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1 Einleitung

Das vorliegende Dokument bildet den Schlussbericht für das Forschungsvorhaben 50 OY
0502

First Look - Fast Initial In-Orbit Identification of Scientific Satellites

Der Bericht ist in fünf Kapitel gegliedert plus einem Anhang. Die hier vorliegende Ein-
leitung bildet das erste Kapitel.

Im zweiten Kapitel werden die Aufgabenstellung und die damit verbundene Zielsetzung
des Forschungsvorhabens motiviert.

Gegenstand des dritten Kapitels ist die Struktur der Arbeitspakete und deren zeitli-
che Planung. Die in den jeweiligen Arbeitspaketen erzielten Ergebnisse werden dann
im vierten Kapitel vorgestellt. Zu einem gewissen Teil machten die Resultate Anpassun-
gen des weiteren Ablaufs erforderlich, die hier an entsprechender Stelle erläutert werden.

Kapitel fünf beschließt diesen Bericht mit einer Zusammenfassung der erbrachten Lei-
stungen und einer Bewertung ihres Nutzens für weitere gegenwärtige und zukünftige
Forschungsaktivitäten.

Während des Forschungsvorhabens wurden die erarbeiteten Ergebnisse in Form von
Technical Notes (TN) dokumentiert, die dem Bericht vollständig im Anhang beigefügt
wurden. Diese enthalten detaillierte Beschreibungen der durchgeführten Arbeiten.
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2 Aufgabenstellung

2.1 Motivation

Ziel des Projekts war die Entwicklung von Algorithmen und Modellen zur In-Orbit-
Identifikation von Satelliten und Experimentparametern bei wissenschaftlichen Missio-
nen, um damit die Qualität wissenschaftlicher Ergebnisse sicherzustellen.

Mit der voranschreitenden Entwicklung von Technologien verwenden Wissenschaftsmis-
sionen immer sensiblere Sensoren, die eine extrem störungsfreie Umgebung benötigen.
Beispiele hierfür sind Gaia, STEP oder die Gravity Probe B Mission (GP-B), dessen
Flug- und Messphase kurz nach Beginn des Projektes geendet hatte.

Infolge dieser Entwicklung sind zum einen die Messgeräte sehr stark mit dem Satelli-
tenbus verbunden. Zum anderen benötigt die Prozessierung der Messdaten einen langen
Zeitraum, ehe die wissenschaftlichen Ergebnisse vorliegen. Bei GP-B hat es etwa ein
Jahr gedauert, bis die Daten verfügbar waren. Das Endergebnis von Gaia wird erst ei-
nige Jahre nach Ende der Mission verfügbar sein.

Es stellt sich die Frage, wie man zu Beginn einer Mission gewährleisten kann, dass die
heute aufgenommenen Messwerte nicht mit unbekannten nicht-detektierbaren Fehlern
behaftet sind, die das Endergebnis in mehreren Jahren verfälschen. Eine Möglichkeit,
dies sicher zu stellen, ist die schnelle Prozessierung der ersten Messdaten, um das Sy-
stemverhalten von Satellit und Instrument(en) sowie deren Parameter zu identifizieren.
Diese Identifikation ermöglicht es, ein umfassendes Wissen über Satellit, Instrumente
und deren Verhalten aufzubauen. Damit wird es möglich, die Qualität der wissenschaft-
lichen Daten kontinuierlich zu überwachen und auf Fehler bzw. Parameterveränderungen
zu reagieren.

Für die o.g. Missionen besteht die Notwendigkeit, Methoden zur schnellen In-Orbit Iden-
tifikation zu entwickeln, die sehr schnell erkennen können, ob und wie das Gesamtsystem
funktioniert. Dies hat sich gerade bei der GP-B Mission gezeigt. Hier musste ein Mehr-
aufwand während der Kalibrationsphase betrieben werden, der nicht eingeplant war und
Zusatzkosten in Millionenhöhe verursacht hat.
Durch die enge Verbindung zwischen Satellit und Instrument liegt das Arbeitsgebiet
der Entwicklung solcher Identifikationsmethoden in der Nische zwischen zwei Diszipli-
nen: der wissenschaftlichen Datenauswertung und der Satellitentechnologie. Aus diesem
Grund muss das Wissen von beiden Seiten (Wissenschaft und Technologie) in die Ent-
wicklung einfließen.
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2.2 Stand der Forschung

Zu Beginn des Forschungsvorhabens gab es nur wenige Missionen, die umfassend, d.h.
einschließlich der Satellitendynamik, identifiziert worden waren. Bekanntestes Beispiel
hierfür ist die HIPPARCOS-Mission. Die Vermessung von Sternpositionen aus der Lage
des Satelliten hat eine genaue Identifikation des Satelliten erfordert, ohne die eine wis-
senschaftliche Datenauswertung nur teilweise bzw. mit geringerer Genauigkeit möglich
gewesen wäre.

Ein weiteres Beispiel ist die GP-B Mission, die die Messung und Untersuchung zwei-
er allgemein-relativistischen Effekte zum Ziel hatte: die des“Frame-Dragging-” und des
“Geodetic”-Effektes. Die Flug- und Messphase hatte erst kurz nach Beginn des Projektes
geendet und befand sich währenddessen in der Phase der Datenauswertung. Bei dieser
Mission wurden bereits speziell für diese entwickelte Verfahren angewendet. In Bezug
auf die besonderen Eigenschaften der Mission war dies einmalig, da GP-B bis dahin die
einzige wissenschaftliche Satellitenmission mit Drag-Free-Regelungssystem war.

2.3 Zusammenarbeit mit anderen Stellen

Die Arbeiten an HIPPARCOS und Gaia wurden in enger Abstimmung mit dem Institute
of Astronomy (IoA) der University of Cambridge (UK) durchgeführt, die bei der Pla-
nung und Umsetzung beider Missionen erheblich beteiligt war bzw. ist. Bezüglich GP-B
und STEP trifft dies in gleicher Weise auf das Hansen Experimental Physics Labora-
tory (HEPL) der Stanford University (USA) zu, die ebenfalls für eine Zusammenarbeit
gewonnen werden konnte. Somit konnten die Erfahrungen aus den Missionen aus erster
Hand und von vornherein in das Projekt einfließen.

2.4 Zielsetzung

Ziel des Vorhabens war die Ableitung und Entwicklung von allgemeinen Verfahren für
die schnelle In-Orbit-Identifikation von wissenschaftlichen Satelliten. Im Rahmen des
Vorhabens sollte auch die Anwendbarkeit und Anpassung gezeigt werden. Dazu wurden
aus den allgemeinen Verfahren auf einzelne Missionen zugeschnittene spezielle Methoden
abgeleitet. Im Einzelnen wurden die Missionen GP-B, Gaia und STEP betrachtet.

Mit dem o.g. Hauptziel des Vorhabens waren weitere technische und wissenschaftliche
Ziele verbunden. Diese waren unter anderem damit verknüpft, dass für die Identifika-
tionsverfahren Modelle entwickelt und in einer Simulation umgesetzt werden mussten.
Hier ist die Kooperation mit den Partnern in Cambridge und Stanford von immenser
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Bedeutung, da beiderorts Daten vorhanden waren, mit denen die Simulation, die Identifi-
kationsmodelle als auch die Identifikationsverfahren in ihrer Gesamtheit validiert werden
sollten. Daraus abgeleitet ergaben sich im wesentlichen die folgenden Ziele:

1. die Schaffung einer hochgenauen Simulationsumgebung, in die die Erfahrungen der
Projektpartner aus früheren Missionen einfließen,

2. die Validierung dieses Simulators und der enthaltenen Modelle mit Hilfe der bei
den Partnern vorhandenen Missionsdaten, und

3. die Erweiterung und Anwendung dieser Methoden auf zukünftige Missionen.
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3 Planung und Ablauf des Vorhabens

Das folgende Kapitel enthält eine kurze Zusammenfassung der Aufgaben, die den einzel-
nen Arbeitspaketen zugeordnet sind. Insgesamt war das Fördervorhaben in vier Haupt-
abschnitte mit den Bezeichnungen AP 1000 bis AP 4000 eingeteilt. Die genaue Aufteilung
der thematischen Ablaufs zeigt Abbildung 1.

Abbildung 1: Arbeitsaufteilung des Vorhabens

Das Vorhaben wurde auf eine Laufzeit von 48 Monaten, mit Start im Juli 2005 und Ende
im Mai 2009, ausgelegt. Die zeitliche Einordnung und Verteilung der Arbeitspakete ist
aus Abbildung 2 ersichtlich.

3.1 AP 1000: Durchsicht der
”
First Look“Aktivitäten

Dieses Paket beinhaltet die Aufarbeitung der Daten und Erfahrungen vergangener Mis-
sionen, speziell der HIPPARCOS Mission, die Vorgängermission zu Gaia, und der GP-B
Mission, in der Techniken eingesetzt wurden, die auch für den STEP-Satelliten in ähn-
licher und verbesserter Form zur Anwendung kommen sollen.
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Abbildung 2: Zeitplanung des Vorhabens

3.2 AP 2000: Interdisziplinäre Durchmusterung

Wie in 2.2 ausgeführt, gab es zu der Problemstellung des Projekts bislang kaum Unter-
suchungen. Daher wird mit dem AP 2000 eine Durchmusterung nach ähnlich gelagerten
Problemen mit entsprechenden Lösungsansätzen außerhalb des Raumfahrtsektors wie
Physik, Chemie, Luftfahrt, etc. initiiert. Hierfür wird die Problematik zunächst in einen
allgemeineren Zusammenhang gebracht, d.h. nicht mehr speziell auf Satellitensysteme
beschränkt, sondern entsprechend den wissenschaftlichen Feldern angepasst. Aufgefun-
dene Lösungsmethoden sollen dann auf die projektbezogene Problematik übertragen
werden.

3.3 AP 3000: Verbesserung des globalen
”
First Look“

Dieses Arbeitspaket beinhaltet die Umsetzung der übertragenen Kenntnisse und die
Entwicklung von Methoden und Techniken. Die Vorleistungen aus beiden Arbeitspa-
keten werden benutzt, um einen allgemeinen Ansatz zur

”
First Look“–Zielfindung zu

formulieren und zu entwickeln. Neben den theoretischen Kenntnissen, welche in den Ar-
beitspaketen AP 1000 und AP 2000 vermittelt wurden, gibt es praktische Erfahrungen
darüber, wie technische Sachverhalte angegangen werden können und welche Fehler bei
der Entwicklung eines

”
First Look“–Hilfsmittels zu vermeiden sind. Dieses Fachwissen

kann nur durch die Anstrengung einer gemeinsame Durchführung weiter gegeben werden,
wozu das AP 3000 ebenfalls die Gelegenheit bietet.

3.4 AP 4000: Anwendung auf Referenz-Missionen

In diesem Arbeitspaket schließlich sollen die erarbeiteten und getesteten Methoden auf
zwei geplante Referenz-Missionen angewendet werden. Wie oben beschrieben sind dafür
die Gaia- und die STEP-Mission ausgewählt worden.
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4 Ergebnisse der Arbeitspakete

4.1 AP 1000

Eine Bestandsaufnahme verschiedener Satellitenmissionen hat gezeigt, dass neben den
bereits genannten Missionen HIPPARCOS, Gaia, GP-B und STEP Planungen einer Rei-
he weiterer Missionen existieren, bei denen eine In-orbit-Identifikation der Daten erfor-
derlich ist oder werden könnte. Dazu gehören beispielsweise die MICROSCOPE-Mission,
die wie STEP das Testen des Äquivalenzprinzips zum Ziel hat, die LISA-Mission zur
Messung von Gravitationswellen oder LISA-Pathfinder, die eine technologische Demon-
stration von LISA darstellt. Die Durchmusterung ergab weiterhin, dass es sehr viele
Gemeinsamkeiten zwischen all diesen Missionen gibt, die sich durch gleiche Modelle und
Methoden beschreiben lassen.

Die Veröffentlichung der Ergebnisse von der GP-B Mission, welche für eine Weiterver-
arbeitung innerhalb des

”
First Look“–Projektes hätten benutzt werden sollen, wurde

auf Grund zweier in ihrer Charakteristik unvorhergesehener Effekte in den Daten immer
wieder verschoben. Zum einen sah man ein leichtes, kreisförmiges Schwanken des Expe-
rimentes, verursacht durch einander überlagernde Ungenauigkeiten in den Gyroskopen,
mit einer zusätzlichen allmählichen Verlangsamung ihrer Drehbewegungen. Zum ande-
ren entdeckte man ein Drehmoment an den Gyroskopen, welches erst nach Ende der
Datennahme entdeckt wurde. Dieses entstand, als das Teleskop des Satelliten zeitweilig
den Referenz-Stern nicht mehr im Gesichtsfeld hatte. Es ist möglicherweise mit klei-
nen elektrische Feldern assoziiert, die zwischen einigen Satellitenkomponenten auftra-
ten. Eine schnelle Fehleranalyse ergab lediglich die Erkenntnis, dass das Problem ziem-
lich tiefliegend wäre. Die Erfahrungen aus dieser Situation können zumindest helfen,
zukünftige Missionen mit einer

”
Drag-Free“–Technologie besser vorzubereiten, insbes.

durch die Entwicklung und Verwendung einer Simulationssoftware, welche die gekoppel-
te Satelliten–Nutzlast-Dynamik widerspiegeln kann, um das in-situ Betriebsverhalten
des integrierten Satelliten abzubilden. Des Weiteren ist GP-B ein gutes Beispiel für die
enge Kooperation zwischen Ingenieuren und Wissenschaftlern, einen optimalen Betrieb
der wissenschaftlichen Instrumente zu realisieren.

Für Gaia konnte früher als erwartet mit dem Aufbau eines Simulators begonnen werden.
Das hatte zwei wesentliche Gründe: Erstens hatte der Projekt-Partner vom Institute of
Astronomy (IoA) zu Beginn des Jahres 2007 eine sehr umfangreiche Analyse des Da-
tenmaterials der HIPPARCOS-Mission veröffentlicht, die wegen der 10-jährigen Arbeit
daran wesentlich detaillierter durchgeführt worden war als noch im Arbeitspaket AP
1200 vorgesehen. Eine erneute Prozessierung der Daten innerhalb dieses Projektes sah
man daher übereinstimmend als nicht mehr erforderlich an. Zweitens gewannen die Pläne
für die Umsetzung der Gaia-Mission sehr schnell an Substanz, so dass die notwendigen
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Aufgaben, die im Rahmen von
”
First Look“geleistet werden sollten, von der Gemein-

schaft der Gaia-Projektmitglieder zügig konkretisiert wurden.

4.2 AP 2000

Für den Beginn der interdisziplinären Suche mussten zunächst die Kriterien definiert
werden, die die im Projekt zu untersuchenden Problemstellungen kennzeichnen. In Ka-
pitel 2 wurden die Probleme, die sich bei wissenschaftlichen Missionen ergeben, dargelegt.
Daraus lassen sich die folgenden Kriterien ableiten:

1. Die Satelliten gehören zu einer neuen Generation wissenschaftlicher Satelliten, die
Messdaten mit sehr viel höherer Genauigkeit als früher erbringen,

2. die Messung nimmt Einfluß auf die Dynamik des Satelliten, und

3. die Prozessierung der Messdaten benötigt im Vergleich zur Dauer der Mission eine
sehr lange Zeit.

Diese Kriterien lassen sich allgemeiner fassen, indem man sich nicht speziell auf Satelli-
tensysteme beschränkt. Allgemein sucht man nach Problemen,

1. die durch den Gebrauch neuer Technologien in komplexen Systemen verursacht
werden,

2. bei denen die Dynamik des Messprozesses mit den Eigenschaften und der Dynamik
der Apparatur verbunden sind, und

3. bei denen die Messwerte erst lange Zeit nach der Messphase verfügbar sind.

Hinzu kommt noch ein weiterer Punkt. Bei Satelliten-Missionen können bestimmte Ka-
librierungen erst nach dem Start durchgeführt werden. Veränderungen an Bord sind
jedoch dann nicht mehr möglich. Daher gilt als viertes Kriterium

4. Die Umstände des Problems gestatten keine angemessene Kalibration, weder be-
vor noch während der Zeit, in der das System in Betrieb ist, da dann keine Zugriff
mehr für Modifikationen vorhanden ist.

In die Suche nach analogen Problemen wurden jene Forschungsfelder einbezogen, in
denen häufig das Zusammenspiel komplexer Systeme einen Teil des Problems ausmacht
und analysiert werden muss. Die Liste umfasst die folgenden größeren Fachgebiete:
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• Luft- und Raumfahrttechnik

• Marinetechnik

• Fahrzeugbau

• Physik

• Chemie

• Naturwissenschaften

Allgemein waren die gefundenen Ergebnisse rar. Es konnte kein analoges Problem ge-
funden werden, dass alle vier definierten Kriterien erfüllte. Insofern verlief die Durch-
musterung negativ. Jedoch hat die Suche ergeben, dass das Problem der Identifizierung
dynamischer Probleme ein weit Verbreitetes ist. Es tritt bei allen Experimenten auf, bei
denen die experimentellen Parameter vor der Messphase nicht zur Gänze bekannt sind.
Die angewandten Lösungsstrategien lieferten für

”
First Look“ keine neuen Methoden.

Am Anfang steht ein Prototyp, dessen Dynamik durch Modelle und Annahmen beschrie-
ben wird. Die damit erbrachten Messungen lassen Rückschlüsse auf das System zu, mit
denen das Modell verbessert werden kann, die jedoch erst bei zukünftigen Entwicklungen
berücksichtigt werden können. Dieser Ansatz wurde auch bei

”
First Look“ verfolgt.

4.3 AP 3000

Wie sich in AP 1000 gezeigt hat, konnte man für eine ganze Reihe unterschiedlicher
Missionen Gemeinsamkeiten erkennen. Es bot sich daher an, die für die Simulation zu
entwickelnden Modelle möglichst allgemein zu formulieren, so dass man sie auf eine
Vielzahl von Missionen direkt anwenden kann. Sinnvoll ist die Aufteilung in folgende
Modelltypen:

• Dynamische Modelle für Satelliten und Testmassen,

• Umweltmodelle quantifizieren den Zustand der Weltraumumgebung, in denen der
Satellit fliegt, und

• Störungsmodelle, die jene Kräfte und Drehmomente auf den Satelliten beschreiben,
die durch den Einfluss der Weltraumumgebung hervorgerufen werden.

In praktischer Hinsicht war die beste Möglichkeit, diese Synergien zu bündeln, die Ent-
wicklung und der Aufbau einer Modellbibliothek als Bestandteil eines Simulatorpro-
gramms. Als Resultat ist der generische High Performance Simulator (HPS) entstan-
den, der auf den Programmpaketen MATLAB/Simulink basiert. Der generische Ansatz
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war dabei sehr wichtig, da nur so die Anwendbarkeit für möglichst viele verschiedene
Missionen gewährleistet werden kann. Eine der Hauptentwicklungsarbeiten lag dabei in
der Umsetzung mathematischer Zusammenhänge, die den Modellen zu Grunde liegen,
in effizienten Programmcode. Dieser Schritt umfasste darüberhinaus auch erforderliche
Validierungsarbeiten, d.h. die Notwendigkeit, einzelne Routinen auf ihre Richtigkeit hin
zu testen. Um den Simulator im Ganzen zu testen boten sich einige Daten der GP-B-
Mission an.

Insgesamt wurde der HPS mit folgenden Modellen ausgestattet:

Dynamische Modelle

Diese Modelle bilden den Kern des Simulators, der auch das Lösen der Bewegungs-
gleichungen durch numerische Integration durchführt. Der Kern wurde mit folgenden
Eigenschaften ausgestattet:

• Simulation der Satelliten- und Testmassen-Dynamik in sechs Freiheitsgrade durch
numerische Integration der Bewegungsgleichungen,

• Unterstützung von bis zu vier Schwingungssensoren mit je zwei Testmassen,

• Berücksichtigung linearer und nichtlinearer Kräfte und Drehmomente zwischen
Satellit und Testmassen sowie zwischen den Testmassen,

• Wahl eines Modells für das Erdgravitationsfeld: EGM96 und EIGEN-GL04C bis
zum Grad und der Ordnung 360, GGM02C bis zum Grad und der Ordnung 200,

• Berücksichtigung des Gravitationsgradienten,

• Integrationsmethode: Runge-Kutta fünfter Ordnung, Bulirsch-Stoer, Euler-Cauchy
(kleine Schrittweiten),

• 128-Bit Fließkomma-Arithmetik (QUAD-Präzision) auf ALPHA-Prozessoren.

Auch wurden mehrere Fehlerquellen berücksichtigt

• schlechte Lageausrichtung und Justierung,

• systematische Messabweichungen,

• Versetzungsfehler.
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Umweltmodelle

• Erdgravitation,

• Positionen von Planeten und Erdmond,

• Zustand der Erdatmosphäre,

• Sonneneinstrahlung,

• Albedostrahlung der Erde.

Störungsmodelle

• Atmosphärische Reibung,

• Oberflächenkräfte und Drehmomente infolge von elektromagnetischer Strahlung
(Sonne, Erdalbedo).

4.4 AP 4000

Zum Simulieren der Satellitendynamik von Gaia entschied man sich für die Entwicklung
einer Gaia-spezifische Software, da für eine Anwendung des HPS auf die Gaia-Mission
umfangreiche Modifikationen und Erweiterungen hätten integriert werden müssen (s. a.
Abschnitt ’Beschreibung der Arbeitspakete’). Man sah hier, nicht zuletzt auch unter zeit-
lichen Gesichtpunkten, in einer eigenständigen Ausarbeitung den geringeren Aufwand
bei höherem Nutzen für die Integration der Software in Programm-Projektentwicklungen
anderer Kollegen innerhalb des Gaia-Projekts. Das fortan entwickelte Simulationsmodell
namens GAM (’Gaia Attitude Model’ ist ein Software-Paket, dass es sich zum Ziel gesetzt
hat, die Dynamik und Kinematik des Satelliten als rotierenden starren Körper hoch-
präzise zu bestimmen. Hierbei berücksichtigt es einerseits externe physikalische Effek-
te, wie den Strahlungsdruck der Sonne, (Mikro-)Meteoroid-Ereignisse und stochastische
Sprünge in der Lage des Satelliten sowie andererseits (modellierte) interne Hardware-
Komponenten, die für die Kontrolle eines Satelliten im Orbit essentiell sind, wie z.B.
eine Modellierung des Mikro-Triebwerkssystems. Das GAM vereint diese Komponenten
in einer modular aufgebauten Programmierstruktur. Dieser Ansatz erlaubt es zudem,
verschiedenartige Rauscherzeuger mit einzubinden. Eine entsprechende Untersuchung
wurde vor Beginn der Entwicklung des GAM qualitativ durchgeführt und erlaubt, die
bisher identifizierten Rauschquellen zu modellieren und in einem nächsten Schritt in die
bestehende Struktur des GAM zu implementieren.

Bei der Bearbeitung der OGA-Aufgabe (’On-Ground Attitude’-Bestimmung) im Rah-
men des zweiten Gaia-Beitrages des

”
First Look“–Projektes wurden unterschiedliche
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Algorithmen entwickelt, mit deren Hilfe die Rekonstruktion der Satellitenlage möglichst
genau, robust und dennoch schnell gemacht werden kann. Durch eine Analyse dieser
Algorithmen wurde derjenige ausgewählt, der die genauesten Schätzungen der rekon-
struierten Satellitenlage unter einer akzeptablen Verarbeitungszeit liefert. Dabei musste
auch darauf geachtet werden, dass er die Anforderungen an die OGA-Realisierung jeder-
zeit erfüllen kann. Wie schon beim GAM wurde auch bei dieser Entwicklungsarbeit auf
strenge Kompatibilität zu Entwicklungen anderer Gaia-Projektmitglieder geachtet, da
sich diese Arbeit tief in die gesamte Prozesskette der ersten Datenverarbeitungsschritte,
die am Boden erfolgen, einbetten lassen muss.

Für STEP konnte keine umfangreiche Simulation erstellt werden, wie dies ursprünglich
vorgesehen war. Der Grund dafür war, dass auf Seiten der amerikanischen Institute der
Zeitplan durch Budget-Kürzungen und Umbesetzungen in der Personalstruktur immer
weiter verzögert wurde. In der Folge wurde amerikanisches Personal auf anderen Projek-
ten eingesetzt, so dass Arbeiten, die für die Simulation von Wichtigkeit gewesen wären,
nicht abgeschlossen werden konnten. Unter anderem fehlte es an einem Modell für ein
Drag-Free-Regelungssystem, mit dessen Hilfe man in dem

”
First Look“–Rahmen hätte

arbeiten können.
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5 Zusammenfassung

Das
”
First Look“–Projekt wurde mit dem Ziel initiiert, Verfahren für die schnelle In-

Orbit-Identifikation von wissenschaftlichen Satelliten zu entwickeln. Dazu wurden exem-
plarisch vier Missionen ausgewählt. Jedoch hat sich schon in einem sehr frühen Stadium
gezeigt, dass die Entwicklungen des Projekts auch für weitere geplante Missionen von
Interesse sind, da hier mit gleichen Problemen zu rechnen ist. Dies zeigt sich besonders
daran, dass sich der HPS auch bei anderen Projekten außerhalb von

”
First Look“ als

unschätzbares Werkzeug etabliert hat. Beispielsweise wird er intensiv für die Simulation
der MICROSCOPE-Mission genutzt. Auch das DLR/Bremen ist mittlerweile gleicher-
maßen an der Verbesserung und Weiterentwicklung des Simulators beteiligt. Hier besteht
der Wunsch, den Simulator für den Einsatz in Hardware-in-the-Loop-Verfahren zu er-
weitern.

Der wichtigste Beitrag zum Gaia-Projekt konnte mit den beiden Arbeiten über den Si-
mulator GAM und den OGA-Algorithmus geliefert werden. Die in diesem Projekt begon-
nenen Arbeiten haben sich bereits in der Frühphase der Planungen zu dieser Satelliten-
Mission als sehr wertvoll und hilfreich erwiesen, da vergleichbare Ansätze bei früheren
Missionen nur vereinzelt aufzufinden und anwendbar waren, und die zu erwartende Ge-
nauigkeit in den Messdaten ohnehin eine Neuausrichtung der Herangehensweise erfor-
derlich machte.

”
First Look“zeigte, dass wichtige Aufgaben im Zusammenspiel zwischen

wissenschaftlicher und ingenieurstechischer Perspektive bewältigt werden können, zum
Gewinn für beide Seiten.

Mit dem
”
First Look“–Projekt ist eine Grundlage geschaffen worden, aus deren Erkennt-

nissen und Erfahrungen zukünftige Missionen profitieren können. Die Empfindlichkeit
von Messinstrumente wird sich steigern (müssen), um noch kleinere Effekte noch genau-
er detektieren und analysieren zu können. Daher wird der Erfolg einer Satellitenmission
auch davon abhängen, wie gut die Interaktion zwischen einem Satellit und seiner Nutz-
last verstanden ist.
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6 Anhang
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1. Introduction

This document reviews the satellite and test mass dynamics with updated reference
frame definitions for the generic drag-free simulator. The difference to the previous
specifications is that the movement of the satellite center of mass due to fuel consump-
tion is taken into account. The satellite body-fixed frame defined with its origin in the
satellite’s center of mass is therefore moving with the center of mass. To have a refer-
ence frame in a point on the satellite that can be located unambiguously a mechanical
reference frame is introduced.

In section 3 all reference coordinate frames are described. Thereafter the satellite and
test mass dynamics are derived including small changes due to the new reference frame
definition. Section 5 comprises implications on force and torque models included in the
equations of motion. In section 6 the modified simulator is validated for known test
cases. Finally in section 7 the effects of a torque on the satellite through coupling forces
and variation of satellite mass and satellite center of mass are investigated.
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2. List of Symbols

The table below lists the symbols which are not explicitely explained within the text of
this document in their order of appearance.

Symbol Description
msat Mass of satellite.
r̈ii,b Acceleration of the satellite relative to the inertial frame expressed in

the inertial frame.
gi
i,b

Gravitational acceleration as a function of the satellite’s position.

F i
control Control force.

F i
dist Sum of all disturbance forces acting on the satellite.

F i
coupl,sat Force on the satellite due to the coupling between satellite and test

mass(es).
ωbi,b Angular velocity of the satellite w.r.t. inertial frame expressed in body-

fixed coordinate frame.
I
b

Moments of inertia matrix of the satellite.

T bcontrol Control torques applied for attitude control expressed in the body-
fixed frame.

T bdist Disturbance torques acting on the satellite expressed in the body-fixed
frame.

T bcoupl,sat Torques generated from satellite-test mass coupling expressed in the
body-fixed frame.

qbi Attitude quaternion describing the orientation of the satellite body-
fixed frame w.r.t. the inertial frame.

mtm Mass of test mass.
r̈ii,tm Acceleration of the test mass relative to the inertial frame expressed

in the inertial frame.
gi
i,tm

Gravitational acceleration as a function of the test mass position.

F i
coupl,tm Force acting on the test mass due to satellite-test mass coupling.

F i
dist,tm Disturbance force directly acting on the test mass (no satellite-test

mass interaction).
ωtmi,tm Angular velocity of the test mass relative to the inertial frame ex-

pressed in the test mass body-fixed frame.
I tm
tm

Moments of inertia matrix of the test mass.

T tmgg,tm Gravity gradient torque expressed in the test mass body-fixed frame.
T tmcoupl,tm Torques generated from satellite-test mass coupling expressed in the

test mass body-fixed frame.
T tmdist,tm Disturbance torque directly acting on the test mass (no satellite-test

mass interaction).
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Symbol Description
qtmi Attitude quaternion describing the orientation of the test mass body-

fixed frame w.r.t. the inertial frame.
T tm Sum of all torques acting on the test mass represented in the test mass

frame.
htmi,tm Angular momentum w.r.t. the inertial frame represented in the test

mass frame.
ωtmi,tm Angular velocity of the test mass w.r.t. the inertial frame.
FDC,ij Constant part of the link force between masses i and j
K
ij
, K

trans
Spring stiffness of link

D
ij
, D

trans
Damping of link

xoffset,ij Offset defining the point where the spring is relaxed
TDC,ij Constant part of the link torque
K
T,ij

, K
rot

Rotational stiffness matrix

D
T,ij

, D
rot

Rotational damping matrix

qji Attitude quaternion of body j w.r.t. coordinate frame of body i
ωi Angular velocity of body i
T ext,m Torque on satellite from external forces not acting on satellite center

of mass.
a Semimajor axis
e Orbit eccentricity
Cµ Gravitational Earth constant
ωorbit Orbit angular velocity
rmm,b Position of the satellite relative to the mechanical frame expressed in

the mechanical frame.
rmm,a Accelerometer offset expressed in mechanical frame.
raa,sens Sensitive axes offset expressed in accelerometer frame.
Aa
b
, Asens

a
Transformation matrices

rsenssens,tm Test mass position relative to the sensor frame expressed in the sensor
frame.

ωbsens,tm Angular velocity of the test mass w.r.t. sensor frame expressed in
satellite body-fixed coordinate frame.

rsensoffset Spring offset for linear translational coupling.
ωn Natural frequency
δ Damping constant
qtmsens Attitude quaternion describing the orientation of the test mass frame

w.r.t. the sensor frame.
T tr,sat Torque on satellite from link forces not acting on satellite center of

mass.

ZARM - Center of Applied Space Technology and Microgravity Page 6 of 44



Equations of Motion for Satellite and
Test Mass Dynamics

Doc.No.: FLK-SIM-TN-ZAR-001

Issue: 1.0

Page: 7 of 44

3. Reference Coordinate Frames

3.1. Overview

Figure 1: Overview of Coordinate Frames Used

To derive the equations of motion for the satellite and the test masses different frames
have to be defined. Figure 1 shows all frames that are used for describing the motion
of two test masses with respect to a satellite. The following types of coordinate frames
are considered:

Name Short Name Index Symbol
Earth-centered inertial frame ECI, inertial i
Earth-centered Earth-fixed frame ECEF, Earth-fixed e, ECEF
Satellite body-fixed frame (in satellite CoM) body, satellite b
Mechanical body-fixed frame (on satellite
structure)

mechanical, structure m

Accelerometer frame accelerometer a
Sensor frame for test mass ∗ sensor sens∗
Body-fixed frame for test mass ∗ test mass tm∗
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3.2. Earth-Centered Inertial Frame

The Earth-centered inertial frame (ECI) is the Earth Mean Equator and Equinox of
J2000 (EME2000) (see [2] for reference) celestial equator system depicted in figure 2.
The origin of the inertial frame is the center of the Earth. The x-axis points towards
the vernal equinox for J2000 and lies inside the celestial equatorial plane. The z-axis is
parallel to the Earth’s angular momentum vector which is perpendicular to the equatorial
plane. The right hand orthogonal system is completed by the y-axis which is also located
inside the equatorial plane.

Figure 2: Earth Centered Inertial Frame

3.3. Satellite Body-Fixed Frame

The satellite body-fixed frame has its origin in the center of mass of the satellite. The
axes can be defined arbitrarily, e.g. the z-axis can be defined to be the axially symmetrical
axis of the satellite. The other axes are defined to be perpendicular to z. In figure 3 the
satellite as well as the mechanical body-fixed frame described below are shown.

ZARM - Center of Applied Space Technology and Microgravity Page 8 of 44



Equations of Motion for Satellite and
Test Mass Dynamics

Doc.No.: FLK-SIM-TN-ZAR-001

Issue: 1.0

Page: 9 of 44

Figure 3: Satellite Body-Fixed Frame (b) and Mechanical Body-Fixed Frame (m)

3.4. Mechanical Body-Fixed Frame

The origin of the mechanical body-fixed frame is a fixed point on the satellite structure.
The axes of the mechanical body-fixed coordinate system are parallel to those of the
satellite body-fixed frame. Unlike the latter the origin of the mechanical frame is not
intended to move with changed conditions. It is fixed to a reference point on the satellite
structure where it can be located easily, like a corner of the satellite body. In figure 3
both the satellite and the mechanical body-fixed frame are shown.

3.5. Accelerometer Frame

The accelerometer frame is an arbitrarily defined reference frame for describing technical
entities like offset and orientation. Its origin is usually placed in a mechanical reference
point of the accelerometer assembly. Figure 4 shows four differential accelerometers as
arranged for STEP (Satellite Test of the Equivalence Principle). Here the accelerometers
are aligned with the satellite-body fixed frame. The z-axis should be aligned with the
z-axis of the satellite body-fixed frame. The real position of the accelerometer frame
may differ from this desired orientation due to alignment errors.
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Figure 4: Accelerometer Frames w.r.t. Satellite Body-Fixed Frame

3.6. Sensor Frame

The sensor frame is needed to introduce misalignment and additional offsets inside the
differential accelerometer. It defines the origin and direction for measuring the test mass
motion with respect to the satellite. The origin is the point where the sensors which are
measuring the test mass displacement outputs zero for all three coordinates.
For STEP, the x-axis is defined as the sensitive axis of the SQUID sensors. The y
and z-axes are perpendicular to x. They coincide with the axes of the electrostatic
measurement system for the displacement in the lateral axes.
Figure 5 shows the sensor frames for both test masses. The sensor frame of the outer
test mass has a misalignment about the y-axis with respect to the accelerometer frame.
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Figure 5: Sensor Frames for Inner and Outer Test Mass

Each sensor frame of a differential accelerometer can have a misalignment w.r.t. the
accelerometer frame.

3.7. Test Mass Body-Fixed Frame

The test mass body-fixed frame describes the attitude of the test mass with respect to
the sensor frame (see figure 6). The origin is the center of mass of the test mass. For
STEP, the x-axis is defined as the axis of rotational symmetry for the non-spherical test
masses. The y and z-axes are perpendicular to x.

Figure 6: Test Mass Body-Fixed Frame w.r.t. Sensor Frame
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4. Satellite and Test Mass Dynamics

The satellite and test mass equations of motion are re-written here as derived in [3].
Changes due to the displacement vector between body-fixed and mechanical frame are
included.

4.1. Satellite Equations of Motion

The equations of motion for the satellite are derived in the inertial frame.

Satellite Translation

The differential equation for the position of the satellite mass center rii,b is written below
(see also [4]):

msatr̈
i
i,b = msatg

i

i,b

(
rii,b
)

+ F i
control + F i

dist + F i
coupl,sat (1)

If all terms are devided by the mass of the satellite the equation of motion is expressed
in accelerations and specific forces:

r̈ii,b = gi
i,b

(
rii,b
)

+ f i
control

+ f i
dist

+ f i
coupl,sat

(2)

where f ∗ denotes the corresponding specific forces.

Satellite Attitude

The attitude motion of the satellite is expressed by the angular velocity of the satellite
body w.r.t. the inertial frame, ωbi,b. The attitude itself is described by the Euler sym-

metric parameters qbi which represent a transformation from inertial frame to satellite
body fixed frame (see appendix A).
For the satellite a rigid body is assumed. Then the differential equations for the satellite
attitude motion are as follows:

ω̇bi,b =
(
Ib
b

)−1 [
T bcontrol + T bdist + T bcoupl,sat − ωbi,b × (I

b
ωbi,b)

]
(3)

q̇bi =
1

2
ω̂bi,b � qbi (4)

The term ω̂bi,b is the quaternion representation of the angular velocity (see appendix A
section A.2).
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4.2. Test Mass Equations of Motion

The equations of motion for the test mass dynamics are derived in the inertial and in
the sensor frame. When implementing the equations of motion for the test mass in
the inertial frame numerically difficulties may arise in achieving high resolution for the
small displacement between satellite and test mass. This is due to the fact that the
displacement will be the result of a difference between two comparably large inertial
position vectors. Therefore it is neccesary to describe the equations of motion for the
test mass in the sensor frame.

Test Mass Translation w.r.t. Inertial Frame

The translational motion for the test mass is described by the differential equation for
rii,tm, the position of the test mass center w.r.t. the inertial frame (see [1]):

mtmr̈
i
i,tm = mtmg

i

i,tm

(
rii,tm

)
+ F i

coupl,tm + F i
dist,tm (5)

Only gravitational forces and coupling forces from the satellite are acting on the test
mass. Therefore the test mass follows a pure gravitational orbit which is disturbed by
the coupling between test mass and satellite.

If all terms are devided by the mass of the test mass the equation of motion is expressed
in accelerations and specific forces:

r̈ii,tm = gi
i,tm

(
rii,tm

)
+ f i

coupl,tm
+ f i

dist,tm
(6)

where f i
coupl,tm

denotes the specific force due to coupling.

Test Mass Rotation w.r.t. Inertial Frame

The attitude of the test mass relative to the inertial frame can be described by the Euler
symmetric parameters (quaternions) qtmi . The differential equation for the rotational
motion of the test mass w.r.t. the inertial frame can be described in terms of the angular
acceleration of the test mass:

ω̇tmi,tm =
(
I tm
tm

)−1 [
T tmgg,tm + T tmcoupl,tm + T tmdist,tm − ωtmi,tm × (I

tm
ωtmi,tm)

]
(7)

q̇tmi =
1

2
ω̂tmi,tm � qtmi (8)

The term ω̂tmi,tm is the quaternion representation of the angular velocity (see appendix A
section A.2).
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Test Mass Translation w.r.t. Satellite Body-Fixed Frame

The acceleration of the test mass w.r.t. the satellite expressed in the inertial frame can be
obtained by subtracting the satellite equation of motion (2) from the test mass equation
(6). The equations of motion of a test mass relative to the satellite thus becomes:

r̈ib,tm =r̈ii,tm − r̈ii,b
=gi

i,tm

(
rii,tm

)
+ f i

coupl,tm
+ f i

dist,tm
− gi

i,b

(
rii,b
)− f i

control
− f i

dist
− f i

coupl,sat

(9)

The difference of the gravitational acceleration can be expressed as:

∆gi
b,tm

= gi
i,tm

(
rii,tm

)− gi
i,b

(
rii,b
)

(10)

where rii,tm = rii,b + rib,m + rim,a + ria,sens + risens,tm.
The relative acceleration of the test mass is expressed in the rotating sensor frame. For
that purpose the whole equation is multiplied by the transformation matrix describing
the rotation from inertial frame to sensor frame. The second derivative of the position
however is still formed w.r.t. the inertial frame:

(i)
r̈sensb,tm = ∆gsens

b,tm
+ f sens

coupl,tm
+ f sens

dist,tm
− f sens

control
− f sens

dist
− f sens

coupl,sat
(11)

The second derivative in the sensor frame can be found by applying equation (124) of
appendix B to the derivative of the test mass position in the inertial frame:

(i)
r̈sensb,tm =

(sens)
r̈sensb,tm + 2 ωsensi,sens ×

(sens)
ṙsensb,tm+

(sens)
ω̇sensi,sens × rsensb,tm + ωsensi,sens ×

(
ωsensi,sens × rsensb,tm

)
(12)

The angular velocity of the sensor frame w.r.t. the inertial frame can be expressed as
the sum of angular velocities of each frame w.r.t. the neighboring frame:

ωi,sens = ωi,b + ωb,m + ωm,a + ωa,sens (13)

ω̇i,sens = ω̇i,b + ω̇b,m + ω̇m,a + ω̇a,sens (14)

The same holds for the derivative of the angular velocity, equation (14). If we assume a
rigid spacecraft the relative angular velocity between satellite and sensor frame becomes
zero, which simplifies to:

ωi,sens = ωi,b (15)

ω̇i,sens = ω̇i,b (16)
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Substituting equations (12), (15) and (16) into equation (11) the acceleration of the test
mass w.r.t. the satellite expressed in the sensor frame becomes:

r̈sensb,tm =∆gsens
b,tm
− f sens

control
− f sens

dist
− f sens

coupl,sat
+ f sens

coupl,tm
+ f sens

dist,tm
−

2 ωsensi,b × ṙsensb,tm − ω̇sensi,b × rsensb,tm − ωsensi,b ×
(
ωsensi,b × rsensb,tm

) (17)

For a rigid spacecraft the position and orientation of the sensor frame w.r.t. the satellite
body-fixed frame is fixed. That means rb,sens = rb,m + rm,a + ra,sens is constant. So the
following equations for the first and second derivative of rb,sens,

ṙsensb,tm = ṙsensb,m + ṙsensm,a + ṙsensa,sens + ṙsenssens,tm (18)

r̈sensb,tm = r̈sensb,m + r̈sensm,a + r̈sensa,sens + r̈senssens,tm (19)

simplify to

ṙsensb,tm = ṙsenssens,tm (20)

r̈sensb,tm = r̈senssens,tm (21)

The equation of motion for the translation of the test mass (17) thus becomes:

r̈senssens,tm =∆gsens
b,tm
− f sens

control
− f sens

dist
− f sens

coupl,sat
+ f sens

coupl,tm
+ f sens

dist,tm
−

2 ωsensi,b × ṙsenssens,tm − ω̇sensi,b ×
(
rsensb,sens + rsenssens,tm

)−
ωsensi,b ×

(
ωsensi,b ×

(
rsensb,sens + rsenssens,tm

)) (22)

Test Mass Rotation w.r.t. Satellite Body-Fixed Frame

The equation of conservation of angular momentum states that

T i =

(
d h

d t

)i
(23)

which in the present context means that the sum of all torques T i acting on the test
mass is equal to the time derivative of the test mass’ angular momentum h in the inertial
frame. Considering the total torque in the test mass frame (see appendix B equation
123) this can be written as:

T tm =
(tm)

(
d htmi,tm
d t

)
+ ωtmi,tm × htmi,tm (24)

If we assume that the test mass is a rigid body the following holds for the angular
momentum in the test mass frame:
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htmi,tm = I tm
tm
· ωtmi,tm (25)

(tm)

(
d htmi,tm
d t

)
= I tm

tm
· ω̇tmi,tm (26)

Substituting this into equation (24) the torque represented in the test mass frame be-
comes:

T tm = I tm
tm
· ω̇tmi,tm + ωtmi,tm ×

(
I tm
tm
· ωtmi,tm

)
(27)

This can be solved for the derivative of the angular acceleration:

ω̇tmi,tm =
(
I tm
tm

)−1 [
T tm − ωtmi,tm ×

(
I tm
tm
· ωtmi,tm

)]
(28)

The angular velocity of the test mass relative to the inertial frame can be expressed as
the sum of angular velocities of each frame w.r.t. the neighboring frame:

ωtmi,tm = ωtmi,b + ωtmb,m + ωtmm,a + ωtma,sens + ωtmsens,tm (29)

Taking into account that the satellite is modeled as a rigid body (see equations (15)
and (16)) the angular velocity and acceleration of the test mass w.r.t. the sensor frame
simplify to:

ωtmsens,tm = ωtmi,tm − ωtmi,b
ω̇tmsens,tm = ω̇tmi,tm − ω̇tmi,b

(30)

The substitution of equation (30) into equation (28) yields for the angular acceleration
of the test mass w.r.t. the sensor frame:

ω̇tmsens,tm =
(
I tm
tm

)−1 [
T tm − (ωtmi,b + ωtmsens,tm

)× (I
tm

(
ωtmi,b + ωtmsens,tm

))]− ω̇tmi,b (31)

If the test mass inside the satellite is shielded from all external non-gravitational forces
and torques, the torque in equation (31) is equal to the sum of the rotational coupling
torques, the torques due to the gravity gradient acting on the test masses and internal
disturbance torques:

T tm = T tmcoup,tm + T tmgg,tm + T tmdist,tm (32)

The attitude of the test mass w.r.t. the sensor frame can be expressed by quaternions:

q̇tmsens =
1

2
ω̂tmsens,tm � qtmsens (33)
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5. Forces and Torques

5.1. Overview

The forces and torques appearing in the equations of motion for the satellite and test
mass are due to various sources. For the satellite there are forces and torques due to the
control actuation for satellite attitude and translation control, the atmosphere, electro-
magnetic radiation, external magnetic field impulses from space debris and meteoroid
hits. These forces and torques can be summarized as control and disturbance forces and
torques. Additionally forces and torques due to gravitation between satellite and test
mass and celestial bodies as well as coupling forces and torques between the satellite and
test mass occur. For the test mass, since it is shielded from external disturbances by
the satellite, only gravitational effects and the coupling between satellite and test mass
have to be taken into account. A detailed description of models for forces and torques
can be found in [3].

5.2. External Forces and Torques

For the generic drag-free simulator there is the option to define external forces and
torques:

F external = [F i, F o, Fm] (34)

T external = [T i, T o, Tm] (35)

Each input has three vector components, the first containing all elements acting in the
inertial frame, the second vector is comprised of orbital elements and the third is defined
w.r.t. the mechanical body-fixed frame. While the first two vectors are acting on the
satellite center of mass, the third component is acting on the point where the mechanical
reference frame has its origin. Therefore an additional torque w.r.t. the satellite center
of mass arises:

Tmext,m = −rmCoM × Fm (36)

with rmCoM = rmm,b (see figure 1).
This torque has to be added to the total torque acting on the satellite center of mass.

5.3. Coupling Forces and Torques

Satellite - test mass coupling occurs because the observation of the test mass, i.e. the
determination of the test mass position, cannot be accomplished force free. Coupling
forces and torques between the satellite and test mass or between two test masses are
modelled as a linear system link with a constant part, spring properties and damping.
Details about this model can be found in Appendix E of [3]. In the following the link
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force and torque between two bodies 1 and 2 (satellite - test mass or test mass 1 - test
mass 2) are outlined:

F
(j)
ij = FDC,ij −Kij

(xj − xi − xoffset,ij)−Dij
(ẋj − ẋi) (37)

T
(j)
ij = TDC,ij − 2 ·K

T,ij
qj

i −DT,ij
(ωj − ωi) (38)

For the test mass it is assumed that the link forces are acting on its center of mass. If
the coupling force is not acting on the center of mass of the satellite it can produce a
torque. This torque from translational coupling can be expressed as:

T
(0)
tr,0i = r

(0)
0i × F (0)

0i (39)

Here 0 is used for the satellite and i = 1, 2 is assigned to the test masses of one ac-
celerometer. The vector r

(0)
0i is the lever arm from the center of mass of test mass i

where the force F
(0)
0i is acting, to the center of mass of the satellite:

r
(0)
0i = rb,tm(i) = rm,a − rm,b + ra,sens + rsens,tm(i) (40)
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6. Validation of Numerical Simulator

6.1. Definition of Test Cases

A number of test cases has been carried out to verify that the definition of the mechanical
reference frame has been implemented correctly. Three test cases are defined according
to [3] to validate

• translational motion of the test mass

• rotational motion of the test mass

• coupling.

6.2. Test 1: Validation of Translational Motion

For this test case the following conditions are applied:

• no coupling between satellite and test mass

• no disturbance torques and forces

• fixed satellite center of mass.

The initial conditions for the satellite are set to

rii,b =

 xii,b
yii,b
zii,b

 =

 a · (1.0− e)
0
0

 m (41)

ṙii,b =


0√

Cµ ·
(

2
xii,b
− 1

a

)
0

 m

s
(42)

where a = (Cµ/ω
2
orbit)

1/3, e is set to zero in this case, Cµ = 3986004.415 · 108 and
ωorbit = 1.108507726 · 10−3.

The position vectors are defined as:

rmm,b =

 0.3 m
0.2 m
0.1 m

 (43)

rmm,a =

 0.6 m
0.4 m
0.2 m

 (44)

ZARM - Center of Applied Space Technology and Microgravity Page 19 of 44



Equations of Motion for Satellite and
Test Mass Dynamics

Doc.No.: FLK-SIM-TN-ZAR-001

Issue: 1.0

Page: 20 of 44

which is equal to

rbb,a = −rmm,b + rmm,a =

 0.3 m
0.2 m
0.1 m

 (45)

The origin of the sensor coordinate system is at the center of mass of the satellite:

raa,sens =

 0.1 m
−0.3 m
−0.2 m

 (46)

(47)

The transformations are defined as:

Aa
b

=

 0 0 −1
1 0 0
0 1 0

 (48)

Asens
a

=

 0 1 0
0 0 1
−1 0 0

 (49)

Test Case 1A

For an initial position of zero,

rsenssens,tm =

0
0
0

 (50)

the test mass must follow the same purely gravitational orbit as the satellite since the
starting position of satellite and test mass are the same.

Figure 7 shows that the position and the velocity remain at zero for zero displacement
of the test mass.
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Figure 7: Position and velocity of the test mass w.r.t. the sensor frame; No initial dis-
placement of the test mass.

Deviations from zero can occur due to numerical errors. For position vectors of

rmm,b =

 0.2 m
0.4 m
0.2 m

 (51)

rmm,a =

 0.5 m
0.6 m
0.3 m

 (52)

the numerical error after 1000s is of order 10−17 or a relative error of 10−16. This
development is shown in figure 8. It has to be kept in mind that these errors accumulate
for longer simulation times. For the current simulator the same uncertainties remain
when the simulation is carried out on an alpha machine since the vectors are defined
using double precision. The error is inherent when changing them into quad precision
after values have been assigned.
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Figure 8: Position and velocity of the test mass w.r.t. the sensor frame; No initial dis-
placement of the test mass.

For the following test the first set of position vectors is used, i.e.:

rmm,b =

 0.3 m
0.2 m
0.1 m

 (53)

rmm,a =

 0.6 m
0.4 m
0.2 m

 (54)

Test Case 1B

For an initial position of

rsenssens,tm =

100 m
0 m
0 m

 (55)

it is expeced that, due to the fact that satellite and test mass are not coupled in their
motion, they will follow their own gravitational orbits.

In figure 9 the inertial position of the test mass and the position w.r.t. the satellite are
shown. The curves for the x-, y- and z-position differ from those shown in [3] because
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different initial conditions for the satellite were used. When repeating the test case with
the original simulator used in [3] and initial conditions (41) and (42) the results obtained
are identical to those shown in figure 9.

Figure 9: Position and velocity of the test mass w.r.t. inertial and satellite body-fixed
frame; initial displacement of the test mass = 100m.

6.3. Test 2: Validation of Rotational Motion

For the validation of rotational motion the same conditions as for the first test case are
applied. The transformations and position vectors also are defined as for the first test
case.
The moments of inertia of the satellite are defined as:

Ib
b

=

100 0 0
0 100 0
0 0 100

 kg ·m2 (56)

For this test case the satellite has no initial angular momentum and initial attitude rate.

In this test external torques are applied around the satellite body-fixed axes separately.
Since the coupling between satellite and test mass is deactivated and the test mass has
no initial rate it is expected that the test mass remains inertially fixed in its attitude
and the satellite rotates around the test mass due to the external torque. If this is the
case then the attitude of the test mass w.r.t. the sensor frame will be the inverse of the
attitude of the satellite w.r.t. the inertial frame:
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qbi 1

qbi 2

qbi 3

qbi 4

 =


−qtmsens1

−qtmsens2

−qtmsens3

qtmsens4

 (57)

The same holds for the angular velocity:

ωbi,b = −ωbsens,tm (58)

In figure 10 results are shown for a torque of 10−14 Nm applied around the satellite
body-fixed x-axis for 1000s. The sub-figure to the upper left shows the x-component of
the attitude rates of satellite and test mass. The next sub-figure to the right shows the
first attitude quaternion. The differences in angular velocity and attitude quaternion are
shown in the last two sub-figures. The very small values are of order of the numerical
precision limit and proof that in all cases (also for the other components not shown here)
equations (58) and (57) are fulfilled.

Figure 10: Comparison of attitude rates and quaternion.

6.4. Test 3: Validation of Coupling

For verification of coupling the following conditions are applied:

• Satellite position and attitude are fixed.

• The gravitational acceleration of the test mass is deactivated.
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• Only one test mass is present which is coupled to the satellite via one single link.

• The link is modelled as a spring with stiffness, damping and constant part.

The mass of the test mass is set to 1kg.

Test Case 3A: Translational Coupling

For this test case the following parameters are chosen:

K
trans

=

ωn2 0 0
0 2ωn

2 0
0 0 9ωn

2

 N
m

(59)

D
trans

=

δ 0 0
0 5.0δ 0
0 0 7.0δ

 N · s
m

(60)

rsensoffset =

 1 · 10−9

2 · 10−9

3 · 10−9

m (61)

FDC,trans =

 4 · 10−14

5 · 10−14

3 · 10−14

N (62)

Since the off-diagonal elements are zero the oscillations in all directions are independent
and no cross-coupling occurs. The different stiffness and damping constants make it
possible to distinguish between the three directions. The natural frequency ωn is chosen
as

ωn = 2π · 0.001 · s−1 (63)

such that the oscillation with the natural frequency will have a period of 1000s. The
damping constant δ is set to

δ = − ln 0.5 · 0.001. (64)

which will result in an attenuation of the amplitude to half of its initial value after 2000s.

In figure 11 the simulation results for an oscillation of the test mass along the x-axis are
shown. Results are similar for the y- and z-direction. The expected period of 1000s is
clearly visible. In the first sub-figure the damping is deactivated and rsensoffset = 0. In the
next three sub-figures damping is enabled. The damping causes the amplitude to half
after 2000s. The second sub-figure in the upper right shows the elongation of the test
mass for zero offset. The lower left figure shows the damped oscillation with an offset for
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the spring origin. The last figure shows the damped oscillation with offset and DC force.
The DC force corresponds to an elongation of 10−9m s.t. the oscillation will approach
the mean of twice the spring offset value.
The results are identical to those obtained with the original simulator without mechanical
body-fixed frame (see [3]).

Figure 11: Oscillation of the test mass. From upper left to lower right: no damping,
damping, damped with offset, damped with offset and DC force.

Test Case 3B: Rotational Coupling

The following parameters are chosen for the test of rotational coupling:

K
rot

=

ωn2 0 0
0 2ωn

2 0
0 0 9ωn

2

N ·m (65)

D
rot

=

δ 0 0
0 5.0δ 0
0 0 7.0δ

N ·m · s (66)

TDC,rot =

 1 · 10−10

5 · 10−10

3 · 10−10

N ·m (67)

The natural frequency ωn and damping constant δ are defined as in (63) and (64).
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Figure 12 shows simulation results for the x-component of the test mass angular velocity
and first quaternion. In the upper two figures the angular velocity and quaternion
are plotted for rotational oscillation without damping. The lower left figure shows the
quaternion oscillation with damping. In the lower right figure the damped oscillation
with DC torque is shown. As expected the period is 1000s and with damping the initial
amplitude decreases to half of its value after 2000s. The DC torque shifts the mean of
the oscillation about 1.5 · 10−6m.

Figure 12: Oscillation of the test mass. From upper left to lower right: undamped
angular velocity, undamped quaternion, damped, damped with DC torque.
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7. Verification of New Features

In this section the effects of attenuation of satellite mass and a resulting variation of
displacement between satellite center of mass and origin of mechanical reference frame
are investigated. In the first test the existence of a fixed displacement resulting in a
torque through coupling forces is examined.

The conditions applied for the following investigation are:

• no disturbance forces and torques

• gravitation is turned off

• only one test mass present

• constant variation of satellite mass

• constant variation of displacement between satellite center of mass and origin of
mechanical reference frame

7.1. Test of Satellite Torque through Coupling Force

For the test mass it is assumed that the link forces are acting on its center of mass. If
the coupling force is not acting on the center of mass of the satellite it can produce a
torque. This torque from translational coupling from one test mass can be expressed as:

T tr,sat = rb,tm × F coupl,sat (68)

The vector rb,tm is the lever arm from the center of mass of the test mass where the force
F coupl,sat is acting, to the center of mass of the satellite (see equation (40)).

For this test the satellite degrees of freedom are restricted to rotational motion only and
for the test mass only translational movement is allowed. A system corresponding to
this test case is shwon in figure 13.

To emphasize the effects of a torque through coupling forces, mass reduction and move-
ment of satellite center of gravity the gravitaion is turned off. The position vectors are
defined as:

rmm,b =

 0
0
0

 (69)
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Figure 13: Model for test of satellite torque through coupling force.

rmm,a = rmm,b +

 4.0
1.0
0.0

m (70)

The initial conditions for the satellite are set to zero. The initial test mass position is
set to

rsenssens,tm =

 3.0
2.0
0.0

 · 10−3 m (71)

A link force with spring parameters according to the previous test of translational cou-
pling is chosen:

K
trans

=

ωn2 0 0
0 ωn

2 0
0 0 0

 N
m

(72)

where ωn is set to 2π · 0.001 · s−1. No damping or DC forces are present.
The link force applied thus has two components Fx = −k ·∆x and Fy = −k ·∆y where
k = ω2

n (the mass of the test mass is set to 1kg) and ∆x and ∆y are the differences
between satellite and test mass position in x- and y-direction. Due to the lever arm
rb,tm a torque Ttr,z around the z-axis arises. Without disturbance and control torques
the differential equation for the satellite attitude motion reduces to

ω̇bi,b =
(
Ib
b

)−1 [
T btr − ωbi,b × (Ib

b
ωbi,b)

]
(73)
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with one non-zero component, ω̇bi,b,z =
(
Ibzz
)−1

T btr,z (the satellite moments of inertia are
defined in (56)).
In the following the analytical solution for the system shown in figure 13 is derived.
The equations of motion for the test mass movement in x- and y-direction and satellite
rotation ϕ are obtained utilizing the Lagrange method:

d

dt

(
∂Ek
∂q̇

)
− ∂Ek

∂q
+
∂Ep
∂q

= 0 (q = x, y, ϕ) (74)

With [
∆x
∆y

]
=

([
x
y

]
−
[

1 −ϕ
ϕ 1

] [
rx
ry

])
,

 rx
ry
0

 = rm,a − rm,b (75)

the kinetic energy Ek and the potential energy Ep are found as:

Ek =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
Izzϕ̇

2 (76)

Ep =
1

2
k(x+ ryϕ− rx)2 +

1

2
k(y − rxϕ− ry)2 (77)

In equation (75) simplifications are made which are appropriate for small angles: sin(ϕ) ≈
ϕ, cos(ϕ) ≈ 1.
Applying eqn. (74) the equations of motion are obtained:

ẍ+ ω2
nx+ ω2

nryϕ = ω2
nrx (78)

ÿ + ω2
ny − ω2

nrxϕ = ω2
nry (79)

ϕ̈+ ω2
I (r

2
x + r2

y)ϕ+ ω2
Iryx− ω2

Irxy = 0 (80)

Here ω2
n = k/m, ω2

I = k/Izz.
The path to a general solution involves finding a solution to the homogeneous system of
equations (i.e. with zero right-hand side), and afterwards finding a particular solution
to the non-homogeneous system. Trying a solution of the form q = q̂eλt for the homoge-
neous system of equations yields a linear system of equations for the amplitude factors
x̂, ŷ and ϕ̂:

(λ2 + ω2
n)x̂+ ω2

nryϕ̂ = 0 (81)

(λ2 + ω2
n)ŷ − ω2

nrxϕ̂ = 0 (82)

(λ2 + ω2
I (r

2
x + r2

y))ϕ̂+ ω2
Iryx̂− ω2

Irxŷ = 0 (83)

A non-trivial solution exists if the determinant of the system vanishes. This leads to the
characteristical equation
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∣∣∣∣∣∣
(λ2 + ω2

n) 0 ω2
nry

0 (λ2 + ω2
n) −ω2

nrx
ω2
Iry −ω2

Irx (λ2 + b)

∣∣∣∣∣∣ = λ6 + λ4(2ω2
n + b) + λ2ω2

n(ω2
n + b) = 0 (84)

b = ω2
I (r

2
x + r2

y)

As can be seen immediately the first eigenvalue ω2
1 = −λ2

1 = 0. The second and third
eigenvalues are calculated as ω2

2 = −λ2
2 = ω2

n and ω2
3 = −λ2

3 = ω2
n + ω2

I (r
2
x + r2

y). The
solution for x, y and ϕ can be expressed as

x = x̂1cos(ω1t−Ψx1) + x̂2cos(ω2t−Ψx2) + x̂3cos(ω3t−Ψx3) (85)

y = ŷ1cos(ω1t−Ψy1) + ŷ2cos(ω2t−Ψy2) + ŷ3cos(ω3t−Ψy3) (86)

ϕ = ϕ̂1cos(ω1t−Ψϕ1) + ϕ̂2cos(ω2t−Ψϕ2) + ϕ̂3cos(ω3t−Ψϕ3) (87)

(88)

The solution for the non-homogeneous system of equations is xp = rx, yp = ry. Using
equations (81) to (83) for the relationship between the unknowns x̂(1,2,3), ŷ(1,2,3), ϕ̂(1,2,3),
Ψ(x,y,ϕ)(1,2,3) and adding the particular solution we arrive at:

x = x̂1 + x̂2cos(ω2t) + x̂3cos(ω3t) + rx (89)

y = −rx
ry

(x̂1 + x̂3cos(ω3t)) +
ry
rx
x̂2cos(ω2t) + ry (90)

ϕ = − 1

ry
x̂1 +

ω2
I

ω2
n

(r2
x + r2

y)

ry
x̂3cos(ω3t) (91)

(92)

Now, only three unknowns x̂1, x̂2 and x̂3 need to be determined from initial conditions:

ϕ(0) = 0 : x̂1 =
ω2
I

ω2
n

(r2
x + r2

y)x̂3 (93)

x(0) = x0 + rx : x̂2 = x0 −
(
ω2
I

ω2
n

(r2
x + r2

y) + 1

)
x̂3 (94)

y(0) = y0 + ry : x̂3 =

(
ry
rx
x0 − y0

)
rxry(

1 +
ω2
I

ω2
n
(r2
x + r2

y)
)

(r2
x + r2

y)
(95)

with x0 = rsens,tm(1), y0 = rsens,tm(2).
In figures 15 and 16 the x- and y-position of the test mass are shown. The results from
the modified simulator are compared against the original one and the analytical solution
(equations (89) and (90)).
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In figure 14 the satellite angular velocity computed with the modified simulator is com-
pared against the original one and the first derivative of the analytical solution, equation
(91).
There are small deviations between the analytical solution and the simulation results
because of the simplifications made in the analytical approach.

Figure 14: Satellite z-component of angular velocity calculated with modified drag-free
simulator compared to original simulator and analytical solution.

Figure 15: Test mass x-position calculated with modified drag-free simulator compared
to original simulator and analytical solution.
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Figure 16: Test mass y-position calculated with modified drag-free simulator compared
to original simulator and analytical solution.

7.2. Constant Variation of Satellite Mass

For this investigation a constant value is subtracted from the satellite mass at each time
step. Although the satellite mass is changing with time the satellite mass is considered
constant at each time step for the calculation of satellite and test mass equations of
motion. This assumption is reasonable since the reduction of satellite mass through fuel
consumption is rather small, i.e. of order O(10−7kg) for cold gas to O(10−11kg) for FEEP.

For this test the satellite degrees of freedom are restricted to motion in the x-y-plane
and rotation around the z-axis. For the test mass only translational motion is allowed.
Note that for zero satellite position and velocity the transformation matrix from orbital
to inertial frame will have only entries equal to zero.

To focus on the effect of changing satellite mass only the torque from coupling forces is
eliminated by setting the lever arm rb,tm to rsens,tm (as defined in (98)), i.e. rm,a− rm,b +
ra,sens = 0 and

K
trans

=

ωn2 0 0
0 ωn

2 0
0 0 ωn

2

 (96)

The torque from coupling forces becomes zero:
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Figure 17: Set-up for test of variation of satellite mass.

T tr =

 rsens,tm,x
rsens,tm,y
rsens,tm,z

×
ωn2 0 0

0 ωn
2 0

0 0 ωn
2

 ·
 rsens,tm,x
rsens,tm,y
rsens,tm,z

 = 0 (97)

(Note: The subtraction of equal numbers causes the modified simulator to become un-
stable due to numerical noise.)

The test mass position is set to

rsenssens,tm =

 3.0 · 10−3

0
0

m (98)

All other initial conditions are set to zero.

The following figures show results for a mass reduction rate of 10−2 kg/s for the satellite
and test mass. The results are compared against those obtained from a simple simulink
model (see figure 18) for the system shown in figure 17.

The satellite acceleration is equal to r̈s = F/M where M is the satellite mass. Since M
is decreasing an increase in the amplitude of satellite position and velocity is expected.
Figures 19 and 20 show simulation results for the x-position and velocity of the satellite.
The expected increase in amplitude over time can be observed.

For the test mass the acceleration is calculated in dependency of the satellite acceleration,
r̈tm = −F/m − r̈s = −(F/m + F/M) where m is the mass of the test mass. Figures
21 and 22 show simulation results for the non-zero x-components of the test mass state
vector. The test mass velocity and elongation are slightly decreasing with time.
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Figure 18: Simulink model for test of variation of satellite mass.

Figure 19: Constant Variation of Satellite Mass: Satellite x-position calculated with
modified drag-free simulator and simulink model.
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Figure 20: Constant Variation of Satellite Mass: Satellite x-velocity calculated with
modified drag-free simulator and simulink model.

Figure 21: Constant Variation of Satellite Mass: Test mass x-position calculated with
modified drag-free simulator and simulink model.
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Figure 22: Constant Variation of Satellite Mass: Test mass x-velocity calculated with
original and modified drag-free simulator.

7.3. Constant Variation of Satellite Center of Mass

For this investigation a constant value is added to the displacement vector rmm,b between
satellite center of mass and origin of mechanical reference frame for each time step. The
value chosen is defined as an offset of rmm,b:

rmm,b,offset =

 0
d
0

 , d = 1.5 · 10−3m (99)

At each time step rmm,b is updated:(
rmm,b

)n
=
(
rmm,b

)n−1
+ rmm,b,offset, n = 1, ..., Nend (100)

As a counter-check the same procedure is repeated with constant rmm,b and varying rmm,a:(
rmm,a

)n
=
(
rmm,a

)n−1 − rmm,b,offset, n = 1, ..., Nend (101)

The initial position vectors for this test case are:

rsenssens,tm =

 3.0 · 10−3

0
0

m (102)
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rmm,a =
(
rmm,b

)0
+

 0.0
1.0
0.0

m, (
rmm,b

)0
= 0 (103)

For the link force a matrix with only one non-zero component is applied:

K
trans

=

k 0 0
0 0 0
0 0 0

 N
m
, k = ωn

2 (104)

with ωn = 2π ·0.001·s−1. For this test the satellite degrees of freedom are again restricted
to rotational motion only. In case that only translational movement is allowed for the
test mass, the equations of motion for this test case can be written as

mẍ+ kx+ kryϕ = 0 (105)

Izzϕ̈+ kr2
yϕ+ kryx = 0 (106)

Here, again m = 1kg, Izz = 100kg·m2. For constant ry = rm,a(2)−rm,b(2), the analytical
solution to equations (105) and (106) is:

x = x̂1 + x̂2cos(ω2t) (107)

ϕ = − 1

ry
x̂1 +

m

Izz
ryx̂2cos(ω2t) (108)

with

ω2
2 =

k

m
+

k

Izz
r2
y, x̂1 =

mx0

mr2
y + Izz

, x̂2 =
Izzx0

mr2
y + Izz

, x0 = rsens,tm(1)

In figure 23 the solution for the satellite angular velocity, i.e.

ϕ̇ = −ω2
m

Izz
ryx̂2sin(ω2t) (109)

is plotted as blue curve for comparison with the z-component of satellite angular velocity
calculated with constantly varying lever arm from the satellite center of mass to the test
mass as specified in equations (100) or (101).
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Figure 23: Constant Variation of Satellite Center of Mass: Satellite z-angular velocity
calculated with modified drag-free simulator with and without CoM variation,
comparison with approximate analytical solution

The equations of motion are rewritten in the following for constantly varying lever arm:

mẍ(t) + kx(t) + kry(t)ϕ(t) = 0 (110)

Izzϕ̈(t) + kr2
y(t)ϕ(t) + kry(t)x(t) = 0 (111)

It is not attempted here to solve this nonlinear coupled system of equations. For small
movement of satellite center of mass the solution (109) can serve as approximation to
predict the trend of the angular velocity. If ry is updated at each time step, the approx-
imate analytical solution also shown in figure 23 predicts a zero-crossing between time
steps n = 6666 and n = 6667 due to the lever arm rm,a(2)− (rm,b(2))n = 0.

Below, an exact analytical solution is found for a simplified test case: In the following,
the test mass degrees of freedom are all fixed. Then the equation of motion for the
satellite angular velocity becomes:

Izzϕ̈(t) = −kry(t)∆x, ∆x = x0 + ry(t)ϕ0 = x0 (since ϕ0 = 0) (112)

The lever arm is decreasing constantly with time, ry(t) = ry,c − d · t, ry,c = rm,a(2) −
(rm,b(2))0. The solution for the satellite angular velocity thus is:
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ϕ̇(t) = −kx0

Izz

(
ry,ct− d

2
t2
)

(113)

In figure 24 the results from the drag-free simulator with fixed test mass degrees of
freedom are compared against the analytical solution (113). As a reference also the
corresponding simulator results for constant lever arm (fixed satellite center of mass)
are plotted. This curve is a straight line.

For constant rmm,b and varying rmm,a according to (101) the same results are obtained as
shown in figures 23 and 24.

Figure 24: Constant Variation of Satellite Center of Mass: Satellite z-angular velocity
calculated with modified drag-free simulator for fixed test mass degrees of
freedom for constant and varying satellite center of mass. Green line: Ana-
lytical solution for fixed test mass degrees of freedom.
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A. Euler Symmetric Parameters - Quaternions

A.1. Definition of Euler Symmetric Parameters

The direction cosine matrix can be parameterized in terms of Euler symmetric parame-
ters q1, q2, q3 and q4. They are defined as (see [4]):

q1 = ex sin
Φ

2

q2 = ey sin
Φ

2

q3 = ez sin
Φ

2

q4 = cos
Φ

2

(114)

They can be regarded as the components of a quaternion.

q =


q1

q2

q3

q4

 (115)

Since a quaternion expresses a transformation the notation of super and subscripts cor-
responds to transformation matrices. So qba denotes a quaternion describing the trans-
formation from frame a to frame b.

