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Zusammenfassung 

 

Die Samenentwicklung von Pflanzen wird durch den einzigartigen Mechanismus der 

doppelten Befruchtung initiiert. Die daraus entstehenden Samengewebe, Endosperm und 

Embryo, durchlaufen während ihrer Entwicklung charakteristische Stadien von der 

Gewebedifferenzierung bis hin zur Einlagerung von Speicherstoffen. Dieser Prozess ist durch 

vielfältige Veränderungen auf zellulärer und molekularer Ebene gekennzeichnet. In der 

vorliegenden Arbeit wurden die physiologischen und molekularen Mechanismen während der 

Samenentwicklung und die Rolle der verschiedenen Samengewebe untersucht (Kapitel 2.1). 

Im Rahmen dieser Untersuchung wurde eine proteomische Strategie entwickelt, welche (i) die 

Etablierung einer Endosperm-Referenzkarte, (ii) die Charakterisierung der Endosperm-

entwicklung und (iii) den Vergleich des Endosperm- und Embryoproteoms umfasste. In dieser 

ersten Untersuchung zur Endosperm-entwicklung von Brassica napus konnte gezeigt werden, 

dass das Endosperm neben seiner Funktion als Nährstoffspeicher ein eigenständiges und 

stoffwechselaktives Gewebe innerhalb des Samens repräsentiert. Die Identifizierung 

spezifischer Stoffwechselwege und regulatorischer Elemente lieferte einen Hinweis auf 

molekulare Interaktionen zwischen dem Endosperm und dem Embryo. Der etablierte 

proteomische Versuchsaufbau eignet sich für die Analyse von Samen unabhängig von der 

Spezies und lieferte neue Erkenntnisse zur Endospermfunktion in Cyclamen persicum 

(Kapitel 2.3) und zu spezifischen Eigenschaften zygotischer und somatischer Embryonen von 

Theobroma cacao (Kapitel 2.4). Sobald die Differenzierung der Samengewebe abgeschlossen 

ist, beginnt die massive Einlagerung von Speicherstoffen wie Lipiden und Proteinen. Da die 

Akkumulierung von Speicherproteinen von zentraler Bedeutung für die Keimung ist, wurde 

die native Struktur des Cruciferins aus B. napus Samen charakterisiert (Kapitel 2.2). Der 

Cruciferin-Komplex ist durch eine oktamere, fassförmige Struktur gekennzeichnet. Diese 

Struktur ermöglicht eine effiziente Speicherung von Aminosäuren auf kleinstem Raum. 

Sowohl Entwicklungsprozesse als auch die Speicherstoffsynthese erfordern große Mengen an 

Reduktionsäquivalenten und Energie. Es wird vermutet, dass Samen alternative 

Möglichkeiten zur Energiebereitstellung, wie den Abbau von Aminosäuren, besitzen. Erste 

detaillierte Analysen zur Funktion einer mitochondrialen Schwefeldioxygenase ETHE1 

unterstützen die Hypothese, dass der Aminosäurestoffwechsel in Samen eine zentrale Rolle 

spielt und an der Bereitstellung von Stickstoff und Energie beteiligt ist (Kapitel 2.5, 

Kapitel 2.6). Die in dieser Arbeit präsentierten neuen Ergebnisse zur Biologie der 

Samenentwicklung, insbesondere zur Speicherstoffsynthese und zum Aminosäure-

stoffwechsel, könnten künftig genutzt werden, um die Samenqualität und den Ertrag von 

Nutzpflanzen zu verbessern. 

 

Schlagworte: Proteomik, Samen, Endosperm, Embryo, Speicherstoffeinlagerung 



Abstract 

 

Plant seed development starts with the unique event of double fertilization. The resulting seed 

tissues endosperm and embryo undergo characteristic developmental sequences with dramatic 

changes on cellular and molecular level spreading from tissue differentiation and growth to 

storage deposition during seed filling. In the course of this thesis special emphasis was placed 

on the physiological and molecular characterization of developmental mechanisms and their 

impact on different seed compartments (chapter 2.1). For this purpose a proteomic strategy 

including (i) establishment of an endosperm proteome reference map, (ii) characterization of 

endosperm development and (iii) comparison of endosperm and embryo proteomes was 

designed. This first study of endosperm development in Brassica napus highlighted that 

beside its nutritive function the endosperm represents a self-competent and metabolically 

active tissue. Furthermore, it has been shown that several pathways and regulatory elements 

govern the biochemical interplay between the embryo and the endosperm. The established 

proteomic workflow can be applied to seeds of different species. Here, it revealed new 

insights into endosperm function of Cyclamen persicum (chapter 2.3) and characteristics of 

zygotic and somatic embryos of Theobroma cacao (chapter 2.4). Once the tissue 

differentiation is terminated storage compounds such as lipids and proteins are massively 

accumulated in the embryo of dicotyledonous species such as oilseeds. Since efficient protein 

storage is essential for germination success the native structure of B. napus cruciferin was 

characterized (chapter 2.2). It revealed insights into structure and packing of seed storage 

proteins. The cruciferin complex has an octameric barrel-like structure optimized for 

maximum amino acid storage capacity with minimal space requirements. Both, seed 

development and storage activity require high amounts of energy and reduction equivalents. It 

is proposed that in seeds alternative routes like amino acid degradation contribute to energy 

provision for efficient energy metabolism. First detailed investigations on the function of the 

mitochondrial sulfur dioxygenase ETHE1 in seeds support the hypothesis that amino acid 

metabolism is highly important in seeds and may serve in nitrogen and energy provision 

during seed development (chapter 2.5, chapter 2.6). The novel insights into seed biology 

presented in this thesis, in particular for storage product synthesis and amino acid metabolism, 

are potential targets for strategies aiming to improving seed quality and yield of crops in the 

future. 

 

Keywords: proteomics, seed, endosperm, embryo, seed filling  
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Chapter 1: Seed biology and plant proteomics 

 

Why studying seed biology is of great importance? Seeds contain the entire repertoire of 

compounds needed for plant germination. They adapt to multitude (sometimes adverse) 

environmental conditions and plants developed unique mechanisms for their dispersal. Most 

of the seeds contain large and specific quantities of storage compounds which are important 

and sometimes essential components of animal and human diets. Thus, the biological and 

economic importance of seeds is evident. This chapter provides insights into processes 

involved in seed development and a global overview of the theoretical background of the 

thesis. In addition, recent findings in the field of seed biology and plant proteomics are 

presented and discussed. 

 

1.1 Seed development of dicotyledons: An overview 

 

Seed development starts with the unique event of double fertilization in which one sperm cell 

fuses with the egg cell to form the embryo while a second sperm cell unites with the central 

cell resulting in the triploid endosperm. The seed compartments undergo unique 

developmental changes underpinned by dramatic changes on cellular and molecular level 

(Figure 1). These differentiations are controlled by maternal tissues first and by filial organs 

in the later stages. 
 

 

  Figure 1: Embryo and endosperm development in the model plant Arabidopsis thaliana. Seeds were harvested 
from 1 to 9 DAP (a) and subsequently analysed by light microscopy (b). The endosperm and embryo follow distinct 
differentiation processes (c). DAP, days after pollination. 
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1.1.1 Embryogenesis 

 

Embryogenesis comprises a stepwise differentiation of the fertilized zygote including cell 

division, cell elongation, greening and photosynthetic activity as well as accumulation of seed 

storage products. Overall, two distinct phases can be defined: (i) morphogenesis and (ii) 

maturation (Goldberg et al. 1994). The initiation of embryo formation and development is 

controlled by pronounced gene activity (Rodoeva and Weijers 2014). After fertilization of the 

egg cell a pro-embryo containing an apical and a basal cell merges defining the polarity of the 

embryo. The apical cell gives rise to the embryo, while the basal cell forms the suspensor, a 

connective structure between filial and maternal tissues. At later stages the suspensor 

degenerates and the metabolic connection to the mother plant is interrupted (Kawashima and 

Goldberg 2010). Through further cell divisions, elongation and differentiation processes the 

embryo acquires the building plan of the plant (De Smet et al. 2010, Lau et al. 2012). The 

morphogenetic processes during embryogenesis depend on regulatory networks, particularly 

on cell cycle regulation which ensures the formation of different cell types and tissues (Dante 

et al. 2014, Wendrich and Weijers 2013). During maturation the synthesis and massive 

accumulation of storage products is prominent. At a very late maturation stage, the embryos 

metabolic activity is terminated and the seed becomes tolerant to desiccation. The previously 

accumulated storage products can be degraded during germination to provide nutrients to the 

growing seedling, before photosynthetic activity is established (Baud et al. 2002). 

 

1.1.2 Endosperm development 

 

The endosperm is essential for embryo development during seed formation in plants. It 

embeds the embryo and is itself surrounded by the seed coat. In dicotyledonous species, e.g. 

A. thaliana and B. napus, the endosperm is of transient nature and only the aleurone layer 

remains until seed maturity (Novack et al. 2010). The endosperm development is 

characterized by a stepwise differentiation including transition from a syncytial to a cellular 

phase (Olsen 2004, Berger 2003, Brown et al. 2003, Brown et al. 1999). The syncytium is 

produced by several cycles of mitosis of the fertilized central cell in the absence of 

cytokinesis, thus leading to a multi nuclear cell (Olsen 2004). In the course of seed 

development the endosperm is divided into three mitotic domains: (1) the micropylar, (2) the 

peripheral and (3) the chalazal region in which nuclei divide simultaneously (Boisnard-Lorig 

et al. 2001). The syncytium becomes cellularized by the formation of radial microtubule 

systems originating from the micropylar region (Olsen 2004, Sørensen 2002, Brown et al. 
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1999). The process of cellularization has a decisive impact on embryo development 

(Hehenberger et al. 2012) and conducts the initiation of embryo growth (Brown et al. 1999). 

When endosperm development is terminated, programmed cell death leads to endosperm cell 

degradation which is probably controlled by ethylene and interactions between embryo and 

endosperm (Berger et al. 2006, Young and Gallie 2000, Berger 1999). The remaining 

aleuronic layer holds key functions in the deposition of storage compounds and enzymes, as 

well as desiccation and germination of seeds (Yan et al. 2015, Holdsworth et al. 2008, Bethke 

et al. 2007, Penfield et al. 2004). 

 

1.1.3 Physiological and molecular determinants controlling seed development 

 

The interplay of different seed compartments on various levels is crucial for coordinated seed 

development. However, regulatory mechanisms and communication between compartments 

are not yet fully elucidated. Recent studies provided further insights into signal transduction 

and transport processes.  

 

In dicotyledonous seeds the endosperm develops first, while embryo development is paused. 

Due to its location the endosperm is able to coordinate maternal and filial contributions 

(Novack et al. 2010). Studies of mutants carrying endosperm specific defects have given 

insights into development and function of this compartment. Many mutations of endosperm 

related genes affect functions in cell differentiation, cellularization and cell growth 

(Hehenberger et al. 2012, Lu et al. 2012, Cavel et al. 2011, Lee et al. 2012, Sabelli and 

Larkins 2009, Ohto et al. 2005, Garcia 2003). Seed growth is directly linked to seed yield 

(Adamski et al. 2009) and understanding the mechanisms controlling the seed size therefore is 

essential (Orozco-Arroyo et al. 2015, Boisnard-Lorig et al. 2001). The seed coat acts as a 

physical barrier restricting embryo expansion, particularly that of the cotyledons (Fang et al. 

2012, Haughn and Chaudhury 2005). Elements influencing endosperm development comprise 

cell cycle control, genomic imprinting, hormones and environmental conditions (Bauer and 

Fischer 2011, Wolff et al. 2011, Huh et al. 2007, Berger 2004, Gehring et al. 2004). The 

endosperm has distinct functional regions to coordinate developmental processes. For cereals 

it is known that the endosperm forms transfer cells (ETC) and embryo surrounding region 

(ESR) which mediate nutrient shuffling to the embryo and might be involved in signaling 

processes (Thiel 2014, Olsen 2004). So far, ESRs have not been characterized in 

dicotyledons, but it is very likely that also species with a transient endosperm are building 
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metabolic active regions supporting embryo growth. However, it remains to be investigated if 

putative dicotyledonous ESR is functionally equivalent to the one identified in cereals. The 

general and specific metabolic functions of the endosperm are just beginning to emerge 

(Lafon-Placette and Köhler 2014, Belmonte et al. 2013, Huang et al. 2009). A recent analysis 

has shown that the molecular architecture of B. napus endosperm comprises the entire set of 

central metabolic pathways (Lorenz et al. 2014, chapter 2.1). Besides its nutritive function, 

the endosperm fulfils key functions in metabolism and signaling. Its enzymatic machinery 

turns the endosperm into a self-sustaining and metabolically active tissue, which receives 

major assimilates from the mother plant, but which is also able to produce metabolic 

intermediates by itself. Shifts in metabolism are reflecting the dramatic changes on cellular 

level. It is particularly unknown to which extent endosperm metabolism can modulate the 

incoming stream of assimilates thereby shaping differentiation, growth and storage compound 

formation of the embryo. Belmonte et al. (2013) presented developmental profiles of 

A. thaliana gene activity and characterized functional differentiation of subregions from 

fertilization to maturation. Coexpression analyses of identified genes suggest that processes 

defining seed size and regulating storage product accumulation are coordinated across several 

regions within the seed. Investigations indicate a high number of transcription factors and 

regulatory components in seeds (Lorenz et al. 2014, Le et al. 2010), but only a minor number 

of transcription factors have been characterized so far. It appears very likely that their 

involvement in various signaling cascades makes a fundamental contribution to programming 

and regulation of seed development.  

