
STEDG

Hocheffiziente und skalierbare Software für die Simulation
turbulenter Strömungen in komplexen Geometrien

Förderkennzeichen 01IH08010
Laufzeit des Projekts: 1.1.2009 – 30.6.2012

Gesamtschlussbericht

Koordinator:
Prof. Dr. Sabine Roller
Angewandtes Supercomputing im Maschinenbau
German Research School for Simulation Sciences GmbH
Schinkelstr. 2a
52062 Aachen

Tel.: 0241 / 80-99741
Fax.: 0241 / 80-6 99741
Email: s.roller@grs-sim.de

Projektpartner:

Das diesem Bericht zugrunde liegende Vorhaben wurde mit
Mitteln des Bundesministeriums für Bildung und Forschung
unter dem Förderkennzeichen 01 IH 08010 gefördert. Die
Verantwortung für den Inhalt dieser Veröffentlichung liegt beim
Autor.

Abschlussbericht STEDG 2 19.08.2013

STEDG
Liste der Zuwendungsempfänger:

• Universität Stuttgart 
Förderkennzeichen: 01IH08010 A
Anschrift: Universitätsbereich Vaihingen  , 70550 Stuttgart

o Höchstleistungsrechenzentrum Stuttgart 
Anschrift: Nobelstr. 19, 70569 Stuttgart 

o Institut für Aerodynamik und Gasdynamik

Anschrift:  Pfaffenwaldring 21, 70569 Stuttgart

• RWTH Aachen
Förderkennzeichen: 01IH08010 B
Anschrift: Templergraben 55  , 52056 Aachen

o Lehrstuhl für Strömungslehre und Aerodynamisches Institut 
Anschrift: Wüllnerstr. 5a, 52062 Aachen

• Robert Bosch GmbH 

Förderkennzeichen: 01IH08010 C
Anschrift: Robert-Bosch-Platz 1, 70839 Gerlingen-Schillerhöhe

• TRUMPF GmbH + Co. KG 

Förderkennzeichen: 01IH08010 D
Anschrift: Johann-Maus-Straße 2  , 71254 Ditzingen

• German Research School for   Simulation Sciences GmbH

Förderkennzeichen: 01IH08010 E
Anschrift:  52425 Jülich

Abschlussbericht STEDG 3 19.08.2013

STEDG
Abstract

Dieses Dokument ist der Schlussbericht (gem. NKBF 9 8) zum Projekt „STEDG — Hocheffiziente und
skalierbare Software für die Simulation turbulenter Strömungen in komplexen Geometrien“, BMBF-
Förderkennzeichen 01IH08010.

Das STEDG-Konsortium bestand aus den Partnern German Research School for Simulation Sciences
GmbH (GRS), dem Höchstleistungsrechenzentrum Stuttgart (HLRS), dem Institut für Aerodynamik
und Gasdynamik (IAG) an der Universität Stuttgart, dem Aerodynamischen Institut Aachen (AIA) an
der RWTH Aachen, der Robert Bosch GmbH und der Trumpf Werkzeugmaschinen GmbH + Co. KG,
sowie als assoziierter Partner EADS Deutschland GmbH.

Der Bericht stellt unter anderem die Ziele, den Ablauf, die Ergebnisse und die zukünftige Verwertung
der Resultate des Projekts vor.

Abschlussbericht STEDG 4 19.08.2013

STEDG
Inhaltsverzeichnis:	

	

I.	
 Kurze	
 Darstellung	
 ...	
 5	

1.	
 Aufgabenstellung	
 ..	
 5	

2.	
 Voraussetzungen,	
 unter	
 denen	
 das	
 Vorhaben	
 durchgeführt	
 wurde	
 ..	
 6	

Projektpartner	
 und	
 Vorarbeiten	
 ...	
 6	

3.	
 Planung	
 und	
 Ablauf	
 des	
 Vorhabens	
 ..	
 8	

Arbeitspakete	
 ...	
 8	

Laufzeit	
 ...	
 8	

Gantt-­‐Chart	
 ...	
 9	

4.	
 Wissenschaftlicher	
 und	
 technischer	
 Stand,	
 an	
 den	
 angeknüpft	
 wurde	
 ...	
 10	

Ausgangssituation	
 ...	
 10	

Literatur	
 ...	
 11	

5.	
 Zusammenarbeit	
 mit	
 anderen	
 Stellen	
 ..	
 13	

II.	
 Eingehende	
 Darstellung	
 ...	
 14	

1.	
 Verwendung	
 der	
 Zuwendung	
 und	
 des	
 erzielten	
 Ergebnisses	
 im	
 Einzelnen	
 	
 14	

2.	
 Wichtigste	
 Positionen	
 des	
 zahlenmäßigen	
 Nachweises	
 ...	
 15	

3.	
 Notwendigkeit	
 und	
 Angemessenheit	
 der	
 geleisteten	
 Arbeit	
 ..	
 16	

4.	
 Voraussichtlicher	
 Nutzens,	
 insbesondere	
 Verwertbarkeit	
 des	
 Ergebnisses	
 im	
 Sinne	
 des	

fortgeschriebenen	
 Verwertungsplans	
 ...	
 17	

5.	
 Während	
 der	
 Durchführung	
 des	
 Vorhabens	
 dem	
 ZE	
 bekannt	
 gewordenen	
 Fortschritts	
 auf	

dem	
 Gebiet	
 des	
 Vorhabens	
 bei	
 anderen	
 Stellen	
 ..	
 18	

6.	
 Erfolgten	
 oder	
 geplante	
 Veröffentlichungen	
 des	
 Ergebnisses	
 ...	
 18	

Abschlussbericht STEDG 5 19.08.2013

STEDG

I. Kurze Darstellung

1. Aufgabenstellung
Die numerische Simulation von Strömungen ist eine unverzichtbare Methode für Forschung und
Entwicklung in allen Ingenieurbereichen. Sie wurde zu einer Schlüsseltechnologie für die
Verbesserung der Wirtschaftlichkeit, Umweltverträglichkeit und Sicherheit und trägt entscheidend zur
Wettbewerbsfähigkeit der deutschen Industrie bei. Allerdings gründet sie sich häufig noch auf
vereinfachte Methoden, um unter den vorgegebenen zulässigen Rechenzeiten zu Ergebnissen zu
kommen. Die Berechnung turbulenter Strömungen um Realkonfigurationen beispielsweise basiert im
Allgemeinen immer noch auf den Reynolds-gemittelten Navier-Stokes Gleichungen (Reynolds-
averaged Navier-Stokes (RANS)), wobei die turbulenten Vorgänge durch algebraische oder Ein- bzw.
Zwei-Gleichungs-Modelle modelliert werden. Es werden somit in der Regel Verfahren angewandt, die
in der Zeit gemittelte stationäre Lösungen liefern. Für viele reale Industrieanwendungen spielen
jedoch die zeitabhängigen Phänomene eine wichtige Rolle und die RANS Lösungen sind
unzureichend. Zwar werden in den Forschungs- und Entwicklungsabteilungen erste Berechnungen,
zum Beispiel basierend auf Large-Eddy-Simulationen (LES), ausgeführt. Es werden dazu aber
kommerzielle Programmpakete eingesetzt - mit numerischen Methoden, die für die herkömmlichen
stationären Simulationen mit Turbulenzmodellen geeignet sind und ein breites Anwendungsspektrum
haben, für instationäre Vorgänge aber viel zu rechenzeitintensiv sind. Eine effiziente Simulation
instationärer Vorgänge mit höherwertiger Turbulenzmodellierung bedingt aber eine umfassende
Erneuerung aller Komponenten: Numerische Methoden und Algorithmen und deren effiziente
Implementierung auf modernen Hardware-Architekturen.

Dieses Projekt adressierte die Änderungen, welche die Softwareentwicklung aufgreifen muss, um mit
den Entwicklungen der Hardware Schritt zu halten. Es wurden hochaktuelle numerische Methoden,
die von ihrer Struktur her genau auf diese Rechner-Architektur passen, zu effizienten Werkzeugen in
der Strömungssimulation weiterentwickelt. Dabei ging es einerseits um die numerischen Methoden
und Algorithmen der Zukunft als auch deren Mapping auf die Hardware-Architekturen von heute
(multi-core) und morgen (many-core Architekturen). Es wurden reale Anwendungen aus der
industriellen Forschung und Entwicklung (F+E) betrachtet und deren heutige
Umsetzungsmöglichkeiten mit den aktuellen und zukünftigen Entwicklungen korreliert.

Hierzu wurden im Einzelnen folgende Ergebnisse angestrebt:

(1) Numerische Modellierung turbulenter Strömungen mit zeitgenauen numerischen Verfahren.

(2) Methoden zur Analyse und Optimierung der Rechen-Codes mit Anpassung an Hierarchien in der
Hardware-Architektur in Bezug auf Netzwerk und/oder Memory.

(3) Verbesserung der Skalierbarkeit der Algorithmen innerhalb wie zwischen den Knoten.

(4) Evaluierung und Bestimmung von Cost-Faktoren für ein optimiertes Load-Balancing der in Raum,
Zeit und Genauigkeitsordnung hoch-adaptiven Verfahren.

(5) Auswertung und Validierung anhand industrie-relevanter großer Testfälle, die bislang nicht oder
nicht in akzeptablen Turn-Around-Zeiten berechenbar waren.

Abschlussbericht STEDG 6 19.08.2013

STEDG

2. Voraussetzungen, unter denen das Vorhaben durchgeführt wurde

Projektpartner und Vorarbeiten

Arbeitsgruppe an der German Research School for Simulation Sciences GmbH
Der Lehrstuhl Angewandtes Supercomputing im Maschinenbau (ASE) beschäftigt sich mit der
Simulation großer technischer Systeme. Dabei liegt der Forschungsschwerpunkt auf der Entwicklung
moderner Simulationsmethoden für Mehr-Skalen- und Multi-Physik-Anwendungen und deren
effizienter Implementierung auf Supercomputern. Dies erfordert die gesamte Prozesskette von der
numerischen Entwicklung (Mathematik), der effizienten Implementierung (Informatik) bis hin zur
Produktion (Maschinenbau). Die Anwendungen entstammen dabei überwiegend Fragestellungen der
Projektpartner aus Industrie oder Medizin aus realen industriellen Aufgabenstellungen. Um diese
realen Situationen simulieren zu können, ist der Einsatz von Höchstleistungsrechnern erforderlich.
Aus diesem Grund liegt ein Fokus der Arbeitsgruppe, neben der Modellierung und Analyse von
physikalischen Phänomenen, auch auf der effizienten Umsetzung von Algorithmen auf
Supercomputern. Der interdisziplinäre Forschungsansatz der Gruppe zeigt sich in der
Zusammenarbeit mit Partnern aus den Bereichen Mathematik, Maschinenbau und Informatik sowie
mehreren europäischen Supercomputing-Zentren.

Arbeitsgruppe am Höchstleistungsrechenzentrum Stuttgart
Am Höchstleistungsrechenzentrum Stuttgart (HLRS) sind durch die Vielzahl unterschiedlicher
Architekturen breite Erfahrungen in der Optimierung von Simulationscodes aus vielen Bereichen
vorhanden. Entwicklungen wie die im Projekt zu verwendende Bibliothek „Abstract Data and
Communication Library“ ADCL, ebenso wie eigene Werkzeuge, beispielsweise PACX-MPI für hybride
Parallelisierung zwischen zwei oder mehr Maschinen oder Marmot, einem MPI Analyse und Checking
Tool, unterstützen die Anwender. In vielen Kooperationen und Aktivitäten werden den Nutzern
Konzepte und Methoden zur effizienten Nutzung moderner Architekturen im Hoch- und
Höchstleistungsbereich vermittelt und gemeinsam umgesetzt.

Arbeitsgruppe am Institut für Aerodynamik und Gasdynamik der Universität Stuttgart
Die Arbeitsgruppe von Prof. Munz am Institut für Aerodynamik und Gasdynamik befasst sich seit
vielen Jahren mit der Konstruktion numerischer Verfahren in der Strömungsmechanik, mit
Implementierungsfragen und Anwendungen. Die Entwicklungen der letzten Jahre waren Finite-
Volumen- und Discontinuous-Galerkin-Verfahren hoher Ordnung auf unstrukturierten Gittern, die
zunächst zur Simulation der Schallausbreitung in komplexen Geometrien eingesetzt wurden. In den
letzten fünf Jahren wurden beide Klassen von Verfahren auch für kompressiblen Strömungen weiter
entwickelt und insbesondere die Kopplung mit der Lärmberechnung untersucht.

Arbeitsgruppe am Aerodynamischen Institut der RWTH Aachen
Die Arbeitsgruppe am AIA in Aachen ist in Deutschland die Arbeitsgruppe, die im Rahmen von DES,
LES und Grobstruktursimulation für kompressible Strömungen mit die größte Expertise hat. Aufgrund
der jahrelangen Entwicklung steht ein Lösungsalgorithmus für Large-Eddy Simulationen zur
Verfügung, der auf blockstrukturierten Gittern basiert, Diskretisierungen bis zur 6. Ordnung enthält und
verschiedene Feinstrukturmodelle besitzt.

Abschlussbericht STEDG 7 19.08.2013

STEDG
Arbeitsgruppe der Robert-Bosch GmbH
Die Arbeitsgruppe der Robert-Bosch GmbH hat ihren Tätigkeitsschwerpunkt im Bereich von
hydrodynamischen und thermodynamischen Problemstellungen. Behandelt werden sowohl
Grundlagen- als auch Anwendungsthemen. Ein sehr wichtiges Gebiet in den kommenden Jahren sind
gasführende Dosier- und Injektionssysteme, die z.B. in Methangas-betriebenen Kfz-Motoren
Anwendung finden. Entsprechende Untersuchungen erfolgen dabei sowohl theoretisch als auch
experimentell. Im theoretisch-numerischen Bereich werden aufbauend auf kommerziellen Tools wie
Ansys CFX, Fluent etc. augenblicklich schon numerische Simulationen von Teilbereichen der
Strömung durchgeführt. Neben normalen Workstations steht für Berechnungen auch ein Parallel-
Cluster aus ca. 250 Opteron-Prozessoren zur Verfügung. Während die verwendeten Methoden
prinzipiell in der Lage sind, Aussagen über stationäre und instationäre Phänomene zu liefern,
bedeuten diese einen hohen Aufwand an Vorbereitung und Rechenzeit. Aufgrund dieser
Schwierigkeiten kann z.B. keine systematische Auslegung von Komponenten basierend auf
numerischen Simulationen erfolgen.

Arbeitsgruppe der TRUMPF Werkzeugmaschinen
TRUMPF beschäftigt sich seit über 20 Jahren mit der Entwicklung von Laserschneidköpfen für die
Blechbearbeitung. Der Trend geht beim Laserstrahlschneiden von Blechen zu höheren
Schneidgeschwindigkeiten und zu stärkeren Blechstärken. Um diesen Anforderungen
nachzukommen, werden immer leistungsstärkere CO2 Schneidlaser entwickelt. Diese Schneidlaser
benötigen ein neues Schneidkopfkonzept, bei dem die Fokussierlinse durch einen Spiegel ersetzt
wird. Der Wegfall des transmissiven Elementes in einem Spiegelschneidkopf sorgt jedoch dafür, dass
die heute eingesetzten Lochdüsen nicht verwendet werden können. Dies macht die Entwicklung
sogenannter Ringspaltdüsen notwendig. Zum Einstellen einer Schneidgasströmung, die obige Punkte
erfüllt, gibt es eine Vielzahl von Stellschrauben, angefangen über Winkel- und
Durchmesservariationen bis zu unzähligen Längenverhältnissen. Dabei müssen die Stellschrauben
nicht nur für das Brennschneiden und das Schmelzschneiden, sondern auch für die jeweiligen
Blechdicken angepasst werden. Für eine experimentelle Düsenentwicklung müssten nicht nur eine
Vielzahl von Düsen gefertigt, sondern auch gasdynamisch und schneidtechnisch untersucht werden.
Allein die schneidtechnischen Untersuchungen sind sehr zeitintensiv und mit erheblichen Kosten
verbunden. Daher sind neben experimentellen Düsenuntersuchungen auch gasdynamische
Simulationen zwingend notwendig.

Insgesamt verfügen die Antragsteller in den Bereichen Grobstruktursimulation mit und ohne
Mischungsvorgänge sowie der LES auf zeitlich unabhängigen und zeitlich abhängigen Netzen als
auch in dem Forschungsfeld Computational Aeroacoustics durch die Entwicklung und Anwendung der
akustischen Störungsgleichungen auf Strömungs- und Verbrennungslärm über in vielen Jahren
aufgebaute Expertise.

Abschlussbericht STEDG 8 19.08.2013

STEDG

3. Planung und Ablauf des Vorhabens

Arbeitspakete

AP 0: Projektmanagement

AP 0.1: Administrative Koordination
AP 1: Code-Optimierung für Multi- und Many-Core Architekturen

AP 1.1. Analyse des vorhanden Strömungslösers
AP 1.2. Single CPU und Intra-Node Optimierung, SMP-Parallelisierung
AP 1.3. Inter-Node Kommunikation
AP 1.4. Abstract Data and Communication Library (ADCL)

AP 2: Entwicklung der Numerischen Modelle
AP 2.1: Weiterentwicklung der numerischen Verfahren unter Berücksichtigung der Hardware
AP 2.2: Vergleich der numerischen Codes auf unterschiedlichen ArchitekturenAP
AP 2.3: Infrastruktur für die Rechenprogramme

AP 3: Load Balancing und Cost Faktoren
AP 3.1: Instrumentierung der Codes
AP 3.2: Adaptive Numerik, Analyse und Anpassung der Parallelisierung zur Laufzeit
AP 3.3.: Adaption an das Hardwaresetup bzgl. Memory Hierarchien, Architekturen,
Spezialeinheiten

AP 4: Industrielle Anwendungen
AP 4.1: Gaseinspritzung für benzin- und gasgetriebene Motoren
AP 4.2: Dreidimensionale Hochauftriebskonfigurationen bei Flugzeugen
AP 4.3: Optimierung des Gasstrahls beim Laser-Schneiden
AP 4.4: Tools für vereinfachte Ausführung von Rechenjobs in externen Umgebungen.

Laufzeit
Das Projekt war auf eine Laufzeit von 36 Monaten angelegt. Aufgrund der Kurzarbeit bei den
Industriepartnern, des Wechsels von Prof. Roller an die RWTH Aachen, den schwangerschafts-
bedingten zeitlichen Ausfall und die Einarbeitung neuer Mitarbeiter war eine Verlängerung um 6
Monate erforderlich.

Abschlussbericht STEDG 9 19.08.2013

STEDG

Gantt-Chart

Abschlussbericht STEDG 10 19.08.2013

STEDG

4. Wissenschaftlicher und technischer Stand, an den angeknüpft wurde

Ausgangssituation

Simulation von turbulenten Strömungen und Strömungslärm
Turbulente Strömungen für technische Anwendungen werden üblicherweise mit statistischen
Turbulenzmodellen simuliert. Im Allgemeinen berücksichtigen diese Ansätze die Boussinesq-
Hypothese und gehen im Wesentlichen von einem turbulenten Gleichgewicht aus. Je nach Strömung
kann diese Modellierung große Fehler liefern wegen der Schwierigkeit der Modellierung anisotroper
Strömungsstrukturen. Dagegen werden bei der Large-Eddy Simulation (LES) die größeren und
energiereicheren Strukturen des Turbulenzspektrums auf einem adäquaten Rechengitter aufgelöst
und nur die kleinen Turbulenzstrukturen werden modelliert. Damit werden die großen Strukturen ohne
Modellierung erfasst, so dass die Voraussetzungen für das isotrope Turbulenzmodell besser erfüllt
sind. Basierend auf Large-Eddy-Simulationen werden in den Forschungs- und Entwicklungs-
abteilungen erste Berechnungen mit kommerziellen Programmpaketen ausgeführt, die zwar einen
großen Anwendungsbereich haben, aber kaum auf die nötigen instationären Simulationen optimiert
sind. Bei der aeroakustischen Lärmberechnung ist jedoch eine instationäre Strömungssimulation mit
hoher Auflösung die Grundvoraussetzung, um sicher zu sein, dass die Schallquellen richtig erfasst
werden. Kommt der Lärm aus dem turbulenten Strömungsfeld, müssen die relevanten turbulenten
Strukturen der Strömung richtig und genau genug erfasst werden. Solche direkten Simulationen von
Lärm durch ein turbulentes Strömungsfeld wurden ansatzweise schon durchgeführt – allerdings nur
für einfache Geometrien und mit Rechenzeiten, die einen Einsatz im Design-Stadium nicht erlauben.

Numerische Methoden
Robuste numerische Simulationen von Strömungsproblemen in komplizierten Geometrien werden
zurzeit vor allem mit Finite-Volumen (FV)-Verfahren 2. Ordnung ausgeführt. In kommerziellen Rechen-
Codes werden implizite Druck-Korrektur-Verfahren benutzt, die sich dadurch auszeichnen, dass sie
sowohl stationäre (RANS-) als auch instationäre Lösungen berechnen können und somit einen sehr
breiten Anwendungsbereich haben. Die Effizienz der Berechnung von instationären Lösungen für
turbulente Strömungen ist dabei nicht sehr hoch, da die Auflösung der Zeitentwicklung der
physikalischen Vorgänge kleine Zeitschrittweiten erfordert, implizite Verfahren jedoch nur bei großen
Zeitschrittweiten ihren Vorteil ausspielen können. Hier sind explizite Verfahren im Vorteil, da sie pro
Zeitschritt deutlich weniger Rechenzeit benötigen. Um stabil zu sein, benötigen explizite Verfahren
immer zwingend kleine Zeitschritte, insbesondere im inkompressiblen Strömungsregime, was ihre
allgemeine Anwendbarkeit einschränkt, im konkreten Fall der instationären Turbulenz aber mit der
physikalischen Zeitentwicklung übereinstimmt und daher keine Restriktion bedeutet. In kommerziellen
Codes sind sie trotzdem kaum zu finden, da dort die Hauptzielsetzung ist, mit einem einzigen Code
ein möglichst breites Spektrum an Anwendungen abzudecken. Dem Ziel der breiten Anwendbarkeit
wird daher eine schlechte Performance für einzelne Anwendungsbereiche untergeordnet. Für den
industrierelevanten Bereich der instationären turbulenten Strömungen ist dies aus den genannten
Gründen leider der Fall. Im akademischen Umfeld werden daher andere Wege beschritten. Am AIA
werden seit Jahren Forschungsarbeiten zur Simulation turbulenter Strömungen mit Grobstruktur-
Modellen ausgeführt. Das Rechenprogramm ist dabei ein explizites Finite-Volumen (FV)-Verfahren.
Neben den FV-Verfahren gibt es in der Numerik-Forschung neue Ansätze mit Verfahren höherer
Ordnung, um die Effizienz zu erhöhen. So kombinieren Discontinuous-Galerkin (DG)-Verfahren die
hohe Ordnung von Finite-Element (FE)-Verfahren mit der Möglichkeit der Auflösung starker
Gradienten der FV-Verfahren.

Abschlussbericht STEDG 11 19.08.2013

STEDG
Effizienz der Implementierungen
Im Rahmen von Vorarbeiten konnten Erkenntnisse in den typischen Implementierungsstatus von
HPC-Anwendungen gewonnen werden. Dabei zeigte sich, dass insbesondere der für die zukünftigen
Multi- und Many-Core Prozessoren wichtige Bereich der Shared Memory Parallelisierung bisher wenig
Beachtung fand. Auch die Skalierung für den Bereich von Clustern mit großen Knotenzahlen ist i.d.R.
nicht optimal. Je nach Anwendungen sind Speed-Up (dasselbe Problem in kürzerer Zeit) oder Scale-
Up (größere Probleme in derselben Zeit) Betrachtungen wichtiger. Strategien, um Hierarchien in der
Architektur, insbesondere im Netzwerk, oder Hierarchien im Code auszunutzen, finden sich selten.
Dagegen sind Cache-Optimierung oder Vektorisierung häufig gut.
Limitierende Faktoren für die Simulationen sind häufig im Bereich der Pre- und Postprocessing-Tools
zu finden, im Bereich kommerzieller Software auch beim Lizenzmanager. Gittergeneratoren sind
häufig nicht in der Lage, Gitter mit sehr hohen Knotenzahlen zu erzeugen. Dies bedeutet für die
Simulationscodes, dass die Gitter zu grob sind und im Initialisierungsschritt der Simulation aufbereitet
und verfeinert werden müssen. Postprocessing-Tools, insbesondere Visualisierungstools lesen die zu
visualisierenden Daten oft als ganzes ein und können daher sehr große Datenfiles nicht handlen.
Lizenzmanager wie flexLM erlauben meist nur eine begrenzte Anzahl von Lizenzen gleichzeitig zu
ziehen. Auf den derzeitigen Clustern sind die Prozessor-Zahlen noch nicht so hoch, dass diese
Einschränkung spürbar wäre. Bei Clustern von mehr als 1000 Knoten und 8 Prozessoren pro Knoten
wird dies aber spürbar. Diese Cluster können von kommerzieller Software dann nicht ausgenutzt
werden, weil der Lizenzmanager nicht skaliert.
Wichtig für Nutzer sind üblicherweise nicht Flops-Zahlen oder CPU-Zeit, sondern Turn-Around Zeiten
für den gesamten Prozess, von der Vorbereitungszeit inkl. Vernetzungsaufwand, Wartezeiten in der
Queue, Ausführen der Simulation bis hin zu Datenübertragung und Visualisierung. Die Entwicklung
der Codes findet dabei üblicherweise auf dem eigenen Desktop statt. Dort werden auch kleinere
Testfälle gerechnet, um die aktuellen Implementierungen zeitnah validieren zu können. Systematisch
getestet wird dann meist auf einem am Institutscluster . Dort werden mittlere Testfälle, auch parallel,
simuliert. Die eigentlich interessierenden großen Anwendungen werden dann auf einer HPC-Maschine
wie beispielsweise am HLRS durchgeführt. Optimierungen für alle Kombinationen von Maschine,
Compiler, MPI-Library bedeuten Zeitaufwand und werden deshalb häufig nicht konsequent genug
durchgeführt, insbesondere wenn die Anforderungen der Maschinen widersprüchlich sind.

Abschlussbericht STEDG 12 19.08.2013

STEDG

Literatur
Resch, M., Roller, S., Lammers, P., S., Furui, T., Galle, M., Bez, W. (Eds.) High Performance

Computing on Vector Systems 2007, Springer, 2007.
Harald Klimach, Sabine P. Roller, Jens Utzmann and Claus-Dieter Munz: Parallel Coupling of

Heterogeneous Domains with KOP3D using PACX-MPI, Track No: 1126, Proceedings
Parallel CFD 2007 May 21-24, Antalya Turkey

Sabine Roller: InGrid - Innovative Grid Developments for Engineering Applications, inside, Vol. 4 No.
1, Spring 2006

E. Gabriel, S. Feki, K. Benkert, M. Chaarawi. The Abstract Data and Communication Library,
submitted for publication in Journal of Algorithms and Computational Technology, Special
Issue on Computational Science for Medicine, Energy, and Environment Applications.

Bettina Krammer, Katrin Bidmon, Matthias S. Müller, Michael M. Resch. "MARMOT: An MPI Analysis
and Checking Tool", Parallel Computing 2003 , Published in PARALLEL COMPUTING:
Software Technology, Algorithms, Architectures & Applications, Ed. Joubert, Nagel, Peters,
Walter, pp. 493-500, Elsevier, 2004.

Edgar Gabriel and Shuo Huang, Runtime Optimization of Application Level Communication Patterns,
12th International Workshop on High-Level Parallel Programming Models and Supportive
Environments, held in conjunction with IPDPS 2007, Long Beach, CA, March 26th 2007.

Katharina Benkert, Edgar Gabriel, and Michael M. Resch, 'Outlier Detection in Performance Data of
Parallel Applications', in Proceedings of the 9th IEEE International Workshop on Parallel and
Distributed Scientific and Engineering Computing, held in conjunction with the IPDPS 2008,
Miami, Fl, USA, March 2008.

Edgar Gabriel, Saber Feki, Katharina Benkert, and Michael M. Resch, 'Towards Performance and
Portability through Runtime Adaption for High Performance Computing Applications',
accepted for publication at the International Supercomputing Conference, June 17-20, 2008,
Dresden, Germany.

Rainer Keller, Markus Liebing, 'Using PACX-MPI in MetaComputing applications', 18th Symposium
Simulationstechnique, Erlangen, Sept. 12.-15., 2005.

M. Dumbser and C.-D. Munz: ADER Discontinuous Galerkin schemes for aeroacoustics, CRAS
Mécanique 333 (2005), 683-687

J. Utzmann, T. Schwartzkopff, M. Dumbser, C.-D. Munz: Heterogeneous domain decomposition for
computational aeroacoustics, AIAA Journal 44 (2006), 2231-2250

M. Dumbser and C.-D. Munz: Building blocks for arbitrary high order discontinuous Galerkin schemes,
Journal of Scientific Computing 27 (2006), 215-230

M. Dumbser and C.-D. Munz: On source terms and boundary conditions using arbitrary high order
discontinuous Galerkin schemes, Int. J. Appl. Math. Comput. Sci 17 (2007), 101-114

D.S. Balsara, C. Altmann, C.-D. Munz, M. Dumbser: A sub-cell based indicator for troubled zones in
RKDG schemes and a novel class of hybrid RKDG-HWENO schemes, J. Comput. Phys. 226
(2007), 586-620

C.-D. Munz, M. Dumbser, S. Roller: Linearized acoustic perturbation equations for low Mach number
flow with variable density and temperature. J. Comput. Phys. 224 (2007), 352-364

F. Lörcher, G. Gassner, C.-D. Munz: A discontinuous Galerkin scheme based on a space-time
expansion. I. Inviscid compressible flow in one space dimension, Journal of Scientific
Computing 32 (2007), 175-199.

F. Lörcher, G. Gassner, C.-D. Munz: A discontinuous Galerkin scheme based on a space-time
expansion. II. Viscous compressible flow in multi space dimensions, Journal of Scientific
Computing 34 (2008), 260-286

G. Gassner, F. Lörcher, C.-D. Munz: A contribution to the construction of diffusion fluxes for finite
volume and discontinuous Galerkin schemes. J. Comput. Phys. 224 (2007), 1049-1063

F. Lörcher, G. Gassner, C.-D. Munz: An explicit discontinuous Galerkin scheme with local time-
stepping for general unsteady diffusion equations, J. Comput. Phys. 227 (2008), 5649-5670

Rütten, F., Schröder, W., and Meinke, M., LES of Low Frequency Oscillations of the Dean Vortices in
Turbulent Pipe Bend Flows, Physics of Fluids 17, 2005.

Guo, X., Schröder, W., and Meinke, M., Large-eddy simulations of film cooling flows", Computers and
Fluids 35, 587-606, 2006.

Renze, P., Schröder, W., and Meinke, M., Large-Eddy Simulation of Film Cooling Flows at Density
Gradients, to appear in Int. J. Heat and Fluid Flow, 2008.

Abschlussbericht STEDG 13 19.08.2013

STEDG
Ewert, R. and Schröder, W., Acoustic perturbation equations based on flow decomposition via source

filtering, J Comput Phys.188, 365-398, 2003.
Bui, T. Ph., Schröder, W., and Meinke, M., Acoustic perturbation equations for reacting flows to

compute combustion noise, Int. Journal of Aeroacoustics 6, 335-355, 2007.
Gröschel, E., Schröder, W., Renze, P., Meinke, M., and Comte, P., “Noise prediction for a turbulent jet

using different hybrid methods, in press in Computers and Fluids, 2008.
Meinke, M., Schröder, W., Krause, E., Rister, Th.: A Comparison of Second- and Sixth-Order Methods

for Large-Eddy Simulations, Computers & Fluids, Vol. 31, pp. 695-718, 2002.
Rütten, F., Schröder, W., Meinke, M.: LES of Low Frequency Oscillations of the Dean Vortices in

Turbulent Pipe Bend Flows, Physics of Fluids, Vol. 17, Issue 2, 035107, 2005.
Schröder, W., Meinke, M., Schvorak, A.: Large-Eddy Simulations of Accelerated Pipe Flows,

Computational Fluid Dynamics JOURNAL, 2001.
Alkishriwi, N., Meinke, M., Schröder, W.: A Large-Eddy Simulation Method for Low Mach Number

Flows Using Preconditioning and Multigrid, Computers and Fluids, 35, 1126-1136, 2005.
Ewert, R., Schröder, W.: On the Simulation of Trailing Edge Noise with a Hybrid LES/APE Method,

Journal of Sound and Vibration, Vol. 270, pp. 509-524, 2004.
El-Askary, W.A., Schröder, W., Meinke, M.: LES of Compressible Wall-Bounded Flows, AIAA Paper

2003-3554, 2003.
Ewert, R., Meinke, M., Schröder, W.: Aeroacoustic source terms for the linearized Euler-equations, in

Proceedings 6th AIAA/CEAS Aeroacoustics Conference, 2000, AIAA Paper 2000-2046.
Ewert, R., Schröder, W., Meinke, M., El-Askary, M.A.: LES as a Basis to Determine Sound Emission,

AIAA Paper 2002-0568, Jan., 2002.
Ewert, R., Zhang, Q., Schröder, W., Delfs, J.: Computation of Trailing Edge Noise of a 3D Lifting Airfoil

in Turbulent Subsonic Flow, AIAA Paper 2003-3114, 2003.
Bui, T.Ph., Meinke, M., Schröder, W.: A hybrid method for combustion noise based on LES and APE,

AIAA Paper 2005-3014, 2005.

5. Zusammenarbeit mit anderen Stellen
Im Projekt wurde intensiv mit dem Lehrstuhl Parallele Programmierung von Prof. Felix Wolf
zusammengearbeitet und Ergebnisse der Projekte SILC und LMAC verwendet. Im Vordergrund stand
hier die Benutzung von Tools wie Scalasca, Vampir und Tau, um Schwachstellen der Codes zu
identifizieren. Diese Analyse bildet die Basis für Optimierung der Anwendungen.

Die Zusammenarbeit mit den Rechenzentren des Gauss-Centers for Supercomputing und der Gauss-
Allianz war immer ein wichitger Aspekt im Projekt. Die stetige Fortentwicklung der Software-
Umgebung auf den Maschinen, insbesondere bei Neuinstallationen, erfordert eine entsprechende
kontinuierliche Anpassung der Simulationscodes. So mussten beispielsweise Compilervergleiche
durchgeführt werden, da sich unterschiedliche Compiler auf die Rechengeschwindigkeit, aber auch
auf das Zusammenspiel mit der jeweiligen MPI-Library ausgewirkt haben. Hier bestand regelmäßiger
Kontakt sowohl mit den Rechenzentren, den Herstellern der Systeme, als auch mit den Herstellern
von Analyse-Tools wie Debuggern und Performance-Analyse.

Abschlussbericht STEDG 14 19.08.2013

STEDG

II. Eingehende Darstellung

1. Verwendung der Zuwendung und des erzielten Ergebnisses im Einzelnen

Die erzielten Ergebnisse sind fachlich detailliert im englischsprachigen Report beschrieben, der
diesem Bericht als Anlage beigefügt ist. Deshalb erfolgt hier nur eine knappe Aufzählung mit
Gegenüberstellung der angestrebten zu den erreichten Ergebnissen.

AP 0: Projektmanagement
Im Bereich des Projektmanagements wurden die regelmäßigen Projekttreffen koordiniert, die in der
Regel 3x im Jahr stattfanden. Zum Projektende wurde ein Abschlussmeeting abgehalten, zu dem die
nicht direkt am Projekt beteiligten Nachbarabteilungen der industriellen Partner eingeladen und die
Ergebnisse mit ihnen diskutiert wurden. Die Beteiligung an der 1. HPC Statuskonferenz in
Schwetzingen, der 2. HPC Statuskonferenz in Darmstadt und Beiträge für den Infobrief der Gauss-
Allianz wurden hier koordiniert. Ein zentrales Repository für Code- und Datenaustausch sowie eine
Projektwebseite wurden bereitgestellt und gepflegt.

