
L E I B N I Z U N I V E R S I TÄT H A N N O V E R
FA K U LTÄT F Ü R E L E K T R O T E C H N I K U N D I N F O R M AT I K

Software-Defined Middlebox Networking

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

M.Sc., Ahmed Mohamed Ahmed Abujoda
geboren am 15 February 1983 in Elkamlin, Sudan

2016

referent : Prof. Dr. Panagiotis Papdimitriou

korreferent : Prof. Dr. rer. nat. Torsten Braun

tag der promotion : 10.02.2016

M.Sc., Ahmed Mohamed Ahmed Abujoda : Software-Defined Middle-
box Networking, Dissertation, © 10.02.2016

A B S T R A C T

Middleboxes have become an essential part of the Internet provid-
ing a wide range of crucial functions such as encryption, caching
and redundancy elimination. However, despite their important role,
today’s middleboxes are single-role devices built of specialized hard-
ware, provisioned for peak load and managed through device and
vendor specific interfaces leading to inefficient resource management
and high capital and operation cost. Network Function Virtualization
(NFV) is a new concept aiming at mitigating the limitations of middle-
boxes by outsourcing Network Functions (NFs) to virtualized infras-
tructures and enabling new bussiness models, e.g., Network Function
as a Service (NFaaS). Yet, while bringing significant advantages to the
network, NFV raises serious challenges in terms of network service
deployment, whether this deployment takes place on the traffic path
(to avoid redirection and hence latency inflation) or off the path (to
support NFs with high processing demand).

The deployment of NFs by Network Function Providers (NFPs)
(i.e., ISPs providing virtualized infrastructure for NFs deployment)
should maintain a certain order (i.e., service chain) to enforce the en-
terprise policy, while taking into account the location-dependency of
some NFs. The latter might raise the need for collaboration between
different NFPs to deploy NFs, given the limited geographical foot-
print of a single NFP. This, in turn, entails serious challenges in terms
of the privacy and the autonomy of each NFP, i.e., NFPs are known
to implement different local policies while being secretive about their
network resources and topology. To this end, we need to develop
multi-provider approaches for NFs assignment (i.e., mapping NFs to
processing and network resources) and middlebox discovery (for on-
path processing), while preserving the autonomy and the privacy of
each provider and maintaining the NFs order. Furthermore, as with
any service offering, these approaches should also enable competitive
price offering of network services to clients.

In this thesis, we present MIDAS, an architecture for the coordi-
nation of middlebox discovery and selection across multiple NFPs.
MIDAS relies on a centralized middlebox controller in each NFP
to provide interoperability among NFPs for flow processing setup.
MIDAS establishes on-path processing via middlebox signaling, con-
troller chaining, and Multi-Party Computation (MPC) based middle-
box selection. We particularly employ MPC to preserve the confiden-
tiality of middlebox utilization across the NFPs. We study the feasibil-
ity of MIDAS using a prototype implementation and further present
simulation results to assess the efficiency of our middlebox selection

iii

approach. Our results show that MIDAS incurs low setup delay in the
order of tenths of milliseconds while achieving network-wide load
balancing and high request acceptance rate.

We also propose DistNSE, a distributed architecture that enables
the collaboration among NFPs for off-path Network Service Embedding
(NSE) (i.e., the mapping of service chains), while maintaining the pri-
vacy and the autonomy of each NFP. DistNSE also ensures competi-
tive pricing by letting different NFPs compete for different NFs of a
service chain. To this end, DistNSE decomposes NSE in two steps: (i)
inter-provider embedding, where we propose an algorithm in order
to partition a service chain and establish competition across NFPs,
and (ii) intra-provider embedding, where we allow NFPs to enforce
different policies for the assignment of chain segments to datacen-
ter networks. We further couple the proposed embedding methods
with a communication protocol for interoperability and collaboration
among the participating NFPs. We use simulations to assess the ef-
ficiency of DistNSE and identify significant gains over an existing
distributed embedding framework (i.e., Polyvine) in terms of service
and embedding cost.

Both DistNSE and MIDAS require the knowledge of NFs com-
putational requirements to assign NFs to processing platforms (e.g.,
servers). Hence, in this thesis we investigate the implications and chal-
lenges arising from NFs’ workload profiling on commodity servers.
We exemplify a technique that circumvents the difficulty of profiling
packet processing workloads. Applying this technique to our packet
processing platform, we gauge the computational requirements of se-
lected workloads and corroborate the effect of various I/O optimiza-
tions on workload CPU utilization.

Keywords: Network Function Virtualization, Software Defined Net-
working, Middlebox.

iv

Z U S A M M E N FA S S U N G

Middleboxes sind heute ein wesentlicher Teil des Internets und bieten
eine breite Palette von wichtigen Funktionen wie Verschlüsselung, Ca-
ching und Reduktion von Redundanzen. Doch trotz ihrer wichtigen
Rolle sind heutige Middleboxen hochspezialisierte Geräte, die eine
einzige Netzwerkfunktion beherrschen. Desweiteren sind diese Gera-
ete für Spitzenlasten dimensioniert und besitzen in der Regel Herstel-
lerspezifische Schnittstellen, und führen somit zu einem ineffizienten
Ressourcenmanagement mit hohen Kapital- und Betriebskosten.

Network Function Virtualization (NFV) ist ein neues Konzept, wel-
ches das Ziel hat, die Einschränkungen von Middleboxen durch Aus-
lagerung von Netzwerkfunktionen (NFs) auf virtualisierte Infrastruk-
turen aufzuheben und somit neue Geschäftsmodelle, wie z.B. Net-
work Functions as a Service (NFaaS) zu ermöglichen. Doch trotz der
erheblichen Vorteile bringt das NFV-Konzept auch große Herausfor-
derungen für die Verwendung von Netzwerkfunktionen mit sich, so-
wohl für deren Einsatz entlang eines Netzwerkpfades (on-path), wo
zusätzliche Verzögerungen vermieden werden müssen, als auch ab-
seits des Pfades, um NFs mit hohen Rechenanforderungen zu Unter-
stützen.

Der Platzierung von NFs bei Network Function Providern (NFPn)
- ISPs die eine virtualisierte Infrastruktur für die Bereitstellung von
NFs anbieten - muss die korrekte Reihenfolge der NFs in einer so-
gennanten Service-Chain und deren geografische Abhängigkeit si-
cherstellen. Letzteres erfordert die Zusammenarbeit zwischen den
verschiedenen NFPs, da die geographische Reichweite eines einzel-
nen NFP begrenzt ist. Dies wiederum bringt große Herausforderun-
gen in Bezug auf den Schutz der Privatsphäre und der Autonomie der
einzelnen NFP: in der Regel implementieren NFPs heute unterschied-
liche regulatorische Richtlinien und machen ihre Netzwerkressourcen
sowie die verwendete Topologie nicht öffentlich. Daher müssen Multi-
Provider-Ansätze entwickelt werden, welche sowohl eine Abbildung
von NFs auf Netzwerkressourcen ermöglichen, als auch das Discove-
ry von Middleboxen erlauben und dabei die Autonomie und Privat-
sphäre der einzelnen Anbieter aufrechterhalten. Darüber hinaus, wie
bei jedem Service-Angebot, sollten diese Ansätze den NFPs ermög-
lichen, wettbewerbsfähige Preise für Netzwerk-Dienstleistungen zu
erzielen.

In dieser Arbeit präsentieren wir MIDAS, eine Architektur zur Ko-
ordinierung der Middlebox Discovery und Auswahl über mehrere
NFPs. MIDAS benutzt hierzu einen zentralisierten Controller in je-
dem NFP, um die Interoperabilität zwischen NFPs für den Aufbau
des Flowprocessing bereitzustellen. MIDAS ermöglicht on-path Ver-

v

arbeitung mittels Middlebox-Signalisierung, Controller-Chaining und
Middlebox Auswahl mit Hilfe von Multi-Party Computation (MPC).
Insbesondere setzen wir MPC ein, um die Vertraulichkeit der Middlebox-
Auslastung über mehrere NFPs sicherzustellen. Wir untersuchen die
Machbarkeit des MIDAS Architektur mithilfe einer prototypische Im-
plementation und präsentieren Simulationsergebnisse, die die Effizi-
enz unseres Auswahlansatzes bewerten. Unsere Ergebnisse zeigen,
dass MIDAS eine Aufbauverzögerung in der Größenordnung von
Zehntel Millisekunden hat, während gleichzeitig ein netzwerkweiter
Lastverteilung und eine hohe Anforderungsannahmequote erreicht
wird.

Zusätzlich präsentieren wir DistNSE, ein verteiltes Framework, wel-
ches die Zusammenarbeit zwischen NFPs für off-path Network Ser-
vice Embedding (NSE) ermöglicht, d.h., die Zuordnung von Service-
Chains, unter Beibehaltung der Privatsphäre und Autonomie der ein-
zelnen NFP. DistNSE stellt ebenfalls eine wettbewerbsfähige Preisge-
staltung sicher, indem verschiedene NFPs um verschiedene NFs einer
Service-Chain konkurrieren. Zu diesem Zweck analysiert DistNSE
das NSE Problem in zwei Schritten: (i) das Inter-Provider-Embedding,
wofür wir einen Algorithmus entwickeln, der die Service-Chain par-
titioniert und Wettbewerb zwischen den NFPs sicherstellt, und (ii)
Intra-Provider-Embedding, wo wir NFPs ermöglichen unterschiedli-
che Richtlinien für die Vergabe von Rechenzentrumsnetzwerken ein-
zusetzen. Weiterhin entwickeln wir ein Kommunikationsprotokoll für
die Koordinierung zwischen den NFPs. Wir verwenden Simulationen,
um die Effizienz von DistNSE zu bewerten und identifizieren signifi-
kante Vorteile gegenüber einem bestehenden verteilten Einbettungs-
algorithmus (Polyvine) in Bezug auf Service und Einbettungskosten.

Sowohl DistNSE als auch MIDAS erfordern die Kenntnis der Re-
chenanforderungen der NFs, um diese NFs den Verarbeitungsplatt-
formen (z.B. Server) zuzuweisen. Daher wird in dieser Arbeit unter-
sucht, welche Auswirkungen und Herausforderungen aus NFs Workload-
Profilierung auf Commodity-Servern entsteht. Wir entwicklen anschlie-
ßend eine Technik, welche die Schwierigkeit des Profilings von Paket-
verabeitungsoperationen umgeht. Diese Technik kommt in unserer
Paket-Verarbeitungsplattform zum Einsatz, in der wir die Rechenan-
forderungen von ausgewählten Workloads messen und die Wirkung
von verschiedenen I/O-Optimierungen auf die Arbeitsbelastung der
CPU-Auslastung bestätigen konnten.

Schlagwörter: Network Function Virtualization, Software Defined Net-
working, Middlebox.

vi

M Y P U B L I C AT I O N S

Parts of this thesis are based on the following papers that have al-
ready been published.

A. Abujoda and P. Papadimitriou. Profiling Packet Processing Work-
loads on Commodity Servers. In Wired/Wireless Internet Communi-
cation, volume 7889 of Lecture Notes in Computer Science, pages 216–
228. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-38400-4. doi:
10.1007/978-3-642-38401-1_17. URL http://dx.doi.org/10.1007/

978-3-642-38401-1_17.

A. Abujoda and P. Papadimitriou. MIDAS: Middlebox discovery and
selection for on-path flow processing. In Communication Systems and
Networks (COMSNETS), 2015 7th International Conference on, pages
1–8, Jan 2015a. doi: 10.1109/COMSNETS.2015.7098686.

A. Abujoda and P. Papadimitriou. Invariant Preserving Middle-
box Traversal. In Wired/Wireless Internet Communications, volume
9071 of Lecture Notes in Computer Science, pages 139–150. Springer
International Publishing, 2015b. ISBN 978-3-319-22571-5. doi:
10.1007/978-3-319-22572-2_10. URL http://dx.doi.org/10.1007/

978-3-319-22572-2_10.

A. Abujoda and P. Papadimitriou. DistNSE: Distributed Network Ser-
vice Embedding Across Multiple Providers. In Communication Sys-
tems and Networks (COMSNETS), 2016 8th International Conference
on, Jan 2016.

A. Abujoda, A. Sathiaseelan, A. Rizk, and P. Papadimitriou. Software-
defined crowd-shared wireless mesh networks. In Wireless and
Mobile Computing, Networking and Communications (WiMob), 2014
IEEE 10th International Conference on, pages 130–135, Oct 2014. doi:
10.1109/WiMOB.2014.6962161.

A. Abujoda, D. Dietrich, P. Papadimitriou, and A. Sathiaseelan.
Software-Defined Wireless Mesh Networks for Internet Access
Sharing. Computer Networks, 2015. ISSN 1389-1286. doi:
http://dx.doi.org/10.1016/j.comnet.2015.09.008. URL http://www.

sciencedirect.com/science/article/pii/S1389128615003187.

D. Dietrich, A. Abujoda, and P. Papadimitriou. Network service em-
bedding across multiple providers with nestor. In IFIP Network-
ing Conference (IFIP Networking), 2015, pages 1–9, May 2015. doi:
10.1109/IFIPNetworking.2015.7145312.

vii

http://dx.doi.org/10.1007/978-3-642-38401-1_17
http://dx.doi.org/10.1007/978-3-642-38401-1_17
http://dx.doi.org/10.1007/978-3-319-22572-2_10
http://dx.doi.org/10.1007/978-3-319-22572-2_10
http://www.sciencedirect.com/science/article/pii/S1389128615003187
http://www.sciencedirect.com/science/article/pii/S1389128615003187

C O N T E N T S

i dissertation 1

1 introduction 3

1.1 Challenges and Requirements 5

1.2 Thesis Contributions 8

1.3 Thesis Outline 10

2 background 11

2.1 Middleboxes 11

2.2 Network Service Chaining 13

2.3 Network Function Virtualization 14

2.4 Packet Processing on Commodity Servers 15

2.4.1 Packet I/O on Commodity Servers 16

2.4.2 Advanced Packet I/O Engines 17

2.5 Software Packages for Network Functions Implementa-
tion 18

2.5.1 Click Modular Router 18

2.6 Server Virtualization Technologies 19

2.7 Software Defined Networking 20

2.7.1 SDN Controllers 22

2.7.2 OpenFlow Protocol 23

3 packet processing workload profiling 25

3.1 Profiling Challenges 26

3.2 Workload Profiling Methods 26

3.3 Experimental Results 28

3.4 Related Work 34

3.5 Summary 35

4 invariant preserving middlebox traversal 37

4.1 Middlebox Implications 38

4.2 Architecture Overview 39

4.3 Path Selection 41

4.4 Evaluation 43

4.4.1 Evaluation Environment 44

4.4.2 Evaluation Results 45

4.5 Related Work 48

4.6 Summary 48

5 midas : middlebox discovery and selection for

on-path flow processing 51

5.1 Challenges and Requirements 52

5.2 Architecture Overview 54

5.3 Middlebox Discovery 55

5.3.1 Middlebox Signaling 55

5.3.2 Controller Chaining 57

ix

x contents

5.4 Middlebox Selection 58

5.4.1 Intra-Provider Middlebox Selection 58

5.4.2 NFP Assignment 59

5.5 Implementation 60

5.5.1 Consolidated Middlebox 61

5.5.2 Signaling and MPC Protocols 62

5.6 Evaluation 62

5.6.1 Experimental Results 62

5.6.2 Simulation Results 66

5.7 Related Work 68

5.8 Summary 70

6 distnse : distributed network service embedding

for off-path flow processing 71

6.1 Challenges and Requirements 72

6.2 Network Model 74

6.2.1 Service Chain Model 74

6.2.2 Network Model 74

6.3 Network Service Embedding 75

6.3.1 Embedding Overview 75

6.3.2 Inter-Provider Embedding 77

6.3.3 Intra-Provider Embedding 80

6.4 DistNSE Protocol 83

6.5 Evaluation 85

6.6 Related Work 89

6.7 Summary 91

7 conclusions 93

7.1 Future Work 95

bibliography 97

scientific career 111

L I S T O F F I G U R E S

Figure 1 Example of a service chain. 13

Figure 2 Packet I/O handling on commodity servers. 17

Figure 3 Exemplary Click forwarding path. 19

Figure 4 High-level overview of SDN architecture. 21

Figure 5 Average number of packets per batch vs. packet
rate. 28

Figure 6 CPU cycles/sec for raw forwarding, IPv4 and
CRC vs. packet forwarding rate with 64-byte
packets. 30

Figure 7 CPU cycles/sec distribution for IPv4. 31

Figure 8 Main memory access distribution for IPv4. 31

Figure 9 CPU cycles/packet vs. packet size for CRC
and AES. 32

Figure 10 CPU cycles/sec for AES vs. packet forwarding
rate with 64-byte packets. 32

Figure 11 Extra CPU cycles/packet required for CRC with
multi-threading. 34

Figure 12 Example of invariant preserving middleboxes
traversal. 40

Figure 13 Architecture components. 42

Figure 14 Simulation OpenFlow switches topology. 44

Figure 15 Connection establishment rate vs. number of
arriving requests. 45

Figure 16 Total utilization of middleboxes deployed on
the network. 46

Figure 17 Total utilization of all network links. 46

Figure 18 The network load balancing level. 47

Figure 19 The length of each selected path for each con-
nection. 47

Figure 20 Assignment of NFs to middleboxes along the
traffic path. 53

Figure 21 Architecture components. 55

Figure 22 Middlebox discovery steps. 57

Figure 23 Message formats. 58

Figure 24 Consolidated middlebox implementation. 61

Figure 25 Processing setup delay vs. number of NFPs. 63

Figure 26 NFP assignment delay (MPC) vs. request ar-
rival rate. 63

Figure 27 CoMB signaling delay vs. a) number of CoMB
and b) request arrival rate with 15 CoMBs. 64

xi

Figure 28 Controller chaining delay vs. a) number of
controllers b) request arrival rate with 5 NFPs.

64

Figure 29 Request processing rate vs. CPU cores. 65

Figure 30 Simulation topology (34 CoMB subdivided into
3 NFPs). 66

Figure 31 Network-wide load balancing. 67

Figure 32 Load balancing within each provider. 67

Figure 33 Processing demand acceptance rate. 68

Figure 34 Assignment of NFs to NFPs. 72

Figure 35 Overview of distNSE workflow. 76

Figure 36 Example of inter-provider service embedding. 79

Figure 37 An example for NFP DC topology conversion
with the numbers representing the weight of
each link. 81

Figure 38 DistNSE protocol workflow. 86

Figure 39 Total service cost per request. 87

Figure 40 Embedding BW per request on substrate and
DCs links. 87

Figure 41 Service cost difference vs. BW embedding cost
difference for each request. 88

Figure 42 Number of NFPs competing for a service chain
vs number of requests. 89

Figure 43 Number of NFPs competing for a service chain
vs. the total DCs’ CPU utilization. 89

Figure 44 Number of protocol messages exchanged per
service chain. 90

Figure 45 Total DCs’ CPU utilization. 90

L I S T O F TA B L E S

Table 1 OpenFlow matching fields. 24

Table 2 Average CPU cycles/packet for different work-
loads (64-byte packets). 34

Table 3 Average CPU cycles/packet for raw forward-
ing with diverse I/O optimizations (64-byte pack-
ets). 34

Table 4 Computational requirements for processing setup. 65

xii

acronyms xiii

Table 5 PM instantiation time. 66

A C R O N Y M S

AES Advanced Encryption Standard

API Application Programming Interface

AS Autonomous System

BGP Border Gateway Protocol

CLI Command Language Interpreter

CM Control Module

CoMB Consolidated Middleboxes

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DC Datacenter

DistNSE Distributed Network Service Embedding

DMA Direct Memory Access

DNS Domain Name System

DPDK Data Plane Development Kit

ECN Explicit Congestion Notification

GPU Graphics Processor Unit

HSA Header Space Analysis

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

ISP Internet Service Provider

MAC Media Access Control

MIDAS Middlebox Discovery and Selection for On-Path Flow
Processing

xiv acronyms

MPC Multi-Party Computation

NAT Network Address Translator

NetConf Network Configuration Protocol

NFaaS Network Function as a Service

NF Network Function

NFP Network Function Provider

NFV Network Function Virtualization

NFVI NFV Infrastructure

NIC Network Interface Card

NPCL Network Processing Client

NSE Network Service Embedding

NSIS Next Steps In Signaling

NUMA Non-Uniform Memory Access

OS Operating System

OVSDB Open vSwitch Database

PCIe Peripheral Component Interconnect express

PM Processing Module

P2P Peer to Peer

PoPs Points-of-Presence

PSM Packet Steering Module

QoS Quality of Service

RAO Router Alert Option

RE Redundancy Elimination

RSPAN Remote Switched Port Analyzer

RSVP Resource Reservation Protocol

SCTP Stream Control Transmission Protocol

SDN Software-Defined Networking

SIMCO Simple Middlebox Configuration

SRID Service Request ID

acronyms xv

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

VM Virtual Machine

VoIP Voice over IP

WAF Web Application Firewall

WAN Wide Area Network

Part I

D I S S E RTAT I O N

1
I N T R O D U C T I O N

The Internet has become an integral part of our daily life providing
services and applications for research, education, health care, enter-
tainment, politics and trading. Today, the Internet serves more than
3.2 billion users (almost half the world population) [15] and generates
more than $2.3 trillion in revenue worldwide [73]. In fact, the Internet
has become so essential that the United Nations has declared Internet
access as a human right [117].

The Internet owes much of its success to its original design. In prin-
ciple, the Internet was designed to provide a simple and transparent
network and rely on end nodes for application-specific functions and
intelligent processing (known also as the end-to-end principle) [50].
Based on this design, the network delivers packets unmodified (ex-
cept the routing and forwarding fields such as Time To Live (TTL)
and MAC addresses) from one node to the other, whereas any pro-
cessing or modification on the packet content is performed by the
end nodes. This design principle allowed the Internet to be extensi-
ble and general, accommodating emerging protocols and applications
that could have never been anticipated at its early days. However, as
it continued to grow, the Internet faced new requirements that could
not be fulfilled by the original design. Specifically, the Internet had
to deal with challenges such as protecting the network and the end
users against the increasing number of attacks and threats, providing
delay and bandwidth guarantee for new applications (e.g., VoIP, IPTV,
gaming), improving performance and minimizing cost (e.g., conserve
access bandwidth and minimize delay), scaling beyond the limited
space of the IPv4 address, and enhancing monitoring and control. As
a result, network administrators and Internet Service Providers (ISPs)
started deploying new network appliances, known as middleboxes,
on their networks [122][130]. Middleboxes augment the Internet with
a wide range of Network Functions (NFs) such as packet filtering,
intrusion detection, encryption, load balancing, caching, and redun-
dancy elimination. Over the years, middleboxes have become indis-
pensable for the network functionality. Indeed, a recent study [122]
found that the number of middleboxes in enterprise networks is as
high as the number of routers and switches.

However, despite their important role, today’s middleboxes suffer
from a set of limitations. They are built of dedicated hardware boxes
and serve a specific purpose. Hence, in order to deploy new functions
or upgrade the existing ones, network administrators are required to
acquire new devices which leads to high investment costs [122]. Fur-

3

4 introduction

thermore, the fact that middleboxes are standalone devices that are
provisioned for peak loads implies that most of the time they are
underutilized (or overutilized, when traffic load suddenly increases)
with no opportunity for consolidation or resources pooling within
and across different middleboxes. In terms of management and con-
figuration, the diverse and complex functions of middleboxes require
a wide range of technical expertise and skills which may vary across
various vendors offering the same middlebox function. This, in turn,
leads to a large increase in operation cost incurred through training
cost or through hiring skilled administrators [122].

Network Function Virtualization (NFV) is a recent trend aiming at
mitigating these limitations by replacing the special purpose hardware-
based middleboxes with software-based NFs running on virtualized
generic compute platforms [13, 34, 35, 22]. More specifically, NFV
enables the consolidation of software NFs on standard commodity
servers [64], switches and storage which could be placed in the ISP
network or in remote datacenters. As with cloud computing, out-
sourcing NFs to datacenters opens the door for new service models
such as Network Function as a Service (NFaaS) [13]. NFaaS enables
network operators to rent their compute resources to host clients’
NFs in a pay-per-use fashion leading to operation and investment
cost saving and dynamic on-demand-based resource provisioning.
Furthermore, NFV enables network processing which can facilitate
the deployment of new services and is essentially a prerequisite for
emerging communication paradigms, such as information-centric net-
working [93]. Packet inspection and filtering, redundancy elimination,
and caching in the network can provide better support for many ap-
plications, especially when such NFs are optimized for certain ap-
plications. Network processing can also result in bandwidth conser-
vation. For example, the deployment of intrusion detection systems
and packet filters in the network can conserve bandwidth by filtering
suspicious flows upstream near their source.

Inline with NFV, ISPs, such as AT&T, Deutsche Telekom, and Tele-
fonica, have started the deployment of small datacenters (known as
micro-datacenters) to enhance the support for content distribution
[78] and offer virtualized NFs to their clients. These datacenters are
placed at Points-of-Presence (PoPs) providing a wide geographical
footprint and low latency. In these datacenters, commodity servers
will be first-class citizens for hosting NFs, due to their unprecedented
level of programmability and flexibility [119, 64, 81]. Furthermore,
with CPUs with instruction sets optimized for certain NFs, GPUs
with massive level of parallelism [86], and recent technologies for
high-speed packet I/O (e.g., netmap [115], DPDK [1]), commodity
servers will perform a multitude of packet processing operations at
high rates for NFs deployment.

1.1 challenges and requirements 5

However, while bringing significant benefits to the network, NFV
raises serious requirements in terms of network service deployment.
In particular, NFV requires the development of techniques and ap-
proaches for resource discovery and allocation to place NFs on the
networks and datacenters of the Network Function Providers (NFPs)
(i.e., ISPs providing virtualized infrastructure for NFs deployment).
Typically, NFs can be deployed either on or off the traffic path [122]
[132]. On-path processing obviates the need for traffic redirection
which can lead to latency inflation and high bandwidth consump-
tion. However, on-path processing also requires the presence of pro-
cessing platforms with sufficient available resources along the traffic
path. Furthermore, all traffic is forced to pass through the on-path
middleboxes which may involve unwanted processing on the traffic
and introduce a single of point of failure. On the other hand, off-
path processing provides plenty of resources by redirecting traffic
to datacenters deployed off the traffic path. It also avoids unwanted
processing and possible disruption due to middlebox failure. Yet, to
reach datacenters deployed off the path, the traffic may have to tra-
verse longer paths leading to latency inflation and high bandwidth
consumption. Placing network functions on or off the path depends
on the provider’s policy and available resources (e.g., the availabil-
ity of processing platforms on the path), and the client requirements
(e.g., delay constrains). For example, a client aiming to transcode or
compress a video stream might prefer on-path processing due the low
delay, whereas a client who wants to encrypt delay-tolerant applica-
tion traffic (e.g., file transfer) might request off-path processing due
to the amount of processing capacity available in datacenters, since
encryption has high computational requirements.

To this end, the main objective of this thesis is to enable network
service deployment on and off the traffic path. In particular, we in-
vestigate and develop different techniques for resource discovery and
allocation for NFV across and within NFPs. In the following sections,
we discuss the main challenges for network service deployment, out-
line our approaches and contributions, and present the structure of
this thesis.

1.1 challenges and requirements

In the following, we discuss the main challenges for network service
deployment:

• Correctness: Middleboxes are typically deployed in a particu-
lar order to fulfil certain policies, e.g., traffic should traverse a
firewall to filter suspicious traffic before reaching a cache. In
enterprise networks, such policies are enforced by the careful
placement of middleboxes in the network. The deployment of
middleboxes should preserve the order specified by the enter-

6 introduction

prise policy. Ideally, the migrated middleboxes should enforce
policies identical to middleboxes deployed on-site.

• Location dependency: Some NFs are location dependant, e.g.,
cache and redundancy elimination should be deployed close
to the client side to minimize delay and conserve bandwidth,
whereas the load balancer and web application firewall should
be deployed in proximity to the server side to distribute traffic
load and prevent malicious access. Since a single NFP may not
satisfy the location constraints of all NFs in a service chain (i.e.,
a sequence of NFs commonly specified as a service chain) due
to its limited geographical footprint, deploying NFs requires the
collaboration and coordination among multiple providers.

• Privacy: NFPs are known to be secretive about their networks.
Information such as link utilization, servers’ load and network
topology is deemed confidential. For instance, Amazon EC2

[10], a widely-known cloud datacenter provider, does not dis-
close any information about servers’ utilization or geographical
location to clients but rather advertises a set of types where each
type has a combination of physical resources (e.g., CPU, mem-
ory and network) and a service cost. Furthermore, in terms of
topology information, ISPs typically reveal simplified graphs
which neither show the router-level connectivity nor identify
the PoPs structure of an ISP network [124]. Hence, NFPs should
be able to collaborate for the deployment of network service
while preserving the privacy of each provider.