 

Seed development as a whole not only depends on the progress of each of the individual 

compartments (seed coat, embryo and endosperm), it also relies on the cross-talk between all 

compartments ensuring adjustment of the developmental processes in response to 

developmental cues. The endosperm is a connective tissue within the seed and provides the 

environment meeting the needs of the growing embryo. Communication routes in plant cells 

can either run through the symplast or the apoplast. Apoplastic transport is supported by 

membrane-localized transporters, while symplastic transport involves plasmodesmata. These 

micro channels are the connecting elements of cytoplasma and endoplasmic reticulum (ER) of 

neighboring cells and allow the exchange of hormones, metabolites, RNAs and small proteins 

(Xu and Jackson 2010). It is proposed that communication routes change several times during 

development (Kim et al. 2005, Lee and Yeung 2010). In seeds secreted peptides are highly 

abundant in specific cells and compartments. Recent findings suggest that their specific 
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accumulation might regulate signal cascades (Ingram and Gutierrez-Marcos 2015). For 

example, a peptide derived from the Arabidopsis CLAVATA3/embryo surrounding region-

related 8 (CLE8) influences embryo cell division, endosperm proliferation and the timing of 

endosperm differentiation (Fiume et al. 2011). A different peptide (KISS OF DEATH, KOD) 

expressed in embryos is involved in the degradation of the suspensor cell (Blanvillain et al. 

2011). It is suggested that peptides might be utilized to control developmental processes in 

plants in general (Costa et al. 2014), although their exact role in regulatory processes have not 

yet been fully elucidated. Furthermore, a tight redox control in the endosperm is of highest 

significance to ensure non-oxidizing conditions. Such conditions were recently proposed to be 

of key importance for germ cell fate and sexual reproduction (Kelliher and Walbot 2012). In 

vegetative tissues redox signals derived by photosynthetic activity regulate Calvin cycle, ATP 

generation, NADPH export, starch metabolism, carbon fixation, lipid synthesis and amino 

acid synthesis (Considine and Foyer 2014). The components of the redox-signaling pathway 

mainly respond to physiological and environmental inputs. The redox status in seeds is 

expected to be regulated using the glutathione system (Cairns et al. 2006). 

 

Remarkable progress is currently made in understanding the interactions of different seed 

compartments and signaling processes, but many gaps are yet to be filled. Future challenges 

include the integration of different research fields such as microscopic analysis, 

metabolomics, transcriptomics and proteomics. Such a system biology approach is a 

promising avenue to unravel communication systems and to identify checkpoints of 

developmental control in seeds. 
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1.2 Seed proteomics: Methods and applications 

 

The term proteome was introduced in 1996 by Wilkins et al. and defined as “the total protein 

complement of a genome”. However, a proteome is highly complex with respect to the 

chemical properties and the variable range of its constituents. In addition the proteome is 

dynamic and therefore its composition depends on several factors. Proteins are the functional 

and structural units within a cell and continually undergo changes due to biosynthesis and 

degradation, metabolic activity, interaction with other proteins to form complexes and post 

translational modifications. Protein function itself is regulated by external and internal cues. 

Thus, the investigated proteome reflects the current biological state and can be defined as the 

molecular phenotype of any given biological sample. Proteomic analyses are suitable for 

whole organisms, organs, specific tissues, cell types or organelles. Among all “omics”-

techniques, proteomics represents a key technology to investigate dynamic and complex 

biological systems such as seeds. 

 

1.2.1 General concept of seed harvesting and sample preparation 

 

Harvest and analysis of developing seeds is not trivial. For comparative analysis it is 

necessary to ensure developmental and physiological uniformity of the seed samples. To 

investigate seeds of a specific developmental stage, flowers are labeled on the day of 

pollination and are harvested at time points specific for the developmental stages in question. 

In addition to flower tagging and time-dependent harvesting, developmental stages of seeds 

can be checked by light microscopy of the growing embryo (Goldberg et al. 1994). In most 

seed proteomic studies whole seeds have been used since seeds of model plants such as 

Arabidopsis are comparatively small and separation of the seed in its different tissues (for 

example endosperm and embryo) is difficult. Schiebold et al. (2011) were able to show that 

laser micro dissection is a powerful method to collect different tissues from a seed for 

comparative analysis. However, to study the biological function of different seed 

compartments species producing large seeds are favorable. The endosperm of B. napus seeds 

can be easily isolated during its development using a micro syringe and provides an excellent 

source for proteomic approaches aimed at investigating the impact of a transient tissue on 

development and storage product accumulation (Lorenz et al. 2014, chapter 2.1). Sample 

preparation and protein extraction are critical steps to guarantee consistent and high quality 

proteomic data. Protein extraction from seed cells is a challenging task since the cells contain 
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compounds such as polyphenols, polysaccharides, starch, lipids and several secondary 

metabolites interfering protein separation methods such as gel electrophoresis and mass 

spectrometry (MS). In addition, storage proteins are present at high amounts while other 

proteins are comparatively low abundant in seeds. For total soluble proteins of seed samples 

an extraction method established by Colditz et al. (2004) has proven suitable and results in 

high-quality protein extracts. This method is based on protein solubilization in the phenol 

phase and several rounds of centrifugation followed by ammonium acetate precipitation to 

reduce interfering molecules in the sample. The major challenge is to analyse as many 

proteins as possible in a given sample. Proteins have diverse molecular characteristics such as 

molecular weight, isoelectric point, post translational modifications and hydrophobicity. The 

complexity of proteins and their dynamic range of concentration within seed samples can for 

example be reduced by sub-fractionation of different organs and tissues, e.g. endosperm and 

embryo (Lorenz et al. 2014). In order to analyse low abundant proteins during seed filling it is 

advantageous to deplete high abundant storage proteins from the sample (Krishnan et al. 

2009). Many protocols have been established to analyse plant organellar proteomes such as 

chloroplasts (Kubis et al. 2008), mitochondria (Keech et al. 2005) and peroxisomes (Eubel et 

al. 2008). Nevertheless, to apply those protocols to seed samples they need to be adjusted for 

low amounts of seed material. 

 

1.2.2 Gel-based versus gel-free proteomics 

 

Gel-based proteomics represents the most popular approach of global separation and 

quantification of proteins and became a standard tool in many biological studies. Two 

dimensional gel electrophoresis (2D-GE) resolves approximately 1000 proteins per gel and 

enables simultaneous characterization of different biochemical properties such as isoforms 

and molecular mass. The analysis of quantitative changes of proteins is based on spot volumes 

followed by protein identification via mass spectrometry. However, gel based methods also 

have limits in terms of analysing high molecular weight proteins, alkaline proteins, 

hydrophobic proteins and low abundant proteins. In the recent years gel-free approaches such 

as shotgun mass spectrometry were established. Prior to analysis proteins are digested and the 

resulting complex peptide mixtures are separated by liquid chromatography and subsequently 

analysed by tandem MS (LC-MS/MS), which offers high throughput analysis of proteomes 

and provides information on protein quantities. Hence, considering gel-based and/or gel-free 

methods mainly relies on the biological question addressed. The continuous improvement of 
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proteomic methods largely contributed to the characterization of seed proteomes and 

elucidation of complex interaction networks (reviewed in Wang et al. 2014 and Hajduch et al. 

2011). In this thesis gel-based as well as shotgun (gel-free) proteomics were implemented to 

unravel physiological transitions and regulatory mechanisms required for proper seed 

development and reserve deposition (Figure 2). In the future, this information could be 

translated from model plants to crops to increase seed quality and yield. 

 
 

Figure 2: Proteomics workflow towards understanding of developmental processes and storage product 

accumulation in seeds. After isolation, seed proteins can be either analysed by gel-based or gel-free proteomics. 
The combination of both techniques delivers comprehensive information on essential features of seed formation 
and is able to identify the key proteins involved in this process, thereby revealing the biological mechanisms 
controlling tissue transition to seed filling. This information can be translated from model plants to crops to 
increase seed quality and yield. 2D, two dimensional; IEF/SDS-PAGE, isoelectric focussing/sodium 
dodecylsulfate polyacrylamide gel electrophoresis; MS, mass spectrometry. 

 

Comparative proteomic analysis using two dimensional gel electrophoresis 

 

A proteomic workflow including two dimensional gel electrophoresis with isoelectric 

focussing (IEF) in immobilized pH gradients (IPG) followed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE), comparative analysis using gel analysis 

software and subsequent protein identification via LC-MS/MS has been established to analyse 

seed samples (Figure 3). Two dimensional gel electrophoresis delivers high resolution 

separation of different proteins including information on molecular masses, isoforms and post 
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translational modifications. The large number of simultaneously separated proteins 

characterizes the current biological state of different seed tissues or developmental stages. A 

known disadvantage of 2D gel electrophoresis is the low level of reproducibility due to 

differences in the gel runs that impede direct comparison of spot pattern of different 2D gels. 

Such gel to gel variations can be reduced by using differential gel electrophoresis (DIGE) that 

involves fluorescent labeling before protein separation, thereby allowing multiplexing of 

different seed samples (Hajduch et al. 2007). A positive side effect of this approach is an 

increased sensitivity (when compared to classical, non-fluorescent protein dyes such as 

coomassie). However, the multiplexing capacity is limited to the number of available 

fluorescent dyes. Several commercial and freely available software solutions can be used to 

analyse multiplexing and non-multiplexing IEF/SDS gels (e.g. Delta2D, Decyder, PD-Quest, 

Image Master 2D, Melanie, Same Spots). In the course of this thesis, the Delta2D software for 

gel image analysis and comparative proteomic approaches as described in Berth et al. (2007) 

was used. This software is able to match and relatively quantify protein spot volume from a 

large set of different samples. It has been shown that the advanced statistics and visualization 

methods included in Delta2D allow profiling of spot volumes and relative quantification of 

individual spots to predict metabolic pathways and functional dynamics in seed proteomes of 

different species. Physiological clustering of regulated proteins revealed new insights into 

endosperm function of Brassica napus (Lorenz et al. 2014, chapter 2.1) and Cyclamen 

persicum (Mwangi et al. 2013, chapter 2.3). The proteomic analysis of zygotic and somatic 

embryos of Theobroma cacao has been shown that carbohydrate metabolism especially 

glycolysis is of special importance for embryogenesis (Noah et al. 2013, chapter 2.4). These 

gel based proteomic studies therefore contributed in identifying quantitative changes of 

proteins that are particular important for developmental and metabolic processes in seeds. 
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Figure 3: Workflow for gel based comparative proteomics. The total soluble proteins are extracted from each 
seed sample (1) and separated by two dimensional (2D) IEF/SDS-PAGE (2). For statistical analyses at least three 
replicates per sample are required. The Delta2D software (Decodon) was used for the comparative quantitative 
analysis (3). First a digital overlay image of the samples is produced. Spots shown in green are of higher volume 
in seed sample 1 compared to seed sample 2, magenta spots are of reduced volume and yellow spots are of equal 
volumes. Statistically significant changes across all samples are marked in a color coding image (4). The 
proteins within the differentially abundant spots can be analysed via liquid chromatography (LC) followed by 
tandem mass spectrometry (MS/MS) and database search (5). Finally, functions of identified proteins are 
assigned to metabolic pathways (6). IEF, isoelectric focussing; SDS, sodium dodecylsulfate; PAGE, 
polyacrylamide gel electrophoresis. 
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Shotgun mass spectrometry based proteomics 

 

Supported by the ongoing development of mass spectrometers with respect to mass accuracy 

and sensitivity the characterization of whole proteomes in a high throughput manner became 

feasible without the need for prior separation of proteins (Nilsson et al. 2010). A shotgun MS 

based proteomic workflow includes protein extraction and digestion with a protease e.g. 

trypsin. The resulting complex peptide mixture is separated by liquid chromatography and 

spectra of the mass-to-charge ratio of precursor peptide ions and fragment peptide ions are 

acquired by MS scans. The huge sample throughput and high sensitivity are major advantages 

of LC-MS/MS methods. In addition to the pure identification of proteins (discovery MS), 

quantitative shotgun MS methods were successfully established in the last years. It has been 

shown that label free shot gun proteomics can be applied to detect and relatively quantify 

peptides and therefore proteins in seed samples using high resolution instruments. Applying 

this method revealed new insights into the role of seed photosynthesis and amino acid 

metabolism during development (Lorenz et al. 2015, chapter 2.6). Label-free quantification 

methods include either peak integration of precursor ions or spectral counting of fragment 

ions (Cox et al. 2014, Zhu et al. 2010). Peak integration seems to produce more accurate 

results, whereas spectral counting is more sensitive (Old et al. 2005). Both methods are 

promising to give broad insights into differentially abundant proteins within two or more 

proteomes. However, bioinformatics and statistics are crucial steps also in quantitative 

shotgun MS proteomic approaches and specialized software tools have been developed such 

as MaxQuant (MQ), which integrates peptide peaks and matches them from multiple samples 

(Cox et al. 2008) and Proteome Discoverer (PD, Thermo Fisher Scientific) for spectral 

counting. More recently targeted proteomic approaches such as selective reaction monitoring 

(SRM) and targeted-selected ion monitoring (t-SIM) were developed to identify and quantify 

specific proteins of interest. Picotti et al. (2013) have shown that SRM mass spectrometry is a 

powerful tool and represents an alternative application to immune detection by the use of 

antibodies. This technique also termed 'mass-western' allows quantification of low abundant 

proteins in complex samples. 
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1.3 Insights into central metabolic pathways essential for proper seed development 

 

During seed formation, changes in cellular structure coincide with distinct switches in 

metabolic activities. At early stages a metabolic cross-talk between the endosperm and 

embryo ensures cell differentiation and proper embryo growth. Later, the embryo massively 

accumulates storage compounds within the cotyledons which become a highly specialized 

storage tissue (Figure 4). Nutrients such as sugars and amino acids delivered from the mother 

plant are precursors for storage product biosynthesis in seeds (Melkus et al. 2009). In oilseeds 

like A. thaliana and B. napus mainly lipids and proteins are deposited during the seed filling 

phase. Only limited information on carbon storage in the cotyledons of oilseeds is available. 

At early stages, starch and hexoses (glucose and fructose) accumulate transiently, but their 

amount gradually decreases accompanied with a rapid increase of oil and lipid storage 

(Borisjuk et al. 2005, Baud et al. 2002). During germination, storage compounds are 

subsequently degraded and provided to the growing seedling. The efficiency of the storage 

compound mobilization depends on their amount accumulated during maturation and the 

action of distinct metabolic switches towards germination (Gallardo et al. 2008, Fait et al. 

2006). The results obtained in the course of this thesis indicate that the activity of central 

metabolic pathways such as photosynthesis, mitochondrial metabolism and carbohydrate 

metabolism are essential for proper tissue formation and storage product synthesis during seed 

filling. 