AP 1: Code-Optimierung für Multi- und Many-Core Architekturen
Ziel dieses Arbeitspakets war die Analyse und Optimierung der Strömungslöser innerhalb eines
Knotens sowie zwischen den Knoten. Für stark wechselnde Lasten sollte die Abstract Data and
Communication Library (ADCL) zur Optimierung zur Laufzeit eingesetzt werden. Kapitel 4 des
technischen Reports beschreibt die Ansätze und Ergebnisse der Optimierung im Detail. In Kürze
zusammengefasst lässt sich sagen, dass die Performance pro Knoten um bis zu 57% reduziert
werden konnte. Starke Verbesserungen konnten im Bereich der parallelen IO erzielt werden.
Insbesondere das Einlesen der Gitter- und ggfs. Restart-Daten für einen Neustart war anfangs so
aufwändig, dass es große Rechnungen u.U. sogar verhindern konnte. Dieser Flaschenhals konnte
behoben werden, so dass es hier keine Einschränkungen mehr gibt. Ebenso konnten die Output-
Routinen deutlich verbessert werden. Die Arbeiten an der ADCL wurden abgeschlossen und
mündeten in der Dissertation von Frau Benkert. Im Rahmen des Projektes wurde sie allerdings nicht
weiterverfolgt, da sich zeigte, dass die Charakteristika der Anwendungen keinen weiterer Vorteil durch
Verwendung der ADCL bringen würden. Andererseits wurde sehr viel stärker auf den Memory-Bedarf
der Anwendung fokussiert, der sich als starke Einschränkung herausstellte. Insbesondere in der
Startup-Phase der Simulation, in der Gitter eingelesen und Nachbarschaftsbeziehungen aufgebaut
werden, zeigten sich implizite Serialisierungen, die sich teils auf die Rechenzeit, aber vor allem auf
den Arbeitsspeicherbedarf auswirkten. Zu Beginn des Projekts führte dies zu Programmabstürzen, im
Laufe des Projektes wurde dies gelöst, u.a. durch Entwicklung einer vollständig parallelen
Implementierung der Startup-Phase.

AP 2: Entwicklung der Numerischen Modelle
Ziel dieses Arbeitspaketes war die Weiterentwicklung der numerischen Verfahren so, dass sie die
vorhandenen Hardware-Architekturen effizient nutzen konnten. Neben dem Vergleich der Verfahren
auf unterschiedlichen Computesystemen, die an den GCS-Sites in Stuttgart und Jülich, beim Gauss-
Allianz-Mitglied Rechenzentrum der RWTH Aachen sowie an den einzelnen beteiligten Instituten als
auch bei der Robert Bosch GmbH verfügbar sind, wurden Erweiterungen und Anpassungen der
Numerik in Hinblick auf die Hardware untersucht.
Zum einen standen Verfahren hoher Ordnung im Vordergrund. Es werden bei hoher Ordnung weniger
Gitterzellen benötigt, die Gittererzeugung wird einfacher, aber sowohl der Rechen- als auch der
Speicheraufwand pro Zelle steigen. Es zeigten sich hier sowohl das Potential als auch die Grenzen
dieser Verfahren: Durch den erhöhten Aufwand je Zelle ergibt sich ein weiterer Freiheitsgrad, der für
die Optimierung genutzt werden kann, außerdem werden mehr Rechenoperationen pro Dateneinheit
durchgeführt (Byte per Flops Ratio), was zu einer verbesserten Single-CPU Performance und somit
höherer Effizienz führt. Andererseits enthält das Rechengitter weniger Zellen, so dass die
Gebietszerlegung und damit die starke Skalierung auf Rechensystemen eingeschränkt wird, wenn zu
wenige Zellen je Knoten anfallen. Durch die Tendenz zu mehr Cores pro Rechenknoten und somit
stärker anwachsender Intra-Node-Performance bei eher gleich bleibender oder zumindest langsamer

Abschlussbericht STEDG 15 19.08.2013

STEDG
wachsender Inter-Node-Performance ist dies jedoch eher ein Vorteil, da sich der Bedarf der
numerischen Verfahren in derselben Richtung entwickelt wie die Tendenz in der Hardware.
Zum anderen stand die Turbulenzmodellierung selbst im Fokus. Komplexe fluidmechanische
Probleme erfordern in der Regel Large-Eddy-Simulation (LES), welche aber im Vergleich zu den in
kommerziellen Lösern üblicherweise verwendeten Reynolds-Averaged Navier-Stokes (RANS)
Verfahren sehr viel rechenintensiver sind. Durch die effiziente Implementierung des LES-Verfahrens
konnten zum einen detaillierte Untersuchungen mit LES-Verfahren durchgeführt und so die
notwendigen Informationen für die Evaluierung bestehender Probleme von RANS-Ansätzen zu
erhalten. Zum anderen konnten auf Basis dieser Simulationen dann Kopplungsmechanismen für den
zonalen RANS-LES Ansatz weiterentwickelt werden, bei dem der LES-Ansatz nur dort verwendet
wird, wo es notwendig ist, während andere Bereiche des Simulationsgebiets mit RANS modelliert
werden. Durch die lokale Anwendung einer LES konnte zum einem die Unsicherheit bezüglich der
Qualität des Gesamtergebnisses auf ein Minimum reduziert und zum anderen der Rechenaufwand
hinsichtlich Gesamtsimulationsdauer und Speicherbedarf optimiert werden. Gerade im Kontext der
numerischen Optimierung ist eine Verkürzung der Rechenzeiten wesentlich für die Anwendbarkeit der
Verfahren unter industriellen Bedingungen.

AP 3: Load Balancing und Cost Faktoren
In diesem Arbeitspaket wurde die Lastverteilung zur Laufzeit betrachtet. Starke Imbalancen, in denen
viele Prozesse auf wenige warten müssen, reduzieren die Effizienz der Simulationen. Um dynamisch
auf Last-Imbalancen reagieren zu können, müssen diese zunächst entdeckt und bewertet werden
können. Im ersten Schritt ist dafür die Instrumentierung des Codes notwendig, um zur Laufzeit die
Ausführungszeiten und ggfs. Speicheranforderungen jeder Zelle in Abhängigkeit von Zeitschritt,
Element-Typ und Verfahrensordnung bestimmen zu können. Wurden diese Abhängigkeiten zu Beginn
des Projektes im Wesentlichen heuristisch ermittelt, erfolgt dies nun durch Messungen zur Laufzeit.
Diese Werte werden im nächsten Schritt verwendet, um eine Re-Partitionierung des Rechengebiets
vorzunehmen. Hier wurde mit dem Sparta-Algorithmus ein effizientes Verfahren nicht nur zur
Bestimmung der neuen Aufteilung, sondern auch zum Durchführen der Umverteilung, also zum
Versenden von Gitterelementen und ihrer Daten an andere Prozesse im Rechengebiet implementiert.
Besonderes Augenmerk musste auf den Algorithmus gelegt werden, in dem die Prozesse bestimmen,
ob der Austausch abgeschlossen ist, oder noch weitere Nachrichten empfangen werden müssen. Hier
wurden in Zusammenarbeit mit Prof. Felix Wolf die Möglichkeiten des neuen MPI-3 Standards
untersucht. Hier werden nun sog. Non-Blocking Collectives verwendet. Dies hat nicht nur zu einer
optimalen Routine im STEDG-Projekt geführt, sondern war gleichzeitig auch der für die Aufnahme in
den neuen MPI-Standard notwendig Einsatz in der Praxis.

AP 4: Industrielle Anwendungen
Dieses Arbeitspaket betrachtete die Anwendung der Verfahren auf reale industrielle Testcases.
Besonders im Vordergrund stand die Zeit vom Aufsetzen der Simulation bis zum Ergebnis. Besonders
für den Einsatz in der sog. Design of Experiment Phase, also der Phase, in der Voruntersuchungen
auf Basis von Simulationen darüber entscheiden, welche Prototypen gebaut und experimentell
validiert werden sollen, verlangt die Durchführung von relativ vielen, detaillreichen Simulationen. Die
wurde für drei unterschiedliche Anwendungen, a) Gaseinspritzung für benzin- und gasgetriebene
Motoren, b) dreidimensionale Hochauftriebskonfigurationen bei Flugzeugen, c) Optimierung des
Gasstrahls beim Laser-Schneiden durchgeführt. In allen Anwendungen konnten sowohl
wissenschaftlich-technischen Erkenntnisse aus der Simulation gewonnen werden, eine ausführliche
Beschreibung der Ergebnisse ist im (englischsprachigen) Projektbericht dargestellt. Auch die
Handhabung der Simulationen, also der gesamte Workflow von Gittergenerierung, Preprozessing,
Simulation und Postprocessing, verbessert werden. Insbesondere der Zugang für Industrieanwender
auf die Höchstleistungsrechner am HLRS wurde ermöglicht, was weniger eine technische als eine
Frage der Policies und Berechtigungen war. Hierfür wurde mit der entsprechenden IT-Abteilung
zusammengearbeitet.

Abschlussbericht STEDG 16 19.08.2013

STEDG

2. Wichtigste Positionen des zahlenmäßigen Nachweises

Summarische Darstellung der Mittel: geplant verwendet
Personalbedarf: 189 PM 190,75 PM

Finanzierungsbedarf des Projektes: 1.416.990 € 1.318.714€ = 93%
Förderbedarf: 1.040.248 € 987.729 € = 95%

Industrieanteil am Gesamtfinanzierungsbedarf: 53% 50%
Industrieanteil am Fördervolumen: 36% 34%

Akademischer Anteil an Gesamtfinanzierung: 47% 50%
Akademischer Anteil am Fördervolumen: 64% 66%

Die Gesamtkosten wurden zu 75% durch Fördermittel, zu 25% durch Eigenmittel der Industriepartner
geleistet. Der Eigenanteil der Industriepartner beläuft sich auf 330.986 €. Der Kostenrahmen wurde
dem Antrag entsprechend eingehalten.
Der Zeitplan musste aufgrund der Kurzarbeit bei den Industriepartnern, des Wechsels von Prof. Roller
an die RWTH Aachen, den schwangerschaftsbedingten zeitlichen Ausfall und die Einarbeitung neuer
Mitarbeiter um 6 Monate verlängert werden.

3. Notwendigkeit und Angemessenheit der geleisteten Arbeit

Im Projekt wurde die detaillierte Simulation turbulenter Strömungen im Kontext realer industrieller
Anwendungen und ihre Praktikabilität im Kontext realer industrieller Randbedingungen, insbesondere
vorgegebener Turn-Around-Zeiten untersucht. Ausgangspunkt war die Diskrepanz zwischen
modernen Methoden, wie sie in Universitäten und Forschungseinrichtungen im Rahmen
akademischer Forschungscodes untersucht wurden, und den Lösungsverfahren, wie sie aufgrund von
Rechenzeitbeschränkungen in kommerziellen Softwarepaketen in der Industrie im Einsatz sind.
Akademische Verfahren bilden die physikalischen Phänomene richtig ab, sind aber zu langsam.
Standardverfahren in kommerziellen Lösern sind dagegen schnell, erreichen dies aber durch
Verwendung unzureichender Modellierungsansätze.

Im Rahmen des STEDG-Projektes konnte diese Diskrepanz überwunden werden: es konnte gezeigt
werden, dass moderne, bei den akademischen Partnern entwickelte Modellierungs- und
Lösungsverfahren so implementiert werden können, dass sie die Möglichkeiten aktueller und
zukünftiger Supercomputer nutzen können, und dadurch auch in der Lage sind, die Vorgaben der
industriellen Anwender, wieviele Simulationen in welcher Zeit durchzuführen sind, erfüllen können.
Parallel dazu wurden auch Hürden beseitigt, die nicht in erster Linie technischer Natur sind, sondern
auf Policies und Zugangsvoraussetzungen beruhen, und bisher das Nutzen der am HLRS installierten
und für industrielle Anwender zugängliche Supercomputer behindert hatte. Das Projekt hat dadurch
direkt zum Austausch zwischen Industrie und Forschung beigetragen und stützt damit sowohl den
Forschungs- als auch den Industriestandort Deutschland.

Über diese direkten Projektziele und –ergebnisse hinaus trug das Projekt auch zur Community-
Bildung und insbesondere zur Zusammenarbeit zwischen (akademischen) Nutzern und den
Rechenzentren des Gauss Centers for Supercomputing (GCS) und der Gauss Allianz bei.
Projektpartner portierten und analysierten die Software auf unterschiedlichen Systemen, verglichen so
die Leistungsfähigkeit der verschiedenen Hardware-Architekturen, berichteten den Zentren und deren
Herstellern über Probleme und Bugs in Systemsoftware wie Compilern, Bibliotheken wie MPI, Tools
wie Vampir, Tau und Scalasca, und Konfigurationen wie Modulumgebungen, Pfade, aber auch
Zusammenspiel beispielsweise von paralleler IO und parallelem Filesystem. Auch die Industriepartner
können für ihre nächsten Computecluster-Beschaffungen auf diese Ergebnisse zurückgreifen.

Abschlussbericht STEDG 17 19.08.2013

STEDG
Im Projekt wurden 5 Doktoranden, mehrere Masterstudierende und etliche wissenschaftliche
Hilfskräfte ausgebildet. Ebenso flossen die Ergebnisse in die Vorlesungen und Labore der
akademischen Partner ein. Das Projekt trug so auch zur Ausbildung des Nachwuchses im Bereich
Simulation Sciences bei.

4. Voraussichtlicher Nutzens, insbesondere Verwertbarkeit des Ergebnisses
im Sinne des fortgeschriebenen Verwertungsplans

Der Nutzen und die Verwertbarkeit der Ergebnisse ergeben sich auf unterschiedlichen Ebenen.

Auf akademischer Seite steht der wissenschaftliche Fortschritt im Vordergrund, der sich in über 30
Veröffentlichungen in wissenschaftlichen Journals, Konferenzen, Buchbeiträgen, Postern und
Vorträgen darstellt. Daneben sind 5 Dissertationen und eine Masterarbeit entstanden. Die Ergebnisse
fließen in weitere Projekte sowie die zukünftige Softwareentwicklung ein. Auch in die Lehre in Form
mehrerer Vorlesungen für den Studiengang Simulation Sciences sowie Trainingsveranstaltungen wie
den seit Jahren in Kooperation von GRS, HLRS und IAG durchgeführten CFD-Kurs flossen die
Erfahrungen ein.

Auf Seiten der Industriepartner stehen zwei Aspekte im Vordergrund. Einerseits natürlich die direkte
Optimierung von Produkten, die vor allem auf dem Verständnis der internen Vorgänge beruht, welche
Simulationen mit feiner Auflösung und hohem Detailgrad erfordern, was mit kommerziellen Lösern auf
Standard-Rechensystemen nicht erreichbar ist. In diesem Sinne fliessen die Ergebnisse der
Simulationen selbst direkt in die Entwicklung ein. Zum anderen besteht der Gewinn des Projektes
auch im Wissenstransfer, sowohl was die Hintergründe der Simulationsverfahren angeht, aber noch
viel stärker, was die Nutzung und Nutzbarkeit von Supercomputern im industriellen Umfeld angeht.
Das Klären von Zugangsvoraussetzungen (Firewalls, Windows2Linux, Lizenzproblematik) ermöglicht
die Verwendung von Supercomputern außerhalb des Unternehmens.

Über diesen spezifischen Nutzen und Verwertungen für die direkt beteiligten Partner war die
Zusammenarbeit mit den Rechenzentren ein wichtiger Aspekt im Projekt. Die stetige Fortentwicklung
der Software-Umgebung auf den Maschinen, insbesondere bei Neuinstallationen, erfordert eine
entsprechende kontinuierliche Anpassung der Simulationscodes. So mussten beispielsweise
Compilervergleiche durchgeführt werden, da sich unterschiedliche Compiler auf die
Rechengeschwindigkeit, aber auch auf das Zusammenspiel mit der jeweiligen MPI-Library ausgewirkt
haben. Hier bestand regelmäßiger Kontakt sowohl mit den Rechenzentren, den Herstellern der
Systeme, als auch mit den Herstellern von Analyse-Tools wie Debuggern und Performance-Analyse.

Die Ergebnisse des Projektes fließen somit auf unterschiedlichen Ebenen in die HPC-Community
zurück: Mit den industriellen Partnern wird an den Anwendungen und dem Erkenntnisgewinn durch
die Simulation gearbeitet. Hierfür sind effiziente Codes und numerische Algorithmen notwendig, die
insbesondere im Austausch mit den anderen akademischen Partnern erfolgen. Einerseits wirkt dies
über die Verbesserungen im Code nach, die natürlich auch über Projektende hinaus zur Verfügung
stehen. Andererseits wird auf der Seite der akademischen Partner das Bewusstsein für mögliche
Problemstellen geschaffen und Knowhow vermittelt, damit zukünftige Erweiterungen der Algorithmen
und Software von vornherein unter Berücksichtigung der Performance und Effizienz erfolgen können.
Im Bereich der Informatik erfolgt die Zusammenarbeit mit Tools-Entwicklern und Rechenzentren, um
die Bedürfnisse der Nutzer einzubringen.

Für die tiefergehende Details sei auf die Erfolgskontrollberichte der einzelnen Partner verwiesen.

Abschlussbericht STEDG 18 19.08.2013

STEDG

5. Während der Durchführung des Vorhabens dem ZE bekannt gewordenen
Fortschritts auf dem Gebiet des Vorhabens bei anderen Stellen

Während der Durchführung des Vorhabens sind keine Fortschritte bei anderen Stellen bekannt
geworden, die die Durchführung des STEDG-Projekts behindert und hinfällig gemacht hätten.

Weiterentwicklungen in einzelnen Bereichen finden sowohl auf der Seite der Forschungsentwicklung
als auch auf der Seite der kommerziellen Software-Pakete wie Ansys CFX, Fluent, Gambit, ANSA u.a.
statt. Diese Entwicklungen wurden aufgenommen, sowohl durch Teilnahme am wissenschaftlichen
Austausch, beispielsweise auf Konferenzen, durch Papers und individuelle Zusammenarbeit als auch
durch Verwendung und Abgleich mit der jeweils aktuellen Softwareversion, die auf den verfügbaren
Installationen zugänglich ist.

Die Diskussion der im Projekt erzielten Ergebnisse wurde durch Veröffentlichungen und Vorträge,
ebenso wie in anderen Kooperationsprojekten von den Konsortialpartnern in die wissenschaftliche
Community getragen. Ebenso wurden die Ergebnisse den Fachabteilungen der Industriepartner
zugänglich gemacht und die Anwendung in anderen Bereichen angesprochen. Die sich aus diesen
Diskussionen ergebenden Erkenntnisse stellen in beide Richtungen (in das Projekt und aus dem
Projekt heraus) eine Bereicherung des Projekts und der HPC-Community dar. Sie dienen als
Grundlage für neue Forschungsansätze und Realisierungsideen.

6. Erfolgten oder geplante Veröffentlichungen des Ergebnisses

Veröffentlichungen:

• Harlacher, D.F., Siebert, C., Klimach, H., Roller, S., Wolf, F. Dynamic Load Balancing for

Unstructured Meshes on Space- Filling Curves. In Proceedings of the Workshop on Large-
Scale Parallel Processing, IPDPS 2012

• Harlacher, D.F., Klimach, H., Roller, S. Turbulence Simulation at large Scale. inSide
• Katharina Benkert, Bernhard Müller and Michael M. Resch. Reducing Turn-Around times for

supernova simulations, Interdisciplinary Information Sciences, 15(1), 2009
• Edgar Gabriel, Saber Feki, Katharina Benkert, Michael M. Resch. Towards Performance and

Portability through Runtime Adaption for High Performance Computing Applications,
Concurrency and Computation: Practice and Experience 22(16): 2230-2246 (2010)

• K. Benkert, E. Gabriel. Empirical Optimization of Collective Communications with ADCL,
High Performance Computing on Vector Systems 2010, 2010

• K. Benkert, E. Gabriel, S. Roller. Timing Collective Communication in an Empirical
Optimization Framework, PARENG2011, The Second International Conference on Parallel,
Distributed, Grid and Cloud Computing for Engineering, P. Ivanyi and B.H.V. Topping (Eds),
Ajaccio, Corsica, France, 12-15 April 2011, PENG11/2010/000052, ISBN 978-1-905088-44-7

• Highly Efficient and Scalable Software for the Simulation of Turbulent Flows in Complex
Geometries, Daniel F. Harlacher, Sabine Roller, Florian Hindenlang, Claus-Dieter Munz, Tim
Kraus, Martin Fischer, Koen Geurts, Matthias Meinke, Tobias Klühspies, Volker Metsch,
Katharina Benkert, High Performance Computing in Science and Engineering '11, 2012, pp 289-
307

• Daniel F. Harlacher, Manuel Hasert, Harald Klimach, Simon Zimny, Sabine Roller. Tree Based
Voxelization of STL Data, In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller, S.
(Eds.) High Performance Computing on Vector Systems 2011, pp. 81-92, Springer, 2011

• Daniel F. Harlacher, Sabine Roller, Florian Hindenlang, Claus-Dieter Munz, Tim Kraus, Martin
Fischer, Koen Geurts, Matthias Meinke, Tobias Klühspies, Yevgeniya Kovalenko, Uwe Küster
Industrial Turbulence Simulation at Large Scale. , HLRS review 2013

Abschlussbericht STEDG 19 19.08.2013

STEDG
• Sabine Roller, Jörg Bernsdorf, Harald Klimach, Manuel Hasert, Daniel Harlacher, Metin Cakircali,

Simon Zimny, Kannan Masilamani, Laura Didinger, Jens Zudrop: An Adaptable Simulation
Framework Based on a Linearized Octree, In: Resch, M., Wang, X., Bez, W., Focht, E.,
Kobayashi, H., Roller, S. (Eds.) High Performance Computing on Vector Systems 2011, pp 93-
105, Springer, 2011, ISBN 978-3-642-22244-3, DOI 10.1007/978-3-642-22244-3_7

• Harald Klimach, Sabine P. Roller, Jens Utzmann, Claus-Dieter Munz: Simulation of Automotive
Injector Nozzle Noise with fully coupled CFD/CAA solver, Proceedings of the V European
Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira, A.
Sequeira and J. M. C. Pereira (Eds) Lisbon, Portugal,14-17 June 2010. ISBN: 978-989-96778-1-4

• Roidl, B., M. Meinke and W. Schröder, A zonal RANS/LES method for compressible flows,
Comp. Fluids, vol 67, p 1-15, 2012

• Florian Hindenlang, Jonathan Neudorfer, Gregor Gassner, Claus-Dieter Munz. Unstructured
three-dimensional High Order Grids for Discontinuous Galerkin Schemes, 20th AIAA
Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 27-30, 2011 , 2011.

• Gregor Gassner, Michael Dumbser, Florian Hindenlang, Claus-Dieter Munz. Explicit one-step
time discretizations for discontinuous Galerkin and finite volume schemes based on local
predictors, Journal of Computational Physics, 230, 11, Page(s): 4232 - 4247, 2011.

• G. Gassner, F. Hindenlang, C.-D. Munz. A Runge-Kutta based Discontinuous Galerkin
Method with Time Accurate Local Time Stepping, Wang, (Ed.): Adaptive High-Order Methods
in Computational Fluid Dynamics, World Scientific.

• F. Hindenlang, G. Gassner, T. Bolemann, C.-D. Munz. Unstructured High Order Grids and
their Application in Discontinuous Galerkin Methods, Proceedings of ECCOMAS, 2010.

• F. Hindenlang, G. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C.-D. Munz. Explicit
Discontinuous Galerkin methods for unsteady problems), Computers&Fluids, 61, pp. 86-93,
2012, ISSN: 0045-7930.

• T. Kraus et al. „Direct Aeroacoustic Simulation of near fid noise dring a gas injection
process with a Discontinuous Galerkin Approach, 18. AIAA/CEAS Aeroacoustics Conference
in Colorado Springs (USA, CO)

•

Vorträge und Poster:
• Harlacher, Daniel. Dynamic Load Balancing for Unstructured Meshes on Space-Filling

Curves. IPDPS 2012
• Harlacher, Daniel. Highly efficient and scalable software for the simulation of turbulent

flows in complex geometries. HLRS review workshop 2011. Ausgezeichnet mit dem „Golden
Spike Award“

• Roller, Sabine. Simulation of turbulent flows under industrial constraints. International
Supercomputing Conference ISC 2012

• Harlacher, Daniel. Comparison of stability and efficiency of high-order DG and WENO
schemes for a super-sonic free jet. Eccomas 2012

• K. Benkert, E. Gabriel. Measuring Execution Times of Collective Communications in an
Empirical Optimization Framework, Poster at EuroMPI, 12.-15. Sept. 2010, Stuttgart, 2010

• T. Kraus et al. „Direct Aeroacoustic Simulation of near fid noise dring a gas injection
process with a Discontinuous Galerkin Approach, 18. AIAA/CEAS Aeroacoustics Conference
in Colorado Springs (USA, CO)

• S. Roller. Multi-scale CFD for Aeroacoustics, Plasma Flows and Medical Physics,
Eingeladener Vortrag auf der ParCFD 2010, Taiwan

• S. Roller: STEDG – Hocheffiziente und skalierbare Software für die Simulation turbulenter
Strömungen in komplexen Geometrien, Vortrag auf der 1. HPC Statustagung, Berlin, 2010

• S. Roller: STEDG – Hocheffiziente und skalierbare Software für die Simulation turbulenter
Strömungen in komplexen Geometrien, Vortrag auf der 2. HPC Statustagung, Darmstadt,
2011

• S. Roller, Harald Klimach, Daniel Harlacher: Fluid dynamics with multi-scale processes:
modelling and HPC, Invited Talk, Munic Multiphysics Meeting, 13 July 2011, Munich Centre of
Advanced Computing (MAC)

Abschlussbericht STEDG 20 19.08.2013

STEDG
• S. Roller, Harald Klimach, Daniel Harlacher: Adaptive Multi-Scale Simulation of Turbulent

Flow and Acoustics, ECCOMAS Coupled Problems 2011, 20-22 June 2011, Kos Island,
Greece

• K. Benkert, E. Gabriel, S. Roller: Timing Collective Communication in an Empirical
Optimization Framework, PARENG2011, The Second International Conference on Parallel,
Distributed, Grid and Cloud Computing for Engineering, Ajaccio, Corsica, France, 12-15 April
2011

• Sabine Roller. Strategien zur Effizienz-Optimierung – Widerspruch zwischen Memory- und
CPU-Load Balancing. Workshop “Developments in HPC”, Leogang, 2011

• Sabine Roller: Multi-Scale Methods for CFD-Applications in the Face of HPC, International
Mini Symposium for Biomechanics of Intracranial Stent, Tohoku University, Sendai, Japan,
20. Oktober 2010

•

Dissertationen:
• K. Benkert: Adaptive parallel communications for large-scale computational fluid

dynamics, Online verfügbar: http://elib.uni-stuttgart.de/opus/volltexte/2012/7020/
• D. Harlacher: Efficient HPC models for turbulent flow simulation, in Vorbereitung,

Einreichung August 2013
• T. Kraus: in Vorbereitung, Einreichung 2013
• F. Hindelang: in Vorbereitung, Einreichung 2013
• Y. Kovalenko: in Vorbereitung, Einreichung 2013

Masterarbeiten:
• Betreuer: Harlacher, Daniel. Student: Krupp, Verena. Influence of artificial viscosity on the

accuracy of LES modeling. Oktober 2012

Technische Berichte:

• Projektabschlußbericht

Hocheffiziente und skalierbare
Software für die Simulation
turbulenter Strömungen in
komplexen Geometrien

Wissenschaftlicher Teil des Schlussberichts

Daniel F. Harlacher, Sabine Roller,
Florian Hindenlang, Claus-Dieter Munz,

Tim Kraus, Martin Fischer,
Koen Geurts, Matthias Meinke,
Tobias Klühspies, Volker Metsch,
Yevgeniya Kovalenko, Uwe Küster

STEDG

25/06/2012

Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesminis-
teriums für Bildung und Forschung unter dem Förderkennzeichen 01IH08010 gefördert.
Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

Acknowledgment
Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesminis-
teriums für Bildung und Forschung unter dem Färderkennzeichen 01 IH 08010 gefördert.
Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.
The project STEDG was funded by the German Federal Ministry for Education

and Research (BMBF) in the call “HPC Software for scalable Parallel Computers”.
We thank the Gauss Centre for Supercomputing (GCS) which provided us with the
necessary resources on different HPC systems.

i

Contents

1. Introduction and Outline of the Project 1
1.1. Motivation and Starting Point . 1
1.2. Outline . 2

2. Outline 4

3. Numerical Methods for Time-Resolved Turbulent Flows 5
3.1. LES with DG . 5
3.2. Zonal RANS-LES . 5

4. High Performance Computing 7
4.1. Performance Metrics . 7

4.1.1. Serial Performance Map . 7
4.1.2. Parallel Performance Maps . 8

4.2. Performance and Debugging Tools . 11
4.3. Performance Optimizations . 11

4.3.1. General optimizations . 12
4.3.2. Parallel I/O . 13
4.3.3. Parallel algorithms . 15
4.3.4. Memory performance . 21
4.3.5. Communication patterns . 27

4.4. Performance Evaluation HALO . 32
4.4.1. Algorithmic behavior . 32
4.4.2. Serial Performance . 36
4.4.3. Intra-node Performance . 36
4.4.4. Inter-node Performance . 45

4.5. Performance Analysis of AIA codes . 52
4.5.1. Code scalability . 53
4.5.2. Benchmarking . 54

4.6. SPartA - Space-filling curve Partioning Algorithm 56
4.6.1. Scaling Analysis . 61
4.6.2. Load-Balancing Quality . 64
4.6.3. Deployment in Application . 66
4.6.4. Conclusion . 69

4.7. Mesh Preprocessing for Highly Parallel Treatment 70
4.7.1. Partitioning with the Space-Filling Curve 71
4.7.2. Curved Mesh Generation . 73

ii

5. Academic Test-cases 76
5.1. Turbulence Modeling: Taylor-Green Vortex 76
5.2. Turbulent Subsonic Round-jet . 77

6. Bosch Gas Injection Nozzle 81
6.1. Test case description . 81

6.1.1. Compressed Natural Gas Injection 81
6.1.2. Free-stream Configuration . 82

6.2. Aim of the project activity . 83
6.3. Experiments . 83

6.3.1. Shadowgraph measurements . 83
6.3.2. PIV measurements . 86
6.3.3. Acoustic measurements . 93

6.4. Simulations of Free-stream Configuration 95
6.4.1. Simulation Setup . 95
6.4.2. Results and Validation . 101
6.4.3. Efficiency and Assessment of Turn-Around-Time 108

6.5. Simulations of Parameter and Geometry Variations in Firestorm Con-
figuration . 112
6.5.1. Variation of operating pressure 112
6.5.2. Variation of silencer length . 112

6.6. Simulations of Intake Manifold Configuration 115
6.7. Further Utilization of Results . 118

6.7.1. scientific utilization . 118
6.7.2. technical utilization . 118
6.7.3. economic utilization . 119

7. Laser Cutting Device 120
7.1. Experiments . 120

7.1.1. Cutting nozzles examined . 120
7.1.2. Influence of the gas flow on the cut quality 120
7.1.3. Pressure profile of both nozzles 122
7.1.4. The simplified kerf . 122
7.1.5. Dynamic pressure profile . 127
7.1.6. Time regime for laser cutting . 128

7.2. Numerical investigation . 128
7.2.1. Meshes and boundary conditions 129
7.2.2. Initialization and shock capturing 130
7.2.3. Parallel Performance . 130
7.2.4. Results . 131
7.2.5. Speed-up experiments with FLUENT 137

7.3. ZFS . 139

8. High-Lift Aerodynamics 141
8.1. HGR-01 Profile at High Angle of Attack 141

iii

8.2. 2-Element High-Lift Configuration . 145

9. Summary 147

A. Appendix 148
A.1. Performance maps for the HALO Code on current supercomputing ar-

chitectures . 148

iv

1. Introduction and Outline of the
Project

1.1. Motivation and Starting Point
Numerical simulation of fluid flows is nowadays an indispensable method for research
and development in all areas of engineering. Over the years, it became a key technol-
ogy to improve economic, environmental and security behavior of products, thereby
vitally strengthening the competitiveness of German industry. Nevertheless, it often
uses simplified methods to obtain results within the given turn-around times. The
simulation of turbulent flows is often based on Reynolds-averaged Navier-Stokes equa-
tions (RANS). Here, the algorithms give stationary solutions, averaged in time. On
the other hand, time-dependent phenomena often play an important role in indus-
trial applications. Research and development departments carry out first calculations,
based e.g. on Large-Eddy simulations (LES). But the commercial software packages
used, work with numerical methods suited for traditional stationary simulations with
turbulence model. They have a broad application spectrum, but are much to costly
for in-stationary processes.
The efficient simulation of in-stationary fluid flows with higher order turbulence

modeling requires an overall renewing of all components: numerical methods, algo-
rithms and their efficient implementation on modern hardware architectures. While
several groups work intensively on new numerical methods, the changes in hardware
of future computer generations remain mostly unconsidered. Current developments
in hardware architecture of high performance computers require dramatic changes in
the programming model of simulation codes to be able to make use of these new
architectures.
Necessary is a paradigm change in the comprehension of the users: in the past,

users could expect an increase of performance of their simulations directly with the
performance of the hardware. In the future, this is not directly the case. The power and
performance of computer systems is no longer increasing by higher clock frequencies of
single processors, but through a more and more increasing number of processors - with
respect to increasing number of nodes as well as increasing number of cores within one
node. Future architectures will be systems of shared memory nodes, which is currently
hardly used by application codes. Also the increasing gap between processor speed
and memory bandwidth is hardly ever a topic discussed at user conferences.
The STEDG project addresses the changes, software development has to catch up to

keep track with hardware development. Current new numerical methods - by structure
well suited for these computer architectures - are further developed to efficient flow

1

simulation tools. On the one hand, future numerical methods and algorithms, on the
other hand their mapping to current (multi-core) and future (many-core) hardware
architectures are considered. They are applied to real-life applications from industrial
research and development (R&D) and their usability for industrial development cycles
correlated with current and future developments.

1.2. Outline
This project considers the process of developing software for the numerical simulation
of currents as a whole. Modern algorithms for problems that can not be numerically
simulated yet are implemented in a way that allows them to take advantage of future
hardware architectures. The simulation of real world applications with higher order
turbulence modeling is only made possible by combining new numerical methods with
an efficient implementation that is adapted to modern hardware architectures. The
potential of this approach will be tested on topical real world problems provided by
industry partners. In short: this project is about future numerical methods which
are efficiently implemented on future hardware architectures and applied to future
problems and questions.
The goals of this project contain:

• Numerical modeling of turbulent currents using time-precise numerical methods.

• Methods for analyzing and optimizing the code with respect to hierarchies in the
memory and/or network of hardware architecture.

• Improving the scalability of the algorithms within nodes as well as between nodes.

• Determining and evaluating cost-factors to optimize the load-balancing of highly
adaptive methods (with respect to space, time and precision).

• Evaluating and validating the developed methods on the basis of big test cases
with relevance for the industry.

• High value turbulence models that are based on the concept of Large-Eddy-
Simulation are being used to describe complex currents.

• The numerical methods are tuned to in-stationary currents and allow for an
explicit discretization of time which decreases both the computing time and the
amount of communication between parallel processes.

• Using highly local methods with minimal data exchange with neighboring ele-
ments the application should scale perfectly on new hardware architectures.

• This allows industrial applications to be simulated within acceptable amounts of
time. Furthermore this will help compute problems that could not be simulated
up to now.