A.2. Quaternion Algebra

Quaternion Multiplication

For combination of transformations quaternions can be multiplied. The multiplication
is defined as:

q
′′

= q
′ � q (116)

where the operator � denotes the following matrix-vector operation:

q
′′

=


q

′
4 q

′
3 −q′

2 q
′
1

−q′
3 q

′
4 q

′
1 q

′
2

q
′
2 −q′

1 q
′
4 q

′
3

−q′
1 −q′

2 −q′
3 q

′
4



q1

q2

q3

q4

 (117)
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Direction Cosine Matrix from Quaternion

The direction cosine matrix can be derive from a quaternion by:

A(q) =


q1

2 − q2
2 − q3

2 + q4
2 2 q1q2 + 2 q3q4 2 q1q3 − 2 q2q4

2 q1q2 − 2 q3q4 −q1
2 + q2

2 − q3
2 + q4

2 2 q2q3 + 2 q1q4

2 q1q3 + 2 q2q4 2 q2q3 − 2 q1q4 −q1
2 − q2

2 + q3
2 + q4

2


(118)

Time-Derivative of Quaternion

If a quaternion represents the attitude of a rotating rigid body its derivative w.r.t. time
is needed for propagation. For the attitude of body b w.r.t. the reference frame a the
transformation can be expressed by qba. The angular velocity of b w.r.t. the reference a
measured in the frame b is expressed as ωba,b.
The derivative w.r.t. time is:

q̇ =
1

2
Ωqba (119)

where Ω is defined as:

Ω =


0 ωba,bz −ωba,by ωba,bx

−ωba,bz 0 ωba,bx ωba,by

ωba,by −ωba,bx 0 ωba,bz

−ωba,bx −ωba,by −ωba,bz 0

 (120)

Using the quaternion multiplication rule the time derivative can be expressed as:

q̇ =
1

2
ω̂ba,b � qba (121)

where:

ω̂ba,b =


ωba,bx
ωba,by
ωba,bz

0

 (122)
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B. Time Derivative of a Vector in a Rotating Frame

The time derivative of a vector r in a frame A which is rotating w.r.t. the inertial frame
B with ωBA,B is:

(A)
(
dr

dt

)
=

(B)
(
dr

dt

)
+ ωBA,B × r (123)

Then the second derivative of vector r w.r.t. time in the rotating frame A can be derived
as:

(A)
(
d

dt

(A)
(
dr

dt

))
=

(A)
(
d

dt

(B)
(
dr

dt

))
+

(A)
(
d

dt

(
ωBA,B × r

))
(124)

(A)d2r

dt2
=

(B)d2r

dt2
+ ωBA,B ×

(B)dr

dt
+

(A)dωBA,B
dt
× r + ωBA,B ×

(A)dr

dt
(125)

=
(B)d2r

dt2
+ ωBA,B ×

(B)dr

dt
+

(B)dωBA,B
dt
× r +

(
ωBA,B × ωBA,B

)× r+
ωBA,B ×

(B)dr

dt
+ ωBA,B ×

(
ωBA,B × r

)
(126)

=
(B)d2r

dt2
+ 2ωBA,B ×

(B)dr

dt
+

(B)dωBA,B
dt
× r + ωBA,B ×

(
ωBA,B × r

)
(127)
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1. Introduction

A test case has been defined in [4] for simulating the satellite and test mass dynamics of
the STEP (Satellite Test of the Equivalence Principle) mission. The test case consists
of two simulations, one carried out with an assumed Equivalence Principle (EP) viola-
tion, the other one without. Comparison of the results for the differential accelerations
between a pair of test masses is used to detect the simulated EP signal.

The following report summarizes the investigation of the previously defined test case
for the STEP reference simulation [4] taking into account the presence of the satellite’s
quadrupolar potential. A parametric study is performed to evaluate certain effects on
the test masses’ differential accelerations observed due to interaction of quadrupolar ac-
celeration and spring coupling.

In section 2 the satellite and test mass equations of motion are presented as used in the
simulation. Section 3 describes the reference test case [4] and the modifications carried
out in the present study. The following section 4 presents the obtained results. In the
parametric study in section 5 the test case is evaluated with changes in the satellite’s
rotational rate, natural frequency of the test masses etc.

2. Satellite and Test Mass Dynamics

In the following the satellite and test mass equations of motion are introduced as imple-
mented in the drag-free simulator.

2.1. Satellite Equations of Motion

The equations of motion for the satellite are derived in the inertial frame.

Satellite Translation

The differential equation for the position of the satellite center of mass rii,b is written
below (see also [5, 6]):

msatr̈
i
i,b = msatg

i

i,b

(
rii,b
)

+ F i
control + F i

dist,sat + F i
coupl,sat (1)

where:
msat Mass of satellite.
r̈ii,b Acceleration of the satellite relative to the inertial frame

expressed in the inertial frame.
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gi
i,b

Gravitational acceleration as a function of the satellite’s
position.

F i
control Control force.

F i
dist,sat Sum of all disturbance forces acting on the satellite.

F i
coupl,sat Force on the satellite due to the coupling between satel-

lite and all test masses.

Dividing by the mass of the satellite the equation of motion is expressed in accelerations
and specific forces:

r̈ii,b = gi
i,b

(
rii,b
)

+ f i
control

+ f i
dist,sat

+ f i
coupl,sat

(2)

where f ∗ denotes the corresponding specific forces.

Satellite Attitude

The attitude motion of the satellite is expressed by the angular velocity of the satellite
body w.r.t. the inertial frame, ωbi,b. The attitude itself is described by the Euler sym-

metric parameters qbi which represent a transformation from inertial frame to satellite
body fixed frame (see appendix A).
For the satellite a rigid body is assumed. Then the differential equations for the satellite
attitude motion are as follows:

ω̇bi,b =
(
Ib
b

)−1 [
T bcontrol + T bdist,sat + T bgg + T bcoupl,sat − ωbi,b × (I

b
ωbi,b)

]
(3)

q̇bi =
1

2
ω̂bi,b � qbi (4)

where:
ωbi,b Angular velocity of the satellite w.r.t. inertial frame ex-

pressed in body-fixed coordinate frame.
I
b

Moments of inertia matrix of the satellite.

T bcontrol Control torques applied for attitude control expressed in
the body-fixed frame.

T bdist,sat Disturbance torques acting on the satellite expressed in
the body-fixed frame.

T bgg Gravity gradient torque acting on the satellite expressed
in the body-fixed frame.

T bcoupl,sat Torques generated from satellite-test mass coupling ex-
pressed in the body-fixed frame.

qbi Attitude quaternion describing the orientation of the
satellite body-fixed frame w.r.t. the inertial frame.

� denotes a quaternion multiplication
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The term ω̂bi,b is the quaternion representation of the angular velocity (see appendix A
section A.2).

2.2. Test Mass Equations of Motion

The equations of motion for the test mass dynamics are solved in the sensor frame.

Test Mass Translation

The equation of motion for the translation of the test mass has been derived as (see
[2, 5]):

r̈senssens,tm =∆gsens
b,tm
− f sens

control
− f sens

dist,sat
− f sens

coupl,sat
+ f sens

coupl,tm
+ f sens

dist,tm
−

2 ωsensi,b × ṙsenssens,tm − ω̇sensi,b ×
(
rsensb,sens + rsenssens,tm

)−
ωsensi,b ×

(
ωsensi,b ×

(
rsensb,sens + rsenssens,tm

)) (5)

where:
r̈senssens,tm Acceleration of the test mass relative to the sensor frame

expressed in the sensor frame.
∆gsens

b,tm
Difference of gravitational acceleration gsens

i,tm

(
rsensi,tm

) −
gsens
i,b

(
rsensi,b

)
f sens

control
Specific control force from satellite.

f sens
dist,sat

Specific disturbance forces acting on the satellite.

f sens
coupl,(sat,tm)

Specific coupling force on the test mass due to the in-
teraction between satellite and other test masses.

ωsensi,b Angular velocity of the satellite body w.r.t. the inertial
frame, expressed in the sensor frame.

Test Mass Rotation

The attitude motion of a test mass is expressed by the angular velocity of the test mass
w.r.t. the sensor frame, ωtmsens,tm.

ω̇tmsens,tm =
(
I tm
tm

)−1 [
T tm − (ωtmi,b + ωtmsens,tm

)× (I
tm

(
ωtmi,b + ωtmsens,tm

))]− ω̇tmi,b (6)

where:
T tm Sum of all torques acting on the test mass represented

in test mass frame.
I tm
tm

Moments of inertia matrix of the test mass.

ωtmi,b Angular velocity of the satellite w.r.t. inertial frame ex-
pressed in test mass frame.
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If the test mass inside the satellite is shielded from all external non-gravitational forces
and torques, the torque in equation (6) is equal to the sum of the rotational coupling
torques, the torques due to the gravity gradient acting on the test masses and internal
disturbance torques:

T tm = T tmcoup,tm + T tmgg,tm + T tmdist,tm (7)

where:
T tmgg,tm Gravity gradient torque for the test mass from Earth

gravity field as well as from gravity gradient inside the
satellite.

T tmcoup,tm Torque on the test mass due to satellite test mass cou-
pling.

The attitude of the test mass w.r.t. the sensor frame can be expressed by quaternions:

q̇tmsens =
1

2
ω̂tmsens,tm � qtmsens (8)

3. STEP Test Case Setup

3.1. Reference Test Case

The STEP satellite moves on an equatorial orbit with an eccentricity of ε = 0.01 and an
orbit frequency of ωo = 0.00110850809175 rad

s
corresponding to a period of To = 5668.14s.

The satellites’ z-axis is aligned with the orbit normal and the satellite rotates about z
with a rate of ωr = −2.0ωo w.r.t. the inertial frame.

The simulation is carried out using one differential accelerometer with two test masses.
The satellite is free to move in six degrees of freedom (DOF) whereas the test mass
motion is restricted to the translational DOF.

The simulation parameters are:

step size = 100 for a relatively fast simulation
simulation time = 1.0E+06 End time of simulation (yields a 10−6Hz resolution in

the frequency spectrum)
gravity model: simplified model of the gravitational field up to degree

n = 6 (see equation (9))
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Φ =
µE
r

[
1 +

∞∑
n=2

(
RE

r

)n
JnPn0(sinΘ)

]
(9)

with:
RE Earth radius.
r Position vector.
Jn Earth zonal harmonic coefficients of degree n.
Pn0 Legendre polynomials of degree n and order 0.

Θ Geocentric latitude.

degree n = 1 gravitational field up to degree n = 1 used (spher-
ical Earth)

gravity-gradient (gg) matrix: based on spherical field
gg-torques: no gg-torques on satellite and test masses
gg-acceleration: gg-accelerations between satellite and test masses

computed from spherical gravitational potential

The satellite parameters are:

mass: 500 kg

moments of inertia: I =

200 0 0
0 200 0
0 0 100

 kg m2

initial state: computed from orbital elements
attitude a = 6871000 m
eccentricity ε = 0.01
all other orbital elements zero → equatorial orbit

satellite rate: ωr = −2.0ωo around z-axis, ωo = 0.00110850809175 rad
s

The accelerometer parameters are:

number of test masses: 2
position w.r.t satellite-fixed frame: [1.0E-08, 0, 0]

Test Mass 1

mass: 1 kg

moments of inertia: I =

5.5125 · 10−5 0 0
0 5.5125 · 10−5 0
0 0 5.5125 · 10−5

 kg m2
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initial state: zero angular velocity
no initial velocity
initial position: [0.9E-09, 0, 0]

test mass alignment with sensor frame
Eötvös factor (EP violation
factor):

η = 0: no violation, η = 1.0 · 10−18 EP violation

Test Mass 2

mass: 1 kg

moments of inertia: I =

3.6125 · 10−5 0 0
0 3.6125 · 10−5 0
0 0 3.6125 · 10−5

 kg m2

initial state: zero angular velocity
no initial velocity
initial position: [1.0E-09, 0, 0]

test mass alignment with sensor frame
Eötvös factor: η = 0: no violation

The coupling between satellite and test masses that is due to the position sensing is
modelled as linear system link consisting of a spring stiffness only. Link 1/2 defines
the coupling between test mass 1/2 and the satellite, link 3 accounts for the coupling
between the two test masses.

Link 1 properties:

stiffness matrix:

1 0 0
0 100 0
0 0 100

 · 30.25 · ω2
o

Spring coupling offset vector: [1.0E-09, 0, 0]

Link 2 properties:

stiffness matrix:

1 0 0
0 100 0
0 0 100

 · 30.25 · ω2
o · s

common mode rejection factor: s = 1.001
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spring coupling offset vector: [0.9E-09, 0, 0]

The common mode rejection factor is based on the common mode rejection ratio which

is defined as CMRR = 20 · log10

(
Differential Mode
Common Mode

)
. If the ratio of spring constant

to mass (frequency2) is the same for two masses, they will displace identically under a
common acceleration, therefore producing no output in the differential mode. If their
frequencies are different, the masses will displace different amounts. In this case a com-
mon mode acceleration will cause a disturbance in the differential mode.

Link 3 properties:

stiffness matrix:

1 0 0
0 0 0
0 0 0

 · 30.25 · ω2
o/3.0

spring coupling offset vector: [0, 0, 0]

3.2. Modifications to the Reference Test Case

The STEP reference simulation case defined in [4] is repeated here considering the pres-
ence of the satellite’s quadrupolar force term. A spherical Earth is assumed. The
gravitational acceleration on the satellite’s and test mass’ center of mass (COM) takes
the form of equation (15) in [3],

F = −µEm
R3

R + F g,quad (10)

where µE = G ·M , G is the gravitational constant of the Earth and M is the mass of the
Earth, m is the mass of the satellite or test mass, R (R) is the vector (distance) from the
Earth’s COM to the satellite’s or test mass’ COM, and F g,quad is the gravity-gradient
or quadrupolar force term,

F g,quad =
3

2

µE
R5

[
5
RT I R

R2
R− tr(I)R− 2I R

]
(11)

where I is the inertia matrix and tr(I) is the trace of the inertia matrix.
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4. STEP Test Case Results

In a drag-free mission like STEP the on-board experiment, i.e. the test mass set-up,
is shielded from all external forces and disturbances. The only forces acting on the
test masses result from gravity and other internal disturbances. While the latter are
not investigated here, the satellite’s quadrupole potential acting as gravitational distur-
bance on the test masses is given some attention in the following. As pointed out in
[1], monopolar test masses, i.e. test masses that do not possess a quadrupolar poten-
tial themselves, respond identically to gravitational disturbances due to the spacecraft
provided that the test masses are located at the same position. In other words, the
satellite’s quadrupolar potential results in a common mode signal to both test masses.
In the reference test case defined in [4] and detailed in the previous section, the test
mass common mode rejection factor is set to 1.001. Thus, the ratio of spring constant
to mass is different for the two test masses, which means that any internal disturbance
producing a common acceleration will cause a disturbance in the test mass differential
mode which might mimic or mask violations of the EP. In order to avoid this scenario
the common mode rejection ratio (CMRR) has to be calibrated.

In the following the simulation results are compared via linear spectral density plots
of the differential mode of the test masses. In figures 1 and 2 the differential mode of
the test masses is shown under the influence of the quadrupolar force term (11) (blue
curve) and with the quadrupolar force term omitted (red curve, original calculation). In
figure 1 there is no violation of the EP and in figure 2 a violation of the EP is assumed.
Therefore, the Eötvös factor for one test mass is set to η = 10−18.

Figure 1: Differential Mode without
Equivalence-Principle Viola-
tion.

Figure 2: Differential Mode with
Equivalence-Principle Viola-
tion.
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In figure 3 the results with and without EP violation including the influence of the
quadrupolar force term are compared against each other. It turns out that a peak
due to quadrupole effects appears at the EP frequency and masks the EP signal. It is
expected that the same will hold for other internal disturbances that act as common
mode signal.

Figure 3: Differential Mode with and without Equivalence-Principle Violation with
Quadrupole Effects.

In figures 4 and 5 the test case with EP violation is evaluated with different stiffness
coupling and quadrupolar interaction. The difference in stiffness is due to the multi-
plication of the stiffness matrix of test mass 2 with the common mode rejection factor
(CMRF). In figure 4 the quadrupolar force term is neglected. The red line shows the
reference test case (CMRF = 1.001) and the dashed blue line depicts a case in which
the coupling between test mass 1 and the satellite is equal to the coupling between test
mass 2 and the satellite (CMRF = 1).

For equal coupling parameters the results for the differential acceleration are identi-
cal regardless of quadrupole effects being taken into account or not. This affirms the
theoretical finding that monopolar test masses respond identically to gravitational dis-
turbances due to the spacecraft provided that the test masses share one center of mass
as it is realized for the STEP satellite mission where one test mass is located within the
other.
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Figure 4: Differential Mode with EP
Violation. Equal and un-
equal coupling interaction
between test masses and
satellite. Quadrupolar accel-
eration not considered.

Figure 5: Differential Mode with EP
Violation and quadrupolar
acceleration. Equal and
unequal coupling interaction
between test masses and
satellite.

5. Parametric Study

In figures 6, 7, and 8 the test case without EP violation has been repeated with the
CMRF adjusted to 1.0001, 1.00005, and 1.00001 resp. What can be observed is that
with decreasing CMRF the EP mimicking peak due to common mode signals becomes
less dominant. For a CMRF factor of 1.00001 a signal is only visible after magnification.
For comparison, the reference test case with EP violation and a CMRF of 1.00005 is
plotted in figure 9.

Figures 10 and 11 show the test case with EP violation and variation in rotation rate. In
figure 10 the rotation rate ωr = −2.5ωo instead of ωr = −2.0ωo (reference case) and in
figure 11 the rotation rate ωr = −3.0ωo. The EP signal shifts according to ωr − ωo and
the peak associated with the quadrupolar force term does the same. Here, the stiffness
multiplication factor CMRF = 1.001 according to the reference test case.

The quadrupolar acceleration shifts with the EP signal since the quadrupolar disturbance
is constant. The sketch in figure 12 illustrates this: According to the satellite inertia
tensor the STEP satellite possesses a pencil-like shape oriented in z-direction of the
orbit reference frame. The satellite moves in the x-y plane with velocity v and rotates
around z with rotation rate ωr. The quadrupolar acceleration thus is independent of the
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rotation rate.

Figure 6: Differential Mode without
EP Violation, CMRF =
1.0001

Figure 7: Differential Mode without
EP Violation, CMRF =
1.00005

Figure 8: Differential Mode without
EP Violation, CMRF =
1.00001

Figure 9: Differential Mode with EP
Violation, CMRF = 1.00005
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Figure 10: Differential Mode with EP
Violation, Rotation Rate
ωr = −2.5ωo

Figure 11: Differential Mode with EP
Violation, Rotation Rate
ωr = −3ωo

Figure 12: STEP test case reference frames.

In figure 13 the test mass accelerations are displayed for a simulation time of 10000
seconds. The dashed blue curve shows the test mass acceleration where the gravity-
gradient induced acceleration is neglegted (reference test case). The dash-dotted green
curve shows the results after inclusion of the quadrupolar acceleration. For comparison
the satellite quadrupolar acceleration is plotted as well (red line). The quadrupolar
acceleration is of same order of magnitude as the test mass acceleration of the reference
test case.
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Figure 13: Test mass acceleration and
satellite acceleration due to
gravity-gradient

Figure 14: Difference in test mass ac-
celeration

In figure 14 the difference in test mass acceleration for test mass 1 and 2 is plotted for
completeness for the same simulation time.

6. Conclusion

Investigation of the STEP test case including coupling between test masses and the
satellite from various sources has been carried out. In particular, stiffness effects be-
tween test masses and satellite have been modelled through a linear system link. For
a satellite of arbitrary shape and homogeneity forces arise due to the gravity-gradient
within the satellite. These quadrupolar forces act on the test masses within the satellite.
For monopolar test masses located at the same position there is no differential signal
due to quadrupolar interaction if the CMRR is sufficiently small. If the quadrupolar
acceleration due to the spacecraft is considered together with a difference in the test
masses’ stiffness matrices, an additional signal emerges at the EP frequency. In order to
avoid masking or imitation of the EP signal, the CMRR has to be calibrated to rather
small values. Alternatively, the satellite’s quadrupolar potential and other internal dis-
turbances that introduce a common mode signal have to be minimized.
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A. Euler Symmetric Parameters - Quaternions

A.1. Definition of Euler Symmetric Parameters

The direction cosine matrix can be parameterized in terms of Euler symmetric parame-
ters q1, q2, q3 and q4. They are defined as (see [6]):

q1 = ex sin
Φ

2

q2 = ey sin
Φ

2

q3 = ez sin
Φ

2

q4 = cos
Φ

2

(12)

They can be regarded as the components of a quaternion.

q =


q1

q2

q3

q4

 (13)

Since a quaternion expresses a transformation the notation of super and subscripts cor-
responds to transformation matrices. So qba denotes a quaternion describing the trans-
formation from frame a to frame b.

A.2. Quaternion Algebra

Quaternion Multiplication

For combination of transformations quaternions can be multiplied. The multiplication
is defined as:

q
′′

= q
′ � q (14)

where the operator � denotes the following matrix-vector operation:

q
′′

=


q

′
4 q

′
3 −q′

2 q
′
1

−q′
3 q

′
4 q

′
1 q

′
2

q
′
2 −q′

1 q
′
4 q

′
3

−q′
1 −q′

2 −q′
3 q

′
4



q1

q2

q3

q4

 (15)
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Direction Cosine Matrix from Quaternion

The direction cosine matrix can be derive from a quaternion by:

A(q) =


q1

2 − q2
2 − q3

2 + q4
2 2 q1q2 + 2 q3q4 2 q1q3 − 2 q2q4

2 q1q2 − 2 q3q4 −q1
2 + q2

2 − q3
2 + q4

2 2 q2q3 + 2 q1q4

2 q1q3 + 2 q2q4 2 q2q3 − 2 q1q4 −q1
2 − q2

2 + q3
2 + q4

2

 (16)

Time-Derivative of Quaternion

If a quaternion represents the attitude of a rotating rigid body its derivative w.r.t. time
is needed for propagation. For the attitude of body b w.r.t. the reference frame a the
transformation can be expressed by qba. The angular velocity of b w.r.t. the reference a
measured in the frame b is expressed as ωba,b.
The derivative w.r.t. time is:

q̇ =
1

2
Ωqba (17)

where Ω is defined as:

Ω =


0 ωba,bz −ωba,by ωba,bx

−ωba,bz 0 ωba,bx ωba,by

ωba,by −ωba,bx 0 ωba,bz

−ωba,bx −ωba,by −ωba,bz 0

 (18)

Using the quaternion multiplication rule the time derivative can be expressed as:

q̇ =
1

2
ω̂ba,b � qba (19)

where:

ω̂ba,b =


ωba,bx
ωba,by
ωba,bz

0

 (20)
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1. Introduction

This document describes the extension of the gravity force acting on a point mass to the
force present for arbitrarily shaped bodies. The gravity force acting on an arbitrary body
can be expressed as sum of monopolar and quadrupolar force terms. The monopolar
force term is the term acting on the satellite as if it where a point mass or a body
with equal inertia in its principal axes. The quadrupolar force term can be considered a
correction for deviations from this ideal model. The implementation of the quadrupolar
force term in the drag-free simulator is validated with test cases for a satellite with equal
inertia in its principal axes and a dumbbell satellite.
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2. Definition of Coordinate Frames

The coordinate frames defined for the drag-free simulator are shown in figure 1. The po-
sition vectors used in the following are displayed as well. For a more detailled description
see [6].

Figure 1: Overview of Coordinate Frames and Position Vectors

3. Satellite and Test Mass Dynamics

In the following the satellite and test mass equations of motion are re-written here as
implemented in the drag-free simulator.

3.1. Satellite Equations of Motion

The equations of motion for the satellite are derived in the inertial frame.

Satellite Translation

The differential equation for the position of the satellite center of mass rii,b is written
below (see also [8, 10]):
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msatr̈
i
i,b = msatg

i

i,b

(
rii,b
)

+ F i
control + F i

dist,sat + F i
coupl,sat (1)

where:
msat Mass of satellite.
r̈ii,b Acceleration of the satellite relative to the inertial frame

expressed in the inertial frame.
gi
i,b

Gravitational acceleration as a function of the satellite’s
position.

F i
control Control force.

F i
dist,sat Sum of all disturbance forces acting on the satellite.

F i
coupl,sat Force on the satellite due to the coupling between satel-

lite and all test masses.

Dividing by the mass of the satellite the equation of motion is expressed in accelerations
and specific forces:

r̈ii,b = gi
i,b

(
rii,b
)

+ f i
control

+ f i
dist,sat

+ f i
coupl,sat

(2)

where f ∗ denotes the corresponding specific forces.

Satellite Attitude

The attitude motion of the satellite is expressed by the angular velocity of the satellite
body w.r.t. the inertial frame, ωbi,b. The attitude itself is described by the Euler sym-

metric parameters qbi which represent a transformation from inertial frame to satellite
body fixed frame (see appendix A).
For the satellite a rigid body is assumed. Then the differential equations for the satellite
attitude motion are as follows:

ω̇bi,b =
(
Ib
b

)−1 [
T bcontrol + T bdist,sat + T bgg + T bcoupl,sat − ωbi,b × (I

b
ωbi,b)

]
(3)

q̇bi =
1

2
ω̂bi,b � qbi (4)

where:
ωbi,b Angular velocity of the satellite w.r.t. inertial frame ex-

pressed in body-fixed coordinate frame.
I
b

Moments of inertia matrix of the satellite.

T bcontrol Control torques applied for attitude control expressed in
the body-fixed frame.

T bdist,sat Disturbance torques acting on the satellite expressed in
the body-fixed frame.
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T bgg Gravity gradient torque acting on the satellite expressed
in the body-fixed frame.

T bcoupl,sat Torques generated from satellite-test mass coupling ex-
pressed in the body-fixed frame.

qbi Attitude quaternion describing the orientation of the
satellite body-fixed frame w.r.t. the inertial frame.

� denotes a quaternion multiplication

The term ω̂bi,b is the quaternion representation of the angular velocity (see appendix A
section A.2).

3.2. Test Mass Equations of Motion

The equations of motion for the test mass dynamics are solved in the sensor frame.

Test Mass Translation

The equation of motion for the translation of the test mass has been derived as (see
[6, 8]):

r̈senssens,tm =∆gsens
b,tm
− f sens

control
− f sens

dist,sat
− f sens

coupl,sat
+ f sens

coupl,tm
+ f sens

dist,tm
−

2 ωsensi,b × ṙsenssens,tm − ω̇sensi,b ×
(
rsensb,sens + rsenssens,tm

)−
ωsensi,b ×

(
ωsensi,b ×

(
rsensb,sens + rsenssens,tm

)) (5)

where:
r̈senssens,tm Acceleration of the test mass relative to the sensor frame

expressed in the sensor frame.
∆gsens

b,tm
Difference of gravitational acceleration gsens

i,tm

(
rsensi,tm

) −
gsens
i,b

(
rsensi,b

)
f sens

control
Specific control force from satellite.

f sens
dist,sat

Specific disturbance forces acting on the satellite.

f sens
coupl,(sat,tm)

Specific coupling force on the test mass due to the in-
teraction between satellite and other test masses.

ωsensi,b Angular velocity of the satellite body w.r.t. the inertial
frame, expressed in the sensor frame.

For a definition of the position vecors rsens,tm, rb,sens = rm,a − rm,b + ra,sens see figure 1.

Test Mass Rotation

The attitude motion of a test mass is expressed by the angular velocity of the test mass
w.r.t. the sensor frame, ωtmsens,tm.
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ω̇tmsens,tm =
(
I tm
tm

)−1 [
T tm − (ωtmi,b + ωtmsens,tm

)× (I
tm

(
ωtmi,b + ωtmsens,tm

))]− ω̇tmi,b (6)

where:
T tm Sum of all torques acting on the test mass represented

in test mass frame.
I tm
tm

Moments of inertia matrix of the test mass.

ωtmi,b Angular velocity of the satellite w.r.t. inertial frame ex-
pressed in test mass frame.

If the test mass inside the satellite is shielded from all external non-gravitational forces
and torques, the torque in equation (6) is equal to the sum of the rotational coupling
torques, the torques due to the gravity gradient acting on the test masses and internal
disturbance torques:

T tm = T tmcoup,tm + T tmgg,tm + T tmdist,tm (7)

where:
T tmgg,tm Gravity gradient torque for the test mass from Earth

gravity field as well as from gravity gradient inside the
satellite.

T tmcoup,tm Torque on the test mass due to satellite test mass cou-
pling.

The attitude of the test mass w.r.t. the sensor frame can be expressed by quaternions:

q̇tmsens =
1

2
ω̂tmsens,tm � qtmsens (8)
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4. Gravity Force and Gravity-Gradient Torque

4.1. Gravity Force

The gravity force needed in (2) and (5) to calculate the satellite and test mass motion is
implemented as sum of monopolar and quadrupolar force terms. The monopolar force
is the force acting on a point mass or a body with equal inertia terms in its principal
axes. The quadrupolar force term corrects for deviations from this ideal model.

Considering the Earth as a spherical gravitational source, the force on a mass element
of a satellite orbiting the Earth is:

dF = dm∇Φ = −µEdm
r3

r, Φ =
µE
r

(9)

where Φ is the Earth gravitational potential and r = |r|, r = R + ρ, R = rii,b, ρ is the
vector from the satellite center of mass to its mass element dm, µE = G ·M , G is the
gravitational constant of the Earth and M is the mass of the Earth (see also figure 2).

Figure 2: Reference Frames and Position Vectors for Gravity Force Determination

With r = |R + ρ|, r−3 can be rewritten and expanded in the following way:

r−3 = |R + ρ|−3 = R−3

[
1 +

2(R · ρ)

R2
+
( ρ
R

)2
]− 3

2

= R−3

[
1− 3

R · ρ
R2
− 3

2

( ρ
R

)2

+
15

2

(
R · ρ)2

R4
+O

( ρ
R

)3
] (10)
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Next, |ρ|2 is expressed as

|ρ|2 = ρ2 = x2 + y2 + z2. (11)

The inertia matrix is introduced as

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (12)

with

Ixx =

∫
m

(y2 + z2)dm, Iyy =

∫
m

(x2 + z2)dm, Izz =

∫
m

(x2 + y2)dm, (13)

Ixy =

∫
m

xy dm, Ixz =

∫
m

xz dm, Iyz =

∫
m

yz dm. (14)

Substituting equation (10) into (9) and integrating equation (9) with the moments and
products of inertia defined in (13) and (14), the resulting force becomes

F = −µEm
R3

R + F gg (15)

where F gg is the gravity-gradient or quadrupolar force term,

F gg =
3

2

µE
R5

[
5
RT I R

R2
R− tr(I)R− 2I R

]
(16)

where tr(I) is the trace of the inertia matrix. Component wise, with R2 = (Rx)
2 +

(Ry)
2 + (Rz)

2, Rx = xii,b, Ry = yii,b, Rz = zii,b, this can be written as:

F gg =
3

2

µE
R5


{(

5 (Rx)2

R2 − 3
)
Ixx +

(
5 (Ry)2

R2 − 1
)
Iyy +

(
5 (Rz)2

R2 − 1
)
Izz

}
Rx{(

5 (Rx)2

R2 − 1
)
Ixx +

(
5 (Ry)2

R2 − 3
)
Iyy +

(
5 (Rz)2

R2 − 1
)
Izz

}
Ry{(

5 (Rx)2

R2 − 1
)
Ixx +

(
5 (Ry)2

R2 − 1
)
Iyy +

(
5 (Rz)2

R2 − 3
)
Izz

}
Rz



+ 3
µE
R5


RyIxy +RzIxz − 5

{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Rx

RxIxy +RzIyz − 5
{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Ry

RxIxz +RyIyz − 5
{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Rz

 (17)

In principal axes form, the second term in (17) vanishes. It can also be seen that for
equal inertia in principal axes form (Ixx = Iyy = Izz = I, Ixy = Ixz = Iyz = 0) F gg = 0.
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The derivation of the quadrupolar force term has been carried out in detail in [3] and
[9]. For further references see also [4, 5, 10].

For most applications, the quadrupolar force term derived assuming a spherical Earth is
adequate. Higher accuracy is achieved with the gravitational potential considering the
Earth’s nonsymmetric mass distribution written below (see also [7]):

Φ =
µE
r

[
1 +

∞∑
n=2

(
RE

r

)n
JnPn0(sinΘ)

]

+
µE
r

∞∑
n=2

n∑
m=1

(
RE

r

)n
(Cnmcos(mλ) + Snmsin(mλ))Pnm(sinΘ) (18)

where:
RE Earth radius.
Jn Earth zonal harmonic coefficients of degree n.
Pnm Legendre polynomials of degree n and order m.
Θ Geocentric latitude.
Cnm, Snm Tesseral harmonic coefficients for n 6= m,

sectoral harmonic coefficients for n = m.
λ Geocentric longitude.

In (18) the zonal harmonics Jn represent the Earth’s oblateness. The tesseral and sec-
toral harmonics Cnm and Snm account for longitudinal variations in the Earth’s shape
and become important in the case of geosynchronous spacecraft (see [10]).

The terms in (18) are at least two orders of magnitude smaller than the spherical poten-
tial defined in (9). According to [10], for attitude dynamics, the gravitational potential
function including only the J2-term should be sufficient for computation of the gravity-
gradient force terms and torques, subject to the accuracy needed. Also, inclusion of
higher order terms is not reasonable due to the uncertainties inherent in other environ-
mental disturbance forces and torques.

With

P20(sinΘ) =
1

2

(
1− 3sin2Θ

)
(19)

and
sinΘ =

rz
r
, rz = Rz + z, (rx = Rx + x, ry = Ry + y) (20)

the gravitational potential function including the J2-term becomes:

Φ =
µE
r

[
1 +

(
RE

r

)2

J2
1

2

(
1− 3

(rz
r

)2
)]

(21)
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Using the gravitational potential defined in (21) the force on a mass element of a satellite
orbiting the Earth is:

dF = dm∇Φ = −µEdm
r3

r − 3

2

µER
2
Edm

r5
J2


(

1− 5
(
rz
r

)2
)
rx(

1− 5
(
rz
r

)2
)
ry(

3− 5
(
rz
r

)2
)
rz

 (22)

This can be integrated term by term to obtain the gravity force on the satellite consid-
ering the Earth’s oblateness:

F = F g1 + F g2 + F g3

= −
∫
m

µE
r3
r dm−

∫
m

3

2

µER
2
E

r5
J2

 rx
ry

3 · rz

 dm+

∫
m

15

2

µER
2
E

r5
J2

(rz
r

)2

r dm
(23)

The integral solution for the first term F g1 in (23) is presented in (15) and (16) or (17).
The integrals for the second and third term are evaluated in the following.

The series expansions for r−5 and r−7 are:

r−5 = |R + ρ|−5 = R−5

[
1 +

2(R · ρ)

R2
+
( ρ
R

)2
]− 5

2

= R−5

[
1− 5

R · ρ
R2
− 5

2

( ρ
R

)2

+
35

2

(
R · ρ)2

R4
+O

( ρ
R

)3
]

(24)

r−7 = |R + ρ|−7 = R−7

[
1 +

2(R · ρ)

R2
+
( ρ
R

)2
]− 7

2

= R−7

[
1− 7

R · ρ
R2
− 7

2

( ρ
R

)2

+
63

2

(
R · ρ)2

R4
+O

( ρ
R

)3
]

(25)

Carrying out the second integral term in (23) using (24),

F g2 = −
∫
m

3

2

µER
2
E

r5
J2

 rx
ry

3 · rz

 dm
= −3

2

µER
2
E

R5
J2

∫
m

[
1− 5

R · ρ
R2
− 5

2

( ρ
R

)2

+
35

2

(
R · ρ)2

R4

] Rx + x
Ry + y

3(Rz + z)

 dm,
(26)
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neglecting terms of order three and higher in ρ and using∫
m

ρ dm = 0, (27)

the second term F g2 becomes:

F g2 = −3

2

µER
2
EJ2m

R5

 Rx

Ry

3 ·Rz

 (28)

+
15

4

µER
2
EJ2

R7


{(

7 (Rx)2

R2 − 4
)
Ixx +

(
7 (Ry)2

R2 − 2
)
Iyy +

(
7 (Rz)2

R2 − 2
)
Izz

}
Rx{(

7 (Rx)2

R2 − 2
)
Ixx +

(
7 (Ry)2

R2 − 4
)
Iyy +

(
7 (Rz)2

R2 − 2
)
Izz

}
Ry

3
{(

7 (Rx)2

R2 − 2
)
Ixx +

(
7 (Ry)2

R2 − 2
)
Iyy +

(
7 (Rz)2

R2 − 4
)
Izz

}
Rz



+
15

2

µER
2
EJ2

R7


RyIxy +RzIxz − 7

{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Rx

RxIxy +RzIyz − 7
{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Ry

3 · (RxIxz +RyIyz − 7
{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Rz)


The third term, neglecting higher order terms in the integration, becomes:

F g3 =
15

2

µER
2
EJ2

R7

(
R2
zm+

Ixx + Iyy − Izz
2

)
R (29)

+
15

2

µER
2
EJ2

R7
Rz

 2Ixz
2Iyz

Ixx + Iyy − Izz


− 105

2

µER
2
EJ2

R9
Rz

 2R2
xIxz + 2RxRyIyz +RxRz(Ixx + Iyy − Izz)

2RxRyIxz + 2R2
yIyz +RyRz(Ixx + Iyy − Izz)

2RxRzIxz + 2RyRzIyz +R2
z(Ixx + Iyy − Izz)



− 105

4

µER
2
EJ2

R9
R2
z


{(

9 (Rx)2

R2 − 5
)
Ixx +

(
9 (Ry)2

R2 − 3
)
Iyy +

(
9 (Rz)2

R2 − 3
)
Izz

}
Rx{(

9 (Rx)2

R2 − 3
)
Ixx +

(
9 (Ry)2

R2 − 5
)
Iyy +

(
9 (Rz)2

R2 − 3
)
Izz

}
Ry{(

9 (Rx)2

R2 − 3
)
Ixx +

(
9 (Ry)2

R2 − 3
)
Iyy +

(
9 (Rz)2

R2 − 5
)
Izz

}
Rz



− 105

2

µER
2
EJ2

R9
R2
z


RyIxy +RzIxz − 9

{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Rx

RxIxy +RzIyz − 9
{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Ry

RxIxz +RyIyz − 9
{
RxRy
R2 Ixy + RxRz

R2 Ixz + RyRz
R2 Iyz

}
Rz


In the derivation of (28) and (29) the moments and products of inertia defined in (13)
and (14) have been applied. Comparing equation (29) with equations (15) (F gg defined
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in (17)) and (28), the three additional terms in (29) come from the multiplication of
(25) with r2

z = R2
z + 2Rzz + z2, neglecting higher order terms.

In a more compact form, the gravity force can be written as:

F = Fmono + F gg (30)

with

Fmono = −µEm
R3

R− 3

2

µER
2
Em

R5
J2R̃ +

15

2

µER
2
Em

R7
J2R

2
zR (31)

and

F gg =
15

2

µER
2
EJ2

R7

(
Ixx + Iyy − Izz

2
R +Rz Ĩ3

)
(32)

+ 105
µER

2
EJ2

R9
Rz

[
RT I3R−Rz

1

2
tr(I)R

]
+

3

2

µE
R7
RT I R

[
5R +

35

2

R2
EJ2

R2
R̃− 315

2

R2
EJ2

R4
R2
zR

]
− 3

2

µE
R5
tr(I)

[
R + 5

R2
EJ2

R2
R̃− 105

2

R2
EJ2

R4
R2
zR

]
− 3

2

µE
R5
I

[
2R + 5

R2
EJ2

R2
R̃− 35

R2
EJ2

R4
R2
zR

]
where I3 is the third column of the inertia matrix defined in (12),

I = [I1 I2 I3] , I3 =

 −Ixz−Iyz
Izz

 , (33)

Ĩ3 is defined as:

Ĩ3 =

 2Ixz
2Iyz

Ixx + Iyy − Izz

 (34)

and

R̃ =

 Rx

Ry

3 ·Rz

 . (35)

As for the gravity-gradient force derived in (16), expression (32) also becomes zero for
equal inertia in principal axes form.
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4.2. Gravity-Gradient Torque

The gravity-gradient torque is calculated from

T gg =

∫
ρ× dF (36)

with dF defined in equation (9). Neglecting higher-order terms in ρ (see e.g. [4, 10]),
the gravity-gradient torque becomes:

T gg =
3µE
R5

[
R× (I ·R)] (37)

With dF defined in equation (22), the gravity-gradient torque can be written as:

T gg = T gg1 + T gg2 + T gg3

=
3µE
R5

[
R× (I ·R)]

− 3µER
2
E

R5
J2Ĩ2 +

15

2

µER
2
E

R7
J2

[
R̃×

(
Ĩ ·R

)]
− 15

2

µER
2
E

R7
J2Rz

[
R× Ĩ3

]
− 105

2

µER
2
E

R9
J2R

2
z

[
R× (I ·R)]

(38)

where Ĩ3 is defined in (34) and R̃ in (35), Ĩ2 is defined as

Ĩ2 =

 Iyz
−Ixz

0

 (39)

and

Ĩ =

1
2
(Ixx − Iyy − Izz) −Ixy −Ixz

−Ixy 1
2
(Iyy − Ixx − Izz) −Iyz

−Ixz −Iyz 1
2
(Izz − Ixx − Iyy)

 . (40)

The torque expressions (37) and (38) become zero for equal inertia in principal axes form.

Alternatively, the gravity-gradient torque can be calculated using the gravity-gradient
matrix, i.e. the second partial derivative of the gravitational potential (see [1, 2, 7],

T gg =

∫
ρ×G ρ dm (41)

Hereby, higher order terms in the gravitational potential can be considered. However,
the gravitational field is linearized at the center of mass of the satellite. Expanding the
term ρ×G ρ, the gravity gradient torque can be integrated term by term which yields
(see [2, 8]):
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T bgg =

G23 (Izz − Iyy) +G13Ixy −G12Ixz + Iyz (G33 −G22)
G13 (Ixx − Izz)−G23Ixy +G12Iyz + Ixz (G11 −G33)
G12 (Iyy − Ixx) +G23Ixz −G13Iyz + Ixy (G22 −G11)

 (42)

where
Gij Element i, j of gravity-gradient matrix G.
Iij Element i, j of moments of inertia matrix I.

The elements of the gravity-gradient matrix, Gij = ∂2Φ
∂xi∂xj

, i, j = 1 . . . 3 with Φ defined

in (21), are:

G11 = −µE
R3

[
1− 3

(
Rx

R

)2
]

− 3

2
J2
µE
R3

(
RE

R

)2
[

1− 5

{(
Rx

R

)2

+

(
Rz

R

)2
}

+ 35

(
Rx

R

)2(
Rz

R

)2
]

G22 = −µE
R3

[
1− 3

(
Ry

R

)2
]

− 3

2
J2
µE
R3

(
RE

R

)2
[

1− 5

{(
Ry

R

)2

+

(
Rz

R

)2
}

+ 35

(
Ry

R

)2(
Rz

R

)2
]

G33 = −µE
R3

[
1− 3

(
Rz

R

)2
]
− 3

2
J2
µE
R3

(
RE

R

)2
[

3− 30

(
Rz

R

)2

+ 35

(
Rz

R

)4
]

G12 = G21 = 3
µE
R3

(
Rx

R

)(
Ry

R

)
+

3

2
J2
µE
R3

(
RE

R

)2
[

5

(
Rx

R

)(
Ry

R

)
− 35

(
Rx

R

)(
Ry

R

)(
Rz

R

)2
]

G13 = G31 = 3
µE
R3

(
Rx

R

)(
Rz

R

)
+

3

2
J2
µE
R3

(
RE

R

)2
[

15

(
Rx

R

)(
Rz

R

)
− 35

(
Rx

R

)(
Rz

R

)3
]

G23 = G32 = 3
µE
R3

(
Ry

R

)(
Rz

R

)
+

3

2
J2
µE
R3

(
RE

R

)2
[

15

(
Ry

R

)(
Rz

R

)
− 35

(
Ry

R

)(
Rz

R

)3
]

(43)
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5. Validation of Numerical Simulator

5.1. Definition of Test Cases

In order to validate the correct implementation of the quadrupolar force term, two test
cases are defined:

• Equal satellite inertia Ixx = Iyy = Izz on principal axes

• Dumbbell satellite

5.2. Equal Satellite Inertia

For identical entries in the inertia matrix in principal axes form (zero off-diagonal ele-
ments) the quadrupolar term (17) has to vanish as pointed out in section 4.1.
The moments of inertia of the satellite are set to:

Ib
b

=

20000 0 0
0 20000 0
0 0 20000

 kg ·m2 (44)

The initial conditions for the satellite are set to

rii,b =

 xii,b
yii,b
zii,b

 =

 a · (1.0− e)
0
0

 m (45)

ṙii,b =


0
0√

µE ·
(

2
xii,b
− 1

a

)
 m

s
(46)

where a = (µE/ω
2
orbit)

1/3, e is set to zero in this case, µE = 3.986004415 · 1014 and
ωorbit = 1.108507726 · 10−3.
This gives an orbit period of 5771s.

In figure 3 the resultant quadrupolar acceleration is shown for the satellite inertia matrix
defined in (44). The values shown are below the numerical precision limit and can be
regarded equal to zero as expected. Using equation (32) to obtain the gravity-gradient
acceleration on the satellite, the results are zero as well. The small values are due to
subtraction of equal numbers. In the case where those numbers are zero themselves, i.e.
where the gravitay force component is zero, the result for the quadrupolar accelaration
is also exactly zero.
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Figure 3: Quadrupolar acceleration for equal satellite inertia

5.3. Dumbbell Satellite

The simplest example for non-zero quadrupolar force terms is represented by a symmet-
rical dumbbell satellite, see figure 4. For this test case both masses of the dumbbell
satellite have a weight of 1kg and the same diagonal inertia as tested in 5.2. The con-
necting rod between the two bodies is assumed to be massless.

For starting values of the simulation the initial conditions defined in 5.2, equations (45)
and (46) are used. As usual they refer to the satellite center of mass, i.e. half-way
between the dumbbell bodies. The initial placements of the dumbbell bodies are:

rii,db1 =

 a · (1.0− e) + ρ
0
0

 (47)

rii,db2 =

 a · (1.0− e)− ρ
0
0

 , ρ = 100m (48)
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Figure 4: Reference Frames and Position Vectors for the Dumbbell Satellite

The satellite moments of inertia based on the dumbbell-body positions are:

Ib
b

=

0 0 0
0 20000 0
0 0 20000

 kg ·m2 (49)

The forces F 1 and F 2 acting on the dumbbell bodies are simply calculated by

F 1/2 = − µEm∣∣∣rii,db1/2∣∣∣3 r
i
i,db1/2 (50)

The force Fmono on the satellite center of mass (CoM) is accordingly:

Fmono = −µE · 2m∣∣rii,b∣∣3 rii,b (51)

with rii,b defined in (45).
The quadrupolar force term for the satellite CoM is calculated utilizing equation (17)
and Ixx = Ixy = Ixz = Iyz = 0, Iyy = Izz = I,

F quad =
3

2

µE∣∣rii,b∣∣5


[
5

(
zii,b

|rii,b|
)2

− 2

]
I · xii,b

0[
5

(
zii,b

|rii,b|
)2

− 4

]
I · zii,b

 (52)
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The difference between the forces on the dumbbell bodies and the satellite CoM can be
calculated exactly. Since the quadrupolar force term is a measure for the deviation of the
satellite from a point mass object or the ideal model presented in 5.2, the quadrupolar
force term should equal the difference between the forces on the dumbbell bodies and
the satellite CoM:

F quad ' F 1 + F 2 − Fmono (53)

Alternatively, an expression for the quadrupolar force term in this test case is computed
by the gravity-gradient acceleration, i.e. the difference in acceleration between the satel-
lite CoM and the dumbbell bodies. In the drag-free simulator the gravity-gradient
acceleration is calculated directly or by utilizing the expansion of the spherical potential
field described in [7]. The specific quadrupolar force term can be obtained through:

f
quad
' agg,m1 + agg,m2 (54)

where:
f
quad

Specific quadrupolar force term.

agg,m1/2 Gravity gradient acceleration on dumbbell bodies 1 and 2.

If calculated directly,

agg,m1/2 = − µE∣∣∣rii,db1/2∣∣∣3 r
i
i,db1/2 +

µE∣∣rii,b∣∣3 rii,b (55)

the computation of f
quad

in (54) is identical to the approach in (53). Using the expansion

described in [7] has the advantage, that a small difference obtained from the subtraction
of large numbers will not be falsified through numerical precision errors.

In figure 5 the specific quadrupolar force term calculated with (52) is plotted with the
cross symbol, the result obtained with (53) devided by the mass is plotted with a solid
line and the sum in (54) is plotted with circles. Only the non-zero components are
shown. As can be seen the results obtained with the three different methods match.
As for the previous test case, the orbit period is 5771s. Since no other forces are acting on
the satellite and since it is assumed that the gravity-gradient torque is deactivated, the
satellite attitude is inertially fixed. For an interpretation of the results it is easier to look
at the equivalent of a satellite at fixed position which is rotating in the orbital plane. In
one orbit period the quadrupolar acceleration exhibits twice the orbital frequency. The
transformation from the orbital frame into the body-fixed frame yields three times the
orbital rate. In figure 5 the results are plotted in the inertial frame which in this case
has the same orientation as the body-fixed frame.

ZARM - Center of Applied Space Technology and Microgravity Page 20 of 27



Implementation of Quadrupole Effects on
Satellite and Test Masses in the

Drag-Free Simulator

Doc.No.: FLK-SIM-TN-ZAR-002

Issue: 1.0

Page: 21 of 27

Figure 5: Quadrupolar acceleration. Vector addition of specific forces from dumbbell
test masses and satellite, quadrupolar force term and sum of dumbbell accel-
erations.

Figure 6: Top: Quadrupolar approximation error. Bottom: Error between alternate
computation methods.

In figure 6 the difference between (53) and (52) (top) as well as the difference between
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(53) and (54) (bottom) is shown for the x-component of the specific quadrupolar force.
In both plots the difference is of order of the numerical precision limit which justifies
the simplifications (neglection of higher order terms) in the derivation of the expression
for the quadrupolar force term (16).

For the dumbbell satellite the gravity-gradient acceleration using equation (32) reduces
to:

F quad =
3

2

µE∣∣rii,b∣∣5


[
5

(
zii,b

|rii,b|
)2

− 2

]
I · xii,b

0[
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(
zii,b

|rii,b|
)2

− 4

]
I · zii,b

+
15

4

µER
2
EJ2∣∣rii,b∣∣7
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(
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|rii,b|
)2

− 8

]
I · zii,b

 (56)

Figure 7: Gravity-gradient acceleration assuming a spherical Earth: solid line; gravity-
gradient acceleration considering Earth oblateness (expressed through J2-
term): dashed line.
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In figure 7 the non-zero components of the gravity-gradient acceleration obtained from
(32) are compared against the results using equation (16). The differences between the
two results, i.e. the part of the acceleration that is due to the J2-term of the gravitational
potential (21), is shown in figure 8.

Figure 8: Gravity-gradient acceleration due to Earth oblateness.

As can be seen in figure 8, the contribution to the gravity-gradient acceleration due to
the J2-term is three orders of magnitude smaller than the one resulting from the spher-
ical Earth potential. This can be already inferred from the potential function in (21).
The three terms in equation (21) would be of same order of magnitude if it was not for
the constant J2 = 1.083 · 10−3. For comparison, the neglected terms of order O( ρ

R
)3 in

the series expansions (10), (24) and (25) are six orders of magnitude smaller than the
included terms of order O( ρ

R
)2 and three orders of magnitude smaller than O( ρ

R
)2 · J2.

This estimation refers to scenarios of small spacecrafts with lengths less or equal to 10m
in an altitude of 300km and more. The case where O( ρ

R
)3 becomes equally important to

terms of order O( ρ
R

)2 · J2 starts with spacecraft dimensions 1000 times larger than the
ones considered here. For the ISS with a length of 107m, the neglected terms of order
O( ρ

R
)3 are five orders of magnitude smaller than terms of order O( ρ

R
)2 and two orders

of magnitude smaller than O( ρ
R

)2 · J2.

In figure 9 the gravity-gradient torque is calculated in four different ways: 1) assuming a
spherical Earth according to (37), 2) including Earth’s oblateness using expression (38),
3) calculation of the gravity-gradient torque with (42) assuming a spherical Earth, and
4) utilizing the gravity-gradient matrix defined in (43) to calculate the gravity-gradient
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torque with (42). The magnified cut-out in the lower left of figure 9 shows the differences
between the four results. The two methods involving a spherical Earth are identical and
the two methods accounting for Earth’s oblateness also match. In the lower right of
figure 9 the J2-correction is plotted seperately.

Figure 9: Top figure: Gravity-gradient torque assuming a spherical Earth, with J2-
correction, calculated with gravity-gradient matrix (gg-mat) from spherical
Earth potential and with J2-term; bottom left: magnified cut-out, right: J2-
correction.
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A. Euler Symmetric Parameters - Quaternions

A.1. Definition of Euler Symmetric Parameters

The direction cosine matrix can be parameterized in terms of Euler symmetric parame-
ters q1, q2, q3 and q4. They are defined as (see [10]):

q1 = ex sin
Φ

2

q2 = ey sin
Φ

2

q3 = ez sin
Φ

2

q4 = cos
Φ

2

(57)

They can be regarded as the components of a quaternion.

q =


q1

q2

q3

q4

 (58)

Since a quaternion expresses a transformation the notation of super and subscripts cor-
responds to transformation matrices. So qba denotes a quaternion describing the trans-
formation from frame a to frame b.

A.2. Quaternion Algebra

Quaternion Multiplication

For combination of transformations quaternions can be multiplied. The multiplication
is defined as:

q
′′

= q
′ � q (59)

where the operator � denotes the following matrix-vector operation:

q
′′

=


q

′
4 q

′
3 −q′

2 q
′
1

−q′
3 q

′
4 q

′
1 q

′
2

q
′
2 −q′

1 q
′
4 q

′
3

−q′
1 −q′

2 −q′
3 q

′
4



q1

q2

q3

q4

 (60)
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Direction Cosine Matrix from Quaternion

The direction cosine matrix can be derive from a quaternion by:

A(q) =


q1

2 − q2
2 − q3

2 + q4
2 2 q1q2 + 2 q3q4 2 q1q3 − 2 q2q4

2 q1q2 − 2 q3q4 −q1
2 + q2

2 − q3
2 + q4

2 2 q2q3 + 2 q1q4

2 q1q3 + 2 q2q4 2 q2q3 − 2 q1q4 −q1
2 − q2

2 + q3
2 + q4

2

 (61)

Time-Derivative of Quaternion

If a quaternion represents the attitude of a rotating rigid body its derivative w.r.t. time
is needed for propagation. For the attitude of body b w.r.t. the reference frame a the
transformation can be expressed by qba. The angular velocity of b w.r.t. the reference a
measured in the frame b is expressed as ωba,b.
The derivative w.r.t. time is:

q̇ =
1

2
Ωqba (62)

where Ω is defined as:

Ω =


0 ωba,bz −ωba,by ωba,bx

−ωba,bz 0 ωba,bx ωba,by

ωba,by −ωba,bx 0 ωba,bz

−ωba,bx −ωba,by −ωba,bz 0

 (63)

Using the quaternion multiplication rule the time derivative can be expressed as:

q̇ =
1

2
ω̂ba,b � qba (64)

where:

ω̂ba,b =


ωba,bx
ωba,by
ωba,bz

0

 (65)
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1. Introduction 
 
This paper provides a preliminary outline of the concept for the First-Look On-Ground 
Attitude Determination (OGA1) of the GAIA satellite. 
 
The OGA1 covers the very first step in the non-real-time on-ground First-Look scientific 
data processing of the GAIA satellite. OGA1 will be a so-called smoothing type of 
estimation algorithm and will employ a relatively large set of data (e.g., one or 
more great circles) in its entirety.  
 
This processing will likely result in much smoother and more consistent estimation errors 
than the on-board 'Real-Time Attitude Determination' algorithm which is based on only 
the past a posteriori states and has a somewhat different objective, i.e. stability and 
robustness  instead of attitude accuracy and consistency. 
 
The improvement factor will be somewhere between perhaps 2 and at most 5 to 10 (after 
some enhanced attitude modeling). However, without actual simulations and without 
detailed understanding of the on-board estimation algorithm and its performance, this 
'factor' will remain essentially a 'guess'. 
  
In any case, even when the average improvement factor may be relatively limited, the 
attitude errors will have fewer 'ups and downs' and the errors will be more representative 
as well as smaller. 
  
Furthermore, specific effects that turn out to be of some significance when the data are 
analysed, could be modeled with reasonable accuracy on-ground, thereby further 
enhancing the attitude accuracy as well as its consistency. 
  
Another important argument is that the on-ground attitude reconstitution (because of its 
more consistent error characteristics) would result in more meaningful residuals, i.e. the 
differences between the actual and the predicted measurements (based on the established 
best attitude estimates). These residuals are useful because they provide good insight into 
the characteristics of the attitude errors and will indicate when specific problems occur. 
Also they give insights into the actual performance of the on-board attitude sensors and 
any degradations (even if only very gradual) in these performances. 
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2. GAIA FIRST LOOK OVERVIEW 
The paper by Jordan et al in Ref. [4] provides a great deal of useful insights into the 
GAIA First Look concept. 

 

2.1. Summary 
1. Complicated and ambitious space mission like GAIA needs careful monitoring of all 

components of the satellite at different time scales, by different methods, and on 
different levels of precision 

2. A first analysis of the science data quality and consistency is done by the “Science 
Quick Look” 

3. Due to nominal scanning law, a full self-consistent calibration of the satellite and a 
determination of the astrometric and global parameters is not possible before about 
half a year into the mission 

4. The latter implies a serious danger of loss of valuable observing time in case 
something is wrong 

5. Thus, it is necessary to perform a “Detailed First Look” on a daily basis at micro-
arcsec level 

6. Two methods are proposed: a Block Iterative Solution (BIS?) procedure and a direct 
solution for monitoring all satellite parameters that in principle can be evaluated in a 
short amount of time. 

 

2.2. First-Look activities 
1. The First-Look aims at a rapid health monitoring at the target level of astrometric 

precision by means of  the Global Iterative Solution (GIS) after several months of 
data have been gathered 

2. The Quick-Look (QL) task comprises all operations activities at satellite level 

3. The Science Quick-Look (ScQL) concerns scientific data health and will be some less 
precise and simplified version of the Detailed First Look task and works mainly at the 
data level (e.g. missing blocks); this will most efficiently be done at the same location 
as QL 

4. The Detailed First Look is the in-depth scientific assessment of the quality of GAIA 
data within about 24 hours after reception at the Data and Processing centre (DPC) 

5. It involves a restricted astrometric calibration to judge the measurement quality but 
will not necessarily provide absolute astrometric and calibration parameters. This task 
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is called First-Look Processing (FLP) and is the most complicated process in the 
chain. FLP may be compared with the strictly one-dimensional Great-Circle 
Reduction of the HIPPARCOS mission 

6. After FLP has been performed, the Detailed First-Look (DFL) task will produce 
diagnostics of the status of satellite and instrument in a more sophisticated manner 
than done by ScQL. 

 

2.3. Basic GAIA Data Reduction 
1. With known (even approximately) geometric calibration of the telescopes and focal 

plane, the pixel coordinates of the centroid can be transformed into spherical 
longitude and latitude coordinates, i.e. ‘the observed field angles’: η (along scan) and 
ζ (across scan); for a given instant of time, they depend on the astrometric parameters 
of the source and on GAIA’s attitude with respect to inertial space 

2. In the Gaia Global  Solution (GIS) the differences between observed field angles and 
the ones computed from approximate parameters are used to determine corrections in 
a linearized least-squares adjustment process; this is basic principle of the self-
calibrating astrometric reduction of GAIA’s measurements. 

 

2.4. First Look Preprocessing 
1. With known (even approximately) geometric calibration of the telescopes and focal 

plane, the pixel coordinates of the centroid can be transformed into spherical 
longitude and latitude coordinates, i.e. ‘the observed field angles’: η (along scan) and 
ζ (across scan); for a given instant of time, they depend on the astrometric parameters 
of the source and on GAIA’s attitude with respect to inertial space 

2. The main instrument measures only along scan (i.e., η only), whereas the Astrometric 
Sky Mapper (ASM) measures in two dimensions, but with a much lower precision 
across scan ( 1 to 3 mas, but only after calibration) 

3. A HIPPARCOS-style great-circle reduction is not able to perform the First Look job 
for GAIA because the across-scan positions of the stars are not known with sufficient 
precision until after the first GIS has been completed. The great circle reduction may 
work if the ASM were calibrated. 

More background and detailed information on the First-Look processing can be found in 
Jordan [4] and in other GAIA papers. 
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2.5. Relevant Payload Characteristics 
The SRD, Ref. [2] pp. 20-23, provides details on the GAIA Payload module design. The 
payload contains two physically distinct instruments, i.e. Astro-1 and -2, with a common 
focal plane but with different viewing directions or Line-of-Sight (LoS), see Figure 2.1. 

The angle between the two LoS’s is known as the ‘basic angle’ with a value of 99.4 +/- 
0.5 degrees (still to be selected). The stability of the basic angle is essential for the GAIA 
mission objectives. Therefore, the payload is equipped with a dedicated Basic Angle 
Monitoring (BAM) device for assessing the imposed stability conformance of the basic 
angle. 

Both of the focal plane instruments are equipped with the following devices using CCD’s 
for measuring the photon counts of the objects transiting over the focal plane: 

� dedicated Astrometric Sky Mappers (ASM’s), i.e. ASM-1 and -2, for object detection 

� Astrometric Field (AF) for performing GAIA’s principal astrometry mission 

� Broad Band Photometer (BBP) for collecting color information of all observed objects  

 

 

Figure 2.1 – Common Focal Plane of the Astro-1 and -2 Instruments 
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It should be noted that ASM-1 is seen by telescope # 1 and ASM-2 by telescope # 2. The 
Sky Mapper measurements consist of the determination of the centroid crossing times of 
the stars over each of the ASM CCD arrays. These crossing times are combined with the 
subsequent crossing times of the same stars over the AF-1 CCD array, which is about 10 
and 5 seconds for stars in FOV # 1 and FOV # 2, respectively. Finally, these 
measurements can be processed to estimate the speeds of the stars, both in the along and 
the across directions, relative the instrument focal plane. 
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3. GAIA On-Board Attitude Determination and Control  

3.1. Measurement & Pointing Requirements 
The normal-mode on-board attitude determination and control of the GAIA satellite is 
described in some detail in Refs. [1] and [2] and in even more detail in Ref. [3].  

The most recent determination and control performance requirements are summarized in 
ESA’s GAIA Mission Requirements Document Ref. [1], section 4.7 on p. 31.  

Table 1 summarizes the principal mission- and system-level requirements imposed on the 
attitude pointing and rate performances as provided in Ref. [1], p. 31. These requirements 
are applicable to both ASTRO telescope Line-of-Sight (LoS). The GAIA astrometric 
measurement principle and CCD operation makes that a distinction must be made in the 
accuracy requirements for quantities measured in the along-scan and those along the 
across-scan directions. 

The following definitions may be recalled: 

� Attitude Measurement Error (AME) refers to the instantaneous 3-axis angular 
separation between the estimated satellite attitude (as well as Astro instrument LoS) 
and the actual one 

� Rate Measurement Error (RME) refers to the mean difference between the 
estimated spacecraft scan rate and the actual one 

� Absolute Pointing Error (APE) refers to the instantaneous 3-axis angular separation 
between the desired satellite attitude (as well as Astro instrument LoS) and the actual 
one 

� Relative Pointing Error (RPE) at a given time t is defined as the standard deviation 
of the absolute pointing error over the AF CCD integration time τ around t  

� Mean Error Rate (MRE) is defined as the mean difference between the desired 
satellite scan rate  attitude and the actual one; the averaging time is the time spent by 
an object from being detected to being confirmed in the astrometric field 
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Parameter Requirement  
(99.73 % probability level, science operations) 

AME - Attitude Measurement Error < 20 arcsec 

RME1 - Rate Measurement Error (along scan) < 0.9 mas/s 

RME2 - Rate Measurement Error (across scan) < 2.7 mas/s 

APE - Absolute Pointing Error  < 60 arcsec 

RPE1 - Relative Pointing Error (along scan)* < 5 mas (on along-scan axis, all time) 

RPE2 - Relative Pointing Error (across scan)* < 10 mas (on any across-scan axis, all time) 

MRE1 - Mean Rate Error (along scan) < 2 mas/s (on along-scan axis, all time) 

MRE2 - Mean Rate Error (across scan) < 10 mas/s (on any across-scan axis, all time) 

* standard deviation of APE during single detector CCD integration time of 3.3 sec 
 

Table 1 – Summary of AOCS Performance Requirements 
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3.2. Jitter Requirements 
In addition, there are limiting requirements on the levels of permissible jitter in the along-
scan and across-scan directions of the ASTRO telescope line of sight, namely the 
requirements numbered SCI-740 and 750 given on p. 33 of Ref. [1]: 

� ∆ϑ < 3.4 micro-arcsec rms (along-scan) 

� ∆ϑ < 100 micro-arcsec rms (across-scan) 

In both cases, the requirements refer to the angle ∆ϑ that is defined in terms of the jitter’s 
Power Spectral Density (PSD) integrated over the frequency interval above 1/(10T) with 
T the time for an object to cross the ASTRO focal plane, i.e. T is about 1 minute. 

It is of interest to point out that more accurate attitude knowledge than specified in Table 
1 will be achieved during nominal payload operational mode. This is because the more 
accurate attitude knowledge (in particular, along-scan and across scan rates) that can be 
derived from the CCD outputs is provided to the AOCS subsystem and is progressively 
‘merged’ with available the star tracker attitude. 

 

3.3. Summary of Performances 
Ref. [3], section 3.5.5 contains the results of the AOCS performances produced during 
the detailed simulations. The following conditions and assumptions were taken during the 
simulations: 

� attitude estimation is based on three spacecraft rotation rates (delivered by the payload 
measurements) and three attitude angles derived from the star tracker angular outputs 
and the integrated payload rates 

� the star tracker random white noise was taken as 5 and 25 arcsec (rms, 5 Hz) for the 
cross and line-of-sight axes, respectively, and similar values have been taken for the 
random bias error 

� the along-scan and across-scan rates are determined from the observed star scans over 
the ASM1 and AF1 CCD’s for telescope 1 and the scans over the ASM2 and AF2 
CCD’s in the ASTRO focal plane for telescope 2; random white noise was taken as 4 
mas/sec and 20 mas/sec for the cross and line-of-sight axes, respectively 

� the attitude controller uses a straightforward Proportional-Derivative (PD) control law 
with a control bandwidth of 0.005 Hz and damping of 0.7. The attitude angle and rate 
errors are filtered using a low-pass filter with a cut-off frequency at 5 times control 
bandwidth 

� the Field Emission Electric Propulsion (FEEP) actuation characteristics are taken as 
1.2 mN max thrust level, 1 µN quantification, and 0.1 % random white noise 
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� the satellite dynamics includes a second-order rigid-body part and a first mode (Sun 
shield and booms) representation of 0.1 Hz cantilever frequency on cross axes; 
inertiass are taken as 2160 kgm2 for the cross axes and 2725 kgm2 for the spin axis 

� the solar radiation disturbance torques are modeled by a combination of a constant 
mean solar flux value plus integrated white noise with standard deviation of 4.5 × 10-6 
times the mean value and 5 minute oscillation periods. 

The resulting performances shown on pp. 45 - 47 of Ref. [3] indicate that the 
requirements of Table 1 are (essentially) fulfilled. 
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4. Attitude Data Simulation 

4.1. Simulator Characteristics 
Figure 4.1 illustrates the data interfaces and data processing required for the objective of 
assessing the performance of the potential on-ground attitude determination algorithms.  

The left-hand-side of Figure 4.1 summarizes the various functions contained in the 
simulator. These are the same elements that are on-board the spacecraft with the 
exception that most of the elements do not need to be ‘high-fidelity’ in terms of their 
similarity with the on-board elements. In other words, most of these elements can be 
designed in a somewhat representative manner rather than in a fully identical to the way 
they are used on-board. The various elements of the simulator and their proposed 
simplifications are addressed in the following sections. 

 

 

Figure 4.1 - Summary of Elements in Attitude Simulator 
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4.2. Scanning Law 
The ‘Nominal Scanning Law’ or NSL used on-board the GAIA satellite defines the 
reference pointing attitude directions for the two astrometric fields of view on the sky. In 
reality, the attitude motion will not be exactly along the directions prescribed by the NSL 
but will have error angles of up to 20 arc-sec in all three directions (TBD). 

The NSL prescribes a constant scan rate of 1 arcmin per second which implies that a full 
great circle is described in 6 hours. The scan axis is subjected to a slow precession at a 
rate (mean value over the year) of 0.173 arcsec/sec about the Sun to Earth direction. 
Furthermore, the angle between the scan axis and the Sun must be maintained at 45 
degrees. More specific requirements on the NSL motion can be found in Ref. [1], pp. 14-
15 and in more detail in the SRD Ref. [2], pp. 29-30 

For the objectives of the present simulator it is perhaps not necessary (at least, in the first 
stage) to model the NSL in full detail but, on the other hand, a correct NSL modeling 
would lead to a realistic attitude framework for the simulations. Furthermore, the NSL 
model is (in principle, at least) relatively easy to implement in software. This is certainly 
the case when using the model given by Lindegren [5] who uses a formulation in terms of 
the 4-dimensional quaternion q: 

 

 q = [e1 sin(Φ/2) , e2 sin(Φ/2), e3 sin(Φ/2), cos(Φ/2)]T (4.1) 

 

with e = (e1, e2, e3)T the unit vector along the instantaneous rotation vector and Φ the 
relevant rotation angle. Multiplication of two quaternions a = (a1, a2, a3)T and b = (b1, b2, 
b3)T is straightforward (see [5], eq. 4): 
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 (4.2) 

 

The nominal scanning law expresses the NSL reference axes, which describe the nominal 
evolution of the satellite attitude pointing over the sky, relative to the inertial J2000 
frame. The NSL may be defined by 5 successive quaternion rotations, as shown by 
Lindegren in Ref. [5], eq. (6).  

Unfortunately, the NSL definition in [5] is not complete because the functions λs(t), ν (t), 
and Ω (t) have not been spelled out in any specific detail. In the ESA requirements, only 
the scan and precession rates are prescribed so that it is not possible (or at least not easy) 
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to reconcile and compare the Lindegren model with the ESA requirements. It is 
recommended to use a model similar to what Lindegren describes and to select the open 
functions in such a way that the resulting scan motion satisfies the ESA requirements. 

Two later papers by Mignard [6] and [7] provide the missing details to the Lindegren 
model in terms of the definition of the revolving phase angle η on the Sun-centered cone. 

 

 

Figure 4.2 – Visualization of Nominal Scanning Law angles ξξξξ and ηηηη [6] 
 

Another important issue that must be kept in mind within the context of the scanning law 
definition is that astronomers and engineers use different reference frames as pointed out 
by Bastian [8]. The solution he proposes and which has been accepted is to maintain each 
of the two conventions for the different communities and to be aware of the rotational 
transformation between the two frames, as shown in [6], Figure 3 on p. 5, which is 
identical to Figure 4.3.1-1 on p. 29 of ESA’s SRD in Ref. [2]. 
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Finally, it should be mentioned that no evidence has been found that the above reports on 
the NSL definition are in complete agreement with the ESA NSL requirements given in 
the MRD [1], pp. 14-15 and in the SRD [2], pp. 29-30, but this should in fact be the case 
when assuming that the scanning law design has been adequately coordinated. 

 

4.3. Attitude Determination  

4.3.1. Understanding of Attitude Noise  

The On-Ground Attitude Determination (OGAD) consists of a robust, weighted least-
squares fitting method of cubic spline functions to positional observations (i.e., centroid 
location in the CCD data stream) collected in ASM and AF1-11, as described by 
Lindegren [10]. The spline functions describe the four components of the attitude 
quaternions as smooth functions of time. 

There are three fundamental time intervals that are relevant for defining and assessing the 
attitude determination error: 

1. The CCD integration time τ ≈ 3.3 sec, with corresponding frequency fτ ≈ 0.3 Hz 

2. The FoV transit time T ≈ 40 sec with corresponding frequency fT ≈ 0.025 Hz 

3. The spline knot interval ∆t ≈ 100 sec  

The ‘spline separation’ frequency fs is defined as fs ≈ 1/(2∆t) ≈ 0.005 Hz. It is evident that 
attitude noise above the frequency fs can not be modeled by the spline function over the 
interval in question. This type of errors is therefore transmitted without attenuation into 
the OGAD results. Lower frequency noise, on the other hand, is effectively absorbed by 
the spline and is thus strongly attenuated. 

It is important to note that the separation frequency is higher than the attitude control 
bandwidth, which is of the order of 0.001 Hz). This means that attitude errors induced by 
the star tracker and the real-time rate measurements are perfectly absorbed by the spline 
and do not contribute to the OGAD error (this is almost certainly true for ∆t < 100 sec.    

Attitude errors may be correlated over time scales comparable with a FOV transit (i.e., 
about 40 seconds), it is reasonable to assume that the OGAD errors on successive FOV 
transits of a given source are uncorrelated. Therefore, the final achievable mean attitude 
error attσ  can be attenuated by the mean number N of FOV transits: attσ = σ /√N where 
σ  stands for the mean attitude error of an individual measurement and N ≈ 83. 

The individual attitude error σ is not derived from an instantaneous measurement but 
should be understood as a mean error over the ‘sampling interval’ τ which equals the 
CCD integration time of τ = 3.3 seconds for the ASM and AF1 readings. When denoting 
the along-scan attitude, i.e. the attitude angular depointing with respect to the nominal 
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scanning law, as a function of time by a(t), we can express the actual attitude 
measurement as a moving average over the interval τ : 

 

 a (t) = (1/τ) 
/ 2

/ 2
( )

t

t
a t dt

τ

τ

+

−�  (4.3) 

 

The OGAD error e(t) is now the difference between the actual attitude a(t) and the spline 
function s(t) over the time interval T = 40 sec corresponding to the FOV crossing. The 
variance of the attitude error over this interval is now: 

 

 FoVσ = 
1/ 22 ( )Te t          with:          Te (t) = (1/T) 

/ 2

/ 2
{ ( ) ( )}

t T

t T
a t s t dt

+

−
−�  (4.4) 

 

The brackets 2x  stands for the statistical average, i.e. 2x  = E{x2}. 