• Autonomy: NFPs are usually administratively-independent do-
mains which implement different policies to manage their net-
work resources. For example, some NFPs might aim at achiev-
ing load balancing to provide better reliability and robustness,
while others might aim at maximizing resource utilization and
revenue. Subsequently, NFPs should be able to deploy NFs ac-
cording to their internal policies, i.e., network service deploy-
ment should not enforce a single policy across the providers or
violate the policies of the individual providers.

• Middlebox traversal: Despite the essential functionality they
bring to the network, middleboxes introduce various undesir-
able implications on traffic that traverses them and hinders the
establishment of connections when certain protocols are in use
(e.g., Stream Control Transmission Protocol (SCTP) [125], Multi-
path TCP [131], UDP). For example, Network Address Translators
(NATs) rewrite IP addresses and ports, proxies break end-to-
end semantics, and firewalls may block UDP traffic or cache out-
of-order-packets introducing varying delays. To mitigate these
problems, most applications resort to tunnelling traffic over the

1.1 challenges and requirements 7

non-blocked protocols (e.g., HTTP, TCP or UDP) or to encrypt-
ing packets leading to high power consumption and waste of
bandwidth. Most of these implications stem from the middle-
boxes deployed by access ISPs and cellular networks. Hence, to
avoid tunnelling or encryption, the deployment of middleboxes
should foster the collaboration between end-hosts and ISPs (or
NFPs) such that end-hosts express their requirements for estab-
lishing connections and ISPs may redirect the traffic through a
set of middleboxes fulfilling these requirements.

These challenges, in turn, raise a set of requirements for network
service deployment:

• Middlebox discovery: For on-path network functions deploy-
ment, a prerequisite is the discovery of the middleboxes (i.e.,
processing platforms) and NFPs along the traffic path. Exist-
ing techniques for path discovery (e.g., traceroute, Tracebox [59])
incur delays that will substantially prolong flow processing es-
tablishment. Protocols for middlebox signaling have been devel-
oped primarily for device configuration (e.g., SIMCO [126] and
NSIS [87]). Furthermore, AS-path retrieval from BGP routers
will not augment middlebox discovery, since the sequence of
middleboxes traversed by the flow within each NFP will still
be required. Hence, to establish on-path processing, we need to
design signaling protocols for middlebox discovery which incur
low delay and maintain the privacy of each provider.

• Network functions assignment: We need to develop privacy-
preserving approaches for assigning network functions to pro-
cessing platforms (deployed on-path or on datacenters) and net-
work links across multiple providers. In addition to privacy,
these approaches should enable each provider to enforce its
own policy (i.e., preserve autonomy) while maintaining the cor-
rectness of the service chain within and across NFPs. More
specifically, this requires the design of algorithms for middle-
boxes selection and NFPs assignment (for on-path processing)
as well as algorithms for network path selection and mapping
NFs to servers and links within datacenters (for off-path pro-
cessing).

• Service chain partitioning: As with any service offering, clients
expect market competition and cost minimization for networks’
service offering. In particular, depending on NFs location re-
quirement, each provider’s policy and available resources, NFPs
should be able to compete for different sets of NFs (i.e., sub-
chain) within a service chain and subsequently offer different
service prices to the client. This raises the need for developing a
service chain partitioning approach which enables competition

8 introduction

while preserving providers’ privacy and autonomy as well as
service chain correctness within and across the providers.

• Invariant-preserving middlebox traversal: To foster collabora-
tion between end-hosts and the ISPs for the establishment of
connections through middleboxes, end-hosts should be able to
express their requirements as an invariant (e.g., using the API
in [113]). For example, an end-host can request not modifying
certain packet fields or payload, permitting UDP traffic or en-
abling access to public DNS servers. Upon the submission of
such a request, the ISP may be willing to redirect the traffic
through a set of middleboxes (e.g., NAT and firewall) that com-
ply with its security policy and, at the same time, preserve the
invariant expressed by the end-host. This, in turn, raises several
requirements: (i) the collection of middlebox configurations, (ii)
the selection of invariant-preserving middleboxes and shortest
paths, and (iii) the installation of forwarding entries in the ISP’s
routers to route the traffic through the assigned path.

• Workload profiling: To consolidate NFs on commodity servers
and enable admission control on service requests, the knowl-
edge of the computational requirements of NFs’ workloads is
needed. Profiling packet processing workloads on commodity
servers is challenging due to the use of optimization techniques
such as polling and batch processing for maximizing processing
rate. In more detail, polling enforces checks for new incoming
packets, as frequently as possible, irrespective of the packet ar-
rival rate leading to high CPU utilization, regardless of the traf-
fic rate and the processing workload. On the other hand, batch
processing, which is performed to reduce the computational re-
quirements of a workload, becomes less effective for low traffic
rates, since the number of packets per batch is smaller, result-
ing in high computation requirements per packet (i.e., cycles/-
packet).

1.2 thesis contributions

In this thesis, we provide the following contributions:

• To establish on-path network processing, we develop MIDAS,
an architecture for the coordination of on-path processing setup
which circumvents the difficulty in middlebox discovery and se-
lection across multiple NFPs, without any prior knowledge of
the network path. We propose signaling protocols for service
middleboxes discovery and NFP interoperability. Furthermore,
we design an order-preserving middlebox selection approach
which maintains providers’ privacy by using Multi-Party Computation

1.2 thesis contributions 9

(MPC) protocol to preserve the confidentiality of middleboxes’
utilizations across NFPs.

• We develop a prototype implementation to show the feasibil-
ity of our on-path flow processing architecture in terms of flow
processing setup delay with a diverse range of middleboxes,
NFPs, and network service request arrival rates. Our prototype
comprises a Click Modular Router implementation of our mid-
dlebox discovery protocol, an MPC protocol for the middlebox
selection approach and a software middlebox platform for con-
solidating NFs on a commodity server.

• We propose DistNSE, a distributed architecture which enables
the collaboration between NFPs for off-path Network Service
Embedding (NSE) while maintaining the privacy and the auton-
omy of the participating NFPs. DistNSE further ensures compet-
itive pricing by enabling different providers to compete for dif-
ferent NFs of a service chain. Our architecture decomposes pro-
cessing establishment into two steps: inter-provider service em-
bedding and intra-provider service embedding. Inter-provider
embedding provides a distributed algorithm for service chain
partitioning and competition establishment. We couple our inter-
provider algorithm with a communication protocol to exchange
embedding information among NFPs. On the other hand, intra-
provider embedding maps service chains to DCs and network
links of an NFP while implementing two different policies: ser-
vice cost minimization and load balancing.

• We present a Software-Defined Networking (SDN) architecture
for invariant preserving middlebox traversal. Following the trend
for (logically) centralized control, we rely on a centralized con-
troller deployed by the ISP which retrieves middlebox configu-
rations, selects middleboxes and paths that preserve the speci-
fied invariant, and sets up packet forwarding along the selected
path. Middlebox checking against invariants can be performed
using recent advances on static analysis, such as Header Space
Analysis (HSA) [96] or SymNet [128]. For the installation of
flow entries in routers, we employ OpenFlow [107]. Our work
is mainly focused on middlebox and path selection. To this end,
we present and evaluate an algorithm for the selection of a path
through a set of invariant-preserving middleboxes.

• We investigate the implications and challenges of workload pro-
filing on commodity servers, and we exemplify a technique for
gauging the computational requirements of packet processing
workloads. We apply instrumentation and develop a closed-
loop control approach to measure workload computational re-
quirements at a given processing rate, while minimizing the ef-

10 introduction

fect of workload-unrelated processing operations (e.g., empty
polls) and maximizing the effect of workload-related operations
(e.g., batch processing). Furthermore, we present the compu-
tational requirements of selected packet processing workloads
and show the effect of various I/O optimizations on workload
CPU utilization.

1.3 thesis outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents the concepts and technologies that are rele-
vant to understand this thesis.

• Chapter 3 discusses the challenges of workload profiling on
commodity servers and introduces our technique for gauging
the computational requirements of packet processing workloads.

• Chapter 4 reviews the implications of middleboxes on traffic
and connection establishment and presents our SDN architec-
ture for invariant preserving middlebox traversal.

• Chapter 5 discusses the challenges and requirements of on-path
processing and presents the different components of MIDAS,
our architecture for on-path flow processing. This chapter fur-
ther introduces our MIDAS prototype implementation.

• Chapter 6 investigates the challenges and requirements of off-
path NSE, and introduces the different components of DistNSE,
our architecture for distributed off-path network service embed-
ding.

• Chapter 7 highlights the conclusions of this thesis and presents
our outlook on future work.

2
B A C K G R O U N D

In this chapter, we introduce the concepts and the technologies that
are essential to understand this thesis. We start by defining the role
middleboxes play in today’s network. Next, we present the concept of
service chaining as a new approach to represent the deployment pol-
icy of middleboxes. Then we give an overview of Network Function
Virtualization (NFV) concept. Subsequently, we review the different
technologies facilitating the realization of NFV. In particular, we dis-
cuss the advancement of commodity servers’ capabilities and particu-
larly focus on packet I/O handling optimizations. We further present
different software packages and virtualization techniques that can be
used to implement and consolidate NFs on commodity servers. In the
last section of this chapter, we discuss Software-Defined Networking
(SDN), a technology which complements NFV to provide steering
and routing through NF service chains.

2.1 middleboxes

Middleboxes have become more popular than ever providing vari-
ous functions in enterprise, cellular and ISP networks. A recent study
found that the number of middleboxes in enterprise networks is as
high as the number of routers and switches [122]. Wang et al. [130]
reported that 72 out of the 107 cellular networks they studied rely
heavily on NATs to scale beyond the limited IPv4 address space. Fur-
thermore, recent years have seen a significant growth in the middle-
box market. For instance, the global firewall market has increased to
$9.5 billion in 2014, showing 9.5% increase over 2013. The market for
application delivery network (e.g., WAN optimizers, loadbalancers,
application gateways) will exceed $6.2 billion by 2020 [7].

According to RFC3234 [51], middleboxes are defined as network
appliances interposed on the path between a source node and a des-
tination node to provide network functions other than forwarding
and routing. Middleboxes are very diverse in terms of function and
application, performing a wide range of tasks (e.g., filtering, inspec-
tion, transformation, redundancy elimination, caching and encryp-
tion) and processing packets at different networking layers from net-
work to application layer. Due to this diversity, forming a comprehen-
sive classification of middleboxes is deemed challenging. RFC3234

[51] provides an approximate taxonomy for middleboxes by defin-
ing a set of facets with which a middlebox is classified. Examples of
these facets include the protocol layer at which the middlebox pro-

11

12 background

cesses packets, the visibility to the end nodes, the purpose of the
middlebox as a functional or an optimization network device, and
whether a middlebox function is processing or routing. The assign-
ment of facets to middleboxes is to some extent subjective and might
vary depending on the point of view. For example, some might con-
sider a NAT a functional middlebox, while others might see it as an
optimization device to overcome the depletion of IPv4 address space.
Nonetheless, to illustrate their role in the network, we present some
common examples of middleboxes:

• Firewall: A firewall filters packets based on a predefined set of
rules configured by the network administrator. In principle, a
firewall rule defines a set of header fields (e.g., IP source/desti-
nation address, source/destination port number, protocol) and
an action (e.g., allow, deny). Based on the header fields, the fire-
wall identifies the packets on which the action is performed.
A firewall can be stateful or stateless. A stateless firewall per-
forms filtering without maintaining any state about the arriving
packets. On the other hand, a stateful firewall runs with a com-
plex set of rules which classifies packets into connections (e.g.,
TCP flow) and maintains the state per connection such that, in
addition to malicious packets, illegitimate connections are also
blocked.

• Network Address Translator (NAT): A NAT enables the shar-
ing of a public IP address among multiple end nodes with pri-
vate IP addresses by mapping the private IP address and the
source port number of an end node connection (TCP or UDP)
to the public IP address and a selected port number [66]. The
main function of a NAT is to mitigate the problem of IPv4 ad-
dress space depletion. As discussed earlier, NAT is one of the
most popular middleboxes in cellular and ISP networks [130].

• Intrusion Detection System (IDS): An IDS monitors and anal-
yses the network traffic to identify malicious activities and vi-
olations of the network security and policies and subsequently
takes an action (e.g., alert the network administrator). Intrusion
detection approaches are categorized into three main groups
[104]: (i) signature-based detection, which identifies intrusion
by comparing the observed events against a database of known
attacks and threats, (ii) anomaly-based detection, which detects
intrusion by identifying events that deviates the system from its
expected or normal behaviour, and (iii) stateful protocol analy-
sis, which keeps track of a protocol’s state (e.g., TCP) to recog-
nize events that don’t match a protocol’s predefined behaviour.
Snort [31] and Bro [11] are two popular open source IDS tools
based on signature-based and anomaly-based methodologies.

2.2 network service chaining 13

REcache WAFclients servers

RE: Redundancy Elimination
FM: Flow Monitoring
LB: Load Balancer
WAF: Web Application Firewall

LB

Figure 1: Example of a service chain.

• Proxy: A proxy is an intermediary device that processes re-
quests sent to servers by clients to provide various functions
such as caching [56, 48, 33], compression, content logging and
monitoring, content-based filtering, load balancing, flow aggre-
gation and splitting [52]. In principle, proxies operate at and
between the transport and application layer aiming at improv-
ing communication performance (e.g., minimize access delay,
conserve access bandwidth), providing content access control
(i.e., filter unauthorised access to certain web pages or content),
optimizing resource utilization (e.g., distribute HTTP requests
among different web servers, offload SSL transactions [94]), and/or
protecting servers or clients against security attacks.

2.2 network service chaining

Middlebox deployment is commonly driven by certain policies, i.e.,
traffic should traverse a set of middleboxes in a specific order. For
example, traffic should traverse a firewall before reaching a cache to
prevent unauthorised access. Traditionally, the order of middleboxes
is enforced by physically placing them at particular points on the net-
work. With the emergence of NFV where middleboxes are software
modules which can be migrated, duplicated or removed depending
on network load and structure changes, a flexible approach is needed
to represent the order of middleboxes. To this end, the concept of
service chaining has become popular [111][72] [112]. A service chain
is a directed graph with edge nodes representing the traffic source
and destination, intermediate nodes representing the NFs and links
showing the order of middleboxes. Figure 1 gives an example of a ser-
vice chain where clients access a set of web servers. In this example,
to minimize delay, the client traffic access the cache first followed by
the redundancy elimination which conserves the bandwidth required
to communicate with the servers. Furthermore, before reaching the
load balancer, the traffic must be checked by the Web Application
Firewall (WAF) to filter malicious web access.

14 background

2.3 network function virtualization

Network Function Virtualization (NFV) is a new concept aiming at
replacing the special purpose hardware-based middleboxes with soft-
ware-based NFs running on virtualized infrastructures [13] [34] [35].
More specifically, NFV enables the consolidation of software NFs on
standard commodity servers, [64] switches and storage which could
be placed in the ISP network nodes, datacenters and end users prop-
erties. This further involves migrating, instantiating and cloning NFs
in different places in the network as needed without requiring the
deployment of new hardware.

As a result, NFV brings a high level of flexibility and programma-
bility to the network leading to a shorter time-to-market through
software-based development, the involvement of more players (e.g.,
small businesses and academia) in NFs innovation, and customizable
network services that can be tailored to clients’ geographical locations
and preferences. Furthermore, as with cloud computing, outsourcing
NFs to datacenters opens the door for new service models such as
NFaaS [13]. NFaaS enables network operators to rent their compute
resources to host clients’ NFs in a pay-per-use fashion leading to op-
eration and investment cost saving and dynamic on-demand-based
resource provisioning.

To implement NFV, ESTI NFV defines three architectural compo-
nents [13]:

• Virtualized Network Function, which is the software implemen-
tation of a network function that can be hosted on the NFVI.

• NFV Infrastructure (NFVI), which is comprised of the different
physical resources that should be virtualized to run the NFs.

• NFV Management and Orchestration, which orchestrates and
manages the lifecycle of the physical and/or the software re-
sources of the NFVI and the NFs. NFV Management and Or-
chestration performs tasks such as network service embedding,
resources provisioning, configuration, and monitoring.

The realization of these three components (i.e., NFV) is attainable
through the evolution of several recent technologies such as the ad-
vancement on commodity servers capabilities providing high perfor-
mance processing platforms, the optimization of packet I/O engine
aiming to accelerate packet handling, the development of software
frameworks and packages to design and implement NFs, and the
availability of diverse virtualization techniques to consolidate NFs.
Furthermore, NFV can benefit from SDN techniques and concepts. In
particular, SDN can provide traffic redirection and steering through
NFs to comply with the service chains’ specifications. In the follow-
ing sections, we will discuss the NFV enabling technologies in more
detail.

2.4 packet processing on commodity servers 15

2.4 packet processing on commodity servers

Traditionally, middleboxes were developed to achieve high perfor-
mance and perform single-purpose limited packet processing func-
tions by relying on specialized and closed software and hardware
(e.g., custom ASICs, network processors). Extending or programming
such equipment requires hardware redesign and upgrade as well as
special programming skills (e.g., programming network processors
[68]). However, with the emergence of sophisticated and frequently
evolving network functions, there has been a growing need for ex-
tensible and programmable middleboxes. As a result, a significant
amount of work has been dedicated to build packet processing plat-
forms using commodity servers [119, 64, 86, 40, 65, 115, 133, 67, 99,
106].

Commodity servers provide an unprecedented level of programma-
bility and flexibility [119, 64, 81]. They are based on hardware, oper-
ating systems and software with which a large base of developers
are familiar. This, in turn, facilitates changing or extending network
functions through software-only upgrades, obviating the need for
hardware design and development. Furthermore, commodity multi-
core CPUs with instruction sets optimized for certain NFs and GPUs
with massive level of parallelism [86] offer tremendous computational
power and a high level of parallel processing which enables a multi-
tude of packet processing operations and high forwarding rates. This
processing power is supported by large caches and a dedicated mem-
ory controller offering high memory bandwidth and low data access
delay. To receive and send packets, commodity servers are equipped
with high speed Network Interface Cards (NICs) that provide a capac-
ity of up to 40 Gbps per port/link and a high I/O bandwidth bus (pro-
vided through Peripheral Component Interconnect express (PCIe))
to transfer packets between NICs and the memory. This is further
complemented by multi-queueing technologies providing line speed
packet classification in hardware.

These capabilities of commodity servers have been further aug-
mented with remarkable advances on packet I/O handling. Technolo-
gies such as Netmap [115], DPDK [1] and Routebricks [64] signifi-
cantly reduce the computational overhead of packet I/O handling on
commodity servers by employing techniques such as pooling, batch
processing, zero copying and minimum data structuring. This, in
turn, leads to a higher packet forwarding rate and efficient resource
utilization. We will discuss these technologies in more detail in sec-
tion 2.4.2.

Moreover, to facilitate the implementation of software NFs on com-
modity servers, several packet processing software packages have
been developed (e.g., Click Modular Router [99], Snort [31]). These
packages enable the design and implementation of various packet

16 background

processing operations such as encryption, intrusion detection and pre-
vention, packet aggregation, and redundancy elimination. Section 2.5
provides further details about different NF software packages

2.4.1 Packet I/O on Commodity Servers

Packets I/O handling is one of the essential operations of any packet
processing workload. It further represents a significant portion of the
workload’s computational requirements. Therefore, in this section we
provide an overview of the basic operations of packet I/O handling.

As shown in Figure 2, Packet I/O is basically comprised of the
receive and the transmit path.
Receive Path. The receive path essentially consists of two operations:
(i) transferring packets from the NIC to the main memory using Di-
rect Memory Access (DMA) (arrow 1 in Figure 2) and (ii) accessing
the packets copied to the memory by the CPU (arrow 2 in Figure 2).
In more detail, the DMA transfers the packets from the NIC hard-
ware queues to a chained ring of buffers, called Rx ring, allocated in
the main memory. Each Rx buffer is managed through a data struc-
ture called receive (Rx) descriptor. The Rx descriptor stores informa-
tion about the packet data buffer address, length, checksum and sta-
tus. The completion of a packet transfer to the Rx ring is announced
through the status field. As soon as the packets are copied into mem-
ory, the CPU accesses and processes each packet.

Transmit Path. Akin to the receive path, the transmit path is com-
prised of two operations: (i) upon processing, the CPU writes packets
to memory (arrow 3 in Figure 2) and (ii) copies packets from the
main memory to the NIC using DMA (arrow 4 in Figure 2). In par-
ticular, the CPU places the processed packets in another chained ring
of buffers, called Tx ring, allocated in the main memory. Then, the
packets are transferred from the Tx ring to the NIC hardware queue.
The Tx ring buffers are managed through a data structure, called the
transmit (Tx) descriptor, which holds the packet data buffer address,
length, checksum and status. Similar to the Rx descriptor, the com-
pletion of a packet transmission (i.e., transferred to the NIC) is an-
nounced through the Tx status field. Upon packets transmission, the
Tx buffers are recycled and reused for the transmission of subsequent
packets.

A crucial aspect of packet I/O handling is the interaction between
the NIC and the CPU. In particular, the CPU should be able to know
when new packets are copied into memory and when their transmis-
sion has been completed. Traditionally, the arrival or departure of
packets has been announced by issuing interrupts to the CPU. How-
ever, since interrupts yield low packet forwarding performance, mod-

2.4 packet processing on commodity servers 17

C0

L1

L3

memory controller I/O hub

DMA

DMA

C1 C2 C3

L1 L1 L1

L2 L2 L2 L2

Rx ringTx ring

receive queue

transmit queue

NIC

C: core
QPI: Quick Path Interconnect
L: cache

1

23

4

memory

PCIeQPI

memory channels

Figure 2: Packet I/O handling on commodity servers.

ern packet processing systems typically rely on polling. Polling elim-
inates the processing overhead incurred by interrupt handling and
prevents receive livelock.

2.4.2 Advanced Packet I/O Engines

In the recent years, several works have developed techniques to speed
up packet I/O handling and maximize forwarding rates [115, 64, 1,
58, 74, 5]. In this section, we review the optimization techniques pre-
sented in three works:

• Routebricks: Routebricks [64] relies on polling and batch pro-
cessing to optimize the packet I/O handling rate. In particular,
packets are being polled in batches from the Rx/Tx ring elim-
inating the interrupt handling cost and leading to lower per-
packet bookkeeping overhead (i.e., overhead to update Tx/Rx
descriptors). Furthermore, to ensure the availability of a suffi-
cient number of packets in the Rx/Tx rings, Routebricks also
allows moving packets from the NIC queues to the rings in
batches resulting in fewer PCIe and I/O transactions. In ad-
dition to polling and batch processing, Routebricks distributes
each NIC traffic across different CPU cores by assigning a sep-
arate NIC hardware queue to each CPU core. This results in ef-
ficient utilization of the CPU computational capacity and avoids
the expensive operations of locking and unlocking when a packet
is accessed by different cores (i.e., a packet is always processed
by a single core).

• Netmap: Netmap [115] achieves high performance packet I/O
handling through i) lightweight descriptors that enable the pro-
cessing of a large number of packets in a single system call re-

18 background

sulting in bookkeeping cost amortization, ii) static linear pack-
ets’ buffers allocation leading to buffer allocation and deallo-
cation overhead saving iii) eliminating data-copy overhead by
giving application protected and direct access to packet buffers,
and iv) polling and batch processing for accessing and transfer-
ring packets.

• Intel DPDK: Similar to Netmap and Routebricks, DPDK [1] op-
timizes packet handling through polling, batch processing and
static buffer allocation. Furthermore, it provides a queue man-
ager to implement lockless queues which enables different cores
to access packet data without the need for performing expen-
sive lock operations.

2.5 software packages for network functions implemen-
tation

As a result of the advancement on commodity servers performance
and capabilities, many software packages have been developed to im-
plement and run software network functions. Examples of such pack-
ages include snort [31] and bro [11], which implement intrusion de-
tection and prevention functions; Squid [33], a web caching proxy to
conserve bandwidth and minimize access delay; IPtables [16], which
supports filtering and transformation functions such as firewall and
NAT; and Click Modular Router [99], a modular framework that fa-
cilitates the implementation of various types of functions (e.g., NAT,
firewall, encryption). In this thesis, we mainly rely on Click to imple-
ment different types of NFs. In the following section, we will present
an overview of Click and its packet I/O handling techniques.

2.5.1 Click Modular Router

Click [99] is a modular software package widely used for the imple-
mentation of packet processing systems on commodity servers. Click
offers a wide range of packet processing elements (e.g., packet I/O,
queueing, table lookup), which can be connected in a graph, allowing
the construction of a customised data plane. The Click elements that
compose a given data-plane configuration can be assigned to multiple
threads, allowing a high level of parallelism with multi-core CPUs.
Click can run in the Linux kernel offering high packet forwarding
rates.

With respect to packet I/O, Click relies on two elements: PollDe-
vice for reception and ToDevice for transmission. Whenever PollDevice
is scheduled, it issues a NIC device driver call which checks the sta-
tus field of the Rx descriptors for new received packets. Subsequently,
the driver call passes the new packets along with their metadata struc-

2.6 server virtualization technologies 19

PollDevice ToDevice
polls dequeues

Click queueinput port output port

Figure 3: Exemplary Click forwarding path.

tures (sk_buff in Linux) from the Rx ring to PollDevice. PollDevice can
be configured to poll packets in batches (i.e., batch processing).

On the transmit path, ToDevice passes packets enqueued by Click
to the Tx ring. Akin to PollDevice, packets may be transferred to the
Tx ring in batches. ToDevice receives information from the NIC device
driver regarding the status of packet transmission and upon its com-
pletion, ToDevice recycles the Tx ring buffers. Finally, the NIC device
driver returns the recycled buffers to the Rx ring.

An exemplary Click forwarding path comprising a PollDevice, a
queue, and a ToDevice is illustrated in Figure 3. Polls represent the
packet transfers from the Rx ring by PollDevice, while dequeues denote
the packets fetched from the Click queue by ToDevice.

2.6 server virtualization technologies

Virtualization has become an essential technology for the IT indus-
try. Today, more than 50% of servers are virtualized and this num-
ber is expected to increase to 86% by 2016 [36]. The popularity of
virtualization comes from its numerous advantages. In particular, vir-
tualization enables the consolidation of many workloads on a single
physical machine leading to saving in power, space and computing
resources. Furthermore, virtualization provides dynamic load balanc-
ing and failure recovery by facilitating the migration of a virtual ma-
chine from an overloaded or failed physical machine to machines
with low load and healthy hardware. By isolating different workloads
and users in separate virtual machines, virtualization also creates a
reliable and secure environment for developing and testing new ap-
plications. Additionally, virtualization is the key technology for cloud
computing which allows enterprise networks to achieve significant
savings on operation and investment cost by migrating their applica-
tions to virtualized machines deployed in external datacenters.

In principle, virtualization is classified into process and system vir-
tualization [123]. Process virtualization creates a virtual machine by
starting and executing an operating system process. Typically, the
goal of such a virtualization is to provide a platform-independent
programming environment to execute programs across different plat-
forms. On the other hand, system virtualization provides a full sys-
tem environment for executing a complete operating system and its
user processes [123]. Through System virtualization, multiple Virtual
Machines (VMs) running different or the same operating systems can
coexist on a single machine.

20 background

System virtualization is realized through a set of approaches:

• Full virtualization: Full virtualization creates a virtual machine
which fully emulates the underlying hardware to the guest op-
erating system [38]. Subsequently, the guest operating system
does not have to be aware of the virtualization, and it requires
no modification. This means an OS can be migrated and ported
across different physical machines without the need for re-com-
pilation or adaptation. Common examples of full virtualization
technologies include VirtualBox [37], VMware Workstation [39]
and QEMU [26].

• Paravirtualization: Due to the overhead incurred by full virtu-
alization to emulate the physical hardware, paravirtualization
is another system virtualization approach where the guest op-
erating system is modified to fit the virtualized environment.
Paravirtualization allows non-virtualized access to phyiscal re-
sources obviating the need for interception and translation usu-
ally required for a virtual access. As a result, paravirtualization
achieves higher performance and incurs less overhead than full
virtualization, however, significant modification needs to be ap-
plied to the guest operating system. A common example of par-
avirtualization is XEN [42].