2

A prototype for this kind of problem is the process of injection in a gas-powered
combustion engine. Here, the gas enters the injector tube as a supersonic jet where it
is deflected by the cross flow and hits the tube wall while interacting withe reflected
shock waves. The numerical simulation of the whole process with conclusions about
the creation and possibly the reduction of sound is a central application in this project.
Up to now only parts of this problem can be simulated within a computing time of 10
000 CPUh which is too much for use in the design process.
Another problem concerns the aerodynamics and aeroacoustics of an elevator unit

of a plane. If this problem is to be solved in three dimensions by a hybrid fluid
mechanics/acoustic approach, a computational grid consisting of 58 cells is necessary.
The amount of memory and computing time needed is considerably large.
The third application is the optimization of a nozzle for laser beam cutting. Here, a

complex supersonic jet with shocks appears in a complex geometry and the turbulence
is not as challenging as these shocks and the complex geometry.
To reduce the amount of computing time needed from multiple weeks to several

days the use of HPC-architectures is inevitable. Modern architectures are dominated
by dual-core and quad-core layouts. Soon, nodes with up to 32 cores will appear,
eventually even with 100 cores or more. The deployment of these many-core processors
in clusters will lead to systems with thousands of (heterogeneous) cores. In this project
the programming models and especially the parallelization models will be adapted to
the technological development. Challenges for the simulation tools will arise regarding
the memory and the memory-hierarchies. The goal will be to prevent a decrease of
performance caused by the difference between processor speed and memory bandwidth.

3

2. Outline

This report is structured as follows: In Chapter 3 the numerical schemes which are
used in context of the STEDG project are introduced in short to give a more general
understanding of the rest of the report. Both presented schemes are capable of cap-
turing turbulent phenomena in a time-accurate manner. In Chapter 4 the evaluation
and optimization of the above mentioned numerical schemes is presented. In this con-
text not only serial performance was evaluate and optimized but also the behavior on
highly distributed supercomputing systems were investigated. In detail the chapter
deals with the following:

• An introduction and definition of a new performance metric is given, which is
capable of relating the necessary information for the behavior of a code on a
given system to the user

• A short overview over the tools that were used to debug and optimize the used
codes with respect to memory and run-time is given

• An overview is given over the performance bottlenecks that where found within
this project and how the code benefited from their removal.

• The performance for the used codes is evaluated in great detailed on supercom-
puting systems with up to 100.000 cores.

• A partitioning algorithm based on space-filling curves is introduced which was
developed within this project to optimize the partitioning of the computational
domain before and during run-time onto multiple processes. The benefits of
this algorithm are introduced and the application to one of the project codes is
shown. Additionally a new way to determine accurate cost factors for an efficient
load-balancing is presented.

• Also based on space-filling curve and closely related to the above mentioned
partitioning algorithm a preprocessing scheme is introduced in which a given
mesh from a commercial mesh generation tool is converted into a format which
becomes easily and efficiently readable for highly distributed systems.

Chapter 5 presents test-cases in which the general physical correctness of the results
for the HALO code for turbulent cases is investigated. In Chapter 6 to 7 three large
industry test-cases are, which so far could not have been simulated within reasonable
time-frames are presented and evaluated.

4

3. Numerical Methods for
Time-Resolved Turbulent Flows

3.1. LES with DG
The flow solver of the Institute for Aero- and Gasdynamics (IAG) at the University
of Stuttgart is called HALO and solves the compressible Navier-Stokes equations for
three-dimensional compressible flows. It is a discontinuous Galerkin scheme, the code
is fully MPI parallelized [21] and runs on unstructured meshes consisting of hexahedra,
prisms, pyramids and tetrahedra. The solution is represented on each element by a
polynomial of arbitrary degree. A special explicit time discretization is employed, the
so called time-consistent local time stepping [22, 8, 9].
Two types of LES approaches were implemented. An explicit Smagorinsky model,

where the amount of added viscosity is computed from the local velocity gradient
tensor. The second is an implicit approach, derived from a technique which is already
used in HALO for shock capturing. An spectral indicator is evaluated locally for each
grid cell, representing the amount of polynomial oscillation, which is an indicator for an
under-resolved solution. Proportional to the oscillation, artificial viscosity is added to
the viscous fluxes. The viscosity damps the oscillations and stabilizes the simulation.
Both approaches were investigated in this project, whereas the implicit approach was
used in the industrial test cases, since more stabilization was needed because the flow
developed both shocks and turbulence.

3.2. Zonal RANS-LES
The flow solver of the Institute of Aerodynamics Aachen (TFS) solves the Navier-
Stokes equations for three-dimensional compressible flows on a block-structured grid.
A modified AUSM method as introduced in [20] is used for the Euler terms which are
discretized to second-order accuracy by an upwind-based approximation. For the non-
Euler terms, a centered approximation of second-order accuracy is used. The temporal
integration is done by a second-order accurate explicit 5-stage Runge-Kutta method
with coefficients optimized for maximum stability [25]. The sub-grid scale modeling for
the large-eddy simulations is based on an implicit ansatz, i.e., the MILES (monotone
integrated LES) approach of Boris et al. [4]. For the RANS zones the Spalart-Allmaras
turbulence model was chosen to close the Reynolds-averaged Navier-Stokes equations.
To reduce computation time, the solution methods based on RANS and LES can be
combined into a zonal method. The LES regions are used to resolve the leading and
trailing edge region where flow separation occurs, while the RANS zone is used for the

5

attached flow regions. The schematics of the overlapping zones is shown in Fig. 3.1
and 3.2 , where the values that have to be communicated back and forth between
the two different approaches are indicated. In the overlapping region, where the flow
is directed from a RANS to LES zone, synthetic eddies are introduced to accelerate
the generation of coherent turbulent structures using the method of Jarrin [16]. Fur-
thermore, control planes are used to drive the solution towards the correct turbulence
level in the LES domain according to Spille and Kaltenbach [31]. When the flow is
coming from the LES into the RANS domain, the RANS requires a definition of the
eddy viscosity νt, the value of which is reconstructed from time and spatial averaging
of the LES data.

Figure 3.1.: RANS-to-LES transition
Figure 3.2.: LES-to-RANS transition

6

4. High Performance Computing

Programs like an academic fluid simulation code are developed over years and usually
with a broad applicability spectrum in mind. So it happens that codes that where
designed and/or optimized for a certain architecture might not run as efficient on
current and/or future machines. In the worst case a paradigm shift in architectures
(e.g. from NUMA- or vector-machines to distributed memory machines) inhibits the
code to run efficiently at all, in these cases a complete rewrite of the code might
become necessary. On the other hand, with the increasing demand of parallelism the
problematic of efficient code writing gets even more complicated. Code parts that
scaled very well to moderate number of processes might become a bottleneck when
thinking about scaling to hundreds of thousands of processes. In addition to that
even seemingly small changes in the supercomputing architectures might have a great
impact on performance. Therefore a crucial part of software-engineering has become
the performance analysis in the sense of both a way to find bottlenecks and remove
them to enable higher parallel efficiency and the way in judging the performance of
the code on a certain architecture and predict the performance on an other machines.

4.1. Performance Metrics
Numerical simulations are carried by floating point operations (FLOP). Therefore we
introduce a performance metric called performance map which is based on the floating
point operations per second (FLOPs) a code achieves for a given problem size on a
given number of processes on a given architecture.

4.1.1. Serial Performance Map
For the serial performance map the FLOPs over the problem size are plotted. With
this the behavior of the code on the processor can be judged. Figure 4.1 shows a
typical serial performance map. On the y-axis the problem size is denoted while on
the x-axis the performance of the code is plotted. Most notable perhaps is the fact that
the smallest problems do not run the fastest. This is due to the execution overhead of
the used program. With increasing problem size the performance therefore rises in the
beginning as the relative overhead of the program becomes smaller. Overlapping this
general effect different other behaviors can be identified, e.g. it becomes clear that the
caches of the CPU are filled one after the other. Depending on the overhead of the
application these effects can be seen in more detail or not. With most codes one sees
a peak in performance followed by a notable drop in performance - once the problem
size does not fit into the cache anymore. After dropping out of cache the performance

7

will continue to increase slightly due to ever decreasing overhead and more efficient
filling of pipeline instructions. The end of the performance plot shows the maximum
problem size that can be used on the investigated architecture.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size

serial

Figure 4.1.: Example for s serial performance map.

4.1.2. Parallel Performance Maps
Going from serial to parallel one would expect similar behavior when thinking of per-
formance. But in general the parallel performance is not easily comparable to the
serial due to additional influential factors in the code and the architecture. Therefore
it can not be assumed that a serial code runs times X faster with X processes. These
factors being communication on the code side which can not only lead to more appli-
cation overhead but also may change the performance behavior. Additionally it has
to be distinguished between inner-node and intra-node communication as those might
be implemented separated from each other - OpenMP/MPI hybrid application - and
therefore might have different individual impacts on performance. The architecture
of a system can also influence the performance due to private caches on CPU level
up to communication bandwidth between the compute nodes. With both code and
architecture presenting different kinds of parallelism a pair of performance maps is

8

introduced in the following to separate the effects on performance.

Intra-node Performance Map

The assertion of the intra-node performance map is how many cores of a compute node
can be used efficiently on a given computer architecture. Therefore the different curves
in figure 4.2 represent the different number of processes on which the corresponding
problem size was run. With this the metric directly reflects the gains and/or losses in
performance when using a certain number of cores on a node. With the baseline being
one process, which corresponds to the serial performance map the metric overall shows
the same features (4.1.1) in each curve but they differ in distinctiveness and location.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

Figure 4.2.: Example for an intra-node performance map.

Inter-node Performance Map

Using the most efficient node setup resulting from the intra-node performance map
(4.1.2) the inter-node performance map is generated. This metric reflects both the
influence of the network of the machine and the inter-node parallelization of the code
on the performance. Figure 4.3 displays this metric for a specific machine. Similar
to the intra-node performance map the x-axis denotes the problem size but this time

9

it is the local problem size per node. On the y-axis the reached performance of the
code is plotted - again FLOP/s are used. A typical inter-node performance map shows
a common trend in the lines which gives back a lot of information. After a slope in
which the problem size per node is not large enough for efficient execution on the
architecture the trend reaches a plateau. The transition of the slope to the plateau
marks the minimum problem size per node which should be reached to use the resources
of the machine efficiently. After the plateau, which for perfect scaling codes would go
on forever the map can show some (mostly negative) influences of code, network, etc
...

 0

 1

 2

 3

 4

 5

 6

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

Figure 4.3.: Example for an inter-node performance map.

To extract information on weak scaling from the performance map one simply has
to compare the performance of a given problem size between the different curves. A
code which shows perfect weak scaling would show the same performance for a given
problem size independent of the number of cores, therefore leading to an overlap of all
curves in that point. For strong scaling one has to pick the problem size on the "one
node" curve and then follow the chart from right to left while changing to the curve
of the desired number of nodes.

10

4.2. Performance and Debugging Tools
A number of tools are introduced which help to analyze the behavior of codes on dif-
ferent supercomputing architectures. Some of them are used to measure performance,
others to visualize the communication or to detect potential problems.

Likwid

Likwid consists of a set of command line tools which enable easy access to hardware-
counter information such as FLOPS, clock-frequency, etc ... In this work the tool
Likwid was used to count the floating point operations of applications.

Vampir

Vampir is a parallel profiling tool which uses a code instrumentation in the form of
compiler wrappers to extract information like communication and others. With its
time-line view over all processes indicating the communication using a visual represen-
tation in form of lines the tool vampir can be used to investigate communication-heavy
parts of the code visually. Therefore enabling a quick assertion of the code and a fast
detection of possible sections in the code that might impact parallel performance.

Valgrind

The Valgrind toolsuite is a collection of tools which help you analyze a code on a very
detailed level. Valgrind tools are based on the emulation of a CPU and can therefore
give information about cache-alignment and cache-misses as well as memory-demand
and other information. In the following only a few of the many tools offered by Valgrind
are introduced.

massif The tool massif allows you to track the memory consumption over the elapsed
simulation time. The consumed memory is subdivided into the responsible functions
and subroutines in which the memory is allocated. Therefore tracking of a memory
leak gets more comfortable.

memcheck The tool memcheck is useful to track down memory errors like accesses
to uninitialized values or missing deallocation. It can also detect some failures in the
MPI usage.

4.3. Performance Optimizations
In section 4.1 metrics where introduced by which the behavior of a code can be evalu-
ated on a certain architecture. If that behavior is unexpected or unsatisfying the code
needs to be investigated more thoroughly. After identifying a potential bottleneck in
the code using performance analysis tools or otherwise one needs to go into the code
and exchange the code-part which is responsible. This section shows how performance

11

bottlenecks that where identified within this work, how they were assessed and how
resolving these bottlenecks led to higher code performance.

4.3.1. General optimizations
Serial execution efficiency of the HALO-code was analyzed on the NEC Nehalem Clus-
ter. The analysis has shown that the timing relationships between different functions
depend heavily on the input parameters. Some functions change their influence ac-
cording to the chosen computational order. Thus, several code examples were analyzed
for different parameters (input parameter spacial order of the scheme: 2, 4, 6). With
the help of Intel Vtune Amplifier XE 2011 the bottlenecks of the application could be
identified.
Most sequences are inefficient due to the complicated nested data structures includ-

ing pointers, which are not transparent to the compiler. Therefore compilers are not
able to optimize the code to an acceptable degree. Global changes in the data model
would result in considerable changes to the overall program itself. Thus, the data
model was modified only in the most time-consuming places, which were consuming
about 80% of the running time of the example using the LES model. In those func-
tions the intrinsic MATMUL-function was replaced by unrolled loops, data types were
changed from Fortran pointers to Fortran allocatables.
Those changes allow the result for both better hand and more aggressive compiler

optimizations. Improvements in the running time of these functions of up to 70% have
been achieved. The reduction of the total execution time by using Intel 12.1.3 compiler
was 57% and by using GNU 4.6 compiler was 40%. The run-times pro function for
described example with LES model enabled for order of the scheme 6 and number of
DOFs 1512 can be found in table 4.1.

Functions Original Code [s] Modified Code [s] Run-time reduction
rkck 212.66 76.61 63.98%

scaleseparatetderivs 142.42 44.86 68.50%
evalu_t_fast 12.95 8.54 34.09%
finalizedof 11.3 10.83 4.18%
calcvolint 10.9 9.78 10.28%
calcsurfint 8.8 6.16 30.02%

evalutilde_t_fast 8.2 7.71 6.01%
evalflux 8.07 6.4 20.70%

...
Total 439.51 186.2 57.63%

Table 4.1.: Comparison of the serial run-time for the original and modified codes for
the example with enabled LES, order 6, number of DOFs 1512, compiled
with the Intel 12.1.3 compiler

Some more optimizations were targeted to minimize the negative impact of chosen

12

data model. With this model mostly computational loops have small number of itera-
tions, but loops are three or more times nested. That limits the full usage of the vector
registers, the loop overhead becomes more significant and implies longer run-times. In
those cases some code modifications were done to help the compiler generating more
efficient code. Thus on some places loop collapsing techniques were used, to replace
multidimensional by single dimensional addressing and nested short loops by a single
long loop. With this optimization technique we achieved run-time reduction for certain
loops of 90%.
As already mentioned the usage of nested pointer data structures (derived types in

Fortran) is common for the HALO code. It’s expensive to calculate the address of an
array in such data structure, even more if it is used within the loop. So we have tried
to minimize the addressing costs by making a local copy of the innermost array or by
passing the address of such array, instead of the pointer to the structure by calling the
function. Owing to this the pointer array will be handled as usual array.
Also some essential loops were switched between different sizes, unrolled by hand

where possible, fused or simplified. Short arrays were replaced by variables. On some
places the calling overhead of short procedures was significantly more expensive, as the
procedure itself. Thus such short procedures were inlined with the help of compiler
directive or by hand, when the compiler was not able to inline itself.
Those code modifications enabled better compiler optimization. Table 4.2 shows the

comparison of run-times between original and modified code for different scheme orders
and number of DOFs for examples with enabled and disabled LES. Due to existing
dependency between timing relationships of different functions and input parameters,
some functions change their influence according to the chosen computational order.
So accordingly some optimizations of functions change their influence too. If two first
functions (rkck and scaleseparatetderivs) for example with enabled LES, order 6 were
taken 80% of all execution time, then for order 4 their part is already 48%, and for
order 2 — only 18%. So essential run-time reduction of application for order 6 by
57% reduces to 33% for order 4 and to 21% for order 2. For example with disabled
LES model described optimizations allowed to decrease the run time by 25%. Further
improvements would affect the data model and would imply large changes of the entire
application.

4.3.2. Parallel I/O
One great challenge in parallel computing is the I/O. In most cases accesses to in-
put/output devices (e.g. reading from and writing to disc-storage) are much slower
than memory accesses. Parallel I/O may require additional synchronizations of the
hardware and the operating system. As a result whenever possible, we should avoid
to read data back that was previously written, especially if multiple processes are in-
volved in the I/O operation.
Furthermore for calculations on architectures with distributed memory, one process
can probably only read a part of a huge data set due to memory restrictions. Even if
the data set would fit in the memory of a single process, reading data with only one
process and distributing it afterwards may create a bottleneck.

13

Example Order DOFs Original
Code [s]

Modified Code [s] Run-
time
reduc-
tion

LES model enabled 6 1512 439.51 186.2 57.63%
4 2500 209.04 139.09 33.46%
2 4000 71.87 56.22 21.78%

LES model disabled 6 1512 86.96 69.32 20.29%
4 2500 78.92 59.18 25.01%
2 4000 42.94 35.5 17.33%

Table 4.2.: Comparison of the serial run-time for the original and modified codes, com-
piled with the Intel 12.1.3 compiler

Example: Parallel mesh input

A common strategy for years was to have one process read in the entire mesh, partition
it with an algorithm (e.g.ParMetis, SPartA) and distribute the mesh to all calculating
processes. This strategy is no longer applicable when thinking of always increasing
problem sizes and the parallel trend of decreasing memory per core in the supercom-
puters. Therefore a strategy needs to be deployed that enables a fully parallel read-in
from disk.

Example: Record-point output

The HALO code allows you to obtain continuous information about the state at spe-
cific points in the computational domain. These points are called record-points. The
code needs to output the state vector at each record-point for each (local) time-step.
In contrary the state of all elements in the computational domain is only written to
disc in a specified output interval.
The record-points were implemented in the HALO code in the following way: Each
record-point stores a list of state values and the points in time when these state values
were recorded. Every time the state of an element with record-points is updated, the
state vector is evaluated at the specific record-points and the result is appended to the
corresponding list.
At the next output time all recorded data is written to disc. The previous implemen-
tation stored the data of all record-points on all processes in a single CGNS-file. For
this purpose each process with active record-points opened the CGNS-file, appended
the locally recorded data and closed it, one at a time.
On many processes this procedure becomes very slow, because each process must wait
until all previous processes (processes with smaller id) finish writing their data. The
fact that all processes also need to read a part of the CGNS-file may intensify the
problem due to the necessary synchronization (handled by the operating system).
The new implementation uses one binary file per process, so each process just needs

14

 0

 200

 400

 600

 800

 1000

reconstruction from GAMBIT parallel input with GEUM

ti
m

e
 t
o
 r

e
a
d
 m

e
s
h
 [
s
]

 900s

< 3s

Figure 4.4.: Different methods to setup the internal mesh data structure (test-case
with 4 million elements, calculation with 1024 processes on the JU-
ROPA, for the parallel reconstruction 2048 cores were reserved to increase
the available memory per process (explanation see communication ma-
trix/infiniband buffer))

to append the locally recorded data to a file without reading from it. This minimizes
the overhead of the record-point output during the calculation. In a post-processing
step the user can convert the binary files to the desired format (e.g. CGNS) for visu-
alization.

4.3.3. Parallel algorithms
The development of algorithms that are suited for many-core architectures depict
another great challenge. Even if an HPC program runs fine with a specific number of
processes, there may occur problems when the number of processes is increased.

Example: Record-point input

An example consists in the input of record-points in the HALO code. The setting is
quite simple: The input file lists record-point coordinates. Then we need to map each
record-point to a specific element on a specific process that contains these coordinates.
In the previous implementation a ’marching search’ algorithm was used. In short: The
first process selects its first element and checks if the desired coordinates lie inside the
element. If not, it selects a neighboring element in the direction of the given coordi-
nates and so forth. If the neighboring element lies on another process, it notifies this
process, so the ’marching search’ can be continued on the next process. As a result,
all processes except one are waiting for a notification.

15

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4

e
x
e
c
u
ta

ti
o
n
 t
im

e
 [
s
]

output step

(simulation of the flow)

514

430

471

436

single CGNS-file

116

327 327

446

multiple CGNS-files

16 17 18 23

parallel binary output

<1 <1 <1 <1

Figure 4.5.: Different methods to output record-point data (test-case with 4 million
elements and ∼240 record-points, calculation with 1024 processes on the
JUROPA)

This means the whole search algorithm is serialized and the communication overhead
increases with the number of processes. For a low to a medium number of processes
this is not a problem: The algorithm is only executed once when the calculation is
started, so in this case its run-time is negligible in relation to the total computation
costs.
However for massively parallel computations it may dominate the whole calculation;
we observed a significant overhead for calculations with more than 512 processes: For
example on a mesh with 0.7 million elements and 230 record-points it takes ∼1 minute
to insert these points in the mesh with 512 process on the JUROPA. With 1024 pro-
cesses only about 20 points are read withing ∼2 hours, with 2048 processes only about
10 points in several hours.
In the new implementation all processes read the record-point coordinates from the
input file and check if the coordinates lie inside the bounding box of the local mesh.
Then each process determines the specific elements of the record-points on their part
of the mesh using a coarse background mesh (a bucket search approach in 3D). This
way, the search algorithm is parallelized without any communication and due to the
bounding box test each process just has to search for a small part of the record points.
Depending on the element distribution, the new implementation should scale nearly
perfectly. More importantly, the computation time needed to setup the record-points
is now insignificant (several seconds on 2048 processes) compared to the total compu-
tational costs of a calculation.

16

Example: Element redistribution after dynamic load-balancing

For dynamic load-balancing an algorithm is needed that redistributes the elements
between the different processes. The problem to determine a good distribution is
discussed in section 4.6.
In the following we describe the task to exchange the data of a set of elements: In the
case of the HALO code, the data per element consists in the elements coordinates, the
state vector from the last time-step, information about boundaries, etc. . . The size of
the data of different elements varies, because of different element types, different order
of the local solution or boundary conditions. That is why we cannot easily solve the
task by a single all-to-all communication statement.
In the previous implementation, each process determines the data of the elements that
need to be sent to another process in a first step. Then all processes exchange the
necessary data pairwise in a predefined ordering. This approach has similarities to
a soccer-tournament; each process communicates in each round with a single other
process. During this pairwise communication step the two processes send at first the
size of the data that the other process will receive and allocate corresponding buffers.
Afterwards they exchange the necessary data.
Figure 4.6 shows the resulting communication of the algorithm: At the beginning

each process determines which data to send to which process (until ∼8.45 s). In the
middle we can clearly recognize the round-based communication steps (from ∼8.45 s
to ∼9.85 s). Afterwards the processes need to setup the newly received elements for
the calculation and wait for all other processes to finish at the end.
This approach leads to several problems:
Due to the fixed order of the communication partners, a process must probably wait
a long time until previous rounds of the tournament have finished.
This creates idle times that increase highly with the number of processes.
Additionally, every process needs to communicate with every other process, even if
they do not have to exchange any data. This may cause a large memory consumption
for communication buffers (see section 4.3.5).
In the new implementation these problems are avoided: In a first step every process

determines the number of elements that it needs to send to every other process and to
receive from every other process.
When the number of elements to send to each other process is known, we can achieve
this using a single MPI_ALLTOALL operation (which may be implemented efficiently
for small message sizes, see section 4.3.5). In the following there is only communica-
tion between processes that really need to exchange any data: Every process opens
incoming, non-blocking connections to receive the necessary buffer sizes. Then it de-
termines the size of the buffers needed for its local elements and sends these to the
corresponding other processes. This step is necessary, because the size of the data
depends on the properties of the elements. So all processes can allocate buffer storage
for the incoming data and open non-blocking, incoming connections. Afterwards they
serialize their data and send them to the target processes.
In Figure 4.7 we can see the results of the new algorithm: In the left part (until 9.7 s)
the processes determine the number of elements to send to each other and to receive

17

F
ig
ur
e
4.
6.
:V

A
M
P
IR

co
m
m
un

ic
at
io
n
ti
m
e-
lin

e
of

th
e
el
em

en
t
re
di
st
ri
bu

ti
on

us
in
g
a
ro
un

d-
ba

se
d
ap

pr
oa
ch

w
it
h
12
8
pr
o-

ce
ss
es

on
64

hy
pe

rt
hr
ea
de
d
co
re
s
on

th
e
JU

R
O
PA

18

F
ig
ur
e
4.
7.
:V

A
M
P
IR

co
m
m
un

ic
at
io
n
ti
m
e-
lin

e
of

th
e
el
em

en
t
re
di
st
ri
bu

ti
on

us
in
g
sp
ar
se

no
n-
bl
oc
ki
ng

co
m
m
un

ic
at
io
n
w
it
h

12
8
pr
oc
es
se
s
on

64
hy

pe
rt
hr
ea
de
d
co
re
s
on

th
e
JU

R
O
PA

19

N
u
m

b
e
r

o
f

M
e
ss

a
g

e
s

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

P
ro

ce
ss

 0

P
ro

ce
ss

 4

P
ro

ce
ss

 8

P
ro

ce
ss

 1
2

P
ro

ce
ss

 1
6

P
ro

ce
ss

 2
0

P
ro

ce
ss

 2
4

P
ro

ce
ss

 2
8

P
ro

ce
ss

 3
2

P
ro

ce
ss

 3
6

P
ro

ce
ss

 4
0

P
ro

ce
ss

 4
4

P
ro

ce
ss

 4
8

P
ro

ce
ss

 5
2

P
ro

ce
ss

 5
6

P
ro

ce
ss

 6
0

P
ro

ce
ss

 6
4

P
ro

ce
ss

 6
8

P
ro

ce
ss

 7
2

P
ro

ce
ss

 7
6

P
ro

ce
ss

 8
0

P
ro

ce
ss

 8
4

P
ro

ce
ss

 8
8

P
ro

ce
ss

 9
2

P
ro

ce
ss

 9
6

P
ro

ce
ss

 1
0

0

P
ro

ce
ss

 1
0

4

P
ro

ce
ss

 1
0

8

P
ro

ce
ss

 1
1

2

P
ro

ce
ss

 1
1

6

P
ro

ce
ss

 1
2

0

P
ro

ce
ss

 1
2

4

Proce
ss

0 Proce
ss

4 Proce
ss

8 Proce
ss

12
Proce

ss
16

Proce
ss

20
Proce

ss
24

Proce
ss

28
Proce

ss
32

Proce
ss

36
Proce

ss
40

Proce
ss

44
Proce

ss
48

Proce
ss

52
Proce

ss
56

Proce
ss

60
Proce

ss
64

Proce
ss

68
Proce

ss
72

Proce
ss

76
Proce

ss
80

Proce
ss

84
Proce

ss
88

Proce
ss

92
Proce

ss
96

Proce
ss

100
Proce

ss
104

Proce
ss

108
Proce

ss
112

Proce
ss

116
Proce

ss
120

Proce
ss

124

(a
)
pr
ev
io
us

im
pl
em

en
ta
ti
on

us
in
g
a
ro
un

d-
ba

se
d
ap

pr
oa
ch

N
u
m

b
e
r

o
f

M
e
ss

a
g

e
s

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

P
ro

ce
ss

 0

P
ro

ce
ss

 4

P
ro

ce
ss

 8

P
ro

ce
ss

 1
2

P
ro

ce
ss

 1
6

P
ro

ce
ss

 2
0

P
ro

ce
ss

 2
4

P
ro

ce
ss

 2
8

P
ro

ce
ss

 3
2

P
ro

ce
ss

 3
6

P
ro

ce
ss

 4
0

P
ro

ce
ss

 4
4

P
ro

ce
ss

 4
8

P
ro

ce
ss

 5
2

P
ro

ce
ss

 5
6

P
ro

ce
ss

 6
0

P
ro

ce
ss

 6
4

P
ro

ce
ss

 6
8

P
ro

ce
ss

 7
2

P
ro

ce
ss

 7
6

P
ro

ce
ss

 8
0

P
ro

ce
ss

 8
4

P
ro

ce
ss

 8
8

P
ro

ce
ss

 9
2

P
ro

ce
ss

 9
6

P
ro

ce
ss

 1
0

0

P
ro

ce
ss

 1
0

4

P
ro

ce
ss

 1
0

8

P
ro

ce
ss

 1
1

2

P
ro

ce
ss

 1
1

6

P
ro

ce
ss

 1
2

0

P
ro

ce
ss

 1
2

4

Proce
ss

0 Proce
ss

4 Proce
ss

8 Proce
ss

12
Proce

ss
16

Proce
ss

20
Proce

ss
24

Proce
ss

28
Proce

ss
32

Proce
ss

36
Proce

ss
40

Proce
ss

44
Proce

ss
48

Proce
ss

52
Proce

ss
56

Proce
ss

60
Proce

ss
64

Proce
ss

68
Proce

ss
72

Proce
ss

76
Proce

ss
80

Proce
ss

84
Proce

ss
88

Proce
ss

92
Proce

ss
96

Proce
ss

100
Proce

ss
104

Proce
ss

108
Proce

ss
112

Proce
ss

116
Proce

ss
120

Proce
ss

124

(b
)
ne

w
im

pl
em

en
ta
ti
on

us
in
g
sp
ar
se

no
n-
bl
oc
ki
ng

co
m
m
u-

ni
ca
ti
on

F
ig
ur
e
4.
8.
:V

A
M
P
IR

vi
su
al
iz
at
io
n
of

th
e
co
m
m
un

ic
at
io
n
m
at
ri
x
of

th
e
el
em

en
t
re
di
st
ri
bu

ti
on

w
it
h
12
8
pr
oc
es
se
s
on

64
hy

pe
rt
hr
ea
de
d
co
re
s
on

th
e
JU

R
O
PA

20

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

old exchange routine new exchange routine

lo
a
d
 b

a
la

n
c
e
 e

x
e
c
u
ta

ti
o
n
 t
im

e
 [
s
]

Figure 4.9.: Execution time of the load-balance routine (test-case with 4 million ele-
ments, calculation with 1024 processes on the JUROPA)

from each other. If a space-filling is used for load-balancing (see section 4.6), then most
of the communication can be omitted: In this case we can easily derive the number of
elements to send and receive from the element-offsets of the processes.
In the middle (at about 7.5 s) we see the result of the actual redistribution of the
elements. Since all processes open the necessary incoming connections in advance us-
ing appropriate buffers, we can send all data at once. This prevents unnecessary idle
times. Additionally there is no communication between processes that do not need to
exchange any data (see Figure 4.8).A possible drawback of the new implementation
lies in the fact that it needs to allocate all buffers at once. In the case of the HALO
code this should not cause any problems, because the memory consumption during the
actual calculation is much higher due to the storage needed for intermediate values.
As a result the new implementation prevents problems due to self-implemented

collective communications (see subsection 4.3.5) and it is much faster, especially on
many processes (see Figure 4.9).

4.3.4. Memory performance
On architectures with distributed memory the available memory per process may be
another problem. So a good memory scaling of the application is crucial due to the
previously mentioned trend of decreasing memory per core (for an increasing number
of available cores).
In this work we discovered essentially two possible sources of bad memory scaling:
communication buffers and the serial preparation of necessary data on a single process.

21

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n

p
e
r

p
ro

ce
ss

 i
n
 M

B
Number of processes

Figure 4.10.: Memory consumption of the HALO code during the startup-phase

Communication buffers

The first problem is caused by the underlying MPI implementation; it allocates a com-
munication buffer for each other process under certain circumstances (point-to-point
communication with each other process). For a detailed discussion see section 4.3.5.
As a result we can run the quarter of a test-case (Bosch injector with 0.75 million
elements, fourth order) on 512 cores on the JUROPA, but it does not work on 1024
cores. Moreover we can not run the full configuration of the test-case with 3 million
elements on the JUROPA except when we reserve additional cores without using them
to increase the available memory per process.

Example: Memory consumption of the HALO code during the beginning of a
calculation

The second problem can be observed during the startup-phase of calculation with
the HALO code. To get a rough overview of the total memory consumption see
Figure 4.10. Apparently the mean and the maximum memory consumption of the
processes differ considerably. Even worse, for more than 256 processes the memory
consumption increases with the number of processes. This is partially caused by the
communication buffers. Further investigation with the tool massif from the tool-suite
valgrind shows that the first process is always the process with the maximal memory
consumption as you see comparing Figure 4.11 and Figure 4.12 (the scale of the two
figures does not match). In the following we describe the problem that caused the
high peak of the memory consumption:
Before reading the mesh the first process generates a background grid that grows with
the number of processes. This background grid is then distributed using Parmetis.
The idea is to obtain a preliminary distribution of the computational domain in order
to read the mesh in parallel. As we see in Figure 4.10 the implementation does not
scale well on more than ∼ 128 processes (so it worked well when the method was
implemented for multi-core architectures).
The problem does not occur when the calculation is restarted, because the restart-files
already define a preliminary distribution, so the above method is not necessary in this
case (see Figure 4.13).

22

F
ig
ur
e
4.
11
.:
M
em

or
y
co
ns
um

pt
io
n
of

th
e
H
A
LO

co
de

at
th
e
st
ar
tu
p
of

th
e
ca
lc
ul
at
io
n
on

pr
oc
es
s
1
of

51
2

23

F
ig
ur
e
4.
12
.:
M
em

or
y
co
ns
um

pt
io
n
of

th
e
H
A
LO

co
de

at
th
e
st
ar
tu
p
of

th
e
ca
lc
ul
at
io
n
on

pr
oc
es
se
s
2
to

51
2

24

F
ig
ur
e
4.
13
.:
M
em

or
y
co
ns
um

pt
io
n
of

th
e
H
A
LO

co
de

at
th
e
st
ar
tu
p
of

th
e
ca
lc
ul
at
io
n
w
he
n
re
st
ar
ti
ng

25

See [18] for a discussion of more efficient methods to read the mesh in parallel. These
do not need the previously described background grid.

26

4.3.5. Communication patterns
Communication and the accompanying effects can often be the root-cause for scala-
bility issues of a code. Even more so if the communication involves not only a few
but all processes. These so-called collective operations are both crucial and danger-
ous for efficient programming on supercomputing architectures. It is not unusual that
such operations are implemented using a scheme built upon point-to-point messages
resulting into an all-to-all communication. When implemented on their own these op-
erations usually challenge the scalability of the code. The experience of the author is,
that it is wise to avoid self-written collective operations and instead use an equivalent
MPI_collective to ensure scalability of the written code.

Detecting self-implemented collectives and improving the communication
patterns using VAMPIR

We used the tool VAMPIR to analyze the communication in the HALO code: Fig-
ure 4.14 and Figure 4.15 show visualizations of the communication over time from two
complete HALO calculations. In the first figure we see the behavior of the previous
implementation; the second figure illustrates the improvements due to our modifica-
tions of the HALO code. The communication matrices of these two calculations are
presented in Figure 4.16.
Lets first have a closer look at the communication matrices:

There we can see that in the previous implementation every process communicates with
every other process using point-to-point communication (collective MPI operations are
not shown in the communication matrices). But each process exchanges only a few
messages with most of the other processes. We can explain that by the fact the two
processes only need to exchange data regularly during the calculation (in every time-
step) when they share adjacent elements in the mesh. In other words: if we imagine
that we assign a part of the computational domain to every process, only processes that
work on neighboring parts should need to communicate at all. So the small number of
messages that makes the communication matrix dense is created by self-implemented
collective operations in the case of the HALO code. In order to identify the parts
of the code that use such self-implemented collectives VAMPIR allows to adjust the
time-range from which we want to extract the communication matrix.
In the following we describe the communication time-lines (Figure 4.14 and Fig-

ure 4.15):
In both pictures we see the timeline of the first 45 processes out of 128 processes. Red
parts of the timeline indicate that a process is currently communicating or waiting for
communication, e.g. waiting for an incoming point-to-point message or until all pro-
cesses start a collective operation. Green (and white) parts represent local calculations
on the specific processes. The flush-operation marked in blue should be ignored; it is
merely a result of the VAMPIR profiling. In the second calculation the flush opera-
tion is not shown, because it only happened after the program terminated. Processes
involved in a communication operation are connected with black lines; horizontal lines
represent (unfinished) non-blocking MPI operations.