On the basis of the noise characteristics presented above we may split the OGAD error 
e(t) in two components, namely: 

 

 e(t) = o(t) + m(t) (4.5) 

 

Here, o(t) the low-frequency part dominated by the measurement noise in the AF 
centroiding data, and m(t) the high-frequency noise consisting of the modeling errors. 

The Power Spectral Density (PSD) of e(t) may now be expressed as: 

 

 Pe(f) = Po(f ) + Pm(f) (4.6) 
 
It is shown by Lindegren [10], Figures 1 and 2 that the cubic spline effectively filters all 
low-frequency noise with  f  < 0.2/∆t, whereas the noise above f  > 0.7/∆t is not damped. 
Therefore, there is a relatively sharp boundary between these two contributions. As 
shown in [10], section 3.2, the noise covariances may be added as well: 
 
 2

FoVσ = 2
oσ  + 2

mσ  (4.7) 
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4.3.2. Attitude Noise Model 

The error in the results of the GAIA attitude determination (for both the on-board RTAD 
and the on-ground OGAD) depends mainly on the noise in the readings of the sensors, 
i.e. the star tracker, the gyroscopes, as well as that of the CCD output samples that are 
employed for the determination of the rate measurements. 

Lindegren [9] and [10] provides a rough but illustrative model for establishing the 
attitude determination error over different frequency intervals on the basis of the photon 
noise errors and the number of stars as a function of magnitude. Also the contribution of 
each noise frequency interval to the final error budget is determined. 

His approach goes as follows: 

1. An elementary measurement consists of the mean star location in a single CCD 
crossing lasting 0.86 seconds. Thus, all attitude variations with frequencies above 
about 1.2 Hz will be smoothed out. Their contributions to the error budget are 
accounted for by the Point Spread Function (PSF) smearing. 

2. It can be shown that the contributions of the frequency intervals to the final attitude 
error budget will be negligible below a certain frequency f0. This defines the highest 
frequency at which the attitude determination will be useful and leads to the 
requirement that the actual attitude noise above that frequency is negligible. 

3. It the determination of attitude errors is considered within a small frequency 
bandwidth ∆f, an average of about 10 observations per cycle are required (because of 
the uneven star distributions) to fit harmonic functions of the scan angle in the course 
of a great circle scan. Lindegren [9] shows that the PSD of the final attitude 
determination noise is only weakly dependent on frequency for  f < 1 Hz. 

4. Let P(f) = P (i.e., a constant) denote the PSD of the attitude estimation error in the 
data processing and let P0 (f) = A f -α designate the PSD function of the actual attitude 
variations induced by the FEEP control actuators. The two PSD’s cross over at f0 = 
(A/P)1/α. Thus, the attitude must be estimated only up to frequencies f0 since the actual 
variations are smaller than the estimation errors for higher frequencies. 

The total rms attitude error follows as: 

 

  2
attσ = 

0

0
( )

f
P f df�  + 

0
0( )

f
P f df

∞

�  = 0 /( 1)Pfα α −  (4.3) 

 

In the case when α = 2, we find 2
attσ = 2Pf0. If we now require that the attitude error 

should be smaller than 10 µ-arcsec and use a PSD value of P = 1000 (µ-arcsec)2/Hz, we 
find from the cross-over condition that f0 ≈ 0.05 Hz, see Figure 4.3. From the cross-over 
condition we can see that the value of A = P( f0)α corresponds to about 2.5 (µ-arcsec)2Hz. 
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Figure 4.3 – Visualization of Attitude Noise Errors 
 

4.3.3. On-board Attitude Determination and Control 

The on-board Real-Time Attitude Determination (i.e., RTAD in HIPPARCOS jargon) 
and control concept is described in some (preliminary) detail in ESA-SCI(2000)4, Ref. 
[4], Chapter 4, and in particular pp. 201-208. More recent information can be found in 
Ref. [3], section 3.5, pp. 34-47. 

Of relevance to the present study is only the ‘operational mode’, where the attitude 
sensing is performed by the star sensor and sky mappers, and attitude control by the 
FEEP thrusters. Table 4.1 provides a summary of their characteristics which has been 
collected from data presented in [3], p. 43. 
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Sensor / 
Actuator Device Objective Performance Characteristics 

S: 

Star Sensor 

Galileo 
Avionica’s (TBC) 
Autonomous Star 
Tracker (A-STR) 

3-Axis 
Attitude 

Measurements 

� white noise, cross axes: 5" (rms)* 
� white noise, LoS axes: 25" (rms)* 
� random bias, cross axes: 5" (rms) 
� random bias, LoS axes: 25" (rms) 

S: 

Sky Mapper 

Integrated in 
Payload: CCD 
Columns ASM 

and AF1 

3-Axis Rate 
Measurements 

� white noise (1-σ), along-scan:  
     4 mas/sec per star 

� white noise (1-σ), across-scan:  
     20 mas/sec per star 

A: 

FEEP 
Thrusters 

LISA 150 µN 
Thrusters ? 

3-Axis 
Absolute 
Pointing 

Maintenance 

� Thrust Level: 0.15 mN  
� Thrust white noise: 0.1% 

� Quantification: 1 µN 
*noise taken at 5 Hz frequency; LoS: Line of Sight 

Table 4.1 – Summary of GAIA AOCS Sensors and Actuators 
 

It is important to note that, during the operational mode, a so-called ‘hybridization’ will 
be performed where the Kalman Filter estimator will employ the information provided by 
the star tracker (i.e., attitude angles) and by the instrument (i.e., attitude rates). 

Finally, it should be mentioned that the GAIA attitude determination and control 
requirements during the operational mode can be met by the sensor and actuators with the 
performances as summarized in Table 4.1, as has been shown by the simulations in [3],  
pp. 45-47.  

The selected Field Emission Electric Propulsion (FEEP) thrusters have a very high 
specific impulse (Isp = 6000 sec) and require only 2.6 kg Caesium propellant for a 6-year 
mission, which is extremely mass-efficient. Another strong advantage (relative to the 
cold gas nitrogen thrusters selected for HIPPARCOS) is that their thrust levels can be 
proportionally controlled or modulated. This capability allows an accurate compensation 
of the disturbances over a wide frequency range. This concept also results in much lower 
high-frequency dynamic disturbances and the induced jitters can be made negligible. 
Therefore, the FEEP baseline represents the most suitable actuator option in view of 
GAIA’s demanding pointing and rate stability requirements. 

The control of the attitude relative to the nominal scan law is performed quasi-
continuously by commanding a continuous torque profile with values between 0 and 0.25 
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mN using a simple proportional-derivative controller and an efficient low-pass filter (e.g., 
Cauer filter) to limit the measurement noise transmission. 

4.3.4. Disturbance Torques 

The main disturbance torque acting on the spacecraft is induced by the solar radiation 
pressure due to the fact that the center of pressure is at a different location from the center 
of mass. The torque contains a constant part and a harmonic part at the 6-hour scan 
period. The solar pressure itself is subject to low-frequency variations which may be 
modeled by a white noise process superimposed on the (seismological) 5-minute 
oscillations.  

Because the control system design is driven by the solar radiation pressure torques, the 
control bandwidth must be selected to efficiently control these disturbances in order to 
meet the pointing stability, see Ref. [4], Figure 4.10 on p. 207, which is reproduced here 
as Figure 4.2. The numerical results of the detailed and realistic simulations are 
summarized in Table 4.2. 

Smaller disturbances that may be affecting the instrument line-of-sight direction may be 
induced by a number of sources, for instance: 

1. noise in the thrusters of the FEEP propulsion system 

2. noise in the sensor’s attitude and rate measurements 

3. calibration error between star sensor frame and instrument line-of-sight 

4. thermo-elastic fluctuations 

5. center of mass variation due to propellant motion 

6. thruster plume impingement effects 

The first two effects are taken into account by the Attitude Control and Measurement 
System (ACMS). The disturbances produced by the FEEP thrusters include a white 
dispersion noise below the actuation frequency, a quantification noise, and a sampling 
noise corresponding to the thrust amplitude refreshing frequency. 

The main sensor measurement errors are: 

� the star sensor’s noise-equivalent angle and random bias,  

� the instrument’s sky mapper rate measurement noise 

Both of these are transmitted to the spacecraft attitude through the ACMS control 
bandwidth (of 0.005 Hz), the actuation system and the spacecraft dynamics. A first 
filtering of the measurement noise is performed by the Kalman Filter attitude estimator 
and a second one is done by the Cauer filter, i.e. high-frequency rejection. Furthermore, 
a third filtering is done by the controller, depending on its bandwidth, and a fourth by the 
spacecraft dynamics. 
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The calibration error between the star sensor and instrument (# 3 in the list above) has a 
direct impact on the pointing error. The initial misalignment can be determined through a 
dedicated calibration campaign using star position measurements by the star mapper and 
instrument. It is expected that most of the star sensor noise and random bias will be 
filtered and will have a negligible impact on the misalignment calibration. 

The thermo-elastic fluctuations (# 4 in the list above) are induced by the satellite 6-hour 
scan period and generate a periodic misalignment between the star mapper and the 
instrument (similarly as was the case in the HIPPARCOS mission). However, it is 
expected that the effect will be much smaller than the pointing specification because the 
star tracker is mounted on the instrument optical bench which is designed and controlled 
to ensure 10 µas basic angle stability. 

The effect of the center of mass variation (# 5 in the list above) will be minimized by the 
use of dedicated trapping devices in the propellant tanks. Similarly, the effect of plume 
impingement (# 6 in the list above) will be minimized by using a specific configuration 
of the FEEP thrusters that ensures a 45º separation between the thrust direction from both 
the dust shield and the payload module (note: the FEEP ejection plume has a 40º half-
cone angle). 

 

 
Table 4.2 – Preliminary Pointing Error, Stability, and Restitution Budgets 
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Figure 4.2 – Results of Preliminary Pointing Analysis 
a) Noise PSD of Main Disturbances; b) Noise Contribution to Instrument Line-of-Sight Stability 
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4.3.5. Basic Angle Variations 

The basic angle monitoring concept is described in some (preliminary) detail in ESA-
SCI(2000)4, Ref. [4], Chapter 4, and in particular pp. 193 and 200. More recent 
information can be found in Ref. [3], section 3.5, pp. 34-47.  

The requirements on the basic angle fluctuations (i.e., amplitudes) and their monitoring 
have been formulated in the MRD, Ref. [1], SCI-280, p. 19: 

� random contribution: < 7 µas 

� systematic (over periods larger than about half a scan period) contribution: < 4 µas 

� monitoring shall be accurate to better than 0.5 µas over 5 minutes science operations  

Because of the stable thermal environment at the L2 point and the presence of a flat Sun 
shield shadowing the whole payload module, the satellite’s mechanical/thermal design is 
capable to fulfill the 10 µas basic angle stability requirements passively. Nevertheless, it 
is necessary to implement a device for monitoring the relative Line-of-Sight (LoS) 
variations of the two viewing directions. The required short-term LoS stability (or at least 
knowledge) requirement of 1 µas (rms) over a spacecraft revolution is unusual and can 
not properly be calibrated by ground processing and is also extremely demanding in 
terms of the thermal requirements of the payload module structure, see [3], p. 194. 

Thermal effects naturally lead to basic angle fluctuations and these have been assessed by 
thermal analysis (see [3], pp. 200-201). Fluctuations over time periods well above the 
scan period of 6 hours do not harm the mission performance, whereas relatively fast 
fluctuations are naturally filtered by the payload module’s thermal inertia. The final 
results show that a passive basic angle stability of 6.4 µas is achievable. 

Also the effects of satellite rotation and of the gravitational accelerations and gradients at 
L2 on the distortion of the payload structure have been assessed. Only spin-rate 
fluctuations need to be considered because a constant spin has no effect on the structural 
distortion. It has been shown that the fluctuations in the basic angle under the resulting 
structural flexure and torsion remain well below 1 µas, see [3], p. 198. 

Furthermore, external disturbance forces induced by the gravity gradient due to Sun and 
Earth can be shown to be of the order of 10-10 N and lead to negligible fluctuations in the 
telescopes line-of-sight of 10-5 µas, see [3], p. 198. 
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5. SMOOTHING ESTIMATION PROCEDURE 

5.1. Introduction 
The so-called ‘smoothing’ estimation procedure refers to a non-real-time or ‘off-line’ 
algorithm that makes optimal use of all measurements collected during a given interval of 
time. The smoothing estimator provides thus the optimal state estimate based on all 
information delivered by the measurements sampled during the interval 0 < t < T. The 
smoothed state estimate at time t is denoted by x̂ (t |T). 

Typical smoothing algorithms are based on the combination of two individual optimal 
filters, namely the ‘forward’ and the ‘backward’ filters. The first filter uses all data before 
the time t which leads to the familiar classical Kalman filter estimate x̂ (t), whereas the 
backward filter operates on all data produced after the time t and is expressed as ˆ bx (t). 

 

5.2. Optimal Smoother Algorithm 
We seek the optimal smoother algorithm as the sum of the forward and backward filters 
as discussed above: 

 

 ˆ ˆ ˆ( ) = [ ] ( ) + [ ] ( )bt |T A t B tx x x  (5.1) 

 

with weighting matrices [A] and [B] that still need to be determined. It is important to 
note that it can be proven that the forward and backward filter estimates ˆ ( )tx  and ˆ ( )b tx  
have errors that are uncorrelated. The proof of this statement is based on the white noise 
properties of the system and measurement noise processes, see Gelb [12], p. 156-157.  

Under the assumption that both estimation errors ( )tx�  and ( )b tx�  are unbiased (which is 
in fact the case for well-behaving Kalman Filter estimates) we may require that also the 
smoother estimate ˆ ( )t |Tx  should be unbiased. The estimation error of the smoother 
estimate follows now immediately from eq. (5.1):  

 
 ˆ( ) =  ( )  ( )  [ ]{ ( ) + ( )}+ [ ]{ ( ) + ( )}  ( ) =bt |T t |T t  = A  t t B  t t t− −x x x x x x x x� � �  
  
  [ ] ( ) + [ ] ( ) + [ ] ( )b= A + B I  t A  t B t− x x x� �   (5.2) 
 

This estimate will be unbiased provided that the matrix [ ]A + B I−  vanishes, which 
implies that [ ] [ ]B  = I A−  and eq. (5.1) can be simplified as follows: 
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 ˆ ˆ ˆ( ) = [ ] ( ) + [ ] ( )bt |T A t I A t−x x x  (5.3) 
 

The error covariance matrix [P( )]t |T of the smoother estimate ˆ ( )t |Tx  can now be 
established from the result in eq (5.3) as follows: 

 
 T T T[P( )] = E{ ( )  ( ) = [ ] [P( )][ ] + [ ] [P ( )][ ]bt |T t |T t |T A t A I A t I A− −x x� �  (5.4) 
 

The matrices [P( )]t  and [P ( )]b t  appearing here denote the covariances of the forward and 
backward optimal state estimates ˆ ( )tx  and ˆ ( )b tx , respectively. It should also be noted 
that the product terms between the estimation errors ( )tx�  and ( )b tx�  vanish because of the 
fact that the corresponding forward and backward state estimates are completely 
uncorrelated. 

The value of [A(t)] at any time t is now selected to be the one that minimizes the trace of 
the covariance matrix [P( )]t |T , see Gelb [12], p. 158, eq. (5.1-7): 

 
 -1[ ( )] = [P ( )] [P( ) + P ( )]b bA t t t t  (5.5) 
 
It can readily be shown that: 
 
 -1[ ( )] = [P( )] [P( ) + P ( )]bI A t t t t−  (5.6) 
 

These results confirm the expected symmetry between the weighting matrices. The 
resulting covariance matrix [P( )]t |T  after the smoothing follows now as: 

 
 T T[P( )] = [ ] [P( )][ ] + [ ] [P ( )][ ]bt |T A t A I A t I A− −  (5.7) 
 

After substituting the expressions from (5.5) and (5.6) the result of eq. (5.7) can be 
simplified considerably as shown by Gelb [12], p. 158, eqs. (5.1-10 and 11): 

 
 -1 -1 1[P( )] = {[P( )] + [P ( )] }bt |T t t −   (5.8) 
 
The form of this result is typical for the variance resulting from the combination of two 
uncorrelated estimates. It is obvious from the above result that the smoothed estimate is 
always better (or at worst equal) than the filtered estimate as illustrated schematically by 
the behavior of its state covariance in Figure 5.1 (from Gelb [12], p. 159, Figure 5.1-1). 
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Figure 5.1 –  Combined State Covariance of Optimal Smoothing Estimate 
 
Finally, it is of interest to express the smoothed state estimate of eq. (5.3) in terms of the 
covariance matrices with the help of eqs. (5.5) and (5.6), Gelb [12], p. 158, eq. (5.1-12): 
 
 -1 -1ˆ ˆ ˆ( ) = [P( )] {[P( )] ( ) + [P ( )] ( )}b bt |T t |T t  t t tx x x  (5.9) 
 
Equations (5.8) and (5.9) are the fundamental results presenting the smoothed estimate 
and its covariance matrix. 
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1 Introduction 
 
This paper summarizes the detailed evaluation of the analysis leading to the gravity force 
in a cartesian system presented in Ref. [1]. It provides an independent derivation of the 
force equation and leads to a more compact representation of the force model.  
 
Furthermore, compact expressions are derived and established for the gravitational 
potential function, for the gravity gradient torque, and also for the center of gravity 
position.  
 
In the analysis, we consider a general satellite configuration with arbitrary moments of 
inertia and an arbitrary satellite orientation relative to the local orbital reference frame. 
We find that the resulting gravity force vector does not pass through the center of 
attraction, even when assuming an ideal spherical gravity field and the adoption of a 
body reference frame based on the principal inertia axes. 
 
The position of the center of gravity does in general not lie on the orbital radius vector 
and also not on a satellite principal axis. 
 
The results obtained in the analyses are interpreted as far as feasible in terms of their 
physical meanings and implications. 
 
Finally, the results are illustrated using actual satellite examples, namely an idealized 
dumbbell satellite system and a more realistic satellite configuration with cylindrical 
moments of inertias. 
 
The red text shown in this Report identifies comments and issues that are related to the 
contents of Ref. [1]. 
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2 DEFINITIONS 

2.1 Geometry 
The following reference frames will be used in this study (see Figure 1): 

1. X, Y, Z: Earth-Centered Inertial Reference Frame (ECIRF), i.e. J2000 equatorial 
2. u, v, w: local Orbital Reference Frame (ORF), with axes u along local vertical, v 

along local horizontal, and w along orbit-normal (normal to paper in Figure 1) 
3. x, y, z: Body-Centered Reference Frame (BCRF) consisting of a well-defined 

spacecraft geometric frame with origin at the satellite center of mass (Figure 1) 
4. xp, yp, zp: Body Principal Reference Frame (BPRF), which points along the axes 

of minimum and maximum moments of inertia with origin at the center of mass. 

Sometimes, the body and principal reference frame are taken to be identical, mainly for 
convenience reasons. It should be noted that, for real-world satellite applications, this 
assumption is invalid (or at least misleading). The reason for this is that the actual 
principal axes, in contrast to the body reference axes, are not known to good accuracy 
because of pre-launch balancing imperfections and in-orbit variations in the moments of 
inertia (for instance, due to propellant usage). 

The BCRF and ORF frames are assumed to be equal in [1], Figure 1 and B1.2. This 
assumption is too restrictive because these frames are different in general. In particular, 
the ORF moves along with the orbital radius and describes a full revolution per orbit 
within the inertial frame. On the other hand, the inertial motion of the satellite body 
frame is determined by the mode of attitude stabilization:  

� In the case of a three-axis stabilized satellite, the body frames would be (almost) fixed 
in inertial space, apart from the attitude motion within the three-axis control dead-band. 

� For a scanning satellite (like HIPPARCOS and GAIA), the body frames move slowly, 
i.e. at a rate of one revolution every few hours, within inertial space 

� For a spin-stabilized satellite, the spin axis is essentially fixed in inertial space (apart 
from very slow motion of up to a few degrees over months induced by perturbing 
torques) but the other two body axes move quickly under the spin motion. 

Another issue is that Figures 1 and 2 on p. 7 and 8 in Ref. [1] are not consistent. The 
orbital radius vector R points from the center of attraction (Earth) to the center of mass of 
the satellite as shown (correctly) in Figure 1 of Ref. [1]. In Figure 2 of Ref. [1], however, 
R points in the opposite direction, i.e. from the satellite to the center of attraction. The 
plausible reason for this inconsistency comes from the fact that Figure 2 is taken literally 
from the book by Meirovitch [2], p. 431, who uses this uncommon (at least, within the 
satellite community) definition. We recommend that the geometry of Figure 1 below 
should be employed with the vector R pointing in the positive radial direction. 
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Figure 1 – Illustration of Geometry of Earth and Satellite 
 

2.2 Assumed Earth Model 
The last sentence on p. 7 of [1] should be formulated in a different manner in order to 
clarify and justify the reason behind the assumption that an ideal spherical Earth with 
uniform mass distribution may be assumed in the model (mathematical convenience is 
not the main justification). A spherical Earth is equivalent to a point mass in terms of its 
gravity force. The effects of the Earth’s non-spherical shape (i.e., the zonal and tesseral 
harmonics of the Earth’s gravity field) primarily affect the satellite’s orbit.  

The spherical Earth model appears to be acceptable for the purpose of calculating torques 
acting on the satellite body. The errors induced by the uncertainty and unpredictability of 
other external forces (e.g., solar radiation pressure and geomagnetic field) are expected to 
be larger than those due to the non-spherical shape of the Earth. Also there are unknown 
errors in the knowledge of the satellite attitude pointing and in the location of the inertia 
axes within the satellite (typically of a magnitude of up to 0.1 deg.). Both of these effects 
may also be more important than the Earth’s oblateness effect on the attitude motion. 

On the other hand, when it comes to the modeling of the motion of the test mass relative 
to the satellite, oblateness effects on the gravity force (and perhaps also torque?) may 
well need to be incorporated. In any case, models for evaluating the effects of the J2 Earth 
oblateness on the force and torque models, are available in the satellite literature, see for 
instance Beletskii, Ref. [3], p. 11-13, and Hughes [4], pp. 240-243. 
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3. ANALYSIS OF GRAVITY FORCE 

3.1 Expansion of Force 
Eq. (3) of Ref. [1] gives the expansion of r -3 (with r representing the magnitude of the 
radius vector r of the satellite mass element dm with respect to the center of attraction). 
The expansion is performed in terms of powers of R, i.e. the orbital distance of the 
satellite center of mass from the center of the attraction. Due to the sign inconsistency 
mentioned in Section 1, we must replace the vectors in eq. (2) of Ref. [1] as follows: 
 
 r � - r ;       R � - R (1a) 
  
 � = R – r    �   � = r – R  (1b) 
 
 r = |R – �|   �   r = |R + �| (1c) 

 
When writing R = |R| and ρ = |�|, we can express r = |r| as follows:  
 

 r = |R + �| = R
1/ 2

2

2

2(
1

R R
ρ� �• )� �� �+ +� �� 	

 � �� �

R ρρρρ  (2) 

 
Because the ratio (ρ/R) is small, it is useful to expand r -3 using the generic formula: 
 
 (1 + ε) -3/2 = 1 – (3/2)ε  + (15/8)ε 2 + O(ε 3)           with ε = O(ρ/R) (3) 

 
We can now calculate the expression of eq. (3) in Ref. [1] as follows: 
 

 r -3 = |R + �|-3 = R -3

3/ 2
2

2

2(
1

R R
ρ

−
� �• )� �� �+ +� �� 	


 � �� �

R ρρρρ  = 

 

 = R -3
2 3

2 4

( 3 15 (
1 3 O

2 2R R R R
ρ ρ2 �• ) • ) �� � � � �− − + +� �� 	 � 	

 
 � 
 � ��

R Rρ ρρ ρρ ρρ ρ  (4) 

 
This result is consistent with Eq. (3) in Ref. [1] when the sign of the vector R is reversed. 
For a satellite with dimension of at most 3 meter in length and an orbit of at least 600 km 
altitude we find that the error terms in eqs. (3) and (4) have a magnitude of at most: 
 

 O(ε 3) = 
3

O
R
ρ� �
� 	

 �

≈ 8 × 10-20 (5) 
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The next step is the calculation of the gravity force acting on the satellite. First, the force 
acting on the satellite’s mass element dmsat is given by eq. (1) in [1] with an extra minus 
sign due to the sign reversal of r: 
 

 dF = 3
Earth satG m  dm

r
− r (6) 

 
When integrating the gravity force over all mass elements dmsat of the satellite body and 
substituting the expansion of eq. (3), we obtain the resulting gravity force acting on the 
satellite as in eq. (4) of [1] (note the minus sign in front and R – � � R + �): 
  

 F = 
3
E

R
µ−

2 3

2 4

( 3 15 (
1 3 O ( +

2 2
sat

sat
m

dm
R R R R

ρ ρ2 �• ) • ) �� � � � �− − + + )� �� 	 � 	
 
 � 
 � ��
�

R R Rρ ρρ ρρ ρρ ρ ρρρρ  (7) 

 
with µE = GmEarth as in eq. (5) of [1]. We can rewrite eq. (4) in the form: 
 

 F = 
3
E

R
µ−

2 2

2 2

( ( 3 3
+ 3 3

2 2
satm R R R R

ρ ρ� • ) • )� � � � �− − − − +� � 	 � 	

 � 
 ��

�
R R RR Rρ ρ ρρ ρ ρρ ρ ρρ ρ ρρ ρρ ρρ ρρ ρ  

 

 
3

4 4

15 ( 15 (
O

2 2 satdm
R R R

ρ2 2 �• ) • ) �� �+ + + �� 	

 � ��

R R R Rρ ρ ρρ ρ ρρ ρ ρρ ρ ρ   (8) 

 
This result is consistent with eq. (7) of [1] after we correct for the sign reversal of R. The 
leading term within the integrand { … } of eq. (8) is R so that the magnitude of the term 
(ρ/R)2 ρρρρ is of the order (ρ/R)3 times smaller than R. It is obvious that the same argument 
applies also to the term (R•ρρρρ)2 ρρρρ/R4 so both of these terms are negligible. The remaining 
terms can be reduced by employing the moments of inertia (shown next). 
 

3.2 Analysis of Inertia Terms 
We can express the position vectors � and R in terms of coordinates in the ‘Body 
Centered Reference Frame’ (BCRF), see Figure 1, as follows: 
 
 � = (x, y, z)T ;         R = R (l, m, n)T     �    (R•�) = R (l x + m y + n z) (9a-c) 
 
It should be noted that the body frame BCRF and thus also the vector � have their origins 
at the satellite’s center of mass [1]. Because the center of mass is taken at the origin of 
the adopted reference frame, we have the following results: 
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sat

sat
m

dm� ρρρρ  = 0       �    
sat

sat
m

x dm� =
sat

sat
m

y dm� =
sat

sat
m

z dm� = 0  (10) 

 
These expressions imply also the following results: 
 
    )

sat

sat
m

dm( •� R ρρρρ = 0 ;     )
sat

sat
m

dm( •� R R ρρρρ = { ) 
sat

sat
m

dm( •� R ρρρρ } R = 0 (11) 

 
From elementary geometry we have: 
 
 |�|2 = � 2 = (x 2 + y 2 + z 2) ;            |R|2 = R2 (12) 
 
(Note that [1], eq. (9) contains the superfluous terms l2 + m2 + n2, which is equal to 1.)  
   
 (R•�)2 = {(lx)2 + (my)2 + (nz)2 + 2(lmxy + lnxz + mnyz)} (13) 

 
For a body of arbitrary shape and mass distribution, we introduce the second-order 
‘inertia integrals’ defined by: 
 Jx = 2

sat

sat
m

x dm� = ½ (Iy + Iz – Ix)  (14a) 

 Jy = 2

sat

sat
m

y dm� = ½ (Ix + Iz – Iy)  (14b) 

 Jz = 2

sat

sat
m

z dm� = ½ (Ix + Iy – Iz) (14c) 

 
 Jxy = Ixy =

sat

sat
m

xy dm�  (14d) 

 Jxz = Ixz =
sat

sat
m

xz dm�  (14e) 

 Jyz = Iyz =
sat

sat
m

yz dm�     (14f) 

 
The Ix, Iy, Iz appearing here are the well known conventional ‘moments of inertia’, which 
are defined as: 
 
 Ix = 2 2

sat

sat
m

y z dm+� ;      Iy = 2 2

sat

sat
m

x z dm+� ;    Iz = 2 2

sat

sat
m

x y dm+�  (15a-c) 

We introduce also the ‘inertia matrix’ [I] as: 
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 [I] = 
x xy xz

xy y yz

xz yz z

I I I

I I I

I I I

� �− −
� �
− −� �
� �− −� �

 (16) 

 
When using the definitions given in eqs. (14 - 16), it is easy to establish the identities: 
 
 2

sat

sat
m

dmρ�  = Jx + Jy + Jz = ½ (Ix + Iy + Iz) = ½ tr[I] (17) 

 
Here, tr[I] = Ix + Iy + Iz denotes the trace of the inertia matrix [I]. With the definitions 
introduced above, we can now evaluate the two integrals: 
 

 ( )
sat

sat
m

dm•� R  ρ ρρ ρρ ρρ ρ = R

2

2

2sat

sat
m

lx mxy nxz

lxy my nyz dm

lxz myz nz

�� + +
	�

+ + 	�
	� + +
 �

� = R

x xy xz

xy y yz

xz yz z

l J m J n J

l J m J n J

l J m J n J

� �+ +
� 	

+ +� 	
� 	+ +
 �

 = 

  
 = {½ tr[I] - [I]} R (18a)
  
 
 2( )

sat

sat
m

dm•� R  ρρρρ = R2 2 2 2{( )  + ( )  + ( )  + 2(  +  + )}
sat

sat
m

lx my nz lmxy lnxz mnyz dm� = 

 
 = R2 { 2 2 2 2( )x y z xy xz yzl J m J n J lm J ln J mn J+ + + + + } = ½ R2 tr[I] – RT [I] R (18b) 
 
It can be seen that the quadratic form RT [I] R stands for the scalar quadratic expression: 
 
 RT [I] R = R2 {l2 Ix + m2 Iy + n2 Iz – 2(lm Ixy + ln Ixz + mn Iyz)} (19) 
  

3.3 Reduction of Integral Terms 
With the help of the results presented above, we can reduce the individual terms that 
appear within the brackets { … } of the gravity force expression of eq. (8) as follows: 
 
Term 1: }{ +

sat

sat
m

dm � R ρρρρ = msat R (20a) 

 

Term 2:  
2

(

sat

sat
m

 dm
R
• )� �

� �
�

�
R Rρρρρ = 2/

sat

sat
m

 dm R
� �� �� �
� 	• � �� 	� � �
 �

� R R ρρρρ = 0 (20b) 
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Term 3: 
2

(

sat

sat
m

dm
R
• )� �

� �
�

�
R ρ ρρ ρρ ρρ ρ = {½ tr[I] - [I]} R /R2 (20c) 

 

Term 4: 
2

sat

sat
m

dm
R
ρ� �� �� �

� �� 	

 � �� �

� R = ½ tr[I] R /R2 (20d) 

 

Term 5: 
2

sat

sat
m

dm
R
ρ� �� �� �

� �� 	

 � �� �

� ρρρρ = O [I]
k
R
� �
� 	

 �

/R       (i.e., negligible) (20e) 

 

Term 6: 
4

(

sat

sat
m

dm
R

2� �• )
� �

�
�

R Rρρρρ = ½ tr[I] R /R2 – (RT [I] R) R /R4 (20f) 

 

Term 7:  
4

(

sat

sat
m

dm
R

2� �• )
� �

�
�

R ρ ρρ ρρ ρρ ρ = O [I]
k
R
� �
� 	

 �

/R      (i.e., negligible) (20g) 

 
The parameter k is the ‘radius of gyration’ and is representative of the satellite’s effective 
size. The neglected terms in eqs. (20e) and (20g) are smaller than the retained terms by a 
factor of the order of k/R ≈ 3 ×10-7 for a typical-size satellite above 600 km altitude. 
 

3.4 Final Form of Gravity Force 
After collecting and rearrangement of terms, we find the final result for the gravity force 
up to second-order terms (ρ/R)2 from eq. (8). A further simplification is achieved by 
writing R = R u where u represents the unit-vector along the orbital radius (Figure 1): 
 

 F ≈ –msat (µE /R2) u + (3/2) (µE /R4) { }T5 ( [I] ) [I] 2[I] tr− −u u u  u u  (21) 

 
After projecting the vectors u = (l, m, n)T, from eq. (9b), and [I]u upon the axes of the 
spacecraft-fixed (x, y, z) body reference frame, we find the following result for the force 
components (see also Appendix C for more details): 
 

 
x

y

z

F

F

F

� �
� 	
� 	
� 	

 �

 ≈ –msat (µE /R2) 

l

m

n

� �
� 	
� 	
� 	

 �

+  
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 + (3/2) (µE/R4) 

2 2 2

2 2 2

2 2 2

{(5 3) (5 1) (5 1) 10( } 2( )

{(5 1) (5 3) (5 1) 10( } 2( )

{(5 1) (5 1) (5 3) 10( } 2( )

x y z xy xz yz xy xz

x y z xy xz yz xy yz

x y z xy xz yz xz yz

l l I m I n I lmI lnI mnI mI nI

m l I m I n I lmI lnI mnI l I nI

n l I m I n I lmI lnI mnI l I mI

� − + − + − − + + + +

− + − + − − + + + +

− + − + − − + + + +


�
� 	
� 	
� 	� 	

�

 

  (22) 
 
This result corresponds to the expression in eq. (24) of [1]. The agreement between the 
results is perfect, except for the factor 4 in [1] instead of 2 in front of the (mIxy + nIxz) 
term at the end of the first row (and similarly for the other rows as well). Furthermore, in 
eq. (24) of [1], this term is wrongly multiplied by the components l, m, and n. 
 
In the case when the spacecraft body axes are selected to be the principal axes, the cross-
product terms Ixy, Ixz, Iyz of the inertia matrix vanish and the second result of eq. (22) can 
be simplified further: 
 

 
x

y

z

F

F

F

� �
� 	
� 	
� 	

 �

 ≈ –msat (µE/R2) 

l

m

n

� �
� 	
� 	
� 	

 �

+ (3/2) (µE/R4) 

2 2 2

2 2 2

2 2 2

(5 3) (5 1) (5 1)

(5 1) (5 3) (5 1)

(5 1) (5 1) (5 3)

x yy zz

xx y zz

xx yy z

l I m I n I

l I m I n I

l I m I n I

� �− + − + −
� 	

− + − + −� 	
� 	� 	− + − + −
 �

l

m

n

� �
� 	
� 	
� 	

 �

  

  (23)
  
This result is identical to the one given in eq. (25) of [1], apart from the sign reversal. 
 
Appendix D provides further results for the gravity gradient force expressed within the 
orbital reference frame. 
 

3.5 Interpretation of Force Result 
The compact result in eq. (21) allows the following dynamical interpretations: 
 
1. The leading (monopole) term of the gravity force has the order of magnitude msat (µE 

/R2) and represents the gravity force acting on an idealized ‘point-mass’ satellite 
without physical dimensions; this force is responsible for the satellite motion along its 
orbit. 

 
2. In the special case of an ideal spherical satellite with uniform mass distribution, all 

spacecraft axes are principal axes and the inertias Ix, Iy, Iz are identical. Thus, the 
second-order (quadrupole) term of order µE/R4 in (23) can be shown to vanish and the 
monopole term represents again the total force acting on the body. Thus, the sphere is 
attracted as if all its mass were concentrated in its center of mass and its orbital and 
attitude motion are uncoupled, at least up to second-order. The orbit is the same as 
that of a point-mass and the attitude motion remains unaffected by the gravity force. 
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3. The observations for a spherical satellite in point 2 above hold also true for a cubic 
satellite with its body axes along the principal axes and with equal moments of inertia 
along these axes (i.e., Ix = Iy = Iz). The inertia product terms vanish in this case (i.e., 
Ixy = Ixy = Iyz = 0). 

 
4. The quadrupole term of the force is caused by the small variations in the gravity force 

acting at different points in the extended satellite body; its magnitude is of the order 
of (µE [I] /R4) and is smaller than the leading term (µE /R2) by a factor (k/R)2, which is 
roughly 10-13 for a typical satellite in an orbit above 600 km. 

 
5. For a point-mass satellite, the gravity force obviously acts exactly along the direction 

of the orbital radius; for an extended satellite, however, this is not true anymore 
because the vector term ([I]u) is in general not directed along the instantaneous 
orbital radius (note that the other terms of eq. (21) are oriented along the direction u). 
This leads to the final terms of eq. (22) which constitute the non-radial contributions 
originating from [I]u. It can easily be seen that, for instance, the term 2(mIxy + nIxz) in 
the component Fx is not proportional to l and the same behavior is true for the other 
two components. It will be shown in Section 5 below that the term [I]u is responsible 
for the gravity torque. 

 
6. The quadrupole term has in general an effect on the resulting orbital motion through 

an attitude / orbit coupling effect. For instance, when considering an infinitesimal rod 
or ‘pencil-satellite’ with inertias (0, I, I) pointing along the local vertical, we find l = 
1, m = n = 0, so the force in eq. (21) will be along the spacecraft x-axis which 
coincides with the orbit radial direction: 

 
 Fradial ≈ –mrod (µE /R2) + (3/2) (µE/R4)(-2Irod) = –mrod  (µE /R2){1 + (ρ/R)2} (24) 
 

Here, Irod = mrod ρ 2/3 with ρ the half-length of the rod. For a circular orbit, the gravity 
force is in equilibrium with the centrifugal force which implies that the orbital rate of 
a point-mass satellite is given by the Keplerian rate ωorbital = √(µE/R3). Eq. (24) 
indicates that the orbital rate for the pencil-satellite will be a factor √{1 + (ρ/R)2} 
higher than ωorbital, while assuming that the rod remains oriented along the local 
vertical. The point where this higher rate happens to be equal to the Kepler rate at its 
distance from the center of the Earth may be called the ‘center of motion’. It can be 
shown by means of a first-order Taylor expansion that this center of motion is located 
a small distance -(1/3)(ρ/R)ρ below the satellite’s center of mass. 
 

7. In the case when a gravity model with still higher accuracy is desired, the full 
gravitational potential, including zonal and tesseral harmonics of the Earth’s potential 
field may be considered. In particular, the leading J2 contribution may be of most 
interest. Ref. [7] gives the explicit expressions for the resulting force and torque 
expressions, including the J2 terms. 



 

 

Model of Gravity Force and Gravity 
Gradient Torque 

Doc.No.: FLK-SIM-TN-ZAR-004 

Issue:  1.0 

Page:  13 of  45 

 

ZARM – Center of Applied Space Technology and Microgravity Page 13 of 45 
 

 

4. RESULT FOR GRAVITY POTENTIAL 
It is of interest to establish the corresponding expression for the ‘gravitational potential’ 
V of an arbitrary rigid body in a spherical gravitational field: 
 

 V = –µE

sat

sat
m

dm
r
1
� = 

1/ 2
2

2

2(
1

sat

E
sat

m

dm
R R R
µ ρ
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� �• )� �� �− + +� �� 	


 � �� �
�
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 = 
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1 O

2 2
sat

E
sat

m

dm
R R R R R
µ ρ ρ2� �• ) • )� �� � � �− − − + +� �� 	 � 	


 � 
 � �� �
�

R Rρ ρρ ρρ ρρ ρ  (25) 

 
By applying the identities established in eqs. (20b, d, f), we can reduce the potential 
function to its final form: 
 
 V ≈ – ( / )sat Em Rµ  + ½ (µE /R3) T{3 ( [I] )u u [I]}tr−  (26) 

 
It can be shown that the force expression of eq. (21) can be obtained from the potential 
function for a homogeneous spherical Earth by calculating F = –∂V/∂R. 
  
When writing eq. (26) in explicit terms we find the expression: 
 
 V ≈ – ( / )sat Em Rµ + ½ (µE /R3) 2 2 2{(3 1) (3 1) (3 1) 6( }x y z xy xz yzl I m I n I lmI lnI mnI− + − + − − + +
  (27) 
 
In case when the spacecraft axes are selected to be the principal axes, the last term 
containing the products of inertia will vanish, and the result of eq. (27) can be simplified 
accordingly. 
 
The results in eq. (26) and (27) can be shown to be identical with the expressions given in 
Hughes [4], eqs. (24) and (25), Ch. 8, p. 238 (apart from the signs of the cross-products 
of inertia which are defined with opposite signs by Hughes). 
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5. GRAVITY GRADIENT TORQUE 

5.1 Expansion of Torque Expression 
To calculate the torque exerted by the gravity force upon an extended satellite body, we 
start from the infinitesimal force acting upon the satellite mass element dmsat (eq. 6), 
perform the cross-product with the lever arm ρρρρ (i.e., the vector from the satellite center of 
mass to the mass element dmsat), and perform the integration over the satellite body: 
 

 dT = ρρρρ × dF     ����   T = – Eµ
3

sat

sat
m

 dm
r
×� �

� �
�

�
rρρρρ  (28) 

 
The integrand will be similar to the one in eq. (7) but with the final term (R + ρρρρ) replaced 
by ρρρρ × r = ρρρρ × (R + ρρρρ) = ρρρρ × R. We write out all terms as in eqs. (7) and (8): 
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R R Rρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ dmsat (29) 

 
Because of the definition of the satellite center of mass (i.e., eqs. 10), we find that the 
first term in the integrand of eq. (29) vanishes after integration: 
 
 }{ )

sat

sat
m

dm( ×� Rρρρρ = { }
sat

sat
m

dm ×� Rρρρρ = 0 (30) 

 
The second term in the integrand can be reduced with the help of eq. (20c) as follows: 

 

  
2

( )

sat

sat
m

dm
R

• )( ×� �
� �

�
�

R Rρ ρ ρ ρ ρ ρ ρ ρ = –R ×
2

(

sat

sat
m

dm
R
• )� �

� �
�

�
R ρ ρρ ρρ ρρ ρ =  

 
 = –R × {½ tr[I] R – [I]R}/R2 = R × {[I]R}/R2  (31) 

 
This result is a consequence of the fact that the vector [I]R is in general not aligned with 
R as can be seen from the last term in eq. (22) and mentioned in point 5 of section 3.5.  
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After expressing [I]R in its vector components, we find: 
 

 R × {[I]R}/R2 =

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

z y xy xz yz

x z yz xy xz

y x xz yz xy

mn I I ln I lm I n m I

ln I I lm I mn I l n I

lm I I mn I ln I m l I

� �− + − + −
� 	

− + − + −� 	
� 	� 	− + − + −
 �

 (32) 

 
The third term in the integrand of eq. (29) can be reduced similarly as was done in eq. 
(20e). It can be shown that it is smaller, by a factor of the order of k/R (with k the satellite 
radius of gyration), than the leading term given in eq. (31) and can thus be neglected: 
 

 
2

( )
sat

sat
m

dm
R
ρ� �� �� � ×� �� 	

 � �� �

� Rρρρρ = O [I]
k
R
� �
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 �

       (i.e., negligible) (33) 

 
The fourth term in the integrand of eq. (29) can be shown to be of the same order of 
magnitude as the term in eq. (33) above and is thus also negligible: 
 

 
4
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2� �• ) ( ×
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�
�

R Rρ ρ ρ ρ ρ ρ ρ ρ = O [I]
k
R
� �
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 �

      (i.e., negligible) (34) 

 
The final expression for the gravity-gradient torque follows from eqs. (29), (31) and (32): 
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 (35)

   

This result is in agreement with eq. (49) of [1] because the sign reversal of R has no 
effect on the torque (because it cancels due to double appearances). 

When comparing this result with eqs. (8) on p. 18 of NASA SP-8024, Ref. [8], full 
compatibility is achieved when recognizing that the signs of the inertia cross-products 
definitions in Ref. [8] are opposite to those adopted here in eqs. (14). The definition used 
in Ref. [8] is Ixy = -�{xy}dm as shown in Ref. [8], eq. (4) on  p. 8. Hughes [4] neglects to 
specify the definition of his off-diagonal inertia products but there are strong indications 
that he also uses the alternative definitions (i.e., Ixy = -�{xy}dm). This may be concluded 
since he mentions that his result in eq. (22) on p. 238 agrees with Ref. [8] eq. (4) on p. 8. 
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5.2 Interpretation of Torque Result 
As mentioned already, almost all of the terms (except for the very last one) in the force 
expression of eq. (21) are directed along the direction from the center of attraction to the 
satellite’s center of mass. These terms can not produce a torque on the satellite (because 
the lever arm of the force vanishes). The one exception is the last term in eq. (21), i.e. -
3[I] u . It is this force term that is responsible for the so-called ‘gravity-gradient’ torque 
about the satellite’s center of mass as shown in eqs. (31) and (35) above. 

By calculating the dot-product of the vector R = R (l, m, n) with the torque expression in 
eq. (35), it can easily be found that (T•R) vanishes. Thus, the gravity gradient torque 
points always in a direction normal to the instantaneous orbital radius. It is of interest to 
note that this property originates from the nature of the gravity field which is symmetrical 
about the orbital radius, at least under the present assumption that the Earth is assumed to 
be a homogeneous sphere. It is an interesting exercise to check that this property does 
indeed not hold anymore when zonal harmonic terms are included as was done in [7]. 

If the ‘Body Principal Reference Frame’ (BPRF) frame is selected as the reference frame, 
the products of inertia terms vanish and eq. (35) gives the result that was most likely first 
published by Beletskii [3], p. 9: 

 

 T ≈ 3
3
E

R
µ

( )
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z y

x z

y x

mn I I

l n I I

l m I I
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 (36) 

 

It can be shown that, if two principal moments of inertia are identical, the gravity-
gradient torque about the third axis vanishes (e.g., Tz = 0 when Ix = Iy). Furthermore, the 
gravity gradient torque vanishes completely in the following situations: 

1. if all principal moments of inertia are identical (i.e., Ix = Iy = Iz), for instance in the 
case of a spherical satellite. 

2. if two principal moments of inertia are identical and the third direction cosine 
vanishes , e.g. a symmetrical satellite (i.e., Ix = Iy) with its z-axis pointing along the 
orbit normal (i.e., n = 0) and the orientations of the x, y axes can be arbitrary. Note 
that this property holds even when Earth oblateness is taken into account, Hughes [4], 
p. 243. 

3. for a tri-axial satellite (Iz ≠ Iy ≠ Ix), the torque vanishes if and only if 2 of the 3 
direction cosines (of the R vector) vanish; this implies that one of the principal axes 
must be pointing along the orbital radius (for instance, l = 1, m = n = 0). These 
observations are compatible with those in Hughes, Ref. [4], p. 238. 

It may also be mentioned that a sufficient condition for ensuring the stability of the 
attitude pointing along the local vertical is given by Beletskii [3], pp. 30-31: Iz > Iy > Ix, 
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i.e. the principal axis of inertia along the local vertical should be smallest and the one 
normal to the orbit should be largest. 

For a satellite in a three-axis stabilization mode, with its principal xp and yp axes within 
the orbital plane pointing in a fixed inertial direction, we have l = cos(ωt), m = sin(ωt); n 
= 0 which means that only the torque component normal to the orbit plane remains: 

 

 T ≈ (3/2)
3
E

R
µ

0
0

sin(2 )( )y xt I Iω

� �
� 	
� 	
� 	−
 �

 (37) 

 

Thus, there is only a torque component along the z-axis and it varies periodically at a 
frequency of twice the orbital rate ω. In the case of a symmetrical cylindrical satellite 
with Ix = Iy also the third torque component vanishes. 
 

5.3 Alternative Torque Derivation 
It is pointed out by Pelivan [7] that the gravity-gradient torque may also be calculated by 
means of the gravity-gradient matrix, which is formed by the second-order partial 
derivatives of the gravity potential.  

This approach considers an arbitrary point P within the rigid-body satellite at a distance r 
= R+ρρρρ from the center of attraction (Figure 1). The second-order expansion of the gravity 
potential function is performed around the reference point, which normally corresponds 
to the satellite’s center of mass. This leads to the following approximate gravity potential 
acting at the location P, expressed in quantities belonging to the satellite center of mass at 
the distance R from the center of the Earth (see also [6], p. 128): 

 
 V  ≈ Vc + (r – R)T • ∇Vc  – ½ (r – R)T [Gc] (r – R) (38) 
 

The nabla operator ∇ stands for the vector of partial derivatives ∂/∂r = (∂/∂r1, ∂/∂r2, 
∂/∂r3)T with rj (j = 1, 2, 3) denoting the components of the gradient of r in the inertial (X, 
Y, Z) reference frame, Figure 1. The vector ∇Vc represents ∂/∂r evaluated at the location 
of the center of mass. The so-called gravity-gradient matrix [Gc] appearing in eq. (38) is 
defined by the partial derivatives of ∇Vc  at the center of mass position R: 

 
 [Gc] = -[∇(∇Vc)]     or:    [Gc]jk = -∂2Vc /(∂Rj ∂Rk)   (39) 
 
The minus sign has been introduced in order that the final resulting expressions are 
compatible with those presented by Gottlieb, Ref. [9]. 
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The matrix elements [Gc]jk have been calculated by Wertz [6], pp. 128-129, for a gravity 
potential that includes the oblateness (J2) terms, see also [7], eqs. (41), but his sign 
convention is opposite to what is taken in Ref. [9], see also remarks below eq. (40). 

The gravitational acceleration f (i.e., gravity force per unit of mass) acting at the point P 
can now be expressed in terms of the acceleration acting at the satellite center of mass by 
means of the result in eq. (38): 

 
 f = –∂V/∂r = –∇V ≈ –∇Vc + [Gc] (r – R) = fc + [Gc] (r – R) (40) 
 

It should be noted that the minus-sign introduced in the definition in eq. (39) has resulted 
in the expected plus sign in the Taylor expansion of the gravity field in eq. (40). This 
makes eq. (40) fully consistent with eq. (8-18) on p. 21 of Gottlieb [9].  

On the other hand, it should be noted that the first-order expansion of the gravity force in 
Wertz [6], eq. (5-24) on p. 128, employs the opposite definition of [Gc], namely (in our 
notation): f = fc + [Gc] (R – r). This implies that Wertz defines his gravity gradient matrix 
[Gc] in eq. (39) as +[∇(∇Vc)] as shown in his eq. (5-26). This selection is the opposite of 
the definitions used in our eq. (40) and in the expansion of eq. (8-18) in Gottlieb [9]. 

To proceed further, it must be recognized that, in the present formulation, the vectors f, 
fc, R, and r refer to an inertial reference frame fixed to the Earth. This is convenient if 
also the zonal and tesseral harmonics of the gravity field needs to be incorporated in the 
potential function. Thus, also the vector r – R should be considered within the inertial 
frame. The coordinate transformation from the body frame vector ρρρρ = (x, y, z)T to the 
inertial reference frame vector r – R depends on the spacecraft attitude orientation and 
may be written as: 

 

 r – R =
11 12 13

21 22 23

31 32 33

b b b

b b b

b b b

� �
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� �
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x

y

z

� �
� 	
� 	
� 	

 �

 = [B] ρρρρ (41) 

 

with bjk = (xj •Xk) and xj and Xk denoting the unit-vectors along the reference axes of the 
inertial (X, Y, Z) and body (x, y, z) reference frames. 

Because the inertias can be most conveniently calculated within the body-centered 
reference frame BCRF, we transform eq. (40) to the body reference frame and perform 
the integration of the force over the satellite body: 

 
 Fb = T

c[ ] { [ ]( )}
sat

c sat
m

B G dm+ −� f r R = T T
c{[ ] [ ] [ ][ ] }

sat

c sat
m

B B G B dm+� f ρρρρ  (42) 
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with the transformed gravity matrix [Gb] = [B]T [Gc][B] within the body reference frame 
where the gravity gradient matrix [Gc] must be evaluated within the Earth-equatorial 
centered inertial reference frame as was done in Wertz [6], pp. 127-128. 
 
The gravity torque within the body frame follows now as: 
 
 T = T

c{[ ] [ ] }
sat

b sat
m

B G dm× +� fρ ρρ ρρ ρρ ρ = { [ ] }
sat

b sat
m

G dm×� ρ ρρ ρρ ρρ ρ  (43) 

 
Here, the first term has vanished because of the center of mass definition in eq. (10). 

We can readily evaluate the cross-product within the integrand of eq. (43): 
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2 2
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 (44) 

  
The coefficients gjk appearing here are the elements of the matrix [Gb]. When integrating 
eq. (43) using the definitions of the moments of inertia in eqs. (14) we find: 
 

 T =
23 33 22 13 12
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12 22 11 23 13

( ) ( )

( ) ( )

( ) ( )
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� 	

− + − + −� 	
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 �

 (45) 

 

This result is fully identical to eq. (8-36) on p. 24 of Ref. [9]. Note also that the 
definitions of the cross-products of inertia in eqs (8-17) of Ref. [9] are consistent with the 
ones that have been adopted here in eqs. (14).  
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6. POSITION of CENTER of GRAVITY  

6.1 Assessment of [1] 
We consider a set of n mass particles mj for j = 1, … , n at individual distances rj from the 
center of attraction (i.e., Earth in the present case). The location of the center of gravity c 
(relative to the center of mass) represents the ‘weighted average position’ of the gravity 
force and is defined in Ref. [1], eq. (32) in a similar manner as the center of mass, namely 
as the point c at which: 
 

 )( •c F  = j j
1

)
n

j=

( •� r F       with:   F = j
1

( )
n

j=
� F  (46) 

 
In the case of a rigid body, the number n of infinitesimal particles is taken in the limit for 
n � ∞. After substituting the force expression of eq. (6), and integrating over the mass 
within the rigid body, we find with r = R + ρρρρ: 
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satm
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3
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sat

E sat
m
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r
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r r  = 1
|
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E sat
m

dmµ
� �� �− � �+ | �� �
� R ρρρρ

 (47) 

 

The subsequent analysis in [1] leads to a reduction of this result to [1], eq. (35), which 
states (apart from the familiar sign reversal): 
 

 c  = 1
|

sat

E sat
m

dmµ
� �� �− � �+ | �� �
� R ρρρρ

F / |F|2        (48) 

 

By virtue of the definition of )( •c F  given in eq. (47), the result of eq. (48) simply states 
that c = )( •c F F/ |F|2. 

At first sight, this result may appear to be equivalent to eqs. (46) and (47). It should be 
recognized, however, that eq. (48) actually constrains the (assumed arbitrary) vector c to 
be pointing along the direction of the force vector F. In other words, the vector c resulting 
from the definition in eq. (48) has been assumed to be pointing along the direction of the 
resulting force vector F. 

The more general (and physically more meaningful) definition of c should have three (in 
the general three-dimensional case) or at least two (for a planar configuration) 
components without any a priori constraints on its direction. One component may be 
along F and the other in a direction N normal to F according to the general vector 
projection relationship: 
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 c  = )( •c F F / |F|2 + )( •c N N / |N|2 (49) 
 

When employing eq. (48) as was done in [1], the second term in eq. (49) has been 
ignored. This means that one makes the implicit assumption that the vector c points along 
the force vector F and that the component along N is absent. This assumption is certainly 
true in many special cases when indeed the vector c is along the resulting force vector, 
e.g. for a dumbbell satellite oriented along the local vertical or local horizontal. 

In general, however, this result is not correct because the position of the center of gravity 
can have a component away from the force vector as will be demonstrated in Appendix A 
for the dumbbell satellite when it is oriented in a direction away from the local vertical or 
local horizontal direction. 

Therefore, it is recommended to not force the position of the center of gravity to lie on 
the total force vector a priori but to adopt a more general starting point and to let the 
analysis determine where the point is actually located. 

 

6.2 Alternative Definition of Center of Gravity 
It is unfortunate that a discussion of the center of gravity definition could not be found in 
the literature. Because it is felt that the center of gravity definition mentioned above is too 
constraining, we adopt a different approach here. We postulate the following plausible 
working definition for the ‘center of gravity’ as the location at which: 
 

“the gravity force acting upon a hypothetical point-mass (with mass equal to the total 
body mass) is identical to the total gravity force acting upon the extended rigid body”. 

 
The position of the center of gravity relative to the center of mass within the BCRF frame 
is denoted by ρρρρcg so we have rcg = R + ρρρρcg. The force Fcg acting upon a point-mass at the 
(so far unknown) location of the centre of gravity is described by the leading monopole 
term of eq. (21) and can be expanded using eq. (4): 
 

 Fcg = cg

cg| |sat E m µ 3

+
−

+
R
R

ρρρρ
ρρρρ

≈ 3
E 

satm
R
µ−

2
cg cg cg

cg2 4

( (3 15
1 3 ( )

2 2R R R

ρ 2 �• ) • )� � � �− − + +� �� 	
 
 � ��

R R
R

ρ ρρ ρρ ρρ ρ
ρρρρ  = 

 

 = 3
E 

satm
R
µ−

2 3
cg cg cg cg

cg 2 4

( ) (3 15
3 +O

2 2
cg

R R R R

ρ 2 �• )( + • )� � � � � �+ − − +� �� 	 � 	
 
 � 
 � ��

R R R
R R R R

ρ ρ ρ ρρ ρ ρ ρρ ρ ρ ρρ ρ ρ ρ
ρρρρ     (50) 

 
When equating this expression with the actual force acting on the rigid body given in eq. 
(21) we see that the leading monopole terms –msat (µE /R3) R are identical (as expected). 
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The next largest contributions within the brackets { … } of eq. (50) are the terms of order 
ρρρρcg, i.e.: 
 

 3
E 

satm
R
µ− cg

cg 2

(
3

R

• )� �
−� �

�

R Rρρρρ
ρρρρ  (51) 

 

It should be noted that the remaining terms within the brackets { … } of eq. (50) are of 
second, i.e. (ρcg/R)2 R, or higher orders and are considered negligible at the level of 
accuracy considered here. 

The expression in eq. (51) should be equated to the (3/2) (µE /R4) { ... } term in eq. (21). 
When writing R = R u we find the following equation for ρρρρcg: 

 

 cg cg3(− • )u uρ ρρ ρρ ρρ ρ  = –
2 satRm

3 { }T5 ( [I] ) [I] 2[I] tr− −u u u  u u  = –
2 satRm

3 U (52) 

 

The vector U is defined by the expression { … }, see also Appendix D, eq. (D.1) and 
(D.11) where U is expanded in terms of its components along the body and orbit 
reference axes, respectively.  

For the present objective, it is most convenient to adopt the orbital reference frame. We 
expand the unknown ρρρρcg in components along the (u, v, w) axes of the orbital reference 
frame (ORF), with u along the orbital radius, v along the local horizontal and w along the 
orbit-normal directions: 

 

 ρρρρcg = cu u + cv v + cw w = 
u

v

w

c

c

c

� �
� 	
� 	
� 	

 �

 (53) 

 
On the basis of the result established in eq. (D.10) of Appendix D, we find the following 
expressions for the three components of ρρρρcg from the equality in eq. (52): 
 
 

 cg cg3(− • )u uρ ρρ ρρ ρρ ρ  = 
2 u

v

w

c

c

c

−� �
� 	
� 	
� 	

 �

 = –
2 satRm

3 UORF = –
2 satRm

3
2

2

2

x y z

xy

xz

I I I

I

I

� �− −
� 	
� 	
� 	� 	

 �

� � �

�

�

  (54) 

 
When assuming that the body frame is aligned with the principal axes, we find for the 
components of the center of gravity from eq. (D.11): 
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 cu = 
4 satRm

3
(2 )x y zI I I− −
� � �

 = 
4 satRm

3
{ 3( ) ( )2 2 2

11 x 21 y 31 z x y za I a I a I I I I+ + − + + } (55a) 

 

 cv = –
satRm

3
xyI
�

= 
satRm

3
( )11 12 x 21 22 y 31 32 za a I a a I a a I+ +  (55b) 

 

 cw = –
satRm

3
xzI
�

 = 
satRm

3
( 11 13 x 21 23 y 31 33 za a I a a I a a I+ + ) (55c) 

 
In the special case when the satellite’s principal axes are aligned with the orbital frame, 
the coefficients ajk are identical to 1 for j = k and vanish for j ≠ k, so we find: 
 

 cu = 
4 satRm

3
(2 )x y zI I I− − ;    cv = cw = 0 (56) 

 

This result implies that the center of gravity lies on the orbital radius vector in this special 
case. It may be recalled from eq. (22) and point 5 of section 3.5 that, in this special case, 
the products of inertia are absent and the gravity force is aligned with the orbital radius 
vector so that the position of the center of gravity lies on the orbital radius vector as well 
as on the force vector. 

The distance of the center of gravity from the center of mass (which itself is at the 
distance R from the center of the Earth) is of the order of: 

 
 cu ≈ (3/2) ∆I (k/R)2 R ≈ 3 × 10-14 R (∆I) (57) 
 
The inertia parameter ∆I is defined as (2 )x y zI I I− − /(2Ix), which vanishes for a 
‘spherical’ satellite, and k is the radius of gyration of Ix. For a typical satellite with a 
radius of gyration < 1 m and ∆I < 0.1, we find that cu (i.e., the distance of the center of 
gravity from the center of mass) is at most of the order of 20 nano-meter. 
 
In general, when the satellite’s principal axes are not along the orbital axes, the center of 
gravity will not lie on the orbital radius vector as can be seen from eqs. (55). 
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APPENDIX A. DUMBBELL SATELLITE ILLUSTRATION 
 
We will now illustrate and interpret the results established in the preceding Chapters 
using the relatively straightforward example of the so-called ‘dumbbell’ satellite. 
 

 A.1 Geometry 
Figure 2 illustrates the geometry of a dumbbell satellite orbiting an ideal spherical Earth.  
 

 
 

Figure 2 – Illustration of (Planar) Geometry of Earth and Dumbbell Satellite 
 

For simplicity, the dumbbell satellite is assumed to move only within its orbital plane at 
all times. Therefore, the attitude is constrained to arbitrary in-plane librations defined by 
the angle α relative to the orbital radius (Figure 2). We introduce the dumbbell’s body-
centered reference frame BCRF (x, y, z). The x-axis points normal to the (mass-less) rod 
connecting the two point masses (with equal masses m) and lies within the orbit plane. 
The y-axis is directed along the rod and lies also in the orbit plane. The z-axis (not 
shown) is normal to the orbit plane. Also we introduce the local orbit frame ORF (u, v, w) 
with the u-axis along the instantaneous orbital radius vector, the v-axis along the local 
horizontal direction, and the w-axis is identical to the z-axis. 
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The following coordinate transformation holds between the body-centered and the orbital 
reference frames (i.e., BCRF and ORF): 
 

 
sin cos 0
cos sin 0

0 0 1

u x

v y

w z

α α
α α

� � � � � �
� 	 � 	� �= −� 	 � 	� �
� 	 � 	� �
 � � � 
 �

 (A.1) 

 
When comparing this transformation with eq. (D.2) in Appendix D, we can readily 
calculate the corresponding ajk coefficients (e.g., a12 = -cosα). 
 
Figure 2 shows that the orbital radius is oriented along the u axis, i.e. R = R u. (Note that 
u, v, w and x, y, z denote the unit-vectors along the associated reference axes.) The 
position vectors of the two point-masses of the dumbbell are given by �1 = � = � y and �2 
= -� = - � y. The inertial position vectors r1 and r2 shown in Figure 2 can now be 
expressed in the (x, y, z) body coordinates: 
 
 r1 = R + �1 = R{(sinα) x + (cosα + �/R) y} = R{(1 + �/R cosα) u + �/R (sinα) v} 
 
 r2 = R + �2 = R {(sinα) x + (cosα – �/R) y} = R{(1 – �/R cosα) u – �/R (sinα) v} 
  (A.2) 

A.2 Expansion of Gravity Force 
The combined force on the two masses of the dumbbell satellite is given by (see eq. 6): 
 

 F = F1 + F2 =
2

3
1

j
E j

j j

m
r

µ
=

� �� �− � �
�� �

�
r

 = 
2

j
3

1

)
E j

j j

m
r

µ
=

� �(  + � �− � �
�� �

�
R ρρρρ

 (A.3) 

 
On the basis of the geometry presented above, and using (R•�) = �R cosα, we can 
expand the rj

-3, (j = 1, 2) terms in a similar way as was done in eq. (4): 
 

 r1
-3 = |R + �1|-3  = R-3

3/2
22

1 cos
R R
ρ ρα

−
� �� �� �+ +� �� 	


 � �� �
≈ R-3

2 2
23 3 15

1 cos cos
2 2R R R

ρ ρ ρα α
��� �� � � �− − +� �� 	 � 	


 � 
 �� � �
 

 

 r2
-3 = |R + �2|-3 = |R – �|-3 ≈ R-3

2 2
23 3 15

1 cos cos
2 2R R R

ρ ρ ρα α
��� �� � � �+ − +� �� 	 � 	


 � 
 �� � �
 (A.4) 

 
We find the following result for the combined force on the two masses of equal mass m 
up to terms of second order in ρ/R: 
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 F ≈ –
3
E

R
µ m

2 2cos 3 15 cos
1 3 ( +

2 2R R R
ρ α ρ ρ α ��� �� � � � � �− − + )� �� 	 � 	 � 	

 � 
 � 
 �� � �

R ρρρρ  +   

 

 –
3
E

R
µ m

2 2cos 3 15 cos
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2 2R R R
ρ α ρ ρ α ��� �� � � � � �+ − + − )� �� 	 � 	 � 	
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 �� � �

R ρρρρ  =  

 

 = –2m
3
E

R
µ R  + 6m 3

E

R
µ cos

R
ρ α� �
� 	

 �

ρρρρ  + 3m 3
E

R
µ 2

2(1 5cos )
R
ρ α� � −� 	

 �

R  (A.5) 

 
This force expression can be transformed to the (u, v, w) frame by expanding ρρρρ  in its 
components along the u- and v-axes, i.e. � = � y = � (cosα u + sinα v) and R = Ru: 
 

 F ≈ –2m
2
E

R
µ u + 3m

2

4
E

R
µ ρ { }2(1 3cos ) +sin(2 )α α− u v  (A.6) 

 
The leading term –2m 2( / )E Rµ  is produced by the ‘ideal’ inverse-square central force, 

whereas the second term, which is proportional to 2 4( / )E Rµ ρ , can be considered a 
perturbing force caused by the separation between the two dumbbell masses within the 
gravity field. It follows that the magnitude of the perturbing part is of the order of 
3/2 2( / )Rρ  times the leading central force (this amounts to a factor of about 2 × 10-7). 
 
Finally, we may also write the force result in its components along the body-centered (x, 
y, z) coordinates using the transformation of R in eq. (A.1) as shown in Figure 2: 
 

 F ≈ –2m
2
E

R
µ u  + 3m

2

4
E

R
µ ρ { }2 2sin (1 5cos ) cos (3 5cos )α α α α− + −x y  (A.7) 

 
When the dumbbell is aligned with the orbital radius or local vertical (i.e., when α = 0º), 
the x-component (normal to the dumbbell axis) vanishes so the force acts in the direction 
of the orbital radius, i.e. along the unit-vector y = u. In the case when the dumbbell is 
aligned normal to the orbital radius (α = 90º), the y-component vanishes so the force is 
again aligned with the orbital radius which is now along the unit-vector x = u. In both 
situations, the force will have a small perturbing component (on top of the ideal inverse-
square central force) directed along the orbital radius with unit-vector u as can be seen 
from eq. (A.6): 
 

  for α = 0º :   -6m
2

4
E

R
µ ρ u ;       for α = ±90º :   3m

2

4
E

R
µ ρ u (A.8) 
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In the former case (α = 0º), the perturbing force augments the negative central force 
because the mass-point that is closest to the Earth is subjected to a progressively stronger 
force than the mass that is furthest away. On the other hand, in the latter case α = 90º, the 
positions of the two masses are at the same distance but further away from the Earth than 
the center of mass so the perturbing force reduces the negative ideal central force. 

Although the position of the effective center of gravity is away from the center of mass in 
the special cases considered, the lever arm of the gravity gradient torque points along the 
force direction so the gravity gradient torque will vanish in both cases.  

An example of a case where the center of gravity does not lie on the orbital radius is 
given by α = 45º. The components of the perturbing force follow from eq. (A.6): 

 

 for α = 45º :      3m
2

4
E

R
µ ρ

{-½ u + v} (A.9) 

 

In this case, the sum of the individual forces acting on the two point-masses has a non-
radial component because of the asymmetrical geometry of the dumbbell relative to the 
Earth. Thus, the resulting gravity force does not pass through the Earth’s center. 

 

A.3 Result of Gravity Force Model 
The force results in eqs. (A.6-7) have been obtained directly from first principles. They 
can of course also be established by means of the formal force model presented in eq. 
(21). As a first step, we use eq. (15c) to calculate: 
 
 Ix = 2mρ2 ;       Iy = 0 ;       Iz = 2mρ2  (A.10) 
 
Thus, we have: 

 [I] = 2mρ2
1 0 0
0 0 0
0 0 1

� �
� �
� �
� �� �

;        tr[I] = 4mρ2 (A.11) 

 
When using the results above and the explicit BCRF components for R = R u given in eq. 
(A.1), the terms 1 to 3 of eqs. (24) can be simplified considerably: 
 
Term 1: (uT [I] u) u= 2mρ2 sin2α (sinα x + cosα y) (A.12a) 
 
Term 2: [I]tr u= 4mρ2 (sinα x + cosα y) (A.12b) 
 
Term 3: [I] u = 2mρ2 sinα x (A.12c) 
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With the help of these expressions the force expression in eq. (21) can be shown to be 
identical to the result given in eq. (A.7): 
 

 F ≈ –2m
2
E

R
µ u + 3m

2

4
E

R
µ ρ { }2 2sin (1 5cos ) cos (3 5cos )α α α α− + −x y  (A.13) 

 
This illustrates the agreement between the results derived by the two approaches and 
confirms the consistency of the proposed model (at least for this particular example). 
 
It can also readily be confirmed that the expression in eq. (A.6) is fully consistent with 
the force components obtained when using eq. (D.11) in Appendix D. 
 

A.4 Center of Gravity 
The results for the center of gravity position presented in eqs. (45) can easily be applied 
to the dumbbell satellite using the transformation matrix of eq. (A1) and we find: 
 

 cu = ¾ 
2

R
ρ  2(1 3cos )α−  ;        cv = -3/2 

R
ρ 2

sin(2 )α  ;        cw = 0 (A.14) 

 
It is of interest to calculate the distance σ and the phase angle χ of the center of gravity 
location relative to the center of mass, i.e. 
 

 χ = arctan v

u

c
c

� ��
� �
� �

 = arctan
2

2sin(2 )
1 3cos

α
α

−� �
� �− �

 ;   σ = 2 2
u vc c+  (A.15) 

 

The components cu and cv of the center of gravity position as well as the phase angle χ 
are summarized for a number of special cases in Table 1. 

Table 1 shows that the center of gravity is in general (except for α = 0 or 90º) located 
away from the orbital radius (i.e., when cv ≠ 0). The distance of the CoG position relative 
to the center of mass varies between -1.5 and 0.75 times (�/R)�. The largest value occurs 
at α = 0 and 180º and the minimum at 90º. The reversal of sign of cu at α = 54.7º is due to 
the fact that the center of gravity passes under the center of mass at this point. 

Finally, we present the components of the CoG position within the body x, y reference 
frame with the help of the transformation matrix in eq. (A.1): 

 

 x

y

c

c
� �
� 	

 �

 =
sin cos
cos sin

α α
α α

−� �
� �
� �

u

v

c

c
� �
� 	

 �

 = ¾
2

R
ρ 2

2

sin (cos 1)

cos (cos 3)

α α
α α

� �+
� 	

−
 �
 (A.16) 
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Components of CoG Location Dumbbell 
Angle αααα ( 2R ρ/ ) cu ( 2R ρ/ ) cv σ χ 

0 -3/2 0 1.5 0 
30º -15/16 - ¾√3 1.602 -126º 
45º -3/8 -1.5 1.546 -104º 

54.7º 0 -√2 1.414 -90º 
60º 3/16 -¾√3 1.312 -82º 
90º ¾ 0 0.75 0 

 

Table 1 – Summary of Center of Gravity Components 
 

A.5 Gravity-Gradient Torque 
The gravity-gradient torque induced by the gravity force can now be calculated in explicit 
form for the dumbbell satellite using the general torque expression in eq. (36): 
  

 T ≈
3

3 E

R
µ {u × [I] u} = –3m

3
E

R
µ ρ2 sin(2α) z (A.17) 

 
This result shows that the dumbbell will move towards the local vertical direction under 
the gravity gradient torque (this is the stable position). Eq. (A.17) also shows that the 
torque vanishes when α = 0º and ±90º as already mentioned in the previous section. The 
maximum possible torque occurs when α = 45º and 135º: 
 

 |Tmax | = 3m
3
E

R
µ ρ2 (A.18) 

 
The general result for the gravity gradient torque acting on the dumbbell given in eq. 
(A.17) may also be calculated directly from the gravity force acting at the center of 
gravity and the torque’s lever arm (i.e., from the center of mass to the center of gravity).  

