1.13·104 0.17 0.2208 1300÷1254 
2 1.00·104 0.17 0.865·10-4 1300÷1254 

3 & Reservoir # 1 1.13·104 0.17 0.2208 1300÷1254 

4
1.00·104 0.17 0.865·10-4 1300÷1254 &  

1300÷1070 
5, 7, 9 1.14·104 0.30 0.7985 1254÷1070 

6, 8, 10 0.322·104 0.38 0.865·10-4 1254÷1070 
11 & Reservoir # 4 1.14·104 0.30 0.7985 1070÷1027 

12 0.322·104 0.38 0.865·10-4 1027÷860
13 & Reservoirs # 2, 3 0.898·104 0.15 0.9752 860÷848 

14 0.555·104 0.37 0.865·10-4 848÷600 
15 0.224·104 0.39 0.865·10-4 600÷0

Figure 2: Schematic representation of the soil strata distribution: macro-levels are superimposed from surface 
(top) to bottom (see Table 1). 

The subsidence bowl is depicted in Figure 4, referring to the evolution of surface 
subsidence for a fixed domain section when unconventional plasticity is accounted for. The 
time scales involved, as well as the orders of magnitude for the resulting subsidence, agree 
well with what evidenced by [45] and [46] (the former referring to linear elasticity only), with 
similar (or equal, as in the latter case) cumulative gas production histories and 
geological/geomechanical subsoil configurations. 
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Figure 3: History of surface subsidence above the reservoirs. 

Figure 4: Subsidence bowl, elasto-plastic case. 

In order to check the robustness of the model, a series of additional numerical analyses has 
been performed, by assuming a) different time (loading) steps, and b) different mesh sizes; the 
results refer to unconventional plasticity analyses only. In the former situation, three reference 
time-steps  have been accounted for, i.e. 362 (load-case LS1), 181 (LS2) and 90.5 days (LS3) 
respectively (for additional details the reader is referred to [38]): an independence of the 
computations on loading steps has been clearly evidenced. Two reference points (RP1 close to 
the deepest rigid underburden, belonging to layer 4 -see Table 1-, and RP2, at about 1100 m 
depth and at the conjunction of layers 6-9 and under layer 12, both in proximity of Reservoir 
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# 1) have been considered for representing stress-strain curves (Figure 5) taking into account 
LS1 and LS2 only (being the results of LS3 superimposed to those of LS2): after a short 
expansion phase, the soils evidence or hardening or softening, depending on material 
characteristics and depth; the smoothness and shape of the elasto-plastic curves (subloading 
model) recalls the one reported in [10]. Elastic responses have been added for comparison 
purposes only. It is to be noticed that the unloading phases do not occur simultaneously with 
pressure recovery (of e.g. Reservoir # 1) but they are delayed in time. The mechanisms are 
strongly differentiated depending on the considered points, but they can give a general 
estimate of the complexity of the subsoil behaviour and they can provide for a first 
explanation of observed delayed surface settlements. 

Figure 5: Stress-strain curves for RP1 and RP2. 

To complete the check of the plasticity model, two additional meshes have been considered 
[38]: 4907 nodes and 980 20-node isoparametric elements (M1) and 13978 nodes and 2940 
20-node isoparametric elements (M2), with 5 d.o.f. (ui, i = 1-3, p, T) per node as for the first 
mesh (M0) of Figure 1. The results are depicted in Figure 6 in terms only of surface subsidence 
for sake of brevity, referring to the elasto-plastic results from the load-case LS1: mesh 
independency is evidenced, with a maximum error (taking as reference the values from M2) 
of about 10%: the error tends to decrease with time, suggesting the ability of the model to 
perform long-term predictive subsidence analyses. 

5 CONCLUSIONS 

The coupled hydro-mechanical state in soils coming from consolidation/subsidence 
processes and undergoing plasticity phenomena has been evaluated by means of the 
subloading surface model, allowing for predicting a smooth response for smooth monotonic 
loading, considering the sign of )(tr EDN  only in the loading criterion, automatically drawing 
back of a stress to the normal yield surface even if it goes out from the surface itself. Hence a 

9



1174

Valentina A. Salomoni, Riccardo Fincato. 

rough numerical calculation with a large loading step is allowed and return-mapping iterative 
techniques can subsequently be skipped, so enhancing speedup and efficiency of large scale 
coupled analyses, as required when modelling subsidence in 3D domains and for long-term 
scenarios. The plasticity algorithm has been implemented in the PLASCON3D FE code, 
coupling hydro-thermo-mechanical fields within a saturated (locally partially saturated) 
porous medium subjected to external loads and water/gas withdrawals from deep layers 
(aquifers/reservoirs).

Figure 6: Surface subsidence above the reservoirs, unconventional elasto-plasticity analyses; mesh sizes M0, 
M1, M2. 

The plastic deformation due to the change of stress inside the yield surface exhibiting a 
smooth elastic-plastic transition has been described, as well as a first ability of describing 
softening behaviours has been shown.

The robustness of the model has been tested by comparing numerical solutions for 
different mesh sizes and different time steps. 

Regional subsidence analyses due to gas extractions have been possible with reduced 
computational efforts when introducing unconventional elasto-plasticity in the code. It has 
been demonstrated that the time scales involved, as well as the orders of magnitude for the 
resulting subsidence, agree well with what evidenced by [45] and [46] (the former referring to 
linear elasticity only), with similar (or equal, as in the latter case) cumulative gas production 
histories and geological/geomechanical subsoil configurations. Particularly, the effects of 
interaction among exploitations have been estimated, as well as the phenomenon of residual 
land subsidence near abandoned gas fields has been successfully modelled: the estimation of 
this delayed environmental cost of gas pumping is generally neglected, whereas it clearly 
appears of being fundamental for an increased awareness of the consequence that gas 
production may have on future coastline stability relatively far from the gas field [46].
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Abstract. The paper presents some improvements in the formulation of a kinematic hardening 
constitutive soil model incorporating structure initially proposed for soft clays. For the 
modelling of overconsolidated bonded clay the elastic formulation was deemed more 
important. Two different alternatives, one purely empirically based the other with a 
background in thermodynamics were implemented. It was also found that a smooth elasto-
plastic transition was required to avoid a spurious stiffness degradation response. 
Consequently, the hardening modulus formulation of the model was modified. The paper 
presents some results from a parametric analysis of the triaxial drained response of a material 
tailored to mimic London clay. The results chosen do not show a major difference between 
the chosen alternative elastic formulations, although both do improve the original model 
response. On the other hand the  importance of ensuring a smooth elasto-plastic transition is 
clearly highlighted.  

1 INTRODUCTION 
Critical state soil mechanics led to a significant improvement of predictions of soil 

behaviour by introducing specific volume as an additional state variable. The essential 
features of the classical critical state models are that on a primary loading large plastic strains 
occur, but on subsequent unload - reload cycles within the yield surface only elastic strains 
are predicted. Later research on the behaviour of soil in the small strain and very small strain 
range [1] revealed that the assumption of elastic behaviour inside the state boundary surface is 
not acceptable due to the non–linearity of soil behaviour in the small strain range.  Models 
based on the concepts of kinematic hardening [2] and bounding surface [3] plasticity seem to 
provide and improvement, over simple elasto-plastic constitutive models, in modelling the 
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highly nonlinear and inelastic behaviour of soils. These models allows for plasticity and 
nonlinearity to be invoked within the conventionally defined yield surface. A kinematic 
hardening extension of a Cam clay-like model was proposed by [4]. Later, [5] extended this 
model  to simulate the behaviour of natural clays damaged only by plastic straining.

This chapter describes a kinematic hardening soil model for structured soils, its numerical 
implementation and validation. The kinematic hardening constitutive model (KHSM) used is 
based on [5] here modified to improve the model response in the small strain region and to 
predict a smooth variation in stiffness.  The chapter starts with a brief description of the 
KHSM formulated in the general stress space. Modifications to the original model are 
presented in section 3. Section 4 presents some parametric studies of the performance of the 
model for the simulation of drained triaxial test on London clay.

2 MODEL FORMULATION

3.1 Original KHSM
The model contains three surfaces in stress space: a kinematic yield surface (fb), a structure 

surface (F) and a reference surface (fr) as shown in Figure 1. The bubble surface separates the 
elastic response from the elasto-plastic response while the structure surface position defines 
the current structure magnitude and anisotropy of the structure. The size of the structure 
surface reduces, due to plastic strain, towards the reference surface which defines the 
behaviour of the non-structured or remoulded material.
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where p and s are the mean pressure and the deviatoric stress tensor, { }' ,
T

pα α = αI s denotes the 

location of the centre of the bubble and { } ˆT
crP =αI denotes the centre of the structure surface. 

R is a model parameter and Mθ the slope of the critical state line. This is a function of the 
Lode angle θ following a proposal in [6]
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where M is the slope of the CSL under triaxial compression (θ=-30º). 
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Figure 1: KHSM constitutive model [5]

The scalar variable r, is assumed to be a monotonically decreasing function of the plastic 
strains and represents the progressive degradation of the material. The incremental form of the 
destructuration law is written as,
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A is a non-dimensional scaling parameter, p
vε is the plastic volumetric strain rate, p

qε is the 
equivalent plastic shear strain rate and de is the destructuration strain rate.

In line with Cam-clay, a volumetric hardening rule is adopted, whereby the change in size 
of the reference surface, Pc, is controlled only by plastic volumetric strain rate, p

vε ,
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It can be shown that the plastic multiplier, γ , can be computed as: 

( ) ( )' '1 1: : c
cH H

γ = =σ σ  n n (5)

where the plastic scalar moduli H and Hc are functions of state associated with 
'σ and 

'
cσ ,

respectively. 
'
cσ is the conjugate stress tensor, defined as the point on the structure surface 

having the same outward normal as the current stress point 'σ on the bubble. The conjugate 
hardening modulus Hc is derived from the consistency condition on the structure surface for 
the case where the bubble and the structure surface are in contact. The explicit expression is,
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The variation of the hardening modulus within the structure surface is described by an 
interpolation rule along the distance b, which connects the current stress state on the yield 
surface with its conjugate point on the structure surface. Hence, 
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Where Ψ and B are model parameters, b is the distance between current stress and 
conjugate stress, and bmax its maximum as defined below
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If a stress increment requires movement of the bubble relative to the structure surface, a 
geometric kinematic hardening rule is invoked to describe this movement. The translation rule 
of the centre of the bubble α is,
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3.2 Modified elastic behaviour
The original elastic formulation in KHSM was

*

'pK
κ

= (10a)

( )
( )*

1 23 '
2 1

pG
υ

κ υ
+

=
+

(10b)

As an alternative to the equation (8b) the shear modulus can be described by an empirically 
based equation proposed in [7]
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Where Ag, ng and mg are dimensionless parameters pr, is a reference pressure (1 kPa)  and 
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As an alternative to the equation (8b) the shear modulus can be described by an empirically 
based equation proposed in [7]
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Where Ag, ng and mg are dimensionless parameters pr, is a reference pressure (1 kPa)  and 
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2 'o cR P p= , is the isotropic overconsolidation. Correlations of all the parameters entering the 
equation with plasticity index are given  in [7].

According to [8] simplistic models in which tangent moduli are arbitrarily defined as 
functions of stress can lead to a non-conservative response, in violation of the laws of
thermodynamics. In contrast, an hyper-elastic approach guarantees thermodynamic 
acceptability. Based on considerations of a free energy (or elastic strain energy) potential, [8]
derive the following stiffness matrix, which can be used directly in, for instance, a finite 
element program for general stress states, ensuring fully conservative elastic behaviour when 
the moduli are functions of pressure,
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where, po, is a function of stresses defined in (11); pa, is the atmosferic pressure taken equal to 
100 kPa; Kh, is a dimensionless bulk stiffness factor;Gh, is a dimensionless shear stiffness 
factor and nh, is a dimensionless pressure exponent.
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The form of the stiffness matrix in equation (10) has two important consequences:  i) the 
moduli depend on all the stress invariants (not just the mean stress) ii) the elastic response is
anisotropic.

3.2 Modified plastic hardening
The kinematic hardening embedded in KHSM does not predict a smooth transition from 

elastic to elasto-plastic behaviour. To do so, [9], the value of hardening modulus should be 
infinite when the stress state engaged the yield surface. This is because when the stress state is 
within the yield surface the strains predicted are elastic and the plastic strains are equal to 
zero. When the stress state touches the yield surface, both elastic and plastic strains are 
predicted, so in order to have a smooth transition the plastic strains should be initially equal to 
zero and hence the hardening modulus equal to infinite. Inspection of equation (7) shows that, 
when the stress state engages the yield surface, a finite value of the hardening modulus is 
calculated.

As an alternative to (7) for this the formulation proposed in [9] is therefore adopted as an 
alternative to compute the hardening modulus,

3
2

* * *
max

c
c

BP bH H R
b bλ κ

 
= +  − − 

(13)

Where, Hc and b were defined in equations (6) and (8) respectively. B is a parameter. The 
value of *

maxb is set equal to the value of b each time the stress state becomes elasto-plastic 
(i.e., engages the yield surface). Details of the necessary incremental updating procedure are 
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given in [10], where the numerical implementation of the model in a FE program is also 
discussed.

3 PARAMETRIC ANALYSIS IN DRAINED TRIAXIAL TESTS
A parametric analysis of the influence of some parameters of the KHSM was done by the  

simulation of drained compression triaxial test. Here only some results for the influence of 
structure parameters or elasticity formulation are shown, more details are presented in [10].

Soils parameters are chose to represent the behavior of intact London Clay and the initial 
stress conditions before shearing are close to the initial state for triaxial tests of at 12 m of 
depth given by [11]. Some parameters are fixed (Table 1) and the influence of others is 
explored (Table 2, with base values in bold characters). Fixed parameters correspond with 
parameters for reconstituted London Clay given by [12]. The base values of  Viggiani’s 
elastic parameters Ag=300, ng=0.87 and mg=0.28 were selected based on the plasticity index 
of 50, representative of London Clay [13] Initial stress state is shown in Table 3, the initial 
position for the reference surface is derived from the preconsolidation pressure (P0) value (in 
the model Pc = P0/2) estimated from oedometer tests reported by [11].

Table 1: Fixed parameters for the sensitivity analysis

λ∗ κ∗ M φcs [º] R Β ψ(a) Α 
0.097 0.046 0.85 22 0.02 4 7 0.75

a) Only required for the original Plastic modulus (eq. 7)

Table 2: Exploratory parameters for the sensitivity analysis

Parameter Values explored
k 0, 0.5, 1, 2
r0 1, 4, 8
Ag 100, 300, 700
ng 0.5, 0.7, 0.87
mg 0.2, 0.28, 0.4
nh 0.5, 0.75, 0.9
Kh 100, 300, 700
Gh 100, 300, 700

Table 3: Initial stress state for the sensitivity analysis

p’ [kPa] q [kPa] Pc [kPa]
260 -90 400

Results of the sensitivity analysis are shown in terms of stress-strain and stiffness-strain 
curves. The stiffness plotted is the octahedral shear stiffness 3 oct sG dq dε= , where

( ) 0.5
3 2 :q  =  s s is the generalized  shear stress and ( ) 0.5

2 3 :sε  =  s se e is the generalized shear 
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strain; se is the deviatoric component of the strain tensor.  The superscript “tan” in the figures 
is used to denote tangent stiffness. The stiffness is further normalized by '

ip , which is the 
value of 'p at the start of shearing. 

3.1 Influence of structure parameters
In all the analyses in this section a comparison is made between results obtained using the 

original plastic modulus formulation (7) and the modified one (eq.13). The influence of 
structure parameters: r0 and k is shown in Figure 2. Figure 2 shows a strong influence of the 
plastic modulus formulation in the stiffness degradation curves. The original plastic modulus 
predicts a drop in stiffness, faster when r0 increases, while the modified plastic modulus 
results in a smoother stiffness degradation. This behaviour is attributed to the non-smooth 
elasto-plastic transition when the stress state engaged the yield surface (bubble) as was 
discussed previously. The variation of the plastic modulus (H) with axial strain for the two 
formulations is shown in Figure 3. A consistent behavior is observed for the modified plastic 
modulus. A higher initial structure results in slower the decay of the plastic modulus. Then, 
for given axial strain, higher values of H are observed when r0 increases and the generation of 
plastic strains is reduced, this behaviour is consistent with the structure increasing both 
stiffness and strength. An opposite effect is observed for the original plastic modulus 
formulation which is reflected in decreasing stiffness in the small strain region when r0
increases.

The effect of the rate of destructuration (k) can be seen in Figure 4. In general a higher 
destructuration rate induces lower strength values. The destructuration effect on stiffness is
negligible. When the original plastic modulus is employed (Figure 4b) a marked peak strength 
appears as the rate of destructuration increases. Also a non-smooth stiffness degradation and a 
non-physical effect in the small strain region of increase in stiffness as the degradation rate 
increases.

(a)
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(b)

Figure 2: Influence of initial structure. (a) Modified H, (b) Original H

(a) (b)

Figure 3: Comparison of plastic modulus (H) evolution. (a) Modified H, (b) Original H
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(b)

Figure 2: Influence of initial structure. (a) Modified H, (b) Original H

(a) (b)

Figure 3: Comparison of plastic modulus (H) evolution. (a) Modified H, (b) Original H
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(a)

(b)

Figure 4: Influence of the rate of destructuration. (a) Modified H, (b) Original H

3.2 Influence of elasticity laws
We examine the influence of the parameters in the different elasticity formulations.

Simulations using Viggiani’s and Hyper-elasticity are shown in Figure 5 and Figure 6,
respectively.  The set of constant parameters selected is: R=0.02, B=4 and r0=1, hence a non-
structured case is examined. The modified plastic modulus equation was used for all the 
analysis in this section. The traditional formulation (10) was also employed, for comparison, 
using a constant Poisson’s ratio of υ=0.2.

Figure 5 shows that parameters Ag and ng of Viggiani elasticity law have large influence on 
soil stiffness at very small strains, while the influence of mg is almost negligible. At large 
strains (γ>0.1%) ng still shows an influence on stiffness when ng<0.7. Following [7] the value 
of ng is in the region of 0.5-0.9 depending on the plasticity index. Low values of ng are 
applied to soils with low plasticity index which is not the case of London Clay.

For the triaxial compression test, bulk stiffness factor (Kh) of Hyper-elasticity law shows a 
negligible influence on initial shear stiffness and stiffness degradation curves as is shown in 
Figure 6(a). Shear stiffness factor (Gh) and nh have a significant influence on initial stiffness 
in a similar way to the effects of Ag and ng, respectively, of Viggiani’s elasticity law. 

It is also observed in Figures 5 and 6 that traditional elasticity law reaches very low shear 
stiffness at small strains which is reflected in the shape of stress-strain curve. Only at shear 
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strains greater than 1% traditional elasticity shows similar stiffness values than the others 
elasticity laws. Regardless of the elasticity law used the same ultimate stress level is reached 
at large strains.

(a) Constants: ng=0.87, mg=0.28

(b) Constants: Ag=300, mg=0.28

(c) Constants: Ag=300, ng=0.87

Figure 5: Influence of Viggiani’s elasticity law. (a) Ag, (b) ng, (c) mg
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(a) Constants: Gh=300, nh=0.75

(b) Constants: Kh=300, nh=0.75

(c) Constants: Kh=300, Gh=300

Figure 6: Influence of Hyper-elasticity law parameters. (a) Kh, (b) Gh, (c) nh

4 CONCLUSIONS
Initial structure of the soil is a state variable which modified both strength and stiffness of 

the soil. If the original plastic modulus is used, an anomalous stiffness degradation will be 
observed due to the abrupt drop in stiffness observed when structure increases. The structure 
parameter k shows a negligible influence on stiffness, but not on strength. In case of modified 
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plastic modulus, k affects both peak strength and residual strength, while only residual 
strength is affected when original plastic modulus is used. In addition, modified plastic 
modulus seems to result in a less brittle response than the original one.Two alternative 
formulations have been used to describe the elastic behaviour of the soil. It has been shown 
that both formulations give equivalent results for the chosen parameters. In contrast, the 
traditional elastic formulation does not attain high initial stiffness at small strains.
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Summary. The formation and propagation of compaction bands in high porosity sandstones 
is theoretically investigated in this paper using a new constitutive model based on the recently 
developed continuum breakage mechanics theory [1,2]. This model possesses a 
micromechanics-based link between the evolving grain size distribution (gsd) and the 
macroscopic stress strain relationship, through an internal variable called Breakage. This is 
an advanced feature over many existing plasticity based models in the literature, helping to 
faithfully track the evolving gsd and its related physics (e.g. permeability reduction). A 
localization analysis based on the acoustic tensor [3] is performed to determine both the onset 
and orientation of compaction bands due to grain crushing. It is shown that the model used is 
able to capture well both the material behaviour and formation of compaction band 
experimentally observed. An enhancement using rate-dependent regularization is applied to 
the model to deal with instability issues in the analysis of Boundary Value Problems. Based 
on the regularised model, the formation and propagation of compaction bands due to grain 
crushing is analysed through a numerical experiment on a porous rock specimen under 
triaxial loading condition. Good agreement between numerical predictions and experimental 
observations demonstrates the capability of the new model.  

1 INTRODUCTION 
The formation of localization bands in high porosity sandstones involves several 

micromechanical processes such as grain crushing, grain sliding, bond breaking and pore 
collapse [4,5]. Shearing at low confining pressures facilitates the fracture of grain bonding 
cement, allowing the grains to rotate and slip, which could be followed by the flow of 
granulated material. This bond breaking also reduces the mobilized shear strength, observed 
through the shear stress drop in experiments. In contrast, shearing at high confining pressures 
leads to grain crushing followed by pore collapse. During this process, the contacting grains 
tend to crush under the pressure, leading to the rearrangement of fragments, which further 
reduces the porosity and consequently hardens the material [4,6]. In this sense, pore collapse 
acts as a passive mechanism facilitated by a grain-crushing event. At a macroscopic level, 
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these failure mechanisms can be classified as brittle failure under low pressure and cataclastic 
flow with shear-enhanced compaction in high-pressure regimes [6]. Although these physical 
insights on the failure of porous sandstones are well understood, their theoretical modeling is 
still a challenging task.

 Continuum approach based on plasticity theory has been widely used for the prediction of 
compaction localization in porous rocks [7-12]. In these continuum approaches a bifurcation 
condition [3], as a material instability condition, is usually employed for the detection of both 
the onset and orientation of localization bands. It is however unclear whether the parameters 
giving a good prediction of compaction localization in these models correspond to an 
experimentally observed response. In other words, the capability of the model to capture the 
observed material responses is usually left untouched in these studies, while much attention is 
paid to adjusting model parameters for the prediction of compaction localization. In addition, 
the underlying evolving microstructures (e.g. grain size distribution) are not fully reflected in 
those models. It has been showed that these plasticity-based models can lead to erroneous 
predictions of the permeability changes due to grain crushing [15]. Consequently, despite 
their good theoretical predictions, lack of a sound physical basis seems to impair the 
usefulness of these models.  

A new continuum model based on the breakage mechanics theory [1,2] has shown its 
capability in capturing the compaction band formation in porous rocks [13]. The main feature 
of this theory is that it can take into account the grain crushing effects on the constitutive 
behavior through an internal variable (called Breakage, B) of the continuum model. This 
internal variable is explicitly linked with the evolving grain size distribution (gsd), helping to 
continuously track the gsd during the crushing induced deformation process. The effects of 
pore collapse on the macroscopic behavior of the material are also accounted in this models 
based on breakage mechanics theory. A recent study [13] showed that this breakage 
mechanics model predicts well both the formation and orientation of compaction bands, 
besides its capability to capture the behavior of porous rocks under high confining pressures 
[15].

In this paper, the formation and propagation of compaction bands in high porosity 
sandstones is studied using the above model. An enhancement employing rate dependent 
regularization is incorporated in this constitutive model to deal with instability issues due to 
softening and strain localization. Numerical analyses of a porous rock sample under drain 
triaxial condition are carried out to study the formation and propagation of compaction band. 
The obtained numerical results are validated against experimental observations. 

2 A CONSTITUTIVE MODEL BASED ON BREAKAGE MECHANICS  
A brief outline of a model based on breakage mechanics theory is presented in this section. 

The details of the theory and the development of several constitutive models based on this 
theory can be found in the papers by Einav [1,2,14] and Nguyen and Einav [15]. Due to grain 
crushing, the gsd evolves during the deformation of crushable granular materials. In breakage 
mechanics theory [1,2] this evolution of the current gsd p(d) is directly tracked through an 
internal variable, called Breakage (B) by the following relationship: 

       0, 1 up B d B p d Bp d    (1)
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where d is the grain diameter, p0(d) is the initial gsd and pu(d) is the ultimate gsd, which can 
be conveniently assumed to be of fractal type.  

The stress-strain relationship is: 

   1 : pB  σ D ε ε  (2)

where σ  is Cauchy stress tensor;   and p  are the total and plastic strain tensors 
respectively; D is the linear (isotropic) elastic tangent stiffness tensor; the grading index 
which is a result of the statistical homogenization, can be obtained from the initial and 
ultimate gsd’s as 

2 201 uJ J    (3)

where J20  and J2u are second order moments of initial and final gsd [1]. Einav [14] derived 
the following elastic-plastic-breakage yield criterion in mixed stress-energy space considering 
the energy balance driving particle breakage. 

22(1 ) 1 0B
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where Ec is the critical breakage energy which can be determined directly from the isotropic 
crushing pressure through the relationship 2 2C crE P K  [2];  1 3p   σ δ  is the mean 

stress (positive in compression);  3 2 :q  s s is the distortional stress ( .p s σ δ is the 
deviatoric stress; δ  is Kronecker delta); M is the slope of the critical state line in p – q space;
and EB is the energy thermodynamically conjugated to the breakage internal variable.
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A typical evolving yield envelope in p-q-B space is plotted in Fig. 1.

B=0.0

B=0.9B=0.8

B=0.7

Pcr, B=0

Pcr, B=0.9

0           200           400 600          800        1000

1
0.8
0.6
0.4
0.2
0600

400

200

0

B

(a)

Mean stress - p (MPa)

D
is

to
rti

on
al

 st
re

ss
 -

q 
(M

Pa
)

|q f| =
Mp f;

 B= 1

B=0.0

B=0.9B=0.8

B=0.7

Pcr, B=0

Pcr, B=0.9

0           200           400 600          800        1000

1
0.8
0.6
0.4
0.2
0600

400

200

0

B

(a)

Mean stress - p (MPa)

D
is

to
rti

on
al

 st
re

ss
 -

q 
(M

Pa
)

|q f| =
Mp f;

 B= 1

Figure 1: Typical yield surface in q-p-B space



1192

Arghya Das, Giang D. Nguyen, Itai Einav. 

4

The evolution rules for breakage and plastic strain are respectively, 

 2 2d 2d 1 cos  cB B E  and (6)

 2 2

2 2
1 sin 3d d 2

3
Bp

c

B E
pE M p



    
 
 

δ sε . (7)

In the above expression, ω is the parameter that couples the plastic volumetric deformation 
with grain crushing [2]. Physically,  represents the pore collapse of the material, which is a 
consequence of grain crushing and grain/fragment reorganization. Further details on  and 
pore collapse can be found in Einav [1, 2] and Das et al. [13].

3 ANALYSIS OF COMPACTION LOCALIZATION 

3.1 Model behavior 
The model behavior is presented in this section. The model parameters for a typical high 

porosity (23%) sandstone, the Bentheim sandstone are determined from experimental data. In 
particular, the stiffness (G, K), critical state parameter (M) and critical breakage energy (Ec)
are obtained from published experimental stress-strain responses [16,17]. The grading index 
is determined from basic gsd [18] information and the assumption of power law distribution 
for both initial and final gsd. The coupling angle () is chosen by matching the inelastic 
stress-strain response with experimental results. Details on the model calibration can be found 
in Das et al. [13] and corresponding model parameters are listed in table 1. 

Table 1: Model parameters

Parameters Value
G 7588 MPa
K 13833 MPa 
M  1.7
Ec 4.67 MPa 
 0.85
 70°

Fig. 2 presents the model behavior based on the model parameters in Table 1. The 
predicted stress-strain responses are found to be in good agreement with experimental 
observations.
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Figure 2: Numerical and experimental [19] comparisons of stress-strain responses of Bentheim sandstone under 
drained triaxial loading at different confining pressures; (a) mean stress vs. volumetric strain; (b) differential 

stress vs. axial strain.  

3.2 Numerical prediction of compaction localization  
We use the discontinuous bifurcation condition described in Rudnicki and Rice [3] to 

detect the formation of compaction band. Eq. 8 represents the simplified form of 
discontinuous bifurcation condition, considering the fact that the tangent stiffnesses of the 
material inside and outside the band are different in the case of breakage model [3,20]. 

i 0   n L n A . (8)

In the above equation n is the band orientation vector; Li is the tangent stiffness tensor inside 
the localization zone (eq. 9); A is the strain localization tensor, also termed the acoustic 
tensor. The following tangent stiffness tensor is obtained using the model described in section 
2. The details on the formulation of this forth order stiffness tensor were already given in Das 
et al. [13]. 
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(9)

We show that the model described in the previous sections is capable of capturing the 
experimentally observed localization features of porous rocks, besides its capability in 
describing the material behavior (section 3.1). Fig. 3a highlights (the thick black line) the set 
of favorable stress states for the formation of localization band at the onset of yielding. The 
results are compared with their experimental counterpart [19]. At much higher-pressure 
regime, no localization failure is observed at the onset of inelastic deformation. As also 
numerically experienced, the closer to the isotropic compression line the stress path is, the 
easier the deformation would evolve into cataclastic flow without any compaction 
localization. However, shearing beyond elastic limit also eventually induces compaction 
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localization. 
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Figure 3: (a) Initial yield envelope and predicted stress states at the formation of compaction localization for 
Bentheim sandstone. (b) Corresponding contour of determinant of the acoustic tensor. 

Fig. 3b shows the contours of the determinants of the acoustic tensor against the band 
orientation angle () and the mean stress (p). In this figure the inner most zone, where the 
determinant of the acoustic tensor is negative (|A< 0), indicates localization failure. It can be 
seen from Eq. 8 and Fig. 3b that for a given confining pressure p, there is a set of possible 
orientation angles for the localization band. From the experimental point of view, localization 
bands having orientation angle 010 can be classified as pure compaction band whereas 
those with 1045 are treated as shear enhanced compaction bands [19]. Our analysis 
predicts that the band orientation for a wide range of confining pressure falls within the range 
of 0° to 40° that is close to the experimental observations in [19].  

4 RATE DEPENDENT REGULARIZATION 

4.1 Perzyna type rate dependent regularization  
Due to the localization characteristics of the model, the boundary value problems (BVP) 

become ill-posed and hence treatment for this instability is needed. Introduction of material 
rate dependency, which implicitly introduces a length scale in to the governing constitutive 
equation [21], is one of the ways to make the BVPs well-posed. Here we incorporate rate 
effect in the breakage constitutive model presented in the preceding section using Perzyna 
type overstressed function. The model enhancement is carried out by modifying the evolution 
laws of breakage and plastic strain in the following manner. 

 2 22 1 cos
d d

N

c

y B
B t

E





 , and (10)
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It is noted that the viscosity parameter η is a dimensional quantity (M-1LT3) when used with 
this breakage model. Comparing the rate dependent flow condition with conventional rate 
independent evolution law, we can express the non-negative multiplier or consistency 
parameter as, 

As can be seen, the Perzyna-type rate dependent breakage model provides an explicit form for 
the non-negative multiplier. 

4.2 Rate effect on constitutive response 
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Figure 4:  Effect of strain rate on the model response in drained triaxial loading - (a) breakage against mean 
stress; (b) distortional stress against axial strain. 

Numerical drained triaxial tests are carried out to observe the effect of increasing strain 
rate on the material behavior. The same model parameters listed in Table 1 are used. Other 
parameters related to the rate dependency are, N = 1.0; and viscosity parameter η = 1.0 
sec/kPa. In the numerical tests, the strain rate is increased via controlling the time increment 
(e.g. dt = 1s, 0.1s, 0.001s, and 0.0001s, corresponding to the strain rates indicated in Fig. 4). 
Fig. 4b indicates that with increasing strain rates the ultimate stress is also increasing. The 
transition from elastic to inelastic zone is smoother with increasing strain rate. On the other 
hand, at slow strain rates the model response approaches rate independent behavior. Besides 
the stress-strain response, the rate of breakage growth reduces with the increase in strain (Fig. 
4a). From the microscopic point of view, high strain rate does not allow sufficient time to 
break or rearrange the grains [22]. Thus, the material becomes stronger and this feature is also 
reflected in the macroscopic stress-strain response of the proposed model.  
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4.3 Mesh independency of finite element solutions 
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Figure 5: FE meshing for triaxial drained test 

The stability of the above rate dependent breakage constitutive model is illustrated through 
the numerical analysis of a rock specimen under drained triaxial loading condition. The 
commercial package Abaqus (version - 6.8) is used for the entire finite element analysis. We 
construct the model (0.1 x 0.2 m) using linear quadrilateral finite elements (Fig. 4). Due to 
symmetry in geometry and loading, only half of specimen is modelled. The analysis is 
performed considering axisymmetric 2D plane strain condition with strain controlled loading. 
The entire loading arrangement is a two stage process where initially we apply a confining 
pressure and allow the material to deform isotropically. Thereafter axial load, through 
prescribed vertical displacement producing a constant axial strain rate of 5.3*10-4/s, is applied 
to the specimen, while the confining stress is kept constant. The boundary conditions are: 
restricted vertical movement of the bottom boundary; and (fixed) incremental vertical 
displacement at the top boundary. To trigger off the localization we introduce local anisotropy 
via a weak element having lower crushing pressure (90% of Pcr) (Fig. 5).  

Breakage, B Breakage, B Breakage, B

(a) (b) (c)
Breakage, B Breakage, B Breakage, B

(a) (b) (c)

Figure 6: Breakage contours showing the formation of shear enhanced compaction band under drained triaxial 
test at 3% axial strain (a) 400 elements; (b) 1600 elements; (c) 6400 elements. 
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The effect of the spatial discretization on the numerical solutions is presented in Fig. 5. We 
use three different finite element meshes employing 400 elements, 1600 elements and 6400 
elements, respectively. The contours in Fig. 5 indicate the growth of breakage during the 
deformation of the specimen. As can be seen, the localization zones and their widths are 
almost identical for all three cases of discretization The regularization effect of the rate 
dependent enhancement is clearly visible from the global load-deflection curves (Fig. 7), in 
which the trends of the curves and their periods of oscillation are almost identical. 
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Figure 7: Reaction force against displacement plot for drained triaxial test 

5  COMPACTION BAND PROPAGATION IN POROUS ROCKS 
It is clear from the previous analysis that the use of rate effect eliminates the pathological 

mesh sensitivity of the numerical solutions. The propagation of compaction bands is studied 
in this section using the FE mesh consists of 1600 elements. We start the numerical drained 
shear test with an initial isotropic pressure of 300 MPa. The same axial strain rate of 5.3*10-4

/s, as used in section 4.3, is applied to the top of the specimen in the second stage of loading.  

Figure 8: Breakage contours showing pure compaction band formation in drained triaxial test at different axial 
strains, (a) Numerical simulation; (b) Experimental observation [19]. 

From laboratory experiments it has been observed and reported [23,24] that compaction band 
initiates from the two ends of the sample due to the stiffness mismatch between the material 
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and the cap of testing device. To simulate similar band initiation we introduce two weaker 
finite elements at both ends of the numerical sample. 

The breakage contours in Fig. 8 show the propagation of compaction bands during the 
shearing process. The colour code indicates intense grain crushing via breakage growth that 
takes place inside the compaction bands.  As expected, compaction localization occurs at the 
two ends of the specimen and propagates towards its centre (Fig. 8). Baud et al. [19] also 
reported similar band propagation in their experimental results. This is manifested because of 
simultanous loading and unloading process during shearing at high confining pressure.
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Figure 9: Stress responses at integration points (A and B) of numerical sample, (a) against axial strain; (b) 
against time, for a fixed time span.

The variation of distortional stress against time and axial strain is plotted in Fig. 9a,b for 
two integration points A and B. Due to the confinement and the varying inhomogeneous state 
(of stress, strains and breakage), the behavior of material points along the specimen height 
switches among hardening, softening, and elastic unloading. These material points take turn 
in the crushing process. Due to this process of simultaneous loading and unloading, 
compaction bands propagate from the two ends of the sample towards its centre, at discrete 
locations along the specimen height. This effect is also visible through the oscillating nature 
of the global stress strain response during shearing (Fig. 10). 
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Figure 10 Global stress-strain response from numerical prediction and experimental observation [19] 
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The predicted average distortional stress-strain response and experimental observations 
[19] are plotted in Fig.10. These macroscopic model responses can be seen to be in good 
agreement with its experimental counterpart.  

6 CONCLUSIONS 
We show in this study a micromechanics-based constitutive model capable of capturing 

both the material behavior and the formation of compaction bands. The enhancement of this 
model to deal with material instability issues, using rate dependent regularization, allows us to 
to numerically explore the propagation of compaction bands in a porous rock specimen. The 
obtained numerical results are in good agreement with experimental observations, thus 
demonstrating the capability of the proposed model. This is an important starting point for a 
deeper study on the initiation and propagation of compaction bands in porous rocks. 
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Abstract. A mobile projection centre extension to an existing elastoplastic-viscoplastic soil 
model is presented in this work. In this formulation, the projection centre evolves according to 
the stress path experienced by the soil, approaching it during the loading process [1]. In this 
way, the elastic (within which the behaviour is elastic) and the viscous (within which the 
behaviour is non-viscous) nuclei, will move with the projection centre. These nuclei may have 
reduced dimensions and reproduce more realistically the inelastic and time dependent soil 
response under a larger set of stress paths. The proposed formulation is based on the 
continuous plasticity model with a viscous mechanism proposed by Kaliakin and Dafalias [2, 
3]. The observed occurrence of creep deformation in stiff clays at small levels of deviatoric 
stress was one of the motivations for this work. It is important to note that the majority of 
numerical and laboratory studies of the effect of strain rate on the behaviour of soils usually 
refers to normally consolidated soils, and, as already reported by Hashiguchi and Okayasu [4], 
further theoretical and experimental studies on the time dependent behaviour of 
overconsolidated soils are needed. 

In order to validate the proposed formulation a cyclic undrained triaxial test with unloading 
and reloading stages with creep was performed on a sample of a stiff Lisbon clay. The test 
was simulated using the described soil model and the results of both compared. This 
formulation significantly improves the reproduction of viscous strains associated with  
unloading stress paths such as those occurring, for example, in excavation works.  

 

1 INTRODUCTION 
Laboratory tests performed on a stiff clay from the Lisbon region (Formação de Benfica 

clays) showed the occurrence of creep strains at small deviatoric stress levels. These results 
were confirmed by local displacement transducers LVDTs [5], and motivated the study here 
presented. It is interesting to note that the vast majority of laboratory and numerical studies of 
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strain rate effects on soil behaviour refers to normally or lightly overconsolidated soils, with 
further studies of these effects on overconsolidated soils being necessary, as noted by 
Hashiguchi e Okayasu [4], both from the experimental and theoretical standpoints. The study 
presented below aims to contribute to overcome this shortcoming, highlighting some 
important aspects.  

There are on the literature various types of models conceived to reproduce the time-
dependent behaviour of soils. These models can be divided into two main groups, those that 
allow and those that do not allow the occurrence of viscous deformation inside the yield 
surface. Since, in the case of overconsolidated soils, stress paths can develop to a large extent 
within the yield surface, the later type of model is clearly limited in its applicability. Instead, 
continuous plasticity models, with an added viscous mechanism, such as the model proposed 
by Kaliakin and Dafalias [2,3], by enabling the occurrence of inelastic deformations inside the 
yield surface (called bounding surface),  improve the reproduction of soil behaviour.  

2 THE KALIAKIN AND DAFALIAS BOUNDING SURFACE ELASTOPLASTIC 
VISCOPLASTIC MODEL  

2.1 Brief model description  
The elastoplastic-viscoplastic soil model proposed by Kaliakin and Dafalias [2] is based on 
the existence of a bounding surface, with an elliptical shape in the space of the stress 
invariants (p,q,θ), shown in Figure 1. The stress state σσσσ  is always inside or on the bounding 
surface, having an image on it,σσσσ , defined by a radial projection from a centre a. In this 
particular model, the projection centre is fixed and located on the hydrostatic axis. The 
bounding surface only undergoes isotropic hardening. The position of the stress state on the 
line segment joining the projection centre to the image point on the bounding surface defines 
the variable /b = a aσ − σ −σ − σ −σ − σ −σ − σ − . This varies between b=∞, when the stress state matches the 
projection centre, and b=1, on the bounding surface. 

A basic assumption of this model is the additive decomposition of the inelastic 
deformation rate into a plastic component and a viscoplastic component. The directions of the 
plastic and viscoplastic deformation rates are given by derivative of the yield function 
relatively to the stress state on the image point,σσσσ . There are two surfaces implicitly defined 
associated to each of the inelastic mechanisms. The first one defines the boundary beyond 
which plastic deformations can occur (if the loading condition is also verified) represented by 
the constant sp, such that p pb s /(s -1)≤ . The second surface defines the boundary outside 
which viscous deformation occur and is defined by the constant sv. That means that 
viscoplastic deformations occur only if v vb s /(s -1)≤ . Both surfaces are homothetic relatively 

to the bounding surface. The overstress defined as ˆ ˆδ = σ − σσ − σσ − σσ − σ  controls the magnitude of 
viscoplastic strain rate. σ̂σσσ  is the in intersection point between the line joining the projection 
centre and the stress point, and the viscous nucleus. 

The plastic modulus, that determines incremental elastoplastic stifness is interpolated from 
its value on the image point, by means of variable b, so that a continuous monotonic transition 
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from an infinite value (elastic incremental stiffness) on the surface /( 1)p pb s s= −  to a 
corresponding value on the bounding surface (conventional elastoplastic stiffness). 

Figura 1: Bounding surface model.

The model was implemented in the explicit finite difference software FLAC. Details of this 
implementation can be found in [5,6].  

2.2 Laboratory tests numerical modelling  
The described model has enabled the reproduction of a set of three creep tests performed 

on Formação de Benfica stiff clays. The tests were triaxial undrained under constant mean 
stress after being isotropically consolidated to different effective mean stresses. The imposed 
loading sequence alternated steps of relatively high strain rate with 24 hours creep stages. 
This adjustment was initially achieved with a different set of model constants for each test, 
and, after a modification of the overstress function, by introducing a new parameter related 
with the viscous behaviour, the whole set of tests were adjusted using a single set of 
parameters [7]. The modified overstress function defining the magnitude of the viscous strain 
rates is given by 

ˆ1 exp
1

n

v

v

J
V IN sr

s

δφ α

 
 

  =    −      

.                                                 (1)

2.3 Limitations of the model 
Although this model has been able to reproduce many of the relevant aspects of the viscous 

behaviour of soils, it still has some shortcomings. Figures 2 and 3 illustrate some of these 
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shortcomings. In the case of an overconsolidated clay, after the sedimentation process and 
associated creep, the stress state is at point A (apparent overconsolidation), soil undergoes 
unloading due to the erosion of the superficial layers (process which corresponds to a genuine 
overconsolidation process), and the final stress state point is B. Stress states A and B 
correspond to equilibrium situations, on which the creep strains have already occurred, and as 
such, are on the boundary of the viscous nucleus represented in Figures 2 and 3 as green 
shaded ellipses. The unloading stage from A to B, in the original model with the fixed 
projection centre over the hydrostatic axis, does not produce any creep (viscous) strains, 
because the corresponding stress path is now entirely included in the viscous nucleus (Figure 
2). On the other hand, in the formulation now proposed, which admits the existence of a 
mobile projection centre (which implies a mobile viscous nucleus), creep strains will take 
place as long as the stress path AB is sufficiently long to cross the viscous nucleus. 

Assuming the sample is sheared undrained from a state of isotropic consolidation, as was 
shown above, no creep deformations would occur within the surface sv, according to the 
original model. However, it was observed that creep strains occurred from the earliest stress 
stages (low deviatoric stress), which is inconsistent with this model. This inconsistency can be 
eliminated by assuming that the projection centre (and the corresponding viscous nucleus) can 
move, as illustrated in Figure 3. The concept is equivalent to that proposed in two surface 
elastoplastic models. These, however, do not take into account the viscous behaviour. As long 
as the size of the viscous nucleus is sufficiently small, creep strains may occur at any point, 
inside the bounding surface. 

Figure 2 : Overconsolidation process in the original model (fixed projection centre). 

In overconsolidated soils which have been stabilized in terms of creep, it would be 
necessary, according to the original model, to use a viscous nucleus large enough to 
accommodate the in situ stress states. Because, inside this nucleus no viscous strains may 
occur, this contradicts the results of the described tests. This contradiction may be eliminated 
by adopting a mobile projection centre defining a viscous nucleus of reduced dimension. 

In the same way that the two surface models incorporate a mobile elastic domain in order 
to better represent the variation of the elastoplastic stiffness with the loading direction, it may 
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be assumed that the same principle applies to the viscous behaviour. The use of mobile 
viscoplastic potentials in metal models is well known [8]. 

Figura 3: Overconsolidation process in the modified model (mobile projection centre).  

3 MODEL WITH MOBILE PROJECTION CENTER  
Although the initial general formulation of the bounding surface model was based on the 

assumption the existence of a mobile projection centre [9], the various specific formulations 
presented use a fixed projection centre located on the isotropic axis [10]. Here, it is proposed 
that the projection centre is able to move, pursuing the stress state, according to:  

( )ac i= −a ε a  σσσσ (2)

where iεεεε  is the inelastic strain rate (plastic plus viscoplastic) and ca is a model constant that 
controls the velocity of translation. This change implies several modifications in the model’s 
formulation. Namely, the expressions for the plastic multiplier, the hardening function, the 
projection of the stress state into the bounding surface and the plastic modulus. The proposed 
changes have been implemented and confronted with experimental results, as will be shown 
in the next section.  

Some numerical experiments simulating a conventional drained triaxial test on virtual soil 
with an unloading/reloading cycle were carried out in [1] and are shown in Figures 4 and 5. 
Figure 4 shows the stress-strain curves for different strain rates. In Figure 5, the first loading 
phase takes place at a strain rate equal in all tests (2×10-6 s-1), with the unloading and 
reloading stages taking place at different strain rates.  In both cases, the loading and reloading 
stages exhibit an expected increase in stress with the strain rate, with the upper limit being the 
elastoplastic behaviour. During unloading the stress decreases with increasing strain rate. 
Theses examples illustrate that, unlike the formulation with a fixed projection centre, this 
model can reproduce closed loops for relatively small variations of deviatoric stress, which 
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remains positive, as observed experimentally. 
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Figure 4: Drained triaxial tests for different strain rates 
(models with mobile projection centre).
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Figure 5: Drained triaxial tests with different strain rates in the unloading-reloading 
stages (model with mobile projection centre). 

4 CYCLIC CREEP TEST. RESULTS AND NUMERICAL SIMULATION 

4.1 Main characteristics of Formação de Benfica clay 
The test carried out to study the model proposed in this work was carried out in the 

Formação de Benfica overconsolidated stiff clays, a significant geological formation within 
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the Lisbon region. This tested sample is a structured soil with an ASTM classification of SC 
with an IP of 35.4% and LL of 61.4% and low permeability (2×10-10 m/s). 

4.2 Loading sequence 
The imposed loading sequence involved a series of unloading steps followed by a series of 

reloading steps, with each step consisting first in a relatively fast change in deviatoric stress 
(aprox. 6×10-6 s-1 strain rate) followed by 24h creep at constant deviatoric stress and constant 
total mean stress. The loading sequence was carried out in undrained conditions.  

After the monotonic deviatoric loading up to q=250kPa, during the unloading sequence, 
the creep strains increased in the reverse direction (Figure 6), i.e., for the highest q values, the 
creep strains are lower and progressively increase with decreasing q. When the deviatoric 
stress attains zero, significant creep strains are observed. Conversely, during the reloading 
sequence, with q increasing from 0 to 250kPa, the creep strains increase with increasing q
values with significant large creep strains for q=250kPa. It is however important to note that 
during initial loading sequence a situation corresponding to tertiary creep (failure) was not 
achieved.  
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Figure 6: Unloading-reloading steps with creep stages in undrained triaxial test with 
constant p (measured – blue line, model with mobile projection centre – green line). 

4.3 Numerical simulation 
Some elements already available from previous studies on samples of this formation were 

used in the calibration of the model. This calibration was performed for a single unloading-
reloading cycle and its aim was to reproduce qualitatively the most significant aspects 
observed in the experiment. A set of material constants was chosen from a large series of 
analyses made by randomly varying a set of five parameters affecting viscous behaviour that 
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produced a best fit to the measured stress-strain curve. The adjustment shown in Figure 6 has 
been achieved for the following material constant values: V=5×109 , sv=1.12 , ca=652 , n=2.1  
and α=0.  

It is important to note that a constitutive model with a fixed projection centre cannot even 
qualitatively reproduce the type of behaviour exhibited in this test.  

The effective stress path and snapshots of the projection centre (whose speed can be 
controlled by the constant ca) with the corresponding viscous nucleus at different instants are 
shown in Figure 7. The instants represented are the end of the isotropic consolidation stage, 
the end of the first unloading step and after the following creep stage, the end of the last 
unloading step and after the following creep stage, and the end of the last reloading step as 
well as the end of the next creep stage. The projection centre (and the viscous nucleus) 
follows the stress state. During the loading steps, due to the high rate of loading, the 
projection centre lags behind the stress state and consequently the stress moves outward from 
the viscous nucleus boundary. During the creep stages the projection centre approaches the 
stress state until the viscous nucleus’s boundary catches the latter at which point the creep 
strains cease. In the case of the first unloading step, the stress moves to the inside of the 
viscous nucleus, the response is entirely elastic and the projection centre doesn’t move. It 
should be mentioned that some viscous strains may also occur during the loading stages. 

Figure 7: Computed effective stress path. Viscous nuclei at the end of isotropic 
consolidation, first unloading step, last unloading step and last reloading step. At the 
beginning (broken line) and the end of the creep stage (full line). Stress points (red). 
Projection centres (green). The global view on the right side includes image points (blue) 
on the bounding surface. 

Results of the measured and computed pore pressures histories are shown in Figure 8. The 
model, as it stands, is not able to reproduce, even qualitatively, the observed pore pressure 
response.  The model predicts pore pressure decreases during unloading, in contradiction with 
the measurements that show a pore pressure increase. This is one aspect of the model that 
needs to be improved. During reloading the model predicts decreasing pore pressures whose 
magnitude increases with the deviatoric stress level. This is in qualitative agreement with the 
measurements.  
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Figure 8: History of measured (blue line) and computed (green line) pore pressures. 
Applied deviatoric stress history (red line). 

As the pore pressure variations reflect the inelastic volumetric strains, and assuming an 
associated flow rule, the inability of the model to reproduce the pore pressure changes with 
loading might be an indication that the shape of the bounding surface is not suitable. A 
sheared elliptical shape such as used to model anisotropic plastic response in soils [11] would 
produce, at least qualitatively, correct pore pressure variations as illustrated in Figure 9.  

Figure 9: Isotropic (broken line) and anisotropic (full line) bounding surfaces with 
associated flow rule during unloading and reloading.  

In the case of the sheared ellipse there is a region, from slightly to medium 
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overconsolidated states, inside which the sign of the pore pressure change response agrees 
with the measured. As can be seen in Figure 9 for the unloading situation, the projection of 
the normal to the anisotropic bounding surface on the isotropic axis has opposite direction to 
the one given by the isotropic bounding surface. This suggests that the anisotropic nature of 
the soil cannot be ignored if the correct volumetric response is to be achieved by the model.  

5 CONCLUSIONS 
In this work, a new model that takes into account the cyclic time behaviour of soils has 

been proposed. Some inconsistencies between observed soil behaviour and the response given 
by models for rate dependent soils have been described. These inconsistencies have been 
solved with a mobile projection centre that approaches the stress state with some delay and as 
such is able to develop viscous (including creep) strains.  

The response of the improved model has been compared with that of a triaxial undrained 
test during an unloading/reloading deviatoric stress cycle at constant total mean stress that 
incorporated a series of staggered fast loading steps and creep stages. A reasonable agreement 
with the measured response has been obtained. The model has clearly been able to 
qualitatively reproduce the main observed aspects of the stress-strain response of a stiff 
overconsolidated clay under a stress loading cycle with creep stages. 

One aspect that the model has not been able to reproduce is the observed pore pressure 
evolution. It has been suggested that the adoption of an anisotropic bounding surface with an 
associated flow can improve the model in this respect. 

Another aspect that might improve the model concerning this type of soils is the 
incorporation of destructuring. 
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Abstract. This paper intends to clarify the influence of geometric nonlinearity on the 
behaviour of an embankment built on soft soils, considering the material non-linearity 
associated with a coupled soil-water formulation. The numerical predictions are compared 
with the field data in terms of settlements, horizontal displacements and excess pore water 
pressures. The repercussions of including the large displacements formulation are also studied 
in terms of the increments of vertical and horizontal effective stresses and of the yield area. It 
is found that the analysis considering large displacements results in a decrease in settlements 
and a slight increase in the rate of excess pore pressure dissipation, both of which are related 
to the reduction of the thickness of a deformable layer. 

 
 
1 INTRODUCTION 

The analysis of most geotechnical problems assumes that the strains are infinitesimal, 
presuming that the geometry of the elements remains unchanged during the calculation 
process. However, for structures built on very deformable ground, like very compressible 
clays and organic soils, this assumption is not completely realistic since these soils are subject 
to high displacements. The lower permeability and high compressibility of these soils, which 
are nearly always saturated, means that the analysis should also consider the coupled 
formulation of the interstitial fluid flow and the deformation of the solid skeleton (Biot’s 
theory).  

Several studies about implementations of coupled consolidation theories with finite 
deformations have been published, considering either linear elastic materials [1-5] or non-
linear material behaviour [6-9]. But only a few included applications to real situations, namely 
to embankments built on very compressive soils, i.e., where the consideration of geometric 
non-linearity is essential to the improvement in the numerical predictions.  

This paper intends to clearly show the importance of considering geometric non-linearity 
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in the numerical analysis of coupled consolidation problems, particularly in problems of 
embankments on soft soils. In this way, a Lagrangian formulation is used, updating the nodal 
coordinates at the end of each step of time and/or load; this formulation was described by 
Zienkiewick [10]. 

Thus, the case of an embankment built on Portuguese soft soil is studied. The results of the 
numerical simulation, which considers a non-linear constitutive law (Modified Cam Clay 
model), with and without the geometric non-linearity phenomenon are compared with the 
results observed in situ in terms of settlements, horizontal displacements and excess pore 
water pressures. In addition, the influence of the large displacements analysis on the state of 
stress is studied in terms of vertical and horizontal effective stresses, and in terms of the yield 
area. 

 All the numerical analyses used the 2D finite element (FE) code, developed at the 
University of Coimbra [11], which can perform elastoplastic analyses with coupled 
consolidation. 

2 CHARACTERISTICS OF THE EMBANKMENT 
The site studied is located in Portugal, at km 7.775 on the A14 motorway. Three boreholes 

were performed (S1, S2 and S3) to define the geotechnical profile presented in Figure 1.  
The behaviour of the embankment was observed during its construction, with the following 

instrumentation (Figure 1): (i) a sub-vertical inclinometer tube placed on the vertical of the 
foot of the main embankment's slope to measure horizontal displacements with depth, (ii) a 
settlement plate (T) and a electrical piezometer (P) to measure pore pressure [11]. Under the 
embankment and the additional berm, vertical drains were installed down to the bottom of the 
soft deposit.  

The time history of the construction of the embankment is described with elevations of 1.1, 
1.85, 3.45, 4.7, 7.55 and 8.1 metres, applied at times 0, 80, 240, 290, 385 and 420 days, 
respectively. 

Embankment

Settlement plate
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P

So
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Rock
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Figure 1: Geotechnical profile of the A14 motorway embankment (Portugal). 

The geotechnical characterisation of these soils, carried out by Coelho [12], allowed the 
foundation soil to be zoned, as shown in Table 1, where the physical and mechanical 
characteristics of the layers are set forth. The behaviour of the foundation soil is simulated by 
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the Modified Cam Clay (MCC) model. The behaviour of the embankment is simulated by a 
linear elastic law, with ν' = 0.3 and the deformability modulus varying between 30 MPa 
(bottom layer) and 2 MPa (top layer), thereby reproducing the reduced containment of the 
upper layers. 

Table 1: Physical and mechanical characteristics of soil layers. 

Layer Depth 
(m) 

γ
(kN/m3)

OCR Ko eo
Parameters of MCC model ky(eq)* 

(m/day)
[x 10-4]

kx/kyeλo λ κ M 

1 0.0 - 0.5 15.0 7.0 0.87 2.0 2.58 0.226 0.028  

1.48 

-----  

3.0 

2 0.5 - 1.5 15.0 5.0 0.76 2.0 2.76 0.226 0.028 15.6 
3 1.5 – 3.0 14.8 3.0 0.62 2.1 3.02 0.282 0.035 62.4 
4 3.0 - 4.5 14.5 1.5 0.47 2.3 3.41 0.374 0.05 103.6 
5 4.5 - 6.5 14.5 1.0 0.40 2.1 3.10 0.343 0.063 20.8 
6 6.5 - 8.5 15.2 1.0 0.40 1.8 2.37 0.178 0.025 5.1 
7 8.5 - 21.0 15.0 1.0 0.40 1.9 2.76 0.217 0.026 6.2 

Embank. ------ 22.0 ---- ---- ----- ----- ----- ----- ----- ----- ----- 
* ky(eq) = 12. ky(soil)

The vertical coefficients of permeability, given in Table 1, correspond to the global 
equivalent values, thus expressing the drainage conditions of the ‘soil-vertical drains’ system 
[11, 13]. The relationship between the horizontal and vertical coefficients of permeability of 
the soil is three.  

During the calculation, the coefficients of permeability change with the void ratio, in 
accordance with Taylor [14]: 

    kC
ee

xk
0

10k = 0

−

      (12) 

where e0 represents the initial void ratio, k0 the coefficient of permeability related to e0, k the 
corrected coefficient of permeability related to the current void ratio e, and Ck is a constant 
equal to 0.5e0 [14].  

Level 5 - Hemb=7.75 m
Level 4 - Hemb=4.70 m Level 3 - Hemb=3.45 m

Level 2 - Hemb=1.85 m
Level 1 - Hemb=1.10 m W.T.

Level 6 - Hemb=8.10 m

Figure 2: FE mesh.

The FE mesh for the plane-strain analysis is presented in Figure 2. It consists of 679 nodal 
points and 202 eight-noded isoparametric quadrilateral elements. Elements with twenty nodal 
degrees of freedom are used below the water table, allowing a coupled analysis of fluid flow 
and deformation in order to simulate the consolidation phenomenon in the soft soil. These 
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elements provide quadratic interpolation of displacements and linear interpolation of pore 
pressures; these elements therefore allow the calculation of the displacements in eight nodes 
and the excess pore pressure in four corner nodes. 

The boundary conditions applied to the mesh are such that the right vertical side is 
restrained from moving in the horizontal direction, while the bottom boundaries are restrained 
from moving in both directions [12]. In terms of hydraulic conditions, only the top boundary, 
located at the same level of the water table, is permeable. Above the water table, no water 
flow was considered in the numerical analyses. 

3 ANALYSIS OF RESULTS 
The study of the behaviour of this embankment aims to clearly demonstrate the factors 

inherent in an analysis that involves large displacements. Thus, the results obtained by the two 
numerical analyses (infinitesimal and large displacements) are compared and also with the 
behaviour observed in situ. The study is carried out with respect to settlements, lateral 
displacements, excess pore pressures and effective stress state.   

3.1 Displacements 
The observed and computed time-settlement behaviour measured by plate T is shown in 

Figure 3. It can be seen that the consideration of geometrical non-linearity (large 
displacements) tends to reduce the settlements in relation to the infinitesimal analysis (small 
displacements), with this effect growing with time. This behaviour is consistent with soil 
mechanics theory, since with large displacements analysis the dependence of the settlements 
with respect to the real thickness of the compressible layers is considered. Thus, the decrease 
of the thickness of the soil layer is naturally linked to smaller settlements. 
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Figure 3: Observed and predicted settlements (plate T). 

The comparison of the computed settlements and the field data shows that the 
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consideration of geometric non-linearity improves the numerical prediction. The differences 
between the numerical analyses and the measured settlements for 100 and 250 days are 
probably due to the consideration of equivalent coefficients of permeability, which are not the 
most appropriate to simulate the “real” flow conditions in the soil foundation. 

Figure 4 shows the computed settlements under the foot of the embankment, for three 
times (240, 420 and 2000 days). In line with expected behaviour, it is in the surface area with 
greater settlements that the greatest discrepancies between the two numerical analyses are 
found, and these increase from 240 days to 420 days, i.e., with the increment of the 
settlements. Thus, it was found that the consideration of large displacements has more impact 
the greater the deformation of the soils involved is.  
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Figure 4: Computed settlements under the foot of the embankment. 

Figure 5 illustrates the observed and predicted horizontal displacements under the foot of 
the main embankment at 290 and 500 days. According to the finding for the settlements, the 
consideration of geometrical non-linearity induces small horizontal displacements relatively 
to the infinitesimal analysis, and this difference naturally increases with time. The figure also 
shows that the behaviour of the embankment is qualitatively simulated by both the numerical 
analyses, albeit with some discrepancies. Thus, at 290 days a better simulation of the 
behaviour may be observed with the non-linear analysis, while at 500 days, a better agreement 
is obtained with the infinitesimal analysis. 

3.2 Excess pore water pressures 
The time evolution of excess pore pressures in piezometer P is given in Figure 6. The 

consideration of geometrical non-linearity leads to slightly faster dissipation of the excess 
pore pressure, being this fact linked to the shortening the drainage path length which results 
from the decreasing of soil thickness. Otherwise, for a time longer than 500 days, the large 
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displacement analysis induces slightly higher u-uo than the infinitesimal analysis, a fact that is 
apparently inconsistent. However, these results are due to the fact that the large displacements 
analysis considers the real nodal coordinates, corrected with the deformations obtained. As 
the level of the water table does not change and the nodal points are displaced in the vertical, 
thus, the distance between the nodal points and the water table increases, therefore giving 
greater equilibrium pore pressure [15].  
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Figure 5: Observed and predicted horizontal displacement under the foot of the embankment. 
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The contours of the excess pore pressure, shown in Figure 7, illustrate this clearly. At 420 
days it can be seen that the non-linear analysis gives rise to an increase in the excess pore 
pressure close to the surface, reflecting the greatest settlement of the surface points and the 
corresponding increase in the equilibrium pore pressure. The reduction of the drainage path 
length associated with the large displacements analysis can also be seen in this figure, since 
this type of analysis generates smaller excess pore pressure near the bottom boundary.  

a) Small displacements - t = 240 days

c) Small displacements - t = 420 days

b) Large displacements - t = 240 days

d) Large displacements - t = 420 days

Figure 7: Contours of excess pore pressures at 240 and 420 days. 

a) Small displacements b) Large displacements

Figure 8: Contours of vertical effective stresses incremernts at 2000 days. 

a) Small displacements b) Large displacements

Figure 9: Contours of horizontal effective stresses increments at 2000 days. 

3.3 Stress state
The contours of the effective vertical and horizontal stress increments at 2000 days, found 

with both numerical analyses, are presented in Figures 8 and 9, respectively. In general, it can 
be seen that the consideration of geometrical non-linearity does not generate qualitative 
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changes in the effective stress state. Figure 10 compares the results of the two analyses in 
terms of vertical effective stress increments along the embankment section for two depths 
(Figure 10a) and horizontal effective stress increments under the foot of the additional berm 
(Figure 10b). The results show that including the large displacement phenomenon in the 
calculation tends to reduce both the vertical and the horizontal stresses in relation to the 
infinitesimal analysis, obtaining differences that could be almost 10%. These results are 
consistent with the fact that the non-linear analysis induces greater equilibrium pore pressure, 
which naturally corresponds to smaller effective stresses, since the total stresses are 
unchangeable. 
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The reduction of effective stresses indicated by the non-linear analysis, relative to the 
infinitesimal analysis, results in the shrinkage in the yield area (Figure 11) with special 
relevance in the layers nearer the surface and under the main embankment, which are initially 
overconsolidated. This smaller propagation of the yield zones is related to smaller vertical and 
horizontal displacements. 

4 CONCLUSIONS 
The analyses performed for this work revealed the following aspects: 

- the large displacement analysis leads to a reduction of settlements in relation to the 
infinitesimal analysis. This fact can be explained by the proportion of the settlements in 
relation to the thickness of the deformable soil, i.e., when the soil settles, the thickness of 
the soil layer decreases, which induces the reduction of the settlements in the subsequent 
phases of the calculation. 

- The geometrical non-linearity tends to reduce the horizontal displacements on the side of 
the embankment, which is also naturally associated with the reduction of settlements. 

- The evolution of pore pressure is not particularly affected by the kind of analysis, 
although the pore pressure dissipates slightly faster as time passes when geometrical non-
linearity is considered. This is because the progressive decrease of the soil layer thickness 
leads to a shorter drainage path length. However, the results do not show this clearly 
enough, since it can be masked by the increase in equilibrium pore pressure, due to the 
greater elevation difference between the nodal points and the water table, which is 
unchanged.  

- The increase of equilibrium pore pressure in the points nearer the surface, due to the 
adjustment of the coordinates (obtained from the inclusion of geometrical non-linearity), 
contributes to the decrease of effective stress increments, since the total stress is 
independent of these kinds of analysis. This reduction of effective stresses gives rise to 
the shrinkage of the yield area. This fact is naturally linked to lesser displacements 
generated. 

ACKNOWLEDGMENTS 
The authors would like to express their gratitude to the institutions that financially 

supported the research: CIEC and FCT (PTDC/ECM/101875/2008). 

REFERENCES 
[1] Carter J.P., Small J.C. and Booker J.R. A theory of finite elastic consolidation. 

International Journal Solids Structures (1977) 13:467-478.  
[2] Gibson R.E., Gobert A. and Schiffman R.L. On Cryer's problem with large 

displacements. International Journal for Numerical and Analytical Methods in 
Geomechanics (1989) 13:251-262.  

[3] Gibson R.E., Gobert A. and Schiffman R.L. On Cryer's problem with large displacements 
and variable permeability. Géotechnique (1990) 40:627-631.  



1221

Paulo J. Venda Oliveira and Luís J.L. Lemos 

10

[4] Asaoka A., Noda T. and Fernando G.S.K. Effects of changes in geometry on deformation 
behaviour under embankment loading. Numerical Models in Geomechanics – NUMOG 
V, Pand and Pietruszczak (eds), Balkema, Rotterdam (1995):545-550.  

[5] Asaoka A., Noda T. and Fernando G.S.K. Effects of changes in geometry on the linear 
elastic consolidation deformation. Soils and Foundations (1997) 37(1):29-39.  

[6] Carter J.P., Booker J.R. and Small J.C. The analysis of finite elasto-plastic consolidation. 
International for Numerical and Analytical Methods in Geomechanics (1979) 3:107-129. 

[7] Prevost J.H. Non-linear transient phenomena in saturated porous media. Computer 
Methods in Applied Mechanics and Engineering (1982) 20:3-18. 

[8] Meroi E.A. and Schrefler B.A. Large strain static and dynamic semisaturated soil 
behaviour. International for Numerical and Analytical Methods in Geomechanics (1995) 
19:81-106. 

[9] Nazem M., Sheng D., Carter J.P. and Sloan S.W. Arbitrary Lagrangian-Eulerian method 
for large-strain consolidation problems. International for Numerical and Analytical 
Methods in Geomechanics (2008) 32:1023-1050.  

[10] Zienkiewick O.C. The Finite Element Method. 3th edition, McGraw-Hill Book Company 
(UK) Limited, England, (1977). 

[11] Venda Oliveira P.J. Embankments on soft clays - Numeric analysis. Ph.D. Dissertation, 
University of Coimbra, Portugal (in Portuguese), (2000).  

[12] Coelho P.A.L.F. Geotechnical characterization of soft soils. Study of the experimental 
site of Quinta do Foja. MSc Dissertation, University of Coimbra, Portugal (in 
Portuguese), (2000). 

[13] Venda Oliveira P.J., Lemos L.J.L. and Coelho P.A.LP. Behavior of an atypical 
embankment on soft soil: field observations and numerical simulation. Journal of 
Geotechnical and Geoenvironmental Engineering (2010) 136(1):35-47. 

[14] Taylor, D.W. Fundamentals of Soil Mechanics. John Wiley and Sons, Inc., New York, 
(1948). 

[15] Venda Oliveira P.J. and Lemos L.J.L. Numerical analysis of an embankment on soft soils 
considering large displacements. Computers and Geotechnics (2011) 38:88-93. 



1222

 
 
 

EXPLICIT INTEGRATION SCHEME FOR GENERALIZED 
PLASTICITY CONSTITUTIVE MODELS WITH AUTOMATIC ERROR 

CONTROL 

MIGUEL M. STICKLE1*, PABLO DE LA FUENTE2 AND CARLOS OTEO3 

1*: Applied Mathematics and Computer Science Department 
ETSI Caminos, Canales y Puertos 
Universidad Politécnica de Madrid 

Avd. Profesor Aranguren s/n, 28040 Madrid, Spain 
e-mail: miguelstickle@caminos.upm.es 

 
2: Continuum Mechanics and Structures Department 

ETSI Caminos, Canales y Puertos 
Universidad Politécnica de Madrid 

Avd. Profesor Aranguren s/n, 28040 Madrid, Spain 
e-mail: pdelaf@caminos.upm.es 

 
3: Professor on Ground Eng. 

C / Torpedero Tucumán 26, 28016 Madrid, Spain 
 e-mail: carlosoteo@telefonica.net 

Key words: Generalized Plasticity, explicit integration. 

Abstract. An explicit algorithm for integrating Generalized Plasticity constitutive models is 
presented. This automatically divides the applied strain increment into subincrements using 
an estimate of the local error controlling the global integration error in the stress. The 
algorithm modifies the well known S. W. Sloan substepping scheme to account for 
Generalized Plasticity constitutive models, in which, unlike Classical Elastoplasticity, the 
yield surface is not explicitly defined. The integration scheme is described and results are 
presented for a rigid footing resting on a layer of specific Generalized Plasticity model for 
sands, in which a hyperelastic formulation is introduced to describe the reversible component 
of the soil response instead of the hypoelastic approach originally proposed. The explicit 
algorithm with automatic substepping and error control is shown to be reliable and efficient 
for these complex constitutive laws. 

1 INTRODUCTION 
Nowadays it is well recognized that the selection of an adequate constitutive model, 

together with the use of accurate, efficient and robust integration algorithms of the 
elastoplastic equations, is a key point in finite element analysis of geotechnical problems. 

As observed by Hughes [1], the integration of the constitutive equations at the local level 
plays a crucial part in computational plasticity, since it strongly affects the performance of the 
constitutive equation in actual computations. 

Implementation of an advanced elastoplastic constitutive model into a finite element 
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program requires the development of a robust and efficient numerical procedure in order to 
perform the integration of the constitutive equations along a given loading path. 

In the context of classical plasticity formulations, in which a yield function is defined in an 
explicit manner and the enforcement of the consistency condition is a key feature of the 
integration algorithm, a variety of implicit and explicit integration schemes might be used [2, 
3]. 

On the other hand, based on the assumption that explicit integration schemes for highly 
non-linear models may potentially lead to inaccuracy and unstable behavior [4], implicit 
integration algorithms have been considered mostly in the context of non-standard 
elastoplastic models. The aforementioned assumption cannot be further supported, in the 
context of classical plasticity formulations, if explicit schemes are endowed with error control 
techniques [5, 6]. The same situation is observed for Generalized Plasticity based models [7]. 

The outline of the paper is as follows. We first present the fundamentals of Generalized 
Plasticity, with particular attention paid to the SandPZ constitutive equations including the 
modifications in the elastic component introduced by Mira and coworkers in 2009 paper. A 
novel explicit algorithm for integrating Generalized Plasticity constitutive models is presented 
in the following section. Finally, Results and conclusions are presented for a rigid footing 
resting on a sand layer modeled by a SandPZ constitutive relation. 

2 GENERALIZED PLASTICITY FRAME WORK. MODIFIED SAND PZ MODEL. 
The Generalized Plasticity basic idea, introduced by Zienkiewicz and Mroz [8] later 

extended by Pastor and coworkers [9, 10] and also by Mira and coworkers [4], is that no yield 
neither plastic potential surface are explicitly defined, but the gradients to the functions 
themselves. The elastoplastic behavior of the material within the Generalized Plasticity theory 
is described by the general incremental relationship,  

( ):ep ep
ij ijkl kld D d d dσ ε′ ′= ⋅ =σ D ε  (1) 

In which the tangent elastoplastic stiffness four order tensor epD depends not only on the 
internal state variables but also on the current effective stress state ′σ , on the strain-stress 
history and the direction of the effective stress increments d ′σ . 

The dependence of epD  on the direction of d ′σ  is expressed by simply distinguishing 
between two different loading classes, namely Loading (L) and Unloading (U). Therefore a 
normalized direction n is defined in the effective stress space for any given ′σ , determining 
loading/unloading/neutral loading condition. 

There are two possibilities for the tangent elastoplastic stiffness tensor in (1) depending on 
whether loading, ep

LD  or unloading ep
UD  is occurring. To guarantee continuity between loading 

and unloading, ep
LD  and ep

UD  are defined as 

( ) ( ) [ ]

( ) ( ) [ ]

1 1

1 1

1

1

ep e
L L

L

ep e
U U

U

H

H

− −

− −

= + ⋅ ⊗

= + ⋅ ⊗

D D m n

D D m n
 (2) 
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In expression (2), Lm  and Um  are directions of unit norm representing the plastic flow 
direction in loading (L) and unloading (U) conditions respectively, LH  and UH  are two scalar 
functions defined as plastic moduli while eD is the tangent elastic stiffness tensor. By suitable 
manipulation of (2), ep

LD  and ep
UD can be obtained giving: 

: :
: :

: :
: :

e e
ep e L
L e

L L

e e
ep e U
U e

U U

H

H

⊗= −
+

⊗= −
+

D m n DD D
n D m

D m n DD D
n D m

 (3) 

The strain increment dε  can be decomposed into elastic and plastic parts as 
e pd d d= +ε ε ε where 

( ) 1
:

1 :  for loading

1 :  for unloading

e e

p
L

L

p
U

U

d d

d d
H

d d
H

− ′=

  ′= ⋅ ⊗ 
 
  ′= ⋅ ⊗ 
 

ε D σ

ε m n σ

ε m n σ

 (4) 

Therefore, in a Generalized Plasticity approach, the non-linear irreversible behavior of 
soils can be fully described by simply specifying three directions, ,  Ln m and Um , two 
scalars, LH  and UH  and a fourth order tensor eD . 

Since the hardening moduli LH  and UH  as well as the plastic flow directions Lm and Um
are fully determined without reference to any yield surface nor plastic potential, different 
expressions can be selected for them whether the stress increment implies loading or 
unloading. Moreover consistency cannot be enforced and the consistency parameter dλ  is 
simply defined as: 

: :
: :

e

e
L U L U

dd
H

λ =
+
n D ε

n D m
 (5) 

Although not explicitly defined, plastic potential and yield surface can be established a 
posteriori, by integrating L Um and n , respectively. 

SandPZ model was developed by Pastor and coworkers [9] as a particular type of 
Generalized Plasticity formulation with the aim of predicting granular soil behavior under 
both monotonic and cyclic loading. 

The model assumes an isotropic material response. As a result, the plastic flow direction 
m , as well as the loading direction n , is expressed in the invariant space defined by , ,p q θ′
as  
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m m mv s
ij ij ij

p q
θ

θ
σ σ σ

′∂ ∂ ∂= + +
′ ′ ′∂ ∂ ∂

m  (6) 

The value of the coefficients m ,m ,mv s θ
 are loading class (loading or unloading) dependent. 

In order to take into account the main features of sand response, i.e. the existence of a critical 
state condition, dilative response after peak, liquefaction in loose sands, memory of previous 
stress path, Pastor and coworkers [9] proposed for the plastic modulus LH  the following 
relationship: 

( )0L f v s DMH H p H H H H′= ⋅ ⋅ ⋅ + ⋅  (7) 

Together with 

( )
4

0 1 0
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In these expressions 0 0 1, , ,H β β γ  are constitutive parameters, ξ  is the accumulated 
deviatoric plastic strain and maxζ  stands as the maximum value of the mobilized stress function 
ζ  accounting for the soil stress history. 

In the case of unloading the plastic modulus UH is given by: 

0

0

 for 1

              for  1

u

g g
U u

u u

g
U u

u

M M
H H

M
H H

γ

η η

η

 
= > 

 

= <

 (8) 

For where 0uH  is a constitutive parameter and uη , referred as unloading stress ratio, is the 
stress ratio q p′  from which unloading takes place. 

Finally, the PZ model assumes a non-linear elastic response of the soils. As in a large 
number of constitutive models, the non-linear reversible behavior is described through a 
hypoelastic approach, in which the tangent bulk modulus K  and shear modulus G  only 
depend on the hydrostatic part of the effective stress tensor, according to the following 
relationships 

0 0
0 0

 ,  p pK K G G
p p

′ ′
= ⋅ = ⋅

′ ′
 (9) 

Although widely used, one of the major shortcomings of such hypoelastic formulation is 
that it results in a non-conservative elastic response and energy dissipation over closed stress 
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paths [11]. 
An alternative is to describe the elastic response of soils within a conservative framework 

adopting the hyperelastic approach based on the existence of an energy potential from which 
the reversible response can be derived. This naturally leads to a conservative elastic response, 
guaranteed to obey the First Law of Thermodynamics, and thus avoiding the problems on 
cycling described above [12, 13] 

Among the different formulations recently proposed in the geotechnical literature, in this 
work the hyperelastic approach described by Houslby and coworkers in 2005 (from now on 
referred as HAR according to authors’ initials) has been adopted to describe the reversible 
component of the soil response. This Generalized Plasticity PZ model for granular soils has 
been proposed firstly by Mira and coworkers [4] under its triaxial formulation, extending the 
model in the present work to deal with a general stress formulation. 

The stored energy function ϒ  of the HAR model in general stress formulation has two 
different expressions depending on the value assigned to the dimensionless pressure exponent 

HARn , which governs the amount of nonlinearity involved in the formulation. For 
1HARn ≠ , ϒ takes the following form: 

( ) ( ) ( ) ( ) ( )2 1

01
2

HAR HARn ne a
ij HAR HAR

HAR HAR

p k n
k n

ε υ
− −

ϒ = ⋅ ⋅ − ⋅  ⋅ −
 (10) 

Where ( ) ( ) ( )
2
0

21 1
1 1 1

e e
ij ijHARe e

ii jj
HAR HAR HAR HAR HAR HAR

g e e
k n k n k n

υ ε ε
   
   
      

= + ⋅ + +
⋅ − ⋅ − −

, while the asymptotic 

expression for 1HARn =  is ( ) ( )a HAR

e e e
ii ij ijHAR HAR HARk g k e ee

ij p k e εε
 
 
 

⋅ + ⋅ ⋅ϒ = ⋅ . ,HAR HARk g  are dimensionless 

constants representing the shear and bulk stiffness factors, respectively, while ap  is the 
atmospheric pressure, adopted as reference stress. 

The effective stress tensor ′σ  and the tangent elastic tensor eD  can be unambiguously 
determined by taking the first and second order derivatives of (10), obtaining the following 
expression 

( )0
2
0

11 2
3

HARn

ij kle
ijkl a HAR HAR HAR HAR ij kl HAR ik jl kl ij

a

pD p n k k n g
p p

σ σ
δ δ δ δ δ δ

′ ′    = ⋅ ⋅ ⋅ + − + −    
    

 (11) 

Where ( ) ( )2

0

1
9 2

HAR HAR mn mnmm nn

HAR

k n s s
p

g
σ σ ⋅ − ⋅′ ′

= +

For the present model there are 12 material parameters requiring definition. Generally, all 
parameters are identified from monotonic and cyclic triaxial tests, though in certain cases 
some parameters are adopted from previous experiences if full test records are unavailable. 

3 EXPLICIT INTEGRATION OF GENERALIZED PLASTICITY MODELS. 
During a typical step or iteration of an elastoplastic finite element analysis, the forces are 

applied in increments and the corresponding displacement increments are found from the 
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global stiffness equations. Once the nodal displacement increments du  are known, the strain 
increments at a discrete number of integration points within each element are determined 
using the strain-displacement relation d d=ε B u . If the stresses associated with an imposed 
strain increment cause plastic yielding, it is necessary to solve the system of firs order 
ordinary differential equations (12)-(13): 

: :ep ep

t
∆ ′ = = ∆ 
ε

σ D D εɺ ɺ  (12) 

p
L Udλ= ⋅ε mɺ  (13) 

Where  

: :
: :

e e
L Uep e

e
L U L UH

⊗
= −

+
D m n D

D D
n D m

 (14) 

: :
: :

e

e
L U L U

dd
H

λ =
+
n D ε

n D m
 (15) 

In these expressions, ′σ  denotes the effective stress tensor, ε  the small strain tensor and 
pε  the plastic strain tensor. The superior dot represents a derivative with respect to time while 
t∆  is the time interval over which the external forces have been applied. Since the effective 

stress and the plastic strains are kwon at the beginning of the time interval, and the known 
strain rates may be assumed to be constant through the time interval with value t∆ ∆ε , the 
equations (12) and (13) define an initial value problem. 

In order to integrate these equations numerically, it is convenient [14] to introduce a 
pseudotime, T , defined by ( )0T t t t= − ∆ , where 0t  is the time at the start of the load 
increment, while 0t t+ ∆  is the time at the end of the load increment, with 0 1T≤ ≤ . Since 

1dT dt t= ∆  application of the chain rule to ′ɺσ  and pɺε  in (12) and (13) gives 

: :
: : :

: :

e e
L Uep e e e

L Ue
L U L U

d
dT H

λ
 ⊗′ ′= ∆ = − ∆ = ∆ − ∆  + 

D m n Dσ D ε D ε σ D m
n D m

 (16) 

p

L U

d
dT

λ= ∆ ⋅ε m  (17) 

Where 

: :
: :

e

e
L U L UH

λ ∆∆ =
+

n D ε
n D m

 (18) 

Equations (16) and (17) define a classical initial value problem which needs to be 
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integrated over the pseudo time interval from 0T =  to 1T = , where the known values known 
values in these relations are the imposed strain increments, ∆ε , together with the effective 
stresses and plastic strain at the start of the pseudo time increment. The quantities /  and L Um n
are effective stress functions, while parameter /L UH  is a function of both the effective stress 
and the plastic strain. 

In order to solve the system of first order ordinary differential equations (16)-(17) Sloan 
developed a substepping algorithm [5] where the constitutive law is integrated by 
automatically dividing the strain increment into a number of substeps. An appropriate size for 
each substep is found through the use of modified Euler or Runge-Kutta-Dormand-Prince 
formulae, which are specially constructed to provide an estimate of the local error. Later, 
Sloan and coworkers [6] generalized the 1987 scheme, incorporating new algorithms for 
handling elastoplastic unloading, computing the yield intersection point, and restoring the 
stress to the yield surface. 

Sloan and coworkers schemes were developed exclusively for classical plasticity based 
models, including classical and generalized critical state models, where non-linear elastic 
behavior inside the yield surface is exhibited. In all these models the admissible states in the 
stress space are constrained to lie within the interior or the boundary of the domain explicitly 
defined by the yield surface. As this is not the case for generalized plasticity based models, 
Sloan substepping algorithm should be adjusted in order to be able to integrate this kind of 
models. 

The proposed integration scheme starts with the known strain increment, ∆ε , the initial 
stress 0σ  and initial plastic strain 0

pε  at the start of the increment where 0T =  and 0t t= . At 
the end of the integration process the stresses and plastic strains are obtained at the end of the 
increment where 0T =  and 0t t= . 

Consider a pseudo time subincrement in the range 0 1nT≤ ∆ ≤  and let the subscripts 1n −
and n , denote quantities evaluated at the pseudo times 1nT −  and 1n n nT T T−= + ∆ , respectively. 

Plastic modulus and plastic flow direction in expressions (16)-(17) are dependent on the 
direction of the effective stress increments therefore differentiation between the two loading 
classes should be performed before the proper integration process starts. By means of the 
strain subincrement n nT∆ = ∆ ∆ε ε  the loading class is firstly established through the following 
expression 

( ) ( ): :e
n n n′ ′ ∆n σ D σ ε  (19) 

If expression (19) is positive an elastoplastic loading process is performed, if negative an 
elastoplasctic unloading process is implied, while an elastic process comes from a zero value. 

In the explicit Euler method, the solution for ,  p′σ ε  at the end of the pseudo time step nT∆
is found from 

1 1

1 1

n n

p p p
n n

−

−

′ ′ ′= + ∆
= + ∆

σ σ σ
ε ε ε

 (20) 

Where 
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( )
( ) ( )

1 1 1

1 1 1 1

, :

, ,

ep p
n n n

p p
n n n L U nλ

− −

− − −

′ ′∆ = ∆

′∆ = ∆ ∆ ⋅

σ D σ ε ε

ε σ ε ε m σ
 (21) 

A more accurate estimate of the stress and plastic strains at the end of the interval nT∆  can 
be found using the modified Euler procedure, which is given by 

( )

( )

1 1 2

1 1 2

1
2
1
2

n n

p p p p
n n

σ σ

ε ε

−

−

′ ′ ′ ′= + ∆ + ∆

= + ∆ + ∆

σ σ

ε ε

⌢

⌢
 (22) 

Where 1 1 and p′∆ ∆σ ε  are obtained from Euler scheme and  

( )
( ) ( )

2 1 1 1 1

2 1 1 1 1 1 1

, :

, ,

ep p p
n n n

p p p
n n n L U nλ

− −

− − −

′ ′ ′∆ = + ∆ + ∆ ∆

′ ′ ′ ′∆ = ∆ + ∆ + ∆ ∆ ⋅ + ∆

σ D σ σ ε ε ε

ε σ σ ε ε ε m σ σ
 (23) 

Since the local truncation error [15] in the Euler and modified Euler solutions is 
( ) ( )2 3 and O T O T∆ ∆ , respectively, the error in nσ  and p

nε  can be estimated from 

( )

( )

2 1

2 1

1
2
1
2

n n

p p
p pn n

 ′ ′∆ − ∆ ′ ′   
− =     

     ∆ − ∆ 
 

σ σσ σ
ε ε

ε ε

⌢
⌢  (24) 

Using any convenient norm, this quantity can be used to compute the relative error 
measure 

2 12 11 max ,
2

p p

n p
n n

R
 ′ ′ ∆ − ∆∆ − ∆ =  
  

ε εσ σ
σ ε

 (25) 

Following 1987 Sloan work, the current strain subincrement is accepted if nR  is not greater 
than some prescribed tolerance, STOL , and rejected otherwise. Regardless of whether the 
subincrement is accepted or rejected, the next pseudo time step is found from the simple 
relation 

1n nT q T+∆ = ⋅∆  (26) 

where q  is chosen so that 1nR + satisfies the constraint 

0.8 ,   0.1 1.1nq STOL R q≤ ≤ ≤  (27) 
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Two typical controls are finally incorporated. A minimum absolute step size, minT∆ , and a 
step size is not allowed to grow immediately after a failed subincrement. 

4 RESULTS AND CONCLUSIONS. 
The behavior of a smooth rigid strip footing resting on an elastoplastic soil mass, governed 

by the modified SandPZ model presented above, is consider in order to analyze the 
performance of the proposed integration scheme. Due to the singularity at the edge of the 
footing and the strong rotation of the principal stresses, this example is a good test for 
assessing the integration strategy. As loading is prescribed in the form of displacements, an 
equivalent uniform pressure is found by summing the appropriate nodal reactions. 

To assess the accuracy of the scheme, an estimate of the stress integration error is found 
directly from 

2

2

ref

error

ref

σ
′ ′−

=
′

σ σ

σ
 (28) 

Where ′σ  are the effective stresses obtained by the proposed integration scheme, ref
′σ  are 

the reference effective stresses while 
2

i  is the Euclidean norm. The reference effective 
stresses are obtained by the explicit Dormand-Prince integration scheme with a stress 
tolerance of 910STOL −= . Note that the reference stresses provide a very accurate set of 
stresses for the given mesh and loading sequence and all values are computed at the end of the 
last load increment. 

The results for the analyses with 10 load increments of equal size are presented in Table 1. 
It can be observed how the uniform pressure over the footing after applying 4mm of vertical 
displacement is similar for all of the specified stress tolerances with values varying by less 
than 0.6% of the reference pressure.  

Table 1: Smooth rigid strip footing on SandPZ layer. 10 load steps.

Stress Tolerance  

Equivalent uniform 
pressure after a vertical 
displacement of 4mm 

[N/m2] 

% of the equivalent 
pressure obtained under 

Dormand-Prince 
integration scheme  

errorσ

210STOL −= 115320 0.14% 31.7 10−⋅

410STOL −= 115450 0.02% 41.7 10−⋅

The error in the computed stresses for the proposed scheme, as defined by equation (28), is 
less than the integration tolerance for 210STOL −=  and within the order of magnitude for 

410STOL −= . Therefore the tolerance STOL  thus gives a required error control. 
Figure 1 shows the error spatial distribution induced by the proposed local integration 
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scheme with 210STOL −=  stress tolerance. 