 

1.3.1 Seed photosynthesis 

 

Seeds of many different species are green during development, e.g. B. napus and A. thaliana 

contain photoheterotrophic plastids. The permeability of gases into seeds is rather low and 

plastidial activity during maturation phase contributes to oxygen allocation and reassimilation 

of CO2 (Borisjuk and Rolletschek 2009, Rolletschek et al. 2005, Borisjuk et al. 2005, Ruuska 

et al. 2004). Seed plastids hold special structures and have adapted their metabolism to cope 

with reduced light levels available for photosynthetic reactions (Borisjuk et al. 2013, Borisjuk 

et al. 2004). They have an elongated shape and contain high amounts of grana stacks and 

large starch grains (Asokanthan et al. 1997). The electron transport activity in seed plastids is 

different as shown by an enhanced chlorophyll a (Chla) to chlorophyll b (Chlb) ratio and high 

abundance of photosystem II (PSII) proteins, indicative of a cyclic electron transport via PSII. 

Highest photosynthetic activity is observed during storage product synthesis, suggesting a 
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correlation of metabolic processes and photosynthesis (Fait et al. 2006, Ruuska et al. 2002). In 

contrast to chloroplasts of leaves, seed plastids import carbon, mainly glucose-6-phosphate, 

phosphoenolpyruvate and pyruvate via specific transporters (Eastmond and Rawsthorne 

1998). The enhanced activity of PSII in seeds contributes to O2 supply needed for energy 

provision by redox equivalents and ATP (Borisjuk et al. 2005). At the same time, seed 

capacity of CO2 fixation is rather low (Asokanthan et al. 1997). Hence, the metabolism of 

photoheterotrophic plastids in seeds is changed into the direction of fatty acid biosynthesis 

(Andriotis et al. 2010, Goffman et al. 2005). Therefore it is proposed that seed photosynthesis 

effects embryogenesis (Hsu et al. 2010) and consequently germination (Allorent et al. 2015). 

 

1.3.2 Mitochondrial metabolism in seeds 

 

Mitochondria are essential organelles with pivotal roles in many cellular processes such as 

tricarboxylic acid (TCA) cycle activity, oxidative phosphorylation and energy production 

(Millar et al. 2011). In addition to the previously described functions, seed mitochondria have 

special roles in stress response and desiccation tolerance during germination (Macherel et al. 

2007). As seeds have very compact tissues, the capacity of gas exchange is rather low, 

requiring an adjustment of mitochondrial metabolism (Borisjuk et al. 2005). Mitochondrial 

activities in seeds are well adapted to promote storage product accumulation (Vigeolas et al. 

2003). It is assumed that embryos of B. napus seeds hold an unconventional mitochondrial 

metabolism since the cyclic flux around the TCA cycle is absent and substrate oxidation is 

reduced and hardly contributes to ATP production. Furthermore, isocitrate dehydrogenase 

activity is reversible and malic enzyme activity is enhanced (Schwender et al. 2006). Recently 

it was postulated that amino acids are not only building blocks for storage proteins within 

seeds, but also serve as alternative substrates for mitochondrial metabolism during stress 

situations (Galili et al. 2014, Fait et al. 2006). In vegetative tissues, amino acid catabolism is 

induced by carbon starvation situations e.g. periods of extended darkness (Hildebrandt et al. 

2015, Araujo et al. 2011 and 2010). First studies denote a potential role of amino acid 

catabolism to the energy status in seeds (Krüßel et al. 2014, Credali et al. 2013, Angelovici et 

al. 2011, Gu et al. 2010, Angelovici et al. 2009, Weigelt et al. 2008, Zhu and Galili 2003). It 

is likely that also in seeds together with photosynthesis amino acid degradation presumably 

contributes to energy provision. It has been shown that in Arabidopsis leaves a mitochondrial 

sulfur dioxygenase, is part of a sulfur catabolic pathway that catalyses the oxidation of sulfide 

or persulfides derived from amino acids to thiosulfate and sulfate and has key functions in 
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amino acid catabolism (Höfler et al. 2015, chapter 2.5, Krüßel et al. 2014). In seeds, 

ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) knock out leads to 

alterations in endosperm formation and finally causes seed abortion (Holdorf et al. 2012). It 

has been shown that a sulfur dioxygenase activity of 1 % present in an ETHE1 knock down 

mutant (ethe1-1) is sufficient for embryo survival, but development is severely delayed 

(Krüßel et al. 2014), which underlines the importance of this enzyme for seed development. A 

first detailed investigation on the function of the mitochondrial sulfur dioxygenase ETHE1 in 

seeds supports the hypothesis that amino acid metabolism is pronounced and has a potential 

role in nitrogen and energy provision during seed development (Lorenz et al. 2015, 

chapter 2.6). 

 

1.3.3 Carbohydrate metabolism of developing seeds 

 

Proteomic investigations of seed metabolism in different species have shown that 

carbohydrate metabolism is of central importance and has pivotal roles in development 

including seed filling, stress response and signal transduction (Lorenz et al. 2014, chapter 2.1; 

Mwangi et al. 2013, chapter 2.3; Noah et al. 2013, chapter 2.4). Sugars are degraded within a 

seed which is initially realized by invertases and sucrose synthases (Hill et al. 2003). 

Invertases also have a regulatory role in tissue formation by enhancing cell division whereas 

sucrose synthase activity affects biosynthesis of cellulose, proteins, lipids and starch in seeds 

(Wang and Ruan 2013, Xu et al. 2012, Pugh et al. 2010, Fallahi et al. 2008, Ruan et al. 2008, 

Chourey et al. 1998). At very early stages of seed development, vacuolar invertases are able 

to convert imported sucrose into hexoses in the endosperm and provide them to the growing 

embryo. The accumulation of hexoses subsequently drives water and nutrient uptake of the 

seed. Afterwards the cellularization of the endosperm causes shrinkage of the central vacuole 

and the ratio of hexoses and sucrose is switched (Hehenberger et al. 2012, Moreley-Smith et 

al. 2008). During later stages of development sucrose accumulates in the seeds. The switch 

from high hexose to high sucrose level is related to differentiation, cell expansion and storage 

activity in the embryo (Rolland et al. 2006, Weber et al. 2005). Thus, the embryo is able to 

develop into a self-competent sink tissue within the seed. Hexoses can be metabolized in the 

cytosol and in plastids either by glycolysis or oxidative pentose phosphate pathway (OPPP) to 

provide precursors for fatty acid biosynthesis (Schwender et al. 2003). Beyond these two 

pathways, Schwender et al. (2004) discovered that green seeds are able to contribute to fatty 

acid (FA) precursor formation by the activity of a ribulose-1,5-bisphosphate 
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carboxylase/oxygenase (RuBisCO) -bypass. In this unique pathway, RuBisCO is able to act 

without the Calvin cycle in a so far unknown reaction to improve carbon efficiency in seeds. 

Acetyl-CoA, a metabolite taking part in various metabolic reactions, is needed for proper seed 

development and storage product deposition (Ke et al. 2000). It is proposed that several 

enzymes like NADP-dependent malic enzyme (ME) (Shearer et al. 2004), plastidial acetyl-

CoA synthase (Lin and Oliver 2008), cytosolic phosphoenolpyruvate carboxylase (PEPC) 

(Sebei et al. 2006), NAD-dependent malic enzyme (MDH) (Junker et al. 2007) and ATP 

citrate lyase (Rawsthorne 2002) contribute to fatty acid biosynthesis in seeds. However, the 

regulation of carbon flux into fatty acid production by the proposed pathways is complex and 

their specific activity in vivo needs to be further investigated. In addition to providing 

carbohydrates for metabolism and storage product accumulation, sugars hold special functions 

in signal transduction (Hanson and Smeekens 2009). Sugar signal molecules like glucose, 

fructose, and trehalose-6-phosphate may modulate development. Defective sucrose 

metabolism and signaling trigger stress responses and reproductive failure (O’Hara et al. 

2013, Ruan et al. 2008). It is proposed that low glucose levels inhibit cell division (Wang and 

Ruan 2013, Weber et al. 2005) and induce over-production of reactive oxygen species due to 

reduced hexokinase activity (Kim et al. 2006). Investigations on mutants indicate a 

considerable role of glycolytic enzymes on plant development, growth and storage product 

biosynthesis (Dorion et al. 2012, Chen and Thelen 2010, Muñoz-Bertomeu et al. 2010 and 

2009, Andre and Benning 2007, Lee et al. 2002, Plaxton 1996). It is postulated that the 

occurrence of a nucleotide sugar recycling pathway is essential for vegetative and 

reproductive growth in A. thaliana. Due to cellularization of the endosperm, nucleotide sugars 

are important cell wall monomers that represent substrates for the turnover of cell wall 

polymers at later stages of seed development (Geserick and Tenhaken 2013). 

 

1.3.4 Storage lipid biosynthesis 

 

In seeds storage lipids are accumulated in form of triacylglycerols (TAGs) and fatty acids 

(FAs) (Gallardo et al. 2008, Murphy and Cummins 1989). Predominant FAs in seeds are 

palmitate, stearate, oleate, linoleate and alpha-linoleate (Voelker and Kinney 2001). Oilseeds 

like B. napus are enriched with very long chain FAs (VLCFA) (Sharafia et al. 2015). FA 

biosynthetic pathways in plants are well characterized (Baud and Lepiniec 2009, Rawsthorne 

2002) and strongly dependent on the supply of energy, reductants and carbon sources (see 

chapter 1.3.3). Sucrose delivered from the mother plant is sequentially metabolized by 
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pathways in the cytosol and the plastids to produce fatty acids (Hills 2004). The first 

committed step is catalyzed by an acetyl-CoA carboxylase (ACCase) which carboxylates 

acetyl-CoA to form malonyl-CoA. The assembly of FAs occurs at the acyl carrier protein 

(ACP). The resulting acyl-ACP can either be hydrolyzed by acyl-ACP thioesterases or further 

elongated by specific condensing enzymes, the 3-ketoacyl-ACP synthases (KAS). The 

biosynthesis of FAs is mainly regulated by interactions of transcriptional regulation and 

optimization of enzyme activity (Baud and Lepiniec 2009, Ohlrogge and Jaworski 1997). FAs 

are transported into the ER where they may subsequently be desaturated (Baud and Lepiniec 

2009), prior to their esterification to a glycerol backbone and being transferred to dedicated 

storage organelles so called ‘oil bodies’ (Huang 1992). The biosynthesis of seed storage lipids 

is a potential target for metabolic engineering in an attempt increasing their content of healthy 

FAs, improve oil stability and generally increase oil content (Thelen and Ohlrogge 2002). 

 

1.3.5 Seed storage protein accumulation 

 

Seed storage proteins (SSPs) accumulate during the seed filling phase and are a major source 

of nitrogen and amino acids. The composition of storage proteins varies between different 

species. In the dicotyledons Arabidopsis and B. napus the mature seeds contain globulins 

(cruciferin), albumins (napin) and oleosins (oil body protein) (Höglund et al. 1992, Huang 

1992) with cruciferins accounting for the bulk (approximately 60 %) of the total seed protein 

content (Crouch and Sussex 1981). Globulins are co-translationally synthesized into the rough 

endoplasmic reticulum (rER). The mature protein consists of an α- and a β-polypeptide chain 

linked by a disulfide bond. Both chains are derived from the same precursor molecule and the 

proglobulin is newly assembled into trimers by cleavage of the ER signal peptide followed by 

formation a disulfide bond between the N- and C- terminus of the polypeptide (Ereken-Tumer 

et al. 1982, Chrispeels et al. 1982, Sengupta et al. 1981). The formation of trimers is essential 

for a directed transport from the ER into protein storage vacuoles (PSVs) (Chrispeels et al. 

1982). After import the trimers are disassembled, which is realized by a vacuolar processing 

enzyme, and organized into hexamers to form the mature protein (Dickinson et al. 1989, Jung 

et al. 1998, Shimada et al. 2003). In contrast to previous reports on globulin complexes, the 

native B. napus cruciferin complex exhibits a unique octameric barrel-like structure. This 

structure represents a very compact building block optimized for maximal storage of amino 

acids (Nietzel et al. 2013, chapter 2.2). 
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Figure 4: Essential features of developing seeds needed for proper tissue differentiation and storage 

product synthesis. At early stages a metabolic cross-talk between the endosperm and embryo ensures cell 
differentiation and proper embryo growth (A). Later the metabolism of the seed is switched to storage product 
accumulation. This process is marked by an increase of central metabolic pathways in cytosol, mitochondria and 
plastids (B). The provision of sufficient amounts of precursor molecules, reductants and energy highly influence 
the composition of stored lipids (oilbodies) and proteins (PSVs) (C). ATP, adenosine triphosphate; CO2, carbon 
dioxide; O2, oxygen; OPPP, oxidative pentose phosphate pathway; OXPHOS, oxidative phosphorylation; PSV, 
protein storage vacuole; RuBisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase; TCA, tricarboxylic acid. 

  

Chapter 1: Seed biology and plant proteomics

19



 

20



1.4 Objectives of the thesis 

 

The overall aim of this thesis was to increase our understanding of seed biology and create a 

deeper knowledge of the physiological role of differentially regulated proteins during tissue 

differentiation and storage product accumulation. A detailed characterization of regulated 

metabolic pathways and the identification of developmental and tissue specific proteins using 

proteome analyses allowed identifying molecular events of key importance for seed biology. 

The new insights will be of relevance for improving seed quality and yield in the future. 