This can best be done in the orbital reference frame using eqs. (A.6) and (A.14), which 
both have non-zero components within the orbital plane: 
 

 T = �cg × F = cu Fv – cv Fu ≈ – cv Fu = –3m
3
E

R
µ ρ2 sin(2α) z (A.19) 

 
The leading part of Fu (i.e., –2m 2/E Rµ ) in combination with the lever arm component cv 
dominates the result. The remaining terms are smaller, by a factor (ρ/R)2, and may be 
neglected in comparison (they can easily be calculated from the model above, if needed). 
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A.6 Illustration of Results 
In order to visualize the results established above we provide here the plots of the 
relevant functions.  
 
Figure 3 shows the behavior of the ‘perturbing functions’ fu(α) and fv(α) which represent 
the u and v components of the normalized (with respect to ρ2/R2) perturbing parts of the 
total force function presented in eq. (A.6): 
 

 F ≈ –2m
2
E

R
µ u + 3m

2

4
E

R
µ ρ { }2(1 3cos ) +sin(2 )α α− u v  = 

 

 = –2m
2
E

R
µ 2

[ ( ) ( ) ]u vf f
R
ρ α α

��� �� �+ +� �� 	

 �� � �

u u v  (A.20) 

with:  
 
 fu (α) = – 2(3/ 2)(1 3cos )α− ;   fv(α) = – (3/ 2)sin(2 )α   (A.21) 
 
The Figure confirms the well known fact that for a dumbbell along the orbital radius (i.e., 
α = 0), the perturbing force fu augments to the central force whereas fv is absent. For 
small values of α, the fu component starts to decrease slowly (and passes through 0 at α = 
54.7º, see Table 1). The fv component builds up a negative contribution in line with 
expectations. When α = 90º the dumbbell is normal to the orbital radius and fu reaches its 
(negative) minimum because both of the masses are now at the same distance behind the 
dumbbell center of mass (as seen from the Earth). 
 
Similarly, Figure 4 illustrates the force along the x, y axes. From eq. (A.7) we can 
establish the perturbing components fx(α) and fy(α) in a similar way as was done above: 
 
 fx(α) = – 2(3/ 2)sin (1 5cos )α α− ;     fy(α) = – 2(3/ 2)cos (3 5cos )α α−  (A.22) 
 
The behavior of fy(α) provides insights on the force felt by the mass-less rod of the 
dumbbell. It is seen that, for α near 0 and 180 degrees, the force reaches its maximum 
under the gravity gradient effect over the rod extended along the orbit radial direction. 
For α = 90º, the tension along the y-axis vanishes as the dumbbell rod lies essentially 
along the gravity field lines. Also at α = 39.2º and 140.8º the torque vanishes because the 
tension components along the rod that are produced by the two masses are identical to 
those acting at the center of mass. 
 



 

 

Model of Gravity Force and Gravity 
Gradient Torque 

Doc.No.: FLK-SIM-TN-ZAR-004 

Issue:  1.0 

Page:  32 of  45 

 

ZARM – Center of Applied Space Technology and Microgravity Page 32 of 45 
 

The x component is somewhat smaller and reaches its maxima values for α = 30º and 
150º on the positive side and for α = 90º on the negative side. The torque vanishes at α = 
63.4º because the tension components are identical. 

Figures 5 and 6 provide the position of the center of gravity relative to the (u, v) and (x, y) 
reference axes. The behavior shown in Figure 5 may be interpreted on the basis of the 
geometry shown in Figure 2. For α = 0, 90º, and 180º, we find that cv = 0 which implies 
that the center of gravity lies on the orbital radius vector which is evident by inspection 
and interpretation of the geometry in Figure 2. It is clear that the center of gravity is in 
general not on the orbital radius vector. 

For α = 0 and 180º, the center of gravity is closer to the Earth than the center of mass by 
a distance of -1.5(ρ/R)R. When α = 90º, however, the center of gravity is further away 
from the Earth than the center of mass by a distance of 0.5(ρ/R)R as shown by the 
behavior of cu. This can be understood by the fact that both masses are further from the 
center of Earth than the center of mass itself. In any case, it is evident that the center of 
gravity lies in general away from the dumbbell axis. 

Finally, it may be mentioned that the dumbbell’s ‘center of motion’ (see also the 
discussion in point 6 of section 3.5) is at a distance of -(�/R)� below the center of mass 
position. Here, it has been assumed that the dumbbell maintains its orientation along the 
local vertical. This result can be proven by substituting α = 0 in eq. (A.6) to obtain the 
radial force, by calculating the radial distance at which the centrifugal force equals the 
resulting radial force, and by expanding for small values of (�/R). Furthermore, the well 
known relationship that the center of motion equals (R Rcg)1/3 can easily be confirmed by 
substituting the expression for cu given in eq. (A.14). 
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Figure 3 – Normalized Perturbing Force for Dumbbell Satellite in (u, v) Frame 
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Figure 4 – Normalized Perturbing Force for Dumbbell Satellite in (x, y) Frame 
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Figure 5 – Center of Gravity Position for Dumbbell Satellite in (u, v) Frame 
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Figure 6 – Center of Gravity Position for Dumbbell Satellite in (x, y) Frame
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APPENDIX B. CYLINDRICAL SATELLITE ILLUSTRATION 
 
We will now study another straightforward example, namely a cylindrical satellite. 

 B.1 Geometry 
Figure 7 illustrates the geometry of a (assumed homogeneous) cylindrical satellite in an 
orbit around an idealized spherical Earth.  
 

 
 

Figure 7 – Illustration of (Planar) Geometry of Cylindrical Satellite 
 

For simplicity, the satellite attitude is assumed to be constrained to in-plane librations so 
that the BCRF x, y axes lie within the orbital plane at all times. The x-axis points normal 
to the cylinder mantle and the y-axis is directed along the symmetry axis of the cylinder. 
The z-axis (not shown) is normal to the orbit plane. All of these three axes are assumed to 
be principal axes. Also we introduce the local ORF orbit frame (u, v, w) with the u-axis 
along the instantaneous orbital radius vector, the v-axis along the local horizontal 
direction, and the w-axis is along the orbit-normal and identical to the z-axis. The 
geometrical transformation between the ORF and BCRF reference frames in eq. (A.1) 
holds also here. 
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Since a direct calculation of the force is rather involved we proceed to the application of 
the general force model presented eq. (21) to the cylindrical satellite. 
 

B.2 Result of Gravity Force Model 
The moments of inertias of a cylinder can be calculated by eq. (15c) 
 
 Ix = ¼ mρ2 + mL2/12 ;       Iy = ½ mρ2 ;       Iz  = ¼ mρ2 + mL2/12  (B.1) 
 
with ρ denoting the cylinder’s radius and L its length. The inertia matrix follows now as: 
 

 [I] = ½ mρ2
0 0

0 1 0
0 0

d

d

� �
� �
� �
� �� �

 ;    tr[I] = (½ + d) mρ2  (B.2) 

 
with the constant d = ½ + (L/ρ)2/6. This indicates that there is ‘cubical’ symmetry in the 
special case when d = 1, i.e. when L equals √3ρ. In this case, the quadrupole contribution 
disappears completely. 
 
By using the results above and the explicit expression for u = (sinα, sinα, 0)T along the 
satellite’s body axes (as in eq. A.1), we simplify the terms of eqs. (24) as follows: 
 
Term 1: (uT [I] u) u = ½ mρ2 {1 + (d -1) sin2α} (sinα x + cosα y) (B.3a) 
 
Term 2: [I]tr u= (½ + d) mρ2 (sinα x + cosα y) (B.3b) 
 
Term 3: [I] u = ½ mρ2 (d sinα x + cosα y) (B.3c) 
 
With the help of these expressions the force expression in eq. (21) takes the form: 
 

 F ≈ –m
2
E

R
µ u + ¾ m

2

4
E

R
µ ρ (1-d) {sinα (5cos2α -1) x + cosα (5cos2α -3) y} (B.4) 

 
Again it can be seen that the quadrupole term disappears when d = 1. The result in Eq. 
(B.4) is strikingly similar in structure to the expression of the dumbbell given in eq. 
(A.7). This can be understood by considering a cylinder with zero radius (ρ � 0). In that 
case the inertia matrices of the dumbbell and the cylinder in eqs. (A.11) and (B.2) can be 
made identical by equating: 
 
 2mdb 

2
dbρ  ≡ mcyl 2

cylL  (B.5) 
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with db referring to parameters of the dumbbell and cyl to quantities belonging to the 
cylinder. 
 
The result of eq. (B.4) may be reduced further in terms of components along the u, v axes 
as was done in eq. (A.4). Naturally, the cylindrical satellite can further be analyzed in a 
similar way as was done in the previous section for the dumbbell but the results will be 
(at least qualitatively) identical to those presented for the dumbbell. 
 

B.3 Gravity-Gradient Torque 
The gravity-gradient torque induced by the gravity force can now be calculated in explicit 
form for the dumbbell satellite from the expression in eq. (40): 
 

 T ≈
3

3 E

R
µ {u × [I] u} = – ¾ m

3
E

R
µ ρ2 (1- d) sin(2α) z (B.6) 

 
This result confirms that the torque vanishes when α = 0º and ±90º similarly as was the 
case for the dumbbell. The maximum possible torque occurs when α = 45º and 135º 
 

 |Tmax | = ¾ m
3
E

R
µ ρ2 (1- d) (B.7) 

 
Alternatively, we may calculate the gravity gradient torque by using the torque’s lever 
arm which is represented by the vector from the center of gravity to the center of mass 
(still to be done). 
 

B.4 Cylinder Normal to Orbit Plane 
Finally, it is of interest to consider a satellite with its symmetry axis normal to the orbit 
plane. In this case, the inertias about the x and y axes will be equal and the inertia matrix 
follows from eq. (B.2) as follows: 
 

 [I] = ½ mρ2
0 0

0 0
0 0 1

d

d
� �
� �
� �
� �� �

  (B.8) 

 
and the force component [I]u can be calculated as: 
 

 [I]u = ½ mρ2
0 0

0 0
0 0 1

d

d
� �
� �
� �
� �� �

sin

cos
0

α
α

� �
� 	
� 	
� 	

 �

= ½ mρ2d 
sin

cos
0

α
α

� �
� 	
� 	
� 	

 �

 (B.9) 
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which is in this case perfectly aligned with the orbital radius u. Therefore, the results of 
the term in eqs. (B.3a) can be simplified further in this case: 
  
Term 1: (uT [I] u) u = ½ mρ2 d u (B.10a) 
 
Term 2: [I]tr u= (½ + d) mρ2 u (B.10b) 
 
Term 3: [I] u = ½ mρ2 d u (B.10c) 
 
The force expression of eq. (21) takes now the very straightforward form: 
 

 F ≈ –m
2
E

R
µ u + ¾ m

2

4
E

R
µ ρ {5d – (1+2d) – 2d} = 

 

 = –m
2
E

R
µ u + (9/4) (d – 1)m

2

4
E

R
µ ρ  (B.11) 
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APPENDIX C. COMPARISON OF FORCE RESULTS 

C.1 Force Expressed in Moments of Inertia 
The force result presented in eq. (21) should be identical to the one given in eq. (24) of 
[1]. This can immediately be confirmed for the dominant inverse-square monopole term 
which is proportional to µE/R2.  
 
In order to check the agreement for the more complicated second-order contribution (i.e., 
the term multiplied byµE/R4), we consider the relevant second-order quadrupole terms of 
eq. (21): 
 

Term 1: (uT[I] u) u = {l2 Ix + m2 Iy + n2 Iz – 2(lm Ixy + ln Ixz + mn Iyz)}
l

m

n

� �
� 	
� 	
� 	

 �

 (C.1a) 

 

Term 2: [I]tr u  = (Ix + Iy + Iz)
l

m

n

� �
� 	
� 	
� 	

 �

 (C.1b) 

 

Term 3: [I] u = 
x xy xz

xy y yz

xz yz z

l I m I n I

l I m I n I

l I m I n I

� �− −
� 	
− + −� 	
� 	− − +
 �

 (C.1c) 

 
The expression between brackets {…} in the gravity force of eq. (C.1a) can now be 
written as follows: 
 
 {…} = 5 (Term 1) – (Term 2) – 2 (Term 3) = 
 

 = { 2 2 2(5 1) (5 1) (5 1)x y zl I m I n I− + − + − – 10 (lm Ixy + ln Ixz + mn Iyz)} 
l

m

n

� �
� 	
� 	
� 	

 �

 + 

 

 – 2
x xy xz

xy y yz

xz yz z

l I m I n I

l I m I n I

l I m I n I

� �− −
� 	
− + −� 	
� 	− − +
 �

 (C.2) 

 
The force expression in eq. (21) can now be written in the final form: 
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 F ≈ -msat 2
E

R
µ

l

m

n

� �
� 	
� 	
� 	

 �

+ (3/2)
4
E

R
µ

2 2 2

2 2 2

2 2 2

(5 3) (5 1) (5 1)

(5 1) (5 3) (5 1)

(5 1) (5 1) (5 3)

x y z

x y z

x y z

l I m I n I

l I m I n I

l I m I n I

�� �− + − + −
�� 	� − + − + −� 	�
� 	�� 	− + − + −�
 �

l

m

n

� �
� 	
� 	
� 	

 �

 + 

 

 – 10 ( )xy xz yzlm I ln I mn I+ +
l

m

n

� �
� 	
� 	
� 	

 �

 + 2
xy xz

xy yz

xz yz

m I n I

l I n I

l I m I

�� �+
�� 	

+ �� 	
�� 	+
 ��

 (C.3) 

 
When comparing this result with eq. (24) of [1] we find agreement (apart from the 
expected sign reversal) in all of the terms except for the final term: 
 

1. the factor 2 multiplier for the last entry of eq. (26) corresponds to a factor 4 in eq. 
(24) of [1] 

 
2. furthermore, in eq. (24) of [1], the last vector term shown in eq. (C.3) is wrongly 

multiplied by the components l, m, and n. 
 
In the case when the satellite reference frame is taken along its principal axes, we have Ixy 
= Ixz = Iyz = 0 so that the result in eq. (26) can be simplified significantly as follows: 
 

 F ≈ –msat 2
E

R
µ

l

m

n

� �
� 	
� 	
� 	

 �

 + (3/2)
4
E

R
µ

2 2 2

2 2 2

2 2 2

(5 3) (5 1) (5 1)

(5 1) (5 3) (5 1)

(5 1) (5 1) (5 3)

x y z

x y z

x y z

l I m I n I

l I m I n I

l I m I n I

� �− + − + −
� 	

− + − + −� 	
� 	� 	− + − + −
 �

l

m

n

� �
� 	
� 	
� 	

 �

 (C.4) 

 
This result is in complete agreement (apart from the sign reversal) with eq. (25) of [1]. 
 

C.2 Force Expressed in Inertia Integrals 
We may also write the expression in {…} of eq. (21) in terms of the inertial integrals and 
compare the final result with eq. (18) of [1]. First, we note the following identity 
relationships which follow from eqs. (14a-c): 
 
 Ix = Jy + Jz ;      Iy = Jx + Jz ;      Iz = Jx + Jy (C.5) 
 
When substituting these expressions, along with the inertia products in eqs. (14d-f), into 
the terms given in eqs. (C.1a-c), we find: 
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Term 1: (uT [I] u) u/R2 =  
 

 = {(1 – l2) Jx + (1 – m2) Jy + (1 – n2) Jz – 2(lm Jxy + ln Jxz + mn Jyz)} 
l

m

n

� �
� 	
� 	
� 	

 �

 = 

 

    = – {l2 Jx + m2 Jy + n2 Jz + 2(lm Jxy + ln Jxz + mn Jyz)} 
l

m

n

� �
� 	
� 	
� 	

 �

 + (Jx + Jy + Jz) 
l

m

n

� �
� 	
� 	
� 	

 �

 (C.6a) 

   

Term 2: [I]tr u= (Ix + Iy + Iz) u = 2 (Jx + Jy + Jz) 
l

m

n

� �
� 	
� 	
� 	

 �

 (C.6b) 

 

Term 3: [I] u = 
x xy xz

xy y yz

xz yz z

l I m I n I

l I m I n I

l I m I n I

� �− −
� 	
− + −� 	
� 	− − +
 �

 = 

( )

( )

( )

y z xy xz

xy x z yz

xz yz x y

l J J m J n J

l J m J J n J

l J m J n J J

� �+ − −
� 	

− + + −� 	
� 	− − + +
 �

 (C.6c) 

 
Now we add 5 times the last term in eq. (C.6a), subtract the term (C.6b), and subtract 
twice the term (C.6c). After writing out the 3 components we find:  
 

 PART 1  = 

3 2 2

3 2 2

3 2 2

x y z xy xz

x y z xy yz

x y z xz yz

l J l J l J m J n J

m J m J m J l J n J

n J n J n J l J m J

� �+ + + +
� 	

+ + + +� 	
� 	+ + + +
 �

 (C.7) 

 
The remaining contribution comes from the first term in (C.6a), which is written in the 
form: 
 

 PART2  = {l2 Jx + m2 Jy + n2Jz + 2(lm Jxy + ln Jxz + mn Jyz)} 
l

m

n

� �
� 	
� 	
� 	

 �

 (C.8) 

 
With the help of these expressions, it is possible to rewrite the force expression in eq. 
(26) in the same form as eq. (18) in [1]: 
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 F ≈ –msat 2
E

R
µ

l

m

n

� �
� 	
� 	
� 	

 �

 + (3/2) 
4
E

R
µ

3 2 2

3 2 2

3 2 2

x y z xy xz

x y z xy yz

x y z xz yz

l J l J l J m J n J

m J m J m J l J n J

n J n J n J l J m J

�� �+ + + +
�� 	

+ + + +�� 	
�� 	+ + + +
 �

+ 

 

 – 5 {l2 Jx + m2 Jy + n2Jz + 2(lm Jxy + ln Jxz + mn Jyz)} 
l
m

n

�� �
�� 	
�� 	

� 	�

 ��

 (C.9) 

 
This result is completely in agreement with eq. (18) in [1] as long as we remember that 
the vector u = (l, m, n)T as employed here has the opposite sign of the orbital radius 
direction used in [1]. 
 



 

 

Model of Gravity Force and Gravity 
Gradient Torque 

Doc.No.: FLK-SIM-TN-ZAR-004 

Issue:  1.0 

Page:  43 of  45 

 

ZARM – Center of Applied Space Technology and Microgravity Page 43 of 45 
 

 

APPENDIX D. GRAVITY FORCE in ORBIT FRAME 
 
The gravity force given in eq. (21) has been established on the basis of the inertia matrix 
[I] as well as the orbital radius vector R expressed within the body reference frame 
(BCRF). Sometimes, it is advantageous to know the gravity gradient force components 
expressed in the orbital reference frame (u, v, w). In particular, this implies that the Ubody 
vector, defined by: 
 
 Ubody = { }T5 ( [I] ) [I] 2[I] tr− −u u u  u u  (D.1) 

 
must be transformed to the ORF frame. Thereto, we introduce the transformation matrix 
[A] of the body reference frame within the orbital reference frame: 
 

 
x
y
z

� �
� 	
� 	
� 	

 �

 =
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

� �
� �
� �
� �� �

u
v
w

� �
� 	
� 	
� 	

 �

 = [A] 
u
v
w

� �
� 	
� 	
� 	

 �

 (D.2) 

 
The inertia matrix [I], which has originally been defined relative to the body frame, can 
be transformed to the matrix [I]

�

 in the orbital reference frame as follows: 
 

 [I] = 2[E] ( , , )
sat

sat
m

x

y x y z dm

z

ρ
� �
� 	− � 	
� 	

 �

� = 2 T[A]{ [E] ( , , ) }[A]
sat

sat
m

u

v u v w dm

w

ρ
� �
� 	− � 	
� 	

 �

� = T[A][I][A]
�

 

 
 �    [I]

�

 = T[A] [I][A]  (D.3) 
 

with ρ 2 = x2 + y2 + z2 and [E] = 
1 0 0
0 1 0
0 0 1

� �
� �
� �
� �� �

, i.e. the unity matrix. 

 
Thus, eq. (D.1) can now be expressed in the orbital reference frame as: 
 
 UORF = { }T5 ( [I] ) [I] 2[I] tr− −u u u  u u

� � �

 (D.4) 

 
It is important to note that the orbital radius vector R is oriented along the local vertical, 
i.e. the u axis. Therefore, u = (1, 0, 0)T within the orbital frame and we can calculate: 
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1. term 1:  
 
 T( [I] )u u

�

 = xI
�

= 11 21 11 31 21 312( )2 2 2
11 x 21 y 31 z xy xz yza I a I a I a a I a a I a a I+ + − + +  (D.5a) 

 

 T( [I] )u u u
�

 = xI u
�

= 
11 21 11 31 21 312( )

0
0

2 2 2
11 x 21 y 31 z xy xz yza I a I a I a a I a a I a a I� �+ + − + +

� 	
� 	
� 	

 �

 (D.5b) 

 
If the spacecraft body frame were the principal reference frame, the cross-product terms 
cancel and the results of (D.5) could be simplified somewhat.  
 
When comparing the result in eq. (D.5a) with that in eq. (19) we can see full consistency 
between these two expressions because of the coordinate transformation matrix in eq. 
(D.2) which shows: 
 

 R/R = l x + m y + n z =
l
m
n

� �
� 	
� 	
� 	

 �

= [A]
u
v
w

� �
� 	
� 	
� 	

 �

 = a11 u + a21 v + a31 w (D.6) 

 
2. term 2:  

 

 [I] = [I]tr tru u 
�

 = (Ix + Iy + Iz) u = 0
0

x y zI I I+ +� �
� 	
� 	
� 	

 �

 (D.7) 

 
It can be shown that [I]tr  is in fact invariant to coordinate transformations. 
 

3. term 3:  
 

 [I]u
�

 =
x xy xz

xy y yz

xz yz z

I I I

I I I

I I I

� �− −
� �
− −� �
� �
− −� �� �

� � �

� � �

� � �

1
0
0

� �
� 	
� 	
� 	

 �

 = 
x

xy

xz

I

I

I

� �
� 	
−� 	
� 	−
 �

�

�

�

 =  

 

 =
11 21 11 31 21 31

11 22 12 21 11 32 12 31 21 32 22 31

11 23 13 21 11 33 13 31

2( )

( ) ( ) ( )

( ) ( )

2 2 2
11 x 21 y 31 z xy xz yz

11 12 x 21 22 y 31 32 z xy xz yz

11 13 x 21 23 y 31 33 z xy xz

a I a I a I a a I a a I a a I

a a I a a I a a I a a a a I a a a a I a a a a I

a a I a a I a a I a a a a I a a a a I

+ + − + +

+ + − + − + − +

+ + − + − + 21 33 23 31( ) yza a a a I

� �
� 	
� 	
� 	� 	− +
 �

 

  (D.8) 
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This result simplifies considerably when considering the principal body frame as the 
reference: 
 

 [I]u
�

 =
x

xy

xz

I

I

I

� �
� 	
−� 	
� 	−
 �

�

�

�

 = 

2 2 2
11 x 21 y 31 z

11 12 x 21 22 y 31 32 z

11 13 x 21 23 y 31 33 z

a I a I a I
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With these inputs, explicit expressions can be established for the vector U in eq. (D.4):  
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A more compact result is found for the case when the body frame happens to be the 
principal reference frame: 
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These results are consistent with those in Hughes, [4], p. 287, eqs. (17), when accounting 
for the different definitions of the orbital reference axes and sign conventions. 
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Symbol Description

CHAMP CHAllenging Mini-satellite Payload
CLS Collecte Localisation Satellites
CSR Center for Space Research (University of Texas)
ECCO Estimating the Circulation and Climate of the Ocean
EGM96 Earth Gravity Model 1996
EIGEN European Improved Gravity model of the Earth by New techniques
GFZ GeoForschungsZentrum (Potsdam)
GGM GRACE Gravity Model
GRACE Gravity Recovery and Climate Experiment
IAG International Association of Geodesy
ICGEM International Centre for Global Earth Models
Lageos Laser Geodynamics Satellites
NGA National Geospatial Intelligence Agency
NRCan Natural Resources Canada
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1. Introduction

The Earth Gravity Model EGM96 [9] provided by NASA has been the standard model for
gravity and gravity-gradient calculation used in the generic drag-free simulator [10]. The
spherical harmonic coefficients of the Earth potential field are based on pre-CHAMP,
multi-satellite plus surface data. Newer models from CHAMP, GRACE, and Lageos
tracking data combined with surface data or as satellite-only model are availabe. The
combination models (satellite plus surface data) are intended to replace the EGM96 since
they have shown an accuracy improvement of several orders of magnitude for modelling
the Earth gravity field.

2. Earth Gravity Field Models

The ICGEM homepage [6] provides an overview of available models for gravity field
modelling with data for download.

2.1. Calculation Method

As described in [15] the calculation of Earth gravity and gravity-gradient is based on
the Earth potential field which is expressed by the spherical harmonic model:

Φ =
GM

R

[
1 +

∞∑
n=1

n∑
m=0

(
REarth

R

)n
(Cnmcos(mλ) + Snmsin(mλ))Pnm(sin(φc))

]
(1)

M is the mass of the Earth, G is the gravitational constant, REarth is the Earth radius, R
the position vector, Pnm(sin(φc)) are the Legendre polynomials of the geocentric latitude
φc, λ is the geocentric longitude and Cnm, Snm are the spherical harmonic coefficients
of the Earth potential field which are available up to degree and order n = m = 360
depending on the model used. With equation (1) all effects of the Earth’s non-symmetric
mass distribution can be described. Earth oblateness and the main variations in the
Earth’s shape are covered by the first six degrees of the harmonic series in (1).

2.2. Model Overview

Utilization of equation (1) to calculate the Earth gravity field requires supply of the
coefficients Cnm, Snm. A number of gravity field models is available, among them NASA’s
EGM96 and newer models based on data from more recent satellite missions like CHAMP
and GRACE. An overview of available models for gravity field modelling can be found
on the ICGEM homepage [6].

ZARM - Center of Applied Space Technology and Microgravity Page 5 of 19



Earth Gravity Model Update for the
Generic Drag-Free Simulator

Doc.No.: FLK-SIM-TN-ZAR-007

Issue: 1.0

Page: 6 of 19

EGM96 Model

The standard model used so far for calculation of the Earth gravity and gravity gradient
has been the EGM96 (Earth Gravity Model, see [15, 9]). The coefficients Cnm, Snm for
utilization of equation (1) are provided by NASA for download [9].
EGM96 was developed by combining data from multiple near-Earth satellites and an
extensive set of land-based measurements spanning a period of more than thirty years.

New Models

New models are based on data from the GRACE mission. GRACE-only as well as
combination models including other satellite missions and surface data are available.
Science data processing, distribution, archiving and product verification regarding the
GRACE mission are managed under a cooparative arrangement between the University
of Texas Center for Space Research (CSR), the Jet Propulsion Laboratory (JPL) and
the Geoforschungszentrum Potsdam (GFZ).

Mean monthly estimates of spherical harmonic coefficients for the Earth gravitational po-
tential field are distributed through the PO.DAAC (Physical Oceanography Distributed
Active Archive Center) at JPL or ISDC (Information System and Data Center) at GFZ
Potsdam websites [11, 5]. Several months of data are combined to produce an estimate
of the mean or static gravity field. Mean or static gravity field products are provided
by GFZ and CSR as satellite-only or combination models. In generating a combination
model, the long- to medium wavelengths features of the Earth’s gravity field resolved
from space are preserved while the shorter wavelengths are derived from surface data.

Gravity Field EIGEN by GFZ

Model data from the satellite missions CHAMP, GRACE and Lageos and from surface
data is provided by the GRACE Scientific Results website of GFZ Potsdam [4]. One to
two model updates are provided every year. The download area up-to-date includes the
following coefficient data:

• Satellite-only gravity model EIGEN-GL04S1 complete to degree and order 150
from GRACE and Lageos data, released May 24, 2006

• Combined gravity field model EIGEN-GL04C complete to degree and order 360
from GRACE, Lageos and surface gravity data, released on March 31, 2006

• Combined gravity field model EIGEN-CG03C complete to degree and order 360
from CHAMP, GRACE and surface gravity data, released on May 12, 2005

• Combined gravity field model EIGEN-CG01C complete to degree and order 360
from CHAMP, GRACE and surface gravity data, released on October 29, 2004

ZARM - Center of Applied Space Technology and Microgravity Page 6 of 19
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• GRACE satellite-only Earth gravity field model EIGEN-GRACE02S complete to
degree and order 150 released on February 13, 2004 to the GRACE Science Team
and August 9, 2004 to the public

• First GFZ GRACE gravity field model EIGEN-GRACE01S released on July 25,
2003

Hereby, the naming convention of the GFZ Potsdam-derived global gravity field solution
is the following:

EIGEN European Improved Gravity model of the Earth by New techniques
-GL from GRACE and Lageos data
-CG from CHAMP and GRACE data
* 01,02,03,04: version
S solely from satellite data
C combination model from satellite and surface gravity data

EIGEN-GRACE01S it the first GRACE gravity model and is based on 39 days of prelim-
inary GRACE flight instrument data. According to [4] this model has proven about five
times more accurate than the latest CHAMP field model and about 50 times more ac-
curate than pre-CHAMP satellite only gravity models at 1000 km half wavelength. The
solution strategy for combination of satellite and surface data resulting in the global
gravity field model EIGEN-CG01C includes downweighting of surface data relative to
the satellite-only information in separating the satellite normal equation system up to
degree 70. Contributions for the coefficients with degree 71 through 109 were allowed
to overlap for the satellite and surface data. The derivation of the combination model
EIGEN-CG01C is explained in [14].
Combination models like EGM96 are compiled from satellite altimetry, ship-borne gravime-
try over the oceans, air-borne and terrestrial gravimetry over land and the north polar
region. Compared to EGM96, the long- to medium wavelength part benefits from the
unmatched performance of the CHAMP and GRACE missions and partly also from im-
provements in the higher frequency part due to a more complete surface data record
(apart from Antarctica an almost complete global coverage is reached). According to
[14] there are seven surface data sets used for the combination model EIGEN-CG01C:

1. Gravity anomalies from the Arctic Gravity Project (ArcGP, see [3])

2. NRCan gravity anomalies for North America

3. NGA altimetric gravity anomalies over the ocean

4. Geoid undulations over the oceans using CLS01 mean sea surface and the ECCO
sea surface topography

ZARM - Center of Applied Space Technology and Microgravity Page 7 of 19
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5. NGA terrestrial gravity anomalies not covered by sets 1-3

6. NGA ship-borne gravity over water depths less than 2000m.

The data sets already incorporated in the EGM96 solution are the NGA sets 4, 6 and 7.
Improvements to the global gravtity field model from CHAMP and GRACE data is most
obvious for the polar caps that have not been resolved by former satellite-only models,
and also for regions in Africa, Asia and South America which were not homogeneously
covered by gravimetric data previously. The newly available or improved surface data
sets also mainly contribute to higher resolution for the polar regions.

In [13] the GRACE satellite-only Earth gravity field model EIGEN-GRACE02S is de-
scribed. For this model, 110 days of GRACE tracking data have been used. Documen-
tation of the Earth gravity field combination model EIGEN-CG03C is not available yet
(as of Febuary 2007) but an application is presented in [7]. An overview of the latest
models listed above however, including models EIGEN-CG03C and EIGEN-GL04C, is
given in [2].
EIGEN-CG03C is an upgrade of model EIGEN-CG01C using the same CHAMP mission
and surface data but taking into account nearly twice as much GRACE mission data:
For EIGEN-CG01C 200 days of mission data were processed while for EIGEN-CG03C
data from 376 days were available. Both models use 860 days of CHAMP satellite gravity
data combined with 0.5 x 0.5 deg surface data (gravimetry and altimetry) for generation
of a high resolution global gravity field model. The satellite-only part of EIGEN-GL04C
is provided as EIGEN-GL04S1 for applications that require a pure satellite-only gravity
model like geodetic and altimeter missions, e.g. for oceanographic applications targeting
the precise recovery of sea surface topography features from altimetry. The gravity field
combination model EIGEN-GL04C is derived from GRACE and Lageos mission plus 0.5
x 0.5 degrees gravimetry and altimetry surface data and is announced as an upgrade of
EIGEN-CG03C. Both combination models use the same surface data but for EIGEN-
GL04C the geoid undulations over the oceans have been derived from a new GFZ mean
sea surface height (MSSH) model minus the ECCO sea surface topography [4]. The com-
bination with Lageos observations is carried out for stabilization of the long-wavelength
part of the model, see [2]. Data with obvious problems have been substituted by EIGEN
values, see e.g. figure 2. The improvement of the EIGEN-GL04C compared to the pre-
cursor EIGEN-CG03C model is demonstrated in different comparisons and tests, some
of which are shown on the GRACE Scientific Results website of the GFZ [4]. The plots
in figures 1 and 2 are taken from [4] to exemplify the improvements.
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Figure 1: South Pacific geoid heights [m] of EIGEN-CG03C (left) and EIGEN-GL04C
(right) after subtraction of a terrestrial gravity data based geoid.

Figure 1 left shows an unrealistic meridional striping pattern in the EIGEN-CG03C
model which could be observed in all precursor EIGEN models. The right plot shows
that this striping could be much reduced in the EIGEN-GL04C model which is attributed
to the new GFZ MSSH data and to improvements in the GRACE satellite-only models.

Figure 2: North Atlantic geoid heights [m] of EIGEN-CG03C (left) and EIGEN-GL04C
(right) after subtraction of a terrestrial gravity data based geoid (Note the
differences in color scale).
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Figure 2 shows that the unrealistic ringing pattern in the precursor EIGEN models has
been eliminated by substitution of Canary Island NGA gravity anomaly data by EIGEN
data.

Gravity Field GGM by CSR

In addition to the gravity field data provided by the GFZ Potsdam, models based on
GRACE data are provided by the University of Texas Center for Space Research [18].
The first GRACE gravity model GGM01S released on July 21, 2003 is based upon a pre-
liminary analysis of 111 days of in-flight data gathered during the commissioning phase
of the GRACE mission [16]. The model appears to be 10 to 50 times more accurate than
all previous Earth gravity models at the long and medium wavelengths. The GGM01S
field is estimated up to degree/order 120 but it has been noted that the performance
beyond degree/order 90 or so is not so good recommending to use the model up to
about degree 95 only. The GGM01S model is comparable to the EIGEN-GRACE01S
model from the GFZ but including nearly three time as much data (111 days vs. 39
days of selected GRACE data for EIGEN-GRACE01S). By combination of the GRACE
data with marine and land gravity data similar to that used in EGM96 the preliminary
field GGM01C was produced extending the degree and order to 200. The successor
GGM02 [17] is based on the analysis of 363 days of GRACE in-flight data. This model
is available as satellite-only field GGM02S complete to harmonic degree 160 and as
combination model GGM02C. It is recommended to use GGM02S not beyond degree
110 as is since rapidly increasing errors make the coefficients unreliable at higher degrees.

Improvement greater than a factor of two over the previous GGM01 is reached with
GGM02. The plots in figure 3 taken from the GRACE Gravity Model website of CSR
[18] show the improvement from pre-GRACE gravity modelling efforts to GGM01 and
GGM02 considering satellite only data. Prior to GRACE, the Earth’s gravity field
was determined from various tracking measurements of varying quality and incomplete
geographical coverage limiting the gravity field resolution to wavelengths of 700km or
longer. At shorter wavelengths, the errors were too large to be useful such that only
broad geophysical features of the Earth’s structure could be detected (figure 3 top).
With GRACE data, the satellite-only models could be improved in the long-wavelength
as well as the medium wavelength parts. Improvements to the Earth gravity models at
medium and short wavelengths have to come from the use of measurements of terrestrial
and marine gravity.
GGM02C is extended to degree 200 by constraining it with terrestrial gravity information
using a weighted combination of GGM02S and EMG96 spherical harmonic coefficients.
Because the data span used for GGM02 is relatively short, the J2 harmonic was con-
strained to its long-term mean value from EGM96 incorporating mulit-decade satellite
and surface data. Otherwise, at the low degrees the surface gravity information was
downweighted since the GRACE data is orders of magnitude more accurate.
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Figure 3: Gravity anomalies from top: decades of tracking Earth-orbiting satellites pre
GRACE, middle: GGM01S, bottom: GGM02S
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GGM02S has shown solution departure above degree 120, see [17]. Starting at approx-
imately degree 130 the high-degree GGM02S information therefore was downweighted
such that the higher degree estimates significantly derive from the EGM96 coefficients.
In other words, there is a transition from GRACE-based information at lower degrees to
terrestrial gravity information at higher degrees taking place around degree 110 to 120.
Since the higher degrees are constrained to EGM96, the model can be smoothly extended
to degree and order 360 by filling in the coefficients above 200 with the EGM96 coeffi-
cients if a higher degree model is required. The model improvement between GGM01C
and GGM02C shows in the reduction of the North-South striations that are also apparent
in the predecessors of EIGEN-GL04C. Residual striations indicate that the downweight-
ing of the GRACE information at the higher degrees may still be insufficient; future
models will address this issue.

3. Implementation of New Models

From the models described above the newest two combination models EIGEN-GL04C
from GFZ and GGM02C from CSR have been included for coefficient upload in the
generic drag-free simulator project.

3.1. Additions to the Drag-Free Simulator Project

Write routines for coefficient data sorting to provide the format required by the simulator
have been used to generate new include files coeff_C{name}.inc and coeff_S{name}.inc

where name is a placeholder for gl04c or ggm02c.
The corresponding write routines are called write_coeffGL04C and write_coeffGGM02C.
The include files are generated by excecuting make write coeff{name} (see [10] to learn
more about the simulator make commands). This command generates the data files
coeff_C{name}.inc and coeff_S{name}.inc. The coefficient data can be found in
the svn path df_simulator/trunk/environment/gravity/f90/include. Subfolders
egm96, ICGEM and GGM hold additional information on the model coefficients, e.g. the
data format. The write routines are stored in svn path
df_simulator/trunk/environment/gravity/f90/source.

3.2. Data Formats

The original coefficient files g005_eigen_gl04c_coef for EIGEN-GL04C and GGM02C.GEO

for GGM02C are also stored in svn path
df_simulator/trunk/environment/gravity/f90/include.

ZARM - Center of Applied Space Technology and Microgravity Page 12 of 19
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EIGEN Format

From EIGEN-CG03C to EIGEN-GL04C there has been a format change in data storage.
For the latest model EIGEN-GL04C the ICGEM format (a description of which can be
found in subfolder ICGEM) supplied with the model data in g005_eigen_gl04c_coef has
been used. If the format is not changing for future models, the routine write_coeffGL04C
can be used for future updates; the only modification necessary is the file name contain-
ing the spherical harmonic coefficients of the Earth potential field.

The coefficient files contain a header and a data section. The header contains information
on authors, release details (year), and model specifications:

• Model name (EIGEN-GL04C)

• Earth’s gravitational constant C MU and Earth’s equatorial radius C R EARTH
with respect to which the spherical harmonic coefficients were computed (for
EIGEN-GL04C they are: C MU = 0.3986004415 · 1015 and C R EARTH =
0.6378136460 · 107)

• Maximum degree (360)

• Errors (calibrated)

• Norm (fully normalized)

• Tide system (tide free)

The header end is marked by the keyword end_of_head.
In the data section the spherical harmonic coefficients are listed by degree L and order M.
Each line is preceded with a keyword like gfc, gfct or dot. Lines beginning without one
of these keywords are comments. The number of parameters following these keywords
depend on the error specification, i.e. “calibrated”, “formal” or “no” (meaning errors are
not included). In any case only the first four parameters are of interest, i.e. the degree
followed by the order and the spherical harmonic coefficients C and S for keywords gfc

and gfct. For keyword dot the parameters following L and M are the temporal derivatives
of C and S. They are typically provided for coefficients of degree/order 2/0, 3/0 and 4/0.
The write routine therefore needs a keyword filter to only use the lines starting with gfc

(the difference between gfc and gfct is that for the latter also a time is given).

GGM Format

The GGM models can be downloaded from the ICGEM homepage [6] in the format
described above and also directly from the provider’s website [18]. For the drag-free
simulator project the latter source is used since the model data format is explicitely given
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in the coefficient file which facilitates the coefficient import and reduces the possiblities
to introduce errors which can occur if a false data format is assumed.
The header part of GGM02C.GEO has three lines, the first line providing the format for the
next line and the rate of J2 employed (from which the rate of C20 can be inferred). The
second line starts with the model name, the values for C MU and C R EARTH and
the Epoch which are for GGM02C C MU = 0.3986004415 · 1015 and C R EARTH =
0.6378136300 · 107 (= values used for EGM96), and the Epoch is 2000. The last header
line specifies the format for the coefficient data section starting in the next line. From
line four on the data is listed starting with keyword RECOEF followed by degree, order,
the coefficients C and S, the standard deviations of C and S and a normalization flag
(here: -1 = normalized). The coefficients provided in GGM02C.GEO are fully normalized.

3.3. Application and Modifications to the Drag-Free Simulator

In order to use the new model data, the parameter i_option_g has to be set to
I_G_OPT_GFZ (which corresponds to an integer value of 3) for model data EIGEN-
GL04C or I_G_OPT_CSR (4) for GGM02C in the simulator initialization script (in Matlab
script load_sim_data.m). For integer values equal 2 or higher than 4 for i_option_g

the current default EGM96 model data is loaded. For use of the new model data
for computation of gravity-gradient acceleration, option i_option_gg_acc has to be
set to I_GG_ACC_OPT_EGM as used before for inclusion of the set of spherical harmonic
coefficients up to the degree and order specified through options i_option_g_degree

and i_option_g_order where EGM = Earth Gravity Model is not referring to EGM96
solely but depending on the model coefficients loaded based on option i_option_g.

Note:

1. Since the C20 coefficient of the GGM02C model is provided as zero-tide value, it is
converted to the tide-free system by adding 4.173·10−9 (as specified by the GGM02
notes GGM02_Notes.pdf provided with the data). This is done since the previous
default EGM96 is disseminated as conventional tide-free model. However, the use
of conventional tide free models like EGM96 does NOT conform to Resolution 16
of the 18th General Assembly of the IAG (1983) recommending that “the indirect
effect due to the permanent yielding of the Earth be not removed”, i.e. the use of
zero-tide values, cf. [8]. Since the use of zero-tide values provides a more realistic
model of the Earth’s gravity field, the new model option i_option_g_tide has
been introduced to enable that option, i.e. if i_option_g_tide = I_TIDE_FREE

(this corresponds to an integer value of 0), the gravity field is given with tide-free
coefficients and for i_option_g_tide = I_TIDE_ZERO (which corresponds to an
integer value of 1) the zero-tide system is used. This model option can be enhanced
to include other permanent and periodic tidal effects in the future. A definition of
the tidal system can be found in appendix A.
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2. The value of the reference Earth radius R with respect to which the spherical har-
monic coefficients were computed is slightly different for GGM02 and the EIGEN
models, i.e. GGM02 uses R = 6378136.30 which corresponds to the EGM96 ref-
erence radius while the EIGEN data is based on 6378136.46. When using the
EIGEN coefficients the parameter C R EARTH which is the simulation reference
Earth radius has to be reset to the reference radius used for the derivation of the
spherical harmonic coefficients. In the drag-free simulator and the gravity library
this is done in the initialization routines.

3. Since the gravity library requires spherical harmonic coefficients up to degree
and order 360 and GGM02C is only complete to degree 200, the include files
coeff_Cggm02c.inc and coeff_Sggm02c.inc are patched with EGM96 coeffi-
cients for the higher degrees. This is possible since the GGM02C model is by
design seamlessly extendable beyond degree/order 200 to 360 using the EGM96
coefficients, see [17].

3.4. Guidelines for Future Model Update

New model coefficients have to be provided in the format required by the gravity library
module used in the drag-free simulator. The following steps are necessary to include a
new Earth gravtiy model:

• Create new coefficient files coeff_C.inc and coeff_S.inc in the format n,m,Cnm

and n,m, Snm in directory
df_simulator/trunk/environment/gravity/f90/include

• Check if the Earth’s gravitational constant C MU and Earth’s equatorial radius
C R EARTH are identical to those with respect to which the spherical harmonic
coefficients were computed. If this is not the case, they have to be adapted to the
new model by changing the corresponding values in modules dynamics_params

and mod1 and Matlab file dynamics_params.m in svn paths
df_simulator/trunk/dynamics/f90/modules,
df_simulator/trunk/common/f90/modules and
df_simulator/trunk/run/m-files/structures resp.
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A. Tidal Effects on the Earth’s Gravity Field

The gravitational potential in the vicinity of the Earth is a combination of the tidal
gravitational potential of external bodies like the Sun, Moon and planets, and the Earth’s
own potential which is perturbed by the external tidal potential. Tidal attraction thus
acts in a direct and indirect way: The direct attraction deforms the elastic Earth and
thereby causes an indirect change in the gravitational potential. The external tidal
and the tide-induced Earth potentials contain both time-independent (permanent) and
time-dependent (periodic) parts. The permanent Earth tide is low in the polar regions
and high in the equatorial area due to the Moon and the Sun moving fairly close to the
equator. In deriving Earth gravity models, the periodic parts are commonly removed,
however, various gravity and geoid systems originate from different ways of handling the
permanent tide.

A.1. Tide Systems

The different treatment of the permanent tide has led to mainly three tide systems:

• mean tide: All permanent tidal distortions are included.

• zero tide: The permanent direct effects are removed but the indirect effects related
to the elastic deformation of the Earth due to external bodies are kept, i.e. the
permanent tidal attraction is eliminated whereas the permanent tidal deformation
is retained.

• non-tidal or tide free: All tidal effects are removed.

Following these definitions mean gravity includes the permanent tidal attraction caused
by masses which are outside the geoid. The application of the different tide systems
affect altimeter reduction and geoid definition and parameters like the second degree
zonal harmonic of the geopotential and the equatorial radius. If the permanent tidal
deformation is eliminated (as in the tide-free system), other quantities to change accord-
ingly are the Earth’s moments of ineria, its rotational velocity and its centrifugal force.
According to [1], the change in rotational velocity would correspond to shortening the
day by 5ms.

According to [12] it is reasonable to remove the tidal attractions due to the Sun and
the Moon since these can be directly computed from astronomical tidal theory. It is
recommended to precisely consider the permanent tides created by the influences of the
Sun and the Moon in satellite and terrestrial analysis. The tide-free system is a theo-
retical construct in which the gravitational potential is calculated by removing the tidal
attraction caused by external (perturbing) bodies AND by allowing the equatorial bulge
to relax due to the absence of masses outside the geoid. This results in a redistribution
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of Earth mass. A truly tide-free quantitiy is unobservable because the perturbing bodies
are always present and it is not known how much the Earth would relax in response
to the absence of the Sun, Moon and planets. The tide-free system is characterized by
so-called Love numbers which give a measure of how much a planet’s surface and interior
move in response to the gravitational pull of nearby bodies, i.e. how elastic the planet
is. In order to convert from tide free to zero tide it has to be known which Love number
was assumed in the system.
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1 Introduction

In combining the drag-free simulator dynamics core developed at ZARM with the con-
trol simulator established at HEPL, Stanford University, a number of difficulties arose
from uncertainties regarding frame and parameter definitions. This document gives an
overview of the coordinate frames used in the drag-free simulator and in the engineering
simulator developed at Stanford University along with the coordinte transformations
between frames. The step by step simulator adaptation to Gravity Probe B is outlined
starting with a listing of the parameters used and the derivation of initial conditions.
Finally, the cross-check using simplified simulator models is provided to verify the sim-
ulator agreement between the Stanford engineering simulator and the current modelling
effort.
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2 Conventions

2.1 Acronyms and Abbreviations

Symbol Description
COM Center of Mass
DOF Degrees of Freedom
GP −B Gravity Probe B
GSS Gyro(scope) Suspension System
SC Spacecraft
TM Test Mass, gyroscope
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3 Reference Frames and Coordinate Transformations

3.1 Elementary Transformations

Coordinate frame transformations often involve elementary transformations about one
axis. The elementary transformations are defined positive from the original axes to the
new axes. The following transformation matrices are used in the document:

• Elementary transformation by θ about x:

T1(θ) =

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 (1)

• Elementary transformation by φ about y:

T2(φ) =

cos(φ) 0 −sin(φ)
0 1 0

sin(φ) 0 cos(φ)

 (2)

• Elementary transformation by ψ about z:

T3(ψ) =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 (3)

3.2 Reference Frames

The types of coordinate frames considered for the dynamics core are listed in table 1.

Table 1: Coordinate Frames for the Dynamics Core
Name Short Name Index Symbol
1) Earth-centered inertial frame ECI, inertial i, ECI
2) Earth-centered Earth-fixed frame ECEF, Earth-fixed ECEF
3) Satellite body-fixed frame (in satellite
COM)

body, satellite b

4) Mechanical body-fixed frame (on satellite
structure)

mechanical, structure m

5) Accelerometer frame accelerometer a, acc
6) Sensor frame for test mass ∗ sensor sens∗
7) Body-fixed frame for test mass ∗ test mass tm∗

Figure 1 shows all frames that are used for describing the motion of one test mass with
respect to a satellite.
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Figure 1: Coordinate Frame Overview for one Accelerometer

In figure 2 the frames listed in table 1 are adapted to the GP-B configuration.
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Figure 2: Coordinate Frame Overview for the GP-B Simulator
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1) Earth-Centered Inertial Frame

The Earth-centered inertial (ECI) frame is the Earth Mean Equator and Equinox of
J2000 (EME2000) (see [7] for reference) celestial equator system depicted in figure 3(a).
Its definition is based on the IERS (International Earth Rotation Service) standards for
the ICRF (International Celestial Reference Frame). The origin of the non-rotating ECI
frame is the center of the Earth (the ICRF’s origin is located at the barycenter of the
solar system). The x-axis points towards the vernal equinox for J2000 and lies inside
the celestial equatorial plane. The z-axis is parallel to the Earth’s angular momentum
vector which is perpendicular to the equatorial plane. The right hand orthogonal system
is completed by the y-axis which is also located inside the equatorial plane.

2) Earth-Centered Earth-Fixed Frame

The Earth-Centered Earth-Fixed (ECEF) frame is equal to the International Terrestrial
Reference Frame (ITRF) and originates at the Earth’s center of mass. This system is
also maintained by the IERS. The ECEF frame is a rotating frame but fixed to the
Earth’s surface, such that it exhibits no net rotation with respect to the Earth’s crust.
The x-axis lies in the equatorial plane and points towards the Greenwich meridian which
is the IERS Reference Meridian (IRM). The z-axis points towards the IERS Reference
Pole (IRP) (see figure 3(b)). The y-axis completes the right hand orthogonal system,
which lies in the equatorial plane.

(a) Earth-Centered Inertial Frame (b) Earth-Centered Earth-Fixed Frame

Figure 3: Earth-Centered Frames
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3) Satellite Body-Fixed Frame

The satellite body-fixed frame has its origin in the center of mass of GP-B’s quartz block
assembly. It is identical to the housing frame 10) described below (see also table 2).

4) Mechanical Body-Fixed Frame

The origin of the mechanical body-fixed frame is a fixed point on the satellite structure.
The axes of the mechanical body-fixed coordinate system are parallel to those of the
satellite body-fixed frame (assuming rigid body dynamics). With the mechanical body-
fixed frame a moving satellite center of mass (and thus a varying origin for the satellite
body-fixed frame 3)) can be accommodated. If the satellite center of mass stays fixed
(or is assumed to be fixed), the mechanical body-fixed frame can be chosen to coincide
with the satellite body-fixed frame 3) for convenience.

5) Accelerometer Frame

The accelerometer frame is an arbitrarily defined reference frame for describing technical
entities like offset and orientation. For GP-B, the accelerometer frame for the first
gyroscope (the gyroscope closest to the quartz block COM) is nominally aligned with
the satellite body-fixed frame. The other accelerometer frames are rotated w.r.t. the
satellite body-fixed frame. The rotations are described in section 3.3. The accelerometer
frame is the same as the gyroscope housing frame 11) described below.

6) Sensor Frames

The sensor frame defines the origin and direction for measuring the test mass motion
with respect to the satellite. Misalignment and additional offsets inside the differential
accelerometer can be introduced. The origin is the point where the sensors which are
measuring the test mass displacement output zero for all three coordinates.

The sensor frame is the same as the electrode frame described below using the right-
hand convention. The engineering simulator developed at Standford University is using
a left-rotating system.

7) Test Mass Frames

The test mass body-fixed frame describes the attitude of the test mass with respect to
the sensor frame. The origin is the center of mass of the test mass. For the GP-B simu-
lator under development the test mass frame is initially aligned with the sensor frame.

The control modules work with the coordinate frames listed in table 2.

ZARM - Center of Applied Space Technology and Microgravity Page 9 of 33
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Table 2: Coordinate Frames for the Control Modules
Name Short Name Index Symbol
8) Nadir frame nadir n
9) Inertial guide-star pointing frame inertial, guide-star fixed iG
10) Satellite housing frame (body-fixed,
in satellite COM)

quartz (block) q

11) Housing frame for test mass ∗ gyro housing h∗
12) Electrode frame for test mass ∗ electrode e∗
13) Gyroscope (body-fixed) frame for
test mass ∗

gyro g∗

8) Nadir Frame

The nadir frame is an Earth center pointing coordinate frame with origin at the space-
craft center of mass. The z-axis always points to the center of Earth, the y-axis points in
the negative direction of the nominal orbital angular momentum vector, and the x-axis
completes the right-handed set.

9) Guide-Star Frame

The guide star frame is defined w.r.t. the orbit and the direction of the guide star, i.e.
the z-axis is pointing to the guide star, the y-axis is in the plane of the orbit pointing
north of the equatorial plane and the x-axis is completing the right-hand set.

10) Satellite Housing Frame

The satellite housing frame is a body-fixed frame that has its origin in the center of
mass of the quartz block assembly. The GP-B gyroscope drifts were measured w.r.t.
this frame.

11) Gyroscope Housing Frames

The gyroscope housings consist of a read-out half (containing the read-out loop) and
a spin-up half (containing the spin-up channel). The gyroscope housing frame has its
origin in the geometrical center of the gyroscope cavity with its z-axis parallel to the
nominal rotor-spin direction determined by the orientation of the spin-up channel and
the direction of gas flow in the channel (see [4]). The x-axis is chosen to point away from
the read-out half with the y-axis completing a right-handed set s.t. the read-out loop
lies in the y/z-plane. In figure 2 the orientation of the gyro housing frames compared to
the satellite quartz-block frame are shown.

ZARM - Center of Applied Space Technology and Microgravity Page 10 of 33



Adaptation of the Generic Drag-free
Simulator to the Gravity Probe B

Mission

Doc.No.: FLK-GPB-TN-ZAR-001

Issue: 1.1

Page: 11 of 33

12) Electrode Frames

The location and polarities of the electrodes determine the electrode frame. The elec-
trode axes pass through the centers of the electrodes pointing away from the spin-up
half. The origin of the electrode frame is the capacitive center of its gyroscope cavity.
The electrodes are arranged symmetrically and such that each unit-vector component of
an electrode axis is −1√

3
along the housing frame x-axis xH . Therefore, the angle between

each electrode axis and the xH-axis is 90o + arcsin(−1√
3
) = 125.264o. Also, the electrode

y-axis lies in the xH/yH-plane. The transformation from the gyroscope housing to the
electrode frame is given by

TE,H = T2(−135o) ·T3(arcsin

(
1√
3

)
) (4)

with T2 and T3 defined in (2) and (3).

Note: The Stanford engineering simulator has not implemented (4) to express a trans-
formation from gyroscope housing to electrode frame but is using the left-rotating frame
expressed by the transformation (10) instead.

13) Gyroscope Frames

The gyroscope frames are body-fixed frames that rotate w.r.t. the electrode and gyro-
scope housing frames.

3.3 Reference Frame Transformations

The satellite body-fixed frames 3) and 10) are identical. The electrode frames 6) and
12) differ in their rotation: 12) is a left-rotating while 6) is a conventional right-rotating
coordinate frame. Without satellite rotation frames 9) and 10) would be identical and
defined with the third (z-) axis pointing to the guide star, the second (y-) axis pointing
away from Earth and the first (x-) axis completing the right-hand set. The controls sim-
ulation is set-up such that when starting on top of the Earth’s North pole all coordinate
frames (8) nadir, 9) inertial, 10) body) coincide ([5]). A transformation from ECI 1) as
used in the dynamics core to the initial satellite housing frame 10) (= guide star frame
iG) is achieved by applying the transformation

TiG,ECI = TiG,INT ·TINT,ECI = T1(φ) ·
0 1 0

0 0 1
1 0 0

 (5)

with T1 defined in (1) and φ = 16.841231 · (π/180) is the guide star declination in radi-
ans. The transformation matrix TiG,ECI is used to calculate the initial satellite attitude

ZARM - Center of Applied Space Technology and Microgravity Page 11 of 33
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quaternion for the dynamics core.

The transformation from ECI to guide star frame is visualized in figure 4.

X
ECI

Z
ECI

Y
ECI

Z
INT

X
INT

Y
INT

Y
GS

X
GS

Figure 4: Transformation from ECI to guide-star frame GS through intermediate frame
INT

The transformation from satellite body-fixed to sensor frame is realized in the dynamics
core by

Tsens,b = Tsens,acc ·Tacc,b (6)

where Tsens,acc is the transformation matrix from accelerometer to sensor frame and
Tacc,b is the transformation matrix from satellite body to accelerometer frame. For the
first gyroscope, Tacc1,b1 is a unit matrix, i.e. the housing frame of the first gyroscope is
aligned with the satellite body-fixed frame originating in the quartz block assembly (see
figure 2). The other gyroscope housing frames are rotated w.r.t. this frame using the
elementary transformations from section 3.1, i.e.

Tacc2,b2 = T1(180o) =

1 0 0
0 −1 0
0 0 −1

 (7)

Tacc3,b3 = T3(90o) =

0 −1 0
1 0 0
0 0 1

 (8)
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Tacc4,b4 = T1(180o) ·T3(90o) =

0 1 0
1 0 0
0 0 −1

 (9)

The transformation matrix from accelerometer to sensor frame (i.e. from gyroscope hous-
ing to electrode frame) is a left-rotating frame for the GP-B engineering simulator de-
veloped at Stanford:

TL
sens,acc =

−
1√
3
− 1√

6
1√
2

− 1√
3
− 1√

6
− 1√

2

− 1√
3

2√
3

0

 (10)

The dynamics core expects right-rotating frames, therefore the following formulation is
used:

Tsens,acc = TE,H =

−
1√
3
− 1√

6
1√
2

− 1√
3

2√
3

0

− 1√
3
− 1√

6
− 1√

2

 (11)

TE,H is also defined in (4).
The transformation from satellite body to sensor frame for gyroscope ∗ is achieved by
multiplying (11) with Tacc∗,b∗ from (7) to (9) for gyroscopes 2, 3 and 4, i.e.

Tsens2,b2 = Tsens,acc ·T1(180o) (12)

Tsens3,b3 = Tsens,acc ·T3(90o) (13)

Tsens4,b4 = Tsens,acc ·T1(180o) ·T3(90o) (14)

For the first gyroscope,

Tsens1,b1 = Tsens,acc. (15)
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4 Equations of Motion

The satellite states are computed in the inertial and satellite body-fixed reference frames
1) and 3)/10) while the test mass states are calculated w.r.t. the sensor and test mass
frames 6) and 7). The equations of motion solved in the dynamics core are based on [6]
and [11].

4.1 Satellite Dynamics

The satellite translation basically is the motion of a rigid body in a gravity field with
additional coupling forces between the satellite and test masses,

r̈ii,b = gii,b(r
i
i,b) + aicontrol + aidist + aicoupl,sat (16)

where
rii,b satellite position
gii,b gravity acceleration
aicontrol control accelerations
aidist external disturbances
aicoupl,sat acceleration due to the satellite - test mass coupling.

The attitude motion of the satellite is expressed by the angular velocity of the satellite
body w.r.t. the inertial frame, ωbi,b. The attitude itself is described by the Euler symmet-

ric parameters qbi which represent a transformation from inertial frame to satellite body
fixed frame. The differential equations for the satellite attitude motion are as follows:

ω̇bi,b =
(
Ibb
)−1

[Tb
control + Tb

dist −Tb
coupl,sat − ωbi,b × (Ibω

b
i,b)] (17)

where
ωbi,b angular velocity of satellite
ω̇bi,b angular acceleration of satellite
Ibb inertia matrix of satellite
Tb

control control torques
Tb

dist disturbance torques
Tb

coupl,sat torques generated from satellite-test mass coupling,

q̇bi =
1

2
ω̂bi,b ⊗ qbi , (18)

with
ω̂bi,b quaternion representation of angular velocity
⊗ quaternion multiplication.
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4.2 Test Mass Dynamics

The equations of motion for the test mass dynamics are derived in the sensor frame
which is satellite fixed.
The acceleration of the test mass w.r.t. the satellite expressed in the inertial frame can
be obtained by subtracting the satellite equation of motion (16) from the test mass
motion. After transformation into the sensor frame, the equations of motion of a test
mass relative to the satellite become:

r̈sens
b,tm = ∆gb,tm

sens(rsensb,tm) + asens
coupl,tm (19)

−asens
coupl,sat + asens

rotation − asens
control − asens

dist

where
∆gb,tm

sens gravity gradient acting on the test masses
asens

coupl,sat coupling acceleration due to satellite-test mass coupling
asens

coupl,tm coupling acceleration due to test mass - test mass coupling
for more than one test mass

asens
rotation rotation in sensitive axes frame

asens
control acceleration due to thruster firing

asens
dist acceleration due to external disturbances.

For more details on the derivation of Eq. (19) and the single acceleration terms see [11].

The test mass attitude is expressed in the test mass frame and derived based on the
equation of conservation of angular momentum. The resulting equations for the test
mass rotation write:

ω̇tmsens,tm =
(
Itmtm
)−1

Ttm − (Itmtm)−1 (
ωtmi,b + ωtmsens,tm

)
(20)

× (Itm (ωtmi,b + ωtmsens,tm
))− ω̇tmi,b

where
ωtmi,b angular velocity of satellite w.r.t. inertial frame
ωtmsens,tm angular velocity of test mass w.r.t. sensitive axes frame
ω̇tmi,b angular acceleration of satellite w.r.t. inertial frame
Itmtm inertia matrix of test mass
Ttm torques due to rotational coupling and gravity gradient,

q̇tmsens =
1

2
ω̂tmsens,tm ⊗ qtmsens. (21)

ZARM - Center of Applied Space Technology and Microgravity Page 15 of 33



Adaptation of the Generic Drag-free
Simulator to the Gravity Probe B

Mission

Doc.No.: FLK-GPB-TN-ZAR-001

Issue: 1.1

Page: 16 of 33

5 Simulator Overview

The drag-free simulator developed at ZARM is assembled in a generic modular way to
allow for adaptation to very different science missions that require a precise model of
satellite and experiment. The generic modules include environment and disturbance
models to account for external effects due to gravitation, magnetic field, atmosphere,
and solar pressure as well as models for the satellite itself and its sub-systems. The
control modules usually are mission specific. A control simulator has been established
at HEPL, Stanford University. The control modules including a gyroscope suspension
system, drag free controller, and attitude controller, are combined with the generic dy-
namics, environment and disturbance modules. The generic simulator thereby is adapted
to Gravity Probe B for validation purpose, model improvement and knowledge enhance-
ment regarding future science missions.

5.1 GP-B Engineering Simulator

The GP-B engineering simulator has advanced capabilites including hardware-in-the
loop to test flight software and hardware interfaces. A software version of this simulator
has been established for other purposes. In this project the sofware version shown in
figure 5 is used for simulator verification.

Drag Free GSS ATC Simulator
Version 7

4

external forces
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Nadir SC
Forces
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Inertial SC
Forces

1

GSS
control efforts
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Gtime

time storage

thruster commandsforces & torques

thruster model

Groll

roll storage
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roll command

forces
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SC Hill’s position

SC Hill’s velocity

rpy
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G_I2B
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Disturbances
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GSS  to SC
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Figure 5: Gravity Probe B Engineering Simulator
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The simulator depicted in figure 5 is fully functional in having its own dynamics and
models for some (environmental) disturbances. To model the spacecraft and gyroscope
dynamics Hill’s equations are employed. The engineering simulator therefore can be
used for cross-check of the generic simulator if simplified dynamics are used and envi-
ronmental disturbances are neglected (this cross-check is carried out in section 7.1).

The control modules (Gyroscope Suspension System, Sensors, ATC, Actuators) are com-
bined with the drag-free simulator modules. A brief description of the control modules
is given below. A slightly more detailed description of these modules and the generic
modules in the next section is given in [9] and [10].

The Gyroscope Suspension System

The GP-B gyroscopes are electrostatically suspended by applying AC voltages to three
perpendicular sets of electrodes, thus enabling the gyros to spin freely within their quartz
housings. Simulated suspension is based on the difference in housing cavity position and
rotor position. The controller incorporated is a 3-axis-AOD (Authority on Demand)
controller [4] with an adaptive LQG (Linear Quadratic Gaussian) type of control. The
model further accounts for charge effects, i.e. charge built up on the gyro from radiaton
and other sources effects the forces applied by the suspension system. The rotor is
discharged by a UV light. In simulation, the nature of the charge and the UV light
response can be defined in a matlab script.

The ATC

The simulated attitude and position control system incorporates the same control logic
as in the ATC code used for flight during the science mission including two separate
PID controllers for the attitude and translation control. The control gains are the same
gains as used in flight.
Control effort from the Gyroscope Suspension System (GSS) is passed to the ATC
module for translation control. Attitude control uses sensor measurements from rate
gyro, telescope and star tracker to keep the roll rate constant and other rates and
position errors zero. The attitude control module includes an observer which is used
instead of the telescope when the guide star is eclipsed by the Earth. When the guide
star is in view the pointing errors are determined by the telescope. The commanded
forces from translation control and the commanded torques from attitude control are
passed on to the actuator as thruster counts.

Sensors

The sensor output for translation control is provided by the GSS. For attitude deter-
mination, three other sensor sets are utilized: 1) A telescope, pointing at a guide star
(IM Pegasus for GP-B) gives accurate measurements for attitude in the perpendicular
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plane of the sensor. The telescope model also accounts for orbital and annual aberra-
tions. White noise is combined with the telescope signal at the same variance as found
in the flight telescope. 2) Integrating rate gyros are used on GP-B to measure the three
angular rates of the spacecraft. Simulated rate gyros integrate the simulated attitude at
a rate of 10Hz. Drift rates estimated from flight data during GP-B’s science mission are
included. 3) A simulated star tracker updates the attitude measurements twice per roll.

Actuators

The 16 proportional helium thrusters on GP-B are modeled each as a point force equal
to the specific impulse from on-orbit data. The thrust counts from the ATC module are
converted to forces and torques based on the combination of thrusters used. Conversion
from ATC commands to thruster counts and thrust distribution is realized utilizing the
same logic as on the actual spacecraft.

5.2 Generic Drag-Free Simulator

The generic modules, including the dynamics core, environmental and disturbance mod-
els, are described below.

The Dynamics Core

The satellite and test mass dynamics are computed via an s-function calling the Fortran
dynamics core. The satellite and test mass dynamics are solved in six degrees of freedom
by numerical integration of the equations of motion. The default integration method
is a 5th order Runge-Kutta scheme. The satellite states are computed in the inertial
and satellite body-fixed reference frame while the test mass states are calculated w.r.t.
the test mass and sensor frame. The equations of motion solved in the dynamics core
are given in section 4. In solving the spacecraft and test mass equations of motion the
dynamics core includes the following features:

• Consideration of linear and nonlinear coupling forces and torques between satellite
and test masses as well as between multiple test masses

• Modeling of cross-coupling interaction

• Earth gravity model up to 360th degree and order

• Gravitational influence of Sun, Moon and planets

• Gravity-gradient torques and attitude-dependent gravity-gradient forces

• Choice of integration methods (Runge-Kutta, Bulirsch-Stoer, Euler-Cauchy)
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For the coupling forces, an internal model providing spring and damping parameters
can be used as long as the coupling can be assumed linear. Alternatively, a variable-size
external link input is provided. For GP-B, the coupling forces from the GSS module
are passed to the dynamics core through the link input. Other disturbance and control
actions on the satellite enter through inputs for external forces and torques.

Environmental Models

The Environment block is devided in spacecraft environment and test mass environment.
The spacecraft environment contains models for the atmospheric density, solar flux,
magnetic field and albedo. The gravitational influence is contained as a library in the
dynamics module as driving force for the satellite and gyroscope dynamics.
The atmospheric density model is based on the Mass Spectrometer Incoherent Scatter
Radar Extended (NRLMSISE-00) model [8] provided by the Naval Research Laboratory.
This model has been enhanced by a short-term density variation model (DVM) based
on the data from the CHAMP satellite mission [12] to improve the high frequency
characteristics.
For most environmental disturbances a structural model of the satellite needs to be
built and devided into subelements or subvolumes. For the solar flux model the flux on
each element is calculated and summed to obtain the total. A visibility check is carried
out beforehand to determine back faces and shadowed areas to reduce the computation
time.
To model the Earth magnetic field the IGRF (International Geomagnatic Reference
Field) released by the International Association of Geomagnetism and Aeronomy (IAGA)
is used [1].
The Earth Albedo model according to [3] is developed from reflectivity data taken from
the NASA project TOMS (Total Ozone Mapping Spectrometer) which is given online
[2]. A statistical model of the reflectivity is developed from data averages and standard
deviations derived for each latitude.
The calculation of environmental disturbances is done in pre-processing and look-up
tables or parametric models are utilized during the orbit simulation.

The Disturbance Module

The Disturbance module is structured like the Environment module, i.e. the Disturbance
block is devided in spacecraft and test mass disturbances. The Disturbance module
transforms the environmental outputs into forces and torques.

5.3 Adaptation of the Generic Drag-Free Simulator to GP-B

The generic drag-free modules are combined with the control modules from the GP-B
Engineering Simulator described above in 5.1. In figure 6 the new GP-B simulator is
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shown.
In addition to the modules described in the previous section, transformation libraries are
added since the various modules require a representation of states, forces and torques
in different coordinate systems. The forces and torques transformation block carries
out the necessary transformations for quantities that are not provided in the required
coordinates, i.e. the inputs for the spacecraft dynamics in inertial, orbital and mechanical
reference frames and for the gyroscope dynamics in the sensitive axes frame. In the
state selection module the inputs for all modules but the dynamics core are selected and
necessary coordinate transformations are carried out.

GP-B Simulator V1.0

Gvalid

valid star

Gtime

time storage

Groll

roll storage

Actuators

Thruster Model

State Selection

Sensors
SC and TM Dynamics

Orbital Orientation

G_I2B

I2B storage

GSS

FT_i

FT_b

FT_tm

Forces and Torques 
Transformation

Environment

Disturbances

G_B2I

B2I storage

ATC

Figure 6: Gravity Probe B Simulator Integrating Generic and Mission-Specific (Control)
Modules

5.4 Modifications to the GP-B Engineering Simulator Control
Modules

In the following, the module contents comprising the control part are shown in more
detail. In figure 7 the sensor and ATC modules are depicted. Both modules are identical
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to those from the engineering simulator from figure 5. The ATC subsystem includes the
ATC activation logic.
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Figure 7: Modules Sensors (left) and ATC (right)

In figure 8 the thrust actuation is shown. This module is almost identical to the GP-B
Engineering Simulator thruster model except that the spacecraft null bias is subtracted
at this point before entering the dynamics module via the forces and torques transfor-
mation.

1
forces & torques

ATC.distribution

distribution
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Thruster command to force

Matrix
Multiply

Thruster Pair Combine

Thruster FT

Thruster
Delay

XYZ

SC force &
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1
thruster

commands

Figure 8: Module Actuators

The GSS module is shown in figure 9. It contains the software model from the GP-B
Engineering Simulator, a rotor charge simulation and necessary transformations for the
control efforts passed on to the ATC. Also at this point external gyroscope forces and
polhode motion are added to the gyroscope suspension forces.
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Figure 9: Gyroscope Suspension System

The GSS module from the GP-B Engineering Simulator includes its own dynamics based
on Hill’s equations, see figure 10. The GSS block in figure 9 is taken from the GSS
subsystem used in the Engineering simulator shown in figure 10; the other blocks are
omitted and the cavity position input (labelled r_TM in figure 9) now is provided by the
dynamics core module.
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Figure 10: GP-B Engineering Simulator Gyroscope Suspension System Dynamics Model

In the state selection block (see figure 11) necessary transformations for the control
inputs (and environmental inputs), mainly for the sensors module, are carried out.
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Figure 11: State Selection

The forces and torques transformation block connecting the control modules to the
spacecraft and gyroscope dynamics is just a pass-through for the forces and torques
coming from the actuators and the GSS since they are already in satellite body-fixed
and sensor frame coordinates.
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6 Simulator Initialization

The dynamics and control integrated simulator is set-up in accordance with the original
GP-B engineering simulator developed at the W.W.Hansen Experimental Physics Lab,
Stanford University for cross-check. The simulator initialization and set-up is carried
out through data files. These scripts are listed and explained in the following.