Figure 1: Error spatial distribution for STOL=10-2 after a vertical displacement of 4mm  

As expected, the errors derived by the local integration process under the proposed method 
are almost uniform in the computational domain. An exception can be observed under the 
edge of the footing where a maximum value of the error is attained. This error distribution is 
consistent with the boundary value problem considered as the edge of the footing represents a 
singularity. 
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Abstract. This  numerical  study deals  with the analysis  of rock specimens from a micro-
mechanical point of view. The analysis is based on the Finite Element Method (FEM) with 
fracture-based zero-thickness interface elements, and numerically generated micromechanical 
geometries. In previous studies this approach has been used very successfully to represent the 
mechanical behaviour of concrete and other quasi-brittle materials under a variety of loading 
scenarios. The current study, motivated by longer-term research on rock sanding in oil wells, 
is focused on the capability of the model to represent the type of failure observed near the 
walls of tunnels or holes bored in a medium subject to initial compressive stresses. In this 
context, the microstructure of sandstone rock is generated via Voronoi tessellation. Interface 
elements are inserted along all polygon contacts, and, for some calculations also within the 
polygons  themselves.  The  two  main  loading  scenarios  explored  are  direct  uniaxial 
compression,  and  uniaxial  extension  after  hydrostatic  loading.  Besides  a  general  good 
capability to represent the desired behaviour, the results show that direct uniaxial compression 
requires intra-granular cracks in the model in order to reach failure. However, if the same 
final loading state is reached via initial hydrostatic loading followed by uniaxial extension, (as 
typical  in tunnel or borehole walls), then failure kinematics  changes and failure may take 
place with the inter-granular interfaces exclusively (i.e. no need to consider intra-granular 
cracks to represent failure).

1 INTRODUCTION

In this paper, a micromechanical approach based on FEM with zero-thickness interface 
elements is described for the analysis of cemented granular materials such as sandstone rock, 

including the effects of inter-granular and intra-granular cracking and fracture. Instead of the 
phenomenological  parameters  used  in  the  traditional  continuum-based  formulation  of  the 
FEM, the proposed methodology is capable of reproducing complex behaviour using only a 
few  physical  parameters,  although  this  is  at  the  expense  of  discretizing  the  grain 
microstructure explicitly. In previous studies this approach has been used very successfully to 

represent  the  mechanical  behaviour  of  concrete  and  other  quasi-brittle  materials  under  a 
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variety of loading scenarios ([1], [2] and [3]).

2 MICROSTRUCTURAL MODELLING

2.1 Microstructure

In  the  current  study,  individual  grains  of  the  sandstone  rock  material  are  represented 
explicitly in the FE mesh. The geometry of the grains is generated numerically via Voronoi 
tessellation over a grid of points, which are randomly perturbed from their original regularly-
spaced  positions.  Zero-thickness  fracture-based  interface  elements  [4] inserted  between 
adjacent grains represent the behaviour of the inter-granular contact including the cementing 
material. With regard to the grains themselves, two different options have been explored: (1) 
the grains are considered as linear elastic and therefore they cannot crack, only inter-granular 
cracks are allowed in this first option; and (2) additional interface elements are inserted within 
each grain,  along all  radial  lines connecting each grain corner to its  center,  so that intra-
granular cracking becomes also possible (Fig.1).

Figure 1: Microstructure representation. o) Micro-photograph from a sandstone sample; a) interface layout 

considering linear elastic grains (dark lines); and b) interface layout considering also the possibility of intra-
granular cracks (pale lines).

2.2 Interface constitutive law

An  essential  ingredient  of  the  approach  described  is  the  constitutive  equation  of  the 
interface elements, which must be formulated in terms of normal and shear stress tractions 
(σ,τ)  and  the  corresponding  relative  displacements  (u,v).  It  consists  of  an  elasto-plastic 
formulation incorporating some concepts of fracture mechanics. The model is defined by a 
hyperbolic  fracture  surface  (yield  surface)  described  by  three  parameters:  c (cohesion), 

2

a) b)

o)
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χ (tensile strength) and φ (friction angle) (Eq. 1).

F (σ,p (Wcr ))=τ2−( c−σ tan ϕ )2−(c− χ tanϕ )2 (1)

The evolution of the model parameters is controlled by an energy-based history variable 
Wcr (energy spent in fracture processes per unit area of the interface), the increments of which 
are calculated for each increment of the loading process using different expressions in tension 
and compression (case in which basic friction is substracted) (eq. 2):

dW
cr
=σδuN

cr
+τδuT

cr (σ≥0 )
(2)

dW
cr
=τδuT

cr+(1−∣σ tan ϕ/τ∣) (σ<0 )

The hardening/softening laws then define the evolution of the surface parameters in terms 
of the history variable  Wcr, incorporating as parameters Gf

I (fracture energy in mode I) and 
Gf

IIa (fracture energy in mode IIa) [4].
The numerical integration of the constitutive law is implemented using an algorithm based 

on an implicit procedure (backward-Euler) with sub-incrementation [5]. One of the features of 
this procedure is that it provides an always consistent tangent matrix, even in the case of sub-
increments.

3 RESULTS FOR THE HOLLOW CYLINDER TEST UNDER EXTERNAL 
PRESSURE

The study of this test is motivated by long-term research on sand production in oil wells  
[6]. In that context, the hollow cylinder test under increasing external pressure is widely used 
to understand wellbore stability problems. [7] and [8].

For simplicity, the numerical model was reduced to the analysis of a 2D transversal cross-
section of the cylinder, under the assumptions of small deformation and plane strain (Figure 
2).  The  darker  inner  corona  of  the  domain  was  discretized  using  Voronoi  polygons  and 
interfaces, and the external pressure was applied on the outer boundary, while the prescribed 
nodes  are  reduced  to  a  minimum  of  four  (see  Fig  2)  in  order  to  not  to  restrain  the 
corresponding  deformation.  Given  the  material  non-linearity  provided  by  the  interface 
elements, the external pressure was applied in small increments.

Figure 2: Schematic hollow cylinder test section with boundary conditions.

3
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Some preliminary analyses of this case led to unexpected results. Using a friction angle of 
30 degrees for the interfaces, under the level of expected failure pressure, the calculation was 
practically in elastic regime with hardly a few interfaces opening near the inner boundary. In 
order to get a failure pattern similar to experiments with the same mesh, the friction angle of 
the interfaces had to be lowered to unphysical values near 5 degrees.

A couple of images of the opened cracks and deformed mesh of the numerical solution in 
this  case are shown in figure3. As it can be seen in the figure,  in spite of the unrealistic 
friction value, the main failure patterns reported in the experimentation literature [7] are well 
captured:  spalling (tensile break-offs) and shear-bands (breaks in shear compression mode 
that produce some typical spirals). 

a)   b)

Figure 3: numerical results for tan(5); left, energy spent of fracture at the end of the load application; right, final 
deformation mesh (x25).

However,  unrealistic  friction  angles  were  considered  unacceptable  and  attention  was 
turned onto a different option: introducing interface elements across grains, in order to allow 
for the development of intra-granular cracks. However, introducing intra-granular interface 

elements in the previous FE mesh, in the way shown in figure 1b, increases considerably the 
number of degrees of freedom. For this reason the study of this new approach to the problem 

was first studied on smaller specimens. 

4 UNIAXIAL COMPRESSION AND EXTENSION TESTS OF 1X1CM SPECIMENS

The specimens considered for introducing inter-granular interfaces are square specimens 
with dimensions  1x1cm2  and grain size of about  0,25 mm,  which leads  to approximately 

40x40 grains over the specimen as represented in figure 4a. In order to open the possibility of 
intra-granular cracking, zero-thickness interface elements have been inserted, not only along 
the inter-granular boundaries, but also across grains, as depicted in figure 1b. This specimen 
has been analysed under uniaxial compression, and under hydrostatic pressured followed by 
uniaxial extension scenarios. 

In order to evaluate the influence of intra-granular cracking, three different assumptions 

4

shear-band

spalling
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have been considered regarding the strength parameters of intra-granular interfaces: 
a. They are assumed as linear-elastic (and very high stiffness KN and KT ); in this case 

these interfaces, even if present, cannot crack.
b. They are allowed to crack, but strength parameters have double values than those of 

inter-granular interfaces. 
c. They are allowed to crack, with same strength parameters as inter-granular interfaces. 

Table 1 contains the list of parameters used in the calculations.

Table 1: Material properties used in simulations.

Grain (cont.) Inter-grain interface Intra-grain interface
Fracture-grain                Fracture-grain (double)

E = 34.0e3 MPa

ν = 0.27

Kn = 1.0Ee9 MPa/m
Kt = 1.0Ee9 MPa/m

Tan(φ) = 0.5773 

χ = 1.0 MPa

C =  4.0 MPa
GfI = 1.0E-5 MPa*m

GfI = 1.0E-4 MPa*m

σdil = 10.0 MPa

Kn = 1.0Ee9 MPa/m
Kt = 1.0Ee9 MPa/m

Tan(φ) = 0.5773 

χ = 1.0 MPa

C =  4.0 MPa
GfI = 1.0E-5 MPa*m

GfI = 1.0E-4 MPa*m

σdil = 10.0 MPa

Kn = 1.0Ee9 MPa/m
Kt = 1.0Ee9 MPa/m

Tan(φ) = 0.8389 

χ = 2.0 MPa

C =  8.0 MPa
GfI = 2.0E-5 MPa*m

GfI = 2.0E-4 MPa*m

σdil = 20.0 MPa

4.1 Uniaxial compression test

Figure 4 depicts the geometry of the mesh and the boundary conditions used in this case.  
Load application is performed by means of a prescribed displacement on the upper side of the 
specimen. Due to the expected softening behaviour, an arc-length strategy was employed to 
control post-peak response.

1 cm

1
 
c
m

 a)    b)

Figure 4: Uniaxial compression test. a) geometry; b) boundary conditions.

Figure  5 shows the average strain-stress curves obtained for the three scenarios of intra-

5

∆•  > 0
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granular strength. It can be observed that intra-granular strength values influence dramatically 
the resulting behaviour of the overall material. Not allowing intra-granular cracking leads to 
an upper bound of the mechanical behaviour for which failure under uniaxial compression is 
never reached. On the other end, case c) approaches the behaviour of a quasi-brittle material 
without the granular structure considered (since cracks can develop equally through grains as 
in between grains), which leads to a lower bound of the overall strength; and finally option b) 
with the right parameters should represent a more realistic intermediate case.

As it can be also seen in Fig 5, the material post-peak response is also greatly influenced 
by grain resistance; as intra-grain resistance is increased, the model behaviour becomes more 
brittle. 

Figure 5: Average strain-stress curves for the uniaxial compression simulations, with the three different 
assumptions for intra-granular cracking.

In figure 6, the general crack pattern obtained and some enlarged detail of a section of a 
main macro-crack, are depicted for the three assumptions of intra-granular strength. For case 
b) with double strength, it may be clearly observed that cracks are basically opening/sliding 
around grains except at certain very specific points where grains crack due to the high stress 
concentration,  while for case c) this happens systematically,  and for case a) this  does not 
happen  at  all.  These  details  of  micromechanical  cracking  may  help  understanding  the 
resulting overall stress-strain curves of figure6. A first conclusion of these results is that the 
direct uniaxial compression test is very sensitive to grain strength, and that some form of 

intra-granular  cracking  must  be  allowed  for  a  realistic  description  of  the  direct  uniaxial 
compression test of a granular material using Voronoi-generated grain geometry. 

      

6
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a) b) c)

Figure 6: Mesh deformations for UCT at different values of grain resistance: a) elastic grains; b) fracture grains 

(double resistance) and c) fracture grains (single resistance).

4.2 Uniaxial extension test

The micro-structural grain geometry and meshes for this analysis are the same used for the 
uniaxial compression test in the precedent Sect  4.1. The first set of calculations is obtained 

without  allowing  intra-granular  cracks,  i.e.  the  grains  are  considered  linear  elastic.  The 
loading and boundary conditions are represented in figure  7, and are applied in two steps: 

first, a hydrostatic stress is applied as a distributed load over top and right sides of specimen, 
while  left  and  lower  sides  sit  on  rigid  frictionless  platens.  And  second,  a  progressively 

increasing horizontal displacement (extension) is prescribed to the right platen, while load is 
maintained  constant  in  the  vertical  direction.  In  this  way,  the  horizontal  stress  will  be 
progressively decreased, therefore in the limit approaching a uniaxial compression. Note that 
this is the same final state as applied in the previous section, although in this case this is 
achieved following a totally different stress path, and that will make a significant difference.

7

Deformation (x50) Deformation (x2)Deformation (x50)
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a)    b)
Figure 7: Extension test. a) geometry; b) boundary conditions.

This  analysis  (with  elastic  grains)  has  been repeated  for  different  values  of  the  initial 
hydrostatic load, and the results obtained are shown in figures 8 and 9. In figure 8, the average 
stress-strain curves for the specimen are represented, with the (computed) horizontal average 
stress on the vertical axis, and the corresponding average strains on the left horizontal axis. 
On the right horizontal axis, the transversal (in this case vertical) average strain is represented. 
Note that in this direction load is maintained constant. In the curves it is shown that as the 
initial  confinement  is  higher,  the  material  behaviour  becomes  more  ductile,  with  a 
progressively more reduced tensile response, which, eventually (for a sufficiently high initial 
confinement) disappears altogether. 

Figure 8: Strain-stress relationship for the extension test. The graph shows, for the intra-grain elastic case, 

results at different confinement levels.

In figure 9, the horizontal displacement field obtained at the end of the same calculations is 
shown via deformed meshes with a superimposed gray scale. The diagrams clearly show that 
the lower the initial confinement stress, the more brittle failure becomes. Likewise, the lower 

8
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the initial confinement, the more pronounced the cracking is, and the more clearly localized 
into  macro-cracks  the  displacement  jumps  become,  in  contrast  to  the  almost  uniformly 
distributed cracking observed for the case of highest confinement  σ = 40 MPa (lower right 
diagram).

a) b)

c) d)

Figure 9: Deformation meshes (x5) for extension test for different initial confining pressures with elastic grains. 

a) σ0 = 5 MPa; b) σ0 = 10 MPa; c) σ0 = 20 MPa and d) σ0 = 40 MPa. 

The effect of intra-granular cracking is also studied for this uniaxial  extension test,  by 
carrying  out  two additional  calculations  in  which  intra-granular  interfaces  are  allowed  to 
crack, one of them with same strength parameters as the inter-granular cracks, and the other 

with  roughly  double  strength  (same  sets  of  parameters  already  used  for  the  uniaxial 
compression  test,  see  Table  1).  Both  calculations  were  performed  for  the  same  initial 
confinement pressure of 10 MPa, and the results can be compared to the results for this level 
of initial confinement and elastic grains already shown in previous figures 8 and 9.

In figure 10, the average stress-strain curves along the horizontal direction are represented 

for the two new cases with intra-granular cracking, together with the previous curve of elastic 
grains. In figure  11 the fields of horizontal deformation obtained in these calculations are 
depicted. It can be seen that the curves for elastic grains and for fracturing grains with higher 

9
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strength (that, from the material perspective, is a definitely more realistic assumption than that 
of equal strength) look very much alike. This, on the other hand, seems consistent with a 
kinematics of extension, cracks being opened predominantly in tensile mode I rather than the 
shear mode observed in the direct compression test (Sec. 4.1).

Figure 10: Average strain-stress curves for the extension test, assuming: a) elastic grains; b) fracturing grains 

(double strength) and c) fracturing grains (same parameters as inter-granular cracks).

 a) b) c)

Figure 11: Horizontal deformation field for the uniaxial extension test for 10 MPa of initial confining pressure, 
assuming: a) elastic grains; b) fracturing grains (double strength) and c) fracturing grains (same parameters as 

inter-granular cracks).

5 CONCLUSIONS REMARKS

Micromechanical analysis via FEM with zero-thickness interface elements and Voronoi-

10
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generated geometries seems capable of reproducing fracture propagation in cemented granular 
rock materials. In particular, the results presented show that, for direct uniaxial compression, 
intra-granular failure must be considered in the analysis in order to capture the overall failure 
kinematics and realistic peak loads. However, if the same uniaxial compressive stress failure 
state is reached via a more complex loading paths such as uniaxial extension in the transverse 
direction after an initial hydrostatic state, the kinematics of failure changes significantly from 
sliding to opening, and similar meshes  without intra-granular interfaces seem sufficient  to 
realistically represent failure.
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Abstract. A 140m high arch dam in the Pyrenees, built in the 50s, is founded on
fractured limestone rock. Since the beginning of the design process, two main families of
discontinuities were identified. The dam was built very close to the end of the narrow
part of the valley, which raised stability concerns early on. In the late 80s - early 90s,
a numerical study of the dam was developed at the Dept of Geotechnical Engineering
and Geo-Sciences UPC (School of Civil Engineering) UPC, using a progressively more
realistic series of models and approaches, culminating with a 3D discretization of the dam
plus rock mass, in which discontinuities were explicitly represented using zero-thickness
interface elements with frictional constitutive laws in terms of stress tractions and the
corresponding normal and shear relative displacements. In the present study, that dam
and its foundation are revisited and reanalyzed with current, more advanced numerical
tools and a third family of rock joints which has been identified more recently. The same
mesh is used as a departure point, although a much more detailed description is now
possible. The analysis is also approached in a different way, now using the traditional c−φ
reduction method developed and implemented specifically for non-linear zero-thickness
interfaces.

1 INTRODUCTION

Canelles dam is a 151m high arch dam loacted in the Pyrennes (Catalunya, Spain),
which was completed in April 1958. Since this date, different kinds of analyses have been
carried out. Monitoring systems, model tests and numerical analyses have been combined
to provide engineering evaluations of the dam safety [3, 4]. The most important one,

1
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concerning the stability of the dam and both abutments, was performed during the 90s
decade. The results and analysis procedures are reported in several references. [1,2,9,13]

The non-linear calculation was carried out for real values of the gravity and water pres-
sure loads, and safety was evaluated a posteriori by post-processing the stresses obtained
along all interface families. A number of potential failure mechanisms were selected, and
for each of them resisting forces and acting forces were evaluated, and safety coefficients
were obtained by assuming a proportional increase of stress tractions with increasing wa-
ter pressure or a decreasing resistance given by lower friction angle. That first study led
to the conclusion that the dam was basically safe and the worst scenario corresponded to
a safety coefficient between 2 and 3.

The dam is founded on cretaceous massive limestone that is fractured by two sets of
discontinuities (Fig. 1). A main set of vertical joints is oriented parallel to the valley. The
other family is a set of N-S planes which dip an average of 55◦ towards the West (nearly
downstream). A Laser-Scanner field campaign in 2009 led to the identification of a third
set of discontinuities. In addition, bedding planes dip 45◦ upstream. Due to the spatial
arrengement of the three rock discontinuity families, several rock blocks have fallen down
to the canyon, which keeps the facilities and people in danger. That has motivated to
consider a new retaining wall in the left abutment. As a consequence, an analysis, this
time focused only on the left abutment, has been recently started to evaluate the safety
improvement that could be achieved with the construction of the wall.

Figure 1: General view of the left abutment and anchorage tunnels

According to the 3D geometry of the canyon and the arch dam, the Finite Element
Method is required to reach the analysis purpose. Considering the new set of joints and

2
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other constructive details such as the new wall and four existing anchorage tunnels, the
former model has been rebuilt. Moreover, block equilibrium analysis has been performed
as a first simplified evaluation of the safety factor, which involves the retaining wall.

Safety analysis in engineering practice often requires simplifications such as the concept
of safety factor, which tries to provide a single scalar simplified mesure of the distance
between the failure state and service conditions.

2 MODELING THE LEFT ABUTMENT

2.1 Geometric model

As described in [1], a safety 3D FEM analysis has a number of requirements, including
sufficient number of elements across the dam thickness in order to capture bending, and
a sufficient number of joints of each family in the rock mass in order to include the most
relevant failure mechanisms.

For the current analysis, the previous discretization has been verified with digital satel-
lite topodata, and has been used as a basis fot the new geometric model, including: dam
geometry, rock mass surface topography, right abutment retaining wall, grouted curtain
and bedding and vertical joint sets. Additionally, left abutment retaining wall, reinforced
concrete anchorage tunnel and 4 new family planes have been introduced only in the
left abutment. The new family of discontinuities discovered, has been introduced in the
geometric model through a total of four planes strategically located so that they cover
the most significant mechanisms without generating an excessive number o geometric
intersections with the previous existing planes and surfaces. The four selected planes are:

1. Plane defining a mechanism that does not involve the wall projected.

2. Plane intersecting the dam’s top.

3. Plane crossing the new wall’s base.

4. Plane defining a mechanism that is not supported by the anchorage tunnels.

Finally, in terms of rock discontionuities the model includes: 12 vertical joints (jV 1-12),
5 bedding planes (jS 1-5) and 4 new family planes -N-S orientation- (jN 1-4). (Fig. 2)

2.2 Material Parameters

The shear strength parameters were obtained from the existing information form large
scale in situ shear tests on vertical joints (c = 0.124MPa and φ′ = 18.7◦) and bedding
planes (c = 0.135MPa and φ′ = 35.2◦) [1]. For the new family planes, an anular shear
test of the infill clay was performed yielding a residual strength value of φ′

res = 27◦.
Normal and shear stiffness moduli of all joints have been taken high as usual in numeri-

cal analysis with zero-thickness interfaces, in order to ensure the continuity of both sides of
the joint if the shear stress does not reach the shear strength values (Kn = Kt = 105MPa).

3
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Figure 2: Vertical joint section (left). FEM mesh for the left abutment (right)

3 FINITE ELEMENT ANALYSIS

3.1 FEM Code

FEM computations have been performed using code DRAC [5, 14]. This is an in-
house developed code which was first applied to rock mechanics problems considering
zero-thickness interface elements, and later also used for fracture mechanics and a variety
of other material and structural analysis applications. Its main flow diagram consists of
4 nested loops which correspond to:

Stage loop In each stage new geometry can be added (construction) or removed (exca-
vation).

Step loop Load systems can be applied to each geometry.

Increment loop Each load can be applied in increments.

Iteration loop In non-linear analysis, this loop controles the number of iterations to
convergence.

3.2 Interface constitutive model

The constitutive model which was implemented in the code and it is the most widely
used for geotechnical analysis. It is a general elastoplasticity law which was formulated
in terms of normal and shear stress and normal and tangential relative displacements [7].
However, a simplified version exists that permits an explicit integration [8]. The main
simplifying assumptions are:

4
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1. Perfect plasticity.

2. No dilatancy.

3. Linear elastic relationship between the normal stress and the normal relative dis-
placement in compression (zero normal stress in tension).

The yield surface in the σ − τ plane, where τ =
√

τ 21 + τ 22 , is defined by (Fig. 3):

F = τ 2 + tan2 φ(σ2 + 2aσ) ≡ 0 (1)

Due to the expression of the yield surface and the elastic relationship between the
normal stress and the normal relative displacement, once the normal stress is known, the
ratio between τ1 and τ2 is the only unknown in the integration of the constitutive law. The
θ angle, which represents this ratio can be obtained by solving the following differential
equation:

dθ

sin(β − θ)
=

Kt

Kn

∆v

∆u

dσ

tanφ
√
σ2 + 2aσ

(2)

Integrating between two instants leads to:

tan

(
β − θ

2

)

= tan

(
β − θ0

2

)(

τ +
√

τ 2 + a2 tan2 φ

τ0 +
√

τ 20 + a2 tan2 φ

)− Kt
Kn

∆v
∆u tanφ

(3)

where β relates the imposed tangential relative displacements increments ∆v1,∆v2.

Figure 3: Constitutive model stress and displcement variables definition (left, center). Yield surface
(right)

3.3 c− φ reduction

The first reference mentioning the idea of reducing the strength parameters of the
material to evaluate the Safety Factor seems to be that of Zienkiewicz et al., 1975 [15], for
a slope stability problem in soil. Later, various authors have used this method for other
soil mechanics problems [6,10,12] Generally speaking, the Safety Factor (SF) is defined as

5
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the scalar factor by which one has to reduce strength parametres in order to reach failure.
Hence, at failure, the following relationships can be stablished:

c′mob =
c′

SF
φ′
mob = arctan

(
tanφ′

SF

)

(4)

In the numerical analysis of geotechnical problems using the FEM there are a few ways
to define failure, but the most common (also used in this case) is the lack of convergence of
the iterative calculation. In this study, the c−φ reduction method has been implemented
as a modification of the constitutive model of section 3.2 with evolving c and φ. In this
new implementation c and φ are being progressively reduced (softening) in connection to
some fictitious time α:

tanφ ≡ Φ = Φ0 − ∆Φ

∆α
(α− α0) (5)

Therefore, the right hand side of the ecuation ( 2) can be reformulated using this
variable:

Kt∆v

∆α

dα

(−fα + g)
√
Aα2 + Bα + C

(6)

where:

f =
∆Φ

∆α

g = Φ0 +
∆Φ

∆α
α0

A =

(
∆σ

∆α

)2

B = 2

(

σ0
∆σ

∆α
+ a

∆σ

∆α
− α0

(
∆σ

∆α

)2
)

C = σ2
0 + 2aσ0 − 2σ0α0

∆σ

∆α
− 2aα0

∆σ

∆α
+ α2

0

(
∆σ

∆α

)2

In the same way as the previous section an analytical integration can be done to obtain
the angle θ.

3.4 Verification examples

As a first example, a classic rock slope stability problem has been considered [11]. The
geometry is represented in Fig.4. For this case, using the Limit Equilibrium Method the
Safety Factor can be easily determined using a Mohr-Coulomb type failure criteria:

SF =
Tres

Tmob

=
2c

γH sin β cos β
+

tanφ

tan β
(7)
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Abstract. This paper describes some issues related to the numerical implementation of a 
constitutive model for unsaturated soils based on the BBM [1]. The focus of the paper is on 
the stress variables used and on the numerical algorithms adopted. Conventional stress 
variable approach (net stress and suction) as well as the approach that takes into account the 
degree of saturation (Bishop’s stress and suction) are examined.  To solve the constitutive 
stress–strain equations, two stress integration procedures have been implemented, an explicit 
stress integration scheme with automatic substepping and error control techniques [2] and a 
fully implicit stress integration scheme based on the Backward-Euler algorithm with 
substepping [3]. Their performances during the integration of the constitutive laws are 
compared. 

 
 
1 INTRODUCTION 

There is agreement that at least two constitutive variables are generally required to 
represent adequately the full range of unsaturated soil behaviour, that is, including strength 
and deformation.  Several review articles on the subject are available [4-6].  Conventional 
constitutive stress variable, namely net stress ( ij ij a iju     ) as well as the constitutive stress 
variable that takes into account the degree of saturation, commonly called Bishop’s stress or 
average stress ( ' ( )ij ij a ij r a w iju S u u        ) are examined in this paper.  In both formulations 
the second constitutive variable is the suction (s=ua-uw). ij are total stresses, ua the air 
pressure, uw the water pressure and ij the Kroneckers’s delta. The selection of net stress or 
Bishop’s stress or other alternative as the constitutive variable remains at present a matter of 
convenience [6].  

Incremental stress-strain equations for unsaturated soils can be solved by a wide range of 
explicit and implicit integration algorithms. Explicit algorithms, use the gradients of the yield 
surface and plastic potential at the start of the strain increment, and their accuracy can only be 
controlled by breaking up the strain increment into sub-increments, special automatic 
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2

substepping and error control techniques have been proposed [2,7]. In implicit algorithms, all 
gradients are estimated at an advanced stress state (which is unknown) and then the resulting 
non-linear constitutive equations are solved by iteration [3,8]. The relative performance of 
implicit and explicit methods is strongly dependent on the precise form of the constitutive 
model. For unsaturated constitutive models, the problem of the non-convexity of the yield 
surface at the transition between saturated and unsaturated states can significantly complicate 
the implementation of these models into finite element codes [2,4]. In this paper both stress 
integration procedures are evaluated.

2 INTEGRATION ALGORITHMS 

2.1 General 
Integration algorithms will be applied to the elastoplastic BBM model for unsaturated soils 

[1] defined in terms of either net stresses or Bishop’s stresses. In this model, suction is an 
additional independent variable. The constitutive equations that characterize the elasto-plastic 
material can be written in this particular case as: 
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where, d , ed  and pd are increments of the total, elastic and plastic strain tensors 

respectively and e s,d is the contribution of suction to increment of elastic strain tensor (only 
necessary in the net stress formulation). m is the flow vector, kd  represents the increment of 
hardening parameters (in this case P0) and d is the plastic multiplier. Note that in above 
equations,   vector can be either net stress ( ) or Bishop’s stress ( ' ). 

Satisfying the consistency condition, 
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Note that for Bishop’s stress formulation vector b=0. Combining equations (1) and (3), the 
constitutive equation integration is expressed as, 
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In the integration the infinitesimal increments in the above equations (denoted by “d”) are 
approximated with finite increments (denoted by “”). 

2.2 Explicit algorithm 
The more refined versions of the explicit algorithms [2,7] combine sub-stepping techniques 

with automatic sub-stepping control, error control and yield surface drift correction. An 
algorithm of this type has been implementedl. In this algorithm suction variable is treated as 
an additional strain component and it is assumed that it may be subincremented at the same 
rate as the other strain components. 

The substepping procedure automatically divides the increment of strain and suction into a 
number of substeps small enough to ensure that the desired integration accuracy is enforced. 
The scheme involves splitting the elasto-plastic strain step  1   and suction step   s 1
into a series of smaller substeps,  s

nT    1    and  s
ns T s    1  (where nT  0 1),

and using a modified Euler approximation for each substep.   1   and   s 1  are the 
portions of the strain increment and suction increment, respectively, that are outside of the 
yield surface. The size of each substep is determined by estimating the error in the stress 
changes and comparing it to a user-defined tolerance, STOL. The procedure begins assuming 
that only one substep is necessary. Consequently Tn is set to unity and Tn is set to zero. 

A first estimation of the changes in stresses and hardening parameters at the end of the 
pseudo-time step Tn are evaluated using a first order Euler approximation, as, 
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where, epD , epW , epR and Q  are computed using equations (5). Using the above quantities, 
the stresses and hardening parameters at the end of the substep are   1   and k k  1 ,
respectively. These are then used to calculate a second estimate of the changes in stress and 
hardening parameters over the substep, namely, 
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A more accurate estimate and the end of interval Tn is founded using the modified Euler 
procedure,

 
 k k k k

   

   

1 2

1 2

1
2

1
2

+

+

   
(8)

A relative error measure is computed as, 
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(9)

The current strain subincrement is accepted if Rn is not greater than STOL. If Rn>STOL
then the solution is rejected and a smaller step size is computed. After accepting or rejecting 
the current substep, the size of the next substep is calculated based on the estimated error and 
the set tolerance. The next pseudo-time step is found from the relation, n nT q T  1  where q is 
chosen so that, nR STOL 1 . A conservative choice for q is, nq STOL R 0.9 / and it is also 
constrained to lie within the limits, q 0.1 1.1, so that, n n nT T T     -1 1 0.1 1.1 . The end of the 
integration procedure is reached when the entire increment of strain and suction is applied so 
that n nT T   1 .

After a successful substep the yield surface consistency condition is verified. If it is 
violated a drift correction procedure [9] is activated, which must ensure that the current state 
lies on the yield surface with a certain tolerance (YTOL). This correction changes both stress 
and internal variables but keeps the strain and suction increments unchanged. 

2.3 Implicit algorithm 
A fully implicit stress integration scheme based on the Backward-Euler (BE) algorithm 

with substepping [3] extended to unsaturated soil has been implemented. Integrating the 
constitutive equations with the BE methods, leads to an incremental algebraic format which is 
followed by a plastic corrector of the elastic trial stress violating the current yield surface. In 
this algorithm the plastic multiplier calculation is integrated with the internal variables 
updates and the incremental stress-strain relationship in a monolithic fashion.  

Time-integration equation with BE scheme yields the following non-linear local problem 
of the type R=0:
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The unknowns of this local problem are the stresses (n+1) and the hardening parameters 
k (n+1) at time t(n+1), and the plastic multiplier  . e,s  is required only for net stress 
formulation and is a known variable. As in the explicit algorithm, the elasto-plastic strain step 
and suction step will be subdivided in smaller steps, as,  s

nT    1   and 
 s

ns T s    1  (where nT  0 1), in case that no convergence is reached in the iterative 
process of residual minimisation. 

The non-linear system of equation (10) is solved by linearizing the residual and expanding 
it into a Taylor series, obtaining the following expression, 
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The gradient expression kRkis the Jacobian matrix J (12). Truncating after 
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the first order terms, O[2], and solving the linearized system of equations the new iterative 
update of the eight variables is obtained, as in (13) 
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Adding the iterative corrector to the old values of the independent variables yields the eight 
updates:
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In some cases, when large strain increments are prescribed, the minimization of residual 
equations (11) is not possible after a given number of iterations.  In this case, the strain and 
suction increments are reduced by n nT q T   , where q is chosen as 0.5. The end of the 
integration procedure is reached when the entire increment of strain and suction is applied so 
that n nT T   1.

In order to start the iteration process, the elastic solution at the contact point with the yield 
surface is chosen: 
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To solve the global problem with quadratic convergence it is necessary to use a consistent 
tangent matrix,  
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( )0 0T
ns=P I  is the projection matrix on stress space. 

3 APPLICATION AND PERFORMANCE 
The triaxial test on compacted Barcelona clayey silt presented in Error! Reference source 

not found. [10] was selected to examine the performance of the integration algorithms. The 
tests includes different types of stress paths typically performed on unsaturated soils: A1-A2, 
loading at constant suction, A2-A3, wetting path at constant net stress, A3-A4 drying path at 
constant net stress, A4-A4 shear to failure under constant suction.

Performance of numerical integration algorithms (explicit and implicit) is evaluated in 
terms of CPU time and the number of sub-increments required in each scheme. In all runs the 
yield surface tolerance is fixed at YTOL = 10-8; this parameters is also used to control the 
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convergence of the residual in the implicit algorithm. Control error tolerance of explicit 
algorithm varies from STOL=10-2 to 10-6. All CPU times presented are for an Intel Core Duo 
(2GHz) with 2GB of RAM. Results are presented in bar graphs where average values of the 
variables evaluated were computed for each stress path. 

Figure 1:  Stress paths followed by the test used in the evaluation of integration algorithms 

Figure 2 shows a comparison between implicit and explicit algorithms for net stress and 
Bishop’s stress. It is observed that the wetting path (A2-A3) requires both a higher 
computational cost and higher mean number of sub-increments when Bishop’s stress and the 
implicit scheme are employed. This is because Bishop’s stress induces a high curvature in this 
particular stress path.  As a consequence, the plastic corrector of implicit scheme has 
difficulties in returning to the yield surface and the requirement for sub-increments increases. 
Explicit algorithm is more efficient in this case because proceeds in an incremental fashion 
where all gradients are estimated at known stress states. Also, it is noted for path A2-A3 that 
the computational cost of net stress formulation is considerably lower than that of Bishop’s 
stress and differences between implicit and explicit schemes are minimised. Figure 2 also 
indicates that during stress path A1-A2 of isotropic load at constant suction, no significant 
differences are observed between implicit and explicit schemes. During drying path A3-A4, 
behaviour is elastic and no strain sub-incrementation is needed. Finally, during shearing path 
A4-A5, the explicit scheme demands a higher number of sub-increments than the implicit one. 
However, this tendency is not reflected in the CPU time, as the explicit scheme spends 
slightly less CPU time than implicit one. This may be explained by the fact that the implicit 
scheme requires second derivatives of yield function and plastic potential and the inversion of 
the Jacobian matrix. 

Figure 3 shows the influence of the error control tolerance (STOL) on mean number of sub-
increments and drift corrections of the explicit algorithm. As expected, the number of sub-
increments and drift corrections increases as STOL is decreased. Due to the fact that the stress 
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error controls the strain sub-increments in proportion to the square root of STOL, their number 
increases by a factor of roughly 10 if STOL is reduced by an order of magnitude.
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Figure 2:  Comparison of integration algorithms (STOL=10-4 for explicit scheme) 

0
20
40
60

80
100
120
140

A1-A2 A2-A3 A3-A4 A4-A5

Path

M
ea

n 
su

bi
nc

re
m

en
ts

STOL=10-2
STOL=10-4
STOL=10-5
STOL=10-6

           

0

50

100

150

200

250

300

A1-A2 A2-A3 A3-A4 A4-A5

Path

M
ea

n 
D

rif
t c

or
re

ct
io

ns STOL=10-2
STOL=10-4
STOL=10-5
STOL=10-6

Figure 3:  Influence of STOL on sub-increments and drift corrections of explicit algorithm. Constituive model 

4 CONCLUSIONS 
- Net stress is a more simple and practical choice in terms of stress path representation 

than Bishop’s stress. However, it requires additional assumptions to take into account 
the shear strength increase with suction and the elastic volumetric strain due to 
changes in suction. Using Bishop’s stresses this features derive directly from the 
definition of the constitutive stress. However, the performance of the model using 
Bishop’s stress is more sensitive to the adopted soil water characteristic curve. 

- In terms of the efficiency of numerical algorithms, the explicit scheme is likely to be 
more robust than implicit scheme to solve the kind of complex stress involved in 
unsaturated soil behaviour. The use of explicit scheme, however, does not yield 
quadratic convergence of the full problem. 
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Abstract.  In this paper, a large deformation formulation for dynamic analysis of the pore 
fluid-solid interaction in a fully saturated non-linear medium is presented in the framework of 
the Arbitrary Lagrangian-Eulerian method.  This formulation is based on Biot’s theory of 
consolidation extended to include the momentum equations of the solid and fluid phases, 
large deformations and non-linear material behaviour.  By including the displacements of the 
solid skeleton, u, and the pore fluid pressure, p, a (u-p) formulation is obtained, which is then 
discretised using finite elements.  Time integration of the resulting highly nonlinear equations 
is accomplished by the generalized–α method, which assures second order accuracy as well as 
unconditional stability of the solution.  Details of the formulation and its practical 
implementation in a finite element code are discussed.  The formulation and its 
implementation are validated by solving some classical examples in geomechanics. 

1 INTRODUCTION 
In quasi-static analysis it is common to assume that soil behaves as either a drained or an 

undrained medium.  Under these conditions a single phase description of the porous medium 
may provide reasonable and acceptable results.  However, in many cases the fully drained or 
undrained assumptions may lead to inaccurate results due to partial consolidation occurring in 
the soil, which generally depends on the hydraulic conductivity of the soil as well as the rate 
of applied loading.  By using an analytical solution for dynamic consolidation problems in a 
u-p formulation, Zienkiewicz et al 1 investigated the conditions under which the undrained or 
quasi-static assumptions can be safely used.  For conditions that are intermediate between 
fully drained and undrained, in which consolidation of the soil will take place, there is an 
interaction between the solid soil skeleton and the pore fluid flow.  Consequently, the 
equations of motion for the individual constituents involve interaction terms and the stresses, 
both total and effective, depend on the kinematics of both phases. 

Biot2 presented one of the first theories governing the behaviour of saturated porous media.  
Later, Small et al.3 and Prevost 4  extended Biot's theory into the material and geometrically 
non-linear regimes, respectively.  Zienkiewicz and Shiomi 5 conducted a comprehensive study 
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on solutions of the Biot-type formulation and summarised different analysing methods in 
three categories namely the (a) u-p, (b) u-U and (c) u-p-U formulations. Here u, p, and U
represent the soil skeleton displacements, the pore fluid (water) pressure and the pore fluid 
(water) displacements, respectively. The finite element method (FEM) facilitates the 
discretisation of the governing differential equations in the space domain and makes it 
possible to extend the theory to employ elastoplastic nonlinear constitutive models in order to 
obtain reliable solutions for displacements and pore water pressures. This study presents an
application of the FEM to solve dynamic coupled consolidation problems involving material 
nonlinearity as well as large deformations. Such an analysis requires a robust time marching 
scheme. The generalized-α algorithm (CH) developed by Chung and Hulbert 6 is an implicit 
integration scheme that possesses the necessary conditions of a standard time integration 
algorithm such as unconditional stability, second order accuracy and numerical damping 
capability.  Kontoe et al.7 used this scheme to solve coupled problems of geomechanics. The 
ability of this method in solving dynamic consolidation problems in geomechanics, 
particularly in an Arbitrary Lagrangian-Eulerian framework, is investigated in this paper.

Among others, two main sources of nonlinearity, namely material nonlinearity and 
geometric nonlinearity, can arise in the analysis of porous continua. Geometric nonlinearity is 
important in many cases such as the analysis of liquefaction, deep penetration of objects into 
soil layers, and any situation where the strain level is relatively high. This kind of analysis 
usually involves severe mesh distortion and, therefore, the Lagrangian finite element methods 
normally fail to provide a complete solution, usually due to the eventual development of a
negative Jacobian in some elements. On the other hand, the Arbitrary Lagrangian-Eulerian 
(ALE) method has been developed to eliminate mesh distortion. In this study the ALE 
method presented by Nazem et al.8, 9 is employed to solve dynamic consolidation problems of 
geomechanics in which the pore fluid interacts with the solid soil skeleton. The first part of 
this paper briefly describes the governing equations of the saturated porous medium. Time 
discretization of the governing equations is then presented using the CH method, followed by
implementation of the approach in a finite element code. Finally, some numerical examples 
are presented in order to validate the implementation of the theoretical framework and to 
demonstrate its application in practice.

2 FINITE ELEMENT FORMULATION
The global equations governing the dynamic consolidation of a porous medium can be 

obtained by combining the overall momentum balance equation of the solid-fluid phase, the 
momentum balance equation for the pore fluid and the continuity of mass through the 
principle of effective stresses and the Darcy's law resulting in the following set of equations 
(e.g., Zienkiewicz et al.5 )

𝐌𝐌�̈�𝐮 + 𝐂𝐂�̇�𝐮 + 𝐊𝐊𝑒𝑒𝑒𝑒𝐮𝐮 + 𝐋𝐋𝐋𝐋 = 𝐟𝐟𝑢𝑢 (1)

𝐋𝐋𝑇𝑇�̇�𝐮 + 𝐒𝐒�̇�𝐋 − 𝐇𝐇𝐋𝐋 = 𝐟𝐟𝑒𝑒 (2)

where M, C and Kep are, respectively, the mass matrix, the damping matrix, and the 
elastoplastic stiffness matrix of the solid soil skeleton. L, H, and S represent, respectively, 
the coupling matrix, the flow matrix, and the compressibility matrix. 𝐟𝐟𝑢𝑢 is the vector of 
external nodal forces and 𝐟𝐟𝑒𝑒 is a fluid supply vector. Classical finite-element algorithms used 
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on solutions of the Biot-type formulation and summarised different analysing methods in 
three categories namely the (a) u-p, (b) u-U and (c) u-p-U formulations. Here u, p, and U
represent the soil skeleton displacements, the pore fluid (water) pressure and the pore fluid 
(water) displacements, respectively. The finite element method (FEM) facilitates the 
discretisation of the governing differential equations in the space domain and makes it 
possible to extend the theory to employ elastoplastic nonlinear constitutive models in order to 
obtain reliable solutions for displacements and pore water pressures. This study presents an
application of the FEM to solve dynamic coupled consolidation problems involving material 
nonlinearity as well as large deformations. Such an analysis requires a robust time marching 
scheme. The generalized-α algorithm (CH) developed by Chung and Hulbert 6 is an implicit 
integration scheme that possesses the necessary conditions of a standard time integration 
algorithm such as unconditional stability, second order accuracy and numerical damping 
capability.  Kontoe et al.7 used this scheme to solve coupled problems of geomechanics. The 
ability of this method in solving dynamic consolidation problems in geomechanics, 
particularly in an Arbitrary Lagrangian-Eulerian framework, is investigated in this paper.

Among others, two main sources of nonlinearity, namely material nonlinearity and 
geometric nonlinearity, can arise in the analysis of porous continua. Geometric nonlinearity is 
important in many cases such as the analysis of liquefaction, deep penetration of objects into 
soil layers, and any situation where the strain level is relatively high. This kind of analysis 
usually involves severe mesh distortion and, therefore, the Lagrangian finite element methods 
normally fail to provide a complete solution, usually due to the eventual development of a
negative Jacobian in some elements. On the other hand, the Arbitrary Lagrangian-Eulerian 
(ALE) method has been developed to eliminate mesh distortion. In this study the ALE 
method presented by Nazem et al.8, 9 is employed to solve dynamic consolidation problems of 
geomechanics in which the pore fluid interacts with the solid soil skeleton. The first part of 
this paper briefly describes the governing equations of the saturated porous medium. Time 
discretization of the governing equations is then presented using the CH method, followed by
implementation of the approach in a finite element code. Finally, some numerical examples 
are presented in order to validate the implementation of the theoretical framework and to 
demonstrate its application in practice.

2 FINITE ELEMENT FORMULATION
The global equations governing the dynamic consolidation of a porous medium can be 

obtained by combining the overall momentum balance equation of the solid-fluid phase, the 
momentum balance equation for the pore fluid and the continuity of mass through the 
principle of effective stresses and the Darcy's law resulting in the following set of equations 
(e.g., Zienkiewicz et al.5 )

𝐌𝐌�̈�𝐮 + 𝐂𝐂�̇�𝐮 + 𝐊𝐊𝑒𝑒𝑒𝑒𝐮𝐮 + 𝐋𝐋𝐋𝐋 = 𝐟𝐟𝑢𝑢 (1)

𝐋𝐋𝑇𝑇�̇�𝐮 + 𝐒𝐒�̇�𝐋 − 𝐇𝐇𝐋𝐋 = 𝐟𝐟𝑒𝑒 (2)

where M, C and Kep are, respectively, the mass matrix, the damping matrix, and the 
elastoplastic stiffness matrix of the solid soil skeleton. L, H, and S represent, respectively, 
the coupling matrix, the flow matrix, and the compressibility matrix. 𝐟𝐟𝑢𝑢 is the vector of 
external nodal forces and 𝐟𝐟𝑒𝑒 is a fluid supply vector. Classical finite-element algorithms used 
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in geomechanics usually assume that only small strains occur in the soil. However, this 
assumption is no longer valid for large deformation problems. Finite element approaches
often use an Updated-Lagrangian (UL) formulation to incorporate the effects of finite 
deformations as well as the volume changes in a large-deformation analysis. However, the 
UL method fails to provide a solution in problems with relatively large displacements due to 
mesh distortion.  Nonetheless, this method is the main engine of the ALE operator split 
technique presented in Section 4 of this paper, and thus a brief description of the time-
stepping scheme employed to solve the governing equations in an UL framework is given in 
next section.

3 TIME INTEGRATION
Finite element discretisation of the global equations leads to a system of second-order 

ordinary differential equations in which time is a continuous variable. In a direct time-
integration scheme, Equation (1) is integrated by a numerical step-by-step procedure. 
Newmark’s scheme is one of the most popular methods in the family of direct time 
integration techniques. In this method, the displacements and velocities at time tn+1 can be 
approximated by

𝐮𝐮𝑛𝑛+1 = 𝐮𝐮𝑛𝑛 + ∆𝑡𝑡�̇�𝐮𝒏𝒏 +
∆𝑡𝑡2

2
[(1 − 2𝛽𝛽)�̈�𝐮𝑛𝑛 + 2𝛽𝛽�̈�𝐮𝑛𝑛+1] 

(3)

�̇�𝐮𝑛𝑛+1 = �̇�𝐮𝑛𝑛 + ∆𝑡𝑡[(1 − 𝛾𝛾)�̈�𝐮𝑛𝑛 + 𝛾𝛾�̈�𝐮𝑛𝑛+1] (4)

where β and γ are integration parameters. However, Newmark’s method cannot predict high-
frequency modes accurately. Thus, numerical damping is introduced to eliminate spurious 
high frequency oscillations whilst preserving the important low frequency modes.
Algorithmic damping can be introduced to Newmark’s scheme by increasing the value of 𝛾𝛾
(larger than 0.5) and selecting the smallest value of 𝛽𝛽 compatible with the stability 
requirements10. However, algorithmic damping influences the low-frequency behaviour, 
corresponding to a reduction of the accuracy to first order. By using averages with different 
degrees of forward weighting on the different terms in the equation of motion, the low-
frequency properties can be improved, while retaining high-frequency damping. Three 
different schemes have been investigated in detail: forward weighing of the stiffness and load 
terms by Hilbert et al.11, forward weighting of the inertial term by Wood et al.12 and different
forward weighting of the stiffness and the inertial terms by Chung and Hulbert 6.  In the last 
of these methods, which is known as the generalized-𝛼𝛼 or CH method, the inertia terms are 
evaluated at time 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1−𝛼𝛼𝑚𝑚 of the considered interval ∆𝑡𝑡, whereas all other terms are 
evaluated at some earlier time 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1−𝛼𝛼𝑓𝑓 (𝛼𝛼𝑓𝑓 ≥ 𝛼𝛼𝑚𝑚). Therefore, using this method equation (1) 
can be written as

𝐌𝐌�̈�𝐮𝑛𝑛+1−𝛼𝛼𝑚𝑚 + 𝐂𝐂�̇�𝐮𝑛𝑛+1−𝛼𝛼𝑓𝑓 + 𝐊𝐊𝐮𝐮𝑛𝑛+1−𝛼𝛼𝑓𝑓 + 𝐋𝐋𝐩𝐩𝑛𝑛+1−𝛼𝛼𝑓𝑓 = 𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓 (5)

where
�̈�𝐮𝑛𝑛+1−𝛼𝛼𝑚𝑚 = (1 − 𝛼𝛼𝑚𝑚)�̈�𝐮𝑛𝑛+1 + 𝛼𝛼𝑚𝑚�̈�𝐮𝑛𝑛 (6)

�̇�𝐮𝑛𝑛+1−𝛼𝛼𝑓𝑓 = �1 − 𝛼𝛼𝑓𝑓��̇�𝐮n+1 + 𝛼𝛼𝑓𝑓�̇�𝐮n (7)

𝐮𝐮𝑛𝑛+1−𝛼𝛼𝑓𝑓 = �1 − 𝛼𝛼𝑓𝑓�𝐮𝐮n+1 + 𝛼𝛼𝑓𝑓 𝐮𝐮n (8)
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𝐩𝐩𝑛𝑛+1−𝛼𝛼𝑓𝑓 = �1 − 𝛼𝛼𝑓𝑓�𝐩𝐩𝑛𝑛+1 + 𝛼𝛼𝑓𝑓 𝐩𝐩𝑛𝑛 (9)

𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓 = �1 − 𝛼𝛼𝑓𝑓�𝐟𝐟𝑛𝑛+1 + 𝛼𝛼𝑓𝑓 𝐟𝐟𝑛𝑛 (10)

The governing equations of the u-p formulation, defined here as equations (1) and (2), can 
now be discretised. Equation (1) can be written in incremental form at time 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1 as

𝐌𝐌∆�̈�𝐮 + 𝐂𝐂∆�̇�𝐮 + 𝐊𝐊𝑒𝑒𝑒𝑒∆𝐮𝐮 + 𝐋𝐋∆𝐩𝐩 = 𝐟𝐟𝑢𝑢 − 𝐟𝐟𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡 − 𝐌𝐌�̈�𝐮𝑛𝑛 − 𝐂𝐂�̇�𝐮𝑛𝑛 (11)

and according to the CH method
𝐌𝐌∆�̈�𝐮𝑛𝑛+1−𝛼𝛼𝑚𝑚 + 𝐂𝐂∆�̇�𝐮𝑛𝑛+1−𝛼𝛼𝑓𝑓 + 𝐊𝐊∆𝐮𝐮𝑛𝑛+1−𝛼𝛼𝑓𝑓 + 𝐋𝐋∆𝐩𝐩𝑛𝑛+1−𝛼𝛼𝑓𝑓 = 𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓

𝑢𝑢 − 𝐟𝐟𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡 − 𝐌𝐌�̈�𝐮𝑛𝑛 − 𝐂𝐂�̇�𝐮𝑛𝑛 (12)

where ft int denotes the internal forces at the previous time step (t=tn).
Expressing Equations (6~9) in incremental form and substituting them in Equation (12)
yields:

(1 − 𝛼𝛼𝑚𝑚)
(1 − 𝛼𝛼𝑓𝑓)

𝐌𝐌∆�̈�𝐮 + 𝐂𝐂∆�̇�𝐮 + 𝐊𝐊∆𝐮𝐮 + 𝐋𝐋∆𝐩𝐩 =
1

(1 − 𝛼𝛼𝑓𝑓)
�𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓
𝑢𝑢 − 𝐟𝐟𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡 − 𝐌𝐌�̈�𝐮𝑛𝑛 − 𝐂𝐂�̇�𝐮𝑛𝑛� 

(13)

Similarly, Equation (2) may be written as 

𝐋𝐋𝑇𝑇�̇�𝐮𝑛𝑛+1 + 𝐒𝐒�̇�𝐩𝑛𝑛+1 − 𝐇𝐇𝐩𝐩𝑛𝑛+1 =
1

(1 − 𝛼𝛼𝑓𝑓)
�𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓
𝑒𝑒 − 𝛼𝛼𝑓𝑓𝐋𝐋𝑇𝑇�̇�𝐮𝑛𝑛 − 𝛼𝛼𝑓𝑓𝐒𝐒�̇�𝐩𝑛𝑛 + 𝛼𝛼𝑓𝑓𝐇𝐇𝐩𝐩𝑛𝑛� 

(14)

Newmark’s recurrence relations in (3) and (4) can be written in incremental form as

∆�̈�𝐮 =
∆𝐮𝐮 − 𝐮𝐮𝑙𝑙

𝛽𝛽∆𝑡𝑡2
− �̈�𝐮𝑛𝑛 

(15)

∆�̇�𝐮 = �̇�𝐮𝑙𝑙 −
𝛾𝛾
𝛽𝛽∆𝑡𝑡

(𝐮𝐮𝑙𝑙 − ∆𝐮𝐮) − �̇�𝐮𝑛𝑛 (16)

Moreover, the pore water pressure at 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1 can be estimated by a first order approximation 
as13

∆𝐩𝐩 = 𝐩𝐩𝑙𝑙 + 𝜃𝜃∆𝑡𝑡�̇�𝐩𝑛𝑛+1 (17)

Note that 𝐮𝐮l, �̇�𝐮l and 𝐩𝐩l appearing in the above Equations are considered as auxiliary variables 
to simplify the formulation, and they contain the known variables from the previous time step 
as

𝐮𝐮𝑙𝑙 = ∆𝑡𝑡�̇�𝐮𝑛𝑛 +
∆𝑡𝑡2

2
(1 − 2𝛽𝛽)�̈�𝐮𝑛𝑛 

(18)

�̇�𝐮𝑙𝑙 = �̇�𝐮𝑛𝑛 + ∆𝑡𝑡(1 − 𝛾𝛾)�̈�𝐮𝑛𝑛 (19)

𝐩𝐩𝑙𝑙 = ∆𝑡𝑡(1 − 𝜃𝜃)�̇�𝐩𝑛𝑛 (20)

Finally, introducing Equations (15) and (16) into Equations (13) and (14), the system of 
equations governing the dynamic consolidation of the continuum is obtained:

⎣
⎢
⎢
⎢
⎡

(1 − 𝛼𝛼𝑚𝑚)
𝛽𝛽∆𝑡𝑡2(1 − 𝛼𝛼𝑓𝑓)

𝐌𝐌 +
𝛾𝛾
𝛽𝛽∆𝑡𝑡

𝐂𝐂 + 𝐊𝐊𝑒𝑒𝑒𝑒 𝐋𝐋

𝐋𝐋T
𝛽𝛽∆𝑡𝑡
𝛾𝛾

(
𝐒𝐒
𝜃𝜃∆𝑡𝑡

− 𝐇𝐇)⎦
⎥
⎥
⎥
⎤
�∆𝐮𝐮∆𝐩𝐩� = �𝐅𝐅

𝑢𝑢

𝐅𝐅𝑒𝑒� 

(21)
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𝐩𝐩𝑛𝑛+1−𝛼𝛼𝑓𝑓 = �1 − 𝛼𝛼𝑓𝑓�𝐩𝐩𝑛𝑛+1 + 𝛼𝛼𝑓𝑓 𝐩𝐩𝑛𝑛 (9)

𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓 = �1 − 𝛼𝛼𝑓𝑓�𝐟𝐟𝑛𝑛+1 + 𝛼𝛼𝑓𝑓 𝐟𝐟𝑛𝑛 (10)

The governing equations of the u-p formulation, defined here as equations (1) and (2), can 
now be discretised. Equation (1) can be written in incremental form at time 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1 as

𝐌𝐌∆�̈�𝐮 + 𝐂𝐂∆�̇�𝐮 + 𝐊𝐊𝑒𝑒𝑒𝑒∆𝐮𝐮 + 𝐋𝐋∆𝐩𝐩 = 𝐟𝐟𝑢𝑢 − 𝐟𝐟𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡 − 𝐌𝐌�̈�𝐮𝑛𝑛 − 𝐂𝐂�̇�𝐮𝑛𝑛 (11)

and according to the CH method
𝐌𝐌∆�̈�𝐮𝑛𝑛+1−𝛼𝛼𝑚𝑚 + 𝐂𝐂∆�̇�𝐮𝑛𝑛+1−𝛼𝛼𝑓𝑓 + 𝐊𝐊∆𝐮𝐮𝑛𝑛+1−𝛼𝛼𝑓𝑓 + 𝐋𝐋∆𝐩𝐩𝑛𝑛+1−𝛼𝛼𝑓𝑓 = 𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓

𝑢𝑢 − 𝐟𝐟𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡 − 𝐌𝐌�̈�𝐮𝑛𝑛 − 𝐂𝐂�̇�𝐮𝑛𝑛 (12)

where ft int denotes the internal forces at the previous time step (t=tn).
Expressing Equations (6~9) in incremental form and substituting them in Equation (12)
yields:

(1 − 𝛼𝛼𝑚𝑚)
(1 − 𝛼𝛼𝑓𝑓)

𝐌𝐌∆�̈�𝐮 + 𝐂𝐂∆�̇�𝐮 + 𝐊𝐊∆𝐮𝐮 + 𝐋𝐋∆𝐩𝐩 =
1

(1 − 𝛼𝛼𝑓𝑓)
�𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓
𝑢𝑢 − 𝐟𝐟𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡 − 𝐌𝐌�̈�𝐮𝑛𝑛 − 𝐂𝐂�̇�𝐮𝑛𝑛� 

(13)

Similarly, Equation (2) may be written as 

𝐋𝐋𝑇𝑇�̇�𝐮𝑛𝑛+1 + 𝐒𝐒�̇�𝐩𝑛𝑛+1 − 𝐇𝐇𝐩𝐩𝑛𝑛+1 =
1

(1 − 𝛼𝛼𝑓𝑓)
�𝐟𝐟𝑛𝑛+1−𝛼𝛼𝑓𝑓
𝑒𝑒 − 𝛼𝛼𝑓𝑓𝐋𝐋𝑇𝑇�̇�𝐮𝑛𝑛 − 𝛼𝛼𝑓𝑓𝐒𝐒�̇�𝐩𝑛𝑛 + 𝛼𝛼𝑓𝑓𝐇𝐇𝐩𝐩𝑛𝑛� 

(14)

Newmark’s recurrence relations in (3) and (4) can be written in incremental form as

∆�̈�𝐮 =
∆𝐮𝐮 − 𝐮𝐮𝑙𝑙

𝛽𝛽∆𝑡𝑡2
− �̈�𝐮𝑛𝑛 

(15)

∆�̇�𝐮 = �̇�𝐮𝑙𝑙 −
𝛾𝛾
𝛽𝛽∆𝑡𝑡

(𝐮𝐮𝑙𝑙 − ∆𝐮𝐮) − �̇�𝐮𝑛𝑛 (16)

Moreover, the pore water pressure at 𝑡𝑡 = 𝑡𝑡𝑛𝑛+1 can be estimated by a first order approximation 
as13

∆𝐩𝐩 = 𝐩𝐩𝑙𝑙 + 𝜃𝜃∆𝑡𝑡�̇�𝐩𝑛𝑛+1 (17)

Note that 𝐮𝐮l, �̇�𝐮l and 𝐩𝐩l appearing in the above Equations are considered as auxiliary variables 
to simplify the formulation, and they contain the known variables from the previous time step 
as

𝐮𝐮𝑙𝑙 = ∆𝑡𝑡�̇�𝐮𝑛𝑛 +
∆𝑡𝑡2

2
(1 − 2𝛽𝛽)�̈�𝐮𝑛𝑛 

(18)

�̇�𝐮𝑙𝑙 = �̇�𝐮𝑛𝑛 + ∆𝑡𝑡(1 − 𝛾𝛾)�̈�𝐮𝑛𝑛 (19)

𝐩𝐩𝑙𝑙 = ∆𝑡𝑡(1 − 𝜃𝜃)�̇�𝐩𝑛𝑛 (20)

Finally, introducing Equations (15) and (16) into Equations (13) and (14), the system of 
equations governing the dynamic consolidation of the continuum is obtained:

⎣
⎢
⎢
⎢
⎡

(1 − 𝛼𝛼𝑚𝑚)
𝛽𝛽∆𝑡𝑡2(1 − 𝛼𝛼𝑓𝑓)

𝐌𝐌 +
𝛾𝛾
𝛽𝛽∆𝑡𝑡

𝐂𝐂 + 𝐊𝐊𝑒𝑒𝑒𝑒 𝐋𝐋

𝐋𝐋T
𝛽𝛽∆𝑡𝑡
𝛾𝛾

(
𝐒𝐒
𝜃𝜃∆𝑡𝑡

− 𝐇𝐇)⎦
⎥
⎥
⎥
⎤
�∆𝐮𝐮∆𝐩𝐩� = �𝐅𝐅

𝑢𝑢

𝐅𝐅𝑒𝑒� 

(21)
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where

𝐅𝐅𝑢𝑢 = 1
(1−𝛼𝛼𝑓𝑓)

�𝐟𝐟𝑢𝑢𝑛𝑛+1−𝛼𝛼𝑓𝑓 +  𝐌𝐌�(1−𝛼𝛼𝑚𝑚)
𝛽𝛽∆𝑡𝑡2

𝐮𝐮𝑙𝑙 − 𝛼𝛼𝑚𝑚�̈�𝐮𝑛𝑛� + 𝐂𝐂 ��1 − 𝛼𝛼𝑓𝑓� �
𝛾𝛾
𝛽𝛽∆𝑡𝑡

𝐮𝐮𝑙𝑙 − �̇�𝐮𝑙𝑙� − 𝛼𝛼𝑓𝑓�̇�𝐮𝑛𝑛� − 𝐟𝐟𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡�  (22)

𝐅𝐅𝑝𝑝 = 𝛽𝛽∆𝑡𝑡
𝛾𝛾(1−𝛼𝛼𝑓𝑓)

�𝐟𝐟𝑝𝑝𝑛𝑛+1−𝛼𝛼𝑓𝑓 + 𝐋𝐋T ��1 − 𝛼𝛼𝑓𝑓� �
𝛾𝛾
𝛽𝛽∆𝑡𝑡

𝐮𝐮𝑙𝑙 − �̇�𝐮𝑙𝑙� − 𝛼𝛼𝑓𝑓�̇�𝐮𝑛𝑛� + 𝐒𝐒 �
�1−𝛼𝛼𝑓𝑓�

𝜃𝜃∆𝑡𝑡
𝐩𝐩𝑙𝑙 − 𝛼𝛼𝑓𝑓�̇�𝐩𝑛𝑛� + 𝐇𝐇𝐩𝐩𝑛𝑛� 

(23)

The unconditional stability of the scheme is guaranteed when

𝛼𝛼𝑚𝑚 ≤ 𝛼𝛼𝑓𝑓 ≤ 0.5  ,   𝛽𝛽 ≥
1 + 2(𝛼𝛼𝑓𝑓 − 𝛼𝛼𝑚𝑚)

4
  ,𝜃𝜃 > 0.5 

(24)

and second order accuracy is attained when
𝛾𝛾 = 0.5 − 𝛼𝛼𝑚𝑚 + 𝛼𝛼𝑓𝑓    (25)

4 ARBITRARY LAGRANGIAN-EULERIAN METHOD
In an Updated Lagrangian description of the motion of a body the mesh follows the 

material points. Consequently, the mesh can become excessively distorted in problems with 
relatively large deformations. In contrast, in an Eulerian description the mesh is fixed in 
space and the grid nodes are no longer coincident with material particles during the analysis. 
This may avoid mesh distortion but makes it difficult to describe the material boundaries. 
The ALE method attempts to combine the advantages of the Lagrangian and the Eulerian 
meshes. In this method, the computational grid does not necessarily adhere to the material 
points, and it can move arbitrarily. A common form of the ALE method is the operator split 
technique during which the analysis is performed in two steps: an Updated-Lagrangian step 
followed by an Eulerian step. In the first (Lagrangian) step the governing equations are 
solved to fulfil equilibrium and to obtain the material displacements. In the second (Eulerian)
step the mesh is refined to eliminate the possible distortion. After refining the mesh, all 
kinematic and static variables must be transferred between the two meshes. In a coupled 
displacement-pore water pressure ALE analysis, the state parameters to be transformed at 
integration points include the effective stresses, hardening parameters, voids ratios and 
coefficients of permeability, while the pore-water pressures are transformed from old nodes to 
new nodes.  The ALE operator split technique and the mesh refinement strategy used in this 
study were first presented by Nazem et al.8 for the analysis of geotechnical problems. Nazem 
et al. 9 and Nazem et al.14 applied the method to solve static consolidation problems and 
dynamic problems involving large deformations, respectively.

5 NUMERICAL EXAMPLES
The numerical time-integration scheme explained in Section 3 has been implemented into 

SNAC, a finite element code developed by the geomechanics group at the University of
Newcastle, Australia. SNAC was used to analyse the two numerical examples presented in 
this section.

5.1 One-dimensional finite elastic consolidation
In order to validate the coupled formulation presented here, we study a 10 m deep column 
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of fully saturated soil and we compare the results with available analytical and numerical 
solutions. Figure 1 shows the geometry of the problem as well as the boundary conditions 
and applied load types. To simulate one-dimensional behaviour all nodes are restrained in the 
horizontal direction. Drainage can only take place through the top boundary of the model.

Load type: a

Load type: b

Load type: c

Figure 1: One-dimensional dynamic consolidation problem

de Boer15 presented an analytical solution for a one dimensional transient wave 
propagation problem under a time-dependent load assuming small strains, an elastic material 
model and an incompressible pore fluid. The response of the soil column to step loading 
(type a) as well as a sinusoidal loading (type b) is investigated here. The material parameters 
are in accordance with de Boer15, i.e., the Young’s modulus of the soil is E = 30MPa, 
Poisson’s ratio υ = 0.2, the soil porosity n = 0.33 and the permeability k = 0.01m/s. Figure 2a 
shows the vertical displacement of the soil column versus time due to load type (a) and at 
depths 0.0 and 1.0m, whereas Figure 2b depicts the response of the pore water pressure at 
different depths and times. Figure 2 shows that the results obtained in this study are in good 
agreement with the analytical solution. For the case of a sinusoidal load, the pore water 
pressure response is plotted versus time in Figure 3, which indicates negative values (suction) 
in the vicinity of the loading surface. According to de Boer15 this result is due to the recovery 
of the elastic skeleton matrix close to the surface during the sinusoidal loading, where the 
pore water does not squeeze out but is absorbed into the pores accompanied by fluid suction.
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            (a) (b)

Figure 2: (a) Vertical settlement under step loading vs. time. (b) pore pressure profile of the soil column at 
different times. 

Figure 3: Response of pore water pressure vs. time to sinusoidal loading
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To assess the large deformation capability of the code, the soil column was subjected to a 
uniformly distributed step load q at the free surface according to the load type (c) illustrated in 
Figure 1. Five load levels of 0.2E, 0.4E, 0.6E, 0.8E, and 1.0E were applied on the column, 
and the predicted results are compared with those reported by Meroi et al16. We assume 
E = 1GPa, υ = 0.0, n = 0.3 and k = 0.01m/s. The applied pressure normalised by E is plotted 
versus the total consolidation settlements (at large time) normalized by the column depth (H)
in Figure 4.  The results obtained by SNAC are compared to those reported by Meroi et al.16

Figure 4: Normalised vertical settlement s versus load level.

5.2 Undrained analysis of a strip footing
In the second example an undrained soil layer under a rough rigid footing is considered. The

mesh for the right half of the problem and the boundary conditions are shown in Figure 5. 
The mesh consists of 872 6-node plane strain triangular elements and 1817 nodal points. In 
this example we investigate the ability of the dynamic consolidation formulation to predict the 
undrained deformation response of the soil undergoing a dynamic load and large 
deformations. First we assume that the soil behaves as a Tresca material model under 
undrained conditions and we only consider the displacement degrees-of-freedom in the 
analysis. A non-associated Mohr-Coulomb material model is then used to predict the soil 
response by conducting a coupled consolidation analysis. Assuming zero initial geostatic 
stresses, the drained and undrained material properties of the soil must satisfy the following 
equations 17

𝐸𝐸𝑢𝑢 =
3𝐸𝐸′

2(1 + 𝜗𝜗′)
 

(26)

𝑐𝑐𝑢𝑢
𝑐𝑐′

=
2√𝑁𝑁∅

1 + 𝑁𝑁∅
 (27)

where the subscript u and the superscript ' denote an undrained and a drained quantity, 
respectively, c represents the cohesion of the soil, φ is the friction angle, E is the Young’s
modulus of the soil, 𝜗𝜗 is Poisson’s ratio and Nφ is obtained according to
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To assess the large deformation capability of the code, the soil column was subjected to a 
uniformly distributed step load q at the free surface according to the load type (c) illustrated in 
Figure 1. Five load levels of 0.2E, 0.4E, 0.6E, 0.8E, and 1.0E were applied on the column, 
and the predicted results are compared with those reported by Meroi et al16. We assume 
E = 1GPa, υ = 0.0, n = 0.3 and k = 0.01m/s. The applied pressure normalised by E is plotted 
versus the total consolidation settlements (at large time) normalized by the column depth (H)
in Figure 4.  The results obtained by SNAC are compared to those reported by Meroi et al.16

Figure 4: Normalised vertical settlement s versus load level.
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undrained conditions and we only consider the displacement degrees-of-freedom in the 
analysis. A non-associated Mohr-Coulomb material model is then used to predict the soil 
response by conducting a coupled consolidation analysis. Assuming zero initial geostatic 
stresses, the drained and undrained material properties of the soil must satisfy the following 
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𝑁𝑁∅ =
1 + 𝑠𝑠𝑠𝑠𝑠𝑠∅
1 − 𝑠𝑠𝑠𝑠𝑠𝑠∅

 (28)

The material parameters used here are E’/c’=200, 𝜗𝜗′=0.3, φ’ =20 and hence Eu /cu=245, φu=0
(the angle of dilation), with 𝜗𝜗=0.49 to simulate elastic incompressibility.  A unit mass density 
is assumed for the soil. In the undrained analysis the load is applied at a rate of 15cu/s, i.e., a 
total uniform pressure 15cu is applied on the footing in 1 second. The settlement of the 
footing, normalised by its half width, is plotted versus the applied pressure, normalised by cu,
in Figure 6. A clear collapse load, similar to the Prandtl’s undrained collapse load at small 
strain, q = 5.14cu, is not identifiable in this analysis. The higher soil stiffness predicted by the 
dynamic analysis results from inertia effects alone since material rate effects have not been 
considered in this analysis.

Figure 5: Rigid rough footing on a cohesive soil layer.

Similar analysis was performed utilizing the dynamic coupled consolidation algorithm with 
drained Mohr-Coulomb parameters, including a dilatancy angle of zero, to represent the 
behaviour of the soil skeleton. The soil response obtained from the dynamic consolidation 
analysis is also depicted in Figure 6. The results obtained from both analyses are in excellent 
agreement. It is worth noting that the large deformation results presented in Figure 6 were
obtained by the ALE method and the UL method could not simulate the dynamic response 
under rapid loading due to the severe mesh distortion.
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Figure 6: Load-displacement curves

6 CONCLUSIONS
A numerical procedure for the analysis of dynamic consolidation problems involving 

material nonlinearity as well as geometrical nonlinearity was presented in this study. 
Dynamic coupled equations were discretised in the time domain by using the generalized-α
method, and the numerical algorithm was implemented in a finite element code. For the 
problems solved, the numerical results are in a good agreement with results available in the 
literature and analytical solutions. Also, it was shown that the generalised-α method can be 
used in large deformation analysis of consolidation problems with dynamic loads.
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Abstract. The paper is focused to a determination of spatial passive earth pressure (soil 
resistance) in the embedded part of the soldier pile. The analysis of 3D passive earth pressure 
is done numerically in software Plaxis 3D Tunnel v 2.2. The analysis of 3D passive earth 
pressure (soil resistance) is done for cantilever soldier pile walls in sand. The parameters for 
constitutive models were calibrated based on laboratory tests (triaxial – CD and oedometric 
tests). Hardening soil model is used in analysis. Outputs of the numerical analysis present a 
comparison for the resulting passive earth force in case of different b/d ratios and different 
angles of internal friction, parameter ωR which is used in approach by Weissenbach and 
finally the magnitude of 3D passive earth pressure coefficients (KP,3D) for different soldier 
pile distance (L), embedment depth (d) and angles of internal friction (ϕ´). Numerical analysis 
showed that the 3D passive earth pressure is higher than currently presented approach by 
Weissenbach. The other present theories don’t take to account the behaviour for higher 
slenderness ratio and influence adjacent soldier pile no way. 

 
 

1 INTRODUCTION 
Passive earth pressure analysis plays an important role in geotechnical design process. 

Primarily, it is a spatial effect which is significant for local structural elements analysis (for 
example soldier pile, piles with long axial distances etc.) and therefore it might be important 
for designers and engineers to gain new knowledge and information about this problem. The 
topic of spatial passive earth pressure has been analysed by various authors who used three 
different methods: the limit equilibrium method, the slipe-line method and the limit analysis 
method. The first mentioned method is used by Blum [2] for analysing the 3D passive earth 
pressure. The resulting force of passive earth pressure is defined by 







 ++






 +=

246242
1 2

3
22

,
φπγφπγ tgdbtgdE BlumPh

 
(1) 

The disadvantage of Blum solution was, that interface between soil and structural element 
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was neglected and also the shape of 3D wedge was simplified. The author who firstly 
analysed the soldier pile wall was Weissenbach [10]. Weissenbach divided relation for 
determination of 3D earth passive pressure to two components. The first component includes 
the unit soil weight and the second equation member includes the cohesion of soil. He defined 
parameters ωR and ωK, which depend on the embedment depth (d) and width (b) of structure 
element and angle of internal friction of soil. In 1964 Ovesen [3] performed number of test on 
using dense sand. He found out that 3D passive earth pressure is significantly influenced by 
the structure element thickness. He also found out that structural members with smaller width 
give significantly higher passive earth pressures than it has ever been considered.  

Another theory, limit analysis applying upper bound limit theorem, is widely used for 
determination of 3D earth passive earth pressure in the present. This theory was firstly applied 
by Soubra and Regenass [6]. Their calculations were based on determination of kinematically 
admissible multi-block failure mechanism, which consisted of one ore more rigid blocks. The 
blocks were labeled as „one-block, multiblock a truncated multiblock“. The last-mentioned 
block is based on reduction of „multiblock“ mechanism. The upper bound theorem within the 
framework of limit analysis theory is also considered in research works done by authors 
Škrabl, Macuh [7], Vrecl-Kojc, Škrabl [9] and Škrabl [8]. First mentioned authors took into 
account rotational failure mechanism. This mechanism is bounded by logarithmic spiral in 
vertical section and by hyperbolic shape in plan. On the contrary, Vrecl-Kojc, Škrabl [9] 
continued the work of Soubra a Regennas [6], who used translational failure mechanism, and 
they slightly modified it. The results of this analysis showed that the passive earth pressure 
coefficient is lower in comparison with Soubra and Regennas. These results were also 
confirmed by Škrabl [8] who updated his previous model using non-linear passive earth 
pressure distribution on non-rigid structural element. 

Previously mentioned procedures used the change of structural element width to 
determinate the passive earth pressure coefficients for different d/b ratio. However, this 
procedure is not appropriate for soldier pile walls, where the change of embedment depth is 
more dominant than structural element width change.  

The article is focused on the analysis of passive earth pressure for geotechnical structures 
where 3D effect is predominant (for example: soldier beam wall – Fig. 1). The above 
mentioned authors determined the 3D passive earth pressure for ratio b/d > 0,25. Benmebarek 
et al. [1] used minimal b/d ration 0,1. In our study, ration b/d < 0,14 has been taken into 
account. This range of b/d ratio is more common in case of using soldier pile walls, where a 
soldier pile is actually a slender structural element (usually I, IPE or HEB profile). For these 
small rations comparison of the resulting passive earth pressure force is done. It is compared 
with theory of Weissenbach [10] - (2) and Blum [2] - (1). 

23
, 2

2
1 ddE KRhWeissenbacPh αωγω +=

 
(2) 

The resulting passive earth pressure force in our study is determined from 3D numerical 
analysis, which is briefly described in the next chapter. 
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Figure 1: Scheme of soldier beam wall 

2 NUMERICAL MODELS 
The numerical calculations were done in software Plaxis 3D Tunel V2.4. The only one 

soldier pile is modelled and horizontal distance between them is done the width of model 
(Fig. 4). The width of soldier pile is 275 mm and it is supposed as very stiff. The soldier pile 
is installed in sand. The variable parameters are horizontal distance between soldier pile L (1; 
1,5; 2; 2,5 and 3 m), embedment depth d (1;2;3m) and angle of internal friction ϕ 
(30°;35°;40°). The numerical analysis .The interface between soldier pile and soil is neglected 
in our analysis (δ/ϕ = 0). The movement of soldier pile was the same longwise of embedment 
depth and the movement was done by function horizontal incremental. The output was 
resulting force of passive earth pressure which corresponded to stabilization of activation 
force during increasing movement of soldier pile.  

2.1 Input parameters 
Numerical modelling has been carried out in sand and for the description of the soil the 

Hardening soil model – HS (Fig. 2) has been used. The sand was classified according to EN 
ISO 14688-1 as "Sa". The void ratio was e = 0.524 in the natural state [11]. The sample was 
taken to conduct an extensive and complex laboratory tests to determine the input parameters 
for selected constitutive models. Oedometer, shear box and triaxial (CD test) test were 
performed on the samples. Oedometer test was used to determination of modulus Eoed

ref for 
HS model with the reference stress pref = 100 kPa. The result from oedometer and its 
calibration of HS model is shown in Fig. 3a. Angle of friction ϕef and the cohesion cef were 
determined from shear box test. Triaxial CD test was used to determination of reference 
modulus E50

ref and Eur
ref for HS model with the reference stress pref = 100 kPa. In order to 

determine Eur
ref parameter, unloading of the sample was carried out. Figure 3b shows stress-

strain diagram from experiment (blue line) and calibrated stress – strain diagram with usage 
HS model. The laboratory tests were done in the geotechnical laboratory of the Faculty of 
Civil Engineering, Brno University of Technology. 
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a) Hyperbolic stress-strain relation b) Soil plasticity surface for cohesionless soil 

Figure 2: Hardening soil model [4]
 

a) Oedometer test - stress-strain diagram b) Triaxial test - stress-strain diagram 
Figure 3: Laboratory test and calibration

 
The input parameters for Hs model are summarized in Table 1. 

Table 1: Input parameters for sand 

γunsat E50
ref Eoed

ref Eur
ref m c´ ϕ´ νur Rf pref 

[kN/m3] [MPa] [MPa] [MPa] [-] [kPa] [°] [-] [-] [kPa] 

17,6 22,567 11,22 59,14 0,50 0,1 40 0,2 0,8 100 

2.2 Description of numerical calculations  

For 2D calculations the plane strain condition is considered. General tensor of proportional 
deformations consists of 6 terms (3) in plane by equitation (4) reduce to triple tensor (5). 

{ }3 ; ; ; ; ;T
D xx yy zz xy yz xzε ε ε ε γ γ γ=  

0zz
w
z

ε ∂
= − =

∂
; 0yz

w v
y z

γ ∂ ∂
= − − =

∂ ∂
; 0xz

w u
x z

γ ∂ ∂
= − − =

∂ ∂
 

{ }2 ; ;T
D xx yy xyε ε ε γ=  

(3) 

(4) 

(5) 

 
The restrction of the deformation in the plane of retaining system cannot take into account 
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spatial character of the earth pressure under the bottom of the excavation with limited 
effective width. It leads to the conservative calculation of the passive earth pressure which can 
flow into non-economic design of such a retaining structure. For the purpose of examination 
of the passive earth pressure redistribution under the bottom of the excavation, the software 
Plaxis 3D Tunel v 2.2 has been used. For the example analysis the cut-out from the 
excavation pit with the high of 4m has been modelled. The example has been modelled as 
symmetrical with the axis in the middle distance between the soldier piles. The soldier piles 
have been embedded 2m, 3m and 4m under the bottom of the excavation.  The distance of the 
soldier piles in the spatial analysis has been 1,0m; 1,5m; 2,0m; 2,5m and 3,0m. The soldier 
pile has been modelled as stiff element with the plan dimensions 275x275mm. The 
dimensions of 3D models are 10,25m (high), 13,5m (depth) and width is variable. The 
number of elements varies from 6030 to 7596. In the calculations only a part under the bottom 
of the excavation has been modelled mainly because of the time savings. The part above the 
bottom of the excavation has been substituted by equivalent geostatic stress.  When 
considering the excavation pit 4m high and the bulk density 20kN/m3 of the soil above the 
bottom, the upper edge of the models has been loaded by the distributed load of 80kPa. Figure 
4 represent 3D model with the distance of the soldier piles 3,0m and the embedded depth of 
4,0m. 

 
Figure 4: Different views on numerical models 

In order to mobilise passive earth pressure the soldier pile has been subjected to prescribe 
deformation. This prescribe load has been increasing until the steady state of the passive 
force. The construction staged are summarised in Table 2. 

Table 2: Construction sequences 

ID Name of Stage Note 

1 Initial conditions For simulation of geostatic stress above the bottom of 
excavation POP=80kPa 

2 Soldier Pile Construction Staged construction 
3 Primary prescribe deformation – 5mm Staged construction 
4 Increasing of prescribe deformation  Staged construction - incremental multipliers, Mdisp=2,0 
 
The variations of the calculations in the parametrical studies are summarised in the Tab. 3. 
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Table 3: Description of performed calculations 

3 RESULTS AND DISCUSSION 

In the previous studies and analysis, primarily, small slenderness ratios were taken into 
account and the interaction between the adjacent structural elements was not considered (Fig. 
5). The objective of the performed numerical analysis in this study was to investigate just the 
range of higher slenderness. Blum approach [2], Weissenbach approach [10] and partially 
Benmebarek et al. [1] should be used for comparisons because their researches partially 
covers the range of higher slenderness, but still without taking into account the interaction 
between the adjacent passive wedges. Only exception is the theory derived by Weissenbach 
which is used in German standard in order to design the soldier beam walls.  

In the first step, the comparisons for the resulting passive earth force Eph in case of 
different b/d ratios and different angles of internal friction were done (Fig. 6÷8). The 
numerically determined values of Eph forces are then compared with resulting passive forces 
calculated by Weissenbach approach [10]. The values of Eph forces are calculated for two 
cases. Firstly, the adjacent passive wedges overlap each other (6a). Secondly, the adjacent 
passive wedges do not overlap each other (6b). The value of Eph (1) force calculated by Blum 
[2] is also shown in the graphs. 

L < 0,5d  ∧  δ = 0 ⇒ phphphph KcdLE =⇒=∧⋅⋅⋅⋅= ωωγ 0
2
1 2  

L ≥ 0,5d  ∧  δ = 0 ⇒ [ ]50
2
1 3

Rrph cdE ωωγ ∧=∧⋅⋅⋅=  

(6a) 

(6b) 

The analysis confirmed that the effect of adjacent elements is not negligible. It is apparent 
from the results that the increase of soldier pile distance for constant b/d ratio causes also the 
passive earth force increase. This tendency is related to the overlapping of passive wedges for 
the case of small soldier pile distances L. The results also showed rapid rise in passive force 
for lower b/d ratio. There is a reasonable consistency in resulting forces between computed 
results and results according to Weissenbach [10]. Blum [2] indicates lower forces values in 
contrary to the numerical results. It is probably caused by the fact that the simplified passive 

ID-3D ϕ´ (°) L (m)  t (m) 
1a; 1b; 1c 30,35,40 1,00 2,00 
2a; 2b; 2c 30,35,40 1,00 3,00 
3a; 3b; 3c 30,35,40 1,00 4,00 
4a; 4b; 4c 30,35,40 1,50 2,00 
5a; 5b; 5c 30,35,40 1,50 3,00 
6a; 6b; 6c 30,35,40 1,50 4,00 
7a; 7b; 7c 30,35,40 2,00 2,00 
8a; 8b; 8c 30,35,40 2,00 3,00 
9a; 9b; 9c 30,35,40 2,00 4,00 

10a; 10b; 10c 30,35,40 2,50 2,00 
11a; 11b; 11c 30,35,40 2,50 3,00 
12a; 12b; 12c 30,35,40 2,50 4,00 
13a; 13b; 13c 30,35,40 3,00 2,00 
14a; 14b; 14c 30,35,40 3,00 3,00 
15a; 15b; 15c 30,35,40 3,00 4,00 
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wedge geometry is used in Blum solution. 

 
Figure 5: Scheme - influence of adjacent passive wedges 

In the second step we focused on the parameter ωR determination which used Weissenbach 
in his approach in order to affect spatial character of the passive earth pressure in case of 
analysing the constructions with limited width. This parameter was derived from (6a and 6b) 
where numerically calculated value of Eph was substitute to the left part of the equation. Zero 
cohesion was assumed in soil parameters; the second equation member is therefore equals to 
zero. The numerically determined values of ωR coefficient were compared again with values 
according to Weissenbach (Fig. 9÷11). It is apparent form the results that the ωR values are 
directly proportional to the soldier pile distance, which confirms previous statement that the 
passive earth force is directly proportional to the soldier pile distance. The numerically 
determined values of ωR are higher in comparisons with values by Weissenbach. These 
difference results in higher passive earth forces in case of FEM analysis. This tendency is 
even more evident for higher b/d ratio.  

 

Figure 6: Comparison of Eph with Weissenbach and 
Blum for φ = 30° and δ/φ = 0° for different values of 

b/d ratio. 

Figure 7: Comparison of Eph with Weissenbach and 
Blum for φ = 35° and δ/φ = 0°  for different values of 

b/d ratio. 
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Figure 8: Comparison of Eph with Weissenbach and 

Blum for φ = 40° and δ/φ = 0°  for different values of 
b/d ratio. 

Figure 9: Comparison of ωR with Weissenbach and 
Blum for φ = 30° and δ/φ = 0° for different values of 

b/d ratio. 

Figure 20: Comparison of ωR with Weissenbach and 
Blum for φ = 35° and δ/φ = 0° for different values of 

b/d ratio. 

Figure 31: Comparison of ωR with Weissenbach and 
Blum for φ = 40° and δ/φ = 0° for different values of 

b/d ratio. 

The last step of the analysis was determination of 3D passive earth pressure coefficients 
(KP,3D) for different soldier pile distance (L), embedment depth (d) and angles of internal 
friction (ϕ´). Using KP,3D (7) coefficients instead of ωr might by also  the way how to involve 
the spatial effect in 2D solution. 

2
ph p,3D

ph
p,3D 2

1E d b K
2

2 E
K

d b

γ

γ

= × × × ×

×
=

× ×

 (7) 

The computed values of passive earth coefficient KP,3D are listed in Table 4. The table shows 
that the passive earth pressure coefficient value are not only depended on distance L and angle 
of internal friction ϕ´, but also on the embedment depth d. For large values of embedment 
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length d, the 3D effect decrease the value of KP,3D for small distances L. The rate of 
decreasing is also affected by angle of internal frictionϕ. Note: In all presented analysis is 
values of soil-wall interface friction δ/φ = 0°. 

Table 4: Kp,3D coefficient 

1 1,5 2 2,5 3
30° 22,92 28,41 32,52 36,04 39,34
35° 31,18 37,57 44,18 50,33 55,35
40° 37,64 50,33 57,24 65,10 72,51
30° 22,99 28,48 32,96 36,07 37,15
35° 31,58 38,54 45,93 49,04 52,30
40° 38,86 51,67 59,11 65,15 69,10
30° 23,90 28,76 32,21 31,90 32,28
35° 35,43 42,02 46,79 47,49 46,86
40° 43,61 54,88 60,72 66,94 68,93

Lφb/d

0,14

0,09

0,07

 

4  SUMMARY AND CONCLUSIONS  

Set of 3D numerical models were created in order to analyse the distribution of passive 
earth pressures behind the soldier pile wall, which is a truly spatial phenomenon. Parallel 
horizontal prescribed displacement with no rotation was applied on the soldier pile. Soldier 
pile was modelled as a rigid member. The interface elements were not used. The FEM 
calculation results are presented in form of passive earth forces. 