27

Figure 4.14.: VAMPIR communication timeline of a complete HALO calculation (with-
out communication improvements) with 128 processes on 64 cores on the
JUROPA

28

F
ig
ur
e
4.
15
.:
V
A
M
P
IR

co
m
m
un

ic
at
io
n
ti
m
el
in
e
of

a
co
m
pl
et
e
H
A
LO

ca
lc
ul
at
io
n
(w

it
h
co
m
m
un

ic
at
io
n
im

pr
ov
em

en
ts
)
w
it
h

12
8
pr
oc
es
se
s
on

64
co
re
s
on

th
e
JU

R
O
PA

29

N
u
m

b
e
r

o
f

M
e
ss

a
g

e
s

0
.0

 k

0
.1

 k

0
.2

 k

0
.3

 k

0
.4

 k

0
.5

 k

0
.6

 k

0
.7

 k

0
.8

 k

0
.9

 k

1
.0

 k

1
.1

 k

1
.2

 k

1
.3

 k

1
.4

 k

1
.5

 k

1
.6

 k

1
.7

 k

1
.8

 k

1
.9

 k

2
.0

 k
P
ro

ce
ss

 0

P
ro

ce
ss

 4

P
ro

ce
ss

 8

P
ro

ce
ss

 1
2

P
ro

ce
ss

 1
6

P
ro

ce
ss

 2
0

P
ro

ce
ss

 2
4

P
ro

ce
ss

 2
8

P
ro

ce
ss

 3
2

P
ro

ce
ss

 3
6

P
ro

ce
ss

 4
0

P
ro

ce
ss

 4
4

P
ro

ce
ss

 4
8

P
ro

ce
ss

 5
2

P
ro

ce
ss

 5
6

P
ro

ce
ss

 6
0

P
ro

ce
ss

 6
4

P
ro

ce
ss

 6
8

P
ro

ce
ss

 7
2

P
ro

ce
ss

 7
6

P
ro

ce
ss

 8
0

P
ro

ce
ss

 8
4

P
ro

ce
ss

 8
8

P
ro

ce
ss

 9
2

P
ro

ce
ss

 9
6

P
ro

ce
ss

 1
0

0

P
ro

ce
ss

 1
0

4

P
ro

ce
ss

 1
0

8

P
ro

ce
ss

 1
1

2

P
ro

ce
ss

 1
1

6

P
ro

ce
ss

 1
2

0

P
ro

ce
ss

 1
2

4

Proce
ss

0 Proce
ss

4 Proce
ss

8 Proce
ss

12
Proce

ss
16

Proce
ss

20
Proce

ss
24

Proce
ss

28
Proce

ss
32

Proce
ss

36
Proce

ss
40

Proce
ss

44
Proce

ss
48

Proce
ss

52
Proce

ss
56

Proce
ss

60
Proce

ss
64

Proce
ss

68
Proce

ss
72

Proce
ss

76
Proce

ss
80

Proce
ss

84
Proce

ss
88

Proce
ss

92
Proce

ss
96

Proce
ss

100
Proce

ss
104

Proce
ss

108
Proce

ss
112

Proce
ss

116
Proce

ss
120

Proce
ss

124

(a
)
un

op
ti
m
iz
ed

ve
rs
io
n
w
it
h
se
lf-
im

pl
em

en
te
d
co
lle

ct
iv
es

N
u
m

b
e
r

o
f

M
e
ss

a
g

e
s

0
.0

 k

0
.1

 k

0
.2

 k

0
.3

 k

0
.4

 k

0
.5

 k

0
.6

 k

0
.7

 k

0
.8

 k

0
.9

 k

1
.0

 k

1
.1

 k

1
.2

 k

1
.3

 k

1
.4

 k

1
.5

 k

1
.6

 k

1
.7

 k

1
.8

 k

1
.9

 k

2
.0

 k

2
.1

 k
P
ro

ce
ss

 0

P
ro

ce
ss

 4

P
ro

ce
ss

 8

P
ro

ce
ss

 1
2

P
ro

ce
ss

 1
6

P
ro

ce
ss

 2
0

P
ro

ce
ss

 2
4

P
ro

ce
ss

 2
8

P
ro

ce
ss

 3
2

P
ro

ce
ss

 3
6

P
ro

ce
ss

 4
0

P
ro

ce
ss

 4
4

P
ro

ce
ss

 4
8

P
ro

ce
ss

 5
2

P
ro

ce
ss

 5
6

P
ro

ce
ss

 6
0

P
ro

ce
ss

 6
4

P
ro

ce
ss

 6
8

P
ro

ce
ss

 7
2

P
ro

ce
ss

 7
6

P
ro

ce
ss

 8
0

P
ro

ce
ss

 8
4

P
ro

ce
ss

 8
8

P
ro

ce
ss

 9
2

P
ro

ce
ss

 9
6

P
ro

ce
ss

 1
0

0

P
ro

ce
ss

 1
0

4

P
ro

ce
ss

 1
0

8

P
ro

ce
ss

 1
1

2

P
ro

ce
ss

 1
1

6

P
ro

ce
ss

 1
2

0

P
ro

ce
ss

 1
2

4

Proce
ss

0 Proce
ss

4 Proce
ss

8 Proce
ss

12
Proce

ss
16

Proce
ss

20
Proce

ss
24

Proce
ss

28
Proce

ss
32

Proce
ss

36
Proce

ss
40

Proce
ss

44
Proce

ss
48

Proce
ss

52
Proce

ss
56

Proce
ss

60
Proce

ss
64

Proce
ss

68
Proce

ss
72

Proce
ss

76
Proce

ss
80

Proce
ss

84
Proce

ss
88

Proce
ss

92
Proce

ss
96

Proce
ss

100
Proce

ss
104

Proce
ss

108
Proce

ss
112

Proce
ss

116
Proce

ss
120

Proce
ss

124

(b
)
op

ti
m
iz
ed

im
pl
em

en
ta
ti
on

w
it
h

on
ly

sp
ar
se

po
in
t-
to
-p
oi
nt

co
m
m
un

ic
at
io
n

F
ig
ur
e
4.
16
.:
V
A
M
P
IR

co
m
m
un

ic
at
io
n

m
at
ri
x

of
a
co
m
pl
et
e
H
A
LO

ca
lc
ul
at
io
n

w
it
h

12
8
pr
oc
es
se
s
on

64
co
re
s
on

th
e

JU
R
O
PA

30

To be able to compare the timeline of the first and the second calculations we can
distinguish several phases:

• the startup phase, including output, (from the start to approximately 4s, respec-
tively 5s)

• the first time-stepping phase (4s→ 9s, respectively 5s→ 9s)

• the first synchronization, including output and load-balancing (9s→ 10s)

• the second time-stepping phase (10.5s → 52.5s (with the flush operation in
between), respectively 10.5s→ 14.5s)

• the second synchronization, including output and load-balancing (from 52.5s,
respectively 14.5s, to the end)

The timeline is useful to visualize different communication patterns in different parts
of the code (relating to the previously defined phases). It also hints at the overhead
of the communication, as we can see when specific processes are waiting. Furthermore
we can identify synchronization points, which are probably not intended.
In the case of the HALO code here we can draw the following conclusions: The over-
head of the communication in the time-stepping phase seems to be quite small already;
in fact the time-stepping algorithm is implemented using only sparse persistent com-
munication (a special form of non-blocking communication defined by MPI to speed
up similar operations that are used several times consecutively). This is important,
because in a real-world calculation most of the time should be spent in this specific
part of the code.
There are intended synchronization points between the time-stepping phases. These
are necessary to write the state to disc in a given output interval. Additionally
these synchronization points are used to redistribute the elements for dynamic load-
balancing. As the timeline illustrates there is a considerable overhead in this specific
test-case here due to the communication and synchronization. The question is if this
overhead is still significant for bigger calculations when we decrease the output inter-
val. But we can get some ideas where to look for potential problems; most of these
have already been discussed in the previous sections, e.g. the record-point output and
the element redistribution.
The others are described shortly in the following:

There was one case of a self-implemented MPI_EXSCAN operation using blocking
synchronous point-to-point communication in order to sum up the number of elements
on the processes.
In several parts of the code from the startup phase we could replace all-to-all communi-
cation by sparse communication patterns: in these cases it was necessary to exchange
data about the mesh with neighboring processes, but the neighboring information was
not fully setup yet or additional indirect neighbor processes were needed. There we
could apply a bounding-box approach; in a first step all processes exchange the bound-
ing box of their part of the mesh (which can be implemented using a collective MPI
operation with a small message size). Afterwards only processes communicate with

31

each other whose bounding boxes overlap (with a given tolerance). Even if this ap-
proach may still be improvable, it effectively limits the number of different processes
that need to communicate with each other.
As a result of the communication analysis and subsequently implemented optimiza-

tions there remain only sparse point-to-point communication, which we can nicely see
in Figure 4.15.

MPI-Infiniband Buffer

Detailed memory analysis on distributed systems showed that the influence of commu-
nication buffers on the available memory becomes a significant factor. In particular the
behavior of the MPI-buffers of socket based communication protocols as they appear
in commodity clusters using Infiniband interconnect are investigated. Communication
buffers are allocated at run-time for each process communicated with, and decrease
the memory left for the application. The number of allocated buffers on each core
depends strongly on the communication patterns and can vary from core to core. For
example OpenMPI uses by default a communication buffer with the size of 512kb per
connection for each process. These buffers are not deallocated after usage, thus a
program with highly dynamical communication patterns (for example due to dynamic
load-balancing) will suffer from a steady increase of buffers filling up the memory. So-
phisticated MPI collectives have the potential to reduce the number of connections and
with that the needed communication buffers. At the cost of run-time, memory could
be reduced in the MPI internally, but the application cannot rely on it. Fig. 4.17 shows
behavior of MPI_ALLTOALL with small message sizes (here: one double precision
float) in comparison to large messages (one thousand double precision floats). Only
for small messages a memory saving communication pattern is used by MPI internally.

The restrictions imposed by the memory requirements of the MPI library result
in the need for strategies to overcome these problems. Algorithms with all-to-all or
many-to-all communication patterns have to be avoided.

4.4. Performance Evaluation HALO
In this section the performance of the HALO code in its optimized form is assessed. The
investigation is split into a machine-independent part in which the general performance
of the code is evaluated and a machine-dependent part in which the performance of
the code on several supercomputing architectures is evaluated both in serial and in
parallel and are compared between those machines.

4.4.1. Algorithmic behavior
In this section the behavior of the HALO code is investigated in terms of memory
and computational demand depending on the chosen order in the DG scheme. This
investigation will be the ground work for discussing the performance maps of the HALO

32

 10

 100

 1000

 500 1000 1500 2000

A
ll
o
c
a
te

d
 M

P
I-

IB
 B

u
ff
e
r

in
 M

B

#cores

small msg size

large msg size - measured

large msg size - extrapolated

maximum memory per core

Figure 4.17.: Memory demand of MPI_ALLTOALL call depending on message and
communicator size

code with respect to scalability and memory-boundness. Figure 4.18 shows both the
memory demand and the computational demand depending on the spatial order of the
scheme. In this case the space-time expansion is used to ensure the same accuracy in
time as in space. One apparent drawback is the rising computational costs per element
which is easily explained by the growing number of operations that need to be executed
when using the STE in ever higher order. The number of operations per element behave
like n6, where n is the spatial scheme order. The memory per element behaves like
n3 which is to be expected for three dimensional Elements. To reduce computational
costs the runge-kutta procedure is used in the ck-procedure instead of the STE, leading
to a decoupling of spatial and temporal order in the scheme. In this case a 3rd order
accurate Runge-Kutta scheme is used for all investigated spatial orders. It can be
seen that the computational demand is much more moderate compared to the results
obtained using STE. The number of operations per element behave like n5, where n
is the spatial scheme order. The memory per element behaves like n3 and therefore
the same as with STE. In general the number of operations per element are very high
even in second order with STE, which resembles the least possible operations. This
high computational costs per element will reflect in the parallel scaling investigations
in the next section. Due to the higher coefficient in the computational effort with
respect to the memory some estimations can be done on how the code will behave
in general. Due to the high serial computational cost a good strong scaling is to be
expected as with a high computation effort the increasing communication effort takes

33

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6

 0

 200

 400

 600

 800

 1000

 1200

 1400

M
F

L
O

P
S

M
e

m
o

ry
 i
n

 K
B

Spatial scheme order

MFLOPS per Elementupdate

Memoryconsumption per Element

Figure 4.18.: Computational and memory demand of HALO code depending on the
used spatial scheme order. Employing STE the order of accuracy in
space and time are the same.

34

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6

 0

 200

 400

 600

 800

 1000

 1200

 1400

M
F

L
O

P
S

M
e

m
o

ry
 i
n

 K
B

Spatial scheme order

MFLOPS per Elementupdate

Memoryconsumption per Element

Figure 4.19.: Computational and memory demand of HALO code depending on the
used spatial scheme order. Employing RKCK the order of accuracy in
space and time are the decoupled. The time order is fixed to 3.

35

name processor type architecture clock memory
Laki Intel X5560 Nehalem 2.8 1333 MHz

Juropa Intel X5565 Nehalem 2.93 1066 MHz
RZ-Aachen Intel X5675 Westmere 3.06 1333 MHz
Laki(SB) Intel E5-2670 Sandy Bridge 2.4 1600 MHz
Hermit AMD Opteron 6276 Interlagos 2.3 1333 MHz

Table 4.3.: Node description of the investigated architectures

longer to affect the scalability. Additionally with increasing spatial order the scheme
should scale even better, in the sense that less elements per node are still efficient.

4.4.2. Serial Performance
In this section the serial performance on different architectures for the HALO code is
discussed. Table 4.4.2 gives an overview over the architectures investigated.

Performance Influence of Compilers While investigating the available program-
ming environments (Intel, GNU and PGI 1) on hermit, large discrepancies where
found regarding the run-time of the different executables produced by the different
compilersFigure 4.20 shows the comparison of the serial performance for the different
compilers. It can be seen that for the HALO code the Intel compiler produces the
fastest executable. GNU and PGI compiled executables only reach 68.5% and 48.7%
respectively of the performance of the Intel executable.

Comparison of Serial Performance between different Architectures Execution
times of HALO on Laki and Hermit for Intel and PGI compilers are presented in
Table 4.4. On Laki the single core run time is up to 42% less than on Hermit.

Examples Cray XE6 NEC Nehalem Run-time reduction
Intel -O2 -g PGI -fast Intel -O2 -g PGI -fast Intel -O2 -g PGI -fast

LES disabled 104,35 s 256,74 s 68,17 s 160,41 s 34,7% 37,5%
LES enabled 274,99 s 749,60 s 191,26 s 429,89 s 30,4% 42,7%

Table 4.4.: Single core run-time on Cray XE6 and NEC Nehalem Cluster

4.4.3. Intra-node Performance
In this section intra-node performance of the HALO code are evaluated using the
performance metrics introduced in section 4.1.
1The cray compiler could not produce an executable

36

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

M
F

L
O

P
s

Problem size

Intel compiler

GNU compiler

PGI compiler

Figure 4.20.: Serial performance of HALO, compiled with different compilers (Intel,
GNU, PGI)

37

name processor type architecture sockets cores memory
per per freq.
node node

Laki Intel X5560 Nehalem 2 8 1333 MHz
Juropa Intel X5565 Nehalem 2 8 1066 MHz

RZ-Aachen Intel X5675 Westmere 2 12 1333 MHz
Laki(SB) Intel E5-2670 Sandy Bridge 2 16 1600 MHz
Hermit AMD Opteron 6276 Interlagos 2.3 1333 MHz

Table 4.5.: Node description of the investigated Architectures

Current Intel Architectures

The yearly release of new processor architectures leads to different node setups between
the different supercomputers. With the processor development being a evolutionary
process this section is supposed to give an impression on how the performance of
the HALO code is influenced by the current Intel architectures. Table 4.4.3 gives an
overview over the different architectures investigated. In figure 4.21 the intra-node
performance map for the HALO code using a 2nd order DG scheme in space and a
third order RK in time on the Laki system is depicted. A rather typical intra-node
behavior can be seen, with the cache effect not being very distinctive but present. With
increasing number of cores the cache effect moves to higher problem-sizes, displaying
a expected behavior. Furthermore the performance increases with each additional
core used up to the full node, although the Nehalem architecture provides only three
memory lanes per CPU and therefore a drop in speedup was expected from 4 to 8 cores.
This allows the conclusion that the HALO code is not memory bound. The best setup
for large problem sizes consequently is the usage of all 8 cores of a node. In Figure
4.22 an 4.23 the intra-node performance maps for the same system are shown. With
increasing scheme order the reached FLOPs per problem size rises (see also 4.4.1)
as the processor can more efficiently work on one large chunk of data continuously
(higher order leads to more FLOP per element) than on smaller chunks one after
another (data needs to be rearranged more often - caching not as efficient). Higher
scheme orders therefore enable a more efficient usage of the node in an environmental
sense. With 6th order almost 15 GFLOPs are reached, which represents 16.7% of
the theoretical peak-performance 2 for the investigated node. This is a respectable
value on this kind of architectures. It also can be seen that the minimum number of
elements needed to use a full node efficiently is independent from the chosen spatial
order. This show that the overhead of the program does not increase with the order

2Ideal Floating-Point Throughput For the Xeon 5560 which operates at 2.8GHz, we can say that
in the steady state and under ideal conditions each core can retire 4 double-precision or 8 single-
precision floating-point operations each cycle. Therefore, the nominal, ideal throughput of a
Nehalem core, a quad core and a 2-socket system are, respectively, 11.2 Giga FLOPs / sec /
core= 2.8GHz X 4 FLOPs / Hz 44.8 Giga FLOPs / sec /socket= 11.2GigaFLOPs/sec / core X 4
cores 89.6 Giga FLOPs / sec / node= 44.8GigaFLOPs/sec / socket X 2 sockets

38

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

Figure 4.21.: Intra-node performance for the HALO code on a Laki node with two Intel
Nehalem X5560 processors. HALO code was compiled using OpenMPI
1.5.4 and the Intel compiler 12.0.4. Spatial order:2, temporal order:3.

39

 0

 2

 4

 6

 8

 10

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

Figure 4.22.: Intra-node performance for the HALO code on a Laki node with two Intel
Nehalem X5560 processors. HALO code was compiled using OpenMPI
1.5.4 and the Intel compiler 12.0.4. Spatial order:4, temporal order:3.

of the scheme. Due to the fact that the performance behavior across the investigated
Intel based architectures are quite similar not every architecture is presented in full
detail in this section. To be able to judge the differences between the different Intel
based architectures figure 4.24 shows the ’per-core" performance for an efficiently used
full node on the respective architecture. It can be seen that the performance per core
does not increase significantly over the last iterations of Intels architectures.
Please refer to A.1 for detailed performance maps for all investigated architectures

and orders.

AMD Interlagos Architecture

One significant feature of this processor-architecture is that always two cores share one
floating point unit (FPU) potentially hindering the scaling to all 32 cores on a node.
Figure 4.25 shows the intra-node performance for the HALO code on a hermit node.
Despite the restrictions with the FPUs the code scales very well for large problem
sizes on the node. The usage of all cores on a node gives the best performance.

40

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

Figure 4.23.: Intra-node performance for the HALO code on a Laki node with two Intel
Nehalem X5560 processors. HALO code was compiled using OpenMPI
1.5.4 and the Intel compiler 12.0.4. Spatial order:6, temporal order:3.

Figure 4.24.: Comparison between current Intel based architectures for the HALO
code.

41

 0

 2

 4

 6

 8

 10

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

16 cores

32 cores

Figure 4.25.: Intra-node performance for the HALO code on a Hermit node with four
AMD Opteron 6276 processors. HALO code was compiled using the Intel
programming environment. Spatial order:2, temporal order:3.

With 12 GigaFlops the code achieves 4% of the theoretical peak performance of 294.4
GigaFlops. For smaller problems - especially for 64 elements - it can be seen that the
overhead for spanning the simulation over 32 cores is reducing the overall performance.
In the figures 4.26 and 4.26 the behavior for 4th and 6th spatial order is depicted. On
the AMD architecture the behavior of the higher orders are very similar to the second
order behavior.

Comparisons

Influence of memory bandwidth on total performance When comparing the per-
formance results on the two Nehalem based machines Laki and Juropa (refer to figure
A.2 and A.3) it can be seen that the Laki node offers higher performance on all three
investigated orders despite being the node with the lower CPU clock frequency (refer to
table 4.4.3). The explanation for this reverse behavior lies in the memory bandwidth.
Whereas Juropa uses the 1066 MHz clocked memory Laki is using a 1333 MHz clock.
Therefore the node can be used more efficient as the data gets faster from the memory

42

 0

 5

 10

 15

 20

 25

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

16 cores

32 cores

Figure 4.26.: Intra-node performance for the HALO code on a Hermit node with four
AMD Opteron 6276 processors. HALO code was compiled using the Intel
programming environment. Spatial order:4, temporal order:3.

43

 0

 5

 10

 15

 20

 25

 30

 35

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

16 cores

32 cores

Figure 4.27.: Intra-node performance for the HALO code on a Hermit node with four
AMD Opteron 6276 processors. HALO code was compiled using the Intel
programming environment. Spatial order:6, temporal order:3.

44

to the core. With increasing order this effect should decrease as the scheme gets more
and more memory unbound due to increasing work packages in form of operations per
element. This can be seen when comparing the performance plus between the different
orders.

Comparison between Intel and AMD architecture Figure 4.28 shows the compar-
ison between a Hermit node using all available 32 cores and a Laki node using all
available 8 cores. It can be seen, that a Hermit node achieves more than twice the per-
formance of a Laki node - however the relation of the performance per core is exactly
the reverse.

 0

 2

 4

 6

 8

 10

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size

Hermit-node (4x AMD Opteron 6276)

Laki-node (2x Intel Xeon X5560)

Figure 4.28.: Comparison of node performance of the HALO on Hermit and Laki

4.4.4. Inter-node Performance
The inter-node performance of a code can be strongly dependent on the network of
the used architecture.

45

 0

 1

 2

 3

 4

 5

 6

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

Figure 4.29.: Intra-node performance for the HALO code on a Laki node with two Intel
Nehalem X5560 processors. HALO code was compiled using OpenMPI
1.5.4 and the Intel compiler 12.0.4. Spatial order:2, temporal order:3.

46

 0

 2

 4

 6

 8

 10

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

Figure 4.30.: Intra-node performance for the HALO code on a Laki node with two Intel
Nehalem X5560 processors. HALO code was compiled using OpenMPI
1.5.4 and the Intel compiler 12.0.4. Spatial order:4, temporal order:3.

47

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

Figure 4.31.: Intra-node performance for the HALO code on a Laki node with two Intel
Nehalem X5560 processors. HALO code was compiled using OpenMPI
1.5.4 and the Intel compiler 12.0.4. Spatial order:6, temporal order:3.

48

 0

 2

 4

 6

 8

 10

 12

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size per node

1 node

2 nodes

16 nodes

128 nodes

1024 nodes

2048 nodes

3072 nodes

Figure 4.32.: Intra-node performance for the HALO code on a Hermit. HALO code
was compiled using the Intel programming environment. Spatial order:2,
temporal order:3.

Intel-Infiniband based Architecture

AMD-Gemini based Architecture

In this section we investigate the inter-node behavior of the HALO code on the Hermit
system. In the figures 4.33 and 4.33 the behavior for 4th and 6th spatial order is
depicted. On the AMD architecture the behavior of the higher orders are very similar
to the second order behavior.

Comparisons

Figure 4.35 shows the scaling behavior for the largest mesh fitting onto a single Hermit
node (262,144 elements) on Hermit and Laki. The results show that the scaling on
Laki for up to 512 cores is identical to the behavior on Hermit, but resulting in higher
overall performance due to the stronger per-core performance on Laki. To achieve the
same performance and therefore similar run time for this test case on Hermit around
twice as many cores are required. This corresponds well with the data from the serial

49

 0

 5

 10

 15

 20

 25

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

2 nodes

16 nodes

128 nodes

1024 nodes

2048 nodes

3072 nodes

Figure 4.33.: Intra-node performance for the HALO code on a Hermit. HALO code
was compiled using the Intel programming environment. Spatial order:4,
temporal order:3.

50

 0

 5

 10

 15

 20

 25

 30

 35

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

2 nodes

16 nodes

128 nodes

1024 nodes

2048 nodes

3072 nodes

Figure 4.34.: Intra-node performance for the HALO code on a Hermit. HALO code
was compiled using the Intel programming environment. Spatial order:6,
temporal order:3.

51

 0.001

 0.01

 0.1

 1

 10

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

T
F

L
O

P
s

Number of cores

Hermit

Laki

Figure 4.35.: Performance HALO for small problem sizes under strong scaling on Her-
mit and Laki.

investigations. Additionally the figure contains the information for the maximum
speedup that is effectively possible. A total speedup of 100 can be achieved for a
problem size, that just fits into main memory, before the scaling degrades.

4.5. Performance Analysis of AIA codes
For each cluster, the computation time of 3 equal computations was averaged to obtain
the results. The basic cluster information is given in the table below:

Cluster # Cores Memory/ CPU Cores/ Speed
Core CPU

Nehalem Stuttgart 5600 1.5GB Intel Xeon X5560 4 2.8 GHz
Juropa Jülich 17664 3.0GB Intel Xeon X5570 4 2.93 GHz

Cray XE6 Stuttgart 1344 2.0GB AMD Opteron 8 2.3 GHz
AIA Poweregde Cluster 136 2.0GB Intel Xeon X5450 12 3.0 GHz

RWTH Bull Cluster 1350 2.0GB Intel Xeon X5675 12 3.06 GHz

52

4.5.1. Code scalability
Speed-up measurements have been performed for different problem sizes on the Blue-
Gene System JUGENE at the von Neumann Computing Center (NIC), Forschungszen-
trum Jülich, and on the CRAY HERMIT Cluster at HLRS Stuttgart with a 3D Lattice-
Boltzmann flow solver with a D3Q19 LBGK solution method. The BlueGene System
consists of 73728 nodes of type Power PC540 with 850MHz clocking with 2GB RAM
each. The CRAY HERMIT Cluster has 3552 nodes, each with two sockets equipped
with a 16 core AMD Interlago CPUs at a clocking of 2.3GHz and with a memory of
32GBs or 64GBs RAM per node. The scaling experiments were conducted on four
different core numbers on the JUGENE, i.e. 1024, 2048, 4096, and 8192, and on
five different core numbers on the HERMIT System, i.e. 512, 1024, 2048, 4096, and
8192. Domain decompositioning on a cubic domain has been performed with a Hilbert
decompositioning method using space filling curves. This decompositioning method
guarantees equal cell numbers per domain for the given geometry. The measurements
cover the mean execution time of the inner iteration loop for three simulations of the
same problem. Strong scaling experiments based on a 3D flow simulation in a cubic
geometry with the in-house flow solver ZFS have been performed on both systems for
a constant cell number of 0.403 × 109 cells and 0.537 × 109 cells on HERMIT and
JUGENE, respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

s
p

e
e

d
u

p

number of cores

Strong scaling ZFS on CRAY Hermit HLRS Stuttgart

 1000 iterations, 0.403 x 10
9
 cells

ideal speedup

speedup ZFS

Figure 4.36.: Strong scaling on HERMIT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

s
p

e
e

d
u

p

number of cores

Weak scaling ZFS on CRAY Hermit HLRS Stuttgart

 1000 iterations, 0.537 x 10
6
 cells/core

ideal speedup

speedup ZFS

Figure 4.37.: Weak scaling on HERMIT

Fig. 4.36 shows the speedup on HERMIT and the according ideal speedup based on the
reference time for 512 cores. The speedup for 1024 cores shows a perfect scaling while
a continuous slight decrease appears for core numbers 2048 to 8192. This decrease is
caused by the reduction of the number of cells per core and hence by the reduction of
the computational time and a resulting higher weighting of the communication time.
In contrast the speedup results obtained on the BluGene System depicted in Fig. 4.38
show a slightly higher drop of the scale-up from 4096 to 8192 cores. The weak scal-
ing experiment uses a fixed local size of 0.537 × 106 cells per core on HERMIT and
0.262× 109 cells per core on JUGENE. Fig.. 4.37 and Fig. 4.39 show the speedup for
both systems based on the reference time for 512 and 1024 cores for HERMIT and
JUGENE, respectively. In both cases the results show almost a perfect scaling for a

53

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

s
p

e
e

d
u

p

number of cores

Strong scaling ZFS on IBM BlueGene/P JUGENE Juelich

 50 iterations, 0.537 x 10
9
 cells

ideal speedup

speedup ZFS

Figure 4.38.: Strong scaling on JUGENE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

s
p

e
e

d
u

p

number of cores

Weak scaling ZFS on IBM BlueGene/P JUGENE Juelich

 50 iterations, 0.262 x 10
6
 cells/core

ideal speedup

speedup ZFS

Figure 4.39.: Weak scaling on JUGENE

constant problem size per core under an increase of the number of cores. The total
number of cells simulated on HERMIT for 8192 cores is 4.4× 109 cells and 2.14× 109

cells on JUGENE.

4.5.2. Benchmarking
Single core and single node performances measurements have been conducted on the
AIA RWTH Dell Cluster, the RWTH Bull Cluster, HLRS NEC Nehalem Cluster and
on the HLRS CRAY HERMIT System with different compilers and compiler options.
The configuration of the different machines is listed in Tab. 4.5 For the single core
performance measurement a total number of 85 cells was used for the simulation with
a 3D Lattice-Boltzmann D3Q19 LBGK flow solver. As a reference, the simulation time
on the NEC Nehalem System for ZFS compiled with the GNU compiler and the op-
tions ”-O3 -fno-tree-vectorize -funroll-loops”, which yielded the fastest execution time
for 103 iteration steps was used. The testbed consisted of compiled versions of ZFS
with the GNU compiler, the Intel compiler and additionally on the HERMIT System
of the CRAY compiler. The compiler options given in Fig. 4.40 were used, each yield-
ing the optimal results for the different compilers. Additionally, the standard compiler
options of the CRAY compiler were used on HERMIT. The shortest execution time on
all systems was obtained by using the GNU compiler with the given compiler options.
For this compiler, almost similar execution times were obtained on the AIA RWTH
Dell Cluster, the RWTH Bull Cluster and the HLRS NEC Nehalem Cluster. The
speed on the CRAY system was about 75% the speed of the optimal speed on the
HLRS NEC Nehalem Cluster. For all four systems the performance of ZFS compiled
with the Intel compiler was in the range of 50-60% of the according execution times
for the GNU compiler. The use of additional compiler options for the CRAY compiler
resulted only in a slight decrease of the execution time. The single node performance
measurements were performed with the GNU compiler with the optimal compiler op-
tions. A constant cell number of 85 cells per core was used on all systems. As shown
in Fig. 4.41, measurements were performed for the computational execution time, the
time for filling the communication buffers, and the time for the MPI-Communication

54

for 103 iterations. The fastest overall execution time was obtained on the the HLRS
CRAY Cluster under a usage of every second core. Although the computational time
for the calculation of the collision kernel for the LBGK is higher than the one obtained
on the HLRS NEC Nehalem Cluster, the inner node communication is much faster.
The overall execution time on 32 cores on HERMIT is due to the concurrent access
demand on the FPUs, which are each shared by two cores, much higher than the ex-
ecution time on only 16 cores. Interestingly, the computational time on the RWTH
AIA Dell and the RWTH Bull Clusters are in contrast to the single core performance
measurements lower than the execution time on the CRAY Cluster.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

R
W

T
H
 A

IA
 (D

e
ll)

R
W

T
H
 R

Z
 (B

u
ll)

H
L
R
S
 N

e
h
a
le
m

 (N
E
C
)

H
L
R
S
 C

ra
y (C

R
A
Y
)

s
p
e
e
d

Singlecore

 10
3
 iterations, 8

5
 cells

GNU: -O3 -fno-tree-vectorize -funroll-loops

Intel: -xHOST -O3 -ipo -no-prec-div

Cray: no options

Cray: -O3 -haggress -hcache3 -hipa5 ...

Figure 4.40.: Single core performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

R
W

T
H
 A

IA
 (D

e
ll)

R
W

T
H
 R

Z
 (B

u
ll)

H
L
R
S
 N

e
h
a
le
m

 (N
E
C
)

H
L
R
S
 C

ra
y (C

R
A
Y
) / 1

6

H
L
R
S
 C

ra
y (C

R
A
Y
) / 3

2

s
p
e
e
d

Singlenode (GNU: -O3 -fno-tree-vectorize -funroll-loops)

 10
3
 iterations, 8

5
 cells/core, incl. communication

Computation

MPI-Buffer

MPI Communication

Figure 4.41.: Single node performance

A structured multi-block solver has been implemented to solve the acoustic perturba-
tion equations (APE-4) [6] for aeroacoustic research. The equations are discretized us-
ing a sixth-order dispersion-relation preserving summation by parts scheme [17] along
with a low-dissipation low-dispersion Runge-Kutta time-integration method [15]. All
equations are expressed using very compact m4-macros that are preprocessed into a
Fortran code that is highly optimisable, inlined, cache-optimized and parallelized hy-
bridly. Thus only very few code lines are required to obtain a performant PDE solver.
Fig 4.42 compares the code’s performance on different architectures, including a Cray
XE-6, a Bullx B500, and a IBM BlueGene/P system. Furthermore the performance
of builds from several compilers has been benchmarked for the Cray system. For all
test runs 100 time steps have been performed on a 2563 grid with periodic boundary
conditions using 64 MPI processes and 1 SMP thread per MPI process. Cray’s Fortran
compiler showed the best performance on XE-6. The idle times on this machine are
moderate. Due to the lack of work that can be overlapped with the communication
in a performant way, a small amount of idle time can hardly be avoided. Due to the
von Neumann memory bottleneck the workload related to exchange is relatively large,
which is caused by the large amount of data to be transferred via separate buffers. The
computational performance on the Bullx B500 is much higher caused by the dedicated

55

floating point units available to each computational core. However, the high idle time
indicates a insufficient network performance or inappropriate process mapping to the
machine’s layout. The computational performance on IBM BlueGene/P is more than
six times worse when compared to the Cray XE-6, but the IBM system is intended
to use a much larger number of cores for computations. The workload related to ex-
change is relatively low due to the good computational core to memory clock ratio.
The network performance is superior to the other machines. The strong scaling for the
Cray XE-6 and IBM BlueGene/P system in fig. 4.43 emphasizes the superiority of the
IBM system for high core counts. Bad efficiencies for non-power of two core counts are
caused by imperfect decomposition of the computational domain resulting in a worse
load-balance and inefficient communication in between multiple MPI processes. Note
that for case of 8192 cores in average only 2048 nodes are processed per MPI process,
but the required number of halo nodes is approximately 4800, i.e., the necessary com-
munication is too high to efficiently process grids of the investigated size on such high
core counts.