• OS-level virtualization: OS-level virtualization aims at provid-
ing high performance and low virtualization overhead by par-
titioning machine hardware resources at the operating system
level. In particular, this approach creates a set of lightweight
virtual containers, with an isolated set of resources (memory,
CPU, disk) and processes, which share the same kernel of the
host. This, in turn, restricts containers to only run an operating
system that is compatible with the host OS, i.e., a host running
Linux OS can only run Linux-based guest OSes on its contain-
ers. Examples of OS-level virtualization software are LXC [17],
OpenVZ [24] and Docker [32].

2.7 software defined networking

Software-Defined Networking (SDN) is a new networking architec-
ture which decouples the network control plane from the data plane,
moves network state and intelligence to a programmable (logically)
centralized controller, and provides an abstract view of the network
infrastructure to the applications [29, 30]. SDN delivers a set of com-
pelling benefits to the network. In particular, SDN enables network
operators and administrators to program the network control logic in
real time leading to a shorter innovation cycle as well as a faster and
more dynamic response to users’ requirements and business needs.

2.7 software defined networking 21

Network serviceNetwork service
network service

southbound interface (e.g., OpenFlow)

northbound interface

SDN controller

data plane

control plane

application plane

application

Figure 4: High-level overview of SDN architecture.

The SDN centralized controller further maintains network-wide visi-
bility that abstract the network as a single logic switch to the appli-
cations and services. Configuring the network is much simpler with
SDN because SDN provides a standard vendor-independent interface
to access network devices obviating the need for a long complex con-
figuration targeting diverse types of devices and vendors and leading
to more consistent policy enforcement.

As Figure 4 shows, the SDN architecture consists of four main lay-
ers:

1. Data plane: The data plane is comprised of a set of simple
switches. In comparison to the standard network devices, these
switches do not run complex algorithms or calculations (e.g.,
routing algorithms) or implement sophisticated protocols, but
they are rather dumb switches which perform packet forward-
ing based on the instructions sent by the control plane.

2. Control plane: The control plane is the core component of the
SDN. As discussed above, the control plane provides a platform
(i.e., SDN controller) to run the software modules which imple-
ment the network control logic (e.g., routing, loadbalancing, ac-
cess control). In Section 2.7.1, we will discuss several existing
SDN controllers.

3. Application plane: The application plane represents the busi-
ness or user applications in need for network services support.
For example, an application could be a video application re-
questing routing through a network path with low delay.

4. Southbound interface: The southbound interface facilitates com-
munication between the switches and the controller. It basically

22 background

enables configuring forwarding rules in the switches, collecting
statistics about the traffic characteristics (e.g., BW) and switch
operation, advertising switches capabilities and announcing new
events (e.g., arrival of a new packet). The most popular exam-
ple for a southbound interface is OpenFlow. We will provide an
overview of OpenFlow in Section 2.7.2.

5. Northbound interface: The northbound interface enables com-
munication between SDN applications and the SDN Controller.
In principle, the northbound interface creates an abstractive view
of the network such that applications can express their network-
ing requirements in a simple and direct way.

2.7.1 SDN Controllers

The recent years have seen the development of many SDN controllers
with various features and capabilities [101, 108]. Kreutz et al., in their
SDN survey [101], report more than 25 different controllers. When
comparing different SDN controllers, many aspects need to be con-
sidered. These aspects include the controller architecural design ap-
proaches (e.g., centralized or distributed), north and southbound in-
terface technologies, the controller’s core functions, performance, and
programming language [101]. For instance, while controllers such as
POX [25], Ryu [28], Beacon [71] and Floodlight [14] implement the
control logic as a single unit, other controllers such as Onix [100],
OpenDaylight [23] and ONOS [21] enable the distribution of control
logic across multiple controller instances (deployed on different ma-
chines or locations). Distributed controllers provide more resilience
and robustness against failures and faults while enabling scale-up to
handle high network load. However, distributed controllers also re-
quire state synchronization across instances to maintain network con-
sistency. So far, distributed controllers (excluding Onix, ONOS and
SMaRtLight [46]) do not enforce strong consistency between instances
[101], which, in turn, might negatively impact network applications
with high consistency requirements (e.g., load balancing [103]).

The majority of existing controllers exclusively implement Open-
Flow as a southbound interface. Yet, few controllers (e.g., OpenDay-
light, Onix) also support other southbound interfaces such as Net-
Conf [69], BGP, SNMP and OVSDB [109], allowing backward compat-
ibility with regular routers and switches and enabling access to other
network devices (e.g., firewalls and NATs). In terms of the north-
bound interface, there is a greater diversity among controllers, i.e.,
as opposed to OpenFlow being a widely adopted southbound inter-
face, there has been no common northbound interface [101, 108]. In
fact, the majority of controllers (e.g., OpenDaylight, Onix and Flood-
light) design and specify their own northbound interfaces. A signifi-

2.7 software defined networking 23

cant number of these interfaces are based on the REST architectural
style (e.g., OpenDaylight, ONOS, Floodlight).

Similar to operating systems which offer services such as I/O ac-
cess, memory management, scheduling and isolation to application
programs; controllers need to support network applications with func-
tions such as topology discovery, statistics collection, shortest path
forwarding and switch management. Many existing controllers (e.g.,
OpenDaylight, Floodlight and POX) offer a broad range of general-
purpose functions to network applications. Other controllers further
introduce functions to support special purposes, e.g., Onix provides
consistency and state management to enable distributed control, and
SoftRAN [82] offers radio spectrum allocation to allow LTE access net-
work management. However, as more network applications and SDN
use cases emerge, controllers are expected to offer more services and
functions.

Whether it is a datacenter, an enterprise or an ISP network, per-
formance is a key factor when selecting a controller for managing
a network. A controller’s performance is typically evaluated based
on the controller’s throughput (i.e., the number of processed flows
per second) and latency (i.e., response time to switches requests).
While there is no comprehensive study on the performance of ex-
isting controllers, some studies report the performance of a small set
of controllers. For instance, a recent study [120] evaluated the perfor-
mance of six controllers: POX, Floodlight, Beacon, MuL [18], Maestro
[49] and Ryu. This study found that Beacon achieves the maximum
throughput with 7 million flows per second, whereas MuL incurs
the lowest latency. Another study [71] also showed that Beacon out-
performs Maestro, Ryu, Floodlight and POX with a throughout of
12.8 million flows per second using 12 CPU cores. The performance
of a controller relies on various aspects such as its programming
language, being single-threaded (e.g., POX) or multi-threaded (e.g.,
Beacon, NOX and Floodlight), the multi-threading scheduling mech-
anism (e.g., Beacon uses round-robin scheduling, NOX statically pins
switches to threads [120]) and the implementation of the basic func-
tions and services (e.g., event handling, lookup table). However, there
is a trade-off between a controller’s performance and other aspects
such as being developer-friendly. For instance, POX, which achieves
low performance in comparison to other controllers [120], has been
popular in the research community for rapid network services pro-
totyping [111, 77, 76, 91], due to its easy-to-use and Python-based
framework.

2.7.2 OpenFlow Protocol

OpenFlow [107] provides an open API to control the forwarding table
in switches and routers. OpenFlow-enabled switches maintain a flow

24 background

table which is configured by a remote controller over a secure connec-
tion using a set of OpenFlow commands. Each flow table entry con-
sists of a match rule which defines a flow based on a set of matching
packet header fields (Table 1), a corresponding action which specifies
a set of packet forwarding and processing operations, and statistics
which monitor the number of arriving packets and bytes as well as
the time passed since the last packet matched the flow rule.

OpenFlow defines three basic actions for processing packets: i) for-
ward packet to a switch port or ports which constitutes the basic oper-
ation to route packets through the network, ii) drop packet which can
be used to filter untrusted packets, limit broadcast domains, or sup-
port protocols operations such as dropping IP packets with expired
TTL, and iii) encapsulate and send a flow packets (or the first packet) to
the controller where a decision about the flow can be made (i.e., add
a flow entry for forwarding or dropping the flow’s packets). Further-
more, OpenFlow supports matching packets across a wide range of
packet header fields and protocols (e.g., IP, TCP, UDP, VLAN, Ether-
net, MPLS). A matching header field can designate a specific value or
be a wildcard facilitating flows aggregation, e.g., all flows carrying a
particular destination IP address are matched as one single flow.

One of the popular switches implementation that supports Open-
Flow is OpenvSwitch [110]. OpenvSwitch is an open source switch
which provides multilayer processing and exposes an external inter-
face for programmability, control and configuration. It is typically
deployed within the hypervisor to forward and steer packets across
virtual machines and the physical interfaces. In addition to Open-
Flow, OpenvSwitch supports standard management interfaces and
protocols such as NetFlow, sFlow, RSPAN and CLI.

Input MAC MAC Eth VLAN IP IP TCP TCP

port src dst type ID src dst sport dport

Table 1: OpenFlow matching fields.

3
PA C K E T P R O C E S S I N G W O R K L O A D P R O F I L I N G

In the recent years there has been a growing interest in building soft-
ware middleboxes using general-purpose commodity servers. Com-
modity servers offer ample processing power which in conjunction
with the availability of packet processing software (e.g., Click Modu-
lar Router [99], Snort [31]) enable performing various packet process-
ing operations beyond IPv4 forwarding such as encryption, intrusion
detection and prevention, packet aggregation, and redundancy elimi-
nation.

However, in order to improve the resource utilization of commod-
ity servers, provide high level of consolidation and enable admission
control on incoming processing requests, the knowledge of packet
processing workloads’ computational requirements is needed. For-
mer studies [64, 86] have presented the computational requirements
of selected packet processing workloads such as IPv4 forwarding
and IPsec. Nevertheless, workload computational requirements may
change depending on packet I/O techniques and optimizations (e.g.,
packet handling in batches) [64, 86, 115]. As a result, previously re-
ported workload computational requirements may not be applicable
to packet processing systems where a different I/O technique is exer-
cised.

Profiling packet processing workloads on commodity servers is
not trivial. For example, high-performance packet processing systems
typically perform polling to handle arriving packets. This entails sig-
nificant implications on workload profiling, since the CPU appears
to be fully utilized, irrespective of the processing load. In this chap-
ter, we discuss the implications and challenges of workload profiling
on commodity servers, and we exemplify a technique for gauging the
computational requirements of packet processing workloads. Further-
more, we present the computational requirements of selected packet
processing workloads and show the effect of various I/O optimiza-
tions on workload CPU utilization. Our workload profiling technique
is implemented on a packet processing platform based on Click (see
Section 2.5.1). However, our profiling method is widely applicable to
any packet processing system that uses polling and batch processing.

The remainder of this chapter is organized as follows. In Section 3.1,
we discuss the challenges of workload profiling. We present our pro-
filing technique in Section 3.2. In Section 3.3, we discuss our workload
profiling results. Section 3.4 provides an overview of related work. Fi-
nally, we highlight our conclusions in Section 3.5.

25

26 packet processing workload profiling

3.1 profiling challenges

The difficulty in workload profiling mainly stems from the implica-
tions and side-effects of polling and batch processing, which com-
prise common techniques for packet I/O handling on commodity
servers, as discussed in Section 2.4.1 and 2.5.1.

Polling. Polling enforces checks for new incoming packets, as fre-
quently as possible, irrespective of the packet arrival rate. Therefore,
polling utilizes all idle CPU cycles, regardless of the traffic rate and
the packet processing application. Similar to polling, transferring pack-
ets to the Tx ring (i.e., ToDevice Click element, see Section 2.5.1) also
tends to consume idle CPU cycles in order to speed up the packet
transmission. Consequently, the full CPU utilization during packet
transactions along the receive and transmit path inhibits the accurate
estimation of workloads’ computational requirements.

Batch Processing. Processing packets into batches reduces signifi-
cantly the processing cost per packet. For example, multiple packets
can be polled at once from the Rx ring, reducing the bookkeeping cost
per packet. Batch processing can also be exercised at the application
layer (e.g., encrypting packets in batches) or at the NIC to mitigate the
PCIe transaction cost per packet. However, batch processing becomes
less effective for low packet forwarding rates, since the number of
packets per batch is smaller. Certainly, the effect of batch processing
can be optimized by reducing the number of CPU cycles allocated to
the workload. However, this may increase latency and result in packet
drops. Essentially, the variable processing cost per packet, depending
on the effectiveness of batch processing, complicates workload profil-
ing.

It is important to note that these factors do not affect workload pro-
filing in isolation. In fact, we need to take into account the confluence
of polling and batch processing on workload profiling. A major chal-
lenge in this respect is to estimate the computational requirements of
a workload under near-optimal operation, where the CPU resources
entitled to the workload maximize the batch processing effectiveness
without causing packet loss.

3.2 workload profiling methods

Based on the observations in Section 3.1, we investigate methods to
overcome the difficulty of profiling packet processing workloads on
commodity servers. First, we define empty polls as the number of
accesses to the Rx ring (initiated by PollDevice, see Section 2.5.1) in
which no packet is found. Similarly, we define empty dequeues as the

3.2 workload profiling methods 27

number of attempts to fetch packets from the Click queue (initiated
by ToDevice) where no packet is returned. A Click-based packet pro-
cessing system typically yields empty polls and empty dequeues, due to
the effect of polling.

Since polling results in full CPU utilization, there are two main
approaches for the computation of workloads’ requirements: (i) to es-
timate and deduct the number of CPU cycles consumed for all tasks
that are not associated with the workload, and (ii) to restrict the cy-
cles entitled to the workload such that empty polls and empty dequeues
are minimal while the packet forwarding rate matches the target rate.
Both approaches require the monitoring of empty polls and empty de-
queues. To this end, we implement counters for both variables and
the number of packets transferred within each batch, so that we can
quantify the degree of batch processing.

According to the first approach, we merely have to estimate the
number of cycles consumed by empty polls and empty dequeues, and
subsequently deduct them from the nominal cycles of the CPU core
on which the workload runs. In particular, this amount can be es-
timated by measuring the number of cycles utilized by an empty poll
and empty dequeue and multiplying them by the number of monitored
empty polls and empty dequeues. We found that this approach provides
accurate results only for high packet forwarding rates (i.e., more that
106 packets/sec for IPv4), where batch processing is effective. When
the polling rate is substantially higher than the receiving rate, the
small number of packets per batch increases the computational cost
per packet. Figure 5 illustrates the packets per batch versus the packet
rate. It can be observed that for rates below 0.6 million packets/sec
batch processing is eliminated. Note that this method was used by
RouteBricks [64] (but without taking the empty dequeues into account)
in order to compute the CPU cycles/packet for selected packet pro-
cessing workloads at the maximum packet forwarding rate.

Due to the inefficiencies of this method, we rely on the second
approach which allows us to obtain accurate results for a wide range
of packet forwarding rates. Instead of estimating the number of cycles
consumed by a workload, we aim to adjust the CPU resources entitled
to the workload, such that the following conditions are satisfied: (i)
there is no perceptible reduction in the packet forwarding rate, (ii)
the number of empty polls and empty dequeues is minimal, and (iii) the
number of packets per batch approximates an optimal value (i.e., 16

packets in our system).
We use an auxiliary workload to iteratively achieve the transition

to this state. In particular, as auxiliary workload we use a Click for-
warding path that comprises a PollDevice element. In principle, any
workload that stresses the CPU and remains active for the whole mea-
surement period can be used. The measurements are conducted on
a single core which is shared by the packet processing and auxiliary

28 packet processing workload profiling

packet rate (million packets/second)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.5

n
u
m

b
e
r

o
f
p
a
c
k
e
ts

 p
e
r

b
a
tc

h

0

2

4

6

8

10

12

14

16

18

20

Figure 5: Average number of packets per batch vs. packet rate.

workloads. We iteratively adapt the resources entitled to the auxiliary
workload by adjusting the scheduling priorities accordingly. During
each iteration, we examine the packet rate, empty polls, empty dequeues
and packets per batch to identify whether the system has approached
the desired state. Once the packet processing system has reached this
state, the number of CPU cycles consumed by the packet processing
workload (Wp) corresponds to its minimum computational require-
ments, since the effect of polling on CPU utilization has been elimi-
nated while batch processing has maximized its effectiveness.

Our workload profiling method is depicted in Algorithm 1. We ini-
tially seek to minimize the rate of empty polls (EP) and empty dequeues
(ED) while achieving the target forwarding rate, and we subsequently
record the current CPU utilization. Then we adjust the workload’s
CPU cycles in order to maximize the packets per batch (B). If we
manage to optimize the effect of batching while maintaining a min-
imal number of EP and ED, we have reached the desired state and
thereby measure the CPU cycles of Wp; otherwise, the algorithm re-
turns the previously recorded sub-optimal CPU utilization. Since it
is not feasible to achieve zero EP and ED as well as an optimal B,
as seen from experiments in our packet processing platform, we use
thresholds for all these values. In our system, we have set EPthresh

and EDthresh to 40000 empty_polls/empty_dequeues per sec (which
is a sufficiently low value compared to a maximum measured value
of 3.5M), while Bthresh is adjusted to 10 packets.

3.3 experimental results

In this section, we present the computational requirements of selected
packet processing workloads using our workload profiling technique.

3.3 experimental results 29

Algorithm 1 Workload Profiling

while True do
if Wp.Rate > TargetRate then

decrease Wp.Cycles
if (Wp.EP 6 EPthresh) and (Wp.ED 6 EDthresh) then
MeasuredCycles =Wp.Cycles
if Wp.B > Bthresh then

return Wp.CPU
else

while Wp.Rate > TargetRate do
decrease Wp.Cycles
if Wp.B > Bthresh then

return Wp.Cycles
return MeasuredCycles

elseif Wp.Rate 6 TargetRate then
Increase Wp.Cycles
if (Wp.Rate > TargetRate) and (Wp.EP 6 EPthresh) and
(Wp.ED 6 EDthresh) then
MeasuredCycles =Wp.Cycles
if Wp.B > Bthresh then

return Wp.Cycles
else

while Wp.Rate > TargetRate do
decrease Wp.Cycles
if Wp.B > Bthresh then

return Wp.Cycles
return MeasuredCycles

30 packet processing workload profiling

forwarding rate (million packets/second)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
P

U
 u

ti
liz

a
ti
o
n
 (

g
ig

a
 c

y
c
le

s
/s

e
c
o
n
d
)

0

0.5

1

1.5

2

2.5

Raw Forwarding

CRC

IPv4

Figure 6: CPU cycles/sec for raw forwarding, IPv4 and CRC vs. packet for-
warding rate with 64-byte packets.

Our experimental setup consists of three commodity NUMA-based
(Non-Uniform Memory Access) servers (i.e., source, packet process-
ing platform and sink), each equipped with a Xeon E5520 quad-core
CPU at 2.26 GHz. Each core has a dedicated 32 KB L1 and 256 KB L2

cache, while all four cores share a 8 MB L3 cache. Furthermore, each
server has 6 GB of DDR3 RAM at 1333 MHz and two quad 1G port
NICs based on Intel 82571EB. Traffic is generated by a quad 1G port
NetFPGA card. The number of buffers in the Rx and Tx ring is set to
4096.

We use Click Modular Router version 1.7 for the implementation
of the packet processing applications. Click runs on the Linux kernel
version 2.6.24.7 in order to achieve high performance. We further rely
on an Intel VTune Amplifier XE 2011 [6] for the CPU cycle measure-
ment and analysis.

We implement and profile the following workloads:

• Raw forwarding: Packet forwarding without any layer-2 or layer-
3 processing.

• IPv4 forwarding: IPv4 forwarding including IP lookup in a ta-
ble with 380K entries, checksum computation, TTL decrement,
and destination MAC address rewrite. Packets are generated
with random destination IP addresses to stress the system.

• AES encryption: Packet encryption based on the Advanced En-
cryption Standard (AES).

• CRC: Checksum calculation for the whole packet payload.

Using our workload profiling technique, as exemplified in Section
3.2, we gauge the computational requirements of raw forwarding,

3.3 experimental results 31

15%

6%

13%

13%

53%

Other processing functions

MAC re−write

IP lookup

Checksum computation

Packet I/O

Figure 7: CPU cycles/sec distribution for IPv4.

14%

26%

27%

33%

rx_poll

skb_recycle

Checksum computation

tx_clean

Figure 8: Main memory access distribution for IPv4.

IPv4, AES and CRC for diverse packet forwarding rates. Figure 6 illus-
trates the CPU cycles/sec versus the packet forwarding rate for raw
forwarding, IPv4, and CRC with 64-byte packets. The standard devia-
tion among different runs is negligible. As expected, raw forwarding
incurs the lowest CPU utilization among all workloads since it basi-
cally comprises packet I/O handling along the receive and transmit
path. In particular, packet I/O accounts roughly for 83% of the CPU
cycles/sec consumed for raw forwarding according to our measure-
ments. In comparison, IPv4 forwarding consumes more CPU cycles
due to the additional processing operations performed on packets.
In this respect, Figure 7 shows the distribution of CPU cycles for
IPv4

1. Approximately 32% of the measured CPU cycles are consumed
for IP lookup, checksum computation and destination MAC address
rewrite, resulting in an increased CPU utilization for IPv4 compared

1 The 15% of the CPU cycles/sec that correspond to “other processing functions” are
consumed for packet enqueueing/dequeueing, timestamps, TTL decrement, Click
counters and other operations with insignificant processing load.

32 packet processing workload profiling

64 256 500 1000 1500
0

10000

20000

30000

40000

50000

60000

Packet size (bytes)

C
y
c
le

s
/p

a
c
k
e
t

CRC

AES

Figure 9: CPU cycles/packet vs. packet size for CRC and AES.

forwarding rate (million packets/second)
0 0.05 0.1 0.15 0.2 0.25 0.3

C
P

U
 u

ti
liz

a
ti
o
n

 (
g
ig

a
 c

y
c
le

s
/s

e
c
o

n
d

)

0

0.5

1

1.5

2

2.5

Figure 10: CPU cycles/sec for AES vs. packet forwarding rate with 64-byte
packets.

to raw forwarding. Furthermore, Figure 8 illustrates the NIC driver
and processing functions that incur main memory accesses for IPv4.
Particularly, we measured approximately 3.79 main memory accesses
per packet. Note that this number represents the main memory ac-
cesses initiated by the CPU (i.e., excluding the memory accesses ini-
tiated by the NIC). The large fraction of CPU cycles (i.e., 53% for
IPv4) utilized for packet I/O indicates the significance of packet I/O
handling for such workloads.

As shown in Figure 6, CRC yields relatively low computational re-
quirements, due to the minimum packet size. In fact, CRC incurs less
processing load compared to IPv4 for this packet length. However,
measurements with larger packets (Figure 9) show that CRC requires
a substantially larger number of CPU cycles per packet.

Figure 10 depicts the computational requirements of AES versus
the packet forwarding rate with 64-byte packets. Figure 10 corrob-
orates that AES is a CPU-intensive workload. Similar to CRC, AES

3.3 experimental results 33

requires more CPU cycles per packet for larger packets, as shown in
Figure 9.

Based on the measurements in Figures 6 and 10, Table 2 shows
the average number of CPU cycles per packet for all four workloads
with 64-byte packets. The study in [65], which also relies on a Click-
based packet processing system without any advanced packet I/O
handling, reports similar computational requirements for IPv4 (i.e.,
1813 cycles/packet). These computational requirements can decrease
(especially for workloads in which packet I/O accounts for a signif-
icant fraction of consumed cycles) when more efficient packet I/O
techniques are applied [64], [86], [115]. In this respect, Table 3 de-
picts the average number of CPU cycles per packet for raw forward-
ing when the I/O optimizations of Netmap [115] and RouteBricks
[64] are employed. Both I/O techniques transfer packets from NIC to
memory in batches, while additional I/O optimizations of Netmap
include static buffer allocation and the reduction of the data struc-
ture size for packet descriptors. Note that Click runs in user-space
when Netmap is used. Compared to standard Click packet I/O han-
dling, both Netmap and RouteBricks yield substantially lower compu-
tational requirements. This corroborates the strong impact of packet
I/O handling on workload CPU utilization and manifests the need
for efficient workload profiling methods.

So far, we discussed the computational requirements of packet pro-
cessing applications that run alone on a single core. Depending on
resource availability, a packet processing system can host multiple
applications, performing the role of a multi-purpose software mid-
dlebox. In this context, we briefly discuss the impact of CPU resource
sharing on the workloads’ computational requirements. For work-
loads running on different cores (i.e., one workload per core), recent
work [65] shows that the computational requirements of packet pro-
cessing workloads increase due to L3 cache contention. The computa-
tional requirements of workloads sharing a single core may increase
depending on scheduling and the size of their working sets. If their
working sets do not fit into L3 cache, the additional main memory
accesses will incur a performance penalty, increasing the required
amount of CPU cycles to sustain a desired packet processing rate.

In terms of scheduling, multiple workloads can be assigned to a
single (kernel) thread or to different (kernel) threads. The former re-
quires a task scheduler so that multiple workloads can be executed
within the same thread. Click provides such a scheduler, allowing
multiple workloads to share a single core, without context switching.
This does not incur a perceptible effect on the computational require-
ments of workloads. However, in this case, the migration of process-
ing applications across cores is complicated and can result in traffic
disruption. To facilitate migrations, a packet processing system can
assign workloads (that share the same CPU core) to separate threads.

34 packet processing workload profiling

number of threads
2 CRC 3 CRC 4 CRC

e
x
tr

a
 c

y
c
le

s
/p

a
c
k
e
t

0

20

40

60

80

100

120

140

160

180

200

Figure 11: Extra CPU cycles/packet required for CRC with multi-threading.

Workload cycles/packet

Raw forwarding 1415

IPv4 1874

AES 7931

CRC 1577

Table 2: Average CPU cycles/packet
for different workloads (64-
byte packets).

System cycles/packet

Click 1415

Netmap 907

RouteBricks 926

Table 3: Average CPU cycles/packet
for raw forwarding with di-
verse I/O optimizations (64-
byte packets).

To investigate the processing requirements under multi-threading, we
compare the CPU cycles required for CRC with single and multiple
threads, running always on the same CPU core. Figure 11 depicts the
extra cycles consumed with a diverse number of threads due to con-
text switching. Note that this experiment does not incur any L3 cache
contention since there is no application running on any of the other
3 cores.

3.4 related work

The authors in [64] present Routebricks, a high performance software
router architecture based on commodity servers and Click Modular
Router. To identify the performance bottleneck, the authors briefly
discuss a profiling method to estimate the computational require-
ments of a Click-based packet processing workload at a maximum
forwarding rate by deducting the number of CPU cycles consumed
for empty polls. In contrast, our profiling method measures CPU cycles
at different forwarding rates and takes into account further workload-
unrelated processing tasks (e.g., empty dequeue). We also consider the

3.5 summary 35

effect of batch processing at low forwarding rates where fewer pack-
ets are available for polling. In summary, we measure the computa-
tional requirements of a packet processing workload by restricting
the cycles entitled to the workload such that empty polls and empty
dequeues are minimal, the number of packets per batch is maximum
and the packet forwarding rate matches the target rate.

Several works have reported the computational requirements of
various workloads. Packetshader [86] and Netmap [115] present an es-
timation of the computation overhead and the bottlenecks for packet
I/O operations and subsequently propose optimization techniques to
accelerate packet I/O processing. The work in [65] reports the compu-
tational characteristics of diverse Click-based workloads to study the
performance predictability of software packet processing platforms
under different assignments of workloads to system resources (e.g.,
CPU core, memory and cache). Furthermore, Kohler et al. [99] shows
the results of measuring the processing time of different Click ele-
ments and a simple Click-based forwarding plane. In comparison to
these works, in addition to reporting the computational requirements,
we present a technique for the profiling of various packet processing
workloads for a wide range of forwarding rates. Our profiling method
is widely applicable to any packet processing system that uses polling
and batch processing.

3.5 summary

In this chapter, we have exemplified methods to circumvent the diffi-
culty of profiling packet processing workloads on commodity servers.
We have discussed the implications of polling and batch process-
ing on workload profiling and we further have shown that work-
load profiling can produce inaccurate results when the confluence of
these two factors is not taken into account. Our experimental results
demonstrate that our workload profiling technique can measure the
computational requirements of various workloads for a wide range
of packet forwarding rates. We believe that our workload profiling
method can comprise a prominent component of a modern packet
processing system, improving its ability to perform admission con-
trol and utilize the computing resources more efficiently.

4
I N VA R I A N T P R E S E RV I N G M I D D L E B O X
T R AV E R S A L

The additional functionality that middleboxes embed in the network
comes at a cost: middleboxes introduce various undesirable implica-
tions on traffic. For example, NATs rewrite IP addresses and ports,
proxies break end-to-end semantics, and firewalls may block UDP
traffic or cache out-of-order-packets introducing varying delays, while
application optimizers can modify the packet payload [113, 130]. Fur-
thermore, the deployment of firewalls and NATs along most Inter-
net paths may hinder connection establishment with protocols such
as SCTP [125] or Multi-Path TCP [131]. To mitigate these problems,
most applications resort to tunneling, e.g., non-HTTP traffic may be
tunnelled over HTTP to traverse firewalls; SCTP usually has to be tun-
nelled over TCP (or over UDP in case it is not blocked). Furthermore,
traffic may be encrypted at the client device (e.g., using HTTPS) to in-
hibit payload modifications by application optimizers [113]. However,
this increases power consumption in mobile devices.