The passive earth pressure increase with increasing soldier pile distance. This is due to the 
passive wedges overlapping. Passive earth force also grows exponentially with increasing 
slenderness. Calculated forces are in reasonable match with Weissenbach [10]. Blum [2] 
indicates lower forces values in contrary to the numerical results. 

Numerical analysis have showed, that the coefficients ωR respectively ωph are directly 
proportional to the soldier pile distance, which is in agreement with Weissenbach, however 
Weissenbach underestimates the ωR respectively ωph values in comparisons to the numerical 
results. The differences are bigger for higher values of slenderness. 

Final part of the article was focused on comparison of passive earth pressure coefficients 
Kp3D for different soldier pile distances and embedment length. It is obvious from the result 
that coefficient Kp3D is directly proportional to the soldier pile distance. The differences are, 
however, smaller for bigger soldier pile distances, because of the fact, that passive wedges 
doesn´t influence each other for bigger distances and they start to be independent on soldier 
pile distance. 

For further research, parametric study with non-zero soil-wall friction angles, with another 
type of deformation (rotation) and also with considering non-rigid soldier pile will be 
undertaken. Spatial passive earth pressure for cohesive soils will be also analysed. 
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SYMBOLS 

b ...  Width of soldier pile (m) 
c ...  Cohesion, effective (kPa) 
d ...  Eembedment depth (m) 
Eoed

ref ...  Tangent  stiffness for primary oedometer loading (kPa) 
E50

ref ... Secant stiffness in standard drained triaxial test (kPa) 
Eur

ref ...  Unloading/reloading stiffness (kPa) 
Eph ...  Resulting passive earth pressure force (kN) 
KP,3D ...  3D passive earth pressure coefficients 
L ...  Horizontal distance of soldier pile (m) 
m ...  Power for stress-level dependency of stiffness (-) 
Rf ...  Failure ratio (-) 
γ ...  Unit weight of soil (kNm-3) 
ϕ ...  Angle of internal friction, effective (°) 
ν ur ...  Poisson´s ratio for unloading-reloading (-) 
ωR/ωph... Coefficient by Weissenbach 
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Abstract: The paper, based on ANSYS/LS-DYNA software, made a computational study on 
the overload characteristic curves of projectile penetrating metal objects. Adopting Lagrange 
method, Lagrangian-Eulerian coupling algorithm and SPH method, respectively, simulated 
the over-load characteristics of projectiles penetrating single-layer steel plates and multi-layer 
steel and aluminum alloy plates. The results affirmed that the curves agreed well with each 
other. The curves reached its peak during every penetrating layer and the accelerator peak 
declined with layers increasing. And the overload value fluctuated around zero during the 
penetrating interval. The fact, gained from the velocity curves, was that it dropped gradually, 
however, reached a plateau during the interval, suggesting that the velocity kept constant, and 
overload value came to zero. The simulation and the experimental results of penetrating the 
multi-layer aluminum alloy plates were in well accord. Besides, the overload curves shared 
the same trends with penetrating the multi-layer steel plates. 
 
 
1 INTRODUCTION 

As for studies about penetrating, consulting the references available, no matter 
experimental and simulation study, mechanism study gained the major focus. Nesterenko et al 
[1], using the steel-made columned and conical projectiles to penetrate into the targets of 
Ti–6Al–4V alloy, study the microstructure, and analyzed its effect on the anti-penetration 
property. Bøvik et al [2-6] and Dey et al [7-9], made a series of computational simulations 
and experiments to penetrate the Weldox 460 E steel plates systemically, to investigate the 
size effect. And Bøvik et al [10-11] also made some studies about penetrating the 
AA5083-H116 and AA6005-T6 plates. Besides, Gupta et al [12-13] focused on the 
penetrating mechanism changes ascribed from the projectiles’ figure, plates’ thickness, by 
using the penetrating experiments of 1100-H12 aluminum alloy plates with thickness below 
3mm. The studies concentrated on the distortion mechanism of the targets and the projectile 
velocities after penetrating, but it would be difficult to get the overload characteristic curves 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 
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from the results, especially, the projectile overload curves could be seldom offered in the 
simulation study.   

Based on the actualities, the paper, based on the ANSYS/LS-DYNA code, made studies 
about the overload characteristic curves by simulating the penetrating steel, aluminum alloy 
plates with different layers. 

2. THE SELECTION OF CONSTITUTIVE MODELS 

(1) Projectile  
In order to get fine comparisons with experimental results[14], projectiles, which were made 
of 35CrMnSiA, with weight 3.2 kg，diameter 62 mm, length  215 mm，and its head arc 
semi-diameter 70 mm，impacted the target plates with the speed 800 m/s.  
 
(2) Target plates 
The target plates, were made of 45# steel, with the size of 10 mm×1200mm×1200mm. 
 
(3) Ascertaining material model and parameters 
The plastic Kinematic Model in the LS-DYNA code was adopted, with rate enhancement 
Cowper-Symonds model [15]. Table.1 showed the materials parameters after consulting Hu 
Changming et al [15]. 
 

Table.1: The materials parameters of projectiles and the target plates [15]

Materil 
Density 

/（kg/m3） 
Modula 

/GPa 

Yield 
strength 

/MPa 

Plastical harding 
modula/GPa 

Passion 
ratio 

35CrMnSiA 8.0×103 206 1 275 2.0 0.284 
45#steel 7.85×103 200 496 0.5 0.28 

3 OVERLOAD CURVES SIMULATIONS DURING PENETRATING 

3.1 penetrating the single steel plate with the thickness 10mm 

Adopting Lagrange method, Lagrangian-Eulerian coupling algorithm and SPH method in 
LS-DYNA code, simulated penetrating and got the over-load characteristic curves, in 
consequence 
(1) Lagrange method 
Considering the ratio of the target plate to the projectile diameter, and for optimal 
computation, a relevant axial symmetry model was built with the adoption of 4-node-2D axial 
symmetry mesh. And the section along the thick direction of the target plate model was 
divided into 24 meshes, which adopted single point integrals and sandglass control. The 
chart.1 showed the penetrating model and the local meshes schematically. And plastic 

 2  
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Kinematic model were selected for the projectile and target plate material.   
 

     

(a) Sketch map of penetrating steel plate               (b) Local meshes
Chart 1: Penetrating model and the local meshes of Lagrange method axial symmetry model

 
The over load curves, gained from computational simulation, was showed in Chart.2, 
displaying that over load peak reached about 93,000g, and the length of the pulse came to 
about 60 μs. 
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Chart 2 : Overload curves got from Lagrange method axial symmetry model
 
(2) Lagrangian-Eulerian coupling algorithm 
The whole model was divided into single-node integration hex meshes, and a quarter was 
used to make computing simulation, just for optimal computation. The center section of the 
target plate was compartmentalized densely into Eulerian finite meshes. Chart.3 gave the 
schematic of the whole projectile mesh, and the diagram of penetrating the target plate at 120 
seconds, respectively. 
 

 3  
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          (a) The whole projectile mesh             (b) Penetrating the target plate at 120s
Chart 3 : Schematics of penetrating the steel plate using Lagrangian-Eulerian coupling algorithm 

 
And the result of the computational simulations, showed in Chart.4, told that, the overload 
peak came to 92,000g around, with about 60μs’ pulse length.  
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Chart 4 : Overload curve from Lagrangian-Eulerian coupling algorithm 

(3) SPH method 
The center section of the target plate with the dimension of 100mm×100mm×10mm was defined as 
SPH particles, with the number of 100×100×10 respectively. The rest were divided by Lagrangian 
hexahedron mesh. The contact between particles and lagrangian mesh was defined as boundary contact, 
whereas the contact between particles and projectile was defined as the contact of node to face. The chart 5 
showed the schematic of the penetrating process. 
 

 4  
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Chart 5 : the penetrating process by SPH method 

The overload curve of the simulation, shown as chart 6, revealed the maximum of the 
acceleration can reached about 90 000, with the pulse length of 60μs around. 
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Chart 6 : the overload curve by the SPH method  

 
Comparing with the over-mentioned results, rather difference could be found between the 3 
methods. The axial symmetry model have predominated for its rather small computational 
amount and enough complexity. Thus, the axial symmetry model would be elected in the 
following simulations. 

3.2 The investigation into the overload curves of penetrating multi-layer steel plates 

Same to the above-mentioned conditions, over load curves were simulated to investigate into 
the penetrating into the multi-layer steel plates. The model diagram were shown as Chart 7, 
with the gap 250 mm, the thickness of 14 mm、10 mm for two layers、three layers steel plates 
respectively. 
 

 5  
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               (a) 2 layers steel plates                 (b) 2 layers steel plates

Cahrt 7 : The model diagram of penetrating multi-layer steel plates 
 

 

     (a) 2 layers steel plates                         (b) 3 layers steel plates 
Chart 8 : The distortion schematic after penetrating multi-layer steel plates 

 
Chart.9 and 10 displayed the overload curves and velocity curves after penetrating two typical 
plates shown as the above charts.  
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    (a) Over load curve                            (b) Velocity curve 
Chart 9 : The over load and velocity curves of penetrating two layers steel plate
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(a) Over load curve                             (b) Velocity curve 

Chart 10 : The over load and velocity curves of penetrating three layers steel plate
 
The chart.9 and 10 displayed that three distinct peaks could be gained during the penetrating 
each layer (shown as (a)), and the accelerator sharply descend as the layer increased. During 
the penetrating interval, the over load fluctuated around zero. Besides, the velocity curve 
revealed that, during the penetrating each layer, the curve value dropped linearly, whereas 
during the interval, the value came to a plateau which explained the values kept about 
constant and the over load value went down towards zero. 

3.3 The simulation of penetrating the multi-layer aluminium alloy plates 

(1) Establishing model 
45# mild steel was elected as the projectile material, and the projectile was modeled with the 
diameter of 12.7mm, length of 51mm, the mass of 48.5g, and the half ball head. The target 
plate was modeled as a sandwiched structure, made of the two layers (LY12-CZ, and 2mm in 
thickness), and foam core (10mm in thickness) sandwiched within the layers. The dimension of 
the target plate is 300 mm×300 mm×(2 mm+10 mm+2 mm). The Plastic Kinematic Model was elected 
as the material model for the projectile and the target plate. LY12-CZ was adopted as no strain rate effect. 
The table 2 showed the material parameters. 
 

Table. 2: Materials parameters 

Material 
Density 
/ kg/m3

Modula 
/GPa 

Yield strength 
/MPa 

Plastical 
harding 

modula/GPa 

Passion 
ratio 

LY12-CZ 2 780 72 345 0.69 0.3 
foam 200 0.9 8.3  0.33 

45# steel 7 850 200 496 0.5 0.28 

 7  
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(2) Computational model 
As shown as the chart 11, a quarter of the whole model was used for simulation, and the 
impact section (within the three times of the projectile diameter) was compartmentalized 
densely in order to ensure the enough accuracy. The rest was divided normally for proper 
computational amount. 
 

                                       

Chart 11 : finite element model of penetrating the aluminum alloy plate

(2) Computational results 
The table 3 showed the experimental initial velocity, residual velocity and the computational 
residual velocity. 
 

Table.3: Comparisons between experimental and\ simulation results of penetrating sandwiched plate/ (m/s) 
 

Initial velocity Residual velocity（Exp.） Residual velocity（Com..） 
191.3 169.8 155
93.4   
104.5   
109.2 26.4 32 

Sandwiched 
plate 

73.0   
 
Abstracted from the table 3, the conclusion was that the simulation velocity went to the 
experimental velocity very nearly, thus the computational simulation could captured the 
experiments well. 
The accelerator curves and velocity curves were shown as chart 12, gain from the simulation 
with the initial projectile velocity from 109 m/s, 191 m/s and 250 m/s. 
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  (e) Accelerator curve（v=250m/s）           (f) Velocity curve（v=250m/s）
Chart 12 : Model I simulation results 
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The chart 12 displayed that the over load peaks increased sharply with the initial velocity 
gaining, resulting in the penetrating time shortening. During the penetrating with the initial 
velocity of 109 m/s, the accelerator value could reach 38,000g around for the first peak, the 
second could drop to about 30,000g, and the whole penetrating time could span about 0.44ms. 
As for the initial velocity of 191 m/s, the accelerator value could reach 45,000g around for the 
first peak, the second could drop to about 35 000g, and the whole penetrating time could span 
about 0.18ms. For the initial velocity of 250 m/s, the accelerator value could reach 78,000g 
around for the first peak, the second could drop to about 62,000g, and the whole penetrating 
time could span about 0.12ms. 

4. CONCLUSION 

(1) Based on the Lagrange method, Lagrangian-Eulerian coupling algorithm and SPH method, 
the computational results were in satisfactorily agreement among them. 
(2) Simulating penetrating the multi-layer steel with certain distance, the results explained 
that the over load value reached its peak within penetrating the each layer, and the accelerator 
value dropped with the layer increasing. But during the interval, the over load values 
fluctuated about zero. Abstracted from the velocity curves of penetrating each steel plate, the 
curve descended linearly, whereas, the curve reached a plateau within the interval, meaning 
the velocity kept constant, and the over load value went to zero. 
(3) Comparing with the experimental and simulation results from penetrating the foam core 
sandwiched with two layers, the results were in well agreement. The computational overload 
curve shared the same trend with the penetrating the multi-layer steel plate. 
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Abstract. The proposed paper presents a numerical study on the formation of shear bands at 
localized regions in two ferrite steel alloys, HSLA-65 and DH-36, subjected to certain range 
of velocity impact. Constitutive relations developed by the author [1] for ferritic steels is 
utilized in simulating the thermal and athermal parts of the flow stress over a wide range of 
temperatures and strain rates. The proposed plasticity model is implemented into the 
commercially well-known finite element software ABAQUS through VUMAT user 
subroutine. This implementation enables studying the shear band formation over a wide range 
of initial temperatures and strain rates in a cylindrical hat-shaped specimen with certain 
dimensions where the location of shear localization preceding shear band formation is forced 
to be between the hat and the brim. Sensitivity analysis is performed on different mesh 
configurations in order to select the optimum mesh. Another sensitivity analysis is also 
performed on the constitutive plasticity model material parameters to study their effect on the 
shear bands formation. Several conclusions related to the width of the shear bands considering 
the velocity load and initial temperatures will be discussed throughout this work.     

 
 
1 INTRODUCTION 

Numerous studies on the formation of shear bands (shear localization) were conducted due 
to their importance as deformation mechanism especially during high speed loading (i.e. 
impact loading). The high concentration of strains in a particular location of a steel structure 
is a physical phenomenon that can be observed in reality and in laboratory testing. Areas of 
high strain concentrations can be developed in specimens prepared in the lab and tested under 
wide range of strain rates and temperatures. Even when the strain rate is low, the increase of 
plastic strains in the areas of strain concentration is fast and associated with higher than 
average dissipation of energy. Studying the development of shear bands is very important 
because they dominate the deformation and fracture modes in many metals. It is usual to 
observe strain localization in ductile materials like metals, but also can be observed in 
composite structures made of brittle and ductile components. The newly developed physically 
based constitutive viscoplastic model by the author [1] is utilized in investigating shear 
localization in ferrite steel over wide range of temperatures and strain rates. This proposed 
model is implemented in the well-known commercial finite element software ABAQUS 
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through the material subroutine VUMAT. This implementation is utilized in this study to 
investigate the dynamic simulation of adiabatic shear localization in a cylindrical hat-shaped 
sample where large shear strains are generated in a small region during compression mode 
[2]. 
Two high strength steels were considered in the proposed comparisons: DH-36 and HSLA-65 
that are used in naval and other structural applications. They may be subjected, in their naval 
use, to high-rate loading due to collision or impact which, in turn, requires high toughness and 
high strength under variable conditions including various temperatures and strain rates. High 
strength low alloy (HSLA) steels were first used in 1960s by developing alloy of low-carbon 
steels with Niobium (Nb), Vanadium (V) and Titanium (Ti). HSLA-65 was recently 
developed with 65 ksi (450MPa) yield strength allowing the use of thinner plates to reduce 
the weight of the structure. DH-36 is commonly used in the manufacture of vessels and 
submarines. As ship hull steel, especially in high-speed sealift vessels, it may be subjected to 
high-rate loading due to collision, impact, or explosion. The major alloy content of the two 
investigated steels is given by Nemat-Nasser and Guo [3-4]. In addition to more than 97% of 
iron, the microstructure of HSLA-65 and DH-36 is mainly composed, of 1.4% and 1.37% of 
Manganese (Mn), 0.24% and 0.22% of Silicon (Si), and 0.08% and 0.14% of Carbon (C), 
respectively. Moreover, the alloy content of HSLA-65 contains very small portion of copper 
(<0.01%) as compared to DH-36 (0.14%). 

2 MICROSTRUCTURE-BASED VISCOPLASTICITY IN FERRITIC STEEL 
Accurate determination of plasticity models capable of predicting the flow stress of metals 

in general and steel in particular is not easy because of the coupling effects of strain, strain 
rate and temperature. The flow stress dependency of the above-mentioned three parameters 
becomes very significant at higher temperatures and strain rates. It was observed 
experimentally by different authors that the variation of stress strain curves at a certain strain 
rate and different temperatures or at certain temperature and different strain rates appear at 
yielding point and almost no variation was noticed in the hardening curves.  The proposed 
model additively decomposes the flow stress into athermal and thermal components which 
coincides with the experimental observation. The athermal component is independent of strain 
rate and related to strain hardening, R(p), and small portion of the yield stress, Ya. The thermal 
component is mainly controlled by yield stress and shows a coupled effect of temperature and 
strain rate. The static definition of the yield function represented by the athermal flow stress is 
shown in Eq. (1): 

                                                )( pRYf aeq                                   (1) 

The thermal component represents the dynamic stress that exceeds the static yield surface. 

This stress is related to the reference viscosity, vp
o , and threshold yield stress, 



Y . The 
reference viscosity is the minimum value that can be achieved at very high temperature. The 
viscosity parameter (known as relaxation time), vp , is very important when it comes to finite 
element implementation of viscoplasticity because it helps in introducing a physical length 
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scale that is used in regularizing some problems encountered in finite elements computation. 
It also allows the spatial difference operator in the governing equations to retain its ellipticity. 
The dynamic stress is presented by Eq. (2) and viscoplastic multiplier is shown in Eq. (3) by 
rearranging Eq. (2).   
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The overstress function presented in Eq. (4) and the viscosity parameter shown in Eq. (5) are 

explicitly temperature related variables. 


Y is chosen in normalizing the overstress function.   
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The hardening R(p) which is strain dependent component of flow stress is defined in Eq. (6). 
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where the reference viscosity parameter, the threshold yield stress, the athermal yield stress 

and the parameter 2 ,


B  are related to the microstructure physical quantities as follows: 
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Where b is the magnitude of the Burger vector, m is the orientation factor that relates the 
shear stress to the normal stress  m  where 3m  for the case of the von Mises flow 
rule,  is the shear modulus;  is an empirical coefficient, K is the Boltzmann's constant, Go

is the Gibbs energy at zero Kelvin temperature, M represents the dislocation multiplication 
factor, k is the annihilation factor, Dg is the grain size, tw is the time that a dislocation wait at 
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an obstacle and two is the lowest value, ijij MMm 


where ijM is the Schmidt orientation 

tensor, d is average distance the dislocation moves between the obstacles, 2 ii l is the 
initial dislocation density and il is the initial dislocation distance. An explicit definition of the 
length scale parameter l which is taken as initial value of dislocation distance can be derived 
in terms of microstructure physical quantities by rearranging the definition of the viscosity 
parameter in Eq. (7) as follows:  

                                                    2
1

vp
oacl  ,       where: bma



 ; wtdc /                                (8) 

The c parameter in Eq. (8) is actually the elastic wave propagation velocity in the material 
whereas a parameter is a proportional factor that depends on the particular initial boundary 
value problem under consideration. Once the viscosity parameter is calculated, the 
viscoplastic strain tensor is obtained by the following relation: 

                                                    














 eqvpvpvpvp fNd
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Where: 2/1)2/3( ijij
eq    represents the equivalent stress, which is defined based on von 

Mises yield criterion in terms of the deviatoric stress, 3/ijmmijij   . The evolution 
equation for the dislocation density utilized in deriving the proposed ferrite steel model 
resulted in an exponential relation for the strain hardening as shown in Eq.(10) which shows 
the combined athermal and thermal stresses.  

3 1 21/ 1/
1 2 4 5 61 (1 ( ln ) )       pc q q

pc c e c c T c T        (10) 

The material parameters c1–c6 appeared in the above constitutive relations are related to the 
microstructure physical quantities as explained before in Eq. (7) as follows: 
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The above relation clearly shows the coupling effect of strain rate and temperature on the 

yield stress where   is the equivalent stress, p is the equivalent plastic strain, p

.
 is the 

equivalent plastic strain rate, T is the temperature in Kelvin, and q1 & q2 are constants 
defining the shape of the short-range barriers. The material constants c2 and c3 define the 
strain dependent athermal component of the flow stress, c1 represents an additional athermal 
stress, c4 represents the threshold yield stress at which the dislocation can overcome the 
barriers without the assistance of thermal activation, c5 and c6 are two thermal activation 
parameters characterizing the thermal component of the flow stress and are related to the 
reference Gibbs energy at zero absolute temperature, Boltzmann's constant, reference 
dislocation velocity, and initial dislocation density [1]. In Eq. (10), the thermal component of 
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the flow stress is non-negative, thus, the term )ln(
.

65 pTcTc    should be set equal to zero 
when the temperature exceeds the critical value. The critical temperature defines the stage of 
deformation at which the thermal stress is completely vanished. This critical value; however, 
is strain rate dependent and can be defined as follows: 

                                                    1
.

65 )ln(  pcr ccT              (12) 

3 SHEAR LOCALIZATION IN CLYNDYRICAL HAT-SHAPED SAMPLES 
The developed constitutive model is implemented in ABAQUS via user's material 

subroutine VUMAT. ABAQUS/Explicit version is used to perform finite element simulation 
on hat-shaped modeled specimens and to investigate the formation of shear bands in ferrite 
steel such as HSLA-65 and DH-36. Experimental investigation of the dynamic deformation 
response of hat-shaped specimen shown schematically in Figure 1(a) was adopted by different 
authors. The dimensions of the specimens used in these studies differ from one author to 
another. The dimensions of the hat-shaped sample used in this study are presented in Table 1 
and correspond to a study done by Perez-Prado [6]. The geometry was chosen in such a way 
that the inner diameter of the brim is shorter than the inner diameter of the hat by 
approximately 4.5% in order to sustain large amount of shear strain. 
Table 1: Dimensions (mm) for ferrite steel hat-shaped sample 

r1 r2 r3 h1 h2 h3
9.53 4.85 5.08 15 7.0 6.97 

(a)        (b) 
Figure 1: (a) geometric description of the cylindrical hat-shaped specimen (b) FE model for a quarter portion 

of the hat-shaped specimen using axisymmetric mesh elements. 
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The geometry of the hat-shaped specimen enables modeling it using four-node axisymmetric 
elements of CAX4R ABAQUS type with shear region zone limited between the upper hat and 
lower brim portions. The advantage of the hat-shaped specimen is that the location of shear 
localization preceding shear band formation is forced to be between the hat and the brim. This 
is because the dimensions of the specimen were chosen in this study so that there is 
mismatching between inner radius of the brim (r2) and the hat radius (r3) to create an 
overlapping region. A region of high strain concentration is created as a consequence. The 
axisymmetric specimen is subjected to compression dynamic velocity load from the top at the 
hat and movement is restrained at the bottom as illustrated in Figure 1(b).   

(a)          (b) 
Figure 2: (a) Mesh refinements in the shear zone (b) Path 1 through the shear zone of the hat-shaped specimen 

 Three different mesh configurations were used to mesh the model geometry and the region 
of shear deformation as shown in Figure 2 (a). Mesh 1 represents a coarse mesh whereas 
Meshes 2 and 3 are of higher resolution. Figure 2(b) shows true path distance (Path-1) passing 
through the shear zone and perpendicular to the shear band. Simulations were carried out with 
the three mesh configurations to study the sensitivity of the results to mesh refinement. It was 
found out that shear stress-displacement curve presented in Figure 3(a) and plotted for an 
element located in the middle of the shear zone is not varying much when comparing with 
meshes 2 and 3. The same observation regarding mesh sensitivity was noticed when plotting 
the equivalent plastic strain along path1 as presented in Figure 3(b). It is obvious that the 
coarse mesh 1 is not able to capture a reasonable value for the equivalent plastic strain along 
the same true path and is of no match to the results obtained from meshes 2 and 3.  Mesh 2 
was chosen to carry out the rest of the dynamic simulations since it achieved balance between 
the accuracy of the results and reducing the computational time especially when it comes to 
dynamic explicit integration computational scheme. 

Mesh 1 Mesh 2 Mesh 3 

Path-1  
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                                            (a)                                                                                        (b)
Figure 3: (a) Shear stress for three different meshes configuration; (b) Distribution of the equivalent plastic strain 
for HSLA-65 across path 1for different meshes configuration. 

4 NUMERICAL SIMULATIONS RESULTS 
The axisymmetric model was subjected to wide range of velocities and initial 

temperatures. The velocities applied were 0.5 m/s, 1 m/s 10 m/s, 20 m/s and 30 m/s whereas 
the temperatures were 77 K, 200 K, 296 K, 400 K and 500 K. The modeled specimen was 
dynamically compressed up to a total displacement of 0.20 mm. It was observed that the shear 
stress first reaches a peak value before it decreases with increasing displacement which means 
that the hardening mechanism of ferrite steel prevails at the initial stage during plastic 
deformation. When the plastic deformation evolves, the softening mechanism becomes 
dominant as heat is accumulating in the shear zone especially when the specimen is subjected 
to high rate adiabatic deformation. Figure 4 shows contour plot of the equivalent plastic strain 
(shear bands) in three-dimensional shape corresponding to three fourths of the hat-shaped 
specimen. The plastic strain concentration is obvious in the shear zone region.  

Figure 4: Contour plot of the equivalent plastic strain (shear bands) at velocity =25m/s and To = 296 K 
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A comparison between shear bands corresponding to simulation at different temperatures at 
the same velocity load is presented in Figures 5 and 6 for both HSLA-65 and DH-36 steels. It 
was observed that widths of the shear bands increase with temperature increasing. Figure 7 
presents the distribution of the equivalent plastic strain in both steels at the end of the applied 
displacement along Path-1 passing through the center of the shear zone (shear band) at 25 m/s 
velocity and different temperatures. The distribution of the equivalent plastic strain is 
interpreted as the shear band width. The figures show that that the plastic strain peak is 
greatest when the temperature is lowest. For instance, the largest plastic strain is achieved at 
lowest temperature = 77 K. They also show the shear band width variation with respect to 
each initial temperature at the same compression velocity load. The widths of the shear zones 
range approximately from 0.5 to 1.0 mm in both steels depending on the initial temperatures 
and applied velocities. It can be concluded that the width of the shear band (localization) 
varies considerably with different initial temperatures.  

Figure 5: Contours of the equivalent plastic strain (shear bands) at 0.2 mm axial displacement and different 
temperatures, HSLA-65 Steel at V = 25m/s 

Figure 6: Contours of the equivalent plastic strain (shear bands) at 0.2 mm axial displacement and different 
temperatures, DH-36 steel at V = 25m/s 

77 K 200 K 296 K 400 K 500 K

77 K 200 K 296 K 400 K 500 K
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Figure 7: Equivalent plastic strain at V=25 m/s, 0.2 mm axial displacement and different temperatures along 

path-1: (a) HSLA-65, (b) DH-36 
     
        
On the other hand, less variation in the shear bands widths was noticed at different velocities 
at the same initial temperature as illustrated in Figure 8 which show the equivalent plastic 
strain distribution along Path-1 at initial temperature of To=77 K and different velocities for 
both steels.  
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4 MODEL PARAMETERS SENSETIVITY ANALYSIS 

Simulating the effect of impact load on steel structures requires choosing a robust plasticity 
finite element constitutive model. Some of these models are empirically, semi-physical or 
physically based. In other words, the material parameters of some models are obtained 
empirically whereas the material parameters in some other models are related to the micro-
structure quantities of the material such as the proposed model. Complex statistics methods 
could be applied on a set of experimental data to determine the material parameters of 
plasticity model. Certain inaccuracy in the value of the determined material parameter might 
be encountered during the process of obtaining them which also depends on the accuracy and 
amount of the experimental data. Hence, it is recommended to study the sensitivity of a 
certain output to a change in one or more of the material constants. In this study, sensitivity 
analysis on the six constants of the developed model is performed, c1,c2, c3, c4, c5 and c6. It is 
expected to detect a change in the shear band width at certain velocity and temperature when 
changing one of the model parameters while keeping all others constant. 

 Comparisons between formed shear bands corresponding to simulations at the same 
conditions (velocity = 10 m/s and temperature = 77K) are conducted for all constants. For 
better quantification for the shear band width sensitivity to changes in the material 
parameters, the equivalent plastic strains were plotted along Path-1 which is perpendicular to 
the shear band. Figure 9 shows a sample of these comparisons for the effect of constant c5 on 
the the width of the localized region at the shear zone at 10m/s velocity and 77K initial 
temperature for both HSLA-65 and DH-36 steels. It is clearly shown that increasing the 
material constants c5 which is related to the thermal stress component of the VA model leads 
to increasing the value of the equivalent plastic strain. The width of the shear zone is 
increased consequently.                    
       

                                       (a)                                                                                    (b)  
Figure 9: Equivalent plastic strain when changing the model parameters c5, at 0.2mm axial displacement for     

(a) HSLA-65 steel  and (b) DH-36 steel. 
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conditions (velocity = 10 m/s and temperature = 77K) are conducted for all constants. For 
better quantification for the shear band width sensitivity to changes in the material 
parameters, the equivalent plastic strains were plotted along Path-1 which is perpendicular to 
the shear band. Figure 9 shows a sample of these comparisons for the effect of constant c5 on 
the the width of the localized region at the shear zone at 10m/s velocity and 77K initial 
temperature for both HSLA-65 and DH-36 steels. It is clearly shown that increasing the 
material constants c5 which is related to the thermal stress component of the VA model leads 
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Figure 9: Equivalent plastic strain when changing the model parameters c5, at 0.2mm axial displacement for     

(a) HSLA-65 steel  and (b) DH-36 steel. 
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CONCLUSIONS 
In this work, the shear band formation in hat-shaped specimen were studied under different 

dynamic velocities (0.5, 1.0, 10, 20, 30 m/s) and initial temperatures (77, 200, 296, 400, 
500K). The simulations were carried out using the new developed constitute model for ferrite 
steel after being implemented in ABAQUS via VUMAT user subroutine. It was observed that 
the width of the shear band increases with increasing the initial temperature in both HSLA-65 
and DH-36 steels. The width of the shear band doesn't vary considerably when comparing at 
several applied dynamic velocities and at the same initial temperature. Sensitivity analysis 
was also performed on the model constants, by studying their variation effect on the width of 
the shear band. It was observed that increasing the value of material parameter c5 increases 
the width of the shear band. 
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Abstract. A new computational procedure for the steady state elastoplastic analysis of 
structures under cyclic loading is presented. The procedure is based on the decomposition of 
the unknown steady state residual stress distribution into Fourier series. The coefficients of 
the series are evaluated in an iterative way by satisfying equilibrium and compatibility at 
some preselected time points inside the cycle. The procedure in the present work is applied to 
a simple 1-D three bar structure and to a 2-D plate. Various load cases are examined which 
may lead to elastic adaptation, alternating plasticity or incremental collapse.  

 
 
1 INTRODUCTION 

Structures such as nuclear reactors, aircraft gas turbine propulsion engines, etc. operate in 
high levels of loads and temperature. High levels of loading exist also in civil engineering 
structures like heavy traffic on bridges and pavements, earthquake loading etc.  

The complete response of a structure, which is subjected to a given thermo-mechanical 
loading and exhibits inelastic time independent plastic strains, is quite complex. The reason of 
the complexity is the need to perform calculations over the lifetime history of the structure. 
The computation of the whole loading history, however, leads to lengthy and expensive 
incremental calculations, especially for structures with large number of degrees of freedom. 
Therefore, it is very useful to develop computational approaches for straightforward 
calculations of the possible stabilized state under repeated thermo-mechanical loading.  

Direct cyclic methods offer this alternative. The ingredient of these methods is the 
existence of a steady state at the end of the loading procedure for structures made of ductile 
material [1].  

The advantage that direct methods offer with respect to time-stepping ones has been 
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exploited by many researchers. Most of these methods aim at the evaluation of the limit or the 
shakedown loading of a structure. This is normally done using the framework of linear or 
nonlinear mathematical programming and most of these approaches are reduced to efficiently 
solve this problem with the means of algorithms like the simplex method or more recently by 
the interior point methods([2]-[4]).  

A different direct method of an incremental-iterative type has been presented in [5]. A 
more “physical” approach which is based on spatially varying of the elastic modulus is the 
Linear Matching Method. This method has been extended up to the ratchet limits ([6]-[8]). 

A direct method has been proposed by Spiliopoulos [9] in the context of the cyclic loading 
analysis of creeping structures. The irreversibility of the nonlinear material dictates the 
existence of residual stresses together with the elastic stresses. It is the distribution of the 
residual stresses that is sought at the cyclic stress state. The method is based first on 
decomposing the unknown residual stress in Fourier series and then trying to find the 
coefficients of this series in an iterative way by satisfying equilibrium and compatibility at 
some preselected time points inside the cycle.  

In the present work a computational procedure is proposed, that has the same foundations 
and may be applied to structures made of elastic perfectly plastic material. The whole 
procedure is formulated within the framework of the finite element method and examples of 
application to 1- and 2- dimensional structures are presented.  

2 RESIDUAL STRESS DECOMPOSITION 
The main ingredient of the method is the time decomposition of the unknown residual 

stress distribution ( )tρ  into Fourier series. Since in the steady state this stress also becomes 
periodic, it may be decomposed in its Fourier series over the period of loading, as this can be 
done for any periodic function: 

( ) 0
k k

k 1

2k t 2k tt cos sin
2 T T

π π∞

=

 = + + 
 

∑a
ρ a b  (1) 

where the coefficients 0a , ka  and kb  , k 1,2,...= are the Fourier coefficients of the Fourier 
series. Vectors and matrices are denoted by bold letters.  

Thus the problem is converted to a problem of evaluating the Fourier coefficients of the 
various terms of the series. Following, in short, the procedure developed in [9] we may get 

( ) ( )k k
k 1

2 2k t 2k tt k sin k cos
T T T
π π π∞

=

 = − + 
 

∑ρ a b  (2) 

Making use of the orthogonality properties of the trigonometric functions we can get 
expressions that may be used to evaluate these coefficients in terms of the time derivative 
( )tρ : 

( )
T

k
0

1 2k tt sin dt
k T

π
π

= − ∫a ρ  (3) 

( )
T

k
0

1 2k tt cos dt
k T

π
π

= ∫b ρ  (4) 
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On the other hand, if we integrate ( )tρ over the period T , we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )
T

0 0
k k

k 1 k 10

0
t dt 0 0

2 2
Τ

Τ Τ
∞ ∞

= =

   
= − = + − +   

   
∑ ∑∫

α α
ρ ρ ρ α α  (5) 

where use of the expression (1)  was made at the beginning and at the end of the cycle period. 
Equation (5) may be used to evaluate the coefficient 0a . 

If one satisfies equilibrium and compatibility at some discrete preselected time points 
inside the cycle, the time derivatives of the residual stresses themselves may be expressed in 
terms of the Fourier coefficients we seek to find. 

3 FINITE ELEMENT FORMULATION 
In order to evaluate the time derivatives of the residual stresses we may discretize our 

structure with the aid of the finite element method.  
Let us denote by r  the vector of the time rates of the time displacement of the nodal points 

of the discretized structure at some time t .  
The total strain rates ε  at the Gauss integration points are given in term of r  by 

=ε Br   (6) 

Decomposing  ε into two terms ele and rε

el el el pl
r r r= + = + +ε e ε e ε ε       (7) 

In the above equation the residual strain rate term has been itself decomposed into elastic 
and plastic parts.  

At the same time the stress also can be decomposed into two terms an elastic one and a 
residual stress part 

( ) ( ) ( )elt t t= +σ σ ρ  (8) 

The elastic strain rates are related to their corresponding stress rates by 
el el

el
r

=

=

e Cσ
ε Cρ

 

 
 (9) 

where C  is the tensor of the elastic constants. 
For the plastic component the associate flow rule gives 

pl
r

Φλ ∂=
∂

ε
σ

  (10) 

where Φ  is a strictly convex yield surface. 

Combining the above equations (7) and (9) we may write   

( )el pl
r= − −ρ D ε e ε     (11) 

where D  is the elasticity matrix (inverse of C ). 
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Since the strain rates are compatible and the residual stress rates are self-equilibrated, from 
the principle of virtual work (P.V.W.) we may obtain 

V

' dV 0=∫ ε ρ   (12) 

where “ ' ”  denotes the transpose of a vector or a matrix. 
After the substitution of (6) and (11), in (12) we get 

( )el pl
r

V

' ' dV 0− − =∫r B D Br e ε     (13) 

and since this equation must hold for any r

el pl
r

V V V

' dV ' dV ' dV
 

= + 
 
∫ ∫ ∫B DB r B σ B Dε   (14) 

or 
ext pl

r
V

' dV= + ∫Kr R B Dε   (15) 

where K  is the stiffness matrix of the structure and extR  is the nodal vector of the time rate of 
the given loading. 

4 ITERATIVE PROCEDURE 
The form of the expressions (3), (4) and (5) allow us to evaluate the Fourier series (1) in an 

iterative procedure. The proposed numerical procedure has the following steps during a 
current iteration  : 

1. Calculation of the total stresses ( ) ( ) ( ) ( ) ( )elt t t = +σ σ ρ at some preselected time points 
inside the cycle; ( )el tσ  is the cyclic elastic stress and ( ) ( )tρ  is a self equilibrating 
stress system due to plasticity. 

2. Checking for every Gauss point if ( ) ( ) Yt


σ σ>  and calculation of the amount 

( ) ( ) ( ) ( )t * t  ξ=σ σ  where 
( ) ( )

( ) ( ) ( ) ( )
t

t t



Υ
 

σ σ
ξ

σ ρ

−
=

−
. ( ) ( )t
σ  and ( ) ( )t

ρ  are the corresponding 

effective total and residual stresses, Υσ is the yield stress. If ( ) ( ) Yt


σ σ≤ we set 0ξ =

and continue to the next step. 

3. Solving the expanded rate equilibrium equation ( ) ( ) ( ) ( ) ( )ext T

V

t t t dV = + ∫Kr R B σ  where 

B is the compatibility matrix and ( ) ( )ext t & tR r  are the corresponding vectors of the 
time rates of the external loads and displacements of the nodal points of the discretized 
structure at some time t . In this step we get the new vector ( t )r

4. Calculation of ( ) ( ) ( ) ( ) ( ) ( ) ( )elt t t t  = − −ρ DBr σ σ    . 
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5. Perform numerical time integration over all the time points and update the Fourier 
coefficients for the next iteration: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

T
1

k
0

T
1

k
0

T
1 1 0

0 k k
k 1 k 1 0

1 2k tt sin dt
k T

1 2k tt cos dt
k T

t dt
2

 

 


   

π
π

π
π

+

+

∞ ∞
+ +

= =

   = −       

   =       

 = − + + +  

∫

∫

∑ ∑ ∫

a ρ

b ρ

a
a a a ρ







  (16) 

6. Checking the convergence between two successive iterations using the Euclidian norm 
of the residual stress vector according to the following criterion: 

( ) ( )

( )

1

2 2
1

2

tol
 



+

+

−
≤

ρ ρ

ρ
 (17) 

 where tol  is a pre-specified tolerance. If convergence occurs we get the final stresses 
( ) ( ) ( )1 final += =ρ ρ ρ  and continue to the next step. Otherwise we go to the next iteration 

and return to the step 1. 

7. In order to predict the cyclic behaviour of the structure we calculate the value
( )

T

0

a ( t )dt= ∫ σ . 

If a 0≠  , the considered loading case leads the structure to incremental collapse.
If a 0=  , we check if ( )( t ) 0 =σ  for every time point t inside the cycle. If this is the 
case we have elastic adaptation; otherwise we have alternating plasticity.

5 EXAMPLES 

5.1 Three bar truss 
A first example of application of the methodology presented above is the three bar 

structure which is shown in Fig. 1. The structure is subjected to cyclic loads ( ) ( )V t , H t  which 
are applied at node 4. All the members of the truss have equal cross section A  and are made 
of steel. The following geometrical, material data were used: L 300cm= , Young’s modulus 

5 2E .21 10 kN / cm= ×  and yield stress 2
y 40kN / cmσ = . All the elements of the truss have an equal 

cross-sectional area of 2A 5cm= . Three cases of loading have been considered to test the 
procedure. Each of these cases leads to different cyclic behaviour. The results for the elements 
1, 3 are equal to the ones of element 2, but with opposite sign.  

a) The first cyclic loading case has the following variation with time: 

( ) ( ) ( )2V t 300 sin t / T ,H t / T 0π= =
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Figure 1: Three bar truss example 

The analysis shows that bar 2 yields in tension and bars 1, 3 remain elastic. As it may be 
observed, the residual stress remains constant inside the cycle (Fig. 2), therefore this load case 
leads to elastic adaptation. The cyclic steady state residual stress distribution for the element 2
inside a cycle may be seen in Fig. 2. 

Figure 2: Cyclic state residual stress distribution inside a cycle for load case a (element 2) 

b) The second cyclic loading case has the following variation with the time: 

( ) ( ) ( )V t 300 sin 2 t / T ,H t / T 0π= =

The analysis shows that during the first half of the cycle bar 2 yields in tension and during 
the second half, bar 2 yields in compression. We also see that the plastic strain rates for the 
bar 2 are equal and of opposite sign in the first and second half of the cycle. Therefore this 
load case leads the structure to alternating plasticity. The cyclic steady state residual stress 
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distribution for the element 2 inside a cycle may be seen in Fig. 3. 

Figure 3: Cyclic state residual stress distribution inside a cycle for load case b (element 2) 

c) The third cyclic loading case includes a variation with time of both the vertical and the 
horizontal load: 

( ) ( ) ( ) ( )2V t 350 sin t / T , H t 220 sin 2 t / Tπ π= =

Figure 4: Cyclic state residual stress distribution inside a cycle for load case c (element 2) 

The results obtained by the analysis show that during the first half of the cycle bar 2 yields 
in tension and during the second half bar 3 yields also in tension. Also the value 
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( )
T

0

a ( t )dt= ∫ σ
  

 referred to in the numerical procedure which is an indirect measure of the 

total change in plastic strains over the cycle is non zero; therefore this load case leads the 
structure to incremental collapse. The cyclic steady state residual stress distribution inside a 
cycle for the element 2 may be seen in Fig. 4.  

5.2  Square plate with a hole 
The second example of application is a plane stress concentration problem of a square plate 

with dimensions 20 20cm×  and having a circular hole in its middle of a diameter of 2cm . The 
loading is applied in equal pairs along the two vertical edges of the plate. Due to the 
symmetry of the structure and the loading we only analyze one quarter of the structure with 
a 10cm=  and b 1cm= . Ninety-eight 8-noded isoparametric elements with 3 3×  Gauss 
integration points were used for the finite element discretization (Fig. 5).  

Figure 5: Finite element discretization of a quarter of a plate 

The following material data was used: Young’s modulus 5 2E .21 10 kN / cm= ×  and yield 
stress 2

y 24kN / cmσ = . Two cases of loading have been considered that leads the plate to either 
elastic shakedown or alternating plasticity. The cyclic steady state residual stress distribution 
inside a cycle for the Gauss point 1 may be seen in Fig. 6, 7. This point is the nearest 
integration point to the corner where the longitudinal elastic stress is maximum.    

a) The first cyclic loading case has the following variation with time where the maximum 
value of the cyclic loading is 0P 20kN= : 

( ) 2
0

tP t P * sin
T

π =  
 

The cyclic steady-state residual stress distribution inside a cycle for Gauss point 1 may be 
seen in Fig. 6. As it may be observed, the residual stress remains constant inside the cycle. 
Therefore this load case leads to elastic adaptation.  

x

y

b

P(t) 

1 

a

b
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Figure 6: Cyclic state residual stress distribution inside a cycle for load case b (Gauss point 1) 

b) The second cyclic loading case has the above variation with time while the maximum 
value of the cyclic loading being 0P 20kN= : 

( ) 0
tP t P * sin 2
T

π =  
 

The cyclic steady-state residual stress distribution inside a cycle for Gauss point 1 may be 
seen in Fig. 7. We also see that the plastic strain rates for the Gauss point 1 are equal and of 
opposite sign in the first and second half of the cycle. Therefore this load case leads the 
structure to alternating plasticity.  

Figure 7: Cyclic state residual stress distribution inside a cycle for load case b (Gauss point 1) 
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Figure 8: Norm variation with iterations (second example – incremental collapse case) 

In Fig.8 one can see the convergence characteristics of the proposed method. It may be 
realized that the approach is very stable and with uniform convergence.   

The observed behaviour of elastic shakedown, alternating plasticity or incremental collapse 
for both the one and two dimensional examples was found to coincide with the one obtained 
by a time-stepping finite element program, (ABAQUS [10]). Within [10] an explicit time 
integration scheme was considered and in order to get higher accuracy this time stepping 
program had to go through many time increments to get the steady-state solution and to 
predict the cyclic behavior of the structure, especially for the second example. 

6 CONCLUSIONS 
- In the present work a direct method is proposed that may be used for the cyclic 

steady state elastoplastic analysis of structures under cyclic loading. 
- It is based on the decomposition of the residual stress distribution into Fourier series 

whose coefficients are calculated by iterations. 
- The method allows approaching directly the long-term effects on the structure 

without following laborious time-stepping calculations. 
- A very few number of terms of the Fourier series generally proved sufficient. 
- A limited number of time points inside the cycle are needed, mainly to properly 

describe the time variation of the cyclic load. 
- For all the examples that were presented above the cyclic steady-state was reached in 

a few iterations. 
- The stiffness matrix needs to be formulated and decomposed only once. 
- The procedure is stable and has uniform convergence.  
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Abstract. In this paper, a generalized–FEM technique is presented in modeling of arbitrary 
interfaces in large deformations. The method is used to model the internal interfaces and 
arbitrary geometries using a uniform non-conformal mesh. The technique is applied to capture 
independent deformations at both sides of separated element cut by the interface in a uniform 
regular mesh. In this approach, a uniform non-conformal mesh is decomposed into sub-
elements that conform to the internal interfaces. The geometry of interface is used to produce 
various triangular, quadrilateral and pentagonal elements at the intersection of interface with 
regular FE mesh, in which the extra degrees-of-freedom are defined along the interface. The 
level set method is employed to describe the material geometry on the background mesh. The 
technique is used to extrude any arbitrary geometry from an initial background mesh and 
model under different external effects. The most feature of the technique is to introduce the 
conformal decomposition finite element method, in which the new conforming elements are 
produced in the uniform structured mesh by decomposing the uniform mesh into elements that 
is conformed to the material interfaces. Finally, several numerical examples are analyzed to 
demonstrate the efficiency of proposed technique in modeling arbitrary interfaces in large 
deformations. 
 
1 INTRODUCTION 

In computational mechanics, modeling the internal interfaces and arbitrary geometries 
using a non-conformal uniform mesh is of great importance. Adaptive mesh strategy and 
conforming mesh generation for preserving the mesh to the shape of geometry at various 
stages of solution may consume high expenses of capacity and time. Thus, it is necessary to 
perform an innovative procedure to alleviate these difficulties by allowing the internal 
interfaces and arbitrary geometries to be mesh-independent. In fact, an approach that avoids 
the remeshing is preferable not only in the cost of creating a new mesh, but the tremendous 
overhead associated with adapting post-processing techniques, such as time histories of 
specified points, to sequences of meshes in evolution problems. The major appeal of such 
technique for incorporating discontinuities in finite elements is that it does not require the 
mesh to conform to discontinuities in the approximation function, or its derivatives. 
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There are several approaches proposed by researchers over past few decades to model 
discontinuity problems based on the mesh-free methods [1–3], the moving mesh technique 
[4], the incorporation of a discontinuous mode on an element level [5] and etc. Among 
various techniques, the generalized finite element method (G-FEM) [6, 7] and the extended 
finite element method (X-FEM) [8, 9] have been successfully employed for the weak and 
strong discontinuities. The capability of X-FEM has been shown in various problems, 
including: fracture mechanics problems [10–14], large plastic deformations [15–17], and 
contact friction problems [18–20]. A technique was proposed by Ventura et al. [21] based on 
a local enrichment of FE space by closed form solutions for dislocations in infinite media via 
the local partition of unity. Fries and Belytschko [22] proposed a method for arbitrary 
discontinuities without additional unknowns. A technique was introduced by Gracie et al. [23] 
in modeling of multiple dislocations based on interior discontinuities. 

The X-FEM technique has been extensively employed to minimize the requirement of 
mesh generation in the problem with internal interfaces. In this method, the enrichment 
functions are defined to deal with the discontinuity of displacement inside the enriched 
element. In fact, the X-FEM method addresses the arbitrary interfaces without generating a 
boundary-fitted mesh by defining the extra degrees-of-freedom in the elements cut by the 
interfaces. Additional unknowns may be assigned to the mesh entities, such as: elements, 
nodes, or edges, by introducing additional equations for these unknowns based on the 
quadrature techniques for the resulting discontinuous interpolation [24, 25]. In this study, an 
alternative approach is presented, in which a uniform non-conformal mesh is decomposed into 
triangular, quadrilateral and pentagonal elements that conform to the internal interfaces and 
arbitrary geometries. The geometry of interface is used to define the extra degrees-of-freedom 
by adding nodal points that lie on the interfaces. The technique may be considered as a 
generalized finite element method introduced by Li et al. [26] using a Cartesian Grid with 
Added Nodes into the unstructured finite elements. In the FE based Cartesian Grid with 
Added Nodes method, the added nodes increase the size of the linear system of equations and 
significantly affect the structure of the matrix, which makes it undesirable compared to other 
generalized FEM techniques, such as Immersed FE methods. However, in the conformal 
decomposition finite element method proposed here, the new conforming elements are 
produced in the uniform structured mesh by decomposing the uniform mesh into elements 
that is conformed to the material interfaces. This method can be used for the multi-material 
problems, in which the mesh does not necessary to be conformed to the geometry of the 
materials. In order to describe the material geometry on the background mesh, the level set 
method is employed to represent the decomposition of non-conformal elements into the 
conformal sub-elements [27, 28]. The level set technique is used to extrude any arbitrary 
geometry from an initial background mesh and model under different external effects.  

The construction of conforming finite elements based on polygonal meshes was proposed 
by Sukumar and Tabarraei [27]. The method provides a great flexibility in mesh generation of 
solid mechanics problems, which involve a significant change in the domain of material. The 
trial and test functions of polygonal finite elements have been generally constructed based on 
the approximation functions of mesh-free methods and computational geometry. A particular 
and notable contribution is based on the mesh-free, or natural–neighbor, basis functions on a 
canonical element combined with an affine map to construct conforming approximations on 
convex polygons. This numerical formulation enables the construction of conforming 
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approximation on any polygons, and hence extends the potential applications of finite 
elements to convex polygons of arbitrary order [28]. The present study illustrates the 
presentation of the conformal decomposition finite element method in large deformations, in 
which the new conforming elements are generated in the uniform structured mesh by 
decomposing the uniform mesh into sub-elements that is conformed to the material interfaces. 

The plan of the paper is as follows; Section 2 is devoted to the concept of conforming 
polygonal finite elements. The implementation of conforming–FEM technique based on the 
polygonal elements is demonstrated in section 3. The procedure, in which the new conforming 
elements are produced in the uniform structured mesh by decomposing the uniform mesh into 
sub-elements, is described in this section. In section 4, several numerical examples are 
analyzed to demonstrate the efficiency of proposed technique in modeling arbitrary interfaces 
in large deformations. Finally, some concluding remarks are given in section 5. 

 
 

Figure 1. :A pentagon element; Element definition 

2 CONFORMING POLYGONAL FEM 
The construction of barycentric co-ordinates and the evaluation of shape functions on 

irregular polygons were originally proposed by Wachspress [29] based on the rational basis 
functions on polygonal elements. Wachspress [29] employed the principles of perspective 
geometry [30] to validate the nodal interpolation and linearity on the boundaries. Various 
aspects of the Wachspress basis function were presented in literature, including: the 
implementation in numerical analysis by Gout [31], the generalization to convex polytopes by 
Warren [32], the implementation to construct surface patches by Dahmen et al. [33], etc. The 
Wachspress basis function was employed into the finite element method by Dasgupta and 
Malsch [34, 35] to construct the shape functions for concave elements. Rashid and Gullett 
[36] proposed the technique to construct the shape functions for convex and non-convex 
elements using a constrained minimization procedure. The construction of conforming finite 
elements based on polygonal meshes was performed by Sukumar and Tabarraei [27].  

An expression for the Wachspress shape functions was given by Meyer et al. [37] as 
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Figure 2.  Decomposition of non-conformal elements cut by the interface into conformal sub-elements;  
Original nodal points,  New degrees-of-freedom along the interface 

(a)    (b)    (c)  
Figure 3. a) Definition of an interface in the uniform non-conformal mesh, b) Determination of standard 
elements and conformal sub-elements within the material zone, c) Elimination of elements not within the 
material zone 
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where ( ), ,A a b c  is the signed area of triangle [ , , ]a b c , and iγ  and iδ  are shown in Figure 
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iϕ x  have non-

negative values and the polygon must be convex, i.e. i i πγ + δ < . The evaluation of the 
Wachspress basis function can be carried out using the elementary vector calculus operations, 
as demonstrated by Meyer et al. [37]. Considering the coordinates of the vertices of triangle 
( )1, ,i ip p p+  as ( )1 2,a a , ( )1 2,b b  and ( )1 2,x x , respectively, the value of cot iδ  can be 
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The value of cot iγ  and its derivatives can be computed in a similar manner. Finally, the 
Wachspress shape function ( )w

iϕ x  can be obtained according to relation (1).  
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Figure 4: problem view for error analysis 

3 GENERALIZED FEM WITH POLYGONAL ELEMENTS 
In order to model arbitrary interfaces in a uniform mesh, the regular non-conformal mesh 

is decomposed into sub-elements that conform to the internal interfaces. In this approach, the 
concept of conformal decomposition finite element method is used to produce the conforming 
polygonal elements in the uniform structured mesh by decomposition of the uniform mesh 
into sub-elements that is conformed to the material interfaces. The geometry of interface is 
used to produce various polygonal elements at the intersection of interface, as shown in 
Figure 2, in which the extra degrees-of-freedom are defined along the interface. The position 
of material interface is determined according to the initial uniform mesh by using the level set 
method.  

The level set method is employed to describe the material interface by extruding arbitrary 
geometry from the initial background mesh. The technique is used to represent the geometry 
of interface on the structured, non-conformal mesh. The level set method performs the 
decomposition of non-conformal elements into conformal sub-elements by introducing the 
material interface based on the sign of level set function. The performance of this conformal 
decomposition affects the quality of conformal sub-elements. In general, the conformal 
decomposition must be robustly handled for unacceptable and degenerate cases. These 
situations can be occurred whenever the interface passes through a nodal point. In such case, a 
robust scheme is needed for handling nearly degenerate cases. If nearly degenerate elements 
are not addressed, the resulting matrix system may be numerically singular.  

A general procedure for handling the conformal decomposition can be performed by 
determination of the edges of non-conformal elements cut by the material interface. An edge 
is assumed to be cut by the interface if the level set values of two nodal points supported by 
the edge have different signs. The procedure to handle the nodal points with zero level set 
values, or nearly zero level set values is optional, but they must be handled consistently. For 
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the edge of element cut by the interface, new degrees-of-freedom are introduced at the edge of 
non-conformal element, as shown in Figure 2. The coordinates of this point can be obtained 
by linear interpolation on the edge of element. For an edge with nodal level set values of 1ϕ  
and 2ϕ , the coordinates of new point can be obtained as 

1 2 1( )i α= + −x x x x (5)

(a) (b) (c) (d) (e) (f) 
Figure 5: different mesh sizes used for error analysis 

 
Figure 6: Displacement relative error L2 norm versus Mesh size 

where 1x  and 2x  are the coordinates of new point and the value of α  is defined by a linear 
interpolation as 1 hα ϕ= ,with h  denoting the size of element. However, if α ε< , or 

1α ε> − , in which the parameter ε  is assumed to be 0.05, the new point is not generated. In 
this case, the interface passes through the nearest nodal point of the edge, and the level set 
value is set to zero at the nearest node. A detailed study of the sensitivity analysis to this 
decomposition parameter has not been performed here. However, it is obvious that a large 
value of parameter ε  may cause significant errors due to deficiency between the prescribed 
geometry and the decomposed geometry. In addition, a small value of parameter ε  results in 
multiple nodal points that is numerically coincident. 
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For the conformal sub-elements, the new point along the interface is added to the original 
vertex nodal points. Since the new point may be coincident with the vertex nodal points, 
different cases can be occurred for the conformal sub-elements.Various polygonal elements 
can be generated according to the position of interface in the regular uniform mesh, including 
the triangular, quadrilateral and pentagonal elements. If the interface passes through a nodal 
point, or nearest nodal point (α ε<  or 1α ε> − ), it results in the triangular–quadrilateral sub-
elements. If the interface cuts two edges of non-conformal element, the conformal 
decomposition results in two quadrilateral sub-elements, or the triangular–pentagonal sub-
elements. The conformal decomposition strategy of degenerate cases depends on the path of 
interface across the edge and nodal points of the element. The conformal decomposition may 
result in two triangular sub-elements with no new degrees-of-freedom. If the interface passes 
through the edge of an element, or nearest nodal points of the edge, there is no conformal 
decomposition and no new degrees-of-freedom. By defining the material interface in the 
uniform non-conformal mesh and performing the conformal decomposition to generate 
various polygonal sub-elements, the standard elements and conformal sub-elements within the 
material zone must be first determined; those elements or sub-elements which are not within 
the material zone must be then removed, as shown in Figure 3, and the generalized finite 
element model is finally analyzed under the external loading. 

 
 

Figure 7.  Pressing of an elastic ring; Problem definition 

3 NUMERICAL RESULTS 
In order to illustrate the accuracy and versatility of the generalized-FEM technique several 

numerical examples with curve interfaces are presented. The examples are solved using both 
the G-FEM and FEM techniques, and the results are compared. In order to perform a real 
comparison, the same number of elements are assumed for both the ‘coarse’ and ‘fine’ meshes 
independent of the shape of discontinuity to assess the accuracy of discretization. All 
numerical examples are modeled by a plain strain representation and the convergence 
tolerance is set to 1410− . 
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3.1 DISPLACEMENT RELATIVE ERROR L2 NORM ANALYSIS 
For determining accuracy of the method, we investigate the accuracy of the problem using 

error analysis of the method. We consider a simple problem as depicted in Figure 4. The 
problem is a general rectangular specimen with an inclined internal interface which have two 
different materials in each side of the interface. We constrained bottom edge of specimen and 
apply a uniform displacement on the top edge.for error analysis we use a dens standard FEM 
mesh as reference depicted in Figure 5a. For determining the sensitivity of the GFEM to mesh 
size we use 5 mesh with different sizes as depicted in Figure 5b to 5f. The result of 
displacement relative L2 error norm is depicted in figure 6, which shows the GFEM 
converges to FEM result by reducing the mesh size with a reasonable rate. 

          
                (a)                                       (b)                                        (c)                                       (d) 

Figure 8.  Pressing of an elastic ring; a) FEM mesh of 740 elements, b) FEM mesh of 264 elements, c) 
Generalized–FEM mesh of 1813 elements, d) Generalized–FEM mesh of 1000 elements 

             
              (a)                                        (b)                                           (c)                                         (d) 
Figure 9.  Deformed configurations at 1.4 cm; a) FEM mesh of 740 elements, b) FEM mesh of 264 elements, c) 

Generalized–FEM mesh of 1813 elements, d) Generalized–FEM mesh of 1000 elements 

3.2 PRESSING OF AN ELASTIC RING 
The last example refers to the pressing of an elastic ring, as shown in Figure 7. The ring is 

restrained at the right edge, and a uniform deformation of 1.48 cm is imposed at the left edge. 
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The ring is assumed to be elastic with the Young modulus of 262.1 10 Kg cm×  and Poisson ratio 
of 0.35. Two conformal meshes of 740 and 264 quadrilateral elements are employed in the 
FEM analysis and two uniform non-conformal meshes of 1000 and 1813 quadrilateral 
elements in the G-FEM analysis, as shown in Figure 8. In G-FEM, the non-conformal grid is 
decomposed into sub-elements, in which the geometry of interface is used to produce various 
polygonal elements at the intersection of interface together with the extra degrees-of-freedom 
defined along the interface. As can be observed from Figures 8(c–d), the elements and sub-
elements that are not within the material zone are removed, and the G-FEM model is analyzed 
under the prescribed displacement. The deformed configurations of the G-FEM and FEM 
models are shown in Figure 9 at the deformation of 1.48 cm. In Figure 10, the distribution of 
normal stress xσ  contours are presented for both techniques at the final stages of pressing. A 
good agreement can be seen between the G-FEM and FEM approaches. Finally, a comparison 
of the reaction force versus vertical displacements is performed between the G-FEM and FEM 
in Figure 11. 

                
                           (a)                          (b)                            (c)                           (d) 

Figure 10.  The distribution of normal stress contours at 1.4 cm; a) FEM mesh of 740 elements, b) FEM mesh 
of 264 elements, c) Generalized–FEM mesh of 1813 elements, d) Generalized–FEM mesh of 1000 elements 

4 CONSLUSION 
In the present paper, a generalized–FEM technique was presented in modeling of arbitrary 

interfaces in large deformation problems. A technique was proposed by conformal 
decomposition of FEM, in which the new conforming sub-elements were generated in the 
uniform structured mesh that conform to the internal interfaces. The method was used to 
model the arbitrary geometries using a uniform non-conformal mesh. The geometry of 
interface was used to produce various triangular, quadrilateral and pentagonal elements at the 
intersection of interface with regular FE mesh, in which the extra degrees-of-freedom were 
defined along the interface. The level set method was employed to describe the material 
geometry on the background mesh by extruding arbitrary geometry from an initial 
background mesh. By defining the material interface in the non-conformal mesh and 
performing the conformal decomposition to generate various polygonal sub-elements, the 
standard elements and conformal sub-elements within the material zone were determined, and 
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those elements or sub-elements which are not within the material zone were removed. Finally, 
the proposed generalized FE model was performed to demonstrate the efficiency of technique 
in modeling of arbitrary interfaces in large deformations by several numerical examples. 
Numerical simulations of problems with rewrelatively complex geometry were presented. The 
examples were solved using both the G-FEM and FEM techniques and the results were 
compared. The numerical results clearly demonstrate the capability of proposed technique in 
modeling large elastic deformations with multiple material interfaces. 

 
Figure 11.  The variations of reaction force with horizontal displacement; A comparison between the FEM and 
generalized–FEM techniques 
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Universitá della Calabria

Rende, 87036 Cosenza, Italy
e-mail: giovanni.garcea@unical.it, www.labmec.unical.it

Key words: Computational Plasticity, finite element; convex optimization methods.

Abstract. A new method for the incremental analysis of elastoplastic associated materi-
als is presented. The method fully retains all the equations and variables of the problems
at the same level and uses a sequential quadratic programming with equality constraints
to solve in an efficient and robust fashion the elastoplastic step equations derived by means
of a suitable mathematical programming formulation of the problem. The new proposal is
compared with standard strain driven formulations which use a return mapping by closest
point projection schemes. The numerical tests performed show a good performance and
a great robustness of the proposed formulation also in the case of multi–surface elasto-
plasticity.

1 INTRODUCTION

The finite element incremental elastoplastic analysis is commonly performed by means
of a strain driven (SD) step by step procedure in which each step implements a return
mapping strategy. The latter is based on the formulation of a finite step holonomic equa-
tion obtained from the irreversible incremental elastoplastic laws by using an integration
process which evaluates all the quantities at the end of the step starting from the known
values at the beginning of the step and from a prescribed value of the displacement field
(strain driven). Among the available integration processes the backward–Euler scheme is
the most used.

In standard FEM implementations, the plastic flow rule and consistency conditions are
solved exactly and, for an assigned value of the displacements, the return mapping process
imposes these equations for each Gauss point of the element. The major advantage of
this approach is that the inequality constraints arising from the constitutive laws are
eliminated from the step equations using the closest point projection scheme which solves
a small optimization problem on each Gauss point of the finite element, so defining the
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stress parameters in terms of the displacement ones. The finite step equations are so
transformed into a nonlinear system of equations, without inequalities, easily solved by
means of standard arc–length strategies. The global description of the algorithm is always
performed in terms of displacement variables alone.

The use of descriptions based on displacement variables alone would not be the best
choice and potentially more efficient and robust analysis algorithms could be obtained by
directly solving the finite step equations, maintaining all the variables of the problems at
the same level. Few attempts in this direction have been made and, among these we recall
the use of nonsmooth Newton methods proposed by Cristiansen [1] or the use of interior
point methods to solve an optimization problem exactly equivalent to the elastoplastic
step of Krabbenhoft et al. [2].

In this work a new algorithm for the FEM elastoplastic analysis of structures is pre-
sented. The proposed algorithm uses the stress, displacement and plastic multiplier pa-
rameters introduced in the discretized form of the problem as primary variables. Adopting
the mathematical programming point of view, which allows the use of a theoretically ro-
bust environment now endowed with several efficient solution algorithms, a sequential
quadratic programming (SQP) formulation is proposed to solve the problem. All the
equations describing the finite step are solved at the same level using an equality con-
straints sequential quadratic programming (EC-SQP) [3] which exploits the particular
structure of the equations of the elastoplastic step in order to improve efficiency also for
large dimensional problems. In particular an equality constrained sequential quadratic
programming (EQ-SQP) is employed. The algorithm is subdivided in two phases: i) a
suitable estimate of the active constraints at the current iteration is performed employ-
ing the closest point projection scheme; ii) the solution of a quadratic programming that
retains only the active constraints is performed. In this way the solution of each QP
problem is far easier than the general case and it also makes it possible to deal with
very large dimension problems. In particular the solution of the QP subproblem can be
performed after condensation of the locally defined quantities (stresses and plastic mul-
tipliers) so maintaining, at the global level of analysis, a pseudo compatible system that
has the same structure used in standard elastoplastic analysis. The overall algorithm has
then the same organization as standard SD-CPP ones and only a few modifications of the
existing codes are required to implement the present proposal.

The finite elements used are of mixed type, see [4], but plastically enriched in order
to work well also in the elastoplastic field. They are based on a three field interpolation
and are so well suited for the application of the proposed algorithm. They also allow
the new formulation to be tested in a more severe multi-surface case. The numerical
results show how a great improvement in terms of robustness is achieved with respect
to the standard SD-CPP algorithms. The proposed algorithms can painlessly undergo
large steps sizes or singular yield conditions while the SD-CPP approach shows serious
convergence difficulties or, also with respect to small step sizes, line search addiction is
mandatory to obtain convergence.

2
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2 THE DISCRETE EQUATIONS FOR THE ELASTOPLASTIC STEP

In the following, the elastoplastic step equations are derived by a backward Euler
integration process and then are rewritten in terms of discrete algebraic expressions by
introducing the finite element description. The chosen FEM format is based on the general
three field interpolation presented in [4] but any other more usual finite element format
could be considered by assigning the appropriate meaning to the discrete parameters used
in the following.

2.1 The elastoplastic step equations for the continuum body

The nonlinear response of an elastoplastic body Ω subjected to bulk load b and tractions
t, increasing proportionally to a scalar multiplier λ, can be evaluated by using a standard
step-by-step strategy based on the incremental computation of a sequence of discrete
points along a time/loading process. In the following we will denote with a superscript
(n− 1) the quantities relative to the current instant/load in which the solution is known
and with a superscript (n) the unknown quantities at the new instant. The stress σ(n)

and the plastic multiplier γ(n) are evaluated by performing a time integration of the
constitutive laws once the displacement field u(n) at the end of the step is assigned. In
this way the path–dependent elastoplastic behavior is transformed into a sequence of
finite holonomic steps. In particular using a backward-Euler time integration scheme and
omitting from now on the dependence of quantities on x for an easier reading, the n-th
finite step equations can be written, using a standard vector notation, as follows:

Compatibility:






D∆u = C−1∆σ +∆γ
∂ϕ

∂σ

�
�
�
�
n

in Ω,

u(n) = ū on ∂Ωu;

Admissibility and consistency:

ϕ[σ(n)] ≤ 0 , ∆γ ≥ 0 , ∆γϕ[σ(n)] = 0.

(1a)

The symbol ∆(·) = (·)n−(·)n−1 will denote, from now on, the difference between quantities
in (n) and (n− 1), C−1 the elastic compliance operator, D the compatibility operator, ϕ
the convex yield function and ū the prescribed displacement on ∈ ∂Ωu. In the previous
equations and from now on the finite increment of plastic strain is evaluated using an
associated flow rule.

The holonomic finite step is then completed with the equilibrium equations:
{

DTσ(n) + λ(n)b = 0 in Ω,

nσ(n) = λ(n)t on ∂Ωt

(1b)

where n is the matrix collecting the normal to the loaded boundary ∂Ωt.

3
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2.2 The weak form of the finite step equations

Following [5], the finite step equations (1a) can be rewritten in a weak form as
∫

Ω

δσT

(

C−1∆σ −D∆u+∆γ
∂ϕ

∂σ

�
�
�
�
n

)

= 0 ∀δσ, (2a)

∫

Ω

δγϕ[σ(n)] = 0 ∀δγ ≥ 0, (2b)

where Eq. (2b) expresses, in a weak sense, the plastic admissibility condition for the ma-
terial. In a similar fashion the weak statement of the equilibrium condition (1b) becomes

∫

Ω

(Dδu)T σ(n) − λ(n)

(∫

Ω

δuTb+

∫

∂Ωt

δuT t

)

= 0 ∀δu. (2c)

Finally, the use of a path–following Riks algorithm to solve the step equations, requires
the introduction of the arc–length parameters ∆ξ(n). The following definition can be
exploited

δλ

(∫

Ω

∆uTb+

∫

∂Ωt

∆uT t−∆ξ(n)
)

= 0 ∀δλ. (2d)

2.3 The FE finite step equations

Following [4] where more details can be found, we adopt a finite element formulation
based on the interpolation of three fields: displacement, stress and plastic multiplier.
These interpolations can be expressed as:

u := Nde σ := Sβe γ := Gκe, (3)

where N , S and G are the matrices containing the interpolation functions and de, βe and
κe are the vectors collecting the finite element parameters. The non–negativeness of the
interpolation functions G allows the condition γ ≥ 0 to be easily expressed by making
κe ≥ 0, where, from now on, vector inequality will be considered in a componentwise
fashion. Moreover an important aspect which will allow the nonlinear algorithm to be
casted in the format described in the following regards the continuity order of the assumed
interpolations, in particular the displacement field has to be capable of assuring the inter-
element continuity while σ and γ can be defined locally inside the element.

From now on we omit reporting the superscript ()(n) that defines the step.

2.3.1 Local equations

On the basis of the interpolations we obtain the discrete counterpart of the flow rule,
plastic admissibility and consistency condition

{

rσ ≡ He∆βe −Qe∆de +Ae[βe]∆κe = 0

rµ ≡ Φe[β
(n)
e ] ≤ 0, ∆κe ≥ 0, ∆κT

e Φe[β
(n)
e ] = 0,

(4)

4
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where Ae[βe] represents the discrete form of the plastic flux direction and is defined by

Ae[βe] :=

∫

Ωe

ST ∂ϕ

∂σ
[βe]G

while the discrete operators

Qe :=

∫

Ωe

STDN He :=

∫

Ωe

STC−1S (5)

are the usual compatibility/equilibrium and elastic flexibility matrices respectively and

Φe[βe] :=

∫

Ωe

GTϕ[βe], (6)

corresponds to the element representation of the yield function and it depends on the final
value of the stress parameters. As Eqs. (4) are expressed in terms of quantities locally
defined on the element, or at the Gauss points for standard finite element interpolations,
they will be denoted from now on as local equations.

2.3.2 Global equations

The discrete form of the equilibrium equations and the arc length condition to be used
in the numerical solution of the problem are:

Ae

{
QT

e βe − λpe

}
= 0, , Ae

{
∆dT

e pe

}
= ∆ξ, (7)

Ae being the standard assembling operator which takes into account the inter–element
continuity conditions on the displacement field and

pe :=

∫

Ωe

NTb+

∫

∂Ωe

NT t (8)

is the element load vector. For the sake of the following discussion eqs.(7) can be rewritten
as {

ru ≡ QTβ − λp = 0

rλ ≡ ∆dTp−∆ξ = 0,
(9)

where β, d and p denote the global vectors collecting all the stress parameters βe, the
displacement parameters de and the applied loads pe.

5
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2.4 The mathematical programming point of view

Noting that

Ae[βe] :=

(
∂Φe[βe]

∂βe

)T

each finite step is characterized by the set of nonlinear equalities and inequalities defined
by Eqs. (4) and (9) which represent the first order conditions of the following nonlinear
convex optimization problem:

maximize ∆ξ(n)λ(n) − 1

2

∑

e

(∆βe)
THe∆βe,

subject to QTβ(n) = λ(n)p

Φe[β
(n)
e ] ≤ 0 ∀βe.

(10)

Assuming this point of view the actual solution strategy can be implemented on the basis
of a nonlinear programming technique suitable for solving (10).

Note how more standard finite element formulations based on the numerical integration
on the Gauss points could be easily framed inside the optimization problem defined by
Eq. (10), by considering the quadratic terms of the objective function as the result of
the sum of the contributions of the Gauss points of each element while the admissibility
condition is imposed on each Gauss point.

3 A NEW SOLUTION SCHEME FOR ELASTOPLASTIC ANALYSIS

In the following section we will present an application of the SQP method to solve
Eq. (10). The algorithm exploits the problem structure allowing its solution at the global
level by means of a Newton (Riks) scheme which is characterized by minimal implemen-
tational differences with respect to standard SD-CPP formulations.

3.1 The linearized equations for the elastoplastic step and the sequential
quadratic programming (SQP) formulation

The estimate of the unknowns relative to the new step, z(n) = {λ(n),β(n),d(n),κ(n), },
will be denoted by zj+1 = zj + ż where, in order to make the notation simpler, the
superscript relative to the step number has been dropped leaving only the indication for
the current j–th iteration. The starting point for the new algorithm is the linearization
of the finite step equation (10) which yields the local equations (4) again, i.e.

{

−Hetβ̇
j
+Qeḋ−Aj

eκ̇e = −rj
σ,

Φj+1
e ≤ 0 , κj+1

e ≥ 0 , (κj+1
e )TΦj+1

e = 0.
∀e (11a)

Where

Het ≡ He +
∑

k

κj
ek

∂2Φek

∂β2
e

�
�
�
�
βe=βj

e

, Aj =
∂Φe

∂βe

�
�
�
�
βe=βj

e

,

6
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κj
ek and Φek are the kth components of κj

e and Φe[β
j
e] respectively, and

Φj+1
e ≡ Φe[β

j
e] + (Aj

e)
T (βj+1

e − βj
e) = Φe[β

j
e] + (Aj

e)
T β̇e.

Moreover, the linearization of the global finite step equations (9) gives:

{

QT β̇ − λ̇p = −ruj,

− ḋ
T
p = −rλj.

(11b)

Eq. (11) could also be obtained by applying a sequential quadratic programming (SQP)
approach to (10) obtaining

maximize ∆ξ λ̇−
∑

e

(

β̇e

T
He∆βj

e −
1

2
β̇

T

e Hetβ̇e

)

subject to QT β̇ − λ̇p+ rj
u = 0,

(Aj)T β̇ +Φe[β
j] ≤ 0,

(12a)

whose solution gives the new estimate zj+1 in the form

zj+1 = {λj + λ̇,βj + β̇,dj + ḋ,κj+1}. (12b)

However the solution of the QP sub-problems (12a) with a standard SQP algorithm
requires however a great computational effort due to the coupling action exerted by the
equilibrium constraints. A method to efficiently solve Eq. (11) or problem in (12a) will
now be examined.

3.2 The EC-SQP formulation

First the SQP problem in (12) is solved by using an equality constraint sequential
quadratic programming (EC-SQP) approach [3]. Each iteration of the EC-SQP approach
consists of two phases: i) estimation of the active set of constraints; ii) solution of an
equality constrained quadratic program that imposes the apparently active constraints
and ignores the apparently inactive ones. The idea is to identify the active constraints for
the actual estimate of the solution using information available at a point near to zj+1, a
point which in the sequel will be denoted by z̄j+1.

3.2.1 The detection of the active set of constraints

The estimation of the active constraints is performed by advocating the decomposition
point of view, i. e. solving an optimization problem obtained by the original ones (11a) for

a fixed, properly assumed, value of the displacements d̄
j+1

= dj. The series of decoupled
problems obtained in this way have the same form as a standard CPP scheme and it can
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be easily solved at the local element level in a way as efficient as, or also more, than the
standard SD-CPP approach.

At the iteration j + 1 then the active set of constraints is obtained by solving (11a)
assuming d̄j+1 ≈ dj and so ḋ = 0. The result is a problem that is now decoupled at the
local level, i. e. {

−Het
˙̄βj
e −Aj

e
˙̄κe = −rj

σ,

Φj+1
e ≤ 0 , κ̄j+1

e ≥ 0 , (κ̄j+1
e )TΦj+1

e = 0,
∀e (13)

where the symbols with a bar denote the estimates of the new quantities. In particular
Eqs.(13) are the first order conditions of the following QP problem:







min
(β̇e)

:
1

2
( ˙̄βj

e)
THet

˙̄βj
e + ( ˙̄βj

e)
Tgj,

subj.: AT
j
˙̄βj
e +Φj

e ≤ 0,

∀e (14)

where Φj
e = Φe[β

j
e], g

j = He(β
j
e − β∗

e). The solution of Eqs (14), which can be seen
as the quadratic problems arising from an SQP approximation of the CPP projection
scheme, gives the actual estimate of the stress and plastic multiplier parameters, β̄e

j+1
=

βj
e +

˙̄βe, κ̄j+1. In particular the QP problem (14) is efficiently solved by using the
Goldfarb-Idnani active set method, see [6] for further details.

3.2.2 The solution of the QP equality constraint scheme

After the detection of the set of active constraints, and assuming that this set is not
void, we have to solve Eqs. (11) by means of the following system of equations in which
only the residuals of the active constraints are considered:







· AjT
e · ·

−Aj
e −Het Qe ·

· QT
e · −pe

· · −pT
e ·













κ̇e

β̇e

ḋe

λ̇






= −







rj
µ

rj
σ

rj
u

rjλ







, zj+1 = zj + ż, (15)

where the further condition κj+1 ≥ 0 needs to be imposed.
System (15) is easily solved by static condensation of the local defined quantities. In

particular, recalling that the QP scheme in (14) solves the first two equations of (11a)
zeroing the displacements ḋe, we obtain







β̇e = H−1
et

(

rj
σ +Qeḋe −Ajκ̇e

)

= ˙̄βe +H−1
et Qeḋe,

κ̇e = W
(

rj
µ +AT

j H
−1
et r

j
σ +AT

j H
−1
et Qeḋe

)

= ˙̄κe +WAT
j H

−1
et Qeḋe,

(16)

where W =
[
AT

j H
−1
et Aj

]−1
.
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At the global level then we have to assemble the condensed element contribution as

Ae

(
QT

e EtQe

)
ḋ− λ̇p = −Ae

(
r̃j
u

)
, −pT ḋe = −rjλ, (17)

where

r̃j
u = rj

u +QT
e (Etr

j
σ −H−1

et AjWrj
µ) and Et = H−1

et −H−1
et AjWAT

j H
−1
et .

Et has the same expression as the algorithmic tangent matrix evaluated by standard
SD-CPP formulation.

System (17) is coincident with a standard SD-CPP iteration scheme except for the
new definition of quantities r̃j

u. Note that Et and H−1
et AjW are evaluated at each step

of the QP problem, by the optimization algorithm used, so only the evaluation of r̃j
u is

required. In the case of an element with zero active constraints the solution is obtained
from previous scheme by deleting the first row and column from system (15).

4 NUMERICAL RESULTS

A series of numerical tests, in plane stress/strain conditions has been performed in
order to evaluate the performance of the proposed algorithm in the elastoplastic analysis
of 2D problems under the action of various kinds of loads (traction tests characterized by
stress concentration, in-plane bending actions) and for different materials (Von Mises and
Drucker-Prager materials). The finite elements adopted are those proposed in [4] where
the interpolation of the displacement, stress and plastic multiplier fields is adopted. In
particular, among the elements proposed in the cited work, only the FC4 element, with
a piecewise-constant interpolation over 4 subareas into which the internal area of the
element is divided, has been used. This choice allows to test the robustness of the proposed
algorithm with respect to more severe and more nonlinear cases. Further details of the
finite elements used can be found in [4].

The convergence to a new equilibrium point will be considered as achieved when the
norm of residuals is less than a given tolerance, i.e. ∥ru∥ + ∥rσ∥ + ∥rµ∥ ≤ toll, while
the analysis is stopped when the displacement component of a specified point reaches
a prescribed value. The number of points required by the Riks strategy to evaluate the
equilibrium path will be denoted with steps while the iterations required for each step will
be denoted with loops. The arc–length scheme adopted does not use any globalization
technique, such as line search. In the case of convergence failure the algorithm simply
restarts from the last point evaluated but with a reduced arc–length increment. A line
search is performed in the return mapping process of the SD-CPP algorithm to allow the
possibility of handling with large step sizes. Moreover, in order to test the robustness of
the proposed EC-SQP algorithm, that is the possibility of convergence to an equilibrium
point also starting very far from it, the analyses were repeated by increasing the value of
the first step length ∆ξ(1) selected in order to force the value of the observed component
of the displacement to a prescribed amplitude. In this way the analysis works with larger

9



1338

Antonio Bilotta, Leonardo Leonetti and Giovanni Garcea

step sizes, this last one being controlled through an extrapolation parameter calculated

by the formula
(

1− 1
2
lps−lpsd
lps+lpsd

)

, where lps is the number of loops required by the last

step and lpsd the desired number of loops. However if the step is not closed within the
maximum number of loops the analysis is restarted with a smaller initial step size. Then,
for each test, a report is presented which shows the evaluated collapse load multiplier and
the relative error, the number of steps, the total number of loops and the number of step
failures (i. e. the steps not closed within lpsm). In this way a deep comparison of the
SD-CPP and EC-SQP algorithm is performed. In the following only one test, representing
well the behavior of the algorithm, will be presented.

4.1 Square plate with circular hole

This test is depicted in Fig. 1 and is known as square plate with circular hole. The
analyses were performed in plane stress conditions on the basis of four different meshes of
(2n×2n) elements each denoted as mesh n and was stopped when the vertical component
of node A reaches the value 5e− 3.

0.1L

0.4L

0.5L

σy = 10ν = 0.3

E = 200000

A

10

Figure 1: Plate with circular hole. Problem description and discretization meshes.

The results obtained on all the meshes using both the standard SD-CPP algorithm
and the new EC-SQP algorithm are summarized in Tab. 4.1. The capability of the
proposed algorithm to sustain even very large step sizes without affecting the computed

10
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and the new EC-SQP algorithm are summarized in Tab. 4.1. The capability of the
proposed algorithm to sustain even very large step sizes without affecting the computed
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collapse load, regardless of the mesh considered, is clear. In contrast the standard SD-CPP
algorithm has no particular problem for the first values of the assigned initial increment
of the monitored displacement component, i.e. 5e − 5 and 1e − 4. Afterward, for the
bigger increments, the algorithm makes some false steps until the step size is not reduced
to a value that can be sustained.

Mesh 1 (dofs 98) Mesh 2 (dofs 338)
λc stps lps flrs incr. λc stps lps flrs incr.

SD-CPP 0.8100 20 58 0 5e-5 0.8030 23 77 0 5e-5
0.8100 18 55 0 1e-4 0.8030 20 73 1 1e-4
0.8100 19 55 4 1e-3 0.8030 21 72 4 1e-3
0.8100 21 57 7 5e-3 0.8030 25 84 7 5e-3
0.8100 22 65 8 1e-2 0.8030 25 86 8 1e-2

EC-SQP 0.8100 20 58 0 1e-5 0.8030 24 87 0 5e-5
0.8100 18 58 0 1e-4 0.8030 21 83 0 1e-4
0.8100 6 32 0 1e-3 0.8030 9 72 0 1e-3
0.8100 2 37 0 5e-3 0.8030 2 54 0 5e-3
0.8100 1 20 0 1e-2 0.8030 1 28 0 1e-2

Mesh 3 (dofs 1250) Mesh 4 (dofs 4802)
λc stps lps flrs incr. λc stps lps flrs incr.

SD-CPP 0.8015 27 105 0 5e-5 0.8006 28 113 1 5e-5
0.8015 22 91 0 1e-4 0.8006 24 109 1 1e-4
0.8015 25 97 4 1e-3 0.8006 27 118 6 1e-3
0.8015 28 106 7 5e-3 0.8006 32 136 8 5e-3
0.8015 27 100 8 1e-2 0.8006 31 128 8 1e-2

EC-SQP 0.8015 27 111 0 5e-5 0.8006 34 157 0 5e-5
0.8015 25 112 0 1e-4 0.8006 29 143 0 1e-4
0.8015 9 91 0 1e-3 0.8006 10 103 0 1e-3
0.8015 2 86 0 5e-3 0.8005 2 77 1 5e-3
0.8015 1 37 0 1e-2 0.8005 1 43 1 1e-2

Table 1: Plate with circular hole. Analysis report, vAmax = 5e− 3, toll = 1e− 4, desired = 6, max = 50.

5 CONCLUSIONS

In this paper a new method for the incremental elastoplastic analysis of structures
has been presented. The method is based on a SQP approximation of the finite element
representation of the holonomic step equations that retains as primary variables, and at
each iteration, all the variables of the problems. In the solution process, based on the
equality constrained approach, the set of active constraints is obtained by solving a simple
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quadratic programming problem which has the same structure and variables of a standard
return mapping by closest point projection scheme, i.e. it is decoupled and it can be solved
at a local level (finite element, Gauss point). The solution of the equality constraint
problems is performed by means of a static condensation of the locally defined variables,
that is stress and plastic multiplier parameters, for which the inter element continuity
is not required so obtaining at the global level a nonlinear pseudo-compatible scheme of
analysis that has the same structure as classic path following arc-length methods.

The numerical results are performed for plane stress/strain problems using both von
Mises and Drucker-Pragher yield functions and adopting the finite element interpolation
proposed in [4]. This finite element uses a three field interpolation and requires a multi-
surface return mapping solution in the SD-CPP case, representing a good test for the
robustness and efficiency of the incremental elastoplastic algorithm proposed here. A
large number of numerical results performed for both single or multi–surface elastoplastic
cases shows the great improvement in robustness and efficiency with respect to standard
return mapping strain driven formulations.

The presentation and the application are limited to the perfect plasticity case but its
extension to other more complex associated cases would be simple.
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Abstract. This paper illustrates how to implement effectively solvers for elasto-plastic
problems. We consider the time step problems formulated by nonlinear variational equa-
tions in terms of displacements. To treat nonlinearity and nonsmoothnes we use semis-
mooth Newton method. In each Newton iteration we have to solve linear system of
algebraic equations and for the numerical solution of the linear systems we use TFETI
algorithm. In our benchmark we compute von Misses plasticity with isotropic hardening
and use return mapping concept.

1 INTRODUCTION

The goal of paper is to show how to implement effectively solvers for elasto-plastic prob-
lems. Such problems with hardening lead to quasi-static initial-boundary value problems,
so the history of loading is taken into account. The problems are often solved by an
incremental finite element method, see e.g [1]. For the time-discretisation we can use the
explicit or implicit Euler methods or the return mapping concept. Each time-step problem
may be formulated in different ways by variational equalities or inequalities described in
terms of stress, plastic strain, hardening parameter, and displacements. In this paper, we
consider the time-step problems formulated by nonlinear variational equations in terms of
displacements. To treat nonlinearity and non-smoothness we use the semismooth Newton
method introduced in [2] and used in [3] for elasto-plastic problems.

In each Newton iteration we have to solve an auxiliary (possibly of large size) linear
system of algebraic equations. The key idea of our approach is to use for the numerical
solution of the linear systems arising in each Newton step the FETI method with optimal
convergence properties proposed by Farhat et al. [4] for parallel solution of linear prob-
lems. Using this approach, a body is partitioned into non-overlapping subdomains, an
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elliptic problem with Neumann boundary conditions is defined for each subdomain, and
intersubdomain field continuity is enforced via Lagrange multipliers. The Lagrange multi-
pliers are evaluated by solving a relatively well conditioned dual problem of small size that
may be efficiently solved by a suitable variant of the conjugate gradient algorithm. The
first practical implementations exploited only the favorable distribution of the spectrum of
the matrix of the smaller problem, known also as the dual Schur complement matrix, but
such algorithm was efficient only with a small number of subdomains. Later, Farhat, Man-
del, and Roux introduced a “natural coarse problem” whose solution was implemented
by auxiliary projectors so that the resulting algorithm became in a sense optimal [4]. In
our approach, we use the Total-FETI [5] variant of FETI domain decomposition method,
where also the Dirichlet boundary conditions are enforced by Lagrange multipliers. Hence
all subdomain stiffness matrices are singular with a-priori known kernels which is a great
advantage in the numerical solution and also in the theory.