 

 

This thesis was focused on the following objectives: 

 

 

(i) Establishment of a comparative proteomic workflow for investigating seed 

development and storage product accumulation in different species 

 

 

(ii) Detailed analysis of endosperm function and metabolism to characterize its 

contribution to seed development 

 

 

(iii) Characterization of the native cruciferin complex, a highly abundant storage 

protein complex in Brassica napus 

 

 

(iv) Investigation of photosynthesis and amino acid metabolism in developing seeds 
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Oilseeds are an important element of human nutrition and of increasing significance for the

production of industrial materials. The development of the seeds is based on a coordinated

interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give

insights into the physiological role of endosperm for seed development in the oilseed crop

Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/

SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass

spectrometry three proteome projects were carried out: (i) establishment of an endosperm

proteome reference map, (ii) proteomic characterization of endosperm development and

(iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference

map comprises 930 distinct proteins, including enzymes involved in genetic information

processing, carbohydrate metabolism, environmental information processing, energy

metabolism, cellular processes and amino acid metabolism. To investigate dynamic

changes in protein abundance during seed development, total soluble proteins were

extracted from embryo and endosperm fractions at defined time points. Proteins involved

in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis

and redox balancing were found to be of special importance for seed development in B. napus.

Implications for the seed filling process and the function of the endosperm for seed

development are discussed.

Biological significance

The endosperm is of key importance for embryo development during seed formation in

plants. We present a broad study for characterizing endosperm proteins in the oilseed plant

B. napus. Furthermore, a project on the biochemical interplay between the embryo and the

endosperm during seed development is presented. We provide evidence that the

endosperm includes a complete set of enzymes necessary for plant primary metabolism.

Combination of our results with metabolome data will further improve systems-level

understanding of the seed filling process and provide rational strategies for plant

bioengineering.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The endosperm is a central compartment of the developing

plant seed. It embeds the embryo and is surrounded by the seed

coat. Seed development is initiated by a double fertilization:

(i) fertilization of an egg cell by a sperm cell, which leads

to the embryo and (ii) fertilization of a diploid central cell

by another sperm cell, which gives rise to the triploid

endosperm.

Seed formation of dicotyledonous species such as

Arabidopsis thaliana and Brassica napus is characterized first

by a stepwise differentiation of the endosperm including

transition from a syncytial to a cellular phase [1–4] followed by

embryo development. The formation of a syncytium is

initiated by several rounds of mitosis of the fertilized central

cell without cytokinesis leading to a multinuclear cell [1]. In

the course of seed development the endosperm is divided into

three mitotic domains: (1) the micropylar, (2) the peripheral

and (3) the chalazal region in which nuclei divide simulta-

neously [5]. The syncytium becomes cellularized by the

formation of radial microtubule systems starting from the

micropylar region [1,4,6]. The process of cellularization has a

great impact on the accurate embryo development [7] and

leads to the initiation of cotyledon growth [4]. After

cellularization the outermost cells of the endosperm differ-

entiate into the aleurone layer. The characteristics of this cell

type are thick cell walls and the deposition of storage

compounds and enzymes [8]. In dicotyledons the endosperm

is of transient nature and only the aleurone layer remains

until seed maturity whereas the bulk of the endosperm is

replaced by the growing embryo. Programmed cell death leads

to the degradation of endosperm cells and is probably

controlled by ethylene and interactions between embryo and

endosperm [9–11]. The interplay of different seed compart-

ments on various molecular and genetic levels is crucial for

coordinated seed development [12–16].

Investigations of mutants carrying endosperm specific

defects have given insights into development and function

of this compartment [7,17–21]. Most of these studies were

focused on plant species exhibiting a constitutive endosperm

like cereals. In these monocotyledonous plants, the endo-

sperm has a prime role in storage compound accumulation

[22–28], while in dicotyledonous species the endosperm rather

seems to play a transient role. It nourishes the embryo and

supports development and growth at early seed developmen-

tal stages [4,9,29,30]. Here, storage compounds are rather

accumulated in the cotyledons [31]. The endosperm is the

main source of carbohydrates and amino acids for the

growing embryo [32]. At very early stages of seed development

sucrose imported from the mother plant is cleaved into

hexoses in the endosperm and provided to the embryo.

Accumulation of hexoses subsequently drives water and

nutrient uptake of the seed [33]. During later stages of

development sucrose accumulates in the seeds. The switch

from high hexose to high sucrose level is related to differen-

tiation, cell expansion and storage activity in embryo [34,35].

The endosperm represents the direct environment of the

dicot embryo and ensures constant and optimal conditions

for its differentiation and growth [32]. However, the metabolic

functions ensuring its evolutionarymission are just beginning

to emerge [36–38]. It is particularly unknown to which extend

endospermmetabolism canmodulate the incoming stream of

assimilates, and thereby affect differentiation, growth and

storage functions of the embryo.

In this study a comparative proteomic strategy was applied

to developing seeds of B. napus. This plant represents one of

the most important oilseed crops. Based on (i) the establish-

ment of an endosperm proteome reference map, (ii) the

proteomic characterization of endosperm development, and

(iii) the comparison of endosperm and embryo proteomes, we

aimed to get insights into both physiology and metabolic

functions of endosperm in dicot seeds.

2. Material and methods

2.1. Cultivation ofB. napus seedlings and seed tissue preparation

B. napus plants were grown under the following conditions:

16-h light (16 klx) at 22 °C, 8-h dark at 18 °C with a relative

humidity of 55%. Our experimental set up was the following:

For each experiment, 10 rapeseed plants were used.

Approximately 25 siliques were harvested per plant and

approximately 30 seeds per silique (overall approximately

7500 seeds per experiment). Embryo and endosperm fractions

were preparedmanually. The procedure was repeated at three

times points per fraction (endosperm: 10, 15 and 20 days after

pollination [DAP], embryos 15, 20 and 25 DAP). All 10-plant

experiments for all time points were carried out twice. The

endosperm fractions were isolated with a microsyringe from

the seeds. Embryos were isolated by removing the seed coat

and subsequent washing to remove the potentially remaining

endosperm. The endosperm was directly used for phenolic

extraction of proteins. In contrast, the embryos were first

pulverized using a bead mill.

2.2. Phenolic extraction of proteins and two dimensional (2D)

IEF/SDS PAGE

Total soluble proteins were extracted from the endosperm

and embryo fraction according to Colditz et al. [39]. Briefly,

endosperm and pulverized embryo fractions were homoge-

nized in extraction buffer (700 mM sucrose, 500 mM Tris,

50 mM EDTA, 100 mM KCl, 2% (v/v) β-mercaptoethanol and

2 mM PMSF, pH adjusted to 8.0). Then, saturated phenol

(pH 6.6/7.9; Amresco, Solon, USA) was added. After several

rounds of centrifugation proteins were precipitated with

100 mM ammonium acetate in methanol at −20 °C overnight.

The resulting protein pellets were resuspended in resuspen-

sion buffer (8 M urea, 2 M thiourea, 2% (w/v) CHAPS, 100 mM

DTT, 12 μl/ml DeStreak-reagent, 0.5% (v/v) IPG-buffer pH 3-11

NL, GE Healthcare, Freiburg, Germany) and directly loaded

onto an IPG strip (24 cm, pH 3–11 NL, GE Healthcare, Freiburg,

Germany). Isoelectric focusing was performed as described in

Mihr and Braun [40]. Second gel dimensions (precast 12.5%

polyacrylamide gels, Serva Electrophoreses, Heidelberg,

Germany) were performed using the HPE FlatTop Tower

system (Serva Electrophoresis, Heidelberg, Germany) according

to the manufacturer's guidelines. 2D analyses for endosperm
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and embryo fractions (three time points each) were repeated at

least three times.

2.3. Gel staining procedure

All 2D gels were fixed with 10% (v/v) acetate in 40% (v/v)

methanol for 45 min and stained with Coomassie blue CBB

G-250 (Merck, Darmstadt, Germany) as described by Neuhoff

et al. [41,42].

2.4. Quantitative gel analyses of endosperm and embryo

proteomes

Coomassie colloidal stained gels were first scanned and then

analyzed by using the Delta2D software 4.3 (Decodon,

Greifswald, Germany) with three replicates for each seed

tissue (endosperm and embryo) and developmental stage (10,

15, 20 DAP for endosperm and 15, 20, 25 DAP for embryo

fractions) according to Berth et al. [43]. Spots were detected

automatically (minor corrections of obvious gel disturbances

were performed manually). To determine significant alter-

ations in spot abundance of endosperm and embryo fractions,

a Student's t-test (p-value ≤ 0.05) was applied on the basis of

normalized relative spot volume. Alterations in protein

volumes between the compared fractions ≥ factor 1.5 were

considered to represent true differences on protein levels.

Mean of normalized relative spot volume and coefficient of

variation for each analyzed sample group are given in

Supplementary Table 1. In order to analyze the similarity of

the sample replicates a principal component analysis (PCA)

was performed using Delta2D analysis following the

manufacturer's instructions (for 3D plot of the samples see

Supplementary Fig. 11). Additionally a heatmap using hierar-

chical cluster analysis (HCL) was generated using Delta2D

software (Supplementary Fig. 12).

2.5. Mass spectrometry analysis of B. napus seed

tissue proteins

The establishment of an endosperm proteome reference map

and the analyses of changes in protein abundances during

endosperm and embryo development were based on protein

identifications by mass spectrometry (MS). Tryptic digestion

and MS analysis was performed according to Klodmann et al.

[44] using the EASY-nLC System (Proxeon) coupled to a

MicroTOF-Q II mass spectrometer (Bruker Daltonics, Bremen,

Germany). Identification of proteins was carried out using the

MASCOT search algorithm (www.matrixscience.com) against

the (i) SwissProt (www.uniprot.org), (ii) NCBInr (www.ncbi.nig.

gov) and (iii) TAIR (www.arabidopsis.org, TAIR release 10)

databases. In some cases, B. napus sequences are available.

However, most proteins were identified via A. thaliana. B. napus

and A. thaliana both belong to the Brassicaceae family and

sequence identity within exons on average is above 90%.

Therefore, the protein sequences of Arabidopsis are very useful

for protein identifications in rapeseed. Identified proteins in

B. napus are considered to represent homologs of the

corresponding proteins in Arabidopsis (which does not exclude

that theyhave differing functional roles). For details onpeptides

used for protein identification see Supplementary Table 2.

Identified proteins were functionally classified according to the

KEGG PATHWAY Database (http://www.genome.jp/kegg/

pathway.html). The pathway categories were adjusted for

seed metabolism by adding four functional groups: (i) storage,

(ii) defense, (iii) desiccation and (iv) detoxification.

3. Results and discussion

3.1. Characterization of the endosperm proteome

Soluble proteins were extracted from the endosperm harvest-

ed 20 days after pollination (DAP), separated by high resolu-

tion 2D IEF/SDS PAGE using the HPE FlatTop Tower gel

electrophoresis system and resolved proteins were finally

identified by mass spectrometry. Delta2D analysis revealed

separation of 964 protein spots on our gels. 385 spots were

selected on a random basis and represent the most abundant

protein spots of all areas of the gel and resulting in the

identification of 930 distinct endosperm proteins (Supple-

mentary Table 1). It should be noted that, based on our

experimental approach, the proteome of the endosperm is

only partially covered. Results of our study were used to

generate a ‘reference map’ of the B. napus endosperm

proteome (Fig. 1). Identified proteins were systematically

analyzed by usage of various database resources.

3.1.1. Insights into overall proteome architecture

The B. napus endosperm proteome (Fig. 1) is composed of

proteins covering a wide range of molecular masses (Fig. 2A)

and pIs (Fig. 2B). Proteins within the 10 to 70 kDa range are

predominant in the endosperm. Analysis of isoelectric points

(pIs) of the identified proteins revealed two peaks, a major one

at acidic to the neutral pH (pH 4.5 to 7.5) and a minor one at

basic pH (pH 8.5–11). Apparent molecular masses of the 930

proteins very much correlate with calculated molecular

masses (Fig. 2C). However, as expected, several proteins have

a slightly reduced apparent molecular mass if compared to

the calculated mass, which is due to the cleavage of targeting

peptides of proteins transported to the endosplasmic reticu-

lum (ER), chloroplasts or mitochondria. Only a few proteins on

our 2D gels are significantly smaller than predicted, most

likely reflecting proteolytic processing. A few proteins are

larger than expected which could be the consequence of

protein modification. Likewise, measured and calculated

isoelectric points (pIs) of the 930 proteins correlate (Fig. 2D).

However, several proteins clearly exhibit more acidic pIs than

calculated, which most likely is due to protein modifications

like phosphorylation.

3.1.2. Functional classification of proteins abundant in

the endosperm

The endosperm of B. napus includes a broad spectrum of

proteins (Supplementary Table 1). To gain insights into endo-

sperm metabolism, identified proteins were grouped into

functional categories according to KEGG PATHWAY Database

(Fig. 3). In the following sections, details on the predominant

functional categories (i) genetic information processing (31%

of the total set of identified proteins), (ii) carbohydrate

metabolism (17%), (iii) environmental information processing
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(12%), (iv) energy metabolism (9%), (v) cellular processes (7%)

and (vi) amino acid metabolism (6%) are given:

(i) Genetic information processing

Theendospermproteome includes ahighnumber of proteins

taking part in transcription and transcriptional regulation, like

DEAD box RNA helicases, G-rich RNA-binding proteins,

DNA-binding protein BIN4, regulator of ribonuclease-like protein

1, FACT complex subunit and rho termination factor. BIN4 is a

component of the plant DNA topoisomerase. It has been

discussed that expression of bin4 drives cell expansion [45].

Several transcription factors (AP2-like ethylene-responsive

transcription factor BBM, basic transcription factor 3, GRAS

transcription factor, WRKY transcription factor, squamosa

promoter binding protein-like, SSXT family protein) were found

in the endosperm. AP2-like ethylene-responsive transcription

factor BBM promotes cell proliferation, differentiation and

morphogenesis and leads to the induction of embryo develop-

ment [46]. Also WRKY and GRAS transcription factors are

proposed to control developmental processes [47,48]. Transcrip-

tion factors expressed in the endosperm are known to control

final seed size and to coordinate embryo development [49]. The

factors identified here might be involved in this regulatory

cascade and/or related processes in B. napus seeds. Many

proteins involved in translation, such as ribosomal proteins,

initiation factors, elongation factors, andpoly(A) binding protein,

were identified in the course of our study. Proteins

related to protein folding and sorting were found in

several protein spots, for instance diverse chaperones,

heat shock proteins and protein disulfide isomerases.