6.1 Set-up Scripts

Each module in the simulator has its own set-up script(s). Since environmental and
disturbance modules are not incorporated in this preliminary investigation, only the ini-
tialization files for the dynamics core and the control modules are described briefly in
the following. The environment and disturbance modules will be added at a later point.

The data files for simulator core set-up are the Matlab scripts listed in table 3.

Table 3: Matlab Simulator Initialization Scripts
Name Function
load_sim_data.m Simulator options: model name, input/output options,

time options, integration options, gravity options
load_sat_data.m Satellite options: DOF, initial satellite states
load_acc_data_[1..4].m Accelerometer and test mass options: initial test mass

states, displacements and transformations to satellite
body, test mass properties (mass, inertia) and geomet-
rical entries, DOF, constant link parameters (stiffness,
damping, DC inputs)

These data files use parameters provided by the setup files for the original engineering
simular (see table 4).

Table 4: Matlab Parameter Scripts
Name Function
setupDFsim.m GP-B parameters; initializes the drag free control loop

models. Sets simulation time, sets drag-free gyro, space-
craft orbit period, rate, mass properties for spacecraft and
gyroscope, spacecraft roll, delays, gyroscope offsets from
quartz block COM, transformation matrices quartz block
to electrode frames based on the left-rotating transforma-
tion in (10), Helium properties amongst others. This file
calls asim.m, ATCattSys.m, thrustModel.m, sensors.m
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asim.m Parameters for structures GSS, SC, SUBU, dSpace and
AOD; calls constants.m, control gains and biases, trans-
fer function parameters, AOD gain change, excitation pa-
rameters, noise amplitudes amongst others

constants.m Constants in structures GSS, SC, SUBU, dSpace and
AOD: gyro mass, radius, electrode angle, voltage gains
and biases, Earth constant for spacecraft, initial space-
craft position and velocity, spacecraft inertia amongst
others

ATCattSys.m ATC parameters; sets the ATC control loop paramaters
for attitude control: ATC roll rate, period, inertia, limits,
biases, filter frequencies, damping ratios

thrustModel.m Thruster parameters (SC and ATC); mex functions
wrappsinv.c and GGtorq.c biases, thruster modes,
thruster distribution, gains amongst others

sensors.m Structures CGYRO and TRE; initializes sensor
model parameters by calling telescope_setup.m

and control_gyro_setup.m

telescope_setup.m Telescope (related) parameters: guide star properties,
Earth orbit properties (mean anomaly, longitude, eccen-
tric obliquity), transformation matrix to convert values in
J2000 coordinate system to GP-B guide star coordinate
system

control_gyro_setup.m Parameters for the control gyroscope sensor model: start
and end of guide star valid angle, pitch and yaw rate
offsets, roll, pitch and yaw rate noise

At simulation start, these parameters have to be initialized as well. The satellite and
test mass initial conditions and parameters are detailed below.

6.2 Initial Conditions

The initial conditions for satellite and gyroscopes are set according to those which are
used in the Stanford engineering simulator for cross-check. The engineering simulator
utilizes Hill’s equations for calculation of the dynamics. Initial conditions for the en-
gineering simulator are provided in nadir coordinates. Therefore, transformations from
nadir to ECI and satellite-body fixed frames are necessary for the satellite states and a
transformation from nadir to gyroscope sensor frame has to be carried out for the test
mass states.
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Satellite Initial Conditions

Initial conditions for the satellite can be calculated from orbital elements or entered
directly. For simulator cross-check, the initial conditions used in an engineering simulator
reference case are adopted.

Test Mass Initial Conditions

In the preliminary investigation the gyroscopes are assumed to be non-rotating. There-
fore, the rotation rate is set to zero.

6.3 Inputs and Parameters to the Dynamics Core

The parameters for the simulation are set in three different files for the simplified case
simulating one gyroscope only, see also table 3,

• load_sim_data.m

• load_sat_data.m

• load_acc_data_1.m

Simulation Inputs

The non-zero simulation inputs, provided in Simulink constant blocks, are the mass and
moments of inertia of the satellite:

• Mass of the satellite in [kg]: SC.mass = 2822

• The moments of inertia are set to SC.inertia = Ibb =

5061 0 0
0 4988 0
0 0 3514

 kg m2

Also, the gyroscope suspension forces enter the s-function block for the dynamics core.
At a later stage, also forces and torques from the thruster action is supplied.

Simulation Parameters

The simulation parameters can be found in Matlab file load_sim_data.m:

• df_sim.const_links = 0

Enables external link input for coupling between satellite and gyroscopes.

• acc_opt.acc_id = 1

Additional outputs for accelerations on the gyroscope of accelerometer 1.
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• df_core_param.d_MJD = 53249

The chosen number can be arbitrary since it has no influence for this case.

• df_core_param.d_t_step = GSS.period/10 = 4.5455 · 10−4

GSS.period = 1/GSS.cpuRate, GSS.cpuRate = 220

• df_sim_time.d_t_start = 0

• df_sim_time.d_t_final = dSpace.endSim = 100

End time of simulation.

• df_core_param.d_eps_dp = 1.0E-10

Default.

• df_core_param.d_h_min_dp = 1.0E-40

Default.

• df_core_param.d_h_1_dp = GSS.period/10

• df_core_param.i_option_g = constant_params.I_G_OPT_SIMPLE

Simple gravity model utilizing up to six zonal coefficients.

• df_core_param.i_option_g_order = 0

Using the simplest field: spherical Earth.

• df_core_param.i_option_g_degree = 1

Using the simplest field: spherical Earth.

• df_core_param.i_option_g_cog = 0

Correction for gravity force acting in center of gravity instead of center of mass
neglegted.

• df_core_param.i_option_g_planets(i) = 0

No influence of other celestial bodies.

• df_core_param.i_option_gg_model = constant_params.I_GG_OPT_J2

Gravity-gradients based on oblate Earth.

• df_core_param.i_option_ggt = constant_params.I_GGT_OPT_MATRIX

Gravity gradient torques on satellite calculated from gravity-gradient matrix

• df_core_param.i_option_gg_acc = constant_params.I_GG_ACC_OPT_SPHERE

Using the simplest field for gravity-gradient accelerations on test mass.

• df_core_param.i_option_ggt_tm = constant_params.I_GGT_OPT_OFF

No gravity gradient torques on test masses.
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Satellite Parameters

The satellite paramters can be found in Matlab file load_sat_data.m:

• df_core_param.d_num_acc = 1

One single accelerometer is chosen.

• df_core_param.i_option_sat_dof = constant_params.I_ALL_FREE

The satellite moves in all degrees of freedom.

• df_core_state.da_y(1:2) = 0

• df_core_state.da_y(3) = SC.rollW = 0.0811

The initial attitude rate df_core_state.da_y(1:3) has to be provided in the
satellite body-fixed frame.

• df_core_state.da_y(4:7)

The initial attitude quaternions of the satellite are calculated by the Matlab func-
tion att2quat which transforms a direction cosine matrix into a quaternion. The
input to this function is the transformation matrix (5) from ECI to guide star
frame on top of the orbit. Since the starting point of the simulation is chosen
such that initially nadir, guide star and satellite body fixed frames collapse, the
transformation matrix Tb,i = TiG,ECI from (5) provides the relationship between
ECI and satellite body fixed frame at start of the simulation.

• df_core_state.da_y(8:10) = Ti,b · (0, 0, SC.orbitV)T

The initial satellite velocity has to be provided in the inertial (ECI) frame. Ti,b is
the transpose of (5) and (0, 0, SC.orbitV)T is the initial condition which is given
for the GP-B engineering simulator in satellite body-fixed coordinates.

• df_core_state.da_y(11:13) = Ti,b · (0, SC.orbitR, 0)T

The initial satellite position has to be provided in the inertial (ECI) frame. Ti,b

is the transpose of (5) and (0, SC.orbitR,0)T is the initial condition given for the
engineering simulator in satellite body-fixed coordinates.

Accelerometer Parameters

For one single accelerometer the parameter file load_acc_data_1.m is used. The gyro-
scope simulated actually is the proof mass which is the third gyroscope in line after the
satellite COM position. For the complete simulation including all four gyroscopes the
proof mass data file will be load_acc_data_3.m.
The accelerometer file holds the properties for two test masses. Since GP-B has one
gyroscope per accelerometer, the (zeros) listing of parameters for the second test mass
will be omitted. The parameters for constant link inputs are all zero since the external
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link input from the gyroscope suspension system is used. Therefore the link parameters
will also not be listed in the following.

• i_acc = 1

Local variable specifying the number of the accelerometer the parameter file is
used for.

• i_tm = 1

Local variable specifying the test mass for which the states are currently initialized.
First it is set to 1 and the initial states for the first test mass are defined, then it
is set to 2 and the states for the second test mass are initialized. For GP-B, only
one test mass is present for the single accelerometer.

• i_base

Index variable, not to be changed!

• Initial angular velocity of first test mass:
df_core_state.da_y(i_base + 1) = 0

df_core_state.da_y(i_base + 2) = 0

df_core_state.da_y(i_base + 3) = 0

No angular velocity for the test mass.

• Initial attitude of first test mass:
df_core_state.da_y(i_base + 4) = 0

df_core_state.da_y(i_base + 5) = 0

df_core_state.da_y(i_base + 6) = 0

df_core_state.da_y(i_base + 7) = 1

Test mass is aligned with sensor frame.

• Initial velocity of first test mass:
df_core_state.da_y(i_base + 8:i_base + 10) =

Tsens3,b3 ·
[
(SC.orbitW, 0, 0)T ×GSS.cm{3}]

In the GP-B engineering simulator the test mass dynamics are calculated using
Hill’s equations. The initial test mass velocity is zero in the nadir frame. For the
dynamics core the initial test mass velocity has to be provided in sensor frame
coordinates. The offset of the gyroscope from the satellite COM is provided by
the gyroscope position GSS.cm{3} = (0, 0,−0.405)T in satellite body-fixed coor-
dinates. The initial test mass velocity in satellite body-frame coordinates is de-
termined by taking the cross-product of the orbit rate SC.orbitW = 0.0011 (along
the x-axis, note that the x-axes for nadir, orbital, inertial and also initially for
satellite body-fixed frames collapse, see section 3.3) and the gyroscope position.
The velocity is transformed to the sensor frame by utilizing the transformation
matrix Tsens3,b3 from (13).
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• Initial position of first test mass:
df_core_state.da_y(i_base + 11) = 0

df_core_state.da_y(i_base + 12) = 0

df_core_state.da_y(i_base + 13) = 0

No offset of test mass.

• df_core_param.s_accelero1.d_num_tm = 1

Number of test masses.

• Position of accelerometer frame w.r.t. satellite-fixed frame:
df_core_param.s_accelero1.da_r_m_ma(1:3) = GSS.cm{3}
• df_core_param.s_accelero1.da_T_a_b

For simplicity the 3×3 transformation matrix is set to
(

1 0 0
0 1 0
0 0 1

)
• df_core_param.s_accelero1.sa_test_mass1.d_mass = main.gyroMass = 0.0633

Mass of test mass 1 (= gyroscope 3) in [kg]

• df_core_param.s_accelero1.sa_test_mass1.da_moi

The matrix is set to
(

9.1880·10−8 0 0
0 9.1880·10−8 0
0 0 9.1880·10−8

)
kg m2

• df_core_param.s_accelero1.sa_test_mass1.da_moi_inv

Inverse of the test mass inertia matrix.

• df_core_param.s_accelero1.sa_test_mass1.da_r_a_asens = [0,0,0]

• df_core_param.s_accelero1.sa_test_mass1.da_T_sens_a =Tsens3,b3

Since df_core_param.s_accelero1.da_T_a_b is set to the identity matrix, the
transformation from satellite body to test mass sensor frame is carried out here by
utilizing the matrix defined in (13).

• df_core_param.s_accelero1.sa_test_mass1.da_switch_trans_DOF(1) = 1

df_core_param.s_accelero1.sa_test_mass1.da_switch_trans_DOF(2) = 1

df_core_param.s_accelero1.sa_test_mass1.da_switch_trans_DOF(3) = 1

Allows translational motion.

• df_core_param.s_accelero1.sa_test_mass1.da_switch_rot_DOF(1) = 1

df_core_param.s_accelero1.sa_test_mass1.da_switch_rot_DOF(2) = 1

df_core_param.s_accelero1.sa_test_mass1.da_switch_rot_DOF(3) = 1

Allows rotations. However, for the first simulation approach there is no rotation
since the initial angular velocity of the test mass
df_core_state.da_y(i_base + 1: i_base + 3) is set to zero.
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7 Preliminary Results

7.1 Comparison between Simulators

A cross-check using simplified simulator models is provided to verify the simulator agree-
ment between the GP-B engineering simulator and the current modelling effort. The
software version of the GP-B engineering simulator was used to produce the data for
comparison. As mentioned above, the engineering simulator uses simplified dynamics
based on Hill’s equations. The dynamics for the extended generic simulator were there-
fore also simplified in assuming a spherical Earth and modeling the gravity-gradient on
the spacecraft based on a spherical Earth potential field including the first zonal har-
monic only.

Figures 12 and 13 show the position coordinates for the drag-free gyroscope. The results
from the GP-B engineering simulator are shown with a red dashed line and the blue
curves labeled full dynamics refer to the generic simulator including the dynamics core
described in subsection 5.2 but simplified as outlined in the previous paragraph.
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Figure 12: Gravity Probe B Simulator Comparison - Gyro Position, ATC off

In a first modelling effort (figure 12), only the GSS is combined with the generic dynamics
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core. In Figure 13 the ATC, sensor and thruster models are included. In both cases the
agreement is near perfect.
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Figure 13: Gravity Probe B Simulator Comparison - Gyro Position, ATC on

Note: In generating the above results, the s-function GGtorq calling GGtorqF.c has been
modified. Presumably a gravity-gradient disturbance has been imposed on the dynamics
to test the control capabilities. For an accurate simulation the gravity-gradient matrix
in GGtorqF.c has been sign-corrected in this study and the missing transformation from
ECEF to guide star frame is included.
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1 Introduction

In this document we design and analyze different algorithms representing the operational
mode of the On-Ground Attitude Determination System (ADS) for the GAIA mission
using the On-Board measurements sensor data and the Kalman filtering. The principal
feature of the GAIA astrometry mission is a highly stable payload consisting of two
scientific instrument telescopes with one big focal plane containing an array of 106 CCDs.
In order to achieve this highly stable requirements the GAIA spacecraft should have very
accurate attitude determination sensors and also very accurate control actuators.
The objectives of this document are:

1. Represent inputs from the different GAIA system design and requirement docu-
ments for generating a complete set of the mission attitude parameters for certain
period of time.

2. Define and assume the on-board ADS requirements imposed by the scientific re-
quirements and specify the Gaia ADS interfaces with the external elements.

3. Design and analyze different techniques representing the On-Ground ADS using
the data given by the star sensor measurement and the scientific instrument rates.

4. Validate the results from the ADS algorithms with the GAIA mission attitude
and rate errors requirements and choose the more accurate algorithm for the On-
Ground ADS.

2 Attitude Measurement and Pointing Requirements

The measurement and pointing requirements for on-board Operational-Mode attitude
determination and control of the GAIA satellite is described in some detail in (GAIA-
EST-RD-00553)[1], and (GAIA-SRD-001)[2]. The most recent determination and
control performance requirements are summarized in ESA GAIA Mission Requirements
Document [1], section 4.7. Table 1 summarizes the principal mission- and system-level
requirements imposed on the attitude pointing and rate performances as provided. These
requirements are applicable to both ASTRO telescope Line-Of-Sight (LOS). The GAIA
astrometric measurement principle and CCD operation makes that a distinction must
be made in the accuracy requirements for quantities measured in the along-scan and
those along the across-scan directions.
Where the definitions in table 1 are [3]

• Attitude Measurement Error (AME) refers to the instantaneous 3-axis angu-
lar separation between the estimated satellite attitude (as well as Astro instrument
LOS) and the actual one.
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Parameter Requirement
(99.73 % probability level)

AME - Attitude Measurement Error < 20 arcsec
RME1 - Rate Measurement Error (along scan) < 0.9 mas/s
RME2 - Rate Measurement Error (across scan) < 2.7 mas/s

APE - Absolute Pointing Error < 60 arcsec
RPE1 - Relative Pointing Error (along scan) < 5 mas
RPE2 - Relative Pointing Error (across scan) < 10 mas

MRE1 - Mean Rate Error (along scan) < 2 mas/s
MRE2 - Mean Rate Error (across scan) < 10 mas/s

Table 1: Summary of AOCS Performance Requirements

• Rate Measurement Error (RME) refers to the mean difference between the
estimated spacecraft scan rate and the actual one.

• Absolute Pointing Error (APE) refers to the instantaneous 3-axis angular
separation between the desired satellite attitude (as well as Astro instrument LOS)
and the actual one.

• Relative Pointing Error (RPE) at a given time t is defined as the standard
deviation of the absolute pointing error over the AF CCD integration time τ around
t.

• Mean Rate Error (MRE) is defined as the mean difference between the desired
satellite scan rate attitude and the actual one; the averaging time is the time spent
by an object from being detected to being confirmed in the astrometric field.

3 Attitude Data Simulation

The Nominal Scanning Law (NSL) [4] used on-board GAIA satellite defines the reference
pointing attitude for the measurements of the two astrometric telescopes fields of view on
the sky. This measurement principle relies on the systematic and repeating observation
of the star positions in two fields of view. For this purpose, the spacecraft slowly rotates
at a constant angular rate of 1 deg/min around an axis perpendicular to those two fields
of view, describing a great circle on the sky in 6 hours. However, the real attitude motion
will not be exactly along the directions prescribed by the NSL but they will have error
angles in all three directions.
The scan axis is subjected to a slow precession at a rate (mean value over the year) of
0.173 arcsec/sec about the Sun to Earth direction. Furthermore, the angle between the
scan axis and the Sun must be maintained at 45 degrees.
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Using the rigid body dynamics and the kinematic equations [7], the GAIA attitude data
in the form of the spacecraft quaternions and angular velocities are simulated for one
great circle revolution ( 6 hours).
Figure (18) shows the true spacecraft angular velocities (arcsec/sec) using the NSL
parameters.
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Figure 1: The True Spacecraft Angular Velocities

The spacecraft attitude is assumed to be represented by the quaternion vector , defined
as

q =

[
q13

q4

]
With

q13 =

 q1

q2

q3

 = n̂ sin θ/2 and q4 = cos θ/2

Where n̂ is a unit vector corresponding to the axis of rotation, and θ is the angle of
rotation.
The elements of the quaternion satisfy a unit norm constraint. qT q = qT

13q13 + q2
4 = 1

The quaternion kinematics equations of motion are derived by using the spacecraft’s
angular velocity (ω), given by

d

dt
q =

1

2
Ω(ω)q
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where Ω(ω) and are defined by

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


The initial spacecraft quaternions qo is assumed to be compliant with the Nominal
Scanning Law (SAG-LL-0144) [4]. Figure (20) shows the true (reference) spacecraft
quaternions for for one great circle duration using the ODE45 to integrate the quaternion
kinematics equations of motion.
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Figure 2: The true (reference) spacecraft quaternions

3.1 The Star Tracker Model

The star tracker model with some measurement errors and bias are used to simu-
late the measurement quaternions. The star tracker specifications are given in [5]
(GAIA.ASU.SP.ESM.00010) some of these specifications are required in the sim-
ulation like:

• The measurement frequency: 2 HZ (time intervals 0.5 sec)

• The Optical axis alignment w.r.t. GAIA body frame: [0.7071068241 ; -0.6123723733
; 0.3535534125]
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• The measurement errors should be better than: 13 arc-sec (3σ) around the star
tracker X and Y axes and 15 arc-sec (3σ) around the star tracker Z axes

• The star tracker FOV is assumed to be 8 x 8 deg.

• The magnitude threshold for the star tracker is assumed to be 5.5

The quaternion multiplication can be used to translate from the true spacecraft body
quaternion to the star tracker quaternions and also to add the attitude errors to the star
tracker quaternions as shown by the following equation

q′′ =


q′4 q′3 −q′2 q′1
−q′3 q′4 q′1 q′2
q′2 −q′1 q′4 q′3
−q′1 −q′2 −q′3 q′4

q

Where q
′
is a quaternion that translates from quaternion q to quaternion q

′′
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Figure 3: The Star Tracker Attitude Errors Measurements

Figure (3) shows the roll, pitch and yaw attitude errors between the true spacecraft
attitude and the measured attitude from the star tracker model.We could notice from
figure (3) that as the yaw-axis of image coordinate system coincides with the bore-sight
axis of the star tracker camera, less information is available for the rotation about the
yaw-axis, which corresponds to higher covariance in the yaw angle estimates.
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3.2 The Angular Rates Model

The scientific payload is used as a high accuracy stellar gyro for achieving the attitude
determination and enabling Time Delay Integration (TDI) mode. The star speed is
calculated along and across scan from Astrometric Sky Mapper (ASM) and Astrometric
Field (AF) measurements. When considering the two telescopes, one obtains four an-
gular speed measurements, from which the satellite rigid body angular speed vector can
be calculated.
Since the star flow is fixed and is determined by the instrument sensitivity and the star
density, the attitude reconstruction will no longer be effective in the high frequency
domain, typically above 0.1 Hz [6] (GAIA-CH-TN-EADS-FS-001-1). Therefore,
sudden attitude change must be avoided and the high frequency attitude error must be
maintained at a level of a few micro-arcseconds during science measurements.
It should be mentioned that ASM-1 is seen by telescope No. 1 and ASM-2 by telescope
No. 2. The Sky Mapper measurements consist of the determination of the centroid
crossing times of the stars over each of the ASM CCD arrays. These crossing times are
combined with the subsequent crossing times of the same stars over the AF-1 CCD array,
which is about 10.69 and 5.83 seconds for stars in FOV1 and FOV2, respectively. These
measurements can be processed to estimate the speeds of the stars, both in the along
and the across directions, relative the instrument focal plane. The rate measurements
accuracy along scan is equal to 2.7 marcsec/sec (3 σ) and across scan is equal to 14.3
marcsec/sec (3 σ).
The attitude angles and rotation rate errors (difference between measurements and com-
mands) are filtered using a low-pass filter, in order to reject high frequency content higher
than the cut-off frequency. The cut-off frequency of this filter for the angular rate mea-
surement for the GAIA scientific instrument is equal to

f =
1

2∆T

where ∆T is the time between the subsequent crossing times of the same star.
Figure 4 shows a block diagram for a low pass filter used to filter the true simulated
angular rates with the following transfer function

ωLBF

ωT
=

2πf

s + 2πf

For the purpose of simulations, we assumed that the angular rate measurements from
the GAIA on-board scientific instruments have the following model

ωmeas = θ̇meas = ωLPF + b + η1

ḃ = η2

Where b is the rate bias vector[bx, by, bz]
T , θ̇meas and ωtrue are the measured and true

rate of change of the spacecraft orientation respectively. Both η1 and η2 are zero-mean,
white noise processes and they are independent.
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Figure 4: The Low-Pass Filter for the Simulated Angular Velocity

The rate bias is simulated using standard deviation for gyro noise η1 =14.3e−03 arcsec/sec
and standard deviation for bias η2=3e−6arcsec/sec/sec. The sample rate for the rate gyro
is assumed to be 0.5 sec. The error between the true and the measured angular velocity
is shown in figure (5).
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Figure 5: The Error bet. the True and Measured Angular Velocity

4 The Extended Kalman Filter

The Kalman filter is a means of obtaining an optimal estimate of satellite attitude given
a dynamic model, sensor measurements, and noise characteristics of the sensors and ac-
tuators. Kalman filter have been widely applied to the spacecraft attitude determination
problem. The Kalman filter minimizes the trace of the covariance of the estimated error
between the model response and the actual measurements in the least squares sense, but
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due to its recursive structure. A residual covariance analysis can be used to check the
consistency of the resulting attitude errors. The main advantage of using the Kalman
filter for attitude determination is that it optimally combines the rate data with the
attitude sensor data to produce more accurate results [8].
The Kalman filter state vector for the GAIA ADS is comprised of ten components: the
4 components of the attitude quaternions, the 3 components of the Gyro bias and the 3
components of the angular rates.

x =
[

q1 q2 q3 q4 bx by bz ωx ωy ωz

]
The system model equation has the following form

ẋ(t) = f(x(t), t) + G(x(t), t)w(t)

Also, the measurement model at time tk is given by

Yk = h(x(tk), t) + ν(t)

Where w(t) is the process noise and ν(t) is the measurement noise, both are discrete
Gaussian white-noise processes

w(t) =∼ N(0, Q(t))
ν(t) =∼ N(0, R(t))

The Kalman filter dynamic equations of state are given by

q̇(t) = 1
2
Ω(ω)q(t)

ḃ(t) = η2

ω̇(t) = I−1
sc (Te − ω × Iscω)

Where Isc is the moment of inertia for GAIA and Te is the total disturbance and control
torques acting on the spacecraft. the Kalman filter propagation equations are defined
by

∆x(t) = F (t)∆x(t) + G(t)w(t)

Ṗ = F̂P + PF̂ T + ĜQĜT

For the case of no external or control torques (Te = 0), the F matrix is given by

F =

 0.5Ω(ω̂) 04x3 −0.5Ξ(q̂)
03x4 03x3 03x3

03x4 03x3 Fω̇ω


Where

Ξ(q) =


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3
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Fω̇ω = −I−1
sc ([ω×] Isc − [Iscω×])

The matrix [a×] is the skew symmetric matrix of the vector a.

Also, the Kalman filter update equations are defined by

x̂k(+) = x̂k(−) + Kk [Yk − hk(x̂k(−))]
Pk(+) = [I −KkHk(x̂k(−))] Pk(−)

Kk = Pk(−)HT
k

[
HkPk(−)HT

k + Rk

]−1

The measurement vector at each time step Yk(7×1) consists of the simulated star tracker
measurement quaternions and the simulated angular rate measurements from the GAIA
on-board scientific instrument filter.

h(xk) =

[
q
ω

]
=

[
qst + ηst

ωmeas + b + η1

]
The angular velocities rates is assumed to have the same frequency as the star tracker
measurement (2 Hz). The measurement sensitivity matrix is given by

Hk =
∂h(x(tk), t)

∂x(t)
=

[
I4x4 04x3 04x3

03x4 I3x3 I3x3

]
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Figure 6: The Attitude Errors Using Kalman Filter
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Figure 7: The Gyro Bias Errors

4.1 The Kalman Filter Results

The Kalman filter algorithm is designed and implemented using the above system models
and equations. Figure (6) shows the improvement of using the angular rate measure-
ments from the GAIA scientific instruments with the Kalman filter simulation for the
attitude errors.
The resulting attitude determination errors (3 σ) is less that 5 arcsec (all time). The
estimated gyro bias errors is shown in figure (7) and the estimated angular rate errors is
also shown in figure (8). The resulting angular rates errors is less than 1 mas/sec which
is less the GAIA AOCS performance requirements (see table 1).
Finally, figure (9) shows the Relative Attitude Measurement Error (RAME) at any given
time t which is defined as the standard deviation of the attitude measurement error over
the AF CCD integration time τ = 3.3sec around t.
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4.2 Smoothing Estimation Technique

The smoothing estimation technique refers to a non-real-time or off-line algorithm that
makes optimal use of all measurements collected during a given interval of time. The
smoothing estimator provides thus the optimal state estimate based on all information
delivered by the measurements sampled during the interval 0 < t < T . The smoothed
state estimate at time t is denoted by x̂(t|T ). Typical smoothing algorithms are based on
the combination of two individual optimal filters, namely the forward and the backward
filters. The first filter uses all data before the time t which leads to the familiar classical
Kalman filter estimate x̂(t), whereas the backward filter operates on all data produced
after the time t and is expressed as x̂b(t). Together these two filters utilize all the
available information as shown in figure (10).

Figure 10: Relationship of Forward and Backward Filters

All smoothing algorithms depend, in some way, on the forward filtering solution. There-
fore, accurate forward filtering is prerequisite to accurate smoothing. The smoothed
states x̂(t|T ) will be in the form

x̂(t|T ) = P (t|T )
[
P−1(t)x̂(t) + P−1

b (t)x̂b(t)
]

where x̂b is the backward estimated states and Pb(t) is the backward error covariance
matrix.The smoother error covariance matrix P (t|T ) is given by

P (t|T ) =
[
P−1(t) + P−1

b (t)
]−1

Serval forms for the smoothing equations may be used for smoothing the states. One
of these forms is the one by ’Rauch-Tung-Striebel’ [9] which does not involve backward
filtering but directly deriving the smoothed state estimate by

x̂(tk|T ) = x̂(tk) + Kk (x̂(tk+1|T )− Φkx̂(tk)− bk)
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x̂(T |T ) = x̂(T )

Kk = PkΦ
T
k

(
ΦkPkΦ

T
k + Qk

)−1

P (tk|T ) = P (tk) + Kk

(
P (tk+1|T )− ΦkPkΦ

T
k −Qk

)
KT

k

Where P (tk) and x̂(tk) are obtained from a forward filter and P (tk|T ) is (approximately)
the error covariance matrix associated with x̂(tk|T ). The matrix Φk is the state transition
matrix at time tk. The quantity bk is the solution to the differential equation

ḃ(t) = F (x̂(t), t)b(t) + f(x̂(t), t)− F (x̂(t), t)x̂(t)

ḃ(T ) = 0

The forward Kalman filter outputs for the covariance matrices ad the expected states at
each time step are feeded to the smoothing algorithm to produce the backward and the
smoothed states and also the backward and the smoothed covariance matrices. Figure
(11) shows the output of the smoothing algorithm for the smoothed attitude errors with
the covariance bounds. Furthermore, figure (12) demonstrate the difference between the
smoothed roll attitude and the froward Kalman filter roll attitude.
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Figure 11: The Smoothed Attitude Errors
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Figure 12: The Difference between the Smoothed and the Forward Filter Roll Attitude

5 The Batch Attitude Estimation

The Batch Least Squares (BLS) estimation is the process that can be used to estimate
the state vector at an epoch time after accumulating batch measurement data for a
given interval. The BLS solution selects a state estimate x that minimizes the sum of
the squares of the calculated residuals. Although the BLS is computationally intensive
for large number of measurements but leads to a good estimation of the state vector
[10]. The big advantage of the BLS is that it addresses the problem by using a big
batch of data. By finding the best fit through the data, the process is much more likely
to converge to a solution even if some of the data does not conform to the dynamic
equations which we are trying to fit to.
The normal equation for batch estimation are

δx̂k =
(
HT

k R−1
k Hk + P̄−1

k

)−1 (
HT

k R−1
k ~zk + P̄−1

k δx̄k

)
Pk =

(
HT

k R−1
k Hk + P̄−1

k

)−1

Where δx̂k and Pk are the estimated state and covariance matrix at epoch time tk
while δx̄k and P̄k are the a priori state and covariance matrix at the same epoch time.
Without any previous estimates, P̄k is specified with arbitrarily large values. The terms
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containing the measurement covariance matrix, Rk in the above equations are actually
the accumulation of the star tracker measurement and the measured angular velocities,
from the payload scientific insturment, over pre-selected duration for batch. These terms
are computed as follows

HT
k R−1

k Hk =

n∑
i=1

(HiΦ(ti, tk))
T R−1

i HiΦ(ti, tk)

HT
k R−1

k ~zk =

n∑
i=1

(HiΦ(ti, tk))
T R−1

i ~zi

Where Hi and Ri are the sensitivity and measurement noise covariance matrices at time
ti respectively. ~zi is the measurement residual vector vector at time ti. Also,Φ(ti, tk) is
the state transition matrix from time ti to time tk.

5.1 The Maximum Likelihood Parameters Estimation

We can use another technique to estimate the unknown parameters of the GAIA OGA
for each batch of measurements, which include the initial conditions of the attitude
quaternions and the initial condition of the angular rates as well as the rate bias for
that batch of measurements. This technique is the maximum likelihood function for
parameters estimation . The maximum liklehood estimates are obtained by minimization
of the following cost function

J(Θ) =
1

2

N∑
k=1

[z(tk)− y(tk)]
T R−1 [z(tk)− y(tk)]

where z(tk) is the measurement vector (quaternions and angular rates) at time tk, and
y(tk) is the estimated vector (quaternions and angular rates) at time tk. The unkowns
paramenters vector Θ includes the initial conditions for quaternions and angular rates
for each batch intreval and also the constant value for the rate bias for that batch.
The diagonal elements of the measuremt noice covarinance matrix R representing the
variances of the quaternions errors and the angular rate errors. Thus the cost funtion
J(Θ) in the above equation is nothing but the weighted sum of squares of the response
error and is quadratic in nature. Any optimization methods, direct search or gradient
based, can be applied to obtain to estimtes of the best values for the vector of the
unkowns paramenters Θ..
As we can see from the above cost funtion J(Θ) is that it is dependent on the meaurment
noice covarinance matrix R. In general, the covariance matrix of the measurement errors
is unkonwn and, hence, has to be estimated. If we treat the R as another unkonwn which
make the optimization of the cost function more involved. Then the brute-force method
would be to include the elements of the covarince matrix in the unkowns paramenters
vector Θ, and then apply apply one of the optimization methods. In order to to estimate
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the covariance matrix we can drive the cost funtion for the maximum liklehood estimate
of R by partial differentiation of the cost funtion J(Θ) with respect to R and setting to
zeros, this leads to the following equation

R =
1

N

N∑
k=1

[z(tk)− y(tk)] [z(tk)− y(tk)]
T

Once we obtain a maximum liklehood estimate of R, then the cost funtion J(Θ) could
be reduced to [11]

J(Θ) = det(R)

In other words, the determination of the parameters vector Θ will be the one which
minimizes det(R).

5.2 The Batch Least Squares Results

By using the simulated GAIA gyro data, the batch least estimator with the fixed 20
minutes batch interval can determine the GAIA attitude as shown in figure (13). The
duration of the time span or the batch interval is usually decided based on the required
accuracy and on how much data is available. Figure (14) demonstrates how the batch
interval can affect the determined attitude accuracy by showing the pitch errors for
different batch intervals. With longer batch intervals, the accuracy of the final deter-
mined attitude is more accurate than for shorter batch eatimates because the collected
amount of data tend to reduce the estimated cost function of the errors between the
measured and estimated states. Moreover, By using shorter interval, the batch estima-
tion method will be faster than using the longer batch intervals but with higher attitude
errors between the intervals as shown in figure (14) .
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Figure 13: GAIA Attitude Errors Using the Batch Least Estimation
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Figure 14: The Effect of Different Batch Interval on Attitude Errors

Finally, to compare and choose the best On-Ground attitude estimation algorithm, the
results of the BLS, the Kalman filter and the KF smoother are demonstarted in figures
(16),(15) and (17). As a conclusion from these results, the Kalman Filter Smoother
produces the improved attitude determination over the Extended Kalman Filter. The
Kalman filter has the advantage that it constantly update the present attitude using
the latest measurements in conjunction with the collected estimation of the previous
measurements. Moreover, the Smoother algorithm is giving more accurate attitude
results because the final state estimate is used as an initialization for the backward filter
which results a more accurate state estimates than the EKF. On the other hand, the
Batch Least Squares estimates gives the most accurate OGA for long batch interval (60
min). But for short interval the BLS almost produce similar attitude accuracy to that
produced by the smoother KF. In terms of processing time, for a 60 min simulated data,
the required processing time for the EKF algorithm is 33.87 sec, for the KF smoother is
about 5.27 sec more than the EKF time, and about 35 min for the BLS.
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Figure 15: The Roll Attitude Errors Using Different Estimation Techniques
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Figure 16: The Pitch Attitude Errors Using Different Estimation Techniques
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Figure 17: The Yaw Attitude Errors Using Different Estimation Techniques

6 Gaia Disturbance Torques

Through understanding of the dynamical behaviour of the spacecraft, the accuracy of the
reconstructed attitude and torques can be improved, and is therefore of great relevance
for obtaining the highest accuracies and best overall statistical properties for the main
scientific products of the mission: the astrometric parameters of the target stars. The
attitude dynamics of the Gaia describes the changes in the angular rates around the
principle axes of the inertia tensor. These changes are the results of the internal and the
external torques and are described for a rigid body by the Euler equations. Two types
of torques can be distinguished: internal torques (due to thruster firing) and external
torques (due to solar radiation or external particals hits). In this work analysis, the
underlying external torques are assumed to be a continuous function up to its second
derivative in time.
The quaternion kinematics equations of motion are derived by using the S/C angular
velocity (ω), given by

d

dt
q =

1

2
Ω(ω)q

ZARM - Center of Applied Space Technology and Microgravity Page 22 of 27



GAIA On-Ground Attitude and External
Torque Determination Using Kalman

Smoother and Batch Estimation

Doc.No.: FLK-ALG-TN-ZAR-002

Issue: 1.0

Page: 23 of 27

where Ω(ω) and are defined by

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


The Euler dynamic equations are given by

q̇(t) = 1
2
Ω(ω)q(t)

ω̇(t) = I−1
sc (Te − ω × Iscω)

Where Isc is the moment of inertia for Gaia and Te is the total disturbance and control
torques acting on the spacecraft.
We will study the cases where Te exists in the attitude simulation in two cases:

• Case 1; Body Fixed Disturbance Torques (TB = const.).

Te = TB = Iscω̇[n1 n2 n3]
T

where ω̇ is assumed to be equal to the total allowed angular rate errors for one
great circle (6 hours) and ni are random integers from 2 to 10. Figures 18(a)
and 18(b) show the attiude residuals with and without predicting the body fixed
disturbance torques. The attitude errors using Batch Least Squares (BLS) before
and after external torque prediction is shown in figure 19.

• Case 2; Inertial Fixed Disturbance Torques (TI = const.).

Te = A(t) ∗ TI = A(t) ∗ Iscω̇[n1 n2 n3]
T

where A(t) is the attitude matrix of GAIA at time t. Figures 20(a) and 20(b) show
the attiude residuals with and without predicting the inertial fixed disturbance
torques. The attitude errors using BLS before and after external torque prediction
is shown in figure 21.
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Figure 18: Attitude Residuals for Body Fixed Disturbance Torque.
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Figure 19: Attitude Errors with and without Body Fixed Torque Prediction
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Figure 20: Attitude Residuals for Inertial Fixed Disturbance Torque.
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Figure 21: Attitude Errors with and without Inertia Fixed Torque Prediction

7 Conclusion and Future Work

The GAIA on-board attitude determination algorithm is designed and discussed in this
document. The Kalman filter is used to produce an accurate on-board attitude by
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utilizing the star tracker measurements for rough spacecraft quaternions and the payload
scientific telescopes measurements for angular rates. The obtained results, using the
prescribed algorithm in this document, meet the attitude determination requirements
which given in the GAIA Mission Requirements Document. The attitude determination
errors and the rate measurement errors along scan and across scan and also the relative
pointing errors (given in table 1) have been validated using the proposed EKF algorithm.
Also, in this document, we design and establish Smoothing type estimation algorithms
for the Initial On Ground Attitude Determination (IOGAD) to make the attitude errors
much less than the On-board attitude estimation. The Batch Least Square estimation is
also designed and established in this document to demonstrate the differences between
variety of estimations techniques. The BLS with long batch time has been showed to
be the best On-Ground ADS suitable for the GAIA mission over the EKF and the KF
smoother. In the future work, the star measurements of the scientific payload CCDs
will be included to improve the resulting attitude accuracy. The expected improvement
factor on the IOGAD will be somewhere between 2 and at most 5 (after some enhanced
attitude modeling).
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1 Introduction

The work presented in this document concerns the accurate On-Ground Attitude (OGA) recon-
struction for the astrometry spacecraft Gaia in the presence of disturbance and control torques
acting on the spacecraft. The reconstruction of the expected environmental torques which influ-
ence the spacecraft dynamics will be also investigated.

The telemetry data from the spacecraft will include the on-board real time attitude which is of
order of several arcsec. Thisraw attitude is the starting point for the further attitude reconstruc-
tion. The OGA will use the inputs from the field coordinates ofknown stars (attitude stars)
and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric
Field (AF) payload instruments to improve this raw attitude. The on-board attitude determina-
tion uses Kalman Filter (KF) to minimize the attitude errorsand produce more accurate attitude
estimation than the pure star tracker measurement. Therefore the first approach for the OGA
will be an adapted KF. Furthermore, we will design a smoothing type estimation algorithm and
batch least squares algorithms for the OGA to get more accurate OGA estimation. Finally,
a comparison between these different attitude determination techniques in terms of accuracy,
robustness, speed and memory required will be evaluated in order to choose the best attitude
algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on
the order of milli-arcsec [1].

2 Background and Objectives

The principal feature of the Gaia astrometry mission is to accurately measure the positions,
distances, space motions, and many physical characteristics of some one billion stars in our
Galaxy and beyond on orbit at the vicinity of the second Lagrange point L2. In order to achieve
the targeted measurement accuracies of the Gaia imaged stars, the real time on-board attitude
should be improved using the on-ground attitude reconstruction [2].

The main objective of the work presented here is to reconstruct thenon-real-time On-Ground
Attitude (OGA) with very high accuracy for further processing. The accuracy requirements
for the attitude reconstruction for the Gaia on-ground dataanalysis would enforce studying
different attitude estimation techniques and chosing the best one in terms of accuracy, robustness
and speed. The current goal for the OGA1 accuracy is about 50 milli-arcsec for the along and
across scan attitude accuracy. These techniques shall be part of the Initial Data Treatment (IDT)
chain.

The Gaia scientific payload is used as a high accuracy stellargyro for achieving the attitude
determination and enabling Time Delay Integration (TDI) mode. The star speed is calculated
along and across scan from Sky Mapper (SM) and Astrometric Field (AF) measurements. When
considering the two telescopes, one obtains four angular speed measurements, from which the
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satellite rigid body angular speed vector can be calculated. It should be mentioned that SM-1 is
seen by telescope No. 1 and SM-2 by telescope No. 2. The Sky Mapper measurements consist
of the determination of the centroid crossing times of the stars over each of the SM CCD arrays
[3].

The Gaia Initial Data Treatment (IDT) will process the newlyarrived telemetry data and also
the various pieces of auxiliary data from the Gaia spacecraft. The IDT will have many processes
and subtasks, one of them is the attitude reconstruction or the OGA determination.

In order to match the new observations reliably with the existing source list, it is essential to
have an accurate attitude. It is therefore suggested to carry out an early attitude updating during
the IDT. This will require a cross matching with a dedicated Attitude Star Catalog, followed by
an attitude updating.

At this stage we are only aiming for attitude accuracy of a tens of milliarcsec level, so some
simplifications may be allowed.

The IDT will have to run in several concurrent processes, andthe attitude improvement is done
separately for each process. The same time interval will therefore be processed several times,
and we need only to update a given attitude interval if it has not already been updated in a
previous process.

Through understanding of the dynamical behavior of the spacecraft, the accuracy of the recon-
structed attitude and torques can be improved, and is therefore of great relevance for obtaining
the highest accuracies and best overall statistical properties for the main scientific products of
the mission; the Astrometric parameters of the target stars.

Given all these mission data and parameters, the attitude data simulation, in the form of the
satellite quaternion and angular velocities, could be simulated for any time span. In order to
simulate the algorithms for OGA determination, we have to simulate attitude observations with
the following requirements:

• The simulated data shall be provided for the length of at least one great circle (6
hours).

• The data shall contain the true (ideal) attitude quaternionas well as the true rate in
the body fixed frame. Also, the raw (measured) attitude quaternion [ideal quaternion
+ noise].

• The simulated observations of attitude stars shall contain:

– The time of observation.

– The indicator for the FOV.
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– The position on the sky of the observed star (the right ascension α, and decli-
nationδ).

– The field coordinates of the star (η andζ) for SM and AF1-9 and G-magnitude.

– The Transit ID and the Attitude Star Catalog.

– Cross-Match Table.

– The attitude quaternion at each observation time will be calculated using the
B-Spline as described in the next section.

3 Gaia Attitude Presentation

The Gaia spacecraft attitude is considered to be represented by the quaternion vector defined as

q =

[
q13

q4

]
(1)

with

q13 =

 q1

q2

q3

 = n̂ sin( θ
2
) andq4 = cos( θ

2
) (2)

wheren̂ is a unit vector corresponding to the axis of rotation, andθ is the rotation angle.

The elements of the quaternion satisfy a unit norm constraint

qT q = qT
13q13 + q2

4 = 1 (3)

The frequency of the on-board attitude (1 Hz) is different from the frequency of the star centroid-
ing and crossing observation times in the SM and AF which measured in an uneven sequences
and in order of nanosec. In order to start the OGA determination, the attitude quaternion at
every time of observation should be evaluated by interpolating the on-board attitude.

Both the on-board real-time attitude and the on-ground reconstructed attitude, and perhaps also
the nominal scanning law attitude [4], can be represented bymeans of cubic splines followed
by normalization (to validate the unit length condition). So, according to [5] at any time interval
[tbeg, tend] there is a vectors(t) consists of four cubic spline functionssm(t), m = 1, .., 4 from
this vector the attitude quaternions at timet is calculated from

q(t) = s(t)/norm (s(t)) (4)
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Also we can derive the instantaneous scan rate (ω) in the fields of view by computing the time
derivative of the quaternion at timet from

q̇(t) =
[
ṡ− qqT ṡ

]
/norm (s(t)) (5)

In this case the scan rate at any given time is derived from

ω(t) =
2

norm(q)

 q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3

 q̇(t) (6)

Each of the functionssm(t) is a cubic spline defined on[tbeg, tend], it is therefore continuous
in this interval and its first two derivativeṡsm(t) and s̈m(t) are also continuous. The third
derivatives is discontinuous at discrete points, called the knots, and constant between the knots.
The frequency of knots determines the flexibility of the spline, or in other words, more knots
gives more flexible spline. The used knot sequence is used forall the four components ofs(t),
with a knot interval of 15 sec.

A cubic spline can be represented in a number of different ways, e.g. by means of its value
and second derivative at each knot. However, the method proposed here is to write the spline
as a linear combination of non-negative local basis functions, called B-splines (See [6]). Let
Bn(t), n = 1, ...., N , be theN B-splines defined on the attitude interval[tbeg, tend]. Because the
B-splines are linearly independent basis functions,N is also the number of degrees of freedom
of the spline. Then

sm(t) =

N∑
n=1

SmnBn(t), m = 1, .., 4 (7)

and

ṡm(t) =
N∑

n=1

SmnḂn(t), m = 1, .., 4 (8)

The B-splinesBn (and their derivativeṡBn(t)) are uniquely defined by the knot sequence

τ = {τ−1, τ0, τ1, τ2 ≡ tbeg, τ3, ..., τN−2, τN−1 ≡ tend, τN , τN+1, τN+2} (9)

The knot sequence can be evaluated for any timet according to a simple and stable recur-
rence relation. Moreover, it should be non-decreasing (τi <= τi+1, i = −1, ..., N + 2).
At any given timet ∈ [τn, τn+1] the only non-zero B-splines areBn−1, Bn, Bn+1 andBn+2.
Therefore, for the whole attitude interval[tbeg, tend] the non-zero B-splines areB1, B2, ..., BN .
The additional knots on either side of the attitude intervalare needed to defineB1, B2, B3 and
BN−2, BN−1, BN , and can be chosen arbitrary as long asτ is non-decreasing [6].
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3.1 External Torque Estimation

The first task in the OGA determination is to reconstruct the external torque as a continuous
function of time from the telemetry attitude dynamics. In order to achieve this task, we consider
the spacecraft as a rigid body then we can express the angularvelocity using the following
equation;

ω̇(t) = I−1
sc (Te − ω × Iscω) (10)

whereIsc is the moment of inertia of the Gaia S/C andTe is the total disturbance and control
torques acting on the spacecraft.

At each observation time the attitude quaternion is calculated from Eq. 4 and the time derivative
of the quaternion from Eq. 5. By using Eq. 6 the angular rates at each observation time are
determined.

Now to calculate the estimated external torque, we could rewrite Eq. 10 in the form

Te(tobs) = Iscω̇ + ω × Iscω (11)
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Figure 1: The simulated quaternion using NSL.

The Nominal Scanning Law (NSL) [4] is used to simulate the attitude quaternion for more than
one great circle (6 hours) as illustrated in figure (1). Consequently, when Eq. 6 is used to
calculate the angular rates at each time step the resulting rates are illustrated in figure (2). On
the other hand, figure (3) demonstrates the resulting external torques which are supposed to be
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the sum of all the environmental disturbance torques, internal torques and control torques acting
on the Gaia spacecraft while following the NSL.
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Figure 2: The simulated angular rates using the B-Splines.
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Figure 3: The external (disturbance and control) torques acting on the S/C.
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4 The Kalman Filter Model

The Kalman filter state vector for the Gaia OGA1 is consistingof the 4 components of the
attitude quaternion and the three components for the angular rates.

x =
[

q1 q2 q3 q4 ωx ωy ωz

]T
(12)

The system model equation has the following form

ẋ(t) = f(x(t), t) + G(x(t), t)w(t) (13)

Also, the measurement model at timetk is given by

Yk = h(x(tk), t) + ν(t) (14)

wherew(t) is the process noise andν(t) is the measurement noise, both are discrete Gaussian
white-noise processes

w(t) ≃ N(0, Q(t))
ν(t) ≃ N(0, R(t))

(15)

The Kalman filter dynamic equations of state are given by

q̇(t) = 1
2
Ω(ω)q(t)

ω̇(t) = I−1
sc (Te − ω × Iscω)

(16)

Where

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (17)

Also the external torqueTe is calculated at each observation time from Eq. 11.

The Kalman filter propagation equations are defined by

ẋ(t) = F (t)x(t) + G(t)w(t)

Ṗ = FP + PF T + GQGT (18)

whereP is the covariance matrix.

TheF matrix is given by

F =

[
0.5Ω(ω) −0.5Ξ(q)

03x4 Fω̇ω

]
(19)
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where

Ξ(q) =


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (20)

Fω̇ω = −I−1
sc ([ω×] Isc − [Iscω×]) (21)

The matrix[a×] is the skew symmetric matrix of the vectora.

Also, the Kalman filter update equations are defined by

x̂k(+) = x̂k(−) + Kk [Yk − hk(x̂k(−))]
Pk(+) = [I −KkHk(x̂k(−))] Pk(−)

Kk = Pk(−)HT
k

[
HkPk(−)HT

k + Rk

]−1
(22)

Each measurement is essentially an association of a certaintime instantt with certain field
coordinate angles of the measured star (ηm andζm) for a certain field of view in the instrument
frame.

The calculated field angles at each observation time are given by

h(xt) =
[

ηi
c ζ i

c

]
(23)

wherei = 1 or 2 is field of view number. These field angles depend on the basic angle between
the two fields of view, which is equal to106.5o [1].

The measurement sensitivity matrix is given by

Hk =
∂h(xt)

∂x(t)
=


∂ηk

∂q
01x3

∂ζk

∂q
01x3

 (24)

4.1 The Kalman Filter Results

The Kalman filter algorithm is designed and implemented using the above system model and
equations. The measurement noise matrixR is chosen such that;

R =

[
σ2

η 0
0 σ2

ζ

]
(25)
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Figure 4: The attitude errors using Kalman Filter.
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Figure 5: The angular rates errors using Kalman Filter.
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The standard deviation for the field angle errors along scan (ση) is considered to be 0.1 marcsec
and for across scan (σζ) is considered to be 0.5 marcsec. A total of105 of the field angles
measurements were simulated for about 7 hours, corresponding to about 4 measurements per
sec.

Figure 4 illustrates the attitude estimation errors for thealong scan and across scan directions.
The along scan direction is around the rotation axis or z-axis while the across scan direction
is considered to be the average of the x and y axes or the axes perpendicular to the spin axis.
The estimated external torques (which illustrated in figure(3)) are used to obtain the propagated
states (q andω) at each observation time. In the states update step the Gaiascientific instrument
measurements (the field angles) are combined with the Kalmanfilter simulation.

Using different initial values, the resulting attitude determination errors (3σ) always were less
than 2 marcsec along scan and 20 marcsec across scan. The estimated angular rate errors are
also shown in figure 5. The resulting angular rates errors areless than 0.007 marcsec/sec around
the three axes. The process noise matrixQ used for the Kalman filter propagation equations (18)
are considered to be

Q = diag
([

(10−12)2, (10−12)2, (10−12)2, (10−12)2, (5× 10−10)2, (5× 10−10)2, (10−11)2
])

The Kalman Filter update equations are based on the updated value of the covariance matrix
P (t) which is calculated from Eq. 18. On the other hand, theP (t) is a function of the process
noise matrixQ, so the KF tuning for the values of the diagonal element of theQ matrix is very
important in determining the resulting accuracy of the estimation. Figures 6 and 7 demonstrate
the effect of changing the process noise matrix to be much bigger than the measurement noise
matrix R or in other word, the Kalman Filter will rely more on measurements than on the
dynamic model. The process noise matrixQ in this case is chosen to be

Q = diag
([

(10−6)2, (10−6)2, (10−6)2, (10−6)2, (5× 10−5)2, (5× 10−5)2, (2× 10−6)2
])

In figure 6 the overall along scan and across quaternion errors is better than that illustrated in
figure 4 but it is more noisy. This is the more realstic case forGaia. Moreover, the angular rates
estimation illustrated in figure 7 is better than the angularrates errors shown in figure 5. All
the estimated attitude and rates shown in the previous figures (4, 5, 6, and 7) are based on ideal
(error-less) star catalog.

At the beginning of the IDT process, the OGA1 will be using an initial coarse star catalog that
will have errors of about 50 marcsec until the more accurate star catalog is created. At this
stage we suggest to have the OGA1 dependent more on the systemdynamic model or in other
words to choose the process noise matrix such that it should be less than the measurement noise
matrix. After the Astrometic Global Iterative Solution (AGIS) has become available (after 10
months or more) we can easily change the process noise matrixto let the filter rely more on the
measurement which will be more accurate than the system model.

Technical Note 11



CU3-IDT GAIA-C3-TN-ZARM-MS-001-01

0 0.5 1 1.5 2 2.5

x 10
13

−3

−2

−1

0

1

2

3
x 10

−3 Error in Attitude with Q  matrix bigger than R (Filter reliable more on measurements)

A
lo

ng
 S

ca
n 

(a
rc

se
c)

0 0.5 1 1.5 2 2.5

x 10
13

−3

−2

−1

0

1

2

3
x 10

−3

A
cr

os
s 

S
ca

n 
(a

rc
se

c)

time (nano sec)

the standard deviation along scan 0.2653 mas
the standard deviation accross scan 0.6415 mas

Figure 6: The attitude errors using different tuning.
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Figure 7: The angular rates errors using different tuning.
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Figures 8 illustrates the effects of using star catalog thathas errors of about 50 marcsec in both
the along and across scan directions on the estimation of theattitude errors when the system rely
more on the system dynamic model. On the other hand, figure 9 shows the resulting attitude
errors when the system rely more on the measurements.
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Figure 9: The attitude errors using catalog with 50 marcsec errors and different KF tuning.
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5 The Batch Least Squares

The Batch Least Squares (BLS) estimation is the process thatcan be used to estimate the state
vector at an epoch time after accumulating batch measurement data for a given interval. The
BLS solution selects a state estimatex that minimizes the sum of the squares of the calculated
residuals. Although the BLS is computationally intensive for a large number of measurements,
it leads to a good estimation of the state vector [11]. The BLSestimation could be done using
one of two approaches; the first approach is the Maximum Likelihood estimates and the other
is the Least Squares Trajectory estimates.

5.1 Maximum Likelihood Estimates

The basic idea of the maximum likelihood function for parameters estimation is to obtain the
best attitude quaternion and angular rates for a given interval of time. In order to have the most
accurate estimate of the unknown parameters of the Gaia OGA for each batch of measurements,
which include the initial conditions of the attitude quaternions and the initial condition of the
angular rates, we have to minimize the following cost function;

J(Θ) =
1

2

N∑
k=1

(ηm
1,k − ηe

1,k)
2 + (ηm

2,k − ηe
2,k)

2 + (ζm
1,k − ζe

1,k)
2 + (ζm

2,k − ζe
2,k)

2 (26)

WhereΘ is the unknown parameters vector which includes the initialconditions for quaternions
and angular rates for each batch interval and also the constant value for the rate bias for that
batch. ηm

i,k andζm
i,k ; are the measured field coordinate angles for field of view number i (i =

1or2) at the observation timetk, and

ηe
i,k andζe

i,k ; are the estimated field coordinate angles for field of view numberi at the observa-
tion timetk, which are calculated as follows;

1. For any set ofΘ we can use the S/C dynamics equations (Eq. 16) to obtain the
quaternion and angular rates for the given interval time (i.e. 1 hour). Then the
associated B-Splines is derived for these estimated quaternion by using Eq. 7.

2. At any observation time (tobs) the measured quaternion vector (qm) is calculated
using Eq. 4.

3. The position on the sky of the observed star (αi, δi) for the associated FOV is used
to calculate the proper direction of the observed star (u),
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4. The estimated field coordinate angles are then computed from cos ζ cos η
cos ζ sin η

sin ζ

 = A(q)u (27)

Where,A(q) is the attitude matrix associated with the measured quaternion attobs.

5. The cost functionJ(Θ) is then computed from Eq. 26, and then another set ofΘ is
chosen so that the cost function is minimized.

The objective ’cost’ function in equation 26 is animplicit function of initial conditionsΘ. There-
fore, any optimization methods, differential evolution orgradient based, can be applied to obtain
the best estimated values for the vector of the unknown parameters.

In other words, our optimization problem is then; Find values of the variablesΘ that minimize
the objective function{J(Θ)} while satisfying the following constraint

Θobt ∈ [Θo − δΘo, Θo + δΘo] (28)

Whereδ is a very small scalar value that could be chosen based on the accuracy of the measure-
ments, andΘo is the initial guess for the unknown parameters, in this casewe could start with
the on-board initial quaternion and rates for each batch.

5.2 Least Squares Trajectory Estimates

The least squares trajectory estimates is based on finding the trajectory and the model param-
eters for which the square of the difference between the modeled observations and the actual
measurements becomes as small as possible [13]. In other words, find a trajectory which best
fits the observations in a least-squares of the residuals sense, as illustrated in figure (10).

The dynamic equations for the quaternion and angular rates are given in Eq. 16 with an initial
valuexo = x(to) at epochto, wherex(ti) is the state vector defined on Eq. 12.

Furthermore, if we rewrite the measurements (η(t) andζ(t)) in a vector form as

z =
(

z1 . . . . z2n

)T
=

(
η1 ζ1 . . . . ηn ζn

)T
(29)

z is an2n-dimensional vector of measurements taken at timest1, ......, tn. The observations are
described by

zi(ti) = gi(ti,x(ti)) + ǫi = hi(ti,xo) + ǫi (30)
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Figure 10: The parameters of a reference trajectory are corrected using the measurements and
the least squares fit.

or briefly
z = hi(xo) + ǫ (31)

Where,gi denotes the model value of theith observation as a function of timeti and the in-
stantaneous statex(ti), whereashi denotes the same value as a function of the statexo at the
reference epochto. The quantitiesǫi account for the difference between the actual and the
modeled observations due to measurement errors, which are usually assumed to be randomly
distributed with zero mean value.

The least squares trajectory estimates problem may be defined as finding the statexlsq
o , that

minimizes the cost function

J(xo) = ǫT ǫ = (z− hi(xo))
T (z− hi(xo)) (32)

The linearized version of Eq. 16 aroundxref
o , which is initially given from the on-board coarse

attitude data, could be written in the form

q(i + 1) = [I4x4 + 0.5Ω(ω(t))δtobs]q(i) = χ(ω(t))q(i)
ω(i + 1) = I−1

sc (Te − ω(i)× Iscω(i))δtobs + ω(i)
(33)

whereδtobs = tobs(i + 1)− tobs(i)

So, from the above equation, we can write the instantaneous attitude quaternionq(ti) as a
function of the initial attitude quaternionq(to)
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q(ti) = χ(ω(ti−1))χ(ω(ti−2)).....χ(ω(t1))χ(ω(to))q(to) (34)

The solution of the cost functionJ(xo) is given by taking the derivatives w.r.t.xo which leads
to

∆xlsq
o = (HT H)−1(HT∆z) (35)

Where,H is the partial derivatives of the modeled observations (η(t) andζ(t)) with respect to
the state vector at the reference epochto. However, because the observations are only dependent
on the attitude quaternions and not on the angular rates thentheH could be written as follows

H =
∂h(qo)

∂qo
=


∂η(t)

∂q(t)

∂q(t)

∂qo

∂ζ(t)

∂q(t)

∂q(t)

∂qo

 (36)

where
∂q(t)

∂qo
= χ(ω(ti−1))χ(ω(ti−2)).....χ(ω(t1))χ(ω(to)) (37)

The new updated values of the initial quaternion for each batch are determined from

qlsq
o = qref

o + ∆qlsq
o (38)

Also, the associated angular rates for this new attitude quaternion batch may be calculated from
equation 6.

The results of the least squares trajectory estimates are illustrated in figure 11 for 2 hours batch
length and the initial conditions are set by using the on-board attitude. The resulting attitude
determination errors (3σ) is less than 4 marcsec along scan and less than 60 marcsec across
scan. These results are not better than the estimated by Kalman Filter with good tuning but the
Least Squares Estimates algorithm is easier to implement than the Kalman Filter algorithm and
also it is not sensitive to initial conditions and the choiseof the measurement and system noise
covariance matrices as in KF case.

Furthermore, figure 12 demonstrates the effect of differentbatch interval on the attitude estima-
tion. Three batch intervals are investigated; 0.5 hour, 1 hour and 3.5 hours, in which we can see
that increasing the batch interval to 3.5 hours has more attitude errors than the other two. On
the other hand, decreasing the interval less than one hour has no significant effect on the total
attitude errors.
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Figure 11: The attitude errors using least squares trajectory for 2 hours batch.
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Conclusion and Decision

An algorithm for the Gaia On-Ground Attitude (OGA1) determination is designed and dis-
cussed in this report. The Extended Kalman Filter (EKF) is used to produce an accurate on-
ground attitude estimation. It utilizes the on-board star tracker measurements for coarse space-
craft quaternion which have errors of about several arcsec and combines it with the payload
scientific telescopes measurements which have accuracy of less than milli-arcsec.

The obtained results, using the prescribed algorithm in this study, meet the expected OGA1
determination requirements. The attitude determination errors and the rate measurement errors
(along scan and across scan) have been validated using the proposed EKF algorithm. Moreover,
in this study, we design and establish a Batch Least Square (BLS) estimation algorithm to
demonstrate the differences between several estimation techniques in terms of accuracy, speed
and robustness. The accuracy obtained using the BLS is less by a factor of two than the accuracy
obtained using the EKF. Moreover, the required processing time using the EKF is less by factor
of three than using the BLS. On the other hand, the robustnessfor both methods are almost the
same.

As a conclusion of all the simulation results obtained in this study we consider the EKF to be
the best OGA1 algorithm as it meets all the expected requirements with less processing time
than the BLS.
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ON-GROUND ATTITUDE AND TORQUE RECONSTRUCTION
FOR THE GAIA MISSION

Malak A. Samaan∗ and Stephan Theil†

The work presented in this paper concerns the accurate On-Ground Attitude
(OGA) reconstruction for the astrometry spacecraft Gaia inthe presence of distur-
bance and control torques acting on the spacecraft. The reconstruction of the ex-
pected environmental torques which influence the spacecraft dynamics will be also
investigated.

The telemetry data from the spacecraft will include the on-board real time atti-
tude which is of order of several arcsec. Thisraw attitude is the starting point for
the further attitude reconstruction. The OGA will use the inputs from the field co-
ordinates of known stars (attitude stars) and also the field coordinate differences of
objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to
improve this raw attitude. The on-board attitude determination uses Kalman Filter
(KF) to minimize the attitude errors and produce more accurate attitude estimation
than the pure star tracker measurement. Therefore the first approach for the OGA
will be an adapted version of KF. Furthermore, we will designa batch least squares
algorithm to investigate having more accurate OGA estimation. Finally, a compari-
son between these different attitude determination techniques in terms of accuracy,
robustness, speed and memory required will be evaluated in order to choose the best
attitude algorithm for the OGA. The expected resulting accuracy for the OGA deter-
mination will be on the order of milli-arcsec.

INTRODUCTION

The principal feature of the Gaia astrometry mission is to accurately measure the positions, dis-
tances, space motions, and many physical characteristics of some one billion stars in our Galaxy
and beyond on orbit at the vicinity of the second Lagrange point L2. In order to achieve the tar-
geted measurement accuracies of the Gaia imaged stars, the real time on-board attitude should be
improved using the on-ground attitude reconstruction.2

The main objective of the work presented here is to reconstruct the non-real-time On-Ground
Attitude (OGA) with very high accuracy for further processing. The accuracy requirements for
the attitude reconstruction for the Gaia on-ground data analysis would enforce studying different
attitude estimation techniques and chosing the best one in terms of accuracy, robustness and speed.
The current goal for the OGA accuracy is about 50 milli-arcsec for the along and across scan attitude
accuracy. These techniques shall be part of the Initial DataTreatment (IDT) chain.

The Gaia scientific payload is used as a high accuracy stellargyro for achieving the attitude deter-
mination and enabling Time Delay Integration (TDI) mode. The star speed is calculated along and
across scan from Sky Mapper (SM) and Astrometric Field (AF) measurements. When considering

∗Assistant Research Professor, Center for Applied Space Technology and Microgravity, University of Bre-
men, Germany, samaan@zarm.uni-bremen.de.

†Head of the GNC and Avionics, German Aerospace Center (DLR), Am Fallturm 1 - Bremen, Germany,
stephan.theil@dlr.de.



the two telescopes, one obtains four angular speed measurements, from which the spacecraft rigid
body angular speed vector can be calculated. It should be mentioned that SM-1 is seen by telescope
No. 1 and SM-2 by telescope No. 2. The Sky Mapper measurementsconsist of the determination
of the centroid crossing times of the stars over each of the SMCCD arrays.3

The Gaia Initial Data Treatment (IDT) will process the newlyarrived telemetry data and also the
various pieces of auxiliary data from the Gaia spacecraft. The IDT will have many processes and
subtasks, one of them is the attitude reconstruction or the OGA determination.

In order to match the new observations reliably with the existing source list, it is essential to have
an accurate attitude. It is therefore suggested to carry outan early attitude updating during the IDT.
This will require a cross matching with a dedicated AttitudeStar Catalog, followed by an attitude
updating.

At this stage we are only aiming for attitude accuracy of a tens of milliarcsec level, so some
simplifications may be allowed.

The IDT will have to run in several concurrent processes, andthe attitude improvement is done
separately for each process. The same time interval will therefore be processed several times, and
we need only to update a given attitude interval if it has not already been updated in a previous
process.

Through understanding of the dynamical behavior of the spacecraft, the accuracy of the recon-
structed attitude and torques can be improved, and is therefore of great relevance for obtaining
the highest accuracies and best overall statistical properties for the main scientific products of the
mission; the Astrometric parameters of the target stars.

Given all these mission data and parameters, the attitude data simulation, in the form of the
spacecraft quaternion and angular velocities, could be simulated for any time span. In order to
simulate the algorithms for OGA determination, we have to simulate attitude observations with the
following requirements:

• The simulated data shall be provided for the length of at least one great circle (6 hours).

• The data shall contain the true (ideal) attitude quaternionas well as the true rate in the body
fixed frame. Also, the raw (measured) attitude quaternion.

• The simulated observations of attitude stars shall contain:

– The time of observation.

– The indicator for the FOV.

– The position on the sky of the observed star (the right ascension α, and declinationδ).

– The field coordinates of the star (η andζ) for SM and AF1-9 and G-magnitude.

– The transit ID and the Attitude Star Catalog (ASC).

– Cross-match table.

– The attitude quaternion at each observation time will be calculated using the B-Spline
as described in the next section.



GAIA ATTITUDE PRESENTATION

The Gaia spacecraft attitude is considered to be represented by the quaternion vector defined as

q =
[

q13

q4

]
(1)

with

q13 =

 q1

q2

q3

 = n̂ sin(θ
2 ) andq4 = cos(θ

2) (2)

wheren̂ is a unit vector corresponding to the axis of rotation, andθ is the rotation angle.

The elements of the quaternion satisfy a unit norm constraint

qTq = qT
13q13 + q2

4 = 1. (3)

The frequency of the on-board attitude (1 Hz) is different from the frequency of the star centroid-
ing and crossing observation times in the SM and AF which measured in an uneven sequences and
in order of nanosec. In order to start the OGA determination,the attitude quaternion at every time
of observation should be evaluated by interpolating the on-board attitude.

Both the on-board real-time attitude and the on-ground reconstructed attitude, and perhaps also
the nominal scanning law attitude,4 can be represented by means of cubic splines followed by nor-
malization (to validate the unit length condition). So, according to5 at any time interval[tbeg, tend]
there is a vectors(t) consists of four cubic spline functionssm(t),m = 1, .., 4 from this vector the
attitude quaternion at timet is calculated from

q(t) = s(t)/norm (s(t)) . (4)

Also we can derive the instantaneous scan rate (ω) in the fields of view by computing the time
derivative of the quaternion at timet from

q̇(t) =
[
ṡ− qqT ṡ

]
/norm (s(t)) . (5)

In this case the scan rate at any given time is derived from

ω(t) =
2

norm(q)

 q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3

 q̇(t). (6)

Each of the functionssm(t) is a cubic spline defined on[tbeg, tend], it is therefore continuous in
this interval and its first two derivativeṡsm(t) ands̈m(t) are also continuous. The third derivatives
is discontinuous at discrete points, called the knots, and constant between the knots. The frequency
of knots determines the flexibility of the spline, or in otherwords, more knots gives more flexible
spline. The used knot sequence is used for all the four components ofs(t), with a knot interval of
15 sec.

A cubic spline can be represented in a number of different ways, e.g. by means of its value
and second derivative at each knot. However, the method proposed here is to write the spline as a



linear combination of non-negative local basis functions,called B-splines (See6). Let Bn(t), n =
1, ...., N , be theN B-splines defined on the attitude interval[tbeg, tend]. Because the B-splines are
linearly independent basis functions,N is also the number of degrees of freedom of the spline. Then

sm(t) =
N∑

n=1

SmnBn(t), m = 1, .., 4 (7)

and

ṡm(t) =
N∑

n=1

SmnḂn(t), m = 1, .., 4. (8)

The B-splinesBn (and their derivativeṡBn(t)) are uniquely defined by the knot sequence

τ = {τ−1, τ0, τ1, τ2 ≡ tbeg, τ3, ..., τN−2, τN−1 ≡ tend, τN , τN+1, τN+2} (9)

The knot sequence can be evaluated for any timet according to a simple and stable recurrence
relation. Moreover, it should be non-decreasing (τi <= τi+1, i = −1, ...,N + 2). At any given
time t ∈ [τn, τn+1] the only non-zero B-splines areBn−1, Bn, Bn+1 andBn+2. Therefore, for the
whole attitude interval[tbeg, tend] the non-zero B-splines areB1, B2, ..., BN . The additional knots
on either side of the attitude interval are needed to defineB1, B2, B3 andBN−2, BN−1, BN , and
can be chosen arbitrary as long asτ is non-decreasing.6

External Torque Estimation

The first task in the OGA determination is to reconstruct the external torque as a continuous
function of time from the telemetry attitude dynamics. In order to achieve this task, we consider the
spacecraft as a rigid body then we can express the angular velocity using the following equation;

ω̇(t) = I−1
sc (Te − ω × Iscω) (10)

whereIsc is the moment of inertia of the Gaia S/C andTe is the total disturbance and control
torques acting on the spacecraft.

At each observation time the attitude quaternion is calculated from Eq. 4 and the time derivative
of the quaternion from Eq. 5. By using Eq. 6 the angular rates at each observation time are
determined.

Now to calculate the estimated external torque, we could rewrite Eq. 10 in the form

Te(tobs) = Iscω̇ + ω × Iscω. (11)

The Nominal Scanning Law (NSL)4 is used to simulate the attitude quaternion for more than one
great circle (6 hours) as illustrated in figure (1(a)). Consequently, when Eq. 6 is used to calculate
the angular rates at each time step the resulting rates are illustrated in figure (1(b)). On the other
hand, figure (2) demonstrates the resulting external torques which are supposed to be the sum of
all the environmental disturbance torques, internal torques and control torques acting on the Gaia
spacecraft while following the NSL.
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Figure 1 The simulated attitude and rates using the B-Splines.
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THE KALMAN FILTER MODEL

The Kalman filter state vector for the Gaia OGA is consisting of the 4 components of the attitude
quaternion and the three components for the angular rates.

x =
[

q1 q2 q3 q4 ωx ωy ωz

]T
. (12)

The system model equation has the following form

ẋ(t) = f(x(t), t) + G(x(t), t)w(t). (13)

Also, the measurement model at timetk is given by

Yk = h(x(tk), t) + ν(t) (14)

wherew(t) is the process noise andν(t) is the measurement noise, both are discrete Gaussian
white-noise processes

w(t) ≃ N(0, Q(t)),
ν(t) ≃ N(0, R(t)).

(15)

The Kalman filter dynamic equations of state are given by

q̇(t) = 1
2Ω(ω)q(t)

ω̇(t) = I−1
sc (Te − ω × Iscω)

(16)

where

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 . (17)

Also the external torqueTe is calculated at each observation time from Eq. 11.