The paper is organized as follows. After introducing a model problem, we briefly
review the TFETI methodology that transforms the large primal problem in terms of
displacements into the smaller and better conditioned dual one in terms of the Lagrange
multipliers whose conditioning is further improved by using the projectors defined by the
natural coarse grid. Then we introduce a modification of the conjugate gradient algorithm
for the solution of the resulting quadratic programming problem with equality constraints
enforced by the orthogonal projector onto the subspace defined by the constraints. Futher
we briefly review the elasto-plasticity methodology for von Mises plasticity with isotropic
hardening. We illustrate the efficiency of our algorithm on the solution of 3D elasto-plastic
model benchmark and give encouraging results of numerical experiments.

2 PROBLEM OF ELASTOSTATICS

Let us consider an isotropic elastic body represented in a reference configuration by a
domain Ω in R

d, d = 2, 3, with the sufficiently smooth boundary Γ as in Fig. 1. Suppose
that Γ consists of two disjoint parts ΓU and ΓF , Γ = ΓU ∪ΓF , and that the displacements
U : ΓU → R

d and forces F : ΓF → R
d are given. The mechanical properties of Ω are

defined by the Young modulus E and the Poisson ratio ν.
Let cijkℓ : Ω → R

d and g : Ω → R
d denote the entries of the elasticity tensor and a

vector of body forces, respectively. For any sufficiently smooth displacement u : Ω → R
d,

the total potential energy is defined by

J(u) =
1

2
a(u,u)−

∫

Ω

g⊤u dΩ−

∫

ΓF

F⊤u dΓ, (1)

where

a(u,v) =

∫

Ω

cijkℓeij(u)ekℓ(v)dΩ, ekℓ(u) =
1

2

(
∂uk

∂xℓ
+

∂uℓ

∂xk

)

.

We suppose that the elasticity tensor satisfies natural physical restrictions so that

a(u,v) = a(v,u) and a(u,u) ≥ 0. (2)

2
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ΩΓU

ΓF

ΓF

ΓF

Figure 1: Model problem

Now let us introduce the Sobolev space V = H1(Ω)d and let K denote the set of all
kinematically admissible displacements, where K = {v ∈ V : v = U on ΓU}. The
displacement u ∈ K of body in equilibrium satisfies

J(u) ≤J(v) for any v ∈ K. (3)

Conditions that guarantee existence and uniqueness may be expressed in terms of coer-
civity of J . More general boundary conditions, such as prescribed normal displacements
and periodicity, may be considered without any conceptual difficulties.

3 TFETI DOMAIN DECOMPOSITION

To apply the TFETI domain decomposition, we tear body from the part of the bound-
ary with the Dirichlet boundary condition, decompose body into subdomains, assign each
subdomain a unique number, and introduce new “gluing” conditions on the artificial
intersubdomain boundaries and on the boundaries with imposed Dirichlet condition.

More specifically, the body Ω is decomposed into a system of s homogeneous isotropic
elastic subdomains, each of which occupies, in a reference configuration, a subdomain Ωp

in R
d, d = 2, 3. After decomposition each boundary Γp of Ωp consists of three disjoint

parts Γp
U , Γ

p
F , and Γp

G, Γ
p = Γ

p

U ∪ Γ
p

F ∪ Γ
p

G, with the corresponding displacements Up

and forces Fp inherited from the originally imposed boundary conditions on Γ. For the
artificial intersubdomain boundaries, we use the following notation: Γpq

G denotes the part
of Γp that is glued to Ωq and Γp

G denotes the part of Γp that is glued to the other
subdomains. Obviously Γpq

G = Γqp
G . An auxiliary decomposition of the problem of Fig. 1

with renumbered subdomains and artificial intersubdomain boundaries is in Fig. 2. The
gluing conditions require continuity of the displacements and of their normal derivatives
across the intersubdomain boundaries. The mechanical properties of Ωp are defined by
the Young modulus Ep and the Poisson ratio νp.

Let cpijkℓ and gp denote again the entries of the elasticity tensor and a vector of body

forces, respectively. For any sufficiently smooth displacement u : Ω
1
× . . .×Ω

s
→ R

d, the

3
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total potential energy is defined by

J (u) =

s∑

p=1

{

1

2
ap(up,up)−

∫

Ωp

(gp)⊤updΩ−

∫

Γp

F

(Fp)⊤updΓ

}

, (4)

where

ap(up,vp) =

∫

Ωp

cpijkℓe
p
ij(u

p)epkℓ(v
p)dΩ, epkℓ(u

p) =
1

2

(
∂up

k

∂xp
ℓ

+
∂up

ℓ

∂xp
k

)

.

We suppose that the bilinear forms ap satisfy (2) and let us introduce the product Sobolev
space V = H1(Ω1)d×. . .×H1(Ωs)d , and let K denote the set of all kinematically admissible
displacements, where K = {v ∈ V : vp = Up on Γp

U , vp = v|Ωp
}. The displacement

u ∈ K of the system of subdomains in equilibrium satisfies

J (u) ≤J (v) for any v ∈ K. (5)

Ω
Ω1 Ω2

Ω3 Ω4

H h

λ

Figure 2: TFETI domain decomposition with subdomain renumbering

The finite element discretization of Ω = Ω
1
∪ . . . ∪ Ω

s
with a suitable numbering of

nodes results in the quadratic programming (QP) problem

1

2
u⊤Ku− f⊤u → min subject to Bu = c, (6)

where K = diag(K1, . . . ,Ks) denotes a symmetric positive semidefinite block-diagonal
matrix of order n, B denotes an m× n full rank matrix, f ∈ R

n, and c ∈ R
m.

The diagonal blocks Kp that correspond to the subdomains Ωp are positive semidefinite
sparse matrices with known kernels, the rigid body modes. The blocks can be effectively
decomposed using the Choleski factorization [6]. The vector f describes the nodal forces
arising from the volume forces and/or some other imposed traction.

4
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The matrixB with the rows bi and the vector c with the entries ci enforce the prescribed
displacements on the part of the boundary with imposed Dirichlet condition and the
continuity of the displacements across the auxiliary interfaces. The continuity requires
that biu = ci = 0, where bi are vectors of the order n with zero entries except 1 and −1
at appropriate positions. Typically m is much smaller than n.

Even though (6) is a standard convex quadratic programming problem, its formulation
is not suitable for numerical solution. The reasons are that K is typically ill-conditioned,
singular, and very large.

The complications mentioned above may be essentially reduced by applying the duality
theory of convex programming (see, e.g., Dostál [7]), where all the constraints are enforced
by the Lagrange multipliers λ. The Lagrangian associated with problem (6) is

L(u,λ) =
1

2
u⊤Ku− f⊤u+ λ⊤(Bu− c). (7)

It is well known [7] that (6) is equivalent to the saddle point problem

L(u,λ) = sup
λ

inf
u

L(u,λ). (8)

4 OPTIMAL SOLVERS TO EQUALITY CONSTRAINED PROBLEMS

The solution of (8) leads to equivalent problem to find (ū, λ̄) ∈ R
n × R

m satisfying:

A

(
u
λ

)

=

(
f
c

)

(9)

with the saddle-point matrix

A :=

(
K B⊤

B 0

)

.

We suppose that (9) is uniquely solvable which is guaranteed by the following necessary
and sufficient conditions [8]:

KerB⊤ = {0}, (10)

KerK ∩ KerB = {0}. (11)

Notice that (10) is the condition on the full row-rank of B. Let us mention that an
orthonormal basis of KerK is known à-priori and that its vectors are columns ofR ∈ R

n×l,
l = n− rank(K).

The first equation in (9) is satisfied iff

f −B⊤λ̄ ∈ ImK (12)

and
ū = K†(f −B⊤λ̄) +Rᾱ (13)

5
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for an appropriate ᾱ ∈ R
l and arbitrary generalized inverse K† satisfying KK†K = K.

Moreover, (12) can be equivalently written as

R⊤(f −B⊤λ̄) = 0. (14)

Further substituting (13) into the second equation in (9) we arrive at

−BK†B⊤λ̄+BRᾱ = c−BK†f . (15)

Summarizing (15) and (14) we find that the pair (λ̄, ᾱ) ∈ R
m × R

l satisfies:

S

(
λ

α

)

=

(
d
e

)

, (16)

where

S :=

(
BK†B⊤ −BR
−R⊤B⊤ 0

)

is the (negative) Schur complement of K in A, d := BK†f − c, and e := −R⊤f . As both
S and A are simultaneously invertible [8], we can compute first (λ̄, ᾱ) by solving (16)
and then we obtain ū from (13). Let us note that (16) has formally the same saddle-point
structure as that of (9), however, its size is considerably smaller.

Before discussing the solution method for (16) we introduce new notation

F := BK†B⊤, G := −R⊤B⊤

which changes (16) into
(

F G⊤

G 0

)(
λ

α

)

=

(
d
e

)

. (17)

Now we shall split (17) using the orthogonal projector PG onto KerG. As (11) implies
that G is of full row-rank, we can identify PG with the following matrix:

PG := I−G⊤(GG⊤)−1G.

Applying PG on the first equation in (17) we obtain that λ̄ satisfies:

PGFλ = PGd, Gλ = e. (18)

In order to arrange (18) as one equation on the vector space KerG we decompose the
solution λ̄ into λ̄Im ∈ ImG⊤ and λ̄Ker ∈ KerG as

λ̄ = λ̄Im + λ̄Ker . (19)

Since λ̄Im is easily available via

λ̄Im = G⊤(GG⊤)−1e,

6



1347
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it remains to show how to get λ̄Ker . Substituting (19) into (18) we can see that λ̄Ker

satisfies:
PGFλKer = PG(d− Fλ̄Im ), λKer ∈ KerG. (20)

Let us note that this equation is uniquely solvable, as PGF : KerG �→ KerG is invertible
if A is invertible [8]. Finally note that, if λ̄ is known, the solution component ᾱ is given
by

ᾱ = (GG⊤)−1G(d− Fλ̄). (21)

Let us algorithmically summarize the previous results. It turns out to be reasonable to
form and store the l×m matrix G and the l×l matrix H := (GG⊤)−1 because l is usually
small (the Cholesky factor of GG⊤ may be used instead of H). On the other hand, the
m × m matrices F and PG are not assembled explicitly, since only their matrix-vector
products are needed. Finally note that the actions of B are inexpensive in our problems
due to sparsity of B and the actions of K† are computed effectively by the Cholesky
factorization of Kp, p = 1, ..., s ([6]). All the above steps are summarized in the following
algorithmic scheme.

Algorithmic scheme

Step 1.a: Compute G := −R⊤B⊤, H := (GG⊤)−1, d := BK†f − c, and
e := −R⊤f .

Step 1.b: Compute λ̄Im := G⊤He.

Step 1.c: Compute d̃ := d− Fλ̄Im .

Step 1.d: Compute λ̄Ker by solving PGFλKer = PGd̃ on KerG.
Step 1.e: Compute λ̄ := λ̄Im + λ̄Ker .
Step 2: Compute ᾱ := HG(d− Fλ̄).
Step 3: Compute ū := K†(f −B⊤λ̄) +Rᾱ.

Finally, we introduce the projected conjugate gradient method with preconditioning
(ProjCGM) [4] that we use for computing λ̄Ker in Step 1.d of Algorithmic scheme. Thus
we want to compute λ̄Ker by solving the system PGFλKer = PGd̃ on KerG with the
lumped preconditioner F−1 [4] to F.

Algorithm ProjCGM

1. Initialize

r0 = d̃, λ0
Ker

= o.

2. Iterate k =1, 2, ..., until convergence

Project wk−1 = PGr
k−1.

Precondition zk−1 = F−1wk−1.

Project yk−1 = PGz
k−1.

7
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βk = (yk−1)⊤wk−1/(yk−2)⊤wk−2; (β1 = 0).

pk = yk−1 + βkpk−1; (p1 = y0).

αk = (yk−1)⊤wk−1/(pk)⊤Fpk.

λk
Ker

= λk−1
Ker

+αkpk.

rk = rk−1 −αkFpk.

3. λ̄Ker = λk
Ker

.

Using TFETI in combination with ProjCGM algorithm we are able to find the solution
of the original elasto-plastic problem in O(1) matrix-vector multiplications independently
of the problem size provided the ratio between the decomposition step H and the dis-
cretization step h is kept bounded. For more details about optimality see [4].

5 ELASTO-PLASTICITY

Elasto-plastic problems are the so-called quasi-static problems where the history of
loading is taken into account. We consider the von Mises elasto-plasticity with the strain
isotropic hardening and incremental finite element method with the return mapping con-
cept [1].

The elasto-plastic deformation of an body Ω after loading is descibed by the Cauchy
stress tensor σ, the small strain tensor ε, the displacement u, and the nonnegative hard-
ening parameter κ. Symmetric tensor is represented by the vector and its deviatoric part
is denoted by the symbol dev.

Let us denote the space of continuous and piecewise linear functions constructed over
a regular triangulation of Ω with the discretization norm h by Vh ⊂ V , where V =
{
v ∈ H1(Ω)d : v = 0 on ΓU

}
. Let

0 = t0 < t1 < . . . tk < . . . < tN = t∗ (22)

be a partition of the time interval [0, t∗]. Then the solution algorithm after time and space
discretizations has the form:
Algorithm 3.

1. Initial step: u0
h = 0, σ0

h = 0, κ0
h = 0,

2. for k = 0, . . . , N − 1 do (load step)

3. From previous step we know: uk
h, σk

h, κk
h and compute △uh, △σh, △κh

△εh = ε(△uh), △uh ∈ Vh, (23)

△σh = Tσ(σ
k
h, κk

h, △εh), (24)

△κh = Tκ(σ
k
h, κk

h, △εh). (25)

8
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M. Čermak, T. Kozubek and A. Markopoulos

4. Solution △σh(σ
k
h, κk

h, ε(△uh)) is substituted into equation of equilibrium:
∫

Ω

△σT
h (σ

k
h, κk

h, ε(△uh))ε(vh)dx = �△fkh , vh�, ∀vh ∈ Vh. (26)

This leads to a nonlinear system of equations with unknown △uh which is solved
using the Newton method. The linearized problem arising in each Newton step is
solved by TFETI algorithmic scheme proposed above.

5. Then we compute values for the next step: uk+1
h = uk

h + △uh, σk+1
h = σk

h +
△σh, κk+1

h = κk
h +△κh.

6. enddo

Above we consider the following notation. Let C denote the Hook’s matrix, E represent
linear operator dev, µ, λ be the Lamé coefficients, △fkh be the increment of the right hand
side and σt

h = σk
h +C△εh. For return mapping concept we define

△σh = Tσ(σ
k
h,κ

k
h,△εh) = TRM

σ (σk
h,κ

k
h,△εh) =

=

{
C△εh if P (σt

h,κ
k
h) ≤ 0,

C△εh − γRn̂ if P (σt
h,κ

k
h) > 0,

(27)

△κh = Tκ(σ
k
h,κ

k
h,△εh) = TRM

κ (σk
h,κ

k
h,△εh) =

=

{
0 if P (σt

h,κ
k
h) ≤ 0,

γz = γR�Cp�−1z if P (σt
h,κ

k
h) > 0,

(28)

where

γR = 3µ
3µ+Hm

√
2
3

(√
3
2
�dev(σt

h)� − (Y0 +Hmκ
k
h)
)

=

= 3µ
3µ+Hm

√
2
3
P (σt

h,κ
k
h),

(29)

n̂ =
dev(σt

h)

�dev(σt
h)�

, �Cp� = 2µ

√

3

2
, z = 1, (30)

and plasticity function

P (σt
h,κ

k
h) =

√

3

2
�dev(σt

h)� − (Y +Hmκ
k
h), Y,Hm > 0. (31)

The function γRn̂ is semismooth and potential. The derivative of TRM
σ is

(TRM
σ )

′

(△ε) = C− 2µ 3µ
3µ+Hm

[E+

+
√

2
3

Y0+Hmκ
k
h

�dev(σk
h
+C△ε)�

(
dev(σk

h
+C△ε)(dev(σk

h
+C△ε))T

�dev(σk
h
+C△ε)�2

−E
)]

.

(32)

9
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If we represent a function vh ∈ Vh by the vector v ∈ R
n and omit index k then (26)

can be rewritten as the system of nonlinear equations

F (△u) = △f , (33)

where
�F (v),w� =

∫

Ω
�TRM

σ (ε(vh)), ε(wh)�dx, ∀v,w ∈ R
n

�△f ,w� = △fh(vh), ∀w ∈ R
n.

(34)

6 NUMERICAL EXPERIMENTS

Described algorithms were implemented in MatSol library [9] developed in Matlab
environment and tested on solution of 3D problems.

Let us consider a 3D plate with a hole in the center (due to symmetry only a quatre of
the whole structure is used) with the geometry depicted in Fig. 3. Boundary conditions
are specified in Fig. 4. Symmetry conditions are prescribed on the left and lower sides of
Ω. The surface load g(t) = 450 sin(2πt) [MPa], t ∈ [0, 1

4
] [sec], is applied to the upper side

of Ω. The elasto-plastic material parameters are E = 206900 [MPa], ν = 0.29, Y = 450,
Hm = 100 and the time interval [0, 1

4
] [sec] is divided into 50 steps. We consider a mesh

with 5489 nodes and 19008 tetrahedrons. The body Ω is decomposed into 20 subdomains.
In the nth Newton iteration we compute an approximation △un by solving the con-

strained linear problem of the form

min
B△un=o

1

2
(△un)⊤Kn△un − (△un)⊤ △fn

using the TFETI algorithmic scheme proposed above. We stop the Newton method in
every time step if �△un+1 −△un�/ (�△un+1�+ �△un�) is less than 10−6.

Notice that the maximum number of the Newton iterations is small for all time steps
(less than 7), therefore the method is suitable for the problem. In the following figures,
we depict plastic and elastic elements, graph of maximum value of hardenining at each
time step and von Mises stress in the xy plane cross-section with the z coordinate 0 [mm]
corresponding to the surface of Ω. In Figs. 5, 6, we see which elements are plastic (gray
color) and which are elastic (white color) in chosen time steps. Particularly, in time steps
1-12 we observe only elastic behavior, and in time steps 13-50 plastic behavior of some
elements. The maximum value of hardenining at each time step is depicted in Fig. 7.
The von Mises stress distribution on deformed mesh is showed in Fig. 8.

7 CONCLUSIONS AND GOALS

We have presented an efficient algorithm for the numerical solution of elasto-plastic
problems. These problems lead to the quasi-static problems, where each nonlinear and
nonsmooth time step problem is solved by the semismooth Newton method. In each
Newton iteration we solve an auxiliary (possibly of large size) linear system of algebraic

10
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Figure 3: 3D plate geometry in [mm]
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Figure 4: 2D plate geometry in [mm]
and boundary conditions

Figure 5: Plastic and elastic elements after
35 time steps

Figure 6: Plastic and elastic elements after
50 time steps
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Figure 8: Von Mises stress distribution on
the deformed mesh (scaled 10x)
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equations using in a sense optimal algorithm based on our Total-FETI variant of FETI
domain decomposition method. We illustrated the efficiency of our algorithm on the
solution of 3D elasto-plastic model benchmark and gave results of numerical experiments.
The results indicate that the algorithm may be efficient. In the future we would like to
adapt this approach to the solution of contact problems.
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Abstract. An improved accuracy analysis of elastoplastic integration algorithms is pre-
sented and proposed in this paper. The notion of the well–established isoerror maps is
extended and polar plots are constructed for a wide range of stress points, algorithmically
selected in the principal stress space. The selection of the stress points is independent of
the yield surface and therefore a general procedure is obtained. The individual maps are
then joined together to produce a complete view of the accuracy assessment of the stress
update algorithm. The proposed procedure is validated in a characteristic multisurface
yield criterion.

1 INTRODUCTION

Within the context of computational plasticity it is desirable that the stress update
algorithms employed at the Gauss point level should be sufficiently accurate for strain
increments as large as possible in order to ensure that the global finite element solution
remains within reasonable bounds of accuracy for large load increments. Therefore, accu-
racy assessment of elastoplastic integration algorithms under finite steps becomes crucial.

A systematic approach to accuracy analyses of elastoplastic algorithms have been first
developed by Krieg and Krieg [1] who constructed isoerror maps on a strain controlled ho-
mogeneous problem investigating the behaviour of integration algorithms for the Huber–
von Mises perfectly plastic model. Although this technique should not be regarded as a
replacement of a rigorous accuracy and stability analysis, it have been proved very effec-
tive and is generally accepted as a reliable tool for the accuracy assessment of integration
algorithms [2].

Standard accuracy assessment employing isoerror maps follows a typical pattern. For
a given yield surface, a range of possible stress points that reside on the surface and

1

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



1354

Fotios E. Karaoulanis

correspond to different stress states (eg. uniaxial loading, biaxial loading, pure shear
stress etc.) must be identified. A sequence of yield surface and position dependant,
normalized strain increments is then applied at each individual stress point and the error
between the computed and the exact solution is obtained and plotted [3].

Clearly the accuracy assessment following the above procedure is a rather tedious work,
which depends on the correct identification of all possible states, is limited only in the
vicinity of these states and differs considerably in each yield surface.

In this paper an improved accuracy analysis of elastoplastic integration algorithms is
presented and proposed. The isoerror maps are constructed for a wide range of stress
points, algorithmically selected in the principal stress space. The selection of the stress
points is independent of the yield surface and therefore a general procedure is obtained.
The individual maps are then used together to produce a complete view of the accuracy
assessment of the stress update algorithm. The proposed procedure is validated in the
Mohr–Coulomb yield criterion.

2 METHODOLOGY

Let P (ρ, θ, z) denote a point in a cylindrical coordinate system and assume a tran-
formation that maps P to the Haigh–Westergaard stress space [4] as shown in Fig. 1,
i.e.

T : (ρ, θ, z) → (σ1, σ2, σ3) (1)

where σi are the principal stresses.
Now assume that the stress state corresponding to point P defines a trial stress state,

i.e. P ≡ σtrial. Within the context of perfect plasticity, a scalar function f : S → ℜ is
defined, which goes by the name yield function and constrains the admissible stresses to
lie in the so called elastic domain, such as:

Eσ := {σ ∈ S|f(σ) ≤ 0} (2)

If σtrial violates the constraint defined by the yield function then a plastic correction is
needed in order to bring back the trial state in the boundary of Eσ, namely ∂Eσ . From
a numerical standpoint, a typical choice would be a fully–implicit integration algorithm,
which will approximate the solution, yielding a stress state σapprox on ∂Eσ.

However, it has been proved [5, 6] that a fully–implicit scheme tends to provide the
exact solution σexact of the problem when σtrial is divided into a sufficiently large number
n of subincrements. Thus an error estimate can be defined as:

ǫ(%) = 100×

√

(σexact − σapprox) : (σexact − σapprox)
√
σexact : σexact

(3)

Therefore, one has to define a suitable search space V for (ρ, θ, z) and apply the error
estimate for sufficiently large value of n, as described in algorithm 1.

2
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Figure 1: An arbitrary stress state P .

3 APPLICATION

The above proposed methodology is applied in what follows to the Mohr–Coulomb
yield criterion.

3.1 The Mohr–Coulomb yield criterion

The Mohr–Coulomb yield criterion is frequently acknowledged as one of the first and
most important criteria, widely used to describe the yield behavior of a wide range of
materials. It is defined by six linear surfaces in the principal stress space (Fig. 2(a)),
assuming however and without any loss of generality that σ1 ≥ σ2 ≥ σ3, only the following

Algorithm 1 Construction of improved isoerror maps.

for z ∈ [z0, z1, . . .] do
for θ ∈ [−π/6, π/6] with step dθ do
for r ∈ [r1, r2] with step dr do
transform (z, r, θ) to (σ1, σ2, σ3)
Find σapprox

Find σexact using n subincrements
Find error ǫ

end for
end for

end for

3
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(a) Haigh–Westergaard space.
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(b) Projection in the π–plane.

Figure 2: The Mohr–Coulomb yield criterion.

three surfaces (Fig. 2(b)) can describe the elastic domain:

f1(σ1, σ2, σ3) = (σ1 − σ3) + (σ1 + σ3) sin(φ)− 2c cos(φ) (4)

f2(σ1, σ2, σ3) = (σ2 − σ3) + (σ2 + σ3) sin(φ)− 2c cos(φ) (5)

f3(σ1, σ2, σ3) = (σ1 − σ2) + (σ1 + σ2) sin(φ)− 2c cos(φ) (6)

For the problem examined next an associative flow rule is assumed. The elastic prop-
erties are characterized by E = 1000, ν = 0.25 while cohesion and internal friction angle
are given as c = 15 and φ = 20◦.

3.2 The return mapping scheme

The return mapping scheme used here is thoroughly examined in [7, 8] and implemented
in [9]. It is based on a spectral representation of stresses and strains and a return mapping
scheme in principal stress directions. Because of the linearity of the yield surfaces in the
principal stress space the return mapping reduces to a one step closest–point projection.

3.3 Accuracy assessment

For the accuracy assessment of the above implementation, it is chosen that z =
[0.,−10., . . . ,−50.], ρ = [0.01, 0.02, . . . , 100.] and θ = [30◦, 40◦, . . . , 90◦]. As described
in the algorithm 1, for a fixed z and θ both the σapprox and σexact are recovered, the latter
assuming a division into 1000 subincementations.

4
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The results, along with the corresponding elastic domains for the given deviatoric plane,
are plotted in Fig.3.3.

z = -50.0

z = 0.0

z = -10.0

z = -20.0

z = -30.0

z = -40.0

Figure 3: Isoerror maps for the Mohr–Coulomb yield criterion.

4 CONCLUSIONS

An improved accuracy analysis of elastoplastic integration algorithms is presented and
proposed in this paper. The notion of the well–established isoerror maps is extended and
polar plots are constructed for a wide range of stress states spreading over the principal
stress space. The main advantages of this approach is that the selection of the stress
states leads to a procedure that:

- is yield surface–agnostic,

- does not depend on the integration algorithm and

- is able to cover the entire range of possible stress states.

5
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Contrary to typical isoerror maps, the individual equipotential diagrams produced are
joined together and plotted in polar coordinates as to generate a complete picture of the
accuracy assessment of the stress update algorithm. The proposed procedure is validated
in a characteristic multisurface yield criterion, namely the Mohr–Coulomb yield criterion,
composing an intuitive view of the selected integration scheme’s accuracy.
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Abstract. Simulation of any physical process requires definition of the physical model, 
method – analytical or numerical, to solve the set of equations describing the physical model 
and the parameters expressing the body properties and boundary conditions. This paper focus 
on two latter aspects of the numerical simulation process. Precise determination of the model 
quantities are crucial for high quality of the model predictions and accurate reflection of real 
system. Determination of the process parameters is defined as an inverse problem. Following 
this the sensitivity analysis is applied as the preliminary step of the inverse analysis to reduce 
the number of model evaluations and to increase the inverse calculations robustness and 
efficiency. Sensitivity analysis techniques show how "sensitive" is a model to its input 
parameters variations and to changes of the model structure. As the example the sensitivity 
analysis was applied to the 2D DC borehole resistivity measurements simulation problem 
solved with hp-Finite Element Method. 

1 INTRODUCTION 
Modeling of any physical problem requires precise quantitative information of the model 

parameters. Some of them are derived from physical laws, others are of phenomenological 
nature. Proper physical and mathematical description of the problem as well as selection of 
the solution method and accurate estimation of the model parameters are crucial for the high 
quality of the modeling results. The paper focuses on the problem of model parameters 
estimation and the efficient methods to determine the parameters.  

Most problems describing physical phenomena related to identification of some quantities 
are defined as inverse problems [1],[2]. Those problems are hard to solve due to non-unique 
solution and the lack of the model output stability with respect the identified parameters. 
Another aspect is efficiency of the identification. Models of physical phenomena are based on 
differential equations and solved with time consuming numerical methods (e.g. finite element 
method, finite volume method, particles method). All those features motivate to develop the 
robust parameter identification method of high efficiency with respect to the calculation time. 
Classical inverse method was developed and applied by the Author to identify rheological 
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material properties [3]–[5]. One of the main disadvantages of that approach is calculation 
time. The idea of the modified inverse method is to supply the classical algorithm with 
sensitivity analysis as the preliminary step of the solution to decrease the calculation time. As 
the application example problem of DC (direct current) borehole resistivity measurements is 
analyzed. 

2 PROBLEM FORMULATION 

2.1 Direct and inverse problem 
Integral or differential equations describing any physical phenomena are set out in terms of 

functional analysis as: 

:K X Y→  (1) 

where X and Y are normed spaces and K is a mapping (linear or nonlinear).  
The direct problem is formulated as evaluating y = K(x) ∈ Y for given x ∈ X and an 

operator K that is equivalent to solve a boundary value problem for differential equation or to 
evaluate an integral. The inverse problem is defined as evaluating the x ∈ X value for given K 
and y ∈ Y [1],[2]. 

It could be shown that inverse problems described as the integral/differential equations are 
ill-posed in the sense of Hadamard [6]. Those problems require regularization procedure and 
one of the solution is transforming them to the following, well-posed, problems: 

2x Kx y−  (2) 

The form (2) leads to minimization with respect to the parameters, which are identified: 
boundary conditions parameters or material parameters. In terms of optimization terminology, 
the inverse problem is to find the minimum of the objective function: 

( ) 2
:x Kx yδΦ = −  (3) 

where yδ is the perturbated (measured) data such that || ||y yδ δ− ≤ , y ∈ K(X) – exact solution of 
equation (1).  
The objective function (3) depends on the norm in the Y space, if it is supplied with Euclid’s 
norm, the objective function is defined as an average square root error (the Euclidean distance) 
between calculated and measured quantities. 
Equation (1) can be expressed as: 

( )* *x I aK K x aK y= − +  (4) 

where K* is adjoint operator and a>0 is the a number. 
For equation (4) the iteration procedure scheme : 

( )
0

* 1 *

: 0

, 1, 2,...m m

x

x I aK K x aK y m−

=

= − + =
 (5) 
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leads to the solution of the inverse problem described by (2). The general flow chart of the 
inverse analysis algorithm is presented in figure 1. Regardless of the process type inverse 
problem and independently of the applied method of the solution, the algorithm consists of three 
parts: 
• The set of process outputs measured in the experiments (real or virtual). 
• Solver of the direct problem (in most cases of high computation cost). 
• Optimization procedure of objective function. The objective function is defined as a 

distance between measured and calculated model outputs in the selected space norm or it 
can be Pareto set. Either gradient and non-gradient or bio-inspired optimization algorithms 
are applied to determine the minimum of the objective function. 

 

Figure 1: Inverse analysis flow chart. 

2.2 Sensitivity analysis 
Sensitivity analysis allows to assess the accuracy of the model of the analyzed system or 

process, determine the parameters which contribute the most to the output variability, indicate 
the parameters which are insignificant and may be eliminated from the model, evaluate these 
parameters which interact with each other, determine the input parameters region for 
subsequent calibration space [7],[8]. 

The steps of the sensitivity analysis are as following: 
• Sensitivity measure. The measure expresses the model solution (model output) changes to 

the model parameter variation.  
• Selection of the parameter domain points. Design of experiment techniques are commonly 

used to select the lower number of points guaranteed searching whole the domain. 
• Method of sensitivities calculation. The sensitivities are estimated by global indices or by 

local ones. 
The information obtained from sensitivity analysis is applied to the inverse method: 

• To verify if the objective function is well defined – it means if it is possible to estimate the 



1362

D. SZELIGA 

 4

parameters, which are looked for, based on the information included in the objective 
function. In case of no sensitivity or low sensitivity of the objective function to the 
parameter changes, the parameter identification cannot be performed and the objective 
function hast to be transformed to another form including verification of the model output 
space norm. 

• As the preliminary step – to select the starting point/the first region of interest or the first 
population for optimization algorithm. 

• Optimization process – to construct the hybrid algorithms (e.g. the combination of a 
genetic algorithm to select local minima and a gradient method to explore those minima) 
or modified algorithms (e.g. the particle swarm procedure enriched with the local 
sensitivities information [9]) to increase the procedure efficiency.  

In this work the model output was defined as the Euclidean distance to exact logging 
curve. To points selection Latin hypercube  sampling (LHS) was used. The sensitivities were 
defined as the first order local sensitivities estimated using partial derivatives.  

2.3 2D DC borehole resistivity measurements problem 
Computational domain. The problem geometry was described as 2D problem of plane 

coordinates (x,y). The following materials were used (figure 2a):  
• borehole: a subdomain 0Ω  of width 10 cm ( ){ }0 , : 0cm 10cmx y xΩ = ≤ ≤  with 

resistivity 0 0.1 mρ = Ω⋅ , 
• upper and lower formations (no. 1 and 4): a subdomains 1 5,Ω Ω  defined by 

( ){ }1 , :10cm , 3mx y x yΩ = < ≤ , ( ){ }5 , :10cm , 2mx y x yΩ = < < −  with resistivity 

1,4 1000 mρ = Ω⋅ , 

• formation no. 2: a subdomain 2Ω  defined by ( ){ }1 , :10cm , 2m 3mx y x yΩ = < ≤ <  
with resistivity 2 5 mρ = Ω⋅ , 

• formation no. 3: a subdomain 3Ω  defined by ( ){ }3 , :10cm , 0m 2mx y x yΩ = < ≤ <  
with resistivity 3ρ , 

• formation no. 4: a subdomain 4Ω  defined by ( ){ }4 , :10cm , 2m 0mx y x yΩ = < − ≤ <  
with resistivity 4 1 mρ = Ω . 

Variational problem formulation. Find Vu∈  the electrostatic scalar potential such that: 

( ) ( )

( )

( )

2

1

2

1

,

,

N

i i i

i i

b u v l v v V

u vb u v dx
x x

Jl v v dS g v dS
x

σ
=Ω

=Ω Γ

= ∀ ∈

∂ ∂
=

∂ ∂

∂
= +

∂

∑∫

∑∫ ∫

 

(6) 

where 
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( ) ( )2 22 : : tr 0 on DV v L v v dx v
Ω

⎧ ⎫
= ∈ Ω + ∇ < ∞ = Γ⎨ ⎬
⎩ ⎭

∫  
(7) 

and J denotes a prescribed, impressed current source, σ is the conductivity, and the 
electrostatic scalar potential u is related to the electric field E by E u= −∇ . More information 
of DC borehole resistivity measurements problem is presented in [10]. 
The direct problem formulated by equations (6) is solved using automatic hp-Finite Element 
Method software (for detail description see [11],[12]). An example of the hp adaptive 
computations is presented in figure 2b. 

  
Figure 2: a) The 2D geometry of 3D DC borehole resistivity measurements problem. The rock formation is 

composed of five different layers of various resistivities, b) Automatic hp-adaptive solver – a solution example. 

3 CALCULATIONS 

Inverse calculations. The objective function in the inverse method for DC borehole 
logging curve measurements was defined as the Euclidean distance between measured and 
calculated values: 

( ) ( ) 2

1

1 mN
i i

m
i i

u u
N u=

⎛ ⎞−
Φ = ⎜ ⎟

⎝ ⎠
∑

a
a  (8) 

where u is the potential of electrical field, a – vector of identified parameters, N – number of 
measured points along the logging curve, m index – measured value.  
The measurement values of electrical field potential um were generated for the problem 

ρ ?
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described in the chapter 2.3 and the resistivity ρ3 = 200 Ω·m for Ω3 layer and next randomly 
perturbated. 
In general case vector a is of the form: 

{ }, ,j jhρ α=a  (9) 

where ρj, hj – resistivity and height of the jth layer, respectively, α – deviation angel of the 
well from perpendicular,  j = 1…nf, nf – the number of formation layers. 

As yet inverse calculations were performed using hierarchical genetic searching [13],[14] 
with respect to some resistivities and the angel. Since the results of estimation were sufficient, 
the computations have been very time-consuming. The idea was to performed sensitivity 
analysis to investigate the parameters domain and to develop more efficient searching 
algorithm.  

Calculation time depends on the assumed accuracy of hp-FEM solver. The accuracy of hp-
FEM modeling is defined as the difference between coarse-grid and fine-grid solution in the 
quantity of interest. To increase the efficiency of the calculations some simulations of the 
process were performed with various accuracies. The calculations were carried out with the 
computer of two 3 GHz processors and 8 GB RAM, the times are shown in table 1. The 
accuracy of 10-2 was taken for further investigations.  

Table 1: Relation between hp-FEM accuracy and the execution time of the solution. 

hp-FEM accuracy Execution time 
10-5 5h 21min 40s 
10-4 3h 30min 
10-3 1h 4min 15s 
10-2 20min 24s 
10-1 9min 40s 

1 3min 52s 
10 2min 26s 

100 2min 17s 
1000 2min 19s 

 
Sensitivity analysis. The sensitivity measure was expressed as derivatives of the objective 

function (8) and estimated though Taylor series expansion: 

( ) ( ) ( )
2 1

2

1

nf

i
i i

a
a

+

=

∂Φ
Φ +∆ = Φ + ∆ +Ο

∂∑a a a a  (10) 

where ( )2Ο a  residue is neglected.  

As the result the first-order local sensitivities are obtained { } { }/i is a= = ∂Φ ∂S . 
Current investigations were focus on the resistivity coefficient ρ and the sensitivity 

analysis was performed with respect to that parameter: / ρ∂Φ ∂ .  
The domain for the resistivity was specified as [ ]0.1,1000ρ ∈  Ω·m. To provide uniform 

but random covering of the interval, points were generated by LHS with equal probability for 
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each subinterval. To evaluate numerical computations of / ρ∂Φ ∂  the value of ∆ρ was 
assumed as 5% and 10% of ρ resistivity. 

In figure 3 the logging curves calculated for various values of resistivity are presented. The 
changes of the goal function are shown in figure 4a and the results of sensitivities estimations 
– in figure 4b. 

 
Figure 3: Logging curves of DC borehole resistivity problem: a) all formers layers, b) focus of one of the layer 

with curves obtained for various resistivity parameters.  

a) 

 

b) 

 

Figure 4: a) Objective function computed for various resistivities, b) Sensitivity of the objective function with 
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respect to the resistivity parameter. 

4 DISCUSSION 
Computations of the inverse calculations objective function sensitivities were performed 

for the resistivity screening the parameter domain. For resistivity values higher than 50 Ω·m 
the electrical field potential changes are not significant (see figure 3b). Similar behavior is 
observed for the objective function (figure 4a): the values are high for small resisitivties, close 
to zero for exact solution (200 Ω·m) and next they a little increase but are still low. The 
sensitivities are close to zero all over the interval except narrow interval of the exact solution 
(figure 4b). Such distribution of the objective function and the sensitivities effect the 
optimization procedure hard to performed using conventional optimization algorithms.  

The investigations were performed for the resistivity of the one layer. In real systems the 
identification consists of several resistivities and the heights of the layers (vector a, equation 
(9)), consequently the objective function (8) is multimodal function of high sensitivities with 
respect to the resistivities close to the problem solution, remaining area is of low sensitivities.  

The results of current investigations are guidelines for two optimization strategies: 
• Hierarchical genetic searching (or another bio-inspired optimization algorithm) to 

select local minima and next application of the gradient method to explore the local 
minima, 

• Application of design of experiment method (LHS or screening design) to select a set 
of points, for which objective function is computed with hp-FEM model and next, 
based on the those accurate results, generating fast metamodel using one of the 
approximation method (e.g. response surface algorithm) or neural network, and 
performing inverse calculations with investigated, fast model. 

Both the strategies are expected to increase the efficiency of the inverse calculations in 
terms of computation time. 

5 CONCLUSIONS 
In that work application of the sensitivity analysis to the hard inverse problem as the 

preliminary step of the computations was proposed. As the example inverse problem of DC 
borehole resistivity measurements was formulated. The sensitivities were defined locally and 
expressed using Taylor series expansion. The set of the points that sensitivities were estimated 
for, was generated with design of experiment algorithm. The guidelines for the inverse 
optimization procedure were developed. The accuracy of the hp-FEM solution of the direct 
model in relation to the inverse problem objective function was analyzed as well. 

The obtained results of calculations, as the first attempt, are the basis to develop efficient 
optimization procedures with sensitivity analysis application to solve hard inverse problem: 
hybrid methods or algorithms with metamodels. Another way to decrease the number of the 
solver evaluations is to modify the objective function by including the information of the 
sensitivities. All above aspects will have been investigated. 

Acknowledgements. The work on sensitivity analysis has been supported by Polish MNiSW, 
project no. N N508 629 740. The hp-Finite Element Method calculations have been supported 
by Polish MNiSW, project no. NN519 447 739. 
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1 INTRODUCTION 

This paper presents the recently developed SSH3D Solid-Shell element implemented in the 
home-made LAGAMINE finite element code. This element is based on the Enhanced 
Assumed Strain (EAS) technique and the Assumed Natural Strain (ANS) technique. These 
techniques permit to avoid locking problems even in very bad conditions (nearly 
incompressible materials, very thin elements conducting to large aspect ratios, distorted 
element geometry…). The EAS technique artificially introduces additional degrees of 
freedom (DOFs) to the element. In the current configuration of the SSH3D element, up to 30 
independent DOFs can be added to the 24 classical displacement DOFs (corresponding to the 
3 displacements of the 8 element nodes). Contrarily to the nodal displacements, these 
additional DOFs are not linked between adjacent elements, so that they can be eliminated at 
the element level during the computation of the solution (before the assembling procedure). 
Nevertheless, they permit to increase the flexibility of the element which is very efficient for 
several locking issues. On the other hand, the ANS technique modifies the interpolation 
scheme for particular strain components. This technique is useful when shear and curvature 
locking problems are encountered. The ANS technique proved to eliminate the transverse 
shear locking from the element in bending dominated situations. In the current configuration 
of the element, four different versions of the ANS technique were implemented in the SSH3D 
element. Besides, a numerical integration scheme dedicated to Solid-Shell elements was 
implemented. It uses a user-defined number of integration points along the thickness 
direction, which permits to increase the element accuracy with a mesh containing a reduced 
number of elements along the thickness direction.  

In Sections 2, 3 and 4, the main features of the SSH3D element, i.e. the EAS technique, the 
ANS technique and the integration scheme are briefly described. Then, in this study, the 
quality of the element results is assessed in different applications. The effects of the EAS 
technique and the integration scheme on the volumetric locking and the effects of the ANS 
technique on the bending behavior of the element are analyzed in Sections 5 and 6. 
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2 ENHANCED ASSUMED STRAIN TECHNIQUE 
This section summarizes the formulation of the SSH3D Solid-Shell element. It is an 8 node 

hexahedral element using the Enhanced Assumed Strain (EAS) method to avoid different 
locking issues. The formulation of the SSH3D element departs from the Hu-Washizu 
variational principle: 

. ( )s
extdv Gη σ η 0∇ −∫

B

=  (1) 

. 0s dvτ η ε⎡ ⎤∇ − =⎣ ⎦∫
B

.[ ( , , )] 0m x q dvγ σ σ ε− + =∫
B

for all variations η, γ, τ of the displacement u, strain ε and stress σ fields, respectively. 
In Equation (1), the symbol s∇  represents the symmetric gradient operator, ( )extG η  is the 

virtual work of the external loading and ( , , )m x qσ ε  is the stress computed by the material 

constitutive law at point x for the strain value ε and the current material state being 
represented by the vector of history variables q . Note that in Equation (1), the tensors are 

expressed as 6 component vectors. 
The main idea behind the EAS technique is the enhancement of the strain field as 

originally proposed by [1]: 

comε ε ε= +  (2) 

The classical compatible part of the strain field comε  is modified with the enhanced part of 

the strain field ε . Note that a similar enhancement is achieved on the variation of the strain γ.
The compatible part of the strain is computed from the displacement field according to 
Equation (3), where the vector U contains the 24 nodal displacement DOFs and ( , , )B r s t  is 

the classical strain-displacement operator whose components are derivatives of the shape 
function with respect to the spatial coordinates x, y and z. For convenience, in a finite element 
approach, the ( , , )B r s t  matrix is expressed as a function of the intrinsic coordinates of the 

element r, s and t.

( , , )com s u B r s t Uε = ∇ = ⋅  (3) 

The enhanced part of the strain field is constructed in a similar way (see Equation (4))
using the ( , , )G r s t  matrix. The additional DOFs related to the EAS techniques are included in 

the vector α .

2
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( , , ).G r s tε α=  (4) 

As proposed by [1], the enhancing matrix ( , , )G r s t  is build according to Equation (5) with 

the help of the transformation from the spatial coordinates to the intrinsic coordinates. 
( , , )j r s t  is the determinant of the Jacobian at point (r,s,t), 0j  is the same at the centre of the 

element (defined by r=s=t=0). The 6 by 6 matrix 
0

TF −  is detailed in [2]. It permits to 

transform a 6-component strain vector from the intrinsic coordinates to the spatial 
coordinates; it is computed at the centre of the element.  

0
0

( , , ) . . ( , , )
( , , )

TjG r s t F M r s t
j r s t

−=  (5) 

The enhancing modes of the EAS technique are included in the ( , , )M r s t  matrix. Thanks 

to the transformation shown in Equation (5), the EAS modes are expressed in the intrinsic 
coordinate system in a form which is independent of the element spatial configuration, i.e., in 
accordance with the notation and the numbering of [3]: 

( ), ,M r s t =  (6) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r rs rt rst
s rs st rst

t rt st rst
r s rt st rs rst

r t rs st rt rst
s t rs rt st

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 0 0 0 rst

This ( , , )M r s t  matrix contains 30 potential EAS modes (the columns of ( , , )M r s t

numbered form 1 to 30), which correspond to 30 additional DOFs. They are grouped by 3 or 6 
modes corresponding to similar modes along different directions (the light and dark gray 
zones). The six lines of the ( , , )M r s t  matrix correspond to the six components (respectively 

11, 22, 33, 12, 13, 23) of the strain tensor expressed as a vector. Each EAS mode permits to 
increase the flexibility of the element thanks to an additional deformation mode not included 
in the standard 24 displacement modes (the 3 displacements of the 8 element nodes). For 
instance, the first mode corresponds to a linear variation along the r-axis of the rrε
component of the strain.  

An important characteristic of the EAS technique is that the additional DOFs (the α
values) are eliminated at the element level by static condensation before the assembling 
procedure of the FE code. Therefore, they do not contribute to the size of the global stiffness 

3
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matrix of the finite element technique but they improve its quality by bringing their effect on 
the enhanced flexibility of each SSH3D element (see [1] for further details).  

In the SSH3D element, the number and the choice of the EAS modes is left to the finite 
element code user. The effect of the number of EAS modes on the mechanical behavior of the 
element is presented in Section 5. 

3 THE ASSUMED NATURAL STRAIN TECHNIQUE 
The Assumed Natural Strain (ANS) technique permits to avoid several locking issues by 

modifying the interpolation of the strain components in the element as briefly explained 
hereafter. Classically, the strain is computed at the integration point or at any location inside 
the finite element from the nodal displacements with the ( , , )B r s t matrix according to 
Equation (3). For some particular cases, this usual technique yields to inadequate strain values 
for some components depending on the location where the strain is computed. The ANS 
technique, originally proposed by [4] for shell elements, suggests to achieve the interpolation
of the problematic strain components in two steps. First, these strain components are 
evaluated by the classical interpolation method at the so-called 'sampling points', where the 
erroneous values are not likely to be encountered. In a second step, these strain components 
are interpolated linearly from the sampling points to the integration points (or any location in 
the element).  

In order to assess the efficiency of the ANS technique on the mechanical behavior of the 
SSH3D element, four different versions of the ANS interpolation have been implemented to 
date. These versions are detailed below. 

For the first version [4-6], the location of the sampling points are shown in Figure 1 (a) for 
the 13-component (with respect to the r, s, t reference frame) and in Figure 1 (b) for the 23-
component. The corresponding interpolation scheme is expressed by Equations (7) and (8) for 
the 13 and 23-components respectively. For this first version, the four other components of 
the strain tensor (namely 11, 22, 33, 12) are not altered by the ANS technique.

(a)                      (b)    
Figure 1: ANS method in the SSH3D element, version 1. Sampling points for the components 13 (a) and 23 (b). 

1
13 13 13

1 1.(1 ). .(1 ).
2 2

ANS com com

A C

E s E s= − + + E  (7) 

1
23 23 23

1 1.(1 ). .(1 ).
2 2

ANS com com

D B

E r E r= − + + E  (8) 

It must be noted here that the ANS technique must be applied to the components of the 
strain expressed in the r, s, t reference frame and not the x, y, z frame of the finite element 
code. This is emphasized by the use of E for the strain components instead of ε in Equations

4
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(7) and (8). The transformation tools already used for the EAS technique (see for instance 
Equation (5)) are adapted for the transformation of the strain tensors from the intrinsic 
reference frame to the global reference frame according to Equation (9).

0
0

. .
( , , )

Tj F E
j r s t

ε −=  (9) 

For the second ANS version of the SSH3D element [7, 8], the 33-component is also taken 
into consideration as shown by Figure 2 and Equations (10), (11) and (12).

(a)              (b)           (c)
Figure 2: ANS method in the SSH3D element, version 2. Sampling points for the components 13 (a), 23 (b) and 

33 (c). 

2
13 13 13

1 1.(1 ). .(1 ).
2 2

ANS com com

A C

E s E s= − + + E  (10) 

2
23 23 23

1 1.(1 ). .(1 ).
2 2

ANS com com

D B

E r E r= − + + E  (11) 

2
33 33 33 33 33

1 1 1 1.(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ).
4 4 4 4

ANS com com com com

H E F

E r s E r s E r s E r s E= − − + + − + + + + − +
G

 (12) 

For the third version of the ANS [9, 10], the 13 and 23-component interpolation schemes 
are modified from the previous case by using four sampling points instead of two, as shown in 
Figure 3 and Equations (13), (14) and (15).

(a)             (b)             (c)
Figure 3: ANS method in the SSH3D element, version 3. Sampling points for the components 13 (a), 23 (b) and 

33 (c). 

3
13 13 13 13 13

1 1 1 1.(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ).
4 4 4 4

ANS com com com com

A B C

E s t E s t E s t E s t E= − − + + − + + + + − +
D

 (13) 

3
23 23 23 23 23

1 1 1 1.(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ).
4 4 4 4

ANS com com com com

E F G

E r t E r t E r t E r t E= − − + + − + + + + − +
H

 (14) 

3
33 33 33 33 33

1 1 1 1.(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ).
4 4 4 4

ANS com com com com

I J K

E r s E r s E r s E r s E= − − + + − + + + + − +
L

 (15) 
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Finally, the fourth ANS version, originally proposed in this paper, uses four common 
sampling points for the three strain components as illustrated in Figure 4 and Equations (16),
(17) and (18).

B

r
s

t
CD

A

Figure 4: ANS method in the SSH3D element, version 4. Sampling points for the components 13, 23 and 33. 

4
13 13 13 13 13

1 1 1 1.(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ).
4 4 4 4

ANS com com com com

A B C

E r s E r s E r s E r s= − − + + − + + + + − +
D

E  (16) 

4
23 23 23 23 23

1 1 1 1.(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ).
4 4 4 4

ANS com com com com

A B C

E r s E r s E r s E r s= − − + + − + + + + − +
D

E  (17) 

4
33 33 33 33 33

1 1 1 1.(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ). .(1 ).(1 ).
4 4 4 4

ANS com com com com

A B C

E r s E r s E r s E r s= − − + + − + + + + − +
D

E  (18) 

4 THE INTEGRATION SCHEME OF THE SSH3D ELEMENT 
An important characteristic of a finite element is the numerical integration scheme. The 

number and the location of the Gauss points inside the element can have a significant 
influence on its mechanical behavior. For instance, the reduced integration or the selective 
reduced integration schemes are often used to avoid volumetric locking issues for hexahedral 
elements with an isochoric or nearly isochoric material behavior. 

In the development of a Solid-Shell element dedicated to the modeling of thin-walled 
structures, an improved integration scheme with a large number of integration points along 
the thickness direction was considered. It is indeed expected that a high gradient of stress and 
strain along the thickness direction is present during the deformation of thin materials (during 
e.g. a bending deformation mode). The classical full integration of brick elements (with two 
integration points along each direction) is not able to accurately capture such large gradients. 
In this respect, in the SSH3D element, the stress is computed along a user-defined number 
(ranging from 2 to 10) of integration points along the thickness direction (t axis), as shown in 
Figure 5.

(a)          (b)

r

Figure 5: Integration scheme: (a) Classical full integration, (b) SSH3D integration scheme with n Gauss points 
along the thickness direction. 
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5 EFFECT OF EAS ON THE VOLUMETRIC LOCKING 
The volumetric locking is an important issue in finite element approaches. It is likely to 

appear when incompressibility or nearly incompressibility is imposed by the material model 
(e.g. in elasticity when the Poisson's ratio approaches 0.5 or in elasto-plastic simulations 
where the classical assumption of plastic incompressibility is employed). Thanks to a 
subspace analysis, it has been shown in [11] that any deformation mode with an 
incompressibility constraint can be obtained as a combination of 23 linearly independent 
deformation modes. Consequently, an hexahedral element should be able to reproduce 
(without locking) these 23 modes in order to avoid volumetric locking for any deformation 
mode (see also [2]). As illustrated in Figure 6, these 23 modes can be divided into four 
groups: 12 modes corresponding to the translation of one edge of the element (Figure 6 (a)), 5 
modes representing the contraction-expansion of one face (Figure 6 (b)), 3 modes related to 
the so-called hourglass deformation modes, where the element gets a trapezoidal shape 
(Figure 6 (c)) and 3 warp modes (Figure 6 (d)). 

In this respect, in order to check volumetric locking issues with the SSH3D element, the 
deformation modes of Figure 6 are analyzed in this section for different numbers of EAS 
modes and different numbers of integration points along the thickness. In this study, the 
influence of the EAS modes is assessed by increasing successively their number according to 
the groups defined by the light and dark gray zones of Equation (6). Therefore, in the results, 
'SSH3D - 3' means the SSH3D element with the three first EAS modes, 'SSH3D - 9' 
corresponds to the nine first EAS modes and so on up to 'SSH3D - 30'. The ANS technique 
was turned off in this section and three different integration schemes were tested with 2 
(classical full integration), 5 and 8 Gauss points along the thickness direction. The 
incompressibility constraint was imposed by an elastic material with a Poisson's ratio close to 
0.5, i.e. 0.499. 

              (a)                                                                  (b) 

              (c)                                                               (d) 

Figure 6: Groups of isochoric deformation modes: (a) Edge translation, (b) Contraction-expansion of one face, 
(c) Hourglass mode, (d) Warp mode. 
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The nodal forces required to enforce the deformation modes of Figure 6 are plotted in 
Figure 7, Figure 8, Figure 9 and Figure 10 for the four groups of deformation modes 
respectively (the nodes with non zero imposed displacement are analyzed). As they depend on 
the geometry of the element, the stiffness of the selected material constitutive law, the nodal 
forces should be regarded as arbitrary values. The purpose of the following figures is only to 
compare the results according to the number of EAS modes and the selected integration 
scheme in order to detect volumetric locking issues. 

The first group of deformation modes of Figure 6 (a) is analyzed in Figure 7, where it 
appears that the EAS technique has almost no effect on the nodal forces. In fact, it is expected 
that even a classical displacement based hexahedral element with a full integration scheme 
will not show volumetric locking problems in this case. Indeed, this mode induces shear type 
deformation in the whole finite element corresponding to no volume variation, which is in 
accordance with the isochoric material model. Therefore, no volumetric locking is detected in 
this case. Anyway, a small effect of the integration scheme can be noticed. 

The second group, corresponding to the contraction-expansion of one face, is treated in 
Figure 8. For the integration scheme with 2 Gauss points along the thickness direction 
(classical full integration), as in the previous case, the number of EAS modes do not influence 
the results. Contrarily, for the integration schemes with 5 and especially with 8 Gauss points 
along the thickness direction, a stiffer behavior is observed for the lowest numbers of EAS 
modes. For these integration schemes, volumetric locking, with a rather limited effect, is then 
observed when the number of EAS modes is lower than or equal to 21. The effect of the 
number of Gauss points on the element response is related to the fact that the volumetric 
constraints are applied at the Gauss points through the nearly isochoric material model. 

In Figure 9, a non-zero but limited effect of the number of EAS modes can be observed. 
The influence of the integration scheme for the case 'SSH3D - 24' was not expected and 
remains unexplained.  
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Figure 7: Nodal forces for the isochoric deformation mode of Figure 6 (a) (edge translation) versus the number 
of EAS modes in the SSH3D element for three different integration schemes.  
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Figure 8: Nodal forces for the isochoric deformation mode of Figure 6 (b) (contraction-expansion of one face) 
versus the number of EAS modes in the SSH3D element for three different integration schemes.  
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Figure 9: Nodal forces for the isochoric deformation mode of Figure 6 (c) (hourglass mode) versus the number 
of EAS modes in the SSH3D element for three different integration schemes.  
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Figure 10: Nodal forces for the isochoric deformation mode of Figure 6 (d) (warp mode) versus the number of 
EAS modes in the SSH3D element for three different integration schemes.  
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The fourth group of deformation modes (Figure 6 (d)) related to the warp element shape 
clearly proves the occurrence of volumetric locking (see Figure 10). When the number of 
EAS modes is lower than or equal to 15, the computed nodal forces are much too large due to 
an erroneously overestimated stiffness of the element. When 21 or more EAS modes are used, 
the volumetric locking is avoided and the stiffness of the element abruptly drops to an 
accurate value. In this case, no noticeable effect of the integration scheme was observed. 

6 EFFECT OF ANS ON THE BENDING BEHAVIOR OF SSH3D 
In order to assess the effect of the ANS technique on the mechanical behavior of the 

SSH3D element, a cylindrical bending patch was investigated. The thin plate submitted to 
bending had the dimensions 3 x 3 x 0.02 (without units) as shown in Figure 11. The plate was 
fixed along the X and Z directions on its left face defined by the equation x=0 (nodes 1, 4, 5 
and 8). It was submitted to a bending loading on its right face defined by x=3 (nodes 13, 14, 
15 and 16). The imposed displacements on the right face was such that the plate was 
deformed into a part of a cylinder whose axis was parallel to the Y-axis and whose radius was 
1000.

The accuracy of the element bending behavior is assessed by analyzing the agreement of 
the displacements of the free interior nodes (2, 3, 6, 7, 9, 10, 11 and 12) with the imposed 
cylindrical shape. In this respect, the irregular mesh presented in Figure 11 was used. The four 
versions of the ANS technique implemented in the SSH3D element (see Section 3) as well as 
the element without the ANS technique were tested. 

The results are shown in Table 1, where the nodal displacements along the X and the Z 
axes are compared with the theoretical displacements required to obtain a perfectly cylindrical 
deformed geometry. It appears that the bending behavior of the SSH3D element without the 
ANS technique is not satisfactory (relative error of the nodal displacements up to 49%). The 
ANS technique with the versions 1, 2 and 3 provides even worse results with relative errors 
around 96%. Fortunately, the fourth version of ANS seems to be well adapted to the modeling 
of this bending situation. The maximum relative error on the nodal displacements is limited to 
2.9% with the ANS 4, which is acceptable. 

Figure 11: Geometry and irregular mesh used for the cylindrical bending patch test.  
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Table 1: Cylindrical bending patch test: errors from theoretical values (the largest values among the different 
nodes are in bold). 

Relative error on nodal displacements  
along X-axis (%) 

Relative error on nodal displacements 
along Z-axis (%) 

Node No
ANS 

ANS 1 ANS 2 ANS 3 ANS 4 No 
ANS 

ANS 1 ANS 2 ANS 3 ANS 4

2 16 73 73 73 2.1 49 74 74 74 0.21 
3 6.7 77 77 77 2.9 1.7 83 83 83 2.3 
6 18 73 73 73 1.7 49 74 74 74 0.20 
7 4.7 88 88 88 1.6 1.7 83 83 83 2.3 
9 3.7 17 17 17 0.24 0.35 3.6 3.6 3.6 0.010 
10 6.3 97 96 96 2.3 2.0 41 41 41 1.1 
11 3.1 13 13 13 0.13 0.35 3.6 3.6 3.6 0.011 
12 4.8 71 71 71 2.2 2.0 41 41 41 1.1 

7 CONCLUSIONS 
This paper presents the main features of the recently developed SSH3D Solid-Shell 

element. They have been implemented in order to improve the mechanical behavior of the 
element in various applications dedicated to Solid-Shell or shell elements, e.g. thin-walled 
structures submitted to large strains and large displacements. These features are: 

- The EAS technique which improves the flexibility of the element thanks to additional 
degrees of freedom. In the SSH3D element, the finite element user can choose which 
EAS modes (from 1 to 30) he wants to employ according to its particular application.  

- The ANS technique which modifies the interpolation of the strain tensor in order to 
circumvent several locking issues, e.g. transverse shear locking in bending dominated 
problems or curvature locking. Four different versions of the ANS technique have been 
implemented in the SSH3D element. Among them, three have been extracted from the 
literature and the fourth one is an original contribution of the SSH3D element. 

- An integration scheme dedicated to Solid-Shell elements. A classical full integration 
scheme (2 x 2 Gauss points) is employed in the plane of the element, while a user-
defined number (from 2 to 10) integration points can be used along the thickness 
direction. This permits to capture the through-thickness stress and strain gradients with 
a limited number of element layers.  

In this study, the influence of the EAS technique and the integration scheme on the 
volumetric locking and the influence of the ANS technique on the bending behavior were 
analyzed. The following comments were attained:   

- The volumetric locking can be avoided by using at least 21 EAS modes if a 2 x 2 x 2 
integration scheme is used. If 5 or 8 integration points along the thickness direction are 
used, 24 EAS modes are required.  

- An accurate bending behavior is obtained during the cylindrical bending patch test with 
the fourth version of the ANS technique. The other versions as well as the element 
without ANS conducted to an erroneous bending behavior of the SSH3D element. 
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12

Further applications will be investigated in order to confirm or adapt the conclusions 
drawn in this paper.
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Abstract. In this contribution, the formulation of the SHB8PS continuum shell finite element 
is extended to anisotropic elastic–plastic behavior models with combined isotropic-kinematic 
hardening at large deformations. The resulting element is then implemented into the 
commercial implicit finite element code Abaqus/Standard via the UEL subroutine. The 
SHB8PS element is an eight-node, three-dimensional brick with displacements as the only 
degrees of freedom and a preferential direction called the thickness. A reduced integration 
scheme is adopted using an arbitrary number of integration points along the thickness 
direction and only one integration point in the other directions. The hourglass modes due to 
this reduced integration are controlled using a physical stabilization technique together with 
an assumed strain method for the elimination of locking. Therefore, the element can be used 
to model thin structures while providing an accurate description of the various through-
thickness phenomena. Its performance is assessed through several applications involving 
different types of non-linearities: geometric, material and that induced by contact. Particular 
attention is given to springback prediction for a Numisheet benchmark problem. 

 
 
1  INTRODUCTION 

During the last decade, considerable effort has been devoted to the development of eight-
node solid–shell elements for modeling of thin structures (e.g. [1-4]). As they use linear 
interpolation for efficiency reasons, these elements exhibit various locking phenomena which 
need to be cured in order to preserve the desired accuracy. Nevertheless, compared to 
conventional shell elements they have many advantages: the use of full three-dimensional 
constitutive laws, direct calculation of thickness variations, easy treatment to update 
configurations (no rotational degrees of freedom used), and simple connection with three-
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dimensional elements since displacements are the only degrees of freedom. For sheet forming 
applications, key features like double-sided contact and increased accuracy with only one 
layer of elements through the thickness make these elements particularly attractive. 

The reduced integration technique, initiated by the works of Zienkiewicz et al. [5] and 
Hughes et al. [6], was the first successful solution to alleviate some locking pathologies. 
Finite elements using this method are very efficient due to their low numerical cost. However, 
stabilization techniques are needed in order to control the spurious zero-energy deformation 
modes (or hourglass modes) induced by this reduced integration.  

In order to circumvent locking phenomena for three-dimensional low-order elements, 
several authors have used the enhanced assumed strain (EAS) method, based on Simo and 
Rifai's pioneer work [7]. The basis of such element formulations is given by the mixed 
variational principle in which the so-called incompatible strain and stress act as additional 
independent variables. Recent investigations have combined EAS and reduced integration 
techniques to derive efficient and accurate elements. As examples, some authors used a fixed 
number of Gauss points in the thickness direction [1-4]. 

The SHB8PS is one such element that has been recently developed [1, 2], based on in-
plane one-point numerical quadrature with eight physical nodes and using an arbitrary number 
of integration points through the thickness direction. This avoids the use of several layers of 
elements in order to increase the number of integration points in the thickness, e.g. for metal 
forming problems. The hourglass modes caused by this reduced integration are efficiently 
controlled by a physical stabilization technique based on the assumed strain method [8]. 

In the current contribution, the formulation of the SHB8PS solid–shell finite element is 
extended to anisotropic elastic–plastic behavior models with combined isotropic-kinematic 
hardening at large deformations. The resulting element is then implemented into the 
commercial implicit finite element code Abaqus/Standard via the UEL subroutine. Its good 
performance is demonstrated through non-linear benchmark problems involving large strains, 
plasticity and contact. Particular attention is given to springback prediction for a 
NUMISHEET benchmark problem. 

2 FORMULATON OF THE SHB8PS ELEMENT 

2.1 Finite element interpolation 
SHB8PS is an eight-node, isoparametric hexahedral element with linear interpolation. It 

has a set of nint integration points chosen along the thickness direction ζ  in the local 
coordinate frame (see Fig. 1). 



1382

A. Salahouelhadj, H. Chalal, F. Abed-Meraim and T. Balan. 

3

Figure 1: SHP8PS reference geometry 

The spatial coordinates ix  and displacements iu  of any point in the element are related to 
the nodal coordinates and nodal displacements iIx  and iIu , respectively, using the classic 
linear isoparametric shape functions IN : 

( ) ( )∑
=

==
8

1
,,,,

I
IiIIiIi NxNxx ζηξζηξ (1)

( ) ( )∑
=

==
8

1
,,,,

I
IiIIiIi NuNuu ζηξζηξ (2)

Subscript i varies from 1 to 3 and represents the direction of the spatial coordinates. Subscript 
I varies from 1 to 8. 

2.2 Discretized gradient operator 

First, we introduce the ib  (i = 1,..., 3) vectors, representing the derivatives of the shape 
functions at the origin of the reference coordinate system, defined by Hallquist [9] as 

, (0,0, 0)       1, 2,3T
i ib N i= = (3)

The displacement gradient can then be written as follows (see Belytschko and Bindeman 
[8]): 

( )
4

, , ,
1

T T T T
i j j j i j j iu b h d b h dα α α α

α

γ γ
=

= + ⋅ = + ⋅ 
 
 

∑ (4)

where id  are the nodal displacement vectors. The functions hα  and vectors αγ  (α =1,...,4) are 
given by 

1 2 3 4,  ,  ,  h h h hηζ ζξ ξη ξηζ= = = = (5)
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The discretized gradient operator can be written as
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(7)

2.3 Stabilization and assumed strain method 

The particular location of the integration points along a line generates six so-called 
hourglass modes. The control of the hourglass modes of the SHB8PS element is achieved by 
adding a stabilization component 

STAB
K  to the element stiffness matrix 

e
K . This part is 

drawn from the work of Belytschko and Bindeman [8], who applied an efficient stabilization 
technique together with an assumed strain method. The stabilization forces are consistently 
derived in the same way. Moreover, the discretized gradient operator is projected onto an 
appropriate sub-space in order to eliminate shear and membrane locking. 

In this approach, the ib  vectors (Eq. (3)) are replaced by the mean value of the derivatives 

of the shape functions over the element, denoted by îb , as proposed by Flanagan and 
Belytschko [10]: 

,

1ˆ ( , , ) ,     1, 2,3
ee

T
i ib N d iξ η ζ

ΩΩ
= Ω =∫ (8)

Then, vectors αγ  are replaced by vectors α̂γ  where the ib  vectors are simply substituted 

by îb . A modified discretized gradient operator B̂  can be constructed in the same way. It can 

be shown that the terms of the B̂  operator vanish for α = 3,4. In other words, the B̂  operator 

reduces to its 12B̂  part defined identically but where α varies only from 1 to 2. Then, the 

remaining part 34B̂  of B̂ , which vanishes at the integration points, is further projected as 34B̂ . 

One can project the B̂  operator onto a B̂  operator as: 

12 34
ˆ ˆ ˆB B B= + (9)



1384

A. Salahouelhadj, H. Chalal, F. Abed-Meraim and T. Balan. 

5

where 34B̂  is given by: 

4
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The stiffness matrix 
e

K  takes the form: 

12
ˆ ˆ

e

T
e Geom STAB Geom

epK B C B d K K K K
Ω

= ⋅ ⋅ Ω + = + +∫ (11)

where the first term 12K  is evaluated at the integration points as 

5

12 12 12 12 12
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
e

TT ep
I I I I

I

epK B C B d J B C Bω ζ ζ ζ ζ
=Ω

= ⋅ ⋅ Ω ⋅ ⋅=∑∫ (12)

In this equation, ( )IJ ζ is the Jacobian of the transformation between the reference and the 

current configurations; ( )Iω ζ is the corresponding weight, while epC
σ
ε

∂∆=
∂∆

 is the elastic–

plastic tangent modulus. The geometric stiffness matrix GeomK  is due to the non-linear 
(quadratic) part of the strain tensor and STABK  represents the stabilization stiffness given by 
equation: 

12 34 34 12 34 34   ˆ ˆ ˆ ˆ ˆ ˆ
e e e

T ep T ep T ep
STABK B C B d B C B d B C B d

Ω Ω Ω

= ⋅ ⋅ Ω + ⋅ ⋅ Ω + ⋅ ⋅ Ω∫ ∫ ∫ (13)

In a similar way, the internal forces of the element can be written as 
5

1
12

ˆ( ) ( ) ( ) ( ) STAB
I I I I

I

Tintf J B fω ζ ζ ζ σ ζ
=

= ⋅ +∑ (14)

where STABf  represents the stabilization forces. 
The stabilization terms are calculated in a co-rotational coordinate system [8]. 
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3 NUMERICAL EXAMPLES 

3.1 Pinched cylinder 
In this example, the elastic-plastic deformation of a cylinder subjected to two opposite 

concentrated loads in the middle of the structure and bounded by rigid diaphragms on its 
extremities is considered. This problem has been investigated by a number of authors like [2, 
11-15]. 

The undeformed mesh and boundary conditions are shown in Figure 2. The geometry is 
characterized by the length L=600 mm, the radius R =300 mm and thickness t = 3 mm. Due 
to symmetry, only one eighth of the cylinder is discretized. At the ends of the cylinder, the 
rigid diaphragms prevent any displacement in the radial directions. Material properties are the 
elasticity modulus E = 3000 MPa, Poisson's coefficient ν = 0.3 and initial yield stress σ0 = 
24.3 MPa. A linear isotropic hardening law is adopted and can be written as:

P
eqY Hεσσ += 0      (15) 

Where P
eqε  is the equivalent plastic strain and H the linear hardening coefficient taken equal to 

300 MPa. 

Figure 2: Geometry and boundary conditions for the pinched cylinder 
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Figure 3: Load deflection curves for elastic-plastic pinched cylinder

Figure 3 shows the load versus the vertical deflection. For the same mesh (40×40×1 
elements), the results of the SHB8PS solid-shell element are compared to those of the SC8R 
solid-shell element and the S4R shell element, along with the reference solutions obtained by 
[12] and [16]. The calculations using the S4R element failed at a certain loading level, while 
the SC8R element is too stiff in this test problem and also converges more slowly. For this 
particularly discriminating test, the curve using SHB8PS element is clearly in better 
agreement with the 3D investigations of [12] and [16]. 

3.2 Unconstrained cylindrical bending 
The example of the unconstrained cylindrical bending test proposed as springback 

benchmark in NUMISHEET 2002 is studied [17]. This application allows us to evaluate the 
performance of the SHB8PS element, implemented in Abaqus/Standard, in presence of 
geometric, material and contact non-linearities. This benchmark involves a bending-
dominated deformation since there is no blank holder. The problem has complex contact 
boundary conditions during the forming process and the springback after forming is severe. 
The geometry of the problem is illustrated in Figure 4 and the geometric parameters are 
summarized in Table 1. 

The material under investigation is a High Strength Steel, which is supposed elastic–plastic 
with isotropic hardening following Swift law: 

( )0Y

nP
eqKσ ε ε= + (16)

where 0,εK  and n represent the hardening parameters of the material. The Young modulus E 
= 2.175 × 105 MPa and the Poisson ration ν = 0.3. Further K = 645.24 MPa, n = 0.25177 and 

0ε = 0.0102. The friction coefficient of the interaction between surfaces punch-sheet and die-
sheet is µ = 0.14812. 
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The amount of springback is quantified by the angle θ as defined in Figure 5. This angle is 
measured after forming at the maximum punch displacement and after springback. The tools 
are defined as analytical rigid surfaces. 

Figure 4: Tool geometry for the unconstrained bending problem 

Table 1: Geometric parameters of the unconstrained cylindrical bending problem

Geometric parameter      [mm] Geometric parameter     [mm] 
Punch radius  23.5 Length of the sheet  120.0
Die radius (R2)  25.0 Thickness of the sheet  1.0
Die shoulder (R3)  4.0 Width of the sheet  30.0
Width of tools (W)  50.0 Punch stroke  28.5

Figure 5: Definition of the angle to measure springback for the unconstrained cylindrical bending problem

The SHB8PS element is compared with both solid and shell elements. Indeed, it is well-
known that in applications of sheet metal forming, shell elements have difficulties in dealing 
with double-sided contact – while conventional solid elements require several element layers 
to capture bending effects. In the present work, the simulations carried out with the SHB8PS 
element use only one element layer through the thickness. For symmetry reasons, only one 
quarter of the blank is discretized by means of 150 SHB8PS elements in the length and only 
one element over the width of the sheet. The analysis with the SHB8PS element is carried out 
using five Gauss points in the thickness direction because elastic–plastic applications require, 
in general, five integration points in minimum to describe the strongly non-linear through-
thickness stress distribution [2].  

In order to validate the proposed solid–shell element, its predictions are compared to the 
experimental results of the Numisheet 2002 benchmarks. Two elements from the element 
library of the Abaqus code are also used in the comparison: the shell element S4R and the 3D 
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continuum element C3D8I. Again, 150 uniformly distributed elements are used in the length 
direction for these two elements. However, two layers of C3D8I elements are required in the 
thickness direction in order to represent the stress distribution due to bending with sufficient 
accuracy. Also, ten C3D8I elements are used along the width direction in order to keep their 
aspect ratio in acceptable limits. Figure 4 displays the punch force versus punch displacement 
curves predicted by the three elements, along with the experimental results (BE-1 to BE-4) 
from Meinders et al. [17]. 

Figure 6 shows that the numerical results obtained with SHB8PS element are the closest to 
the experimental results and they lay close to the solid element predictions. The slight 
differences between the two may be due to the different number and distribution of 
integration points along the thickness direction. The S4R element has too soft behavior with 
respect to SHB8PS and C3D8I elements. 

The springback angles are also investigated, as they were also experimentally measured 
[17]. The springback phenomenon is particularly exacerbated in this unconstrained bending 
application, as illustrated in Figure 7. Table 2 summarizes the opening angles before and after 
springback for elements SHB8PS, C3D8I and S4R, compared to experiments. The simulated 
values with SHB8PS and C3D8I elements are close to each other and the closest to 
experiments. Comparing the numerical results to the experimental ones, the good performance 
of the SHB8PS solid–shell element is confirmed. 

Table 2: Measured and simulated opening angles before and after springback 

Experimental Simulated 
BE-01  BE-02  BE-03  BE-04 SHB8PS  C3D8I  S4R 

Forming 22.7707  22.0064  23.0255  20.8599 23.0692  22.5820  33.3078 
Springback 37.4212  35.6787  30.9036  35.3636 36.3952  32.0832  43.9071 

Figure 6: Punch force vs. punch displacement curves for High Strength Steel 
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Figure 7: Deformed shape of the sheet in the unconstrained bending problem

4  CONCLUSIONS 

An extended version of the solid--shell finite element SHB8PS has been implemented into 
the implicit finite element code Abaqus/Standard via the UEL subroutine. The formulation of 
this element employs a combination of the reduced integration scheme with the assumed 
strain method and a specific projection to eliminate locking phenomena. The resulting 
hourglass modes are controlled using a physical self-adapting stabilization procedure. This 
version of the SHB8PS element can deal with problems involving anisotropic elastic-plastic 
behavior at large deformations and double-sided contact between sheet and tools, which are 
typical in sheet metal forming applications. 

The performance of SHB8PS element has been shown through two numerical examples 
involving various types of non-linearities: geometric, material and contact. Indeed, at 
equivalent mesh density, SHB8PS performs at least as well as the most accurate (and 
expensive) solid elements. However, this accuracy is achieved at a lower cost by using one 
single layer of SHB8PS elements and simply adjusting the number of integration points 
through the thickness. This feature makes the element very competitive for sheet metal 
forming.
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1 INTRODUCTION 

Knowledge of structural behavior is essential for designing lighter constructions without 

affecting their safety and quality standards. Lack of levels and characteristics of dynamic 

response, for example, can lead to system failure during repetitive loading application, due to 

the accumulation of structural damage. Thus, it becomes necessary to use more complex 

theories, such as nonlinear formulations, avoiding simplifications in the process of 

analysis/design. 

Plastic analysis of steel structures enhances several benefits compared to the elastic’s, 

because one of the most important characteristics of this material, the ductility  ability to 

withstand large deformations before breaking  is fully considered. This allows for force 

redistribution after the yielding limit of some structural member’s cross section has been 

achieved. This property also promotes the absorption of energy, which becomes extremely 

important in structures subjected to seismic excitations [1]. 

Most studies on inelastic analysis rely on the plastic-zone method (or plasticity distributed) 

or the plastic hinge method (concentrated plasticity or lumped model). The basic difference 

between them is the refinement degree used to represent the structural member plastification. 

In the plastic-zone method, the structure is discretized into finite elements and the 

cross-sections of these elements are subdivided into many fibers. The second-order effects 

and residual stresses can be considered directly in the analysis. Due to the high degree of 

refinement, the analyses made with this method are treated as close-to-accurate solutions. 

However, as it has a high computational cost, the plastic-zone approach is used more for 

simulation of simple structures that can serve as a calibration for other models and numerical 

formulations. Few works are found in this line of research directly related to dynamic 

analysis. Among these are: Kant and Marur [2], Mamaghani et al. [3], and Thai and Kim [4]. 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 
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In contrast, the plastic hinge approach, which assumes the effects of plasticity concentrated 

at hinge points located at the ends of the elements, can be classified as an elastic-plastic hinge 

model or a refined-plastic hinge model. The first one, used in this work, is the simplest way to 

consider the inelastic effects in structural analysis. The element remains in an elastic regime 

until the plastic resistance of the cross-section is achieved by forming a plastic hinge. The 

residual stress effects are not considered. In the refined-plastic hinge model, on the contrary, 

the process of cross-section plastification can be accompanied and the residual stresses can be 

considered. By providing an approximate representation of the member behavior in relation to 

the plastic-zone approach, computationally, the plastic hinge models become significantly less 

expensive and more applied ([5] – [10]). 

The computational system for advanced structural analysis CS‐ASA [10] is used in this 

work. The main characteristic of this computational tool is the accomplishment of the 

nonlinear static and dynamic analyses of steel plane framed structures. In these analyses, the 

geometric nonlinearity or second‐order effects can be simulated, as well as those introduced 

by considering semi‐rigid connections, and steel inelasticity. The introduction of all these 

nonlinear effects in the numerical models and formulations makes it possible to establish the 

stability and strength limit of the structural system in a direct manner, without the necessity to 

separately verify each member’s capacity [11]. For this article, a routine able to simulate the 

nonlinear cyclic behavior of the material was implemented in the CS-ASA system. Basically, 

this model is a natural extension of those already implemented in CS-ASA for the static case 

and can be found in detail in Silva [10]. Therefore, the numerical formulation adopted 

considers two sources of nonlinearities: the geometric, which includes structural displacement 

effects, and the physical, caused by the steel’s inelasticity. The methods of Newmark 

(integration process) and Newton-Raphson (iteration process) are used for solving the 

nonlinear equations of motion. This numerical methodology is discussed throughout the work. 

Some examples considering the nonlinear inelastic time-history response of planar steel 

frames will be discussed at the end of the work. 

2 FINITE ELEMENT FORMULATION 

This section presents the finite element formulation used in the study of the inelastic 

behavior of steel structures. This formulation, as already highlighted, follows the plastic hinge 

approach, and the effect of the material yielding is considered in the finite element force-

displacement constitutive relationship. Initially, some assumptions should be made. The 

inelastic behavior is restricted to the ends of the element (nodal points) that will simulate the 

plastic hinges. The length of these plastic hinges will be null and its deformation is constituted 

only by inelastic rotation. Once the plastic hinge is formed, the inner forces in cross-section 

must respect the plastic resistance surface (full yield surface of the section). 

Consider then the finite element shown in Figure 1. The beam-column element presented 

has fictitious section springs attached at its ends. These springs are imagined to have a 

bending stiffness Ss, which can be defined based on a state parameter ψ (this state parameter 

monitors the cross-section yielding process and will be discussed in the next subsection). The 

element force-displacement relationship on the co-rotational local system, considering the 

cross-section material yielding effect, can be written as [10]:  
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Figure 1: Beam-column finite element with fictitious section springs 
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, or, c c c∆ = ∆f K u  (1) 

with ( )( )si ii sj jj ij jiS k S k k kβ = + + − . 

In Eq. (1), the subscribes i and j are related to the element ends, and the subscript c 

indicates the coordinate system used; E is the Young’s modulus; A is the cross-section area; L 

is the element length; ∆P, ∆M, ∆δ and ∆θ are, respectively, the axial force, the bending 

moment, the nodal axial deformation and nodal rotation increments, and are represented in 

Figure 1. The coefficients of the matrix Kc, besides simulating the section’s material 

plastification at each end of the element, also considers the second-order effects  for 

relatively large displacements, the lateral deflection of a member can generate additional 

bending moments because of the presence of axial force. In this case, the terms kii, kjj, kij and 

kji involved in the simulation are: 

 ( )4 2 15 4ii jjk k EI L PL PI AL= = + +  and ( )2 30 2ij jik k EI L PL PI AL= = − +  (2) 

where I represents the moment of inertia. 

With the increase of axial force on a section with a plastic hinge already formed, the 

section resistance may become smaller than the internal forces acting on it. Then, a change in 

the force-displacement relationship of the element (Eq. 1) will be required so that the 

section’s plastic resistance is not violated. This change can be expressed by the following 

equation: 

 1 1

2 2

00 0

0 0

0 0
i i i

j j j

P EA L
M C K

M C K

∆ ∆δ            ∆ ∆θ ζ= +           ∆ ∆θ ζ      

, or, c ch c ps∆ = ∆ + ∆f K u f  (3) 

where the parameter vector ∆fps defines the correction of the internal forces. The other matrix 

Kch coefficients are presented in Table 1 according to the element end where the plastic hinge 

is formed. In this table, δMpr is the modification to translate the section moment M to the 

interaction surface (resistance or full yield surface), maintaining the axial force P fixed. 

Details of this change and the process to transform Eqs. (1) and (3) into the global coordinate 

system, later obtaining the structural system internal forces vector Fi and stiffness matrix K, 

can be found in Silva [10].  

The section resistance surface adopted here will be presented in the following subsection, 

which also discusses the numerical procedure used to simulate the material’s nonlinear 

behavior. 
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Table 1: Parameters in Eq. (3) 

Plastic hinge 
Parameters 

C1 C2 ζ1 ζ2 

End i 0 1 δMpri δMpri(kc(3,2)/kc(2,2)) 

End i 1 0 δMprj(kc(2,3)/kc(3,3)) δMprj 

Ends i and j 0 0 δMpri δMprj 

( ) ( ) ( ) ( )1 2,2 2,3 3,2 3,3c c c cK k k k k= − and ( ) ( ) ( ) ( )2 3,3 2,3 3,2 2,2c c c cK k k k k= −  

kc(m,n) is the term corresponding to the row m and the column n in Kc (see Eq. 1) 

2.1 Cyclic plasticity model 

Steel inelasticity is the yielding process of the fibers causing changes in cross-section 

stress distribution when acting forces increase. Under loading/unloading conditions, the steel 

can be idealized as an elastic-perfectly plastic material and its constitutive tension-

deformation relationship in this case is illustrated graphically in Figure 2a. It is assumed that 

the plastification occurs when the stress reaches the yield stress σy. After that, an increase in 

loading causes increase in axial deformation without, however, increasing the stress. In this 

model, the material’s permanent deformation appears after the unloading. Load relief makes 

the material return to the elastic state, remaining, however, with a residual deformation. 

Models that directly simulate the stress-strain relationship are usually applied in 

methodologies based on the plastic-zone method. In this work, the cross-section plasticity 

state, in the same situation, is characterized by the elastic-perfectly plastic model expressed, 

however, in the moment-curvature relationship as shown in Figure 2b. It is worth clarifying 

that the potential benefits from the material hardening (strain-hardening) and the Bauschinger 

effect [6] are ignored in this model. 
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(a) Tension-deformation relation (b) Moment-curvature relation 

Figure 2: Elastic-perfectly plastic constitutive material hysteretic model 

Figure 2b illustrates the section’s behavior during the loading-unloading process through 

its moment-curvature relationship. The section’s material remains elastic along the line 0A 
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under loading conditions. When the plastic moment is reached, Mp = Zσy, Z being the module 

plastic, a plastic hinge is formed and no additional moment can be resisted. So, with the 

increase in loading, and this section already yielded, the exceeded moment will be 

redistributed to adjacent members. As a result, the path continues along the horizontal line 

AB. When unloading occurs at B, the direction of rotation is reversed and the section returns 

to the elastic state, but with a residual deformation. In this case, the curve follows the line BC 

parallel to the virgin slope 0A. If reloaded at point C, the path will move along CB up to reach 

again the plastic moment Mp, and continue along the line BD. With the unloading at point D, 

the path DEF will be followed where the line EF indicates that the negative plastic moment 

(-Mp) has been reached. 

The full yield surface, defining the boundary where the material ceases to behave 

elastically and becomes plastic, will be evaluated from internal acting forces and geometrical 

characteristics of the finite element cross-section. The structure’s resistance limit can be 

achieved with the development of a plastic mechanism, which is the consequence of a number 

of plastic hinges formed. If a structural element is subjected to the combined action of 

bending moment and axial force, its moment capacity Mp is reduced [10]. This influence is 

seen through the full yield surface defined by equations: 

 ( ) ( )( )2 2
2fpr f f w yD tM B t td −= + − η σ  

, para η ≤ d/2 (4a) 

 ( )2 2
2pr f yM BD = − η σ  

, para d/2< η ≤ d/2 + tf (4b) 

with: 

 ( )2 y wtP ση = , para η ≤ d/2 (5a) 

 ( ) ( )2 2y w y fP t d B d− σ ση = + , para d/2< η ≤ d/2 + tf (5b) 

 

 

 

 

 

 

The interaction equations between the axial force and bending moment follow the 

requirements of BS 5950 [12] and are valid for the I or H profiles. The full yield surface for 

the profile W470x74 is exemplified in Figure 3. The axial force and bending moment are 

parameterized, respectively, by axial yield limit, Py = Aσy, and the plastic moment Mp. 

Figure 3 shows how the terms Bf, tf, D, tw and d are defined, which characterize the profile’s 

web and flange dimensions and appear in Eqs. (4) and (5). 

P/Py

M/Mp0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Plastic strength surface M   /M   

(Section W470x74)
pr p
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t f
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Figure 3: Reduced plastic moment capacity of I-shaped cross-section under axial load 
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Admitting the material to have elastic-perfectly plastic behavior, it is assumed that a given 

cross-section remains in elastic regime until its plastic resistance is reached. To accompany 

the stiffness loss of the cross-section during the loading/unloading process, a dimensionless 

parameter ψ is adopted. Thus, the development of plasticity in the structure’s cross-section 

members is reflected in the section spring stiffness at the edge of the element, which when 

using ψ, is defined by equation: 

 
6

1
s

EI
S

L

ψ
=

− ψ
 (6) 

It is considered that ψ has the value “1” when the material is in elastic regime, i.e., while 

the section bending moment does not reach the reduced plastic moment Mpr. In this case, 

using (6), the section remains rigid (Ss → ∞), with the plastic rotation null. On the other hand, 

with the section yielding (M = Mpr), ψ reduces to “0” and the section stiffness becomes null 

(Ss → 0), simulating the plastic hinge formation. 