The presence of numerous proteins involved in protein

degradation, e.g. subunits of the proteasome and

several monomeric proteases, indicates high protein

turnover in the endosperm. The cell division control

protein 48, an ATPase associated with versatile cellular

functions [50], and the aspartic protease phytepsin are

known to play important roles in targeted degradation

of proteins.

(ii) Carbohydrate metabolism

Proteins involved in carbohydrate metabolism, which for

instance play a role in glycolysis/gluconeogenesis, tricarbox-

ylic acid (TCA) cycle and other sugar converting processes,

are highly abundant in the endosperm. All glycolytic en-

zymes as well as the pyruvate dehydrogenase complex

were identified. Glycolytic activity is one of the key features

Fig. 1 – Two-dimensional endosperm proteome reference map. Total soluble endosperm proteins were separated on a 3–11 NL

pH gradient IPG strip and subsequently on a 12.5% SDS-PAGE. The gel was stainedwith colloidal Coomassie brilliant blue G250.

The arrows indicate spots that were picked for MS analysis (for results see Supplementary Table 1). Molecular masses of

standard proteins are given to the left and pIs above the gel.
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of endosperm metabolism in B. napus seeds because it

generates metabolic intermediates, reductants and energy

[51]. B. napus embryos were reported to have a reduced cyclic

flux around the TCA cycle [52]. In our studywe only identified

five out of the eight enzymes of the TCA cycle in the endo-

sperm (aconitase, citrate synthase, isocitrate dehydrogenase,

malate dehydrogenase and succinyl-CoA-ligase). Possibly the

B. napus endosperm also has a reduced TCA cycle or the

missing enzymes are beyond the detection limit of our study.

Identification of enzymes contributing to the acetyl-CoA pool

(2-oxoacid dehydrogenase acyltransferase, citrate lyase)

might point to the high demand of acetyl-CoA for the

synthesis of elongated fatty acids (and other compounds)

which are highly abundant in rapeseed endosperm [53].

Furthermore the endosperm exhibits a high potential to

produce reductant (NADH) via the pentose phosphate path-

way as indicated by the detection of ribose-5-phosphate

isomerase, phosphogluconate dehydrogenase, glucose-6-

phosphate 1-dehydrogenase, 6-phosphogluconolactonase,

transaldolase and transketolase. Two enzymes related to

ascorbate biosynthesis were identified (ascorbate peroxi-

dase, dehydroascorbate reductase). The endosperm also

exhibits an active starch metabolism as indicated by the

presence of enzymes required for starch synthesis (AGPase)

and starch degradation (beta amylase). These data alto-

gether indicate an active biosynthetic machinery, and

correspond to the histological detection of starch granules,

storage protein vacuoles and oil bodies in rapeseed endo-

sperm [53].

(iii) Environmental information processing

The endosperm is the direct environment for the growing

embryo and therefore is proposed to have a protective role.

Accordingly, it includes a large number of proteins involved

in signal transduction, plant hormone biosynthesis, stress

response and defense related enzymes. The endosperm

signaling pathways include annexin, calmodulin and 14-3-3

Fig. 2 – Proteome structure of B. napus endosperm. A: Distribution of calculated molecular masses of identified endosperm

proteins. B: Distribution of calculated isoelectric points of identified endosperm proteins. C: Correlation of apparent and

molecular masses. D: Correlation of apparent and calculated isoelectric points (pIs). Evaluations are based on a set of 930

identified proteins. Regression lines (y = x) are given in C and D.
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Fig. 3 – Functional classification of identified endosperm proteins of the proteome reference map. Proteins were assigned to

the functional categories of the KEGG PATHWAYDatabase or one of the four following extra categories: (i) storage, (ii) defense,

(iii) desiccation and (iv) detoxification.

Fig. 4 – B. napus seed development. Images of pods, whole seeds, seed cross-sections and embryos were taken from 7 to 56 DAP.

Proteome analyses were carried out for 10 DAP (endosperm), 15 and 20 DAP (endosperm and embryo) and 25 DAP (embryo).
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proteins. Calmodulin is a calcium binding protein and plays a

role in varying signaling pathways [54]. Annexin, another

calcium-binding protein, is able to build ion channels by

forming a hexameric structure [55]. It possibly represents a

regulator of ion exchange between subregions of the seed.

Calcium-mediated signal transduction pathways might rep-

resent an important feature of the endosperm to coordinate

developmental processes. Also, conserved regulatory 14-3-3

proteins were identified in this study which possibly are

involved in seed development and germination [56]. The

endosperm is also a source for plant hormones at maturation

[57] but their role for endosperm development remained

unknown so far. The following proteins involved in plant

hormone biosynthesis were identified: auxin-responsive

GH3 family protein, cytokinin riboside 5′-monophosphate

phosphoribohydrolase LOG8, cytokinin-O-glucosyltransferase 1

and jasmonic acid-amido synthetase JAR1. Endosperm function

in protecting the growing embryo might rely, besides other

factors, on the occurrence of glutathione S-transferase,

glutathione synthetase, glutaredoxin, catalase, peroxiredoxin,

superoxide dismutase, translationally controlled tumor

protein and adenine nucleotide alpha hydrolase, which all

were identified in the course of our study. Also, plant defense

related proteins, such as beta glucosidase, actin depolymerizing

factors, protein LIR18A and thiocyanate methyltransferase

were abundant in the endosperm. It is known that the

termination of endosperm development is initiated by a

gradual degradation of endosperm cells due to programmed

cell death [11]. Accordingly, metacaspase 7, a protein in-

volved in programmed cell death, was detected in the course

of our study.

(iv) Energy metabolism

Embryos of green seeds perform photosynthesis to

support biosynthetic activity and to diminish oxygen

shortage [58]. Several proteins involved in photosynthetic

processes were found in the endosperm, including vari-

ous isoforms of the RuBisCO subunits, PSII and PSI

subunits, light harvesting proteins, subunits of the cyto-

chrome b6f complex, chlorophyll a–b binding protein,

ferredoxin NADP reductase, subunits of chloroplast ATP

synthase and early light induced protein. Additionally,

the oxygen evolving enhancer protein, which might

promote oxygen production, was found at high abun-

dance in the endosperm.

(v) Cellular processes

Several proteins involved in cell wall biogenesis were

detected in the course of our study, including alpha-1,4-

glucan-protein synthase, xyloglucan galactosyltransferase,

UDP arabinopyranose mutase, UDP-glucose-6-dehydrogenase

and fibrillin. Furthermore, an endoglucanase involved in cell

wall degradation was identified. The endosperm includes

cytoskeleton proteins such as tubulin, actin, and profilin to

Fig. 5 – Experimental strategy for proteomic characterization of early seed development. Flowers were tagged directly after

pollination (0 DAP) to define developmental stages. Endosperm (es) and embryo (em) fractions obtained at 10–25 DAP were

used for phenolic protein extractions followed by 2D IEF/SDS gel electrophoreses (three replicates for each fraction) Delta2D

analysis was used for protein quantification. Proteins differing in abundance between the compared fractions were identified

by MS analyses and assigned to functional categories.
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ensure vesicle and membrane transport activities. The

identification of proteins related to membrane trafficking

and protein transport processes such as glycolipid transfer

protein, plastid lipid associated protein, patellin, clathrin adap-

tor complexes, dynamin, importin, GOLD family protein, Mov34/

MPN/PAD-1 family protein, NSF attachment protein,

TOC75-3, RAB GTPase, Ran binding protein and RAB GDP

dissociation inhibitor indicates occurrence of regulated

transport processes andmembrane biogenesis in the endosperm

tissue.

(vi) Amino acid metabolism

The endosperm is known to receive amino acids from the

mother plant, to transiently store and deliver them toward the

growing embryo [32]. We here identified a large set of proteins

involved in (i) alanine, aspartate and glutamate metabolism (alanine

aminotransferase, aspartate aminotransferase, glutamate dehy-

drogenase), (ii) arginine metabolism (acetylornithine deacetylase),

(iii) cysteine andmethionine metabolism (adenosylhomocysteinase,

methionine synthase, S-adenosylmethionine synthase,

1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase, 5-

methyltetrahydropteroyltriglutamate-homocysteine methyl-

transferase), (iv) glycine, serine and threonine metabolism

(serine hydroxymethyltransferase, PLP-dependent trans-

ferase), (v) lysine biosynthesis (lysine decarboxylase,

LL-diaminopimelate aminotransferase) and (vi) valine,

leucine and isoleucine metabolism (3-isopropylmalate

dehydrogenase, methylmalonate-semialdehyde dehydro-

genase). These findings support the view that the endo-

sperm is not only a (passive) port of transit for amino acids

but possesses a pronounced amino acid metabolism,

supporting its own demands and able to respond to

embryo's requirements.

3.2. Developmental changes in the endosperm proteome in

comparison to embryo

Comparative proteomics was employed to obtain in-

sights into the dynamic changes of proteins during B.

napus seed development. For this approach, two exper-

imental lines were followed: (i) comparison of different

Fig. 6 – Changes in protein abundance during endosperm development. Three developmental stages of the B. napus

endosperm were investigated (10, 15, 20 DAP) by 2D IEF/SDS PAGE and Delta2D analysis. To determine significant changes in

spot volume, a Student's t-test (p-value ≤ 0.05) was applied on the basis of normalized relative spot volume. Changes in spot

volume ≥1.5 were considered to represent true alterations. Protein spots of increased volume at 15 DAP (with respect to

10 DAP, A) and at 20 DAP (with respect to 15 DAP, B) are illustrated at the fused gel image of both groups in green, protein spots

of reduced volume at 15 DAP (with respect to 10 DAP) and at 20 DAP (with respect to 15 DAP) in pink. The number of changed

spots with respect to selected functional protein categories is given to the right of the gels (same color code).
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endosperm developmental stages and (ii) comparison of

endosperm versus embryo. In a pre-experiment, seed

development was systematically characterized by visual

inspection to determine endosperm and embryo stages

suitable for proteome analyses (Fig. 4). The embryo and

also the endosperm of B. napus seeds are green during

development. From 7 to 10 DAP the seed consists of

endospermal liquid, very thin endospermal cell layers,

and a seed coat while the embryo is hardly visible by

eye. At the beginning of the cotyledon stage (14 DAP) the

embryo becomes visible. During further development the

largely fluid endosperm is gradually replaced by the

growing embryo. At 25 DAP the endosperm is no more

visible and its development is terminated while the

Fig. 7 – Differences of endosperm and embryo proteomes. Embryo and endosperm proteomes were investigated at 15 DAP (A)

and at 20 DAP (B) by 2D IEF/SDS PAGE and Delta2D analysis. To determine significant differences in spot volume, a Student's

t-test (p-value ≤0.05) was applied on the basis of normalized relative spot volume. Changes in spot volume ≥1.5 were

considered to represent true alterations. Protein spots of increased volume in the endosperm (with respect to the embryo) are

illustrated at the fused gel image of both groups in pink, protein spots of reduced volume in the endosperm (with respect to the

embryo) in green. The number of changed spots with respect to selected functional protein categories is given to the right of the

gels (same color code).

Table 1 – Number of spots with altered volumes and identified proteins within the comparisons (i)–(vi).

Comparison Days after pollination Tissue Number of spots with increased
(↑) or decreased (↓) volume

Number of
identified proteins

(i) 10 → 15 Endosperm ↑105

↓71

205

147

(ii) 15 → 20 Endosperm ↑65

↓61

106

112

(iii) 15 → 20 Embryo ↑41

↓45

80

48

(iv) 20 → 25 Embryo ↑78

↓68

108

113

(v) 15 → 15 Endosperm/embryo ↑351

↓276

182

111

(vi) 20 → 20 Endosperm/embryo ↑271

↓212

194

93
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embryo is still expanding. Accompanied by the color transition of

the seed coat from green to brown also the embryo changes its

color. Reduction of green pigments starts at the radicle and then

spreads to the inner and outer cotyledons. At late maturation,

embryo growth stops and desiccation of the seed is initiated.

Based on this developmental sequence, six different fractions

were taken for further proteomic analyses: endosperm tissue at

10, 15 and 20 DAP and embryo tissue at 15, 20 and 25 DAP.

Total soluble proteins were extracted from the six selected

stages and analyzed by comparative proteomics. The workflow

was based on three gel replicates per fraction and Delta2D

analyses (summarized in Fig. 5). Proteins of differential abun-

dance within the compared fractions were identified using the

reference map or MS analyses. While overall proteome archi-

tecture with respect to the molecular mass and pI profiles of

proteins of the six compared fractions are largely unchanged

(Supplementary Fig. 10), the protein composition within the

fractions specifically differs. We carried out six comparisons:

(i) Changes of the endosperm proteome at 15 DAP with

respect to 10 DAP (Fig. 6, Supplementary Figs. 1, 2,

Table 2)

(ii) Changes of the endosperm proteome at 20 DAP with

respect to 15 DAP (Fig. 6, Supplementary Figs. 1, 3,

Table 3)

(iii) Changes of the embryo proteome at 20 DAP with respect

to 15 DAP (Supplementary Figs. 4, 5, 7, Supplementary

Table 1).

(iv) Changes of the embryo proteome at 25 DAP with respect

to 20 DAP (Supplementary Figs. 4, 6, 7, Supplementary

Table 1)

(v) Differences between the endosperm and embryo

proteomes at 15 DAP (Fig. 7A, Supplementary Fig. 8,

Table 4)

(vi) Differences between the endosperm and embryo

proteomes at 20 DAP (Fig. 7B, Supplementary Fig. 9,

Table 5)

Table 1 summarizes the number of spots which have

reduced or increased volumes and the corresponding proteins

identified by MS in the six comparisons (changes in abun-

dance of ≥1.5 fold).

In the following sections, based on the six proteomic

comparisons, developmental changes of processes taking

place in both endosperm and embryo are discussed. Since

many spots include more than one protein and since some

proteins are present in more than one spot, quantitative

regulation patterns for individual enzymes cannot be con-

cluded from our experimental approach. However, tendencies

for dynamic changes of functional processes are clearly

visible (Figs. 6 and 7):

(i) Changes of the endosperm proteome at 15 DAP with

respect to 10 DAP: The number of proteins included in

spots with altered volumes rather increases than

decreases for most functional categories (Fig. 6A,

Supplementary Figs. 1, 2, Table 2). Notably, proteins

involved in energy metabolism, carbohydrate metab-

olism, amino acid and lipid metabolism increase. This

underlines the rising metabolic activity (storage

metabolism) of endosperm and the fundamental role

of endosperm in nutrient supply for the embryo at

15 DAP. Also, proteins involved in environmental

information processing increase. In contrast, no clear

tendency in up- or down-regulation of proteins

involved in genetic information processing is visible

at 15 DAP with respect to 10 DAP. The number of

proteins involved in the biosynthesis of secondary

metabolites decreases from 10 to 15 DAP.