Most of these implications stem from the middleboxes deployed by
access ISPs and cellular networks. To obviate the need for tunneling
or traffic encryption for middlebox traversal, we consider fostering
the collaboration between end-hosts and ISPs. More precisely, an end-
host can express its requirements for the establishment of a certain
type of connection, e.g., do not modify packet fields or payload, per-
mit UDP traffic or access to public DNS servers. Such requirements
can be specified in the form of invariants (e.g., using the API in [113]).
Upon the submission of such a request, the ISP may be willing to redi-
rect the traffic through a set of middleboxes (e.g., NAT and firewall)
that comply with its security policy and, at the same time, preserve
the invariant expressed by the end-host. This can be offered to ISP
clients as a value-added service, which may be appealing to a wide
range of users (e.g., home network users, mobile users, enterprises)
that currently experience limitations in the applications or services
they can run.

Establishing connections through a sequence of invariant preserv-
ing middleboxes raises several requirements: (i) the collection of mid-
dlebox configurations, (ii) parsing and checking middlebox config-
urations against requested invariants, (iii) the selection of invariant-
preserving middleboxes and shortest paths, and (iv) the insertion of
forwarding entries in the ISP’s routers to route the traffic through
the assigned path. To this end, we present an SDN architecture for
invariant preserving middlebox traversal. Following the trend for

37

38 invariant preserving middlebox traversal

(logically) centralized control, we rely on a centralized controller de-
ployed by the ISP, which retrieves middlebox configurations, selects
middleboxes and paths that preserve the specified invariant, and sets
up packet forwarding along the selected path. Middlebox checking
against invariants can be performed using recent advances on static
analysis, such as HSA [96] or SymNet [128]. For the installation of
flow entries to routers, we employ OpenFlow [107]. Our work is
mainly focused on middlebox and path selection. To this end, we
present and evaluate an algorithm for the selection of a path through
a set of invariant-preserving middleboxes. Our simulation results
show that our approach substantially increases the number of es-
tablished connections, especially under low and moderate levels of
network utilization.

The remainder of this chapter is organized as follows. In Section 4.1,
we review and discuss the different implications of middleboxes on
traffic and connection establishment. Section 4.2 provides an overview
of our SDN architecture. In Section 4.3, we discuss our algorithm for
invariant preserving path selection. In Section 4.4, we present our sim-
ulation environment and results. Finally, in Section 4.6 we highlight
our conclusions.

4.1 middlebox implications

In this section, we discuss the implications of widely used middle-
boxes on traffic and connection establishment:

• NATs: Due to the limited size of IPv4 address space, NATs have
become one of most popular middleboxes on ISP networks, es-
pecially on cellular networks [130]. They enable the sharing
of a public IP address among multiple hosts with private IP
addresses by mapping the private IP address and the source
port number of a host connection (TCP or UDP) to the pub-
lic IP address and a selected port number. As a result, hosts
sitting behind NATs are not visible to the outside world, i.e.,
establishing connections with NATed hosts (e.g., a VoIP, Peer
to Peer (P2P) applications) requires complicated NAT traversal
techniques [83, 70, 44] and might need the participation of a
third party (e.g., a relay [98]). However, even with NAT traversal
techniques, connection establishment could fail due to the ISPs’
policies and configurations. As shown in [130], to perform load
balancing cellular network operators may assign multiple NATs
to a single device. Subsequently, this hinders NAT traversal tech-
niques that depend on learning the NAT’s public IP address by
establishing multiple connections with the NAT (since different
connections are handled by different NATs). Furthermore, oper-
ators might configure NATs to assign random port numbers to

4.2 architecture overview 39

the mapped connections which hampers applications (e.g., P2P)
performing NAT traversal by trying to infer the mapped NAT
port number [130].

• Firewalls: Firewalls are essential to today’s network function-
ality by providing protection against malicious traffic as well
as untrusted and policy-violating accesses. However, despite
their importance, firewalls have become an obstacle hindering
not only the deployment of new protocols and extensions (e.g.,
SCTP [125], ECN [114]), but also restricting the connectivity of
the traditional protocols. More particular, recent studies have
shown that applications and protocols are being forced to tun-
nel over HTTP/HTTPs to bypass firewalls [113] [130]. Even when
connections are successfully established, firewalls introduce fur-
ther implications such as buffering out-of-order packets, which
impairs the functionality and performance of TCP connections,
and terminating long-lived flows due to short timeouts on fire-
walls, which leads to increased power consumption and service
disruption for end hosts[130].

• Proxies: Proxies perform several functions to optimize the per-
formance of particular applications or protocols such as caching
contents, data compression and TCP connections splitting. Prox-
ies are usually implemented with a specific application in mind
which impairs the functionality of new applications passing
through them. For example, mobile devices have to tunnel over
HTTPS to avoid HTTP optimizers breaking their protocol se-
mantics by modifying their packets payload or by sending a
cached reply instead of forwarding the packet to the end server
[113].

4.2 architecture overview

In this section, we discuss the requirements of invariant preserving
middlebox traversal and present the components of our SDN archi-
tecture.

Consider the example in Figure 12, where a trusted user (e.g., an en-
terprise with well-established relation/contract with the ISP) is trying
to access a server through port 1443. Since the firewall on its default
path (path 1) blocks any traffic on ports other than port 80, the user
fails to establish a connection with the server. A straightforward so-
lution is to request the ISP to reconfigure the firewall on the default
path. However this will allow the malicious user’s traffic to traverse
the network. An alternative solution, which we consider in this work,
is to allow the user to express her requirement as an invariant to the

40 invariant preserving middlebox traversal

FW

FW

> allow port 80
> block any

> allow port 1443

trusted user

malicious user

1

2

Figure 12: Example of invariant preserving middleboxes traversal.

ISP (in this case allow port 1443), and in turn, the ISP identifies a path
which preserves the invariant and does not violate the the ISP policy
(path 2).

To this end, we envision an SDN architecture where a centralized
control plane provides invariant preserving routing and redirection
through the ISP network. Accordingly, we assume the deployment
of OpenFlow switches which serve as the data plane of the network.
Furthermore, as in today’s ISP network, a set of middleboxes are de-
ployed in the network at different locations to provide services such
as protection against malicious traffic (e.g., firewalls), enable the shar-
ing of IPv4 addresses (NAT) and caching of frequently used content
(proxies). To provide invariant preserving connection establishment,
our SDN architecture needs to fulfill a set of requirements:

• Efficient resource management: We consider two objectives for
resource management in ISP networks: (i) delay minimization,
where an ISP aims at routing traffic through the path with the
lowest delay and (ii) load balancing, where an ISP aims at bal-
ancing the traffic load across the network.

• Correctness: Traffic should traverse paths that preserve the in-
variant while not violating the ISP policy, e.g., a video flow with
a particular port number might be redirected through a firewall
which grants access to it but still needs to keep an upper bound
on the BW consumed by this flow. This requires correct and effi-
cient parsing and checking of the state and configuration of the
middleboxes deployed in the network.

• Traffic redirection: The controller should be able to install for-
warding entries in the ISP’s switches to reroute traffic through
the selected path. This should also take into account middle-
boxes which modify the packets routing header fields such as
the IP addresses (e.g., NATs, load balancer).

4.3 path selection 41

To fulfill these requirements, we design a control plane which con-
sists of four components (Figure 13):

• MBs configuration and state collection: This component col-
lects and stores the state and configurations (e.g., firewall rules)
of each middlebox deployed in the network. It accesses mid-
dleboxes through interfaces exposed to the controllers by the
vendors. These interfaces could be vendor-specific (e.g., CISCO
CLI) or standard interface such as NetConf [69] or SIMCO [126].

• Static checking: This component implements tools such as Sym-
Net [128] or HSA [96] to parse and analyse the state and con-
figurations of middleboxes against the requested invariants. It
basically identifies the implications the middleboxes have on
the flow and hence, specifies the middleboxes which do not vi-
olate the flow invariant.

• Network monitoring: This component keeps track of the net-
work topology as well as the network links and middleboxes
utilization. It reads the counters of the network switches de-
ployed on the network using OpenFlow [107]. For monitoring
middleboxes utilization, it uses again the interface exposed by
the vendors.

• Path selection: Based on the output provided by the static check-
ing and the network monitoring component, this component se-
lects a path which fulfils the invariant of the connection while
considering the utilization of the network and the middleboxes.
It implements our path selection algorithm presented in Section
4.3.

• Switches configuration: This component installs the required
flow entries in OpenFlow switches to redirect the flow through
the path selected by the path selection component. For middle-
boxes (e.g., NAT) which modify some of the flow’s 5 tuples
(source and destination IP addresses, source and destination
port numbers, protocol), the flow can be identified by adding
tags to each packet such as in [76] and [72].

4.3 path selection

We develop an algorithm which selects a network path traversing
middleboxes that preserves a connection invariant. In addition to the

42 invariant preserving middlebox traversal

GW
GW

MB

MB MB

MB

MB

southbound interface (OpenFlow, netconf)

MBs
config & state

collection

co
n

tr
o
ll

er

network
monitoring

switches
configuration

northbound interface

flows invariants

static
checking

path
selection

Figure 13: Architecture components.

configuration and the state of each middlebox, our algorithm takes
into account the available bandwidth on each network link as well as
the available processing capacity of each middlebox. The algorithm
is executed by an SDN controller which has the knowledge of the
network topology and utilization, the middleboxes utilization and
state, and the connection invariant. We present two variants of our
algorithm: the first aims at minimizing end-to-end delay, whereas the
second strives to achieve load balancing across the network.

We represent the ISP network as a weighted undirected graph G =

(N,L), where N is the set of nodes and L is the set of links between
nodes of the set N. Nodes are classified into a set of routers R and a
set of middleboxes M such that N = R∪M. Each mi has a processing
capacity which is denoted by CP(mi) and a state S(mi). Each link
lij ∈ L between two nodes ni and nj is associated with the available
bandwidth C(lij). Let Pij represents the set of paths in the network G,
between the pair of nodes ni and nj. The available bandwidth C(p)
of a path p ∈ Pij is given by the minimum residual bandwidth of the
links along the path:

C(p) = min
lij∈p

C(lij) (1)

We further represent a connection demand with a vector d = {nsrc,ndst, r, cmp, v},
where nsrc,ndst ∈ N denote the connection source and destination
nodes, r represents the traffic rate, cmp is the required computing
capacity to process the traffic, and v is the connection invariant.

4.4 evaluation 43

Algorithm 2 Path selection

Inputs: G = (N,L),d

for each l ∈ L do
if C(l) < r then
delete l from G

end if
end for

Pij ← FIND_ALL_PATHS(nsrc,ndst) // all paths between source and
destination
SORT(Pi, j) // sort paths based on their length or available BW

for each p ∈ Pi,j do
found← true

for each m ∈ P
if cmp > CP(m) or v∩ S(m) = ∅ then
Found← false

break
end if

end for
if found then

return p
end if

end for
return ∅ // no path was found

The algorithm (Algorithm 2) selects a path between the source and
the destination of a connection. It starts by removing all the links
with insufficient available bandwidth to fulfil the rate of the connec-
tion. This step reduces the size of the graph that the FIND_ALL_-
PATHS function has to process to calculate all paths between the
source and the destination. This function implements the algorithm
in [118] which has a complexity of O(|N|+ |L|) for a single path. Re-
ducing the size of N and L results in lower runtime. After identifying
all the paths, we sort them in increasing order based on the number
of hops or on a decreasing order based on the available bandwidth
C(p). Sorting based on the number of hops results in delay mini-
mization, whereas sorting based on the available bandwidth achieves
load balancing. We term the two algorithm variants as invariant pre-
serving SP algorithm and invariant preserving LB algorithm, respectively.
Finally, the algorithm goes through the sorted paths to find the first
one which fulfills the invariant as well as the connection processing
demand.

4.4 evaluation

In this section, we evaluate the efficiency of our path selection algo-
rithms for invariant preserving middlebox traversal. In particular, we

44 invariant preserving middlebox traversal

Figure 14: Simulation OpenFlow switches topology.

use simulation to measure the connection establishment rate and the
network and middleboxes utilization. Furthermore, we compare our
algorithms in terms of load balancing level and path hop counts per
connection.

4.4.1 Evaluation Environment

We have developed a Python flow-level simulator to establish invari-
ant preserving connections through an ISP network. To model the ISP
network, we use Internet2 topology [3] which consists of 34 nodes
(Figure 14). Each node in this figure represents an OpenFlow switch,
whereas each edge is a network link with 1 Gbit/second bandwidth.
At different locations of the topology, we deploy 12 middleboxes.
Each middlebox has 10 GHz CPU capacity and performs access con-
trol using a randomly generated list of destination port numbers
(each middlebox works as a stateless firewall). We generate non-expir-
ing connections with destination port numbers, rates, and processing
demands sampled out of a uniform distribution. For each generated
connection, we randomly select a source and a destination switch.
Using the algorithm in Section 4.3, a connection is established if a
network path which preserves the connection invariant and fulfills
its rate and processing demand is found; otherwise, it is rejected. For
each successfully established connection, the bandwidth of the links
and the processing capacity of middleboxes on the path are updated
accordingly.

We compare the efficiency of our approach against the traditional
shortest path selection. In particular, for each new connection we cal-
culate the shortest path between the connection source and destina-
tion. If the shortest path fulfils the connection demand and invariant,
the connection is established; otherwise, it is rejected.

4.4 evaluation 45

0 50 100 150 200 250 300 350 400

number of requests
0.3

0.4

0.5

0.6

0.7

0.8

co
nn

ec
tio

ns
 e

st
ab

lis
hm

en
t r

at
e invariant preserving SP

invariant preserving LB
shortest path

Figure 15: Connection establishment rate vs. number of arriving requests.

We conducted our simulations on a machine with an Intel Core i5
quad-core CPU at 3.20 GHz and 16 GB of RAM. We repeated each
experiment 100 times and report the average.

4.4.2 Evaluation Results

We start by measuring the connection acceptance rate. This represents
the percentage of connections’ sizes for which invariant-preserving
paths were selected. As Figure 15 shows, our algorithms (invariant-
preserving SP and invariant-preserving LB) establish almost 40% more
connections than the traditional shortest path selection. This is be-
cause our algorithms select alternative paths when either the invari-
ant or the connection demand are not fulfilled, whereas the tradi-
tional shortest path rejects the connection when the shortest path does
not meet the connection requirements. This can be also seen through
the evolution of network and middleboxes utilization (Figure 17 and
Figure 16). It also illustrates that the invariant-preserving LB algo-
rithm achieves better utilization and reaches saturation faster than the
invariant-preserving SP. This is because the invariant-preserving LB
accepts more requests at the beginning when the network resources
are underutilized.

We also measure the network load balancing level which we define as
the maximum link utilization over the average link utilization across
the ISP network. Lower values of the load balancing level represent
better load balancing, whereas a value of 1 designates optimal load
balancing. As we can see in Figure 18, the invariant-preserving LB
algorithm outperforms both our invariant-preserving SP algorithm
and the traditional shortest path.

46 invariant preserving middlebox traversal

0 50 100 150 200 250 300 350 400
number of requests

0.0

0.1

0.2

0.3

0.4

0.5

m
id

dl
eb

ox
es

 u
til

iz
at

io
n

invariant preserving SP
invariant preserving LB
shortest path

Figure 16: Total utilization of middleboxes deployed on the network.

0 50 100 150 200 250 300 350 400
number of requests

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ne
tw

or
k

ut
ili

za
tio

n

invariant preserving SP
invariant preserving LB
shortest path

Figure 17: Total utilization of all network links.

We further look at the path length per selected path in terms of the
number of hops. As we expect, the invariant-preserving SP outper-
forms the invariant-preserving LB algorithm (Figure 19); however, as
the network resources become more utilized the difference between
both algorithms diminishes. This is because the number of alterna-
tive paths with sufficient capacity decreases which limits the solution
search space for both algorithms.

4.4 evaluation 47

0 50 100 150 200 250 300 350 400
number of requests

1

2

3

4

5

6

7

lo
ad

 b
al

an
ci

ng
 le

ve
l

invariant preserving SP
invariant preserving LB
shortest path

Figure 18: The network load balancing level.

0 50 100 150 200 250 300 350 400
number of requests

4

5

6

7

8

9

10

11

12

13

#
 o

f h
op

s
pe

r s
el

ec
te

d
pa

th

invariant preserving SP
invariant preserving LB

Figure 19: The length of each selected path for each connection.

48 invariant preserving middlebox traversal

4.5 related work

Several signaling protocols have been proposed for middlebox con-
figuration and traversal. In particular, protocols such as SIMCO [126],
NAT/firewall NSIS [127], STUN [116] and NUTSS [83] enable mid-
dlebox traversal by allowing end points to dynamically configure
NATs/firewalls deployed on the traffic path. However, these proto-
cols are device and flow specific and do not consider the global
policy of the ISP network, i.e., a traversal ordered by a trusted end
point might expose the ISP network to the malicious traffic of an-
other end point. In contrast, we propose an SDN architecture where
a centralized controller with a network-wide visibility provides in-
variant preserving middleboxes traversal while taking into account
the ISP global policy and the available resources (i.e., middlebox and
network utilization).

On the other hand, OpenNF [80] and [79] develop a southbound
interface to enable a centralized controller to manipulate the state
and configuration of a wide range of middleboxes. Furthermore, a
recent work [113] proposes an API to allow end points to express
their invariants to a network operator which, in response, informs
the end point whether the network preserves or violates this invariant.
These works are complementary to our SDN architecture providing
the means for collaboration between the end point and the ISPs and
to collect middleboxes’ state and configurations.

Flows redirection and assignment is considered by several works
to optimize middleboxes resources utilization. For instance, SIMPLE
[111] proposes an SDN-based architecture to assign flows to middle-
boxes such that middlebox policy is enforced and load balancing is
achieved. The work in [89] employs flows assignment and redirec-
tion to balance IDS load across multiple nodes using a centralized
controller with a network-wide view. Similar to these works, we rely
on flow redirection and assignment to provide invariant preserving
middlebox traversal while considering load balancing and delay min-
imization for resource allocation.

4.6 summary

In this chapter, we presented an SDN architecture for establishing in-
variant preserving connections traversing middleboxes and fostering
the collaboration between end-hosts and ISPs. In particular, an end-
host can express a desirable behaviour from the network, specified
as an invariant (e.g., no IP header or payload modification), and the
ISP, in turn, can establish a connection through middleboxes that pre-
serve this invariant. To this end, we have developed an algorithm to
select redirection paths through a sequence of invariant-preserving
middleboxes while considering network and middlebox utilization.

4.6 summary 49

Our algorithm can be adapted to fulfill different objectives: load bal-
ancing or delay minimization.

Using simulations, we have shown that our algorithm substantially
increases the number (more than 40%) of established connections
with invariant preservation and achieves a network-wide load bal-
ance as well as high network and middleboxes utilization. We have
further measured the path length for each established connection and
have shown that based on the ISP policies different variants of our al-
gorithm can be used.

5
M I D A S : M I D D L E B O X D I S C O V E RY A N D S E L E C T I O N
F O R O N - PAT H F L O W P R O C E S S I N G

As discussed in the introduction, outsourcing NF processing to the
network can facilitate the deployment of new services and is essen-
tially a prerequisite for emerging communication paradigms such as
information-centric networking [93]. Network processing further en-
ables new business models such as NFaaS, leading to a significant
reduction in operational and technology investment costs in enter-
prise networks. Moreover, supported by the growing tendency to
deploy programmable and general purpose processors on routers
and switches [12, 20, 8, 97] and the increasing number of micro-
datacenters deployed at ISPs’ PoPs [78], NF processing can be pro-
vided along the flow path obviating the need for traffic redirection
which can lead to latency inflation. However, the deployment of a net-
work service chain requires the assignment of NFs to middleboxes,
while preserving correctness and satisfying any NF location depen-
dencies. The latter, in turn, will create the need for multi-provider
NF assignment, when the geographic footprint of NFPs does not sat-
isfy such location constraints. The presence of multiple NFPs exac-
erbates the NF assignment problem, since NFP policies (that will be
likely governed by current ISPs’ policies) will enforce significant re-
strictions on information disclosure (i.e., network topology, resource
availability) and interoperability with third parties.

A prerequisite for NF assignment is the discovery of the middle-
boxes deployed along the traffic path. Existing techniques for path
discovery (e.g., traceroute) and recent extensions for middlebox detec-
tion (Tracebox [59]) incur delays that will substantially prolong flow
processing establishment. Protocols for middlebox signaling have been
developed primarily for device configuration and are applicable only
to certain types of middleboxes (e.g., NAT and firewall configuration
with SIMCO [126] and NSIS [87]). Furthermore, AS-path retrieval
from BGP routers will not augment middlebox discovery since the
sequence of middleboxes traversed by the flow within each NFP will
still be required.

To mitigate the problems of middlebox discovery and selection for
on-path processing, in this chapter we present MIDAS, an architec-
ture for the coordination of processing setup using a centralized mid-
dlebox controller in each NFP. MIDAS comprises protocols for mid-
dlebox signaling, controller chaining, and methods for middlebox se-
lection across multiple NFPs. We employ MPC [57, 45] for middlebox
selection in order to preserve the confidentiality of middlebox utiliza-

51

52 midas : middlebox discovery and selection for on-path flow processing

tion across the NFPs. Using a prototype implementation, we study
the feasibility of MIDAS by measuring the delays incurred during
the flow processing setup with a diverse range of middleboxes, NFPs,
and network service request arrival rates. We further use simulations
to assess the efficiency of our middlebox selection approach in terms
of load balancing and request acceptance.

The remainder of this chapter is organized as follows. Section 5.1
describes the middlebox discovery and selection problems. Section
5.2 provides an overview of MIDAS. In Section 5.3, we present our
protocols for middlebox signaling and controller chaining. In Sec-
tion 5.4, we introduce our approach for middlebox selection across
multiple NFPs. Section 5.5 describes the implementation of our con-
solidated middlebox and signaling protocols. In Section 5.6, we dis-
cuss our experimental and simulation results. Section 5.7 reviews the
related work. Finally, Section 5.8 highlights our conclusions.

5.1 challenges and requirements

In this section, we discuss the requirements and challenges of mid-
dlebox discovery and selection for on-path processing establishment
across multiple NFPs. We envision the migration of NFs from enter-
prise networks to NFPs (e.g., micro-datacenter network operators), as
exemplified by NFV. We particularly consider NFPs deploying Con-
solidated Middleboxess (CoMBs) on commodity servers, routers with
general purpose processors [12, 20, 8, 97] or programmable hardware
devices (e.g., NetFPGA [19]). In this respect, CoMBs enable the selec-
tive deployment of NFs using software components [106, 119].

We rely on service chaining for the representation of network ser-
vices (Section 2.2). Service chains may contain location-dependent
NFs, such as Redundancy Elimination (RE) or proxies which should
be in proximity to the client (e.g., enterprise network) to reduce la-
tency and conserve bandwidth. On the other hand, packet filters or
IDS should be deployed near the traffic sources for improved effi-
ciency against Denial-of-Service attacks. Service chains containing
NFs with location dependencies may require a large provider foot-
print, i.e., PoPs near both connection end-points. ISPs and large cloud
providers (e.g., Amazon) may not meet these location constraints, es-
pecially for clients residing outside of US. Therefore, we tackle the
problem of NF assignment across multiple administratively indepen-
dent NFPs.

Figure 20 illustrates the problem of assigning the NFs composing a
service chain onto CoMBs hosted by multiple NFPs. In this example,
RE, cache, and web application firewall are location dependent, and
thereby, should be assigned to middleboxes hosted by NFP 1 and
NFP 3. On the other hand, flow monitoring and load balancing do
not yield any location restrictions, and, as such, their assignment is

5.1 challenges and requirements 53

RE cache FM LB WAFclients servers

close to clients close to servers

RE: redundancy elimination
FM: flow monitoring
LB: load balancer
WAF: web application firewall

location-independent

CoMB

CoMB

CoMB

CoMB
CoMB

CoMB

CoMB

CoMB

CoMB

CoMB

CoMB

NFP 1 NFP 2 NFP 3

Figure 20: Assignment of NFs to middleboxes along the traffic path.

subject to NFP policies, resource availability, and other constraints
such as preserving the correct order of NFs.

We particularly consider the following objectives for on-path pro-
cessing establishment:

Performance. Flow processing setup should incur low delay, while
forwarding rates should be high and comparable with middleboxes
built of specialized hardware. Since the latter has been addressed by
recent work (e.g., [106, 115]), we focus on achieving low processing
setup delays.

Efficiency. Network-wide load balancing has been considered as a
desired property for the deployment of network processing elements
[75] and IDSs [89], and, as such, we aim at equalizing the processing
load among CoMBs.

Correctness. NFs assignment should preserve the order specified in
the service chain.

These objectives essentially designate CoMB selection as a key chal-
lenge for on-path processing. The CoMB selection problem is exacer-
bated by NFP policies that restrict the information disclosure and in-
teroperability with third parties. Specifically, CoMB utilizations will
be deemed confidential and, thereby, will not be disclosed by NFPs.
This essentially hinders collective decisions among NFPs for NF as-
signment.

A simple approach to CoMB selection consists in allowing CoMBs
to autonomously pick and process incoming traffic. More precisely,
CoMBs can select a flow depending on its current level of utilization
(e.g., with a probability that is inversely proportional to the CoMB
utilization [75]) and, subsequently, encode the processing status into
the packet header to prevent any processing duplication from down-

54 midas : middlebox discovery and selection for on-path flow processing

stream CoMBs. Such on-the-fly processing obviates the need for NFP
interoperability and also does not require maintaining any state be-
sides the flow processing status. However, this approach does not
guarantee correctness since it is very difficult to embed a sequence
of NFs without any knowledge about the number and utilization of
downstream CoMBs. Possible ways to mitigate this, i.e., seeking the
co-location of all NFs or alternatively performing a first-fit for each
NF, could result in load imbalance among CoMBs, violating the effi-
ciency property.

To meet all of these objectives, NF assignment requires the knowl-
edge of the CoMBs deployed along the traffic path. Since the time re-
quired for path discovery with traceroute and its recent extensions (i.e.,
Tracebox [59]) is prohibitive for on-path processing establishment, we
present protocols and algorithms for middlebox discovery and selec-
tion, while adhering to NFP policies and preserving the confidential-
ity of CoMB utilization across NFPs.

5.2 architecture overview

Hereby, we present MIDAS, an architecture that (i) enables interop-
erability across multiple NFPs for the discovery of CoMBs along the
traffic path and (ii) fosters the collaboration between NFPs for CoMB
selection without disclosing any confidential information. MIDAS
mainly relies on three components (Figure 21): (i) the CoMBs, (ii) a
logically centralized CoMB controller residing in each NFP, and (iii)
the Network Processing Client (NPCL) which submits the network
service request on behalf of the client.

MIDAS supports NPCL located on-path (e.g., end-host, access gate-
way, edge router) as well as off-path (e.g., network management sys-
tem, access control server). For off-path NPCL, we mitigate the poten-
tial problem of different gateways assigned to the NPCL and to the
end-host(s) (for which the network service is being set up) by redirect-
ing any middlebox signaling messages (e.g., using a tunnel) through
the gateway assigned to the end-host(s). This ensures that signaling
messages and data traffic will traverse the same CoMBs, assuming
that any load balancing by routers is per flow or per destination.

On-path processing is established on a per-flow basis, as a sequence
of the following steps:

Middlebox Signaling. MIDAS uses a signaling protocol for the dis-
covery of CoMBs along the data path. As soon as a CoMB has been
identified, the CoMB sends a notification to its controller. We elabo-
rate on CoMB signaling in Section 5.3.1.

Controller Chaining. MIDAS establishes a chain between the con-
trollers of the discovered CoMBs. This enables the controllers to make
collective decisions for CoMB selection. Controller chaining is dis-
cussed in Section 5.3.2.

5.3 middlebox discovery 55

NFP2

NPCL traffic
src/dst

NFP1 NFP 3

GW
GWtraffic

src/dst

client network

controller controller controller

CoMB

CoMB

CoMB
CoMB CoMB

CoMB

CoMB

CoMB

CoMB
CoMB

Figure 21: Architecture components.