3 SOLUTION PROCEDURE FOR THE TRANSIENT INELASTIC PROBLEM 

The equilibrium equation that governs the nonlinear dynamic response of a structural 

system can be obtained using the Virtual Displacement Principle (VDP). Considering that, 

besides the restoration tensions provoked by structural deformation and external forces, the 

structural system is also submitted to inertial and dissipated forces. The equation to obtain the 

equilibrium of the elements in this system, at time t + ∆t, can be expressed as [13]: 

 
t t t

T
ij ij k k k k k ek

V V V

dV d d dV d d dV d fτ δε + ρ δ + µ δ = δ∫ ∫ ∫     (7) 

where τij represents the Cauchy tensor in equilibrium with external excitation fek; δεij are the 

virtual Green-Lagrange deformation components corresponding to random arbitrary 

displacements δdk, which are cinematically compatible with the boundary conditions; ρ is the 

density or the volumetric mass (mass per volume unit), and µ is the viscous damping 

coefficient of the material. To determine the equilibrium configuration of the structure in 

t + ∆t, the updated Lagrangian referential is used. In this case, the configuration in instant t is 

used as the reference for analysis. 

According to the usual finite element procedures, establishing the deformation field and 

displacement of the elements in function of the nodal displacements and using Eq. (7), it is 

possible to obtain, in a discretized form, the following matrix equation: 

 ( )i rt+ + = λMU CU F F   (8) 

in which M and C are the mass and damping matrices, respectively; U, U  and U , represent 

the displacement, velocity and acceleration vectors, respectively, of the structural system; Fi 

is the internal force vector; Fr is the vector that defines the direction of the external excitation; 

and λ establishes the intensity and direction of the load in a determined instant t. 

In a nonlinear structural study, as is done herein, the stiffness matrix should be constantly 

updated to capture the state of equilibrium influenced by second order effects (P-∆ and P−δ) 

and inelasticity of the material. Afterwards, it becomes necessary to use an incremental-
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iterative solver strategy. For this, a numerical procedure, which combines the methods of 

Newmark and Newton-Raphson, is used here to obtain a nonlinear dynamic response of the 

structural system. The computational steps necessary to achieve this objective are detailed in 

Table 2. Analyzing the numerical procedures adopted, see that the members’ plasticity is 

assessed at the end of each iterative cycle; and the technique described in Section 2 is used for 

simulating the material nonlinear behavior when the structure is subjected to a cyclic loading. 

The computational algorithm is summarized in Table 3. 

Table 2: Numerical strategy for nonlinear transient analysis 

1. Input the material and geometric properties of the frame, and obtain the force vector Fr 

2. Start the initial displacement, velocity and acceleration vectors 0 0,  U U and 0U  

3. Select the time step ∆t 

4. FOR EACH TIME STEP t + ∆t 

4a. Derive the tangent stiffness, mass and damping matrices: K, M, and C 

4b. Using Newmark parameters β and γ, calculate the constants: 

( )2
0 1a t= β∆ ; ( )1a t= γ β∆ ; ( )2 1a t= β∆ ; ( )3 1 12a = −β ; 4 1a = γ β − ; 

( )( )5 12a t= ∆ γ −β ; 6 0a a= ; 7 2a a= − ; 8 3a a= − ; ( )9 1a t= ∆ − γ ; 10a t= α∆  

4c. Form the effective stiffness matrix: 0 1
ˆ a a= + +K K M C  

4d. Calculate: ( ) ( ) ( )2 3 4 5
ˆ t t t t tt t

r ia a a a+∆= λ + + + + −F F M U U C U U F     

4e. Solve for displacement increments: 0ˆ ˆ∆ =K U F  

5. NEWTON-RAPHSON ITERATION: k = 1, 2, 3,... 
5a. Evaluate the approximation of the acceleration, velocities and displacements: 

( ) ( ) ( )1 1
0 2 3

t t t tk ka a a+∆ − −= ∆ − −U U U U   , ( ) ( ) ( )1 1
1 4 5

t t t tk ka a a+∆ − −= ∆ − −U U U U   , and 

( ) ( )1+t t k t k+∆ −= ∆U U U  

5b. Update the geometry of the frame 

5c. Evaluate the internal forces vector: ( ) ( ) ( )1 1t t tk k
i i

+∆ − −= + ∆F F K U  

5d. Form: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )11 1 1kt t k t t t t t t t tt t k k k
r i ps

−+∆ +∆ +∆ +∆ +∆+∆ − − −= λ − + + −R F M U C U F F    

5e. Solve for the corrected displacement increments 
( )ˆ k t t k+∆δ =K U R  

5f. Evaluate the corrected displacement increments: ( )1k kk −∆ = ∆ δU U U+  

5g. Check the convergence of the iteration process: 
k t k∆ ∆ ≤ ξU U U+ , where ξ is a tolerance factor         NO: Go to 5 

5h. Calculate the acceleration, velocities and displacements at time t + ∆t 
( )

0 2 3
t t k k t ta a a+∆ = ∆ − −U U U U   , ( )

1 4 5
t t k k t ta a a+∆ = ∆ − −U U U U    and 

( ) +t t k t k+∆ = ∆U U U  

6. FOR THE NEXT TIME STEP 

6a. Evaluate the internal forces vector: ( )t t t k
i i

+∆ = + ∆F F K U  

6b. Evaluate the plastification at the ends of the finite elements (see Table 4) 
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Table 3: Algorithm for modeling of section behavior under cyclic loading 

1. Consider the internal forces vectors 
(t+∆t)Fi and 

tFi  

2. FOR EACH FINITE ELEMENT 

3. FOR EACH NODAL POINT OF THE ELEMENT 

4. Consider the moments 
(t+∆t)

M  and 
t
M, and the axial force 

(t+∆t)
P at section  

5. Evaluate the incremental moment in this section: ∆M = 
(t+∆t)

M - 
t
M 

6. Consider the reduced plastic yield moment Mpr (see Eq. 4) 

7. If (M ·∆M ≥ 0) then           LOADING CONDITION  

If (|M| < |Mpr|): ψ = 1 and Ss = 10
10

 EI/L (rigid section – elastic behavior) 

If (|M| ≥ |Mpr|): ψ = 0 and Ss = 10
-10

 EI/L (plastic hinge – plastic behavior) 

8. If (M ·∆M < 0) then          UNLOADING CONDITION 

ψ = 1 and Ss = 10
10

 EI/L (rigid section – elastic behavior) 

9. Go to step 4 in Table 2 

4 NUMERICAL APPLICATIONS 

In this section, the methodology presented for nonlinear dynamic analysis is used to obtain 

the response of three planar structural systems with elastic-perfectly plastic material. All 

structures were also investigated by Chan and Chui [6] and their results are used for validation 

of the numerical strategy proposed. No viscous damping was considered and time increments 

of 10
-3

s were adopted in the numerical integration process. 

4.1 Toridis-Khozeimeh portal frame 

The simple portal frame with fixed ends shown in Figure 4, initially studied by Toridis and 

Khozeimeh [14] and subsequently by Marur and Kant [2], is the first example of this section. 

The steel profile masses of the structure members were multiplied by 625 and considered 

concentrated in the elements nodal points following the modeling made by the 

aforementioned authors. Three finite elements were used in the modeling of each of the three 

structural members. 

6.1 m
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 m
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1
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1

2
0
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1
2
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1
2

0
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Time (s)

Load P(t)

 

Figure 4: Toridis-Khozeimeh portal frame: geometry and loading 
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A constant impact load equal to 444.82 kN is applied on top of the column on the left side 

of the frame, and the transient responses of this structure are presented in Figure 5. Figure 5a 

shows the horizontal displacement time-history at the point of application of the load for the 

perfectly elastic material; and Figure 5b presents the dynamic response considering the 

elastic-perfectly plastic material. Figure 5a also indicates the displacement obtained from the 

static elastic analysis, u = 3.97 cm, which represents half of the maximum amplitude obtained 

in dynamic analysis. Comparing the displacement time-histories for these studies, according 

to Figure 5b, it can be seen that the amplitudes begin diverting more significantly from 0.55s, 

due to the increase of plastic deformations. There is, moreover, a constant movement 

response. In this case, the material exhibits an elastic behavior but with a residual 

deformation. This is a feature of elastic-perfectly plastic model used on this work, and just as 

in the elastic model, it does not allow the dissipation of energy. 

P(t), u
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(a) Elastic response (b) Elastoplastic response 

Figure 5: Time history of the horizontal displacement, u, on top of the frame 

4.2 Steel arch-shaped frame 

The structure shown in Figure 6 is now studied. The curved shape of this structure was 

obtained modeling it with six pieces of steel profile UB305x165x40 kg/m. Besides Chan and 

Chui [6], Lee et al. [5] also investigated the transient elastic-perfectly plastic response of the 

arch but using a bilinear plastic resistance surface.  

Six finite elements, each modeling of the steel parts, were adopted on discretization. The 

steel arch, which has fixed supports, is subjected to an vertical impact load P(t) applied at its 

top (the triangular decaying over time of this vertical load is showed in Figure 6). 

Gravitational loads of intensity 10 kN statically applied and a lumped mass of 0.5 kNs
2
/m 

attached to each node were also considered. The time histories of the vertical deflection at the 

arch top are illustrated in Figure 7. A permanent plastic deformation is observed, and the 

amplitude of displacement becomes virtually constant indicating that the structure remains in 

the elastic regime after 0.012s. 
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Figure 6: Arch-shaped frame: geometry and loading 
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Figure 7: Dynamic elastoplastic response of the arch under impact load 

4.3 Simple portal frame with initial geometric imperfection 

In the last analysis, attention is given to the yield stress effect on the structural response of 

a simple portal frame with pinned supports illustrated in Figure 8. An initial geometric 

imperfection ∆0 in columns was assumed. To predict a more realistic behavior of this 

structure, two heavy gravitational loads of 200 kN acting at the ends of the beam (or at the top 

of the columns) were considered. These loads induce axial forces in columns, and as a 

consequence, additional bending moments appear, reducing the stiffness of these members 

and structural system (P-Delta effect in the analysis). The beam and columns of the frame are 

made by hot-rolled steel profiles W8x48.  

The nonlinear transient frame responses considering the elastic and inelastic (elastoplastic) 

material behavior are illustrated in Figure 8. Yield stress equal to 235 MPa and 260 MPa were 

adopted in the elastoplastic analysis. Figure 8b shows the members’ sections plastic resistance 

surface considered. In Figures 8c and 8d can be observed that the magnitude of plastic 

deformation decreases with the increasing of the material yield stress. In the limit, i.e., for 

σy → ∞, the material would tend to present the elastic behavior, whose results are plotted in 

Figure 8a. 
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Figure 8: Simple portal frame with initial geometric imperfection: geometry and loading pattern 
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(c) Elastoplastic response for σy = 235 MPa (d) Elastoplastic response for σy = 260 MPa 

Figure 9: Dynamic elastic and inelastic responses of the simple portal frame 

5 FINAL REMARKS AND FUTURE RESEARCH 

This article described a numerical methodology for nonlinear dynamic analysis of steel 

frames. The main feature of the finite element formulation adopted is the consideration of the 

geometric nonlinear effects and the material elastic-perfectly plastic behavior. The plastic 

hinge model was used to evaluate the members’ section yielding. The steel section gradual 

yielding and residual stresses were not considered. Numerical examples presented 
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demonstrated the applicability of the numerical strategy proposed, and the good agreement 

between the results here obtained and those found in literature have validated such strategy. 

It is worth informing that future authors’ research should address the influence of the 

combined effects of geometric nonlinearity, steel inelasticity and semi-rigid connections on 

the nonlinear static and dynamic behavior of steel structures. In these studies, the refined 

plastic hinge model (with steel section gradual yielding), which enables the energy dissipation 

through the plastic hinges, will be adopted. 
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Abstract. We present a numerical method for the computation of shakedown loads of
structures under thermo-mechanical loading accounting for limited kinematical hardening.
The method is based on the lower bound approach by Melan extended to the hardening
using a two-surface model. Both the yield and the bounding surface are defined by the von
Mises condition. Melan’s shakedown theorem leads to a nonlinear convex optimization
problem. This is solved by the interior-point algorithm ipsa recently developed by the
authors. In this paper, theoretical and numerical aspects will be presented as well as
numerical examples from mechanical engineering.

1 INTRODUCTION

We consider engineering structures subjected to varying thermo-mechanical loading
beyond the elastic limit. For these, we determine the shakedown factor αSD, which is the
maximum loading factor α such that the structure does neither fail due to spontaneous or
incremental collapse nor due to alternating plasticity. In this paper, this is done by means
of direct methods, comprising limit and shakedown analysis. In particular, we follow the
statical approach of Melan [7], who formulated a shakedown theorem for elastic-perfectly
plastic and unlimited kinematical hardening continua.

Consideration of kinematical hardening is crucial for most engineering problems and
thus has been addressed by several authors in the field of shakedown analysis. Notably,
accounting for only unlimited kinematical hardening does not cover incremental collapse
but solely alternating plasticity, see e.g. [6, 12, 18]. Thus, it is important to take into
account limited kinematical hardening for obtaining realistic results. The first explicit
formulation for this was given by Weichert and Gross-Weege [3,17], who developed

1
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a two-surface model, which allows an easy introduction of this phenomenon to the statical
shakedown theorem [3,10, 11, 16, 17].

Using the statical shakedown theorem leads to nonlinear convex optimization problems,
which are typically characterized by large numbers of unknowns and constraints. In this
work, these will be solved by the interior-point algorithm ipsa recently developed by the
authors [13–15], which is extended for limited kinematical hardening.

2 STATICAL APPROACH OF SHAKEDOWN ANALYSIS

The current formulation is based on the statical shakedown theorem by Melan [7].
This states that a structure will shake down, if there exists a time-independent residual
stress field ρ̄(x), such that the yield condition f [σ(x, t)] ≤ 0 is satisfied for any loading
path in the considered loading domain at any time t and in any point x of the structure.
For the mathematical formulation, the total stress σ(x, t) is decomposed into an elastic
stress σE(x, t) and a residual stress ρ(x, t) induced by the evolution of plastic strains.

σ(x, t) = σE(x, t) + ρ(x, t) (1)

Here, σE(x, t) denotes the stress state, which would occur in a fictitious purely elastic
reference body under the same conditions as the original one. Clearly, the residual stresses
satisfy the equilibrium condition, which can be transferred to a system of linear equations
using the principle of virtual work, as shown e.g. in [2].

NG
∑

r=1

Cr · ρ̄r = 0 (2)

Hereby, the system has been discretized using the finite element method (fem) and thus
the stresses are approximately evaluated in the Gauss points r ∈ [1, NG]. The equilibrium
matrixes Cr depend on the geometry and the elementation. The kinematical boundary
conditions are taken into account considering the virtual displacements to be kinematical
admissible.

Let the considered body be subjected to NL varying loads. Then, the according loading
domain is polyhedral with NC = 2NL corners. As shown in [6], it is sufficient to only
consider these corners to ensure shakedown for all possible loading paths inside of the
loading domain. Then, introducing the loading factor α > 0, Melan’s statical shakedown
theorem can be formulated as an optimization problem:

(PMelan) αSD = max α
NG
∑

r=1

Cr · ρ̄r = 0 (3a)

f
(

α σE,j
r + ρ̄r, σY,r

)

≤ 0 , ∀j ∈ [1, NC], ∀r ∈ [1, NG] (3b)

2
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3 CONSIDERATION OF LIMITED KINEMATICAL HARDENING

In order to take into account the limited kinematical hardening we use the two-surface
model proposed by Weichert and Gross-Weege [17]. The kinematical hardening is
considered as a rigid body motion of the yield surface in stress space, which is described
by the six-dimensional vector of back-stresses π representing the translation of the yield
surface’s center, Fig. 1. Through the introduction of a second surfaces corresponding to
the ultimate stress σH , the motion of the yield surface is bounded.

actual yield surface

initial yield surface
bounding surface

σij

π

σ

υ

fH(σ, σH) = 0
f 0

Y (υ, σY ) = 0

fY (υ, σY ) = 0

Figure 1: Kinematic hardening considered as translation of the yield surface in stress space

Thereby, the total stresses are divided into the back stresses π and the reduced
stresses υ, which are responsible for the occurrence of plastic strains.

σ(x, t) = π(x, t) + υ(x, t) (4)

As before, the total stresses are decomposed, σj
r = α σE,j

r + ρ̄r. In an analogous manner,
the reduced stresses υj

r can be formulated, keeping in mind that the back stresses are time-
independent and thus not dependent on the considered corner j of the loading domain,
because the bounding surface is fixed in stress space.

υj
r = σj

r − π̄r = α σE,j
r + ρ̄r − π̄r (5)

Thereby, Melan’s theorem accounting for limited kinematical hardening reads as follows.

(PH
Melan) αSD = max α

NG
∑

r=1

Cr · ρ̄r = 0 (6a)

fH

(

α σE,j
r + ρ̄r, σH,r

)

≤ 0 , ∀j ∈ [1, NC], ∀r ∈ [1, NG] (6b)

fY

(

α σE,j
r + ρ̄r − π̄r, σY,r

)

≤ 0 , ∀j ∈ [1, NC], ∀r ∈ [1, NG] (6c)

3
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4 SOLUTION WITH INTERIOR-POINT METHOD

For a clear presentation, the problem is rewritten in the following form. To achieve
this, several transformations are necessary, which are not in the scope of this paper but
can be followed in [13, 15].

(PH
IP ) min f(x) = −α

AH · x = 0 (7a)

cH(x) ≥ 0 (7b)

cY (x) ≥ 0 (7c)

x ∈ R
n , (7d)

The problem (PH
IP ) consists of n variables, merged to the solution vector x, mE equal-

ity constraints, represented by the affine linear system (7a), and 2 mI nonlinear concave
inequality constraints (7b) and (7c). The equality constraints can be interpreted as equi-
librium condition for the residual stresses (2), whereas the inequality constraints represent
the yield and the bounding condition (6b) and (6c), respectively. The inequality con-
straints are converted into equality constraints by introducing slack variables wH ∈ RmI

and wY ∈ RmI . Moreover, we use split variables y ∈ Rn and z ∈ Rn in order to avoid
numerical instabilities due to the unboundedness of the solution vector (7d). Then, we use
the interior-point method perturbing the objective function by logarithmic barrier terms,
which penalize directions leading outside of the feasible region. Thereby, the barrier
parameter µ is introduced, which is tending to zero during the iteration.

fµ(x, y, z, wH , wY ) = f(x)−µ

[

n
∑

i=1

log(yi) +
n

∑

i=1

log(zi) +

mI
∑

j=1

log(wH,j) +

mI
∑

j=1

log(wY,j)

]

(8)
The resulting optimization problem can then be expressed as follows.

(PH
µ ) min fµ(x, y, z, wH , wY )

AH · x = 0 (9a)

cH(x) − wH = 0 (9b)

cY (x) − wY = 0 (9c)

x − y + z = 0 (9d)

wH > 0, wY > 0, y > 0, z > 0 (9e)

Since the underlying optimization problem (PH
IP ) is convex and regular, the Karush-

Kuhn-Tucker condition is both necessary and sufficient, which states that the solution
is optimal if the Lagrangian LH of the problem possesses a saddle point.

LH =fµ(x, y, z, wH , wY ) − λE · (AH · x) − λH · (cH(x) − wH)

− λY · (cY (x) − wY ) − s · (x − y + z) ,
(10)

4
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where λE ∈ RmE , λH ∈ R
mI

+ , λY ∈ R
mI

+ and s ∈ Rn
+ are appropriate Lagrange multipli-

ers. Thereby, the saddle point conditions reads as follows:

∇xLH =∇xf(x) − AT
H · λE − CT

H(x) · λH − CT
Y (x) · λY − s = 0 (11a)

∇yLH = − µ Y −1
· e + s = 0 (11b)

∇zLH = − µ Z−1
· e − s = 0 (11c)

∇wH
LH = − µ W−1

H · e + λH = 0 (11d)

∇wY
LH = − µ W−1

Y · e + λY = 0 (11e)

∇λE
LH = − (AH · x) = 0 (11f)

∇λH
LH = − (cH(x) − wH) = 0 (11g)

∇λY
LH = − (cY (x) − wY ) = 0 (11h)

∇sLH = − (x − y + z) = 0 (11i)

where: CH(x) =cH(x)∇x ∈ R
mI×n and CY (x) = cY (x)∇x ∈ R

mI×n

For consistency during the iteration, we introduce the new variable r = −s into (11c).
Both of these variables are tending to zero during the iteration. In addition, the equations
(11b)–(11e) are multiplied by the matrixes Y , Z, W H and W Y , respectively. Merging all
variables of the problem to the vector Π), the resulting system of optimality conditions
can be expressed by the function F H

µ (Π):

F H
µ (Π) = −

































−∇xf(x) + AT
H · λE + CT

H(x) · λH + CT
Y (x) · λY + s

µ e − Y · S · e

µ e − Z · R · e

µ e − W H · ΛH · e

µ e − W Y · ΛY · e

AH · x

cH(x) − wH

cY (x) − wY

x − y + z

r + s

































= 0 (12)

Equation (12) constitutes a system of nonlinear equations, which will be linearized
using the Newton method. The variables Πk+1 of the subsequent iteration step k + 1
are computed from the variables Πk of the previous one k and the step values ∆Πk:

Πk+1 = Πk + Υk ∆Πk , (13)

where Υk denotes a matrix of damping factors, which is introduced for numerical reasons.
The step values ∆Πk are determined from the following linearized system of equations.

5
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J(Πk) · ∆Πk = −∇ΠLH(Πk) (14)

where: J(Πk) = ∇ΠLH(Π) ∇Π

�

�

�

�

�

Π=Πk

The Jacobian J(Π) of the function F H
µ (Π) can be expressed as follows:

J(Π) =

































∇
2
xLH 0 0 0 0 −AT

H −CT
H(x) −CT

Y (x) −In 0

0 S 0 0 0 0 0 0 Y 0

0 0 R 0 0 0 0 0 0 Z

0 0 0 ΛH 0 0 W H 0 0 0

0 0 0 0 ΛY 0 0 W Y 0 0

−AH 0 0 0 0 0 0 0 0 0

−CH(x) 0 0 ImI
0 0 0 0 0 0

−CY (x) 0 0 0 ImI
0 0 0 0 0

−In In −In 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −In −In

































(15)

The system (14) is reduced by successive elimination of those equations, which involve
diagonal matrixes. After substituting the variables ∆s, ∆r, ∆y, ∆z, ∆wH and ∆wY ,
the following system remains:









−
�

∇
2
xLH + E1

�

AT
H CT

H(x) CT
Y (x)

AH 0 0 0

CH(x) 0 EH 0

CY (x) 0 0 EY









·









∆x

∆λE

∆λH

∆λY









=









d1

d2

dH
3

dY
3









(16)

The right-hand side values are as follows

d1 = ∇xf(x) − AT
H · λE − CT

H(x) · λH − CT
Y (x) · λY − s + E1 · b1(17a)

d2 = −AH · x (17b)

dH
3 = −cH(x) + µΛ−1

H · e (17c)

dY
3 = −cY (x) + µΛ−1

Y · e (17d)

where: b1 = x + z + µ
�

R−1
− S−1

�

· e + R−1
· Z · s (17e)

E1 =
�

S−1
· Y + R−1

· Z
�−1

(17f)

EH = W H ·Λ−1
H (17g)

EY = W Y · Λ−1
Y (17h)

6
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5 NUMERICAL EXAMPLES

5.1 Open-ended pipe subjected to thermo-mechanical loading

The proposed method is applied to a thin pipe subjected to an internal pressure p and a
temperature load ∆T = T1 − T0, which vary independently of each other, Fig. 2. The pipe
is assumed to be long, open-ended and thin with a ratio of radius to thickness R/h = 10.
The material parameters are assumed to be temperature-independent. Furthermore, we
only consider steady-state processes assuming that the temperature is applied sufficiently
slow, and no transient thermal effects are taken into account. In addition, creep due to
high temperature is not considered.

R

h

p

p

T0

T1

Figure 2: System of the open-ended pipe

The pipe is made of steel X6CrNiNb 18-10 and assumed to be homogeneous isotropic.
The material parameters are given in Tab. 1.

Table 1: Thermal and mechanical characteristics

Young’s modulus [MPa] 2.0 × 105

Yield stress [MPa] 205
Poisson’s ratio 0.3
Density [kg/m3] 7.9 × 103

Thermal conductivity [W/(m·K)] 15
Specific heat capacity [J/(kg·K)] 500
Coefficient of thermal expansion [1/K] 1.6 × 10−5

Taking into account the symmetry of the system, the mesh consists of 984 nodes and
600 elements, where five elements over the thickness are used, Fig. 3(a). The fem-analyses
has been carried out with the software package ansys using isoparametric solid elements
with 8 nodes. In particular, we use the element solid45 for the structural analysis and

7
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solid70 for the thermal one. The resulting distributions of equivalent elastic stresses are
presented in Fig. 3, where the arbitrarily chosen values p = 10 MPa and ∆T = 100 K
have been used.

(a)
FEM model

(b) Equivalent stresses due
to internal pressure

(c) Equivalent stresses due
to temperature loading

Figure 3: Model and elastic equivalent stresses of the open-ended pipe

The results of the shakedown analysis are presented in Fig. 4(a). There, the elastic
domain (dotted line) and the shakedown curves for perfectly plastic materials as well as
for limited kinematic hardening ones with different ratios σH,1 = 1.2 σY , σH,2 = 1.35 σY

and σH,3 = 1.5 σY are plotted. Both axes are scaled to the value in the perfectly plastic
case p0 and ∆T0, respectively.

In both the perfectly plastic and the hardening case, one can clearly identify the two
mechanisms of alternating plasticity and incremental collapse. In case of predominating
temperature, all shakedown curves coincide with the one for unlimited hardening, which
represents alternating plasticity. Here, no influence of hardening can be observed. On
the other hand, failure is due to incremental collapse in the regime of predominating
pressure. The limited kinematical hardening influences the shakedown curves such that
the according domains increase in direct proportion with the ratio σH/σY .

To validate the presented results, we compare them in Fig. 4 to the ones given by
Mouhtamid [9], Hachemi [4] and Heitzer et al. [5]. These works are based on the static
approach as well, but differ in the chosen solution strategies. Heitzer et al. applied the
basis reduction technique, whereas Mouhtamid used the program Lancelot [1], which
is based on the augmented Lagrangian method, and Hachemi used the bfgs algorithm,
see [8]. The computed shakedown domains of Hachemi are above our ones, Fig. 4(c). The
shakedown loads are overestimated in both cases with and without considering hardening.
Nevertheless, the curves are qualitatively similar as well as the inclinations at the intercept
points. Also, our results are in agreement with the ones of Heitzer, Fig. 4(d), which are
slightly lower in the case of hardening. Furthermore, the comparison with Mouhtamid

8
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(c) Comparison with results from Hachemi [4]
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(d) Comparison with results from Heitzer et al. [5]

Figure 4: Results of shakedown analysis and comparison to reference solutions of the open-ended pipe

shows a good agreement, too. However, a discrepancy can be observed in the regime
of predominating pressure, which can be explained by different elastic solutions due to
different meshes.

5.2 Closed pipe subjected to thermo-mechanical loading

For further validation, the pipe is considered now as closed, Fig. 5(a). We focus on a
part of the pipe, which is far away of the closure such that local stress concentrations can
be neglected. Then, the difference compared to the above calculation is the additional

9
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R

h

p

p

T0

T1

(a) System and loading conditions (b) Equivalent stresses due
to internal pressure

Figure 5: System and equivalent elastic stresses of the closed pipe

axial stress σax, which is induced by the internal pressure acting on the cover plate.

σax = p
(R − h)2

(2 R h − h2)
(18)

Through this additional axial stress the elastic stresses are changed in case of internal
pressure, as shown in Fig. 5(b). As above, the value p = 10 MPa has been used. The
elastic stresses due to the temperature loading remain as in Fig. 3(c).

The results of the shakedown analysis are presented in Fig. 4(a). There, the elastic
domain (dotted line) and the shakedown curves for perfectly plastic materials as well as for
limited kinematic hardening ones with different ratios σH,1 = 1.2 σY , σH,2 = 1.35 σY and
σH,3 = 1.5 σY are plotted. Both axes are scaled to the value in the perfectly plastic case
p0 and ∆T0, respectively. Again, the two different mechanisms of alternating plasticity
and incremental collapse can be clearly identified.

Finally, we compare the presented results with the ones obtained by Groß-Weege [2]
using the basis reduction technique, which is based on the statical shakedown approach,
too. The results are in agreement, even though in the range of incremental collapse one
can observe a slight difference, Fig. 6(b).

6 CONCLUSIONS

We have presented a numerical method for shakedown analysis of engineering structures
with limited kinematic hardening. The method has been implemented into the interior-
point algorithm ipsa and applied to numerical examples. The validation with reference
solutions is satisfying.

10
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Figure 6: Results of shakedown analysis and comparison to reference solution of the closed pipe
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[7] E. Melan. Zur Plastizität des räumlichen Kontinuums. Ing-Arch, 9:116–126, 1938.

[8] A.J. Morris. Foundation of Structural Optimization: A unified approach. John Wiley,
1982.

[9] S. Mouhtamid. Anwendung direkter Methoden zur industriellen Berechnung von

Grenzlasten mechanischer Komponenten. PhD thesis, Institute of General Mechanics,
RWTH Aachen University, Germany, 2007.

11



1426

J.-W. Simon and D. Weichert

[10] Q.-S. Nguyen. On shakedown analysis in hardening plasticity. J Mech Phys Solids,
51:101–125, 2003.

[11] P.T. Pham, D.K. Vu, T.N. Tran, and M. Staat. An upper bound algorithm for
shakedown analysis of elastic-plastic bounded linearly kinematic hardening bodies.
In Proc ECCM 2010, 2010.

[12] A.R.S. Ponter. A general shakedown theorem for elastic plastic bodies with work
hardening. In Proc SMIRT–3, paper L5/2, 1975.

[13] J.-W. Simon, M. Chen, and D. Weichert. Shakedown analysis combined with the
problem of heat conduction. In ASME Conf Proc PVP2010, volume 2, pages 133–
142, 2010.

[14] J.-W. Simon and D. Weichert. An improved interior-point algorithm for large-scale
shakedown analysis. In PAMM – Proc Appl Math Mech, volume 10, pages 223–224,
2010.

[15] J.-W. Simon and D. Weichert. Interior-point method for the computation of shake-
down loads for engineering systems. In ASME Conf Proc ESDA2010, volume 4, pages
253–262, 2010.

[16] M. Staat and M. Heitzer. The restricted influence of kinematical hardening on shake-
down loads. In Proc WCCM V, 2002.

[17] D. Weichert and J. Groß-Weege. The numerical assessment of elastic-plastic sheets
under variable mechanical and thermal loads using a simplified two-surface yield
condition. Int J Mech Sci, 30(10):757–767, 1988.

[18] J. Zarka and J. Casier. Elastic-plastic response of a structure to cyclic loading:
practical rule. In S. Nemat-Nasser, editor, Mechanics today, volume 6. Pergamon,
1981.

12



1427

 
 
 

NON-LINEAR ANALYSIS WITH THE BOUNDARY ELEMENT 
METHOD 

ERNESTO PINEDA*, IGNACIO VILLASEÑOR† AND JANIS ZAPATA† 

* Instituto Politécnico Nacional (IPN), ESIA-UZ, Unidad Profesional Adolfo López Mateos s/n, 
07320, México D.F. 

e-mail: epinedal@ipn.mx 
 

†  Instituto Politécnico Nacional (IPN), ESIA-UZ, Unidad Profesional Adolfo López Mateos s/n, 
07320,México D.F  

email: janis_zapata@hotmail.com 

KEY WORDS: Boundary Element,  Visco-plasticity. 

Abstract. This paper presents a new formulation of the Boundary Element Method to visco-
plastic problems in a two-dimensional analysis. Visco-plastic stresses and strains are obtained 
until the visco-plastic strain rate reaches the steady state condition. A perfect visco-plastic 
analysis is also carried out in linear strain hardening (H’=0) materials. Part of the domain, the 
part that is susceptible to yield is discretized into quadratic, quadrilateral continuous cells. The 
loads are used to demonstrate time effects in the analysis carried out. Numerical results are 
compared with solution obtained from the Finite Element Method (FEM). 

 
 
1 INTRODUCTION 
In the case of inelastic fracture mechanic problems and in problems with high temperature 
gradients where inelastic strain rates are proportional to high power of stress, regions with 
strain rate concentration provide nearly all the inelastic contribution to the stress rates [1]. The 
main reason for the success of the BEM (boundary element method) in fracture mechanics 
applications is the ability to model high stress concentration fields accurately and efficiently. 
A comprehensive review of the historic development of the BEM for fracture mechanics can 
be found in the work of Aliabadi [2]. One of the early efforts in solving non-elastic fracture 
mechanics problems by using BEM was made by Morjaria and Mukherjee [3] and Banthia 
and Mukherjee [4] where they used a crack Green's function to model the crack and obtain 
solution for the time-dependent stress field which was developed near the crack tip in finite 
plates. An alternative methodology based on the use of the Kelvin fundamental solutions was 
presented in [5], [6] and [7]. Recently, the DBEM (dual boundary element method) has been 
developed as a very effective numerical tool to model general fracture problems with 
numerous applications to linear elastic and non-elastic fracture problems [8]. 
 
BEM has been applied to elasto-plastic problems since the early seventies with the work of 
Swedlow and Cruse [9] and Richardella [10] who implemented the von Mises criterion for 2D 
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problems using piecewise constant interpolation for the plastic strains. Later, Telles and 
Brebbia [11] and others had, by the beginning of the eighties, developed and implemented 
BEM formulations for 2D and 3D inelastic, viscoplastic and elastoplastic problems (see [12] 
for further details). 
 
In recent years, Aliabadi and co-workers [13] have introduced a new generation of boundary 
element method for solution of fracture mechanics problems. The method which was 
originally proposed for linear elastic problems [14],[15] and [16] has since been extended to 
many other fields including problems involving nonlinear material and geometric behaviour 
[17]. 
 
In the present paper applications of the DBEM to visco-plasticity are presented. The 
specimens analyzed are a square plate and a plate with a hole, both of them with different 
crack length. The boundary was discretized with quadratic continuous and semi-discontinuous 
elements, but the domain with nine nodes internal cells. In visco-plasticity only the part 
susceptible to yielding was discretized. The von Mises yield criterion was applied so the 
material used for these sort of analysis were metals.  
 
2 BASIC CONCEPTS OF VISCO-PLASTICITY 
 
In order to explain the theory of visco-plasticity it is convenient to analyze the one-
dimensional rheological model see [22] for more details. A uniaxial yield stress     governs 
the onset of the visco-plastic deformation. Once visco-plasticty begins the stress level for 
continuing visco-plastic flow depends on the strain hardening characteristics of the material 
(    ).  
After applying Hook’s law and boundary conditions, see Pineda [22] for further details, it is 
possible to obtain: 
 
                                                                                                                                
(11) 
 
Expression (11) is the visco-plastic strain rate in terms of the stresses for the uniaxial case in 
which (.) denotes the derivative with respect to the time,  . 
From the visco-plastic model see [22] the strain response with time can be represented by two 
cases. The first case is the perfectly visco-plastic material in which     . In this case the 
visco-plastic deformation continues at a constant strain rate. 
The second case is the linear hardening case (    ), where after the initial elastic response, 
the visco-plastic strain rate is exponential and reaches the steady state condition when this 
value becomes zero. On the other hand, for a perfectly visco-plastic material there is always 
an imbalance of stress       in the system which does not reduce and consequently the 
steady state condition can not be achieved. 
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3 BOUNDARY INTEGRAL EQUATIONS 

The boundary conditions in terms of rates are; for displacements ii uu    and for tractions 

ii tt   and the equation representing the traction boundary conditions is, 
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Equation (2) is for three dimensional problems. In order to work with two dimensional 
problems for the plane stress state it is necessary to remove the strain in z direction, so 

033 a . 
 
 The solution of the equation (1) leads to the following boundary Integral representation of the 
boundary displacements when the initial strain approach for the solution of visco-plastic 
problems is used 
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            (3) 
In a similar way the boundary integral equation of the internal stresses is expressed by 
 

   


 jk
vp

ijjk
a

ijkjijkjijkij fdduSdtD                   

(4) 
Where  is a Cauchy integral, ijkD  and ijkS are terms containing the derivative of the 

displacements and tractions, ijf is the free term and ij  is the fundamental solution for the 
domain. 

3.1 Boundary Integral Formulation for Visco-plasticity 

    In the visco-plastic analysis like plasticity, the initial strain approach will be applied and the 
integral equation to calculate the displacement on the boundary is basically the same, the only 
difference is that the plastic strain is replaced with the visco-plastic strain rate. So the 
displacement equation can be rewritten as: 

      
dzzxdxtxxudxuxxtxuxc ij

vp
ijjijiijjij   ,'')'(),'(')'(),'(')'()'(                

(5) 

Where iu , it  and ij
vp  are the displacement, traction and visco-plastic strain rates 

respectively. ijij ut ',' and ij' are the displacement, traction and third order fundamental 
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solutions, respectively, which are functions of the positions of the collocation point x′ and the 
field point x which belong to the boundary, or the internal point z and the material properties. 
 
 
 

  

4 EXAMPLES  
An aluminum plate with a notch and geometry as illustrated in figure 1 is considered in this 
case. The plate is constrained in X and Y direction on the edge of the notch and it  is assumed 
to have the following material properties: Young’s modulus, E =70000 MPa; Poisson’s ratio,  
ν= 0.2; Applied stress  a =140 Mpa., y  = 243 Mpa. with γ=0.01 and t = 0.01 

 

5 mm.

5 mm.

5 mm. 5 mm.

36 mm.

13 mm.

13 mm.

 

Figure 1 Geometry in a plate with a notch 
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Figure 2.   Stresses in Y direction for a notched plate.

 

 
 

Figure 3.  Displacements in Y direction for a notched plate. 
 
 

Plate with a hole 
 
A perforated tension specimen with geometry and boundary conditions as illustrated in figure 
4, was analyzed in this example. 

 
PLACA DE ALUMINIO   DE 10 mm. DE ANCHO  POR 36 mm. DE ALTO  CON UNA 
CON UNA PERFORACION SEMICIRCULAR EN UNO DE SUS LADOS. DEL LADO 
DERECHO DE LA PERFORACION LA PLACA SE ENCUENTRA RESTRINGIDA AL 
DEZPLAZAMIENTO TANTO EN   LA DIRECCION x COMO EN y.    LA PLACA ES 
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SOMETIDA A UN ESTADO DE ESFUERZO DE TENSION DE 140 N/mm.² Y TIENE 
LAS SIGUIENTES CONSTANTES.E=70 000 N/mm.²,  ν=0.2, a 140 N/mm.², y =243  
N/mm.²,  =0.01, t =0.01 

5 mm.

5 mm.

5 mm. 5 mm.

36 mm.

13 mm.

13 mm.

 
Figure 4  Geometry for a plate with a hole 

 

 
 

Figure 5 Stresses in the center of the plate in Y direction from the center of the hole. 
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PLACA DE ALUMINIO CON 10 mm. DE ANCHO Y UNA ALTURA DE 36 
MILIMETROS LIMITADA EN SUS LADOS POR DOS SEMICIRCULOS  Y SE SOMETE 
A UN ESTADO DE ESFUERZOS DE TENSION DE 140 N/mm.² Y CUENTA CON LAS 
SIGUIENTES CONSTANTES.  
E=70 000 N/mm.²,  ν=0.2, a 140 N/mm.², y =243  N/mm.²,  =0.01, t =0.01  

10  mm.

2.5 mm.2.5 mm.

18  mm.

18  mm.

5 mm.  
 

Figure 6 Geometry of a narrow plate with stresses in Y direction. 
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Figure 7 Stresses in Y direction from the center of the plate until the upper part. 
 

 
 

Fig. 6 Displacements in Y direction from the center of the plate until the upper part  

5 CONCLUSIONS 
In this paper the BEM was applied to the analysis of non-elastic problems. It has been 
demonstrated here that this method is an accurate and efficient method for analyzing and 
modeling visco-plastic problems. The analysis is general and can be applied to mixed mode 
cracks in non-linear fracture mechanics problems. The displacement and traction boundary 
integral equation used are independent. In the case of the traction equation continuity of 
strains is required at the collocation node to guarantee the existence of the finite part integrals. 
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Since this discontinuous boundary elements have to be used on the crack faces. The visco-
plastic behaviour is represented by a plastic strain field over a region, susceptible to yield, 
discretized with quadrilateral quadratic continuous and discontinuous internal cells.  
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Fig.2:Flexiblesystemreducedtoarigidone  Fig.4:Flexiblesystem,subtractedflexibilityinJterm
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Abstract. A synthesis of a non-linear finite element structural assessment enquiry carried out 
on a monumental modern heritage building is reported in this paper. The study includes a 
buckling analysis of the slender steel beams constituting a mushroom-type roof, and an 
―integral‖ seismic pushover analysis of the supporting R/C columns. The computational 
solutions obtained for the steel roof beams are compared to the results derived from a 
calculation of the critical stress of beam panels, and the global lateral-torsional buckling 
resistance of members developed according to the Technical Standards adopted for structural 
verifications. The unconventional ―full-cracking‖ pushover application to the R/C columns 
offers detailed simulation of the evolution of their non-linear response, which is discussed in 
the paper, along with the most significant parameter and procedure choices made in the 
analysis. 

 
 
1 INTRODUCTION 

Non-linear finite element approaches are suggested in the latest generation of international 
Technical Standards as preferential analysis methods for the static and seismic assessment of 
existing structures. This prompts an extension of the use of non-linear models and calculus 
programs, which are typically conceived, developed and implemented in the academic 
community for research aims, to the professional community of structural engineers. An 
important role can be played by academicians also at this challenging phase, where a critical 
review of the theoretical options and of the limits of available models, as well as an expert 
guidance to their practical application, are urged by professional users. 

A study in this field is currently being carried out by the authors within a National 
Research Project, financed by the Italian Ministry of Education and University and dedicated 
to the historical and structural analysis of Italian modern heritage architecture built in the 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 
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1950s and in the 1960s. Special care is devoted in this paper to a representative masterpiece 
building, the ―Palazzo del Lavoro‖ in Turin, designed in 1959 by the world-famous Italian 
engineer Pier Luigi Nervi, and completed in 1961. The main structural elements of the 
building consist of sixteen monumental reinforced concrete (R/C) columns, 20 m high, and 
sixteen supported steel mushroom roof panels, each covering an area of 40×40 m×m. The 
building includes other monumental structural members, and namely the R/C ribbed slabs 
typical of Nervi’s style, which constitute the two perimeter gallery floors, and the continuous 
gallery-to-roof glass façades. External views of the building at the time of its opening and in 
its current conditions; the plans of the roof and upper gallery floors; the elevation design 
drawing and a view of a mushroom steel roof panel and relevant R/C column, are shown in 
Figures 1, 2 and 3, respectively.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1: External views of the building at the time of its opening and in its current conditions 

 
 
 
 
 
 
 
 
 
 

Figure 2: Plans of the roof and the upper gallery 

 

 
 
 
 
 
 

Figure 3: Elevation design drawing and view of a mushroom steel roof panel and the supporting R/C column  
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Linear elastic finite element analyses of these structural elements taken separately, as well 
as of the entire building, were initially carried out to evaluate their static and dynamic 
characteristics, and to check their current nominal safety conditions [1]. Based on the results 
of this first-level assessment analyses, a second-level step was then undertaken, aimed at 
carefully evaluating the structural performance of the two most important types of members, 
i.e., the steel roof beams and the R/C monumental columns. This new section of the numerical 
study posed two representative problems of non-linear geometrical—steel beams—and 
material—R/C columns—type, respectively.  

A local and global buckling analysis was developed for the roof beams, in order to 
investigate the instability effects arising from their very slender sections. Similarly to many 
other finite element commercial codes, the SAP2000NL [2] program used for this analysis 
produces a not plainly understandable buckling mode calculation, which leaves uncertainties 
both on the non-linear geometrical formulation of the problem and the final results. These 
aspects were investigated by comparing the computational solutions with the results derived 
from the expressions of the critical stress of panels and the global lateral-torsional buckling 
resistance of beams provided by the reference Technical Standards on steel structures adopted 
for the structural verifications [3-6].  

The R/C columns were evaluated with an ―integral‖ seismic pushover analysis of the 
numerical model constituted by a full mesh of solid octahedral smeared cracking ―concrete‖ 
elements with embedded steel reinforcements, generated by the ANSYS non-linear calculus 
program [7]. No reductions to simplified models were considered in this enquiry, as the 
―uniform resistance‖ columns designed by Nervi should ideally reach the first significant 
cracked configurations, and then the plasticization of vertical reinforcements, simultaneously 
in several sections along the height. This ―full-cracking‖ application offers a more direct and 
realistic simulation of the evolution of the non-linear response of columns as compared to 
models including lumped plastic hinges or fiber-composed plastic zones, but it requires a 
much greater computational effort, more careful choices of the mechanical and algorithmic 
parameters, and proper checks on the stability and accuracy of the solution. 

A synthesis of the analyses carried out on the roof steel beams and the R/C columns is 
presented in the following two sections. 

2 ANALYSIS OF STEEL ROOF BEAMS 
The 20 cantilever steel radial beams forming the corolla of each one of the 16 mushroom 

panels of the roof have fixed-end bolted connections to a circular drum, constituted by 20 
rectangular steel frames, whose height is 2800 mm and whose base is 1900 mm. Each frame 
is supported by a triangular steel plate—with a 1500 mm-long vertical side and a 1900 mm-
long horizontal side—placed over a 200 mm-deep groove on the upper section of the R/C 
column (Figure 4). The I-section welded beams, which are joined on their free end to a 
continuous C-shaped steel edge beam outlining the square perimeter of the mushroom panel,  
are 2800 mm to 700 mm high, and their top and bottom flanges  are 690 mm to 200 mm wide. 
The beams have three different spans, ranging from 15,750 mm (type 1 beams, orthogonal to 
the C edge profile) to 20,250 mm (type 3 beams, close to the diagonal of the square). The 
constituting steel is equivalent to the current S235JR type, with yielding and ultimate nominal 
stress values fy=235 MPa and fu=355 MPa, respectively. The web of the beams is very thin (5 
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mm—type 1 through 7 mm—type 3); this determines a high slenderness of cross sections, 
especially in the areas close to the fixed end. The web is subdivided in 13 (type 1 beam) 
through 17 (type 3) panels by a set of vertical stiffening plates welded to the web and to the 
top and bottom flanges. The different web thickness and stiffener spacing values determine a 
very similar resistance of the three types of beams to bending and shear stresses, as well as to 
local and global buckling, as planned in the original design of the metallic roof (carried out by 
engineer Gino Covre, who worked with Pier Luigi Nervi for this part of the building 
structure). In view of this, the finite element and verification analyses are synthesized below 
for type 1 beams, whose dimensions are reported in Figure 4, as they are also representative 
of the remaining two beam types.  

 
 
 
 
 
 
 
 
 
 
 
Figure 4: Upper section of a R/C column and relevant steel drum, and view of a triangular bearing plate          

and a type 1 cantilever beam (dimensions in millimeters)    

2.1 Bending and shear resistance and lateral-torsional buckling verifications  
The resistance verification to the in-plane bending moment at the ultimate limit states— 

carried out by referring to the effective properties of Class 4 cross-sections, to which the 
considered members belong according to Eurocode 3 Part 1-1 rules [3]—is not met. Indeed, 
the ratio of the design value of bending moment to the corresponding design resistance is 
significantly greater than 1 (and it reaches 1.57 for the fixed-end section) along over 3/4 of 
beam span. The resistance verification to shear stress is met for all sections. The verification 
at the serviceability limit states concerning vertical deflection, developed according to the 
current Italian Technical Standards [5] (as Eurocode 3 devolves this specification to the 
National Annexes), is widely met too.  

The verification of the beams to lateral-torsional buckling was carried out by considering 
the only effect of the major axis bending, since the compression axial force induced by the 
slope of the center-line of the beams is very low (with a maximum of 22 kN at the fixed-end 
section). The relevant verification formula is: 
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being Wy=Weff,y for Class 4 sections (Weff,y is computed by determining the effective section 
as a function of the reduction factor ρ for the compressed portion of the web and the 
compressed flange), fy=235 MPa, as noted above, and γM1=1.05; χLT is given by the following 
relation:  
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where   2
LTLTLTLT λ2.0λα15.0  , αLT is an imperfection factor, equal to 0.76 for welded 

I-sections with height-to-base ratio greater than 2, 
cr

y
LT M

fW
λ y , and Mcr is the elastic critical 

moment for lateral-torsional buckling evaluated according to the expression in Annex F of 
[3]. By applying the relations above, the ratio of MEd (equal to 2414 kNm) to Mb,Rd (1415 
kNm) results to be equal to 1.706, and thus the verification inequality (1) is definitely not met. 
The unsafety factor is obtained by inverting the ratio between the two moments (Mb,Rd/ 
MEd=1/1.706), i.e. 0.586. 

2.2 Web panel buckling verifications  
The web panels are much more sensitive to buckling than the flange plates are, as a 

consequence of the high slenderness of the web determined by the geometrical characteristics 
of the beams. The verification analysis is carried out in this case by referring to the criterion 
proposed in a previous edition of the Italian Standards for steel structures [6], where the 
effects of normal and shear stresses are jointly considered, assuming an ideal critical stress 
cr,id to be compared to the design ideal stress computed according to the von Mises rule. The 
expression of cr,id is derived from the Massonnet normal critical stress–shear critical stress 
domain [8] as follows: 
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(4)  

where 1=130.9 MPa, =20.1 MPa are the design normal and shear stress values; 
cr,0σcr σkσ  , cr,0τcr σkτ  , being  σk , τk  the normal and shear stress buckling factors, and 

cr,0σ
 
the elastic critical plate buckling stress of the equivalent orthotropic plate, expressed as 

22

cr,0 h
t

ν)-12(1
Eπσ 






 , with t=plate thickness and h=plate width (or mean width in case of 

variable section); and ψ is a coefficient that defines the linear variation of normal stress over 
the section, which can be set as equal to -1 in this case, by neglecting the very little 
contribution of the axial force to 1, quantified by a normal stress of 1.6 MPa. Panel 4 (Figure 
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5) results to be the most critical among the 13 web panels of type 1 beams. Considering its 
geometrical characteristics (base=b=1050 mm, h=2445 mm, t=5 mm), k=27.6, k=33 and 
cr,0=0.78 MPa values come out, from which cr=21.6 MPa and cr=25.9 MPa are derived. By 
applying formula (4), cr,id results to be equal to 22.2 MPa.  
 
 
 
 
 
 

Figure 5: Geometry of panel 4 of type 1 beam (dimensions in millimeters) 

The values of the normal and shear stress buckling factors are computed in [6] as a 
function of the aspect ratio =b/h (whose average value is equal to 0.427 for panel 4) 
according to the expressions 

 3
2αα6.8

α
87.187.15k 2
2σ   

(5)  

 1α
α
34.54k 2τ   

(6)  

which provide good analytical approximations of the Timoshenko-Gere [9] original instability 
curves for linearly varying (with ψ≤1) normal stress, and uniform shear stress distributions, 
respectively. The difference between the cr,id and cr values above is so little because of the 
great prevalence of 1 over  which produces a scarce influence of shear stress on the critical 
stress interaction domain. A second observation concerns cr, which is greater than the value 
of 19.1 MPa derived by the Eurocode 3 – Part 1-5 [4] formula 

 
σcr

y
p k4ε.28

/tb
σ
f

λ   
(7)  

where b  is the web width, 
yf

235ε  , and k=23.9 for ψ=-1. The difference between the two 

cr estimates is caused by the two k values adopted (27.6 against 23.9). Indeed, unlike 
Standards [6], Eurocode 3 Part 1-5 [4] prudentially assumes the minimal theoretical value of 
23.9—corresponding to =2/3—for any aspect ratio of panels, when ψ=1.  

2.3 Finite element buckling analysis  
The finite element model of type 1 beams generated for the buckling analysis is constituted 

by a mesh of quadrilateral isoparametric shell elements with an average side of 150 mm. This 
dimension determines a number of constituting elements of each beam panel varying from 
around 80 to around 120, which is generally deemed appropriate for an accurate simulation of 
local buckling effects in laterally loaded stiffened or unstiffened plates [10-11]. Fixed end 
restraints are imposed to the end section of beams connected to the steel drum, whereas only 
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the lateral displacements are blocked on the tip end section, so as to reproduce exactly the 
restraint offered by the perimeter C-shaped edge beam of each mushroom roof panel. 

The buckling analysis is developed in SAP2000NL by a classical eigenvalue formulation:  

 
       0vKλK GE 

 
(8)  

where [KE] and [KG] are the elastic and geometric stiffness matrixes of the structural element 
or system, λ is the generic eigenvalue, and {v} is the corresponding eigenvector. The solution 
of equation (8) provides the instability factors i and the instability modal vectors {vi}. The 
minimum among the i multipliers computed by the program represents the first (or critical) 
eigenvalue 1. If 1 is greater than 1, no buckling occurs under the imposed loads. 

The first mode buckling configuration of type 1 beams resulting from the analysis, 
displayed in Figure 6, highlights that the maximum lateral deformation is achieved in panel 4, 
consistently with the analytical assessment predictions.  

 
 
 
 
 
 
 
 
 
 

Figure 6: Deformed shape of type 1 beams obtained for the first buckling mode 

The 1 factor is equal to 0.259. By multiplying this value by the maximum von Mises ideal 
stress obtained in the central zone of the panel for the first buckling mode deformed 
configuration, equal to 90 MPa, the following finite element critical ideal stress estimate 
cr,id,FE is deducted: cr,id,FE=23.3 MPa. This value is very close to the cr,id normative estimate 
of 22.2 MPa given by formula (4), with a percent difference limited within 5%. Similar 
correlations are obtained for the subsequent local buckling modes too (the second mode 
achieves the maximum lateral displacements in panel 5, the third mode in panel 3, etc) as the 
differences between cr,id and cr,id,FE  never exceed 5%. 

The seventh and eighth buckling modes are the first two involving a global (lateral-
torsional) instability deformed shape. The maximum lateral displacements and stresses are 
reached in the eighth mode, visualized in Figure 7 with an amplification factor of 5000. The 
horizontal projection is also plotted in this drawing, showing that the deformed shape 
corresponds, as for the seventh mode, to the first theoretical global buckling mode of the 
beams. The 8 eigenvalue is equal to 0.524, which must be compared to the unsafety factor 
Mb,Rd/MEd=0.586 resulting from the lateral/torsional buckling verification discussed in section 
2.1. The difference between the two values is around 12%, and the numerical result in this 
case is more conservative than the normative factor estimate.  

The data obtained from a computational analysis are always a function of the geometrical 
dimensions of the mesh. Mesh-sensitivity was investigated by varying the sides of the shell 
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the lateral displacements are blocked on the tip end section, so as to reproduce exactly the 
restraint offered by the perimeter C-shaped edge beam of each mushroom roof panel. 

The buckling analysis is developed in SAP2000NL by a classical eigenvalue formulation:  

 
       0vKλK GE 

 
(8)  

where [KE] and [KG] are the elastic and geometric stiffness matrixes of the structural element 
or system, λ is the generic eigenvalue, and {v} is the corresponding eigenvector. The solution 
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Figure 6: Deformed shape of type 1 beams obtained for the first buckling mode 

The 1 factor is equal to 0.259. By multiplying this value by the maximum von Mises ideal 
stress obtained in the central zone of the panel for the first buckling mode deformed 
configuration, equal to 90 MPa, the following finite element critical ideal stress estimate 
cr,id,FE is deducted: cr,id,FE=23.3 MPa. This value is very close to the cr,id normative estimate 
of 22.2 MPa given by formula (4), with a percent difference limited within 5%. Similar 
correlations are obtained for the subsequent local buckling modes too (the second mode 
achieves the maximum lateral displacements in panel 5, the third mode in panel 3, etc) as the 
differences between cr,id and cr,id,FE  never exceed 5%. 
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case is more conservative than the normative factor estimate.  

The data obtained from a computational analysis are always a function of the geometrical 
dimensions of the mesh. Mesh-sensitivity was investigated by varying the sides of the shell 

Stefano Sorace and Gloria Terenzi. 

 8 

elements by factors 2, 1.5, 0.75 and 0.5 with respect to the reference average dimensions of 
150 mm. 

 
 

 
 
 
 
 
 
 
 
Figure 7: 5000-times magnified deformed shape of type 1 beams obtained for the eighth buckling mode 

As a general result of this enquiry, no appreciable influence on eigenvalues and 
eigenvectors was observed when passing to the most refined meshes. A trend to a progressive 
increase of the eigenvalues emerges when increasing the sides (e.g., cr,id,FE in panel 4 
becomes equal to 24.1 and 25.3 MPa for mesh factors 1.5 and 2, respectively), even if the 
shapes and the hierarchy of buckling modes are kept unchanged. Based on these observations, 
the average dimensions assumed for this analysis appear to be the maximum compatible with 
the accuracy of the solution, and thus they can represent a credible balance point between the 
need to reach accurate results and to constrain the computational effort. Limitedly to this case 
study, it can be concluded that the buckling analysis performed by SAP2000NL allows 
acceptably estimating the local and global critical buckling conditions of steel beams.       

3 ANALYSIS OF R/C COLUMNS 
A view of a monumental column during the construction phases of the building, and the 

sequence of geometrical sections along its height, are reproduced in Figure 8. As illustrated in 
these images, the shape of columns constantly varies from the base (cross-type section with 6 
m-long and 1 m-wide sides) to the top (circular-type section, 2.5 m wide). The top section, 
reduced to a diameter of 2 m, is prolonged for further 1.6 m to form the groove where the 
triangular steel plates supporting the circular drum of the mushroom roof are positioned, as 
described in section 2.  

 
 
 
 
 
 
 
 
 
 

Figure 8: View of a column during the construction phases, and sequence of its geometrical sections 

DEFORMED BEAM AXIS  
UNDEFORMED BEAM AXIS  
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The drawings of the R/C sections at the base, at an intermediate height and on top, 
displayed in Figure 9, show an inner hole, where a spiral steel staircase to access the roof, and 
a conductor pipe are housed. 

 
 

 
 
 
 
 
 

Figure 9: R/C sections at the base, an intermediate height and the top 

 As observed in the introductory section, an ―integral‖ seismic pushover assessment 
analysis of the columns was carried out in view of their ―uniform resistance‖ design 
conception. The model was generated with ANSYS [7] and is made of a full mesh of solid 
octahedral ―concrete‖ elements, with embedded steel reinforcing bars that can be freely 
oriented with respect to the global coordinate system. A sketch of the geometry of a 
―concrete‖ element is shown in Figure 10. 

  
 
 
 
 
 
 
 

Figure 10: Geometrical representation of an octahedral ―concrete‖ element with embedded reinforcing bars 

The Willam-Warnke triaxial failure domain [12]—a three-dimensional view of which in 
the space of the principal stresses (xp, yp, zp) normalized to the compressive strength fc, 
and a projection of which on the xp–yp plane are displayed in Figure 11—is adopted to 
model the ultimate compressive, tensile and mixed compressive-tensile triaxial ultimate 
response of the  concrete material. The classical Drucker-Prager yield criterion [13] is 
assumed by the program for plastic deformations. A bilinear strain-hardening elasto-plastic 
behaviour is assigned to reinforcing steel.  

 
 
 
 
 
 
 

Figure 11: Representations of the Willam-Warnke failure domain 
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The main mechanical parameters of the ―concrete‖ model are as follows: o=shear transfer 
coefficient for an open crack, c=shear transfer coefficient for a closed crack, ft=uniaxial 
tensile cracking stress, fc=uniaxial crushing stress, fcb=biaxial crushing stress, Ec=Young 
modulus, and c=Poisson ratio. The parameters of reinforcing steel are: fy=yielding stress, 
sh=kinematic strain hardening ratio, Es=Young modulus, ands=Poisson ratio. The 
parameters that define the surface of the Drucker-Prager domain are: c=cohesion, =friction 
angle, and = dilatancy angle. The following values of these quantities were adopted in the 
analysis: o=0.3, c=0.85, ft=1.7 MPa, fc=23.8 MPa, fcb=1.2 fc, Ec=35600 MPa, c=0.2; 
fy=321.6 MPa, sh=0.015, Es=206000 MPa, s=0.3, according to the characteristics of the 
materials; and c=2.12 MPa, =30º, =0º (associated flow rule), from literature suggestions 
concerning the plasticity domain for concrete elements [7], [14-15]. 

The horizontal load for the development of the pushover process was applied to the top of 
the column. P-delta effects were taken into account, in view of the expected high maximum 
displacements. As for all types of incremental analysis, the critical parameter for the 
convergence and the accuracy of the numerical solution was represented by the number of 
sub-steps to be developed in the ramped loading process within any single load step, with the 
latter fixed at 10 mm. A displacement-based criterion for convergence control was adopted, 
with a tolerance of 5%. The following numbers of sub-steps were finally selected, after 
several tentative choices: 50 (corresponding to 0.2 mm) for steps 1 through 13, characterized 
by moderate cracking effects in the concrete elements; 200 (0.05 mm) for steps 14-27—
extensive cracking in the tension zones; 300 (0.033 mm) for steps 28-70—softening response 
phase. These data confirm general suggestions [14] about the preferable values (ranging from 
0.1 mm to 0.01 mm) of the displacement increments in full-cracking/crushing problems when 
the non-linear behaviour of a significant portion of the model is activated. Further increases of 
the number of sub-steps in the more accentuated non-linear response phases did not show any 
practical influence on the accuracy of the solution. Indeed, by amplifying the number of sub-
steps by a factor up to 10, that is, by assuming up to 2000 sub-steps for steps 14-27, and up to 
3000 sub-steps for steps 28-70, differences no greater than 0.1% on base shear were found. 

For the assumed set of mechanical parameters, derived from the original design 
documentation of the building, the pushover analysis was concluded at the end of step 70, 
corresponding to a top displacement of 700 mm (drift ratio of 3.5%). At the current level of 
refinement of the model, this was assumed as the numerically determined structural collapse 
condition. The only two parameters not related to the specific characteristics of the 
constituting materials—o and c—were varied in their technical ranges of interest (o from 
0.2 to 0.4, c from 0.65 to 0.9) to check their influence on response, which resulted to be 
negligible. 

The base shear-top displacement capacity curve obtained from the analysis is plotted in 
Figure 12. A median vertical section reproducing the cracked configuration of the model at 
the end of the last step of the pushover analysis, and two views orthogonal to the loading 
direction showing the distributions of the vertical component of normal stress and the axial 
stress in reinforcing bars, are displayed in Figure 13. The following observations can be 
drawn from Figures 12 and 13. 
- A remarkably smooth shape of the capacity curve emerges, as a consequence of the high 

number of sub-steps adopted in the analysis; 
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Figure 12: Response curve obtained from the pushover analysis 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Cracked configuration of the model, vertical normal stress distribution, and stress distribution in 
reinforcing bars at the end of the last step of the pushover analysis 

- The curve is rather linear up to around 1500 kN (with top displacement of 20 mm and drift 
ratio of 0.1%), that is up to around 60% the maximum base shear, equal to 2390 kN; then, 
cracking begins to develop significantly in the elements situated on the tension side, and 
the curve visibly gets non-linear elastic;  

- This second response phase goes on up to a force of 2200 kN, with corresponding top 
displacement of 110 mm (drift ratio of 0.55%), when the first plasticization of reinforcing 
bars occurs;  

- The plasticization then increases, determining nearly a plateau zone extended from around 
250 mm to around 450 mm; the maximum shear force is reached for a displacement of 300 
mm (drift ratio of 1.5%); 

- A softening branch follows, featuring a strength degradation of around 0.2 kN/mm up to 
the last two steps, where the degradation reaches accentuated values of 0.5 kN/mm (step 
69) and 2kN/mm (step 70), while it does not mean a sudden drop of strength in proximity 
to the numerical solution divergence point; 

- Cracking extends rather uniformly over the tension side, whereas crushing is attained only 
in very few local elements situated around the inner hole (dark-coloured elements in the 
vertical section in Figure 13). This indicates that concrete is far from ultimate strength 
conditions on the compression side of the column at the last step of the analysis; 
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- This is confirmed by the distribution of the vertical components of normal stress, which 
shows maximum values no greater than 0.5 fc, in the external fiber of base section; 

- Plasticization of reinforcing bars is spread over 2/3 of the height of the column. 
These observations highlight that numerical collapse is not determined by the failure of the 

constituting materials, but by the excessive deformation of the octahedral elements in various 
portions of the mesh. Deformation is not sensitive to the number of sub-steps, which was 
increased further to a value of 10000 in the 70th step to check its possible influence, without 
any practical consequences. 

The response curve highlights acceptable behavioural capacities of columns, with no 
damage for rather high base shear values, and reasonably good ductility resources. A 
complete interpretation of the results of the pushover enquiry, based on a formal seismic 
assessment analysis, will be presented in forthcoming communications about this research. 
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Abstract. In the present paper an algorithmic implementation of a generalized plastic-
ity model is presented with reference to a material behaviour at finite strains. A return
mapping algorithm is implemented for an elastoplastic material behaviour in large defor-
mations. A computationally efficient algorithmic scheme is described and the performance
of a generalized plasticity model at finite deformations is illustrated. Numerical results
and examples are finally reported.

1 INTRODUCTION

The simulation and numerical treatment of the evolutive problem in elastoplasticity
has become nowadays an important topic in the literature. Significant progress has been
achieved over the last decades both in the mathematical comprehension of the problem
and in the related computational treatment. At present, the algorithmic procedures
have acquired significant improvements in the integration of the boundary value problem
in elastoplasticity, see among others Simo and Hughes [1] and Zienkiewicz and Taylor
[2]. However, in order to describe the observed behaviour of solids which are plastically
loaded, unloaded, and then reloaded, it is necessary for the model to exhibit renewed
plasticity prior to the state at which unloading initially occurred. With this perspective
a generalized plasticity model was originally developed by Lubliner [3] [4]. Subsequently,
a new model of generalized plasticity was proposed by Lubliner et al. [5] with the aim of
including refinements for improved numerical implementation performances. An analysis
of the numerical properties of the generalized plasticity model was illustrated by Auricchio

1
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and Taylor [6] for the case of elastoplasticity at infinitesimal strains. In the mentioned
paper a comparative analysis is also reported with respect to other types of plasticity
models which are classically adopted in the literature.

In the present paper a generalized plasticity model is described in a finite deformation
setting and the characteristics of the generalized plasticity model at finite deformations
are illustrated. An algorithmic scheme is presented for the numerical integration of the
generalized plasticity model in the context of elastoplasticity at finite strains. A return
mapping algorithm is described for an elastoplastic material behaviour in large defor-
mations. The computational performance of the algorithmic scheme and its numerical
integration features are reported. Numerical results and examples are finally presented
in order to illustrate the effectiveness of the proposed solution scheme for the numerical
integration of the generalized plasticity model in the simulation of inelastic processes at
finite deformations.

2 CONTINUUM PROBLEM AND CONSTITUTIVE EQUATIONS

A local multiplicative decomposition of the deformation gradient F is considered in the
form (Lee [7], Mandel [8])

F = FeFp (1)

where Fe and Fp respectively represent the elastic and plastic part of the deformation
gradient. The elastic right Cauchy-Green tensor Ce and the elastic left Cauchy-Green
tensor be are defined as

Ce = Fe,T Fe

be = Fe Fe,T
(2)

where the superscript T indicates the transpose. We also consider be as expressed by
(Simo and Hughes [1])

be = FCp−1FT , (3)

where the plastic right Cauchy-Green tensor Cp is defined as

Cp = Fp,TFp. (4)

The free energy ψ is expressed as an isotropic function

ψ = ψ̂(be, ξ), (5)

where ξ is a kinematic internal variable, and the Kirchhoff stress τ is given by

τ = 2
∂ψ

∂be
be. (6)

As a result of the restriction to isotropy the principal directions of the Kirchhoff stress
and of the elastic left Cauchy-Green tensor coincide and therefore, by indicating with nA

such principal directions, a spectral decomposition is introduced as

2
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τ =
3

∑

A=1

τA nA ⊗ nA,

be =
3

∑

A=1

(λe
A)

2 nA ⊗ nA.

(7)

Equation (6) therefore reduces to
τA = 2

∂ψ

∂[(λe
A)

2]
(λe

A)
2. (8)

The Kirchhoff stress is split into its volumetric and deviatoric parts as

τ = p1+ t (9)

where 1 is the second order identity tensor, p
def
= (τ : 1)/3 is the pressure and t

def
= τ − p1

is the deviatoric part of τ , with spectral representation

t =
3

∑

A=1

tA nA ⊗ nA. (10)

An isotropic yield function is considered and expressed as

F (J2) = f(J2)− σy (11)

where J2 is the second invariant of the deviatoric Kirchhoff stress and σy is a material
parameter. We also consider the evolutive equation in the form (Simo and Hughes [1],
Simo [9])

−1

2
Lvb

e = γ̇Nbe, (12)

where

Lvb
e = F

∂

∂t
[(Cp−1)]FT (13)

is the Lie derivative of be, γ̇ is the plastic consistency parameter, and N = ∂τF is the
normal to the yield surface with spectral representation

N =
3

∑

A=1

NA nA ⊗ nA. (14)

In generalized plasticity at finite strains a limit equation is introduced and expressed
as (Auricchio and Taylor [6])

h(F )[N : τ̇ ]− γ̇ = 0, (15)

where
h(F ) =

F

δ(β − F ) +Hβ
, (16)

with β and δ being two positive constants with dimensions of stress and H = Hiso+Hkin.

3
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Figure 1: Deformed configuration of the circular bar at an elongation of 26.25 per cent

3 TIME DISCRETE SOLUTION ALGORITHM

A product formula algorithm is considered via an operator split approach for the local
problem of evolution. A relative deformation gradient f is introduced such that

F = f Fn. (17)

Consequently, the operator split approach leads to a trial elastic state in which

be,TR = f be
nf

T , (18)

and subsequently, via an exponential approximation for the rate equation, a return map-
ping state in which

be = exp [−2∆γN]be,TR. (19)

In the above equation we observe that be and N have the same spectral decomposition,
which implies that also be and be,TR have the same spectral decomposition. Consequently
nTR
A = nA and equation (19) can be expressed as three scalar equations relative to the

space of principal directions
λe
A = exp [−∆γNA]λ

e,TR
A (20)

where (λe,TR
A )2 and nTR

A are the eigenvalues and the eigenvectors of be,TR. By taking the
logarithm of both sides of equation (20) we get

4
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Figure 2: Contour plot of the second invariant of the deviator stress

log [λe
A] = −∆γNA + log [λe,TR

A ], (21)

and introducing the principal elastic logarithmic strains

εeA = log [λe
A], εe,TR

A = log [λe,TR
A ], (22)

equation (21) is expressed as
εeA = εe,TR

A −∆γNA, (23)

which represents a returm mapping algorithm in strain space. For a more detailed de-
scription of the algorithmic procedure we refer to De Angelis and Taylor [10].

4 NUMERICAL EXAMPLE

In this example we consider the three-dimensional behaviour of a circular bar subjected
to tension. This well-documented problem has been studied by several authors, see e.g.
Simo and Hughes [1] and Simo [9]. Due to symmetry only 1/4 of the cylindrical specimen
is considered for the discretization with finite elements. Isoparametric 4-node mixed ele-
ments are employed in the numerical simulation and implemented in the general purpose
finite element program FEAP documented in [11]. An axisymmetric analysis with finite
deformations is performed. The mesh consists of 200 elements and 242 nodal points. The

5



1463

Fabio De Angelis and Robert L. Taylor

0 1 2 3 4 5 6 7
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Total Elongation (mm)

N
ec

ki
ng

 D
is

pl
ac

em
en

t (
m

m
)

Figure 3: Plot of the necking displacement at the symmetry section versus the elongation of the bar

radius of the cylinder is R = 6.413 mm and the total length of the bar is L = 53.334 mm.
The specimen tapers by a small amount to a central location to ensure that the necking
will occur in a specified location. In the example a uniform taper to a central radius of
Rc = 0.982 R is used. A fit of the hardening data reported in [12] leads to the following
material hardening properties for a generalized plasticity model: elastic modulus E =
206.9 GPa, Poisson ratio ν = 0.29, initial flow stress σyo = 0.45 GPa, residual flow stress
σy∞ = 0.76 GPa, β = 0.31 GPa, δ = 0.004 E, isotropic hardening Hiso = 0.12924 GPa. A
total axial elongation of 14 mm is prescribed, corresponding to an an elongation of 26.25
per cent. This example is quite sensitive to solve as the response involves an unstable
behavior of the necking process. In Fig. 1 the deformed configuration of the bar is illus-
trated at an elongation of 26.25 per cent. The contour plot of the second invariant of the
deviator stress is shown in Fig. 2. The necking displacement at the symmetry section
versus the elongation of the bar is plotted in Fig. 3.

5 CONCLUSIONS

In the existing literature the model of generalized plasticity has been adopted for
the description of material behaviour experiencing inelastic processes in a small strain
formulation. In the present paper the model of generalized plasticity has been considered

6
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and analyzed with reference to inelastic processes at finite deformations. Accordingly, an
effective algorithmic procedure has been proposed for a generalized plasticity model in
finite strains elastoplasticity. A product formula algorithm via an operator split approach
has been illustrated. A return mapping algorithm has been adopted which has led to a
computationally effective solution scheme. The numerical implementation has shown a
robust performance in the integration of the model problem. Numerical applications and
computational results have been reported with reference to the three-dimensional necking
problem of a circular bar subjected to tension.
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Abstract. Finite element method was successfully applied in the simulation of several 
forming processes; however, it does not represent an absolute reference point. In fact, large 
deformation corresponds to a heavy mesh distortion. Powerful rezoning-remeshing algorithms 
strongly reduce the effects of such a limitation but the computational time significantly 
increases and additional errors occur. Nodal Integration is a recently introduced technique that 
allows finite element method to provide reliable results also when meshes becomes distorted 
in traditional FEMs. Furthermore, volumetric locking problems seem to be avoided using this 
integration technique instead of other methods such as coupled formulations. Nevertheless, 
spurious low-energy modes appear due to the nodal averaging of strain. For this reason 
stabilizing methods application seems to be suitable. What is more, different nodal integration 
techniques have been proposed, although spurious modes are a common problem. In this 
paper the performances of three different nodal integration techniques and the effects of a 
recently introduced stabilization methodology are studied simulating a classical forming 
process. 
 
 
1 INTRODUCTION 

Finite element method is surely the referential numerical technique in the analysis of solid 
mechanics problems. It has been successfully used in the simulation of several phenomena, 
providing excellent results. 

Nevertheless, FEM requires an adequate discretization of the computational domain in 
terms of node and elements since the final results are sensible to the distribution and 
regularity of this decomposition [1]. In small deformation problems, such as linear elasticity, 
it is quite easy to obtain a reliable discretization and very accurate solutions, also with a low 
computational cost. The situation suddenly changes in problems characterised by large 
deformations, such as the material forming processes. In this case, if a Lagrangian 
formulation is used, the mesh moves with material and elements become so distorted that 
numerical results lose their validity. 

Different techniques have been developed across the last years to overcome this problem. 
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Among them, Eulerian formulations, arbitrary Lagrangian-Eulerian (ALE) and remeshing 
techniques are the most known. In any case, additional drawbacks appeared especially when 
the remeshing techniques are applied. Remeshing-rezoning approach avoids the results 
worsening but, at the same time, the computational time increases and supplementary errors 
are introduced.  

A possible alternative is the use of meshless methods [2] but in many cases the 
improvement of the results quality, with the same number of degrees of freedom, is vanished 
by the very high computational time for the shape functions calculation. 

In the FEM environment the performances of the analysis depend on the used element. The 
constant strain elements (triangle with 3 nodes or tetrahedrons with 4 nodes in the 3D case) 
would be preferable for different reasons, especially when non-linear problems are 
investigated. Nevertheless their poor performances force the researchers to use high-order 
elements, such as 8 nodes tetrahedral or hexahedral. However, these formulations are not free 
from the results worsening due to the mesh deterioration and, besides, the remeshing 
procedure is very costly to be implemented, particularly for the hexahedral elements.  

A great drawback of conforming FEM is that the numerical model is always more stiff 
than the studied material. What is more, any mesh distortion gives a further spurious stiffness 
to the model. Introducing a Nodal Integration scheme the FEM model is not necessarily stiffer 
than the real material; on the contrary, in many applications the initial model is less stiff and a 
distorted mesh could paradoxically have a beneficial effect on the performances.  

The basics of nodal integration in FE analysis were firstly introduced by Dohrmann et al. 
[3]. They showed that applying the new technique the performances of the constant strain 
elements are significantly improved in the study of acute bending problems. Moreover the 
method was shown to be free from volumetric locking in the simulation of quasi-
incompressible materials. 

The nodal integration (NI) has been introduced also in the meshless environment [4-5], as 
an alternative to the standard integration, due to its efficiency and applicability in large 
deformations problems. 

Puso and Solberg [6] noted that the formulation proposed in [3] was prone to spurious low 
energy modes and introduced a new stabilized nodal integrated tetrahedral element. They also 
analytically showed that their new element was stable and consistent for linear elasticity. 

In [7] the stabilizing technique proposed in [6] was further analyzed and extended to the 
meshless methods, since spurious modes were detected also in this case. 

In this work a comparison was done between the two nodal integration schemes proposed 
in [3] and the scheme proposed in [4], whose usage is suitable also in the FEM. The three 
techniques will be applied to the simulation of extrusion, as a typical example of a forming 
process where significant deformations are present.  

Moreover the effect of the stabilization technique presented in [6] was studied. 

2 THE NODAL INTEGRATION FORMULTIONS 

Let  be a 2D computational domain, discretized by a cloud of nodes, from 1 to  denoted 
by  and a mesh of triangular elements, from 1 to , denoted by . In a traditional finite 
element code, the strain is calculated using the gradient matrix , that, if ,  … .  are 
the shape functions, is defined as: 
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 =


 0
0  

⋯…⋯
 0
0   


 (1) 

Thus, if  is the vector containing the (unknown) nodal displacements, the strain is given by:  =  (2) 

If three-node triangular elements are used, the shape functions derivates are constant in every 
element, and also the matrix . Thus element strain could be expressed as:  =  (3) 

and, if  is the matrix that relates strain and stress vectors, a stiffness matrix  is assembled, 
in order to solve the approximated problem: 

 =  = × 


(4) 

Where A is the area of each element. 
When the nodal integration is applied to FEM a constant strain field  is assumed within a 

particular volume , associated to each node. 
The easiest to interpret NI scheme is the one proposed in [4], that is based on the Voronoi 
diagram [8]. As it is shown in Figure 1, the Voronoi diagram is a subdivision of the 
computational domain in regions , where each region is associated with a node , so that 
any point in  is closer to the node  than to any other node in the domain. 

Figure 1: An example of Voronoi Diagram 

In this case the nodal volume  is, for each node, the area  of the corresponding cell in the 
diagram and the assumed strain is the average strain in this cell:  = 1  

(5) 
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Since constant strain elements are used, equation 5 could be rewritten as: 

 = 1   × 


 ∩  (6) 

We will call this scheme Global Voronoi Integration (GV). Observing that ∑  ∩ = , the strain  is a weighted average of the strain of the elements. The two NI 
schemes proposed in [3] provide also a strain averaging, but the weights are different. In 
particular it is imposed that the strain  depends only on the strain of the set of elements 
that contain the node . According to this constraint, one of the two schemes is also based on 
the Voronoi Diagram, but in this case the Diagram is locally calculated in each triangle. In 
particular each triangle  is divided in three zones , associated to its nodes, so that every 
point in  is closer to the node  than to any other node in . Then the nodal volume and the 
assumed strain are calculated as:  =  ∈

(7) 

 = 1   × ∈
 (8) 

We will refer to this scheme as Local Voronoi Integration (LV). The other technique proposed 
in [3] is not based on geometrical considerations but provides a heuristic calculation of the 
assumed strain, imposing that the area of the triangles is divided in three equal parts, 
associated to its nodes. Hence:  =  3∈

(9) 

 = 1   × 3∈
 (10)

The latter scheme is called Direct Averaging Integration (DA). 

3 IMPLEMENTATION OF THE METHOD AND COMPUTATIONAL TIMES 
Similarly to a traditional FE interpolation the assumed strain could be related to the 

displacement field using an equivalent gradient matrix:  =  (11)

It is easy to demonstrate that the matrixes  will be a weighted average of the element 
matrixes , calculated using the same weight coefficients of the strain case, depending on the 
specific NI scheme. Thus, in the implementation of the method, the matrixes  are calculated 
and the global stiffness matrix is assembled as: 
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 = × 


(12)

This last calculation takes an additional computational time that is negligible respect to a 
traditional FEM code when DA scheme is used. In fact, only the volume of the elements has 
to be calculated and the equivalent gradient matrixes are directly calculated as a linear 
combination of the element gradient matrixes. 

The situation changes in the Voronoi-based (GV and LV) techniques. In particular in the 
GV case all the areas of the intersections between a given Voronoi cell and the elements have 
to be calculated. In this work this operation has been carried out describing both the cells and 
the elements as convex polygons and then applying the Lasserre algorithm [9]. Although the 
computational complexity is linear with the number of nodes this is a significant time 
consuming operation that could take a computational time of the same order or slightly higher 
than the total time consumed for the analysis by a traditional FEM code. Anyway, the 
asymptotical linear complexity ensures that for clouds composed by a high enough number of 
nodes this time tends to be smaller than the time requested for the resolution of the equations. 

The LV scheme could be also implemented describing the geometrical entities by convex 
inequalities and applying the Lasserre algorithm or other similar. Nevertheless in order to 
advantage the rapidity of the simulation other more efficient strategies are possible. In 
particular, after determining the coordinates of the circumcenters of the triangular elements, 
the intersections areas could be find out calculating the areas of particular triangles. This 
operation takes a practically negligible time, as in the DA case. 

Concerning the computational times of a NI code two more aspects have to be taken into 
account. The first is that the assembled stuffiness matrix is denser that the matrix that would 
be assembled using a traditional procedure. This increases the resolution time about the 30%.  

On the contrary the second aspect advantages the new technique. In fact the use of Nodal 
Integration seems to avoid the volumetric locking problems typical of FEM when 
incompressibility is imposed. Thus, unlike in a traditional code where coupled pressure-
velocity formulations has to be used to overcome to this problem, only the velocities could be 
taken as unknowns, reducing significantly the resolution time. This second recovery offsets 
the precedent augment. 

4 THE CASE STUDY 
According to the introduction, an extrusion process has been analyzed as a typical example 

of forming process in which the large deformation stresses the classical FE formulation. A 
plain strain 2D model has been used, with the geometrical characteristics and the boundary 
conditions illustrated in figure 2. As far as the material behavior is considered, in the forming 
processes and in particular in extrusion, strains are very large as compared to elastic ones. 
Thus, it is a common practice for this kind of processes to assimilate the material behavior to 
a viscoplastic one, in which the stress depends on the strain rate [10].  
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Figure 2: Sketch of the used model 

In particular, a Northon-Hoff model has been used; it relates the effective stress to the 
equivalent strain rate in the following form:  = ̅ (13)

Together with this global relation the stress components assembled in the vector  =|  | has to be related to the strain rate components,  = |  |. In the 
used model this corresponds to define a viscosity µ in the following form:  = 3 ̅ = ̅ (14)

and to use it in the assembling of the constitutive matrix , whose expression, in plain strain, 
is given by: 

 = 21 − 2 1 −   0 1 −  00 0 1 − 22  (15)

In this work a value of the Poisson’s coefficient  = 0.49999 has been employed in order to 
impose incompressibility. 

The used values of the Northon-Hoff coefficients have been:  = 150,  = 0.2 (16)

that, according to [11], correspond to some common Aluminum alloys. 
Due to the non-linear character of the constitutive equations an iterative scheme has to be 

applied for their resolution. In particular, taking into account the strong nonlinearities given 
from the value of , the Direct Iteration Method [12] has been preferred to the Newton-
Raphson scheme, whose convergence is not ever straightforward in this type of problems. 
This iterative procedure has been combined with the stabilization technique, as it is discussed 
in the following chapter. 

5 THE STABILIZATION TECHNIQUE 

According to [6], a stabilized stiffness matrix  has to be assembled using the 
stabilization parameter  and the modified behavior matrix  that, when a linear problem is 
studied, leads to: 
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 =  +  =   − 

 +   




(17)

The influence of  on the results will be discussed in the relative section; the matrix  differs 
from  because it is assembled using a different Poisson’s coefficient, since locking problems 
would be present in the elementary term. A value of  = 0.4 has been used.  

In the resolution of the non-linear equations the stabilized stiffness matrix is then 
assembled in the form: 

 =  [ − ]

 +   




(18)

where the superscript  indicates the iteration within a time increment as well as  is  the 
viscosity calculated from the previous velocity field. The iteration method is initialized with  =  and obviously terminates when  = . Obtained the velocity values the geometry 
is updated and the following time step could be studied. 

6 RESULTS 

The investigated process was simulated using a punch speed  = 1/ and considering 
50 time steps (1/. In figure 3 are reported the pressure and velocity field, using the LV 
scheme, with a regular mesh and an irregular one of about 1000 nodes. No stabilization has 
been considered. Looking at the velocity field of the regular mesh the presence of the spurious 
modes is clearly observable; what it is more the pressure field is completely wrong since it 
presents strong oscillation in the direction of the mesh. The situation is quite different when 
the irregular mesh is used; in this case the velocity field is quite more regular as well as the 
pressure field has a satisfactory trend, considering the reduced number of nodes. This 
confirms the well-known phenomenon that the regularity of the mesh favors the spurious 
deformations.  
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Figure 3: The regular and the irregular mesh and their respective pressure and velocity fieldsp 

Since a first stabilizing effect is given only by using an irregular mesh the three NI 
schemes has been preliminarily compared without introduce the stabilization technique, but 
using only the benefic effects of the irregularity of the mesh. 

In figure 4 has been reported the punch load during the process predicted with the three 
techniques, using two meshes, of 2000 and 5000 nodes respectively. 

Figure 4: Extrusion load for the three scemes with different types of mesh 
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Looking at the graphs a very slightly difference is observed between the different schemes. 
Anyway the extrusion force is a global variable whose prevision does not heavily depends on 
local phenomena that could condition the specific code prediction; for this reason a better 
comparison could be done looking at the flow stress distribution at the last step, in figure 4.

DA 

LV 

GV 

Figure 5: The flow stress distribution for the three nodal integration schemes 

In this case the Voronoi-based schemes are quite similar, while the DA presents a slightly 
lower and more irregular field. Since, according to session 3, the DA and LV schemes would 
be preferable for the computational times and considering the more regular trend of LV 
results, that are in excellent agreement with GV ones, the Local Voronoi integration scheme 
appears to be the most convenient choice. 
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Concerning the stabilization in figure 6 the velocity field at the 4th step is reported for the 
two types of mesh (again using the LV scheme with 1000 nodes) and for different values of .  = 0

 = 0.05

 = 0.10

Figure 6: Influence of the stabilization parameter on the velocity field, for the regular mesh (left) and the 
irregular one (right) 

It is very interesting to note that already a value of   = 0.05 has a significant stabilizing effect and that imposing  = 0.10 even the regular 
mesh simulation has a very regular velocity field, as in a traditional FEM. 

Even more interesting are the effects of  on the punch load. In order to compare the 
prediction capabilities of the NI techniques with a reference result, the investigated case study 
has been also simulated with the commercial FEM code DEFORM, that demonstrated in the 
last years an excellent accuracy in 2D models such as the one considered in this work; 
moreover, a very refined mesh has been used in this simulation so that the DEFORM solution 
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could be considered to be very close to the analytical one. Observing the figure 7, obtained for 
the LV scheme with an irregular mesh of 5000 nodes, two evidences are remarkable: 

• all the stabilized curves are close to the DEFORM solution, while the non-
stabilized one presents a significant lower load prediction. 

• increasing the value of  the stabilized curves cover a range that includes the 
DEFORM and presumably also the effective solution. 

Figure 7: Punch load for different values of the stabilization parameter 

The first aspect is due to the more irregular velocity field that leads to a different shape of 
the extruded material. In figure 8 a comparison is done between the shape of the non-
stabilized simulation and stabilized one with α=0.10. 

Figure 5: The predicted shape for the non-stabilized code (left) and the stabilized (right) 

In particular, when the stabilization is not applied, the extruded material has a larger shape 
and, for this reason, the requested load results to be slower. 

Concerning the second consideration, the influence of α on the load could be explained 
observing that the traditional FEM matrix  in equation 17 gives additional stiffness to 
the model with the increase of α. Analyzing the curves in figure the optimal value of α, in this 
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application, is about 0.10. Anyway, in general, the most favorable choice of its value depends 
on several aspects, such as the mesh characteristics, and could be also a lower value, since as 
it has been shown it is already sufficient to stabilize the model. 

7 CONCLUSIONS 
In this paper three nodal integration techniques have been compared in the simulation of an 

extrusion process. The Voronoi-based formulations have shown a slightly better quality of 
predictions; in particular the LV scheme appears to be the most favorable choice since it 
requires only a negligible computational time for the geometrical part. 