(ii) Changes of the endosperm proteome at 20 DAP with

respect to 15 DAP: During development from 15 to

20 DAP, many processes in the endosperm signifi-

cantly change. In contrast to the situation from

10 DAP to 15 DAP, further development of the endo-

sperm until 20 DAP is accomplished with a relative

reduction of proteins involved in energy metabolism

(Fig. 6B, Supplementary Figs. 1, 3, Table 3). Interest-

ingly, also lipid metabolism of the endosperm rather

goes down from 15 to 20 DAP. In contrast, amino acid

and carbohydrate metabolism as well as environmen-

tal information processing further increase from 15 to

20 DAP in the endosperm.

(iii)/(iv) Changes of the embryo proteome at 20 DAP with

respect to 15 DAP and at 25 DAP with respect to

20 DAP: Changes in processes during seed develop-

ment clearly differ between the endosperm and the

embryo (Supplementary Figs. 4–7, Supplementary

Table 1). In the embryo, energy metabolism signifi-

cantly increases up from 15 to 20 DAP. Also, lipid

metabolism and biosynthesis of secondary metabo-

lites are enhanced and even further increase from 20

to 25 DAP. Carbohydrate and amino acidmetabolism

first goes up from 15 to 20 DAP in the embryo but

decreases from 20 to 25 DAP. As a consequence,

metabolism is shifted at 25 DAP from carbohydrate/

amino acid metabolism to lipid/secondary metab-

olism in the embryo. The latter might reflect the

shift from transient starch synthesis to both starch

degradation and oil storage [53].

(v)/(vi) Differences between the endosperm and embryo

proteomes at 15 DAP and at 20 DAP (Fig. 7A, B,

Supplementary Figs. 8 and 9, Tables 4 and 5): If

embryo and endosperm proteomes are directly

compared at 15 and 20 DAP, respectively, funda-

mental differences are visiblewith respect to various

cellular andmetabolic processes: energymetabolism

is clearly more pronounced in the endosperm than

in the embryo at 15 DAP. This changes until 20 DAP

when the embryo is fully competent in photosyn-

thesis. At 15 and 20 DAP, environmental information

processing rather takes place in the endosperm than

in the embryo. This might underline the protective

role of the endosperm for the embryo at both time

points. Also carbohydrate metabolism is more

pronounced in the endosperm at 15 as well as

20 DAP. In contrast, amino acid metabolism in the

embryo at 15 DAP is prominent but decreases with

respect to the endosperm until 15 DAP. Finally, lipid

metabolism is especially pronounced in the embryo

at 15 and 20 DAP.
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As stated above, our experimental approach does not allow

to quantify the changes in abundance for individual enzymes

because most spots on our 2D gels include more than one

protein. However, in some cases, quantitative changes are

visible for individual proteins and in several other tendencies

can be seen (see Supplementary discussion).

3.3. Concluding remarks

This study revealed for the first time the characteristics of the

B. napus endosperm proteome, allowing to deduce dynamic

changes in its metabolic and cellular processes. It became

obvious that the metabolic architecture of endosperm

comprises the entire set of central metabolic pathways.

Its enzymatic machinery turns the endosperm into a

self-sustaining, metabolically competent tissue, which of

course receives major assimilates from the mother plant, but

which is able to produce all or most of the needed metabolic

intermediates by itself. It remains to be seen how this ability

affects the assimilate supply/composition toward the devel-

oping embryo. The endosperm undergoes a unique develop-

mental sequence from proliferation, growth and transient

storage product accumulation toward programmed cell death.

This developmental shift is clearly reflected in the proteome

by the sequential appearance of proteins involved in energy

metabolism, carbohydrate, amino acid and lipid metabolism.

Notably, our analysis of the endosperm proteome also

revealed a high number of proteins involved in redox

balancing. It is tempting to speculate that a tight redox

control in the endosperm is of highest significance, providing

the embryo with a non-oxidizing environment. Such condi-

tions were recently proposed to be key for germ cell fate and

sexual reproduction [59]. Finally, proteome analysis indicated

a high number of transcription factors and regulatory

components in endosperm. It is very likely that their

involvement in the various signaling cascades makes a

fundamental contribution to coordinated seed development.

A more targeted approach could help to identify their specific,

individual contribution to growth control and eventually crop

yield. As a next step, we plan absolute quantification of

proteins involved in seed metabolism, e.g. by Selected

Reaction Monitoring (SRM) mass spectrometry. This will

allow to even deeper investigate the metabolic infrastructure

of endosperm as well as its interplay with the developing

embryo. In combination with metabolite profiling and

isotope-based flux analysis, this will further improve our

systems-level understanding of the seed filling process and

provide rational strategies for bioengineering.
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Table 2 – Identification of proteins from spots with changed abundance in the endosperm between 10 DAP and 15 DAP. To determine significant changes in spot volume, a
Student's t-test (p-value ≤ 0.05) was applied on the basis of normalized relative spot volume. Changes in spot volume ≥ 1.5 were considered to represent true alterations.
Identification of proteins was carried out using the MASCOT search algorithm (www.matrixscience.com) against the (i) SwissProt (www.uniprot.org), (ii) NCBInr (www.ncbi.
nig.gov) and (iii) TAIR (www.arabidopsis.org, TAIR release 10) databases. Identified proteins were functionally classified according to the KEGG PATHWAY Database (http://
www.genome.jp/kegg/pathway.html). The pathway categories were adjusted for seed metabolism by adding four functional groups: (i) storage, (ii) defense, (iii) desiccation
and (iv) detoxification.

ID a Stage b Reg c Accession d Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

Amino acid metabolism

1170 10 DAP es 1.63 P46248 Aspartate aminotransferase, chloroplastic A. thaliana 49.80 8.91 1907 22 43.27

1179 10 DAP es 2.35 P46248 Aspartate aminotransferase, chloroplastic A. thaliana 49.80 8.91 1233 17 41.28

1172 10 DAP es 2.53 Q43314 Glutamate dehydrogenase 1 A. thaliana 44.50 6.42 1027 16 33.58

1172 10 DAP es 2.53 P46248 Aspartate aminotransferase, chloroplastic A. thaliana 49.80 8.91 87 2 4.86

892 10 DAP es 1.68 P93732 Proline iminopeptidase A. thaliana 43.03 5.87 246 3 7.11

900 10 DAP es 1.86 AT1G79230.1 Mercaptopyruvate sulfurtransferase 1 A. thaliana 41.87 5.94 79 1 2.37

214 10 DAP es 2.29 AT1G11930.1 Predicted pyridoxal phosphate-dependent enzyme,

YBL036C type

A. thaliana 27.99 4.98 86 2 6.61

893 10 DAP es 2.93 AAK57436 Nitrilase-like protein B. napus 38.39 5.51 65 1 4.00

Biosynthesis of secondary metabolites

893 10 DAP es 2.93 XP_002888957 Strictosidine synthase family protein A. lyrata 34.25 9.29 98 2 10.12

616 10 DAP es 2.00 Q9FT25 Pyridoxal biosynthesis protein PDX1 P. vulgaris 33.38 5.72 88 2 7.05

616 10 DAP es 2.00 AAZ67141 Pyridoxine biosynthesis protein L. japonicus 33.04 6.12 60 1 7.42

200 10 DAP es 3.11 AAV80204 Caffeoyl-CoA 3-O-methyltransferase B. napus 17.83 4.80 256 3 16.25

892 10 DAP es 1.68 ACP20256 Cinnamyl-alcohol dehydrogenase B. rapa 31.93 4.83 63 2 8.33

Carbohydrate metabolism

898 10 DAP es 1.69 Q84TF0 Aldo-keto reductase family 4 member C10 A. thaliana 34.89 6.21 84 1 2.55

1189 10 DAP es 1.76 Q42605 UDP-glucose 4-epimerase 1 A. thaliana 39.13 6.14 1177 13 37.04

740 10 DAP es 4.47 AT1G76550.1 Phosphofructokinase family protein A. thaliana 67.52 6.92 64 4 7.29

103 10 DAP es 2.26 O04499 2,3-Bisphosphoglycerate-independent

phosphoglycerate mutase 1

A. thaliana 60.54 5.20 1520 18 31.42

1179 10 DAP es 2.35 AT3G52930.1 Aldolase superfamily protein A. thaliana 38.52 6.04 2345 22 49.16

1179 10 DAP es 2.35 P04796 Glyceraldehyde-3-phosphate dehydrogenase,

cytosolic

S. alba 36.90 8.71 213 5 19.82

1186 10 DAP es 1.51 AT3G52930.1 Aldolase superfamily protein A. thaliana 38.52 6.04 1282 17 43.02

1189 10 DAP es 1.76 P04796 Glyceraldehyde-3-phosphate dehydrogenase,

cytosolic

S. alba 36.90 8.71 358 8 30.77

1189 10 DAP es 1.76 O65735 Fructose-bisphosphate aldolase, cytoplasmic isozyme C. arietinum 38.43 6.22 100 3 10.31

214 10 DAP es 2.29 P48491 Triosephosphate isomerase, cytosolic A. thaliana 27.15 5.27 74 3 16.14

900 10 DAP es 1.86 XP_002893304 Oxidoreductase (SP: alcohol dehydrogenase activity) A. lyrata 40.81 8.64 100 3 10.88

1172 10 DAP es 2.53 Q96533 Alcohol dehydrogenase class-3 A. thaliana 40.67 6.59 482 7 16.36

1172 10 DAP es 2.53 P04796 Glyceraldehyde-3-phosphate dehydrogenase,

cytosolic

S. alba 36.90 8.71 59 4 11.24

1170 10 DAP es 1.63 Q07511 Formate dehydrogenase, mitochondrial S. tuberosum 42.01 6.73 120 4 12.86

1321 10 DAP es 2.51 AAK50346 Putative 6-phosphogluconolactonase B. carinata 29.19 6.75 51 1 3.49

135 10 DAP es 3.70 Q9M462 Glucose-1-phosphate adenylyltransferase small

subunit, chloroplastic

B. napus 57.01 5.82 394 11 20.58

893 10 DAP es 2.93 P86074 Malate dehydrogenase, mitochondrial (Fragments) C. annuum 3.73 3.73 165 1 34.29
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ID a

Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

Cellular processes

1239 10 DAP es 1.75 XP_002501166 Multidrug/oligosaccharidyl-lipid/

polysaccharide flippase

Micromonas

sp.

62.39 10.40 50 1 1.18

740 10 DAP es 4.47 P42697 Dynamin-related protein 1A A. thaliana 68.13 9.15 649 15 24.43

296 10 DAP es 4.32 XP_002862306 Hydroxyproline-rich glycoprotein family protein A. lyrata 36.76 6.32 127 4 8.56

341 10 DAP es 2.66 AT5G55820.1 Inner centromere protein,

ARK-binding region

A. thaliana 202.90 5.17 55 1 0.55

383 10 DAP es 1.75 AAB18643 Actin P. sativum 31.06 5.27 77 1 6.76

1278 10 DAP es 1.66 AT1G04820.1 Tubulin alpha-4 chain A. thaliana 49.51 4.79 81 4 10.67

296 10 DAP es 4.32 ABB97039 Unknown (EMBL-EBI: Ran Binding Protein 1) B. rapa 25.39 4.75 55 2 9.33

366 10 DAP es 3.29 AT1G27310.1 Nuclear transport factor 2A A. thaliana 13.52 6.05 74 1 8.20

391 10 DAP es 1.92 Q9C7F5 Nuclear transport factor 2 A. thaliana 13.99 5.89 94 1 7.94

898 10 DAP es 1.69 AT4G35220.1 Cyclase family protein A. thaliana 29.97 5.59 291 4 11.40

Defense

135 10 DAP es 3.70 O04309 Myrosinase-binding protein-like A. thaliana 48.47 4.99 1092 9 15.96

135 10 DAP es 3.70 AT3G16470.1 Mannose-binding lectin superfamily protein A. thaliana 48.47 4.99 1064 9 15.96

677 10 DAP es 2.29 AT1G52400.1 Beta glucosidase 18 A. thaliana 60.42 6.82 264 5 7.01

686 10 DAP es 1.59 Q9SE50 Beta-glucosidase 18 A. thaliana 60.42 6.82 329 7 7.01

1170 10 DAP es 1.63 AT1G52400.1 Beta glucosidase 18 A. thaliana 60.42 6.82 328 3 4.73

1245 10 DAP es 7.23 Q84WV2 Beta-glucosidase 20 A. thaliana 61.64 5.65 225 2 2.43

1246 10 DAP es 8.25 Q84WV2 Beta-glucosidase 20 A. thaliana 61.64 5.65 206 4 2.43

1257 10 DAP es 5.83 Q84WV2 Beta-glucosidase 20 A. thaliana 61.64 5.65 155 4 2.43

1238b 10 DAP es 1.73 Q9SE50 Beta-glucosidase 18 A. thaliana 60.42 6.82 160 2 3.41

147 10 DAP es 4.15 O04309 Myrosinase-binding protein-like At3g16470 A. thaliana 48.47 4.99 400 4 8.43

695 10 DAP es 1.64 Q9SE50 Beta-glucosidase 18 A. thaliana 60.42 6.82 101 2 3.41

1172 10 DAP es 2.53 Q9SE50 Beta-glucosidase 18 A. thaliana 60.42 6.82 180 4 4.73

1262 10 DAP es 6.83 Q84WV2 Beta-glucosidase 20 A. thaliana 61.64 5.65 100 1 2.43

1278 10 DAP es 1.66 Q84WV2 Beta-glucosidase 20 A. thaliana 61.64 5.65 110 1 2.43

1321 10 DAP es 2.51 BAJ33862 Unnamed protein product

(homology to Beta-glucosidase 1)