Middlebox Selection. Middlebox selection consists of (i) CoMB se-
lection within each NFP and (ii) the assignment of NFPs via the
collaboration of their controllers. Intra-provider CoMB selection is
carried out using a heuristic algorithm that strives to achieve load
balancing across the CoMBs, while preserving correctness. To pre-
serve confidentiality for NFP assignment, we leverage on Multi-Party
Computation (MPC) [57, 45]. Despite being computationally inten-
sive, MPC has been considered as a viable solution for computa-
tions with privacy concerns and has found applications in network
monitoring [63] and inter-domain routing [85, 88]. Further details on
CoMB selection are given in Section 5.4.

Processing Module Instantiation. Upon the CoMB selection, the con-
troller instructs the assigned CoMB(s) to install and configure the
required Processing Modules (PMs). This essentially comprises re-
source allocation, PM configuration (e.g., rules installation), PM in-
stallation, and configuration of packet steering between the physical
ports and the PM’s virtual interfaces. We have implemented such a
CoMB on a commodity server. The functionality and implementation
of the main CoMB components are discussed in Section 5.5.

5.3 middlebox discovery

Middlebox discovery consists of (i) middlebox signaling (Section 5.3.1),
i.e., identifying the CoMBs along the traffic path and sending notifi-
cations to their controllers, and (ii) controller chaining (Section 5.3.2).

5.3.1 Middlebox Signaling

MIDAS initiates middlebox discovery by signaling all CoMBs along
the data path. To this end, the NPCL generates a REQUEST message
which traverses all downstream CoMBs, as shown in Figure 5.22(a).
The REQUEST message contains the following fields (Figure 5.23(a)):

• Service Request ID (SRID), whose scope is limited to the client.
However, concatenating the SRID and the client’s IP address

56 midas : middlebox discovery and selection for on-path flow processing

allows the generation of globally unique IDs without the need
for any coordination between clients. To reduce the length of
the SRID field, we reuse the SRIDs of expired requests.

• Controller address, which is used to store the IP address of the
controller of the current or the upstream NFP, as explained be-
low.

• CoMB address, which carries the IP address of the upstream
CoMB.

• Processing type identification, which corresponds to a specific NF
(e.g., IDS) advertised by an NFP. A service chain will contain
the processing type ID of each NF.

• Proximity, which carries the distance (specified in km, millisec-
onds or number of hops) to traffic source or destination for each
NF identified in the Processing type identification field.

• Traffic rate, which is used to derive the NF computational re-
quirements (e.g., the CPU cycles can be calculated using cy-
cles/packet measurements obtained with our profiling method
in chapter 3) and, subsequently, examine the feasibility of NF-
to-CoMB assignment.

• Flow specification, typically expressed with the 5 tuple (source/des-
tination IP address, source/destination port number, and proto-
col) but can be also extended to cover L4+ protocols such as
HTTP. Flow specification can include wild-card entries.

Upon receiving the REQUEST message, each CoMB replaces the
CoMB address field with its own IP address and compares the Con-
troller address field with the IP address of its own controller. If both
addresses match, the CoMB simply forwards the REQUEST message
without further modifications. Otherwise, the CoMB stores the con-
troller address of the REQUEST message and inserts the IP address
of its own controller in the Controller address field of the message. The
Controller address update essentially takes place in the first CoMB en-
countered by the REQUEST message in each NFP. This enables each
controller to learn the address of its upstream controller, augmenting
controller chaining.

Upon signaling, each CoMB announces its discovery and conveys
its utilization to its controller, using a DISCOVERY message as de-
picted in Figure 5.22(a). The DISCOVERY message contains the CoMB
identifier and utilization, as well as a copy of the REQUEST message
(Figure 5.23(b)).

MIDAS uses a PATHEND message to bind middlebox signaling
with controller chaining. This message is sent by the other end-point

5.3 middlebox discovery 57

NPCL
flow

 src/dst

controller

CoMB

REQUEST
D

IS
CO

VE
RY

NFP1 NFP 2 NFP 3

controller

CoMB CoMB CoMB CoMB CoMB

controller

(a) Middlebox signaling

flow
 src/dst

PATHEND

controller

CoMB CoMB

NFP3

(b) Notification of data path
end

controller a

CoMB

12

3 4
controller c

CONTROLLER CONTROLLER

CONTROLLER CONTROLLER

NFP1 NFP 2 NFP 3

controller b

CoMBCoMBCoMBCoMBCoMB

(c) Controller chaining

Figure 22: Middlebox discovery steps.

to the last CoMB (using the CoMB address field in the REQUEST mes-
sage) and is subsequently relayed to the CoMB’s controller, initiat-
ing controller chaining (Figure 5.22(b)). The PATHEND message con-
tains only the SRID and the IP address of NPCL, since the controller
can easily retrieve the request specification (i.e., appended in the RE-
QUEST message) by looking up the SRID in all messages sent by each
discovered CoMB.

5.3.2 Controller Chaining

Controller chaining is an iterative process, in which all controllers
exchange their IP addresses1 so that they can collectively make deci-
sions for CoMB selection.

Controller chaining is triggered as soon as a PATHEND message
has been received by the controller of the last NFP on the data path.
This controller first extracts the SRID and the NPCL’s IP address from
the PATHEND message and subsequently performs a lookup on the
DISCOVERY messages received in order to retrieve the IP address of
the upstream controller. Next, the controller appends its IP address,
SRID and NPCL’s IP address to a CONTROLLER message (Figure
5.23(c)), which is sent to its upstream controller (Figure 5.22(c)). Each

1 For security reasons, a controller may announce the IP address of a proxy instead of
its own IP address.

58 midas : middlebox discovery and selection for on-path flow processing

service request ID (SRID)

controller address

source IP

destination IP

 processing type identification

protocol

0 16 318 24

fl
ow

 s
pe

ci
fi

ca
ti

on

traffic rate

 CoMB address

source port destination port

proximity

(a) REQUEST message
format

CoMB ID

CoMB utilization

0 16 318 24

 REQUEST message

(b) DISCOVERY mes-
sage format

requester address

service request ID (SRID)

controller address

0 16 318 24

controller address

controller address

(c) CONTROLLER mes-
sage format

Figure 23: Message formats.

controller receiving a CONTROLLER message appends its own IP
address and forwards the message to its own upstream controller.
When the first controller has been reached, this procedure is repeated
over the reverse path, i.e., controller addresses are appended to CON-
TROLLER messages which are being forwarded downstream, until
controller chaining has been completed.

5.4 middlebox selection

Middlebox discovery is followed by the assignment of NFs to CoMBs
hosted by multiple providers. This essentially requires the assign-
ment of NFs to NFPs (among the ones discovered along the traffic
path) and the selection of the CoMBs within each assigned NFP. In
this respect, we employ MPC for NFP assignment and further use a
heuristic algorithm for the CoMB selection. Since MPC incurs higher
computational and communication overhead than our heuristic algo-
rithm, we first use our heuristic to examine the feasibility of NF-to-
CoMB assignment within each NFP and, subsequently, execute MPC
only across the NFPs in which NF assignment is feasible.

5.4.1 Intra-Provider Middlebox Selection

CoMB selection within each NFP is carried out by the NFP’s con-
troller which is assumed to have up-to-date information about the
CoMB utilizations. The difficulty in CoMB selection stems from the
need to ensure correctness for service chains. To this end, we present
a heuristic algorithm for the assignment of NFs to CoMBs in the cor-
rect order. The objective of the algorithm is to achieve load balancing
across the CoMBs.

5.4 middlebox selection 59

Let R denote a network processing service request, consisting of N
NFs, each one associated with a processing demand represented by
di, i = 1, ...,N. We also define the residual capacity of each CoMB j
deployed along the flow’s path as cj, j = 1, ...,M, where M represents
the number of the CoMBs on this path. The proposed algorithm (Al-
gorithm 3) assigns NFs to CoMBs as a sequence of the two following
steps:

1. Initially, the algorithm seeks a first-fit assignment for each NF,
in the order that the NFs have been specified in the request R
(lines 2–8). To ensure the correct ordering, for each NF i the
algorithm starts searching from the CoMB k (line 3) where the
previous NF was assigned. If there are insufficient resources for
any of the requested NFs, the request is rejected (lines 7–8).

2. Subsequently, the algorithm performs an order-preserving worst-
fit for each NF in order to balance the processing load across
the CoMBs (lines 9–14). More precisely, the algorithm seeks the
worst-fit placement for each NF in the reverse order. This assign-
ment is denoted by ai. The algorithm essentially restricts the
search space for each NF across the CoMBs within the range
{pi, ...,ai+1}, preserving the correct order of all NFs in the re-
quest (i.e., pi denotes the first-fit assignment for this NF, while
ai+1 represents the CoMB assigned to the following NF using
worst-fit). Finally, the algorithm inserts all NF-to-CoMB assign-
ments into the assignment vector A, which is returned as the
solution.

5.4.2 NFP Assignment

NFP assignment is carried out based on the NFP utilizations, aiming
at load balancing among the NFPs while taking into account any NF
location dependencies. The confidentiality of NFP utilizations poses
a significant challenge for NFP assignment. One approach is to rely
on a third party which collects the NFP utilizations and compares
them on behalf of the NFPs. However, information disclosure to a
foreign entity raises a lot of concerns and may violate NFP policies.
Therefore, we employ another approach which obviates the need for
disclosing confidential information to a third party. In particular, we
rely on secure Multi-Party Computation (MPC) [57, 45], which al-
lows different parties with private inputs to compute a function on
these inputs without revealing their values. MPC essentially executes
a cryptographic protocol to perform the computation such that (i) the
result of the computation is correct, and (ii) cheating parties will not
be able to learn any information about the honest parties inputs.

60 midas : middlebox discovery and selection for on-path flow processing

Algorithm 3 Intra-Provider Middlebox Selection

1: A = ∅, k = 1, pi = 0 ∀i ∈ {1...N}

2: for i = 1...N do
3: for j = k...M do
4: if di 6 cj then
5: pi = j, k = j

6: break
7: endif
8: end for
9: if pi = 0 then

10: // processing demand cannot be satisfied, reject request
11: return ∅
12: endif
13: end for
14: for i = N...1 do
15: if i = N then
16: ai = argmaxl∈{pi...M} cl
17: else
18: ai = argmaxl∈{pi...ai+1}

cl
19: end if
20: A←− A∪ ai
21: end for
22: return A

We particularly use secret-sharing MPC [121], where each party
splits its private input into shares and distributes them among the
other parties. Subsequently, all parties equivalently run an interactive
protocol to compute shares of the function output. The parties finally
exchange their shares of the output with each other so that the out-
put value can be reconstructed. The privacy-preserving nature of se-
cret sharing as well as the interactive protocol ensures that the input
values are not revealed at any point during the protocol execution.

Since we aim at comparing the NFP utilizations, the controllers use
the less than function provided by the MPC protocol proposed in [45].
This function allows two parties P1 and P2 to compare their inputs
x1 and x2. The main idea behind this protocol is to calculate c = x2 −
x1 + 2

l; if c > 2l, then x1 < x2 (l denotes the bit-length of x1 and x2).
Essentially, the outcome of this comparison is designated by the value
of the (l+ 1)th bit of c (i.e., if it is 1, then x1 < x2). Using the shares of
x1 and x2 and in several rounds of communication and computation,
the protocol computes shares of the (l+ 1)th bit of c. These shares
are combined together to construct the result of the comparison.

5.5 implementation

In the following, we discuss the implementation of our middlebox,
signaling protocols and MPC protocol.

5.5 implementation 61

 p
acket steerin

g
 co

n
tro

ller

packet steerin
g

m
odu

le (O
pen

vsw
itch

)

con
trol m

odu
le (C

M
)

PMs
repository

 from/To
controller

PM (click)P
h

ysical ports

 V
irtu

al ports

control

data

PM (click)

PM (click)

PM (click)

PM table Flow table

VI table

MySQL database

U
ser space

K
ern

el space

Figure 24: Consolidated middlebox implementation.

5.5.1 Consolidated Middlebox

We have implemented a middlebox for the consolidation of multiple
NFs on a commodity server. Our CoMB implementation consists of
the following components (Figure 24):

Processing Module (PM). A PM implements a specific NF, such as
packet filtering, monitoring, or encryption, using Click Modular Router
[99] in userspace. Our CoMB supports the instantiation, configura-
tion, and termination of PMs on demand.

Packet Steering Module (PSM). The PSM is responsible for steering
the packets of a flow from a physical port to a PM and then back
to the CoMB’s output port. It can also route a flow between differ-
ent PMs, when a flow needs to undertake more than one NF that is
hosted on the same CoMB. The PSM can identify flows at different
granularities by matching packets against pre-defined rules that can
contain L2-L4 header fields, as defined by OpenFlow [107]. PSM is
implemented with OpenvSwitch [110] running in the Linux kernel.
To attach each PM to the PSM, we use tap interfaces.

Repository. To speed up the flow processing setup, CoMB uses a
repository where PM configuration templates are stored (i.e., Click
configuration files). The repository can be synchronized with a central
repository managed by the controller to fetch new or updated PM
configurations.

Control Module (CM). The CM installs, configures, and terminates
PMs according to the instructions it receives from the corresponding
controller. To this end, the CM exposes an API to the controller. The
CM also configures the rules installed in the PSM for packet steering,
using the OpenFlow API. In particular, PM instantiation includes the
following steps: (i) creation of the required tap interfaces, (ii) retriev-
ing the Click configuration template from the repository, (iii) append-
ing physical/virtual interface names and addresses and any required
set of rules to the Click configuration, (iv) installation of the Click con-
figuration, and (v) installation of the flow entries in the OpenvSwitch

62 midas : middlebox discovery and selection for on-path flow processing

flow table for the configuration of packet steering. Upon the PM in-
stallation, all configuration information is registered in the CoMB’s
database.

5.5.2 Signaling and MPC Protocols

For the implementation of our signaling protocols, we created the
following Click elements:

• MiddleboxSignaling: generates the REQUEST message sent from
the NPCL to the CoMBs along the path.

• MiddleboxProcessing: processes incoming REQUEST messages on
each CoMB and, when needed, updates the controller and CoMB
IP address.

• ControllerSignaling: encapsulates the REQUEST into a DISCOV-
ERY message sent from a CoMB to its controller.

• ControllerProcessing: processes incoming DISCOVERY and CON-
TROLLER messages at each controller.

Middlebox and controller signaling is therefore implemented by
combining these elements with existing Click elements for packet I/O
and L2/L3 processing. For all our protocols, we encapsulate messages
into UDP packets. Furthermore, we use the Router Alert Option (RAO)
of the IP header to enable CoMBs to distinguish REQUEST messages
from other packets. MPC is implemented in Python using the Virtual
Ideal Functionality Framework (VIFF) [4].

5.6 evaluation

In this section, we study the feasibility of MIDAS for on-path process-
ing setup. In particular, we use our Emulab-based experimental facil-
ity to measure the processing setup delay and, we further perform
simulations to quantify the load balancing level across the NFPs and
measure the request acceptance rate.

5.6.1 Experimental Results

We run our experiments using 22 commodity servers, each one equi-
pped with an Intel Xeon E5520 quad-core CPU at 2.26 GHz, 6 GB
DDR3 RAM and a quad 1G port NICs based on Intel 82571EB. The
experiments are conducted with a diverse number of NFPs, each one
deploying one controller and three CoMBs in separate servers. In the
following, we present the experimental results across 1000 runs.

5.6 evaluation 63

3 4 5
0

20

40

60

80

100

number of NFPs

p
ro

c
e

s
s
in

g
 s

e
tu

p
 t

im
e

 (
m

s
)

CoMB discovery

CoMB selection

processing module instantiation

Figure 25: Processing setup delay vs. number of NFPs.

10 100 1000 10000
0

20

40

60

80

100

request arrival rate (requests/second)

a
v
e

ra
g

e
 t

im
e

 p
e

r
re

q
u

e
s
t

(m
s
)

5 NFPs

4 NFPs

3 NFPs

Figure 26: NFP assignment delay (MPC) vs. request arrival rate.

First, we measure the total delay incurred during the flow process-
ing setup. This includes the time elapsed from the generation of a
REQUEST message until the completion of PM instantiation in the
assigned CoMB(s). As shown in Figure 25, the processing setup delay
does not exceed 100 ms for up to 5 NFPs, whereas most of the time is
spent during the CoMB selection. In contrast, CoMB discovery incurs
minimal delay, while PM instantiation takes only a few ms. Note that
our measurements mainly show the delays due to packet processing
and other computations (i.e., MPC) for on-path processing setup. In a
wide-area deployment, these delays will be higher due to the propa-
gation delays along the paths between the end-hosts and between the
CoMBs and their controllers.

Figure 26 indicates that the CoMB selection delay stems from MPC
during the NFP assignment, while the CoMB assignment within each
NFP incurs minimal delay. Although MPC runtime increases with the
number of NFPs, the delays with 4 and 5 NFPs, which are more repre-

64 midas : middlebox discovery and selection for on-path flow processing

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number of CoMBs

C
o
M

B
 s

ig
n
a
lin

g
 t
im

e
 (

m
s
)

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

50000 100000 150000 200000 250000 300000

request arrival rate (requests/second)

C
o
M

B
 s

ig
n
a
lin

g
 t
im

e
 (

m
s
)

(b)

Figure 27: CoMB signaling delay vs. a) number of CoMB and b) request
arrival rate with 15 CoMBs.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 3 4 5

number of controllers

c
o

n
tr

o
lle

r
c
h

a
in

in
g

 t
im

e
 (

m
s
)

(a)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

50000 100000 150000 200000 250000 300000

request arrival rate (requests/second)

c
o

n
tr

o
lle

r
c
h

a
in

in
g

 t
im

e
 (

m
s
)

(b)

Figure 28: Controller chaining delay vs. a) number of controllers b) request
arrival rate with 5 NFPs.

sentative of the average AS-path length (i.e., 4.2, according to [60]), do
not exceed 90 ms. As shown in Figure 26, MPC can handle a diverse
number of simultaneous requests without a perceptible impact on the
average delay per request. MPC execution can be accelerated by ex-
ploiting the latest cryptographic extensions in CPU/GPU instruction
sets.

The box-plots in Figures 5.27(a)-5.28(b) provide insights into CoMB
signaling and controller chaining. We first measure the delay incurred
during middlebox signaling with a diverse number of CoMBs. Fig-
ure 5.27(a) depicts that signaling delay is below 0.6 ms for up to 15

CoMBs deployed along the traffic path. To investigate potential im-
plications with a large number of incoming requests, we measure the
signaling delay with varying request arrival rates and 15 CoMBs on
the path. As shown in Figure 5.27(b), our CoMB can handle 300K RE-
QUEST messages per second without a significant impact on signal-
ing delay. Similarly, we measure the controller chaining delay with
a diverse number of NFPs and request arrival rates. According to
Figure 5.28(a), controller chaining requires less than 0.4 ms for 5 con-
trollers. Controller chaining delay increases in proportion to the re-
quest arrival rate but does not exceed 0.6 ms for rates as high as 300K
messages per sec with 5 NFPs.

5.6 evaluation 65

number of CPU cores
1 2 3 4

re
q

u
e

s
ts

 p
ro

c
e

s
s
in

g
 r

a
te

(m

ill
io

n
 r

e
q

u
e

s
ts

/s
e

c
o

n
d

)

0

0.5

1

1.5

2

2.5

3

3.5

middlebox discovery

controller chaining

Figure 29: Request processing rate vs. CPU cores.

We further measure the rate that a CoMB and a controller can pro-
cess messages for middlebox discovery and controller chaining, re-
spectively. Our tests are performed on a single server with optimized
packet I/O handling, using a patched Linux kernel (version 2.6.24.7)
with the e1000 patched network driver to enable Click packet poll-
ing [99]. We parallelize the processing by creating multiple protocol
threads, each one assigned to a different CPU core. Figure 29 shows
that the processing rate scales linearly up to 4 CPU cores (with shared
L3 cache) and reaches millions of messages per second.

cycles/message Packet I/O Protocol operations Other

Processing at CoMB 4283 48% 25% 27%

Processing at controller 2480 46% 33% 21%

Table 4: Computational requirements for processing setup.

Using Intel VTune Amplifier, we derive the computational require-
ments (CPU cycles/message) of running our protocols in the CoMB
and controllers and further break this down into protocol operations
and packet I/O handling. As shown in Table 4, packet I/O accounts
for most of the CPU cycles per message, while our protocols do not
introduce a large processing overhead. Packet I/O optimizations with
Netmap [115], PF_RING DNA [27] or Intel DPDK [1] can further in-
crease the processing rates.

Furthermore, we delve into processing module instantiation with
different processing workloads. We specifically measure the delay in-
curred for PM setup and where the most time is being spent, using
the following workloads:

66 midas : middlebox discovery and selection for on-path flow processing

NFP1
NFP2

NFP 3

Figure 30: Simulation topology (34 CoMB subdivided into 3 NFPs).

Packet duplication: copies the packets of a flow and sends them
through two different ports.

Flow monitoring: collects flow statistics, including data rate, data
volume, and flow duration.

Packet filtering: permits or filters flows based on a predefined set of
4000 rules.

Table 5 shows various statistics for PM instantiation. The instantia-
tion of a PM is concluded within approximately 8 ms for all process-
ing workloads. The packet filter yields higher PM installation delay
because it requires the installation of the associated rules. However,
since PM installation accounts for roughly only 2% of the total PM
instantiation delay, the effect of a stateful processing application on
the delay is minimal. PM configuration and packet steering require
approximately 4 ms each.

PM config PM install Steering Total

Packet duplication 3.96 ms <1 µs 3.96 ms 7.93 ms

Flow monitoring 3.97 ms <1 µs 3.97 ms 7.95 ms

Packet filtering 4.11 ms 87 µs 3.95 ms 8.23 ms

Table 5: PM instantiation time.

5.6.2 Simulation Results

Due to the limited scale of our experimental infrastructure, we use
simulations to evaluate the level of load balancing with a larger num-
ber of CoMBs. We run our simulations using the Internet 2 topology
[3], which is subdivided into three NFPs, as shown in Figure 30. Each
node in this figure represents the location of a CoMB. Our simula-
tion setup includes 34 CoMBs in total, all of which have the same
processing capacity. Processing requests are generated by randomly
selecting a pair of nodes and computing the shortest path based on
the topology’s link costs. The requests include 1 to 3 NFs. The NF(s)

5.6 evaluation 67

single provider multi−provider uncoordinated
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

load balancing approaches

lo
a
d
 b

a
la

n
c
in

g
 l
e
v
e
l

Figure 31: Network-wide load balancing.

provider ID

1 2 3

lo
a
d
 b

a
la

n
c
in

g
 l
e
v
e
l

1

1.2

1.4

1.6

1.8

2

multi-provider coordinated

multi-provider uncoordinated

Figure 32: Load balancing within each provider.

and flow rate are randomly sampled from a uniform distribution. All
simulation results are obtained across 1000 simulation runs.

We compare the efficiency of MIDAS against two other CoMB se-
lection techniques:

Single-provider. All CoMBs are assigned to a single controller with a
network-wide view and complete information about their utilization.
The CoMB selection within the NFP is carried out with our algorithm
(Section 5.4.1).

Multi-provider uncoordinated. Each CoMB is allowed to select a flow
based on a probability that is inversely proportional to its utiliza-
tion level. This technique does not require any state or coordination
among CoMBs and is adapted from [75].

68 midas : middlebox discovery and selection for on-path flow processing

1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100

cumulative processing demand

a
c
c
e
p
ta

n
c
e
 r

a
te

 %

single provider

multi−provider coordindated

multi−provider uncoordinated

Figure 33: Processing demand acceptance rate.

To perform our comparison, we define the (i) load balancing level
as the maximum CoMB load over the average CoMB load across the
NFPs and (ii) processing demand acceptance rate as the proportion of the
processing demand being accepted. Lower values of the load balancing
level represent better load balancing, whereas a value of 1 designates
optimal load balancing. Processing demand acceptance rate is an ef-
ficiency metric from the perspective of an NFP, as a high acceptance
rate can generate more revenue.

Figure 31 illustrates the load balancing level across the network
with each of the three techniques. Our CoMB selection approach (de-
noted as “multi-provider coordinated”) achieves an adequate level
of load balancing and only slightly inferior to the “single-provider”
technique, where the controller has a global network view. The un-
coordinated approach yields load imbalance, which indicates the sig-
nificance of coordination for CoMB selection. Furthermore, Figure 32

depicts the load balancing level achieved within each NFP with our
technique and the uncoordinated approach (i.e., the “single-provider”
technique aims at network-wide load balancing and, therefore, is not
directly comparable). The balanced load within each provider’s net-
work validates the efficiency of MPC for intra-provider middlebox
selection. According to Figure 33, MIDAS and “single-provider” ap-
proach are able to maintain a high acceptance rate as the processing
demand increases. On the other hand, the “multi-provider uncoordi-
nated” approach exhibits an inefficiency in accommodating process-
ing requests and eventually leads to a large number of rejections.

5.7 related work

In this section, we discuss the related work on signaling protocols,
flow processing architectures and middlebox management.

5.7 related work 69

Signalling Protocols: Protocols for middlebox signaling have been
primarily designed for device configuration and control and are usu-
ally specific to a certain middlebox function. In particular, signaling
protocols such as SIMCO [126], NAT/firewall NSIS [127], STUN [116]
and NUTSS [83] enable applications to dynamically configure NAT
and firewall devices deployed along the traffic path such that the
application’s flow can traverse the middleboxes. On the other hand,
QoS signaling protocols such as RSVP [47] and QoS NSIS [87, 105]
are designed to fulfil QoS demands by reserving network resources
and maintaining the reservation state on routers and platforms lo-
cated on the traffic path. QoS signaling protocols can be extended to
support resource reservation (i.e., reserving computing and network
resources) for NFs deployment. However, due to their distributed na-
ture (similar to [75]) and the correctness requirement of service chains,
these protocols can only support first-fit resource allocation leading
to load imbalance and resulting in inefficient resource utilization. In
contrast, we propose signaling protocols which enable centralized re-
source discovery and allocation (through the NFP’s controller) within
each provider’s network and require no state maintenance per plat-
form leading to a network-wide visibility, efficient resource allocation
(i.e., load balancing) and simpler platform design.
Flow Processing Architectures. Authors in [122] propose an archi-
tecture, namely APLOMB, for the outsourcing of flow processing
to the cloud. APLOMB relies on widely used techniques for traffic
redirection such as tunneling and DNS. Flowstream [81] outlines an
architecture for distributed flow processing by coupling commodity
servers with programmable switching hardware such as OpenFlow.
Both APLOMB and Flowstream provide support for flow process-
ing off the traffic path. An architecture for the customization of the
network is presented in [132]. This architecture encompasses service
nodes where NFs are deployed and a service controller per provider
which is responsible for resource management and connection setup.
This architecture has similar components to MIDAS, and both are
designed for on-path processing. However, we additionally propose
signaling protocols and a middlebox selection algorithm. We further
provide a prototype implementation and an experimental evaluation
of MIDAS.
Middlebox Management. Recent work presents an architecture for
the resource management of software middleboxes, where a central-
ized controller assigns flows to middleboxes in order to achieve load
balancing [119]. This architecture aims at facilitating the management
of middleboxes in enterprise networks. In contrast, we propose solu-
tions for the discovery and selection of middleboxes along the traffic
path. Furthermore, authors in [89] investigate techniques for the dis-
tribution of IDS load across multiple nodes and the assignment of
flows to these nodes using a centralized controller with a global net-

70 midas : middlebox discovery and selection for on-path flow processing

work view. This is complementary to our work and can be used to
further improve the level of load balancing with MIDAS by splitting
expensive processing tasks into multiple CoMBs.

5.8 summary

In this chapter, we have presented an architecture for the coordination
of on-path processing setup to circumvent the difficulty in CoMB dis-
covery and selection across multiple NFPs, without any prior knowl-
edge of the network path. We have proposed signaling protocols for
CoMB discovery and NFP interoperability and presented an algo-
rithm for order-preserving CoMB selection within each NFP. For NFP
assignment, we have leveraged on MPC to preserve the confidential-
ity of CoMB utilizations across NFPs.

Using our prototype implementation, we have shown that MIDAS
incurs processing setup delays in the order of tenths of milliseconds.
In particular, CoMB discovery and controller chaining incur low de-
lays with a large number of CoMBs and high request arrival rates.
Our experimental results show that MPC-based NFP assignment ac-
counts for most of the processing setup delay. Nevertheless, MPC
does not introduce a scalability limitation because the MPC delay
(i) is not affected by the request arrival rate and (ii) does not sig-
nificantly increase with a number of NFPs that does not exceed the
average AS-length of Internet paths. Coupling MPC with our middle-
box selection algorithm results in network-wide load balancing and
high request acceptance rates, as shown in our simulation results. We
believe that our work indicates the feasibility of on-path processing
and takes a step towards empowering the middle and bringing more
flexibility and intelligence to the network.