Furthermore the stabilization of this method has been discussed. In particular it has been 
shown that even if satisfactory results are obtainable using an irregular mesh, their quality is 
significantly improved if a stabilization is introduced; moreover varying the stabilization 
parameter the stiffness of the model can be properly tuned.  
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Abstract. The behavior of bolted connections is inherently nonlinear because of geometric 
discontinuities, stress concentrations, contacts or local yielding. In structural field, component 
method adopted by Eurocode 3 separates the joint in individual elements that are called T
stub. Each component should be defined at least by three parameters: initial stiffness, strength 
and deformation capacity. In this paper, a new methodology based on a combination of Finite 
Element Method (FEM) and Artificial Intelligence (AI) techniques is presented in order to 
predict forcedeformation response of bolted Tstub connection. 

An advanced finite element model is generated and validated by comparison with 
experimental tests in the literature. Parametric study combining bolt diameters, hotrolled 
profile geometry and steel class is carried out for generating training database with output 
variables of Tstub characterization. Several AI algorithms as regression trees, neural artificial 
networks or radial basis function networks are training so as to find the best generalizing 
model of the problem. The results show a high correlation between FEM and the predictive 
model, which replaces the first one. Test errors for output variables of the Tstub model 
prediction are lower than 5%. 

Finally, this methodology provides an alternative to analytical models which includes the 
Eurocode 3 for the determination of Tstub parameters. This alternative includes the 
advantages of FEM (realistic simulation validated against experimental tests or the ability to 
obtain stress and strain values) but minimizes the complexity and computing time by using AI 
techniques.  

 
 
1 ITRODUCTIO 

Bolted connections are complex elements of the utmost importance in buildings’ structural 
design and they should be carefully assessed. Their behavior is inherently nonlinear due to 
contacts, geometrical discontinuities, stress concentrations or material plasticity, among 
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others. That behavior is a handicap to establish an analytical method to describe the 
connection response. 

Among different analytical procedures, Annex J of Eurocode 3 [1] includes the component 
method which is suitable in beamtocolumn connections. In this procedure, the connection is 
divided into isolated joints which represent the sources of deformability. Each component is 
characterized by a forcedeformation response and then, a mechanical model make up springs 
(components) and rigid links are assembled. Finally, the momentrotation response for the 
whole connection can be obtained from the behavior of the individual components. This 
overall connection response is mostly governed by the end plate and the bolt under tension. 
The tension component is the outstanding issue in a beamtocolumn connection, which is 
called equivalent Tstub (Figure 1). During the last decades, this component has been widely 
studied by researchers in order to develop a realistic and reliable procedure to obtain force
deformation response of this connection. The equivalent bolted Tstub was originally 
introduced by Zoetemeijer [2] in 1974 and, since that time, a great number of studies have 
been carried out. These researches can be divided into analytical [310] or mechanical models 
[11, 12], experimental tests [1315] and numerical finite element (FE) simulations [1620]. 
The last ones are capable to reproduce the connection behavior fairly accurately. 
Nevertheless, in spite of the advances in computational field, attempts to achieve more 
realistic simulations have resulted as a longer model calculation times due to nonlinearities, 
making these models uncompetitive compared to analytical models [21]. 

 
 
 

  
Figure 1: a) Beamtocolumn connection ; b) Tension component model (Tstub) 

In this paper, it is drawn a methodology [21] to obtain forcedeformation response in a T
stub connection. In section 2, an advanced FE model is developed and, in section 3, the results 
are validated against experimental test in the literature. Parametric study is carried out in 
section 4 for generating training database with output variables which defines force
deformation response in the Tstub. Finally, several AI algorithms as regression trees, neural 
artificial networks or radial basis function networks are training so as to find the best 
generalizing model of the problem. 

 

Column Tstub 
Endplate  
Tstub 

a) b) Tstub geometry 
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2 UMERICAL MODEL 
The forcedeformation response in the Tstub is carried out by an advanced three 

dimensional FE model. This numerical model is developed using ABAQUS® finite element 
software [22]. The Tstub geometry is composed of two Tshape hot rolled profiles connected 
by means of one or more rows of bolts, as indicated in Figure 1b. This type of joint may fail 
according to three failure modes (Figure 2) depending mainly on the hot rolled profiles and 
bolts geometry. The first failure mode occurs when the ratio flange thickness/bolt diameter is 
low and four plastic hinges in the flange plates are located at the bolt holes and near the web 
plate. The second one is a combination between the development of two plastic hinges and the 
tension failure of the bolts. Finally, the third failure mode occurs with tension failure of the 
bolts. 

 

 
Figure 2: Failure modes in a Tstub 

2.1 Material modeling 
The constitutive material laws of hot rolled profiles and bolts are according to the 

experimental validation carried out by Bursi and Jaspart [11]. In that work, the authors 
reproduced the material behavior with a piecewise linear model (Figure 3) and different laws 
for flange and web were considered in order to improve the model accuracy. The properties of 
these materials are entered the software as a set of points on the stressstrain curve. 

 
Figure 3: True stresslogarithmic strain material laws 

Mode 1 Mode 2 Mode 3 



1481

Julio FernándezCeniceros, Rubén LostadoLorza, Roberto FernándezMartínez and Andrés SanzGarcía. 

 4

2.2 FE Meshing 
Continuous hexahedral solids elements are used because they are suitable for linear and 

nonlinear stress/displacement analysis, including contacts, plasticity and major strains. They 
are firstorder (linear) interpolation elements, with nodes only at the corners.  

Partitions are established in the hot rolled profile to create a more refined mesh in the area 
surrounding the bolt hole (Figure 4). 

 

 
 

Figure 4: Finite element mesh of the Tstub connection 
 

2.3 Contact 
In ABAQUS/Explicit, the definition of General Contact is used for the simulation of 

contacts between plates and bolts. This definition automatically establishes the interactions 
between contact surfaces and allocates master and slave characteristics to each pair of 
surfaces. The general contact algorithm uses a formula known as finite sliding, which allows 
arbitrary separation between sliding and rotation of surfaces. It is designed to simulate highly 
nonlinear processes. 

The normal behavior of the bolt shank with regard to the walls of the hole is modeled by 
the hard contact property. When the surfaces are in contact, any pressure between them can be 
transmitted, with the surfaces separated if the pressure drops to zero. 

Tangential behavior is modeled by Coulomb's basic friction model, in which two surfaces 
in contact can withstand shearing stresses of a certain magnitude at their interface before one 
starts to slide over the other. In this case, the friction coefficient adopted for the model is 0.25. 

2.4 Boundary conditions and loads 
Only one eighth of the model is simulated, so major savings in computation costs are 

made. In order to simulate the contact between two Telements, one element is substituted by 
a rigid plate according to the symmetry conditions. 

The tensile load over the Telement is entered the software as a load evenly distributed. It 
is applied as a linear ramp divided into 100 steps, so that it is possible to obtain a force
deformation response of the joint. 
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2.5 Type of analysis 
ABAQUS® provides two analysis options: Standard and Explicit, which they correspond 

with two solution procedures: Implicit and Explicit. Implicit method is based on static 
equilibrium and simultaneous resolution of a linear equations set. The most relevant 
characteristic of this method is the assembly of the global stiffness matrix. On the other hand, 
in the explicit analysis, the state of the model at the end of an increment (time t+t) is based 
on the displacements, velocities and accelerations at the beginning of the increment (time t) 
[23]; this method lacks a global stiffness matrix.  

Explicit method is used in this work because it is suitable for nonlinearities, such as 
contacts or geometrical discontinuities and it shows a good convergence. Nevertheless, 
explicit analysis should be checked because it may yield results significantly affected by 
dynamic effects. In this case, kinematic/internal energy ratio is below 5% during loading 
process, so dynamics effects can be neglected.  

 

3 FE MODEL VALIDATIO 
FE model is validated against experimental test program carried out by Bursi and Jaspart in 

1997 [11]. The authors created a reference model (specimen T1) which was obtained from an 
IPE300 hot rolled profile and it was attached with four bolts M12. The material properties for 
bolts and steel were published in the original work and they have been adopted in this paper 
(Figure 3).  

In Figure 5, von Mises stresses in the Tstub are shown. According to the experimental test 
[11], the failure occurs by bolt fracture after significant flange yielding. Two plastic hinges 
are developed in the bolt holes and near the web plate, according to the failure mode 2 (Figure 
6). 

 
 

  
 

Figure 5: Von Mises stress; a) maximum strength; b) axial failure in the bolt. 
 
 
 
 
 

a) b) 
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Figure 6: Von Mises stress in the flange. Plastic hinges are located at the bolt holes and near the web plate. 
 
 
In order to validate the accuracy of the model, forcedeformation characteristic response 

for FE numerical analysis is compared to experimental test (Figure 7). The numerical results 
are very close to the experimental response, so the advanced FE model is rather accurate. 

 
 
 

 
 

Figure 7: Forcedeformation response in the Tstub. Experimental vs. Numerical model 
 

Plastic hinges 
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4 PREDICTIVE MODELS 
Once that numerical model has been performed and validated by experimental test, a 

parametric study is carried out in order to study the influence of several geometric parameters. 
The results obtained in the parametric study form a database useful to training predictive 
models. 

4.1 Parametric study 
81 numerical FE simulations have been fulfill by varying the following parameters (Figure 

8): 
• Effective width (b). This parameter varies between 68 and 100 mm. 
• Edge distance (m). This parameter varies between 25 and 35 mm. 
• Bolt diameter (d). This parameter varies between 8 and 14 mm. 

 

 
 

Figure 8: Input parameters 
 
 

For each simulation, forcedeformation response is obtained and it is simplified by a 
bilinear model. This simplified model is defined by means of four output parameters (Figure 
9).   

• Initial stiffness (kini). 
• Elastic strength (Fel). 
• Maximum strength (Fmax). 
• Maximum displacement (Umax). 
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Figure 9: Output variables in parametric study 

 
The outcome results of the whole simulation make up the database for the training of the 

different predictive models. 

4.2 Selection of the best data mining technique 
Several data mining techniques are training in order to find the best generalizing model of 

the problem. These techniques are: multilayer perceptron artificial neural network (A), 
M5P regression trees, radial basis function network (RBF) and support vector regression 
model (SVRM). Among them, ANN provides the lowest root mean square error (RMSE) and 
mean absolute error (MAE), according to the following formulae: 
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Multilayer Perceptron (MLP) is a typology of ANN which it is used in this work. It is a 

classifier and predictor that uses back propagation to classify instances. All nodes in this 
network are sigmoid, except when the class is numeric. In the latter case, the output nodes 
become unthresholded linear units [24]. 

Several parameters such the number of neurons in the hidden layer or the learning rate are 
varying during MLP’s training process in order to reduce the errors. 

kini 

Fel 

Umax, Fmax 
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4.3 Results of the predictive models 
Table 1 shows the results of the training and crossvalidation process for the four output 

variables (kini, Fel, Fmax and Umax). The mean values are shown for the crossvalidation errors 
10, CORR, RMSE and MAE for each group of 10 models created for each type of 
configuration and algorithm. Training and validating 10 models of each type reduces errors 
due to local minimum levels and improves the actual estimation of the level of accuracy 
achieved by each algorithm in each configuration. The number of neurons in the hidden layer 
is shown in brackets. 

As it can be seen in Table 1, MLP’s with a low number of neurons in the hidden layer are 
capable to predict output variables with RMSE errors below 5%. The best results are obtained 
for prediction the initial stiffness (kini) and the maximum strength (Fmax), which are the most 
important parameters in the Tstub prediction. In these cases, mean absolute error (MAE) is 
close to 1%. On the other hand, maximum displacement (Umax) prediction presents errors next 
to 5%.  

 
Table 1: Results of the training process for output variables. Validation errors for each model's configuration 

Output 
variable Algorithm CORR_MEA MAE_MEA RMSE_MEA 

kini MLP (5) 0.9988 0.0112 0.0133 
Fel MLP (6) 0.9963 0.0165 0.0245 

Fmax MLP (6) 0.9989 0.0106 0.0134 
Umax MLP (4) 0.9754 0.0501 0.0647 

 
 
Finally, in order to check the generality of the created models, 12 more FE simulations are 

performed with parameter values not used in the training phase, and the results are compared 
with those of the predictive models. In Figure 10, the forcedeformation responses are 
performed with output variables predictions and, it can be seen, the results are close to FE 
simulations. The number below graphs represents “b_m_d” (effective width, edge distance 
and bolt diameter, respectively). 

 
 
 
 
 
 
 
 
 
 
 
 



1487

Julio FernándezCeniceros, Rubén LostadoLorza, Roberto FernándezMartínez and Andrés SanzGarcía. 

 10

   
a) 30_40_10 b) 30_44_10 c) 30_45_10 

   
d) 25_39_12 e) 25_47_14 f) 28_34_12 

   
g) 28_37_12 h) 35_41_14 i) 35_37_12 

   
j) 35_45_8 k) 33_34_12 l) 33_37_12 

Figure 10: Forcedeformation response. Numerical simulation vs. predictive model 
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5 COCLUSIOS 
A methodology based on predictive models for calculating the forcedeformations response 

in Tstub joints has been presented in this work. In the mechanical model established by the 
Eurocode 3 in Annex J (Component Method), these joints represent the tension component in 
beamtocolumn connections and it is very important to know their behavior in order to obtain 
a reliable connection design. 

FE simulations provide a powerful tool due to its ability to reproduce the nonlinearities 
involved in the Tstub design, such as contacts, material plasticity or stress concentration. 
However, the complexity of this numerical method needs a great amount of time, resources 
and high computational cost. Thus, this method is not efficient for repetitive tasks such as the 
case of joints. 

In this paper, predictive models have been developed from an advanced finite element 
model validated by experimental tests. The creation of 81 FE simulations varying 
characteristic parameters of joint has been used to generate a training database. Using this 
database, MPL’s have been training and prediction errors below 5% have been achieved in 
each output variable. Finally, the generated models have been validated with new test data 
and the results have been compared with numerical simulations finding a good accuracy 
between them. In conclusion, the use of predictive models could replace the implementation 
of FE simulations saving time and avoiding a high computational cost. 
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Abstract. This paper deals with shape optimization for anisotropic elastoplasticity in
logarithmic strain space. We aim to find an appropriate undeformed configuration of a
workpiece knowing in advance its deformed configuration, the boundary conditions and
the applied loads. The node coordinates of the finite element (FE) domain are chosen as
design variables. A discrete sensitivity analysis is presented and analytical gradients are
performed. A numerical example illustrates the theoretical aspects.

1 INTRODUCTION

A challenge in the design of functional parts is the determination of the initial, unde-
formed shape such that under a given load a part will obtain the desired deformed shape.
This problem is inverse to the standard (direct) static analysis in which the undeformed
shape is known and the deformed unknown. [1] extended the method originally proposed
in [2] to anisotropic hyperelasticity that is based on logarithmic (Hencky) strains. [3]
extended the method proposed in [1] to anisotropic elastoplastic materials. It was shown
that the inverse form finding model in elastoplasticity can be used under the condition
that the plastic strains are previously given. This is the case when a desired hardening
state is prescribed. Basics on shape optimization can be found in [4]. In [5] a conti-
nuum sensitivity analysis is presented for the computation of shape sensitivity for finite
hyperelastic-viscoplastic deformations. This method involves contact with friction using a
direct differentiation method in 2D. [6] extented the work in [5] to thermoplasticity com-
bined with ductile damage at finite strains. A gradient-based optimization framework for
the computational design of metal forming processes for porous materials is introduced.
[7] extented the work in [5] and [6] to 3D and defined the surface of the die by Bezier
curves. This work focuses on the review of sensitivity contact. An alternative method

1

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



1491

S. Germain and P. Steinmann

to continuum sensitivity analysis is a discrete formulation. This substitute has been ap-
plied in [8] for finite deformations in elastoplasticity in principal directions to parameter
identification, which can be formulated as an optimization problem. [9] introduced a new
regularization technique to avoid convergence problems and problems with jagged shapes.
An artificial inequality constraint added to the optimization problems limits a fictitious
total strain energy that measures the shape change of the design with respect to a refe-
rence design. The coordinates of boundary nodes of the FE-domain are chosen as design
variables. The analytical gradients are derived using the adjoint method. The presented
applications are restricted to linear elastostatic problems. [10, 11] proposed a shape op-
timization method for non-steady-state metal forming processes. The initial shape of a
part as well as the shape of the preform tool during a two-step forging operation was
optimized. Shapes are described using spline functions. The FE-method and remeshing
operations are used during the simulation. Contact during the process are taken into
account.
In this contribution we present a classical numerical shape optimization method for
anisotropic elastoplastic materials that is based on logarithmic strains. A Limited–
Broyden–Flechter–Goldfarb–Shanno (gradient-based descent method) algorithm from [12]
is used. The objective function that needs to be minimized in order to obtain the opti-
mal undeformed workpiece is the quadratic difference between the node positions in the
targeted and computed deformed shape, i.e. the node coordinates of the FE-domain are
chosen as design variables. A discrete sensitivity analysis is presented. Analytical gradi-
ents are performed. A remeshing of the shape is not applied during the computation.
This paper is organized as follows: In section 2 we briefly present the kinematics of the
direct and the inverse problems. Section 3 summarizes anisotropic elastoplasticity in the
logarithmic strain space. Section 4 presents the dissipation and the plastic flow response.
In section 5 we review the Piola and Cauchy formulation to determine the deformed
shape based on the knowledge of the undeformed shape. The finite element discretization
is described in section 6. Section 7 presents the formulation of the sensitivity analysis. In
section 8 a numerical example for the shape optimization in anisotropic elastoplasticity
illustrates the theoritical aspects.

2 KINEMATICS OF GEOMETRICALLY NONLINEAR CONTINUUM
MECHANICS

Let B0 denote the reference configuration of a continuum body with the boundary
surface ∂B0 at time t = 0 parameterized by material coordinates X. Bt is the current
configuration with the boundary surface ∂Bt at time t parameterized by spatial coordi-
nates x, as depicted in Figure 1. The deformation map ϕ is defined as

x = ϕ(X) : B0 −→ Bt. (1)

The corresponding deformation gradient together with its Jacobian determinant are given
by

2



1492

S. Germain and P. Steinmann

Figure 1: Nonlinear continuum mechanics.

F = ∇Xϕ, J = detF . (2)

∇X denotes the gradient operator with respect to the material coordinates X. The
deformation map Φ is defined as

X = Φ(x) : Bt −→ B0. (3)

The corresponding deformation gradient together with its Jacobian determinant are given
by

f = ∇xΦ, j = detf . (4)

∇x denotes the gradient operator with respect to the spatial coordinates x. It follows
from the above definitions that

Φ = ϕ−1, f = F−1, j = J−1. (5)

3 ANISOTROPIC ELASTOPLASTICITY IN LOGARITHMIC STRAIN
SPACE

In this section we summarize the exposition in [13]. A valid model option for anisotropic
finite strain elastoplasticity is a decomposition of the free energy into an elastic and a
plastic part

Ψ = ψe + ψp. (6)

The elastic part is a quadratic free energy density per unit volume in B0

3
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ψe(Ee) =
1

2
Ee : e : Ee (7)

in terms of the second-order elastic strain tensor Ee and a constant anisotropic elastic
fourth-order stiffness tensor e. For cubic materials, e can be decomposed into Kelvin
modes [14] as

e = 3κ 1 + 2µ 2 + 2E55 (8)

where κ is the bulk modulus, µ is the shear modulus and E55 is a constant material
parameter. 1, 2 and 3 are fourth-order projection tensors. They can be expressed in
terms of the volumetric and symmetric devatoric part of the fourth-order identity tensor
as

1 = vol, (9)

2 + 3 =
sym
dev .

An additive decomposition of the plastic strains into an elastic and a plastic part in terms
of the second-order logarithmic (Hencky) strain tensor is assumed as

E = Ee +Ep =
1

2
lnC. (10)

Futhermore the plastic free energy part can be decomposed into parts which describe
isotropic and kinematic hardening

ψp = ψiso + ψkin. (11)

In the following only nonlinear isotropic hardening is considered. It follows

ψp = ψiso =
1

2
hα + (σ∞ − σ0)(α + exp(

−wα

w
)) (12)

where α is a scalar that models isotropic hardening. The spectral decomposition of the
right Cauchy–Green strain tensor C reads

C = F t · F =
3

∑

i=1

λiM i (13)

with {λi}i=1,2,3 the real eigenvalues of C and {M i}i=1,2,3 the associated eigenbases [15].
The spectral representation facilitates the computation of the logarithmic strain

E =
1

2

3
∑

i=1

lnλiM i (14)

4
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and allows a closed form expression for the (first and second) derivatives of the logarithmic
strain with respect to the right Cauchy–Green strain

= 2
∂E

∂C
and = 2

∂

∂C
= 4

∂2E

∂C∂C
. (15)

For further details regarding the computation of these derivatives the interested reader is
referred to [16]. Using (15), the Piola–Kirchhoff stress may be represented as

S = 2
∂Ψ

∂C
= T : with T =

∂Ψ

∂Ee = e : Ee. (16)

Considering this expression, the linearization of the Piola–Kirchhoff stress (tangent ope-
rator needed in a Newton type solution scheme) reads

= 4
∂2Ψ

∂C∂C
= T : ∗ : + T : with ∗ =

∂2Ψ

∂E∂E
. (17)

The transposition symbol [•]T refers to an exchange of the first and last pairs of indices.
The fourth-order tensor ∗ is the fourth-order elasticity tensor e in the case of an elastic
loading and the elastoplasticity tensor ep in the case of a plastic loading [13], respectively.

4 DISSIPATION AND PLASTIC FLOW RESPONSE

In the logarithmic strain space the dissipation inequality can be written as

T :
◦
Ep −∂Ψ

∂α
· ◦
α≥ 0, (18)

where [
◦•] denotes the time derivative and {Ep, α} is the set of internal variables. We

consider the following quadratic yield function

Υ = ‖devT ‖ −
√

2

3
B with B = hα + (σ∞ − σ0)(1− exp(−wα)). (19)

Using the principle of maximum plastic dissipation and the definition of the Lagrange
function L,

L(T ,
∂Ψ

∂α
, γ) = −T :

◦
Ep −∂Ψ

∂α
· ◦
α +γ(Υ−

√

2

3
σ0), (20)

we obtain the Karush-Kuhn-Tucker equations














◦
Ep= γ

∂Υ

∂T
,

◦
α= γ

∂Υ

∂B
=

√

2

3
γ,

γ ≥ 0, Υ−
√

2

3
σ0 ≤ 0 and γΥ = 0,

(21)

where γ ≥ 0.
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5 DETERMINING THE DEFORMED SHAPE FROM EQUILIBRIUM

In this contribution we omit distributed body forces and inertia henceforth.

5.1 Piola formulation

The Piola formulation for the equilibrium is determined by the following boundary
value problem

DivP = 0 in B0, (22)

[F · S] ·N = t0 on ∂Bt
0,

ϕ = ϕ on ∂Bϕ
0

where ∂Bt
0 corresponds to the part of the boundary surface where the Direchlet boundary

conditions hold, ∂Bϕ
0 corresponds to the part of the boundary surface where the Neumann

boundary conditions hold and we set

∂B0 = Bt
0

⋃

Bϕ
0 with Bt

0

⋂

Bϕ
0 = ∅. (23)

N is defined as a unit vector at X directed along the outward normal to an material
surface element dA ∈ ∂Bt

0. t0 is the first Piola-Kirchhoff traction vector exerted on dA
with normalN . Div denotes the material divergence operator with respect to the material
coordinates X. Accordingly, the weak form of the given boundary value problem reads,
with the test function η = 0 on the boundary surface ∂Bϕ

0 ,

G(ϕ,η;X) =

∫

B0

[F t · ∇Xη] : S dV −
∫

∂B0

η · t0 dA = 0. (24)

The above expression is the common virtual work statement with a parameterization of
all quantities in the material coordinates X. The (symmetric) Piola–Kirchhoff stress is
expressed as a functional of ϕ = ϕ(X) as

S = S(∇Xϕ(X)). (25)

The corresponding linearization (directional derivative) of the weak form in the direction
∆ϕ at fixed material coordinates X, as needed in a Newton type solution scheme, is
finally expressed as

d

dε
G(ϕ+ ε∆ϕ,η;X)|ε=0 =

∫

B0

∇Xη : : ∆F dV. (26)

The fourth-order tangent operator decomposes into the material tangent operator
(see (17)) and a geometrical contribution

:=
∂[F · S]

∂F
= [F⊗I] : : [F t⊗I] + i⊗S. (27)

In the above expression I and i denote the material and spatial unit tensors with coeffi-
cients δIJ and δij, respectively, ⊗ denotes a non-standard dyadic product with
[A⊗B]IJKL = AIKBJL and I, J,K, L, i, j = 1 . . . 3.

6
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5.2 Cauchy stress formulation

The equilibrium statement may alternatively be expressed by the following variant of
the boundary value problem (Cauchy stress formulation) in terms of spatial description
quantities

divσ = 0 in Bt, (28)

σ · n = t on ∂Bt
t,

ϕ = ϕ on ∂Bϕ
t

where ∂Bt
t corresponds to the part of the boundary surface where the Direchlet boundary

conditions hold, ∂Bϕ
t corresponds to the part of the boundary surface where the Neumann

boundary conditions hold and we set

∂Bt = Bt
t

⋃

Bϕ
t with Bt

t

⋂

Bϕ
t = ∅. (29)

div denotes the divergence operator with respect to the spatial coordinates x. n is
defined as a unit vector at x directed along the outward normal to an spatial surface
element da ∈ ∂Bt and t represents the Cauchy traction vector exerted on da with normal
n. The (symmetric) Cauchy stress σ is obtained from the Piola–Kirchhoff stress by a
push-forward according to

Jσ = F · S · F t. (30)

Accordingly, the weak form of the given boundary value problem, corresponding to the
equilibrium requirement for the spatial configuration, reads with the test function η = 0
on the boundary surface ∂Bϕ

t

g(Φ,η;x) =

∫

Bt

∇xη : σ dv −
∫

∂Bt
t

η · t da = 0. (31)

The corresponding linearization (directional derivative) of the weak form in the direction
∆Φ at fixed spatial coordinates x, as needed in a Newton type solution scheme, is finally
expressed as

d

dε
g(Φ+ ε∆Φ,η;x)|ε=0 =

∫

Bt

∇xη : : ∆f dv. (32)

The fourth-order tangent operator is depicted as

:=
∂[jF · S · F t]

∂f
= σ ⊗ F t − F⊗σ + jF ·

[

1

2
:
∂C

∂f

]

· F t − σ⊗F . (33)

The derivative of the right Cauchy–Green strain is expressed as
∂C

∂f
= −F t⊗C −C⊗F t. (34)

In the above equations, the non-standard dyadic product ⊗ is defined by
[A⊗B]IJKL = AILBJK and I, J,K, L = 1 . . . 3.

7
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6 DISCRETIZATION

For the finite element solution of the two problems ((24) and (31)) the material solution
domain B0 is discretized into nel elements

B0 ≈ Bh
0 =

nel
⋃

e=1

Be
0. (35)

Following the standard isoparametric approach, the geometry is approximated on each
element by the following shape functions

Xe(ξ) =
nen
∑

i=1

X(i)N (i)(ξ), xe(ξ) =
nen
∑

i=1

x(i)N (i)(ξ). (36)

Thereby the shape functions N (i) are parameterized by isoparametric coordinates ξ de-
fined on the isoparametric cube Bξ = [−1, 1]3, whereas nen is the total number of nodes per
element, and X(i) and x(i) denote nodal values. Finally, following the Bubnov–Galerkin
method the test function is again approximated by the same shape functions N (i)

ηe(ξ) =
nen
∑

i=1

η(i)N (i)(ξ). (37)

Substituting the finite element approximations into the weak form, we obtain the discrete
equilibrium condition as a residual that is expressed at each node (i) (nnp is the total
number of node points) as

r(i) = r
(i)
ext − r

(i)
int with i = 1 . . . nnp. (38)

The contributions to the internal and external nodal forces read

r
(i)
int =

nel

A
e=1

∫

Be
0

[F · S] · ∇XN (i) dV =
nel

A
e=1

∫

Be
t

σ · ∇xN
(i) dv, (39)

r
(i)
ext =

nel

A
e=1

∫

∂Be,t
0

te0N
(i) dA =

nel

A
e=1

∫

∂Be,t
t

tetN
(i) da.

The tangent stiffness matrix k is defined as the Jacobian matrix of the residual (Piola
formulation) with respect to the spatial coordinates as

k(ij) := − ∂r(i)

∂x(j)
=

nel

A
e=1

∫

Be
0

∇XN (i) 2· · ∇XN (j) dV. (40)

The tangent stiffness matrix K is defined as the Jacobian matrix of the residual (Cauchy
stress formulation) with respect to the material coordinates as

K(ij) := − ∂r(i)

∂X(j)
=

nel

A
e=1

∫

Be
t

∇xN
(i) 2· · ∇xN

(j) dv. (41)

In the above expressions
2· denotes contraction with the second index of the corresponding

tangent operator.

8
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7 SENSITIVITY ANALYSIS

The aim of the sensitivity analysis is to supply the gradients of the objective function
and the constraints with respect to the design variables, which are necessary for the
use of gradient-based optimization algorithms [9]. In the following we restrict ourself to
unconstraint problems. The objective function is defined as

f(X) =
1

2
[xtarget − xcurrent(X)]2 → min

X
(42)

where the material coordinates X are the design variables. By applying the chain rule,
we obtain

df(X)

dX
=

∂f explicite

∂X
+

∂f

∂xcurrent

dxcurrent

dX
. (43)

According to the implicite dependency of the objective function to X we have

∂f explicite

∂X
= 0 and then

df(X)

dX
=

∂f

∂xcurrent

dxcurrent

dX
. (44)

The key for the computation of the Jacobian matrix
dxcurrent

dX
in (44) is the mechanical

equilibrium condition [9]

rcurrent(X) = r(xcurrent(X),X) = rext − rint(x
current(X),X) = 0. (45)

Applying the total differential on the above equation we obtain

drcurrent

dX
=

∂r

∂X
+

∂r

∂xcurrent

dxcurrent

dX
= 0. (46)

After a rearrangement we deduce

dxcurrent

dX
= −[

∂r

∂xcurrent
]−1 ∂r

∂X
. (47)

Substituting (47) in (44) we obtain

df(X)

dX
= − ∂f

∂xcurrent
[

∂r

∂xcurrent
]−1 ∂r

∂X
= (xtarget − xcurrent)[

∂r

∂xcurrent
]−1 ∂r

∂X
. (48)

Considering the form of (40) and (41) we finally obtain

df(X)

dX
= (xtarget − xcurrent)[k]−1K.

9
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8 NUMERICAL EXAMPLE

As an example we simulate a tension test on a cylinder with an internal hole in 3D. The
outer diameter of the cylinder is 20mm, the inner diameter is 10mm and the thickness
is 30mm. The base of the cylinder is clamped (red squares on Figure 3). A distributed
load F=110kN is applied on the top of the cylinder (red arrows on Figure 3). We con-
sider an anisotropic elastoplastic material with a cubic symmetry and the following pro-
perties: E=210000MPa, µ=0.3, E55=60000MPa, h=305MPa, σ0=180MPa, σ∞=305MPa
and w=15. The domain is discretized using trilinear hexahedral finite elements (50 ele-
ments and 120 nodes). Figure 2 shows the deformed shape on which the obtained von
Mises stresses are plotted after applying loads and boundary conditions on the computed
undeformed sheet (Figure 3). As expected the top outer diameter of the computed un-
deformed cylinder (Figure 3) became larger and the thickness of the undeformed cylinder
has been reduced. The convergence time to the solution is 4 hours 49 min 32s. The
L-BFGS algorithm needs 23 iterations to find a minimum less than 10−14.

Figure 2: Deformed sheet with von Mises stresses in the final configuration Bt.

Figure 3: Undeformed sheet in the reference configuration B0.

10
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9 CONCLUSION

This work presents a three dimensional procedure for anisotropic elastoplastic mate-
rials based on shape optimization theory. The aim is the determination of the undeformed
shape of a workpiece when knowing its desired deformed shape, the boundary conditions
and the loads. A logarithmic strain space formulation is used. A spectral decomposition
of the right Cauchy–Green tensor allows a simple evaluation and linearization of the loga-
rithmic strain measure. The node coordinates of the finite element domain, excluding the
boundary conditions, are chosen as design variables. The gradient of the objective func-
tion needed by the L-BFGS algorithm is computed analytically using a discrete sensitivity
analysis approach. A numerical example in nonlinear cubic elastoplasticity illustrates the
ability to numerically approximate the undeformed shape. Future research will be con-
ducted on the remeshing of the workpiece during the computation and a regularization
will be considered in order to avoid mesh distorsions.
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 2 

1 INTRODUCTION 
Materials with Hexagonal-Closed Packed (HCP) crystal structures, as for example the 

magnesium and titanium alloys, have a small number of active slip systems at room 
temperature. This fact makes twinning a predominant deformation mechanism, essential for 
the accurate prediction of plastic deformations and texture evolution. Also, because of the 
directional property of the twinning mechanism, different responses are obtained for tension 
and compression, explaining in this way the asymmetric behaviour of HCP materials. As 
reported by Van Houtte [1], the twinning mechanism is also important for low stacking fault 
energy Face Centred Cubic (FCC) metals.  

 
To predict the elasto-plastic behaviour of HCP materials, several material models were 

suggested in the last years. As an example, the Predominant Twin Reorientation (PTR) 
method was initially proposed by van Houtte [1]. This innovative model evaluates the 
twinning deformation from the crystal plasticity theory. After reaching a threshold value for 
the twinning volume fraction, the deformation by twinning causes reorientation of the grains 
almost instantaneously. This is in contrast with the TLS method that considers twinning 
reorientation continuously. 

 
To treat both slip, twinning and slip in the twined regions, Kalidindi[2] suggested the Total 

Lagragian Scheme (TLS). This work is based on the decomposition of the deformation 
gradient into components related with slip, twinning and slip deformations in the twined 
regions. The set of nonlinear constitutive equations for slip, twinning and slip-twinning 
deformation modes are fully linearized for a single Crystal. In this way, a fully implicit time 
integration schemes can be obtained. 

2 KINEMATICS AND CONSTITUTIVE RELATIONS 

2.1 Total Lagragian Scheme (TLS) 
To consider twinning and slip deformations in the twined area, the decomposition of the 

velocity gradient tensor should be defined as follows, 

                             









  









  ,,,1 stststtttwcsss
p dtffdtf msmsmsL   (1) 

where, 
Lp : plastic velocity gradient

f �( ) : rate of the volume fraction of the �  twin system

�s
�( ) :Slip rate of �  slip system

ss
�( ),ms

�( ) : Normalized vector of slip direction and normal to slip plane of �  slip system

�twc
�( ) : Characteristic shear strain of �  twinning system

st
�( ),mt

�( ) : Normalized vector of twinning direction and normal to twinning plane of �  twinning system

�st
� ,�( ) :Slip rate of �  slip system in �  twinning system

sst
� ,�( ),mst

� ,�( ) : Normalized vector of slip direction and normal to slip plane of �  slip system in �  twined area
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 3 

 
The first term on the right hand side of eq. (1) means pure slip deformation in the non-

twined area. The second term means twinning deformation and the last term means slip 
deformation in the twined area (Fig.1). The shear slip rate and the volume fraction rate are 
obtained from the Pan-Rice formula as follows, 
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where �,g,�0, f0   and m  are the resolved shear stress, the critical resolved shear stress, the 
reference shear slip rate, the reference twinning rate and the rate sensitivity coefficient, 
respectively. Because of the asymmetry or polarity of the twinning mechanism, the following 
constraints should be applied, 

      threshold
t fdtforiff  



   00  (3) 

The threshold value for the TLS model means that twinning is finished after the 
accumulated volume fraction overcomes this value. These constraints for twinning are 
validated experimental and they explain the asymmetrical stress behavior between tension and 
compression deformation modes. 

 
 

Figure 1: Schematic illustration of decomposition of velocity gradient 
 
In order to obtain the slip shear strain rate at each slip system and the rate of volume 

fraction for twinning, the rate dependent crystal plasticity approach of Yoon et al. [3] is 
considered in this work. According to Yoon et al. [3], the Jaumann rate of Kirchhoff stress is 
defined as, 
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As can be seen from equation (4), the Jaumann rate of Kirchhoff stress includes 
contributions from slip, twin and slip deformations in the twinned regions allowing in this 
way a more accurate prediction for metals with dominant twinning deformation mechanisms. 
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2.2 Predominat Twin Reorientation (PTR) method 
In the Total Lagragian Scheme, the number of deformation systems is very high and, as a 

result, the CPU cost increases considerably. The PTR model doesn’t include slip deformations 
in the twinned areas. Also, the twinning mechanisms are only effective after a threshold value 
for the twinning volume fraction is achieved. These facts make the Predominat Twin 
Reorientation method computationally more effective than TLS method.  

 
In the Predominat Twin Reorientation method, the velocity gradient is decomposed as 

follows, 
                







  tttwcsss
p f msmsL   (5) 

which means that only the deformation by slip and twinning are included in the velocity 
gradient. In the PTR method, the accumulated volume fraction for twinning is tracked 
carefully. However, before the accumulated volume fraction reaches a threshold value, the 
grain is reoriented only by slip deformations. The threshold value is a parameter that can be 
fitted experimentally. According to Choi et al. [4], this threshold value can be defined as 

daccumulate
thth

threshold fCCf 21   (6) 

where Cth1 and Cth2 are material constants. The accumulated twined volume fractions 
from all of the twinning systems are compared with this threshold value at each time step. 
After the accumulated volume fraction reaches the threshold value, the grain is reoriented 
with respect to the dominant twinning deformation system. 

3 RESULTS AND DISCUSSION 

3.1 Analysis conditons 
We have developed an analysis code based on both PTR and TLS methods for 

ABAQUS/Standard 6.10-1 user material routine (UMAT). Table 1 shows the material 
parameters used in the analysis. In the simulations, we used the same material parameters for 
both slip and twinning deformations. Also, we employed 12 slip systems, {111}<110>, and 
12 twinning systems, {111}<112>, for a FCC material. We implemented the hardening rule 
for both slip and twinning systems described in the below equation, 
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For the TLS model, the threshold value for the twined volume fraction was set to 0.8. For 
the PTR model, we set the same material parameters Cth1=0.8 and Cth2=0 as for the TLS 
model for comparison purposes. 
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Table 1: Material parameters for both PTR and TLS 

 
In the TLS model, the number of active deformation systems is very high. To avoid it, we 

employed another threshold value for the activation of slip deformations in the twined region. 
If the twined volume fraction doesn’t reach the threshold value, we ignore the contribution of 
the slip deformation in the twined region to the total deformation. 

3.2 Results 
Fig.2 shows the stress-strain response of both PTR and TLS simulations. According to this 

result, there is no clear difference between both methods in tension and compression tests for 
low values of strain. But, for higher values of strain, the difference is more significative, 
specially for the compression test. Fig.3 shows the total accumulated twined volume fraction 
obtained from both methods. According to this result, the twined region’s evolution is almost 
the same for both TLS and PTR methods at low strains. In the compression test at high strain, 
the PTR method’s total accumulated twinning volume fraction is clearly higher than the one 
obtained from the TLS method. Fig. 4 shows the activation ratio of each system. According to 
this result, the slip deformation in the twined region was activated in the compression test at 
high strain. This result demonstrates that the slip deformation in the twined region plays an 
important role if twinning deformation mechanisms occur extensively. 
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Figure 2: Stress strain reponse of PTR method and TLS 

 

 
Figure 3: Total accumulated twined volume fraction 

 

 
Figure 4: Activation ratio of eash system of PTR method and TLS 
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4 CONCLUSIONS 
- From the crystal plasticity simulations with  PTR and TLS twinning models, it can be 

observed that the TLS compression stress is lower than the one predicted by the PTR 
model. The main reason for this difference is because the TLS twinning model 
considers additional slip deformation in the twinned regions. 

- The PTR model is simpler, computationally more efficient but less accurate, 
essentially because of the assumption that twinning mechanism is only active after 
the twinning volume fraction overcomes a pre-defined threshold value. On the 
contrary, the TLS model considers twinning effects continuously with more active 
slip systems, resulting thus in a more accurate prediction for materials with dominant 
twinning deformation modes. 
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Abstract. The prediction of strength properties of engineering materials, which in gen-
eral are time dependent due to chemical reactions and deterioration processes, plays an
important role during manufacturing and construction as well as with regard to durability
aspects of materials and structures. On the one hand, the speed of production processes
and the quality of products may be significantly increased by improved material perfor-
mance at early ages. On the other hand, the life time of materials and structures can be
enlarged and means of repair and maintenance can be optimized.
For determination of strength properties of composite materials, a multiscale approach
is proposed in this paper. For upscaling of strength properties, numerical limit analysis
considering discontinuity layout optimization (DLO) is employed. In a first step, DLO is
applied to two-phase material systems, with the matrix being represented by node clouds.
In this paper, adaptive techniques regarding the spatial distribution of nodes thus the dis-
continuity generation are introduced in DLO, improving the computational performance
of DLO within upscaling of strength properties.

1 MOTIVATION

The prediction of strength properties of engineering materials, which in general are time
dependent due to chemical reactions and deterioration processes, plays an important role
during manufacturing and construction as well as with regard to durability aspects of
materials and structures. On the one hand, the speed of production processes and the
quality of products may be significantly increased by improved material performance at
early ages. On the other hand, the life time of materials and structures can be enlarged
and means of repair and maintenance can be optimized.
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For determination of strength properties of composite materials, multiscale approaches
are often employed. Several methods for prediction of strength of materials can be found
in the literature, among these are e.g. continuum micromechanics [8], the finite-element
method (FEM) [9], and numerical limit analysis (LA) [6].
In this work, a two-phase composite material exhibiting a matrix-inclusion morphology
is considered. For upscaling of strength properties of these two-phase material systems,
numerical limit analysis [1] considering discontinuity layout optimization (DLO) [2] is
employed and extended towards adaptive discontinuity layout optimization (ADLO).
First, the methodology of the employed approach is discussed which is followed by the
presentation of first results obtained from ADLO. Finally, concluding remarks and an
outlook on future work are given.

2 METHODOLOGY

2.1 Fundamental principle of DLO

DLO is a limit-analysis methodology for determining strength properties of materials
or collapse loads of structures. Recently, this method was applied to steel frames [3],
geotechnical engineering [2], concrete slabs [4] as well as masonry structures [5].
DLO requires the generation of discontinuities, of which every one may be a potential
failure discontinuity and, thus, contribute to the failure mode of the material or structure.
With (i) the aid of linear programming (LP), (ii) assigning of material properties to
every discontinuity (Mohr-Coulomb-type material), and (iii) the definition of boundary
conditions, the discontinuities contributing to the failure mechanism are obtained, when
the system reaches a total internal energy minimum. This leads to an upper bound (UB)
formulation with the following LP problem (see [2]):

min λfTLd = −fTDd+ gTp,

subject to

Bd = 0, (1)

fTLd = 1,

Np− d = 0,

p ≥ 0.

In Equation (1), fL and fD are the vector for live and dead load, respectively, g is a matrix
containing length and cohesive shear strength of the discontinuities, d is the vector of
discontinuity displacements, B is the compatibility matrix, N is the plastic-flow matrix,
and p is the vector of plastic multipliers.
In the present application, DLO is used to determine the strength properties of matrix-
inclusion materials. For this purpose, the dead load will be disregarded.

2
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2.2 Current methodology and limitations

So far, a constant set of regularly distributed nodes serves as basis for the definition of
discontinuities. The size of the underlying LP problem increases rapidly for larger number
of nodes and discontinuities, which cannot be solved on currently available personal com-
puters with efficiency. Instead of generating all possible discontinuities among the nodes
in the model, only discontinuities existing length lower than a certain threshold length are
generated within the first step. Within an stepwise calculation, additional discontinuities
are gradually added to the model in zones of plastic failure of the structure (see [2]).
For the application of DLO to matrix-inclusion materials, this procedure has certain
drawbacks. First, a constant (regular) set of nodes limits the number of possible failure
modes to the orientation of the discontinuities. Second, in regions of the material where
no discontinuities will fail, the density of the nodes remains constant, thus considering
discontinuities not contributing to the failure mechanism. Third, in contrast to homo-
geneous materials, the node distribution at the boundary between matrix and inclusion
is crucial for determination of strength properties, taking into account the influence of
interface properties and the strength properties of materials.

2.3 Adaptive discontinuity layout optimization (ADLO)

With the mentioned limitations in mind, a random cloud of nodes giving the layout
of the discontinuities is proposed in this paper. Hereby, the generation of discontinuities
is performed with a delaundray triangulation [7]. The iterative adaptation of nodes in
regions of plastic failure is illustrated in Figure 1 considering additional nodes in trian-
gles and boundary discontinuities adjacent to discontinuities contributing to the failure
mechanism. The ADLO algorithm involves the following steps:

- Preprocessing:
- Node generation
- Relaxation of nodes
- Triangulation (discontinuity layout)
- Discontinuity generation
- Generation of compatibility matrix B
- Generation of vector of plastic multipliers p
- Application of external loads fL

- Solving LP:
- Solving LP problem (Equation (1))

- Postprocessing:
- Location of failed discontinuities
- Consideration of additional nodes in zones of material failure (see Figure 1)

Figure 2 illustrates the difference between regular (203 nodes, 738 discontinuities) and
random node (288 nodes, 738 discontinuities) generation. While the regular node dis-

3
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(a) (b) (c)

Figure 1: Illustration of node adaptation in zones of plastic failure: (a) failure mechanism obtained from
current layout of discontinuities; (b) introducing additional nodes at the centroid of triangles and at the
center of boundary discontinuities adjacent to this failure mechanism; (c) new layout of discontinuities

tribution leads to similar angles, the random layout of discontinuities, with subsequent
adaptive refinement steps, yields a larger variety of angles and therefore a larger variety
of possible failure modes.

(a) regular distribution of nodes (b) random distribution of nodes

Figure 2: Effect of node arrangement on discontinuity layout

3 Results and Discussion

Process of adaptive node generation

For the demonstration of the adaptive node generation, a porous material with a single
circular pore subjected to uniaxial loading is considered. Hereby, symmetry in horizontal
and vertical direction are exploited. At the right boundary of the model, the load is
applied. In Figure 3, thick lines indicate discontinuities which experience plastic defor-

4
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3 Results and Discussion

Process of adaptive node generation

For the demonstration of the adaptive node generation, a porous material with a single
circular pore subjected to uniaxial loading is considered. Hereby, symmetry in horizontal
and vertical direction are exploited. At the right boundary of the model, the load is
applied. In Figure 3, thick lines indicate discontinuities which experience plastic defor-
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mation and thereby contribute to material failure. The absolute value of the velocity is
illustrated by the width of the lines.

(a)

(b)

Figure 3: ADLO results obtained for porous material with one single circular pore: (a) material strength
related to matrix strength as a function of refinement steps; (b) layout of discontinuities for different
refinement steps

The underlying material properties of the matrix phase are chosen as: cohesion = 1,
angle of friction = 0, giving an angle of the failure mode of π/4 and a failure load of
ft/f

M
t = 0.46 (see [10]), were fM

t refers to the tensile strength of the matrix and ft to the
tensile strength of the porous material. Both ft/f

M
t of 0.49 (obtained for refinement step

5) and the failure mode obtained from ADLO correlate well with the analytical solution.

Porous material with two inclusions

In the second example, a porous material with two circular pores subjected to uniaxial
tensile loading is considered. By means of ADLO, the upper bound of the uniaxial tensile

5
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strength is calculated. Hereby, the two pores are rotated with respect to the loading
direction from β = 0◦ to 90◦ [6]. Figure 4 illustrates, the effect of β on the results
obtained from different sets of nodal distributions. The different results corresponding to
one angle in Figure 4(a) reflect the influence of the nodal distribution on the predicted
material strength.

(a)

(b) β = 0◦ β = 45◦ β = 90◦

Figure 4: ADLO results obtained for porous material with two circular pores: (a) effect of β on tensile
strength and (b) discontinuity layout for three different angles of β (fa volume fraction of air voids)

3.1 Conclusion and outlook

In this work, an adaptive mode of the discontinuity layout optimization (DLO) for
upscaling of strength properties is proposed. Hereby the regular generation of nodes is
replaced by random nodal distribution, which is enhanced in an step-wise manner in zones

6
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of plastic failure.
First results showed a good performance of the proposed node adaptation in plastic zones
by ADLO. Also the improvement of the solution within increasing number of iteration
step was illustrated. An example of a material with two inclusion showed the influence of
the arrangement of the pores on the strength properties of the porous material.
Future work will focus on the refinement of the nodal enhancement in plastic zones.
Moreover, removal of nodes in regions were no failure occurred shall be included.
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José Gutiérrez Abascal, 2, 28006 Madrid, Spain
e-mail: ignacio.romero@upm.es

‡Engineering and Applied Sciences Division
California Institute of Technology

1200 E. California Blvd. Pasadena, 91125 CA, USA
e-mail: ortiz@aero.caltech.edu, http://aero.caltech.edu/ ortiz/index.html

Key words: Quasicontinuum method, Plasticity, Nanovoids, Multiscale modeling

Abstract. Tensile failure of metals often occurs through void nucleation, growth and
coalescence. In high-purity metals, void nucleation often operates at the nanoscale and
is followed by plastic cavitation when the void attains the critical size for dislocation
emission. This work is concerned with the study of plastic nanovoid cavitation in face-
centered cubic (fcc) crystals at finite temperature. In particular, the Quasicontinuum
(QC) method, suitably extended to finite temperatures (HotQC), is taken as the ba-
sis for the analysis. The Quasicontinuum method is a multiscale modeling scheme that
seamlessly links continuum and atomistic descriptions. HotQC is a method for system-
atically coarse-graining atomistic models at finite temperature. We specifically focus on
nanovoids in copper single crystals deforming in uniaxial and triaxial tension. The re-
sults of the calculations provide a detailed characterization of the cavitation mechanism,
including the geometry of the emitted dislocations, the dislocation reaction paths and
attendant macroscopic quantities of interest such as the cavitation pressure as a function
of triaxiality.
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1 INTRODUCTION

In order to understand the mechanical response of materials subject to dynamical
loads, the knowledge of the physical and thermodynamical properties of materials is re-
quired.Tensile failure of metals often occurs through void nucleation, growth and coales-
cence. This process, known as spallation, has been the subject of extensive metallurgical
investigation [1]. In high purity metals, void nucleation often operates at the nanoscale
and is followed by plastic cavitation when the void attains the pressure and temperature
dependent critical size for dislocation emission. The voids grow through nucleation and
motion of dislocations.

Molecular dynamics (MD) techniques have been used by many authors to understand
the mechanical response of materials based on the mechanisms controlling the growth and
evolution of nanovoids [2, 14]. However, a correct simulation of plastic phenomena requires
the use of very large systems and appropriate boundary conditions, which may result in
complex MD models. Computed plastic work during void growth indicate that there is
a growth threshold controlled by the stress required to nucleate dislocation activity. The
time-scale for complete dynamic fracture (0.1−1 µs) is several orders of magnitude beyond
the current limitations of molecular dynamics simulations. The study of slower strain
rates, in the experimental range, requires much larger system sizes or a special continuum
boundary condition. In this sense, multiscale modelling provides an alternative to MD
simulation, especially for this type of problems.

The Quasicontinuum method (QC) is a multiscale modelling scheme that seamlessly
links continuum and atomistic descriptions. In this paper we are going to use an exten-
sion of the static QC theory developed by [4] and subsequently adapted by [5], to systems
in thermodynamic equilibrium and non-equilibrium (HotQC) established in [6]. Previ-
ous to this work, a number of finite-temperature extensions of QC were proposed within
the framework of equilibrium statistical mechanics and thermodynamics [7, 8]. Whereas
these formulations are effective for equilibrium problems, systems at uniform temperature,
they cannot be applied to systems away from equilibrium. In [6] the probability density
function of finding the system in a certain state is directly approximate by recourse to
variational mean-filed theory and the maximum-entropy formalism. Every atom within
the system has its own local statistical parameters, temperature and entropy. Therefore,
the net result of the procedure is to define a non-equilibrium free energy depending on the
positions and temperatures of all atoms. Conveniently, for several interatomic potentials
of interest, including Lennard-Jones (LJ) and Embedded-Atom Method (EAM), the non-
equilibrium free energy can be computed explicitly up to numerical quadratures, and the
result may be regarded as a temperature-dependent interatomic potential. This structure
greatly facilitates implementation, which is reduced to replacing ordinary interatomic po-
tentials by temperature-dependent ones. It is worth emphasis that at no time in this
procedure equilibrium statistical mechanics is invoked to define temperature and entropy
or to determine the probability density function of the system. Thus, unlike the conven-
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tional temperature and entropy defined in equilibrium thermodynamics and statistical
mechanics, the local temperatures and entropies that arise in this theory are parameters
that the mean-field probability density function is endowed with. For non-interacting
atoms, the local temperatures and entropies do indeed coincide with the equilibrium val-
ues of each one of the atoms regarded as an isolated system in thermodynamic equilibrium,
which justifies the use of terminology. Likewise, the non-equilibrium free energy is defined
formally from the mean-field probability density function and reduces to the equilibrium
free energy of the system when the temperature field is uniform.

Although experimental investigations [9, 10] indicate the existence of strong void size
effects in plastic deformation of ductile materials with the growth of nanovoids, its ex-
perimental quantification remains an open problem. This size effect has been studied by
[11] for periodic single crystals under different load conditions using discrete dislocation
plasticity combined with a continuum strain gradient crystal plasticity theory. Similar
techniques were applied by [12] to simulate the effect of lattice orientation on an isolated
crystal with a cylindrical void.

Within the framework of MD, nanosized void growth in single crystal copper at finite
temperature and high strain rates have been analyzed extensively. MD simulations of void
growth at high strain-rate and room temperature [13], effect of stress triaxiality [14], void
coalescence [15] have been carried out using the copper embedded atom method (EAM)
potential due to [16]. More recently, [19] have studied the effect of loading orientation
and initial void size at finite temperature using LAMMPS code and the EAM potential
by [22].

Results are shown for numerical tests according to a non-equilibrium finite temperature
problem using QC method. This problem has been studied by many authors, but none
of them have included systems outside equilibrium. Also, the purpose of these tests is to
understand the nucleation of particular arrangement of atoms around a nanovoid and the
evolution of the temperature field in this process.

2 METHODOLOGY

2.1 The Quasicontinuum method (QC)

QC is a method for systematically coarse-graining lattice statics models. The method
starts with a small and complete atomistic system around a core defect. Then the rest of
the crystal is modelled in the geometry and reducing the configuration space of the crystal
trough a judicious application of a finite element-based kinematic constraints. To avoid
full lattice sums, only atoms in small clusters, surrounding the representative atoms must
be visited for computing the effective out-of-balance forces. Additionally, the selection of
representative atoms is performed adaptively based on the local strain of the elements.
The tolerance governing the adaptation process is set so that the full atomistic resolution
is attained only in the presence of dislocations.

The force among atoms is directly computed by empirical potentials. As in conventional
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continuum mechanics, QC permits the direct simulation of systems controlled through the
application of remote boundary conditions. Details of the implementation of QC used in
the present study and an analysis of convergence of the method may be found in [4].

Figure 1: Initial void and incipient dislocation structures for the uniaxial loading simulation (load is
applied in the [110] direction).

2.2 Equilibrium and Non-Equilibrium (HotQC)

The QC extension to systems in thermodynamic equilibrium and non-equilibrium
(HotQC) was developed in [6] and extended to the study of nanovoids in single crys-
tals for the first time in [20]. This extension is possible by the application of a variational
mean-field theory and the maximum-entropy (max-ent) formalism. Using this formal-
ism, we can directly approximate the probability density function to find the system in
a certain state, not necessarily an equilibrium state. In this model, every representative
atom has local state variables akin to temperature, entropy in addition to position, as
parameters that determine the local statistics of the atom. Then, the max-ent variational
principle provides the most likely probability density function within the assumed mean-
field class and consistent with all constraints on the systems.

Attention to macroscopic processes that are quasi-static is performed. Under these con-
ditions, the net result of the max-ent procedure is to define a non-equilibrium free energy
depending on the positions and temperatures of all the atoms. The non-equilibrium free
energy is computed explicitly by numerical quadratures and the result may be regarded
as a temperature-dependent interatomic potential. The stable configuration of the system
is found by minimization of the free energy for a given temperature field.

The next step in the development of the method therefore concerns the computations
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of the evolving temperature field. We accomplish this by coupling the free-energy min-
imization problem to a diffusion form of the energy-balance equation. The proper form
of the coupling is suggested by the variational formulation of coupled thermo-mechanics
problems proposed in [21].

3 NUMERICAL TEST

We have carried out simulations under uniaxial and triaxial loading, using the empirical
embedded-atom (EAM) potential due to Johnson [16]. For the uniaxial case, we consider
a computational cell of size 432a0 × 432a0 × 432a0 (ao = 0.3615nm) of copper, containing
a total of 120× 106 atoms. A spherical void of 7.5a0 radius is created in the center of the
cell with initial full atomistic resolution within a 16a0 × 16a0 × 16a0 region surrounding
the void. The initial mesh contains 4052 nodes after removing the atoms from the void.
The external load consists of a uniaxial expansion in the [110] direction which provides
the simplest dislocation configuration. We prescribe pure dilatational displacements on
the external boundary (deformation is increased by steps of 0.2% increments) with the
strain rate of 5× 107 s−1. In every step of deformation a new stable equilibrium configu-
ration is obtained by using the Polak-Ribière variant of the non-linear conjugate gradient
algorithm. Previously to loading process the sample is allowed to expand isothermally
at uniform temperature T0 = 300K. In order to capture all the defects surrounding the
void, we implement a routine that automatically remeshes the sample using the second
invariant of the deviatoric part of the Lagrangian strain tensor as adaptivity indicator.

Figure 2: Isometric view of initial void and incipient dislocation structures. Stacking faults in {111}
planes, perfect dislocations 1/2[110] in {001} planes and leading dislocations are observed.

During this uniaxial simulation, the void first becomes elongated in the direction of the
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Figure 3: Initial stage of prismatic loop. This emission of dislocations is on the intersecting {111} planes
have been predicted by [17]. a) Red atoms belong to stacking faults. b) Prismatic loop initiation (red)
and perfect dislocation (yellow).

expansion without dislocation emission. In a second phase, dislocations grow around the
surface of the void. The structures of the incipient dislocations are shown in Figs. 1 and
2. The vectors [111] and [111] indicate the plane of the stacking fault for FCC crystals. In
Fig. 2 it is clearly seen the presence of stacking faults in {111} planes. On the intersection
of these {111} planes, perfect dislocations labeled with 1/2[110]{001} and 1/2[110]{001}
appear. This first result agrees with the simulations presented in [17] and is the first step
of the prismatic loop formation described in Fig. 1 in [18].
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Figure 4: Computed virial stress for the uniaxial loading case compared with molecular dynamics simu-
lations results [14] and normalized void volume expansion Vvoid/V vs deformation ε of the sample.

Once the prismatic loop is formed (Fig. 3), the loop emerges and moves away from
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Figure 3: Initial stage of prismatic loop. This emission of dislocations is on the intersecting {111} planes
have been predicted by [17]. a) Red atoms belong to stacking faults. b) Prismatic loop initiation (red)
and perfect dislocation (yellow).
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Once the prismatic loop is formed (Fig. 3), the loop emerges and moves away from

6

M.P. Ariza, M. Ponga, I. Romero and M. Ortiz

the void and is stopped when it reaches the limit of the atomistic region. This situation
is obviously due to the computational mesh used in our simulations. Fig. 4 shows the
stress-strain curve for the uniaxial loading simulation. We must note that the plotted
strains and stresses are in the loading direction [110]. A comparison has been made with
previous MD simulations of uniaxial loading in cooper [14] with loading direction [001]
(see Fig. 4). It is noteworthy that the elastic moduli are in good agreement, and the
linear regime is approximately up to 8% of deformation for both cases. In the plastic
region, there is a difference probably due to the differences in the void size, the potential
used and the loading direction, that activates different slip systems. The void fraction is
also plotted in Fig. 4. At low deformations, the void grows approximately linearly up
to 8% of deformation. Next, the void changes the rate of growth, and the behavior is
approximately exponential as indicated by continuum theories.

In order to study the thermoplastic behavior of the material at high strain rates the
triaxial loading case is simulated. The void dislocation emission analysis requires more
attention, for this reason this study is out of the scope of this work. Additionally, the
temperature of the atoms around the void when the fracture occurs is also studied.

Fig. 5 shows the stress-strain curves for the triaxial case. In this curve, a linear regime
is observed up to 4% of deformation, followed by a non-linear regime representing the
plastic work around the void. At this stage, the fracture mechanism is initiated and
dislocations are emitted away from the void. When the deformation reaches the 6%, the
void has a drastically change in shape and volume. This process is called cavitation.
After this point, the stiffness of the sample decreases and the fracture extends all over the
sample. The temperature evolution of this process is shown in Fig. 6. In this figure a first
linear stage up to 4% of deformation is observed and is identified with the linear stage
in the stress-strain curve. Then, up to 6% of deformation, a change in the slope occurs,
corresponding to the non-linear stage. When the deformation reaches the cavitation point,
and due to the breakage of atomic bounds the temperature increases. Atoms belonging to
the void surface and near to the void show a higher increase rate of temperature. As the
deformation increases, the temperature oscillates due to the successive breakage of bounds.
The temperature of the atoms on the void surface to the void surface is approximately
constant after cavitation. In contrast, the temperature of the atoms away from the void
increases during the cavitation process.

4 CONCLUSIONS

In this work we have applied an extension of the QC method to study the thermo-
mechanical behavior of a nanovoid under tension in copper. The extension of the Qua-
sicontinuum method to non-equilibrium systems has provided a detailed solution of the
forces, deformation, and temperature at every point of the sample, with atomistic resolu-
tion close to the defect. In this region, both adiabatic as well as isothermal simulations
indicate that a fragile fracture occurs in the material shortly after dislocation structures
appear. The multiscale resolution of the Quasicontinuum approach then serves to com-
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Figure 5: Virial stress for the triaxial loading case compared with MD results [14]. Note that at 6% of
deformation the cavitation is reached and the material loss stiffness.
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Abstract. In the present paper, a fully coupled numerical model is developed for the hydro-
mechanical analysis of deforming, progressively fracturing porous media interacting with the flow 
of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations 
involving the coupled two-phase fluid flow and deformation processes in partially saturated 
porous media containing cohesive cracks are derived within the framework of the generalized 
Biot theory. The displacement of the solid phase, the pressure of the wetting phase and the 
capillary pressure are taken as the primary unknowns of the three-phase formulation. A softening 
cohesive law is employed to describe the nonlinear behavior of the material in the fracture process 
zone. In order to account for the flux of the two fluid phases through the fracture faces, the mass 
balance equation for each flowing fluid inside the fully damaged zone and the cohesive zone is 
averaged over its cross section. The resulting equations provide mass couplings to the standard 
equations of the multiphase system. The effect of cracking and therefore change of porosity on the 
permeability of the damaged zone is also taken into account. To arrive at the discrete equations, 
the extended finite element method (XFEM) is utilized to discretize the weak form of the balance 
equations of mass and linear momentum in spatial domain along with the Generalized Newmark 
scheme for time domain discretization. By exploiting the partition of unity property of finite 
element shape functions, the evolving cohesive crack is simulated independently of the underlying 
finite element mesh and without continuous remeshing of the domain as the crack grows by 
adding enriched degrees of freedom to nodes whose support is bisected by the crack. For the 
numerical solution, the unconditionally stable direct time-stepping procedure is applied to solve 
the resulting system of strongly coupled non-linear algebraic equations using a Newton-Raphson 
iterative procedure. Finally, numerical simulations are presented to demonstrate the capability of 
the proposed method and the significant influence of the hydro-mechanical coupling between the 
continuum porous medium and the discontinuity on the results.  
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1 INTRODUCTION 

The present paper focuses on the hydro-mechanical modeling of two-phase fluid flow in 
deforming, partially saturated porous media containing propagating cohesive cracks, which has 
practical applications in a broad range of engineering areas. In the literature, the topic of fluid 
flow in fractured/fracturing porous media has been dealt with in different ways: in [1] a numerical 
procedure for the simulation of hydraulically-driven fracture propagation in poroelastic materials 
has been presented combining the finite element method with the finite difference method, in [2] 
the problem of hydraulic cohesive crack growth in fully saturated porous media has been solved 
using the finite element method with mesh adaptation, in [3] a hydro-mechanical formulation for 
fully saturated geomaterials with pre-existing discontinuities has been presented based on the 
finite element method with zero-thickness interface elements, and the subject of fluid flow in 
fractured fully saturated systems and in fracturing unsaturated systems with passive gas phase has 
been treated in [4] and [5], respectively, using the extended finite element method, which is now 
extended to three-phase porous media. The three-phase numerical model developed here is based 
upon the mechanics of deformable porous media on the basis of the generalization of the Biot 
theory in conjunction with the cohesive fracture mechanics, which provides a suitable framework 
to describe the coupled hydro-mechanical and fracture mechanisms occurring in fracturing, 
multiphase porous media. In such multiphase systems, the coupling between the flow of the 
wetting and non-wetting phases in the pore spaces of the continuous porous medium and the 
discontinuity, the deformation of the solid phase, the fluid exchange between the discontinuity 
and the surrounding porous medium and the possible development of the discontinuity across 
which the cohesive tractions are transmitted is usually strong, which demands the fully coupled 
treatment of the problem. In the formulation presented herein, all these components are brought 
together to thoroughly simulate the deforming, partially saturated porous medium behavior in the 
presence of geomechanical discontinuities, thus exhibiting fluid flow, deformation and fracture 
processes properly. 

The extended finite element method combined with the cohesive crack model yields an 
efficient approach to simulate the cohesive crack propagation [6-8]. In fracturing, partially 
saturated porous media, the crack growth occurs as the progressive decay of the cohesive tractions 
transferred across the fracture process zone and the imposition of the mean pore pressure onto the 
crack faces by means of the pore fluids within the crack. The tractions acting on the fracture faces 
give rise to the mechanical coupling between the fracture and the medium surrounding the 
fracture. Besides, the flux of the two fluid phases through the fracture borders leads to the mass 
transfer coupling, which is a subject of great interest in hydraulic fracturing.  

2 THE PHYSICAL MODEL 
The pores of the solid skeleton in the partially saturated porous medium are assumed to be 

filled up partly with water  and partly with gas . Thus, degrees of saturation of the liquid 
phase  and the gaseous phase  always sum to unity, i.e. . The capillary pressure 
between the two fluid phases is defined as .

The stress relation is expressed by introducing the concept of the modified effective stress  

(1)

in which  is the total stress vector,  is the modified effective stress vector,  is the identity 
vector,  denotes the mean pore pressure applied by the porous fluids on the solid skeleton, which 
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is given by the averaging technique � � ���� � ����, and � is the Biot constant. The 
constitutive equation of the solid phase in the continuum medium surrounding the crack is 
expressed by an incrementally linear modified effective stress-strain relationship 

���� � � �� (2)

where � represents the tangential constitutive matrix of the continuum.  
The non-linear behavior of the fracturing material in the cohesive zone is governed by a 

traction-separation law relating the cohesive tractions to the relative displacements 

�� � ������� (3)

where �� is the cohesive traction transmitted across the fracture process zone and ��� is defined 
as the relative displacement vector at the discontinuity. In quasi-brittle materials, as soon as the 
failure limit of the material is exceeded, the cohesive zone develops in which the material exhibits 
a softening behavior. Linearization of the cohesive relation (3) results in  

��� � � ���� (4)

in which � represents the tangential modulus matrix of the discontinuity to be used in the iterative 
solution procedure, obtained from the relation � � ∂�� ∂���⁄ .

3 GOVERNING EQUATIONS 

3.1 Strong form 
In what follows, the equations specifying the problem are written in terms of the displacement 

of the solid phase, the pressure of the wetting phase and the capillary pressure. For a more 
detailed presentation of the governing equations see Ref. [9].  

The linear momentum balance equation for the porous medium can be written as 

� � � � �� � ��� � � (5)

where ��  is the acceleration vector of the solid phase, � is the body force vector, � is the average 
density of the multiphase system defined as � � �1 � ���� � ������ � �����, in which � stands 
for the porosity of the porous medium. 

The continuity equations for the flow of wetting and non-wetting phase fluids through the 
deforming, isothermal porous medium can be written as 

 
1

���
 ��� �

1
���

��� � � �� �� � �� �� � � �� �� � � �

1
���

 ��� �
1

���
��� � � ���� �� � �� �� � � �

(6)

where ��  is the solid velocity vector, and �� � and �� � are the Darcy velocity vectors of the two 
flowing fluids. The compressibility coefficients are defined as 

1
���

�
� � �

��
�

���

��
�

���

��

1
���

�
� � �

��
��1 � ��� � ��

���

���
� �

���

��

(7)
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in which �� and �� are the bulk moduli of the porous fluids. 
The Darcy relation for pore fluid flow can be written as 

�� � � ������� � ���� � �� �� � � �� � (8)

where �� and �� are the permeability matrices of the porous medium to the pore fluids, which 
are generally evaluated by the following expression 

�� � �
���
��

� � �� �
(9)

in which � denotes the intrinsic permeability matrix of the porous medium, which is simply 
replaced by a scalar value � for the isotropic medium,���� is the relative permeability coefficient 
of the fluid, and �� denotes the dynamic viscosity of the fluid. 

The permeability inside the fracture, i.e. the fully damaged zone and the micro-cracked zone, is 
strongly influenced by the change in the pore spaces of the solid skeleton as a result of cracking 
and micro-cracking processes. To this end, the pore fluid flow within the fracture is modeled by 
means of Darcy law with porosity dependent permeability, in which the dependence of the 
fracture permeability on the porosity is incorporated into the formulation via the coefficient ���

��� � �
������
��

� � �� �
(10)

The following relation based on Ref. [10] is assigned to ���

������� � 1���� � ��� �
6��� � ��
��� � ����

(11)

where �� and � are the current and the initial porosity of the fracture material, respectively.  

Figure 1: Boundary conditions of the body Ω involving the geomechanical discontinuity Γ�
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in which �� and �� are the bulk moduli of the porous fluids. 
The Darcy relation for pore fluid flow can be written as 

�� � � ������� � ���� � �� �� � � �� � (8)

where �� and �� are the permeability matrices of the porous medium to the pore fluids, which 
are generally evaluated by the following expression 
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in which � denotes the intrinsic permeability matrix of the porous medium, which is simply 
replaced by a scalar value � for the isotropic medium,���� is the relative permeability coefficient 
of the fluid, and �� denotes the dynamic viscosity of the fluid. 

The permeability inside the fracture, i.e. the fully damaged zone and the micro-cracked zone, is 
strongly influenced by the change in the pore spaces of the solid skeleton as a result of cracking 
and micro-cracking processes. To this end, the pore fluid flow within the fracture is modeled by 
means of Darcy law with porosity dependent permeability, in which the dependence of the 
fracture permeability on the porosity is incorporated into the formulation via the coefficient ���
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where �� and � are the current and the initial porosity of the fracture material, respectively.  
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3.2 Weak form 

To develop the equations, the two-dimensional domain Ω bounded by the boundary Γ is 
considered. As depicted in Fig. 1, the domain contains the geomechanical discontinuity Γ�.

The weak form of the equilibrium equation for the multiphase system is given by 

� ��� � � dΩ
Ω

� � ��� ��  dΩ
Ω

� � ���� ��� � ������ dΓ
��

� � �� �� dΓ
��

� � ��� � dΩ
Ω

(12)

which must hold for any kinematically admissible test function for the solid phase displacement 
�, satisfying the homogenized essential boundary condition. 

Incorporating Darcy law, the weak form of the continuity equation of flow for each of the fluid 
phases is given by 

� ��
1

���
��� dΩ

Ω
� � ��

1
���

��� dΩ
Ω

� � ��� �� �� dΩ
Ω

� � ��� � ��� ��� � ��� dΩ
Ω

� � �� ��� � ��� dΩ
Ω

� � ����� � ����� ��� � ��  dΩ
Ω

� � ������ � ���� dΓ
��

� � ����� � ����� ���� � dΩ
Ω

� � �� ��� dΓ
���

� � �� ��� dΓ
���� ���

� � �� �� �� �� dΓ
���� ���

� ��
1

���
��� dΩ

Ω
� � ��

1
���

��� dΩ
Ω

� � ��� �1 � ��� �� ��  dΩ
Ω

� � �� ��� � ��� dΩ
Ω

� � �� ��� � ��� dΩ
Ω

� � ���� ��� � ��  dΩ
Ω

� � �� ��� dΓ
��

� � ���� ���� � dΩ
Ω

� � �� ��� dΓ
���

(13)

which must hold for any kinematically admissible test function for the wetting phase pressure ��
and the capillary pressure ��, respectively, each disappearing on the boundary portion where the 
corresponding essential boundary condition is imposed. ��� and ��� are the leakage fluxes of the 
two pore fluids along the fracture toward the surrounding porous medium, which implies that 
there exists a discontinuity in the normal flow of the pore fluids across Γ�. In order to arrive at a 
relation for the leakage flux of the pore fluids into the medium surrounding the discontinuity, the 
flow continuity equation for each flowing fluid inside the fracture is averaged over its cross 
section. Following this, the leakage terms appearing in the weak form of the wetting and non-
wetting fluid flow continuity equations of the continuum medium are respectively obtained as 

��� � ��� � ���
1

���
��� � ��

1
���

��� � ��� �
∂�� ��

∂�� � � � ��� ���

��� 
∂

∂�� ���� ��
∂��

∂�� � ������ � ��� ������ (14)
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(15)

in which the notation ��� ������ represents the difference between the corresponding values at 
the two fracture faces and ��� � ������� 2⁄  is specified as the average of the corresponding 
values at the discontinuity faces. 

4 DISCRETIZATION OF THE GOVERNING EQUATIONS AND SOLUTION 
PROCEDURE FOR THE DISCRETIZED SYSTEM 

In order to account for the displacement jump across the fracture, the displacement field should 
be discontinuous. In addition, to take into account each fluid flow jump normal to the fracture, it 
is required that the water pressure and also the capillary pressure field be continuous, while their 
corresponding gradient normal to the fracture be discontinuous. 

Thus, the extended finite element approximation of the displacement field is written as 

���� � �� � � ������ �����
���

� � ������
1
2 ����

��� � ���
����� ������

������

(16)

where ������ is the standard finite element shape function of node �, � is the set of all nodes in 
the mesh, and ���� is the set of enriched nodes defined as the set of nodes in the mesh whose 
support is bisected by the discontinuity. To ensure that the displacement jump is zero at the 
discontinuity tip, the nodes belonging to the element edge on which the discontinuity tip lies are 
not enriched. ����� and ����t� are the standard and enriched degrees of freedom, respectively. The 
discontinuous function ���

��� is taken as the sign function centered on the line of the 
discontinuity Γ�, i.e. ���

��� � ����������, in which ���� is the level set function. 
Symbolically, the enriched finite element approximation of the displacement field in Eq. (16) 

can be written in the following form 

���� � �� � ����� ���� � ��
������ ����� (17)

in which ����� is the matrix of the standard shape functions, and ��
������ is referred to as the 

matrix of the enriched shape functions. ���� is the vector of the standard displacement degrees of 
freedom, and ����� is the vector of the enriched displacement degrees of freedom. 

The water pressure as well as the capillary pressure is approximated as  

��
��� � �� � � ������� ������

���

� � ������� ����
��� � ���

����� ���� �������
������

 (18)

where ������� are the standard finite element shape functions. Nodes in ���� have their support 
bisected by the discontinuity. It is essential that the leakage flux vanish at the discontinuity tip. 
This is assured by requiring that the nodes on the element edge with which the discontinuity tip 
coincides not be enriched. ������ and ������� are the standard and enriched pressure degrees of 
freedom, respectively. ���

��� is the distance function, i.e. ���
��� � |����|. ���� is a weight 
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function with compact support given by 

���� � � �������
������

� � �� � (19)

It is noted that the multiplication with ���� causes the weighted enrichment function to vary 
continuously between the standard enrichment function and zero in the elements whose some 
nodes are in the enriched nodal set, reproducing the standard enrichment function in the elements 
whose all nodes are in the enriched nodal set. The enriched formulation in Eq. (18) has the form 
of the enrichment function in common with the modified formulation in [11,12], but the nodes 
chosen for enrichment conform with those of the standard one. 

Likewise, the enriched finite element approximation of the water pressure and capillary 
pressure fields in Eq. (18) can be rewritten as 

��
��� � �� � ���

��� ����� � ���
������ ������ � � �� � (20)

Following Bubnov–Galerkin, the discretized form of the equations defining the multiphase 
problem is reached 

����� � ������� � � �T���dΩ
Ω

� ����� � ���� ��� � ����� � ���̃��� � ��
���

����
T �� � �������� � � ������T���dΩ

Ω���
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��� � ���

���
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�
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(21)

The above equation system is then discretized in time domain following the line of the well-
known Newmark scheme. To advance the solution in time, the link between the successive values 
of the unknown field variables at time ���� and the known field variables at time �� is established 
by applying GN22 and GN11 to the displacement and pressure variables, respectively, as 

�� ��� � �� ����� � ��� � �� �� � � �� �� �

�� ��� � �� ����� � ��� � �� �� � � �� �� �

��� ��� � �� ������ � ���� � �� ��� � � �� ��� �

��� ��� � �� ������ � ���� � �� ��� � � �� ��� �

������ � ��
�  � ��

��� � ��
�� � ��

�  ����                      � � �� �

���
�
��� � ��

�  � ���
��� � ���

�� � ��
� ���

�
� � � �� �

(22)
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in which �� � � ����⁄ , �� � � ���⁄ , �� � � ���⁄ , �� � � �⁄ � �, �� � � ��⁄ � �, �� �
���� ��⁄ � ��, ��� � � ���⁄  and ��� � � �⁄ � �. In these relations, �� � ���� � �� is the time 
increment, and �, � and � are the Newmark parameters. To guarantee the unconditional stability 
of the time integration procedure, the Newmark parameters must be chosen such that � � 0.�,
� � 0.���0.� � ���, and � � 0.�.

In order to resolve the system of fully coupled non-linear algebraic equations at each time step, 
the direct solution procedure is employed. In this numerical strategy, the discrete system of 
equations is solved at any specified time ���� applying the Newton–Raphson iterative algorithm 
to its residual form, ���� � �. By expanding the residual equations with the first-order truncated 
Taylor series, the following linear approximation for the non-linear system to be solved is reached 
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�������

��̃
��������

�
�
�

�
�
�

�

�
�
�
�

�
�
���

�����

���
�����

��
�����

���
�����

��
�����

��̃
������

�
�
�

�
�
�

� �

�
��
�

��
���

�������

����������
���

�������

����
�������

���
�������

����
��������

��
�

��
�

� � (23)

where � is the well-known Jacobian matrix, defined as ������� �������⁄  in which � represents the 
vector of nodal unknowns, � � ��T ��T ��T ���T ��T ���T�T. By finding the solution of the 
linearized system of equations (23), i.e. the increment of the standard and enriched nodal degrees 
of freedom, the corresponding nodal unknowns are subsequently attained through the incremental 
relation �������� � ������ � ��������� .

5 NUMERICAL SIMULATION RESULTS 

The square plate with the edge crack of length 0.0��� lying along its symmetry axis is 
simulated. The length sides of the plate is 0.����. The plate is loaded in tension by two uniform 
vertical velocities with magnitude ��� � �.3� � �0������� applied in opposite directions to the 
top and bottom edges of the plate. It is assumed that the plate has impervious boundaries to both 
fluids. Initially, the fully saturated condition is supposed. In the cohesive zone, the linear 
softening cohesive law is applied The material properties of the partially saturated porous medium 
are listed in Table 1. For fracture analysis, the cohesive fracture parameters of the material are set 
as follows: the cohesive strength σ� � �.����� and the cohesive fracture energy �� � 9�����.

The constitutive relations for the water saturation as well as the water and gas relative 
permeabilities are assumed on the basis of the van Genuchten-Mualem (VGM) model 

�� � ��� � �� � ���� �� � �
��
����

�
� �����⁄

�
��

��� � ���� �⁄ �� � �� � ��
��� �⁄ �

�
�
�

��� � �� � ��� � �⁄ �� � ��
� �⁄ �

��

(24)

in which the residual water saturation ��� � 0, the empirical curve-fitting parameter � �
0.4396, the reference pressure ���� � ��.6����, and the effective water saturation �� is defined 
as �� � ��� � ���� �� � ����⁄ .
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The numerical analysis of the plate is performed employing the three-phase model as well as 
the passive gas phase assumption. In these modelings, a comparison is made between the 
numerical results obtained considering the full coupling, i.e. the mechanical and the mass transfer 
coupling between the crack and the surrounding porous medium, and disregarding the mass 
transfer coupling. In the latter case, the interfacial flux vectors in the system of equations to be 
solved are omitted. Subsequently, the water pressure and capillary pressure fields need not be 
enriched any longer. Thus, the crack is not identified as a discontinuity in the fluid flow normal to 
the crack. That is, in the case without the mass transfer coupling term, no distinction is made 
between the flow of the pore fluids in the crack and in the porous medium surrounding the crack. 

The numerical analysis continues until the crack tip gets to the right-hand side of the plate. The 
simulation results are presented for the time step before the crack propagates through the whole 
plate. Fig. 2 exhibits the contours of the water pressure for different simulations. As can be seen, 
incorporating the mass transfer coupling term into the simulation results in high negative water 
pressures concentrated in the vicinity of the crack, which implies that the pore water is drawn into 
the crack. These effects can also be distinguished in the contours of the gas pressure shown in Fig. 
3, which result from the three-phase model. As observed in this figure, the negative pressures are 
greater in the case with full coupling than those without the mass transfer coupling. Moreover, it 
can be noticed that allowing for the interfacial flux along the crack leads to the considerable 
decrease of the gas pressure in the area surrounding the crack. This causes the pore gas to flow 
toward the crack. The gas pressure contours reveal that the values of the gas pressure, ignored in 
the model based on the assumption of the passive gas phase, can be as large as those of the water 
pressure. The impact of the incorporation of the mass transfer coupling on the results can further 
be evidenced by comparing the contours given in Figs. 4 and 5 representing the norm of the water 
pressure and gas pressure gradients, respectively. In accordance with what was observed before, 
pressure gradients with high values develop in the zone around the crack due to the mass transfer 
coupling. It also appears that the simulation in which all primary variables are enriched results in 
much higher values of the pressure gradient compared with those obtained without the water 
pressure and the capillary pressure enrichment. The results obtained with the passive gas phase 
assumption qualitatively correspond to those reported in Ref. [5]. 

Table 1: Material properties 

Young's modulus � � ����� GPa
Poisson's ratio � � ����
Biot's constant � � �
Initial porosity � � ���
Solid phase density �� � ���� �� m�⁄
Water density �� � ���� �� m�⁄
Air density �� � ��� �� m�⁄  
Bulk modulus of solid phase �� � ����� GPa
Bulk modulus of water �� � ��� GPa
Bulk modulus of air �� � ��� � ���� GPa 
Intrinsic permeability � � ���� � ����� m� 
Dynamic viscosity of water �� � � � ���� Pa s
Dynamic viscosity of air �� � � � ���� Pa s 
Atmospheric pressure ���� � � Pa



1536

Toktam Mohammadnejad and Amir Reza Khoei. 

10

(a)      (b)

(c)      (d)  
Figure 2: Water pressure (Pa) contours: (a) three-phase model with full coupling, (b) three-phase model without 
mass transfer coupling, (c) passive air phase model with full coupling and (d) passive air phase model without 

mass transfer coupling 

(a)      (b)
Figure 3: Gas pressure (Pa) contours: (a) three-phase model with full coupling and (b) three-phase model 

without mass transfer coupling 
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(a)      (b)

(c)      (d)  
Figure 4: Norm of the water pressure gradient (Pa/m) contours (logarithmic scale): (a) three-phase model with 

full coupling, (b) three-phase model without mass transfer coupling, (c) passive air phase model with full 
coupling and (d) passive air phase model without mass transfer coupling 

(a)      (b)
Figure 5: Norm of the gas pressure gradient (Pa/m) contours (logarithmic scale): (a) three-phase model with full 

coupling and (b) three-phase model without mass transfer coupling  
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6 CONCLUSIONS 

In this paper, a numerical model was developed to simulate the flow of wetting and non-
wetting pore fluids in progressively fracturing, partially saturated porous media in which the 
mechanical and the mass transfer coupling between the crack and the porous medium surrounding 
the crack were taken into account. For numerical simulation, the multiphase formulation was 
established based upon the linear momentum balance equation for the multiphase system and the 
flow continuity equation for each fluid phase. The cohesive crack concept was introduced, which 
gives the possibility to describe the non-linear behavior of the quasi-brittle material in the fracture 
process zone. In numerical modeling, the partition of unity property of finite element shape 
functions was exploited, which allows the local characteristic to be incorporated into the standard 
finite element approximation. The proposed method was successfully applied to the example 
involving a plate with a propagating cohesive crack, which puts in evidence the performance and 
applicability of the method. As illustrated in this example, the results are highly affected by 
inserting the discontinuity in the pressure normal derivative and thus considering the mass transfer 
coupling through the enrichment of the pressure field. In addition, it was verified that for a 
complete analysis of the problem the three-phase model is needed to be employed. 
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Abstract. A 3D meso-scale model for failure of heterogeneous quasi-brittle materials is
presented. At such scale, concrete can be represented as an heterogenous material with
two phases, where aggregates are included within the concrete. The model problem of
heterogeneous materials that is adressed in detail here is based, on the one hand, on
FE models with embedded discontinuities and, on the other hand, on a morphological
representation using Gaussian or Gaussian related random field excursion sets.

1 Introduction

In view of the growing complexity of macroscopic models of concrete like materials, the
question of multi-scale observation became relevant. It clearly appears that macroscopic
behaviours of such material (cracking, creep. . . ) take their origin at smaller scales (meso-
scopic, microscopic. . . ). The framework presented here is to be seen in this context, and
especially in a sequenced way (as opposed to integrated one [1]) where the macroscopic
behaviour comes from a mesoscopic description of the material. At this particular scale,
concrete must be represented as heterogenous materials. Therefore, both mechanical and
geometrical properties have to be represented by the framework.

This communication first present a morphological modeling framework for heterogenous
materials. A concrete like material described as a two-phase material is considered here,
where inclusions (aggregates) are included within a matrix (cement past and sand). The
idea behind this morphological model is to yield the phases from random field excursion
sets. Moreover, adding more phases in order to extend possibilities of representation
is possible by adding excursion sets. If the framework deals with correlated Gaussian
or Gaussian related random field (such as the chi-square distribution - χ2), an analytic

1

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



1540

E. Roubin, M. Bogdan and J.B. Colliat

formulae links the random field characteristics with geometrical and topological quantities
(volume, surface area, Euler Characteristic...) of the underlying excursion set. This
link has been recently made in [2] giving the possibility of controlling the excursion set
characteristics and applying it to represent material phase with chosen characteristics.
For a realistic modeling of a concrete like material, both in term of geometrical and
topological quantities, due the Gaussian case limitation, an application of the χ2 random
field is made. Both unidimensional Karhunen-Loève decomposition and turning-bands
projectional method are used to simulate three dimensional discrete correlated Gaussian
random fields.

Efforts of morphological modeling are here made within a multi-scale linear frame-
work using a FE model with embedded discondinuities [3]. In order to represent these
heterogeneities, those excursions are projected onto the FE mesh, thus defining a set
of discontinuities within the strain field interpolation (weak discontinuities [4]). These
kinematics enhancements lead to ”non-adapted” meshes in the sense of independence be-
tween heterogeneities morphology and the underlying FE mesh. Application of this linear
implementation is made for a simple hydration process model presented here.

Considering the non linear failure behaviour, weak discontinuities are completed with
a set of strong (displacement field) discontinuities within the framework of local enhance-
ment [5]. Those discontinuities allow for a simple and accurate representation of the
meso-scale cracks. The macroscopic response of this model is shown for a simple tension
test.

2 Random field generation

As the whole morphological framework is based on Gaussian (or Gaussian related)
correlated random field, efforts have to be made in the numerical implementation of their
generation. This part explains two methods used to generate realisations of such fields.
First the Karhunen-Loève decomposition [6] and then the turning bands projection [7].
Through this paper, we shall call γ(x, w) a Gaussian random field over a parameter space
M (which shall always be taken here to be a bounded region of RN) which takes values
in R. It is assumed that γ has mean zero, variance σ2 and is isotropic and stationnary
with a Gaussian covariance function defined as C(x, y) = C(‖x − y‖) = E{γ(x)γ(y)} =
σ2e−‖x−y‖/Lc where Lc is the correlation length.

The orthogonal decomposition of Gaussian correlated random fields theory stipulates
[8] that mean zero Gaussian field with continuous covariance function (such as C) can be
written as follows

γ(x, w) =

∞
∑

n=1

ϕn(x)ξn(w), (1)

where ξn(w) are zero mean, unit variance Gaussian random variables, and ϕn(x) are
functions on M determined by the covariance function C. It is worth noting that eq.(1)

2
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allows for stochastic - w - and spatial -x - variables separation. Therefore, implementing
this framework comes to put the effort in the determination of the spatial functions ϕn(x).