 0

 50

 100

 150

 200

 250

 300

 350

Cray Intel PGI GNU Intel IBM

ti
m

e
 [

s
]

 Cray XE6 Bullx B500 IBM BlueGene/P

numerical work

exchange work

idle

Figure 4.42.: APE-4 solver performance
for several architectures and
compilers

 0

 0.2

 0.4

 0.6

 0.8

 1

 64 128 256 512 1024 2048 4096 8192

P
a

ra
ll
e

l
e

ff
ic

ie
n

c
y
 n

o
rm

a
li
z
e

d
 t

o
 6

4
 c

o
re

s

Number of cores

Strong scaling CAA code

 256
3
 cells

IBM BlueGene/P

Cray XE6

Figure 4.43.: APE-4 solver strong scaling
efficiency

4.6. SPartA - Space-filling curve Partioning Algorithm
With the advent of highly distributed parallel systems in high performance computing,
a major issue for algorithms is the memory consumption per process when deployed
on many processes. Unfortunately, graph-based partitioning as used in ParMetis, does
not cope well in this respect and does not work for applications on larger numbers
of processes. In contrast to that, partitioning schemes based on a SFC ordering of
elements yield the possibility to reduce the memory consumption to a constant size,
independent of the number of processes. When a SFC is used to partition an un-
structured mesh, the order of the distributed elements must be kept, to maintain the
locality property of the resulting partitions, leading to a CCP problem for the load

56

balancing. Common to all CCP algorithms is the need to compute prefix sums of
some weights [27]. In case of our application, these weights represent the workload
of single elements in the unstructured mesh. Fortunately, the MPI standard already
provides the functionality to compute these prefix sums in parallel. Although being
quite powerful, these prefix sums can be implemented efficiently within MPI libraries
as has been shown for example by Sanders and Träff in [29]. Though algorithms to find
optimal solutions for the CCP are known, they are limited in their scalability. A very
promising approximate solution to the CCP problem was suggested by Miguet and
Pierson in [26]. It has the advantage, that splits between partitions can be determined
completely local. The only global information required for this operation are the pre-
fix sums and the total amount of work. These are attractive properties for a highly
scalable parallel algorithm. Therefore, this heuristic is used in the implementations
presented in this work. Various implementations of this SFC partitioning algorithm
(SPartA) are described in the following section, afterwards the scalability of these
implementations is investigated. Furthermore, we compare this method to ParMetis
with respect to three criteria: i) the balancing quality, ii) the required memory, and
iii) the running time.

Implementations

In the following subsection, the investigated implementations of SPartA are presented
in detail and an example of the general algorithm is provided.
We consider an arbitrary mesh serialized into an one dimensional vector using a

SFC. The vector has the length N which corresponds to the number of mesh cells.
Weights are given as wi for each element, where i corresponds to the global index of
the element. These weights approximate the computational effort of each element, and
can be derived from an on-line time measurement or a performance model. To achieve
a balanced workload, the elements need to be moved between the partitions. It is the
task of the balancing step to find which elements have to be moved to which process.
In this paper, we use p to denote the total number processes, and assume that every
such process can be uniquely identified by a process number called rank in the range
0 ≤ rank < p. For the proposed chains-on-chains approach on the serialized mesh, the
partitions can be determined with the help of a prefix sum. In particular, we will use
the exclusive prefix sum, which is defined as follows:

prefix(I) =

N−1∑
i=0

wi (4.1)

for 0 < I ≤ N and with prefix(0) = 0. In order to calculate the distributed prefix sum
over all processes, local prefix sums are computed, and the global offsets are adjusted
afterwards using the MPI_Exscan() collective with MPI_SUM as reduction operation.
After this step, each process has the global prefix sum for each of its local elements.
Under the assumption that the chosen weights correctly represent the workload of

each element, the ideal work load per partition is given by wopt =
wglobsum

p , where
wglobsum is the global sum of all weights. Similar to the prefix sum, this global sum

57

can be obtained by using the MPI_Allreduce() collective again with MPI_SUM as
reduction operation. As the last process inferred the information on the overall sum
already through the computed prefix sum, an alternative uses MPI_Bcast() with the
last process acting as root. Both options result in a similar running time and memory
complexity. Afterwards, the splitting positions between balanced partitions can be
computed locally for all processes on each process. That is no further communication is
required for the decision on which elements should be moved to which processes. Thus
the complete information necessary for the partitioning algorithm can be obtained with
only two collective operations in MPI. Both collectives can be implemented efficiently
using an asymptotic running time and memory complexity of O(log p) (cf. [29, 28]).
The splitting positions for the new balanced partitions in the local elements can

be found efficiently using binary search in the ordered list of prefix values. Assuming
homogeneous processors, ideal splitters are multiples of wopt, i.e., r ·wopt for all integers
r with 1 ≤ r < p. The closest splitting positions between the actual elements to these
ideal splitters can be found by comparison with the global prefix sums computed for
all elements.
If the prefix(I) of a local element is larger than r · wopt and smaller than (r +

1) · wopt then this element needs to be sent to the process with rank r. To obtain a
partitioning closer to the optimal balancing, the final splitting position is decided by
the minimal distance of the elements enclosing the optimal splitter: min(|prefix(I) −
r ·wopt|, |prefix(I − 1)− r ·wopt|). Using this heuristic the load imbalance is limited by
wmax/wopt, where wmax is the maximum weight of a single element in the complete
domain [26]. In general, the efficiency E of the distributed work load is limited by the
slowest process, and thus cannot be better than:

E =
wopt

maxp−1r=0(wsum(r))
(4.2)

Where wsum(r) is the sum of all weights in partition r. This efficiency metric is used
as a quality criterion for the resulting partitions.

Example To illustrate the algorithm, a small domain with N = 25 elements dis-
tributed across p = 5 processors is used. The initial distribution corresponds to
equally-sized parts and is shown in Figure 4.44. The individual weights attached
to each of the elements result in load imbalance. Such an initial load imbalance might
for example arise from the input data, without any a-priori information on the compu-
tational costs for the individual elements. As the overall work with the amount of 53
should be distributed equally over 5 processes, the optimal work load for each partition
in this example is wopt = 10.6. The resulting ideal splitters 10.6, 21.2, 32.8, and 43.4
are depicted in Figure 4.45. The thick red lines show the final splitting positions that
are closest to these optimal splitting positions. The work-balanced distribution after
the re-partitioning is shown in Figure 4.46. The efficiency E (cf. Equation 4.2) in this
example improved from 66% in the initial distribution to 88% for the final distribu-
tion. As such, it resembles the optimal partitioning for the chains-on-chains problem
in this case, besides using a heuristic to find the partition splitters. The missing gap

58

!" #" $" %" $" &" '" $" #" %" $" #" $" $" $" $" (" $" $" $" $" $" $" $" $"

!"#$% !"#&% !"'% !"#(% !")%

*+,-%.% *+,-%#% *+,-%$% *+,-%(% *+,-%/%

Figure 4.44.: Decomposed domain with different workloads per process.

!" #" $" %" &&" &'" &(" ''" ')" '(" '$" '%")'"))")*")#")(" *#" *(" *+" *$" *%" #!" #&" #'"

!" !" !" !" #" #" #" $" $" $" $" $" $" %" %" %" %" &" &" &" &" &" &" &" &"

'()*"!" '()*"#" '()*"$" '()*"%" '()*"&"

#!+," $#+$" %$+-" &%+&"

Figure 4.45.: Prefix sums of the weights and optimum prefix values between the pro-
cesses marked above. The resulting splitters are marked in red and the
destination process of each element is shown in the second row.

! " # $ % & $ " # $ " $ $ $ $ $ ' $ $ $ $ $ $ $ $

!"##$!"##$!"##$!"#%$!"&$

'()*$+$ '()*$#$ '()*$%$ '()*$,$ '()*$-$

Figure 4.46.: Final distribution of the elements onto the processes.

59

to 100% efficiency results from two facts: i) the unfavorable ratio of the maximum
individual weight and the optimal partition work load of 9/10.6, and ii) its unfortu-
nate positioning. This is intentionally chosen to exhibit the major potential problem
of this approach. However, such unlucky work load distributions are not expected in
continuously load balanced flow simulations, where the optimal work load per process
is normally much higher than the maximal weight of a single element. More realistic
examples are analyzed with respect to their quality in Section 4.6.2.

Exchange of Elements After the information for a better balanced partitioning is
known, elements actually need to be relocated. This relocation, or exchange of ele-
ments, is done via communication between processes. Unfortunately, so far only the
senders know which elements need to be sent to which processes. The receivers do
not know that they will eventually receive elements. When using message passing, the
receivers need to be informed prior to the actual exchange of elements. Three different
options to realize this exchange are pointed out here. A first method uses a regular all-
to-all collective operation to inform all processes about their communication partners
before doing the actual exchange of the elements with an irregular all-to-all collective
operation (e.g., using MPI_Alltoallv). This method is straightforward to implement
and also the method-of-choice used after a ParMetis partitioning. Since both all-to-all
variants are an essential part of many applications, they have been optimized exten-
sively for at least one of our target architectures [19]. As such, they can be expected
to perform efficiently, especially in a dense case such as the initial partitioning (i.e.,
many exchanges between many processes). Alternatively, elements can be propagated
only between neighboring processes in an iterative fashion. The elements are flagged
with the destination process and forwarded in a virtual ring topology until they reach
their destination. This approach can be benign when the re-partitioning modifies an
existing distribution of elements only slightly. This could be expected if weights are
changing slowly and re-partitionings are done frequently. In a beneficial case, only few
exchanges, mainly between neighboring or at least “close” processes, are required. Un-
fortunately, worse cases can lead to O(p) forwarded messages, which becomes highly
inefficient for larger number of processes. This scheme avoids the usage of O(p) mem-
ory needed for the input data of the all-to-all operation at the expense of a serialized
communication pattern. It also reduces the required interconnect links to two for the
direct neighbors in the linear list of partitions. Therefore, the iterative method offers
a safe fallback if memory consumption is so important that it would otherwise inhibit
the execution of the application. A third option fills the gap between these two ex-
tremes and involves a more sophisticated protocol involving a non-blocking barrier [14].
This approach for the dynamic sparse data exchange uses the fact that each sender
has all the required information to start the communication. Therefore all processes
begin to send their data to the appropriate processes, whereas the receiving parts just
listen for messages from any source. However, this procedure results in a termina-
tion problem, as the receiving processes have no information, when to stop listening
for new messages. With the help of a non-blocking barrier acting as a distributed
marker, the authors solved this problem. This enables a very efficient implementation,

60

where each process just sends its information to the appropriate target processes, and
thus minimizes memory requirements. It would therefore combine the strengths of the
previously described options at the expense of implementation complexity.
Although the third option is most promising, the necessary non-blocking barrier is

only proposed for the upcoming MPI version 3 and therefore not yet a standardized
operation to rely on. The first option is selected for the implementation in this work,
as the required memory for the all-to-all communication is not yet a limiting factor.
This choice also allows a fair comparison with ParMetis, where this all-to-all operation
has to be done. Even when using all 294,912 available processes on the largest Blue
Gene/P installation “Jugene” at the Jülich Supercomputing Center (JSC), the memory
consumption is still well below 10 MB.

4.6.1. Scaling Analysis
Two generic cases of load balancing are investigated. The first one is an extremely
imbalanced mesh, for which a strong scaling analysis is performed. This mesh builds
a torus consisting of 30 million elements, where the small weights are scattered across
many small elements at the inner ring, whereas to the outer side fewer larger elements
are found with large computational weights attached to them. It has been inten-
tionally designed to be especially unsuited for space-filling curve approaches, though
in real application cases heavy loads are normally confined in smaller local volumes.
Therefore, the worst case scenario for actual applications should be covered by this ex-
ample. The second test case is initialized with uniformly distributed random numbers
as weights for the elements. This is used in a weak scaling analysis with 10, 000 ran-
dom weights per process, and represents a more realistic simulation with smaller load
imbalances. The algorithm is investigated on two very similar Intel Nehalem based
cluster systems: one located at the High Performance Computing Center in Stuttgart
(HLRS) and the other at the JSC. To evaluate the behavior of the presented methods
on larger number of processes, the Blue Gene/P system Jugene at JSC is used. The
proposed partitioning schemes are compared to ParMetis. Two different graphs are fed
into ParMetis, one with the full graph of the real mesh (ParMetis on Graph), and one
with a pseudo-graph resembling the linear space-filling curve only with links between
immediate neighbors on the curve (ParMetis on SFC).

Memory Usage

A major concern, especially on distributed systems with limited main memory per
core, is the memory required for the algorithms used. This section presents an anal-
ysis of the virtual memory usage per process. The necessary information is gathered
from the status information in the pseudo file system proc, provided by Linux. A
sleek memory footprint for the proposed algorithm is considered a key feature for the
usage on future architectures on which the shrinking memory per core will become an
increasing bottleneck for most applications. As the memory consumption for the par-
titioning algorithm is independent from the memory consumption of the application,
the results can be directly used to judge the impact on the memory-footprint for any

61

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 p

e
r

p
ro

c
e
s
s
 i
n
 M

B

Number of processes

ParMetis on Graph
ParMetis on SFC

SPartA

Figure 4.47.: Memory consumption under strong scaling on Laki (OpenMPI) and 30
million elements.

application. Thus the amount of memory measured in this analysis can be understood
as an overhead cost attached to the chosen partitioning strategy. Figure 4.47 shows
the memory usage of ParMetis, when it needs to handle the full graph for the mesh
with 30 million elements, compared to the case where it has to handle only the simpli-
fied linear graph. The third series in this graph shows the memory consumption per
core for the presented SPartA algorithm. This measurement was done on the HLRS
Nehalem cluster Laki with OpenMPI 1.4.3 and an executable, compiled with the Intel
Fortran 11.1 compiler. As can be seen, the usage of ParMetis with the simplified graph
needs less memory than the partitioning with the full graph. Figure 4.48 compares
the memory behavior of ParMetis to SPartA partitioning for the fixed mesh size of
30 million elements on the Nehalem cluster Juropa at JSC with ParaStation MPI 5.0.
Unfortunately, the test with a complete graph of the mesh in ParMetis required a
pre-allocation of all possible communication buffers beforehand on this machine, ren-
dering any useful memory measurement for this case impossible. However, as already
shown, the ParMetis partitioning with the simplified graph provides a lower bound for
the full graph partitioning of ParMetis. It therefore can be used as an approximation
for the comparison with SPartA. Figure 4.49 shows the memory consumption in the
weak scaling experiment with 10, 000 elements per process. The strong scaling behav-
ior shows a linear decline in memory consumption for both ParMetis and SPartA for
smaller number of processes but a significant memory overhead is needed by ParMetis
(up to a factor of 25). SPartA scales very well up to 4,096 cores before a memory

62

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 p

e
r

p
ro

c
e
s
s
 i
n
 M

B

Number of processes

ParMetis on SFC
SPartA

Figure 4.48.: Memory consumption under strong scaling on Juropa.

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 p

e
r

p
ro

c
e
s
s
 i
n
 M

B

Number of processes

ParMetis on SFC
SPartA

Figure 4.49.: Memory consumption under weak scaling on Juropa.

63

increment gets visible. These memory requirements arise from the necessary buffers
for all processes in the subsequent all-to-all operation. Contrary, ParMetis scales only
up to 1024 cores in memory, and then starts to demand significantly more memory. It
can also be seen that the memory consumption of ParMetis depends on the next higher
power of two in terms of the number of processes and therefore 6,144 cores already
need as much memory as 8,192. The same behavior is observed for 12,288 cores which
requires the same amount of memory as 16,384. The weak scaling of SPartA behaves
very well with only a small slope and stagnation at around 10 MB per core for large
numbers of cores. In contrast, a more than linear growth of memory consumption per
core can be observed with ParMetis. Both ParMetis and SPartA show a jump in mem-
ory consumption from 8 to 16 cores where communication between computing nodes
has to be done across the network. Both scaling results indicate excellent scaling of
SPartA even on highly parallel systems with a small amount of memory per process.

Execution Time

Frequently repeated load balancing for highly dynamic simulations demand a short
execution time of the balancing algorithm, especially on large numbers of cores. Figure
4.50 shows the execution times on Jugene for ParMetis both using the full graph and
the simplified one, and SPartA for the fixed mesh of 30 million elements. Due to the
limitation of 500 MB of main memory per core on this Blue Gene/P system, ParMetis
simply fails at a certain number of cores as it requires too much memory. With the
full graph it does not work with more than 16, 384 processes. Reducing the problem to
the simplified graph, ParMetis succeeds up to 65, 536 cores. It should be noted, that
these experiments are done without any real application data, which would reduce the
memory available to the balancing algorithm even further. These memory issues are
completely avoided by the simpler algorithm based on the space-filling curve. It can
be seen that the execution time of SPartA is dominated by a behavior according to
O(p) starting from 16, 384 processes. This is due to the allocation and initialization
of arrays of the size p for the subsequent all-to-all operations. The weak scaling using
10, 000 elements on each process is shown in Figure 4.51, and confirms the already
described trends.
Overall, it can be observed in these measurements on the different machines, that

the simpler SPartA method compared to the more complicated graph-based alternative
scales much better with respect to memory and time. For the extreme scaling beyond
10 thousands of cores on supercomputing machines in the foreseeable future, this is
an important property. The memory restriction is a hard constraint that decides if an
simulation can be done at all or not. The time consumption of the balancing influences
the overall application efficiency, especially when it needs to be executed repeatedly
such as in increasingly important dynamic numerical simulations.

4.6.2. Load-Balancing Quality
Figure 4.52 and 4.53 show the resulting sum of workloads wsum(r) for each process r
after balancing the mesh with 30 million elements on 8, 192 processes using ParMetis

64

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c

Number of processes

ParMetis on Graph
ParMetis on SFC

SPartA

Figure 4.50.: Execution time under strong scaling on Jugene.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c

Number of processes

ParMetis on SFC
SPartA

Figure 4.51.: Execution time under weak scaling on Jugene.

65

and SPartA, respectively. As this comparison focuses on quality and neither on mem-
ory consumption nor on running time, ParMetis was given the full graph information.
Nevertheless, the remaining load imbalance after re-partitioning induces an efficiency
E of only 95.8% with ParMetis, compared to 99.9% for SPartA. As can be seen in the
two figures, the resulting workload distribution is much more regular when SPartA is
used instead of ParMetis. That is true for overloading as well as underloading, while
ParMetis has some processes, which are significantly underloaded. This is due to the
fact, that the important factor for the running time is the bottleneck, that is the rela-
tion of largest load share to the average. However, it is important to note, that with
such a strategy the achieved balancing is worse then it could be. Also this difference in
the achievable overall efficiency has to be recovered in the graph-based approach by an
accordingly reduced communication effort. However, with a highly local application
as the fluid dynamic solver considered in the next section, the computational load is
usually higher than the communication. Thus, potential running time advantages by
the graph-based approach are diminished, and can be neglected in most scenarios.

4.6.3. Deployment in Application
SPartA and ParMetis are deployed within a compressible Navier-Stokes solver to bal-
ance the load dynamically during the simulation of a supersonic turbulent free stream.
Both methods are accessible from the same interface within the application. The sim-
ulated problem is highly volatile and propagates shocks through the computational
domain, resulting in drastic changes of the computational effort between time steps.
We will analyze the dynamic behavior of this specific application and apply the two
different partitioning algorithms to it. As already mentioned, the application is capa-
ble of adapting the time-step in each cell such, that it is optimal in the sense of the
stability criterium for explicit time integration. This results in individual time-steps
for each element rather than a single global time step for all. These time-steps are
strongly dependent on the size and form of the cell as well as the physical phenomena
within the cell. Besides this factor, there are several other influences on the computa-
tional cost of a single cell, like the adaptable order of the polynomial representation,
usage of geometrical conversions for curved walls and special treatments of shocks
within an element. To cover all the various aspects accurately, a time measurement is
performed for the individual elements. These timings are then used as the weights in
the balancing algorithm.
MPI persistent communication is used during the simulation to exchange data

between adjacent elements on different processes. The mesh handling is based on
GEUM [18] which employs a morton-curve to linearize the mesh and provides the
solver with an initial mesh distribution. This initial distribution divides the number
of elements equally on each process, regardless of their respective loads.
The investigated flow simulation is a highly turbulent super-sonic free-stream config-

uration using a hybrid mesh with 4 million elements. This mesh has extreme differences
in the spatial resolution, and the ratio of the largest to the smallest volume is around
100. Using just a second order representation of the solution in the entire domain the
simulation will contain 16 million degrees of freedom.

66

 23000

 23500

 24000

 24500

 25000

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
o
ta

l
w

e
ig

h
t
o
n
 e

a
c
h
 r

a
n
k

Rank

weight distribution after LoadBalancing
optimum weight

Figure 4.52.: Workload distribution on 8,192 processes after ParMetis.

 23000

 23500

 24000

 24500

 25000

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
o
ta

l
w

e
ig

h
t
o
n
 e

a
c
h
 r

a
n
k

Rank

weight distribution after LoadBalancing
optimum weight

Figure 4.53.: Workload distribution on 8,192 processes after SPartA.

67

As already pointed out, the best possible estimation of the workload is important to
obtain a balanced computation. However, this load depends on many different factors,
which can also change at run time. Therefore, additional instrumentations were intro-
duced into the code to measure the amount of time required to actually compute each
element. These measurements also enable an evaluation of the current partitioning
efficiency during the simulation. To avoid potentially needless re-partitioning at every
step, this efficiency indicator can be used to decide if a re-partitioning is worthwhile
or not. The measurement is done locally for several iterations of each element, and
does not require any communication. However, there are some user-defined intervals,
at which all processes have to synchronize. At these points output can be written to
disk and additional administrative tasks might be executed. These points in time are
natural choices to determine the current load distribution across the complete domain,
as well as to perform the actual re-balancing if needed. The decision to perform a new
partitioning of the mesh is based on the bottleneck factor, limiting the maximum par-
allel efficiency. A re-balancing is only done if the ratio of maximal load to average
load falls below a user-defined threshold. While ParMetis gets the full graph infor-
mation to find a better partitioning, SPartA only uses the measured weights. A fair
comparison of the following simulations is achieved by using identical input parame-
ters and the same test case on the Nehalem cluster at JSC Jülich using 1024 cores.
Non-deterministic behavior of time-based re-partioning and scheduler-dependent map-
ping of the processes onto the actual network layout leads to different distributions
of elements onto the processes. Therefore, all comparisons show some unavoidable
inaccuracies. However, this error is negligible compared to the differences between the
two partitioning approaches.

Scaling of the Memory

The application itself is nicely scaling in memory, as the required memory is directly
attached to the elements in the mesh. Thus, a reduced partition size leads to a re-
duced memory footprint. Therefore, the main effects that can be observed are those
that are related to the balancing mechanism. However, the application requires some
more memory for the data to be transferred for the moved elements. In total, the
quality of the already measured results for the balancing method still holds for the
overall application. For a simulation with 1024 processes, we observed a peak memory
consumption of 1.79 GB with SPartA, while ParMetis leads to a peak of 2.85 GB.

Communication overhead

Given the simple nature of the proposed partitioning algorithm, the communication
surface of each computational domain is not actively optimized. It is rather based
on the inherent locality given by the SFC. Therefore, an additional overhead in the
communication time during the simulation is to be expected. A comparison of the
measured overall times needed to simulate a given ∆t between two load balancing
steps shows however, that the overhead has little impact on the consumed running
time, when compared to the graph-based partitioning from ParMetis. For the first five

68

intervals between load balancings, the ParMetis partitioning yields a total running time
of 2664 seconds without the balancing itself. In contrast, the much simpler SPartA
method yields 2700 seconds. Thus, the difference in running time between the two
approaches is less than 2%.

Dynamic behavior of the application

Due to the dynamic nature of the flow phenomena which occurs in this particular
simulation, dynamic load balancing is a key feature to ensure a high parallel efficiency
during the complete simulation. Figure 4.54 illustrates the achieved parallel efficiency
over the simulation time induced by the different load balancing methods. The same
simulation is done three times: once without any load balancing, and two times with
the different partitioning approaches. Partitioning is applied dynamically when the
efficiency falls below a threshold of 80%. In the case of applied load balancing, an
a-priori estimation of the workload per element is done, and the mesh is distributed
accordingly before the simulation starts. Figure 4.54 does not depict the theoretical
efficiency E directly after the redistribution of the elements as the weights wi on which
the distribution is based on may no longer be valid for the new distribution. The change
of characteristics of elements, e.g. communication cells can become inner cells or vice
versa, re-introduces new load imbalances. Therefore, the resulting efficiency E for
this application scenario is lower than in the previous benchmark scenarios. Without
any load balancing, the initial equal distribution of elements to all processes is used
during the complete simulation. As can be seen, the efficiency of the simulation is
quite similar for both partitioning methods, while only one third of the optimum is
achieved without any balancing.

4.6.4. Conclusion
Memory consumption was identified as the most critical advantage of our method over
ParMetis. While the graph-based approach in ParMetis was not capable to run our
test case on more than 65, 536 processors, even with a drastically reduced graph, our
own approach was shown to scale well up to 294, 912 processors. Potential for further
memory reductions was outlined, which would satisfy the needs of future large-scale
systems with lower memory-per-core ratio. Disadvantages in comparison to ParMetis
in terms of suboptimal communication surface and locality during the actual simulation
were found to be rather small in the order of 1-2%. On the other hand, the curve-based
partitioning operation itself is orders of magnitude faster, which alleviates the above
penalty to some degree. We expect to benefit from this compensatory effect especially
in highly dynamic simulations where re-partitioning occurs frequently. Finally, our
implementation based on MPI collective operations is supposed to deliver portable
performance across a broad range of architectures.

69

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5e-05 0.0001 0.00015 0.0002 0.00025

Ef
fic

ie
nc

y

Simulated time in sec

SPartA
ParMetis

Without Loadbalancing

Figure 4.54.: Efficiency of the simulation over the simulated time.

4.7. Mesh Preprocessing for Highly Parallel Treatment
In this section we describe the code development done for preparing the unstructured
meshes used in HALO for parallel simulations. During the project, the meshes were
generated using commercial software packages Gambit, ANSA and ICEM-CFD, which
were all able to write the standardized CGNS mesh format. To run a parallel simulation
with the HALO code, several preprocessing steps need to be performed.

1. read in a linear mesh (CGNS)

2. find the inter-element connections

3. establish a high order mesh with curved boundaries

4. partition the mesh and assign a domain to each core of the parallel simulation

In the beginning of the project, all these steps were done by HALO at the start of each
simulation, and ParMetis was used as an in-build partitioner. With an increasing num-
ber of cores used for the simulation, we found out that nearly all preprocessing steps
are not scalable and the parallel implementation was very cumbersome and in some
cases even unstable. In addition, for a large number of cores the Parmetis partitioner
took very long computation time to partition the mesh. It is clear that for a given
mesh, all preprocessing steps are always the same, thus being repeated at the start of
each simulation. This is why instead of optimizing the parallel implementation, the

70

preprocessing steps were encapsuled in a simple single core tool, called the preproc-
tool in the following. It is used after the mesh generation and before the simulation
start. The ParMetis partitioning was replaced by the space-filling curve approach,
which is much more stable and flexible. Examples of space-filling curves are shown in
Figure 4.55, and a comparison of the partitioning is done in section 4.7.1.

Figure 4.55.: Examples of space-filling curves, a 2D Hilbert curve (left) a 3D Morton
and 3D Hilbert curve (middle and right), source: Wikipedia.

The preproctool is designed to provide a extended and parallel readable mesh file
(using the binary HDF5 format), including element connectivity lists and high order
curved element information. The elements are sorted on a space-filling curve, which
leads to a one-dimensional element list. The information is stored in an array con-
taining blocks for each element, which enables fast parallel I-O. The element list is
independent of the mesh topology and the mesh partitioning becomes very simple,
since a 1D list can always be distributed on an arbitrary number of computation cores,
see section 4.6 for details. Note that the preproctool only needs to be run once for a
given mesh, providing a single mesh file. The HALO code now only reads the HDF5
mesh file at each start of a simulation, and the number of cores can be arbitrarily cho-
sen. The preproctool allowed to greatly reduce the overhead during the initialization
of HALO and to guarantee scalability of the initialization, as well. The restart imple-
mentation in HALO was redesigned adopting the same element list fashion, writing
in parallel a single HDF5 file with the restart data stored as blocks for each element.
This makes it possible to easily restart a simulation on a different number of cores.

4.7.1. Partitioning with the Space-Filling Curve
In this section we compare the partitioning of the ParMetis partitioner with the space-
filling Curve (SFC) approach on the same mesh, with an increasing number of domains.
We use the ratio of the mean number of MPI faces per core to the mean number of
elements per core as a quality measure. It can be interpreted as the ratio between
communication data and local data operations. The lower this ratio, the better for the
parallel computation. We compare both approaches on an unstructured hexahedral
mesh of the TRUMPF nozzle in free-stream configuration with 110, 000 elements. An

71

estimate of the surface/volume ratio is found on a periodic cartesian hexahedral mesh,
where one element block has ne elements and the smallest possible ratio is

Rcart =
6(n

1/3
e)2)

ne
=

6

n
1/3
e

. (4.3)

#Cores 8 16 40 80 160
#Elems/Domain 13760 6880 2752 1376 688
Rcart 0.250 0.315 0.428 0.539 0.680
R (ParMetis) 0.094 0.170 0.317 0.467 0.652
R (SFC) 0.204 0.349 0.562 0.729 0.948
R (SFC) / R (Parmetis) 2.17 2.05 1.77 1.56 1.45

Table 4.6.: Comparison of the ParMetis and space-filling curve (SFC) mesh
partitioning.

This ratio must be different on an unstructured mesh with boundary conditions. It
is clear that for increasing number of domains, the ratio increases until the limit of
Rcart = 6 for 1 element per core. In Table 4.6 the ratios for ParMetis and space-filling
curve are summarized. ParMetis is a graph-based partitioner, whereas the space-filling
curve does not account for the mesh topology. Especially for a low number of cores,
ParMetis will give better results, since it accounts for non-communication faces on the
boundaries of the domain. Due to the boundary conditions, ParMetis reaches lower
ratios than for the SFC.

Figure 4.56.: Domain decomposition on 160 cores of the TRUMPF nozzle mesh using
the space-filling curve.

However, the comparison shows that difference between both approaches diminishes
for increasing number of cores. Thus, for the preproctool, the SFC approach is used,

72

since data structures and the domain decomposition process are greatly simplified
and domain decomposition results are similar on large number of cores. The domain
decomposition of the nozzle mesh on 160 cores using the SFC is shown in Figure 4.56.

iDom

n
M

P
I_

F
a

c
e

s

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

Hilbert

Hilbert_mean

Morton

Morton_mean

iDom

n
M

P
I_

F
a

c
e

s

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

Hilbert

Hilbert_mean

Morton

Morton_mean

iDom

n
N

e
ig

h
b

o
rs

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

Hilbert

Hilbert_mean

Morton

Morton_mean

iDom

n
N

e
ig

h
b

o
rs

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

Hilbert

Hilbert_mean

Morton

Morton_mean

Figure 4.57.: Comparison of the Hilbert and Morton curve, on 512 cores (left) and
1024 domains (right).

The space-filling curve is not unique, the Morton curve and the Hilbert curve men-
tioned above were implemented. Both implementations were compared on the subsonic
jet mesh, which is a cartesian stretched hexahedral mesh 357216 elements. The com-
parison in Figure 4.57 shows that the number of MPI neighbor cores and the number
of MPI faces is lower for the Hilbert curve on both domain decompositions of 512 and
1024 cores. It shows that the domains are more compact for the Hilbert curve, leading
to better results than the Morton curve.

4.7.2. Curved Mesh Generation
In complex geometries like the ones defined in this project, wall boundaries are nor-
mally curved. The accuracy of a high order method can be deteriorated by the use
of meshes with linear edges on the curved wall boundaries. Typically, the commercial
mesh generators provide only linear meshes. The elements adjacent to the curved
boundaries must be curved too, then the high order accuracy can be maintained.
Three approaches to provide the extra information of the curved geometry were

73

Figure 4.58.: Flowchart of the curved mesh generation process in the preproctool.

developed in the course of the project. The first is to provide normal vectors on surface
element corner nodes. This can be done for simple geometries by exact functions,
or using a CAD tool to extract the normal vectors directly from CAD. The second
approach uses a refined surface mesh by subdivision of the original surface mesh,
which can be provided for example by the commercial mesh generator ANSA. The
third approach is an in-build function of the mesh generator ICEM, where high order
Chebychev-Lobatto nodes are assigned to element edges lying on curved boundaries.
The curved mesh generation is incorporated into the preproctool. A flowchart of the
curved mesh generation process is shown in Figure 4.58. More details to the different
approaches can be found in [13]. An example of the subdivision approach for the
TRUMPF nozzle mesh is shown in Figure 4.59.

74

Figure 4.59.: Subdivision approach for curved mesh generation of a TRUMPF nozzle
mesh (left), and two steps of subdivision of the curved surfaces (middle
and right).

75

5. Academic Test-cases

This section is dedicated to academic test-cases regarding turbulence modeling and
Large Eddy Simulation (LES). Since turbulent behavior is very difficult to compare,
we present in this section simulations of test cases which are well documented in
literature. The simulations are not only for validation purpose, but furthermore we
want to assess how implicit and explicit modeling can be done for a high order method.

5.1. Turbulence Modeling: Taylor-Green Vortex
The simulation of turbulent flows with DG methods is a relatively new topic and the
behavior of turbulence models like LES have to be investigated thoroughly. Here we
will focus on the analysis of the Taylor-Green vortex [5], where a laminar-turbulent
transition produces isotropic homogeneous turbulence by consecutive break up of large
vortices into smaller ones, as shown in Fig. 5.1. We implemented a sub-grid-scale

Figure 5.1.: Taylor-Green vortex (Re = 5000,Ma = 0.1), time evolution of the vortical
structures (iso-surfaces of vorticity, left t = 1, right t = 9)

model, namely the standard Smagorinsky model. The sub-grid-scale viscosity is de-
fined as µSM

sgs = (CS∆)2 |S̃| , with the Smagorinsky constant CS , the filter width ∆ and
the filtered stress tensor S̃. The resolution of a DG based approximation is determined
by the size of the element ∆x and furthermore by the number of internal DOF, i.e. by
the polynomial degree N . Typically, the resolution is proportional to ∼ ∆x/N , which
is used to determine the filter width of our LES discretization.
The LES results of coarse Taylor-Green vortex simulations are shown in Fig. 5.2. We

choose a Mach number number Ma = 0.1 to compare our results with incompressible

76

DNS calculations [12]. For the discretization, we choose N = 8 with 43 elements. The
filter is defined via L2-projection onto polynomial degree Ñ = 4. In a preliminary
step, the effect of different Smagorinsky constants for different Reynolds numbers is
shown. We kept the overall resolution constant, to solely investigate the different model
effects. The standard Smagorinsky constant CS = 0.18 results in too much dissipation.
Tuning the constant reveals that it is possible to find a suitable sub-grid-scale viscosity.
However, the results demonstrate that this optimal constant depends on the simulated
problem, as we get CS = 0.13 for Re = 200 and CS = 0.09 for Re = 400. More
investigations of the different sub-grid-scale model aspects (Smagorinsky constant,
filter, definition of filter width, higher Re number) are necessary.

Time

D
is

s
ip

a
ti
o

n
R

a
te

0 2 4 6 8 10
0

0.01

0.02

DNS

C
S
=0.00

C
S
=0.09

C
S
=0.13

C
S
=0.18

Re=200, N=8, 4
3

cells

Time

D
is

s
ip

a
ti
o

n
R

a
te

0 2 4 6 8 10
0

0.01

0.02

DNS

C
S
=0.00

C
S
=0.09

C
S
=0.10

C
S
=0.18

Re=400, N=8, 4
3

cells

Figure 5.2.: LES of Taylor-Green vortex for different Smagorinsky constants CS

In Fig. 5.3 we plot the dissipation rate for a low order and high order discretization
without modeling and the result of the LES from Fig. 5.2. The low order simulation
is over-dissipative, even for a very high resolution of 2.1mio DOF, whereas the high
order simulation perfectly reproduces the DNS results. We listed the computational
cost of each simulation to show that a successful high order LES is very promising.