6
D I S T N S E : D I S T R I B U T E D N E T W O R K S E RV I C E
E M B E D D I N G F O R O F F - PAT H F L O W P R O C E S S I N G

In chapter 5, we proposed an architecture to deploy NFs on the traf-
fic path. On-path processing obviates the need for traffic redirection
which can lead to latency inflation and high bandwidth consumption.
However, on-path processing also requires the presence of process-
ing platforms with sufficient available resources along the traffic path
and might force all the traffic to pass through the on-path middle-
boxes, resulting in unwanted processing on the traffic and introduc-
ing a single point of failure. On the other hand, off-path processing
provides plenty of resources by redirecting traffic to DCs (or micro-
DCs) deployed off the traffic path, avoiding unwanted processing and
possible disruption due to middlebox failure.

However, akin to on-path processing, outsourcing NFs to DCs de-
ployed off the traffic path should preserve the order and comply with
the location constraints of NFs. This, in turn, raises significant chal-
lenges in terms of Network Service Embedding (NSE), which aims
at assigning NFs to network paths and DCs. In particular, due to
the limited geographical footprint, a single NFP may not fulfil the
location-dependencies of all NFs in a service chain leading to the
need for multi-providers NSE. However, as discussed in the intro-
duction, NFPs have been traditionally known for their secrecy about
their network resources. They further tend to autonomously imple-
ment different local policies (e.g., load balancing). Consequently, an
efficient off-path NSE should aim at maintaining the NFP privacy
and autonomy, while accounting for the requirements of NF deploy-
ment (i.e., correctness and location-dependencies). Furthermore, as
with any service offering, NSE should enable competitive price offer-
ing to the client.

To this end, in this chapter we propose DistNSE, a distributed ar-
chitecture that enables the collaboration between NFPs to perform
NSE1, while maintaining the privacy and the autonomy of the par-
ticipating NFPs. DistNSE ensures competitive pricing by enabling
different providers to compete for different NFs of a service chain
based on their own policies. DistNSE decomposes embedding in two
steps: inter-provider embedding and intra-provider embedding. Inter-
provider embedding is carried out using a distributed algorithm to
partition a service chain into multiple subchains for which differ-
ent NFPs can compete. On the other hand, intra-provider embed-
ding maps subchains to network paths and DCs, while complying

1 Unless mentioned otherwise, in this chapter we refer to off-path NSE as NSE.

71

72 distnse : distributed network service embedding for off-path flow processing

Src

dst

NFP3

Controller Controller

Controller

1src dst2 3 4 5 6

NFP1
NFP2

5

NFP 4

Controller

NFP 5

Controller

1 2

3 4

6

Figure 34: Assignment of NFs to NFPs.

with two different policies: (i) service cost minimization, where the
NFP aims at minimizing embedding cost while ensuring minimum
competitive service price and (ii) load balancing, where the NFP dis-
tributes the traffic load across the network to improve reliability and
robustness. Furthermore, to exchange information about the gener-
ated subchains and the competing NFPs, DistNSE augments the inter-
provider algorithm with a communication protocol. We use simula-
tions to assess the efficiency of DistNSE and identify significant gains
over Polyvine [54], a widely-known distributed embedding frame-
work.

The remainder of this chapter is organized as follows. In Section
6.1, we discuss the challenges and requirements of NSE. Section 6.2
introduces our network model. In Section 6.3, we present our network
service embedding algorithms, while in Section 6.4 we describe our
communication protocol. In Section 6.5, we evaluate the efficiency
of DistNSE and discuss our simulation results. Section 6.6 provides
an overview of related work. Finally, in Section 6.7 we highlight our
conclusions.

6.1 challenges and requirements

In this section, we discuss the challenges and the requirements of
NSE across multiple providers.

To express network policy and requirements, NFs are represented
through service chains. In line with NFaaS model, we envision clients
outsourcing service chains from the enterprise network to NFPs’ net-
works. Accordingly, we consider NFPs offering processing and BW ca-
pacity to host service chains by deploying micro-datacenters in their
network (Figure 34). We further assume the presence of a central con-
troller in each NFP network. This controller has full knowledge of

6.1 challenges and requirements 73

and full access to the network and processing resources offered by
the NFP.

Figure 34 shows an example of embedding a service chain by NFPs.
In particular, 6 NFs have to be assigned to the DC’s servers and links
within selected NFPs (NFP 1, 2 and 3). Furthermore, a path has to be
established between the source and destination to carry the service
chain traffic. To select DCs’ servers and links as well as identify a net-
work path for a service chain, we need to fulfill a set of requirements:

• Correctness: The order of the service chain should not be vi-
olated, i.e., NFs should be assigned to network and DCs such
that the traffic traverses them in the right order. This should be
maintained within and across NFPs (Figure 34).

• Privacy: NFPs are usually reluctant to reveal any information
about their network such as topology, link utilization and servers’
utilization. For instance, ISPs advertise their topologies using
simplified graphs [124] with no information about router-level
connectivity or PoPs. Cloud providers such as Amazon [10] an-
nounce their service price using a type-based model where a
type is a combination of resources with an associated price. As
a result, NSE should enable the collaboration between providers
without violating the privacy of each provider.

• Autonomy: NFPs usually implement different policies to run
their networks. For instance, some NFPs might aim at lowering
service price to attract more clients and increase revenue, oth-
ers might target attaining load balancing to increase reliability.
NSE should enable NFPs to implement different policies inde-
pendently of each other.

• Competition: As with any service offered today, a service client
expects different offers for embedding a service chain. Hence,
NSE should allow NFPs to compete for embedding a service
chain and to provide different service prices to the client.

Fulfilling these requirements raises several challenges for multi-
provider NSE. These challenges stem from the confidentiality as well
as the autonomy each NFP maintains. In other words, each NFP aims
to autonomously implement its own embedding policy while being
reluctant to share information about its policy and resources utiliza-
tion with other NFPs. Subsequently, global and complete knowledge
about all NFPs’ networks cannot be assumed when performing NSE.

A recent work [62] enables multi-provider NSE by abstracting the
NFP network to a DC-level topology, where nodes represent NFP
DCs with their service cost (as a node attribute) and links represent
inter-DC connectivity with weights proportional to the DCs utiliza-
tion. This work further proposes a central coordinator to collect the

74 distnse : distributed network service embedding for off-path flow processing

advertised topology and perform NSE. While this approach restricts
the amount of disclosed information, it still reveals information about
the provider’s policy in terms of pricing and DCs utilization to a
third party. Furthermore, relying on a third party for assigning NFs
to NFPs may raise concerns about reliability (i.e., a single point of
failure), market fairness (i.e., an NFP is favoured over other NFPs to
host a service request) and confidentiality (i.e., the coordinator shar-
ing information with the competing NFPs).

Another work is Polyvine [54], a framework for partitioning and
assigning a virtual network across multiple providers. It enables each
provider to select a segment of the virtual network and forward the
rest to the next providers. Polyvine can be considered for distributed
NSE. However, we need to account for the difference between vir-
tual networks and service chains. Virtual networks do not assume
a particular order in contrast to service chains, i.e., virtual networks
are usually undirected graphs. Furthermore, with Polyvine different
NFPs cannot compete for the same segment of the virtual network.
Specifically, as soon as an NFP selects a virtual network segment to
embed, other NFPs on the AS-path cannot compete for that segment.

To meet the requirements of NSE, we propose two-steps distributed
NSE approach: (i) inter-provider embedding, where we develop a dis-
tributed algorithm allowing different NFPs to compete for embed-
ding a service chain while preserving NFPs privacy and autonomy,
and (ii) intra-provider embedding, where we present algorithms for
DC and network path selection as well as NFs to DC mapping while
considering different policies. We further augment our architecture
with a communication protocol to coordinate distributed NSE.

6.2 network model

In this section, we present the models of our NFs service chain and
NFPs network.

6.2.1 Service Chain Model

We represent a service chain as a directed graph SC = (N,L), where
N is the set of NFs, and L is the set of links between nodes of set N.
Each NF i has computation demand which is denoted with di. Each
link l ∈ L is associated with a bandwidth demand B (i.e., B has the
same value for all links of the service chain).

6.2.2 Network Model

We consider a multi-provider network where each NFP network is
an administratively-independent domain comprising of a set of inter-
connected Micro-DCs. Micro-DCs are small datacenters with a wide

6.3 network service embedding 75

geographical footprint (deployed at point of presence and network
aggregation points). A micro-DC typically consists of one or more
racks with 40 servers per rack, and two routers and two switches con-
nected in a mesh to provide redundancy and load-balancing [78]. We
model our network in three layers as follows:
NFP-level network: We represent the inter-providers network as a
weighted undirected graph Gas = (Aas,Las), where Aas is the set of
NFPs, and Las is the set of peering links between the NFPs of the set
Aas.
NFP substrate network: We rely on an undirected graphGS = (VS,ES)
for the description of NFP network topology. VS is the set of nodes,
and ES is the set of links between nodes of set VS. Nodes consist
of routers RS, microdatacenters DS and peering nodes PS such that
VS = RS ∪DS ∪ PS. Each graph edge (u, v) ∈ ES between node u
and v is associated with a weight wuv (assigned by the NFP) and a
residual capacity ruv.
Micro-DC network: We consider a hierarchical two-level multi-rack
micro-DC network. We represent the DC topology using an undi-
rected graph Gdc = (Vdc, Fdc). Vdc denotes the set of servers and
switches, and Fdc represents the set of links connecting the servers
and switches. A DC consists of a set of racks Rdc. Each rack q has a
set of servers Sq and aggregation links Fq connecting the rack to the
DC root switches. Each server sq ∈ Sq is associated with residual pro-
cessing capacity cp(sq) and an access link fqs with residual capacity
rc(fqs). Each aggregation link fq ∈ Fq has residual capacity rc(fq).

6.3 network service embedding

In this section, we present our embedding algorithms. We start with
an overview of the embedding workflow and proceed with a de-
tailed description of our two-steps NSE: inter-provider embedding
and intra-provider embedding.

6.3.1 Embedding Overview

Figure 35 shows an overview of our distributed NSE approach. NSE
starts with the client submitting its service chain request (Figure 6.35(a)
step 1) to its home NFP (a home NFP can be the client’s access ISP or
an NFP trusted by the client). Subsequently, the home NFP identifies
a possible embedding (Figure 6.35(a) step 2) for a subchain (e.g., NF 1

and 2 are a subchain) of the service chain and accordingly announces
itself as a candidate for the generated subchain. This is followed by
forwarding a copy of the subchain and the service chain to each of
the downstream NFPs (to NFP B and D in Figure 6.35(a) step 3). As
in NFP A, NFP B and D identify a possible embedding to generate
a new subchain and/or deploy already-generated subchains. This is

76 distnse : distributed network service embedding for off-path flow processing

Src

dst

NFP C

Controller Controller

Controller

NFP A NFP B

NFP D

Controller
Controller

1src 2 3 4 dst

1src 2 3 4 dst

A

1src 2 3 4 dst

A, D,E E

1src 2 3 4 dst

A, B B,C C

1 2

3

4

5

6

1src 2 3 4 dst

NFP E

1src 2 3 4 dst

A,D

3

4
5

6

7

1src 2 3 4 dst

A,B B

1src 2 3 4 dst

A, D, E E,C

8 9

7

client

(a) Chain partitioning and competition establishment.

Src

dst

1src 2 3 4 dst

A, B B,C C1src 2 3 4 dst

A, B B,C C

1
2

Controller Controller

Controller

Controller
Controller

3
1

2

1src 2 3 4 dst

A, D, E E,C

1src 2 3 4 dst

A, D, E E,C

3
NFP A NFP B

NFP C

NFP ENFP D

(b) Bidding for the service chain.

Figure 35: Overview of distNSE workflow.

6.3 network service embedding 77

followed by forwarding the subchains and the service chain to other
downstream NFPs for further embedding. The forwarding continues
until reaching the home NFP of the destination (NFP C). After per-
forming local embedding, NFP C sends the final set of subchains
in the reverse direction through the NFPs toward the source (Figure
6.35(b) step 1 and 2). Subsequently, each NFP submits a bid (Figure
6.35(b) step 3) to embed the corresponding subchains (the subchains
it identified earlier for embedding).

6.3.2 Inter-Provider Embedding

Inter-provider embedding aims to enable the collaboration between
NFPs to embed a service chain such that competitive service pricing,
the correctness of the service chain, and the privacy and the auton-
omy of each NFP are ensured. A straight forward approach is to allow
NFPs on each AS-path to the destination (see Figure 6.35(a)) to iden-
tify all possible subchains of a service chain such that the NFs’ order
and continuity within each subchain are preserved (also known as
finding all possible substrings on a string [129]). Subsequently, the
NFPs combine the generated subchains to identify all possible map-
pings of subchains to NFPs such that: (i) the NFs’ order across sub-
chains mapped to different NFPs is maintained, (ii) an NF should not
belong to two different subchains of the same mapping, i.e., for every
subchain sck in a mapping consisting of m subchains, ∩mk sck = ∅,
and (iii) the union of all subchains within a mapping should equal
the original service chain, i.e., SC =

⋃m
k=1 sck. For each correct map-

ping, each NFP announces its service cost such that the mapping with
the minimum cost is identified.

While providing the optimal solution for each path, this approach
has the time complexity of O(2|N|−1), where |N| denotes the num-
ber of NFs in a service chain. This, in turn, requires an exponentially
growing number of messages to exchange information about the pos-
sible mappings. Furthermore, since each NFP has to reveal the service
price for each possible mapping of subchains to NFPs, competitive
and fair pricing cannot be ensured, i.e., NFPs may adapt their service
costs based on the prices revealed by their competitors.

To this end, we propose a heuristic distributed algorithm which
partitions a service chain into a set of subchains for which different
NFPs can compete. Our algorithm works in a per AS-path fashion,
i.e., for each AS-path a different algorithm instance is launched to
partition the service chain (red and green arrows in Figure 6.35(a)).
The result of each instance is reported to the client such that she can
choose the path with the minimum service cost. For each path, our
algorithm has the time complexity of O(p), where p is the number of
NFPs on an AS-path. The algorithm works in two phases:

78 distnse : distributed network service embedding for off-path flow processing

1. Service chain partitioning and competition establishment: Fig-
ure 36 shows an example of the first phase of the algorithm. This
phase starts when the first provider on an AS-path (NFP A) re-
ceives a service chain request SC. The NFP generates the first
subchain sc1 out of the SC. The number of NFs on the subchain
depends on the NFP policy and the available resources. Upon
generating the subchain, the NFP (i.e., NFP A) nominates itself
as a candidate to host sc1. We define the mapping of NFPs to a
subchains set SUB as MSC : SUB←− ASC

as , where ASC
as denotes

the set of NFPs willing to compete for SC. The NFP A passes the
generated SUB with the SC to the other providers downstream.
The next NFP (i.e., NFP B) starts by embedding the NFs which
have not yet been embedded leading to the generation of a new
subchain (sc2) with the NFP B as a candidate for it. Then, NFP B
tries to embed the existing subchains (i.e., sc1) and adds itself as
another embedding candidate. Next, NFP B forwards the gen-
erated subchains and the original chain to the next NFP on the
path where the same embedding steps are performed. The for-
warding continues until reaching the last NFP which concludes
the first phase of the algorithm. In order to avoid violating the
service chain order, an NFP can only compete for the last gen-
erated subchain. For example, NFP C can only compete for sc2
out of sc1 and sc2 because if it competes for both and wins sc1,
whereas NFP B competes for and wins sc2, the service chain
order is violated.

2. NFP selection: This phase aims to select the set of NFPs which
incurs the minimum service cost. It starts when the last NFP
on the AS-path sends the final mapping of subchains in the
reverse direction through the NFPs (step 1 and 2 in Figure
6.35(b)). We consider two different approaches for NFP selec-
tion. The first one includes the NFPs submitting their bids to the
client which subsequently selects the set of NFPs with the min-
imum service cost. The second approach is to use Multi-Party
Computation (MPC) [45] [63] to enable secure bidding between
the NFPs for the different subchains. The first approach does
not require further processing by the NFPs; however, it reveals
the bids of the NFPs to the client. On other hand, while the
MPC approach hides the NFPs bids and only reveals the win-
ning NFPs, it is computationally-intensive and requires more
communication rounds between the NFPs. We study the MPC
approach in Chapter 5. Hence, in this chapter we focus on the
first approach.

With over 45,000 ASes on Internet today [60] [9], forwarding a ser-
vice chain (Figure 6.35(a)) to every possible NFP (if each AS is an
NFP) is deemed impractical and might significantly prolong the con-

6.3 network service embedding 79

A
check NFs starting with 1

B

1 2 3

sc1 {A}

1 2 3 4 5 6

1 2 3 4 5 6

check NFs starting with 4

1 2 3 4 5 6

1 2 3

sc1 {A,B}

4 5

sc2 {B}

C

1 2 3 4 5 6
sc1 sc2

1 2 3
sc1 {A,B}

6

D

sc3 {C}

1 2 3 4 5 6
sc1 sc2

select NFs starting with 6

1 2 3
sc1 {A,B}

6
sc3 {C,D}

1src dst2 3 4 5 6

A B C D

sc1 check the previous suchain

4 5

sc2 {B,C}

1 2 3 4 5 6
sc1 sc2

check previous subchain
4 5

sc2 {B,C}

check previous subchain

sc3

Figure 36: Example of inter-provider service embedding.

vergence time of NSE. To restrict the search space for a service chain,
we discuss two methods:

1. BGP router queries. The client’s home NFP utilizes information
from BGP routers to select an AS-path or a set of paths along
which NSE is performed. In particular, similar to an ISP, a NFP
identifies paths which comply with its policy (e.g., paths that do
not incur peering costs).

2. Time to live: Since the advertised BGP paths usually depend on
the view and the policy of the neighbouring NFPs, we propose
an alternative approach to restrict the search space. In particular,
we let the client specify a threshold on the number of NFPs a ser-
vice chain can be forwarded to. The threshold can be calculated
based on the BGP routing table or statistics collected to measure
the AS-path length [60] [9]. The threshold can be encoded as a
TTL value in the message carrying the service chain (see Section
6.4). Accordingly, it is decremented by each NFP receiving the
service chain request, and upon reaching zero, the request mes-
sage is discarded. This approach does not require maintaining

80 distnse : distributed network service embedding for off-path flow processing

any path state by the NFPs, and it extends the forwarding space
beyond the BGP routers’ view of the neighbouring NFPs. How-
ever, finding a suitable threshold might be challenging. A recent
study [60] found that the average number of ASes per path has
stayed almost constant at about 4.2 for the last 12 years. Such
information can be helpful to adjust the threshold.

6.3.3 Intra-Provider Embedding

Intra-provider embedding aims at mapping service chain NFs to servers
within a DC and connecting them with the other NFP networks (through
peering nodes) using DC and network links. Traditionally, NFPs have
been implementing different network management policies depend-
ing on the their business model, network structure and available re-
sources. Accordingly, we propose an intra-provider embedding algo-
rithm considering the following objectives:

• Minimizing service cost: To attract more clients and compete
with other NFPs, an NFP implements a policy aiming at map-
ping NFs to servers and links such that minimum service cost
is incurred. In particular, the NFP seeks embedding the largest
possible number of NFs (a subchain) of a service chain such that
the lowest possible amount of resources is consumed. To facili-
tate such embedding, we define embedding efficiency ratio (EER)
as a metric to measure the efficiency of a particular embedding
for the NFP. In particular, EERk for a subchain sck = (Nk,Lk)
represents the total embedding resources demand for sck/total re-
sources demand for sck. EER specifies the gap between the physi-
cal resources an NFP has to provide to embed sck and the sck
actual demand. Hence, the lower the value of EERk, the lower
the cost of embedding in terms of resources consumed, a value
of 1 for EERk represents the optimal embedding for sck. We
formally define EERk as:

EERk =

∑
i

dki +Bk [|Fkdc|+ |Eks |]∑
i

dki +Bk |Nk|
(2)

∀i ∈ Nk, Fkdc ∈ Fdc,Eks ∈ ES

The denominator accumulates the CPU and BW demand of a
subchain sck, whereas the nominator accumulates the CPU and
BW resources required to embed sck. Fkdc and EkS represent the
sets of DC links and network links to which sck can be assigned,
respectively. We further define the service cost (CRk) for a sub-
chain sck as:

6.3 network service embedding 81

src p

DC

DC

DCsrc p

DC

DC DC

2 3
2 2
3 2

1

1 1

1

1

1

1

1 1
1

1
1

1

Figure 37: An example for NFP DC topology conversion with the numbers
representing the weight of each link.

CRk = CCPU

∑
i

dki +Cdc
BW Bk |Fkdc|+C

S
BW Bk |Eks | (3)

∀i ∈ Nk, Fkdc ∈ Fdc,Eks ∈ ES

The service cost is the accumulation of CPU and BW embedding
resources multiplied by the CPU cost per unit (CCPU) and BW
cost per unit in DCs (Cdc

BW) and in substrate links (CS
BW).

• Load balancing: Load balancing is a popular policy in ISP net-
works. To implement load balancing, we alter the links’ weight
wuv as a function of the links’ load using a simple formula:
wuv = w0

uv + β loadu,v, where w0
uv denotes the initial weight

of link (u, v) and β provides a factor to adjust the effect of the
link load on the link weight. Accordingly, we use Dijkstra’s al-
gorithm to map a subchain to links with minimum load.

Considering these policies, we develop an intra-provider embed-
ding algorithm which is called by the NFP when receiving a service
chain SCt or a set of subchains SUB. For each subchain or service
chain, the algorithm aims to embed as many NFs as possible. In par-
ticular, it seeks to assign NFs to links and servers within a DC and
select a network path traversing the DC between the traffic source src
(a peering node or a client) and one of the peering nodes (PtS ∈ VS)
connecting the NFP to a downstream NFP. If an embedding does not
assign all of the NFs of a subchain, a new subchain with the assigned
NFs is generated. The output of this algorithm is fed as an input to

82 distnse : distributed network service embedding for off-path flow processing

the inter-provider algorithm (see Figure 35 and Section 6.3.2). The
algorithm consists of two stages:

1. Network path and DC selection: In this stage (Algorithm 4),
the algorithm selects a network path and a DC between the traf-
fic source src and a peering node p ∈ PtS. In particular, for
each pair of src and p, we use the CONV_TOPO() function
(based on the algorithm in [53]) to convert the NFP topology
to a smaller topology with DCs and the pair of src and p. Each
link in the new topology which connects a DC to either src or
p has a weight corresponding to the total weight of the short-
est path on the original topology (see the example in Figure
37). Next, in the new topology, we calculate and sort all the
paths (PATHS) between src and p in a increasing order based
on the total weight per path. Then, by going through the sorted
paths, we identify the path incurring the minimum EER per
path (EERpath). This includes performing embedding within
each DC (using the DC_MAPPING() function) and calculating
the EERpath for the DC and the network links. When calculat-
ing the EERpath, we map the path in the new topology back to
original path in the NFP topology. We further compare the mini-
mum EERpath across different pairs of src and p to identify the
pair of src and p with the minimum EER. The final output is a
mapping M of NFs to DC servers and network links. This algo-
rithm implements directly the minimizing service cost policy by
calculating the total weight of the links in the new topology as
the number of links on the original topology. This leads to the
minimization of the number of links, hence the minimization
of service cost (eq. 3). To implement load balancing, we simply
update the weights as a function of the load as discussed earlier.
This algorithm has the time complexity of O(|PS||DS|), where
|PS| is the number of peering nodes and |DS| is the number of
DCs in the NFP’s network.

2. DC mapping: Embedding a service chain in a DC with capac-
ity constraints can be formulated as a multi-commodity flow
problem which is an NP-hard problem. Therefore, we propose
a heuristic algorithm (Algorithm 5). Our algorithm generates an
embedding of the full chain or a subchain sck depending on the
available capacity on the DC. The algorithm starts with sorting
the racks Rdc in decreasing order based on the residual capac-
ity rc(fq) of the aggregation link of each rack q. Subsequently,
the algorithm goes through the racks where it again sorts the
servers Sq in each rack in decreasing order based on the process-
ing residual capacity cp(sq) of each server sq. To each server sq,
the algorithm tries to assign as many NFs as possible. The algo-
rithm aims at using the lowest possible number of servers and

6.4 distnse protocol 83

links to reduce the embedding cost. The output of this algo-
rithm is the mapping Mdc of NFs to servers and service chain
bandwidth Bk to links. The time complexity of this algorithm is
O(|Rdc||S

q|+ |N|) where |Rdc| is the number of racks, |Sq| is the
number of servers per rack and |N| is the number of NFs in a
service chain.

Algorithm 4 Path and DC Selection

Inputs: GS = (NS,LS), sck, src

EER←∞
M← ∅
for each p ∈ PtS do
EERpath ←∞
Mpath ← ∅
Gnew

s = CONV_TOPO(GS, src,p)
PATHS = FIND_ALL_PATHS(Gnew

S)

SORT_INC(PATHS) // sort paths based on total weight

for each path ∈ PATHS do
Mdc =DC_MAPPING(d ∈ path, sck)
eer = CAL_EER(path,Mdc)

if eer < EERpath then
EERpath = eer

Mpath = (path,Mdc)

end if
end for
if EERpath < EER then
EER = EERpath
M =Mpath

end if
end for
return M

6.4 distnse protocol

To exchange the embedding information, we design a communication
protocol with six messages sent and received asynchronously among
the NFPs and with the client as shown in Figure 38:

1. REQUEST(req_id, ttl,SC,MSC, src,dst,path): This message is
generated by the client to initiate NSE embedding between a
traffic source src and a destination dst. The REQUEST mes-
sage also communicates the mapping of providers to subchains
(MSC) between the NFPs (see Section 6.3.2). As discussed in
Section 6.3.2, the REQUEST message also carries a TTL field,
set by the client’s home NFP, to restrict the number of NFPs a
REQUEST message can be forwarded to. Furthermore, the path

84 distnse : distributed network service embedding for off-path flow processing

Algorithm 5 DC Mapping

Inputs: Gdc = (Sdc, Fdc), sck = (Nk,Lk)

Mdc = ∅
Mservers = ∅
SORT_DEC(Rdc) // sort racks based on aggregation links capacity
for each q ∈ Rdc do

if Bk > rc(fq) then
return ∅

else
SORT_DEC(Sq) // sort servers based on capacity
m = ∅
for each sq ∈ Sqdo

for each i ∈ Nk

if di <= cp(sq) and Bk <= rc(fs) then
Mservers =Mservers ∪ (i→ sq)

Nk = Nk4 {i} // remove n from NFs
if Nk = ∅ then

break
end if

else
break

end if
end for

end for
end if
if Mservers 6= ∅ then
Mdc =Mdc ∪ (Mservers, fq)
if Nk = ∅ then

break
end if

end if
end for
return Mdc

6.5 evaluation 85

field collects the IDs of the NFPs traversed by the REQUEST
message such that the combination of the path and req_id
fields identifies the embedding performed per path for a par-
ticular request.

2. REVERSE(req_id,SC,MSC,path): In response to the reception
of a REQUEST message, a REVERSE message is generated by
the home NFP of the destination (NFP D in Figure 38) to convey
the final mapping MSC to the upstream NFPs on the path path.

3. OFFER(req_id, subnfp,MSC,bid,path): Upon receiving the REVERSE
message, each NFP in the MSC (and on the path path) sends a
bidding price (carried in the bid field) to compete for the set of
subchains subnfp (it selected earlier) using an OFFER message.

4. EMBED(req_id, subnfp,path): Based on the bids received through
the OFFER messages, the client sends an EMBED message to
the winning NFPs. The EMBED message carries the set of sub-
chains subnfp an NFP should embed.

5. SUCCESS(req_id, subnfp,path): This message is sent by the
NFP in case of successful embedding of the set of subchains
subnfp.

6. FAILURE(req_id, subnfp,path): This message is sent by an NFP
in case of failed embedding or a zero ttl value of a REQUEST
message. A FAILURE message responding to zero ttl carries an
empty set of subchains subnfp. This message is also sent by the
the home NFP of the destination, instead of a REVERSE mes-
sage, if the mapping (i.e., MSC) in a REQUEST message does
not contain all the NFs of the service chain (i.e., incomplete em-
bedding).