The Karhunen-Loève decomposition is based on the previous orthogonal decomposi-
tion. It allows us to determine these spatial functions ϕn(x) for simple compact M in
R

N . Demonstration can be found in [9] that they can be determined by first solving the
following eigenvalues problem (known as Fredholm problem):

∫

M

C(x, y)ψ(y)dy = λψ(x) (2)

where λ and ψ are respectively the eigenvalues and eigenvector and then by setting
ϕn(x) =

√
λnψn(x). Theoretically, an infinite sum is needed to define the exact random

field in eq.(1). For the numerical implementation made here, a Finite Element Method is
used to solve a discretized Fredholm problem. Therefore, using a finite set of eigenvalues
and eigenvectors, the following troncated Karhunen-Loève decomposition eq.(3) defines
an approximative realization of the underlying random field.

γ(x, w) =
m

∑

n=1

√

λnξn(w)ψn(x). (3)

The fact that stochastic and spatial variables are still separated is an essential result
for any numerical implementation. Indeed, once the m couples {λn;ψn} of a certain
correlated random field are determined, the generation of a realization comes to generate
a set of independent Gaussian variables (which only requires a random number generator).
Moreover, the same couples can be used to produce any other realizations of the same
field.

The precision of this method, involving full squared matrix eigenvalues problem, is
quickly limitated by the memory storage when one deals with multi-dimensional random
fields of large size. The turning bands projectional method has been developped by Math-
eron [7] in order to reduce the amount of numerical ressources. The idea is to generate
several one-dimensional realizations of random fields to produce a multi-dimensional one.
The algorithm below explains this projectional method with details.

Let M be the discreted multi-dimensional bounded region where the final realization
will be created. Several lines have to be generated (we shall call L their number) with
one arbitrary intersection point 0 and an uniform distribution of directions over the unit
ball (see Fig.1).

Let z(ζ, wi), i = 1..L be the L realizations of a one-dimensional correlated random field
generated over the L lines. For each point N on M , the value of the multi-dimensional
realization is the average of the one-dimensional realization values at the projection of N
on each line i:

γ(N,w) =
1

√
L

L
∑

i=1

z(ζNi
, wi) (4)

3
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0

z(ζNi
)

line i

ui

N

M

Ni

ζixNi

Figure 1: Schematic representation of the turning band method (from [10])

In this paper, the application of the method is made for three-dimensional random
fields. The key of this method is the link between the three-dimensional covariance func-
tion C and the equivalent one-dimensional covariance function C1 we need to generate
the L realizations. Let C(r) be as above (with r = ‖x− y‖). Following [7] we have

C1(r) =
d

dr
(rC(r)) = σ2

(

1−
2r2

L2
c

)

e−r2/L2
c (5)

3 Excursion Set

We call an excursion set the morphology of a subset of a bounded region defined by
thresholding a realization of a random field. It allows us to create a set of random shapes.
Let γ be a realization of γ(x, w) : M ⊂ R

N → R define as above and u ∈ R a chosen
threshold. The underlying excursion set Au is defined by the points of M where the values
of γ are above u (eq.(6)).

Au ≡ Au(γ,M) � {x ∈ M : γ(x) ≥ u} (6)

This principle, applied for M ∈ R is shown on Fig.2.
In our case, random fields will be yield in a three dimensional space (M ⊂ R

3) and
therefore define three-dimensional excursion sets. The two excursions represented in Fig.3
are made from the same realization with two different threshold values. It is clear that, by
changing this value, a large range of varied morphologies can be generated. This exemple
shows that “low” values of u produce excursions mainly made of handles with high volume
fraction, giving a “sponge” like topology (Fig.3(a)), whereas “high” values of u produce
excursion made of several connected components with a lower volume fraction (Fig.3(b)).

In order to provide a global description of the resulting morphology, the Lipschitz-
Killing curvatures, hereafter LKCs, are choosen. In a N -dimensional space N + 1 LKCs
can be defined where each can be thought of measures of the ”j-dimensional sizes” of

4
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γ

x

u

Au M

Figure 2: Schematic representation of a one-dimensional excursion set Au

(a) “Low” threshold - sponge
topology

(b) “High” threshold - meatball
topology

Figure 3: Effect of threshold value on tri-dimensional excursion topology

Au. In our three-dimensional case, the four LKCs, denoted by Lj, j = 0..3, provide both
geometrical - L1, L2, L3 - and topological - L0 - descriptions of the morphology Au. They
are defined by:

- L3(Au) is the three dimensional volume of Au.

- L2(Au) is half the surface area of Au.

- L1(Au) is twice the caliper diameter of Au.

- L0(Au) is the Euler characteristic of Au, which contrary to the other LKCs is a
topological measure. In three-dimension, it can be calculated by:

L0(Au) = #{connected components in Au}−#{“handles” in Au}+#{“holes” in Au}

For exemple, a ball or a cube are topologicaly identical (Euler characteristic L0 = 1)
but differ from a hollow ball (L0 = 2) or a ring torus (L0 = 0).

5
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Following [2], a probabilistic link has been made between excursion set properties and
random field thresholding parameters giving an explicit formulae for the expectation of
the LKCs - E {Li (Au (γ,M))}. It is not the purpose of this paper to give details on these
formulae, however, full proof and details can be found in [9]. The only idea one need
to remember to go through this paper is that this theory gives a new tool helping us to
predict all the geometrical and topological properties of an excursion set from the random
field characteristics and the threshold - σ, Lc, u -. These relations have been made explicit
for γ(x, w) as above on a cube M =

∏3
i=1[0;T ]:
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(7)

Fig.4(a) and Fig.4(b) represent respectively the Euler characteristic and the volume
fraction - directly linked with the fourth LKC by E{L3}(Au)/T

3 - of excursion sets of
γ(x, w) for u from −20 to 20.
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Figure 4: LKCs of excursion sets of Gaussian random field in term of threshold values.

Expected values of LKCs provided by (7), + Numerical values calculated from one
realization of γ(x, w).

The constant decreasing shape of the volume fraction curve in term of u clearly reflects
the effect of the threshold level on the “size” of Au. Even if more peculiar, the Euler
characteristic curve shape reflects also easily the effect of the threshold on excursion sets
topology. For values of u lower than the lowest value of γ, the Euler characteristic is
the one of the full cube (L0 = 1). By increasing u, several holes appear, counting in
positive for the Euler characteristic (L0 > 1). Then, the expansion of the holes starts to
form handles which lead to a sponge like topology (L0 < 0). By increasing u even more,
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handles disappear forming a “meatball” like topology of connected components (L0 > 0).
Finally, the Euler characteristic decreases to L0 = 0 when no more connected components
remain.

From the comparison between theorical values and measures on one realization, we can
point out that the variability of the numerical generation is very low. Therefore, although
eq.(7) gives only expectations of LKCs, for this range of excursion sets we can assume
that V{Li(Au)} � 1.

So far, we have seen the effect of the threshold value on excursion sets. But one needs
to remember that, according to eq.(7), both variance and covariance length of γ(x, w)
affect the morphology as well. Understanding the full behaviour of these equations is a
key point for anyone who wants to make excursion set modeling.

4 Application of the modeling framework on concrete like material

The material is represented as an heterogeneous material with two phases. One phase
(aggregates) is represented by an excursion set of a correlated random field while its second
phase (concrete) is represented by its complementary. Therefore in this part, the effort
will be put in a “realistic” representation of the aggregates phase. We keep only three
relevant characteristics from the four LKCs: the volume fraction Vv, the volumic surface
area S and the number of agregates N which are respetively linked with L3, L2 and L0.
Thought Vv and S can be directly estimated, attention must be taken when it comes to
N . Indeed the Euler characteristic does not indicate the number of aggregates for every
topology. In our case, the “meatball” topology has to be targeted and it is only once we
assume that the excursion set is free from holes and handles that N can be estimated by
L0. In this specific kind of topology: N � #{connected components} = L0.

Once the three characteristics (N ,S, Vv) of the phase are set, the generation of the
underlying excursion set rely on finding a solution for (u, σ, Lc) that satisfy the following
system:







E{L3}(u, σ) = VvT
3

E{L2}(u, σ, Lc) = 1
2
ST 3

E{L0}(u, σ, Lc) = N
(8)

Due to the intrinsic non linearity of eq.(7), depending on the different values of (N ,S, Vv)
(especially for “meatball” topology - N � 1) the problem eq.(8) do not always have a
solution. For exemple, we can clearly see on Fig.4 that we can not expect N to be up-
per than 40 while keeping a “high” volume fraction (Vv > 40%). Which in our case of
concrete like material modeling leads to a major issue. So far, the more realistic solution
for “meatball” topology we get with this framework allows us to represent an aggregate
phase with a maximum of 15% volume fraction.

Until now, the framewok has been presented considering Gaussian random fields. But
estimation of LKCs for excursion set can also be worked out considering Gaussian related
fields. The application of this paper is made using a chi-square distribution with k degrees

7
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of freedom - χ2
k -. Realizations of such fields can be seen as sum of k independent squared

realizations of a correlated Gaussian random field. Let δ be a realization of such field and
γi, i = 1..k be k realizations of the Gaussian field γ(x, w) described above. We have :

δ =

k
∑

i=1

γ2
i (9)

Although similar to eq.(7), the use of a χ2
k distribution add the parameter k to the

system eq.(8). With such field, the nearest solution is found for k = 1 and enable us to
double the previous volume fraction Vvmax

≈ 30%. Fig.5 shows a two-dimensional slice of
excursions from a Gaussian realization and a χ2

1 made from the same realization. Fig.5(b),
being the excursion from the squared realization of the excursion Fig.5(a), shows clearly
that, for the same threshold, it is natural to expect the volume fraction to double between
excursions of Gaussian and χ2

1 random fields.

(a) Gaussian realization - γ (b) χ2
1 realization - δ = γ2

Figure 5: Comparison between Gaussian and χ2
1 excursion sets for the same threshold value.

The χ2
1 distribution remains the more suitable solution for meatball topology and high

volume fraction morphology we found.

5 FE model for heterogeneous material - Application to hydration process
modeling

The approach made here relies on a spatial truss, to model pattern of heterogeneities.
The choice of a not adapted meshing process is made here thus, the spatial positions of
nodes are not constrained by the morphology. Therefore, both gemetrical and mechanical
properties have to be handle inside some interface elements. These cut elements are split
into two parts, each having different elastic properties by enhancing them with strain
(weak) discontinuities [11]. An elementary enhancements method (E-FEM) method for
kinematic enhancement of Finite Element using the Hu-Washizu variational formulation is
used here. For example, if we consider a two-phase material (inclusions within a matrix),

8
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three sets of elements are needed: those entirely in the matrix, those entirely in the
inclusions, and those which are split between both (cut elements). To calculate these
elements repartition, a projection of the previous excursion set is made onto the truss.
In order to illustrate this linear framework, a simple hydration process of concrete like
material modeling has been implemented. Considering a simplistic version of the Powers
and Brownyard hydration model [12], with only three phases: unreacted cement, hydration
products (including gel water) and free water, the volume fraction of each one of them
can be calculated according to the following equations:















p = w/c
w/c+ρw/ρc

Vanh = (1− p)(1− α)
Vh = 2.12(1− p)α
Vw = 1− Vh − Vanh

(10)

where p is the initial porosity, α the hydration degree and Vanh , Vh, Vw respectively the
volume fractions of anhydrous cement, hydration products and water.

(a) α = 0.1 (b) α = 0.5 (c) α = 1

Figure 6: Projection of excusion set shapes on FE truss for different hydration degrees.

water, hydration products, anydrous cement

As explained previously, thresholding a random field with a scalar allows to create a
two phase material. One can easily imagine, that a second threshold, with a different
value, will allow to create an additional phase, concentrical to the first one. Therefore,
setting two thresholds will allow us to create a three phase material. Thus, for different
hydration degrees, each phase’s volume fraction is known and can be linked to the random
field’s thresholds ui (equation eq.(7)). Eventually, the initial morphology is set up by one
threshold (two phases: water and unhydrated cement), and then, for a growing hydration
degree, two thresholds are calculated and applied to the random field, creating a three
phase material (water, unhydrated cement and hydration products).

Within this framework, macroscopic material characteristics like Young modulus can
be estimated over a given hydration degree with simple tension tests. The following
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characteristics have been chosen Eanh = 135 000 MPa, Eh = 25 000 MPa and Ew =
1 MPa.
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Figure 7: Young modulus of a concrete like material for different hydration degrees.

Fig.7 shows that the continuous growing of the macroscopic Young modulus over hy-
dration degree is well handled by this FE representation. A slight raising of the slope can
be seen after α = 0.4.

6 FE models with embedded discontinuities

In addition to the geometrical representation of heterogeneities, displacement (strong)
discontinuities are also introduced in the elements, in order to model a non-linear softening
response based on failure quasi-brittle. These discontinuities represent micro-cracks that
can occurs in both phases as well as at the interfaces (debonding). Details of this FE
numerical implementation can be found in [3].

A other simple tension test is presented here. Material properties are defined according
to Tab.1.

Table 1: Material properties

Matrix Inclusions Interface
E = 10GPa 70GPa −
σu = 3MPa − 3MPa
Gf = 11J/m2 − 11J/m2

Two remarks are worthy of attention. The first is that the interface is of rigid-brittle
type. The second is that we choosed for inclusions to remains in the linear elastic regime.
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(a) Displacement field and crack pat-
tern at last time step
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(b) Load vs imposed displacement

Figure 8: Results for simple tension

The cracking pattern is shown on Fig.8(a) where two zones are splited by a macroscopic
crack (represented by means of the broken elements). Fig.8(b) shows the macroscopic
load vs imposed displacement curve where three steps can be seen. First, a linear part
where no failure occurs. Then, with the apparition of several microscopic cracks, we can
observe a yield behaviour. Finaly, the softening part begin when the localisation of these
microscopic cracks creates a macrosopic one.

7 Concluding remarks

This communication presents a first attempt to create a sequential multi-scale frame-
work where morphology of heterogeneous material is defined by excursion sets of correlated
random fields. Though, efforts still have to be made in order to generate more realistic
morphologies, advantages have been shown through two examples. We can also add that
this framework is well adapted to other problematics related with concrete like materials
such as the effect of morphological variability on macroscopic behaviour. Indeed, the
use of both Karhunen-Loève decomposition and non-adapted meshes allows fast compu-
tations, limiting the growing amount of numerical ressources needed when dealing with
large sets of morphologies. Futhermore, being able to represent broken elements by means
of a strong discontinuity in the FE method allows calculations of permeability or diffusion
in such damaged materials [13].
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Abstract. Based on a multi-scale approach comprising a multi-scale material model and
a respective finite-element (FE) analysis tool, the indentation response of porous materials
is examined in this paper. The considered material is assumed to consist of a homoge-
neous Drucker-Prager-type matrix-phase and spherical pores. Non-linear homogenization
is employed to derive both a strength criterion and a hardening rule at the macroscopic
scale without the need of any additional non-physical material parameters. Hereby, the
underlying macroscopic hardening is exclusively controlled by the evolution of the pore-
space during loading. The material model is implemented in a FE program within the
framework of elastoplasticity. The so-obtained analysis tool is applied to the analysis
of indentation experiments commonly used for characterization and performance-based
optimization of materials.

1 INTRODUCTION

Indentation experiments are commonly employed for determination of strength prop-
erties (hardness) of materials. Nowadays indentation analysis is applied on a great variety
of materials and at various length scales, ranging from nanoindentation (e.g. Constan-
tinides et al. [6]) to classical hardness measurements according to Tabor [15]. This gives
scientists and engineers access to material properties even if ordinary test specimens for
mechanical (compressive/tensile) testing are not available.

Meanwhile there are a number of publications treating indentation analysis for mono-
lithic solids, focusing on the phenomenological aspect at the macro-scale (see e.g. Cheng et
al. [5] for elastoplasticity, and Pichler et al. [14] for viscous material behaviour). In order
to obtain a better understanding of indentation experiments, micro-mechanical changes
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taking place in course of the indentation process are considered. E.g., application of limit
analysis to porous material as presented in Cariou et al. [3] gives access to characteristic
hardness-packing relations. Still, there are some underlying assumptions and restrictions:
The change of material properties caused by the load history (hardening or softening) is
neglected as well as piling-up or sinking-in effects. Besides, the so-obtained relations are
only valid for virtually rigid materials and associated yielding.

Departing from the work presented in [3], a micromechanics-based material model based
on nonlinear homogenization is developed and implemented in a FE program within the
framework of non-associated hardening/softening elastoplasticity. Based on numerical
simulations, the significance of the involved physical mechanism is investigated in regard
to material characterization in indentation tests.

2 MATERIAL MODEL

The underlying material is assumed to consist of two phases: a solid phase and a
pore phase. In the sequel, the existence of a representative elementary volume (REV) is
assumed, which is equivalent with the requirement

d � L � h , (1)

where d represents the characteristic size of pores, L the size of the REV, and h the
indentation depth.

2.1 Elastic and plastic material properties

The pore phase of the considered two-phase material is characterized by its volume
fraction ϕ and the shape of the pores. In the following, the pores are assumed to be
spherical. The solid (matrix) phase is modeled as an elastoplastic material. Hereby, the
domain of strength compatible stress states, EM , is defined by a yield function according
to the Drucker-Prager criterion, given by the cohesion c and the friction coefficient α of
the material:

σ ∈ EM ⇔ fM(σ) = σd(σ) + ασm(σ)− c ≤ 0 , (2)

where σm is the hydrostatic pressure, and σd the equivalent deviatoric stress:

σm =
1

3
trσ, σd =

√

1

2
s : s, s = σ − Iσm . (3)

Within the elastic domain, the material is supposed to exhibit linear-elastic behavior,
represented by the fourth-order tensor CM .

The domain EM remains unchanged during loading (ideal plasticity). While an associ-
ated flow rule implies dilatation, a non-associated flow rule is adopted in order to describe
volume-preserving yielding of the solid (matrix) phase, giving a plastic potential in the
form:

g(σ) = σd(σ) . (4)

2
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2.2 Homogenization of elastic properties

Let V be the domain of the REV and VM the domain of the solid (matrix) phase. In
case of absence of pore pressure as supposed in the following, the homogenization problem
of elastic properties is given in the framework of uniform strain boundary conditions by

divσ = 0

σ = CM : ε

ξ = E · x

in V

in VM

in ∂V

(5)

Therein, x is the position vector, E the macroscopic strain tensor, and ξ the displacement
vector at the boundary of the REV. A macroscopic stress tensor Σ is defined as the average
of the local stress σ:

Σ =
1

V

∫

V

σdV = 〈σ〉V . (6)

The homogenized stiffness tensor Chom sought-after relates the macroscopic strain to the
macroscopic stress:

Σ = Chom : E (7)

For homogenization, the Mori-Tanaka scheme is applied, which yields the homogenized
bulk and shear modulus as (see, for instance, [7] for details):

khom =
4kMµM(1− ϕ)

3kMϕ+ 4µM
, µhom = µM

(1− ϕ)(9kM + 8µM)

9kM(1 + 2
3
ϕ) + 8µM(1 + 3

2
ϕ)

(8)

Accordingly, the macroscopic stiffness tensor is obtained by:

Chom = 3khomJ+ 2µhomK, (9)

with

Jijkl =
1

3
δijδkl, K = I− J , (10)

where δ is the Kronecker delta and I is the fourth-order unit tensor.

2.3 Homogenization of strength properties

While application of homogenization schemes to elastic properties is widely spread,
most developments concerning non-linear behavior of composite material are relatively
recent. An early and widely accepted criterion for porous Mises-type material was estab-
lished by Gurson [8]. Since then, a number of contributions dealt with purely cohesive
matrix phases, describing the material as fictitious non-linear elastic (see [16] for a sur-
vey). In [10], this approach was adopted for frictional solid phases with rigid inclusions
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and in [7] for porous media, respectively. While these contributions derived the macro-
scopic yield criterion analytically, Pastor et al. [12] made use of simulation tools based
on limit analysis.

An analytical formulation based on non-associated yielding was reported in [11]. There-
in, the non-associated plasticity problem is interpreted as a nonlinear-viscoplastic problem
with a pre-stress depending on the strain rate field ε̇ to account for non-associated yielding.
By introducing a representative strain rate (see [7]), this problem can be further simplified
to a problem yielding an analogous structure as the problem of homogenization of elastic
properties with pre-stress. Using the Mori-Tanaka scheme, the macroscopic yield function
reads [11]:

Fhom(Σ, ϕ) =

(

3

4
ϕ− α2

)

Σ2
m + 2αc(1− ϕ)Σm +

(

2

3
ϕ+ 1

)

Σ2
d − c2(1− ϕ)2 , (11)

where ϕ represents the porosity of the material. For volume preserving yielding, the
corresponding plastic potential is given by [11]:

Ghom(Σ, ϕ) =
3

4
ϕΣ2

m +

(

2

3
ϕ+ 1

)

Σ2
d . (12)

In contrast to the model proposed in [11], ϕ is considered as hardening variable in this
paper, depending on the volumetric change of the material. The total change of volume,
∆V , reads:

∆V = ∆VI +∆VM . (13)

∆VI and ∆VM refer to the volume change in the inclusions (pores) and the matrix phase,
respectively. ∆VM , resulting only from elastic material response, is neglected (plastic
deformation was assumed to be volume preserving). Thus, the macroscopic volumetric
strain is given by:

Evol =
∆V

V
≈

∆VI

V
=

VI +∆VI

V
−

VI

V
= ϕ− ϕ0 . (14)

Since the initial ϕ0 is a constant, expression (14) becomes in rate form:

ϕ̇ = Ėvol = tr(Ė) . (15)

2.4 Finite-element implementation

In the numerical simulation of indentation tests, geometric nonlinearities are taken
into account. In large-strain elastoplasticity, a common concept is the multiplicative de-
composition of the deformation gradient into an elastic and plastic part (F = FeFp), as
originally proposed in [9]. In case of isotropy, this is equivalent to the additive decompo-
sition of the logarithmic strain measure (see, for instance, [13]). Thus, the measures used
in the following refer to the logarithmic strain measure.

The material model is defined by
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Figure 2: Conical indentation (h: indentation depth, hc: penetration depth considering pile-up/sink-in,
θ: half-angle of the cone, A: projected area of indent, P : applied force.

irreversible part. As a result, permanent deformation remains after unloading, giving
access to the hardness of the material usually defined by the ratio of the applied force P
and the projected area A of the residual imprint (H = P/A).

In this paper, the indentation of the three-sided pyramidal-shaped Berkovic indenter
is treated. As this indenter belongs to the class of geometric self-similar indenter, it does
not posses a characteristic length scale (unlike, e.g., the radius of spherical indenters).
The geometry is completely described by the angle of inclination θ of the pyramid. Con-
sequentially, the applied force P can be expressed in case of porous materials treated in
the previous section as

P = fP (E, ν, c, α, ϕ0, di, h, θ) . (18)

Therein, the first four variables are the elastic and plastic properties of the matrix phase
and ϕ0 is the initial void ratio. The set of variables di represents the size of the pores.
Applying the Π-theorem according to Cheng [4] yields:

P

Eh2
= ΠP

(

E

c
, ν, α, ϕ0,

di
h
, θ

)

. (19)

As the sizes of the pores are assumed to be very small in relation to the indentation depth
(i.e., di/h → 0), the function ΠP can be regarded as independent of the specific values of
h and di. Thus, the resulting indentation problem is given by

P

Eh2
= ΠP

(

E

c
, ν, α, ϕ0, θ

)

. (20)

For describing the sink-in and pile-up effect, the variable hc is introduced (see Figure 2).
It defines the vertical distance between the tip of the indenter and the highest point of the
material which is in contact with the indenter. Analogously to P , the following relations
can be established:

hc = fh(E, ν, c, α, ϕ0, di, h, θ) , (21)

which yields
hc

h
= Πh

(

E

c
, ν, α, ϕ0, θ

)

. (22)
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Figure 3: FE model.

3.2 Results

The indentation experiment was simulated with the FE program Abaqus using the user
material subroutine and considering geometric nonlinearities. At large strain analysis,
Abaqus delivers approximations of logarithmic strains to the user subroutine (c.f. [1]).
Thus, the model given in Equation (17) can be employed without modifications.

Instead of using the real geometry of the Berkovic-Indenter, the indentation was sim-
ulated by means of a cone with an accordant A/h2 ratio, giving a half-angle of the cone
of 70.32◦. Hence, the problem becomes axisymmetric and is modeled in two dimensions
(see FE model in Figure 3). Through varying the parameters E/c, α, and ϕ0, the yet
unknown functions ΠP and Πh are numerically evaluated.

ΠP and Πh are evaluated for three different friction coefficients α (0.0, 0.25, and 0.5,
see Figure 4). Note, that ϕ0 denotes the initial porosity while the current porosity ϕ
depends on the loading history and varies in space.

Low values for the E/c-ratios represent purely elastic material behavior while increas-
ing E/c leads to an increasing influence induced by plasticity. In the elastic range, Πh

apparently does not depend on the porosity ϕ0, while this influence increases for larger
values for E/c. For materials with porosities larger than about 0.3, Πh approaches 1.0 for
large E/c-ratios. As expected, a higher friction coefficient α causes more stiffness (i.e.,
higher ΠP ) in the elastoplastic domain.

Using ΠP and Πh, the hardness of the material related to the cohesion is obtained by

H

c
=

E

c

ΠP

Π2
h π tan2θ

. (23)

In Figure 5, H/c is displayed and compared with results of Cariou et al.[3]. In [3], exten-
sive parameter studies were performed, examining the material response for a number of
different indenters and material properties. Therein, the material model is based on the
same yield criterion as in the present work but restricted to associated yielding. As the
analysis in [3] is based on limit analysis, neither the loading history and thus sink-in/pile-
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purpose, one application in parameter identification, shown in Figure 6(a), is considered
where the properties of the matrix phase are known (E, ν, c, and α) and the initial
porosity ϕ0 should be determined. For an experimentally-determined hardness/strength-
ratio H/c of 1.95, the scaling relation presented in this paper yields an initial porosity of
ϕ0 ≈ 0.4 for α = 0 and ϕ0 ≈ 0.53 for α = 0.25, whereas the scaling relations in [3] un-
derestimate the initial porosity with ϕ0 ≈ 0.26 and ϕ0 ≈ 0.45, respectively, representing
somehow the spatial distribution of the porosity below the indenter tip (see Figure 6(b))
in an average manner.
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[2] Barthélémy, J.F. and Dormieux, L. Détermination du critère de rupture macro-
scopique d’un milieu poreux par homogénéisation non linéaire. Comptes Rendes
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Abstract. Micrographs of a dual-phase steel obtained from a EBSD-FIB imaging are
analyzed with respect to a set of statistical measures. Then the applicability of this data
to the construction of statistically similar representative volume elements (SSRVEs) is
discussed. These SSRVEs are obtained by minimizing a least-square functional taking into
account differences of statistical measures computed for a given reference microstructure
and the SSRVE, cf. [11]. For an analysis of the mechanical response the FE2-method is
used and a series of virtual experiments shows the accordance of the response of the SSRVE
to the one of the reference microstructure. In order to demonstrate the performance of
the proposed procedure some representative numerical examples are given.

1 Introduction

To achieve the demands for high strength and good formability modern steels as e.g.
dual-phase steels make use of multi-phase microstructures, see e.g. [4], [5]. Since the mi-
cromechanics of these micro-heterogeneous materials mainly govern the overall material
behavior they need to be taken into account when computer simulations of deep-drawing
processes are performed. For this purpose the FE2-method provides a suitable numerical
tool, see e.g. [12], [7], [10]. There a microscopic boundary value problem, which is based
on the definition of a representative volume element (RVE), is solved at each macroscopic
integration point. However, this method is computationally expensive if substructures of
real micrographs are used as an RVE since these are typically too complex for efficient
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discretizations at the microscale. For that reason the estimation of a suitable RVE is a
challenging task. Thus, we analyze in a first step several micrographs obtained from a
3D EBSD imaging. Afterwards we construct statistically similar RVEs (SSRVEs) which
are characterized by a strongly reduced complexity than usual RVEs and which therefore
lead to procedures of significantly improved efficiency.
The paper is organized as follows. In the first section we introduce several statistical
measures for the characterization of microstructural morphology and afterwards analyze
them for micrographs from a three-dimensional EBSD-FIB imaging. Section 3 describes
the construction method of SSRVEs and the application to a dual-phase steel microstruc-
ture. This paper is closed with numerical examples and a conclusion.

2 Characterization of the Morphology

In this section we are interested in the analysis of the morphology of dual-phase steels,
which are characterized by a martensitic inclusion phase embedded in a ferritic matrix
phase. In addition to the individual mechanical properties of both constituents, the
macroscopic mechanical behavior is also significantly governed by the morphology of the
inclusion phase at the microscale. Therefore we introduce in the following subsections
several statistical measures characterizing the inclusion morphology and analyze a stack
of two-dimensional micrographs obtained from a 3D EBSD-FIB imaging with respect to
these measures.

2.1 Statistical Measures

A well-known fundamental measure for the characterization of the morphology is the
volume fraction, also referred to as phase fraction. This measure is defined for the inclusion
phase i by

P
(i)
V :=

V(i)

V
, (1)

where V(i) denotes the volume of the phase i. In [8] additional basic parameters for the
description are given, e. g. surface density and integrals of curvature. Since typically also
direction-dependend information regarding e.g. laminate-like arranged inclusions leading
to a macroscopically anisotropic behavior, these measures are not sufficient for the char-
acterization of complex microstructures, see [2]. Thus, we consider statistical measures of
higher order to capture microscopic information regarding periodic and directional char-
acteristics in the microstructure.
As a first measure of higher order we consider the (discrete) spectral density (SD) for the
inclusion phase computed from the binary image of the micrograph. The SD is computed
by the multiplication of the (discrete) Fourier transform with its conjugate complex. The
discrete SD is defined by

PSD(m, k) :=
1

2π Nx Ny
|F(m, k)|2 (2)

2
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with the Fourier transform given by

F
I(m, k) =

Nx
∑

p=1

Ny
∑

q=1

exp

(

2 i π m p

Nx

)

exp

(

2 i π k q

Ny

)

χI
SD(p, q) . (3)

The maximal numbers of pixels in the considered binary image are given by Nx and Ny;
the indicator function is defined as

χSD :=

{

1, if (p, q) is in the inclusion phase
0, else .

(4)

A further statistical measure is provided by the lineal-path function, which describes the
probability that a complete line segment −−−→x1x2 is located in the same phase, see [13]. For
its mathematical description we consider the modified indicator function

χLP (−−→x1x2) :=

{

1, if −−→x1x2 is in the inclusion phase
0, else .

(5)

For two-dimensional binary images of statistically homogeneous and ergodic inclusion-
matrix microstructures the lineal-path function is computed by

P
I
LP (m, k) =

1

NxNy

Nx
∑

p=1

Ny
∑

q=1

χI
LP (xmxk) , (6)

for a periodic unitcell. Herein, Nx × Ny defines the number of pixels of the binary mi-
crostructure image to be analyzed. Efficient procedures for the calculation of the lineal-
path function can be obtained by defining suitable templates, cf. [15].

2.2 Analysis of Ensemble Average

In this section we analyze several micrographs with respect to the statistical measures
introduced in the previous subsection. They are obtained from a metallographic char-
acterization using the 3D electron backscatter diffraction (3D EBSD) method. Thereby
a joint high-resolution field emission SEM/EBSD set-up is coupled with a focused ion
beam system (FIB) and provides a set of cross-sectional planes of the considered dual-
phase steel. The equipment and the geometric arrangement is shown in Fig. 1a,b

The sample of the considered dual-phase steel is mounted on a tiltable holder inside the
equipment, cf. Fig. 1b. During the investigation the sample is tilt between two positions:
the cutting and the EBSD position. In the cutting position the FIB system milling thin
layers (10 nm - 1 µm thick) from the investigated surface of the sample. The other position
is used for the EBSD analysis, where an electron beam is focussed onto the milled surface
and the back scatter diffraction patterns are monitored by the EBSD camera. Due to
different diffraction patterns several properties of the sample can be analyzed, e. g. crys-
tal orientations and grain size. Additionally a reconstruction of the in-plane morphology

3
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a) b) c)

Figure 1: 3D EBSD: a) equipment, b) technical setup, cf. [6], and c) two examples of obtained cross-
sections of the considered dual-phase. The micrographs are color-coded with respect to the phases (white:
ferrite, black: martensite) and with an approximate dimension of 15 × 15 µm2.

of the ferritic matrix and the martensitic inclusion phase are possible based on this back
scatter diffraction patterns. Such micrographs are exemplarily depicted in Fig. 1c. For
more details concerning the 3D EBSD method we refer to [6, 3, 14].
In this contribution we use a set of 50 micrographs obtained by the aforementioned tech-
nique. The volume fraction, the spectral density and the lineal-path function of all slices
are calculated from the binary images. Considering a constant distribution density for the
individual samples (micrographs) the ensemble average PSM of the particular statistical
measures PSM can be computed by

PSM =
1

nα

nα
∑

α=1

PSM with nα samples , (7)

where nα denotes the number of samples. The relative standard deviation is given by

ŜSM = SSM/PSM with SSM =

√

∑nα

n=1(PSM(α) − PSM)

nα(nα − 1)
, (8)

where SSM denotes the absolute standard deviation and PSM(α) the individual value
of the statistical measure computed from the sample α. Note, that due to the two-
dimensional character of the spectral density and lineal-path function we apply the latter
equations to each point in the image space. The results are represented by two-dimensional
arrays ŜSM(p, q) with the dimension NSM

x ×NSM
y . To achieve a scalar-valued comparative

measure we introduce the mean relative standard deviation

Ŝ∅
SM =

√

√

√

√

√

1

NXNy

NSM

X
∑

p=1

NSM
y

∑

q=1

[

ŜSM(p, q)
]2

. (9)
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Finally, we obtain the values of the relative standard deviation and the mean relative
standard deviations

ŜV = 0.45·10−1 , Ŝ∅
SD = 1.57·10−1 , and Ŝ∅

LP = 2.36·10−1 (10)

of the volume fraction (V), spectral density (SD) and the lineal-path function (LP), respec-
tively. From the relatively low values we conclude, that the distribution of the considered
statistical measures along the thickness direction is relatively homogeneous. This leads
to the conclusion that two-dimensional micrograph data might be suffient for the con-
struction of two-dimensional SSRVEs, which in turn may enter numerical calculations
of two-dimensional boundary value problems. Thus, in the following section we use one
micrograph taking into account a larger region as the reference microstructure for the
construction of the SSRVEs, cf. Fig. 2a.

3 Statistically Similar RVEs

The choice of the representative volume elements (RVE) is an essential task in the
context of direct micro-macro approaches. In general, the RVE is determined by the
smallest possible sub-domain reflecting the macroscopic behavior of the target material
in an adequate manner. However, these RVEs are typically too complex for efficient
calculations. Therefore, the construction of statistically similar RVEs (SSRVEs) which
are characterized by a significantly lower complexity are to be constructed in this section,
cf. [1], where the method is introduced taking into account the volume fraction and the
spectral density. The main effort of such SSRVEs is that due to the reduced complexity
a significantly reduced number of finite elements is required for the discretization of the
microscopic boundary value problem in the context of FE2-calculations. As a result, a
decreased computational cost is obtained.

3.1 Method for Construction

The main idea for the construction of SSRVEs is to minimize a least-square func-
tional taking into account differences of statistical measures computed for the real target
microstructure and the SSRVE. Thereby, it is assumed that the inclusion phase morphol-
ogy mainly influences the overall behavior provided that the material properties of the
individual phases are known. The minimization problem is formulated by

L(γ) =
nsm
∑

L=1

ωi L
(L)
SM(γ) → min , (11)

where the individual least-square functionals L
(L)
SM are based on the difference of suitable

statistical measures. The weighting factor ω levels the influence of the individual measures.
The vector γ describes the parameterization of the inclusion phase morphology. Here,
splines are used for the parameterization and thus, the sampling point coordinates enter

5
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the generalized vector γ of the degrees of freedom of the minimization problem given in
(11). In this contribution five different types of SSRVEs are considered: Type I taking
into account one inclusion with three sampling points (leading to an inclusion with a
convex shape), Type II with one inclusion and four sampling points, Type III with two
inclusions and three sampling points each, Type IV with two inclusions and four sampling
points each and Type V with three inclusions and three sampling points each. Due to
the discrete character of the statistical measures used in the minimization problem (11)
the energy surface is not smooth and therefore, no gradient-based optimization method
can be applied. Therefore, the moving-frame algorithm proposed in [2] is used. In [11] we
showed that the combination of the volume fraction (V), the spectral density (SD) and the
lineal-path function (LP) as statistical measures leads to promising results in the context
of two-phase materials, whose macroscopic mechanical response is mainly governed by
the microstructural morpohology. From this we define the three individual least-square
functionals

LV (γ) :=
(

1 −
PSSRV E

V
(γ)

Preal

V

)2

,

LSD(γ) :=
1

Nx Ny

Nx
∑

m=1

Ny
∑

k=1

(

P
real
SD (m, k) − P

SSRV E
SD (m, k, γ)

)2
,

LLP (γ) :=
1

Nx Ny

Nx
∑

m=1

Ny
∑

k=1

(

P
real
LP (m, k) − P

SSRV E
LP (m, k, γ)

)2
.

(12)

It is remarked that for the computation of the statistical measures PSD and PLP periodic
expansions of the SSRVE are considered by placing as much SSRVEs as needed at each
other periodically. Following equation (11) we end up with the objetive function

L(γ) = ωV LV (γ) + ωSDLSD(γ) + ωLPLLP (γ) , (13)

which is minimized using the aforementioned optimization algorithm.

3.2 Two-Dimensional SSRVEs

Now we apply the method for the construction of SSRVEs to a real dual-phase steel mi-
crostructure and consider the micrograph shown in Fig. 2 as target structure. Considering
the objective function (13) and the five different types of inclusion parameterization we
receive from minimizing (11) five realizations of SSRVEs. The finite element discretization
of these SSRVEs required for the following mechanical error analysis are shown in Fig. 3.
After the SSRVE construction we have to analyze the capability of the resulting structures
to represent the macroscopic mechanical response of the target structure. Thus, we con-
sider three different simple macroscopic virtual experiments: horizontal tension, vertical
tension and simple shear. FE2-simulations taking into account the target structure at the
microscale are compared with FE2-calculations focussing on the constructed SSRVEs.

6
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a) b)

Figure 2: Target Structure: a) real micrograph with a dimension of approximately 100× 100 µm2 and b)
discretization by 6-noded triangular finite elements resulting in approximately 150,000 degrees of freedom.

Type I Type II Type III Type IV Type V

2754dofs 2462dofs 2814dofs 2962dofs 3534dofs

Figure 3: Discretization of the resulting SSRVEs with the associated number of degrees of freedom (dofs).

For this purpose microscopic boundary value problems where a discretization by trian-
gular Finite Elements with quadratic ansatz functions for the displacements are consid-
ered. Furthermore, plain stress conditions and periodic boundary conditions are applied.
The individual constituents at the microscale are modeled by a standard J2-finite plas-
ticity model, for details see e. g. [9]. An exponential von Mises hardening law is used,
i.e.

β = y∞ + (y0 − y∞) exp(−ηα) + h α , (14)

with β = ∂αψp and ψp denoting the strain energy function associated to the hardening; α
are the equivalent plastic strains. The material parameters are adjusted to experiments
performed on purely ferritic and purely martensitic test specimens and given in Table 1.

Table 1: Material parameters of the single phases

phase λ [MPa] µ [MPa] y0 [MPa] y∞ [MPa] η [-] h [-]

matrix 118,846.2 79,230.77 260.0 580.0 9.0 70.0

inclusion 118,846.2 79,230.77 1000.0 2750.0 35.0 10.0

7
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Table 2: Values of the objective functions L and the mechanical errors r̃. nele denotes the number of
finite elements in the discretization.

SSRVE L [10−3] LV [10−5] LSD [10−4] LLP [10−5] nele r̃x [%] r̃y [%] r̃xy [%] r̃ [%]

I 39.41 238.05 230.96 139.38 656 1.16 ± 0.29 1.58 ± 0.39 3.34 ± 0.91 2.24

III 8.66 8.82 62.87 22.81 670 0.26 ± 0.20 2.24 ± 0.52 0.41 ± 0.22 1.32

V 4.22 1.42 36.62 5.41 850 1.12 ± 0.35 0.92 ± 0.26 1.10 ± 0.23 1.05

II 9.29 14.90 71.31 20.08 582 8.24 ± 2.10 2.10 ± 0.31 7.45 ± 2.87 6.53

IV 3.70 4.33 33.88 2.73 708 2.22 ± 0.80 4.89 ± 1.24 2.43 ± 1.22 3.40

As comparative mechanical measures we consider the relative errors rx, ry and rxy

defined as the deviation of the resulting macroscopic SSRVE stress response from the
target structure response at each evaluation point i for the three virtual experiments:

r(i)
x =

σreal
x,i − σSSRVE

x,i

σreal
x,i

, r(i)
y =

σreal
y,i − σSSRVE

y,i

σreal
y,i

, r(i)
xy =

σreal
xy,i − σSSRVE

xy,i

σreal
xy,i

, (15)

where only values with non-vanishing denominators are taken into account. In addition
to that, the average errors for each experiment

r̃x,y,xy =

√

√

√

√

1

nep

nep
∑

i=1

[r
(i)
x,y,xy]2 with r(i)

x,y,xy := r
(

i
n
△lmax/l0

)

(16)

and the overall comparative measure

r̃∅ =

√

1

3

(

r̃2
x + r̃2

y + r̃2
xy

)

(17)

are taken into account for quantitative statements with respect to the performance of
the individual SSRVEs. The total number of evaluation points i is denoted by nep. The
mechanical response of the five SSRVEs in the three virtual experiments are calculated
using the FE2-scheme. The results of the construction of the SSRVEs are summarized in
Tab. 2. Therein we order the results of the SSRVE types seperately with respect to the
number of sampling points. First, it can be observed that with increasing complexity, i.e.
higher numbers of inclusions, the value of the objective function L decreases. Second,
it turns out that Type V is showing satisfying results in all virtual experiments and has
consequently the lowest value of the overall error r̃. Thus, we consider Type V as the
“best” SSRVE in this analysis and use it in a numerical example in the next chapter.

4 Numerical Example

Now we consider a macroscopically inhomogeneous FE2-simulation to show the capa-
bility of the SSRVE. Therefore, we consider a radially loaded circular disk with a hole,

8
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a)

u

u u

uu

u
uu

ri

ro

b)

Figure 4: Radially loaded circular disk: a)Macroscopic boundary value problem, b)von Mises stress distri-
bution of the computation using a phenomenological material law (finite J2 plasticity) at the macroscale.

discretized by 252 triangular elements with quadratic ansatz functions and plain strain
conditions. The outer radius of the disk is ro = 4 cm and the inner one is ri = 2 cm, see
Fig. 4a. The load is applied on the inner radius of the disk and pulls the inner border
radially inwards up to a displacement of u = 0.35 cm. This boundary value problem is
known to be an approximation for a deep-drawing process of a cup if the outer part of
the plate is to be analyzed.
Firstly, we use a phenomenological material law to describe the mechanical behavior in
each macroscopic integration point and consequently it represents a purely macroscopic
computation. We apply the same finite J2 plasticity model as for the individual phases
of the microstructures. The material parameters are adjusted such that the mechanical
behavior matches the response of the target structure in the three virtual experiments
as similarly as possible. Here we already observe that only the tensions tests can be
represented accurately in contrast to the simple shear test. In Fig. 4b the results of the
purely macroscopic computation of the circular disk are shown. A slightly graded stress
distribution with a range about 350 MPa at the outer radius to 430 MPa at the inner one is
observed. These results are now compared with the FE2simulation using the SSRVE Type
V at the microscale, which shows the “best” accuracy regarding the mechanical behavior
of the real microstructure in the aforementioned virtual experiments. In Fig. 5 the results
of this FE2-simulation are depicted, where we show the macroscopic response top left. For
the analysis of the microscopic results we select three integration points at the macroscale
and place the associated microstructures also in Fig. 5, where contour plots of the von
Mises stresses are shown. At the macroscale the stress ranges from about 400 MPa at the
outer radius to 630 MPa at the inner one. The maximum stress level at the microscale is
significantly higher as at the macroscale, up to a factor of two. Compared to the purely
macroscopic simulation this is a higher maximum stress and has a stronger gradient in
radial direction. These aspects show the advantages of a FE2simulation because it offers
a more critical view on the stress levels at the macro- and microscale and consequently
provides information which might be important for failure initialization analysis.

9
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Figure 5: Results of the FE2-simulations based on SSRVE Type V with the von Mises stress distributions
in the deformed microstructures for three selected positions. The symboles in the upper right corner of
the images for the microscopic response represent the link to the macroscopic position; the grey area
behind the microstructure indicates the undeformed configuration.

5 Conclusions

A stack of micrographs of a dual-phase steel, which was obtained from a 3D EBSD
imaging, was analyzed with respect to the distribution of three statistical measures: the
volume fraction, the spectral density and the lineal-path function. From this it was ob-
served that the measures show a relatively low variance along the thickness direction.
Thus, based on these results only one micrograph was considered for the construction of
statistically similar RVEs. Then, it was shown in several virtual experiments that the
constructed SSRVEs are able to represent the mechanical behavior of the real microstruc-
ture, while the number of degrees of freedom is significantly decreased. By comparing the
mechanical response observed in three different virtual experiments of different types of
SSRVEs with the mechanical behavior of the target microstructure a number of three con-
vex inclusions (Type V) turned out to be sufficient for the representation of the original
microstructure. As an example this SSRVE was used in a macroscopically inhomoge-
neous boundary value problem and compared with the response obtained from a purely
macroscopic computation.
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Abstract. In this contribution, a rate-dependent mesoscopic masonry model is presented
in which the mortar joints are incorporated by embedded weak discontinuities based on
partitions of unity. Within the discontinuities, both an isotropic damage and a Perzyna
viscoplastic model are used to describe joint degradation. The elastic domain of the joint
behaviour is bounded by a modified Drucker-Prager yield function. The performance of
the developed masonry model is demonstrated by the simulation of a three-point bending
test and a shear wall test.

1 INTRODUCTION

The modelling of masonry has been a popular topic within computational mechanics
for some years now. Two major groups of modelling approaches can be distinguished:
macroscopic and mesoscopic [1]. In the macroscopic approach the joints and bricks are
homogenized to one orthotropic material. The main advantage of this method is that not
much computational effort is needed to calculate large structures. However, the obtained
crack path is less detailed. This drawback can be alleviated by the use of mesoscopic mod-
els. In this approach, joints and bricks are modelled by separate entities. Classically, the
joints are incorporated by interface elements, situated on the boundaries of the continuum
brick elements [1, 2]. When a critical state is reached in a joint, a strong discontinuity
(i.e. a jump in the displacement field) is introduced in the interface.
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An alternative way to incorporate strong discontinuities is the partition of unity method
[3, 4, 5]. Within this method, nodes are locally enhanced to enrich the solution with
discontinuous modes. This concept was applied to masonry by De Proft et al. [6] and
will be extended in this paper by the incorporation of weak discontinuities. A weak
discontinuity introduces a jump in the strain field, allowing for failure to localise in a zone
with finite width [7, 8, 9]. The thickness of this failure is in this case linked to the joint
thickness.

2 PARTITION OF UNITY CONCEPT FOR WEAK DISCONTINUITIES

2.1 Displacement decomposition

The displacement field of a body crossed by a weak discontinuity (Figure 1) is obtained
by:

u = û+HΩw ũ (1)

in which û and ũ denote the regular and enhanced displacement field, respectively.
HΩw is a unit ramp function [10], defined by:

HΩw =







0 if x ∈ Ω−
ξ−ξ−

ξ+−ξ−
if x ∈ Ωw

1 if x ∈ Ω+

(2)

Figure 1: Body crossed by a weak discontinuity

2
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2.2 GFEM discretisation

In this work, the Generalized Finite Element method has been adopted to model the
discontinuities [11]. The unit ramp function (Equation (2)) is used as an enhanced basis:
its value equals unity for a point inside a masonry brick. When a support of a node
is crossed by a weak discontinuity (i.e. joint), an enhanced set of degrees of freedom is
added to the solution field of that node. Consequently, each brick possesses its own set
of enhanced degree of freedom. Special care has to been taken in the implementation of
a meshgenerator, to prevent linear dependancy of the enhanced basis functions [11]. In
the current model, two linear quadrilateral elements are used to model one brick.

3 MATERIAL MODELS

Two material laws have been implemented to model the nonlinear joint behaviour: an
isotropic damage model and a viscoplastic model. The stone behaviour remains linear
elastic throughout the simulations. Consequently, cracks cannot run through bricks.

3.1 Damage model

The nonlinear joint behaviour is governed by an exponential damage evolution law [12]:
{

ω = 0 if κ < κ0

ω = 1− κ0

κ
exp

[

− (κ−κ0)
γ

]

if κ ≥ κ0
(3)

where κ0 = ft0
E

in which E represents the Young’s modulus of the mortar joints. The
loading function κ, expressed in terms of strain invariants, is derived from the Drucker-
Prager model [13]:

κ = α
I1,ε

1− 2ν
+ β

√

J2,ε

1 + ν
(4)

The material parameters α and β are chosen to fit the uniaxial tensile strength ft0 and
uniaxial compressive strength fc0:

α =
1

2

fc0 − ft0
fc0

(5)

β =

√
3

2

fc0 + ft0
fc0

(6)

Finally, the brittleness of response is governed by γ:

γ =
GfI

lcft0
− 1

2
κ0 (7)

where GfI denotes the mode I fracture energy and lc is a regularising equivalent length
parameter.

3
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3.2 Viscoplastic model

An alternative way to model the softening and failure behaviour of masonry is the
use of a viscoplastic model. The incorporation of this type of model is twofold: time-
dependent behaviour can be modelled (e.g. the creep phenomenon [14]) and the model
has a regularising effect [15, 16]. In this work, the Perzyna overstress model has been
adopted [17]. Classically, the strain rate is decomposed into an elastic and a viscoplastic
strain rate:

ε̇ = ε̇e + ε̇vp (8)

in which the viscoplastic strain rate for non-associative flow is expressed by:

ε̇vp =
1

η
〈φ(f)〉m (9)

where η represents the viscosity parameter, f is a yield function and m = ∂g
∂σ

in which
g is a viscoplastic potential. 〈φ(f)〉 is defined as:

〈φ(f)〉 =

{
(

f
σ̄0

)N

if f ≥ 0

0 if f < 0
(10)

in which σ̄0 is the initial yield stress and scalar N is a material parameter which equals
1 in the present study. The rate-independent and elastic cases can be recovered when η
approaches 0 and ∞, respectively. The elastic domain is bounded by a modified Drucker-
Prager yield surface, expressed in terms of stress invariants I1,σ and

√

J2,σ:

f = aI1,σ +
√

χ2 + J2,σ − b (11)

where χ controls the hyperboloid character of the yield surface (Figure 2). The original
Drucker-Prager cone is recovered by setting χ = 0. If χ �= 0, the apex is smoothened and
no special stress return-mapping algorithms are required [16]. The material parameters a
and b are chosen to fit the uniaxial tensile and compressive strenghts:

a =
1√
3

fc − ft
fc + ft

(12)

b =
2√
3

fcft
fc + ft

(13)

The viscoplastic potential used in this paper is given by:

g = a′I1,σ +
√

χ2 + J2,σ (14)

in which a′ is expressed in terms of the dilatancy angle ψ [14]:

a′ =
tanψ

√

9 + 12 tan2 ψ
(15)

4
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-σ1 

-σ2 

-σ3 σ1 = σ2 = σ3  

Figure 2: Drucker-Prager hyperboloid yield surface in principal stress space

Isotropic softening of the material model is determined by an exponential law:

ft = ft0 exp

[
−ft0

κw

GfI

]
(16)

where ft0 represents the initial uniaxial tensile strength and GfI is the mode I fracture
energy. In the present study, the compressive strength is assumed to remain constant
during the simulations. The work softening parameter κw is calculated by:

κw = ∆tσT ε̇vp (17)

in which ∆t is the time increment. The viscoplastic rate equations are integrated with
a fully implicit Euler backward scheme:

[
I+∆λDel ∂m

∂σ
Delm̄

−∆t
η

∂φ
∂f
n 1− ∆t

η
∂φ
∂f

∂f
∂κw

∂κw

∂λ

] {
dσ
dλ

}
=

{
σtrial − σ −∆λDelm

∆t
η
〈φ(f)〉 −∆λ

}
(18)

where Del represents the elastic material stiffness matrix, n = ∂f
∂σ

, σtrial denotes the
elastic predictor stress and:

m̄ = m+∆λ
∂κw

∂λ

∂m

∂κw

(19)
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Since plane stress conditions are assumed in this paper, the return mapping procedure
is performed in an expanded stress space (σ = {σxx σyy σxy σzz}T ) and the zero out-of-
plane stress condition σzz = 0 is enforced at integration point level [14, 18]. After the
return mapping procedure, the algorithmic consistent tangent stiffness matrix is retrieved
by:

Dt = H− Hm̄nTH

− ∂f
∂κw

∂κw

∂λ
+ nTHm̄+ η

∆t ∂φ
∂f

(20)

in which:

H =

(

(

Del
)−1

+∆λ
∂m

∂σ

)−1

(21)

4 NUMERICAL EXAMPLES

4.1 Three-point bending test

In order to demonstrate the potential of the developed mesoscopic masonry model, a
three-point bending test has been carried out using the isotropic damage model. The
material parameters are given by Tables 1-2. The results show a good agreement with
the experimental data obtained from [19] (dotted curve).
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Figure 3: Load-CMOD curve and deformed mesh for a three-point bending test

Table 1: Elastic material parameters for the three-point bending test

dimensions E [N/mm2] ν

joints 10mm 3369 0,20
bricks 76× 230× 110mm3 16700 0,15
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Table 2: Inelastic material parameters for the three-point bending test

ft0 [N/mm2] fc0 [N/mm2] GfI [N/mm] lc [mm]

joints 0,086 3,52 0,002 1

4.2 Shear wall test

The second example is a shear wall with opening [20]. Tables 3-4 summarise the
employed material parameters. A confining stress of 0, 30N/mm2 is applied on top of the
wall. The average horizontal loading rate at the top equals 0, 01mm/s.
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Figure 4: Load-displacement curve and deformed mesh for a shear wall test

The results show a good agreement with those from previous research work (dotted
curve), in which a sequentially linear approach has been used [6]. Since no compressive
cap is implemented, no compressive failure takes place and the load-displacement curve
keeps increasing. The typical stair-step crack pattern, found in experimental tests [20], is
recovered.

Table 3: Elastic material parameters for the shear wall test

dimensions E [N/mm2] ν

joints 10mm 782 0,14
bricks 52× 210× 100mm3 16700 0,15

7
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Table 4: Inelastic material parameters for the shear wall test

ft0 [N/mm2] GfI [N/mm] fc0 [N/mm2] Gfc [N/mm] ψ [◦] η [s] χ

joints 0,25 0,018 10,5 ∞ 0 30 0,01

5 CONCLUSIONS

In this paper, a mesoscopic masonry model is developed in which joints are modelled
by weak discontinuities. The discontinuities are incorporated using the Generalized Finite
Element Method. A modified Drucker-Prager model is used to describe the failure of the
mortar joints, whereas the stone behaviour remains linear elastic. A Perzyna viscoplastic
model is employed as a regularisation technique. Special attention was given to the
algorithmic aspects of the model. A three-point bending test and a shear wall test showed
that the presented method leads to realistic load capacities and failure patterns. In the
example of the shear wall test, the results showed good agreement with those of previous
research work, although the modelling approaches differ.

ACKNOWLEDGMENT

The support of this research by the Bijzonder Onderzoeksfonds Doctoral Funding pro-
gram of Hasselt University (BOF-DOC) is gratefully acknowledged.

REFERENCES

[1] Lourenço, P.B. Computational Strategies for Masonry Structures. PhD Thesis,
(1996). Technische Universiteit Delft.
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Summary. It is well known that metals behave anisotropically on their microstruc-
ture due to their crystalline nature. FE-simulations in the metal forming field however
sometimes lack the right macroscopic anisotropies as their type can be unspecific.

In order to find a suitable effective elastoplastic material model, a finite crystal plas-
ticity model is used to model the behaviour of polycrystalline materials in representative
volume elements (RVEs) representing the microstructure, taking into account the plastic
anisotropy due to dislocations occurring within considered slip systems. A multiplicative
decomposition of the deformation gradient into elastic and plastic parts is performed, as
well as the split of the elastic free energy into volumetric and deviatoric parts resulting
in a compact expression of the resolved Schmid stress depending on the slip system vec-
tors. In order to preserve the plastic incompressibility condition, the elastic deformation
gradient is updated via an exponential map scheme. To further circumvent singularities
stemming from the linear dependency of the slip system vectors, a viscoplastic power-law
is introduced providing the evolution of the plastic slips and slip resistances.

The model is validated with experimental microstructural data under deformation.
Through homogenisation and optimisation techniques, effective stress-strain curves are
determined and can be compared to results from real manufacturing and fabrication
processes leading to an effective elastoplastic material model which is suitable for metal
forming processes at finite strains.
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1 INTRODUCTION

Phenomenological macroscopic observations of metals do not acknowledge actual het-
erogeneities in the microstructure at once. For some time, the mechanics of heteroge-
neous and polycrystalline materials have been limited to the formulation of simplified
models taking into account some aspects of the microstructural characteristics. However,
the proceeding increase of computational capabilites enables a more elaborated approach
towards the development of a suitable material model for specific requirements and nu-
merical simulations in the forming field. At the same time, modeling the microstructure
is already a complex task as certain microstructural properties have to be considered.
On the microscopic level of metals, anisotropies have to be taken into account stemming
from dislocations occurring on the atomic lattice within considered slip systems. Such
mechanisms are macroscopically observed as plastic anisotropic yielding.

In order to take into account the microstructural complexity on the one hand and aim-
ing at the ability to compute real manufacturing and forming processes on the other hand,
a macroscopic effective material model which sufficiently represents the microstructure has
to be developed. Due to the various different boundary conditions the material can be
constrained to during fabrication stages, it has to be validated for these applications. A
huge challenge appears in the attempt to fulfil the requirements of both sheet and bulk
metal forming processes. In doing so, the model approach has naturally to be performed in
a three-dimensional way, as the structure can certainly be constrained to any geometrical
limit or constitution. However, the dislocation movement on the microstructure evolves
in three required directions.

2 CONSTITUTIVE FRAMEWORK: MULTIPLICATIVE MULTISURFACE

ELASTOPLASTICITY

The deformation gradient F = ∂x
∂X

with Jacobian J = det F > 0 maps tangent vectors
of material lines in the reference configuration B ∈ R3 onto tangent vectors of deformed
lines in the current configuration Bt ∈ R3 and is decomposed into an elastic and a plastic
part. The elastic part F e contributes to stretching and rigid body rotation of the crystal
lattice, the plastic part F p characterises plastic flow caused by dislocations on defined
slip systems

F = F eF p. (1)

The multiplicative split assumes a local unstressed intermediate configuration defined
by the plastic deformation gradient, see Fig. 1, which can be determined through an
evolution assumption and whose initial condition is assumed to be F

p
0 = 1.

Further, a volumetric-deviatoric split of the deformation gradient and its constituents
is performed

F iso = J−1/3F , F e
iso = Je−1/3F e, F

p
iso = Jp−1/3F p, (2)

2
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p φ(p)

B̄t

Bt

B F e

F p

F = F eF p

(a) Continuum mechanical framework

B̄t

Bt

B

m
s

m̄

m̄

s̄

s̄

F e

F p

F

(b) Crystallographic conception

Figure 1: Multiplicative elasto-plastic decomposition of the deformation gradient F

with J = Je due to fulfilling the requirement of present plastic incompressibility ex-
pressed through Jp = 1.

2.1 Thermodynamical considerations

The deformation power per unit undeformed volume can be written as

P : Ḟ = P̄ : Ḟ e + Σ̄ : L̄
p
, (3)

where P̄ = PF p T is the 1st Piola-Kirchhoff stress tensor relative to the interme-
diate configuration B̄t and Σ̄ = F e T PF p T = F e T τF e−T a stress measure conjugate to
the plastic velocity gradient L̄

p
= Ḟ pF p−1 on B̄t, τ being the Kirchhoff stress tensor

on Bt. Further, it is

P̄ = F eS̄, S̄ = C̄
e−1

Σ̄, C̄
e

= F e T F e, (4)

where S̄ is the 2nd
Piola-Kirchhoff stress tensor relative to the intermediate con-

figuration B̄t which is symmetric, C̄
e

is further the elastic right Cauchy-Green tensor
on B̄t.

The evolution of the plastic deformation gradient F p is defined by the plastic flow
equation, resulting from the plastic rate of deformation L̄

p
. In the presence of nsyst

systems undergoing plastic slip, represented by the plastic shear rates γ̇α, the plastic flow
equation is further generalised

L̄
p

= Ḟ pF p−1, L̄
p

=

nsyst
∑

α=1

γ̇αs̄α
⊗ m̄α, (5)

s̄α being the slip direction vector and m̄α being the slip plane normal vector of the
α-th slip system {s̄α, m̄α

}. The slip system vectors have the properties s̄ · m̄ = 0 and

3
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thus (s̄α
⊗ m̄α)(s̄α

⊗ m̄α) = 0. The generalisation in (5) leads to the modified evolution
equation of the plastic deformation gradient depending on the plastic slips

Ḟ p =

[∑
α

γ̇α s̄α
⊗ m̄α

]
F p. (6)

2.2 The resolved Schmid stress

The Schmid stress τα is the projection of Σ̄ onto the slip system s̄α
⊗ m̄α

τα = (dev[Σ̄] · m̄α) · s̄α = dev[Σ̄] : s̄α
⊗ m̄α. (7)

As the slip system tensor s̄α
⊗ m̄α is purely deviatoric, only the deviator of the stress

tensor contributes to the resolved stress. With the relations in (4) and some straightfor-
ward recast, it is

τα = Re T τRe : s̄α
⊗ m̄α. (8)

2.3 Elastic response

The elastic part of the deformation is gained from a Neo-Hookeean strain energy
function. Due to assumed isotropy within the elastic contribution, the description is given
in terms of the elastic left Cauchy-Green tensor be. Applying a volumetric-deviatoric
split yields

ρψ(be
iso, Je) =

µ

2
(tr be

iso − 3) +
κ

2
(ln Je)2 (9)

τ = 2 ρ
∂ψ

∂be be = µ dev(be
iso) + κ ln Je 1, dev(τ ) = µ dev(be

iso), vol(τ ) = κ ln Je 1. (10)

Because slip-system tensors are deviatoric by construction, their internal product by
the hydrostatic Kirchhoff stress components vanishes and the Schmid stress in (8)
remains

τα = µ s̄α
iso · m̄

α
iso, s̄α

iso = F e
iso · s̄

α, m̄α
iso = F e

iso · m̄
α. (11)

2.4 A rate-dependent formulation via a viscoplastic power-law

A rate-dependent theory enables the modeling of creep in single crystals and is per-
formed by the introduction of a power law-type constitutive equation for the rates γ̇α of
inelastic deformation in the slip systems

γ̇α = γ̇0
τα

τy

(
|τα

|

τy

)m−1

= γ̇0 τα
|τα

|
m−1 τ−m

y , (12)

γ̇0 and τy being the reference shear rate and slip resistance, and m being a rate-
sensivity parameter. Within an isotropic Taylor hardening model, the evolution for the
slip resistance τy is considered

τ̇y =
∑

α

H · |γ̇α
|, γ =

∫ t

0

γ̇ dt, γ̇ =
∑

α

γ̇α. (13)

4
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3 INCREMENTAL KINEMATICS

The slip rate is discretised with a standard backward Euler integration in order to
obtain incremental evolution equations for the update of the evolving quantities

∆γα = ∆t γ̇α (F e) . (14)

The implicit exponential integrator is then used to discretise the plastic flow equa-
tion (6)

F
p
n+1 = exp

[

∑

α

∆γαs̄α
⊗ m̄α

]

· F p
n. (15)

Due to the property det[exp(s̄α
⊗ m̄α)] = exp[tr (s̄α

⊗ m̄α)] = exp(0) = 1, it preserves
the plastic volume. Here, F e trial

n+1 = fn+1 F e
n, is the trial elastic deformation gradient with

fn+1 = F n+1 F−1
n = 1 + grad n (∆u) and Jn+1 = det F n+1, F e trial

iso = J
−1/3
n+1 F e trial

n+1 , so that
an exponential update for the new elastic deformation gradient can be obtained

F e
n+1 = F e trial

n+1 · exp

[

∑

α

−∆γαs̄α
⊗ m̄α

]

. (16)

The current trial resolved shear stress τα trial
n+1 , cf. (11), is obtained with the current

orientation of the crystal through rotation of the slip system with the trial elastic defor-
mation gradient

τα trial
n+1 = µ s̄α trial

iso · m̄α trial
iso , s̄α trial

iso = F e trial
iso · s̄α, m̄α trial

iso = F e trial
iso · m̄α. (17)

3.1 Equilibrating the plastic state

Omitting the subscript n + 1, a residual based on the exponential map is defined to
equilibrate the plastic state, leading to a local Newton-Raphson algorithm through a
Taylor expansion about the reached point F e

k

R(F e) := F e
− F e trial

· exp

[

∑

α

−∆γαs̄α
⊗ m̄α

]

= 0, (18)

and

Rk + ∂F e

k
R(F e

k) : ∆F e
k = 0, (19)

∆F e
k = −

[

∂F e

k
R(F e

k)
]−1

: Rk, F e
k+1 = F e

k + ∆F e
k, (20)

with the important derivatives

[∂F e R(F e)]ijkl = δikδjl + F e trial
im Emjpq

[

∑

α

s̄α
⊗ m̄α

⊗ ∂F e ∆γα

]

pqkl

(21)

Emjpq =
∂ exp

(

[−
∑

α ∆γα(F e) s̄α
⊗ m̄α]mj

)

∂ [−
∑

α ∆γα(F e) s̄α ⊗ m̄α]pq

, (22)

5
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and

∂F e ∆γβ = ∆t γ̇0 m |τα
|
m−1 τ−m

y

�

Ξα β
�−1

∂Fe τα (23)

∂Fe τα = −
2

3
τα F e−T + µ J−1/3 [m̄α

iso ⊗ s̄α + s̄α
iso ⊗ m̄α] (24)

Ξα β = δα β + ∆t γ̇0 m τα
|τα

|
m−1 τ−m−1

y

�

β
H sign(∆γβ). (25)

4 MODEL OF THE POLYCRYSTAL

4.1 Voronoi cell grains

The polycrystal is modelled with three-dimensional Voronoi cell shaped grains. Through
the Delaunay triangulation of a given random point seed, a polycrystal of arbitrary size
can be obtained through stating the size of the bounding box.

(a) Polycrystal consisting of
Voronoi cell grains.

(b) Cut through polcrystalline
structure.

(c) Three-dimensional view
into the cutted polycrystal.

Figure 2: Polycrystalline model within bounding box 200×200×200 µm. The Voronoi cell
shaped crystal grains are obtained through Delaunay triangulation of a random point seed.

4.2 Euler angle rotation of the grains

In order to realise randomly orientated slip systems in each grain of the undeformed
polycrystalline structure, the slip system vectors are rotated around the cartesian axes
about three Euler angles Φ, Θ and Ψ according to a y-convention, see Fig. 3; Performed
is a rotation about the z-axis, the y-axis and the new z-axis, successively,

RΨ =





cos Ψ − sin Ψ 0
sin Ψ cos Ψ 0

0 0 1



 RΘ =





cos Θ 0 sin Θ
0 1 0

− sin Θ 0 cos Θ



 RΦ =





cos Φ − sin Φ 0
sin Φ cos Φ 0

0 0 1



 ,

(26)

R = RΨ · RΘ · RΦ. (27)

6
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ei = R · e′

i

e1

e′

1

e2

e′

2

e3 e′

3

Figure 3: Rotation of the axes around random Euler angles

5 NUMERICAL HOMOGENISATION

5.1 Boundary conditions

Based on the construction of polycrystalline structures according to Sec. 4, polycrys-
tals of several sizes are modelled, representing the microstructure of the polycrystalline
material, see Fig. 2. The displacement field u is given through a constant displacement
gradient H on the entire boundary of the polycrystal

u|dΩ = H · X|dΩ , H = const. (28)

5.2 Volume average

In order to approach the prediction of an overall material behaviour of the representa-
tive volume element and hence of the macroscopic material, the volume averages of the
deformation gradient F and the 1st

Piola-Kirchhoff stress tensor P over the volume
V =

∫
Ω

dΩ are defined as

�F �Ω :=
1

V

∫

Ω

F dΩ (29)

�P �Ω :=
1

V

∫

Ω

P dΩ. (30)

5.3 Overall polycrystalline behaviour

Differently sized polycrystals, from a size edge range between 100 and 200 µm, see
Fig. 4, are subjected to pure shear loading through the displacement gradient H = e1⊗e2.
The number of crystal grains depend on the size and are shown in Tab. 1. The material
parameters for all the microstructures are equal; it is the bulk modulus κ = 152.2 GPa,
the shear modulus µ = 79.3 GPa, and the parameters for the viscoplastic range amount
to H = 1.0 GPa, τy 0 = 180 MPa, γ̇0 = 0.0005 and m = 3.0. In order to obtain a
statistically admissible response, 200 tests are computed for each size with body-centered
cubic crystals with 24 slip system vectors of Tab. 2.

7
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(a) 100 µm (b) 110 µm (c) 130 µm (d) 140 µm (e) 150 µm (f) 180 µm (g) 200 µm

Figure 4: Polycrystals of different sizes. The shown cube represents a bounding box of size
200 × 200 × 200 µm.

Table 1: Number of grains for polycrystal edge sizes

bounding box size edge [µm] 100 110 130 140 150 180 200

number of grains 6 13 20 32 45 107 157
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P
a]
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(a) Polycrystal within the bounding box 100×
100 × 100 µm.
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] 1

2
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P
a]

[�F �Ω]12

(b) Polycrystal within the bounding box
150 × 150 × 150 µm.

Figure 5: Stress-strain relations of the polycrystals of different sizes.

Table 2: 24 slip system vectors for body-centered cubic crystals

s̄α m̄α s̄α m̄α s̄α m̄α s̄α m̄α

[1̄11] (01̄1) [111] (01̄1) [111̄] (011) [11̄1] (011)
[1̄11] (101) [111] (1̄01) [111̄] (101) [11̄1] (1̄01)
[1̄11] (110) [111] (1̄10) [111̄] (1̄10) [11̄1] (110)
[1̄11] (211) [111] (2̄11) [111̄] (21̄1) [11̄1] (211̄)
[1̄11] (121̄) [111] (12̄1) [111̄] (1̄21) [11̄1] (121)
[1̄11] (11̄2) [111] (112̄) [111̄] (112) [11̄1] (1̄12)

8
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(a) Polycrystal within the bounding box 100×
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(b) Polycrystal within the bounding box
150 × 150 × 150 µm.

Figure 6: Relative errors with respect to mean value of the computations.

As an example, the overall stress-strain relations for 200 polycrystalline structures
of edge size 100 and 150 µm, respectively, are shown in Fig. 5. Whereas the response
of the smaller polycrystal shows a rather scattering stress-strain behaviour due to the
remaining high influence of the boundary loading, the larger polycrystal presents a more
representative behaviour of the microstructure. Expressed this in terms of the relative
error in the homogenised 1st Piola-Kirchhoff stresses �P �Ω, the error reaches a level
of 20 % and more over the whole deformation, see Fig. 6. Increasing the size of the
polycrystal results in a decrease of the relative error. In order to restrict the error to 5 %,
error lines at ± 5 % are included.
The same effect applies for the normalised standard deviation σ(�Pij�Ω)/||�Pij�Ω|| with

σ(�Pij�Ω) =

√

√

√

√

1

n

n
∑

k=1

(

�Pij�
k
Ω − �Pij�Ω

)2

(31)

�Pij�Ω =
1

n

n
∑

k=1

�Pij�
k
Ω (32)

||�Pij�Ω|| =
1

n

n
∑

k=1

∣

∣

∣

∣�Pij�
k
Ω

∣

∣

∣

∣ (33)

Fig. 7(a) shows the normalised standard deviation of the component [�P �Ω]12 for dif-
ferent polycrystals over the deformation, Fig. 7(b) represents it over the polycrystal size
in terms of the crystal grain quantity. From a grain number of about 20 on, the stan-
dard deviation does not decrease significantly anymore, whereas the ± 5 % error measure
requires polycrystalline structures of 100 grains and more.

9
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Figure 7: Normalised standard deviation of the polycrystals of different sizes for a population of
200 computations.

6 CONCLUDING REMARKS AND OUTLOOK

6.1 Effective material properties

Assuming that the stresses from the volume averaging procedure are the same as from
an effective material assumption

�P �Ω = P eff = P (�F �Ω) = P (F eff), (34)

the determination of the effective material parameters can be performed based on a
least square fit between the mean stresses out of n performed computations and the
stresses from an effective constitutive assumption

Π :=

[

1

n

n
∑

k=1

(

�P �
k
Ω

)

− P (F eff(κeff))

]2

→ minimum (35)

κeff :=
[

κeff
el , κ

eff
pl

]T
. (36)

Due to the volumetric-deviatoric split of the constitution, see (10), both parts of the
deformation can be separated and reveals quite an easy way to determine first the isotropic
elastic material parameters κeff

el by remaining in the elastic range of the deformation.
Having determined the parameters with (35), also for varying elastic parameters within
the crystal grains, the assignment of the plastic parameters κeff

pl can be done. Eventually,
the gained effective material model representing the microstructural behaviour has to
be validated for different kinds of boundary conditions and constraints of real forming
processes.
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Abstract. Constitutive modeling of concrete using continuum damage mechanics and 
plasticity theory is presented in this work. In order to derive the constitutive equations the 
strain equivalence hypothesis is adopted. Menetrey-William type yield function (in the 
effective stress space) with multiple hardening functions is used to define plastic loading of 
the material. Non-associated plastic flow rule is used to control inelastic dilatancy. Drucker-
Prager type function is chosen as a plastic potential. Damage is assumed to be isotropic and 
two damage variables are used to represent tensile and compressive damage independently. 
Damage parameter is driven based on the plastic strain. Fully implicit integration scheme is 
employed and the consistent elastic-plastic-damage tangent operator is also derived. The 
overall performance of the proposed model is verified by comparing the model predictions to 
various numerical simulations, cyclic uniaxial tensile and compressive tests, monotonic 
biaxial compression test and reinforced concrete beam test.  
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 2

1 INTRODUCTION 
Concrete is widely used material due to its ability to be cast on site and to be formed in 

different shapes. Therefore its mechanical behaviour under different loading conditions must 
be better understood and it can be simulated by numerical methods. Several concrete 
constitutive equations have been developed based on nonlinear elasticity, plasticity theory, 
continuum damage mechanics (CDM), fracture mechanics and microplane model.   

 Concrete is a highly nonlinear material. Most prominent characteristic of concrete is its 
low tensile strength compared with its compressive strength. This causes micro-cracking of 
concrete even under very low loads which reduces the stiffness of concrete element. This 
leads to use of damage mechanics to model constitutive equations of concrete. On the other 
hand concrete exhibits some irreversible strain under compressive loads which can be 
simulated by using plasticity theory. Therefore accurate modeling of concrete behaviour 
needs to use plasticity theory and damage mechanics simultaneously.  

Plasticity theory has been used successfully in modeling behavior of concrete by many 
researchers such as Grassl 2002, Papanikolaou and Kappos 2007, Kang and William, Imran 
and  Pantazopoulou 2001, Etse and William 1994, Menetrey and William 1995. The main 
feature of these models is a pressure sensitive yield surface with parabolic meridians, non-
associated flow and nonlinear hardening rule. However these models cannot take into account 
the degradation of material stiffness due to micro-cracking.  On the other hand some 
researchers used continuum damage mechanics alone to simulate concrete behaviour Mazar 
and Cabot 1989, Simo and Ju 1987, Ortiz and Popov 1982, Tao and Phillips 2005. 

Since both micro-cracking and irreversible deformations are two main distinct aspects of 
nonlinear response of concrete, several combined plasticity and CDM models have been 
developed in recent years. Combinations of plasticity and CDM are usually based on isotropic 
hardening plasticity with isotropic damage model. However some researchers use anisotropic 
damage model such as Çiçekli and Voyiadjis (2007), Carol et al (2001), Abu Al-Rub and 
Voyiadjis (2009). Most popular combination type is stress-based plasticity in effective space 
with damage because coupled plastic-damage models formulated in the effective space are 
more stable and attractive [2]. 

In this study concrete constitutive model is developed based on scalar damage with 
plasticity in effective stress space. Damage is modeled as the functions of plastic strain 
following Lee and Fenves (1998).  

 

2 PLASTICITY FORMULATION 

Three parameter Menetrey-William type yield function (in the effective stress space) with 
multiple hardening parameters is chosen to define plastic loading of the material. This 
criterion has been successfully used in simulating the concrete behaviour under uniaxial, 
biaxial and multiaxial loadings by many researchers [7,16]. It is smooth and convex, except 
the point where parabolic meridians intersect the hydrostatic axis. The yield function is 
formulated as follows:  

( )2

1.5 0
6 3 c

c

r
f m m k f

k f
ρ θρ ξ

= + + − = (1)
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in terms of Haigh-Westergaard coordinates in the effective stress space. Here ξ, ρ and θ is 
hydrostatic length, deviatoric length and Lode angle respectively and they are the functions of 
stress invariants according to following equations: 

1

3
Iξ = (2)

22Jρ =  

1 3
3/2
2

1 3 3cos
3 2

J
J

θ − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

where I1 is first invariant of stress tensor and J2, J3 are second and third invariant of deviatoric 
stress tensor respectively. 

Given yield surface possess parabolic meridians and triangular sections at low confinement 
to almost circular sections at high confinement on deviatoric plane shown in Figure 1. 
Deviatoric sections shape is controlled by the function: 
 

( ) ( ) ( )
( ) ( ) ( )

22 2

1/22 2 2 2

4 1 cos 2 1
,

2 1 cos 2 1 4 1 cos 5 4

e e
r e

e e e e e

θ
θ

θ θ

− + −
=

⎡ ⎤− + − − + −⎣ ⎦

(3)

 
which is proposed by Willam and Warnke (1974). Here e is eccentricity parameter and it must 
be calibrated according to the uniaxial tensile and compressive strength and biaxial 
compressive strength. 
 

 
Figure 1. Deviatoric sections of yield functions

 
 

In yield surface equation fc is the uniaxial compressive strength and m is friction parameter 
respectively. Friction parameter formulated in terms of compressive and tensile strength as 

σ1 

σ2 σ3 
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following equations: 
( ) ( )2 2

3
1

c t

c t

k f c f em
k c f f e

−
=

+
(4)

 
where k and c is compressive and tensile hardening-softening parameter respectively.  
 

x

r

 

Figure 2. Evolution of Loading Surfaces 

2.1 Flow Rule 
In this study non-associated flow rule is adopted due to control excessive dilatancy. Non-

associated means yield function and plastic potential are different each other and, therefore, 
plastic flow direction is not normal to the yield surface. This is important for realistic 
modelling of cohesive frictional material such as concrete and rock. The plastic strain rate 
obtained as: 

p gε λ
σ
∂

=
∂ (5)

Where λ  is plastic multiplier which can be obtained from plastic consistency condition and g 
is plastic potential. Drucker-Prager type potential function is chosen as follows 
 

1 23g I Jα= +
(6)

such that; 

2

3
2 3

ij
ij

sg
J

α δ
σ
∂

= +
∂

(7)

 
Here α is dilatation parameter and it controls inelastic volume expansion. Plastic consistency 
condition is obtained by taking the time derivative of yield function and satisfying Kuhn-
Tucker conditions:   
 

k ↑ 
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( )0 0f Elasticλ< → =
(8)

( )0 0 0f and f unloadingλ= < → =  

( )0 0 0f and f plasticityλ= = → >  

 

2.2 Hardening and Softening Rule 
The nonlinear behaviour of concrete in the pre-peak and post-peak region is described by 

isotropic hardening/softening rule. Hardening/softening and damage states are defined 
independently by two variables, κc and κt due to different behaviour under compressive and 
tensile loading. For uniaxial loading κc and κt is defined as axial plastic strain under 
compression and tension respectively [12].  

t

c

κ
κ

κ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

(9)

1 0

tp
t t t dtκ ε κ κ= = ∫  

3 0

tp
c c c dtκ ε κ κ= − = ∫  

Under multiaxial loading the evolution of hardening variables is given as follows (Lee and 
Fenves 1998): 

 

( ) ˆ, p phκ σ ε εΔ = Δ (10)

 
where ˆ pε represents eigenvalues of strain tensor  

 

1 2 3ˆ ˆ ˆ ˆ Tp p p pε ε ε ε⎡ ⎤Δ = Δ Δ Δ⎣ ⎦
(11)

and 

( )
( )

( )( )
ˆ 0 0

ˆ ,
ˆ0 0 1

p
r

h
r

σ
σ ε

σ

⎡ ⎤
⎢ ⎥=
⎢ ⎥− −⎢ ⎥⎣ ⎦

 
(12)

 
The scalar ( )ˆ0 1r σ≤ ≤

 

is a weight factor and defined as 

0, 0 0 kerf f Kuhn Tucλ λ≤ ≥ → =
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( )
3

1
3

1

ˆ
ˆ

ˆ

i
i

i
i

r
σ

σ
σ

=

=

=
∑

∑  

(13)

 
Where ( ) 2x x x= +  denotes the Macaulay bracket function and σ̂  is effective principal 
stress. 
 

Under Tension 

Concrete assumed linear elastic up to tensile strength. After that concrete exhibits strain 
softening. Descending part of tensile stress-strain curve is formulated by stress-crack opening 
relations given by Hordjik(1991). 

( ) ( )
3

3
1 2 1 21 exp 1 expt t

c c c

w w wf c c c c
w w w

σ
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟= + − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

(14)

 
Where ft tensile strength, w crack opening, wc critical crack opening and c1, c2 are material 

constants. Hordjik gives material constants values as c1=3, c2=6.93. To prevent mesh 
dependent result Hordjik stress-crack opening equation formulated in terms of inelastic strain 
and stress by incorporating fracture energy and characteristic length as follows:   

f tG dwσ= ⋅∫ (15)

cr
cw l ε= ⋅

 

0

tu cr
f c tG l d

κ
σ ε= ∫  

5.14 f
tu

c t

G
l f

κ =
 

Where Gf, lc, σt are crushing energy, characteristic length and stress in the direction of crack 
normal, respectively.  
 
Under Compression: 

 
Strength parameter k, which controls the evolution of the yield surface under compression, 

is defined in terms of hardening variable κc as follows [5,9]: 
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( )
( )max

0 0 max
max

2

max
max

max

2
1 0

1

c c c
c c

c

c c
c c

cu c

k k k

k

κ κ κ
κ κ

κ

κ κ κ κ
κ κ

−
= + − ≤ ≤

⎛ ⎞−
= − >⎜ ⎟−⎝ ⎠

(16)

 
Where k0=fc0/fc and κcmax and κcu is equivalent plastic strain at peak stress and ultimate 
equivalent plastic strain respectively. Second part gives compressive softening which also 
causes mesh dependent results. To prevent mesh dependency same procedure is followed as 
tension softening.   

max 1.5 c
cu c

c c

G
l f

κ κ= + (17)

 
Where Gc is crushing energy. 

3 DAMAGE MODEL 

Isotropic damage is responsible for the degradation in elastic stiffness in this work. Two 
damage variables, one for tensile damage ωt and one for compressive damage ωc, are defined 
independently following Lee and Fenves (1998). It is assumed that damage variables are 
increasing functions of the equivalent plastic strains and they can take values ranging from 
zero, for the undamaged material, to one, for the fully damaged material. 

It is assumed that the degradation takes the following exponential form [12,13]: 
 

1

1

t

c

a
t

a
c

e

e

κ

κ

ω

ω

−

−

= −

= −

(18)

 
Where at and ac are material constant for uniaxial tension and compression respectively and 
they must be calibrated from uniaxial tests. When uniaxial tensile and compressive damage 
variables are obtained then total damage variables calculated as the following form [1,12]: 

 
( )( )1 1 1 1c t t cs sω ω ω− = − − − (19)

Here st and sc are used for to take into account closing and reopening of cracks.  
 

4 NUMERICAL INTEGRATION 

The implemented integration scheme is divided into two sequential steps, corresponding to 
the plastic and damage parts. In the plastic part, the plastic strain εp and the effective stress σ  
at the end of the step are determined by using the implicit backward-Euler return-mapping 
scheme. In the damage part, damage variable ω and nominal stress σ at the end of the step are 
determined. 

 



1602

E. Lale, M. Aydoğan. 

 8

Implementation of return-mapping algorithm requires integrating the rate form of constitutive 
relations in finite time step 1n nt t t+Δ = −  to obtain the stress changes Δσ and the state variables 
corresponding to a total change of displacement Δε within the load increment. 

 

1 1 1
1

t p t
n n n

n

gD Dσ σ ε σ λ
σ+ + +

+

∂
= − Δ = −Δ

∂

(20)

Where trσ is the effective trial stress which is evaluated from given strain increment assuming 
that plastic strain increment is zero. If trial stress is not outside the yield stress, f ≤0, then step 
is elastic and plastic strain increment is zero. On the other hand if the trial stress is outside the 
yield surface then  1 1 1, ,p p

n n nσ ε κ+ + +  are determined according to calculated Δλ. 

At the end of the loading step following four equations must be satisfied:
 

 

( )1 1 1
p

n n nDσ ε ε+ + += − (21)

1 1
p p p

n n nε ε ε+ += + Δ  

1 1n n nκ κ κ+ += + Δ  

 
0f ≤

 
If one defines the residuals for the equations (4.17), (4.18) and (4.19) as follows:

 

 

1 1
1, 1

1 , 1 1 1 1

, 1 1

p p
n n n

nn

n n n n n n

f n n

g
R

R R H
R f

ε

κ

ε ε λ
σ

κ κ λ

+ +
++

+ + + + +

+ +

∂⎧ ⎫− −Δ⎪ ⎪⎧ ⎫ ∂⎪ ⎪⎪ ⎪ ⎪ ⎪= = − −Δ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪

⎪ ⎪⎩ ⎭

(22)

 

and linearizates these according to Taylor expansion following equations are obtained:   
, 1 1 1 1 1 1

, 1 1 1 1 1 1

1 1
1 1

1 1

0
0

0

p
n n n n n n

n n n n n n

n n
n n

n n

R b b
R H H

f ff

ε

κ

ε λ δλ
κ λ δλ

σ κ
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+ + + + + +

+ + + + + +

+ +
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+ +
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(23)
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After few  manipulations, Δλ can be determined as follows: 

  

[ ]

[ ]

, 11 1

, 11
1

11 1
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nn n

nn
n T

nn n

nn

Rf ff A
R

bf f A
H
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κσ κ
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σ κ

++ +

++
+

++ +

++

⎧ ⎫⎡ ⎤∂ ∂
− ⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦ ⎩ ⎭=
⎡ ⎤ ⎧ ⎫∂ ∂

⎨ ⎬⎢ ⎥∂ ∂ ⎩ ⎭⎣ ⎦

(24)

 

Where 

[ ]
1 1

1 1
1 1 1
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1 1
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n n
n n

n n

b bI D
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H HD I

λ λ
σ κ

λ λ
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+ +
+ +

− + +

+ +
+ +

+ +

⎡ ⎤∂ ∂
+ Δ −Δ⎢ ⎥∂ ∂⎢ ⎥=

⎢ ⎥∂ ∂
Δ − Δ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

(25)

and gb
σ

∂
=

∂
 is the gradient of the plastic potential.  

Once the effective stress 1nσ +  is computed in the elastic predictor/plastic corrector steps, the 
damage parameter is then calculated from equation (3.10): 
 

( )( )1 1 1 1c t t cs sω ω ω− = − − −
(26)

and the stress is updated as: 
( )1 11n nσ ω σ+ += −

(27)

5 NUMERICAL EXAMPLES 
The present concrete model is implemented in Abaqus 6.8 by user element subroutine 

Umat. Its performance is denoted by comparing with uniaxial tensile and compressive, biaxial 
compressive and cyclic experimental test from literature.   

In Figure 3 the cyclic uniaxial tensile test of Taylor (1992) and the cyclic compressive test 
of Karson and Jirsa (1969) are evaluated numerically to demonstrate the capability of the 
proposed model under cyclic load conditions. The following properties are adopted: for 
Taylor’s simulation, Ec=3.1×104 MPa, ft= 3.5 MPa, Gf=100 N/m; and for Karsan and Jirsa’s 
one, E = 3.17×104 MPa, ft= 3.0 MPa and fc0=10.2 MPa. As shown in Figure 3, the 
experimentally observed strain softening, stiffness degrading, and irreversible strains, are 
agree well with the proposed results under both tension and compression. 
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Figure 3 Uniaxial Cyclic Tensile (Taylor, 1992) and Compressive test (Karsan and Jirsa, 1969)  

 
The proposed model is also validated with the results of biaxial compression test reported 

in Kupfer et al. (1969). The material properties adopted in the analysis are: Ec=3.1×104 MPa 
ft=3.0 Mpa and Gf=75 N/m. For specimens under load conditions σ2/σ1=1/0, σ2/σ1=1/1 and 
σ2/σ1=1/0.5, the predicted stress–strain curves given in Figure 4a–c agree well with the 
experimental results. 
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Figure 4 Monotonic Biaxial Compressive test (Kupfer et al, 1969) 

    
Finally Bresler–Scordelis beam is used to validate the model performance for RC element. 