5.2. Turbulent Subsonic Round-jet
The subsonic turbulent round-jet is a prominent candidate to investigate free-stream
turbulence and is well studied in literature. The paper by Bogey and Bailly [3] presents
well documented Large Eddy Simulations of a compressible subsonic jet at Mach num-
ber Ma = 0.9 and different Reynolds numbers. The numerical method employed by
Bogey and Bailly is a 13 point Finite Difference scheme of 4th order and a classical
Smagorinsky model is used as LES model. They discretize the jet with 12.4 million
grid points on a stretched structured mesh. The jet is imposed by a laminar inflow
profile, which is disturbed inside of the developing shear layer. Thus no geometry is
involved and a cartesian mesh is used.
We choose a moderate Reynolds number of Re = 5000 for comparison, the vorticity

contours of the reference computation is shown in Figure 5.4. We adapt the same
mesh stretching of the paper, but, of course, use a coarser mesh because of the sub-grid

77

Time

D
is

s
ip

a
ti
o

n
R

a
te

0 2 4 6 8 10
0

0.01

0.02

19 0.4 Mio

88 0.9 Mio

323 2.1 Mio

5 0.1 Mio

39 0.4 Mio

1.6 47000

Taylor Green Vortex, Re=400

LES 9
th

order

2
nd

order

CPUh DOFs

6
th

order

DNS

Figure 5.3.: Taylor-Green vortex (Re = 400, Ma = 0.1), dissipation rate for varying
discretizations, with computational costs

Figure 5.4.: Vorticity plot at Re = 5000,Ma = 0.9 of the reference solution from Bogey
and Bailly[3]

resolution of the DG scheme. Three mesh densities are studied, with the nomenclature
E15/E20/E25. The number is derived from the resolution of the innermost zone of
a size [4 × 4 × 25]r0, with an element distribution of [15 × 15 × 46], [20 × 20 × 62]
and[25× 25× 78]. The total domain size including damping zones around the jet and
in its wake was [16x16x40]r0. Adding the elements of the damping zones results in
a total number of elements of 78033/192500/357216 . A fourth order DG scheme is
used, leading to 1.56/3.85/7.14 million degrees of freedom. The Smagorinsky model
with a Cs = 0.1 was used. All simulations were run on the RZ cluster in Aachen on
1024 cores, with a wall-clock time of 2.82h/5.46h/7.78h for 400 time units.
In Figure 5.5, the instantaneous and mean Mach number and the mesh is of the

three computations is shown. The averaging interval is t = 200− 400. The higher the
resolution, the smaller length of the potential core of the jet. In comparison to the
reference data with a potential core length of 10r0, the potential core is too long for
all three simulations.

78

Figure 5.5.: Instantaneous (upper row) and mean Mach number at simulation time
t = 400 for resolutions E15 / E20 / E25 (from left to right), in the slice
plane z = 0.

X

u
_

m
e

a
n

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

t300­400

t200­300

t100­200

X

u
_

m
e

a
n

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

t350­400

t300­350

t250­300

t200­250

X

u
_

m
e

a
n

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

t300­400

t200­300

t100­200

X

u
_

m
e

a
n

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

t350­400

t300­350

t250­300

t200­250

Figure 5.6.: Statistical convergence of the mean center-line velocity for resolution E15
(upper row) and E25 for an averaging period of 100 and 50 time units.

In Figure 5.6 the statistical convergence of the mean center-line velocity is shown for
different averaging intervals. The jet is fully developed after t = 200, whereas Bogey
and Bailly claim that at t = 100, the jet is fully developed.
The length of the potential core depends on the growth of the shear layer instability.

To trigger growth the instability, the forcing is crucial. The forcing term was not

79

exactly adapted from the reference paper, and only inflow forcing with amplitudes
of 5% of the jet center-line velocity were used. The presented simulations show that
the instability is damped too much, and the potential core is longer, around 20r0
instead of 10r0. Since the high resolution remains only until x = 25, the turbulent
jet is damped by the coarser mesh. A simulation with a higher forcing of 20% did
not make any difference, and reducing the Smagorinsky constant to 0.05 led to an
instable computation. Unfortunately, no more simulations were performed to further
investigate the subsonic jet. It seems that the a simple Smagorinsky model may
be too dissipative in the case of a high order under-resolved simulation. At least a
combination of stabilization techniques for the high order polynomial to be able to
decrease the Smagorinsky constant, and thus decrease overall dissipation, could be
helpful.

80

6. Bosch Gas Injection Nozzle

6.1. Test case description

6.1.1. Compressed Natural Gas Injection
The ongoing development of efficient natural gas powered engines aimed at reducing
carbon dioxide emissions impels the development of improved storage and transport
components. Especially in automotive applications, high standards concerning safety,
quality and convenience are set. One important component of the engine management
system in gas powered vehicles is the gas injection valve which manages the fuel mass
flow. To produce an optimal air/fuel mixture the gas is expanded through the valve
from its operation pressure into the intake manifold. During the injection process, a
supersonic highly turbulent jet is established in the duct. The sound waves produced
by the aeroacoustical effects interact with the duct walls, the jet flow and themselves
(see Figure 6.1). The resulting noise is audible in the direct environment of the car
and is subject of ongoing investigations. Concerning simulation techniques this appli-
cation is very challenging and was first studied by Schönrock [30] using a commercial
CFD software (Ansys CFX). Extensive design studies become unfeasible due to high
computational effort and long turn around times shown in Figure 6.2. Hence, the
application of novel specialized software using a parallel and scalable Discontinuous
Galerkin scheme is of great interest.

Figure 6.1.: Aeroacoustics during gas injection process

81

Figure 6.2.: Simulation time with Ansys CFX

6.1.2. Free-stream Configuration
The complex system with intake manifold is simplified to a free-stream configuration
which facilitates the accessibility for experiments and the modeling in numerical ap-
proaches. In this setup, air is expanded through the valve from its operating pressure
to ambient conditions (ρ∞ = 1.2 kg

m3 u∞ = v∞ = w∞ = 0.0m
s and p∞ = 100000Pa).

The nozzle exit geometry of the valve, as depicted in Figure 6.3, ends in a silencer
duct with a main-diameter of 6.11 × 10−3m. In total, the length of the geometry is
3.74 × 10−3m. At the outlet of the silencer, a notch reduces the inner diameter to
5.95×10−3m. At the base of the duct a step narrows the flow domain to a diameter of
2.26×10−3m. In the bottom of the duct, four kidney shaped orifices are symmetrically
positioned around a truncated cone located at radius r0 = 1.71 × 10−3m (measured
from middle-axis of the duct to the averaged free-stream center). The Reynolds num-
ber based on the width of an orifice is Re = 52000 (µ = 3.7× 10−5m2

s , Pr = 0.72).
To capture the acoustic wave generation as well as the flow and wave interaction a

simulation of the entire three-dimensional geometry is performed. Due to high flow
speed and the small size of the geometry, a very high resolution is required within the
silencer geometry. Therefore, this domain demands the largest part of computational
efforts in the simulation. With a calculated Kolmogorov length of ∼ 10−7m a full direct
numerical simulation of all turbulence scales within the silencer is out of reach. Thus,
all simulations are under-resolved, whereas the influence of resolution on aerodynamic
and aeroacoustic results is subject of ongoing investigations.

82

Figure 6.3.: Specification of nozzle exit geometry

6.2. Aim of the project activity
The goal in this project is to show the feasibility of a direct noise computation using
the STEDG code HALO developed at the Institute of Aerodynamics and Gas dy-
namics, University of Stuttgart. The respecting simulation model of the free-stream
configuration shall be able to compute both, the sound producing turbulent, super-
sonic jet as well as the sound propagation in the near and far field. Experimental data
to validate numerical results will be provided and finally the required solution quality
and turn around times will be compared with solutions provided by Ansys CFX. A
distinct reduction of the required simulation time by a factor of about 100 is aimed (see
Figure 6.2) and would allow further numerical studies to predict sensitivities towards
parameter and geometry variations. In a final step, a simulation model of the more
complex intake manifold configuration to show the applicability is aimed.

6.3. Experiments
In order to evaluate numerical results concerning their solution quality, experimental
data is needed. Thus, the free-stream configuration, in which air is expanded through
the injection nozzle to ambient conditions, was investigated with Schlieren optics,
Particle Image Velocimetry (PIV) and microphone sensors. In the following section,
the used test rigs as well as results are shown and discussed.

6.3.1. Shadowgraph measurements
Experimental setup

Shadowgraph photography is a method to visualize steady and unsteady flow structures
of density varying flows. The objective of this measurements is to evaluate the flow
features like jet development and presence and shape of shock structures at different

83

operation pressures. To capture all relevant features, the silencer duct prescribed in
section 6.1.2 was removed.
The so called Schlieren method visualizes spacial gradients of the refraction index

due to density gradients in a translucent fluid. In the experimental setup shown
in Figure 6.4 bright light is emitted by an LED flash lamp and focused by a focal
lens. Subsequently, an aperture limits the used light to guarantee monochromatic
and uniform properties. A second lens parallelizes the light in the test region where
the injection nozzle is positioned and the density gradients of the gas jet refract the
incoming light. Finally all light is focused again by a third lens and redirected by two
mirrors. In the focal point of this lens, a sharp Schlieren blade is applied to remove
light that is bent towards the blade. So finally the arising bright and dark patterns
in the photo are related to regions where positive or negative density gradients in
stream-wise direction arise in the flow field.

Figure 6.4.: Sketch of shadowgraph measurement setup

Results

Figure 6.5 represent shadowgraph pictures of the instantaneous density gradient in
stream-wise direction for different operation pressures. By averaging over a total of 50
images the instantaneous density fluctuations vanish and the quasi stationary shock
structures are highlighted (see Figure 6.6). To visualize all relevant flow characteristics,
the silencer duct shown in Figure 6.3 was removed. As the experimental setup provides
information of the integral value of the density gradient along the whole light path
through the jet flow, the pictures can be used for comparisons regarding quality.
The flow conditions at the outlet of the injection nozzle result in four separate jets

downstream the kidney shaped orifices combining to a turbulent flow (see Figure 6.5).
In dependence of the operation pressure a system of shock structures establish over

84

(a) 2 bar (b) 4 bar (c) 7 bar

Figure 6.5.: Instantaneous shadowgraphs for different inlet pressures.

(a) 2 bar (b) 4 bar (c) 7 bar

Figure 6.6.: Averaged shadowgraphs for different inlet pressures.

85

each nozzle exit. One can see in the averaged shadowgraph images in Figure 6.6 that
no obvious shocks are detected operating the injector with 2 bar. By increasing the
operation pressure up to 4 bar, 2 shock cells are observed until their breakup 40 mm
downstream the nozzle exit. With an operation pressure of 7 bar the number of distinct
shock cells increases to 5 and an enlargement of their spacial dimension is observed.
The final break up and combination into a turbulent jet is observed 80mm downstream
the nozzle exits. Additionally, the intensity fluctuations observed in the images further
downstream the nozzle exits indicating density gradients due to turbulent flow motion
are more intense with increasing operation pressure.
So in conclusion, the shock and turbulence structures of the fluid flow through the

injection valve are highly dependent on the operation pressure. Thus, it is also expected
that the resulting aeroacoustics will be louder with increasing operation pressure.

6.3.2. PIV measurements
Experimental setup

2D-2C Particle Image Velocimetry (PIV) is a contact-free, optical measurement tech-
nique used to detect the 2 dimensional velocity components in fluid flows. This method
is based on the detection of the movement of added seeding particles within a known
time period. Thus, a PIV system consists following steps which have to be considered
in the test setup.

• seeding with appropriate particles

• illumination of the seeding particles

• recording of the light scattered by the particles

• evaluation of the spacial movement of the particles

• post processing of results

Figure 6.7 shows a picture and a respecting sketch of the PIV test rig with the used
components. The CNG injection nozzle (1) is installed in a Plexiglas capsule (4) and
is operated with pressurized air available in the test laboratory (3). Before the air is
expands through the nozzle it is seeded with small silicon oil (DEHS) drops with a
mean diameter of 1 µm generated by an special aerosol generator (2). These drops,
following the flow without significant slip, are illuminated by a pulsed Nd:YAG laser
system (5)producing 532 nm light pulses of 8 ns with a maximum puls energy of 50
mJ. The minimum time between two pulses is 400 ns obtained by a parallel operation
of two lasers. The round laser profiles are transformed into a laser sheet by a system of
optical lenses (6). Finally, the scattered light by the seeding particles is detected with
a CCD camera (LAaVision Imager Intense) with a spacial resolution of 1376x1040
pixel.
The camera is operated in double frame mode taking 2 pictures in a very short

time (min. 400 ns). The movement of the seeding particles is evaluated out of these

86

Figure 6.7.: Sketch and picture of the PIV test rig.

87

two pictures by a cross correlation algorithm and the velocity is determined under
the knowledge of the time between the two pictures. The Plexiglas capsule prevents
the camera, the laser and the optical components to be polluted by the ejected oil
particles. In order to reduce refraction errors two areas, one for the laser light sheet
and one for the detection camera, are replaced by optical glass with a refraction index
of 1.15 (see Figure 6.8).
In order to manage these processes a trigger chain is build based on the master

signal opening the injection nozzle (see Figure 6.10. The signal is delayed by a Puls-
Delay-Generator and forwarded to to the PIV module in a computer. With this unit
the camera and laser are synchronized to obtain proper images.

Figure 6.8.: Sketch of the glass capsule.

Figure 6.9.: Optical components to produce a laser sheet

The exposure time of the two frames last 10 µs and 1000µs, respectively, with a dead
time of 400 ns. The illumination by the laser pulses only last 8ns and are positioned
and the end of frame 1 and at the beginning of frame 2 enabling a very short time of

88

0.5 µs between two pictures. In order to obtain a comparable intensity distribution in
both frames, the two lasers are controlled using a specific percentage of their maximal
power (see Figure 6.11).

Figure 6.10.: Sketch of the trigger chain

Figure 6.11.: Operation points for laser

89

Results

The Particle Image Velocimetry calculating the velocity vectors out of the source
images using a cross correlation technique results in a instantaneous vector map. By
averaging over 100 samples one can detect the averaged velocity field components
and extract velocity profiles over specific positions (e.g. centerline, radial profiles
at different positions in stream-wise direction). This post-processing procedure is
depicted in Figure 6.12 showing the respecting images of the results operating the
valve with 2 bar.
In order to find the optimal settings for each operation pressure measurements were

performed with variation of the time between two pictures δt, resolution in space,
window size in PIV setup and operation pressure of the injection valve. In Tabular
6.1 all performed measurements are listed.

operation pressure [bar] δt[µs] resolution in space window size
2 5 40x50mm 32x32
2 5 40x50mm 64x64
2 3 40x50mm 32x32
2 1 40x50mm 32x32
2 0.5 40x50mm 32x32
2 0.5 40x50mm 64x64
4 5 40x50mm 32x32
4 5 40x50mm 64x64
4 3 40x50mm 32x32
4 1 40x50mm 32x32
4 0.5 40x50mm 32x32
4 0.5 40x50mm 64x64
4 0.5 16x20mm 32x32
7 3 40x50mm 32x32
7 3 40x50mm 64x64
7 1 40x50mm 32x32
7 0.5 40x50mm 32x32
7 0.5 40x50mm 64x64
7 0.5 16x20mm 32x32

Table 6.1.: Performed PIV measurements

Based on the results, which will not be explicitly discussed in this report, the optimal
settings were identified and are highlighted green in 6.1. Additionally, the region in
which confidential results are obtained is confined from x = 4 ·r0 until x = 28 ·r0. Due
to the high seeding particle density near the nozzle exit from x = 0 · r0 until x = 4 · r0,
overexposure effects prevent a proper distinction between single particles in the source
images which is crucial to obtain proper PIV results. Figure 6.13(a) and Figure 6.13(b)

90

Figure 6.12.: Analysis of Results

show a source image and the respecting intensity distribution of the scattered light on
the center-line profile. The intensity distribution is about four times higher near the
nozzle exit indicating the overexposure effects. Thus, all velocity profiles are analyzed
only downstream x = 4 · r0.
The final center-line velocity profiles of operation pressures 2, 4 and 7 bar are de-

picted in Figure 6.14. In all profiles a velocity decay is observed from x = 4 · r0 until

91

(a) (b)

Figure 6.13.: Source Image and Scattered light intensity over center-line

x = 28 · r0. By operating the valve with 2 bar, the velocity at x = 4 · r0 reaches up
to 80 m/s and decays exponentially down to 30 m/s at x = 28 · r0. In the respecting
radial profiles (see Figure 6.15) one can also detect the velocity decay at the center-line
y = 0 · r0 with increasing x-coordinate. Additionally, the profiles at x = 5and7.5 · r0
are characterized by two peaks with increased velocities next to the center-line. This
characteristic can be traced back to the specific outlet geometry (see Figure 6.3). As
the laser sheet plane was positioned over 2 of the 4 kidney shaped orifices an increased
velocity over the nozzle exits was expected. Additionally, one can observe a spreading
of the jet, indicated by the radial extension of the profiles in stream-wise direction.
The jet spreading characteristic can be prescribed using the so called jet half width
δ0.5 (see Figure 6.18) which is defined by the radial position at which the velocity is
dropped to half of the center-line velocity at the respecting stream-wise position. The
half width starts at x = 4 · r0 with a value of δ0.5 = 3.5 and ends at x = 28 · r0 with
δ0.5 = 6.8.
By increasing the operation pressure up to 4 bar, the maximum observed center-

line velocity increases up to 210 m/s at x = 4 · r0 with an ongoing decay to 75 m/s
at x = 28 · r0. In the respecting radial profiles depicted in Figure 6.16, the velocity
peaks over the nozzle exits at x = 5and7.5 · r0 vanish, which can be traced back to
the formation and break up of shock structures at the nozzle exits observed in the
shadowgraph experiments. The shock as well as the higher velocity gradients in the
shear layer lead to a slimmer jet spreading further upstream from δ0.5 = 2.2 at x = 4·r0
to δ0.5 = 6.3 at x = 28 · r0 (see Figure 6.18).
The increasing jet velocities with higher operation pressures and the associated jet

spreading further upstream are confirmed by the results provided by the measurements
with 7 bar. The respecting center-line velocity decays from 310 to 150 m/s and the jet
spreads from δ0.5 = 2.1 at x = 4 · r0 with an exponential characteristic to δ0.5 = 5.2 at
x = 28 · r0.

92

Figure 6.14.: Velocity profiles on jet
center-line

Figure 6.15.: Radial velocity profiles at
2bar

Figure 6.16.: Radial velocity profiles at
4bar

Figure 6.17.: Radial velocity profiles at
7bar

6.3.3. Acoustic measurements
Experimental setup

The acoustic measurements were performed with calibrated microphones at a sampling
rate of 96000 Hz and a sensitivity range from 0-16kHz. For each measurement 5
microphones were positioned in circumferential direction around the nozzle exit at a
radius of 20mm. In order to get validation data in a broader frequency range, at one
position in circumferential direction an ultrasound microphone using a sampling rate
of 192000 Hz in a sensitivity range from 0-60kHz was used.
Measurements are performed at propagation angles in between 20 to 90 degrees with

respect to the jet axis (see Figure 6.19) by operating the nozzle with 2, 4 and 7 bar.
At each configuration a total of 10 samples with recorded data over 5ms is used to
perform a spectral analysis in the frequency range from 100Hz to 80kHz.

93

Figure 6.18.: Jet Half Width

Figure 6.19.: Test setup for acoustic measurements: a)side view b)top view

Results

Figure 6.20 and Figure 6.21 show the narrow band- and third octave sound pressure
level spectra for the observation points P1-4 at 20, 40, 60 and 80 degrees propagation

94

angle with an operation pressure of 7 bar.
In the spectrum of observation point P1 three major broadband peaks are noticeable.

One occurs in the range from 1-4 kHz, the second between 10 and 30 kHz and the third
between 50 and 70 kHz. Further upstream at observation point P2 the amplitude of
the first broadband peak decreases and is shifted to higher frequencies. While the
broadband peaks at higher frequencies disappear, the spectrum is dominated by high
frequency noise where levels increase constantly from 10-80 kHz to a maximum of 112
dB. At the observation angle of 60 degrees in P3, the first broadband peak completely
vanishes and sound pressure levels increase constantly from 93 dB at 1000 Hz to 97
dB at 10 kHz. Subsequently, a broadband peak with a maximum of 103 dB between
10.5 and 11.5 kHz appears and, finally, high frequency noise causes increasing levels
up to 112 dB at 75 kHz. Radially from the nozzle, at observation point P4, the sound
pressure level hardly changes above 9 kHz compared to the levels observed in P3. Up
to this frequency, sound pressure levels are constantly 3dB lower.
As the main spectral characteristics are broadband, the respective third octave spec-

tra provide all important information. Due to the averaging of levels over the third
octave bands, the amplitudes have slightly increased but are not very sensitive to the
frequency resolution of the used Fourier analysis. Additionally, the overall sound pres-
sure level (OASPL) considering the whole frequency spectrum to is used to evaluate
the noise intensity at different propagation angles resulting in the so called directivity
plot depicted in Figure 6.22. Thus, all following acoustic analysis of experimental and
simulation data consider the third octave spectra and overall sound pressure levels.
By reducing the operation pressure down to 2 and 4 bar, the OASPL at propa-

gation angle of 20 degrees decreases from 128 dB to 120dB and 115dB, respectively.
Accordingly, a reduction of sound pressure levels is also observed at all frequencies in
the third octave spectra (see Figure 6.24). While the spectral characteristics hardly
change, levels slightly decrease in the low frequency range in between 100 to 500Hz and
a major reduction of levels over 10 dB at 4 bar and up to 20dB at 2 bar are observed
at higher frequencies.
At propagation angles of 40 and 60 degrees the reduction in OASPL with decreasing

operation pressure is much lower with 2-4 and 1-2dB respectively. Primarily, the reduc-
tion in sound pressure levels at both propagation angles is observed in the frequency
range from 1kHz - 80kHz (see Figure 6.25 and Figure 6.26).
Finally, in lateral direction at propagation angle 80 degrees, a nearly constant re-

duction of 2dB and 3 dB can be detected over the whole frequency range by reducing
the operation pressure to 4 and 2 bar. The final effect on the OASPL is lower with 1
and 1.5dB.

6.4. Simulations of Free-stream Configuration

6.4.1. Simulation Setup
The computational domain of the direct noise computation is shown in Figure 6.28.
The nozzle exit geometry is centered in a cylindrical domain with radius 18ro and

95

Figure 6.20.: SPL Spectra at 7bar

Figure 6.21.: Third octave spectra at 7bar

Figure 6.22.: OASPL directivity 7bar Figure 6.23.: OASPL for different opera-
tion pressures

spans from 0 to 35r0 in stream-wise direction. The fluid enters the domain at the
inlet boundary with non-uniform velocity, pressure and density profiles obtained by a
preceding steady state simulation of the whole valve geometry. The pressure history

96

Figure 6.24.: SPL Spectra at 20 degrees Figure 6.25.: Third octave spectra at 40
degrees

Figure 6.26.: Third octave spectra at 60
degrees

Figure 6.27.: Third octave spectra at 80
degrees

is recorded in a total of 40 observation points at radius r = 12ro from the jet axis at
different propagation angles. Corresponding to P1-P4 shown in Figure 6.28, the points
are located at angles of 20, 40, 60 and 80 degrees with respect to the jet axis. In order
to accelerate statistical convergence, the data of each propagation angle are averaged
over 10 positions distributed in azimuthal direction around the jet axis.

Numerical specifications

HALO:
The jet flow through the valve is computed by solving the compressible three dimen-
sional Navier-Stokes equations with a Discontinuous Galerkin scheme of 3rd, 4th and
5th order in space and a 3rd order time integration. A fully explicit local time stepping
algorithm proposed by Gassner et al.[9] is used. Advection fluxes are computed by the
HLLC Riemann solver and viscous fluxes by a generalized Riemann solver [7, 23] . The

97

Figure 6.28.: Computational domain

fluid medium air is considered as ideal gas and the relationship between its dynamic
viscosity and temperature is described by Sutherlands law.
The used grid consists 342,217 unstructured hexahedra, yielding a total of 3,422,170

degrees of freedom at 3rd order, 6,844,340 degrees of freedom at 4th order and 11,977,595
degrees of freedom at 5th order, respectively. As represented in Figure 6.29, the jet
region is strongly refined to resolve the turbulent structures and shocks. The smallest
cells have dimensions of ∆x = 0.01r0. In radial as well as stream-wise direction the
mesh spacing increases exponentially to a maximum of ∆x = r0 at the boundary start-
ing at r = 3r0 and z = 8r0, respectively. For a proper representation of the geometry,
all wall boundary elements are curved based on a reconstruction scheme proposed by
Hindenlang [13] . In Figure 6.30 the influence of the reconstruction on the boundary
elements is demonstrated using the geometry of a kidney shaped orifice at the inlet.
The maximum frequency of sound waves resolved with the mesh was estimated by
fmax ' co

10ppw·∆xmax
p

, where c0 is the speed of sound, p the polynomial degree of the

DG scheme and ppw stands for points per wavelength. This yields fmax ≈ 80kHz and
fmax ≈ 100kHz for the 4th and 5th order simulation, respectively. The presented sim-
ulations run for Tsim = 5.5ms where the last 5ms were used for averaging and data
monitoring, allowing a reliable spectral analysis to a minimum frequency of 1kHz.
They were performed on 2048 cores on a Cray XE6 system at the High Performance
Computing Center Stuttgart. The 4th and 5th order simulation required 38 and 81
hours, respectively.
Ansys CFX:

To compare results and simulation times with a commercial solver, a simulation model
is also developed in Ansys CFX. Based on the work by Schoenrock [30] a direct aeroa-

98

Figure 6.29.: Numerical grid: cut through A-A and B-B plane with respect to Figure
6.3

Figure 6.30.: Curved boundary elements
at a kidney shaped ori-
fice with (red) and without
(black) reconstruction

Figure 6.31.: Normal velocity profile at
inlet

coustic simulation is performed using a static LES Smagorinsky model. The governing
equations are solved with a Finite Volume method using the high resolution advection
scheme and an implicit second order backward euler transient scheme with a fixed
global timestep of 5 · 10−8. The number of implicit subiterations for each timestep
is limited to a maximum of 3. The computational domain is discretized by the grid
prescribed above refined by a factor of 3 in all space dimensions yielding a total of
9,239,859 hexahedra (degrees of freedom).

Boundary Conditions

Nonreflecting boundary conditions:
In aeroacoutic simulations, non-reflecting boundary conditions are necessary since
acoustic noise and aerodynamic fluctuations can produce spurious reflecting waves
while leaving the computational domain [32, 2] . Several techniques were developed to

99

avoid this phenomenon, as reviewed by Tam [33] .
In terms of Ansys CFX the specialized non-reflecting boundaries for this testcase

developed by Schoenrock [30] were used.
In the present simulations using the HALO code, an absorbing boundary condition

based on explicit relaxation is chosen to minimize acoustic reflections. In this approach
a relaxation term is substracted from the vector of conservative variables ~U in a sponge
zone to damp reflections to a specific boundary state ~U0 (see e.g in Bodony [1]).

~Un+1 = ~Un+1 − Cσ(d) · (~Un+1 − ~U0)︸ ︷︷ ︸
relaxation

σ = (1− d

D
)exp (6.1)

The amplitude of relaxation σ within this sponge layer increases exponentially with
decreasing distance d to the boundary, where sponge thicknessD and exponential decay
are given parameters. According to Mani [24] , an optimal sponge strength leading
to the lowest reflectivity exists for any given problem. Thus, the sponge strength can
be controlled by a constant C. For this application it was found to be optimal for
C = 0.01.
At all free field boundaries, radiation boundary conditions are applied to damp the

incident waves to ambient conditions with a sponge thickness of D = 3r0. The outflow
boundary condition state is defined by an analytical function providing a mean flow
field of the jet (see Figure 6.32). All incoming fluctuations are damped in the outflow
sponge zone with thickness D = 6r0 to this specific state ~U0,Outlet.

Figure 6.32.: Velocity profile at outlet
boundary

~U0,Outlet =


ρ
u
v
w
p

 =


ρ(r)

0
0

w(r)
p(r)

 (6.2)

Inlet boundary conditions:
The inlet boundary condition in the nozzle exit geometry is generated once by a steady
state solution of the inner injector geometry. The primitive flow field variables are ex-
tracted on a plane within the kidney shaped orifices and interpolated on the grid of
the aeroacoustical setup. In both codes (HALO and Ansys CFX) the interpolation
method proposed by Schoenrock [30] is used. According to Figure 6.31, air (γ = 1.4,

100

R = 287.058) enters the domain with a normal velocity profile (with mean value
w = 505m

s). The respecting pressure and density distributions over the offices with
mean values of 244252Pa and ρ = 1.97 kg

m3 yield a mean Mach number of Ma = 1.21
and a mean temperature of 423K.

Wall boundary conditions:
At the walls of the inlet duct slip wall boundaries are used. All other wall boundaries
of the nozzle geometry are defined with no slip conditions.

6.4.2. Results and Validation
In order to validate the computational approach, experimental data from Schlieren
optics, Particle Image Velocimetry and acoustic experiments were used (see 6.3). We
analyzed the mean flow field characteristics, the capturing and formation of shock
structures and the prediction of near field acoustics.

Flow Field Features

Flow development

Figure 6.33 displays the instantaneous mach number contour plots provided by all per-
formed simulation in the B-B cut plane. The resulting flow fields show all a reasonable
flow development with shock structures and the observed combination of the single
jets after the break up of shocks. The growing instabilities in the shear layers on the
inner radius produce a cluster of small scale turbulences in between the single jets.
The rolling up of the respecting outer shear layers generates larger eddies resulting in
a typical three dimensional turbulent mixing.
Nevertheless, the resulting flow fields differ concerning the resolution of turbulent

structures and shock structures. As expected, the simulation with a 3rd order DG
scheme is only able to resolve the biggest turbulent structures. By increasing the
polynomial order up to 4th and 5th order using the same grid, evermore small turbulent
structures are captured by the numerical approach, which can be seen especially in
the turbulence cluster between the single jets and in the shear layer development. The
result provided by the simulation with Ansys CFX resolves turbulent structures which
are smaller than observed with 3rd order DG simulation but do not reach the resolution
provided by 4th and 5th order. Based on these observations, the acoustics produced
by turbulent motion are expected to be affected by the provided spatial resolution.
The positions of the shock structures in stream-wise direction can be compared with

averaged Schlieren images (see Figure 6.34) where the density gradients in stream-
wise direction are found in intensity minima and maxima. In the simulation results
the density gradients were computed using the time averaged density distribution and
visualized on a plane cutting the regions with the maximum shock cells.
One can see that all solutions provide a system of shock structures. While the down-

stream positions of the first four changes of the density gradient show good agreement
with experiments using the 4th and 5th order DG scheme, the shock structures pro-

101

Figure 6.33.: Instantaneous mach number contours on A-A cut plane provided by
simulations

vided by the 3rd order simulation are smaller and weaker and those provided by Ansys
CFX are bigger.
From the Schlieren image, it can be estimated that the fifth shock lies within the

region where the shear layer instabilities initiate the combination of the single jets.
This process seems to be predicted well with the 5th order DG approach showing only
weak stationary gradients in this region. The 3rd order and 4th order simulation result
in the appearance of additional quasi stationary density gradients in the single jets
indicating that the shear layer instabilities are not correctly resolved. Ansys CFX
provides a break up of shocks at the adequate position, but caused by the prediction
of bigger structures, the total number of shock cells is under-predicted.
In conclusion, the spatial resolution in this region strongly influence the prediction

of present shock structures. As shock associated noise is a major sound source in
supersonic jets, a correct prediction of these structures seems to be crucial to obtain
reasonable acoustic results. In addition, due to the different positions where the shock
structures break up, major deviations of flow field variables in this region are expected.

Mean Flow Field

The time averaged mach number contours provided by simulations are shown in Figure
6.35.
The velocity profile in the jet center-line provided by PIV decays nearly linearly

in downstream direction from 320 m/s at z = 5.88r0 to 150 m/s at z = 30.0r0 (see
Figure 6.36). Within this range the jet velocity decay is well predicted by the 5th order
simulation. Further upstream, where no experimental data is available, the velocity
increases to a maximum of 350 m/s at z = 5r0 and then drops rapidly to negative values
in the turbulence cluster indicating a back stream in this region. This development
of the jet center-line velocity is also predicted by the 3rd and 4th order simulation, as

102

Figure 6.34.: averaged Shadowgraph image and contours of averaged density gradient
provided by simulations

well as Ansys CFX. However, some fundamental deviations are observed. Firstly, the
increasing velocity in the turbulence cluster is observed further downstream and ends
up in a maximum of 350 m/s at z = 10r0, 420 m/s at z = 7.5r0 and 390 m/s at z = 6r0,
respectively. Secondly, the following velocity decay is not linear until z/r0 = 20 with
a 4th order DG schme and z/r0 = 13 with Ansys CFX, where the profiles approach
experimental data and finally match further downstream. The velocity profile provided
by a 3rd shows additionally an over-prediction of the velocity within the decay region.
The respecting jet half width profiles are depicted in Figure 6.37. While the Jet

spreading observed with the 5th order DG simulation matches pretty well with exper-
imental data, the simulated jet with Ansys CFX shows a stronger spreading charac-
teristic, especially near the nozzle exit. The half widths provided by the 3rd and 4th

order DG simulation increase further downstream, showing that the jets are slimmer
over the whole computational domain.
The observed deviations are likely to be attributable to non-resolved small turbu-

lence structures in the whole jet and the deviations in shock prediction near the nozzle
exit. Due to the added numerical viscosity used to stabilize the numerics, the break
up of shock structures and the development of turbulent structures is not represented
correctly. Thus, the jet spreading is observed further downstream and the instabilities
in the shear layers result in too large vortices with the 3rd and 4th order DG simulation
leading to the over-prediction of the jet velocity in the particular regions. In Ansys
CFX, the bigger shock structures breaking up in the right position lead to the slight
over-prediction near the nozzle exits. The ongoing resolution of only large turbulent
structures leads to the increased jet spreading with respect to experiments.