6.5 evaluation

To evaluate the efficiency of DistNSE for NSE, we implemented a sim-
ulator in Python. The simulator generates the various protocol mes-
sages and handles resource search and allocation within each NFP.
We ran our tests on a server with four-core Intel Xeon CPUs at 2.26

GHz and 6 GB RAM.
We use IGEN [2] to generate AS and intra-provider topologies. Our

topology consists of 6 NFPs. Each NFP has 25 routers and 8 DCs with
two racks and 20 servers per rack in each DC. A server has a total pro-
cessing capacity of 10 GHz and an access link with 1 Gbps. A rack
has an aggregation link with 20 Gbps capacity. For each NFP, we ran-
domly assign BW and CPU unit costs (i.e., CCPU,Cdc

BW and CS
BW in

Eq. 3) out of a uniform distribution based on the parameters used in

86 distnse : distributed network service embedding for off-path flow processing

NFP A
Controller

service
client

REQUEST

new subchain
(sc_1,{A})

no resources
found

OFFER

intra-provider
embedding

intra-provider
embedding

intra-provider
embedding

new subchain
(sc_2,{C})

compete for
(sc_1,{A,C})

new subchain
(sc_3,{D})

intra-provider
embedding

REVERSE

OFFER

OFFER

NFP C and D

REVERSEREVERSE

bid for
sc_3

bid for
sc_1 and sc_2

bid for
sc_1

select
 winning

NFPs

EMBED

EMBED

SUCESS

SUCESS

allocate resources
for sc_1 and sc_2

allocate
 resources

for sc_3

NFP B
Controller

NFP C
Controller

NFP D
Controller

REQUEST

REQUEST

REQUEST

Figure 38: DistNSE protocol workflow.

[62]. Service chain requests are generated with 5 to 10 NFs with com-
putation demand per NF and BW demand sampled out of a uniform
distribution. For each service chain, we consider the shortest AS-path
spanning all NFPs, and accordingly, we randomly select a source and
destination router. For each test, we perform 20 runs and report the
average values. We compare DistNSE against Polyvine [54], which is
a widely known approach for distributed virtual network embedding.
However, since Polyvine only supports virtual networks and does not
provide a solution for intra-domain embedding, we adapt it to service
chain embedding and augment it with our intra-provider algorithm.
For both Polyvine and DistNSE, we implement service cost minimiza-
tion as the local embedding policy of each NFP.

We start by measuring the total service cost for each request, which
represents the total cost of all subchains (calculated with Eq. 3) of a
service chain. We consider requests that are accepted by both DistNSE
and Polyvine. Figure 39 shows that DistNSE incurs significantly lower

6.5 evaluation 87

DistNSE Polyvine

to
ta

l
s
e
rv

ic
e
 c

o
s
t
p
e
r

re
q
u
e
s
t
($

)

5

10

15

20

25

30

Figure 39: Total service cost per request.

DC embedding BW substrate embedding BW

e
m

b
e

d
d

in
g

 B
W

 p
e

r
re

q
u

e
s
t

(G
b

p
s
)

1

1.5

2

2.5

3

3.5

4
DistNSE

Polyvine

Figure 40: Embedding BW per request on substrate and DCs links.

service cost (approx. 40% less cost) than Polyine. This result corrobo-
rates the efficiency of DistNSE which enables NFPs to bid and com-
pete for different subchains in comparison to Polyvine, which assigns
each subchain to the first NFP willing to embed it.

To discover the origin of the cost difference, we further examine
the embedding cost in terms of CPU and BW capacity consumed to
embed a request. Our results (not shown here) show no difference in
terms of CPU embedding cost because the amount of CPU required
to embed an NF does not vary across NFPs. However, as illustrated
in Figure 40, DistNSE incurs low BW cost on the substrate and DC
network. Since a BW demand is constant (Eq. 3), this difference stems
from embedding requests on shorter paths with DistNSE compared
to Polyvine. This is also confirmed by the scatter plot in Figure 41

which shows a strong correlation (coefficient r = 0.85) between the

88 distnse : distributed network service embedding for off-path flow processing

service cost difference (%)
0 20 40 60 80 100 120 140

B
W

 e
m

b
e
d
d
in

g
 c

o
s
t
d
if
fe

re
n
c
e
 (

%
)

-20

0

20

40

60

80

100

Figure 41: Service cost difference vs. BW embedding cost difference for each
request.

service cost difference, when comparing DistNSE to Polyvine, and
the difference in BW cost. This is further validated by the coefficients
generated by the linear regression model, i.e., slope β = 0.63 and
R2 = 0.73. In addition, we examine the relation between the difference
in service cost and the difference in the number of NFPs assigned
to embed a request. Our results (not reported here) show a weak
correlation (r = 0.31).

Since we define enabling competition as a requirement for efficient
NSE, we measure the number of NFPs competing for embedding a
service chain with DistNSE. We consider non-expiring requests, and
to account for the number of non-competing NFPs, we run tests only
on paths with 5 NFPs. Figure 42 illustrates that the number of com-
peting NFPs decreases as more requests arrive in the network, since
NFPs run out of resources to compete for a service chain (Figure 45).
This is further validated through Figure 43, which shows a strong
negative correlation between the number of competing NFPs and the
total CPU utilization in DCs. This eventually indicates that DistNSE
enables NFPs to compete equally for all service chains as long as they
have sufficient resources for network service embedding.

We also measure the total number of messages exchanged to em-
bed a service chain. According to Figure 44, the number of messages
drops as more requests arrive. As depicted in Figures 42 and 45, as
a smaller number of NFPs is willing compete for a service chain (be-
cause they run out of resources), fewer messages are generated. The
drop in the number of messages stems from the drop in the number
of OFFER, EMBED and SUCCESS messages exchanged between the

6.6 related work 89

number of requests
0 500 1000 1500 2000

n
u

m
b

e
r

o
f

c
o

m
p

e
ti
n

g
 N

F
P

s

0

1

2

3

4

5

Figure 42: Number of NFPs competing for a service chain vs number of
requests.

total DCs CPU utilization
0 0.2 0.4 0.6 0.8 1

n
u
m

b
e
r

o
f
c
o
m

p
e
ti
n
g
 N

F
P

s

0

1

2

3

4

5

Figure 43: Number of NFPs competing for a service chain vs. the total DCs’
CPU utilization.

client and the NFPs. These messages represent the participation of
NFPs on bidding for a service chain (see Section 6.4).

6.6 related work

Most existing NSE approaches have mainly focused on mapping NF
service chains in DCs. CloudNaaS [43] and STRATOS [72] present
heuristic algorithms to assign NFs to servers and links within DCs
with the goal of minimizing inter-rack traffic. For example, Oktopus

90 distnse : distributed network service embedding for off-path flow processing

Figure 44: Number of protocol messages exchanged per service chain.

number of requests
0 500 1000 1500 2000

to
ta

l
D

C
s
 C

P
U

 u
ti
liz

a
ti
o
n

0

0.2

0.4

0.6

0.8

1

Figure 45: Total DCs’ CPU utilization.

6.7 summary 91

[41], SecondNet [84] and CloudMirror [102] aim at embedding vir-
tual clusters in DCs’ networks. The work in [92] provides NFs em-
bedding along the data path assuming the deployment of process-
ing platforms in the network and full information disclosure among
the NFPs (in terms of utilization and offered processing services per
node). On the other hand, Nestor [62] is a recent approach which
provides NSE across DCs and NFPs by employing a DC-level ab-
stract view of the NFP network and a centralized coordinator that
partitions service chains among DCs. We propose a distributed NSE
architecture which maps service chains across DCs and NFPs. Our ar-
chitecture eliminates the need for a centralized coordinator, leading
to better robustness (i.e., avoid a single point of failure) and to pre-
serve both NFPs’ privacy (i.e., avoid sharing NFP information with a
third party) and NFPs’ autonomy (i.e., NFPs can implement policies
independently of each other).

There has been a large body of work on virtual network embed-
ding [134, 135, 55, 61, 90]. However, these embedding techniques are
developed to map arbitrary virtual network topologies onto substrate
networks. As such, they are not optimized for service chain parti-
tioning across NFPs and chain mapping onto DC networks. Further-
more, they usually assume a centralized controller or coordinator to
perform embedding across the providers and enforce a single global
embedding policy. On the other hand, Polyvine [54] is a distributed
virtual network embedding framework which preserves NFPs policy
and autonomy. Yet, due to the arbitrary structure of virtual networks,
it does not allow different NFPs to compete for the same part of a
virtual network on the same AS-path and also does not maintain the
order of NFs in the chain. In contrast, we design embedding meth-
ods that optimize the mapping of service chains onto DC networks.
In particular, through smart service chain partitioning, we enable dif-
ferent NFPs to compete for different parts of a service chain while
preserving NFP’s privacy and autonomy and service chain correct-
ness.

6.7 summary

In this chapter, we have presented DistNSE, a distributed architecture
that enables the collaboration among NFPs to provide NSE, while
maintaining the privacy and the autonomy of each provider and en-
suring competitive service pricing for the client. In particular, we
have proposed a distributed algorithm and a communication protocol
for partitioning service chains across different NFPs and establish-
ing privacy-preserving competition. For intra-provider embedding,
we have developed a two-stage algorithm for DC and path selection
and NFs to DC mapping.

92 distnse : distributed network service embedding for off-path flow processing

Using our simulator, we have shown that DistNSE incurs signifi-
cantly low service cost per request for the client. We have further un-
covered that the efficiency of DistNSE stems from establishing compe-
tition among NFPs and from consuming fewer BW units by selecting
shorter embedding paths in DCs and substrate networks. Next, we
have shown that DistNSE enables all NFPs on an AS-path to compete
for all service chains as long as they have sufficient resources. Finally,
we have quantified the number of messages generated by our proto-
col. Our results illustrate that the number of generated messages is
proportional to the number of NFPs willing to bid for a service chain.

7
C O N C L U S I O N S

NFV is a recent trend aiming at replacing special-purpose and hard-
ware-based middleboxes with software NFs that can be consolidated
on processing platforms in enterprise networks and datacenters. NFV
opens the door for new service models such as NFaaS, allowing
the deployment of NFs in a pay-per-use fashion, while enabling on-
demand resource provisioning and leading to operation and invest-
ment cost saving. Yet, the realization of NFV raises serious require-
ments in terms of network service deployment. In particular, NFV
requires the development of techniques and approaches for resource
discovery and allocation to place NFs on the NFPs’ networks and dat-
acenters. This deployment can take place on the traffic path to avoid
redirection and latency inflation or off the path to serve NFs with
high computational requirements. To this end, we have addressed
in this thesis the problem of network service deployment and pre-
sented techniques for on and off path flow processing. We have fur-
ther augmented our approaches with a workload profiling technique
to gauge the computational requirements of NFs. Considering that
middleboxes (e.g., firewalls, NATs, proxies) are known for their un-
desirable implications on traffic and for hindering connection estab-
lishment, we have also developed an SDN architecture for invariant
preserving middlebox traversal. In the following, we highlight the
conclusions of this thesis and provide possible directions for future
work.

We have developed MIDAS, an architecture for the coordination
of on-path processing setup to circumvent the difficulty in middle-
box discovery and selection across multiple NFPs, without any prior
knowledge of the network path. We have proposed signaling proto-
cols for middlebox discovery and NFP interoperability and presented
an algorithm for order-preserving middlebox selection within each
NFP. For NFP assignment, we have leveraged on MPC to preserve
the confidentiality of middleboxes utilizations across NFPs. Using
our prototype implementation, we have shown that MIDAS incurs
processing setup delays in the order of tenths of milliseconds. In par-
ticular, middlebox discovery and controller chaining incur low delays
with a large number of middleboxes and high request arrival rates.
Our experimental results show that MPC-based NFP assignment ac-
counts for most of the processing setup delay. Nevertheless, MPC
does not introduce a scalability limitation because the MPC delay
is not affected by the request arrival rate and does not significantly
increase with a number of NFPs that does not exceed the average

93

94 conclusions

AS-length of Internet paths. Coupling MPC with our middlebox se-
lection algorithm results in network-wide load balancing and high
request acceptance rates, as shown in our simulation results.

We have presented DistNSE, a distributed architecture that enables
the collaboration among NFPs to provide off-path NSE, while main-
taining the privacy and the autonomy of each provider and ensur-
ing competitive service pricing for the client. In particular, we have
proposed a distributed algorithm and a communication protocol for
partitioning service chains across different NFPs and establishing
privacy-preserving competition. For intra-provider embedding, we
have developed an algorithm for DC and path selection and NFs to
DC mapping. Using our simulator, we have shown that DistNSE in-
curs significantly low service cost per request for the client. We have
further uncovered that the efficiency of DistNSE stems from estab-
lishing competition among NFPs and from consuming fewer of BW
units by selecting shorter embedding paths in DCs and substrate net-
works. Next, we have shown that DistNSE enables all NFPs on an
AS-path to compete for all service chains as long as they have suffi-
cient resources. Finally, we have measured the number of messages
generated by our protocol. Our results illustrate that the number of
generated messages is proportional to the number of NFPs willing to
bid for a service chain.

Given that both DistNSE and MIDAS require the knowledge of
NFs computational requirements to assign NFs’ to processing plat-
forms (i.e., servers), we have exemplified methods to circumvent the
difficulty of profiling packet processing workloads on commodity
servers. We have discussed the implications of polling and batch pro-
cessing on workload profiling, and we further have shown that work-
load profiling can produce inaccurate results when the confluence of
these two factors is not taken into account. Our experimental results
demonstrate that our workload profiling technique can measure the
computational requirements of various workloads for a wide range
of packet forwarding rates. We believe that our workload profiling
method can comprise a prominent component of a modern packet
processing system, improving its ability to perform admission con-
trol and utilize the computing resources more efficiently.

Driven by ISPs’ needs and the emergence of NFV, more middle-
boxes will be deployed in the network. Yet, middleboxes are known
for their undesirable effect on traffic and for hampering connection es-
tablishment. In this respect, we have presented an SDN architecture
for establishing invariant-preserving connections traversing middle-
boxes and fostering the collaboration between end-hosts and ISPs. In
particular, an end-host can express a desirable behavior from the net-
work, specified as an invariant (e.g., no IP header or payload modifica-
tion), and the ISP, in turn, can establish a connection through middle-
boxes that preserve this invariant. To this end, we have developed an

7.1 future work 95

algorithm to select redirection paths through a sequence of invariant-
preserving middleboxes while considering network and middlebox
utilization. Our algorithm can be adapted to fulfill different objec-
tives: load balancing or delay minimization. Using simulations, we
showed that our algorithm substantially increases the number (more
than 40%) of established connections with invariant preservation and
achieves a network-wide load balance as well as high network and
middleboxes utilization.

7.1 future work

The results presented in this thesis outline several possible directions
for future work. These directions can be seen within the context of
NFV orchestration and management. In particular, while our network
service deployment approaches can constitute a primary component
to orchestrate the instantiation and deployment of NFs, other aspects
still need to be addressed for NFV orchestration and management:

• While this thesis addresses NFs assignment with prior knowl-
edge of NFs’ BW and computational requirements, clients might
not have this information in hand when requesting a network
service. Furthermore, clients might aim to dynamically scale up
or down the resources of particular NFs to cope with varying
demands or load (e.g., the load of a client’s Intrusion Prevention
System (IPS) might increase abruptly due to a Denial-of-Service
attack). In this respect, a potential direction is to extend our net-
work service deployment techniques to support multi-provider
dynamic resource allocation and provisioning for NFs deploy-
ment. These techniques should aim at minimizing provisioning
time to avoid service disruption and ensure efficient function-
ality (e.g., the IPS resources should be scaled up in the short-
est possible time to minimize Denial-of-Service attack damages
such as BW consumption and down time), while preserving the
correctness of the service chain and the privacy and the auton-
omy of the providers. This, in turn, raises the need to design on-
line profiling and measurement methods to dynamically moni-
tor NFs’ load and deliver accurate and up-to-date readings on
the NFs’ state to the NFV orchestrator.

• Decoupling state from the processing is another future direc-
tion for NFV orchestration. A recent work has investigated this
approach for NAT to support better scalability and resilience
[95]. This can be explored further in the context of network
service deployment. With the decoupling of its state, an NF
will consist of two or more components (e.g., processing, cache,
state) which can be deployed on different locations of the net-
work. For instance, the state component can be deployed off-

96 conclusions

path in datacenters, whereas the processing component can be
hosted on-path on programmable routers. Furthermore, an NF
can be scaled up or down by instantiating multiple processing
instances, while preserving consistency through a shared state
component. This provides a higher degree of flexibility and scal-
ability to service deployment. However, this also raises a set of
challenges. For instance, the deployment of the decoupled NFs
should maintain the efficiency of the original NFs in terms of re-
sponse time and functionality. In particular, the communication
delay between the processing and the state components should
not degrade the performance of the NF (e.g., an IDS should still
be able to detect attacks in time to alert the network administra-
tor). Furthermore, we need to ensure consistent and up-to-date
state among the different processing instances sharing a single
state instance.

B I B L I O G R A P H Y

[1] Intel Data Plane Development Kit (DPDK). URL http://dpdk.

org/.

[2] IGen Network Topology Generator. URL http://informatique.

umons.ac.be/networks/igen.

[3] Internet2. URL http://www.internet2.edu/.

[4] Virtual Ideal Functionality Framework. URL http://www.viff.

dk/.

[5] Openonload, 2008. URL http://www.openonload.org/.

[6] Intel VTune Amplifier XE 2011, 2013. URL http://software.

intel.com/en-us/intel-vtune-amplifier-xe.

[7] MCP-7002: APPLICATION DELIVERY NETWORK- A GLOBAL
STRATEGIC BUSINESS REPORT, 2015. URL http://www.

strategyr.com/pressMCP-7002.asp.

[8] Arista Networks, 2015. URL https://www.arista.com/en/.

[9] Internet AS-level Topology Archive, 2015. URL http://irl.cs.

ucla.edu/topology/.

[10] Amazon EC2, 2015. URL https://aws.amazon.com/ec2/

instance-types/.

[11] BRO, 2015. URL https://www.bro.org/.

[12] Cisco Nexus 7000 Series Switches, 2015. URL
http://www.cisco.com/c/en/us/products/switches/

nexus-7000-series-switches/index.html.

[13] ETSI Network Function Virtualization, 2015. URL http://www.

etsi.org/technologies-clusters/technologies/nfv.

[14] Floodlight: a Java-based OpenFlow Controll, 2015. URL http:

//www.projectfloodlight.org/floodlight/.

[15] ITU ICT facts and figures, 2015. URL http://www.itu.int/en/

ITU-D/Statistics/Pages/facts/default.aspx.

[16] IPtables, 2015. URL http://linux.die.net/man/8/iptables.

[17] LXC, 2015. URL https://linuxcontainers.org/.

[18] Open MUL: SDN Openflow Controller, 2015. URL http://

sourceforge.net/p/mul/wiki/Home/.

97

http://dpdk.org/
http://dpdk.org/
http://informatique.umons.ac.be/networks/igen
http://informatique.umons.ac.be/networks/igen
http://www.internet2.edu/
http://www.viff.dk/
http://www.viff.dk/
http://www.openonload.org/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.strategyr.com/pressMCP-7002.asp
http://www.strategyr.com/pressMCP-7002.asp
https://www.arista.com/en/
http://irl.cs.ucla.edu/topology/
http://irl.cs.ucla.edu/topology/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.bro.org/
http://www.cisco.com/c/en/us/products/switches/nexus-7000-series-switches/index.html
http://www.cisco.com/c/en/us/products/switches/nexus-7000-series-switches/index.html
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
http://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
http://linux.die.net/man/8/iptables
https://linuxcontainers.org/
http://sourceforge.net/p/mul/wiki/Home/
http://sourceforge.net/p/mul/wiki/Home/

98 bibliography

[19] NetFPGA, 2015. URL http://netfpga.org/.

[20] OCTEON Multi-Core Processor Family, 2015. URL http://

caviumnetworks.com/OCTEON_MIPS64.html.

[21] ONOS: An Open Source Distributed SDN OS, 2015. URL http:

//onosproject.org/.

[22] OPNFV, 2015. URL https://www.opnfv.org/.

[23] OpenDaylight: A Linux Foundation Collaborative Project, 2015.
URL https://www.opendaylight.org/.

[24] OpenVZ, 2015. URL https://openvz.org/.

[25] A Python-based OpenFlow Controller, 2015. URL http://www.

noxrepo.org/pox/about-pox/.

[26] QEMU, 2015. URL www.qemu.org/.

[27] PF_RING DNA, 2015. URL http://www.ntop.org/products/

packet-capture/pf_ring/.

[28] Ryu: Component-based Software Defined Networking Frame-
work, 2015. URL http://osrg.github.io/ryu/.

[29] Software-Defined Networking: The New Norm for Networks,
2015. URL https://www.opennetworking.org/images/stories/

downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf.

[30] SDN Architecture Overview, 2015. URL
https://www.opennetworking.org/images/stories/

downloads/sdn-resources/technical-reports/

SDN-architecture-overview-1.0.pdf.

[31] SNORT, 2015. URL http://www.snort.org/.

[32] Docker, 2015. URL www.docker.com.

[33] squid, 2015. URL http://www.squid-cache.org/.

[34] T-NOVA Network Functions as-a-Service over Virtualised Infras-
tructures, 2015. URL http://www.t-nova.eu/.

[35] Unify: UNIFYing Carrier and Cloud Networks, 2015. URL https:

//www.fp7-unify.eu/.

[36] The Virtualization Journey, 2015. URL http://www.

datacenterjournal.com/virtualization-journey/.

[37] VirtualBox, 2015. URL https://www.virtualbox.org.

[38] Understanding Full Virtualization, Paravirtualization and Hard-
ware assist, 2015. URL http://www.vmware.com/files/pdf/

VMware_paravirtualization.pdf.

http://netfpga.org/
http://caviumnetworks.com/OCTEON_MIPS64.html
http://caviumnetworks.com/OCTEON_MIPS64.html
http://onosproject.org/
http://onosproject.org/
https://www.opnfv.org/
https://www.opendaylight.org/
https://openvz.org/
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
www.qemu.org/
http://www.ntop.org/products/packet-capture/pf_ring/
http://www.ntop.org/products/packet-capture/pf_ring/
http://osrg.github.io/ryu/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
http://www.snort.org/
www.docker.com
http://www.squid-cache.org/
http://www.t-nova.eu/
https://www.fp7-unify.eu/
https://www.fp7-unify.eu/
http://www.datacenterjournal.com/virtualization-journey/
http://www.datacenterjournal.com/virtualization-journey/
https://www.virtualbox.org
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

bibliography 99

[39] Vmware Workstation, 2015. URL https://www.vmware.com/

products/workstation.

[40] A. Abujoda and P. Papadimitriou. MIDAS: Middlebox Discovery
and Selection for On-Path Flow Processing. In Communication Sys-
tems and Networks (COMSNETS), 2015 7th International Conference
on, pages 1–8, Jan 2015. doi: 10.1109/COMSNETS.2015.7098686.

[41] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. To-
wards Predictable Datacenter Networks. In Proceedings of the
ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages 242–
253, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0797-
0. doi: 10.1145/2018436.2018465. URL http://doi.acm.org/10.

1145/2018436.2018465.

[42] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art
of Virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, Octo-
ber 2003. ISSN 0163-5980. doi: 10.1145/1165389.945462. URL
http://doi.acm.org/10.1145/1165389.945462.

[43] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: A
Cloud Networking Platform for Enterprise Applications. In Pro-
ceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC ’11,
pages 8:1–8:13, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0976-9. doi: 10.1145/2038916.2038924. URL http://doi.acm.org/

10.1145/2038916.2038924.

[44] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig. NAT-
BLASTER: Establishing TCP Connections Between Hosts Behind
NATs. In in proceedings of ACM SIGCOMM Asia Workshop, 2005.

[45] P. Bogetoft, D. Christensen, I. Damgard, M. Geisler, T. Jakob-
sen, M. Kroigaard, J. Nielsen, J. Nielsen, K. Nielsen, J. Pagter,
Michael S., and T. Toft. Secure Multiparty Computation Goes
Live. In Financial Cryptography and Data Security, volume 5628

of Lecture Notes in Computer Science, pages 325–343. Springer
Berlin Heidelberg, 2009. ISBN 978-3-642-03548-7. doi: 10.
1007/978-3-642-03549-4_20. URL http://dx.doi.org/10.1007/

978-3-642-03549-4_20.

[46] F. Botelho, A. Bessani, F.M.V. Ramos, and P. Ferreira. On the De-
sign of Practical Fault-Tolerant SDN Controllers. In Software De-
fined Networks (EWSDN), 2014 Third European Workshop on, pages
73–78, Sept 2014. doi: 10.1109/EWSDN.2014.25.

[47] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Re-
source ReSerVation Protocol (RSVP). RFC 2205. URL https:

//tools.ietf.org/html/rfc2205.

https://www.vmware.com/products/workstation
https://www.vmware.com/products/workstation
http://doi.acm.org/10.1145/2018436.2018465
http://doi.acm.org/10.1145/2018436.2018465
http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/2038916.2038924
http://doi.acm.org/10.1145/2038916.2038924
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1007/978-3-642-03549-4_20
https://tools.ietf.org/html/rfc2205
https://tools.ietf.org/html/rfc2205

100 bibliography

[48] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: evidence and implications. In
INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, volume 1,
pages 126–134 vol.1, Mar 1999. doi: 10.1109/INFCOM.1999.
749260.

[49] Z. Cai, A. L. Cox, and T. S. E. Ng. Maestro: A System for Scalable
OpenFlow Control. Technical report, 2011.

[50] B. Carpenter. Architectural Principles of the Internet. RFC 1958,
. URL http://www.rfc-editor.org/rfc/rfc1958.txt.

[51] B. Carpenter. Middleboxes: Taxonomy and Issues. RFC 3234, .
URL http://tools.ietf.org/html/rfc3234.

[52] R. Chakravorty, S. Katti, J. Crowcroft, and I. Pratt. Flow Aggre-
gation for Enhanced TCP over Wide-Area Wireless. In INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, volume 3, pages 1754–1764

vol.3, March 2003. doi: 10.1109/INFCOM.2003.1209198.

[53] Sumi Choi, J. Turner, and T. Wolf. Configuring Sessions in Pro-
grammable Networks. In INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE, volume 1, pages 60–66 vol.1, 2001.

[54] M Chowdhury, F Samuel, and R Boutaba. PolyViNE: Policy-
based Virtual Network Embedding Across Multiple Domains. In
Proceedings of the Second ACM SIGCOMM Workshop on Virtual-
ized Infrastructure Systems and Architectures, VISA ’10, pages 49–
56, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0199-
2. doi: 10.1145/1851399.1851408. URL http://doi.acm.org/10.

1145/1851399.1851408.

[55] N.M.M.K. Chowdhury, M.R. Rahman, and R. Boutaba. Virtual
Network Embedding with Coordinated Node and Link Mapping.
In INFOCOM 2009, IEEE, pages 783–791, April 2009.

[56] I. Cooper and J. Dilley. Known HTTP Proxy/Caching Problems.
RFC 3143. URL https://tools.ietf.org/html/rfc3143#ref-2.

[57] I. Damgard, M. Geisler, M. Kroigaard, and J. Nielsen. Asyn-
chronous Multiparty Computation: Theory and Implementa-
tion. In Public Key Cryptography - PKC 2009, volume 5443

of Lecture Notes in Computer Science, pages 160–179. Springer
Berlin Heidelberg, 2009. ISBN 978-3-642-00467-4. doi: 10.
1007/978-3-642-00468-1_10. URL http://dx.doi.org/10.1007/

978-3-642-00468-1_10.

http://www.rfc-editor.org/rfc/rfc1958.txt
http://tools.ietf.org/html/rfc3234
http://doi.acm.org/10.1145/1851399.1851408
http://doi.acm.org/10.1145/1851399.1851408
https://tools.ietf.org/html/rfc3143#ref-2
http://dx.doi.org/10.1007/978-3-642-00468-1_10
http://dx.doi.org/10.1007/978-3-642-00468-1_10

bibliography 101

[58] L. Deri. nCap: Wire-speed Packet Capture and Transmission. In
End-to-End Monitoring Techniques and Services, pages 47–55, May
2005. doi: 10.1109/E2EMON.2005.1564468.

[59] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Don-
net. Revealing Middlebox Interference with Tracebox. In Pro-
ceedings of the 2013 Conference on Internet Measurement Conference,
IMC ’13, pages 1–8, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1953-9. doi: 10.1145/2504730.2504757. URL http:

//doi.acm.org/10.1145/2504730.2504757.

[60] A. Dhamdhere and C. Dovrolis. Twelve Years in the Evolution of
the Internet Ecosystem. IEEE/ACM Trans. Netw., 19(5):1420–1433,
October 2011. ISSN 1063-6692. doi: 10.1109/TNET.2011.2119327.
URL http://dx.doi.org/10.1109/TNET.2011.2119327.

[61] D. Dietrich, A. Rizk, and P. Papadimitriou. Multi-Domain Virtual
Network Embedding with Limited Information Disclosure. In
IFIP Networking Conference, 2013, pages 1–9, May 2013.