The Kalman filter propagation equations are defined by

ẋ(t) = F (t)x(t) + G(t)w(t)
Ṗ = FP + PF T + GQGT (18)

whereP is the covariance matrix.

TheF matrix is given by

F =
[

0.5Ω(ω) −0.5Ξ(q)
03x4 Fω̇ω

]
(19)

where

Ξ(q) =


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (20)



Fω̇ω = −I−1
sc ([ω×] Isc − [Iscω×]) . (21)

The matrix[a×] is the skew symmetric matrix of the vectora.

Also, the Kalman filter update equations are defined by

x̂k(+) = x̂k(−) + Kk [Yk − hk(x̂k(−))]
Pk(+) = [I −KkHk(x̂k(−))]Pk(−)
Kk = Pk(−)HT

k

[
HkPk(−)HT

k + Rk

]−1
.

(22)

The measurement (Yk) is essentially an association of a certain time instantt with certain field
coordinate angles of the measured star. Each measurement vector consists of the along scan angle
(ηm) and the accross scan angle (ζm) for a certain field of view in the instrument frame.

The calculated field angles at each observation time are given by

h(xt) =
[

ηi
c ζi

c

]
(23)

wherei = 1 or 2 is field of view number. These field angles depend on the basic angle between the
two fields of view, which is equal to106.5o.1

The measurement sensitivity matrix is given by

Hk =
∂h(xt)
∂x(t)

=


∂ηk

∂q
01x3

∂ζk

∂q
01x3

 . (24)

The Kalman Filter Results

The Kalman filter algorithm is designed and implemented using the above system model and
equations. The measurement noise matrixR is chosen such that;

R =

[
σ2

η 0
0 σ2

ζ

]
(25)

The standard deviation for the field angle errors along scan (ση) is considered to be 0.1 marcsec and
for across scan (σζ) is considered to be 0.5 marcsec. A total of105 of the field angles measurements
were simulated for about 7 hours, corresponding to about 4 measurements per sec.

Figure 3 illustrates the attitude estimation errors for thealong scan and across scan directions. The
along scan direction is around the rotation axis or z-axis while the across scan direction is considered
to be the average of the x and y axes or the axes perpendicular to the spin axis. The estimated
external torques (which illustrated in figure (2)) are used to obtain the propagated states (q andω)
at each observation time. In the states update step the Gaia scientific instrument measurements (the
field angles) are combined with the Kalman filter simulation.

Using different initial values, the resulting attitude determination errors (3σ) were always less
than 2 marcsec along scan and 20 marcsec across scan. The estimated angular rate errors are also
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shown in figure 4. The resulting angular rates errors are lessthan 0.007 marcsec/sec around the
three axes. The process noise matrixQ used for the Kalman filter propagation equations (18) are
considered to be

Q = diag
([

(10−12)2, (10−12)2, (10−12)2, (10−12)2, (5× 10−10)2, (5 × 10−10)2, (10−11)2
])

The Kalman filter update equations are based on the updated value of the covariance matrixP (t)
which is calculated from Eq. 18. On the other hand, theP (t) is a function of the process noise
matrixQ, so the KF tuning for the values of the diagonal element of theQ matrix is very important
in determining the resulting accuracy of the estimation. Figures 5 and 6 demonstrate the effect of
changing the process noise matrix to be much bigger than the measurement noise matrixR or in
other word, the KF will rely more on measurements than on the dynamic model. The process noise
matrixQ in this case is chosen to be

Q = diag
([

(10−6)2, (10−6)2, (10−6)2, (10−6)2, (5× 10−5)2, (5× 10−5)2, (2 × 10−6)2
])

In figure 5 the overall along scan and across quaternion errors is better than that illustrated in
figure 3 but it is more noisy. This is the more realistic case for Gaia. Moreover, the angular rates
estimation illustrated in figure 6 is better than the angularrates errors shown in figure 4. All the
estimated attitude and rates shown in the previous figures (3, 4, 5, and 6) are based on ideal (error-
less) star catalog.

At the beginning of the IDT process, the OGA will be using an initial coarse star catalog that will
have errors of about 50 marcsec until the more accurate star catalog is created. At this stage we
suggest to have the OGA dependent more on the system dynamic model or in other words to choose
the process noise matrix such that it should be less than the measurement noise matrix. After the
Astrometic Global Iterative Solution (AGIS)5 has become available (after 10 months or more) we
can easily change the process noise matrix to let the filter rely more on the measurement which will
be more accurate than the system model.

Figures 7 illustrates the effects of using star catalog thathas errors of about 50 marcsec in both
the along and across scan directions on the estimation of theattitude errors when the system rely
more on the system dynamic model. On the other hand, figure 8 shows the resulting attitude errors
when the system rely more on the measurements.

THE BATCH LEAST SQUARES

The Batch Least Squares (BLS) estimation is the process thatcan be used to estimate the state
vector at an epoch time after accumulating batch measurement data for a given interval. The BLS
solution selects a state estimatex that minimizes the sum of the squares of the calculated residu-
als. Although the BLS is computationally intensive for a large number of measurements, it leads
to a good estimation of the state vector.11 The BLS estimation could be done using one of two ap-
proaches; the first approach is the Maximum Likelihood estimates and the other is the Least Squares
Trajectory estimates.

Maximum Likelihood Estimates

The basic idea of the maximum likelihood function for parameters estimation is to obtain the best
attitude quaternion and angular rates for a given interval of time. In order to have the most accurate
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estimate of the unknown parameters of the Gaia OGA for each batch of measurements, which
include the initial conditions of the attitude quaternionsand the initial condition of the angular
rates, we have to minimize the following cost function;

J(Θ) =
1
2

N∑
k=1

(ηm
1,k − ηe

1,k)
2 + (ηm

2,k − ηe
2,k)

2 + (ζm
1,k − ζe

1,k)
2 + (ζm

2,k − ζe
2,k)

2 (26)

whereΘ is the unknown parameters vector which includes the initialconditions for quaternions
and angular rates for each batch interval and also the constant value for the rate bias for that batch.
ηm

i,k andζm
i,k ; are the measured field coordinate angles for field of view number i (i = 1or2) at the

observation timetk, and

ηe
i,k andζe

i,k ; are the estimated field coordinate angles for field of view numberi at the observation
time tk, which are calculated as follows;

1. For any set ofΘ we can use the S/C dynamics equations (Eq. 16) to obtain the quaternion
and angular rates for the given interval time (i.e. 1 hour). Then the associated B-Splines is
derived for these estimated quaternion by using Eq. 7.

2. At any observation time (tobs) the measured quaternion vector (qm) is calculated using Eq. 4.

3. The position on the sky of the observed star (αi, δi) for the associated FOV is used to calculate
the proper direction of the observed star (u),

4. The estimated field coordinate angles are then computed from cos ζ cos η
cos ζ sin η

sin ζ

 = A(q)u (27)

where,A(q) is the attitude matrix associated with the measured quaternion attobs.

5. The cost functionJ(Θ) is then computed from Eq. 26, and then another set ofΘ is chosen so
that the cost function is minimized.

The objective ’cost’ function in Eq. 26 is animplicit function of the initial conditions vectorΘ.
Therefore, any optimization methods (e.g. differential evolution or gradient based) can be applied
to obtain the best estimated values for the vector of the unknown parameters.

In other words, our optimization problem is then; Find the best values of the vector of variables
Θ that minimize the objective function{J(Θ)} while satisfying the following constraint

Θobt ∈ [Θo − δΘo,Θo + δΘo] (28)

whereδ is a very small scalar value that could be chosen based on the accuracy of the measurements,
andΘo is the initial guess for the unknown parameters, in this casewe could start with the on-board
initial quaternion and rates for each batch.



Least Squares Trajectory Estimates

The least squares trajectory estimates is based on finding the trajectory and the model parame-
ters for which the square of the difference between the modeled observations and the actual mea-
surements becomes as small as possible.13 In other words, find a trajectory which best fits the
observations in a least-squares of the residuals sense, as illustrated in figure (9).

Figure 9 The parameters of a reference trajectory are corrected using the measure-
ments and the least squares fit.

The dynamic equations for the quaternion and angular rates are given in Eq. 16 with an initial
valuexo = x(to) at epochto, wherex(ti) is the state vector defined on Eq. 12.

Furthermore, we could rewrite the measurements (η(t) andζ(t)) in a vector form as

z =
(

z1 . . . . z2n

)T =
(

η1 ζ1 . . . . ηn ζn

)T
(29)

z is an2n-dimensional vector of measurements taken at timest1, ......, tn. The observations are
described by

zi(ti) = gi(ti,x(ti)) + ǫi = hi(ti,xo) + ǫi (30)

or briefly
z = hi(xo) + ǫ (31)

where,gi denotes the model value of theith observation as a function of timeti and the instan-
taneous statex(ti), whereashi denotes the same value as a function of the statexo at the reference
epochto. The quantitiesǫi account for the difference between the actual and the modeled observa-
tions due to measurement errors, which are usually assumed to be randomly distributed with zero
mean value.

The least squares trajectory estimates problem may be defined as finding the statexlsq
o , that

minimizes the cost function

J(xo) = ǫT ǫ = (z− hi(xo))T (z− hi(xo)). (32)



The linearized version of Eq. 16 aroundxref
o , which is initially given from the on-board coarse

attitude data, could be written in the form

q(i + 1) = [I4x4 + 0.5Ω(ω(t))δtobs]q(i) = χ(ω(t))q(i)
ω(i + 1) = I−1

sc (Te − ω(i)× Iscω(i))δtobs + ω(i)
(33)

whereδtobs = tobs(i + 1)− tobs(i).

So, from the above equation, we can write the instantaneous attitude quaternionq(ti) as a func-
tion of the initial attitude quaternionq(to)

q(ti) = χ(ω(ti−1))χ(ω(ti−2)).....χ(ω(t1))χ(ω(to))q(to) (34)

The solution of the cost functionJ(xo) is given by taking the derivatives w.r.t.xo which leads to

∆xlsq
o = (HT H)−1(HT ∆z) (35)

where,H is the partial derivatives of the modeled observations (η(t) andζ(t)) with respect to the
state vector at the reference epochto. However, because the observations are only dependent on the
attitude quaternions and not on the angular rates then theH could be written as follows

H =
∂h(qo)

∂qo
=


∂η(t)
∂q(t)

∂q(t)
∂qo

∂ζ(t)
∂q(t)

∂q(t)
∂qo

 (36)

where
∂q(t)
∂qo

= χ(ω(ti−1))χ(ω(ti−2)).....χ(ω(t1))χ(ω(to)). (37)

The new updated values of the initial quaternion for each batch are determined from

qlsq
o = qref

o + ∆qlsq
o . (38)

Also, the associated angular rates for this new attitude quaternion batch may be calculated from
equation 6.

The results of the least squares trajectory estimates are illustrated in figure 10 for 2 hours batch
length and the initial conditions are set by using the on-board attitude. The resulting attitude deter-
mination errors (3σ) is less than 4 marcsec along scan and less than 60 marcsec across scan. These
results are not better than the estimated by Kalman filter with good tuning but the least squares es-
timates algorithm is easier to implement than the Kalman filter algorithm and also it is not sensitive
to initial conditions and the choice of the measurement and system noise covariance matrices as in
KF case.

Furthermore, figure 11 demonstrates the effect of using different batch interval on the attitude
estimation errors. Three batch intervals are investigated; 0.5 hour, 1 hour and 3.5 hours, in which
we can see that increasing the batch interval to 3.5 hours hasmore attitude errors than the other two.
On the other hand, decreasing the interval less than one hourhas no significant effect on the total
attitude errors.
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Figure 10 The attitude errors using least squares trajectory for 2 hours batch.
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CONCLUSION AND DECISION

An algorithm for the Gaia On-Ground Attitude (OGA) determination is designed and discussed
in this paper. The Extended Kalman Filter (EKF) is used to produce an accurate on-ground atti-
tude estimation. It utilizes the on-board star tracker measurements for coarse spacecraft quaternion
which have errors of about several arcsec and combines it with the payload scientific telescopes
measurements which have accuracy of less than milli-arcsec.

The obtained results, using the prescribed algorithm in this work, meet the expected OGA deter-
mination requirements. The attitude determination errorsand the rate measurement errors (along
scan and across scan) have been validated using the proposedEKF algorithm. Moreover, in this
study, we design and establish a Batch Least Square (BLS) estimation algorithm to investigate the
differences between several estimation techniques in terms of accuracy, speed and robustness. The
accuracy obtained using the BLS is less by a factor of two thanthe accuracy obtained using the
EKF. Moreover, the required processing time using the EKF isless by factor of three than using the
BLS. On the other hand, the robustness for both methods are almost the same.

As a conclusion of all the simulation results obtained in this study we consider the EKF to be the
best OGA algorithm as it meets all the expected requirementswith less processing time than the
BLS.
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INTRODUCTION

GP-B was designed to test two predictions of Einstein’s general theory of relativity by
measuring the orientations of four high-precision gyroscopes relative to a distant guide star.
While in theory a simple concept, the high accuracy required to achieve the mission goals
imposed high performance demands on the measurement instrument. The resulting chal-
lenging realization led to technology spin-offs now benefitting future science missions that
require a comparable or even lower bound on acceptable disturbances. For concept verifica-
tion, a control software simulator has been established along with the mission development
which could be combined with hardware in the loop to test attitude translation control
(ATC) and the gyroscope suspension system for GP-B. With GP-B in orbit the simulator
has also proven to be invaluable during the initial orbit check-out phase to aid in anomaly
resolution, examples of which are given in [1].
The current simulation effort targets to provide a readily available tool for future science
missions when addressing pre-flight scenario investigation, to ensure in-flight data quality
and to aid in post-mission data reduction.

GE NERIC DRAG FREE CON TROL SIM U LA TION – LES SONS
LEARNED FROM GRAV ITY PROBE B

Ivanka Pelivan,* Sara Smoot,† Da vid Hipkins† and Stephan Theil‡

A ge neric drag-free sim u la tor has been de vel oped to aid in the de sign, on-orbit
and post-mission data anal y sis phases of sci en tific sat el lite mis sions. Adapt able
to mis sions as dif fer ent in na ture as Gaia (Global Astrometric In ter fer om e ter
for As tro phys ics) and STEP (Sat el lite Test of the Equiv a lence Prin ci ple), this
sim u la tor will pro vide nec es sary mod el ing ca pa bil ity to in creas ingly com plex
fu ture mis sions. A com plete mis sion soft ware sim u la tor in clud ing con trols,
full-body dy nam ics and com pre hen sive space craft en vi ron ment dis tur bances
has been es tab lished for Grav ity Probe B (GP-B). Re pro duc tion of the mis sion
is be ing car ried out to val i date the sim u la tor with ac tual flight data and re fine
the un der ly ing mod els. The im por tance of this ef fort lies in the chal lenge to
meet ris ing sci ence re quire ments in the area of max i mum dis tur bance re jec tion.
Fu ture mis sions such as Gaia, STEP, LISA (La ser In ter fer om e ter Space An-
tenna) and oth ers re quire a min i mum of 3 or ders of mag ni tude im prove ment
over the GP-B per for mance of 10–9 m/sec2. While tech nol ogy ad vance ments
will cer tainly be re quired to achieve these lev els, it be came in creas ingly clear
to the sci en tists and en gi neers who de liv ered the GP-B re sults that the abil ity
to mon i tor and ad just the cou pling of space craft to sub sys tem con trol lers, at all
stages of the mis sion is es sen tial to op ti miz ing mis sion re sults. We pro vide a
look at the prog ress to date of this ef fort.
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THE GRAVITY PROBE B EXPERIENCE

The Gravity Probe B Relativity Mission was launched April 20, 2004 and completed
September 28, 2005. It has been described as one of the most technically challenging
science satellite missions ever flown by NASA. The experiment was proposed independently
by Leonard Schiff and George Pugh shortly after the first successful satellites were delivered
into space in the late 1950’s and early 1960’s. The experiment tests the geodetic and
frame-dragging effects predicted by Einstein’s General Relativity Theory, by measuring the
precession of gyroscopes orbiting at 642 km around the Earth’s poles. These two predictions,
if valid, would result in a geodetic precession of 6614 milliarcseconds and a drift due to
frame-dragging of 42 milliarcseconds after one year. To measure such small changes meant
virtually complete elimination of classical torques that could contribute to the movement
of the gyroscope spin axis, and an experimental instrument insulated sufficiently such that
systematic variations in the data acquisition do not mask the relativistic effects. These
extremely challenging requirements were impossible to achieve technologically at the time
the experiment was proposed and the following six “near zeros” were identified as milestones
toward achieving the necessary readiness.

Near Zero 1: Gyroscope Rotor Inhomogeneity. The difference in the geometric
location of the rotor’s mass center from its physical center can provide a lever arm that when
acted on by the Earth’s gravitational field will result in a torque. This placed a requirement
on the manufacture of the GP-B rotors of having a “mass unbalance” of less than 300
nanometers. This requirement was operationally checked prior to gyroscope selection for
flight. Once in orbit gyroscope performance has shown to be even better than estimated
(see Table 1).

Table 1
Gyro # 1 2 3 4
Prelaunch estimate 18.8 14.5 16.8 13.5
On-orbit data 6.9 4.4 3.3 6.0

Near Zero 2: Drag-Free Control of the Spacecraft. Related to the first near
zero requirement, the drag-free control is needed to reduce the force acting on the mass
unbalance. The drag-free requirements for GP-B are broadly 1x10−9 m/sec2 with a tighter
requirement for 1x10−11 m/sec2 in a narrow band centered at the roll frequency (13 mHz;
77.5 sec period) transverse to the direction of gyroscope spin.

Near Zero 3: Rotor Asphericity. Also a possible source of classical torques is the
interaction between the gyroscope suspension system and the surface features of the gyro-
scope rotor. The gyroscope rotors are controlled to within one nanometer of the capacitive
electrodes center using a capacitance bridge readout and electrostatic voltage, the gyro-
scope suspension system. The suspension voltages required are approximately 100 mV
and can exert a torque on the rotor spin axis via imperfections in the rotor shape. This
placed a manufacturing limit of 0.1 micrometers on the peak to valley difference which was
successfully accomplished (see Figure 1).

Near Zero 4: Magnetic Field. In order to observe relativistic effects the gyroscope
spin axis direction had to be monitored. It is not possible to mark the rotor for that purpose
without violating the first and third near zero requirements. To measure the spin axis ori-
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Figure 1 Gyroscope Surface Features

entation the London moment has been employed. The gyroscopes are coated with niobium,
a superconducting metal. A spinning superconductor has a dipole magnetic moment (the
London moment) perfectly aligned with its spin axis, exactly what was needed for the GP-B
measurement. To implement this technique the magnetic field in the proximity of the rotor
had to be smaller than the London moment.This was achieved using the Superconducting
Lead Bag Technology developed for the program. The fields achieved were approximately
0.1 microgauss.

Near Zero 5: Ultra-Low Pressure. To ensure the proper use of the London moment
as a reliable measurement the gyroscope spin speed had to be constant over the length
of the mission. This was achieved by what is called the low temperature bake out and
the associated use of a cryopump device. Once the gyroscopes were spun to their science
spin speeds there was residual helium remaining in the vacuum can enclosing the science
instrument. In the course of the mission this helium would eventually evaporate and act as
a “spin-down” source by interacting with the gyroscope rotors. Table 2 shows that the bake
out procedure dramatically improved the vacuum properties in the probe and exceeded the
requirement with great margin.

Table 2 Gyroscope Spin-Down Rate On-Orbit (Years)

Gyroscope Before bakeout After bakeout
Gyro # 1 50 15,800
Gyro # 2 40 13,400
Gyro # 3 40 7,000
Gyro # 4 40 25,700

Near Zero 6: Rotor Charge. High energy particles that penetrate the spacecraft
are a cause for rotor charging. It was necessary to maintain a charge level less than 15
mV throughout the mission. The technology developed to achieve this involves the use of
UV light and gold plated bias electrodes placed in the gyroscope housing. Electrons were
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liberated from the rotor/electrode system by emitting UV light and biasing the electrode
according to the polarity the charge was adjusted to.

Each of the near zero requirements were achieved over several years of development and
performed to specification, and in most cases beyond, during the mission.

Lessons Learned

In the final report2 produced for the Gravity Probe B mission a set of lessons learned
and best practices were recommended for future missions involving the use of drag-free
technology. It specifically suggests the use of a mission simulation that can reflect coupled
spacecraft and payload dynamics to mirror the in situ performance of the integrated satellite.
This is particularly important for missions such as LISA, GAIA, STEP and others where
new key technologies are involved to meet disturbance requirements that exceed those of
what is, at this point in time, the state of the art in low disturbance performance, GP-B.

In the execution of the GP-B mission it was noted that there was an unprecedented
level of cooperation between engineers and scientists in achieving the final performance
level of the science instrument. In reflecting on the challenges met, particular focus of
the discussions was on the IOC (initial on-orbit calibration) phase of the mission. The
IOC schedule was planned for over 18 months prior to launch. More than six segments of
the schedule covering several weeks of operations were practiced using an Integrated Test
Facility (ITF), combining flight-like hardware with software spacecraft simulators, operated
from the flight mission operations center located at Stanford University to provide actual
telemetry to engineers to build familiarity and experience under “test it as you fly it”
conditions. The IOC schedule was to last 45 days and had 15 days of contingency for a
total of 60 days. When the spacecraft entered its science data taking phase, however, 128
days had past.

Investigating the reasons for the prolonged IOC phase the review committee concluded
that in spite of the engineering expertise available, and the time devoted to anticipation
of anomalous events and the near perfect performance of each of the spacecraft and pay-
load subsystems, what was lacking was the ability to adequately reproduce the coupled
payload and spacecraft dynamics in an integrated simulation to efficiently address the chal-
lenges. The mission had made extensive use of simulators, both software and hardware
alike, however the shortcoming was in failing to integrate them dynamically. Evidence of
the importance in having dynamically coupled simulation including flight-like hardware in
the loop was demonstrated in the post-launch upgrade made to the gyroscope suspension
system/gyroscope simulator.

There are two modes to establish a drag-free environment.3 In the unsuspended mode the
proof mass is allowed to float freely and the satellite is commanded to follow the proof mass
orbit. In the second (suspended) mode the proof mass is suspended and the drag-free system
controls the spacecraft orbit such that suspension forces on the gyroscope are minimized. It
was decided to operate the spacecraft vehicle in suspended drag-free mode after observing
an unacceptable acceleration bias when using the baseline unsuspended mode that would
have led to a slowly changing orbit of the spacecraft. This required modifications to the
ATC parameters to meet the science requirements as those determined prior to launch for
the suspended mode performed unsatisfactorily. It has proved to be most beneficial to
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modify the GSS/gyroscope simulator to include an ATC simulation creating a drag-free
simulator to optimize the drag-free control parameters. This decision sought to leverage
the extensive knowledge of the GSS/gyroscope dynamics gained during ground testing and
subsequently validated with on-orbit data. The ATC model was designed and validated also
using orbit data and integrated in a matter of weeks. The resulting simulator was used to
produce modifications that exceeded the science mission requirements. After two iterations
the drag-free controller was optimized for the final science configuration. The process was
a success but valuable time had been lost.

To summarize, it is clear that Gravity Probe B’s traditional use of its simulators prior
to launch to deliver individual systems that met their requirements, to verify and validate
its software and to train its operations team was very successful. While this was believed
to be a requirement for a successful mission what was unexpected was that this was not
sufficient.

Quoting from the Gravity Probe B Post Flight Analysis Final Report:

“Invest in high fidelity simulations. Hardware-in-the-loop simulators are critical to val-
idate the overall effectiveness of a complicated scientific instrument and satellite system.
Where the instrument cannot be operated on the ground, suitable high fidelity simulations
with flight compatible interfaces must be developed. These simulators, however, must be
vetted against flight data and updated once actual performance data is known. This is
required to be able to resolve operational anomalies.”

SIMULATOR DEVELOPMENT

With the GP-B mission completed in development and science phase and on-going data
reduction activities a unique opportunity is given to comprehend the overall mission in a
simulation environment. For the first time, flight data is available for an experimental setup
where drag-free control has been applied in all degrees of freedom. Comparison with flight
data is essential to establish a validated tool ready to aid future mission design where drag-
free control is applied to provide an undisturbed environment for science measurements or
else where close links between spacecraft and measurement instrument exist as is the case
for GP-B.

The simulator development has undergone several stages. Based on [4] and [5] generic
modules for spacecraft and experimental test-mass dynamics have been completed. Models
for environmental disturbance calculation are developed and updated based on available
data. Each of the generic moduls is described in detail through a documentation package
including technical notes on underlying physics and a separate or attached user manual
on how to apply the module. Mission-specific control modules have been developed along-
side the overall mission design to test and verify control algorithms. The generic modules
are mainly coded in Fortran and C/C++ and can be integrated into a Matlab/Simulink
environment via S-function blocks. The mission-specific control modules are primarily de-
veloped in Matlab/Simulink. In the following, module and simulator development is briefly
outlined. A more detailed description can be found e.g. in [5, 1].
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Generic Simulator Modules

Currently, the dynamics core can handle a nine-body system in anticipation of application
to STEP which up to date includes the largest number of experimental masses in a scientific
satellite mission. This number however can be increased if required. The satellite and test
mass dynamics are calculated w.r.t. the most natural or common frames, i.e. the satellite
states are either represented in the Earth centered inertial (ECI) or in the body-fixed frame
with its origin in the satellite center of mass (COM). For the test masses, computations are
carried out w.r.t. the corresponding test mass body-fixed frames centered in their respec-
tive COMs, or corresponding housing frames. As driving force for the dynamics, special
emphasis is given to the derivation of a most accurate Earth gravity model. Based on
GRACE (Gravity Recovery and Climate Experiment) data, spherical harmonics are pro-
vided to 360th degree and order. On the availibility of new releases (see [6, 7]) the most
up-to-date GRACE model is implemented. Gravitational influences due to the Sun, Moon
and planets can be enabled. External disturbances due to atmospheric drag, solar radiation
and magnetic fields are accounted for through parametric models and look-up tables gener-
ated in pre-processing utilizing finite element discretization of structural models. Element
or volume forces are computed using standard model data8,9, 10 and enhancements11,12 to
account for characteristics not included elsewhere.

If the test masses are shielded from external disturbances by drag-free control the only
other major disturbance source comes from satellite-gyroscope interaction through the mea-
surement instrument. Simple spring-damper models including DC offsets are provided by
the generic modules to approximate coupling interaction between the satellite and exper-
iment. These can be replaced by external typically more advanced non-linear coupling
algorithms or by calculated controller output. In case of GP-B the electrode force output
from the gyroscope suspension system model is fed into the coupling link between spacecraft
and gyroscope.

Mission-Specific Modules

The GSS model is part of the mission specific controls simulator developed concurrently
with GP-B. It uses the difference in gyroscope and its housing reference position provided
by the dynamics module to calculate suspension efforts. Control effort from the GSS is
passed to the ATC to keep the spacecraft centered around the drag-free test mass. Attitude
control uses sensor measurements from rate gyros, telescope and star tracker. The simulator
model for ATC control uses the actual flight logic applied during the science phase of the
mission. ATC force and torque commands are relayed to the actuator. The actuator model
is comprised of 16 thrusters modeled as point forces to provide specific impulses. Converted
into body forces and torques they are passed on to the dynamics model to update the
satellite and gyroscope states.

For integration of the GP-B control modules with the generic simulator interfaces had to
be established containing transformations from generic to mission-specific reference frames.
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1-Gyro Simulator

The first mission simulator (shown in Figure 2(a)) has been assembled to match the
original software version of the controls simulator for GP-B: a two-body system consisting
of spacecraft and drag-free gyro. The controls simulator used Hill’s equations to obtain
satellite and gyroscope positions and velocities. For a cross-check the generic dynamics have
been simplified to be comparable to the Hill’s simulator and the idealized orbit conditions
used to initialize the Hill’s simulator have been adopted. The cross-check carried out in
[5] shows the successful integration of the control modules into the overall simulator and
especially confirms that the necessary transformations have been implemented correctly.
At this point the simulator comprises a dynamically enhanced version of the engineering
simulator developed along with GP-B. This engineering simulator can be executed with one
or two gyros, one being a hardware gyro. The current modular structure of the generic
simulator applied to GP-B also allows for module replacement with hardware in the loop.

GP−B Simulator V1.0
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(a) 1-Gyro Simulator

GP−B Simulator V2.1
Gvalid

valid star

Gtime

time storage

0

time [s]

Groll

roll storage

Actuators

Thruster Model

State Selection

Sensors

SC and TM Dynamics

Orbital Orientation

G_I2B2

I2B2 storage

GSS4

GSS3

GSS2

GSS1

FT_i

FT_b

FT_tm

Forces and Torques 
Transformation

Environment

Clock

G_B2I2

B2I2 storage

ATC

(b) Complete 4-Gyro Simulator

Figure 2 Simulator Development.

4-Gyro Simulator

In the next step the simulator has been enhanced to account for all four gyros as shown
in Figure 2(b). The disturbance module has been combined with the environmental module
since it uses the environmental outputs to calculate external forces and torques on the
satellite. In Figure 2(b) the first gyro is set as drag-free gyro feeding an ATC trigger pulse
and the GSS control effort to the ATC. Every GSS module is set up such that every gyro
can function as drag-free reference mass. In fact, during the mission the drag-free gyro has
switched between gyro 1 and 3 a couple of times for several reasons.

With the 4-Gyro Simulator for the first time a complete dynamics and control simulator
has been established for GP-B. For the following comparison to flight data the major part
of the environmental influences has been disabled to keep the comparison simple. Simulator
version 2.0, a preliminary version without environmental disturbances except gravitational,
is used to verify dynamics with science data. This approach is justified as long as a com-
parison to nominal flight data i.e. where no disruptions due to external influences have
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been observed, is carried out. In this case, dynamics due to external disturbances other
than gravitational are small enough to be neglected for the moment as we aim at dynamics
module verification and not at mission reproduction.

SIMULATOR VERIFICATION

The major control modules have already been vetted with flight data available, see e.g.
[1]. This part of the paper therefore focuses on validation of the dynamics core. In the
following, two-orbit simulations are carried out with gyro 3 as drag-free proof mass and
the results are compared to flight data spanning the same time period. Purely theoretical
consideration leads to the conclusion that a gravity-gradient signal must appear eight times
in the gyroscope data within a two-orbit time slot. It is also expected that gyro 1 shows the
most pronounced gravity-gradient signal since it is farthest away from the drag-free gyro 3.
This can be clearly seen in the topmost plots of Figures 3 and 4 where the body x-axis of
the position vector for gyro 1 is displayed.

As a by-product and minor model improvement, verification with flight data revealed
that adjustment was necessary for the modelled rate gyro noise. Although based on flight
data, the estimation has been too high, masking the dynamical features. This can be seen in
Figure 3 where especially for gyros 2 and 3 the imposed noise led to an increase in gyroscope
position magnitude by a factor of four on average of the actual flight data. Decreasing the
noise level by an order of magnitude leads to the more favorable comparison shown in Figure
4.
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Figure 3 Gyroscope Position

The comparisons in Figures 3 and 4 have been carried out with the idealized input
conditions the Hill’s simulator has been initialized with, e.g. a perfectly polar orbit starting
above the North pole. Two orbit periods of nominal flight data have been extracted from the
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science data base starting at arbitrary vehicle time. Since the idealized simulation always
starts at the top of the orbit the simulated and flight data do not match in phase. To line
up with flight data, the simulated states have been shifted such that they can be compared
directly to the flight data.
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Figure 4 Gyroscope Position

Figure 4 shows, that even for the idealized simulation case good agreement exists between
simulated and measured gyroscope data. This does not hold for the spacecraft dynamics
since the idealized conditions result in a different orbit for the simulated versus measured
spacecraft trajectory (see Figure 5(a)). For future investigations beyond simulator verifica-
tion, the simulator has been adapted to run with arbitrary input conditions. Initializing the
simulation with flight data leads to the results shown in Figures 5(b) and 7. Thereby, the
most straight-forward comparison between simulated and flight data is possible. Further-
more, with the simulator adapted to use actual flight data as initial conditions the option
to investigate anomal flight conditions reflected in the data is now enabled.

What can be observed in Figure 5(b) is that towards the end of the two-orbit period there
is a slight misalignment between the simulation results and the measured data. The same
misalignment trend is visible in the blown-up section for the gyroscope position shown in
Figure 7. The simulation has been run incorporating a simplified spherical Earth model
and without external disturbances. This configuration has been carried over from simulator
integration and cross-check between the generic and the GP-B controls simulator.

The discrepancies between the two data sets are mainly attributed to the neglection of
higher-order terms in the gravitational field of the Earth. Figures 6(a) and 6(b) display a
detail blown-up part of the spacecraft position comparison between simulation and flight
results towards the end of a two-orbit period. In Figure 6(a) the detail simulation from
Figure 5(b) is shown and in Figure 6(b) the simulation is repeated including higher order
spherical terms in the Earth gravitational field. For the latter case a more favorable match
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Figure 5 Spacecraft Position.

between simulated and flight data also towards the end of two orbits is achieved. For
the resolution shown, already the first higher order harmonic modelling the oblate Earth
accounts for the previous difference.

1.16 1.161 1.162 1.163 1.164 1.165 1.166 1.167 1.168 1.169 1.17

x 10
4

2

2.5

3

3.5
x 10

6 Satellite − Position

x 
[m

]

1.16 1.161 1.162 1.163 1.164 1.165 1.166 1.167 1.168 1.169 1.17

x 10
4

−10

−9

−8

−7

x 10
5

y 
[m

]

1.16 1.161 1.162 1.163 1.164 1.165 1.166 1.167 1.168 1.169 1.17

x 10
4

−6.6

−6.4

−6.2

x 10
6

Simulation time

z 
[m

]

simulated
science data

(a) Simulation with Spherical Earth Assumption

1.16 1.161 1.162 1.163 1.164 1.165 1.166 1.167 1.168 1.169 1.17

x 10
4

2

2.5

3

3.5
x 10

6 Satellite − Position

x 
[m

]

1.16 1.161 1.162 1.163 1.164 1.165 1.166 1.167 1.168 1.169 1.17

x 10
4

−10

−9

−8

−7

x 10
5

y 
[m

]

1.16 1.161 1.162 1.163 1.164 1.165 1.166 1.167 1.168 1.169 1.17

x 10
4

−6.6

−6.4

−6.2

x 10
6

Simulation time

z 
[m

]

simulated
science data

(b) Simulation with Oblate Earth Assumption

Figure 6 Comparison of Simulated Spacecraft Position and Flight Data.

For the gyroscope position, Figure 7 furthermore shows that different noise levels are
apparent in the gyroscope data. The flight data is generally noisier than the simulated
data, also there is a higher noise level in gyro 4 measurements compared to the other
gyros. Both of these findings suggest further investigation on appropriate dynamic or noise
modelling.
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Figure 7 Gyroscope Position, Flight Inputs

SUMMARY AND OUTLOOK

A high-fidelity dynamics and control simulator has been adapted to the Gravity Probe B
mission for simulator verification and model improvement. While validation for simplified
dynamics, e.g. comparison to Hill’s or Mathieu solutions have been carried out in the past,
this is the first time that the full dynamics have been verified in their main features. The
GP-B simulator also serves as reference for missions where high requirements on measurment
accuracies and disturbance reduction exist.

In order to achieve mission goals commonly new key technologies have to be developed
which have to be tested and verified in advance. The generic simulator combined with
mission specific control tools can be applied for that purpose as well as prediction of mission
scenarios. It furthermore aims to aid in on-orbit anomaly resolution and post-mission data
analysis. Out of these four targets the first two have been accomplished for GP-B to a
certain level, i.e. test and verification of key control technologies plus post-simulation of
the nominal science phase which shows the simulator’s predictive ability for undisturbed
orbits. One outlook for the near future is anomaly reconstruction and investigation with the
full simulator including environment and dynamics adapted to observed anomal conditions,
e.g. presence of higher environmental disturbances than usual or spacecraft module failure.
Application to future science missions is anticipated in an on-going collaborative effort with
the prime candidate STEP.
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1 Introduction

This document describes the transformation library consisting of several models to com-
pute coordinate and time transformations. The source code for these models is mainly
taken from the book Satellite Orbits, Models, Methods, Applications, written by Oliver
Montenbruck and Eberhard Gill [4]. In addition to the C-code summarised in the lib-
transformation.a, a Simulink Library Transformation lib.mdl containing all necessary
blocks to build the transformation models can be used (cf. section 7). Besides, this
Simulink Library provides some useful Matlab functions, that are not part of the lib-
transformation.a.

2 Time transformations

Usually, time is measured in years, months, days, hours, minutes and seconds. For
astronomy and many computer applications a continuous time scale that contains all
informations about the actual date and time is more convenient. The Julian Date is
such a time scale. It was introduced by Joseph Justus Scalinger in the 16th century.
The Julian Date (JD) is measured in days including the actual time as fraction of day.
The zero point of the Julian Date time scale was arbitrary defined at noon January 1,
4713 BC. As the number of days since 4713 BC is quite large and a start of counting
the days at midnight is more practical, the Modified Julian Date MJD was introduced:

MJD = JD − 2400000.5 (1)

The transformation between MJD and calendar date is presented below. A different
method of continuous time measurement is the decimal date. The decimal date provides
the actual date and time in terms of years and is described in section 2.3.

2.1 Modified Julian Date from Calendar Date

The algorithm presented in this section is taken from [4]. The Modified Julian Date is
calculated from the date expressed in year (Y ), month (M) and day (D). The day as
well as the Modified Julian Date may include the fraction of day. The algorithm contains
some expression in square brackets [x]. This is defined as integer which is smaller or
equal to x.
For the computation of the MJD the year starts at March 1 and runs to the end of
February. Thus the consideration of leap years is simplified. The values of Y and M are
replaced as follows:

y =

{
Y − 1 if M ≤ 2

Y otherwise
(2)
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and

m =

{
M + 12 if M ≤ 2

M otherwise
(3)

The number of leap days is calculated depending on the calendar system:

B =

{
−2 + [(Y + 4716)/4]− 1179 until 4 Oct. 1582, Julian calendar

[Y/400]− [Y/100] + [Y/4] from 10 Oct. 1582, Gregorian calendar
(4)

The Modified Julian Date can now be derived from the following equation:

MJD = 365y − 679004 + B + [30.6001(m + 1)] + D (5)

2.2 Calendar Date and DOY from Modified Julian Date

To calculate the calendar date from Modified Julian Date, several steps are necessary.
At first, the Julian Date at noon is computed:

a = [MJD] + 2400001 (6)

The fraction of day can be derived from the Modified Julian Date and its integer part:

q = MJD − [MJD] (7)

The following auxiliary quantities are calculated afterwards:

b =

{
0 if a < 2299161(Julian calendar)

[(a− 1867216.25)/36524.25] otherwise (Gregorian calendar)
(8)

c =

{
a + 1524 if a < 2299161(Julian calendar)

a + b− [b/4] + 1525 otherwise (Gregorian calendar)
(9)

d = [(c− 121.1)/365.25] (10)

e = [365.25d] (11)

f = [(c− e)/30.6001] (12)

The day D including the fraction of day is given by

D = c− e− [30.6001f ] + q (13)
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The month M is obtained as follows:

M = f − 1− 12[f/14] (14)

Finally, the year Y is determined:

Y = d− 4715− [(7 + M)/10] (15)

Now the number that indicates the Day of Year DOY can be computed according to
[3]:

DOY =

[
275 ·M

9

]
− k ·

[
M + 9

12

]
+ D − 30, k =

{
1 if Y is a leap year

2 otherwise
(16)

2.3 Decimal Date from Calendar Date

The algorithm for the calculation of the decimal date in terms of years is based on the
subroutine julday which is part of the program source code geomag60.c distributed by
[1].
The computation of the decimal date from year Y , month M and day D, which is
including the time as fraction of day, is done in several steps. First, it must be determined
whether the year is a leap year or not. This yields the auxiliary quantity yleap:

yleap =



0 = NO leap year

if Y is not divisible by 4 or

Y is a century year, that is NOT divisible by 400

1 = leap year

if Y is divisible by 4 or

Y is a century year, that is divisible by 400

(17)

Table 1 contains the number of past days at the beginning of each month. The table is
not valid for leap years, because the 29th February is not included. Therefore a second
auxiliary quantity dleap is needed:

dleap =

{
1 if M > 2

0 otherwise
(18)

Now, the number of past days for the actual date can be calculated:

nd = Nd(M) + D − 1 + dleap (19)

Depending on yleap, the decimal date datedec in terms of years is given by:
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Month M Number of days Nd

January 1
February 32
March 60
April 91
May 121
June 152
July 182
August 213
September 244
October 274
November 305
December 335

Table 1: Number of past days at the beginning of each month

datedec =

{
Y + nd/365 if yleap = 0

Y + nd/366 if yleap = 1
(20)

3 Inertial and Earth Fixed Reference Frame

In order to describe the motion of a satellite around the Earth, it is necessary to define
reference frames. Usually, two different reference systems are used: an Earth Centered
Inertial frame (ECI) and an Earth Centered Earth Fixed frame (ECEF). There are
many different historically grown concepts for these two frame types. The transformation
library uses the International Earth Rotation Service (IERS) definition. A more detailed
description of the coordinates frames is given below.

3.1 Earth Centered Inertial Frame ECI

The definition of the Earth Centered Inertial Frame is based on the International Ce-
lestial Reference Frame (ICRF). The ICRF was introduced by the International Astro-
nomical Union (IAU) in 1991 and is in use since 1998. It is maintained by the IERS.
The system is free of rotation. The axes are fixed with respect to distant extragalactic
radio objects. They closely agree with the Earth Mean Equator and Equinox of the
year 2000 (EME2000). The ECI axes are aligned with the ICRF axes. In contrast
to the ICRF, whose origin is located at the barycenter of the solar system, the ECI
frame’s origin is located at the Earth’s center of mass. Hence, the x-axis of the ECI
points towards the vernal equinox of J2000 and lies inside the equatorial plane. The
z-axis is parallel to the Earth’s angular momentum vector, which is perpendicular to the
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equatorial plane. The y-axis lies in the equatorial plane and completes the right hand
orthogonal system (cf. figure 1).

Figure 1: Earth Centered Inertial Frame

The latest information about the ICRF can be found on the IERS homepage:
http://www.iers.org/.

3.2 Earth Centered Earth Fixed Frame ECEF

The Earth Centered Earth Fixed frame, which is used in the transformation library,
is equal to the International Terrestrial Reference Frame (ITRF). This system is also
maintained by the IERS. Its origin is located at the Earth’s center of mass. The frame is
fixed to the Earth’s surface, which means that it exhibits no net rotation with respect to
the Earth’s crust. The x-axis lies in the equatorial plane and points towards the IERS
Reference Meridian (IRM), which is also called the Greenwich meridian. The z-axis
points towards the IERS Reference Pole (IRP). The right hand orthogonal system is
completed by the y-axis, which lies in the equatorial plane (cf. figure 2).
More informations about the ITRF can be found on the ITRF homepage:
http://itrf.ensg.ign.fr/.

4 Transformation between ECI and ECEF

The definition of the ECI and ECEF frames leads to a complex relationship between
both systems, which contains the following aspects:

• Earth precession P

• Earth nutation N

• Earth rotation Θ
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Figure 2: Earth Centered Earth Fixed Frame

• polar motion Π

The resulting transformation may be expressed as

rECEF = Π(t)Θ(t)N(t)P (t)rECI (21)

where rECI is the position vector in inertial coordinates and rECEF is the position vector
in Earth-fixed coordinates. The underlying models of these transformation matrices are
explained in the next sections.

4.1 Precession

The Earth may be considered as rotationally symmetric gyroscope. Due to external
torques D, which result from gravitational forces of the sun and the moon, the angular
momentum vector l moves around the North pole of the ecliptic (cf. figure 3). This
secular movement of the Earth’s axis is called precession. One complete revolution
takes almost 26000 years.
Apart from the influence of the sun and the moon which causes the change of the
orientation of the Earth’s axis and the equatorial plane, the influence of the planets
yields a precession of the ecliptic. This results in a decreasing obliquity of the ecliptic.
Figure 4 illustrates the combined effects of lunisolar and planetary precession.
The model for precession in the transformation library includes the mentioned effects
and is based on the IAU 1976 precession theory. According to this theory the orientation
of the mean equator and equinox of epoch T (”mean-of-date”, mod) with respect to the
equator and equinox of J2000 is defined by the following three angles:
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Figure 3: Motion of the Earth’s axis under the influence of solar and lunar torques [4]

ζ = 2306.′′2181T + 0.′′30188T 2 + 0.′′017998T 3 (22)

ϑ = 2004.′′3109T − 0.′′42665T 2 − 0.′′041833T 3 (23)

z = ζ + 0.′′79280T 2 + 0.′′000205T 3 (24)

with

T = (MJD −MJDJ2000)/36525 (25)

= (MJD − 51544.5)/36525

The Modified Julian Date MJD is measured in Terrestrial Time TT . Terrestrial Time
is a uniform time scale and would be measured by an ideal clock on the surface of the
geoid (cf. [4]). Its unit is one SI second (1 day = 86400 SI seconds).
The transformation matrix from the ECI to the ”mean-of-date”coordinates may be de-
rived from the introduced angles, where P is the product of three consecutive rotations:

P = R
z
(−z)R

y
(ϑ)R

z
(−ζ) (26)

=

 cos(−z) sin(−z) 0
− sin(−z) cos(−z) 0

0 0 1

 cos(ϑ) 0 − sin(ϑ)
0 1 0

sin(ϑ) 0 cos(ϑ)

 cos(−ζ) sin(−ζ) 0
− sin(−ζ) cos(−ζ) 0

0 0 1
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Figure 4: The effects of precession on the ecliptic, equator, and vernal equinox [4]

The transformation may now be written as:

rmod = P (t)rECI (27)

4.2 Nutation

The precession theory considers an averaged lunisolar torque. In fact, the torques of sun
and moon vary monthly and annual, which causes a movement of the Earth’s axis, that
superposes the precessional motion. This small periodic perturbation is called nutation.
Nutation is especially caused by the moon. During the 18.6-year nodal period of the
moon the orientation of the lunar orbit with respect to the Earth’s equator changes
continuously. This causes a periodic shift of the vernal equinox ∆Ψ and a change of the
obliquity ∆ε (ε′ = ε + ∆ε, cf. figure 5). In consequence of this motion the true celestial
pole describes a small ellipse around the mean celestial pole. The superposition of both
the precessional and the nutational motion results in a wavelike movement (cf. figure
3).
The nutation model in the transformation library is based on the IAU 1980 nutation
theory. The nutation angles ∆Ψ and ∆ε arise from the sum of 106 terms,

∆Ψ =

106∑
i=1

(∆Ψ)i · sin(φi) (28)

∆ε =

106∑
i=1

(∆ε)i · cos(φi) (29)
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Figure 5: The shift in the position of the ecliptic, equator, and vernal equinox caused by
nutation [4]

where φi is a periodic function of the moon’s mean anomaly (l), the sun’s mean anomaly
(l′), the mean distance of the moon from the ascending node (F ), the difference between
the mean longitudes of the sun and the moon (D), and the mean longitude of the
ascending node of the lunar orbit (Ω).

φi = pl,il + pl′,il
′ + pF,iF + pD,iD + pΩ,iΩ (30)

l = 134◦57′46.′′733 + 477198◦52′02.′′633T + 31.′′310T 2 + 0.′′064T 3 (31)

l′ = 357◦31′39.′′804 + 35999◦03′01.′′224T − 0.′′577T 2 − 0.′′012T 3 (32)

F = 93◦16′18.′′877 + 483202◦01′03.′′137T − 13.′′257T 2 + 0.′′011T 3 (33)

D = 297◦51′01.′′307 + 445267◦06′41.′′328T − 6.′′891T 2 + 0.′′019T 3 (34)

Ω = 125◦02′40.′′280− 1934◦08′10.′′539T + 7.′′455T 2 + 0.′′008T 3 (35)

The coefficients pl,i, pl′,i, pF,i, pD,i, and pΩ,i and the expressions for ∆Ψi and ∆εi are
summarised in the IAU 1980 nutation theory table ([4], p.179). As in the precession
theory, the Modified Julian Date is measured in Terrestrial Time and T is derived as
introduced in equation 25.
The nutation angles and the mean obliquity of the ecliptic ε

ε = 23.◦43929111− 46.′′8150T − 0.′′00059T 2 + 0.′′001813T 3 (36)

lead to the transformation matrix N :

N = R
x
(−ε−∆ε)R

z
(−∆Ψ)R

x
(ε) (37)

= R
x
(−ε′)R

z
(−∆Ψ)R

x
(ε)

=

 1 0 0
0 cos(−ε′) sin(−ε′)
0 − sin(−ε′) cos(−ε′)

  cos(−∆Ψ) sin(−∆Ψ) 0
− sin(−∆Ψ) cos(−∆Ψ) 0

0 0 1

  1 0 0
0 cos(ε) sin(ε)
0 − sin(ε) cos(ε)
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The ”mean-of-date”coordinates may now be transformed to ”true-of-date”(tod) coordi-
nates:

rtod = N(t)rmod (38)

4.3 Earth rotation

The introduced precession and nutation theory yield the transformation from ICRF to
”true-of-date”coordinates. The Earth’s axis, the z-axis of the ”true-of-date”coordinate
system, points now towards a new reference point, the so-called Celestial Ephemeris Pole
(CEP). The rotation about the Earth’s axis is described by the Greenwich Hour Angle
or the Greenwich Mean Sidereal Time (GMST ). It is the angle between the Greenwich
meridian and the mean vernal equinox of date. The GMST may be derived from the
following equation:

GMST = 24110.54841 + 8640184.812866T0 (39)

+ 1.002737909350795UT1 + 0.093104T 2 − 0.0000062T 3

with

T0 = (MJD(0hUT1)−MJDJ2000)/36525 (40)

T = (MJD(UT1)−MJDJ2000)/36525 (41)

The time used for GMST computation is Universal Time UT1. This time scale repre-
sents a mean solar day of 24 hours. Because the Earth’s spin period is not constant,
the length of one second of Universal Time varies depending on the actual mean length
of the solar day. The Earth rotation cannot be predicted accurately, so the difference
between Universal Time and Terrestrial Time is determined retrospectively (cf. [4]).
As the GMST measures the angle between the Greenwich meridian and the mean vernal
equinox, the Greenwich Apparent Sidereal Time (GAST ) is referred to the true equinox
of date (→ nutation). Both times are coupled by the equation of the equinoxes:

GAST −GMST = ∆Ψ cos(ε) (42)

The transformation matrix Θ from ”true-of-date”coordinates to ”equator-Greenwich-
meridian”(egm) coordinates may be derived from GAST :

Θ = R
z
(GAST ) (43)

=

 cos(GAST ) sin(GAST ) 0
− sin(GAST ) cos(GAST ) 0

0 0 1
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The transformation may now be written as:

regm = Θ(t)rtod (44)

4.4 Polar motion

In the previous section, the Celestial Ephemeris Pole (CEP) was introduced. It is the
common z-axis of both the ”true-of-date”and the ”equator-Greenwich-meridian”
coordinate system. The CEP is not fixed with respect to the Earth’s surface and there-
fore differs from the IERS Reference Pole (IRP), the z-axis of the ITRF/ECEF. The
Earth is considered as rotationally symmetric gyroscope again. In absence of external
torques, the axis of rotation moves around the axis of figure. Regarding the Earth, this
movement is called polar motion. It results from interaction of free precession with a pe-
riod of 435 days and an annual movement due to changes in the Earth’s mass distribution
(water and air flows).
The difference between CEP and IRP is given by the coordinates xprotationallydenoting
the CEP offset with respect to the IRP. Polar motion cannot be predicted and therefore
must be determined by observations. The values of xp and yp are published regularly
in Bulletin B of the IERS (cf. figure 8). The pole coordinates yield the transformation
matrix P :

Π = R
y
(−xp)Rx

(−yp) (45)

=

 cos(−xp) 0 − sin(−xp)
0 1 0

sin(−xp) 0 cos(−xp)

  1 0 0
0 cos(−yp) sin(−yp)
0 − sin(−yp) cos(−yp)


The ”equator-Greenwich-meridian”coordinates may now be transformed to ECEF coor-
dinates:

rECEF = Π(t)regm (46)

5 Spherical Coordinates

For several application, spherical coordinates are necessary. The difference between
geodetic and geocentric coordinates is illustrated in figure 6. The longitude λ, the angle
between the Greenwich meridian and the meridian through the considered point, is
identical in both systems, but the geodetic latitude ϕ and the geodetic altitude h differ
from the geocentric coordinates due to the Earth’s flattening. Similar to the ECI and
ECEF systems, different reference ellipsoids for the Earth are in use. The computation
of geodetic coordinates from Cartesian coordinates is done in the same way for each
ellipsoid and is presented in section 5.2.
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Figure 6: Geocentric and geodetic latitude [4]

5.1 Geocentric coordinates

For the computation of geocentric coordinates, the Earth is considered as sphere. The
longitude λ and the geocentric latitude ϕ′ are calculated from Cartesian coordinates as
follows:

λ = arctan
(y

x

)
(47)

ϕ′ = arctan
( z√

x2 + y2

)
(48)

In conjunction with geocentric coordinates, the radius r is often used instead of the
altitude h:

r =
√

x2 + y2 + z2 (49)

5.2 Geodetic coordinates

The transformation library uses an iterative method to compute the geodetic coordinates
for given Cartesian coordinates. The values for the latitude and the altitude can be
calculated with the following expression:
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sin ϕ =
z + ∆z√

x2 + y2 + (z + ∆z)2
(50)

N =
R⊕√

1− e2 sin2 ϕ
(51)

∆z = Ne2 sin ϕ (52)

where e is the eccentricity of the reference ellipsoid.

e =
√

1− 1(1− f)2 (53)

The flattening f of the Earth is defined as:

f =
R⊕ − Rpole

R⊕
(54)

The initial value of ∆z is set to e2z as first approximation. When the iteration converges,
the geodetic coordinates can be computed as follows:

λ = arctan
(y

x

)
(55)

ϕ = arctan
( z + ∆z√

x2 + y2

)
(56)

h =
√

x2 + y2 + (z + ∆z)2 −N (57)

6 Transformation between ECEF and NED

In certain cases it is helpful to use so-called local tangent plane reference frames. These
frames are right hand orthogonal systems, but not related to the Earth’s center. One
example is the North-East-Down coordinate system. It’s origin is located at the origin
of the regarded force. The North-axis (xNED) points towards the North Pole of the
Earth. The Down-axis (zNED) points downwards and is aligned with the local plumb
line on the Earth ellipsoid. The East-axis (yNED) completes the right hand orthogonal
system and points towards ascending East longitude.
The transformation from ECEF to NED coordinates can be obtained by a rotation about
the z-axis with λ and afterwards a rotation about the new y-axis with −(ϕ + π/2) [2].
This yields the following transformation matrix:

ANED

ECEF
=

 − sin ϕ cos λ − sin ϕ sin λ cos ϕ
− sin λ cos λ 0

− cos ϕ cosλ − cos ϕ sinλ − sin ϕ

 (58)
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Since ANED

ECEF
is a rotation matrix, the inverse transformation matrix ANED

ECEF

−1
(to cal-

culate ECEF coordinates from NED coordinates) is equal to the tranpose:

ANED

ECEF

−1
= ANED

ECEF

T
(59)

=⇒ AECEF

NED
= ANED

ECEF

T
(60)

7 The Simulink Library Transformation lib.mdl

The Simulink library Transformation lib.mdl contains all blocks that are necessary to
make the time transformations mentioned in section 2 and to compute the transformation
matrix AECEF

ECI
= Π(t)Θ(t)N(t)P (t). Besides, blocks are provided to transform Earth-

fixed Cartesian to geodetic or geocentric coordinates as well as Earth-fixed coordinates
to NED coordinates and vice versa (cf. figure 7). The next sections give an overview
about the ECI2ECEF transformation and the ECEF2GEOD blocks, because these two
need some detailed description.

Figure 7: Simulink Library Transformation lib.mdl

7.1 ECI to ECEF transformation

According to the introduced transformation theories, the computation of the transfor-
mation matrix AECEF

ECI
needs several time-dependent inputs:
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• current MJD(TT )

• current MJD(UT1)

• yp

• xp

But the Modified Julian Date in the simulation is measured in Coordinated Universal
Time UTC. This time scale is based on atomic time scales with the unit of one SI second
and is in use as clock time for everyday purposes. As the precession and nutation theories
need Terrestrial Time and the computation of GAST needs Universal Time UT1, the
UTC must be converted. The time difference between UT1 and UTC is published in the
IERS Bulletin B, as well as the polar coordinates xp and yp for polar motion computation
(cf. figure 8).

Figure 8: Bulletin B abstract

The difference between TT and UTC must be derived indirectly from the UTC and In-
ternational Atomic Time (TAI) difference. Terrestrial Time and International Atomic
Time are two differently grown concepts of atomic time with a constant offset (cf. equa-
tion 61).
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TT = TAI + 32.184s (61)

The difference between those time scales and Universal Time increases 0.5 to 1.0 seconds
per year. In contrast Coordinated Universal Time never deviates more than 0.9 seconds
from Universal Time, which is achieved by the introduction of leap seconds. The result-
ing difference between UTC and TAI is published in the IERS Bulletin C (cf. figure 9).
A detailed description of all metioned time scales can be found in [4], chapter 5.1.

Figure 9: Bulletin C

Hence, the input for the transformation matrix AECEF

ECI
consists of:

• current MJD(UTC)

• IERS set:
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– UT1− UTC

– UTC − TAI

– yp

– xp

The Transformation lib.mdl contains a block to compute the current Modified Julian
Date from the MJD at simulation start. The IERS data (IERS set) for the regarded
simulation time interval must be taken from the Bulletins B and C (download via ftp:
ftp://hpiers.obspm.fr/iers/bul/) and stored in a *.txt file (e.g. IERS data.txt) as
illustrated in figure 10. Then, the block ”look-up IERS data”is able to provide time-
dependent IERS data.

Figure 10: IERS data format for simulation

For test purposes three different transformation methods are implemented in the trans-
formation library. The user can choose one of the following options:

• 0: only Earth rotation

• 1: Earth rotation, IAU 1976 precession and IAU 1980 nutation theory

• 2: Earth rotation, IAU 1976 precession and IAU 1980 nutation theory, polar motion

7.2 Transformation from Cartesian to geodetic coordinates

The model for the computation of geodetic coordinates needs only the Earth-fixed posi-
tion vector in Cartesian coordinates as time-dependent input. Furthermore, a reference
ellipsoid, i.e. the reference Earth radius R⊕ and flattening f , must be chosen depending
on the application. Two examples are listed in table 2.
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Datum R⊕ f
ITRF (GRS-80) 6378137 m 1/298.257222101
WGS84 6378137 m 1/298.257223563

Table 2: Earth reference ellipsoids [4]
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A Appendix

Table 5 contains all functions, that are implemented in the libtransformation.a. They
are in parts taken from the source code provided by [4] and supplemented by functions
taken from [2]. Some of these functions are available as s-functions in the Transfor-
mation lib.mdl (cf. table 3). If required, the additional functions provided by the
libtransformation.a may be used to build new s-functions. Finally, table 4 contains the
Matlab m-functions that are also part of the Transformation lib.mdl.

Function Source file Short Description
DayOfYear sf DayOfYear sf.c Day of Year and Second of Day from MJD
ECI2ECEF matrix sf ECI2ECEF matrix sf.c Computes AECEF

ECI

NEDandECEF sf NEDandECEF sf.c Transformation between NED and ECEF
geocentric sf geocentric sf.c Computes geocentric from ECEF coordinates
geodetic sf geodetic sf.c Computes geodetic from ECEF coordinates

Table 3: s-functions for the Transformation lib.mdl
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Function Source file Short Description
Cal2MJD Cal2MJD.m Computes MJD from calendar date
IERS lookup IERS lookup.m Look-up function for IERS data
Date2DecYear Date2DecYear.m Computes decimal date from calendar date
MJD2Cal MJD2Cal.m Computes calendar date from MJD

Table 4: Matlab m-functions for the Transformation lib.mdl

Function Source file Short Description
AzEl SAT RefSys1.cpp Azimuth and elevation from local tangent coordinates
cart2sph cart2sph.c Computes spherical from Cartesian coordinates
CalDat SAT Time1.cpp Calendar date and time from Modified Julian Date
DayOfYear DayOfYear.c DOY and SOD of Day from Modified Julian Date
ecef2ned NEDandECEF.c Computes NED from ECEF coordinates
eci2ecef matrix ECI2ECEF matrix.c Computes AECEF

ECI

ECI2ECEF matrix f90.c Computes AECEF

ECI
, Fortran wrapper

EclMatrix SAT RefSys1.cpp Transformation of equatorial to ecliptical coordinates
EqnEquinox SAT RefSys1.cpp Computation of the equation of the equinoxes
GAST SAT RefSys1.cpp Computes Greenwich Apparent Sidereal Time
Geodetic SAT RefSys1.cpp Computes geodetic from Cartesian coordinates
GHAMatrix SAT RefSys1.cpp Computation of Earth rotation matrix Θ
GMST SAT RefSys1.cpp Computes Greenwich Mean Sidereal Time
LTCMatrix SAT RefSys1.cpp Greenw. meridian system to local tangent coordinates
MeanObliquity SAT RefSys1.cpp Computes the mean obliquity of the ecliptic
Mjd SAT Time1.cpp Modified Julian Date from calendar date and time
ned2ecef NEDandECEF.c Computes ECEF from NED coordinates
NutAngles SAT RefSys1.cpp Computation of nutation angles
NutMatrix SAT RefSys1.cpp Nutation matrix N

PrecMatrix SAT RefSys1.cpp Precession matrix P
PoleMatrix SAT RefSys1.cpp Computation of polar motion matrix Π

Table 5: Functions included in the libtransformation.a
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Acronyms and Abbreviations

Symbol Description

JPL Jet Propulsion Laboratory
PPN Parameterized Post-Newtonian formalism
DE/LE Development Ephemeris / Lunar Ephemeris
IERS International Earth Rotation and Reference Systems Service
ICRF International Celestial Reference Frame
TDB Barycentric Dynamical Time
SSB Solar System Barycenter
M Mean anomaly
M ′ Mean anomaly of the Sun
l, b, r helioc. coordinates: longitude l, latitude b, radius r
AU Astronomical Unit
... ...
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1 Introduction

Modern ephemeris algorithms are able to calculate the position and velocity of objects in
the solar system to an unprecedented degree of precision. Their results are indispensable
for observations of celestial bodies like planets, moons, etc. as well as for the navigation of
spacecrafts. The validity of this data is usually confined to several centuries – beginning
in a reasonable point of time in the past to a later point of time often in the future.

2 Theoretical considerations

Long-term (secular) perturbations of orbits due to gravitational interactions with objects
of unknown mass cannot be accounted for adequately in the ephemeris calculation and
therefore prevent the algorithms to compute highly accurate results for a very long time
span. Against this background, the algorithms can be divided into two classes according
to the prescription of the way the ephemeris are being computed and the secular factors
are being considered. One class uses analytical formulae and the programming code
contains numerous perturbation terms (see the Montenbruck & Pfleger algorithm in
subsection 2.1) while the other class models the orbits of the celestial bodies by applying
numerical integration methods to the equations of motions (e.g. the JPL ephemeris,
subsection 2.2).

2.1 The algorithm of Montenbruck & Pfleger

Since Kepler and Newton various analytical models have been conceived. Beginning
with the unperturbed Keplerian motion of the planets, series of corrections have been
added to these “planetary theories” in order to take into account the mutual gravi-
tational interaction with other planets and further bodies in the solar system. Many
authors pushed the elaboration and refinements of the theories to a high extent, publish-
ing analytical formulae to understand the observations of the most prominent celestial
bodies. Nowadays, these studies are treated as the first important step towards a com-
plete computation of an orbit, since they guarantee merely the minimum of time and
effort to spend, for instance in terms of computer performance. The assumptions made
are usually well described and include often the orbit’s eccentricity and its inclination
(see below). In comparison with pure numerical integration processes the analytical ap-
proach with series expansions is appealing to everyone interested in understanding the
ephemeris calculations from a close astrodynamical point of view, moreover, a consid-
erable reduction in computation time is achieved. However, their derivation is far from
being simple but laborious and lengthy.

Montenbruck & Pfleger revealed in their book[1] a rather straightforward approach to
the planetary orbit calculations based on a (semi-)analytical description of the Kepler
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problem. The low eccentricities and low inclinations of the orbits (except for Mercury
and the dwarf planet Pluto) have two essential consequences for further examinations.
Firstly, the mathematical treatment of non-perturbed Kepler orbits can be simplified
when using the mean anomaly instead of the true quantity, the semi-major axis of the
Earth’s orbit instead of the true time-dependent expression, and introducing a small ap-
proximation to the orbit’s plane that takes into account the deviation of a planet’s plain
from the ecliptic. Secondly, the mutual gravitational forces between the major planets
are orders of magnitude smaller than the gravitational force by the Sun. Therefore, chan-
ges in planetary orbits can be described by averaged Keplerian ellipses, superimposed
by small perturbations of certain periodicities.

According to previous works on analytical descriptions of planetary motions, Monten-
bruck & Pfleger express the Keplerian motion and the perturbation terms as recurrent
corrections to the heliocentric ecliptic coordinates longitude l, latitude b, and radius r of
an orbit. The elaboration of a series expansion for Kepler’s equation leads to mathemat-
ical expressions for l,b, and r as functions of the mean anomaly M. Any perturbation of a
body’s motion, like the mutual gravitational attraction of the planets, can be considered
as additional terms in the series expansion, being reflected in additional M-terms (one
term for the perturbed object and another one for the perturbing object). Furthermore,
perturbations due to other planets and bodies will also affect the mean orbital elements
on long time scales. They need to be included as explicitly time-dependent terms in the
series expansions, e.g. from the motion of the vernal equinox. The number of pertur-
bation corrections can exceed several hundred terms per planet, if the accuracies of the
ephemeris should reach the arcsec-level. As a consequence numerical methods have been
implemented to store preliminary results from previous calculations and to simplify the
evaluation of trigonometrical functions. Basically, they allow to reorganise the program-
ming code to a sufficient compactness and provide a comprehensible processing of the
disturbance data.

For a given time (TDB or JD), the complete primary algorithm returns the heliocentric
ecliptic longitude l, latitude b, and radius r of the planet requested (or the geocentric
position of the Sun), with respect to the ecliptic and vernal equinox of date. The code
provides different types of coordinates, apparent and astrometric. In contrast to the
geometric coordinates, usually used for heliocentric planetary positions (emphasizing
the location of a body in space at a certain time), the apparent and astrometric coor-
dinates are important for getting the information in which direction the body can be
observed. The latter generally provide the geocentric ephemeris of an object, e.g. the
position of the Sun. Apparent coordinates (relative to the true equinox of date) take into
account corrections for the precession, nutation, aberration, and light-time, whereas the
astrometric coordinates (equinox B1950 or J2000) include the precession and light-time
alone. In the case of Pluto, the evaluation of the coordinates includes the high inclination
(leading to numerous secular terms) and, hence, is done relative to the equinox of B1950
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plus a subsequent transformation to the equinox of date. The underlying procedures are
limited to the time period of 1890AD and 2100AD, since they are based on a Fourier
analysis of ephemeris numerically determined instead of using the perturbation theory.

Concerning the period 1750AD – 2250AD the algorithm gives the error estimations sum-
marized in Table 1. For times in the 19th and 20th centuries the level of accuracy is in
the order of arcsec.

Table 1: Mean errors of the planetary ephemeris (1750 – 2250; Pluto: 1890 – 2100)

Planet ∆l [′′] ∆b [′′] ∆r [10−6AU]

Mercury 1.0− 1.5 0.7− 1.0 1.0− 1.5
Venus 0.5− 1.0 0.2− 2.5 0.5− 1.5

Sun – Earth 0.5− 2.0 0.0− 0.1 0.4− 1.5
Mars 0.5− 2.5 0.1− 1.0 3− 10

Jupiter 2− 8 0.7− 1.0 20− 30
Saturn 2− 11 0.8− 1.5 40− 100
Uranus 3− 8 0.7− 1.0 50− 200

Neptune 3− 40 1.0− 2.0 500− 2000
Pluto 1− 9 0.2− 2.2 200− 1000

(l,b,r: helioc. longitude l, latitude b, and distance r)

The motion of the Earth’s Moon is one of the best studied astrodynamical phenomena.
From the beginning of the 18th century, many efforts have been required to develop
a general prescription for computing not only the Keplerian orbit on a monthly scale,
but also determine the inequalities produced by the gravitational attraction of the Sun
and the perturbations caused by the figure of the Earth as well as the attraction of
the planets. The major inequalities have been known since Ptolemy and Brahe, and
were named evection, variation, and annual variation. A quantitative estimation of the
relative size of these inequalities can be given by the following expression for the true
longitude of the Moon, λ:

λ = mean longitude + major inequality+

+ evection + variation + annual inequality + parallactic inequality

= mean longitude + [377.33′ sin(M) + 12.86′ sin(2M) + . . . ]+

+ 76.43′ sin(2D – M) + 39.5′ sin(2D)− 11.13′ sin(M’)− [2.08′ sin(D) + . . . ] + . . .

where M and M’ are the mean anomalies of the Moon and the Sun (M being measured
from the mean position of the perigee), and D is the difference between the mean longi-
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tudes of Moon and Sun. The term with the argument (2D – M) is called “evection”, and
has a period of 31.823 days, whereas the term with argument 2D has received the name
“variation” (period: 14.767 days). The terms with arguments M, 2M, 3M, ... are called
“elliptic” (their sum gives the “equation of the centre”). The term with argument M’
is called the “annual variation”. Its period is one year and depends on the ellipticity of
the orbit. The terms with arguments D, 3D, ... are called the “parallactic inequality”,
with periods of 29.5306 days, 9.8435 days, etc, respectively. Analogous terms can be
deduced in the expansions of the radius vector and the latitude of the Moon. In addition
to these periodic inequalities, secular terms occur in two of the elements of the orbit –
the longitude of the perigee and the longitude of the node. The perigee accomplishes a
complete revolution in 3232d 13h 48m 29.6s or 8.8505 years, and the line of nodes moves
in the opposite direction, performing a complete revolution in 6793d 9h 23m 9.3s (18.5997
years). According to his lunar theory Brown developed one of the best-known analytical
models of lunar motion containing more than one thousand perturbation terms. He com-
puted 155 periodic terms with coefficients greater than 0.1 arcsec in the expression for
the lunar longitude, and more than 500 terms with smaller coefficients. To calculate the
longitude of the Moon with an accuracy within 0.1 arcsec, it is necessary to add together
655 terms; for the latitude, about 300 terms are sufficient. Montenbruck & Pfleger use
a fraction of them (the “Improved Lunar Ephemeris” of 1954) to obtain an arcsec-level
of accuracy for the equatorial position of the Moon in the geocentric reference frame,
relative to the equinox of date.

The results of the Montenbruck & Pfleger algorithm have been modified according to
the needs within the program structure of the Drag-Free Simulator (e.g. the output of
geocentric rectangular coordinates, see section 3.1).

2.2 The JPL ephemeris

The most accurate ephemeris calculations in our time come from the JPL in Pasadena,
CA, USA. Their numerical integration models – the Development/Lunar Ephemeris
DE4xx/LE4xx – are based on n-body-calculations of approx. 300 solar system objects
including the PPN of the general theory of relativity. The accuracy within a 50-year time
span is typically 5 mas. The DE200 was the first model based on the J2000 equinox and
became the basis of the Astronomical Almanac since 1984 (see [3] and [4]). It includes
data from 1600AD to 2169AD with nutation corrections but no librations. The latter
were started to be integrated within its successor, the DE403 model[6]. This description
includes times between 1950AD and 2049AD and became a standard for the IERS.
Finally, the third enhanced model, DE405[5], was developed in 1997 and covers the time
period between 1600 AD and 2200 AD. It is based upon the ICRF and is widely used as
the state-of-the-art ephemeris source. The model DE406 is an extended version of the
DE405 in terms of the time span, covering the long range from 3000BC to 3000AD, but
has no corrections for nutations nor librations, thus the accuracy of the interpolating
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polynomials and subsequently that of the positions and velocities has been lessened.

Concerning the Moon, the models LE200[4], LE403[6], and their follow-up models LE405/
LE406[5] have been developed. As an essential part of the integration calculations bound-
ary conditions are incorporated into the procedures which are deduced from diverse
independent sources, like astrometric and radar observations of the planets and their
moons, together with lunar laser ranging data, as well as tracking data of interplanetary
space probes and artificial probes in orbits around other planets. For DE406/LE406,
the interpolating accuracy is no worse than 25 meters for any planet and no worse than
one meter for the Moon.

The biggest uncertainties on planetary positions arise from perturbations of minor solar
system bodies emerging as secular deviations from the well-known celestial mechanics
theory. They have to be considered in a non–straightforward way, that is the JPL has
to publish revised data sets on ephemeris at intervals of 20 years.