T. halophila 60.69 7.25 67 3 5.66

1321 10 DAP es 2.51 AT1G75940.1 Glycosyl hydrolase superfamily protein A. thaliana 61.64 5.65 55 1 2.43

Desiccation

393 10 DAP es 2.83 AT5G07190.1 Seed gene 3 A. thaliana 23.07 6.36 58 2 3.76

Detoxification

1172 10 DAP es 2.53 ACR40091 S-Nitrosoglutathione reductase B. juncea 40.07 8.72 298 1 17.65

Energy metabolism

1102 10 DAP es 1.85 P05346 Ribulose bisphosphate carboxylase

small chain, chloroplastic

B. napus 20.21 9.22 200 5 24.31

341 10 DAP es 2.66 P08135 Ribulose bisphosphate carboxylase small

chain, chloroplastic

R. sativus 20.31 9.21 156 2 8.29

946 10 DAP es 3.81 AT1G12250.1 Pentapeptide repeat-containing protein A. thaliana 30.05 9.64 57 2 9.64

341 10 DAP es 2.66 Q945M1 NADH dehydrogenase [ubiquinone] 1 beta

subcomplex subunit 9

A. thaliana 13.61 9.35 140 1 9.40

686 10 DAP es 1.59 AT5G04590.1 Sulfite reductase A. thaliana 71.90 9.17 139 5 7.63

900 10 DAP es 1.86 ACB59214 Cytoplasmic thiosulfate:cyanide sulfur transferase B. oleracea 41.51 6.93 87 2 5.01

(continued on next page)
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Table 2 (continued)

ID a Stage b Reg c Accession d Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

Environmental information processing

892 10 DAP es 1.68 Q9SYT0 Annexin D1 A. thaliana 36.18 5.09 695 12 38.80

391 10 DAP es 1.92 AT4G30380.1 Barwin-related endoglucanase A. thaliana 13.25 9.71 121 1 16.26

383 10 DAP es 1.75 CAA46591 BnD22 drought induced protein B. napus 23.52 5.84 70 1 5.50

1278 10 DAP es 1.66 CAA46591 BnD22 drought induced protein B. napus 23.52 5.84 140 1 5.50

214 10 DAP es 2.29 AT2G37970.1 SOUL heme-binding family protein A. thaliana 24.91 9.25 162 2 8.00

270 10 DAP es 1.68 AT1G30580.1 GTP binding protein A. thaliana 44.44 6.38 912 9 28.43

1070 10 DAP es 1.63 Q6EUP4 14-3-3-like protein GF14-E Oryza sativa

subsp.

Japonica

29.67 4.56 1268 12 30.15

1071 10 DAP es 1.57 P48347 14-3-3-like protein GF14 epsilon A. thaliana 28.90 4.57 1285 14 34.65

1261 10 DAP es 1.62 O04266 GTP-binding protein SAR1A B. campestris 21.95 7.74 1063 13 66.84

1439 10 DAP es 1.56 Q9FZ48 Ubiquitin-conjugating enzyme E2 36 A. thaliana 17.21 7.64 950 11 65.36

262 10 DAP es 3.56 CAA07494 Heat stress-induced protein B. oleracea 23.47 9.23 489 7 24.31

317 10 DAP es 1.77 ABV89642 Universal stress protein family protein B. rapa 17.58 9.02 260 4 42.14

317 10 DAP es 1.77 AT3G03270.1 Adenine nucleotide alpha hydrolases-like superfamily

protein

A. thaliana 22.59 5.44 143 2 15.42

1080 10 DAP es 2.91 AT5G20500.1 Glutaredoxin family protein A. thaliana 14.82 5.62 163 2 11.85

214 10 DAP es 2.29 BAC54102 Water-soluble chlorophyll protein B. oleracea 24.73 6.12 130 2 7.56

946 10 DAP es 3.81 CAA07494 Heat stress-induced protein B. oleracea 23.47 9.23 904 8 24.31

946 10 DAP es 3.81 BAB72020 Water-soluble chlorophyll protein R. sativus 23.83 9.53 341 1 14.41

Genetic information processing

651 10 DAP es 2.90 AT5G26710.1 Glutamyl/glutaminyl-tRNA synthetase A. thaliana 81.01 6.68 410 14 15.86

740 10 DAP es 4.47 AT5G26710.1 Glutamyl/glutaminyl-tRNA synthetase A. thaliana 81.01 6.68 360 10 10.71

483 10 DAP es 1.65 XP_003569976 Vacuolar-processing enzyme beta-isozyme-like B. distachyon 54.56 6.15 99 1 2.65

214 10 DAP es 2.29 AT2G19480.1 Nucleosome assembly protein 1;2 A. thaliana 43.52 4.17 237 3 6.86

1070 10 DAP es 1.63 Q43124 Proliferating cell nuclear antigen B. napus 29.15 4.46 410 8 33.46

36 10 DAP es 2.05 Q9SCN8 Cell division control protein 48 homolog A A. thaliana 89.34 4.99 2501 36 40.79

756 10 DAP es 1.64 Q9LIP2 Proteasome subunit beta type-5-B A. thaliana 29.47 5.79 1305 10 26.74

947 10 DAP es 3.08 Q8LD27 Proteasome subunit beta type-6 A. thaliana 25.14 5.21 104 2 10.73

1045 10 DAP es 4.30 AT5G49910.1 Chloroplast heat shock protein 70-2 A. thaliana 76.95 5.03 1614 17 24.37

1065 10 DAP es 2.33 AT1G11910.1 Aspartic proteinase A. thaliana 54.58 5.25 75 2 6.13

1070 10 DAP es 1.63 AAL60579 Senescence-associated cysteine protease B. oleracea 50.58 5.61 142 3 8.91

1186 10 DAP es 1.51 O22263 Protein disulfide-isomerase like 2-1 A. thaliana 39.47 5.73 1051 12 26.04

1324 10 DAP es 1.62 Q9LIP2 Proteasome subunit beta type-5-B A. thaliana 29.47 5.79 223 3 10.26

1238b 10 DAP es 1.73 AT5G26360.1 TCP-1/cpn60 chaperonin family protein A. thaliana 60.30 5.45 360 5 10.99

147 10 DAP es 4.15 O23894 26S protease regulatory subunit 6A homolog B. campestris 47.46 4.77 139 4 8.96

214 10 DAP es 2.29 O23708 Proteasome subunit alpha type-2-A A. thaliana 25.69 5.40 163 4 18.72

330 10 DAP es 1.90 AT4G25370.1 Double Clp-N motif protein A. thaliana 26.03 9.84 82 2 4.20

341 10 DAP es 2.66 AT5G48580.1 Peptidyl-Prolyl cis-trans isomerase FKBP15-2 A. thaliana 17.65 5.14 53 1 7.36

639 10 DAP es 3.73 AT1G32940.1 Subtilase family protein A. thaliana 82.86 5.85 106 1 1.16

639 10 DAP es 3.73 AAD03430 similar to the subtilase family of serine proteases A. thaliana 74.15 6.57 78 1 1.31

946 10 DAP es 3.81 XP_002301464 Peptidyl-prolyl cis-trans isomerase P. trichocarpa 29.07 10.04 126 2 4.51

1097 10 DAP es 1.63 AT3G53990.1 Adenine nucleotide alpha hydrolases-like superfamily

protein

A. thaliana 17.78 5.56 126 3 15.00
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ID a

Stage b Reg c Accession d Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

1239 10 DAP es 1.75 NP_199848 Adenylate kinase 2 A. thaliana 27.32 7.74 65 1 4.44

616 10 DAP es 2.00 AT3G01340.1 Transducin/WD40 repeat-like superfamily protein A. thaliana 32.61 5.61 515 5 14.90

1070 10 DAP es 1.63 AT5G05010.1 Clathrin adaptor complexes medium subunit family

protein

A. thaliana 57.68 5.54 133 2 5.12

330 10 DAP es 1.90 AT1G24450.1 Ribonuclease III family protein A. thaliana 20.73 10.29 194 3 7.33

952 10 DAP es 1.63 O48646 Probable phospholipid hydroperoxide glutathione

peroxidase 6, mitochondrial

A. thaliana 25.57 9.95 495 6 20.26

616 10 DAP es 2.00 AT5G11170.1 DEAD/DEAH box RNA helicase family protein A. thaliana 48.31 5.33 60 1 2.34

42 10 DAP es 2.24 ABL97965 Putative nuclear transport factor 2 B. rapa 13.63 5.67 434 5 49.59

269 10 DAP es 3.85 Q40468 Eukaryotic initiation factor 4A-15 N. tabacum 46.69 5.26 717 11 17.43

612 10 DAP es 2.77 AT1G56070.1 Ribosomal protein S5/Elongation factor G/III/V family

protein

A. thaliana 93.83 5.85 1642 17 14.00

740 10 DAP es 4.47 P42731 Polyadenylate-binding protein 2 A. thaliana 68.63 8.82 1011 17 19.87

964 10 DAP es 4.13 Q9XHS0 40S ribosomal protein S12 H. vulgare 15.28 5.25 378 3 14.69

979 10 DAP es 1.68 Q93VG5 40S ribosomal protein S8-1 A. thaliana 24.98 10.86 500 6 28.83

984 10 DAP es 1.88 P49204 40S ribosomal protein S4-2 A. thaliana 29.86 10.70 1085 19 59.16

1065 10 DAP es 2.33 O04202 Eukaryotic translation initiation factor 3 subunit F A. thaliana 31.84 4.78 516 9 34.47

1248 10 DAP es 13.09 Q93VH9 40S ribosomal protein S4-1 A. thaliana 29.78 10.70 342 5 18.77

1324 10 DAP es 1.62 Q43467 Elongation factor Tu, chloroplastic G. max 52.06 6.22 558 4 8.77

341 10 DAP es 2.66 Q9CAV0 40S ribosomal protein S3a-1 A. thaliana 29.83 10.38 101 1 3.82

383 10 DAP es 1.75 AT5G59950.2 RNA-binding (RRM/RBD/RNP motifs) family protein A. thaliana 18.88 9.71 91 4 17.98

391 10 DAP es 1.92 AT3G53890.1 Ribosomal protein S21e A. thaliana 9.07 9.23 50 1 18.29

392 10 DAP es 3.98 AT3G60245.1 Zinc-binding ribosomal protein family protein A. thaliana 10.23 11.10 314 5 46.74

483 10 DAP es 1.65 AT1G75350.1 Ribosomal protein L31 A. thaliana 16.02 10.49 53 1 8.33

528 10 DAP es 1.8 Q9SF40 60S ribosomal protein L4-1 A. thaliana 44.67 10.86 1074 22 38.42

898 10 DAP es 1.69 Q42112 60S acidic ribosomal protein P0-2 A. thaliana 34.11 4.82 65 1 4.69

900 10 DAP es 1.86 AT1G56070.1 Ribosomal protein S5/Elongation factor G/III/V family

protein

A. thaliana 93.83 5.85 1507 20 13.64

900 10 DAP es 1.86 BAJ33766 Unnamed protein product (Elongation factor EF-2) T. halophila 93.88 5.85 940 19 14.23

946 10 DAP es 3.81 AT1G54270.1 eif4a-2 A. thaliana 46.73 5.35 52 1 4.37

952 10 DAP es 1.63 Q9XI91 Eukaryotic translation initiation factor 5A-1 A. thaliana 17.35 5.34 339 3 27.22

1249 10 DAP es 4.02 P0DH99 Elongation factor 1-alpha 1 A. thaliana 49.47 9.79 337 6 12.03

1278 10 DAP es 1.66 AT1G03810.1 Nucleic acid-binding, OB-fold-like protein A. thaliana 15.66 10.23 55 2 5.59

1321 10 DAP es 2.51 AT1G72370.1 40s ribosomal protein SA A. thaliana 32.27 4.88 60 1 6.04

1321 10 DAP es 2.51 CAA48794 Laminin receptor homolog A. thaliana 32.28 4.97 60 1 6.04

1435 10 DAP es 7.60 ABL97959 Ribosomal protein L7Ae-like B. rapa 13.88 7.52 57 1 6.25

Lipid metabolism

892 10 DAP es 1.68 AT1G09480.1 Enoyl-[acyl-carrier protein] reductase I A. thaliana 41.25 5.02 62 2 6.23

898 10 DAP es 1.69 P80030 Enoyl-[acyl-carrier-protein] reductase [NADH],

chloroplastic

B. napus 40.45 9.39 484 9 17.14

Uncharacterized

269 10 DAP es 3.85 ACJ84369 Unknown M. truncatula 28.22 6.15 360 2 28.10

612 10 DAP es 2.77 BAJ33766 Unnamed protein product T. halophila 93.88 5.85 1067 8 14.71

677 10 DAP es 2.29 BAJ33862 Unnamed protein product T. halophila 60.69 7.25 251 8 19.06

1189 10 DAP es 1.76 ABQ50551 Hypothetical protein B. rapa 34.03 5.84 1521 21 69.58

214 10 DAP es 2.29 XP_002322949 Predicted protein P. trichocarpa 22.34 7.21 136 3 9.85

898 10 DAP es 1.69 XP_002308181 Predicted protein P. trichocarpa 35.30 6.23 67 3 8.52

(continued on next page)
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Table 2 (continued)

ID a Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

946 10 DAP es 3.81 NP_001047560 Os02g0643500 O. sativa

Japonica group

28.94 10.10 128 2 5.42

1097 10 DAP es 1.63 ABL97944 Hypothetical protein B. rapa 17.65 5.92 760 12 52.83

1239 10 DAP es 1.75 AT4G12900.1 Gamma interferon responsive lysosomal thiol (GILT)

reductase family protein

A. thaliana 26.01 6.15 93 1 4.33

1239 10 DAP es 1.75 BAK00512 Predicted protein H. vulgare 56.47 9.43 54 1 1.98

Amino acid metabolism

1191 15 DAP es 1.69 P46643 Aspartate aminotransferase, mitochondrial A. thaliana 47.73 9.13 957 14 31.63