[62] D. Dietrich, A. Abujoda, and P. Papadimitriou. Network Service
Embedding Across Multiple Providers with Nestor. In IFIP Net-
working Conference (IFIP Networking), pages 1–9, May 2015. doi:
10.1109/IFIPNetworking.2015.7145312.

[63] M. Djatmiko, D. Schatzmann, X. Dimitropoulos, A. Friedman,
and R. Boreli. Federated Flow-based Approach for Privacy Pre-
serving Connectivity Tracking. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’13, pages 429–440, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2101-3. doi: 10.1145/2535372.2535388. URL
http://doi.acm.org/10.1145/2535372.2535388.

[64] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannac-
cone, A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks: Ex-
ploiting Parallelism to Scale Software Routers. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Princi-
ples, SOSP ’09, pages 15–28, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629578. URL
http://doi.acm.org/10.1145/1629575.1629578.

[65] M. Dobrescu, K. Argyraki, and S. Ratnasamy. Toward
Predictable Performance in Software Packet-Processing
Platforms. In the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 141–
154, San Jose, CA, 2012. USENIX. ISBN 978-931971-92-
8. URL https://www.usenix.org/conference/nsdi12/

technical-sessions/presentation/dobrescu.

http://doi.acm.org/10.1145/2504730.2504757
http://doi.acm.org/10.1145/2504730.2504757
http://dx.doi.org/10.1109/TNET.2011.2119327
http://doi.acm.org/10.1145/2535372.2535388
http://doi.acm.org/10.1145/1629575.1629578
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dobrescu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dobrescu

102 bibliography

[66] K. Egevang and K. Egevang. The IP Network Address Transla-
tor (NAT). RFC 1631. URL http://www.mpi-sws.org/~francis/

rfc1631.txt.

[67] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici,
L. Mathy, and P. Papadimitriou. Forwarding Path Architectures
for Multicore Software Routers. In Proceedings of the Workshop on
Programmable Routers for Extensible Services of Tomorrow, PRESTO
’10, pages 3:1–3:6, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0467-2. doi: 10.1145/1921151.1921155. URL http://doi.acm.

org/10.1145/1921151.1921155.

[68] R. Ennals, R. Sharp, and A. Mycroft. Task Partitioning for Multi-
core Network Processors. In Rastislav Bodik, editor, Compiler Con-
struction, volume 3443 of Lecture Notes in Computer Science, pages
76–90. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-25411-
9. doi: 10.1007/978-3-540-31985-6_6. URL http://dx.doi.org/

10.1007/978-3-540-31985-6_6.

[69] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Net-
work Configuration Protocol (NETCONF). RFC 6241, 2011. URL
https://tools.ietf.org/html/rfc6241.

[70] J. L. Eppinger. TCP Connections for P2P Apps: A Software
Approach to Solving the NAT Problem. Technical report, 2005.

[71] D. Erickson. The Beacon OpenFlow Controller. In Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 13–18, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2178-5. doi: 10.1145/2491185.
2491189. URL http://doi.acm.org/10.1145/2491185.2491189.

[72] A. Gember et al. Stratos: Virtual Middleboxes as First-Class En-
tities. Technical report, 2013.

[73] D. Dean et al. The Internet Economy in the G-20, 2012. URL
https://www.bcg.com/documents/file100409.pdf.

[74] L. Deri et al. Improving Passive Packet Capture: Beyond Device
Polling. In In Proceedings of SANE, 2004.

[75] N. Egi et al. Scaling Middleboxes through Network-Wide Flow
Partitioning. In Proc. USENIX OSDI, October 2010.

[76] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul. Flow-
Tags: Enforcing Network-wide Policies in the Presence of Dy-
namic Middlebox Actions. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Network-
ing, HotSDN ’13, pages 19–24, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2178-5. doi: 10.1145/2491185.2491203. URL
http://doi.acm.org/10.1145/2491185.2491203.

http://www.mpi-sws.org/~francis/rfc1631.txt
http://www.mpi-sws.org/~francis/rfc1631.txt
http://doi.acm.org/10.1145/1921151.1921155
http://doi.acm.org/10.1145/1921151.1921155
http://dx.doi.org/10.1007/978-3-540-31985-6_6
http://dx.doi.org/10.1007/978-3-540-31985-6_6
https://tools.ietf.org/html/rfc6241
http://doi.acm.org/10.1145/2491185.2491189
https://www.bcg.com/documents/file100409.pdf
http://doi.acm.org/10.1145/2491185.2491203

bibliography 103

[77] S. K. Fayazbakhsh, L. C., V. Sekar, M. Yu, and J. C. Mogul. En-
forcing Network-Wide Policies in the Presence of Dynamic Mid-
dlebox Actions using FlowTags. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), pages 543–
546, Seattle, WA, April 2014. USENIX Association. ISBN 978-1-
931971-09-6. URL https://www.usenix.org/conference/nsdi14/

technical-sessions/presentation/fayazbakhsh.

[78] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann,
B. Maggs, J. Rake, S. Uhlig, and R. Weber. Pushing CDN-ISP Col-
laboration to the Limit. SIGCOMM Comput. Commun. Rev., 43(3):
34–44, July 2013. ISSN 0146-4833. doi: 10.1145/2500098.2500103.
URL http://doi.acm.org/10.1145/2500098.2500103.

[79] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward
Software-defined Middlebox Networking. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks, HotNets-XI, pages
7–12, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1776-
4. doi: 10.1145/2390231.2390233. URL http://doi.acm.org/10.

1145/2390231.2390233.

[80] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella. OpenNF: Enabling Innovation in
Network Function Control. In Proceedings of the 2014 ACM Confer-
ence on SIGCOMM, SIGCOMM ’14, pages 163–174, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2836-4. doi: 10.1145/2619239.
2626313. URL http://doi.acm.org/10.1145/2619239.2626313.

[81] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Hand-
ley, and L. Mathy. Flow Processing and the Rise of Commodity
Network Hardware. SIGCOMM Comput. Commun. Rev., 39(2):20–
26, March 2009. ISSN 0146-4833. doi: 10.1145/1517480.1517484.
URL http://doi.acm.org/10.1145/1517480.1517484.

[82] A. Gudipati, D. Perry, L. E. Li, and S. Katti. SoftRAN: Software
Defined Radio Access Network. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 25–30, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2178-5. doi: 10.1145/2491185.2491207. URL http://

doi.acm.org/10.1145/2491185.2491207.

[83] S. Guha, Y. Takeda, and P. Francis. NUTSS: A SIP-based Ap-
proach to UDP and TCP Network Connectivity. In Proceedings
of the ACM SIGCOMM Workshop on Future Directions in Network
Architecture, FDNA ’04, pages 43–48, New York, NY, USA, 2004.
ACM. ISBN 1-58113-942-X. doi: 10.1145/1016707.1016715. URL
http://doi.acm.org/10.1145/1016707.1016715.

[84] C. Guo, G. Lu, J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A Data Center Network Virtual-

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
http://doi.acm.org/10.1145/2500098.2500103
http://doi.acm.org/10.1145/2390231.2390233
http://doi.acm.org/10.1145/2390231.2390233
http://doi.acm.org/10.1145/2619239.2626313
http://doi.acm.org/10.1145/1517480.1517484
http://doi.acm.org/10.1145/2491185.2491207
http://doi.acm.org/10.1145/2491185.2491207
http://doi.acm.org/10.1145/1016707.1016715

104 bibliography

ization Architecture with Bandwidth Guarantees. In Proceed-
ings of the 6th International COnference, Co-NEXT ’10, pages 15:1–
15:12, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0448-
1. doi: 10.1145/1921168.1921188. URL http://doi.acm.org/10.

1145/1921168.1921188.

[85] Debayan Gupta, Aaron Segal, Aurojit Panda, Gil Segev, Michael
Schapira, Joan Feigenbaum, Jenifer Rexford, and Scott Shenker. A
New Approach to Interdomain Routing Based on Secure Multi-
party Computation. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, HotNets-XI, pages 37–42, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1776-4. doi: 10.1145/2390231.
2390238. URL http://doi.acm.org/10.1145/2390231.2390238.

[86] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-
accelerated Software Router. SIGCOMM Comput. Commun. Rev.,
40(4):195–206, August 2010. ISSN 0146-4833. doi: 10.1145/1851275.
1851207. URL http://doi.acm.org/10.1145/1851275.1851207.

[87] R. Hancock, G. Karagiannis, J. Loughney, and S. Van den Bosch.
Next Steps in Signaling (NSIS) Framework. RFC 4080, 2006. URL
https://www.ietf.org/rfc/rfc4080.txt.

[88] W. Henecka and M. Roughan. STRIP: Privacy-Preserving Vector-
Based Routing. In Network Protocols (ICNP), 2013 21st IEEE Inter-
national Conference on, pages 1–10, Oct 2013. doi: 10.1109/ICNP.
2013.6733586.

[89] V. Heorhiadi, M. K. Reiter, and V. Sekar. New Opportunities
for Load Balancing in Network-wide Intrusion Detection Sys-
tems. In Proceedings of the 8th International Conference on Emerg-
ing Networking Experiments and Technologies, CoNEXT ’12, pages
361–372, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1775-
7. doi: 10.1145/2413176.2413218. URL http://doi.acm.org/10.

1145/2413176.2413218.

[90] Ines Houidi, Wajdi Louati, Walid Ben Ameur, and Djamal
Zeghlache. Virtual Network Provisioning Across Multiple Sub-
strate Networks . Computer Networks, 55(4):1011 – 1023, 2011.
ISSN 1389-1286. doi: http://dx.doi.org/10.1016/j.comnet.2010.
12.011. URL http://www.sciencedirect.com/science/article/

pii/S1389128610003786. Special Issue on Architectures and Pro-
tocols for the Future Internet.

[91] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity Switch
Models for Software-defined Network Emulation. In Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 43–48, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2178-5. doi: 10.1145/2491185.
2491188. URL http://doi.acm.org/10.1145/2491185.2491188.

http://doi.acm.org/10.1145/1921168.1921188
http://doi.acm.org/10.1145/1921168.1921188
http://doi.acm.org/10.1145/2390231.2390238
http://doi.acm.org/10.1145/1851275.1851207
https://www.ietf.org/rfc/rfc4080.txt
http://doi.acm.org/10.1145/2413176.2413218
http://doi.acm.org/10.1145/2413176.2413218
http://www.sciencedirect.com/science/article/pii/S1389128610003786
http://www.sciencedirect.com/science/article/pii/S1389128610003786
http://doi.acm.org/10.1145/2491185.2491188

bibliography 105

[92] Xin Huang, S. Ganapathy, and T. Wolf. A Scalable Distributed
Routing Protocol for Networks with Data-path Services. In
Network Protocols, 2008. ICNP 2008. IEEE International Conference,
pages 318–327, Oct 2008.

[93] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F.
Plass, Nicholas H. Briggs, and Rebecca L. Braynard. Networking
Named Content. In Proceedings of the 5th International Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’09,
pages 1–12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
636-6. doi: 10.1145/1658939.1658941. URL http://doi.acm.org/

10.1145/1658939.1658941.

[94] K. Jang, S. Han, S. Han, S-. Moon, and K. Park. Accelerating SSL
with GPUs. SIGCOMM Comput. Commun. Rev., 41(1):135–139, Jan-
uary 2011. ISSN 0146-4833. doi: 10.1145/1925861.1925885. URL
http://doi.acm.org/10.1145/1925861.1925885.

[95] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller. State-
less Network Functions. In Proceedings of the 2015 ACM SIG-
COMM Workshop on Hot Topics in Middleboxes and Network Func-
tion Virtualization, HotMiddlebox ’15, pages 49–54, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3540-9. doi: 10.1145/2785989.
2785993. URL http://doi.acm.org/10.1145/2785989.2785993.

[96] P. Kazemian, G. Varghese, and N. McKeown. Header Space Anal-
ysis: Static Checking for Networks. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 12), pages 113–126, San Jose, CA, 2012. USENIX. ISBN
978-931971-92-8. URL https://www.usenix.org/conference/

nsdi12/technical-sessions/presentation/kazemian.

[97] J. Kelly, W. Araujo, and K. Banerjee. Rapid Service Creation
Using the JUNOS SDK. SIGCOMM Comput. Commun. Rev., 40

(1):56–60, January 2010. ISSN 0146-4833. doi: 10.1145/1672308.
1672320. URL http://doi.acm.org/10.1145/1672308.1672320.

[98] Wookyun Kho, S.A. Baset, and Henning Schulzrinne. Skype Re-
lay Calls: Measurements and Experiments. In INFOCOM Work-
shops 2008, IEEE, pages 1–6, April 2008.

[99] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Frans Kaashoek.
The Click Modular Router. ACM Trans. Comput. Syst., 18(3):263–
297, August 2000. ISSN 0734-2071. doi: 10.1145/354871.354874.
URL http://doi.acm.org/10.1145/354871.354874.

[100] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and

http://doi.acm.org/10.1145/1658939.1658941
http://doi.acm.org/10.1145/1658939.1658941
http://doi.acm.org/10.1145/1925861.1925885
http://doi.acm.org/10.1145/2785989.2785993
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
http://doi.acm.org/10.1145/1672308.1672320
http://doi.acm.org/10.1145/354871.354874

106 bibliography

S. Shenker. Onix: A Distributed Control Platform for Large-
scale Production Networks. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’10,
pages 1–6, Berkeley, CA, USA, 2010. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1924943.1924968.

[101] D. Kreutz, F. M. V. Ramos, P. Veríssimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-Defined Networking: A
Comprehensive Survey. CoRR, abs/1406.0440, 2014. URL http:

//arxiv.org/abs/1406.0440.

[102] J. Lee, M. Lee, L. Popa, Y. Turner, S. Banerjee, P. Sharma,
and B. Stephenson. CloudMirror: Application-Aware Band-
width Reservations in the Cloud. In Presented as part of the 5th
USENIX Workshop on Hot Topics in Cloud Computing, San Jose,
CA, 2013. USENIX. URL https://www.usenix.org/conference/

hotcloud13/workshop-program/presentations/Lee.

[103] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feld-
mann. Logically Centralized?: State Distribution Trade-offs in
Software Defined Networks. In Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, HotSDN ’12, pages
1–6, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1477-
0. doi: 10.1145/2342441.2342443. URL http://doi.acm.org/10.

1145/2342441.2342443.

[104] H. Liao, C. R. Lin, Y. Lin, and K. Tung. Intrusion Detec-
tion System: A Comprehensive Review. Journal of Network and
Computer Applications, 36(1):16 – 24, 2013. ISSN 1084-8045. doi:
http://dx.doi.org/10.1016/j.jnca.2012.09.004. URL http://www.

sciencedirect.com/science/article/pii/S1084804512001944.

[105] J. Manner, G. Karagiannis, and A. McDonald. NSIS Signaling
Layer Protocol (NSLP) for Quality-of-Service Signaling. RFC 5974.
URL https://tools.ietf.org/html/rfc5974.

[106] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. ClickOS and the Art of Network
Function Virtualization. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14), pages 459–
473, Seattle, WA, April 2014. USENIX Association. ISBN 978-1-
931971-09-6. URL https://www.usenix.org/conference/nsdi14/

technical-sessions/presentation/martins.

[107] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: En-
abling Innovation in Campus Networks. SIGCOMM Comput.
Commun. Rev., 38(2):69–74, March 2008. ISSN 0146-4833. doi:
10.1145/1355734.1355746. URL http://doi.acm.org/10.1145/

1355734.1355746.

http://dl.acm.org/citation.cfm?id=1924943.1924968
http://arxiv.org/abs/1406.0440
http://arxiv.org/abs/1406.0440
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/Lee
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/Lee
http://doi.acm.org/10.1145/2342441.2342443
http://doi.acm.org/10.1145/2342441.2342443
http://www.sciencedirect.com/science/article/pii/S1084804512001944
http://www.sciencedirect.com/science/article/pii/S1084804512001944
https://tools.ietf.org/html/rfc5974
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746

bibliography 107

[108] B.A.A. Nunes, M. Mendonca, Xuan-Nam Nguyen, K. Obraczka,
and T. Turletti. A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks. Communications
Surveys Tutorials, IEEE, 16(3):1617–1634, Third 2014. ISSN 1553-
877X. doi: 10.1109/SURV.2014.012214.00180.

[109] B. Pfaff and B. Davie. The Open vSwitch Database Management
Protocol. RFC 7047, 2013. URL https://tools.ietf.org/html/

rfc7047.

[110] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker. Extending Networking into the Virtualization Layer.
In Proc. of workshop on Hot Topics in Networks (HotNets-VIII), 2009.

[111] Z. Ayyub Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
SIMPLE-fying Middlebox Policy Enforcement Using SDN. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 27–38, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2056-6. doi: 10.1145/2486001.2486022. URL
http://doi.acm.org/10.1145/2486001.2486022.

[112] P. Quinn and T. Nadeau. Problem Statement for Service Func-
tion Chaining. RFC 7498, 2015. URL https://tools.ietf.org/

html/rfc7498.

[113] C. Raiciu, V. Olteanu, and R. Stoenescu. Good Cop, Bad Cop:
Forcing Middleboxes to Cooperate. In IAB Workshop on Stack Evo-
lution in a Middlebox Internet (SEMI), IAB. IAB, 2015.

[114] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168. URL
https://tools.ietf.org/html/rfc3168.

[115] L. Rizzo, M. Carbone, and G. Catalli. Transparent Acceleration
of Software Packet Forwarding Using Netmap. In INFOCOM,
2012 Proceedings IEEE, pages 2471–2479, March 2012. doi: 10.1109/
INFCOM.2012.6195638.

[116] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN-
Simple Traversal of User Datagram Protocol (UDP) Through Net-
work Address Translators (NATs). RFC 3489. URL https://tools.

ietf.org/html/rfc3489.

[117] Frank La Rue. Report of the Special Rapporteur on the Pro-
motion and Protection of the Right to Freedom of Opinion and
Expression, 2015. URL http://www2.ohchr.org/english/bodies/

hrcouncil/docs/17session/A.HRC.17.27_en.pdf.

[118] R. Sedgewick. Algorithms in C, Part 5: Graph Algo-
rithms. Addison-Wesley Professional, third edition, 2001. ISBN
9780768685329.

https://tools.ietf.org/html/rfc7047
https://tools.ietf.org/html/rfc7047
http://doi.acm.org/10.1145/2486001.2486022
https://tools.ietf.org/html/rfc7498
https://tools.ietf.org/html/rfc7498
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3489
https://tools.ietf.org/html/rfc3489
http://www2.ohchr.org/english/bodies/hrcouncil/docs/17session/A.HRC.17.27_en.pdf
http://www2.ohchr.org/english/bodies/hrcouncil/docs/17session/A.HRC.17.27_en.pdf

108 bibliography

[119] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. De-
sign and Implementation of a Consolidated Middlebox Architec-
ture. In the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 323–336, San Jose, CA, 2012.
USENIX. ISBN 978-931971-92-8. URL https://www.usenix.org/

conference/nsdi12/technical-sessions/presentation/sekar.

[120] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and
R. Smeliansky. Advanced Study of SDN/OpenFlow Controllers.
In Proceedings of the 9th Central & Eastern European Software
Engineering Conference in Russia, CEE-SECR ’13, pages 1:1–1:6,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2641-4. doi:
10.1145/2556610.2556621. URL http://doi.acm.org/10.1145/

2556610.2556621.

[121] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–
613, November 1979. ISSN 0001-0782. doi: 10.1145/359168.359176.
URL http://doi.acm.org/10.1145/359168.359176.

[122] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making Middleboxes Someone else’s Problem: Net-
work Processing As a Cloud Service. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIGCOMM ’12,
pages 13–24, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1419-0. doi: 10.1145/2342356.2342359. URL http://doi.acm.org/

10.1145/2342356.2342359.

[123] J.E. Smith and R. Nair. The Architecture of Virtual Machines.
Computer, 38(5):32–38, May 2005. ISSN 0018-9162. doi: 10.1109/
MC.2005.173.

[124] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measur-
ing ISP Topologies with Rocketfuel. IEEE/ACM Trans. Netw., 12

(1):2–16, February 2004. ISSN 1063-6692. doi: 10.1109/TNET.2003.
822655. URL http://dx.doi.org/10.1109/TNET.2003.822655.

[125] R. Stewart. Stream Control Transmission Protocol. RFC 4960.
URL https://tools.ietf.org/html/rfc4960.

[126] M. Stiemerling, J. Quittek, , and C. Cadar. NEC’s simple mid-
dlebox configuration (SIMCO). RFC 4540, . URL http://tools.

ietf.org/html/rfc4540.

[127] M. Stiemerling, H. Tschofenig, C. Aoun, and E. Davies. NAT/-
Firewall NSIS Signaling Layer Protocol (NSLP). RFC 5973, . URL
https://tools.ietf.org/html/rfc5973.

[128] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. SymNet:
Static Checking for Stateful Networks. In Proceedings of the 2013

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
http://doi.acm.org/10.1145/2556610.2556621
http://doi.acm.org/10.1145/2556610.2556621
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/2342356.2342359
http://doi.acm.org/10.1145/2342356.2342359
http://dx.doi.org/10.1109/TNET.2003.822655
https://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc4540
http://tools.ietf.org/html/rfc4540
https://tools.ietf.org/html/rfc5973

bibliography 109

Workshop on Hot Topics in Middleboxes and Network Function Virtual-
ization, HotMiddlebox ’13, pages 31–36, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2574-5. doi: 10.1145/2535828.2535835.
URL http://doi.acm.org/10.1145/2535828.2535835.

[129] Daniel M. Sunday. A Very Fast Substring Search Algorithm.
Commun. ACM, 33(8):132–142, August 1990. ISSN 0001-0782. doi:
10.1145/79173.79184. URL http://doi.acm.org/10.1145/79173.

79184.

[130] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An Un-
told Story of Middleboxes in Cellular Networks. SIGCOMM
Comput. Commun. Rev., 41(4):374–385, August 2011. ISSN 0146-
4833. doi: 10.1145/2043164.2018479. URL http://doi.acm.org/

10.1145/2043164.2018479.

[131] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. De-
sign, Implementation and Evaluation of Congestion Control for
Multipath TCP. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, NSDI’11, pages 99–
112, Berkeley, CA, USA, 2011. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1972457.1972468.

[132] T. Wolf. In-Network Services for Customization in Next-
Generation Networks. Network, IEEE, 24(4):6–12, July 2010. ISSN
0890-8044. doi: 10.1109/MNET.2010.5510912.

[133] Q. Wu and T. Wolf. Runtime Task Allocation in Multicore
Packet Processing Systems. Parallel and Distributed Systems, IEEE
Transactions on, 23(10):1934–1943, Oct 2012. ISSN 1045-9219. doi:
10.1109/TPDS.2012.56.

[134] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking Virtual
Network Embedding: Substrate Support for Path Splitting and
Migration. SIGCOMM Comput. Commun. Rev., 38(2):17–29, March
2008. ISSN 0146-4833. doi: 10.1145/1355734.1355737. URL http:

//doi.acm.org/10.1145/1355734.1355737.

[135] Y. Zhu and M. Ammar. Algorithms for Assigning Substrate Net-
work Resources to Virtual Network Components. In INFOCOM
2006. 25th IEEE International Conference on Computer Communica-
tions. Proceedings, pages 1–12, April 2006. doi: 10.1109/INFOCOM.
2006.322.

http://doi.acm.org/10.1145/2535828.2535835
http://doi.acm.org/10.1145/79173.79184
http://doi.acm.org/10.1145/79173.79184
http://doi.acm.org/10.1145/2043164.2018479
http://doi.acm.org/10.1145/2043164.2018479
http://dl.acm.org/citation.cfm?id=1972457.1972468
http://dl.acm.org/citation.cfm?id=1972457.1972468
http://doi.acm.org/10.1145/1355734.1355737
http://doi.acm.org/10.1145/1355734.1355737

CURRICULUM VITAE
PERSONAL INFORMATION

Name Ahmed Mohamed Ahmed Abujoda

Date of Birth February 15th 1983

Nationality German

WORK EXPERIENCE

06/2010 – present Institute of Communications Technology, Leibniz Universität Hannover
Research assistant / PhD candidate
Research areas: Network Function Virtualization (NFV), Software Defined Net-
working (SDN), software profiling, packet processing on commodity servers,
network service embedding.

• Deployed and managed a large scale testbed for network experimentation
(80+ servers, over 400 network interfaces, 6 switches, 20 NetFPGA cards).
Installed FreeBSD-based testbed software comprised of various network
services (NFS, DNS, Firewall, Nagios).

• Designed and implemented a SDN architecture for managing crowd-shared
WMN within EU CONFINE project.

• Designed and implemented an on-path flow processing architecture within
EU T–NOVA project.

• Designed and implemented an approach for profiling Click-based packet
processing workloads.

• Published and presented research results in international conferences.

01/2010 – 05/2010 Zentrum für Sensorsysteme, Universität Siegen
Embedded development engineer

• Optimized embedded UDP/IP- Gigabit Ethernet stack implementation.

• Developed embedded networking software using C language, FPGA and
PowerPC microprocessor for data acquisition.

• Implemented test software using C and visual C#.

EDUCATION

10/2007 – 12/2009 Master of Science in Mechatronics Engineering, Universität Siegen
Electrical engineering, Computer Science and Mechanical Engineering

10/1999 – 08/2004 Bachelor of Science in Electrical Engineering, Sana’a University
Electrical engineering
Major field: Electronics and Communications.

TECHNICAL SKILLS

Software performance profiling using Oprofile and Intel vtune.

Passive and active network measurements using tcpdump/Wireshark, traceroute,
nagios, iperf, topp, and pathload.

Networking protocols (TCP/IP), software defined networks, network virtual-
ization (OpenFlow, POX, VLAN, XEN, OpenvSwitch) and packet processing on
commodity servers (Click Modular Router).

Software development and scripting using Python, C/C++, visual C#, Bash,
MySQL, SQL, Visual Basic and Matlab.

Deployment and administration of testbeds, experimental networks and LAN
services (Emulab, PlanetLab, Nagios).

Unix/Linux and Windows common software and systems.

LANGUAGES

Arabic native language
English fluent
German good

Hanover, April 10, 2016

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of April 10, 2016 (classicthesis Version 0.1).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Titelblatt
	Abstract
	Zusammenfassung
	my publications
	Contents
	List of Figures
	List of Tables
	Acronyms

	Dissertation
	1 Introduction
	1.1 Challenges and Requirements
	1.2 Thesis Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Middleboxes
	2.2 Network Service Chaining
	2.3 Network Function Virtualization
	2.4 Packet Processing on Commodity Servers
	2.4.1 Packet I/O on Commodity Servers
	2.4.2 Advanced Packet I/O Engines

	2.5 Software Packages for Network Functions Implementation
	2.5.1 Click Modular Router

	2.6 Server Virtualization Technologies
	2.7 Software Defined Networking
	2.7.1 SDN Controllers
	2.7.2 OpenFlow Protocol

	3 Packet processing workload profiling
	3.1 Profiling Challenges
	3.2 Workload Profiling Methods
	3.3 Experimental Results
	3.4 Related Work
	3.5 Summary

	4 Invariant Preserving Middlebox Traversal
	4.1 Middlebox Implications
	4.2 Architecture Overview
	4.3 Path Selection
	4.4 Evaluation
	4.4.1 Evaluation Environment
	4.4.2 Evaluation Results

	4.5 Related Work
	4.6 Summary

	5 MIDAS: Middlebox Discovery and Selection for On-Path Flow Processing
	5.1 Challenges and Requirements
	5.2 Architecture Overview
	5.3 Middlebox Discovery
	5.3.1 Middlebox Signaling
	5.3.2 Controller Chaining

	5.4 Middlebox Selection
	5.4.1 Intra-Provider Middlebox Selection
	5.4.2 NFP Assignment

	5.5 Implementation
	5.5.1 Consolidated Middlebox
	5.5.2 Signaling and MPC Protocols

	5.6 Evaluation
	5.6.1 Experimental Results
	5.6.2 Simulation Results

	5.7 Related Work
	5.8 Summary

	6 DistNSE: Distributed Network Service Embedding for Off-Path flow processing
	6.1 Challenges and Requirements
	6.2 Network Model
	6.2.1 Service Chain Model
	6.2.2 Network Model

	6.3 Network Service Embedding
	6.3.1 Embedding Overview
	6.3.2 Inter-Provider Embedding
	6.3.3 Intra-Provider Embedding

	6.4 DistNSE Protocol
	6.5 Evaluation
	6.6 Related Work
	6.7 Summary

	7 Conclusions
	7.1 Future Work

	Bibliography
	Scientific Career
	Colophon