The JPL planetary and lunar ephemeris packages (data + subroutines) are available via
Internet from the ftp server “ssd.jpl.nasa.gov” in the subdirectory “pub/eph/planets/”.
The data consist of a large binary file containing chebyshev coefficients, forming the
basis for subroutines to calculate the rectangular coordinates (x,y,z) and the velocities
of the Sun, Moon, and the major planets with respect to any other, including the Sun,
the SSB, and the Earth-Moon Barycenter at the desired general relativistic point of
time, the barycentric dynamic time (TDB). It also provides the equation of equinoxes
(of use in calculating nutation) and the librations of the Moon. The data in the binary
file is a result of a simultaneous solution to the general relativistic equations of motion
for all the planets and most major moons. It spans a period of five centuries ([7]).

Moreover, several other ephemeris data have been published, mostly in conjunction with
various spacecraft missions (e.g. DE410: used for Mars Exploration Rover navigation,
2003).

3 Implementation of the Ephemeris Algorithms

The previously described algorithm of Montenbruck & Pfleger , and the JPL ephemeris
alternatively replace the routine Posofplanets for planetary position calculation used up
to now (September 2007) in the Drag-Free Simulator [2]. In the outdated routine hard-
coded orbital elements of a certain year are transformed into cartesian coordinates. For
missing time spans an interpolation is carried out. Moreover, only planetary positions
for Sun, Mercury, Venus, Mars, Jupiter, Saturn and Moon are calculated. The new
routines also provide the ephemeris of Uranus, Neptune and Pluto.
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3.1 The algorithm of Montenbruck & Pfleger

From simulator version 2.1 up to 2.2 the routine of Montenbruck & Pfleger is called
inside the dynamics core to calculate the gravitational influences of the planets. Since
version 3.0 the routine is removed from the kernel and instaed executed by the Mat-
lab/Simulink s-function ephemeris sf. It provides a vector containing the positions of
the regarded celestial bodies which is supplied to the dynamics core by an input port.
The corresponding simulink library is described below.

Modifications to the Original Code

Originally the planets have been in sequence:

[Sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto]

They have been re-ordered since the Drag-Free Simulator’s inertial frame is Earth cen-
tered:

[Sun, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Earth]

The Earth ephemeris is not calculated. The algorithm of Montenbruck & Pfleger pro-
vides a separate routine for the Moon. Up to version 2.2 inside the dynamics core and
from version 3.0 further on, the following sequence is used:

[Sun, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Moon]

Further code modifications include:

• The vector [Rx, Ry, Rz] has been renamed to [Rxe, Rye, Rze] (e for ephemeris) since
[Rx, Ry, Rz] is already used in the gravity/transformation library.

• Note: NutMatrix from the ephemeris code and NutMatrixSimple from the trans-
formation library are identical except for the input. For now, NutMatrix from
the ephemeris code is renamed into NutMatrixE to not interfere with the more
complex NutMatrix from the transformation library.

• There is a loop over planets based on user input in the gravityfield routine (up
to 2.2) and in the ephemeris sf (since 3.0) respectively which calls the routines
of Montenbruck & Pfleger . The internal loop over all planets in the routine of
Montenbruck & Pfleger is therefore removed.
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Core Update

Which planet ephemeris is actually calculated is defined by user input. The Matlab data
file load_sim_data.m contains a parameter array (see below) enabling which planets are
to be included in the calculation. The old planetary sequence

[Sun, Mercury, Venus, Mars, Jupiter, Saturn, Moon]

is replaced by

[Sun, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Moon],

i.e. the option array switching on/off (1/0) the effects of Sun, Moon and planets on the
gravitational acceleration has been extended,
df_core_param.i_option_g_planets(1) = 0.0; % Sun
df_core_param.i_option_g_planets(2) = 0.0; % Mercury
df_core_param.i_option_g_planets(3) = 0.0; % Venus
df_core_param.i_option_g_planets(4) = 0.0; % Mars
df_core_param.i_option_g_planets(5) = 0.0; % Jupiter
df_core_param.i_option_g_planets(6) = 0.0; % Saturn
df_core_param.i_option_g_planets(7) = 0.0; % Uranus
df_core_param.i_option_g_planets(8) = 0.0; % Neptune
df_core_param.i_option_g_planets(9) = 0.0; % Pluto
df_core_param.i_option_g_planets(10) = 0.0; % Moon

Comparison of Algorithms

The test programm ephemeris_test compares the planetary positions of Sun, Mercury,
Venus, Mars, Jupiter, Saturn and Moon calculated by the algorithm of Montenbruck
& Pfleger and the routine Posofplanets used previously for a Modified Julian Date
of 52840. The test program output is the planetary position in geocentric rectangular
coordinates in km, for further reference the coordinates are referred to as [x,y,z]; the
fourth number is the distance

√
x2 + y2 + z2. From the output of the test program

shown in table 2, it can be seen that most numbers at least resemble each other except
for the z-positions of the Moon (highlighted in blue).
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Table 2: Comparison of Test Results

MJD 52840.0000000000
Results of subroutine ephemeris_f90.cpp:

Sun -68670364.8485006 124436292.627204 53948160.2529671 152021096.976403
Mercury -125895084.260804 124350828.845557 59836751.0606223 186797049.369370
Venus -81884386.6375069 221510414.541443 98457692.7552339 255862919.916127
Mars 64905280.6429815 -19615667.3955709 -15733590.5901755 69606147.2542268
Jupiter -735860056.079905 527959598.156366 243156773.346283 937740143.026590
Saturn -152386218.574566 1369444061.92863 571789458.131074 1491824983.96858
Uranus 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000
Neptune 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000
Pluto 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000
Moon 388965.766064924 89824.1734905758 11515.1404531131 399368.686520855

Comparison to old subroutine posofplanets:

Sun -68666490.1866247 124439085.025462 53949817.3156089 152022220.563021
Mercury -125816051.128508 124610638.251602 59968067.6410615 186958976.846917
Venus -81912854.5496980 221508621.293131 98459586.5974048 255871208.307217
Mars 65464129.7759885 -19151478.7092674 -15535581.1541698 69954883.3597540
Jupiter -736392826.207185 527262284.982664 242868915.088462 937691431.959785
Saturn -152453899.217207 1369442075.69681 571792262.181848 1491831150.35394
Moon 390773.468792822 85294.8641196819 -25077.0565707196 400759.250078923

The Ephemeris Library

The Simulink library ephemeris lib.mdl (cf. figure 1) contains the s-function block to ex-
ecute the routine of Montenbruck & Pfleger as described above. It requires the Modified
Julian Date as input. Besides the s-function parameter ephemeris.i_option_planets

to switch on=1/off=0 the calculation of the specfic body’s position is needed. It can be
initialized by the m-file init ephemeris.m:
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ephemeris.i_option_planets(1) = 0.0; % Sun
ephemeris.i_option_planets(2) = 0.0; % Mercury
ephemeris.i_option_planets(3) = 0.0; % Venus
ephemeris.i_option_planets(4) = 0.0; % Mars
ephemeris.i_option_planets(5) = 0.0; % Jupiter
ephemeris.i_option_planets(6) = 0.0; % Saturn
ephemeris.i_option_planets(7) = 0.0; % Uranus
ephemeris.i_option_planets(8) = 0.0; % Neptune
ephemeris.i_option_planets(9) = 0.0; % Pluto
ephemeris.i_option_planets(10) = 0.0; % Moon

For ephemeris.i_option_planets(i) = 0, the corresponding elements in the output
vector are filled with zeros.

NOTE: If df_core_param.i_option_g_planets(i) is set to 1 the corresponding
ephemeris.i_option_planets(i) must also be adapted!
Currently df_core_param.i_option_g_planets is set to ephemeris.i_option_planets
in load sim data.m to avoid problems.

Figure 1: Simulink Library ephemeris lib.mdl

3.2 The JPL ephemeris
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1 Introduction

This tutorial intends to describe the method for the determination of surface forces on a
satellite. The whole process for the calaculation of surface forces consists of three parts:

1. Model preparation

2. Look-up table creation

3. Simulation in Matlab/Simulink

Different programs are used to work on the specific parts. The tutorial is based on the
master thesis Entwicklung und Validierung einer Methode zur Berechnung der
Oberflächenkräfte auf Satelliten by Mehmet Cicek [3] and the corresponding tutorial [2].

2 Model preparation

At first the geometry of the satellite has to be converted into a finite element model.
This is done with the finite element program ANSYS. The element data can be exported
and becomes available for Matlab.

2.1 Working with ANSYS

ANSYS provides two ways of working:

• Graphical User Interface (GUI)

• ANSYS Parametric Design Language (APDL)

Figure 1 shows the GUI of ANSYS. On the left hand side one can see the ANSYS main
menu. The roll-up menu Preprocessor provides all functions that are necessary to build
a finite element model. For an unexperienced user, the work with the GUI is the best
way to become familiar with ANSYS.
Beneath the menu bar, one can find the ANSYS command prompt. Here, the APDL
commands are entered. APDL is a programming language that can be used for au-
tomation or for the development of parameterised models. APDL provides various pos-
sibilities like loops, vector and matrix operations. A big advantage of APDL is the
possibility of creating macros. The APDL commands can be stored in a *.mac file (e.g.
mymacro.mac). This script is executed by typing mymacro into the command prompt.

TIP: All actions are recorded in a log file (File → List → Log File). There
you can find the corresponding APDL command to your GUI action. Thus
you are able to create your own macro by simple copy and paste.
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Figure 1: Graphical User Interface of ANSYS

One problem may occur when your are working with ANSYS: a UNDO button does
not exist. You have to work with the SAVE DB and RESUM DB buttons in the ANSYS
toolbar, i.e. you should save your model when you have finished something, so you can
reload this state if anything goes wrong afterwards.

2.2 Building a model

This section intends to explain the specific steps that are necessary to build a finite
element model and to export the element data for the next process in Matlab.

2.2.1 Element choice

At first, the element type has to be chosen. The ANSYS element library contains approx.
200 different elements for various applications. With regard to the calculation of surface
forces, the element type Shell 63 with four nodes is used, because this number of nodes
is required for the following computation. Besides Shell 63 is well suited for the meshing.
You define this element type with the GUI as follows:

Preprocessor → Element Type → Add\Edit\Delete
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A window will pop up where you have to click the button Add. Then a list with all
element types will appear. Choose

Shell → Elastic 4node 63.

The corresponding command in APDL is:

ET,EN,SHELL63

2.2.2 Material choice

In order to distinguish the different surface properties of the satellite, several material
types have to be defined. The definition includes the specification of the elastic modulus
(EX) and the major Poisson’s ration (PRXY) of each material. These two values may be
chosen arbitrary, because they are not used in the following computation process. Only
the material number is exported, which is the indicator for the according reflexion and
diffusion coefficient of the specific surface. The material type definition is done in the
following way:

Preprocessor → Material Props → Material Models

Again, a window will pop up and you may choose an isotropic, linear elasic structural
element:

Structural → Linear → Elastic → Isotropic

As mentioned before, the material properties may be chosen arbitrary. The following
APDL command defines the same material where the elastic modulus (EX) and the
Poisson’s ratio (PRXY) is set to zero:

MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,0
MPDATA,PRXY,1,,0

Add as many material models as you need (Material → New model... in the menu bar of
the window). For more details on the material properties definition see ANSYS help.

2.2.3 Geometry definition

The geometry model may be imported from a CAD program or it may be created in
ANSYS itself. This section deals with the construction of a satellite model in ANSYS.
The model can be build from different geometry elements like keypoints, lines, areas and
volumes. The Preprocessor provides two ways of creating a model:

• Bottom-up method: The model is build directly from the metioned basic geometry
elements.
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• Top-down method: Primitives like rectangles, circles, blocks, cylinders and spheres
are used and the model is build through different conjunctions.

The top-down method is especially for simple models the easiest approach and is de-
scribed in more detail below.

TIP: All geometry elements are numbered. In the menu bar you can find

PlotCtrls → Numbering ...

where you can choose the element type, whose numbering should be visible.
The numbering is important, e.g. if you like to select a special area.

In the menu

Preprocessor → Modeling → Create

a multitude of options to build specific geometries is provided. For example, a block
may be build in three different ways:

• Volumes → Block → By 2 Corners & Z

• Volumes → Block → By Centr, Cornr, Z

• Volumes → Block → By Dimensions

One must choose the method that is most suited to the intented satellite geometry. The
corresponding APDL command for the creation of a block By Dimensions is really simple
and looks like:

BLOCK,X1,X2,Y1,Y2,Z1,Z2

where X1,X2,Y1,Y2,Z1 and Z2 denotes the starting point and the endpoint respectively
for each coordinate axis. A detailed description for each APDL command can be found
in the ANSYS help.
The creation of a model is different for each satellite, so an explicit instruction can not be
provided. At the beginning, try to build the whole satellite geometry with the provided
volumes. In

Preprocessor → Modeling → Operate → Booleans

one can find some helpful tools to add, intersect, overlap or substract volumes. By
substraction a cylinder from a block e.g., one get a new volume that contains a hole.
ANSYS works with several coordinate systems. By default, all actions are executed
in the so-called WorkPlane coordinate system. At the beginning it is aligned with the
global coordinate system. But one can move and rotate the WorkPlane with respect to
the global system arbitrary. It is often easier to move the WorkPlane to a specific point
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and use a simple create-block-by-dimensions command as to build the same block in the
global coordinate system. The rotation und movement of the WorkPlane is done in the
WP Offset window, which can be found in the menu bar under:

WorkPlane → Offset WP by Increments ...

The offsets for movement along and the rotation about the coordinate axis is adjusted
here:

WorkPlane → WP Settings ...

After finishing your volume satellite model, you have to delete all volumes, because the
meshing process needs areas only. This is done as follows:

Preprocessor → Modeling → Delete → Volumes Only

If you use the Pick All button in the window, all volumes will be selected at once. The
model vanishes, because there are no volumes left. With

Plot → Areas

in the menu bar, the model is reploted with area elements.

Figure 2: Specification of area attributes

2.2.4 Meshing

The meshing of the satellite model is done with the Mesh Tool, which is started with:
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Preprocessor → Meshing → Mesh Tool

The Mesh Tool window contains all options, that can be adjusted for the meshing process.
At first, the surface properties have to be defined. Choose Areas in the Element Attributes
panel and click Set. A window will pop up, where you can enter a list of areas with the
same surface properties. Afterwards specify the properties in the Area Attributes window
(cf. figure 2).

Figure 3: Satellite model after meshing

When all area properties are specified, the element size for the meshing have to be
defined. Click the Set button next to Areas in the Size Controls panel. Enter the element
edge length for all areas. The element type should be Map. This will produce rectangular
elements. Click MESH and select all areas to mesh the whole satellite model. The result
looks similar to figure 3.

2.2.5 Data export

The geometry data can be is exported with the macro routine tables.mac. This routine
must be placed in the current ANSYS working directory. Change the filename example
in tables.mac to yourfilename. Afterwards execute the macro by typing tables into the
command prompt. The routine creates two tables, et.txt and nt.txt, whose content is
listed in table 1 and 2.
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Column Content
1 Element number
2 Area of the element
3 x-coordinate of center point in global coordinate system
4 y-coordinate of center point in global coordinate system
5 z-coordinate of center point in global coordinate system
6 Node number 1
7 Node number 2
8 Node number 3
9 Node number 4
10 Material number
11 Element type number
12 Real constant set number

Table 1: Element table et.txt

Column Content
1 x-coordinate of node in global coordinate system
2 y-coordinate of node in global coordinate system
3 z-coordinate of node in global coordinate system

Table 2: Node table nt.txt

3 Look-up table creation

Originally, the Matlab source code for the look-up table creation was written in order
to calculate the disturbance forces and torques due to solar pressure, where the force
depends on the incident angle of the sun. The intention of the look-up table creation is
the calculation of surface forces and torques for arbitrary incident angles with the aid of
the geometry that is defined in the element table et.txt and the node table nt.txt.
Although the code was written for solar pressure problems and therefore most of the

Figure 4: Definition of polar angle θ and azimuth angle ϕ
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comments in the m-files are refered to this aspect, the algorithms can be used to calculate
the influence of different disturbance sources, e.g. the aerodynamic drag. Here the sun
vector has to be replaced by the velocity vector und the reflexion coefficients have to
be adjusted. Furthermore the Matlab functions, that are presented below, provide only
the normalized force and torque, i.e. the results have to be multiplied with the solar
pressure for the calculation of solar radiation pressure or with the dynamic pressure for
the calculation of aerodynamic drag.

3.1 Data files for the calculation of surface forces and torques

Three data tables are needed as input files for the calculation of surface forces and
torques in addition to the geometry tables et.txt and nt.txt. For the calculation of the
relative position of the satellite and the sun, the incident angle is needed. The angle is
given in spherical coordinates (cf. figure 4) and is imported from the angle table at.txt.
The content of at.txt is illustrated in table 3. The table may be customized for each
purpose.

Column Content
1 Polar angle θ [0◦ ... 180◦]
2 Azimuth angle ϕ [0◦ ... 360◦]

Table 3: Angle table at.txt

The reflexion coefficients of the surfaces, that consider the different surface properties,
are stored in the file ct.txt, where each row denotes a different material. The material
number (et.txt, column 10) refers to the row number. Table 4 shows the content of ct.txt.

Column Content
1 Coefficient of specular reflexion
2 Coefficient of diffuse reflexion

Table 4: Reflexion coeffficient table ct.txt

For the calculation of the torque due to solar pressure, another information is required.
The file rt.txt contains the vector to the barycenter of the satellite. The vector is stored
as illustrated in table 5.

Column Content
1 x-coordinate of reference point in global coordinate system
2 y-coordinate of reference point in global coordinate system
3 z-coordinate of reference point in global coordinate system

Table 5: Reference point table rt.txt
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The file init data.m loads et.txt, nt.txt, rt.txt and ct.txt and can be customized, that is
one can enter the names of the files that should be used, e.g.:

addpath ../projects/Test_case

load nt_testcase.txt;

nt = nt_testcase;

load et_testcase.txt;

et = et_testcase;

load rt_testcase.txt;

rt = rt_testcase;

load ct_testcase.txt;

ct = ct_testcase;

rmpath ../projects/Test_case

3.2 Calculation of the surface force and torque for a specific
incident angle

The calculation of the surface force and torque for a specific incident angle is done by
the Matlab m-file sat lighting.m. It is a helpful tool to check the model, that was built in
ANSYS. The illumination conditions of the satellite are coupled to the normal vectors of
the surface elements. In some cases, the normal vector of a certain area points inwards
due to the node numbering of ANSYS. This results in wrong illumination conditions,
e.g. an area in sunlight will be regarded as back side area. So, it is necessary to check
the model previous to the creation of the look-up tables.

TIP: Check each side of the satellite model by choosing perpendicular so-
lar radiation. If certain areas are wrong visualised, search the correspond-
ing element numbers in ANSYS. Use the function flip normal vector for the
according rows in et.txt (element number = row number). The algorithm
changes the order of the nodes in the specific lines, thus the normal vector
points in the different direction afterwards.

Customize the m-file init data.m first. The calculation is started by entering sat lighting
into the Matlab command prompt. At first, the incident angle has to be chosen by either
entering the according line number of at.xt or entering directly the values of θ and ϕ.
Afterwards, one may decide whether the force and the torque should be calculated or
not. NOTE: The calculation yields the normalized force and the torque, a multiplication
with the solar pressure is necessary afterwards!
In the end, the satellite model is visualised whereas the colours yellow, red and blue
denote the different illumination conditions (cf. figure 5).
The function sat lighting uses other functions, that are provided in the m-files listed in
table 6. These m-files as well as the txt-files must be placed in the same working directory
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Figure 5: Illumination conditions of satellite model with θ = 45◦ and ϕ = 45◦,
Yellow: Illuminated Area, Red: Shadow, Blue: Back side

as sat lighting.m or the corresponding Matlab path must be added (e.g. addpath ../tests).
The whole algorithm is described in detail in [1].

m-file Description
data storage.m Computes data matrix dm that contains satellite geometry data and back

side flag
eNormal.m Computes the normal vector of a surface element with 3 points
force torque.m Computes the force and torque due to solar radiation for each element
init data.m Loads data tables et.txt and nt.txt
inside.m Function that determines whether a point is inside or outside of a given

triangle
mask1.m Visibility algorithm (1 = element is visible, 0 = element is on back side)
plot satellite.m Creates a plot of the satellite model. The illumination conditions are

illustrated through different colours.
radforce.m Computes the normalized force from radiation pressure for a surface el-

ement
sat lighting setup.m Sets calculation parameters for sat lighting
shadow flag.m Shadow algorithm returns ”1” if a visible element is shaded, otherwise it

returns ”0”
sp lookup setup.m Sets calculation parameters for sp lookup
sun.m Computes the unit vector of the sun in spherical polar coordinate system
torque.m Computes the torque of each surface element
trans.m Computes transformation matrix TM : body frame→ z-axis aligned with

sun direction
triangle.m Divides square element into two triangles

Table 6: Functions, that are used by sat lighting and sp lookup
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3.3 Creation of look-up tables

In order to get the forces and torques for arbitrary incident anlges, look-up tables are
built with the m-file sp lookup. Here, the satellite plots are optional. In contrast to
sat lighting, the function sp lookup does not use at.txt. One has to define the minimum
and maximum value for θ and ϕ with:

• 0◦ ≤ θmin < θmax ≤ 180◦ for the polar angle

• 0◦ ≤ ϕmin < ϕmax ≤ 360◦ for the azimuth angle

Thus it is possible to investigate a special area of interest. Besides the desired resolution
res must be chosen. With this information a vector for each angle is built as illustrated
in table 7.

Polar angle

θ1 0◦

θ2 5◦

θ3 10◦

θ4 15◦

θ5 20◦

Azimuth angle

ϕ1 10◦

ϕ2 20◦

ϕ3 30◦

ϕ4 40◦

Table 7: Example for θmin = 0◦, θmax = 20◦, resθ = 5◦

and ϕmin = 10◦, ϕmax = 40◦, resϕ = 10◦

Now for each angle combination, the force and the torque is calculated and the specific
components are stored in the matrices FX, FY , FZ, TX, TY and TZ (cf. example
FX in table 8).

ϕ1 ϕ2 ϕ3 ϕ4

θ1 FX11 FX12 FX13 FX14

θ2 FX21 FX22 FX23 FX24

θ3 FX31 FX32 FX33 FX34

θ4 FX41 FX42 FX43 FX44

θ5 FX51 FX52 FX53 FX54

Table 8: Content of FX

The polar angles and the azimuth angles are stored in the vectors Tht and Phi respec-
tively. The metioned variables are merged in the *.mat files force.mat, torque.mat and
angles.mat. Thus they are available for further usage.
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3.4 C Code

The execution of the sp lookup Matlab code and even of sat lighting for models with a
fine mesh is very time-consuming. Hence the whole code has been translated to C. Some
changes in the handling of the programmes are required which will be outlined in this
section.
The corresponding file to init data.m is setup data.c. This file reads from setup.txt. Here
one can enter the names of the data files that should be used, e.g.:

../projects/Test_case/nt_testcase.txt

../projects/Test_case/et_testcase.txt

../projects/Test_case/rt_testcase.txt

../projects/Test_case/ct_testcase.txt

As it is not possible to get a plot of the satellite directly in C, the correponding
programme creates the file data matrix.txt, which contains all information that is re-
quired to make the satellite plot. This is again done in Matlab but with the file
plot satellite c.m .
The routine sp lookup.c works in the same way as the according Matlab code though
without plot option. The results are stored in force_FX.txt, force_FY.txt,
force_FZ.txt, torque_TX.txt, torque_TY.txt, torque_TZ.txt, angle_tht.txt and
angle_phi.txt for later usage.
Since Matlab already provides some functions that are not available in C, they had to
be added. A complete overview of all required c-files and header files is given in table 9
in the appendix.

4 Simulation in Matlab/Simulink

The model for the force/torque simulation is provided in the Simulink library Surface-
Force lib.mdl, cf. figure 6.

Figure 6: Simulink library SurfaceForce lib.mdl

Figure 7 shows the content of the library module. It provides a look-up table for each
component of the force and the torque vector respectively. The look-up tables work
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with an interpolation/extrapolation method. Thus not every angle combination must
be considered during the creation of the look-up tables. During the simulation the force
and torque is calculated against the incoming polar angle θ and the azimuth angle ϕ.
These angles result from the sun vector or the velocity vector, expressed in the satellite
body frame.

Figure 7: Look-up tables for forces and torques

The input data, i.e. the variables FX, FY , FZ, TX, TY , TZ, Tht and Phi have to
be loaded into the Matlab workspace before starting the simulation. That is done by
entering

• load forces

• load torque

• load angles

into the Matlab command prompt. In case C code was used to produce the look-up
tables, all *.txt files mentioned in section 3.4 must be loaded into the Matlab workspace
(load force FX.txt; etc.). Afterwards the variable name must be adjusted either in the
Matlab workspace (FX = force FX ) or in the Simulink look-up table block.
The output vectors are normalized (cf. section 3), so they have to be multiplied with
the solar pressure or the dynamic pressure to get the corresponiding force and torque.
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A Appendix

c-file header Description
condition.c condition.h Determines condition of a matrix
data storage.c data storage.h Computes data matrix that contains satellite geome-

try data and back side flag
eNormal.c eNormal.h Computes the normal vector of a surface element with

3 points
force torque.c force torque.h Computes the force and torque due to solar radiation

for each element
functions.c functions.h Mathematical auxiliary functions
inside.c inside.h Function that determines whether a point is inside or

outside of a given triangle
inverse.c inverse.h Calculates inverse of a given matrix
mask1.c mask1.h Visibility algorithm (1 = element is visible, 0 = ele-

ment is on back side)
mat vec mult.c mat vec mult.h Matrix - Vector - Multiplication
quicksort.c quicksort.h Sorting algorithm

parameters.h Includes main parmaeters for the whole programme
radforce.c radforce.h Computes the normalized force from radiation pres-

sure for a surface element
sat lighting.c sat lighting.h Main programme
sat lighting cal.c sat lighting cal.h Additional subroutine for some calculations
sat lighting setup.c sat lighting setup.h Sets calculation parameters for sat lighting
setup data.c setup data.h Loads data files of specific project
shadow flag.c shadow flag.h Shadow algorithm returns ”1” if a visible element is

shaded, otherwise it returns ”0”
sp lookup.c Main programme
sp lookup setup.c sp lookup setup.h Sets calculation parameters for sp lookup
sun.c sun.h Computes the unit vector of the sun in spherical polar

coordinate system
torque.c torque.h Computes the torque of each surface element
trans.c trans.h Computes transformation matrix TM : body frame

→ z-axis aligned with sun direction

Table 9: List of required c-files and header files
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1 Introduction

This document describes the modeling of forces and toques that affect a satellite due
to solar radiation. As extension to the document FLK-SIM-TU-ZAR-001: Modeling of
surface forces - Tutorial, this paper deals with the theoretical backround of the presented
Matlab/C code functions (cf. [2], chapter 3). The documentation is based on the master
thesis Entwicklung und Validierung einer Methode zur Berechnung der Oberflächenkräfte
auf Satelliten by Mehmet Cicek [1].

2 General idea

The magnitude of the solar radiation force depends on severals factors. Besides the
incident sun angle and the illuminated satellite area, the different surface properties of
the satellite, i.e. the coefficient of specular and diffuse reflexion respectively, must be
considered, too.
For coarse estimations of disturbance forces due to solar radiation pressure, it is often
sufficient to assume a reference satellite area with average reflexion coefficients. For a
detailed analysis, a more accurate approach is required, whereas the illuminated area
is calculated against the incident sun angle and the satellite geometry, i.e. shadowing
effects must also be taken into account. Furthermore, it is necessary to distinguish
between different materials.
The general idea to cope with this problem is to use a model of the regarded satellite
whose surface is discretized with small quadrangular elements. Thus it is possible to
compute the resulting force for each element in consideration of their material properties.
Besides the division in single elements provides the basis for the algorithm that calculates
the illumination conditions. This algorithm is presented in section 3. The following
derivation of the force and the torque is outlined in section 4. The required geometry
information is given in the element table et.txt and the node table nt.txt, whose contents
is listed in the tables 1 and 2. These tables can be created with ANSYS (details: [2],
chapter 2).
There are two different Matlab/C programmes to calculate the solar radiation force
and torque with the methods presented below. The programme sat lighting computes
the radiation force and torque for one selected illumination case, sp lookup considers a
specific range of both angles, i.e. a multitude of different cases is regarded. For details
on the usage of both programmes refer to [2], chapter 3.

3 Illumination conditions

The computation of the illumination conditions is devided into two parts. First, all
elements must be identified that are exposed to the sun’s radiation. Afterwards the
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Column Content
1 Element number
2 Area of the element
3 x-coordinate of center point in global coordinate system
4 y-coordinate of center point in global coordinate system
5 z-coordinate of center point in global coordinate system
6 Node number 1
7 Node number 2
8 Node number 3
9 Node number 4
10 Material number
11 Element type number
12 Real constant set number

Table 1: Element table et.txt

Column Content
1 x-coordinate of node in global coordinate system
2 y-coordinate of node in global coordinate system
3 z-coordinate of node in global coordinate system

Table 2: Node table nt.txt

visible elements are examined again to distinguish whether they are shaded by other
elements or not.
Starting point of each calculation is the incident sunray. This vector is considered in the
satellite body-fixed coordinate system in polar coordinates θ and ϕ (cf. figure 1). The
polar angle θ reaches from 0 (= z-axis) to π (−z-axis) and the azimuth angle ϕ reaches
from 0 to 2π (x-y-plane). Thus any sun vector can be described.

Figure 1: Sun vector in body-fixed polar coordinates
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The normalised sun vector esun is the baseline for all further computations (sun.m/sun.c):

esun =

 sin θ cosϕ
sin θ sinϕ

cos θ

 (1)

In order to prepare the shadow algorithm, the following actions take place: The z-axis
of the satellite body-fixed frame is aligned with the sun direction esun and becomes ẑ of
the red system as illustrated in picture 2.

Figure 2: Coordinate system transformation

According to [3], p.761, the following transformation matrix can be used for this opera-
tion:

A =

 x̂ · x x̂ · y x̂ · z
ŷ · x ŷ · y ŷ · z

ẑ

· x

ẑ

· y

ẑ · z

 (2)

Here the unit vectors in the satellite body-fixed frame (black system) are given with:

x =

 1
0
0

 , y =

 0
1
0

 , z =

 0
0
1

 (3)

An auxiliary x-axis may be chosen arbitrary. Here it is aligned with the old z-axis, unless
the sun vector matches the old one:

x̂∗ =

 (
1 0 0

)
if ẑ

=
(

0 0 1
)(

−1 0 0
)

if ẑ =
(

0 0 −1
)

−z otherwise

(4)

The ˆ
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Afterwards the correct x̂-axis is derived as follows:

x̂ = ŷ × ẑ (6)

Now all information is available that is required to compute the transformation matrix
A. This is done by the function trans.m/trans.c. Afterwards the center coordinates and
the node coordinates are transformed into the new coordinate system (data sotrage.m/
data storage.c):

Ĉ = A · C
N̂1 = A ·N1

N̂2 = A ·N2

N̂3 = A ·N3

N̂4 = A ·N4 (7)

The center vector of each element C and the numbers of the four nodes are given in et.txt
(cf. table 1). The according node coordinates are stored in nt.txt (e.g. node number =
5 =⇒ row 5 of node table). The transformed elements are now arranged along the ẑ =
esun axis in descending order (sortrows/quicksort.c).

3.1 Backside flag

The so-called backside flag indicates whether an element is hit by a sunray (backside flag
= 1) or not (backside flag = 0) without considering shadow effects. All backside elements
are identified by comparing the angle between the sun vector and the normal vector eN
of the regarded element. Its normal vector is derived from the node coordinates N1 to
N3 (eNormal.m/eNormal.c):

eN =
(N2 −N1)× (N3 −N1)

|(N2 −N1)× (N3 −N1)| (8)

Figure 3: Element normal vector

NOTE: Here, the original node coordinates must be used, not the transformed ones!

If the angle α, calculated with the scalar product of esun and eN (equation 9), is larger
than 90◦, the element is not illuminated by the sun (cf. figure 4). This computation
takes place in mask1.m/mask1.c.
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Figure 4: Backside determination

esun · eN =


> 0 ⇐⇒ 0 ≤ α < π

2

= 0 ⇐⇒ α = π
2

< 0 ⇐⇒ π
2
< α ≤ π

(9)

All elements are now classified as visible and invisible, respectively. Figure 5 shows an
example satellite after performing the backside algorithm. Blue elements are backside
elements, the yellow ones are in principle illuminated by the sun, since shadow effects
are not taken into account so far.

Figure 5: Example satellite after backside determination

3.2 Shadow algorithm

The shadow algorithm (shadow flag.m/shadow flag.c) is applied to all visible elements
only. The idea of this algorithm is illustrated in figure 6.

z^

y^

x^

Sun light

z^

y^

x^

Figure 6: Illustration of shadow algorithm; left: dimetric projection, right: top view
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As one can see, the algorithm does not produce a clear, sharp line of shadow, but it
checks for each element whether it is shaded by another one or not. This desicion
depends on the position of the center point of an element with respect to the area of the
elements above. If the center point is located inside an area, the element is considered as
shaded (shadow flag = 1). In this way, errors occur as half of the element area might be
considered wrong. Since this happens in both directions, the overall error is small. Apart
from this, the error can be minimized by reducing the element size. The mathematical
description of the algorithm is presented below.
All elements are regarded in the x̂-ŷ-plane (new coordinate system, introduced above)
where they are hit by perpendicular sunrays. Depending on the direction of the sunlight,
the transformed elements are deformed or even become lines. This does not affect the
function of this shadow algorithm, therefore it must not be taken into account.
A loop is applied to all visible elements starting from the element that is nearest to the
sun (=⇒ sorting, see above), because it is in either case illuminated. As depicted in
figure 6, only elements in a certain radius beneath the currently regarded element may
be shaded. Hence, only these elements are considered in the current calculation step,
basically in order to speed up the whole calculation process. The reference radius for
this purpose is given by:

rref = 1.5 · amax (10)

Here, amax denotes the maximal edge length of all elements, which is derived from et.txt.
A safety factor of 1.5 is introduced to assure, that highly deformed elements are taken
into account as well.
Now the currently regarded element is divided into two triangles as illustrated in figure
7 (triangle.m/triangle.c).

Figure 7: Rectangle −→ 2 triangles

Two vectors are obtained for each of the triangles, that contain the nodes’ x̂- and ŷ-
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coordinates respectively:

a1 =
(
xN̂1

xN̂2
xN̂3

)
b1 =

(
yN̂1

yN̂2
yN̂3

)
(11)

a2 =
(
xN̂1

xN̂3
xN̂4

)
b2 =

(
yN̂1

yN̂3
yN̂4

)
(12)

Figure 8 shows the definition of the barycentric coordinates c1, c2 and c3.

Figure 8: Barycentric coordinates in a triangle

They can be used to determine, whether a point P is inside or outside a given trianlge.
The solution of the system of equations (eq. 13) provides c∗. If all barycentric coordinates
are non-negative, the point P is inside the considered triangle.

c1 + c2 + c3 = 1

a1c1 + a2c2 + a3c3 = x

b1c1 + b2c2 + b3c3 = y (13)

This system of equation is solved for both triangles defined in equation 11 and 12 with
P (x, y) = Ĉ(x̂, ŷ) and Ĉ within the refrence radius (inside.m/inside.c). If the center
point is inside one of those triangles or on the edge of one, the element is considered as
shaded.
The algorithm is performed for all other visible elements as well. Afterwards the ap-
pearance of the example satellite changes to figure 9. The shaded elements are colored
in red.
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Figure 9: Example satellite after shadow algorithm

4 Force and torque calculation

After determining the illumination conditions, the last step contains the calculation of
the specific radiation force f

i
for all illuminated elements (radforce.m/radforce.c):

f
i

= −Ai[(1− csi) · esun + 2(csi cosα +
1

3
cdi) · eN ] cosα (14)

The sun vector esun, the normal unit vector eN of the element i and the angle between
them α = esun · eN were already introduced above. Besides, the element area Ai from
et.txt and the coefficient of specular csi and diffuse cdi reflexion respectively taken from
ct.txt (cf. [2]) are needed. The solar pressure

Psol =
S0

c · |r|2 , (15)

where S0 denotes the solar constant at 1 AU, c is the speed of light and r is the distance
to the sun, is equal for each element. Therefore it is not taken into account in equation
14, but multiplied with the sum of the element forces afterwards:

F sp = Psol ·
n∑
i=1

f
i

(16)

The torque calculation involves the reference point vector ri of each element, given in
rt.txt (cf. [2]). The computation takes place in torque.m/torque.c. According to the
force, the total torque is achieved by summing up all element torques:

T sp = Psol ·
n∑
i=1

f
i
× ri (17)

The programmes sat lighting and sp lookup mentioned in section 2, compute
F sp
Psol

and
T sp
Psol

. Thus it is possible to use different kinds of solar pressure models without repeating
the whole computation process. This approach is very helpful for simulations where
time-dependency is considered.
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1 Introduction

In this document the drag-free simulator (DF simulator) functionality, organisation and
application is described in chapters 2, 4 and 7.

For programmers, this document also defines the interface to be used for all modules
of the drag-free simulator (chapter 5). For use with Matlab/Simulink, interfaces are
commonly S-functions coded in C. The interface definition presented in this document
provides a common structure for all modules of a simulator.
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2 DF Simulator Features

The features of the DF simulator core include:

• Simulation of full satellite and test mass dynamics in six degrees of freedom by nu-
merical integration of the equations of motion (13 states: attitude rate, quaternion,
position, velocity)

• Up to four differential accelerometers utilizing two test masses each (8 (TMs) + 1
(Satellite) = 9x13 states = 117 states)

• Consideration of linear and nonlinear coupling forces and torques between satellite
and test masses as well as between test masses

• Modelling of cross-coupling interaction

• Earth gravity model choice: EGM96 and EIGEN-GL04C up to 360th degree and
order, GGM02C up to degree and order 200, patched with EGM96 coefficients for
higher degrees

• Gravitational influence of Sun, Moon and planets can be included

• Gravity-gradient torques and forces

• Integration methods: 5th order Runge-Kutta, Bulirsch-Stoer, Euler-Cauchy (small
step size only)

• up to version v-1-2: 128 bit numerical precision (‘quad precision’) on an ALPHA
processor

Several error sources are considered in the model:
+ misalignment and attitude errors
+ coupling biases
+ displacement errors

From version v-1-3 on the libgravity alpha.a has been removed since the ALPHA is not
working properly anymore. It is anticipated that in the near future a version with 128
bit numerical precision on an INTEL will be available.

The rough structure of the dynamics core is displayed in figure 1. The function df sim init
initializes the states, parameters and options. In df sim loop the equations of motion for
the satellite and test masses are integrated and the states are returned. For a description
of the equations of motion incorporated in the DF simulator core see [5].
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Within the integration loop the gravity library is called. The gravity model is described
in detail in [7] for EGM96 and in [6] for the newer models EIGEN–CG03C, EIGEN-
GL04C and GGM02C. The overall structure of the modular DF simulator is displayed
in the next chapter.

DF_SIM_INIT Parameter, States, Options

EoM Integrator

Gravity

Stiffness, Damping

DF_SIM_LOOP
Parameter, Forces, Torques

States

Parameter, Forces, Torques = const. per time step

Figure 1: DF Simulator Core Structure
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3 Installation of the DF Simulator

The DF Simulator is developed on a Linux platform. Installation under Linux is de-
scribed below. Installation under Windows principally is the same as under Linux after
a few additional steps have been carried out. The Windows installation is described in
section 3.2.

3.1 Linux Installation (Default)

The main part of the simulator including the dynamics core is written in Fortran or
C/C++ with a user interface in Matlab/Simulink. As compiler for the Fortran code
gfortran is used and for C/C++ gcc/g++. To install gfortran (as root) carry out the
following steps:

1. Download binary from GCCWiki - GFortran:
http://gcc.gnu.org/wiki/GFortranBinaries

2. Unpack the downloaded tar.gz (e.g. gfortran-linux.tar.gz) in directory /usr (or a
directory of your choice):

gunzip gfortran-linux.tar.gz

tar -xvf gfortran-linux.tar

The gfortran directory is called irun.

3. Create a symbolic link from /usr/irun (or whatever you want to rename it, change
the following command accordingly):

ln -s /usr/irun/bin/gfortran /usr/bin/gfortran

4. Add your library path /usr/irun/lib to /etc/ld.so.conf, then update with:
ldconfig -v

The DF Simulator is under version control using SVN. With
svn co https://spacetec/svn/df_simulator

the complete project including tagged versions from the former SVN repository can
be checked out (use: svn co https://spacetec/svn/df_simulator/trunk to get the
newest version only).
In order to compile the core, run make top inside folder df simulator/trunk. If the
libraries need to be re-compiled, type make libs. For a list of make options including
the explanation of their use simply type make or see below (section 3.3).
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3.2 Windows Installation

In order to compile the DF Simulator on Windows, a Linux-like environment for Win-
dows is necessary.
In this section the prerequisites and instructions how to generate a Windows executable
of the df simulator (software status of 2007/05) are given.

The prerequesites are:

1. Cygwin (or another Linux-like environment for Windows)

2. gcc.4.1.1 (or higher), including gfortran

1. The cygwin installation has to be carried out in the following way:

• download the cygwin tarball from http://cygwin.com/

• install by executing setup.exe with gcc-, gmp-, libgmp-devel-, mpfr-, libmpfr-devel-
, make-, mingw-, and perl-packages (select under categories devel, libs, mingw,
perl)

As of 2007/05 this version includes gcc-3.4.4 but not gfortran. The gfortran version avail-
able from http://gcc.gnu.org/wiki/GFortranBinaries uses gcc-4.2.0. The df simulator
project uses gfortran libraries and libstgc++.a which is not included in the gcc package
that comes with gfortran. The use of libstgc++.a results in an error message declaring
undefined references which are probably caused by having two libgcc.a’s (one being used
by gcc and one for gfortran). The newer libgcc is necessary for the gfortran libs but
does not include some of the procedures called by libstgc++. To avoid these difficulties
download a newer version of gcc (4 and up) that includes gfortran (therefore referring
to the same libgcc).
Note: A newer Cygwin may include gcc.4. But you may have to re-build gcc anyway to
set it up for mingw (see 2. below).

2. The built of gcc (reminder: gcc.4... snapshot and higher required→ includes gfortran)
has to be set up for mingw since the built of dll’s using the cygwin gcc results in a dll that
is calling the cygwin1.dll which apparently is not compatible with MATLAB71 (maybe
later versions will be). The following links have to be set:

• in folder /usr/local/bin

– ln -s /usr/bin/ar.exe ar.exe

– ln -s /usr/bin/ld.exe ld.exe

• in folder /usr/local/gcc-4.1.1/bin

– ln -s /usr/bin/ar.exe ar.exe
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– ln -s /usr/bin/as.exe as.exe

– ln -s /usr/bin/ld.exe ld.exe

– ln -s /usr/bin/nm.exe nm.exe

For higher versions you might also need to set the corresponding mingw32-links, i.e.

• in folder /usr/local/bin

– ln -s /usr/bin/ar.exe mingw32-ar.exe

– ln -s /usr/bin/ld.exe mingw32-ld.exe

• in folder /usr/local/gcc-4.1.1/bin

– ln -s /usr/bin/ar.exe mingw32-ar.exe

– ...

Execute in gcc folder (here gcc-4.1.1):

1) ./configure --prefix=/usr/local/gcc-4.1.1 --target=mingw32 --with-head

ers="/usr/include/mingw" --with-headers="/usr/include/w32api" --with-libs

="/usr/lib/mingw" --with-headers="host-i686-pc-cygwin/gcc"

(Note: --with-headers copies necessary header files for the mingw installation in a
mingw- folder. Only the last --with-headers path is executed, that means that ./con-
figure currently has to be executed three times
a) ./configure --prefix=/usr/local/gcc-4.1.1 --target=mingw32 --with-heade

rs="/usr/include/mingw" --with-libs="/usr/lib/mingw"

b) ./configure --prefix=/usr/local/gcc-4.1.1 --target=mingw32 --with-heade

rs="/usr/include/w32api" --with-libs="/usr/lib/mingw"

c) ./configure --prefix=/usr/local/gcc-4.1.1 --target=mingw32 --with-heade

rs="host-i686-pc-cygwin/gcc" --with-libs="/usr/lib/mingw")

If folder host-i686-pc-cygwin does not exist, continue with 2) make. The folder
host-i686-pc-cygwin should be created now. If make does not run through, execute
again
c) ./configure --prefix=/usr/local/gcc-4.1.1 --target=mingw32 --with-heade

rs="host-i686-pc-cygwin/gcc" --with-libs="/usr/lib/mingw")

Then go on with:

2) make

3) make install
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In folder /usr/local/bin set the link (version example 4.1.1):
ln -s ../gcc-4.1.1/bin/mingw32-gcc.exe mingw32-gcc.exe (to not overwrite de-
fault gcc compiler)

3. Make an import library from the dll’s libmex, libmat and libmx:
cd $MATLAB HOME (set your matlab home directory first)
dlltool -l bin/win32/libmex.a -D bin/win32/libmex.dll -d extern/include/li

bmex.def (same for libmat and libmx)

If you want to test a simple example first: the matlab example timestwo.c can be trans-
lated the following way:
mingw32-gcc -v -g -O2 -shared -fexceptions -otimestwo.dll -I$MATLAB_HOME/e

xtern/include -I$MATLAB_HOME/simulink/include -L$MATLAB_HOME/bin/win32 tim

estwo.c -lmat -lmex -lmx -DMATLAB_MEX_FILE

The df simulator dll is generated with
1) make libs
2) make top
using the same make options as for the Linux installation.

Note: The cygwin installation has been carried out with gcc versions 4.1.1 and 4.1.2.
Newer versions might bring new challenges...

3.3 DF Simulator Make Commands

The simulator make options include:

• libcoeff - creates default input coefficients for the gravity library (the current de-
fault is EGM96)

• libs - creates libraries for the simulator

• top - builds the complete simulator from the top directory

• clean - deletes all object files in the current directory and all subdirectories

• realclean - deletes all object files, backup files, and all dependency files in the
current directory and all subdirectories

• coreclean - realclean for the directories common, dynamics and run

• envclean - realclean for the directories common, and environment

In the subdirectories the following targets can be used:
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• this - compiles the binaries of the current directory

• module - compile the current branch of the source tree
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4 DF Simulator Structure

4.1 DF Simulator Versions

Up to June 2006 the DF Simulator development has been under CVS (Concurrent Ver-
sions System) control. Thereafter SVN is used for revision control. The tags assigned
to subversions of the DF simulator under CVS control are saved in a folder named tags.
There are several versions of the DF simulator available, the highest increment specifying
the latest version:

• v-1-0: Initial version as taken over from GDFS source tree

• v-1-1: Updated version with (1) cross-coupling between translational and rota-
tional motion, (2) a mechanical reference frame which allows the change of the
center of mass position and (3) the gravitational quadrupol effect of the spherical
Earth

• v-1-2: Updated version with the force and torque due to the gravity gradient effect
of the oblate Earth

• v-1-3: Updated version with improved ECI to ECEF transformation containing
(1) earth rotation, (2) IAU 1976 precession theory, (3) IAU 1980 nutation theory,
and (4) polar motion

• v-1-4: New MATLAB/Simulink-to-Core interface and structure definition

• v-1-5: New directory structure including source code for dynamics core as well as
environment modelling

• v-2-0: Updated version to utilize gfortran for compilation

• v-2-1: Atmospheric model added (NRLMSISE-00 + HWM93), new ephemeris
calculation algorithm

• v-2-2: Backup tag, final version where ephemeris and transformation matrix cal-
culation is done inside the df simulator kernel

• v-3-0: Ephemeris and ECI to ECEF transformation matrix calculation is removed
from the kernel and takes place in separate s-functions

Changes in the Matlab parameter structure from version v-1-3 to v-1-4 are documented
in section 6.1.

Newer versions have not been tagged specifically because each check-in of a modified
file is accompanied by a new revision number for the whole simulator project (use
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svn log <file> to see its history). Major changes however should be tagged in a
more human-friendly way (and saved in subfolder tags). It is recommended to use the
latest version (in folder trunk).

4.2 DF Simulator Directory Structure

In figure 2 the DF simulator directory structure is displayed. Up to version v-1-3 the
directories common and environment have not been part of the DF simulator project.
In common, source code accessed by various modules is stored. The directory dynam-
ics contains the source code for the DF simulator core. In environment (cf. figure 3)
the gravity source code to generate the library libgraviy intel.a (placed in folder lib) is
checked in. The gravity library uses the transformation routines available in directory
transformation. The directory magneticfield provides the source code for the calculation
of the Earth’s magnetic field. The source code for the ephemeris calculation is placed in
the ephemeris directory. The folder atmospheric drag provides source code for the atmo-
spheric model. The environment folder will be updated if new environment models are
available. In folder disturbances pre-processing tools for environmental data are provided
(for details cf. [1] and [2]). The run folder (cf. figure 4) contains the Matlab/Simulink
environment for mission simulation. The interface between Matlab/Simulink and the
dynamics core is described in chapter 6. The general interface structure is outlined in
the next chapter.
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Figure 2: DF Simulator Directory Structure
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Figure 3: Environment Directory Structure
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Figure 4: Run Directory Structure
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5 Interface Definition

The DF simulator interface should have an initialization, output, update and termination
part. The Matlab/Simulink interface is represented by an S-function. Within the S-
function, inputs, parameters, states and outputs have to be stored in structures. The
structures are passed to void functions for initialization etc. as follows:

• Init (Parameters,States)

• Output(Inputs,Parameters,States,Outputs)

• Update(Inputs,Parameters,States)

• Terminate(void)

It is self-explanatory that function Init shall contain all initialization necessary for pa-
rameters and states, Output defines the output variables and Terminate is called to
carry out code termination actions. The actual computation is done in function Update.

The simulation module can be provided as a Matlab/Simulink library. An example is
shown in figure 5.

Figure 5: Simulink Model Library

The parameter and state structs are passed over as S-function parameters. Within Mat-
lab, only the parameters and states are stored in structures. Internally, i.e. inside the
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S-function, also inputs and outputs are handled as structures. For an S-function written
in C code, a header file must be provided in which the interface functions and structures
are declared. An example header file could look like this:

#ifndef Interface
#define Interface

#include ”includes.h”

// Parameters
struct Parameters
{

double parameter1;
double parameter2;
...

};

typedef struct Parameters Parameters;

// Inputs
struct Inputs
{

double input1;
...

};

typedef struct Inputs Inputs;

// Outputs
struct Outputs
{

double output1;
...

};

typedef struct Outputs Outputs;
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// States
struct States
{

double states;

};

typedef struct States States;

// Prototypes

extern void Init(struct Parameters*, struct States*);
extern void Output(struct Inputs*, struct Parameters*, struct States*, struct Outputs*);
extern void Update(struct Inputs*, struct Parameters*, struct States*);
extern void Terminate(void);

#endif /* Interface */
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6 Interface for the Drag-Free Simulator Core

The interface df simulator sf.c for the drag-free simulator core calls the following func-
tions:

• Core Init (CoreParam,CoreState)

• Core Output(CoreIn,CoreParam,CoreState,CoreOut)

• Core Update(CoreIn,CoreParam,CoreState)

• Core Terminate()

6.1 Matlab/Simulink Simulation Environment

Directory Structure

The directory structure for a Matlab/Simulink simulation is the following:

(DRAG FREE SIMULATOR HOME)/run/

with subfolders environment data, m-files (containing functions, structures and environ-
ment), mex, simulink, missions, mission template, and tools. Folder mex contains the s-
functions needed for a simulation, simulink provides libraries for model build, in missions
satellite applications are placed like the STEP reference case, mission template contains
everything needed to start a simulation (the how-to is lined out in chapter 7) and tools
contains related non-Matlab utilities. In folder environment data coefficient and other
environmental data files are stored. The Matlab file start df sim sets the scenario path
for the data files to be loaded, initializes the structures and opens the Simulink file for the
simulation. It should be placed at the top directory of every mission, e.g. it can be found
under missions/STEP ref and the default is placed in mission template. Among the Mat-
lab files in m-files is the m-file load df sim params which loads the simulation specific
parameter data from m-file load sim data, the satellite specific data from load sat data
and accelerometer data from files load acc data [i], i=1..4, also placed in subfolder data.
The default load sim data.m, load sat data.m and load acc data [i].m, i=1..4 are stored
in subfolder mission template/data. In subfolder mission template/property data ex-
ample data for geometry or other properties are stored. This data is generated by
pre-processing tools, e.g. those in (DRAG FREE SIMULATOR HOME)/disturbances.

Matlab Structures

Compared to previous versions of the DF simulator the S-function for the simulator core
is reorganized to conform with the current guidelines established for interface construc-
tion. For the same reason the Matlab structures for the drag-free simulator core are
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reshaped.

Since the structure definition within the Matlab simulation files up to version v-1-3 is
not consistent with the structures defined above, several changes are introduced. These
changes also address the inconsistency in terminology prior to version v-1-4: Satellite
parameters should have been gathered in a satellite structure whereas they are saved
as satellite structure parameters and also as simulation structure parameters. An ex-
ample for that is df sim struct.d mass which should have been satellite df struct.d mass
for constant mass. Recently the drag-free simulator has been updated to include the
option to introduce a varying mass due to fuel consumption etc. (see [5]) such that the
satellite mass becomes a time-variable input and should be placed in the input structure.

The tables below summarize the parameters in the data files. For comparison, also the
notation used in former versions (until version v-1-3) is given.

Parameters in load sim data:

v-1-4 and higher versions previous versions
df sim.const links df sim struct.d const links
acc opt.acc id acc opt.acc id
df core param.d MJD df sim struct.d MJD
df core param.d t steps df sim struct.d t step
df core param.d eps dp df sim struct.d eps dp
df core param.d h min dp df sim struct.d h min dp
df core param.d h 1 dp df sim struct.d h 1 dp
df core param.i option g df sim struct.i option g
df core param.i option g tide N/A
df core param.i option g order df sim struct.i option g order
df core param.i option g degree df sim struct.i option g degree
df core param.i option g cog df sim struct.i option g cog
df core param.i option g planets df sim struct.i option g planets
df core param.i option gg model df sim struct.i option gg model
df core param.i option ggt df sim struct.i option ggt
df core param.i option gg acc df sim struct.i option gg acc
df core param.i option ggt tm df sim struct.i option ggt tm
df core param.i option refsys N/A
(only used up to v-2-2)
df core param.i option intmeth N/A

The parameter df sim.const links is fed in directly as parameter to the s-function block
like acc opt.acc id. The value of df sim.const links determines whether the coupling
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forces and torques between satellite and test masses are constant or changing with time.
The original option to input variable spring stiffness, damping and DC forces and torques
is eliminated. Instead forces da F trans and torques da T rot can be input to model e.g.
nonlinear coupling. These inputs are internally added to the DC parts of the coupling
forces and torques.

Parameters in load sat data:

v-1-4 and higher versions previous versions
df sim struct.d mass
df sim struct.da moi
df sim struct.da r m mb

df core param.d num acc satellite df struct.d num acc
df core param.i option sat dof df sim struct.i option sat dof
df core state.da y df sim struct.da y

The inputs d mass, da moi and da r m mb are fed in directly, e.g. as inputs through
Simulink Constant blocks. In the S-function they are placed in the input structure.

Parameters in load acc data 1 (dito for load acc data 2,3,4):
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v-1-4 and higher versions previous versions
df core state.da y df sim struct.da y
df core param.s accelero1.d num tm satellite df struct.s accelero1.d num tm
df core param.s accelero1... satellite df struct.s accelero1...
da r m ma da r m ma
da T a b da T a b
sa test mass1(2).d mass sa test mass1(2).d mass
sa test mass1(2).d eta sa test mass1(2).d eta
sa test mass1(2).d moi sa test mass1(2).d moi
sa test mass1(2).d moi inv sa test mass1(2).d moi inv
sa test mass1(2).da r a asens sa test mass1(2).da r a asens
sa test mass1(2).da T sens a sa test mass1(2).da T sens a
sa test mass1(2).da switch trans DOF sa test mass1(2).da switch trans DOF
sa test mass1(2).da switch rot DOF sa test mass1(2).da switch rot DOF
sa link1(2,3).da k trans sa link1(2,3).da k trans
sa link1(2,3).da kr trans sa link1(2,3).da kr trans
sa link1(2,3).da d trans sa link1(2,3).da d trans
sa link1(2,3).da dr trans sa link1(2,3).da dr trans
sa link1(2,3).da f dc trans sa link1(2,3).da f dc trans
sa link1(2,3).da r offset sa link1(2,3).da r offset
sa link1(2,3).da k rot sa link1(2,3).da k rot

sa link1(2,3).da kt rot sa link1(2,3).da kt rot
sa link1(2,3).da d rot sa link1(2,3).da d rot
sa link1(2,3).da dt rot sa link1(2,3).da dt rot
sa link1(2,3).da t dc rot sa link1(2,3).da t dc rot

An example Simulink model is shown in figure 6. The first two inputs are external forces
and torques expressed in the inertial, orbital and mechanical reference frame (see [5] for
a definition of reference frames and [8] for a more detailed input description). The third
Simulink block provides satellite mass, moments of inertia and the vector specifying
the coordinates of the mechanical reference frame w.r.t. the satellite body-fixed frame
(originating in the satellite’s center of mass). The ECI to ECEF transformation matrix,
here calculated by the ECI2ECEF matrix sf block, is supplied by input port number
four. The fifth block contains the ephemeris sf which provides the position of the
celestial bodies. Finally, for each accelerometer (only one is present in this example)
links specifying coupling forces and torques can be input (this example has only one
test mass, therefore three force and three torque vector components can be input). This
input can be used to model non-linear coupling interaction.
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Figure 6: Simulink Model

6.2 Interface Layout

As described in the beginning of this chapter the interface df simulator sf calls the void
functions CORE Init, CORE Output, CORE Update and CORE Terminate.

6.3 Wrapper for the Core

The interface defined previously has been introduced to provide a common structure
for all modules included in a simulation. However it is not the purpose to re-code the
drag-free simulator core module itself. After reshaping of the Matlab structures the
core interface cannot address the core directly anymore. A wrapper has been coded
to connect the interface with the core. In this wrapper the interface structures are
assigned to the core structures and variables. The interface df simulator sf calls the void
functions CORE Init, CORE Output, CORE Update and CORE Terminate within the
wrapper df simulator front.c. The wrapper calls the Fortran core routines df sim init
and df sim loop. The wrapper functions are described below.

CORE Init(CoreParam,CoreState)

In this function the core parameter structures and states handed over to the core function
df sim init are initialized. In previous versions of the DF simulator (up to v-1-3) some
variables belonging to the input structure were initialized in df sim init. Since the CoreIn
struct is not passed over to CORE Init, and since these variables are not needed in
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CORE Output (see below) the initialization is not necessary at this point since it is
done for every time step in CORE Update.

CORE Output(CoreIn,CoreParam,CoreState,CoreOut)

in fact: CORE Output(CoreState,CoreOut)
This function is called after CORE Init. It only assignes the states within CoreState to
the ouput CoreOut.

CORE Update(CoreIn,CoreParam,CoreState)

This function calls df sim loop, the core function that calls the EoM (equations of mo-
tion) integrator. The interface parameters, states and inputs within CoreIn, CoreParam
and CoreState are assigned to the core parameters, states and inputs. In this routine
the externally provided coupling forces and torques are added to the DC coupling forces
and torques for every time step.

CORE Terminate()

This function is a void function.
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7 DF Simulator Application

To start a mission including the DF Simulator modules, a new subdirectory can be
placed in the missions directory. In the mission template directory the Matlab files nec-
essary for initialization and set-up of parameters are included. In the form provided
they can be copied directly to the new mission and modified where appropriate. The
modification options for the Matlab script parameters are described below. With the
help of the Simulink libraries provided in directory df simulator/run/simulink a new
Simulink model file can be created easily. The new model can be loaded through param-
eter df simulator model in the input data file load sim data.m. The file start df sim.m
initializes the simulation. In this file all paths used for a simulation need to be entered.

NOTE: The functions and structure definitions in the m-files directory should never be
changed.

The STEP ref simulation in the missions folder serves as a reference case for the STEP
test mass dynamics. It can also be studied to get familiarized how the DF simulator core
module is used. The STEP reference simulation is documented in [9]. The corresponding
Simulink model includes the s-function blocks for the calculation of the transformation
matrix from ECI to ECEF and the ephemeris of the celestial bodies. These blocks are
only added to illustrate their usage. As this information is not needed for the STEP
reference case, it would be sufficient to provide zero-vectors to the s-function input ports.

A description of the DF simulator core S-function can be found in [8]. For information
on the transformation library and the ephemeris library see [3] and [4].

7.1 Matlab Script Options - Dynamics Core

The options df core param.i* in the matlab script files that can be modified can be
grouped in satellite, gravity and further simulator options.

Satellite Options

• i option sat dof: Option for choosing which DOFs of the satellite will be fixed
and which will be free and thus integrated:

– I ALL FREE: all satellite DOFs are free

– I X Y TRANS Z ROT: only x and y are free, z is fixed (equatorial orbit),
rotation around z only

– I NO TRANS ALL ROT: no translational movement, all rotational DOFs
free

– I NO TRANS X ROT: no translational movement, only rotation around x
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– I NO TRANS Y ROT: no translational movement, only rotation around y

– I NO TRANS Z ROT: no translational movement, only rotation around z

– I NONE FREE: all satellite DOFs are fixed

Gravity Options

• i option g: Option for choosing the gravity model applied in the simulation to
calculate the acceleration due to gravity forces:

– I G OPT SIMPLE: This option uses a simplified model of the gravitational
field up to degree 6 (Jn-terms of equation (1)).

– I G OPT EGM: full Earth Gravity Model (EGM) from gravitational poten-
tial function:

Φ =
µE
r

[
1 +

∞∑
n=2

(
RE

r

)n
JnPn0(sinΘ)

]

+
µE
r

∞∑
n=2

n∑
m=1

(
RE

r

)n
(Cnmcos(mλ) + Snmsin(mλ))Pnm(sinΘ) (1)

with:
RE Earth radius.
r Position vector.
Jn Earth zonal harmonic coefficients of degree n.
Pnm Legendre polynomials of degree n and order m.
Θ Geocentric latitude.
Cnm, Snm Tesseral harmonic coefficients for n 6= m,

sectoral harmonic coefficients for n = m.
λ Geocentric longitude.

– I G OPT GFZ: Model up to degree 360 based on GRACE data from GFZ
described in [6]

– I G OPT CSR: Model up to degree 360 based on GRACE data from CSR
described in [6]

• i option g tide: Option for global gravity model specifying in which tide system
the spherical harmonic coefficients shall be provided.

– I TIDE FREE: In the tide-free system all tidal effects are removed (EGM96
default).

– I TIDE ZERO: In the zero-tide system the permanent tidal deformation due
to external bodies is retained. This affects the C20 coefficient only.
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• i option g degree: Option setting the degree of the gravity model. This option
can be set from 1 to 360.

• i option g order: Option setting the order of the gravity model. This option can
be set from 0 to 6 if I G OPT SIMPLE is used and from 0 to i option g degree if
I G OPT EGM, I G OPT GFZ or I G OPT CSR is used.

• i option g planets(1:10): Option switching on(1)/off(0) the effects of Sun, Moon
and planets on the gravitational acceleration (i option g planets(1): Sun, (2): Mer-
cury, (3): Venus, (4): Mars, (5): Jupiter, (6): Saturn, (7): Uranus, (8): Nep-
tune, (9): Pluto, (10): Moon). This option is only active if I G OPT EGM,
I G OPT GFZ or I G OPT CSR is used.

• i option g cog: Option switching on(1)/off(0) the correction for the gravity force
acting in the satellite’s center of gravity (COG) instead of its center of mass
(COM).

• i option gg model: Option for choosing the model to be applied for calcula-
tion of the gravity-gradient matrix and the gravity-gradient induced forces and
torques. For the latter only options I GG OPT SPHERE and I GG OPT J2 ap-
ply. If I GG OPT EGM, I G OPT GFZ or I G OPT CSR is chosen, the calcula-
tion will be carried out as if I GG OPT J2 was set.
The gravity-gradient matrix can be used alternatively for the computation of the
gravity-gradient torque and the gravity-gradient acceleration between the COMs
of satellite and test masses. Here all options apply. However, the gravity-gradient
matrix is calculated by linearizing the gravitational field at the center of mass of
the satellite.

– I GG OPT SPHERE: gravity-gradient matrix based on a spherical field.

– I GG OPT J2: gravity-gradient matrix including the J2 zonal harmonic term
of the gravitational potential (1).

– I GG OPT EGM: gravity-gradient matrix of the Earth Gravity Model. In
this case the option i option g must be set to I G OPT EGM, I G OPT GFZ
or I G OPT CSR.

• i option ggt: Option for choosing the gravity model applied in the simulation for
gravity gradient torques:

– I GGT OPT OFF: no gravity-gradient torque is calculated.

– I GGT OPT SIMPLE: gravity-gradient torque calculated from spherical po-
tential if I GG OPT SPHERE is used, including J2-term if I GG OPT J2 is
used.

ZARM - Center of Applied Space Technology and Microgravity Page 28 of 30



The Modular Drag-Free Simulator

Doc.No.: FLK-SIM-TN-ZAR-006

Issue: 1.6

Page: 29 of 30

– I GGT OPT MATRIX: gravity-gradient torque calculated using the gravity-
gradient matrix chosen by option i option gg model.

• i option gg acc: Option for choosing the way to compute the gravity gradient
acceleration between test mass and satellite:

– I GG ACC OPT OFF: no gravity-gradient acceleration is calculated.

– I GG ACC OPT SIMPLE: difference of accelerations from spherical gravita-
tional potential

– I GG ACC OPT EGM: difference of accelerations from Earth Gravity Model.
In this case the option i option g must be set to I G OPT EGM, I G OPT GFZ
or I G OPT CSR.

– I GG ACC OPT SPHERE: difference of accelerations from spherical gravi-
tational potential expanding fractions to avoid numerical problems

– I GG ACC OPT LIN: The gravity-gradient acceleration is computed by lin-
earizing the gravity field at the satellite COM using the gravity-gradient ma-
trix.

NOTE: Use last two options (I GG ACC OPT SPHERE, I GG ACC OPT LIN)
on 32-bit machines to avoid numerical problems!

• i option ggt tm: Option for choosing the way to compute the gravity gradient
torque for the test masses:

– I GGT OPT OFF: no gravity-gradient torque is calculated.

– I GGT OPT SIMPLE: gravity-gradient torque calculated from spherical po-
tential if I GG OPT SPHERE is used, including J2-term if I GG OPT J2 is
used.

– I GGT OPT MATRIX: gravity-gradient torque calculated using the gravity-
gradient matrix chosen by option i option gg model.

Further Simulator Options

• i option intmeth: Option for choosing the integration method

– I INT RK: 5th order Runge-Kutta

– I INT BS: Bulirsch-Stoer

– I INT EUL: Euler-Cauchy (for small step size only!)
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1- Introduction 
 
Albedo is the fraction of solar energy reflected diffusely from the planet back into space. It is 
a measure of the reflectivity of the planet’s surface. Thus, the Earth albedo can be defined as 
the fraction of the incident solar radiation returned to space from Earth’s surface. 
 

radiationincident

spacetobackreflectedradiation
albedo

 

    =  

 
The range of possible values for the albedo is from 0 (completely dark) to 1 (completely 
bright). 
 
The Earth’s surface can be considered as a diffusely reflecting surface. The reflecting 
radiation represents approximately 34% of the incident radiation. However, this factor 
depends on the surface conditions. Ice, especially with snow on top of it, has a high albedo. 
Most sunlight hitting the ice surface bounces back towards space. Water is much more 
absorbent and less reflective. So, if there is a lot of water, more solar radiation is absorbed by 
the ocean than when ice dominates. Following there are some usual values of the albedo 
related to the surface's condition. 
 

Clouds:0.4- 0.8 green areas: 0.05 - 0.25 average planetary: 0.34 
 
The percentage of diffusely reflected Sun light in relation to various surface conditions of the 
Earth surface is shown in the next figure. 

 
Fig. 1 – Percentage of diffusely reflected Sun light. 
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The effect of the albedo in the satellite depends on the following factors: 
 
- Position of the satellite; 
- Attitude of the satellite; 
- Optical properties of the satellite surfaces: 
 

 - incident radiation is absorbed; 
 - incident radiation is reflected specularly; 
 - incident radiation is reflected diffusely; 
 - some combination of absorbed, specularly and diffusely cases. 
 

 

 
radiation is absorbed 

 

 

 
radiation is reflected 

specularly 
 

 

 
radiation is reflected 

diffusely 

Fig. 2 - Optical properties of the surfaces. 
 
2- The Earth Albedo Mathematical Model 
 
Solar radiation includes all electromagnetic waves emitted by the Sun. Solar radiation falling 
at right angles on an area of 1 m2 at a solar distance of 1 AU (149598200 ± 500 km) is 1371 ± 
5 W/m2, which is called solar constant. The solar radiation for a distance d is given by: 

2 4 d

P
J S π

=  

 
where P is the total power output from the Sun (.8×1025 W) and d is the distance from the 
Sun. 
 
The model of the Earth albedo is based on the reflectivity data measured by NASA’s Earth 
Probe satellite, which is part of the TOMS project (Total Ozone Mapping Spectrometer). In 
this project, the reflectivity data is available daily, on line at TOMS website: 
http://toms.gsfc.nasa.go/. 
 
The reflectivity data fluctuates because of changes in clouds and ice coverage and seasonal 
changes. The data resolution partitions the Earth surface into a number of cells. The incident 
irradiance on each cell is used to calculate the total radiant flux from the cell. From the radiant 
flux from each cell, the irradiance at the satellite is calculated using a model based in the 
model developed by Bhanderi, 2005. 
 
The satellite data is given in a resolution of ∆φg = 1 deg in latitude times ∆θg = 1.25 deg in 
longitude (180 × 288 data points) that result in 51840 cells in the Earth’s surface. 
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The two-dimensional data space D is defined as a grid of data points Φ × Θ, where Φ 
represents the latitude and Θ the longitude: 
 

( )
( )





∆∆∆=Θ

∆∆∆=Φ
=

ggg

ggg
D

θθθ
φφφ

287,...,2,,0

179,...,2,,0
 

 
To each data point (φg , θg) in the data space D, the mean reflectance of a cell, φg ± φg /2 and 
θg ± θg /2, on the Earth surface is available in the TOMS data product. The reflectivity of a 
cell is calculated by measuring the irradiance received Emeas by the satellite. The irradiance 
measurement Emeas is modeled by: 

0 -1

 
ddddmeas EE

S

f
E +=

ρ
ρ

 

where: 
-  ρ is the reflectivity of the reflecting surface; 
-  f is the fraction of reflected irradiation reaching the satellite; 
-  S is the fraction of reflected irradiance scattered back to the reflecting surface; 
-  Edd is the amount of direct and diffuse irradiance reaching the reflecting surface; 
-  Edd0 is the amount of atmospheric scattered irradiance reaching the satellite. 

 

 
Fig. 3 – Irradiance reflected towards the satellite. 

 
The total irradiance reaching the surface is the sum of Edd and the infinite sum of irradiance 
reflected between the atmosphere and the surface. 
 

( )
ρ

ρρρρρ
 1

 
...... 1 22

f

E
SSSEE ddnn

ddr −
=+++++=  
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Due to atmospheric scattering and absorption only a fraction f of the reflected irradiation 
reaches the satellite. The incident solar irradiance EAM0 (measured considering air mass zero) 
reaches the cell at grid point (φg,θg), at an incident angle φin to the cell normal. The amount of 
radiant flux reflected by the cell is given by the irradiance and the area of the cell AC(φg,θg). 
The Earth albedo contribution of the cell EC that reaches the satellite, and the density of the 
radiant flux are dependent on the angle φout. 

 
Fig. 4 - Cell at grid point (φg,θg) in the surface of the Earth. 

 
The area of the cell AC(φg,θg) is found using surface of revolutions. 
 

( ) 














 ∆
+−







 ∆
−=

2
cos

2
cos , 2 g

g
g

gEgggC rA
φ

φ
φ

φθθφ  

 
where rE is the Earth mean radius. 
 
The incident radiant flux PC(φg,θg) on a single cell at grid point (φg,θg), is given by: 
 

( ) ( ) CSunggCAMOggC nrAEP ˆˆ , , ⋅= θφθφ  

 
where Cn̂  is the cell normal and Sunr̂  is the Sun line of sight vector. 
 
The reflected flux PR(φg,θg) is given by: 
 

( ) ( ) ( )ggCggggr PP θφθφρθφ ,,, =  

 
where ρ(φg , θg) is the reflectivity of the grid point. 
 
Assuming Lambertian reflectivity (Ryer, 1997), the reflected irradiance Er(φg,θg) of the cell 
can be calculated by: 
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( ) ( )
π

θφ
θφ ggr

ggr

P
E

,
, =  

 
The reflected irradiance at satellite distance Esat(φg,θg) is given by: 
 

( ) ( )
2ˆ

,
,

sat

ggr
ggsat

r

E
E

θφ
θφ =  

where satr̂   is the satellite line of sight vector. 
 