Acoustics

In Figure 6.38 one can see snapshots of instantaneous density contours provided by
Ansys CFX and the 5th order DG simulation. Additionally, the observation points
P1 - P4 are depicted. The acoustic waves produced in the turbulent jet are clearly
visible while spurious reflections at free field boundaries are not detected. The wave
fronts originate mainly from the region where the shock structures over the four ori-

103

Figure 6.35.: Averaged velocity contours simulations

Figure 6.36.: Velocity profiles on jet
center-line

Figure 6.37.: Jet spreading characteristic

fices collapse into the turbulent jet flow at around z = 5ro indicating predominant
sound sources. Additionally, a directivity pattern is visible showing a more intense
propagation in downstream direction.
Figure 6.39 and Figure 6.40 compare the resulting OASPL at P1 - P4 with experi-

mental data (see 6.3.3) taking into account the whole frequency range provided by the
ultrasonic microphone up to 70kHz (→ OASPL70) and the audible frequency range
(up to 20kHz → OASPL20), respectively. In order to get a better understanding the
respecting third octave spectra are depicted in Figure 6.41. As the simulation using
Ansys CFX comprises data over only 1 ms, the spectra are cut beneath 5 kHz.
In observation point 1, the OASPL70 as well as OASPL20 is over-predicted by all

simulations. While the minimal deviation is observed in the results of the 5th order
DG simulation with 3dB and 5dB, the OASPL provided by Ansys CFX and the 3rd

104

Figure 6.38.: Instantaneous snapshot of density contours (colormap: 1.1 - 1.25 kg/m3)

Figure 6.39.: Comparison of OASPL fre-
quencies 1-60 kHz

Figure 6.40.: Comparison of OASPL fre-
quencies 1-20 kHz

order DG simulation over-predict experimental data up to 10dB. In the respecting
third octave spectra, one can analyze in addition the frequency ranges in which the
deviations take place. One can see that levels up to 2kHz are predicted only with slight
deviations. The ongoing characteristical drop of sound pressure levels in between 2 and
20kHz observed in experiments is not well predicted by numerical approaches. Within
this frequency range the levels observed in the 3rd order DG solution are about 15dB
higher. Only in the high frequency range levels slightly approach experimental data
and end in an over-prediction of 4 dB at 70 kHz. The higher resolution of physics
with 4th and 5th polynomial order in space leads to improved results with maximal
deviation of 10 and 8dB at 5 kHz. Especially results of the 5th order approach match

105

quite well with experiments in the high frequency range over 20kHz, leading to the
reduction of OASPL taking into account the frequencies up to 70kHz. Ansys CFX
provides also over-predicted sound pressure levels, which are nearly constantly 10dB
higher with respect to experiments over the whole frequency range, leading to 10dB
higher OASPL70 and OASPL20 in both evaluations.
In observation point 2, the OASPL20 in the audible range observed with 125 dB

in experiments is as well over-predicted with all simulations. While Ansys CFX over-
predicts the level by 10 dB, all HALO results provide a better value of about 128dB.
In the respecting third octave spectra, one can see that the increase of sound pressure
level with frequency is captured by simulations and the slight over-prediction of levels
starts at about 5kHz and stays 3dB higher than experimental data up to 12 kHz. At
higher frequencies up to 70kHz Ansys CFX over-predicts levels by 10dB. While the
results provided by the 4th and 5th order DG simulation keep the 3dB distance to
experimental data the spectrum calculated with 3rd order DG simulation data starts
to drop under experimental data starting at 40 kHz. The latter observations lead to
an over-prediction of the OASPL70 by Ansys CFX, HALO 4th order and HALO 5th

order simulation and finally a 2dB smaller value with a 3rd order DG approach.
In observation point P3 the OASPL70 and OASPL20 provided by the 5th order

DG simulation match well with experimental data showing a deviation smaller than
1dB. While these levels are under-predicted with 10dB and 5dB using a 3rd order DG
approach, the results provided by the 4th order DG simulation match in OASPL20 and
show only a slight under-prediction of OASPL70 by 2dB. Finally, Ansys CFX shows
increased levels by 4dB in OASPL20 and 8dB in OASPL70. In the respecting third
octave spectra, one can see that levels provided with the HALO solver also match well
in the frequency range up to 12kHz. Then, the spectra of the 3rd order simulation
and further starting at 40 kHz the spectra of the 4th order simulation start to drop
beneath the levels observed in experiments. One again, the spectra obtained by the
pressure history recorded in the Ansys CFX simulation result in sound pressure levels
10dB higher with respect to experiments nearly over the whole frequency spectrum
from 5-30kHz. Only over 40kHz the deviations slowly decrease.
Finally, in observation point P4 the deviations in OASPL70, OASPL20 and the third

octave spectra of numerical and experimental results are similar than those observed
in P3. It is apparent, that the spectra of the 3rd and 4th order DG simulation start
to drop earlier beneath the levels observed in experiments starting at 8 and 12kHz,
respectively. This results in a stronger under-prediction of OASPL70 and OASPL20

than observed in P3.
Based on these observations, two effects are likely to be responsible for the deviations

in predicted acoustics by the HALO code to those provided by experiments. First, the
solutions provided by the 3rd and 4th order DG approach do not capture all noise gen-
erating effects associated with turbulent mixing. Due to the high numerical viscosity
which has to be added to stabilize the numerics, the small scale turbulences can not be
resolved and too large turbulence structures are predicted. Thus, lower sound pressure
levels are observed in the high frequency range. As turbulent mixing noise is primarily
propagated in radial directions, this effects is more intense in P3 and especially in
P4. Secondly, the observed prediction of too high jet velocities and deviations of shock

106

Figure 6.41.: Comparison of third octave spectra at observation points P1-P4

cell structures cause additional sound sources producing low frequency acoustics which
are mainly propagated in downstream direction. In addition, the model of the inlet
boundary does not cover any fluctuations of the operation pressure, which are likely
to be present in experiments, affecting the shock structure motion and production of
related acoustics. Thus, in observation point P1 the highest deviations with respect
to experiments are observed. These issues can be improved considerably by the use of
a 5th order DG approach. Results match well with experimental data at P3 and P4
and the deviations at P1 and P2 are within a acceptable confidential interval of 5dB.
The direct noise simulation with Ansys CFX results in all observation points in

sound pressure levels increased by about 10dB over the whole frequency range. In
addition to the effects explained in the preceding paragraph, errors in the transport
of acoustical waves are supposed to be responsible for the over-prediction of acoustics.
This issue can only be overcome by a successive grid refinement resulting in an immense
increase of computational costs.

107

6.4.3. Efficiency and Assessment of Turn-Around-Time
The overall Turn-Around-Time from scratch to a numerical result consists 4 major
steps:

• Geometry and Grid Generation

• Pre-Processing

• Solution of Governing Equations

• and Post-Processing

As we are interested in reducing the overall Turn-Around-Times by using the STEDG
solver HALO, the required effort for each step is evaluated and compared to the gen-
eration of a simulation model based on Ansys CFX with LES Smagorinsky turbulence
model.

Geometry and Grid Generation: In industrial simulation models like the gas in-
jection process, the relevant geometries are more or less complex. In terms of typically
studies like Design of Experiments (DoE) the parameters of the design slightly change.
In commercial CAD tools (Catia, ProE, etc.) as well as integrated tools like Ansys
Workbench an automated and parameterized geometry generation is provided. Thus,
only the initial design requires an increased effort (typically 1-3 days) by the user. All
subsequent changes can be performed in a few minutes by changing the parameterized
values.
The following grid generation mechanism is a little more complex. As the spatial

resolution of the used grid has to take into account the different turbulent scales in
different flow regions, the grid generation mechanism is iterated with each simulation
solution until the required accuracy is reached. As LES simulations require a high
mesh quality, this procedure can take some days up to some weeks dependent on the
problem size. After the initial mesh is found, the grid generation can also be automated
based on parameterized variables as long as the impelled variations hardly change the
flow physics. If they do so, the grid has to be adapted again by the user in some
iterations.
Both, Ansys CFX as well as the HALO code are able to read different mesh formats

(e.g. CGNS), so that different mesh generation tools like Ansys ICEM or Ansa can be
used. In all these tools, the import of common geometry formats like *.stl and *.igs is
provided allowing a workflow in which the user effort for geometry and grid generation
is comparable for both tools. But a major advantage of the STEDG solver HALO is
the possibility to use polynomials of higher order to approximate the solution in each
cell. Instead of a complex, iterated, time consuming grid refinement one can adjust
the solution order in regions with high flow dynamics user-defined or automated by
order adaption.

Pre-Processing: In the preprocessing step, the flow physics, boundary conditions
and numerical preferences are defined. In Ansys CFX a graphic user interface provides
an easy and user friendly input. All settings are finally written in a definition file, which

108

can be converted in a text file, changed by a special user script using a text editor and
reconverted into a definition file.
All preprocessing information required by the HALO code are set in a setup text file

containing all information concerning the numerical preferences and an initial text file
containing all information concerning the flow physics. The setup file is read before the
code is compiled for a specific problem and a recompilation is only needed if changes
in the setup file are made. The initial file is read by the code in the beginning of each
computation. Both files can be easily changed in a text editor or using a script.
Thus, the preprocessing step of both approaches should not take more than a few

hours and can easily be automated in terms of a DoE or optimization study.

Solution of Governing Equations: The solution of the governing equations is
the most time consuming step in LES calculations and has to be performed for each
design in DoE/optimization studies. Thus, the required time to calculate the results
is crucial and a reduction would shorten the overall required time of major studies
drastically. It depends on:

• numerical scheme

• number of degrees of freedom in space (DoF)

• number of calculated updates for each DoF

• available computational resources

• available software licenses

• scalability of the software

The computational effort is predominantly determined by the overall performed
updates of the present degrees of freedom. Thus, the computational effort increases
with increasing number of grid elements and increasing order in space of the numerical
scheme. Based on the used numerical scheme, the number of degrees of freedom and
performed updates is different. In Ansys CFX the degrees of freedom is equivalent to
the number of grid elements and the performed updates are calculated by the overall
number of time steps and striations in the used implicit time integration scheme. As
the HALO code uses an fully explicit local time stepping the number of updates agrees
with the total number of performed time steps. The degrees of freedom in space are
calculated by adding all DoFs of each grid cell i dependent on the used polynomial
order p:

DoF =
∑
i

pi · (pi + 1) · (pi + 2)

6
(6.3)

109

Additionally, the sets of equations and algorithms to calculate the DOF updates dif-
fer in the schemes, which leads to different calculation times. Thus, the computational
effort is measured by the overall needed CPU time to perform a full simulation.
As the computational effort to achieve a high solution quality of the presented test-

case is of about 4000 Core days, a calculation on one CPU is not effective. Thus, the
physical simulation time can be reduced by parallelization on HPC Cluster systems.
However, the parallelization is limited by the number of available resources, available
HPC software licenses (especially in terms of Ansys CFX) and on the scalability of the
software executables.

Figure 6.42.: Speed Up of software ex-
ecutables on Cray XE 6

Figure 6.43.: Comparison of calculation times
of different simulations

Our investigations show that the overall computational effort can be reduced with
the STEDG code by a factor of about 2-5 with a comparable solution quality using
a 4th and 3rd polynomial order approach, respectively. Additionally, an immense
improvement of the solution quality is provided with an approach of 5th polynomial
order in space which requires the same computational effort than an LES performed
with Ansys CFX.
An outstanding speed up of the physical simulation time can be acquired by the

effective parallelization of the HALO code. In Figure 6.42 the scalability plot shows a
very good performance up to 2048 cores while Ansys CFX only can be used effectively
up to 128 Cores. Thus, assuming an availability of up to 32768 Cores at once (e.g.
at the Cray XE6 system on the HLRS) a total of 16 designs can be computed in 1
day using the HALO code, which is not limited with licenses up to now. The poor
scalability and the additional restriction of available software licenses in Ansys CFX
(ca. 256 on the Cray XE6 at once) prevents the calculation of multiple designs at once
in a short time.

Post-Processing: The required time for the post-processing of the flow field so-
lutions provided by Ansys CFX and HALO are comparable as they can be read by
common tools like CFX-Post, Tecplot or Ensight. Transient results containing special

110

information over the whole simulation time can be exported by both codes into dif-
ferent formats (e.g. CGNS, text) that can be post-processed with Excel, Matlab, etc.
All these tools provide a scripted batch post-processing reducing the effort in terms of
DoE and optimization studies.

Figure 6.44.: Turn around times for one calculation

111

6.5. Simulations of Parameter and Geometry
Variations in Firestorm Configuration

6.5.1. Variation of operating pressure
Based on the results of chapter 6.4.2 showing that the fluid flow and acoustics of the
audible frequency range are accurately predicted with a 5th order DG simulation, the
simulation setups with operation pressures 2 and 4 bar are solved with these code
settings. In Figure 6.45 the resulting center-line velocity profiles are compared with
PIV results. Both velocity profiles are predicted well with deviations smaller than 5%
concerning experimental data.

Figure 6.45.: Comparison of center-line
velocity profiles

Figure 6.46.: Comparison of overall sound
pressure levels

The respecting evaluation of the predicted acoustics is also very promising. For both
operation pressures the directivty pattern of the OASPL in the acoustic frequency
range is predicted within a confidence interval of 2dB. In Figure 6.47 and Figure 6.47
the third octave sound pressure level spectra are depicted for propagation angles of
20 degree (P1) and 80 degree (P4). One can see that the levels in P4 are predicted
very well and a slight over-prediction of levels at lower frequencies in P1 exist. The
deviations of spectra in P2 and P3 resemble to those observed with 7 bar operation
pressure supporting the conclusions made in 6.4.2.
In conclusion these results show, that the simulation model is able to accurately

predict the acoustics under variations of parameters within a confidence interval of 2
dB. Thus the model is considered to be validated and can be used to evaluate geometry
variations which could reduce the sound production and emission.

6.5.2. Variation of silencer length
In order to evaluate first measures to reduce the sound production during the com-
pressed natural gas injection, the length of the silencer geometry was extended from 3.7

112

Figure 6.47.: Third octave spectra with 2
bar operation pressure

Figure 6.48.: Third octave spectra with 4
bar operation pressure

to 5 and 10mm. Figure 6.49 and Figure 6.50 show snapshots of the respecting mach
number contours (colormap 0-2) and pressure contours (colomap 99500-100500Pa).
One can see in the mach number distribution that the evolution of the supersonic jet
is not noticeably affected as the shock structures and the combination into the turbu-
lent jet do not change much in their position. In the respecting instantaneous pressure
distribution it is obvious that the propagation of sound waves starts right above the
end of the silencer. The directivity of the sound propagation seems to be slightly
affected by the prolongation of the silencer, as the propagation characteristic with a
silencer length of 10mm seems to be shifted from downstream to radial directions by
about 20 degrees.

Figure 6.49.: Mach and Pressure Contours with silencer length 5mm

The observed shift can also be detected in the OASPL levels at different observation

113

Figure 6.50.: Mach and Pressure Contours with silencer length 10mm

points which are compared with acoutics calculated with the original silencer length in
Figure 6.5.2. Although a slight reduction of 2dB at 20 degree propagation angle can
be detected, at all other observation points the levels are increased by the extension
of the silencer geometry. In the third octave spectra depicted in Figure 6.52 one can
see that the sound pressure levels in the low frequency range are in fact reduced at all
observation points with increasing silencer length but simultaneously the levels in the
high frequency range are increased. As result, the extension of the silencer geometry is
not able to reduce the sound emission effectively. Nevertheless, we can conclude that
the simulation model is able to evaluate different geometries concerning the propagated
acoustics which enables further studies to detect sound reducing measures.

Figure 6.51.: Comparison of overall sound pressure levels

114

Figure 6.52.: Comparison of third octave spectra at observation points P1 and P4

6.6. Simulations of Intake Manifold Configuration
We finally transferred the HALO code settings identified in the free-stream configura-
tion simulations to the intake manifold configuration to identify its applicability in this
complex setup. The simulation model consists an actual geometry of an intake man-
ifold with a mounted CNG injection nozzle. The subsequent combustion room with
the intake valve are not yet considered in this model. The inlet and outlet boundary
conditions of the duct are defined with ambient conditions. As inlet boundary of the
injection nozzle, the specialized model described in 6.4.1 is used and all wall boundaries
are defined by no slip conditions. The direct aeroacsoutic calculation was performed
with a 4th order DG scheme using a grid with 344833 elements and run about 70h on
2048 Cores to simulate a total of 10ms physical time.
In Figure 6.53 the instantaneous mach number distribution on a cut plane in the

center of the intake manifold duct after 3ms and 8ms simulation time are depicted,
respectively. One can easily detect the mounting of the injection nozzle at the manifold
geometry where the supersonic jet enters the duct and mixes with the surrounding fluid
after the break up of shock structures. The produced acoustics can also be visualized

115

by the instantaneous density and pressure distribution as shown in Figure 6.54 and
Figure 6.55. In these pictures one can observe that the produced sound waves first
propagate into the duct and are reflected back by its walls.

Figure 6.53.: Instantaneous Mach number contours 0-2

Figure 6.54.: Instantaneous density contours (0.8-1.3 kg/m3

As a consequence of the interference effects, acoustical duct modes establish and
result in increased sound pressure levels at discrete frequencies in the respecting sound
pressure level spectra. For example Figure 6.56 shows a narrow band spectra of the
pressure fluctuations recorded at observation point P near the duct inlet which is
dominated by discrete peaks at about 5.6, 12.0, 16, 21.2, 31.2, 41.3, 49.8 and 63.5 kHz.
The cut on frequencies of the present duct f cmn can be estimated with a state of the
art duct mode theory are found at f c00 = 11.86kHz, f c01 = 21.6kHz, f c02 = 31.5kHz,

116

Figure 6.55.: Instantaneous pressure contours (95000-105000Pa

f c03 = 41.2kHz, f c04 = 50.1kHz and f c10 = 5.6kHz, f c11 = 16.5kHz which correspond
quite well with the observed peaks in the frequency spectrum.

Figure 6.56.: SPL Spectrum recorded at observation point P

In conclusion, an accurate direct aeroacoustic simulation of the gas injection process
could be performed for the first time in an acceptable turn around time of 3 days.
Thus, the STEDG solver is a promising tool to perform further studies evaluating
sound reduction strategies with different nozzle mountings and duct geometries.

117

6.7. Further Utilization of Results
The acquired results in the STEDG project will be used in further research and product
development activities concerning gas powered engines (CNG, Biogas and hydrogen).
Despite increasing developments in the context of electric vehicles, gas vehicles remain
a promising alternative to strikingly reduce CO2 emissions and to make use of renew-
able energies. The utilization within the Bosch company is segmented in a scientific,
technical and economic part:

6.7.1. scientific utilization
First, the knowledge about the requirements, constraints and performance of the
STEDG scheme in realistic industrial applications and conditions acquired through
the numerous simulation results allows an ensured evaluation of its future application
potential in the Bosch Company. Compared to the commercial tool Ansys CFX the
efficient parallelized STEDG scheme enables a speed up of calculation time by a factor
of 100 on HPC clusters with more than 1000 Cores. Thus, a further expansion of our
in house cluster is reasonable to provide the resources for new developed, parallelized
software tools.
Secondly, the technical results acquired in the project were presented in June 2012

to the scientific community on the 18th AIAA/CEAS Aeroacoustics Conference in
Colorado Springs (USA, CO) in terms of a presentation and a technical paper called
“Direct Aeroacoustic Simulation of near field noise during a gas injection process with a
Discontinuous Galerkin Approach”. The participation in the conference enabled Bosch
to contact leading scientists in the research area of aeroacsoutics and provided insight
into the current state of research.

6.7.2. technical utilization
The technical utilization includes four parts:

• Expert knowledge in the application of HPC applications on cluster systems
of the High Performance Computing Centers: During the project, simulation
studies commonly used in the product development process were defined, imple-
mented and evaluated with the research code HALO. Based on the elaborated
and finally established workflow, further simulation studies can be performed or
delegated.

• Know How of porting parallelized (research) code on the Bosch cluster system:
As the research code HALO could be ported on the in house cluster and success-
fully tested on smaller test-cases, the future usage of the HALO code is ensured.
Currently, the cluster provides about 2300 cores while a maximum of 300 cores
can be requested by one user at once. Thus, the simulation of smaller test-cases
(e.g. transient effects in injection nozzles with inviscid flows) will be possible.
The future extension of the provided resources and the expert knowledge ac-
quired during the STEDG project will also enable simulation studies with bigger

118

and complex test-cases like the presented aeroacoustics during a gas injection
process.

• Technical understanding of the sound producing mechanisms and sound prop-
agation during gas injection: The data provided by numerical and experimen-
tal evaluations of the aeroacoustics during the gas injection process enabled a
detailed insight into the sound production mechanisms and propagation charac-
teristics. For example, we could analyze that the interaction of the supersonic
jet with the silencer geometry leads to a distinct sound emission in the high
frequency range. With selective variations of physical (operation pressure) and
geometrical parameters (length of silencer duct), the manipulation and suppres-
sion of sound emission could be tested by numerical approaches. These results
are an initial basis for further effective sound reduction measures.

• A long-term usage of the HALO code in context of our corporate research and
product development in business units, formulated in the project application with
accordance to an outstanding project success, would be desirable. Especially the
promising performance of the code in comparison with commercial tools engages
great interest. However, the intended long term use can not be ensured from
a present perspective caused by the nonexistence of a realizable and affordable
concept of source code maintenance. Nevertheless, the ongoing activities at the
Institute of Aerodynamics and Gas dynamics at the University of Stuttgart,
where the results of the project are used to further develop the DG Numerics,
are watched with great interest. Thus, it is rather likely that the results acquired
during the STEDG project will be reused later on.

6.7.3. economic utilization
The simulation studies concerning the aeroacoustics of the gas injection process per-
formed on the High Performance Computing Centers would not have been possible
with the in house cluster. Thus, the costs of trial product samples, experimental
studies or delegated simulation studies could be avoided. Additionally, the acquired
knowledge about the sound production mechanisms could result in future nozzle de-
signs. Especially noise reducing design variations resulting in minor additional costs
in the production process are favored in the business Unit Gasoline Systems (GS) and
would raise the competitive advantage. By the end of the project such measures could
not be identified, yet.

119

7. Laser Cutting Device

As a leading supplier of laser cutting machine, TRUMPF was able, in the past, to set
itself apart from its competitors through its high cutting speeds. This was achieved
primarily due to the development of ever more powerful cutting lasers. In doing so the
cut quality played only a subordinate role, as long as there was no burr formation on
the underside of the sheet. There have been more and more indications recently that
increases in laser power can only be converted into increases in feed rate to a certain
degree. At the same time the quality of the cutting edge is becoming increasingly
important. The cut quality does not depend only on the beam quality of the laser,
but also on the nature of the gas flow with which the molten metal is blown out of
the kerf. The extent to which the nature of the flow, determined by the design of the
cutting nozzle and the cutting gas pressure used in operation, influences the cutting
quality is still today not completely understood. A better understanding of the process
is expected through the use of a cutting gas flow simulation which encompasses the
complete area from the nozzle right through the kerf to the area below the kerf. These
transient calculations were not possible in the necessary quality until the beginning of
the BMBF project STEDG.

7.1. Experiments

7.1.1. Cutting nozzles examined
The formation of the cutting gas flow and the related cut quality are influenced by,
among other things, the nozzle geometry. In the project, the hole nozzle EAA ∅2.3mm
(TRUMPF Mat. no. 1324866), introduced as series part, and the NSD 12 (bypass
flow nozzle) which is still a test piece were examined. Figure 7.1 shows sectional views
of both nozzles.
The hole nozzle is characterized by a truncated cone connected to a 0.5mm long

cylinder piece with a diameter of 2.3mm. The NSD 12 is also a truncated cone in
which 12 bore holes with a 0.7mm diameter are arranged. The lengths of the bore
holes is 9.9mm. In the extension of the bore holes there is a plate around which the
cutting gas must flow, before becoming united to the gas which flows directly through
the nozzle. The output diameter of the nozzle is 6.0mm.

7.1.2. Influence of the gas flow on the cut quality
The cut quality depends on many parameters. There are those parameters which
characterize the laser beam, and there are others which characterize the formation of

120

(a) Standard hole nozzle (EAA
∅2.3mm)

(b) Bypass nozzle (NSD 12)

Figure 7.1.: Sectional views of the investigated nozzles.

the gas flow. For laser cutting, the necessary gas flow is set through the selection of a
suitable nozzle, the standoff height between the nozzle and the work-piece surface and
the selected cutting gas pressure. The cutting process determines the gas type. Oxygen
is used for flame cutting and nitrogen for fusion cutting. In order to determine the
influence of the cutting gas flow on the cut quality, the cutting parameters for the EAA
∅2.3mm were used which would get the best cutting quality in 15mm aluminum. The
parameters for the bypass nozzle were subsequently determined. In doing so, however,
efforts were made to make the volume flow rate as similar as possible in both cases, so
that a comparison of both gas flows is possible. Table 7.1 shows the cutting parameters
which resulted in the best cut quality.

Nozzle Sample VL rel. Flow ADB PL Set- ∅ Raw
press. rate ting beam

[m
min] [bar] [Nm3

h] [mm] [kW] [mm] [mm]
EAA ∅2.3mm 12 0.7 21 64 1.0 6 7 17
NSD 12 41 0.7 10 60 1.0 6 -27 14

Table 7.1.: Cutting parameters

In order to be able to objectively demonstrate the better cutting procedure if the
NSD 12, the surface s of both cuts were probed by a chromatic white light sensor from
Precitec and analyzed using the program “MountainsMap“ from Digital Surf. The
comparison of the two surfaces in Figure 7.2 shows that when using basically the same
gas consumption, the surface quality can be improved through only a modification of
the internal geometry of the nozzle.
The measured surface roughness values for both samples confirms the impression

gained from Figure 7.2 of the smoother surface for cutting sample 41. Table 7.2
summarizes the Rz values for the upper middle and lower measuring positions.

121

(a) Surface of the sample no. 12 (EAA ∅2.3mm;
15mm AlMg3)

(b) Surface of the sample no. 41 (NSD 12, 15mm;
AlMg3)

Figure 7.2.: Surface samples.

Nozzle EAA ∅2.3mm NSD 12
Rz upper 40 25
Rz middle 124 47
Rz lower 606 247

Table 7.2.: Surface roughness values of the cutting samples.

7.1.3. Pressure profile of both nozzles
Dynamic pressure profiles give an initial image of the flow created by a cutting nozzle.
They give information concerning the efficiency of the nozzle, whereas the ratio of
the total pressure on the deflector plate to the pressure in the nozzle is understood
when speaking of the efficiency. Moreover the cover of the kerf can be removed from
the width of the pressure profile. The cover of the kerf is a measurement for how
far molten material can be driven out of the kerf in the lag. In order to record the
dynamic pressure, a deflector plate is systematically moved under the nozzle in regular
distances and the pressure is measured. To do this there is a hole in the plate with
a pressure sensor under it. The hole has a diameter of 0.5mm and the grid width is
0.25mm. Figure 7.3 shows the measuring stand at which the dynamic pressure profiles
were recorded.

7.1.4. The simplified kerf
For the validation of numerical results, a good correlation between the models used
in the flow simulations and the measuring arrangement is necessary. The transfer of
the fine grooved structure to the side surfaces of the kerf in the flow model would
imply an extremely fine mesh which would be unfeasible to calculate. Therefore the
examinations are done using simplified kerf models. For every nozzle a simplified kerf
and an associated CAD model was developed. The cutting front of the simplified kerf

122

Figure3: Measuring stand for the recording of the dynamic pressure profiles.

5. The simplified kerf

For a good validation of numerical results, a good correlation between the models

used in the flow simulations and the measuring arrangement is necessary. The

transfer of the fine grooved structure to the side surfaces of the kerf in the flow model

would imply an extremely fine network which would no longer be manageable.

Therefore the examinations are done using simplified kerf models. For every nozzle

a simplified kerf and an associated CAD model is made. The front of the simplified

kerf corresponds to that of the real kerf. The side surfaces of the kerf are even, flat

walls. For the determination of the front of the cut, a "frozen cut" is generated. For

this the laser beam is shut off during the cutting process, at which time the cutting

gas remains on and the traversing axes are traveled with unchanged speed. Then

the kerf made in this way is cut off and the specimen is ground to the middle of the

kerf. Figure 4 shows the ground kerf of the bypass nozzle NSD°12 with its cut with its

cutting front and its striations. The grooved structure can be divided into 3 sections.

In the upper quarter of the cutting surface, there are the striations of the 1st

arrangement. If the cutting speed is correlated with the distance between the

striations, these occur at a frequency of up to 150 Hz. A narrow striation section of

the 2nd arrangement borders the 1st striation section, as the striation frequency

High pressure hose for

the supply of gas

Nozzle

Deflector

plate

Pressure

sensor

Pressure

measurement in the

supply line (analog /

digital)

Figure 7.3.: Measuring stand for the recording of the dynamic pressure profiles.

123

corresponds to that of the real kerf. The side surfaces of the kerf are even, flat walls.
For the determination of the front of the cut, a ”frozen cut” is generated. Therefore the
laser beam is shut off during the cutting process, with the gas flow maintained. This
kerf is cut off and the specimen is grind down the middle of the kerf. Figure 7.4 shows
the ground kerf of the bypass nozzle NSD 12 with its cutting front and its striations.
The grooved structure can be divided into 3 sections. In the upper quarter of the
cutting surface, there are the striations of the 1st arrangement. If the cutting speed is
correlated with the distance between the striations, these occur at a frequency of up
to 150Hz. A narrow striation section of the 2nd arrangement borders the 1st striation
section, as the striation frequency changes. In the lower area of the cutting surface
there is a 3rd striation arrangement whose frequency is about 75Hz.

changes. In the lower area of the cutting surface there is a 3rd striation arrangement

whose frequency is about 75 Hz.

Figure 4: Ground kerf with cut progression and grooved structure.

The development of straight and circular segments of the cutting front were put together in

its representation in s technical drawing Clear differences are shown here in the individual

geometries. The cutting front of the hole nozzle EAA Ø 2.3mm shown a relatively

homogeneous progression and can be put together with a curve using two straight lines.

The cutting front of the of the NSD 12 nozzle whose face must be composed out of a

multitude of straight and curved lines. In Figure 5 both of the different cutting front

progressions are contrasted.

a)

b)

Figure 5: a) drawing of the cutting front of the hole nozzle EAA Ø 2.3mm.

b) Drawing of the cutting front of the nozzle NSD°12.

The "simplified kerf" consists of 2 side plates between which a spacer plate with the

same width as the kerf is clamped, see Figure 6 . The front of the spacer plate has

the same geometry as the front of the kerf. The left side plate has 5 holes, with which

the pressure at a distance of 0.5 mm from the front of the kerf hole axis - kerf front

edge) can be measured. The hole diameter is 0.5 mm up to the first 2 mm and then

is widened to 2.3 mm.

Cutting front

Striations of the 1st arrangement (f up to

150Hz)

Striations of the 2nd arrangement (f up to

150Hz)

Striations of the 3rd arrangement (f up to

75Hz)

Right side

plate

Figure 7.4.: Ground kerf with cut progression and grooved structure.

The development of straight and circular segments of the cutting front is transferred
into a technical drawing by adding straight and circular segments. The individual
geometries show clear differences. The cutting front of the hole nozzle EAA ∅2.3mm
shows a relatively homogeneous progression and can be put together with a curve using
two straight lines. The cutting front of the of the NSD 12 nozzle has a face which must
be composed of a multitude of straight and curved lines. In Figure 7.5 both of the
different cutting front progressions are contrasted.
The “simplified kerf“ consists of 2 side plates between which a spacer plate with the

same width as the kerf is clamped, see Figure 7.6. The front of the spacer plate has
the same geometry as the front of the kerf. The left side plate has 5 holes, with which
the pressure at a distance of 0.5mm from the front of the kerf hole axis - kerf front
edge) can be measured. The hole diameter is 0.5mm up to a depth of 2mm and then
widens to 2.3mm.
On the right side plate, holes are arranged in a 4×3 matrix so that a pressure profile

of 12×15mm2 can be measured. The positions and designations of the individual holes
can be seen from Figure 7.7. The X axis of the coordinate system from Figure 7.7
progresses in the symmetry plane of the kerf. The Y axis is on the upper side of the
model and the Z axis at the upper edge of the cutting front.
The simplified kerf can be positioned in relation to the nozzle using an XY table.

124

(a) Drawing of the cutting front of the hole nozzle
EAA ∅2.3mm.

(b) Drawing of the cutting front of the nozzle
NSD 12.

Figure 7.5.: Cutting front comparison.

Figure 6 : Semi-transparent portrayal of the simplified kerf model

On the right side plate, holes are arranged in a 4x3 matrix so that a pressure profile

of 12x15 mm² can be measured. The positions and designations of the individual

holes can be seen from Figure 7 . The X axis of the coordinate system from Figure 7

progresses in the symmetry plane of the kerf. The Y axis is on the upper side of the

model and the Z axis at the upper edge of the cutting front.

a)

b)

Figure 7 : a) Position of the measuring holes
b) Designation of the measuring position

The simplified kerf can be positioned in relation to the nozzle using an XY table. The

adjustment axes have a resolution and axis position reproducibility of 0.5 µm each.

Figure 8shows the measuring stand integrated into a sound-proof cabin. The distance

between the kerf and the nozzle can be set using the Z axis, on which the nozzle

holder is fixed. For all of the measurements and simulations, the nozzle is situated

over the middle of the kerf and the distance between the mouth of the nozzle and the

kerf is 1 mm. During the cutting process, the cutting front moves to half of the kerf

X

Y

Z

X

Y

Z

Connections for the pressure

transducers

Measurement duct

holes going to the

cutting front

Left side

plate

Spacer plate

Z position -1.5 mm

Z position -7.5 mm

Z position -13.5 mm

X position 0.5

X position 9.5

Figure 7.6.: Semi-transparent portrayal of the simplified kerf model.

125

Figure 6 : Semi-transparent portrayal of the simplified kerf model

On the right side plate, holes are arranged in a 4x3 matrix so that a pressure profile

of 12x15 mm² can be measured. The positions and designations of the individual

holes can be seen from Figure 7 . The X axis of the coordinate system from Figure 7

progresses in the symmetry plane of the kerf. The Y axis is on the upper side of the

model and the Z axis at the upper edge of the cutting front.

a)

b)

Figure 7 : a) Position of the measuring holes
b) Designation of the measuring position

The simplified kerf can be positioned in relation to the nozzle using an XY table. The

adjustment axes have a resolution and axis position reproducibility of 0.5 µm each.

Figure 8shows the measuring stand integrated into a sound-proof cabin. The distance

between the kerf and the nozzle can be set using the Z axis, on which the nozzle

holder is fixed. For all of the measurements and simulations, the nozzle is situated

over the middle of the kerf and the distance between the mouth of the nozzle and the

kerf is 1 mm. During the cutting process, the cutting front moves to half of the kerf

X

Y

Z

X

Y

Z

Connections for the pressure

transducers

Measurement duct

holes going to the

cutting front

Left side

plate

Spacer plate

Z position -1.5 mm

Z position -7.5 mm

Z position -13.5 mm

X position 0.5

X position 9.5

(a) Position of the measuring holes. (b) Designation of the measuring po-
sition.

Figure 7.7.: Measuring holes.

The adjustment axes have a resolution and axis position reproducibility of 0.5µm
each. Figure 7.8 shows the measuring stand integrated into a sound-proof cabin. The
distance between the kerf and the nozzle can be set using the Z axis, on which the
nozzle holder is fixed. For all of the measurements and simulations, the nozzle is
situated over the middle of the kerf and the distance between the mouth of the nozzle
and the kerf is 1mm. During the cutting process, the cutting front moves to half of the
kerf width along the beam axis. According to the coordinate system of Figure 7.7(a)
the nozzle is in position (x, y, z) = (0.25mm, 0.0mm, 1.0mm).

width along the beam axis. According to the coordinate system of Figure 7 a) the

nozzle is in position (0.25 / 0 / 1).

Figure 8: The measuring stand for the pressure measurement in the kerf.

With the Labview program pictured in Figure 9 the axis and gas valves can be

controlled and the pressure transducers can be read. The excess pressure found in

the kerf was recorded with pressure transducers of type PA9023 from the

manufacturer IFM, the low pressure with the pressure sensor type P3291S072020

manufactured by tecsis.

XY table

Nozzl

e

Nozzle holder

Simplified

kerf

Gas supply

Pressure

transducers

Z axis

Figure 7.8.: The measuring stand for the pressure measurement in the kerf.

126

With the Labview program pictured Figure 7.9 in the axis and gas valves can be
controlled and the pressure cells can be read. The excess pressure found in the kerf
was recorded with pressure cells of type PA9023 from the manufacturer IFM, the low
pressure with the pressure sensor type P3291S072020 manufactured by tecsis.

.

Figure 9: User interface of the program for axis, valve and pressure control and analysis.

Numerical pressure display Axis control

Valve control Graphic display

Figure 7.9.: User interface of the program for axis, valve and pressure control and
analysis.

7.1.5. Dynamic pressure profile
With similar gas consumption, the pressure profile of the hole nozzle EAA ∅2.3mm is
significantly different from that of the bypass nozzle NSD 12, as seen in Figure 7.10.
The profile of the hole nozzle looks like a sugar loaf mountain, whereas the bypass
nozzle looks more like a plateau.
The different total pressures of 21.8bar, or 7.52bar are owing to the different oper-

ating pressures used in operation with the nozzles. In order to compare both profiles,
it is recommended to consider the efficiencies more closely. For the hole nozzle it is
about 93% (max. pressure on plate

pressure in supply line = 21.8
23.5 , whereas it is only 72% with the bypass nozzle.

Previous experiments have shown that if the hole of the hole nozzle is enlarged, it has
a similar pressure profile to that of the bypass nozzle. A similarly good cutting result
like that of the bypass nozzle is, however, not attained. In order to find out what
causes the difference in the cutting behavior, the flow in the kerf should be examined
both experimentally and numerically.

127

(a) Pressure profile of the hole nozzle
∅2.3mm at 23.5bar and 64Nm3/h.

(b) Pressure profile of the NSD
12 at 10.513bar and 60Nm3/h.

Figure 7.10.: Total pressure profiles in [bar].

7.1.6. Time regime for laser cutting
When assessing a laser cut, beside the absence of a burr on the lower cut edge, the
surface quality of the cut flank, and especially the grooved structure is of importance.
Because of this, studies will be made as to whether there is a correlation between
striation frequency and pressure fluctuations in the cutting gas.
With the counting of the striation frequency a general frequency of several 10Hz

results. In the example shown in Figure 7.11, this corresponds to about 40Hz via
calculation with the cutting feed rate. The time needed for the creation of a striation
is therefore 20ms.

Figure 7.11.: Counting the striation (frequency) under a microscope.