It is simply supported beam with 3.7m long span and subjected to concentrated load at 
midspan. The longitudinal reinforcement consists of four steel bars with total area of 2580 
mm2. The concrete has a compressive strength of 24.5 MPa and elastic modulus of 21300 
MPa. The elastic modulus and yield stress of steel bars is 191.4 GPa and 444 Mpa 
respectively. In the finite element modeling, 4-noded rectangular plane stress element is used 
for concrete and truss elements for steel bars. Perfect bond between concrete and 
reinforcement is assumed. Load-displacement curve given in Figure 5 shows that analysis 
results is agree well with test results.   
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Figure 5 Reinforced Concrete Simply Supported Beam (Bresler-Scordelis,1963) 

 

6 CONCLUSIONS 
A constitutive model for concrete using continuum damage mechanics and plasticity theory is 
presented. The plastic part formulated in effective stress space and isotropic damage is 
formulated in terms of plastic strain. Multiple hardening and damage parameter are used due 
to different behaviour under tensile and compressive loading. The model predictions are 
found to be in good agreements with experimental results in uniaxial and biaxial loadings. 
Localization of deformations is considered by the fracture/crushing energy approach. This 
model may be enhanced by taking into account lateral confinement. 
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Abstract. This paper describes recent numerical simulation results of a purely mechanical 
study of the effects of high temperature in mortar and concrete. The material has been 
considered as a two-phase composite, with different thermal expansion laws of matrix and 
particles taken from the literature. The numerical simulation is based on a meso-mechanical 
model developed in the group of Mechanics of Materials UPC, which represents the largest 
aggregate particles explicitly, and represent cracks in a discrete manner by inserting zero-
thickness interface elements in all potential crack trajectories a priori of the analysis. The 
differential expansions create tensile stresses and therefore cracking, that eventually may 
close, reopen and lead to non-trivial overall material behavior. The results are discussed and 
compared to the experimental information available, and lead to a general good agreement, 
capturing the essential mechanisms described in the literature. 
 
1 INTRODUCTION 

Under high temperature variations, heterogeneous materials such as concrete may develop 
internal stresses and complex behavior including cracking and degradation as the result of the 
expansion mismatch between components. Cruz and Gillen [1] show experimental results of 
thermal expansion of concrete specimens, as well as of individual ingredients: cement paste, 
mortar and dolomite rock.  In their tests, temperature ranged between 27 and 871ºC. The 
experimental test was carried out on cylindrical samples of 13mm in diameter and 76 mm in 
length. Experimental results show a variable coefficient of thermal expansion for cement 
paste, first expanding (until approximate 180ºC) and then contracting. In contrast, Dolomite 
rock shows, between 93 and 871ºC, an almost linear expansion as temperature is increased. 
Figure 1 shows the experimental results that were taken as the basic input information for the 
numerical study of Sect. 3.1, which deals with the free expansion of mortar specimens. 
Additional results also reported in the paper, deal with the influence of pre-imposed vertical 
stresses or prescribed deformations on the expanding specimen, as reported from Anderberg 
and Thelandersson [2], Thelandersson [3] and Willam et al. [4]. 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 
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Figure 1: Experimental results for cement paste, dolomite rock, mortar and concrete (from Cruz and Gillen [1]).

2 MESOMECHANICAL MODEL 
The numerical simulation is based on a meso-structural model in which the largest 

aggregate particles are represented explicitly, surrounded by a homogeneous matrix 
representing the average behavior of mortar plus the smaller aggregates. In order to capture 
the main potential crack trajectories, zero-thickness interface elements are inserted a priori of 
the analysis, along all the aggregate-mortar and some of the mortar-mortar mesh lines. These 
interface elements are equipped with a nonlinear constitutive law based on elasto-plasticity 
and concepts of fracture mechanics, which is formulated in terms of normal and shear 
components of the stress on the interface plane and the corresponding relative displacement 
variables. The initial loading (failure) surface F = 0 is given as three-parameters hyperbola 
(tensile strength χ, asymptotic cohesion c and asymptotic friction angle tanφ). The evolution 
of F (hardening-softening laws), is based on the internal variable Wcr (work spent in fracture 
processes), with the two material parameters GF

I and GF
IIa that represent the classical fracture 

energy in Mode I, plus a second fracture energy for an “asymptotic” Mode IIa under shear and 
high confinement. A more detailed description of this elasto-plastic constitutive law can be 
found in the literature [5,6]. Results of the meso-mechanical model for normal concrete 
specimens subject to a variety of loading cases in 2D and 3D can also be found elsewhere [6-
9].  

For the current study, some of the FE meshes used previously have been modified in the 
sense of adding some interface elements along mesh lines perpendicular to the aggregate 
surfaces at mid-distance between aggregate corners. In this way, the medium surrounding the 
expanding aggregate particle can crack in the direction that is more physical, and possible 
spurious tensile stresses in the surrounding material are minimized. 
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3 RESULTS AND DISCUSSION 

3.1 Thermal expansion of mortar specimens 
The first numerical analysis is a mortar specimens composed by small aggregate particles 

of dolomite embedded in a cement paste matrix. For the cement paste the expansion vs. 
temperature law is extracted directly from the experimental curve above (in figure 1). Since 
the curve shows first expansion and then contraction, the thermal coefficient, which 
corresponds to the secant line from the origin to the desired point on the curve, changes sign 
from positive to negative as temperature increases. For dolomite rock, which constitutes the 
sand, experimental results show an almost linear expansion as temperature is increased. For 
this reason a constant coefficient of thermal expansion has been used in the calculations, with 
a value of 0.0000125/ºC.  

In the experiment, thermal expansions were also measured for the overall mortar 
specimens, these values have been used to compare the results from the numerical 
calculations. For the numerical simulation, a 12x12 mm2 square specimen was considered 
with volume fraction of sand aggregates 39% and maximum size 1.7mm (average aggregates 
size 1.02mm). These values were adopted based on available data from the lab specimens. 
The resulting meso-geometry and FE mesh are shown in figure 4. 

3.1.1 Elastic analysis 
The first analysis run for the mortar specimen has been under the assumption of linear-

elastic interfaces (figure 2). Note that in this case interfaces are not allowed to open (crack) or 
slide. Therefore, the change from expansion to contraction of the cement paste for high 
temperature, forces the overall initial mortar expansion (with tensioned sand aggregates) to 
turn later into overall contraction (with compressed sand aggregates), and all materials and 
interface are assumed to withstand tensile stresses without limit.  
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Figure 2: Experimental curves for mortar and cement paste expansion, together with numerical results of a 
heterogeneous mortar specimen assuming linear elasticity (linear elastic interfaces).  
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3.1.2 Non-linear analysis with cracking 
In this case the interface elements are assumed to follow a fracture-based non-linear 

constitutive law with softening that simulates cracking [5]. The material parameters used are: 
for the continuum medium: E = 70000 MPa (dolomite rock), E = 25000 MPa (cement paste) 
and υ = 0.2 (both); for all interfaces (along both dolomite sand-cement and cement-cement 
contacts): KN = KT = 500000 MPa/mm, tanφ0 = 0.90, χ0 =6 MPa, c0 = 15MPa, GF

I = 0.025 
N.mm, GF

II = 10 GF
I, σdil = 40 MPa, αd = -2. 

Figure 3 shows the numerical and experimental results obtained for mortar specimens, 
together with the experimental results for dolomite rock and cement paste. 
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Figure 3: Numerical versus experimental specimen expansion curves for the mortar specimen with cracking, 
together with the curves obtained for sand and for cement paste. 

3.1.3 Crack evolution and final deformation 
Figures 4 and 5 show the details of crack evolution for eleven different prescribed 

temperature values (54, 110, 148, 180, 192, 286, 547, 612, 711, 806 and 867ºC), as well as the 
final deformation mesh (in the last diagram for 867 ºC, the red mesh overlapped represents 
the undeformed mesh). In the figures, cracking is represented in term of the magnitude of the 
relative displacement vector (square root of normal plus tangential relative displacements 
squared). The graphic scale factor is not the same in all figures because for temperatures 
below 201ºC displacement magnitudes are significantly lower than for temperatures above 
that value. The maximum values of the relative displacement norm obtained through the 
entire mesh for each temperature are indicated in the figure captions.  
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Figure 4: Crack pattern evolution of mortar in terms of the magnitude of the relative displacement vector, for 

increasing prescribed temperature (same graphic scale factor for the six diagrams, but not the same as in figure 5; 
maximum value for each diagram (x10-4): 0.131, 0.204, 0.193, 0.169, 0.158 and 4.24).

              
Figure 5: Crack pattern evolution of mortar in terms of the magnitude of the relative displacement vector, for 

increasing prescribed temperature (same graphic scale factor for the five diagrams, but not the same as in figure 
4; maximum value for each diagram(x10-4): 33.9, 46.1, 60.3, 65.1 and 78.8).

T = 54ºC 

T = 180ºC T = 192ºC T = 286ºC 

T = 148ºC T = 110ºC 

T = 867ºCT = 867ºC T = 806ºC 

T = 711ºC T = 612ºC T = 547ºC 
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In figures 4 and 5 it is shown that initially only the interface elements between aggregate 
and matrix develop cracks (three first pictures in figure 4), while for higher temperature 
practically all interface elements become activated. This is related to the fact that for 
temperature below 180ºC the aggregates are basically in tension and the matrix is in 
compression, while for higher temperature this situation is inverted. 

3.1.4 Evolution of the stresses of the continuous medium 
Figure 6 shows the evolution of the stresses within the cement paste and sand grains 

(continuous medium), red color representing tensile stresses and blue color compressive 
stresses. For temperatures below 180ºC, cement paste expands more that the aggregates (see 
figure 1), causing the aggregates to be subject to tension and the matrix to compression. 
Above that temperature, however, this trend is inverted: the aggregates expand more that the 
cement paste and the stresses change sign. In figure 6 we can see both states:  

• Below 180ºC the aggregates are in tension and the matrix is in compression. Stress 
values increase until 110ºC, then start decreasing.

• Above 180ºC the stress state changes and aggregates turn into compression while the 
matrix turns into tension. Once signs have changed, stress values increase until 
approximately 286ºC, and beyond that temperature they decrease again.  

Figure 6: Evolution of stresses in the continuous medium of aggregates and matrix for the following 
temperature values: T = 54ºC, 110ºC, 148ºC, 180ºC, 192ºC, 286ºC, 547ºC and 867ºC, same scale factor for 

stresses in all graphs in this figure. 

T= 54ºC T= 110ºC T= 148ºC T= 180ºC 

T= 192ºC T= 286ºC T= 547ºC T= 867ºC 
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3.1.5 Numerical estimate of the influence of pre-existing vertical compressive stress
The fact that thermal action without confinement generates cracking, motivates the 

investigation of the effects of simultaneous loading and temperatures. Intuitive understanding 
tells us that under initial compression, cracking caused by tensile stress increments generated 
by temperature action might be postponed or prevented altogether. Therefore the combined 
effects of compression and temperatures might differ significantly from the superposition of 
the individual effects. These aspects are investigated in this section, by means of some 
additional calculations, using the same mortar mesh of the previous section with the 
parameters already calibrated for the mortar of Cruz and Guillen [1], which is subject to 
simultaneous thermal action and vertical confining stress. Because Cruz and Guillen [1] did 
not perform any such test under compressive load, the numerical results obtained are 
compared in a pure qualitative manner with some existing experimental results of Anderberg 
and Thelandersson [2], which were carried out in concrete specimens with different properties 
and geometric characteristic of the mortar used in the simulation. 

In the numerical simulations, the specimens were loaded to a certain vertical stress level 
and then heated to 800ºC. The load level is given as a percentage of the compressive strength 
of the material. Ten specific cases were analyzed with the nine compressive vertical stresses 
over f’c values of: 0, 0.01, 0.03, 0.05, 0.112, 0.225, 0.450, 0.675 and 1. The results obtained in 
terms of overall vertical strain (positive = expansion, negative = contraction) against 
temperature are shown in figure 7. 
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Figure 7: Total strain vs. temperature for different stress levels (numerical study).

In the figure, the upper continuous curve corresponds to free expansion (no compression), 
and coincides with the mortar curve in figure 3. For low temperatures, the effect of 
compression on the thermal expansion is reflected by the shift downwards of each curve, 
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which remains approximately constant until the temperature of 200-3000C. In this range the 
effects of compression and temperatures could be simply superimposed. Beyond that 
temperature, however, the (upper) uncompressed curve shows an inflection point 
corresponding to the beginning of internal cracking when the contracting matrix gets detached 
from the expanding aggregates, while the pre-compressed curves tend to turn downwards 
following the matrix contraction. Tensile stresses due to thermal mismatch have to overcome 
existing compressions, with the result that cracking and overall expansions are delayed to 
higher and higher temperatures, or even suppressed altogether for high compression values 
approaching the compressive strength.  

The main trends observed in the computations are similar qualitatively to those observed in 
the experiments A5, A6, A8 and A9 of Anderberg and Thelandersson [2], results that are 
shown in section 3.2.2 (figure 10). 

3.2 Thermal expansion of concrete specimens  
Experimental tests of thermal expansion at high temperature of concrete specimens with 

and without compression stress were reported, among others, by Anderberg and 
Thelandersson [2]. The calculations in this section try to reproduce those material 
characteristics and results, but due to the lack of basic material information (those authors did 
not report details of thermal expansions of the individual components cement, aggregate, 
mortar), the missing information is taken from the experiments from Cruz and Guillen [1] 
already mentioned in previous sections. 

In the numerical analysis, concrete is represented by large aggregates particles of dolomite 
rock surrounded by a matrix that represents mortar and smaller aggregates. The specimen 
considered has dimensions 10x10cm2, volume fraction of large aggregates 28% and 
maximum aggregate size 14mm (average aggregate size 10.4mm). The material parameters 
are: E = 70000 MPa (dolomite rock), E = 29000 MPa (mortar) and υ = 0.2 (both); for 
dolomite aggregate-mortar interfaces KN = KT = 500000 MPa/mm, tanφ0 = 0.90, χ0 =4 MPa, c0
= 15MPa, GF

I = 0.025 N.mm, GF
II = 10 GF

I, σdil = 40 MPa, αd = -2, and for mortar-mortar 
interfaces: KN = KT = 500000 MPa/mm, tanφ0 = 0.90, χ0 =6 MPa, c0 = 20MPa, GF

I = 0.030 
N.mm, GF

II = 10 GF
I, σdil = 40 MPa, αd = -2.  

3.2.1 Free thermal expansion analysis 
In the numerical simulation of the free thermal expansion analysis of concrete, the variable 

coefficient of thermal expansion for mortar is extracted from a volume expansion vs. 
temperature curve obtained numerically in Sec. 3.1.2 (figure 3). For aggregates, the 
coefficient of thermal expansion is assumed constant with value 0.0000125/ºC (same as for 
the sand in the mortar simulation of Sect 3.1). 

Figure 8 shows the numerical and experimental results for concrete specimens, for both 
Cruz and Guillen [1] and Anderberg and Thelandersson [2]. Numerical results are closer to 
the curves reported by Cruz y Guillen [1], and do not deviate excessively from those by 
Anderberg y Thelandersson [2] either. Results also show that in general terms expansion of 
concrete is larger than of mortar subject to the same temperature. 
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Figure 8: Total strain vs. temperature, numerical and experimental results for concrete. 

3.2.2 Crack evolution and final deformation 
The crack evolution trend is similar to that obtained for mortar in section 3.1.3. Figure 9 

shows a detail of crack evolution for three different prescribed temperature values (157, 519 
and 867ºC) and the final deformation field. We can see that, as in mortar, initially only the 
interface elements between aggregate and matrix are opening, while for higher temperature 
practically all interface elements became activated.  

Figure 9: Crack pattern evolution of concrete in terms of the magnitude of the interface relative displacements, 
for increasing prescribed temperature. Max. values obtained through the mesh (x10-3): 0.1766, 5.096, and 5.970, 

respectively. 

3.2.3 Test with thermal action under different values of vertical compressive stress 
The influence of a pre-existing sustained vertical stress on the evolution of thermal 

expansion is analyzed. The specimens were loaded to a certain vertical stress level and then 
heated to 800ºC. The load level is given as a percentage of the compressive strength of the 
material. Three specific cases were analyzed with the three compressive vertical stresses over 
f’c values of: 0.225, 0.450 and 0.675. For each cases here analyzed a constant coefficient of 
thermal expansion of value 0.0000125/ºC for the aggregates was used. For the mortar, a 
variable thermal coefficient has been extracted from the mortar expansion/contraction curves 
obtained in Sect. 3.1.5. 

T=157ºC T=519ºC T=867ºC T=867ºC 
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Figure 10 shows preliminary numerical results obtained in terms of overall vertical strain 
(positive = expansion, negative = contraction) against temperature, together with the 
experimental curves of Anderberg and Thelandersson [2].  For low temperature values, 
approximately 0-300ºC, there is a certain difference between numerical and experimental 
result, this is due to the fact that the experimental curves show for this range of temperatures 
the called transitional thermal creep which our model is not able to capture. For higher 
temperature values, where cracking and overall expansion are delayed for the presence of the 
vertical compressive stress, there is a qualitatively good agreement between results.  
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Figure 10: Total strain vs. temperature for numerical and experimental curves [2] for different load levels. 

Figure 11 depicts the evolution of microcracking with increasing temperature, in the 
analysis under a vertical pre-compression level of 0.450f'c, as well as the final deformed mesh. 
The representation is made in terms of the magnitude of the interface relative displacements. 
It can be observed as cracks develop predominantly in the vertical direction, with slight lateral 
inclination. This is in contrast with the circumferential-radial crack patterns around aggregates 
observed in the case of free expansion with no vertical compression (figure 9). 

Figure 11: Crack pattern evolution in concrete in terms of magnitude of interface relative displacements, for 
increasing prescribed temperatures with a pre-compression stress level of 0.450f’c , and final deformed mesh. 

Max. values obtained for each diagram (x10-3): 0.020, 9.04 and 336. 

Hormigón, 0,450f’c 

T = 157ºC T = 494ºC T = 494ºC T = 352ºC 
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4 CONCLUDING REMARKS 
The purely mechanical approach employed, which is based on input data of expansion 

curves for individual components, plus a meso-mechanical model with interfaces for cracking, 
seems capable of representing the effects of temperature mismatch on the overall expansion of 
mortar and concrete specimens, and related degradation mechanisms of cracking and damage. 
On-going work is aimed at improving the material model under loading by incorporating 
transitional creep at high temperatures, reproducing additional results of displacement-
restrained experiments, and incorporating into the model additional capabilities for 
temperature distribution and other diffusion-related phenomena linked to high-temperatures. 
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Abstract. In this paper, a sequential multi-scale framework to solve mass (air or water)
transfer problems is described. Numerical results are checked against mechanical and
permeation experimental datas from a reinforced concrete specimen under tensile load
designed by C. Desmettre and J.P. Charron [2]

1 Introduction

The durability of reinforced concrete structures is strongly linked to its porosity and
moreover to its cracks pattern which can be anisotropic in many realistic contexts. Created
by mechanical loading or unfavorable thermo-hydrical environment, those cracks increase
the penetration of water and aggressive agents within the material which can severely
weaken its mechanical behavior. It is therefore obvious that being able to compute the flow
going through concrete structure is a big issue for numerous applications : concrete made
bridges or CO2 storage as well as civil nuclear industry. Thanks to a mechanical model able
to represent the cracks opening in heterogeneous materials [3], we then compute a mass
(air or water) transfer problem within concrete and deal with permeability on isotropic
as well as anisotropic crack patterns. The experimental permeability datas obtained on
a tie-specimen under uniaxial loading described by C. Desmettre and J.P. Charron in
”novel water permeability device for reinforced concrete under load”[2] is then checked
against our numerical results.

The section 2 of this paper focuses on the sequential multi-scale framework, dealing
with the cracks FE modelling and the hydro-mechanical coupling, both at a meso scale.
The section 3 briefly sum up the experimental study of C. Desmettre and J.P. Charron
[2] and checks the experimental datas against our numerical results.

1
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2 Sequential multi-scale framework

As said previously, the aim is to compute a flow problem on isotropic as well as
anisotropic crack patterns on cement base materials. Firstly, it means that the mechanical
model must be able to deal with heterogeneous materials. Actually, reinforced concrete
is composed of steel bars and concrete, which itself is a mix of mortar and aggregates.
Secondly, the flow is strongly influenced by the crack openning �u� as the Poiseuille flow
QP going through a �u� gap between two planes is proportionnal to the cube of the open-
ing (QP ∝ �u�3). Therefore, the crack opening is a crucial value for the mass transfer
computation.

Greatfully, the model used [3] has those two specificities :

• it represents multi-phasic materials (cement paste, aggregates and steel have differ-
ent mechanical and transfer caracteristics),

• it gives the value of the opening �u� of each broken element whatever the sollicitation
is.

The next part focuses on those two special features of the mechanical model before
describing the permeation computation.

2.1 Crack representation : Strong discontinuities

When a concrete specimen (ie: made of cement paste and aggregates) is under a tensile
sollicitation, the stress in the cement paste quickly reaches its rupture value (ft ≈ 3MPa)
resulting in a crack initiation before its propagation. This is a dissipative phenomenon
where the so-called ”fracture energy” (Gf [J.m−2]) represents the energy dissipated by a
one square metre crack. Practically, it can be easily deduced from a light experimental
device like a three points bending test and is therefore one of the most used caracteristics
of concrete as the tensile limit stress (σf ) or the Young modulus (E). Thence, those three
parameters seems judicious to be the basis of a mechanical element able to represents the
behaviour of a brittle material like concrete is.

Dealing with brittle and quasi-brittle material in computational mechanic is still a
big issue and numerous models exist, each one with its benefits and its drawbacks. On
one hand, discrete mesh models [6] are able to represent the crack opening, but they
usually need intensive re-meshing in order to compute the crack direction. On the other
hand, with a Finite Element basis, several approach exist like the smeared crack models
[5]. Their main drawback is their mesh dependency, problem which can be bypasses
introducing a length scale wich is mesh objective.

Recently [7], [8], [9], an elegant crack model based on FE theory has been developped.
This method is mesh independent and doesn’t need re-meshing but introduce a so-called
strong discontinuity in the displacement field. The strong discontinuity is activated thanks
to a yield function Φ written as :

2
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Figure 1: Strong discontinuity crack representation and crack opening process

Φ(t, q) = t− (σf − q) (1)

where t is the traction vector at the discontinuity and σf the limit stress. The softening is
introduced through the variable q = k(�u�) by considering the exponential form (cf figure
1),

k(�u�) = σf

(

1− exp

(

− σf

Gf

(�u�)

))

(2)

The next part focuses on the permeability part.

2.2 Mesoscopic scale flow: The Poiseuille law

Once the cracks initiates, the second step starts : the aim is to compute a mass
transfer problem with the damaged mesh. Here is the key point, the material is composed
of a ”double porosity”. At a micro-scale, the cement paste porosity is isotropic. It
represents the undamaged part of the permeability (pore diametre ¡ 10µm). The flow
can be computed with the Darcy law (eq 3). This equation links the mass flow density
q [kg.s−1.m−2] and the pressure p.

q = ρv = − 1

µ
ρ.k.1 grad(p) (3)

The permeability (k) unit is m2.
As soon as the first crack initiates, a bigger porosity appears and the permeability

rises.
If the crack pattern is isotropic, one can analytically links damage to permeability [4].

In case of anisotropy, which represents most of the realistic studies, the problem is there-
fore more complex to solve. Taking into accounts the anisotropy of the crack pattern is
inherent to our model. It is based on a local implementation of the constitutive equation
which gives the Poiseuille flow between two planes (cf figure 2 and equation 4).

qEdge = ρ vEdge = ρ
w3

Edge

12µLEdge

∆p

L
(4)

3
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Figure 2: speed between two planes defined by the Poiseuille law

where µ is the viscosity of the studied fluid (µwater = 8, 90.10−4Pa.s at 20˚C) and ρ is a
constant as this equation 4 is given for incompressible fluid.

Once the elementary permeability matrices written, the ”double porosity” is easy to
be written as the sum of the isotropic permeability and the anisotropic permeability due
to the possible crack : K = K

iso
+K

ani
where K

iso
= −k

µ
1 and K

ani
= w3

Lµ
(1− n⊗ n)

As the anisotropic permeability matrix shows it, there is no flow in the colinear direction
of the bar while in the two perpendicular direction, the permeability is equal to w3

Lµ
.

Once the assembly of the elementary matrices done thanks to a classical FE software,
the problem can easily be solved and, as a result, the macroscopic flow can be computed.
This method is an elegant way to automatically takes into account the tortuosity and the
connectivity of the cracks.

2.3 Permeability of RC element under load

The multiscale framework we present here is clearly suitable dealing with mass transfers
within concrete structures or their components. To that aim we focus on experimental
results from [2] who designed a coupled tensile – permeability test on Reinforced Con-
crete (RC) specimens (610× 90× 90 mm3 concrete element including a 11 mm diameter
reinforcement bar). Here we aim at comparing their experimental measures to numerical
results and focus on the permeability evaluation along the failure process.

The fine scale mechanical analysis of this RC tie is based on a spatial truss represen-
tation [3] built with non-adapted meshes. In order to fit to the experimental conditions,
displacements are prescribed at both ends of the steel reinforcement bar. Such increasing
load leads to progressive cracking of the concrete element and Figure 3 shows a typical
crack pattern obtained from a numerical analysis. Three main macroscale cracks are dis-
tributed along the tie which is in accordance with experimental observations. Moreover,

4
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Figure 3: RC tie: numerical crack patterns

we show on Figure 4 that there is a quite good agreement between the measured values of
those cracks openings during the loading process and the corresponding numerical values.

Figure 4: RC tie: maximum crack opening versus stress in reinforcement (experimental [2] vs computa-
tional results)

On the permeability assessment point of view (here the test deals with water), Figure 5
shows the norm of the mass flow vector at the end of the failure process. Although the
concrete specimen contains a large number of mesoscale cracks, it is clear that the mass
transfer takes place within a subset of those cracks, corresponding to several percolated
paths. Thus, on the mass transfer point of view, the former may be seen as a set of

5
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macroscale cracks. Hence, it is worth noting that, apart from considering the opening
value as the pertinent criterion, this mass transfer analysis leads to an other way to
determine this set of macroscale cracks. This analysis being linear and so quite simple to
drive, it is a very convenient way to characterize macroscale cracks.

Figure 5: RC tie: numerical values of the mass
flow vector norm Figure 6: RC tie: numerical crack patterns

Finally, Figure 6 shows the permeability coefficient – here in [m.s−1] – evolution along
the load increase. The permeability increases from approximatively 2.10−10m.s−1 to
1.10−5m.s−1 both for numerical and experimental studies. It is also worth noting that
the increasing rate is also quite well represented. Yet, the permeability rise appears for
smaller loading values in the numerical study than in the experimental one. Considering
the concrete heterogeneity as well as the experimental discrepancy, those results are quite
promising.

3 Concluding Remarks

This paper presents the results given by a mesoscopic model able to compute the flow
going through a specimen under load. Three important points have been validated :

• Cracks spacing (3 main cracks on the 610mm long specimen),

• Cracks opening (0,35mm maximum opening when the yielding stress is reach in the
reinforced bar),

• Permeability values during loading (rise of 5 orders of magnitude from the original
permeability for this study).

The numerical results are therefore quite promising, especially knowing that more at-
tention can be paid on the boundary conditions and loading to fit to the experimental
study.

6
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Abstract. Various authors have used pure shear test models in order to describe the bond 
between FRP and concrete. However, considerable dispersion of the parameters which 
characterize the bond behaviour has been found. In pure shear models it is assumed that the 
load applied to the FRP is parallel to the axis of the concrete specimen and acts on the plane 
of symmetry. In this work, a numerical model is presented to analyse the influence of load 
misalignment on FRP-concrete bond behaviour. 
 
1 INTRODUCTION 

The use of fibre reinforced polymers (FRP) applied to the external strengthening of 
concrete structures, in particularly the use of laminates and sheets, has become an increasingly 
common practice. This is due, namely, to the mechanical properties of these composite 
materials, such as the ease of application and high strength-to-weight ratio. The major 
problems found with this reinforcement technique are the local failure modes. In the last few 
years, several experimental and analytical studies have been carried out, which contributed to 
the understanding and quantification of the phenomenon related to the bond behaviour 
between concrete and FRP. However, several issues still need to be clarified. 

Various authors [1, 2, 3, 4, 5, 6] used pure shear test models in order to describe the bond 
behaviour, which contributed to the definition of constitutive relationships for the interface 
concrete-FRP. A considerable dispersion of the parameters adopted to characterize the bond 
behaviour has been found [7]. 

In pure shear models it is assumed that: i) the load applied to the FRP is aligned with the 
axis of the concrete specimen and ii) the load is applied at the symmetry axis of the 
strengthened material. In this work, the influence of a deviation angle of the load with respect 
to the element axis is analysed. A numerical model is presented, based on previous studies [7, 
8, 9], in which the stress distribution long the interface concrete-FRP is evaluated. These 
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stresses can be both tangential and normal to the interface. In this study, unidirectional carbon 
fibres sheets are considered.  

The bond between the FRP and the concrete is modelled using a discrete crack approach, 
based on Non-Linear Fracture Mechanics [10]. Interface elements with zero initial thickness 
are adopted. The shear and peeling stresses developed at these elements are dependent on the 
relative displacements measured between the strengthening material and the concrete surface, 
according to a local constitutive relationship under softening. The material properties that 
characterize the interface, namely the shear and peeling stiffness, the cohesion, the tensile 
strength and the fracture energy in modes I and II, are obtained from previous works [7, 8, 9]. 
From the analysis of the results numerically obtained, it is possible to draw conclusions 
concerning the relative importance of each parameters and the influence of the load slope on 
the obtained results. It is expected that this work may contribute to identify some aspects 
which should be considered in a setup of experimental tests and to clarify the interpretation of 
the results obtained from those tests. 

2 PURE SHEAR MODEL 
The pure shear model considered in this work consisted of concrete specimens in which 

unidirectional carbon fibres were glued, by means of resin epoxy. The specimen was 
subjected to a tensile load along the direction of the fibres, as shown in Figure 1. This model 
was used in previous studies [11]. The concrete specimens tested were 400mm long and had a 
rectangular cross-section of 200mm by 200mm. The strengthening material had a width of 
80mm and was applied on the larger face of the specimen. The nominal values for Young’s 
modulus and for the ultimate tensile strain of the CFRP were 240GPa and 1.55%, 
respectively. Mean values of 36.4MPa, 2.8MPa and 31.6GPa, for the compressive strength, 
tensile strength and Young’s modulus of concrete, respectively, were considered. 

Figure 1: Shear model on concrete joint strengthened externally by CFRP [11] 

3 MATERIAL MODEL 
The concrete is assumed a continuum exhibiting an isotropic linear elastic behaviour. The 

FRP behaviour is assumed linear elastic until failure. The bond between concrete, resin and 
CFRP is modelled using interface elements of zero initial thickness and a discrete crack 
approach. 
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Figure 2: Yield surfaces adopted for the interface 

A multi-surface plasticity model is adopted [12, 13]; two limit surfaces are considered: a 
tension cut-off for mode-I fracture and a Coulomb friction envelope for mode-II failure and 
mixed mode, as shown in Figure 2. In this figure, the horizontal axis represents the normal 
stress vector component and the vertical axis represents the tangential stress vector 
component measured at the interface. The cut-off mode-I is defined by the tensile strength of 
the concrete. The Coulomb friction envelope is initially characterized by the cohesion 
coefficient and by the internal friction angle ϕ. Both yield functions follow exponential 
softening flow rules (Figure 3). 

The yield function associated with the normal stress is given by: 
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where σn is the stress vector component measured at the interface. An associated flow rule is 
considered. The shear yield function reads: 
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where τ is the tangential stress vector component measured at the interface. A non-associated 
flow rule is adopted with a plastic potential gs given by: 

ctanψστg ns −+= (3)

where ψ is the dilatancy angle. An isotropic softening criterion is adopted, meaning that both 
yield surfaces shrink the same relative amount in the stress space, and both keep the origin 
(Figure 2). 
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Figure 3: Normal and tangential constitutive relationships adopted for the interface 
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The material parameters characterizing the interface behaviour are: the elastic shear and 
peeling stiffness, ks and kn, respectively, the cohesion c, the tensile strength ft, and the fracture 
energies in modes I and II, GF and GF

II, respectively (area under the curves σn-w and σs-s 
adopted as shown in Figure 3). 

4 NUMERICAL ANALYSIS 
The numerical analysis is performed using the finite element method [7]. Considering the 

very high stiffness of the concrete when compared to the epoxy and the FRP, this material is 
modelled by rigid supports. For the strengthening material, except in the reference models, 4 
node isoparametric elements are adopted. These elements allow the bending stiffness of the 
composite to be considered. For the FRP, in the reference models, linear 2-node elements are 
considered [7]. The bond behaviour is modelled by linear interface elements with initial zero 
thickness. 

The specimen response is determined under displacement control, using an incremental, 
iterative procedure. 

As mentioned above, the constitutive relationship of the interface concrete-CFRP is de-
fined by six parameters: the shear and peeling stiffness, the cohesion, the tensile strength and 
the fracture energy in modes I and II. 

According with previous studies [7, 9] the following values are adopted: ks=1500MPa/mm 
and kn=4000MPa/mm, for the shear and peeling stiffness, respectively, c=5MPa for the 
cohesion and GF

II=1.5N/mm for the fracture energy in mode II. In the case of fracture energy 
in mode-I there is a large variation on the values proposed in the bibliography [4, 14, 15, 16, 
17], namely in the relationship between GF

II and GF. A value of GF=0.1N/mm is considered 
assuming a relation GF

II /GF between 10 and 25 [4, 14, 15]. 
The angle α is defined between the direction of the applied force and the y axes of the 

model (corresponding to the fibre orientation), in order to define the load slope: α=0º, as well 
as values of α>0º and α<0º are adopted, meaning a counter clockwise and clockwise rotation, 
respectively, with respect to the fibre axis. In this study the following values are used: 
α=±1.0º and α=±0.5º. The load deviation with respect to the fibre orientation is implemented 
by means of the corresponding components: one along the direction of the fibres and the other 
perpendicular to the strengthening material. As a consequence, in addition to the stresses 
tangential to the interface, normal stresses are expected to develop. 

Next, the numerical study is presented. In the analysis, the adopted thicknesses of the 
CFRP are: tf=0.5mm and tf=0.1mm. These values are typical of CFRP sheets. 

4.1. CFRP thickness equal to 0.5mm 
For a composite thickness of 0.5mm and α=+1.0º the interfacial stress distribution along 

the bond length is obtained. In Figures 4 and 5, the interfacial stresses along the bond length 
for several load levels are presented, for applied loads close to 20% and 90% of the maximum 
load registered in that model, which is circa 48kN.  

For lower load levels, some values of the shear stresses are higher than the cohesion 
defined due to the presence of normal compressive stresses, which is in according with the 
yield surface adopted as shown in Figure 2. These stresses only occur along a small length, 
near the location where the load is applied. Apart from the region where normal stresses co-
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exist, the shear stress distribution becomes similar to the one obtained in a pure shear model 
[7]. 
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Figure 4: Interfacial stresses with tf=0.5mm, F=10kN and α=+1.0º 
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Figure 5: Interfacial stresses with tf=0.5mm, F=43kN and α=+1.0º 

In Figures 6 and 7, the interfacial stresses along the bond length for several load levels are 
presented, for applied loads close to 20% and 90% of the maximum load registered in that 
model when α=−1.0º, which was circa 25kN. Except in the region where normal stresses co-
exist, the shear stress distribution becomes once more similar to the one obtained in a pure 
shear model [7]. Also in this case it is possible to observe normal stresses to the interface in 
addition to the tangential stresses. These stresses are mainly peeling stresses and also occur 
along a small length near the location where the load is applied. Thus, conversely to the 
previous case, shear stresses above the cohesion are not found.  

With α=−1.0º, the maximum load is circa 52% of the maximum load obtained in the case 
with α=+1.0º. Theoretically, this relationship should be close to 100%. Since the evaluation of 
the mode-II fracture energy based on experimental tests is much dependent from the ultimate 
load, it is important to mention that unreliable values of this parameter will be obtained if α in 
the experimental setup is less than zero. This issue will be further discussed below.  
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Figure 6: Interfacial stresses with tf=0.5mm, F=5kN and α=−1.0º 
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Figure 7: Interfacial stresses with tf=0.5mm, F=22.5kN and α=−1.0º 

The results obtained with α≠0º and with α=0º for a load level of 65% of the maximum load 
obtained with α=+1.0º and α=−1.0º, 31kN and 16kN, respectively, are compared and 
presented in Figures 8 and 9. 

From the analysis of the results obtained from the two models, with α=+1.0º and α=0º, it is 
found that the corresponding maximum load and the shear stress distribution are similar, as 
shown in Figure 8, except along a small length near the location where the load is applied. 
The experimental results obtained with α=+1.0º allow for the satisfactory quantification of the 
material parameters that define the constitutive law of the bond behaviour between concrete 
and CFRP, namely: ks, c and GF

II. 
The shear stress distributions obtained with both α=−1.0º and α=0º are similar, for a load of 

16kN, as can be observed in Figure 9. However there are some differences which should be 
noticed. The relation between the maximum loads with α=−1.0º and with α=0º is about 52%. 
This is a very important aspect because it has direct implications on the value which could be 
adopted, by mistake, for GF

II. The maximum load in the model with α=−1.0º is 25kN. From 
this result, the fracture energy in mode II was estimated according to Equation (4) [7, 18, 19]. 
The obtained value was 0.41N/mm, which is about 27% of the reference value, considering a 
pure shear model. 

A new pure shear model was defined considering the above obtained value for the fracture 
energy in mode-II: GF

II=0.41N/mm. Values of c=5.0MPa and ks=1500MPa/mm were adopted 
for a complete definition of the interface behaviour. The results from this model, called α1=0, 
are shown in Figure 9. As expected, from this figure it is possible to observe a very good 
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agreement between the stress distribution and the maximum load obtained from both models: 
with α=−1.0º and α1=0º. However, these “corrected” values of fracture energy, obtained with 
α=−1.0º, are not the right ones. 

Nu=bf× 2Ef×tf×GF
II (4)
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Figure 8: Shear stresses with tf=0.5mm and F=31kN 
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Figure 9: Shear stresses with tf=0.5mm and F=16kN 

Considering now a value of α equal to half of the previous, it is possible to note similar 
shear stress distribution as shown in Figure 10. However, the maximum load obtained from 
the model with α=−0.5º was 35kN, higher than 25kN which was obtained with α=−1.0º. 
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Figure 10: Shear stresses with tf=0.5mm: F=31kN (ang.>0) and F=16kN (ang.<0) 



1632

P. Neto, and J. Alfaiate. 

8

4.2 CFRP thickness equal to 0.1mm 
For a composite thickness of 0.1mm and α=+1.0º the interfacial stresses distribution along 

the bond length was obtained. In Figures 11 and 12, the interfacial stresses concrete-CFRP 
along the bond length are presented for several load levels, namely about 20% and 90% of the 
maximum load registered in that model, which was circa 22.5kN. From these figures it is 
possible to notice, as observed in the previous case with tf=0.5mm, non-zero normal stresses. 
The normal stresses are compressive and occur along a smaller length than the one observed 
with tf=0.5mm, next to the location where the load is applied. Except in the region where 
normal stresses co-exist, the shear stress distribution becomes similar to the one obtained in a 
pure shear model [7]. 
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Figure 11: Interfacial stresses with tf=0.1mm, F=5kN and α=+1.0º 
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Figure 12: Interfacial stresses with tf=0.1mm, F=20kN and α=+1.0º 

In Figures 13 and 14, for α=−1.0º, the interfacial stresses along the bond length are 
presented for several load levels similar to the values previous adopted, namely about 20% 
and 90% of the maximum load registered in that model, which was circa 9.5kN. For tf=0.1mm 
the relationship between the maximum load with α=−1.0º and α=0º is circa 42% and for 
tf=0.5mm the corresponding ratio is 52%. Thus, compared to the case α=0º, the decrease of 
the maximum load under α<0º seems to become more significant when the external 
reinforcement thickness decreases. Similar to the case with tf=0.5mm, the value of the fracture 
energy in mode-II obtained from an experimental test in these conditions will hardly match 
the theoretically correct one. 

Except in the region where normal stresses co-exist, the shear stress distribution becomes 
similar to the one obtained in a pure shear model. Also in this case it is possible to observe 
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normal stresses to the interface in addition to the tangential stresses. The normal stresses, 
mainly peeling stresses, only occur along a small length, next to the location where the load is 
applied.  
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Figure 13: Interfacial stresses with tf=0.1mm, F=2kN and α=−1.0º 
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Figure 14: Interfacial stresses with tf=0.1mm, F=8kN and α=−1.0º 

An analysis similar to the previous one adopting tf=0.5mm was performed. The results 
obtained with α≠0º and α=0º for a load level of 65% of the maximum load obtained with 
α=+1.0º and α=−1.0º, 15kN and 6kN, respectively, are presented in Figures 15 and 16. 

From the analysis of the results obtained from the two models, with α=+1.0º and α=0º, it is 
found that the corresponding maximum load and the shear stresses distribution are almost 
coincident, as shown in Figure 15. Thus, in this case, the experimental results with α=+1.0º 
allow for a good quantification of the material parameters that define the constitutive law of 
the bond behaviour between concrete and CFRP, namely: ks, c and GF

II. 
The shear stress distributions obtained with α=−1.0º and α=0º are similar, for a load of 

6kN, as can be observed in Figure 16. However there are some differences that should be 
noticed. The relationship between the maximum loads with α=−1.0º and with α=0º is about 
42%. As mentioned above, this is a very important aspect because it has direct implications 
on the value to be considered for GF

II. The maximum load in the model with α=−1.0º is 
9.5kN. From this result, the fracture energy in mode II was estimated according to Equation 
(4). The obtained value was 0.26N/mm, which is about 17% of the reference value, 
considering a pure shear model. In this case, the obtained GF

II value would be even farther 
from the reference value than the value obtained considering tf=0.5mm. A new pure shear 
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model was defined adopting GF
II=0.26N/mm and the reference values: c=5.0MPa and 

ks=1500MPa/mm. The results from this model, called by α1=0, are shown in Figure 16. As 
expected, from this figure it is possible to observe a good agreement between the stress 
distribution and the maximum loads obtained from both models: with α=−1.0º and α1=0º. 
Nevertheless, this “corrected” value of the fracture energy, obtained with α=−1.0º, is 
definitely not the right one. 
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Figure 15: Shear stresses with tf=0.1mm and F=15kN 
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Figure 16: Shear stresses with tf=0.1mm and F=6kN 

5 CONCLUSIONS 
In shear tests, adopting a deviation of the load orientation with respect to the FRP fibre 

orientation (α≠0º), normal stresses are obtained in addition to the stresses tangential to the 
interface, whereas no normal stresses occur in a pure shear model. 

Considering α>0 and especially for higher thickness values, the maximum tangential stress 
tends to be higher than the cohesion along a small bond length, due to the existence of normal 
compressive stresses in the interface, in particularly for lower load levels. This small length, 
near to the beginning of the glued joint where the load is applied, tends to decrease with the 
thickness adopted.  

Except in the region where normal stresses co-exist, the shear stress distribution becomes 
similar to the one obtained in a pure shear model. 

Considering the maximum load, if α>0, its value is close to the value obtained from a pure 
shear test. However, if α<0, due to the existence of normal stresses at the interface, a 
significant reduction of the bond strength is observed, which seems to be more pronounced 
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using smaller FRP thickness. In this case, the measured fracture energy in mode-II is 
significantly different from the theoretically correct value. 

The normal stresses under α<0 are mainly peeling stresses, which occur along a small 
length. 

With regard to the quantification of the material parameters, which define the behaviour of 
the bond between concrete-FRP, it is possible that these load misalignments, in an 
experimental shear test setup, may be responsible for the large dispersion observed in several 
works [7], namely: 
i) the evaluation of fracture energy in mode-II based on these tests is very sensitive to 

the load misalignment, mainly if α<0; 
ii) the cohesion quantification from experimental tests could be accurately achieved. 

However, some attention should be paid to the possibility of obtaining shear stresses 
higher than the cohesion, along a small length, due to load misalignment;  

iii) the shear stiffness appears as the parameter with the largest range of values when 
compared to the cohesion and the fracture energy in mode-II. However, this parameter 
essentially depends on the adhesive [7] and for larger values its influence, in the 
maximum load and in the tangential stresses, could be neglected.  

It is important to stress that, if the imperfection related to the experimental test corresponds 
to α<0, the obtained maximum load value can be less than half the value obtained from a test 
with α=0 or α >0. 

As shown, the results obtained with α>0 are considerably closer to the ones resulting from 
a pure shear test than the values obtained with α<0. 

When comparing the cases where α=+1.0º and α=+0.5º no significant differences are 
registered. However, with a negative angle, a significant difference is found, since the 
maximum load varies from 35kN to 25kN when the angle varies from 0.5º to 1.0º.  

As a final remark, the material thicknesses considered in this study are typical from fibre 
carbon sheets. Thus, it is possible that the use of laminates proves to be less sensitive to the 
variation of the load direction. 

ACKNOWLEDGEMENT 
Financial support has been provided by the Portuguese Fundação para a Ciência e a 

Tecnologia (FCT) of the Portuguese Ministry of Science and Technology and Higher 
Education (PROTEC 2009). 

REFERENCES 
[1] Xue, W., Zenga, L. and Tana, Y. Experimental studies on bond behaviour of high strength 

CFRP plates, Composites Part B: Engineering (2008) 39(4), 592-603. 
[2] Mazzotti, C., Savoiaa, M. and Ferracutia, B. An experimental study on delamination of 

FRP plates bonded to concrete, Construction and Building Materials (2008) 22(7), 1409-
1421.  

[3] Malek, A.M., Saadatmanesh, H. and Mohammad, R.E. Prediction of failure load of RC 
beams strengthened with FRP plate due to stress concentration at the plate end, Structural 
Journal, ACI (1998) 95(2), 142-152. 



1636

P. Neto, and J. Alfaiate. 

12

[4] Täljsten, B. Plate bonding – strengthening of existing concrete structures with epoxy 
bonded plates of steel or fibre reinforced plastics, Doctoral Thesis, Division of Structural 
Engineering, Lulea University of Technology, (1994). 

[5] Chajes, M.J. and Finch jr., W.W., Januszka, T.F. and Thomson jr., T.A. Bond and force 
transfer of composite material plates bonded to concrete, Structural Journal, ACI, (1996) 
93(2), 208-217. 

[6] Bizindavyi, L. and Neale, K.W. Transfer lengths and bond strengths for composites 
bonded to concrete, Journal of Composites for Construction, ASCE, (1999) 3(4), 153-160. 

[7] Neto, P. Estudo numérico da ligação betão-CFRP, Tese de Mestrado, Instituto Superior 
Técnico, Universidade Técnica de Lisboa, (2006). 

[8] Neto, P., Alfaiate, J., Almeida, J.R. and Pires, E.B. The influence of mode-II fracture on 
concrete strengthened with CFRP, Computers & Structures (2004) 82(17-19), 1495-1502. 

[9] Neto, P., Alfaiate, J. and Vinagre, J. Modelling the behaviour of reinforced concrete 
beams strengthened with FRP, Proceedings of III European Conference on 
Computational Mechanics. Solids, Structures and Coupled Problems in Engineering, 
ECCM2006, Laboratório Nacional de Engenharia Civil, Lisboa, Portugal, (2006). 

[10] Hillerborg, A., Modeer, M. and Petersson, P.E. Analysis of crack formation and crack 
growth in concrete by means of fracture mechanics and finite elements, Cement and 
Concrete Research (1976) 6, 773-782. 

[11] Travassos, N.C. Caracterização do comportamento da Ligação CFRP-betão, Tese de 
Mestrado, Documento provisório, Instituto Superior Técnico, Lisboa, Universidade 
Técnica de Lisboa, (2001). 

[12] Lourenço, P.B. and Rots, J.G. A multi-surface interface model for the analysis of 
masonry structures, Journal of Engineering Mechanics, ASCE (1997) 123(7), 660-668. 

[13] Alfaiate, J. and Almeida, J.R., Crack Evolution in Confined Masonry Walls, Idelshon, 
S.R., Oñate, E. and Dvorkin, E. eds. Computational Mechanics: New Trends and 
Applications, CIMNE, Barcelona, Spain, (1998). 

[14] Bazant, Z.P. and Pfeiffer, P.A. Shear fracture tests of concrete, Materials and 
Structures (1986) 19, 111-121. 

[15] Ozbolt, J., Reinhardt, H.W. and Xu, S. Numerical studies of the double-edge notched 
mode-II geometry, Mihashi, H. and Rokugo, K. eds. FRAMCOS-3, Japan, (1998) 2, 773-
782. 

[16] Alfaiate, J. and Pires, E.B. Mode-I and mixed-mode non-prescribed discrete crack 
propagation in concrete, Mihashi, H. and Rokugo, K. eds. FRAMCOS-3, Japan, (1998) 
2, 739-748. 

[17] Gálvez, J.C., Cendón, D.A., Planas, J., Guinea, G.V. and Elices, M. Fracture of concrete 
under mixed loading - experimental results and numerical prediction, Mihashi, H. and 
Rokugo, K. eds. FRAMCOS-3, Japan, (1998) 2, 729-738. 

[18] Yuan, H., Wu, Z.S. and Yoshizawa, H. Theoretical solutions on interfacial stress transfer 
of externally bonded steel/composite laminates, Journal of Structural Mechanics and 
Earthquake Engineering, JSCE (2001) 675/I-55, 27-39. 

[19] Wu, Z.S. and Niu, H.D Shear transfer along FRP-concrete interface in flexural members, 
Journal of Material, Concrete Structures and Pavements, JSCE (2000) 49(662), 231-
245, 2000. 



1637

A METHOD OF TWO-SCALE
CHEMO-THERMAL-MECHANICAL COUPLING FOR

CONCRETE

Tao Wu∗, İlker Temizer†, Peter Wriggers∗

∗Institute of Continuum Mechanics
Leibniz Universität Hannover

Appelstraße 11, 30167 Hannover, Germany
e-mail: wu,wriggers@ikm.uni-hannover, www.ikm.uni-hannover.de/

†Department of Mechanical Engineering
Bilkent University

06800 Bilkent Ankara, Turkey
e-mail: temizer@bilkent.edu.tr, www.me.bilkent.edu.tr

Key words: Concrete, Alkali Silica Reaction, Multiscale, Homogenization, Coupling

Abstract. The Alkali Silica Reaction(ASR) is one of the most important reasons to
cause damage in cementitious constructions, which can be attributed to the expansion
of hydrophilic gel produced in the reaction. In this contribution, the chemical extent is
described depending on the temperature and it has influences on damage parameters.
Expansions of the gel are assumed to only happen in the micropores of Hardened Cement
Paste. Afterwards, the homogenization of damage in the microscale is initialized and the
effective damage can be applied in the mesoscale directly. Moreover, parameter identifi-
cation is implemented to extract the effective inelastic consititutive equation. In all, 3D
multiscale chemo-thermo-mechanical coupled model is set up to describe the damage in
the concrete due to ASR.

1 INTRODUCTION

1.1 Concrete

Concrete is the most widely used construction material in the world because of its good
strength and durability. However, it is a exceedingly complex material and has specific
structures at different length-scales. This issue can yield stress concentrations which cause
overall inelastic behavior in the material. In order to improve the reliability of numerical
simulations, it is very crucial to extend the investigation to the microstructure. Concrete
at the macroscale is assumed to consist of mortar, large aggregates, large pores, and a
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Macroscale Mesoscale Microscale

Figure 1: Multiscale Representation of the Concrete

cohesive zone between aggregates and mortar. The mortar as the mesoscale contains small
aggregates, small pores, hardened cement paste(HCP) and a cohesive zone between small
aggregates and HCP. At the microscale, HCP includes hydration products, unhydrated
residual clinker and micropores. The whole multiscale representation of concrete is shown
in Fig.1.

1.2 Alkali Silica Reaction

1.2.1 Mechanism

The issue of concrete deterioration because of the alkali silica reaction(ASR) has re-
ceived numerous attentions since 1940[3]. ASR refers to a multistage process, involving
non-instantaneous dissolution of silica and instantaneous swelling. The process of dissolu-
tion happens at the interface of aggregates and the alkaline solution, where hydroxyl ions
attack poorly crystallized silica network. The produced ions from dissolution will combine
with positively charged ions to form the gel and then the gel imbibes water and swells. As
long as this free expansion space in pore is filled, the gel can exert locally a pressure on
the surrounding cement paste which eventually leads the micro-crack and macro-crack of
concrete. Many researchers have already agreed the dissolution mechanism of silica as the
first stage of the ASR, however, there are debates how the expansion of gel works among
researchers until now. The ASR model proposed by Bažant and Steffens[1] assumes that
the pressure of water imbibition in the gel can push the gel to permeate the pores in the

2
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cement paste located very near the surface of aggregate particles. Dron and Brivot[2]
even go further to assume a through-solution mechanism, where the dissolved silica may
diffuse away from the subsequent expansive reactions, may then happen anywhere in the
connected pore space of the cement paste. On the other hand Idorn[4] indicates, that the
expansive mechanism takes place directly inside the reacting aggregate particles and not
in pores or cracks of the cement paste. In addition, Idorn[4] states, that gel penetrating
into cracks and pores surrounding the aggregate absorbs calcium ions from the pore liquid.
It makes the gel rigid and non-swelling. Up to now, there are no works regarding the alkali
silica reaction implemented in the HCP, since some parameters can not be obtained from
experiments directly in the microscale, and more importantly, aggregates do not exist in
the HCP. The promising character of this contribution is to extend the investigation to
the real microscale of concrete. So as to make the microscale model more reasonable,
some assumptions have to be set up. Firstly, the expansion of gel is assumed to take place
in micropores of the HCP. Secondly, the dissolution process and the expansion process
are considered as a one.

1.2.2 Chemical Reaction Kinetics

A first order reaction kinetics is defined here

tc
dξ

dt
= 1 − ξ (1)

ξ ∈ [0, 1] is the chemical extent, where 0 indicates no reaction and 1 means the end of
reaction. In addition, tc is the characteristic time depending on the temperature and ξ.
Based on experiments from Larive[11], the characteristic time is obtained as

tc = τch
1 + exp[−τlat/τch]

ξ + exp[−τlat/τch]
(2)

τlat(T ) = τlat(T̄ )exp[Ulat(1/T − 1/T̄ )]; τch(T ) = τch(T̄ )exp[Uch(1/T − 1/T̄ )] (3)

where τlat and τch are the latency time and the expansion time respectively. The values
of Uc = 5400 ± 500K, UL = 9400 ± 500K are from the literature[5] and afterwards,
the evolution of the reaction extent ξ is obtained by integrating the ordinary differential
equation (1), see equation (4) and the extent with respect to different temperatures is
displayed in Fig.(2).

ξ(t) =
1 − exp(−t/τch)

1 + exp(−t/τch + τlat/τch)
(4)

For a genetric temperature history, the accumulated extent can be obtained through
the backward euler scheme. In terms of different temperature inputs, the accumulation
curve of extent is obtained, see Fig.(4) and Fig.(5).

3
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Figure 5: Chemical Extent Accumulation

2 MICROSCALE OF THE CONCRETE

2.1 Representation of the Hardened Cement Paste

The representation of HCP is obtained using three-dimensional micro-CT scans with a
spatially resolved distribution of the density. Each voxel is 1µm3 with only one material
identifier. According to the theory of Powers, the fractional volume of hydration products
is 83.4% and the fractional volume of micropores is 14.3% when the water-cement ratio
is 0.45 and the hydration degree is 0.945. Through the median filter, a final three-
dimensional finite-element mesh with three different material identifiers is produced for
numerical simulation, which can represent each voxel with a finite-element of hexahedron
type, see Fig.(3). Pale parts are hydration products, red part are micropores and blue
parts are unhydrated residual clicker.
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2.2 Constitutive Equations in the HCP

2.2.1 Hydration Product

2.2.2 Gel

Since the chemistry of gel is similar to the Calcium-Silicate-Hydrate, gel is treated as a
incompressible material, with a Possion ratio of 0.49975. Standard displacement elements
experience locking for incompressible conditions, hence, Q1P0 is launched to solve this
problem. In the case of any deformation, there are deviatoric and volumetric strain
components. Deviatoric strains determine the shape change of the body and volumetric
strains determine the volume change. The volume change occurs due to a hydostatic
pressure. As a result, Q1P0 element determines the shape change from the deviatoric
strains and the pressures from the volumetric strain, where the shape function of pressure
in FEM is constant. σ = 2µεD + P and P is the hydrostatic pressure. Herein, P =
κtrε − κβξ, where β is the expansion coefficient and ξ is the chemical extent. The weak
forms of the above-mentioned stress formular and the mechanical equilibrium are shown
in equation (5) and equation (6).

∫

V

r(κ−1P − (trε − βξ))dV = 0 (5)

∫

V

ε(η) : σ(u)dV =

∫

V

(εD(η) + εV (η)) : (σD(u) + P1)dV =

∫

V

η · ρbdV +

∫

Γ

t · ηdΓ (6)

where r and η are the test function for stress and displacement. After plugging equation
(5) into equation (6) and the linearization, the tangent matrix and the residual can be
obtained.

2.3 Homogenization

Computational homogenization is very critical tool to bridge the microscale and the
marcroscale[10]. The resulting effective material behavior can be applied to the mechan-
ical model at the next length-scale through the volume average of representative volume
elemnt(RVE). 〈D〉 = 1

V

∫
V

DdV , where 〈∗〉 denotes the volume average of a representative
volume element. The size of RVE is very critical for homogenization, which can ensure
the statistical representative response under boundary conditions satisfying the HILL’s
energy criterion. In this contribution, the RVE of 64*64*64 is choosed from Hain[8].
Afterwards the displacement boundary condition of RVE is fixed and just consider the
expansion inside of RVE. The effective damage of RVE is increased with the chemical
reaction going on for different expansion ratios, see Fig.6. The damage distribution on
hardened cement paste is shown in Fig.7.

5
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Figure 6: Effective Damage Figure 7: Damage on Hardened Cement
Paste

2.4 Statistical Analysis

Because the representative volume element(RVEs) is only a different portion of the
HCP, statistical analysis of a sufficient number of different three-dimensional specimens
makes numerical simulation of damage more reasonable and accurate. 20 statistical tests
are run with the expansion ratio of 0.02, see Fig.(8). The mean value and the standard
deviation of homogenized damage-extent correlation are obtained through equation (7).
Afterwards, equation (8) is used to approximate d(ξ)med and d(ξ)std, which can be directly
applied for the computation in the mesoscale. Table (1) demonstrates the approxmation
coefficients and referring to the approximation of mean and standard deviation, see Fig.(9)
and Fig.(10).
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d(ξ)med :=
1

n

n∑
i=1

< d(ξi) > d(ξ)std :=

√√√√ 1

n − 1

n∑
i=1

[< d(ξ)i > −d(ξ)med]2 (7)

D(ξ)med :=

i≤6∑
i=0

cmed
i ξi and D(ξ)std :=

i≤7∑
i=0

cstd
i ξi (8)

i 0 1 2 3 4 5 6 7
cmed
i -1.4539 4.7304 -5.5806 2.6142 -0.2205 -0.0025 0.0001
cstd
i 5.5993 -20.4421 29.2301 -20.2592 6.6718 -0.8509 0.0704 -0.0033

Table 1: Coefficients of Approximation

3 MESOSCALE OF THE CONCRETE

3.1 Take and Place Algorithm

The evaluation of the mesoscale representation of concrete needs the generation of a
random aggregate structure where the size and distribution of the coarse aggregates closely
resemble real concrete in the statistical sense. This structure is comprised of randomly
distributed aggregates particles and mortar matrix filling the space between the particles.
This random principle is implemented by taking samples of aggregate particles from a
source whose size distribution follows a certain given grading curve, see Fig.11 and Table
(2), and then placing the aggregates one by one into the concrete in such a way, which
can ensure no overlapping with particles already placed. Grading curve refers to the
determination of the particle size distribution for aggregates, usually experssed in terms
of cumulative percentage passing through a series of size of sieve openings. In order to
place an aggregate particle at a free position within the concrete volume, two obvious
conditions need to be satisfied. The whole aggregates must be completely within the
boundary of the concrete volume and there must not be any overlapping with previously
placed aggregates.

7
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Figure 11: Grading Curve

Size(mm) Retained(%) Passing(%)
19.00 0 100
12.70 3 97
9.50 39 61
4.75 90 10
2.36 98.6 1.4

Table 2: Sieve Result

Figure 12: Mesoscale Figure 13: Descritization

3.2 Discretization

Discretization of the generated RVEs consisting of many inclusions is a tedious proce-
dure. There are basically two approaches to mesh the microstructure of the concrete mate-
rial: an unaligned or an aligned approach. In this contribution, the generated mesostruc-
ture model is translated into the commercial software CUBIT which offers the option of
automatic mesh generation with tetrahedral elements, then generates the mesh and finally
outputs a mesh file for the finite element analysis program (FEAP), which is a nonlinear
finite element software.

3.3 Effective Inelastic Constitutive Equation

In the mesoscale, aggregates are assumed to be purely elastic and cement paste is as-
sumed to be an inelastic damage material. Since finding an effective inelastic constitutive
equation by homogenization is still an unsolved problem, an inelastic effective constitu-
tive equation with the unknown material parameters must be defined through parameter
identification. In terms of the cement paste, a visco-plastic model of PERZYNA-type
combined with an isotropic damage model is choosen. Considering the definition of elas-

8
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tic energy rate yields

D : 0 � σ : ε̇pl + Y Ḋu (9)

a constrained optimization problem combined with the Penalty-Lagrange approach can
yield an unconstrained optimization problem.

P = −σ : ε̇pl − Y Ḋu +
1

η
φ(f) + χ̇Su → stat (10)

where the variable 1
η

refers to the penalty-parameter, φ(f) denotes the penalty function,
and χ is the LAGRANGE multiplier. A partial differentiation of P with respct to the
elastic energy rate Y yields the evolution equation of damage.

Ḋ = ξ
∂S(εeq)

∂εeq
(11)

where S(ε) is the damage surface determining whether damage increases or not. It de-
pends on the equivalent strain εeq.

S(ε) := 1 − exp

[
−
(

εeq − a

b

)c]
− D � 0 (12)

The damage surface is defined by an exponential law and depends on the elastic energy
εeq, in addition, the parameters a, b, and c are the material properties of the assumed
model. The partial differentiation of P with respect to the σ yields the plastic strain
evolution.

ε̇pl
n+1 =

1

η
φ+ ∂f

∂σ
(13)

where φ+ denotes the derivative of the penalty function φ(f) and the penalty function
itself is defined the (k + 1)th power of the yield surface f . The material property k is
assumed to take the value k = 1 in order to enable a nonlinear viscous behavior.

φ(f) =

{
0 ;f� 0

1
k+1

fk+1 ;f>0 (14)

The abovementioned penalty function ensures that the constraint f is satisfied apprix-
imately which is typical for visco-plastic materials. The yield surface f is assmed to be
of VON-MISES-type

f := αtrσ + ‖devσ‖ −
√

2

3
kf � 0, (15)

where devσ denotes the deviatoric part of the stress tensor, trσ is the trace of the stress
tensor, and kf is the material property of the model. Eventually, the equation (13) can
be solved with the radial return mapping procedure based on the implicit Euler scheme.

9
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3.4 Parameter Identification

Because the parameters in the abovementioned equation can not be obtained from
experiments, parameter identification is formulated as an optimization problem, where a
least-squares functional is minimized for providing the best agreement between experimen-
tal data and numerical data. The objective function is generated and then the material
properties are calculated on the basis of minimization of the objective function. The ob-
jective function A(κ) is defined as a least-square sum between the experiment[9] and the
numerical result: A(κ) :=

∑
(〈σ(κ)〉i−σexp

i )2 → min. Herein, the combination of Genetic
algorithm and Levenberg-Marquardt algorithm is used. The genetic algorithm is used
for pre-optimization and then the optimization will switch to the Levenberg-Marquardt
method, once the object function is smaller than a certain value. It is a efficient and
robust algorithm. The optimization results and resulting parameters are shown in Fig.14
and Table 3.
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Figure 14: Optimization Result

κ0 κmin κmax κ∗

kf 21 20 70 42
η 2725 1000 15000 3525
∆t 0.0015 0.001 0.2 0.0355
b 100 100 5000 4241
a 100 100 2000 718

Table 3: Optimization Parameters

4 THERMAL FIELD

The instationary thermal balance equation states that changing of the temperature is
equal to the heat flux q through the surface

∫

V

ρcθ̇dV = −
∫

Γ

qdΓ (16)

where c denotes the capacity of heat and the heat flux q = −kgradθ.

5 COUPLING

After imposing the constant temperature on top of the concrete, the heat flux continues
to diffuse and then the chemical extent on each gauss point of finite elements could be
updated through the backward euler scheme depending on the tempeature. Meanwhile,
the chemcial extent can trigger damage which is comprised of the damage due to the alkali
silica reaction and the mechanical loading. The evolution of the chemical extent and the

10
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Figure 15: Coupling Result

damage with respect to time is demonstrated in Fig.15. Because aggregates are assumed
to be elastic, the chemical extent and the damage do not exist in aggregates.

6 CONCLUSIONS

In this contribution, the mechanism of Alkali Silica Reaction and the representation
of concrete in the microscale and mesoscale for further numerical computation are in-
troduced. The numerical homogenization approach is set up to bridge the microscale
and macroscale. Furthermore, the parameters of the effective consititutive equation
are obtained through parameter identification. Eventually 3D multiscale chemo-thermo-
mechanical FEM is demonstrated completely to describe damage in the concrete due to
the Alkali Silica Reaction. In the future, the humidity will be incorporated and then
the coupling based on the staggered method will be implemented. In addition, because
the cohesive zone between aggregates and cement paste in the concrete is very week, the
interfacial damage should be considered.
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Abstract. A phenomenological modelling approach has been developed, based on some 
salient physical effects regarding void growth vs. plastic straining, to describe the transition 
behaviour between dense metal plasticity and micro-porous metal plasticity. Considering that 
void germination requires a certain amount of plastic deformation, a ‘primary’ hole nucleation 
criterion has been proposed, as well as a statistical law governing the ‘secondary’ hole 
kinetics. In a consistent way, the hole nucleation criterion accounts for the accelerating effects 
of stress triaxiality and, conversely, the delaying effects of temperature and strain rate. In this 
work, a modification of the GTN model has also been proposed, overcoming its inability to 
predict damage growth and fracture for zero and low triaxiality, shear-dominated 
deformations. In this respect the kinematic mean stress related shift mechanism has been 
introduced and quantified in the expression of the GTN plastic potential, enabling thus the 
damage growth under shear and under small negative triaxialities. The 3D constitutive 
equations have been implemented as user material in the engineering finite element 
computation code Abaqus®. Numerical simulations have been conducted considering a single 
finite element under simple shear on one hand and a notched cylindrical sample under remote 
uniaxial tensile loading on the other hand. The numerical results show clearly the influence of 
the hole nucleation criterion related constants on the damage and further failure of the 
material.  
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1 INTRODUCTION 
Several authors have attempted to describe the consequences of micro-voiding induced 

damage on the bulk material behaviour. These consequences are double: a progressive loss of 
the overall properties of the bulk material and the appearance, in addition to the isochoric 
plastic deformation due to dislocation glide in the matrix material, of an inelastic dilatancy 
due to void growth. In order to describe this second effect in the context of standard material, 
BERG [1] proposed a pressure dependent plastic potential, assuming that a critical mean 
triaxial stress (hydrostatic stress) is required to activate the void expansion. In this approach, 
only a loading path involving a mean triaxial stress greater than this critical mean triaxial 
stress produces void growth and related dilatancy. It is noteworthy that the latter may be 
accompanied by plastic deformation (under moderate mean triaxial stress) or not (under high 
mean triaxial stress). Based on a micromechanical analysis, GURSON [2] developed a plastic 
potential for slightly porous and perfectly plastic metals accounting explicitly for the 
concentration of voids and hydrostatic stress. TVERGAARD AND NEEDLEMAN [3] modified 
GURSON’s model in order to take notably into account isotropic strain hardening and strain 
rate effects. The so-called GTN (for GURSON-TVERGAARD-NEEDLEMAN) model is widely 
used by the community of researchers dealing with ductile damage. Using the rate type 
formulation coupled with physical concepts, PERZYNA [4] developed an elliptic plastic 
potential taking into consideration cooperative effects of void growth, strain rate sensitivity 
and heating. 

These approaches all suppose initially the presence of micro voids, or equivalently assume 
mostly that void expansion starting and plastic deformation occurrence are concomitant. It is 
clear that such a hypothesis is not supported physically, because cavity nucleation requires a 
certain amount of plastic deformation. Furthermore, by construction, the plastic potentials 
proposed by BERG, GURSON-TVERGAARD-NEEDLEMAN and PERZYNA are not able to describe 
dilatancy and related cavity growth under shear loading, implying that according to their 
approaches shear loading cannot lead sole to fracture. 
This work aims at facing up to these deficiencies concerning notably the lack of a physically 
satisfying description of the transition from dense metal plasticity to micro-porous metal 
plasticity and the incapacity of describing void growth under shear. 

The principle of the modelling approach involving non-concomitant damage incipience 
with respect to plastic straining is described in Sect.2. The constitutive equations for an 
elastic-viscoplastic material undergoing the combined effects of the two stage damage 
formation (void nucleation) mechanism, the mean stress kinematic shift related to ductile 
damage growth, isotropic hardening, thermal softening, are detailed in Sect.3. The complete 
model has been implemented as user material in the engineering finite element computation 
code Abaqus® and some numerical simulations have been conducted for a single 
representative volume element (RVE) and a laboratory sample submitted to a remote uniaxial 
tensile loading. The numerical results are shown in Sect.4. 
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2 BASIC CONCEPTS AND PRELIMINARY CONSIDERATIONS 

2.1 Principle of the sound/damaged or dense/micro-porous behavior transition 
In the present approach, based in part on the concepts suggested by DRAGON AND OHJI [5], 

the metallic material is initially supposed to be exempt of micro-voids. Subjected to a 
monotonic loading involving a positive or null stress triaxiality, it behaves elastic-
(visco)plastically. As soon as the condition for the germination of a given volume fraction f0
of micro voids, involving the equivalent plastic strain κ , plastic strain rate κ , temperature T
and stress triaxiality ST, is satisfied, the material behaviour becomes pressure dependent. 
Consecutive damage accompanying plastic yielding may be described then using e.g. GTN 
and PERZYNA micro-porous plasticity oriented models. The quantity f0 represents thus a 
characteristic micro-porosity initiation bunch; its occurrence does not exclude further, 
secondary, delayed nucleation (see Sect.3.3). According to Fig.1, where the surfaces 00 =Φ
and 0

0
=Φ I  represent the limits of elastic domain of the sound material and of the hole non-

nucleation domain respectively, this approach is able to reproduce qualitatively the 
accelerating effects of the stress triaxiality ( )meq pST /σ−=  on the hole germination. 

 a) b) 
Figure 1: Principle of the approach. a) Initial and current elastic domains for the sound material and hole 

nucleation locus – b) Illustration of various loading paths; LP1: hole germination without plastic deformation; 
LP2: hole germination for a finite amount of plastic deformation (κ2) linked to the current stress triaxiality (ST2); 

LP3: hole germination for a finite amount of plastic deformation (κ3> κ2) linked to the current stress triaxiality 
(ST3<ST2) - σeq and pm represent the equivalent stress and the pressure, respectively. 

2.2 The hypothesis of a kinematical mean stress shift 
It is known that viscoplastic deformation may cause brittle-like micro-damage in metals, as 

observed notably in creep where micro-voids and micro-cracks initiate along the grain 
boundaries. At an advanced stage of deformation, a material may thus contain defects 
potentially at the origin of brittle fracture (in the sense mentioned above) and defects 
potentially at the origin of ductile fracture (in the current sense). In such a material, there are 
thus two sources of damage induced softening, the latter being described via e.g. GTN and 
PERZYNA micro-porous plasticity oriented models. We are here describing the consequences 
of the former by introducing an effective micro porosity related softening mechanism, acting 
as a kinematic-like mean stress drop resulting in a shift of the yield locus centre towards 

σeq

-pm

Φ0(0)=0 

ΦΙo(f0)=0 

Φ0(κ)=0 

σeq

-pm

Φ0(0)=0 

ΦΙo(f0)=0 

Φ0(κ2)=0 
Φ0(κ3)=0 

LP1

LP2

LP3
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negative stress triaxiality values. Though a like shift may require more sophisticated analysis 
involving e.g. damage/plasticity-induced anisotropy , here, however, the purpose is limited to 
a modification of the GTN model. From a practical viewpoint, let denote as 

( ) 0,...;, =Φ fpmeqσ  the yield surface of a material with a micro-void concentration f. The 
translation of the yield function Φ  of the amount –pr under the micro-crack induced softening 
effects leads to consider the new plastic potential and corresponding yield locus 

( ) 0,...;,, =Φ fpp rmeqG σ , such that ( ) ( ),...;,,...;,, fppfpp rmeqrmeqG +Φ=Φ σσ . The 
principle is illustrated in Fig.2. 

Figure 2: Shift of the micro-porous potential with kinematic mean stress 

This paper aims at proposing a multi-surface approach based model accounting for the 
aforementioned effects. 

3 CONSTITUTIVE EQUATIONS 
The elastic/viscoplastic model involving two stage void nucleation mechanism and void 

growth related hardening/softening effects is detailed in the present section. 

3.1 Constitutive equations of the sound material 
The internal variable procedure has been followed to model the material behaviour. The 

instantaneous state of the material is described via the HELMHOLTZ free energy ( )κε ,; eTΨ , 

whose arguments are the absolute temperature T, the elastic strain tensor eε , and the isotropic 
strain hardening variable κ. Let us consider the following additive decomposition of Ψ : 

( ) ( ) ( ) ( )κεκε ;;,; TTTT sT
e

r
e Ψ+Ψ+Ψ=Ψ (1) 

σeq

-pm

Φ(σeq , pm ; f…)=0 

ΦG(σeq, pm, pr ; f…)=0 

-pr



1653

Patrice Longère, Anne-Gaëlle Geffroy, Bruno Leblé and André Dragon. 

5

where ( )e
r T ε;Ψ  is the recoverable part, ( )TTΨ  the purely thermal part, and ( )κ;TsΨ  the 

stored part. The rotational derivatives considered in the following are GREEN-NAGHDI

derivatives, see GREEN AND NAGHDI [6]. Moreover, the tensor eε represents here a spatial, 

generally small, elastic strain measure, namely ee Vln=ε , eV  representing pure elastic 
stretching resulting from the relevant multiplicative decomposition of the deformation 
gradient F .The expressions of the various contributions in (1) are given by 

( ) ( )
( )

( ) ( ) ( )
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;
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;
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0
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where λ and µ represent LAMÉ elastic coefficients, K is the bulk modulus ( )3/2µλ +=K . 
The quantities αT, ρ and C represent the thermal dilatation coefficient, the mass density and 
the specific heat, respectively. In (23), ( )κh  represents the stored energy of cold work and 

( )Tg  the thermal softening function. The set of thermodynamic forces connected to the state 
variables is given by 
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(3) 

where σ  represent the CAUCHY stress tensor, s entropy and r isotropic hardening force. The 
viscoplastic yielding of the material under consideration is supposed to be well described by 
the plastic potential 

01~ 2
0 =−=Φ eqσ  ; 

y

eq
eq σ

σ
σ =~  ; vpyy σσσ += (4) 

where the quantities yσ  and vpσ  in (43) are the rate independent and rate dependent 
contributions to the yield stress yσ . The rate independent contribution yσ  in (43) incorporates 
the combined effects of strain hardening, via a VOCE type law, and thermal softening, via a 
power law: 
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( )[ ] ( )TghRy κσ '0 += ; ( ) ( )[ ]βκκ kRh −−= ∞ exp1'  ; ( )
m

meltT
TTg 








−= 1  (5) 

where ( )β,,,0 kRR ∞  are isotropic hardening related constants and ( )mTmelt ,  thermal softening 
related constants, with Tmelt the melting point. With (5), the rate independent contribution yσ
in (43) and the isotropic hardening force r in (33) take thus the form 

( )[ ]{ }
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−−−= ∞

m

meltT
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The tensile/compressive asymmetry in the plastic behaviour is here considered as a 
thermally activated mechanism involving the mean stress. The strain rate induced overstress 

vpσ  in (43) is consequently expressed by 

n

B

ma
vp Tk

pVY
/1

exp 















= κσ   (7) 

where (Y,n) are viscosity related constants and (Va,kB) behaviour asymmetry related constants, 
with 3βha VV = , Vh being a constant, β Burgers vector magnitude (β=2.5Å), kB BOLTZMANN

constant (kB=1.3804.10-23J/K). The sound material satisfies the conditions of standard 
materials in the irreversible thermodynamics sense. Applying the normality rule yields 

nd pDp
0

0 ε
σ

=
∂
Φ∂

Λ=  ; 












σ
σ

Λ=
σ∂
Φ∂

Λ=ε  ; pDpp dd 0:
3
2 εκ  ==  ; 0≥Λ (8) 

where Λ represents the viscoplastic multiplier. Finally, heating during any adiabatic processes 
is supposed to proceed predominantly from dissipation, see LONGERE AND DRAGON [7] for 
further details, yielding 

( ) 0: ≥−=−= κσκσρ  rrdTC eq
p (9) 

3.2 Constitutive equations of the damaged material 
Considering slightly porous metals, we are assuming a weak damage-plasticity state 

coupling and strong damage-plasticity kinetic couplings, allowing us for assuming that the 
state potential (1)-(2) and the forces (3) still hold during the damage process considered 
herein. We are indeed focusing our attention on the damage-plasticity coupling intervening at 
the level of the yield condition, as it is mostly done when modelling micro-porous metal 
behaviour, see e.g. [2] – it must be noted that accounting for damage-plasticity state coupling 
does not imply significant changes in the present methodology. As an application of the 
hypothesis of a kinematical mean stress shift, see Sect.2.2, a modified version of the GTN 
model is proposed. Consider thus the following modified GTN potential: 
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where (q1, q2, q3) are material constants. Let define now the ‘cleavage strength’ cleavσ  as being 
the critical value of the mean stress mm p−=σ  at the incipience of void growth under equi-
triaxial stress. For the GTN model ( )0=rp , the so-defined ‘cleavage strength’ cleavσ  is 
expressed by 
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Considering low values of f ( )1<<f  yields 

[ ] 0ln1
3
2

1
2

≥−≈ fq
q ycleav σσ (12)

In a first approximation, we are considering the kinematic pressure pr in a close form: 

[ ] 0ln 1 ≤= fqbpr (13)

with b assumed as being a positive constant. After [1], the normality rule applies to the 
damaged material: 

δεεδ
σσ

pM
G

pD
G

m

G

eq

GGp n
p

nd 
3
1

3
1 +=











∂
Φ∂

−
∂
Φ∂

Λ=
∂
Φ∂

Λ= (14)

where the distortional and dilatational parts, namely pD
Gε  and pM

Gε , respectively, of the 
inelastic strain rate pd  are given by 
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The evolution law of the isotropic hardening variable κ is deduced from the equality of the 
macroscopic plastic work rate with the microscopic one, see [2]: 

( ) y

pM
Gm

pD
Geq

f
p
σ

εεσ
κ

−
−

=
1


 (16)

Adiabatic heating is accordingly evaluated from 

0: ≥−−=−= pM
Gm

pD
Geq

p prrdTC εκεσκσρ  (17)

The porosity rate f  is decomposed into a contribution due to growth of existing defects 
and a contribution due to the formation of new defects, see (181). The former, namely gf , is 
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deduced from the classical hypothesis of matrix incompressibility, see (182), whereas the 
latter, namely nf , is the subject of the following sub section: 

ng fff  +=  ; ( ) ( ) pM
G

p
g fdTrff ε −=−= 11  ; ( ) 00 ff g = (18)

3.3 Micro void nucleation criterion and kinetics law 
The hole nucleation criterion describes the conditions for which a specific volume fraction 

of ‘primary’ voids f0 instantaneously germinates. A ‘secondary’ void initiation kinetic law is 
also proposed. 

‘Primary’ micro void nucleation criterion 
To ensure the instantaneous transition between dense metal plasticity and micro-porous 

metal plasticity, the hole nucleation criterion 
0IΦ  is proposed in a form close to the micro-

porous metal potential (10): 
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Hole nucleation (19) is clearly controlled by the stress triaxiality. In order to describe the 
delaying effects of the strain rate and the temperature in the hole nucleation process, we are 
assuming the following expression for the critical stress cσ  : 

vpIc σσσ +=  ; ( )∞+= RRI 0ασ (20)

The expression of the equivalent plastic strain at ‘primary’ hole nucleation ( )00 fκκ =  may 
be explicitly deduced from (13) and (19) as: 
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The plastic strain at ‘primary’ hole nucleation 0κ  in (21) is drawn in Fig.3 as a function of 
the stress triaxiality for various values of temperature and strain rate. The graphs in Fig.3 
show clearly that the hole nucleation criterion given in (19) is able to reproduce, at least 
qualitatively, the accelerating effects of stress triaxiality and the delaying effects of 
temperature, see Fig.3.a, and strain rate, see Fig.3.b. 

‘Secondary’ micro void formation kinetics law 
In the present approach, the formation of ‘secondary’ voids, in addition to the ‘primary’ 

voids whose germination is controlled by the above criterion, is postulated. These ‘secondary’ 
voids include micro-voids of the same nature of the ‘primary’ voids but nucleating later, as 



1657

Patrice Longère, Anne-Gaëlle Geffroy, Bruno Leblé and André Dragon. 

9

well as nano-voids germinating between macro-voids and being consequently at the origin of 
the coalescence by localised shearing. In agreement with this definition, the ‘secondary’ void 
nucleation kinetics is supposed to be controlled by the rate of hardening, see (221) below. This 
hypothesis is consistent with the fact that hole germination requires a certain amount of 
plastic deformation. Based on the works by MOLINARI AND WRIGHT [8], the kinetic law for 
secondary nucleation is assumed to be well described by a WEIBULL type distribution 
function, see (222): 

yn Bf σ =  ; ( )p
I

p

I
c

pfB
00

exp
1

sup Φ−Φ=
−

σ
 ; ( ) 00 =nf (22)

where p is a constant (p=2) and where supf  represents the upper bound of the nucleated 

‘secondary’ void volume fraction. .  represents MCCAULAY brackets.  

0.00

0.10

0.20

0.30

0.40

0 1 2 3 4 5 6
Plastic strain at hole nucleation vs.stress triaxiality

+ 120°C
 + 20°C
- 120°C

a) α=0.65 ; b=115MPa ; f0=10-4 ; κ =102s-1

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6
Plastic strain at hole nucleation vs.stress triaxiality

100 s-1
 10 s-1
  1 s-1

b) α=0.65 ; b=115MPa ; f0=10-4 ; T0=20°C

Figure 3: Influence of temperature a) and strain rate b) on the plastic strain at hole nucleation 

4 NUMERICAL SIMULATIONS AND CONFRONTATION WITH EXPERIMENTS 
The model detailed in Sect.3 was implemented as user material (Vumat) in the engineering 

finite element computation code Abaqus®. The numerical integration is conducted in the 
GREEN-NAGHDI rotating frame using the classical return mapping procedure combined with 
the NEWTON-RAPHSON solving algorithm, see ARAVAS [9]. The thermal dilatation is supposed 
to be negligible in the present approach. Adiabatic conditions are furthermore assumed to be 
valid for plastic equivalent strain rate κ  greater than 1s-1. In addition, failure is supposed to 
occur as soon as the porosity reaches the critical value fr, leading numerically to the erosion of 
the concerned finite element. Some numerical simulations employing Abaqus® were 
conducted considering a cube under shear as well as notched structures under tension. 

4.1 Case of a cube under simple shear 
We are here considering a RVE submitted to a simple shearing in order to verify the ability 

of the model of Sect.3 to describe the consequences on the material behaviour of cavity 
growth under shear loading. From the numerical viewpoint, the RVE is represented by a 
single finite element C3D8R. The upper side is submitted to a tangential displacement at a 
constant velocity of 2.3m/s (leading to a plastic equivalent strain rate slightly greater than 1s-
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1) while the lower side is constrained. The set of material constants is reported in Table 1. 
Shear stress-shear strain and porosity-shear strain curves are shown in Fig.4 for various values 
b entering the expression of the kinematic pressure softening pr, see (13). 

Table 1: Micro-porous model related constants for the numerical simulation of a cube under simple shear 

q1 q2 q3 f0 α b (MPa) fsup fr

1 1 1 10-3 0.65 / 16.10-2 1. 

The graphs in Fig.4.a show the combined softening effects of adiabatic heating and cavity 
growth induced damage on the material behaviour – for the ETVP 
(ElasticThermoViscoPlastic/sound material) model adiabatic heating is solely responsible for 
the softening behaviour at large deformation. It is furthermore clearly visible that the loss of 
shear resistance of the damaged material is more significant for large values of b. As shown in 
Fig.4.b this softening effect is induced by cavity nucleation and growth. Cavity growth under 
shear loading has been made possible thanks to the introduction of the kinematic pressure 
softening mechanism governed by pr in the modified GTN model, see (10). 

a)
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Figure 4: Influence of kinematic pressure. Simple shear on a cube. 
a) Shear stress vs. shear strain. b) Volume fraction of holes vs. shear strain 

4.2 Case of notched cylindrical samples under tension: simulation vs. experiment 
This case deals with the tension of notched cylindrical specimens. The configurations with 

a notch radius value of 1.2mm (ST=1.15) and 6.2mm (ST=0.55) are considered here. Quasi-
static tests were performed at room temperature and at 5mm/min on these samples. 
Concerning numerical simulations, the spatial discretisation consisted in meshing one eighth 
of the samples using solid finite elements with reduced integration C3D8R, as shown in Fig.5. 
The vertical translation of the lower face nodes is constrained while a vertical velocity is 
imposed to the upper face nodes. The sample material behaviour is described via the model 
detailed in Sect.3 (Vumat). The material constant values are reported in Table 2. The time 
integration scheme is explicit. 

Experimental and numerical results are superposed in Fig.6 in the form of axial load-
extensometer displacement curves. These curves allow for studying the influence of various 
model constants on the onset of void growth induced damage and subsequent drop in load, 
namely that of e.g. the ratio α in (20), see Fig.6. The influence of the secondary nucleation 
upper bound fsup, and of the failure porosity fr was also studied but is not shown here. 
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a) b)
Figure 5: Meshing of the notched cylindrical samples; a) ST=0.55 b) ST=1.15 

Table 2: Microporous model related constants for the numerical simulation of notched samples under tension 

q1 q2 q3 f0 α b (MPa) fsup fr

1 1 1 10-3 / 115 0.03 0.2

Fig.6 clearly shows the effect of the critical stress σc via the ratio α, see (20), on the overall 
response of the notched round sample. Acting on the ‘primary’ void germination occurrence 
and on the ‘secondary’ void nucleation rate, see (20) and (222), the ratio α is consequently a 
key parameter in the model detailed in Sect.3. For early damage conditions, the ratio α value 
must be low, and for late damage conditions, the ratio α value must be large. Note that a large 
value of α provokes a progressive drop in load, contrarily to the brutal drop in load observed 
for a low value of α. According to Fig.6, the set α=0.75 - fsup=0.03 - fr=0.2 may be considered 
as satisfying for the material at stake. 
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Figure 6: Comparison model-experiment. Influence of the ratio α. Tensile test on notched cylindrical samples ; 

α= / - fsup=0.03 - fr=0.2 

5 CONCLUSIONS 
An elastic/viscoplastic model involving two stage void nucleation mechanism and void 

growth related hardening/softening effects has been put forward for a class of structural steels 
subjected to rapid loading conditions. 
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A phenomenological modelling approach has been developed, based on some salient 
physical effects regarding void growth vs. plastic straining, to describe the transition 
behaviour between dense metal plasticity and micro-porous metal plasticity. Considering that 
void germination requires a certain amount of plastic deformation, a ‘primary’ hole nucleation 
criterion has been proposed, as well as a statistical law governing the ‘secondary’ hole 
kinetics. In a consistent way, the hole nucleation criterion accounts for the accelerating effects 
of stress triaxiality and, conversely, the delaying effects of temperature and strain rate. In this 
work, a modification of the GTN model has also been proposed, overcoming its inability to 
predict damage growth and fracture for zero and low triaxiality, shear-dominated 
deformations. In this respect the kinematic mean stress related shift mechanism has been 
introduced and quantified in the expression of the GTN plastic potential, enabling thus the 
damage growth under shear and under small negative triaxialities. The 3D constitutive 
equations have been implemented as user material in the engineering finite element 
computation code Abaqus®. Numerical simulations have been conducted considering a single 
finite element under simple shear on one hand and a notched cylindrical sample under remote 
uniaxial tensile loading on the other hand. The numerical results show clearly the influence of 
the hole nucleation criterion related constants on the damage and further failure of the 
material. 
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