The albedo irradiance EC(φg,θg) from a single cell is found combine the previous equations. 
 

( ) ( ) ( ) ( )( )
2

AMO

2 ˆ

ˆˆˆˆ E ,

ˆ

ˆˆ ,
,

sat

CsatCsunCgg

sat

Csatggr
ggC

r

nrnrA

r

nrP
E

π
θφρ

π
θφ

θφ
⋅⋅

=
⋅

=  

 
And the total albedo irradiance is given by the following expression: 
 

( )∑
∩

=
satSun VV

ggCa EE
 

,θφ  

 
where VSun ∩ Vsat is the set of sunlit grid points visible from the satellite, VSun are the grid 
points visible from Sun and Vsat are the grid points visible from satellite. 
 
The reference system used in the model is presented in the next figure. 

 
Fig. 5 – The reference system. 
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The xS axis is parallel to the Earth equatorial plane. The yS axis is in the plane that contains 
the meridian of the subsatellite point. The zS axis is in the direction of the radius. 
 
3- Implementation of the model 
 
The model was implemented in Matlab/Simulink using S-Functions generated from routines 
written in C code. The main window of the model is shown in Figure 6. The item 3.1 
presented a description of the main subsystems. Figure 7 presents the structure of the Earth 
Albedo Model 
 
3.1- Description of the Sub-Systems 
 
To calculate the albedo, the state vector of the satellite must be determined. This vector is 
obtained in the subsystem State Vector, from the initial keplerian elements of the satellite. 
Beyond the state vector it is necessary to determine the sun vector, so this vector is calculated 
in the subsystem Sun Vector considering the modified julian date related to 1950.0 as input. 
 
With the state vector and the sun vector, the illumination condition is calculated in the 
subsystem Illumination. These vectors were calculated considering the geocentric inertial 
frame referred to vernal equinox (ECI) related to J2000 equator and equinox. To calculate the 
albedo it is necessary to transform these coordinates into geocentric terrestrial coordinates 
(ECEF). This is made in the subsystem Geocentric Inertial Frame to Geocentric Terrestrial 
Frame. With these new coordinates the albedo, the incident angle at each cell and the incident 
angle at the satellite are calculated in the subsystems Albedo Irradiance, Incident Angle at 
Grid Point and Incident Angle at the Satellite. 
 
The subsystem Albedo Irradiance provides a map (Figures 21 and 22) that shows the albedo 
that reaches the satellite from each cell visible by the satellite in the surface of the Earth. 
However, to determine the total albedo vector it is necessary to sum all albedo vectors from 
all cells. Thus some calculations must be done.  
 
The subsystem Subsatellite Point provides the longitude and the latitude of the subsatellite 
point in the Earth surface. Then, in the next subsystem, the longitude and the latitude of each 
cell are determined and the result is saved in the matrix cell_longitude and cell_latitude. With 
these matrixs and with the subsatellite coordinates the matrixes cell_albedo_x, cell_albedo_y 
and cell_albedo_z are calculated in the subsystem Albedo of Each Cell. Finally, the total 
albedo vector is calculated in the subsystem Albedo Sum. 
 
The main structure of the Earth Albedo Model is shown in Figure 6. The input variables of the 
model are related in Figure 7, and the output variables in Figure 8. The variables saved in the 
workspace during the execution of the model are shown in Figure 9. 
 
To calculate forces and torques applied to the satellite due to the albedo the matrixes 
cell_albedo_x, cell_albedo_y and cell_albedo_z can be used. But a model describing the 
satellite shape and a description of the optical properties referred to the satellite surfaces are 
necessary. However the albedo model is not dependent of the satellite model and can be 
applied to any mission, considering different satellite models. Meanwhile the development of 
these satellite models is not the goal of the albedo model. 
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Fig. 6- Main window of the Earth Albedo Model. 
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Fig. 7 – Structure of the Earth Albedo Model. 
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3.2- Input Variables 
 
The input variables for the model are presented in Figure 8. The figure shows the input 
variables and the sub-system where the variables must be set. 
 

 
 

Fig. 8 – Input variables of the Earth Abedo Model. 
 
 
 
 
 
 
 
 
 
 



 

 Doc.No.: FLK-ENV-RP-ZAR-001 

Issue:  2.0 

Page:  13 of 91  

 

ZARM – Center of Applied Space Technology and Microgravity Page 13 of 91 

3.3- Output Variables 
 
The output variables are presented in Figure 9. 
 

 
 

Fig. 9 – Output variables of the Earth Albedo Model. 
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3.4- Variables Saved in the Workspace 
 
The variables saved in the Matlab workspace are presented in Figure 10. 
 

 
 

Fig. 10 – Variables saved in the workspace. 
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4- Some Results Provided by the Earth Albedo Model 
 
4.1- The Reflectivity of the Earth Surface 
 
The reflectivity of the Earth considering the date 13.02.2006 is shown in Figures 11 and 12. 
Figure 11 shows the reflectivity replacing the gaps in the data measured by zero. Figure 12 
shows the reflectivity replacing the gaps by one. 

 
Fig. 11 – Reflectance of the Earth replacing the gaps by zero. 

 

 
Fig. 12 – Reflectance of the Earth replacing the gaps by one. 
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4.2- The Full Albedo Irradiance 
 
In Figures 13 and 14 the full albedo irradiance is presented. This represents a hypothetic 
situation that considers the satellite and the Sun at the zenith of each cell in the surface of the 
Earth. The full albedo can be considered the maximum value for the albedo in W/m2 for a 
given altitude. 
 

 
Fig. 13 – Full albedo irradiance. 

 

 
Fig. 14 – Full albedo irradiance 3D. 
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4.3- The Instantaneous Albedo Irradiance 
 
The instantaneous albedo irradiance is presented in Figures 15 and 16. This represents a 
hypothetic situation that considers the satellite at the zenith of each cell and the Sun in a fixed 
predefined position (dependent of the time). The instantaneous albedo can be considered the 
maximum albedo in W/m2 of each cell for a given altitude at a specific instant of time. 
 

 
Fig. 15 – Instantaneous albedo irradiance. 

 

 
Fig. 16 – Instantaneous albedo irradiance 3D. 
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4.4- The Incident Angle at the Grid Point 
 
In Figures 17 and 18 the incident angle at the grid point φin is presented in radians. 
 

 
Fig. 17 – Incident angle at the grid point. 

 

 
Fig. 18 – Incident angle at the grid point 3D. 
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4.5- The Incident Angle at the Satellite 
 
In Figures 19 and 20 the incident angle at the satellite φout is presented in radians. 
 

 
Fig. 19 – Incident angle at the satellite. 

 

 
Fig. 20 – Incident angle at the satellite 3D. 
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4.6- The Albedo Irradiance at the Satellite 
 
The albedo irradiance is presented in Figures 21 and 22. This represents the albedo regard to 
the set of sunlit grid points visible from the satellite for a specific position of the satellite in a 
specific instant of time. 

 
Fig. 21 – Albedo irradiance in W/m2. 

 

 
Fig. 22 – Albedo irradiance in W/m2 3D. 
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4.7- The Albedo Vector Centered in the Satellite Position 
 
Figure 23 shows the albedo vector that reaches the satellite in W/m2. 
 

 
Fig. 23 – Albedo vector in W/m2. 

 
4.8- Satellite Illumination Condition for the Entire Day 
 
The satellite illumination condition is presented in Figure 24.  
 

 
Fig. 24 – Satellite illumination condition for the entire day. 
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4.9- Number of Illuminated Visible Cells for the Entire Day 
 
The number of illuminated cells visible by the satellite is presented in Figure 25.  
 

 
Fig. 25 – Number of illuminated visible cells for the entire day. 

 
4.10- Total Albedo for the Entire Day 
 
The total albedo in W/m2 for the entire day at satellite position is presented in Figure 26.  
 

 
Fig. 26 – Total albedo for the entire day. 
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The total albedo vector in W/m2 for the entire day is presented in Figure 27.  
 

 
Fig. 27 – Total albedo vector for the entire day. 

 
 
5- Results Obtained Considering Different Resolutions 
 
The satellite data is given in a maximum resolution of  ∆φg = 1 deg in latitude times ∆θg = 
1.25 deg in longitude. This represents 180 × 288 data points that results in 51840 cells in the 
maximum resolution. Thus, the number of elements in the matrixes used to calculated the 
albedo vector is very big (51840 elements). A possibility to reduce the computer effort in the 
calculations could be obtained reducing of the number of elements, considering the average of 
the reflectivity of a group of cells in the surface of the Earth. Table 1 shows the number of 
cells related to a reduction factor that can be set in the Earth Albedo Model. 
 

Table 1- Reduction Factor 

Reduction Factor 
Size of the 

Reflectivity Matrix 
Number of Cells 

1 180 x 280 51840 
2 90 x 144 12960 
3 60 x 96 5760 
4 45 x 72 3240 
5 36 x 57 2052 
6 30 x 48 1440 
7 25 x 36 1025 
8 22 x 36 792 
9 20 x 32 640 
10 18 x 28 504 
15 12 x 19 228 
20 9 x 14 126 
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A study of the effect in the results obtained with the Albedo Model using different resolutions 
is presented in Figures 28 to 98 
 
5.1- Reduction Factor 1 
 

 
Fig. 28 – Reflectivity of the Earth Surface (red. factor 1). 

 
 
 

 
Fig. 29 – Illuminated Visible Cells (red. factor 1). 
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Fig. 30 – Total albedo (red. factor 1). 

 
 
 

 
Fig. 31 – Total albedo vector (red. factor 1). 
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5.2- Reduction Factor 2 
 
 

 
Fig. 32 – Reflectivity of the Earth Surface (red. factor 2). 

 
 
 

 
Fig. 33 – Illuminated Visible Cells (red. factor 2). 
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Fig. 34 – Total albedo (red. factor 2). 

 
 
 

 
Fig. 35 – Total albedo vector (red. factor 2). 
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5.2.1- Reduction Factor 1 x Reduction Factor 2 
 
 

 
Fig. 36 – Difference in the total albedo (red. factor 1 x red. factor 2). 

 
 
 

 
Fig. 37 – Difference in the total albedo vector (red. factor 1 x red. factor 2). 
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5.3- Reduction Factor 3 
 
 

 
Fig. 38 – Reflectivity of the Earth Surface (red. factor 3). 

 
 
 

 
Fig. 39 – Illuminated Visible Cells (red. factor 3). 
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Fig. 40 – Total albedo (red. factor 3). 

 
 
 

 
Fig. 41 – Total albedo vector (red. factor 3). 
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5.3.1- Reduction Factor 1 x Reduction Factor 3 
 
 

 
Fig. 42 – Difference in the total albedo (red. factor 1 x red. factor 3). 

 
 
 

 
Fig. 43 – Difference in the total albedo vector (red. factor 1 x red. factor 3). 
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5.4- Reduction Factor 4 
 
 

 
Fig. 44 – Reflectivity of the Earth Surface (red. factor 4). 

 
 
 

 
Fig. 45 – Illuminated Visible Cells (red. factor 4). 
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Fig. 46 – Total albedo (red. factor 4). 

 
 
 

 
Fig. 47 – Total albedo vector (red. factor 4). 
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5.4.1- Reduction Factor 1 x Reduction Factor 4 
 
 

 
Fig. 48 – Difference in the total albedo (red. factor 1 x red. factor 4). 

 
 
 

 
Fig. 49 – Difference in the total albedo vector (red. factor 1 x red. factor 4). 
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5.5- Reduction Factor 5 
 
 

 
Fig. 50 – Reflectivity of the Earth Surface (red. factor 5). 

 
 
 

 
Fig. 51 – Illuminated Visible Cells (red. factor 5). 
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Fig. 52 – Total albedo (red. factor 5). 

 
 
 

 
Fig. 53 – Total albedo vector (red. factor 5). 
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5.5.1- Reduction Factor 1 x Reduction Factor 5 
 
 

 
Fig. 54 – Difference in the total albedo (red. factor 1 x red. factor 5). 

 
 
 

 
Fig. 55 – Difference in the total albedo vector (red. factor 1 x red. factor 5). 
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5.6- Reduction Factor 6 
 
 

 
Fig. 56 – Reflectivity of the Earth Surface (red. factor 6). 

 
 
 

 
Fig. 57 – Illuminated Visible Cells (red. factor 6). 
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Fig. 58 – Total albedo (red. factor 6). 

 
 
 

 
Fig. 59 – Total albedo vector (red. factor 6). 
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5.6.1- Reduction Factor 1 x Reduction Factor 6 
 
 

 
Fig. 60 – Difference in the total albedo (red. factor 1 x red. factor 6). 

 
 
 

 
Fig. 61 – Difference in the total albedo vector (red. factor 1 x red. factor 6). 
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5.7- Reduction Factor 7 
 
 

 
Fig. 62 – Reflectivity of the Earth Surface (red. factor 7). 

 
 
 

 
Fig. 63 – Illuminated Visible Cells (red. factor 7). 
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Fig. 64 – Total albedo (red. factor 7). 

 
 
 

 
Fig. 65 – Total albedo vector (red. factor 7). 
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5.7.1- Reduction Factor 1 x Reduction Factor 7 
 
 

 
Fig. 66 – Difference in the total albedo (red. factor 1 x red. factor 7). 

 
 
 

 
Fig. 67 – Difference in the total albedo vector (red. factor 1 x red. factor 7). 

 
 
 
 
 
 



 

 Doc.No.: FLK-ENV-RP-ZAR-001 

Issue:  2.0 

Page:  44 of 91  

 

ZARM – Center of Applied Space Technology and Microgravity Page 44 of 91 

5.8- Reduction Factor 8 
 

 
Fig. 68 – Reflectivity of the Earth Surface (red. factor 8). 

 
 
 

 
Fig. 69 – Illuminated Visible Cells (red. factor 8). 
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Fig. 70 – Total albedo (red. factor 8). 

 
 
 

 
Fig. 71 – Total albedo vector (red. factor 8). 
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5.8.1- Reduction Factor 1 x Reduction Factor 8 
 
 

 
Fig. 72 – Difference in the total albedo (red. factor 1 x red. factor 8). 

 
 
 

 
Fig. 73 – Difference in the total albedo vector (red. factor 1 x red. factor 8). 
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5.9- Reduction Factor 9 
 
 

 
Fig. 74 – Reflectivity of the Earth Surface (red. factor 9). 

 
 
 

 
Fig. 75 – Illuminated Visible Cells (red. factor 9). 
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Fig. 76 – Total albedo (red. factor 9). 

 
 
 

 
Fig. 77 – Total albedo vector (red. factor 9). 
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5.9.1- Reduction Factor 1 x Reduction Factor 9 
 
 

 
Fig. 78 – Difference in the total albedo (red. factor 1 x red. factor 9). 

 
 
 

 
Fig. 79 – Difference in the total albedo vector (red. factor 1 x red. factor 9). 
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5.10- Reduction Factor 10 
 
 
 

 
Fig. 80 – Reflectivity of the Earth Surface (red. factor 10). 

 
 
 

 
Fig. 81 – Illuminated Visible Cells (red. factor 10). 
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Fig. 82 – Total albedo (red. factor 10). 

 
 
 

 
Fig. 83 – Total albedo vector (red. factor 10). 
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5.10.1- Reduction Factor 1 x Reduction Factor 10 
 
 

 
Fig. 84 – Difference in the total albedo (red. factor 1 x red. factor 10). 

 
 
 

 
Fig. 85 – Difference in the total albedo vector (red. factor 1 x red. factor 10). 
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5.11- Reduction Factor 15 
 

 
Fig. 86 – Reflectivity of the Earth Surface (red. factor 15). 

 
 
 

 
Fig. 87 – Illuminated Visible Cells (red. factor 15). 
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Fig. 88– Total albedo (red. factor 15). 

 
 
 

 
Fig. 89 – Total albedo vector (red. factor 15). 
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5.11.1- Reduction Factor 1 x Reduction Factor 15 
 
 

 
Fig. 90 – Difference in the total albedo (red. factor 1 x red. factor 15). 

 
 
 

 
Fig. 91 – Difference in the total albedo vector (red. factor 1 x red. factor 15). 

 
 
 
 
 
 



 

 Doc.No.: FLK-ENV-RP-ZAR-001 

Issue:  2.0 

Page:  56 of 91  

 

ZARM – Center of Applied Space Technology and Microgravity Page 56 of 91 

5.12- Reduction Factor 20 
 
 

 
Fig. 92 – Reflectivity of the Earth Surface (red. factor 20). 

 
 
 

 
Fig. 93 – Illuminated Visible Cells (red. factor 20). 
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Fig. 94– Total albedo (red. factor 20). 

 
 
 

 
Fig. 95 – Total albedo vector (red. factor 20). 
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5.12.1- Reduction Factor 1 x Reduction Factor 20 
 
 

 
Fig. 96 – Difference in the total albedo (red. factor 1 x red. factor 20). 

 
 
 

 
Fig. 97 – Difference in the total albedo vector (red. factor 1 x red. factor 20). 
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5.13- Directions of the Albedo Vector Considering Different Resolutions 
 

 
Fig. 98 – Albedo vector considering different resolutions. 

 
Therefore, it is clear that is not possible to use other resolution than the maximum if the goal 
is to obtain a good accuracy. Otherwise the results obtained with the model could be 
corrupted. The variation of the albedo vector using different resolutions is not only in the 
absolute value of the vector but also in the direction of the albedo that reaches the satellite. 
 
 
6- Results Obtained Considering Different Altitudes 
 
A study shown the full albedo irradiance considering different altitudes of the satellite is 
presented in Figures 99 to 106 
 

 
Fig. 99 – Reflectivity. 
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6.1- The Full Albedo Irradiance for the Altitude Around 100 km 
 
 

 
Fig. 100 – Full albedo irradiance around 100 km. 

 
 
 
6.2- The Full Albedo Irradiance for the Altitude Around 200 km 
 
 

 
Fig. 101 – Full albedo irradiance around 200 km. 
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6.3- The Full Albedo Irradiance for the Altitude Around 300 km 
 
 

 
Fig. 102 – Full albedo irradiance around 300 km. 

 
 
 
6.4- The Full Albedo Irradiance for the Altitude Around 500 km 
 
 

 
Fig. 103 – Full albedo irradiance around 500 km. 
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6.5- The Full Albedo Irradiance for the Altitude Around 700 km 
 
 

 
Fig. 104 – Full albedo irradiance around 700 km. 

 
 
 
6.6- The Full Albedo Irradiance for the Altitude Around 1000 km 
 
 

 
Fig. 105 – Full albedo irradiance around 1000 km. 
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6.7- The Full Albedo Irradiance for the Altitude Around 36000 km 
 
 

 
Fig. 106 – Full albedo irradiance around 36000 km. 

 

 
 
7- Evaluation of the Terrestrial Albedo Applied to Some Scientific Missions 
 
7.1- Gravity Probe B 
 
The Gravity Probe B (GP-B) is a drag-free satellite designed to measure two predictions of 
Einstein's general theory of relativity by monitoring the orientations of ultra-sensitive 
gyroscopes relative to a distant guide star. The spacecraft was launched on April 20, 2004. 
 
The graphs (Figures 107 to 123) were obtained considering the nominal orbit of the Gravity 
Probe B in April 20, 2004. The graphs show the simulation for the entire day. 
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Fig. 107 – Reflectivity of the Earth in 20/04/2004. 

 
 
 

 
Fig. 108 – Number of illuminated visible cells (GP-B). 
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Fig. 109 – Longitude and latitude of the sub-satellite point (GP-B). 

 
 
 

 
Fig. 110 – Radius of the satellite trajectory (GP-B). 
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Fig. 111 – Satellite position vector in the terrestrial frame (GP-B). 

 
 
 

 
Fig. 112 – Sun position vector in the terrestrial frame. 
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Fig. 113 – Total albedo (GP-B). 

 
 
 

 
Fig. 114 – Total albedo + solar constant (GP-B). 
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Fig. 115 – Total albedo vector (GP-B). 

 
 
 

 
Fig. 116 – Total albedo vector in the inertial frame (GP-B). 
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7.1.1- Evaluation of the Trajectory Deviation for the GP-B 
 
To evaluate the deviation of the trajectory, a model describing the satellite shape and a 
description of the optical properties of the surfaces are necessary. In this work was used a 
simple model for the optical properties and was assumed a spherical satellite shape with a 
mass of 1000 kg, just to test the Earth Albedo Model. Thus, considering that 30% of the 
energy that reaches the satellite is absorbed, 30% is reflected specularly, 40% is reflected 
diffusely, and using the model presented in Harris et al. 1969 (NASA SP-8027) the force 
applied can be calculated. The effect in the trajectory is shown in Figures 118 to 123. 
 

 
Fig. 117 – Albedo force vector applied in the satellite (GP-B). 

 
 

 
Fig. 118 – Velocity increment due to the albedo (GP-B). 
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Fig. 119 – Velocity deviation for the entire day (GP-B). 

 
 
 

 
Fig. 120 – Position deviation for the entire day (GP-B). 
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Fig. 121 – Semi-major axis deviation for the entire day (GP-B). 

 
 
 

 
Fig. 122 – Eccentricity deviation for the entire day (GP-B). 
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Fig. 123 – Inclination deviation for the entire day (GP-B). 

 
 
 
7.2- Microscope Mission 
 
The MICROSCOPE mission was designed to test the Equivalence Principle with a high 
accuracy (10-15) using two proof-masses of different material on precisely the same orbit and 
measure any difference in the forces required to maintain the common orbit. 
 
The graphs (Figures 124 to 140) were obtained considering the nominal orbit of the 
Microscope Mission and the Earth reflectivity in April 20, 2004. The graphs show the 
simulation for the entire day. 
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Fig. 124 – Reflectivity of the Earth in 20/04/2004. 

 
 
 

 
Fig. 125 – Number of illuminated visible cells (Microscope). 
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Fig. 126 – Longitude and latitude of the sub-satellite point (Microscope). 

 
 
 

 
Fig. 127 – Radius of the satellite trajectory (Microscope). 
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Fig. 128 – Satellite position vector in the terrestrial frame (Microscope). 

 
 
 

 
Fig. 129 – Sun position vector in the terrestrial frame. 
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Fig. 130 – Total albedo (Microscope). 

 
 
 

 
Fig. 131 – Total albedo + solar constant (Microscope). 
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Fig. 132 – Total albedo vector (Microscope). 

 
 
 

 
Fig. 133 – Total albedo vector in the inertial frame (Microscope). 
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7.2.1- Evaluation of the Trajectory Deviation for the Microscope Mission 
 
The same assumption made in item 7.1.1 was used to calculate the force applied for the 
Microscope: spherical satellite shape with a mass of 1000 kg, 30% of the energy that reaches 
the satellite is absorbed, 30% is reflected specularly, and 40% is reflected diffusely. The effect 
in the trajectory is shown in Figures 135 to 140. 
 

 
Fig. 134 – Albedo force vector applied in the satellite (Microscope). 

 
 

 
Fig. 135 – Velocity increment due to the albedo (Microscope). 
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Fig. 136 – Velocity deviation for the entire day (Microscope). 

 
 
 

 
Fig. 137 – Position deviation for the entire day (Microscope). 
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Fig. 138 – Semi-major axis deviation for the entire day (Microscope). 

 
 
 

 
Fig. 139 – Eccentricity deviation for the entire day (Microscope). 
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Fig. 140 – Inclination deviation for the entire day (Microscope). 

 

 
 
7.3- Step Mission 
 
The STEP mission was designed to test the Equivalence Principle with a high accuracy (10-17) 
using pairs of concentric free-falling proof-masses of different material. The accuracy of 10-17 
represents an unprecedented improvement of five orders of magnitude over the most precise 
experiments performed to date.  
 
The graphs (Figures 141 to 157) were obtained considering the nominal orbit of the Step 
Mission and the Earth reflectivity in April 20, 2004. The graphs show the simulation for the 
entire day. 
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Fig. 141 – Reflectivity of the Earth in 20/04/2004. 

 
 
 

 
Fig. 142 – Number of illuminated visible cells (Step). 
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Fig. 143 – Longitude and latitude of the sub-satellite point (Step). 

 
 
 

 
Fig. 144 – Radius of the satellite trajectory (Step). 
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Fig. 145 – Satellite position vector in the terrestrial frame (Step). 

 
 
 

 
Fig. 146 – Sun position vector in the terrestrial frame. 
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Fig. 147 – Total albedo (Step). 

 
 
 

 
Fig. 148 – Total albedo + solar constant (Step). 
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Fig. 149 – Total albedo vector (Step). 

 
 
 

 
Fig. 150 – Total albedo vector in the inertial frame (Step). 
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7.3.1- Evaluation of the Trajectory Deviation for the Step Mission 
 
The same assumption made in item 7.1.1 was used to calculate the force applied for the Step: 
spherical satellite shape with a mass of 1000 kg, 30% of the energy that reaches the satellite is 
absorbed, 30% is reflected specularly, and 40% is reflected diffusely. The effect in the 
trajectory is shown in Figures 152 to 157. 
 

 
Fig. 151 – Albedo force vector applied in the satellite (Step). 

 
 
 

 
Fig. 152 – Velocity increment due to the albedo (Step). 
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Fig. 153 – Velocity deviation for the entire day (Step). 

 
 
 

 
Fig. 154 – Position deviation for the entire day (Step). 

 
 
 
 
 
 
 
 



 

 Doc.No.: FLK-ENV-RP-ZAR-001 

Issue:  2.0 

Page:  89 of 91  

 

ZARM – Center of Applied Space Technology and Microgravity Page 89 of 91 

 
 
 

 
Fig. 155 – Semi-major axis deviation for the entire day (Step). 

 
 
 

 
Fig. 156 – Eccentricity deviation for the entire day (Step). 
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Fig. 157 – Inclination deviation for the entire day (Step). 

 
 
 
8- Conclusion 
 
The albedo model was implemented and tested with success. The results shown that the model 
is capable to determine the albedo vector that reaches the satellite. With this vector the forces 
and torques can be calculated. In this work a simple model for the optical properties of the 
satellite surfaced was used to test the albedo model and evaluate the force applied. But others 
more sophisticated optical models can be used, considering specific missions as Gravity Probe 
B, Microscope, Step and some others scientific missions. The deviation of the trajectory due 
to the albedo is small. Considering one day of simulation for the Gravity Probe B, the 
deviation in the position is almost 2 meters. However, in a drag-free mission this deviation 
must be corrected to reach the accuracy required in this kind of mission. To calculate the 
torque applied to the satellite the attitude of the satellite must be known. Beyond the attitude, 
the constructive characteristics of the satellite must be known. However, these constructive 
characteristics and the attitude dynamics of the satellite are not the goal of this work. The 
Earth Albedo Model can be used as a toll in the analysis of the disturbing applied to a satellite 
in orbit around the Earth. The model is not set to just one specific mission but can be used in 
any mission, simply setting the orbital parameters, the date, and the Earth reflectivity. 
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1 Introduction

This technical note deals with the modelling of the attitudenoise of the Gaia spacecraft. Many
disturbance torques affect the dynamics of the Gaia spacecraft. These torques include external
(environmental) as well as internal (thrusters jets) disturbances. In order to perform and design
an accurate model for the attitude noise these torques should be taken into consideration. The
presented model considers only deviations from the NominalScanning Law (NSL, (3)). It
contains the solar pressure noise as the major contributionof these external disturbance torque
models. On the other hand, we consider the control torque as an actuator noise. The proposed
simulation is designed as a closed-loop configuration with aKalman-Filter (KF) (5) for the state
estimation and a linear-quadratic optimisation algorithm(LQR) for the state feedback. KF and
LQR shall represent the on-board attitude control system.

Please refer to the documents (8) and (9) for a mathematical model of the spacecraft’s attitude.

2 Objectives and Requirements

The main objective of this study is to simulate the noise of the attitude and rates of the Gaia
spacecraft to be as realistic as possible. The NSL describesthe motion of the spacecraft at the L2
position. It defines the reference pointing attitude for themeasurements of the two astrometric
telescopes fields of view on the sky. This measurement principle relies on the systematic and
repeating observations of star positions in the two fields ofview. In this study, however, we will
assume that the spacecraft dynamics will not exactly followthe NSL and will investigate all the
disturbances which deviates the spacecraft motion from theNSL.

The measurement and pointing requirements for the on-boardOperational-Mode attitude de-
termination and control of the Gaia satellite is described in some detail in (1), and partly in
(2). The most recent determination and control performancerequirements are summarized in
the “ESA Gaia Mission Requirements Document” (1), section 4.7. Table 1 (on the next page)
lists the principal mission- and system-level requirements imposed on the attitude pointing and
rate performances as provided. These requirements are applicable to both ASTRO telescope
Lines-Of-Sight (LOS). The Gaia astrometric measurement principle and CCD operations make
that a distinction must be made in the accuracy requirementsfor quantities measured in the
along-scan and those along the across-scan directions.

The definitions in table 1 (according to Ref. (2)) are:

• TheAttitude Measurement Error (AME) refers to the instantaneous 3-axis angu-
lar separation between the estimated satellite attitude (as well as the ASTRO-LOS)
and the actual one,

• the Rate Measurement Error (RME) refers to the mean difference between the
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Parameter Requirement
(99.73 % probability level)

AME - Attitude Measurement Error < 20 arcsec
RME1 - Rate Measurement Error (AL) < 0.9 mas/s
RME2 - Rate Measurement Error (AC) < 2.7 mas/s

APE - Absolute Pointing Error < 60 arcsec
RPE1 - Relative Pointing Error (AL) < 5 mas
RPE2 - Relative Pointing Error (AC) < 10 mas

MRE1 - Mean Rate Error (AL) < 2 mas/s
MRE2 - Mean Rate Error (AC) < 10 mas/s

Table 1: Summary of AOCS performance requirements

estimated spacecraft scan rate and the actual one,

• theAbsolute Pointing Error (APE) refers to the instantaneous 3-axis angular sep-
aration between the desired satellite attitude (as well as the ASTRO-LOS) and the
actual one,

• the Relative Pointing Error (RPE) at any given timet is defined as the standard
deviation of the absolute pointing error over the Astrometric Field (AF) CCD inte-
gration timeτ aroundt, and

• theMean Rate Error (MRE) is defined as the mean difference between the desired
satellite scan rate attitude and the actual one; the averaging time is the time spent
by an object from being detected to being confirmed in the AF.

The AME, RME, RPE and MRE in along-scan direction are of particular interest for the simu-
lation of the attitude noise.

3 Simulator Model Structure

The simulator used is based on a modular design (see Fig. 5). Its core is the module “Dynamics”
(Fig. 6) that contains the satellite’s equations of motion.We consider the spacecraft dynamics as
a rigid body dynamics with simplifications (4). The equations of motion are integrated by means
of a widely-used solver for ordinary differential equations (ODE). The output of this module is
the state vector containing the (real) state of the spacecraft (currently: its rate and angle for one
axis). It propagates to the model block “Sensors” (Fig. 7) to simulate the behavior of the two
sensor devices, the AF sensor, and the AST sensor , respectively. The result is the noise-induced
output of the sensors. To control the satellite’s attitude motion its state has to be determined by
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an observer. This is done using the Kalman-Filter “KF” block (Fig. 8). The estimated state of
the system serves as the input for the controller that on its part put commands to the “Actuators”
(Fig. 9) module with the FEEP model in order to converge the model behavior to that of the
plant. The external “Disturbances” (Fig. 10) module contains currently a noise model of the
solar pressure, being the chief disturbance source for Gaiaspacecraft. All mandatory parameters
for the simulation to be executed are defined in certain initialization files and these are called
once the simulator environment is started. This allows smooth adjustments and clear extensions
(see section 5).

4 The state observer and state feedback

The aim of the observer is to estimate the states of a real system, while it depicts a copy of the
system model and makes use of the given measurement of the input and output of this system.
The observation model predicts a state and the observer performs a procedure to minimize the
deviation of this estimated state from a measured state. This estimation error is fed back to the
model via an estimator gain. Following the Luenberger approach, the “KF” module resembles
the system model in order to adjust the estimator gain. The KFalgorithm computes this gain us-
ing minimization criterion (including solving the appropriate Riccati equation) with predefined
parameter values for the process and measure noise covariances. The regulator LQR provides
the information to design a state feedback controller, viz the computation of the feedback matrix
gain in the “Controller” block. The required values for the weighting matrices are listed in (6).

5 The blocks in brief

5.1 Actuators: Thrusters

One of the major noise generators are the thrusters. The simulation block contains the noise
model of FEEP thrusters, although they are not going to be used for Gaia. Since the slope of
their PSD diagram, however, can be treated as a simplified representation of the noise charac-
teristics within a steady state model of the MPS (see (7)), they have been implemented in the
simulator structure in a rather straightforward way. Fig. 1shows the FEEP noise block being
the input block for the “Actuators” block (left side of Fig. 9).

shape filter
Thrust−noise FEEP noiseNoise Generator

Figure 1: The FEEP noise simulator block
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VARIABLE DESCRIPTION VALUE UNIT

noisepower white noise power 1 · 10−7 N/
√

(Hz)
noiseseed start seed of noise random –
noisedt sample time 0.1 s

noiseshape TF A,B,C,D –

Table 2: Parameter of the FEEP thruster noise block

The input noise is generated by a band-limited white noise with a mean amplitude of 1. The
thrust-noise shape filter is represented by a transfer function (TF) of a discrete state space model
(with coefficients A,B,C,D and the sample time) together with a scaled white noise power (Table
2). The resulting level of thruster noise can be seen in the spectral distribution of the noise
according to Fig. 2.
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Figure 2: Thruster noise spectrum
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5.2 Disturbances: Solar pressure

The simulation of the solar pressure disturbance makes use of the same noise generation as for
the thrusters following the plant in Fig. 3. The form filterHsol(f) is scaled with a gain to reach
the value of1.59 ·10−5 N/

√
(Hz) @ f = 10−4 Hz. This value is the product of the solar pressure

and the area of the sun shield array (compare with Fig. 10). Itincludes dependencies on the
solar incidence angle, reflection, etc.

Noise Generator Solar pressure
noise

H_sol (f) 1.59 10^−5

Figure 3: The solar pressure disturbance plant

Hsol(f) on its part consists of two components: a smooth broad-band-slope and a 5-min-oscillation-
peak. The corresponding transfer functionHsol(s) can be written as

Hsol(s) = 0.1233·s10+0.4471·s9+0.526·s8+0.2215·s7+0.0223·s6+0.0004·s5+8.698·10−6·s4
s10+4.698·s9+7.007·s8+3.252·s7+0.0725·s6+0.0015·s5+2.404·10−5·s4 .

The lever arm for the solar pressure force is scaled with the cosine of the solar aspect angle of
45 deg with1.288 · cos(45/180 ∗ π) m = 0.911 m.

Fig. 4 (left) shows the power spectrum density of the solar pressure perturbation measured with
the VIRGO instrument on-board the SOHO satellite. The normalization resembles the constant
solar pressure value. On the right side one can see the calculated optimised form filterHsol(f).
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5.3 Dynamics

The approach to this simulation model originates from the intention to move the spacecraft
according to a prescribed course defined by the NSL. This means, the attitude and the rates of
the spacecraft can be represented by the quaternionsq̃NSL and−→ω NSL. The aim of the simulation
run, however, is to provide real quaternionsq̃real and−→ω real, in which both quantities differ only
slightly from the NSL-values:

q̃real = ∆q̃⊗ q̃NSL

−→ω real = −→ω NSL + ∆−→ω

with ∆q̃ ≈ (∆ϕx/2, ∆ϕy/2, ∆ϕz/2, 1)T and∆−→ω ≈ (∆ωx, ∆ωy, ∆ωz)
T .

According to the equations of motion the attitude motion canbe described by the Euler equation

−̇→ω b

i,b =
(
Ibb

)−1
[Tb

control,dist −−→ω b
i,b ×

(
Ib
−→ω b

i,b

)
],

with the indices b=body frame (S/C frame), and i=inertial frame;Tcontrol,dist are the control, and
disturbance torques, respectively.Ibb is the inertia matrix containing only diagonal elements.

In a first approximation,ωx = ωy ≈ 0, i.e. the cross product vanishes; onlyωz = 2π/6 h =
1 arcmin/s remains. Thus, the three equations are decoupled and individual simulations of the
three DOF can be performed. This yields to completely independent simulation loops when
investigating attitude and rates deviations from the NSL (see Fig. 6).

5.4 Sensors: AF and AST

The sensors currently used in this simulation model are a sensor related to the Astrometric
Field (AF; see Fig. 7) and a sensor linked to the Autonomous Star Tracker (AST). The AST-
sensor consists of an attitude noise simulated by a band-limited white noise with the power
of 0.1 · (σAST/deg)2 W = 0.1 · (15 arcsec/deg)2 W = 5.29 · 10−10 W within a sample time
of 0.1 s and a random seed. The AF-sensor combines a band-limited white noise of power
0.1 · (σAF/deg ∗ s)2 = 0.1 · (1 mas/s/deg ∗ s)2 W = 2.35 · 10−18 W and a TF of

TFAF = 1

1+
Tav,AF

2·π
,

whereTav,AF is the averaging CCD integration time of 5 s of the AF.
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5.5 Kalman-Filter (KF)

The number of different states of interest is given by two quantities (ω and q̃) plus Tav,AF,
resulting in a three-dimensional implementation of the KF block (Fig. 8, left). The KF approach
allows to “observe” and estimate the current state of the system and to act as the input source
for the controller.

The state space model for the attitude estimation is given bythe equations
−̇→x = A · −→x + B · −→u
−→y = C · −→x + D · −→u

where−→x = (ω, q̃, Tav,AF)T is the state vector,−→u the input vector and−→y the output vector
(all of dimension 3). The system matrix A, the input matrix B,the output matrix C, and the
feedforward matrix D are defined according to (for the z-axis)

A =

 0 0 0
1 0 0

1 0 −Tav,AF

2π

 , B =

 1/Sat.Izz
0
0

 , C =

(
0 0 1
0 1 0

)
, D =

(
0
0

)
,

G = I[3x3], and H =

(
0 0 0
0 0 0

)
.

whereSat.Izz is the z-component of the momentum of inertia. G and H are auxiliary matrices.

The system design of the KF makes use of the state space model as given above. The KF
takes the fact into consideration that the system as well as the output signal−→y hold a noise
contribution, of which the covariances of the steady state are given by the matrices Q (for the
system noise), R (for the output signal noise), and N as the covariance matrix for the product of
both noise signals:

Q =

 σ2
ω̇ 0 0
0 σ2

ϕ̇ 0
0 0 σ2

ω̇f

 , R =

(
σ2

ω 0
0 σ2

ϕ

)
,

with σω = σAF, σϕ = σAST, σω̇ = 8.1 · 10−9, σϕ̇ = 10−20, σω̇f
= 10−20 and

N = 0[3x2],
−→x est,0 = (0, 0, 0)T as the initial KF state.

Given all these information, the KF is computed, resulting in various parameters of the filter,
like the Kalman gain, and the steady state covariance.

The next step is to use an optimisation algorithm in order to find the best estimation for the state
vector for the given system.
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5.6 Controller

The goal of the optimisation algorithm is to estimate the state vector−→x est in such a way that
the quadratic mean value of the error−→x − −→x est finds it minimum. Thus, for KFs like the one
presented here it is customary to use the method of the linear-quadratic optimisation algorithm
(LQR). The KF output parameters are used as input parameter for the LQR-algorithm.

The state space model for the controller is 2-dimensional, with ω andq̃ as the free variables and
given by the matrices

AC =

(
0 0
1 0

)
, BC =

(
1/Sat.Izz

0

)
,

and for the weighting matrices

QC =

(
w2

ω 0
0 w2

ϕ

)
, RC = w2

u,

with the weighting factorswω = 9.6963 · 10−9 (MRE-AL), wϕ = 2.9089 · 10−4 (APE) and

wu = 10−6 as the weighting factor for the input of the LQR algorithm.

The LQR algorithm computes a feedback of the state in form of amatrix gain K (Fig. 8, right)
that modifies the state vector−→x est to its optimal value.

6 The simulation

The whole simulation is created and performed within the “Matlab/Simulink” environment, a
technical computing package for solving numerical problems in combination with modelling of
time-relevant technical systems (version 7.1.0.183 (R14)SP 3, August 02, 2005).

The simulation runs over a complete spin period of the Gaia spacecraft of 6 hours. The solver
of the ordinary differential equations was chosen to be the ode45-algorithm (Dormand-Prince;
based on a Runge-Kutta-formalism) using a variable step size and a relative tolerance of 0.1%,
being the upper limit of the computed state to be treated as accurate.

The results of the simulation are presented in Fig. 11. The upper two plots show the error of the
rateω, and the attitude parameterφ, based on the estimation calculations, whereas in the plots
at the bottom the control errors of both quantities are displayed. One can see that both errors
are within the limits given by the mission requirements.
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7 Preview

This note comprises the treatment of different noise contributors to the total attitude noise ex-
pected for the Gaia spacecraft. The presented model shall demonstrate the basic principle to
handle noise signals within a simulation loop in order to understand the dynamics of the satel-
lite in terms of physical effects. Much further work could bedone for this model, but at this
point, we decided to mark this note as the preliminary endpoint of the work on this model.

As the Gaia project community is proceeding efficiently in developing the Java-based software
package GaiaTools for most of the tasks related to this mission, we decided to start transferring
our model to this programming environment. The “Gaia Attitude Model” will contain all mod-
ules essential for a high-precision attitude simulation and will make much use of the modules
developed for this noise model.
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1 Introduction

Modelling the behaviour of a satellite in orbit becomes moreand more an essential part of the
data processing chain for a space-based mission. The largerthe sensitivity of the carried payload
(i. e. CCDs, optics, test masses) is to perform a measurementthe better the knowledge of the
satellite’s dynamics has to be in order to reach the desired level of accuracy in the measurement.
For Gaia, this level and, hence, the final scientific accuracyof the data, are only achievable if
its motion can be understood very precisely.

This technical note explains the fundamental idea of the Gaia Attitude Model (GAM), a software
package to model the behaviour of Gaia based on a physical approach in order to simulate the
satellite’s dynamics to a high degree. In combination with an emulated version of the on-board
software for the control of the satellite in orbit, this software is capable to export high-fidelity
simulation data of Gaia’s attitude and rates. The main goal of this work is to develop a satellite
model to be as realistic as possible that can be used and integrated in the software developments
of other areas within the Gaia community.

1.1 Pointing control definitions

Before presenting the idea of the GAM, it is worth to recall that the simulation of a rigid body
like Gaia pointing towards a specific direction at the sky, isbased on three different terms of
attitude. According to Fig. 1 they can be defined as follows:

FIGURE 1: Pointing control definitions. Three different terms of attitude are shown, the target,
the estimated, and the true attitude, respectively. Likewise, one can define a difference between
two of them, as it is described in the text. For the rates, the same classification can be made.
The GAM is based on the usage of these definitions throughout its entire development process.

Technical Note ZARM, University of Bremen 5
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• The target attitude describes the desired pointing direction given byany kind of
(semi-)analytical description, here the NSL,

• thetrue or actual attitude is the (mean) attitude value of the true pointing direction
of the LoS,

• theestimateattitude indicates the instantaneous estimate of the true attitude, based
on a simplified representation of the satellite’s dynamics.

They, moreover, allow to define certain error terms by twos ofthe attitude terms. The difference
between the target and the true attitude is called the pointing-inaccuracy, or ”attitude error”
(“p.a.” in the sketch) and is usually determined over a long period of time. The deviation of the
estimated attitude from the true one represents the (maybe poor) quality of the knowledge of the
latter attitude and is thus called the ”knowledge error” (“k.e.”), because the more information
one can get from measurements the better is the estimated attitude deduced from the AOCS, and
finally, the closer is the estimated value at the true value. In addition, the ”control error” (“c.e.”)
quantifies the deviation of the estimated attitude from the target value, providing essential in-
formation to the attitude control in order to correct the satellite’s orientation (see section 3.5).
And finally, a jittering motion of the satellite can be monitored by the peak-to-peak motion of
the LOS (“stab.”), keeping track of the stability of the pointing direction and, thus, of the true
attitude.

1.2 Reference systems

The interaction between scientifically motivated and technologically used terms and quantities
makes it inevitably to clearly state the difference betweenreference systems representing dif-
ferent aspects of the satellite. The group of astronomical reference systems, as described in
section 4.2.4 and shown in Fig. 4.1 of Bastian (BAS-003), contains the ”Scanning Reference
System” (SRS), a system that is fixed to the rigid body of the spacecraft during its motion and
rotation. Its origin is the centre of Mass (CoM) and the principal axes x, y, and z (see Fig. 2)
are defined according to their introduction in Bastian’s document. The SRS is fully aligned to
the ”Mechanical Spacecraft Reference System” (SCRS), i. e.the mechanical equivalent to the
SRS, with its zero pointCS (the center of the circular satellite interface with the launch vehicle
adapter, see EADS Astrium (GAIA.ASF.SP.SAT.00001);not the CoM) and the axes−XS, YS,
andZS. Please notice thedifference in the orientation of the principal axes in the SRS and
the axes in the SCRS with respect to the satellite. The nominal rotation axis of the satel-
lite, as defined by the astronomical community, is usually written as the ’z’ axis, whereas the
engineering side is used to call this long side axis the ’−XS’ direction (due to considerations
related to the launch vehicle configuration). In addition, the ’x’ axis corresponds to the ’+ZS’
axis. In agreement with the ’Gaia Mission Requirements Document’ (MRD, ESA Gaia Project
(GAIA-EST-RD-00553)), both definitions are valid and are used according to their operational
field. Any kind of information that deals with the satellite’s attitude or angular rate in this tech-
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nical note, will be given as SRS quantities with respect to the primary reference system, the
ICRS.

+Zs

−Xs

+Ys

satellite  rotation

ζ
η

ζ

η

z 

.γ / 2

y 
x 

 images

motion  of  star

f
f

2
1

FIGURE 2: The ”Scanning Reference System” (SRS) with its axes x, y, and z, respectively,
superposed by the mechanical equivalent, the “Mechanical Spacecraft Reference System”
(SCRS) with its axes+ZS,+YS and−XS. Notice, that due to the launch vehicle configu-
ration system engineers prefer the ’−XS’-axis of the spacecraft to point along its long axis,
whereas the astronomers call this rotation axis usually the’z’ axis. In addition, the ’x’ axis
corresponds to the ’+ZS’ axis. In this document, the satellite’s attitude and angular rate are
given as SRS components with respect to the ICRS. (Image taken from Bastian (BAS-003).)

Technical Note ZARM, University of Bremen 7



CU2-
The Gaia Attitude Model (GAM)
GAIA-C2-TN-ZARM-RK-002-D

2 History and simulator’s cornerstones

In a meeting in early 2007, members of different CUs discussed some aspects of the Gaia
attitude (Theil & Keil (STH-001)) as this would be importantin various areas of the data pro-
cessing, for example in AGIS, in the IDT, and for simulation purposes. All participants agreed
on the need to start developing a simulation software right from the beginning of the mission’s
planning. It turned out that, however, the proposed simulation software would have to be mod-
ified profoundly and so, it was later decided to start developing a simulation software from
scratch, although sophisticated work on Gaia’s attitude ina different simulation environment
has been done in the meantime, dealing with the interaction of noise sources contributing to the
overall dynamics of the satellite, and adaptable to any kindof simulation model (Keil & Theil
(RK-001)).

As a part of the instrument modelling a first implementation of an attitude model for the satellite
has been developed and used from cycle 3 simulations and later (Lindegren & Luri (LL-073)).
This approach is based on a stochastic model, generating white noise in all three satellite axes
independently (from a stationary Markov process) and superimpose it on the target attitude as
given by the NSL to compute data representing the actual attitude. This idea may be a fast way
to create a simple attitude model, but it eventually lacks ofphysical principles and effects that
are of essential importance for every high-precise motion of a spacecraft.

Any kind of adaptive software for attitude simulation has tocomprehend a list of general items,
extracted from the selection process of the software (environment) or based on criteria for the
simulator design. The software, therefore, should contain

• A high-precise propagation of the attitude within a diversity of different simulation
runs, i. e. mission scenarios with specific objectives or with formulations of a certain
problem,

• Highly flexible implementations of perturbation models, and their characteristics,
changeable by freely chosen parameters,

• Simulating the spacecraft sensors, here based on SM-AF1 andStar Tracker mea-
surement data,

• Integrating modules simulating hardware and on-board software components (for
testing and research purposes),

• Extensions of various nature to be implemented smoothly into the current software
stage,

• Usage of simulation techniques in a transparent manner.
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For orbital simulation, this list needs to be modifies and extended. But this is not the subject of
this technical note.

The attitude model for Gaia’s spacecraft is currently beingdeveloped to build up a high-fidelity
software package for the simulation of the satellite’s dynamics, as its understanding is a key
component to reach the highest available level of accuracy of the measurements and, finally,
of the scientific output. Because both Gaia’s attitude and angular rate are closely linked to the
scientific measurement principle, this software allows a detailed modelling of these quantities
from an entirely physical point of view, hence, to be as realistic as possible. It takes into account
disturbances of various physical origin acting on the satellite (see section 3.3). The overall goal
of the GAM is to provide precise simulated data of the satellite’s orientation on its orbit as a
function of time.
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3 Global structure and design

The framework of the GAM is a collection of classes and libraries as they are currently set up by
the Gaia community: the GaiaTools (see Angeli (2005) & GaiaTools Committee (MTL-015))
and its accompanying libraries, the Gaia Parameter Database (Lammers & Joliet (UL-001)) and
a plotting library, currently developed at the Leiden Observatory.

The GAM as well as the other classes and libraries are writtenin Java, a widely used, taught,
and supported object-oriented programming (OOP) language. DPAC preferred Java over C++
mainly because of a faster progress in the code development,higher code reliability, and 100%
portability within the heterogeneous coding networks. Itsfunctional syntax is similar to that of
the numeric calculations and simulations package MATLAB with its extension SIMULINK for
simulating dynamical systems, which both are intensively used in the engineering sciences. In
addition, the Gaia community makes use of the fact that thereexist many supporting libraries
written in Java for advanced mathematical computations, analysis, graphics, etc.

3.1 Model description

The GAM is based on a modular design (Fig. 3) containing several blocks, each of them pro-
viding a specific functionality (cf. the sections beginningwith 3.2). The four major blocks are
incorporated by a closed loop (CL) configuration to represent the iterative nature of the simula-
tion process. The core module “Dynamics/Kinematics” symbolizes the formulated satellite’s
equations of motion. The dynamics of the Gaia spacecraft is considered to be that of a rigid-
body with simplifications (Wertz (Editor)). The equations of motion are integrated by means of
a widely-used solver for ordinary differential equations (ODE). The output of this module is the
state vector containing the real state of the spacecraft, i.e. the 3-component actual rate value
plus the 4-component actual attitude in form of a quaternion(see subsection 3.2). This state
propagates to the model block “Sensors” (subsection 3.4) to simulate the behaviour of the two
sensor devices, the SM-AF1 sensor for the rate measurements, and the STR sensor for the atti-
tude determination, respectively. The simulated measurements from both devices are processed
by including noise-induced data superposed to the measurements and by taking an ’internal’
time-delay into account. Both data streams are then combined (using a second time-delay line)
to the sensor’s output data in form of simulated measurements of the spacecraft’s attitude and
rate. This output propagates to the third major block, the “AOCS” (subsection 3.5). It rep-
resents the part of the on-board software that is important for the control of the spacecraft’s
manoeuvring during its various operational phases in orbit, particularly in the normal mode
(NM), in which the scientific measurements are taken. In thissense, it processes the measure-
ments from the sensors to estimate the current state of the spacecraft according to a predefined
algorithm. In addition, the control of the satellite’s attitude motion is ensured by a minimiza-
tion algorithm for the state using a Kalman-Filter (KF) description of the system. In the next
step, the estimated state of the spacecraft will be comparedwith the state as given by the NSL
at the specific instant of time. Any deviation in one (or more)of the components larger than
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the allowed range of values, as given in the MRD (ESA Gaia Project (GAIA-EST-RD-00553)),
will instantaneously be transformed into a requirement fora thrust to carry out. The definition
of a thrust request as well as the determination of the optimal configuration of the thrusters
that can execute this thrust in magnitude and direction is inthe scope of the block “Thrusters”
(subsection 3.3.2). Here, the activation algorithm is implemented and a thruster-specific noise
model adds a noise component to the final output, the thrustertorque. This torque is applied to
the equation of motion in the dynamics block as one perturbation acting on the spacecraft.

FIGURE 3: Global structure of the GAM designed as a closed loop (CL) configuration to
visualize the iterative process of a simulation run. The essential parts are the “External torque
generator” and the “Dynamics/Kinematics” blocks with the output ’actual attitude/rate’, the
“Sensors” blocks with the processing of measurement data toallow the third block “AOCS” to
determine the ’estimated attitude/rate’, and finally, the “Thrusters” block with the functionality
of thruster activation based on deviations of the estimatedattitude/rate from the target, the
’NSL attitude/rate’. Due to its modular design this model can easily be extended according to
specific needs.

Other, external perturbations, are summarised in the block“External torque generator” (sub-
section 3.3). Currently, this block contains the code of thesolar radiation pressure model,
representing the largest disturbance source for Gaia, a stochastic model of impacts caused by
(micro-)meteoroids and a second stochastic model of ’clanks’, i. e. discontinuities in the scan-
phase of the satellite of yet unknown origin.
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The simulation software allows one or more disturbances to be activated/deactivated simply
by boolean flags. The initialization procedure defines mandatory parameters for a simulation
scenario, such as the simulation duration, the simulation time step, etc and for the spacecraft
configuration, such as the matrix of inertia. In addition, several initialization files list adjustable
parameters for all models used in the GAM and enable the associated method to generate event
tables according to the activation flag of a certain type of disturbance. These can be called once
the simulator environment is started. In general, the modular design of the GAM allows smooth
adjustments and clear extensions to investigate specific effects.

The next sections will describe the major blocks in more detail, but it will also guide to the
technical notes written for the so far implemented externaldisturbance models.

3.2 Dynamics/Kinematics

The state vectorx of the spacecraft at any instant of time during the simulation run is given by
a combination of its orientation, formulated in quaternionnotation (q), and its angular velocity
(or rate vectorω) with respect to the SRS (see Bastian (BAS-003), Lindegren (SAG-LL-030)
and appendix A of Hobbs & Lindegren (DH-002) for further information on quaternions):

x =

(
q
ω

)
(1)

The first four components represent the attitude quaternionq = (qx, qy, qz, qw) and the latter
three describe the spin rate vectorω = (ωx, ωy, ωz).

The spacecraft’s behaviour is fully described by a superposition of a translational and a rota-
tional motion written as two sets of ODEs, the first deals withthe kinematic aspects of this
motion, and the last with the dynamics of the spacecraft’s body.

Kinematics. The following ODE describes the satellite’s attitude in thequaternion formalism:

q̇(t) =
1

2
Ω(ω)q(t), (2)

whereΩ(ω) is defined by
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Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 , (3)

or, rewritten by its components,

q̇1..3(t) =
1

2
(q4ω − ω × q(t)) (4)

and

q̇4(t) = −1

2
ωTq(t), (5)

with the cross productω × q given by

ω × q =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 q1

q2

q3

 , (6)

as shown by Wie (2008), p. 326ff.

Dynamics. The ODE containing the dynamics of the spacecraft as a rigid-body makes use of
the Euler’s equations

ω̇(t) = I−1
SC (Ttotal − ω × ISC · ω) , (7)

whereISC is the moment of inertia of the satellite andTtotal is the total sum of disturbance and
control torques acting on the S/C (e. g. Wie (2008), p. 340f).

Both sets of ODE are implemented in the associated block (seeFig. 4), together with the integra-
tor algorithms for solving them numerically, the Euler algorithm and the Runge-Kutta-algorithm
of 4th order, respectively (selectable by a flag).
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FIGURE 4: The interaction of the “Dynamics/Kinematics” block withits two sets of ODE
describing the motion of the spacecraft with the block “External torque generator”, containing
the general description of the calculation of the solar radiation pressure (SRP) acting on the
SC.

3.3 Disturbances

Many perturbations will affect the orbital motion of the Gaia spacecraft. The larger the desired
accuracy of the spacecraft’s attitude is, the larger is the number of perturbations one has to take
into consideration. These include external (environmental) as well as internal perturbations
(e.g. from the micro-propulsion system MPS in form of thruster firings). The software GAM
is able to handle torques of arbitrary origin. The currentlydeveloped model contains the solar
radiation pressure (SRP) as the major contribution of an external disturbance torque model
plus stochastic models for (micro-)meteoroid impacts and discontinuities in the satellite’s scan-
phase as detected for the first time in the HIPPARCOS data (vanLeeuwen (2007)). The largest
internal torque originates from actuation processes due tothe micro-propulsion system MPS for
continuously controlling the attitude.
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3.3.1 External disturbances

The SRP. As already mentioned before, primarily the SRP contributesto the total torque
budget of external disturbances. The modelling of the SRP for the GAM was divided into three
parts, as it is indicated in Fig. 4. The geometry of the spacecraft’s DSA is modelled by a grid of
triangles, representing the surface elements. As part of the initialisation process, this grid can
be adjusted simply by changing one or more free parameters (e. g. the number of triangles).
For each element, the force acting on it is calculated based on three different optical effects:
absorption, specular and diffuse reflection. Afterwards, the associated torque is determined.
Finally, the torques of all sun-shield elements are summed up to result in the total SRP-torque.
Its quantity is given byTSRP = (129.4 ± 0.1) µNm. In the next step, this will be added up
with torques from other disturbance sources to propagate tothe equations of motion in the
“Dynamics/Kinematics” block. For a more detailed study on the theoretical background and
further results particularly on different DSA geometries,see Risquez (DRO-001).

The hits generator. This block represents the modelling of two different processes, the stochas-
tic models for (micro-)meteoroid impacts as well as for discontinuities in the satellite’s scan-
phase (van Leeuwen (2004FVLNOCODE)).

FIGURE 5: The hits generator with its current two components: the (micro-)meteoroid im-
pacts model and the clank model to simulate discontinuitiesin the satellite’s scan-phase. Both
models are based on tables, created through the initialisation process, each listing the informa-
tion on time, direction, and magnitude of an impact and clank, respectively. Both data tables
are fed into the “Integration Module” of the “Dynamics/Kinematics” block to be analysed.
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Both make use of three independent random processes to generate a list of events, one event per
line, as the initialising set up of each model. It contains the following information: the instants
of time for the hit/clank to occur, the direction information, and the magnitude of each event. In
case of the clanks, an event is given by the three components of an unit vector and its magnitude.
Due to the assumption that clanks will only affect the attitude of the spacecraft, the quaternion
associated with a clank, will modify the current quaternionin the integration loop (Fig. 5) before
solving the equations of motion. For the (micro-)meteoroids, the table data affect the loop in
two ways. Firstly, they allow to calculate the resulting torque that proceeds directly to the
equations of motion, but secondly, the time instant of an impact will split the simulation time
step into two smaller time steps, one before the impact, and the other one thereafter, resulting in
one more iteration step inside the integration loop (see Risquez (2009) for a closer look on the
computation of the magnitude of a (micro-)meteoroid hit andon the integration of this model
into the GAM; see also Lindegren (SAG-LL-031) and Hobbs & Lindegren (DH-003)). As a
consequence, this model will only disturb the rate of the spacecraft in a stochastic way, but
ignore its attitude values.

3.3.2 Internal disturbance: The MPS

The thruster module masks the MPS to be used in the NM for keeping the satellite in a state
of acceptable accuracy (with respect to the numerous simultaneous requirements on pointing
and stability). The MPS consists of six active thruster devices (and another six for redundancy)
with a maximum nominal thrust level of500 µN each to enable displacements on small angular
scales. As can be seen from the global GAM structure (Fig. 3) the “Thrusters” block receives its
input, the requirement for executing a thrust of certain level, from a comparison of the estimated
values of the spacecraft’s state (from the AOCS module) withthe expected values from the NSL.
As a function of this difference a torque is calculated and requested. The underlying problem is
to find the optimal configuration of thrusters to be switch on in order to provide this torque in
magnitude and direction, together with a minimum of propellant consumption, according to the
following equation

τr = A · FC, (8)

where

τr is the torque request [Nm], in SCRS,

A is the thruster activation matrix, containing informationabout the thruster mo-
ment arms [m], and

FC is the commanded thrust vector [N].
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Because the positions and directions of the thrusters are given by the spacecraft design, thus
the matrixA is known, it is straightforward to calculate the requested torque coming from the
thrusters as soon as the set of thrusters to provide this torque is known (“Torque requests”).
(Here, we neglect any time-dependent effects, such as an expected drift of the CoM during the
mission’s lifetime, and parameter drifts of thruster characteristics.) Therefore, the mathematical
problem is to invert the non-square matrixA in the equation (8) to gain the thrust firings com-
mand information. With the help of pseudo-inverse matricesa solution can be found with an
optimal linear combination of thrusters to be activated (“Thruster Activation Module”). At this
stage, the commanded thrust are converted into produced forces (“Thruster torques”), taking
care of technical details and limitations of the thruster devices, such as the thruster saturation
limit, the quantization of thruster firings, minimum allowed thrust, and, last but not least, the
thruster noise model. All free parameters for this calculation, mandatory or not, are changeable
within certain limits at the beginning of each simulation run.

The total domain of actuator systems, including the MPS, as it is presented here, is subject
to the willingness of the manufacturer to provide and exchange information and data with the
scientific community. On the one hand, the development of theGAM benefits greatly from this
opportunity. On the other hand, it should be clear that not every single information or algorithm
can be distributed or published to others not involved in such a work. The same is true for the
implementation of the sensors and AOCS modules (see the nexttwo sections).

3.4 Sensors

This block comprises the activities to simulate measurements coming from the SM-AF1 device
and the Star Tracker (STR), respectively. The idea is to mimic the procedures the industry is
developing for the real sensor devices in order to create a model for the rate and the attitude
determination based on (simulated) measurement data.

The rate measurement principle is based on the detection of an object in each of the two tele-
scopes by one of the SM-CCDs and afterwards confirmed by the AF1-CCDs. The precise
position of an object’s image in the focal plane depends largely on the accuracy of the distance
and geometry calibration of this plane. If this is known to a high degree, then the position of
the object will be measured in both detectors to result in an ’estimated’ position at the time of
the CCD read-out. This gives directly an estimated value of the speed of the object across and
along the CCDs. Finally, the rate components of the spacecraft can be determined as a measured
quantity by means of the speed measurements and the telescope geometry.

The purpose of the STR is to determine a quaternion that represents the attitude of the spacecraft
(more precisely, the STR measurement reference system) with respect to the ICRS. The FoV of
the STR allows the identification of stars by comparing theirmutual positions on its focal plane
with data from an on-board star catalogue. These measurements are sent to various internal
algorithms to accurately determine the 3-axis attitude of Gaia at any time, when the telescopes
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are pointing to the celestial sphere.

In brief, the steps can be summarised as follows:

• input the actual attitude quaternion (in ICRS) from the “Dynamics/Kinematics”
block,

• calculate the corresponding quaternion of the STR orientation in order to simulate
the real measurement process of the STR,

• apply a time-delay to incorporate two effects: the integration time of a CCD and the
data processing time of the STR,

• generate measurement noise in the axes of the STR following the available noise
model and calculate the error quaternion accordingly to apply the latter to the atti-
tude quaternion of the STR axes,

• process the measurements to simulate the STR output,

• determine the STR axes quaternion (in ICRS),

• output the measured spacecraft attitude quaternion in the ICRS.

Finally, the data streams of both devices have to be combinedto allow a smooth transition to
the next module. An additional time-delay needed to be codedin order to account for the time
shifts.

Again, this section can not be described in a comprehensive manner, because the developments
of industry-specific HW and SW are not open for general usage.Because of the NDA between
the prime contractor EADS Astrium and the group working on GAM, however, we have insights
into the elements of the herein before mentioned aspects and, thus, can implement them as
necessary in the GAM to continue the progression of the GAM coding as realistic as possible.

3.5 AOCS

The “AOCS” block represents all on-board algorithms that are of important to determine and
control the attitude and rate of the spacecraft. It is an essential component of every simulation
software, because it will judge by its design, if the spacecraft’s behaviour (within the given
limits) allows a smooth operational phase with long observation periods or the motion of the
SC has to be corrected frequently to fulfil the requirements.

The on-board realisation SW of the AOCS takes as an input the speeds of stars, as determined
from measurements by the SM-AF1 sensor unit and the measuredattitude quaternion of the
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spacecraft from the STR operations (Fig. 3). Both are processed in the algorithms of the AOCS
to primarily compute the (unbiased) estimated rate vector and attitude quaternion of the space-
craft at 1 Hz-resolution.

The estimation process comprises of basically four blocks of different functionality:

1. In the initialisation phase apre-processing of the measured star rate datahas
to be performed, combining up to four different measurements (depending on the
stars availability): for each of the FoV one rate measurement in the AL direction
and another one in the AC direction. Including time-delay information between both
data streams, this processed data is going to be sent to the rate estimation algorithm.

2. The design of therate estimator algorithm is based on a Kalman-Filter (KF) ap-
proach to determine estimated values for the spacecraft’s rate and for the disturbance
torque (in the SCRS). The first step is to calculate this torque based on a simple
rigid-body model of the dynamics of the spacecraft. In the next step, the estimated
value of the disturbance torque is added to the control torque (from the controller
block output as a torque request; see below) to deduce an estimated rate (the prop-
agation step). After a measurement prediction step for the rate in all three axes of
the SCRS with a subsequent error determination between the measured and the pre-
dicted values, the last step consists of the computation of the correction values for
the rate estimation values as well as for the torque estimation value, making use of
the four different rate measurements and the estimated values from the previous call
of the algorithm (the update step).

3. The rate estimate from the rate estimator and the measuredattitude of the spacecraft
(from the STR) propagates to the next estimator, theattitude estimator to gain
an estimated value for the attitude of the spacecraft. In itspropagation step, the
rate estimate allows to determine the current attitude estimate, whereas the STR
attitude is used in the update step to correct the attitude estimate according to newly
incoming measured attitude data.

4. Thecontroller block represents the functionality of the AOCS to produce torques
of certain magnitude and direction based on an analytical description, the control
law. This control torque can be considered as a correcting torque to the estimated
disturbance torque in the rate estimator algorithm and, thus, it takes over the task
to control the satellite within certain limits of its motion. At the designing stage of
the controller structure, special care had been required tofulfil the rate requirements
for the satellite (ESA Gaia Project (GAIA-EST-RD-00553)),because they are much
more strict than the requirements on the attitude. It is, however, in any case a very
demanding task to find the optimal solution between a simple and robust design. For
this reason, the controller design, as it was done by EADS Astrium, is also subject
to the NDA, and the mentioned statements at the end of the previous two sections
are also valid for the implementation of this part into the GAM.
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4 Example simulation

The following text gives a brief overview of the steps necessary to initialise and run a simulation
scenario.

(1) Initialise the simulation environment/propagation

1. assign/modify simulation parameters

2. choose integrator (Euler / RK4)

3. set/change initial conditions
(Note: the initial timetinitial = 0.0 (s) corresponds to the initial
GaiaTime 2010-01-01T00:00:00.000 in TCB)

4. set tolerance(s) and step size(s)

(2) Set up the spacecraft environment

1. assign/modify spacecraft parameters

2. set/change initial conditions

3. modify matrix of inertia (elements)

(3) Set up perturbation models

1. set/unset any perturbation model(s)

2. assign perturbation model parameters

3. create event tables for perturbation model(s)

(4) Analyse the simulation output

1. export to external file

2. plot states or other parameters

3. extract state histories
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As an example, the following configuration has been chosen togive the output table listed on
the next page:

(1) Initialise the simulation environment/propagation

1. tinitial = 0.0, tfinal = 10000.0, timeStep= 1.0 (all seconds)

2. chosen integrator: Euler

3. initial conditions:
q = (qx, qy, qz, qw) = (0.0, 0.0, 0.0, 1.0), ω = (ωx, ωy, ωz) = (0.0, 0.0, ωspin), with
ωspin = 2.91 · 10−4 rad/s

(2) Set up the spacecraft environment

1. mass = 2120.0 kg

2. full inertia matrix of the Gaia spacecraft

3. CoM position [m] (in SRS)

(3) Set up perturbation models

1. switched on: SRP, (micro-)meteoroids, clanks

2. a) SRP parameters: simple DSA geometry (one triangle for each of the three sun-
shield materials), coefficients of all three optical effects for all three sun-shield ma-
terials

b) (micro-)m.: EVENTSPER SECOND = 0.001 (s−1), DISC SURFACE = 82.355
(m, Gaia’s cross section), derived parameters from Ernst (Matr.236604) study

c) clanks: CLANKEVENTS PERSECOND = 0.001 (s−1),
DEVIATION 1 SIGMA SEC = 600 (s; clank events at1σ time deviation),
JUMP SLOPE = 1.5, JUMPMIN = 20 (mas), JUMPMAX = 120 (mas)
(power law parameters for the clanks magnitude distribution)

3. event tables: micrometeoroidsTable.dat, clanksTable.dat

(4) Analyse the simulation output

1. export to external file: outputactualattitude.dat (see next page)
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5.000000 -0.140523 0.217817 290.871977 -0.00000018 0.00000027 0.00087264 0.99999962 0
6.000000 -0.163914 0.254139 290.869272 -0.00000025 0.00000038 0.00101808 0.99999948 0
7.000000 -0.187296 0.290468 290.866567 -0.00000033 0.00000051 0.00116351 0.99999932 0
8.000000 -0.210669 0.326802 290.863862 -0.00000042 0.00000065 0.00130895 0.99999914 0
9.000000 -0.212484 0.329625 290.863652 -0.00000043 0.00000067 0.00132025 0.99999913 0
9.077684 -0.234024 0.363149 290.861158 -0.00000053 0.00000082 0.00145438 0.99999894 1

10.000000 -0.257379 0.399496 290.858454 -0.00000065 0.00000100 0.00159981 0.99999872 0
11.000000 -0.280725 0.435848 290.855749 -0.00000077 0.00000120 0.00174524 0.99999848 0
12.000000 -0.304063 0.472207 290.853045 -0.00000091 0.00000142 0.00189067 0.99999821 0
13.000000 -0.327391 0.508571 290.850340 -0.00000107 0.00000165 0.00203609 0.99999793 0
14.000000 -0.350711 0.544941 290.847636 -0.00000123 0.00000191 0.00218152 0.99999762 0
15.000000 -0.374022 0.581317 290.844931 -0.00000141 0.00000218 0.00232694 0.99999729 0
16.000000 -0.397324 0.617700 290.842227 -0.00000159 0.00000247 0.00247236 0.99999694 0
17.000000 -0.420617 0.654088 290.839523 -0.00000179 0.00000278 0.00261778 0.99999657 0
18.000000 -0.443900 0.690482 290.836819 -0.00000200 0.00000310 0.00276320 0.99999618 0
19.000000 -0.467142 0.726828 290.834119 -0.00000223 0.00000345 0.00290841 0.99999577 0
19.998541 -0.467175 0.726882 290.834115 -0.00000223 0.00000345 0.00290862 0.99999577 1
20.000000 -0.490836 0.763163 290.831060 -0.00000246 0.00000381 0.00305404 0.99999534 0
21.000000 -0.514093 0.799575 290.828356 -0.00000271 0.00000419 0.00319945 0.99999488 0
22.000000 -0.537341 0.835993 290.825653 -0.00000296 0.00000459 0.00334487 0.99999441 0
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The output file shows one simulation time step in each row. Thecolumns contain the following
information:

• First column: current time of the simulation. Shown here arethe first 26 seconds of
a 10000 second simulation run,

• Second - fourth columns: all three components of the actual rate vector, in units of
10−6 rad/s,

• Fifth - Eighth column: all four components of the quaternionrepresenting the actual
attitude of the Gaia spacecraft.

• Ninth column: event flag. ’0’ means no event at that time, ’1’ (currently) indicates
a (micro-)meteoroid impact or a clank event.
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5 Summary

The GAM software allows to simulate the dynamics the Gaia spacecraft from a purely physical
point of view, as its design shows the way to be as realistic aspossible. The global programming
structure is able to handle external and internal perturbations of arbitrary origin acting on the
satellite. This includes environmental disturbances, such as the solar radiation pressure (SRP),
(micro-)meteoroid impacts on the spacecraft’s surface, and discontinuities in its scan-phase. In
addition, GAM can deal with thruster firings from the MPS, appearing as internal disturbance
source. The high flexibility of the GAM in terms of parameter adjustments or extensions of
blocks makes it in ideal tool for any comparison between realmeasurements and simulation
data – for the benefit of the accuracy of the scientific results.

Within a short time, the work on the last major blocks, the sensor’s and the AOCS modules, will
be finished. As soon as both are fully functional, all major parts are available to be incorporated
into the global structure in order to accomplish the simulation loop. Even at the current stage,
this simulation software can produce useful information for other simulation tools within the
Gaia project. Although there are still a lot of tasks to be tackled, the simple handling of the
software in terms of improvements and extensions, however,as well as the first results, show a
clear way of progression towards an even more sophisticatedmodelling of the Gaia spacecraft.
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