7.2. Numerical investigation
In this section, we will present the setup and results of the simulations conducted with
the discontinuous Galerkin code HALO, especially regarding to the unsteady behavior
of the flow. The above mentioned simple kerf models with two different nozzles are

128

investigated. The model consists of the nozzle positioned over a plate (t = 15mm)
with an existing kerf, see Fig. 7.12a. The simulation is done for the half model with a
symmetry boundary condition in the symmetry plane. The nozzle has a fixed position
and all wall boundary conditions are isothermal at ambient conditions, in order to
reproduce the experimental setup.

7.2.1. Meshes and boundary conditions

(a) (b)

Figure 7.12.: CAD geometry and volume mesh of the half model for the hole nozzle.

(a) (b)

Figure 7.13.: Boundary Conditions and volume mesh of the half model for the NSD
12 nozzle.

129

nitrogen, gas constant R = 296.8J/(kgK) viscosity µ = 1.663× 10−5m2/s

ambient pressure p∞ = 101325Pa inlet pressure p0 = p∞ + pgauge

ambient temp. T∞ = 293.15K inlet & wall temp. T0 = Twall = T∞

ambient density ρ∞ = 1.164kg/m3 inlet density ρ0 = p0/(RT0)

Table 7.3.: Fluid properties and boundary conditions

The meshes are displayed in Fig. 7.12band Fig. 7.13b. The hole nozzle is a high
pressure configuration, in which the gauge pressure at the nozzle inlet is at pgauge = 21
bar, and the NSD 12 nozzle has a gauge pressure of pgauge = 10 bar. Both setups
yield high Mach numbers and strong shocks inside the kerf. The boundary conditions
are listed in Table 7.3, together with the fluid properties. The hybrid mesh consists
of 755,908 cells (747,116 tetrahedra) for the hole nozzle and 979,079 cells for the NSD
12 nozzle, resulting in 3.02 and accordingly 3.92 Million DOF using a 2nd order dis-
cretization. For a third order computation, the number of degrees of freedom increases
by a factor of 2.5.

7.2.2. Initialization and shock capturing
The initialization of the unsteady simulation has to be done carefully. First, we simply
initialized the domain with a constant pressure. Due to the high pressure ratio, this
strongly increased the simulation time, since the transient start of the flow was be
reproduced, making the simulation nearly unfeasible. Instead, a steady state solution
produced by FLUENT, which is already available for these test cases, was used to
initialize the unsteady simulation. Now, the unsteady flow is fully developed after
0.8ms simulation time, or accordingly ≈ 1000 core-h. The initial flow field and the
fully developed unsteady flow through the hole nozzle and the kerf is shown Fig. 7.14.

In areas of strong shocks, artificial viscosity is applied for stabilization of the HALO
code. The location and the strength, detected by a density indicator is shown in
Fig. 7.15. The shocks are well detected. In addition, high values at the nozzle exit,
where no strong shocks occur, may indicate that the mesh in this area is too coarse.

7.2.3. Parallel Performance
Several simulation runs were performed on the HLRS CRAY XE6 system with 512 and
2048 cores. The simulation runs are listed in Table 7.4. For the hole nozzle and the
second order simulation, the overall computational effort for simulating t = 3.09ms
sums up to 4326 core-h. Looking at the core-h needed for 1ms simulation time, the
strong scaling from 512 to 2048 cores is still 84%. The computational effort per ms
simulation time is about 1500 core-h. A third order computation was also conducted
for the hole nozzle, thus the number of DOF increased by a factor of 2.5 and the

130

Figure 7.14.: Mach number distribution in the yz and xy plane. Left: steady
state FLUENT solution. Right: instantaneous HALO solution after
t = 0.85ms.

computational effort increases by a factor of 6. In the test case description, d0 is
the strength of the shock capturing viscosity. It can be reduced for the third order
computation due to the higher resolution. However, the viscosity reduces the time-
step inside the grid cell, but since the code is able to do local time stepping, this only
leads to a higher local time stepping factor (LTS = ratio of the smallest time-step to
the mean overall time-step). The LTS factor gives us the gain in computational effort
compared to a global time stepping scheme. The computational effort for the NSD 12
nozzle was nearly the same, about 1400 core-h per ms simulation time.

7.2.4. Results
In this section, the HALO simulation results are compared to the steady state FLUENT
solution and the measurements. First we will show the results for the NSD 12 nozzle
and proceed then with the evaluation of the hole nozzle.
The DG scheme has a factor of 4 time more DOF on the same mesh for second

order. The comparison of the velocity magnitude in Fig. 7.2.4 between the FLUENT
and the HALO simulation shows the higher resolution of the DG scheme. Especially
on the upper plate surface and the cutting edge, finer structures can be seen. Since the
HALO solution is started from the stationary FLUENT solution, the shock positions
fluctuate strongly for approximately 0.8ms and reach then quasi-stationary positions
with small fluctuations due to the turbulent flow. To be able to compare the data,
the instationary solution is averaged in time, starting at 0.9ms, to skip the transient
starting phase. In Fig. 7.17, the results are compared between FLUENT and HALO
at a gauge pressure of 10bar and a second simulation was conducted with HALO for
a changed gauge pressure of 9.5 bar. This computation shows on the one hand the
influence of small pressure changes in the shock positions, on the other hand it helps to

131

Figure 7.15.: Shock indicator showing strong variations in density

compare with the measurement data, which was also recorded at this gauge pressure.
Due to the change in pressure, the lower shock position moves approximately 0.5mm
upwards, and the angle between the shock and the nozzle axis also changes about 4
degrees. The circles in Fig. 7.17 show the position of the pressure tappings.
If a shock is near the tapping, large pressure variation over the diameter occurs

(1c, 3a, 4c). Since small difference in shock position can cause strong deviations if we
only compare the pressure at the tappings, the mean flow data was extracted along
horizontal lines a,b,c going through the tappings, from position 1-4 from left to right.
The pressure is normalized to the inlet pressure, so that different inlet pressures can
be compared. In Fig. 7.2.4 this is plotted versus the experimental data.
For the uppermost line (a), the pressure distribution of both simulations match

well with experimental data. For the middle and the lower line (b,c) the differences
at the pressure tappings are very high, mainly caused again by small differences in
shock positions. This effect can be seen in particular at position 4b, where the FLU-
ENT simulation under-predicts the pressure and both HALO solutions over-predict
the pressure. Thus due to the different numerical schemes, both on a very coarse
mesh, small differences in the flow pattern are produced. Also on the experimental
side, the alignment between the nozzle and the kerf will have strong influence on the
measured data.
In the following part, the same investigations are shown for the hole nozzle. The

mesh resolution inside the kerf is the same as for the NSD 12 nozzle. We first show the
difference of the FLUENT and the HALO simulation in Fig. 7.2.4. Again, the HALO
simulation tends to resolve finer flow features.
The comparison between FLUENT and HALO is shown Fig. 7.20a and b. The

pressure distribution is very similar, the overall pressure level is slightly lower in the
HALO Solution and at the cutting edge, the flow separates later, in the region of

132

#cores DOF per
core

start - end
sim.time

[ms]

wallclock
time [h]

core-h
core-h per

[ms]
sim.time

tCPU per
(∆tDOF)

[µs]

Hole nozzle, O2, d0 = 500. tsim = 3ms. LTS: 100
512 5906 0.00 - 0.89 2.34 1197 1344 28.06
2048 1476 0.89 - 1.57 0.53 1092 1605 32.94
512 5906 1.57 - 3.09 3.98 2037 1340 27.99

Hole nozzle, O3, d0 = 300/250. tsim = 1.2ms. LTS: 150
512 14764 4.00 - 4.28 7.46 3818 13636 34.14
512 14764 4.28 - 4.49 3.86 1975 9403 27.28
2048 3691 4.49 - 5.26 3.99 8176 10618 29.30

NSD 12 nozzle, O2, d0 = 500. tsim = 3.7ms. LTS: 32
512 7649 0.13 - 1.53 3.99 2042 1459 20.94
512 7649 1.53 - 2.22 1.90 972 1409 20.27
512 7649 2.22 - 3.68 3.99 2045 1401 20.15

Table 7.4.: Parallel laser cutting device simulations on the HLRS CRAY XE6 system.

Figure 7.16.: Distribution of the velocity magnitude for the NSD 12 nozzle, computed
with FLUENT (left) and the instationary solution with HALO(right)
after 3.68ms.

133

(a) (a) (b) (b) (c) (c)

Figure 7.17.: Mean pressure distribution in the symmetry plane for (a), HALO O2 (b)
and HALO O2 with pgauge = 9.5 bar (c) for the NSD 12 nozzle.

Figure 7.18.: Pressure profiles along the lines a, b and c for the NSD 12 nozzle.

134

Figure 7.19.: Distribution of the velocity magnitude for the hole nozzle, computed
with FLUENT (left) and the instationary solution with HALO(right)
after 3ms.

pressure tapping 1c. For this test case, a third order computation was conducted
on the same mesh, yielding a higher resolution. The difference to the second order
solution can be seen in Fig. 7.20b and c. Already at the nozzle exit, boundary layers
can be resolved for the third order case, and thus the flow pattern changes. Also the
shock on the right of position 4c disappears, and the shock positions change, and the
overall pressure level is higher.

(a) (a) FLUENT (b) (b) HALO O2 (c) (c) HALO O3

Figure 7.20.: Mean pressure distribution in the symmetry plane for the hole nozzle.

It is difficult to judge which simulation now represents the correct pressure distribu-
tion in the kerf. The third order computation is the closest to the computations. see
Fig.7.2.4. However, higher resolution simulations must be done to ensure this claim,
either by refining the mesh of increasing the order of the DG scheme. The uppermost

135

line (a) shows again good agreement with the experiment. The differences in the mid-
dle line (b) are much smaller in comparison with the results from the NSD 12 nozzle.
This may be caused by the absence of a dominant shock and a homogeneous pressure
distribution. Similarly, this carries over to line c. In general, the pressure distributions
of the simulations are very similar and only differ by a constant offset.

Figure 7.21.: Pressure profiles along lines a, b and c for the hole nozzle test case.

� � � �

�

�

�

(a)
(b)

Figure 7.22.: Nomenclature of the pressure tappings and temporal evolution of the
pressure at these positions.

At specific record points, pressure data is tracked in time during the simulation.
They are chosen to match the pressure tappings of the experiment, with a diameter
of d = 0.5mm, see Fig. 7.22a. In the HALO simulation, it was found that the flow
is inherently unsteady inside the kerf, with a turbulent shear layer and oscillating
shocks. In Fig. 7.22b, the temporal evolution of the pressure is plotted. In Table 7.5,
the root mean square of the pressure fluctuations is shown. The largest fluctuations are
found at 1c, 3a, 4a, 4b, 4c, which are all tappings lying in proximity to shocks or shear
layers. At position 1c, the strongest fluctuations are found. Here, we transformed the

136

pressure fluctuations in the time interval t = 0.1− 0.3ms by a Fourier transform, see
Fig. 7.23. The gray shaded area indicates the limit of the frequency resolution. The
lowest resolved frequency for a time interval of 2ms is 10/2ms = 5000Hz (a minimum
of 10 modes). For the tapping 1c, there is no unique peak frequency, but the maximum
peak is around 10, 000Hz.

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c

mean [bar] 2.36 0.41 0.63 0.48 0.30 0.23 0.61 0.22 0.20 0.91 0.54 0.48

RMS [mbar] 7.5 0.1 138 0.3 0.09 0.05 70.7 0.06 0.05 45.6 44.4 84.9

Table 7.5.: Pressure fluctuations at the pressure tappings.

Figure 7.23.: Fourier transform of pressure fluctuations at tapping 1c (gray: unresolved
frequencies).

7.2.5. Speed-up experiments with FLUENT
In the framework of the BMBF project, not only should the understanding of the
process be improved, but knowledge should be gained concerning what a technical
solution at TRUMPF should look like in the medium-term, in order to do parameter
research profitably and effectively and with its help optimize nozzle geometry. For the
evaluation of the profitability or effectiveness, the necessary computing time or the
necessary number of licenses are, beside the physical quality of the calculation results,
also a decisive factor. At present, TRUMPF’s obtaining of licenses of commercial
programs is minimal, as the benefits for daily business have not justified the relatively

137

high costs for flow solvers. Because of this it has become a project target for TRUMPF
to investigate which physical result quality can be achieved with which hardware and
software means in a given time frame. In order to obtain the first estimate of the
potentially necessary resources, an investigation was made as to how the computing
machine used and the number of processors affect the computing time for a given test
case using Fluent. The stationary calculations for the hole nozzle serve here as the
test case. The time needed for each case will certainly be the time needed to solve
5000 iterations. The test case was calculated on a "TRUMPF CAD computer" and
on the Nehalem Cluster of the HLRS with varying numbers of processors.
The TRUMPF computer has an Intel Core2 E6600 processor with 2.4GHz and

3.5GB RAM. The computing time for the 5000 iterations was 9.23 hours on the
TRUMPF system using both processors.
An experiment was done on the Nehalem Cluster to determine the influence of the

number of processors on the computing time. Table 7.6 provides an overview of the
calculations performed and the computing time of the test case depending on the
number of processors used.

Number of processors 1 2 4 6 8 16 28 32
Computing time [h] 9.56 4.73 2.52 2.07 1.57 0.8 0.5 0.48

Table 7.6.: The computing duration of the test case depending on the number of pro-
cessors used.

The comparison of the computing time needed by 2 processors shows that simply
due to the change from the existing desktop architecture to processors with Nehalem
architecture the computing time can be halved. Beyond that the speed-up experiment
at HLRS reveals that the computing time is reduced in a linear manner up to the use
of 4 processors, see Figure 7.24. When using many processors the computing time lags
behind the theoretically needed time or the calculations aborted which can certainly
be traced back to the smaller domain sizes.

138

Figure 7.24.: Evaluation of the speedup test for FLUENT.

7.3. ZFS
To demonstrate the general applicability of the Cartesian flow solver “ZFS” developed
at AIA for Large-Eddy simulations of compressible flows to the considered laser cutting
nozzle, a first feasibility study for the hole nozzle EAA has been carried out using sim-
plified boundary conditions. The flow solver is based on Cartesian meshes and applies
a finite volume cut-cell method to treat embedded boundaries. This enables automatic
grid generation and boundary treatment even for complex technical geometries with
sharp edges and complex details [11, 10] . For the feasibility study the nozzle exit of
the EAA nozzle has been positioned 18mm above a solid surface. The region between
the nozzle and this surface where the fluid streams out of the nozzle is assumed to
be block-shaped and extends up to half of the nozzle height in the surface normal
direction. The extension in the directions parallel to the solid surface is 90mm. The
automatically generated Cartesian grid which is displayed in Fig. 7.3 is refined on all
boundaries at which a no-slip condition is applied and consists of approximately 2.5
million cells.
To minimize the computational costs and to enable the application of the existing

subsonic boundary conditions, the pressure difference between the inflow boundary at
the upper nozzle cross section and the outflow boundaries at the boundary surfaces
of the block-shaped domain has been prescribed such that the resulting flow field has
a Mach-number M = 0.11 and a Reynolds number Re = 600 with respect to the
maximum velocity in the nozzle exit and the nozzle exit diameter. The resulting flow

139

Figure 7.25.: Cartesian grid with boundary refinement for the simulation of the flow
through the hole nozzle EAA.

field and the pressure distribution are shown in Fig. 7.3. A simulation of the flow
field at boundary conditions which are comparable to the boundary conditions of the
realistic application would require the implementation of suitable supersonic boundary
conditions as well as a higher mesh resolution and therefore would be considerably
more involved. These works were not scheduled in the work program and could not be
pursued in more detail due to a lack of time. However, in principle flow simulations
with the respective extensions seem to be possible.

Figure 7.26.: Flow through the hole nozzle EAA: (left) Mach number distribution and
flow direction, (right) pressure distribution.

140

8. High-Lift Aerodynamics

8.1. HGR-01 Profile at High Angle of Attack
In this study, the configuration at an angle of attack of 12o with a laminar sep-
aration bubble and trailing-edge separation is simulated at a Reynolds number of
Rec = 0.65 · 106 based on the chord length c. Results of a pure LES computation are
used as reference data for a fully coupled zonal RANS-LES solution. The transition at
the upper surface is predicted by the LES while the lower surface is entirely laminar.

Figure 8.1.: LES grid with 32 blocks
51M grid point

Figure 8.2.: Zonal grid (red = LES, black
= RANS)
13M grid points

The grid resolution for the pure LES computation and the LES domain of the zonal
RANS-LES simulation is chosen according to Zhang et al. [35]. The resolution of the
pure LES grid in the stream-wise, wall normal, and span-wise direction of ∆x+ ≈ 100,
∆y+min ≈ 1 and ∆z+ ≈ 20, respectively, results in a mesh with 51.4 · 106 grid points.
The span-wise extension of the grid is 0.02c. Using the same grid resolution and span-
wise extension for the LES domains in the zonal RANS-LES grid, the total number of
grid points was reduced by a factor of 4 to 13.2 · 106 grid points. The grid for the pure
LES computation is depicted in Fig. 8.1 and exist out of 32 blocks.
The complexity of this test case for a zonal RANS-LES approach not only lies in the
simulation of the different flow phenomena but also in positioning the LES domains
and the transition from the RANS into LES domains and vice versa. These transition
regions are located at positions in the flow where different conditions exist, such as lam-
inar and turbulent flow and both positive and negative pressure gradients. One LES
domain surrounds the leading edge to capture the LSB and the laminar-to-turbulent
transition. A second LES region is located at the trailing edge to accurately predict
the highly unsteady behavior of the trailing edge separation. The rest of the computa-

141

tion domain is meshed with a RANS grid. An overview of the grid lay-out around the
HGR-01 airfoil can be found in Fig. 8.2, which applies 6 RANS and 10 LES blocks.
The flow dynamics simulated in the LES domains around the leading edge and the
trailing edge are visualized in Fig. 8.3. The LSB and the laminar-to-turbulent transi-
tion are visualized by λ2 structures in Fig. 8.3(a). The vortex shedding of the LSB is
clearly visible as well as the three-dimensionality of the flow after transition. Fig. 8.3(b)
visualizes the flow at the trailing-edge separation and the large vortex structures in
the wake.

(a) Close-up of leading edge (b) Close-up trailing edge

Figure 8.3.: λ2 structures from the zonal computation showing the LSB and laminar-
to-turbulent transition at the leading edge and the turbulent separation
at the trailing edge, mapped on Mach number and stream-wise velocity
respectively.

Fig. 8.4 shows the averaged pressure coefficient cp. The gray shaded areas represent
the LES domains around the leading and the trailing edge. A smooth transition from
the RANS- to the LES zone can be observed. Precise simulation of the LSB at the lead-
ing edge is essential for the flow dynamics of the entire airfoil. The difficulty herein
comes from the position of the LES inflow boundary upstream of the leading edge,
with a large negative pressure gradient from the incoming flow. The close-up clearly
visualizes the ability of the zonal method to capture the position and length of the
LSB. The small deviation with respect to the experiments depends on the absence of
free-stream turbulence in the pure LES and the zonal computation. From the pressure
distribution in Fig 8.5(a) and the skin-friction coefficient in Fig. 8.5(b) it can be seen
that the LSB is slightly shorter than for the pure LES data, however, still somewhat
longer than the experimental data. The skin-friction coefficient also shows a slightly
smaller negative friction peak at the end of the LSB, indicating the smaller height of
the bubble as seen from the velocity profiles shown in Fig. 8.6.

142

Figure 8.4.: Pressure coefficient cp at upper and lower side of the HGR-01 airfoil for
the zonal RANS-LES, pure LES computations, and experiments.

(a) Close-up of cp over x/c (b) Close-up of cf over x/c

Figure 8.5.: Pressure coefficient cp and skin-friction coefficient cf close-up of the lead-
ing edge of the HGR-01 airfoil for the zonal RANS-LES and pure LES
computations.

143

The velocity profiles in Fig. 8.6 are positioned at several stream-wise positions on
the upper surface of the HGR-01 airfoil. The profiles from left to right represent the
LSB at 0.012 c, the LES-to-RANS transition at 0.14 c and three profiles in the trailing
edge LES region, i.e. at 0.68 c, 0.85 c and 0.95 c. The results of the averaged zonal
RANS-LES and the pure LES are compared, at the trailing edge separation region
particle-image velocimetry (PIV) data are used to validate the numerical results. The
PIV results depend on the span-wise position and show a small three-dimensional effect
in the trailing-edge separation. The maximum span s of the experimentally investi-
gated airfoil is 3.25 s/c and the visualized PIV results represent the velocity profiles at
1.6, 1.9 and 2.6 s/c respectively. Both the reference pure LES computation as well as
the zonal RANS-LES simulation show good agreement with the PIV measurements.

0 1 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

U
t
 / U

∞

D
is

ta
n

c
e
 t

o
 w

a
ll
 (

−
)

1.2% Chord

−0.5 0 0.5 1 1.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

U
t
 / U

∞

14% Chord

−0.5 0 0.5 1 1.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

U
t
 / U

∞

68% Chord

−0.5 0 0.5 1 1.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

U
t
 / U

∞

85% Chord

−0.5 0 0.5 1 1.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

U
t
 / U

∞

95% Chord

PIV s/c = 1.6

PIV s/c = 1.9

PIV s/c = 2.6

pure LES

zonal RANS−LES

Figure 8.6.: Velocity profiles at different stream-wise positions for zonal RANS-LES,
pure LES computations and experiments.

The importance of this test case can be found in the correct simulation of the LSB
together with the laminar-to-turbulent transition, as these phenomena influence the
entire flow field around the airfoil. The position of the trailing-edge separation and
the velocity profiles in the re-circulation zone show that flow characteristics are well
transferred from the LES region around the leading edge to the RANS domain at the
upper surface and again into the LES region at the trailing edge.

The fact that the zonal RANS-LES method is capable of reproducing these phenomena
with high precision demonstrates the capabilities of the zonal RANS-LES method to
determine the airfoil aerodynamics such as the lift and drag coefficients at high angles
of attack. Table 8.1 shows a comparison of the characteristic values with respect to

144

LES ZONAL Experiments RANS
Lift Cl 1.366 1.426 1.370 1.53
Drag Cd 0.0403 0.0414 0.032 0.028

Table 8.1.: Lift and drag comparison

the pure LES computation, the experiments, and RANS data [34]. The lower drag
coefficient for the experiments can be explained by the fact that only the pressure com-
ponent of the drag is measured with pressure probes on the upper and lower surface.
The RANS overestimates the lift and underestimates the drag due to the fact that the
RANS model predicts the turbulent separation point too far backwards to the trailing
edge.

8.2. 2-Element High-Lift Configuration
A second validation for the industrial application of airfoil aerodynamics, is the simu-
lation of the flow around a 2-element high-lift configuration of an airfoil with extended
flap at the leading edge. Using the zonal RANS-LES method for complex geometries
is translated here in a reduction in grid size with a factor 10 with respect to a pure
LES grid. Figure 8.7 shows the grid topology of the high-lift test-case.
In figure 8.8, the time-averaged Mach number contours and streamlines around the
profile leading edge and slat are shown. Smooth transitions between RANS and LES
domains are attained

145

Figure 8.7.: Zonal grid for a swept 2-
element high-lift configura-
tion, Red = LES grid, Black
= RANS grid.

Figure 8.8.: Mach number contours and
streamlines at the profile lead-
ing edge and slat

146

9. Summary

147

A. Appendix

A.1. Performance maps for the HALO Code on current
supercomputing architectures

148

 0

 2

 4

 6

 8

 10

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

16 cores

32 cores

(a) 2nd-order

 0

 5

 10

 15

 20

 25

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

16 cores

32 cores

(b) 4th-order

 0

 5

 10

 15

 20

 25

 30

 35

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

16 cores

32 cores

(c) 6th-order

Figure A.1.: Intra-node performance maps for the Hermit system for different spatial
orders and a fixed temporal order of three.

149

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

(a) 2nd-order

 0

 2

 4

 6

 8

 10

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

(b) 4th-order

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

(c) 6th-order

Figure A.2.: Intra-node performance maps for the Laki system for different spatial
orders and a fixed temporal order of three.

150

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

(a) 2nd-order

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

(b) 4th-order

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

8 cores

(c) 6th-order

Figure A.3.: Intra-node performance maps for the Juropa system for different spatial
orders and a fixed temporal order of three.

151

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

6 cores

8 cores

10 cores

12 cores

(a) 2nd-order

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

6 cores

8 cores

10 cores

12 cores

(b) 4th-order

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size

1 core

2 cores

4 cores

6 cores

8 cores

10 cores

12 cores

(c) 6th-order

Figure A.4.: Intra-node performance maps for the Cluster at the RZ of RWTH Aachen
University for different spatial orders and a fixed temporal order of three.

152

 0

 2

 4

 6

 8

 10

 12

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size per node

1 node

2 nodes

16 nodes

128 nodes

1024 nodes

2048 nodes

3072 nodes

(a) 2nd-order

 0

 5

 10

 15

 20

 25

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

2 nodes

16 nodes

128 nodes

1024 nodes

2048 nodes

3072 nodes

(b) 4th-order

 0

 5

 10

 15

 20

 25

 30

 35

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

2 nodes

16 nodes

128 nodes

1024 nodes

2048 nodes

3072 nodes

(c) 6th-order

Figure A.5.: Inter-node performance maps for the Hermit system for different spatial
orders and a fixed temporal order of three.

153

 0

 1

 2

 3

 4

 5

 6

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

(a) 2nd-order

 0

 2

 4

 6

 8

 10

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

(b) 4th-order

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

(c) 6th-order

Figure A.6.: Inter-node performance maps for the Laki system for different spatial
orders and a fixed temporal order of three.

154

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

256 nodes

(a) 2nd-order

 0

 2

 4

 6

 8

 10

 12

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

256 nodes

(b) 4th-order

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

8 nodes

64 nodes

256 nodes

(c) 6th-order

Figure A.7.: Inter-node performance maps for the Juropa system for different spatial
orders and a fixed temporal order of three.

155

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

 1
e
+
0
6

G
F

L
O

P
s

Problem size per node

1 node

2 nodes

4 nodes

8 nodes

16 nodes

32 nodes

64 nodes

(a) 2nd-order

 6

 8

 10

 12

 14

 16

 18

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

(b) 4th-order

 8

 10

 12

 14

 16

 18

 20

 22

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

G
F

L
O

P
s

Problem size per node

1 node

(c) 6th-order

Figure A.8.: Inter-node performance maps for the cluster at the RZ of RWTH Aachen
university for different spatial orders and a fixed temporal order of three.

156

Bibliography

[1] D. J. Bodony. Analysis of sponge zones for computational fluid mechanics. Journal
of Computational Physics, 212:681–702, 2006.

[2] C. Bogey and C. Bailly. Three–dimensional non–reflective boundary conditions
for acoustic simulations: far field formulation and validation test cases. ACTA
Acustica United With Acustica, 88:463–471, 2002.

[3] C. Bogey and C. Bailly. Large eddy simulations of round free jets using explicit
filtering with/without dynamic smagorinsky model. International Journal of Heat
and Fluid Flow, 27(4):603 – 610, 2006.

[4] J. P. Boris, F. F. Grinstein, E. S. Oran, and R. L. Kolbe. New Insights into Large
Eddy Simulation. Fluid Dynam. Res., 10:199–228, 1992.

[5] M. Brachet. Direct simulation of three-dimensional turbulence in the Taylor–
Green vortex. Fluid Dynamics Research, 8(1-4):1 – 8, 1991.

[6] R. Ewert and W. Schröder. Acoustic perturbation equations based on flow de-
composition via source filtering. Journal of Computational Physics, 188:365–398,
2003.

[7] G. Gassner, F. Lörcher, and C.-D. Munz. A contribution to the construction of
diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput.
Phys., 224(2):1049–1063, 2007.

[8] G. Gassner, F. Lörcher, and C.-D. Munz. A discontinuous Galerkin scheme based
on a space-time expansion. II. Viscous flow equations in multi dimensions. J. Sci.
Comp., 34(3):260–286, 2008.

[9] C.-D. M. Gregor J. Gassner, Florian Hindenlang. A Runge-Kutta based Discon-
tinuous Galerkin Method with Time Accurate Local Time Stepping, volume 2 of
Advances in Computational Fluid Dynamics. World Scientific, 2011.

[10] C. Günther, D. Hartmann, L. Schneiders, M. Meinke, and W. Schröder. A carte-
sian cut-cell method for sharp moving boundaries. AIAA Paper, 2011-3387, 2011.

[11] D. Hartmann, M. Meinke, and W. Schröder. A strictly conservative cartesian
cut-cell method for compressible viscous flows on adaptive grids. Comput. Meth.
Appl. Mech. Eng., 200:1038–1052, 2011.

[12] S. Hickel. Implicit turbulence modeling for large-eddy simulation. PhD thesis, TU
Dresden, 2005.

157

[13] F. Hindenlang, G. Gassner, T. Bolemann, and C. Munz. Unstructured high order
grids and their application in discontinuous Galerkin methods. In Proceedings
of the V European Conference on Computational Fluid Dynamics ECCOMAS
CFD 2010 J. C. F. Pereira, A. Sequeira and J. M. C. Pereira (Eds),Lisbon,
Portugal,14-17 June 2010, 2010.

[14] T. Hoefler, C. Siebert, and A. Lumsdaine. Scalable communication protocols
for dynamic sparse data exchange. In Proceedings of the 15th ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP ’10, pages
159–168, New York, NY, USA, 2010. ACM.

[15] F. Hu, M. Hussaini, and J. Manthey. Low-dissipation and low-dispersion runge-
kutta schemes for computational acoustics. J. Comput. Phys., 124:177–197, 1996.

[16] N. Jarrin, N. Benhamadouche, S. Laurence, and D. Prosser. A synthetic-eddy-
method for generating inflow conditions for large-eddy simulations. Journal of
Heat and Fluid Flow, 27:585–593, 2006.

[17] S. Johansson. High order finite difference operators with the summation by parts
property based on DRP schemes. Technical Report 2004-036, it, Aug. 2004.

[18] H. Klimach and S. Roller. Distributed coupling for multi-scale simulations. In
P. Ivanyi and B. Topping, editors, Proceedings of the Second International Confer-
ence on Parallel, Distributed, Grid and Cloud Computing for Engineering. Civil-
Comp Ltd., 2011.

[19] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger. Optimization of All-
to-All Communication on the Blue Gene/L Supercomputer. In Proc. of the 37th
International Conference on Parallel Processing, pages 320–329, Washington, DC,
USA, 2008. IEEE Computer Society.

[20] M.-S. Liou and C. J. Steffen. A new flux splitting scheme. J. Comput. Phys.,
107:23–39, 1993.

[21] F. Lörcher. Predictor Corrector DG. PhD thesis, University of Stuttgart, 2008.

[22] F. Lörcher, G. Gassner, and C.-D. Munz. A discontinuous Galerkin scheme based
on a space-time expansion. I. Inviscid compressible flow in one space dimension.
J. Sci. Comp., 32(2):175–199, 2007.

[23] F. Lörcher, G. Gassner, and C.-D. Munz. An explicit discontinuous Galerkin
scheme with local time-stepping for general unsteady diffusion equations. J. Com-
put. Phys., 227(11):5649–5670, 2008.

[24] A. Mani. Analysis and optimization of numerical sponge layers as a nonreflecting
boundary treatment. Journal of Computational Physics, 231:704–716, 2012.

[25] M. Meinke, W. Schröder, E. Krause, and T. Rister. A comparision of second- and
sixth-order methods for large-eddy simulations. Comput. Fluids, 31:695 – 718,
2002.

158

[26] S. Miguet and J.-M. Pierson. Heuristics for 1d rectilinear partitioning as a low
cost and high quality answer to dynamic load balancing. In B. Hertzberger and
P. Sloot, editors, High-Performance Computing and Networking, volume 1225 of
Lecture Notes in Computer Science, pages 550–564. Springer Berlin / Heidelberg,
1997.

[27] A. Pinar and C. Aykanat. Fast optimal load balancing algorithms for 1d parti-
tioning. Journal of Parallel and Distributed Computing, 64(8):974 – 996, 2004.

[28] R. Rabenseifner. Optimization of Collective Reduction Operations. In M. Bubak,
G. D. van Albada, P. M. A. Sloot, and J. Dongarra, editors, International Con-
ference on Computational Science, volume 3036 of Lecture Notes in Computer
Science, pages 1–9. Springer, 2004.

[29] P. Sanders and J. Träff. Parallel Prefix (Scan) Algorithms for MPI. In B. Mohr,
J. Träff, J. Worringen, and J. Dongarra, editors, Recent Advances in Parallel
Virtual Machine and Message Passing Interface, volume 4192 of Lecture Notes in
Computer Science, pages 49–57. Springer Berlin / Heidelberg, 2006.

[30] O. Schönrock. Numerical Prediction of Flow Induced Noise in Free Jets of High
Mach Numbers. PhD thesis, The University of Stuttgart, 2009.

[31] A. Spille-Kohoff and H.-J. Kaltenbach. Generation of turbulent inflow data with
a prescribed shear-stress profile. August 2001. Third AFSOR Conference on DNS
and LES.

[32] C. K. W. Tam. Computational aeroacoustics: Issues and methods. AIAA Journal,
33:1788–1796, 1995.

[33] C. K. W. Tam. Advances in numerical boundary conditions for computational
aeroacoustics. Journal of Computational Acoustics, 6:377–402, 1998.

[34] R. Wokoeck, N. Krimmelbein, J. Ortmans, V. Ciobaca, R. Radespiel, and
A. Krumbein. RANS Simulations and Experiments on the Stall Behaviour of
an Airfoil with Laminar Separation Bubbles. AIAA Paper 2006-0244, 2006. 44th
AIAA Aerospace Sciences Meeting and Exhibit.

[35] Q. Zhang, W. Schröder, and M. Meinke. A zonal RANS/LES method to determine
the flow over a high-lift configuration. Comput. Fluids, 39:1241–1253, 2010.

159

	2-BMBF-01IH08010.pdf
	Introduction and Outline of the Project
	Motivation and Starting Point
	Outline

	Outline
	Numerical Methods for Time-Resolved Turbulent Flows
	LES with DG
	Zonal RANS-LES

	High Performance Computing
	Performance Metrics
	Serial Performance Map
	Parallel Performance Maps

	Performance and Debugging Tools
	Performance Optimizations
	General optimizations
	Parallel I/O
	Parallel algorithms
	Memory performance
	Communication patterns

	Performance Evaluation HALO
	Algorithmic behavior
	Serial Performance
	Intra-node Performance
	Inter-node Performance

	Performance Analysis of AIA codes
	Code scalability
	Benchmarking

	SPartA - Space-filling curve Partioning Algorithm
	Scaling Analysis
	Load-Balancing Quality
	Deployment in Application
	Conclusion

	Mesh Preprocessing for Highly Parallel Treatment
	Partitioning with the Space-Filling Curve
	Curved Mesh Generation

	Academic Test-cases
	Turbulence Modeling: Taylor-Green Vortex
	Turbulent Subsonic Round-jet

	Bosch Gas Injection Nozzle
	Test case description
	Compressed Natural Gas Injection
	Free-stream Configuration

	Aim of the project activity
	Experiments
	Shadowgraph measurements
	PIV measurements
	Acoustic measurements

	Simulations of Free-stream Configuration
	Simulation Setup
	Results and Validation
	Efficiency and Assessment of Turn-Around-Time

	Simulations of Parameter and Geometry Variations in Firestorm Configuration
	Variation of operating pressure
	Variation of silencer length

	Simulations of Intake Manifold Configuration
	Further Utilization of Results
	scientific utilization
	technical utilization
	economic utilization

	Laser Cutting Device
	Experiments
	Cutting nozzles examined
	Influence of the gas flow on the cut quality
	Pressure profile of both nozzles
	The simplified kerf
	Dynamic pressure profile
	Time regime for laser cutting

	Numerical investigation
	Meshes and boundary conditions
	Initialization and shock capturing
	Parallel Performance
	Results
	Speed-up experiments with FLUENT

	ZFS

	High-Lift Aerodynamics
	HGR-01 Profile at High Angle of Attack
	2-Element High-Lift Configuration

	Summary
	Appendix
	Performance maps for the HALO Code on current supercomputing architectures