1176 15 DAP es 1.90 P32289 Glutamine synthetase nodule isozyme V. aconitifolia 39.08 5.7 78 2 7.87

1176 15 DAP es 1.90 S18603 Glutamate-ammonia ligase, cytosolic A. thaliana 40.70 5.3 60 2 8.02

882 15 DAP es 2.38 ABD65618 Acetylornithine deacetylase, putative B. oleracea 44.79 5.1 79 4 17.20

1336 15 DAP es 3.03 AT1G75330.1 Ornithine carbamoyltransferase, chloroplast A. thaliana 40.98 7.9 66 2 4.27

913 15 DAP es 2.27 Q9LDQ7 S-Adenosylmethionine synthase C. sinensis 42.77 5.2 112 2 9.41

1157 15 DAP es 1.67 AT4G01850.1 S-Adenosylmethionine synthetase 2 A. thaliana 43.23 5.6 246 5 27.48

1291 15 DAP es 1.61 Q9LEV3 CBS domain-containing protein CBSX3, mitochondrial A. thaliana 22.71 9.8 1073 15 36.89

122 15 DAP es 2.28 P30184 Leucine aminopeptidase 1 A. thaliana 54.48 5.6 271 4 8.85

912 15 DAP es 2.29 AAR13689 Peptide methionine sulfoxide reductase B. oleracea 22.72 5.3 248 2 42.16

882 15 DAP es 2.38 Q93ZN9 LL-diaminopimelate aminotransferase, chloroplastic A. thaliana 50.36 7.7 891 10 22.56

Biosynthesis of secondary metabolites

796 15 DAP es 1.93 CAA57285 ACC oxidase B. oleracea 36.63 4.9 66 2 11.84

1336 15 DAP es 3.03 AAY53488 Epithiospecifier protein B. oleracea 37.72 5.7 51 2 7.87

856 15 DAP es 2.24 AT1G53280.1 Glutamine amidotransferase-like superfamily protein A. thaliana 46.96 9.0 287 2 7.99

925 15 DAP es 2.05 XP_002864577 Cinnamoyl-CoA reductase family A. lyrata 35.39 5.8 57 2 12.69

Carbohydrate metabolism

1157 15 DAP es 1.67 AT1G08200.1 UDP-D-apiose/UDP-D-xylose synthase 2 A. thaliana 43.76 5.5 81 2 5.40

767 15 DAP es 1.63 XP_002867164 L-Galactose dehydrogenase A. lyrata 34.62 5.7 56 3 9.40

913 15 DAP es 2.27 Q9LFA3 Probable monodehydroascorbate reductase,

cytoplasmic isoform 3

A. thaliana 46.46 6.5 62 3 9.68

1157 15 DAP es 1.67 AAK72107 Monodehydroascorbate reductase B. rapa 46.43 5.7 108 7 29.95

1254 15 DAP es 2.85 AAY47048 Dehydroascorbate reductase S.

lycopersicum

23.52 6.4 309 5 23.81

1297 15 DAP es 3.12 AAY47048 Dehydroascorbate reductase S.

lycopersicum

23.52 6.4 243 4 21.90

925 15 DAP es 2.05 Q42592 L-Ascorbate peroxidase S, chloroplastic/mitochondrial A. thaliana 40.38 9.0 358 5 14.52

122 15 DAP es 2.28 AT5G57655.2 Xylose isomerase family protein A. thaliana 53.69 5.5 284 6 13.00

1336 15 DAP es 3.03 AT5G51830.1 pfkB-like carbohydrate kinase family protein A. thaliana 37.01 4.8 294 4 10.79

122 15 DAP es 2.28 Q9SEE5 Galactokinase A. thaliana 54.31 5.6 150 2 4.64

726 15 DAP es 1.99 AT1G76550.1 Phosphofructokinase family protein A. thaliana 67.52 6.9 64 4 7.29

729 15 DAP es 7.43 AT1G76550.1 Phosphofructokinase family protein A. thaliana 67.52 6.9 246 2 21.56

122 15 DAP es 2.28 P25696 Bifunctional enolase 2/transcriptional activator A. thaliana 47.69 5.5 714 11 20.72

620 15 DAP es 3.18 AT3G52930.1 Aldolase superfamily protein A. thaliana 38.52 6.0 1790 21 49.72

620 15 DAP es 3.18 AEC13713 Alcohol dehydrogenase 1 B. rapa 41.14 5.9 350 8 44.33
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ID a

Stage b Reg c Accession d Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

620 15 DAP es 3.18 AT1G13440.1 Glyceraldehyde-3-phosphate dehydrogenase C2 A. thaliana 36.89 6.8 87 3 11.24

780 15 DAP es 2.64 Q38799 Pyruvate dehydrogenase E1 component subunit

beta, mitochondrial

A. thaliana 39.15 5.6 1319 11 31.13

913 15 DAP es 2.27 P25696 Bifunctional enolase 2/transcriptional activator A. thaliana 47.69 5.5 1458 11 30.63

1191 15 DAP es 1.69 AT3G52930.1 Aldolase superfamily protein A. thaliana 38.52 6.0 56 2 7.26

1416 15 DAP es 3.22 Q9M5K3 Dihydrolipoyl dehydrogenase 1, mitochondria A. thaliana 53.95 7.2 111 5 13.81

779 15 DAP es 2.45 Q38799 Pyruvate dehydrogenase E1 component subunit

beta, mitochondrial

A. thaliana 39.15 5.6 76 1 3.03

1176 15 DAP es 1.90 AT3G52930.1 Aldolase superfamily protein A. thaliana 38.52 6.0 228 8 22.07

1176 15 DAP es 1.90 AT1G01090.1 Pyruvate dehydrogenase E1 alpha A. thaliana 47.14 7.9 222 3 4.91

908 15 DAP es 1.61 AT3G60750.1 Transketolase A. thaliana 79.92 5.9 628 7 11.20

1416 15 DAP es 3.22 Q43839 Glucose-6-phosphate 1-dehydrogenase, chloroplastic S. tuberosum 65.65 7.1 123 2 3.12

910 15 DAP es 1.71 Q39366 Putative lactoylglutathione lyase B. oleracea 31.63 5.0 906 11 36.88

732 15 DAP es 2.63 AAP80614 Beta amylase T. aestivum 30.88 9.3 214 4 18.59

1089 15 DAP es 3.63 AAP37972 Seed specific protein Bn15D33A (SP:

galactosyltransferase activity)

B. napus 12.66 9.2 338 5 31.90

925 15 DAP es 2.05 BAB01287 Sucrose cleavage protein-like A. thaliana 34.23 5.5 70 1 2.87

152 15 DAP es 2.82 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.8 447 3 7.07

180 15 DAP es 1.98 Q9SN86 Malate dehydrogenase, chloroplastic A. thaliana 42.38 9.4 1340 10 27.79

182 15 DAP es 1.55 Q43744 Malate dehydrogenase, mitochondrial B. napus 35.69 9.5 91 2 10.26

732 15 DAP es 6.45 AT5G49460.1 ATP citrate lyase subunit B 2 A. thaliana 65.79 8.5 2074 32 44.24

1165 15 DAP es 2.80 AT1G65930.1 Cytosolic NADP+-dependent isocitrate dehydrogenase A. thaliana 45.72 6.1 432 8 17.07

1352 15 DAP es 9.11 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.8 304 3 7.07

1467 15 DAP es 2.34 Q42560 Aconitate hydratase 1 A. thaliana 98.09 6.0 978 26 29.51

1336 15 DAP es 3.03 P93819 Malate dehydrogenase, cytoplasmic 1 A. thaliana 35.55 6.1 808 12 35.24

Cellular processes

726 15 DAP es 1.99 P42697 Dynamin-related protein 1A A. thaliana 68.13 9.2 649 15 24.43

1151 15 DAP es 3.00 Q9LIA8 UDP-glucose 6-dehydrogenase 1 A. thaliana 53.17 5.6 1482 13 27.10

314 15 DAP es 15.27 AAP37968 Seed specific protein Bn15D12A (SP: pectin esterase

activity)

B. napus 17.03 9.3 1409 13 77.71

1306 15 DAP es 47.89 AAP37968 Seed specific protein Bn15D12A (SP: pectin esterase

activity)

B. napus 17.03 9.3 535 10 64.97

1176 15 DAP es 1.90 AT2G39050.1 Hydroxyproline-rich glycoprotein family protein A. thaliana 35.63 6.2 212 2 9.78

148 15 DAP es 6.91 BAA99394 Vacuolar calcium binding protein R. sativus 27.09 4.0 245 4 12.90

764 15 DAP es 2.60 AT3G08900.1 Reversibly glycosylated polypeptide 3 (SP:

UDP-arabinopyranose mutase 3)

A. thaliana 41.25 5.3 140 4 7.46

1176 15 DAP es 1.90 AT5G15650.1 Reversibly glycosylated polypeptide 2 (SP:

UDP-arabinopyranose mutase 2)

A. thaliana 40.86 5.7 448 14 32.78

928 15 DAP es 2.58 O81644 Villin-2 A. thaliana 107.78 5.1 263 4 5.12

1151 15 DAP es 3.00 P20363 Tubulin alpha-3/alpha-5 chain A. thaliana 49.62 4.8 404 9 25.11

1176 15 DAP es 1.90 XP_002867495 Band 7 family protein A. lyrata 45.21 6.4 71 2 5.11

339 15 DAP es 3.41 ABA95924 Expressed protein (SP function:hydrogen ion

transmembrane transporter activity)

O. sativa

japonica

group

12.75 11.9 75 1 5.98

488 15 DAP es 3.32 AAS68185 Lipid transfer-like protein B. napus 11.18 9.2 203 3 33.33

813 15 DAP es 2.24 Q56WK6 Patellin-1 A. thaliana 64.01 4.7 830 13 18.32

181 15 DAP es 2.56 AT4G35220.1 Cyclase family protein A. thaliana 29.97 5.6 86 3 11.76

(continued on next page)
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Table 2 (continued)

ID a Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

897 15 DAP es 1.69 AT4G35220.1 Cyclase family protein A. thaliana 29.97 5.6 445 7 19.12

908 15 DAP es 1.61 P23344 Actin-11 D. carota 41.77 6.6 106 2 11.02

339 15 DAP es 3.41 Q9C9L5 Wall-associated receptor kinase-like 9 (serine/

threonine-protein kinase)

A. thaliana 88.54 9.0 58 1 1.14

Defense

315 15 DAP es 2.14 Q9ZVF2 MLP-like protein 329 A. thaliana 17.59 5.2 383 4 26.49

1060 15 DAP es 2.96 Q944W6 Translationally-controlled tumor protein homolog B. oleracea 19.03 4.5 784 9 42.26

1061 15 DAP es 1.65 Q944W6 Translationally-controlled tumor protein homolog B. oleracea 19.03 4.5 556 8 39.29

1304 15 DAP es 4.42 AT2G21130.1 Cyclophilin-like peptidyl-prolyl cis-trans isomerase

family protein

A. thaliana 18.45 9.4 196 4 19.54

Detoxification

766 15 DAP es 1.52 AT4G33670.1 NAD(P)-linked oxidoreductase superfamily protein A. thaliana 34.51 5.4 73 2 5.64

767 15 DAP es 1.63 AT4G33670.1 NAD(P)-linked oxidoreductase superfamily protein A. thaliana 34.51 5.4 89 2 5.64

Energy metabolism

1151 15 DAP es 3.00 ATCG00490.1 Ribulose-bisphosphate carboxylases A. thaliana 52.92 5.9 205 5 11.27

1173 15 DAP es 1.73 P25857 Glyceraldehyde-3-phosphate dehydrogenase B,

chloroplast

A. thaliana 47.63 6.4 372 6 14.32

170 15 DAP es 2.24 P46283 Sedoheptulose-1,7-bisphosphatase, chloroplastic A. thaliana 42.39 6.2 1191 22 32.06

1339 15 DAP es 1.55 P29196 Phosphoenolpyruvate carboxylase S. tuberosum 110.24 5.4 234 5 4.87

778 15 DAP es 1.83 Q56WN1 Glutamine synthetase cytosolic isozyme 1-1 A. thaliana 39.09 5.2 396 5 20.51

909 15 DAP es 1.78 AT3G01500.1 Carbonic anhydrase 1, chloroplastic A. thaliana 29.49 5.4 314 5 13.70

601 15 DAP es 3.11 Q9SJ12 Probable ATP synthase 24 kDa subunit, mitochondrial A. thaliana 27.58 6.3 359 7 22.92

601 15 DAP es 3.11 AT2G18230.1 Pyrophosphorylase 2 A. thaliana 24.66 5.7 71 2 13.30

794 15 DAP es 1.70 P11574 V-type proton ATPase subunit B1 A. thaliana 54.07 4.8 1537 13 28.60

180 15 DAP es 1.98 P41344 Ferredoxin-NADP reductase, leaf isozyme, chloroplastic O. sativa 39.98 9.4 74 2 4.70

239 15 DAP es 6.55 P21276 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.6 289 4 23.08

284 15 DAP es 1.54 XP_002502857 Early light induced protein-like 5, chloroplast M. sp. RCC299 27.77 4.3 70 2 3.72

312 15 DAP es 2.41 A4QK04 ATP synthase subunit b, chloroplastic A. hirsuta 21.13 9.1 689 8 38.59

584 15 DAP es 1.86 P11594 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.6 234 5 25.00

785 15 DAP es 1.52 P23321 Oxygen-evolving enhancer protein 1-1, chloroplastic A. thaliana 35.12 5.4 1562 17 52.41

1276 15 DAP es 1.52 XP_002878030 Photosystem II reaction center PsbP family protein A. lyrata 25.55 9.9 215 6 22.27

170 15 DAP es 2.24 P12333 Chlorophyll a–b binding protein, chloroplastic S. oleracea 28.41 5.2 62 2 6.74

385 15 DAP es 4.81 AT1G03600.1 photosystem II family protein A. thaliana 18.82 10.3 310 4 17.24

405 15 DAP es 2.27 Q41932 Oxygen-evolving enhancer protein 3-2, chloroplastic A. thaliana 24.63 10.1 89 3 15.22

1336 15 DAP es 3.03 AT4G04640.1 ATPase, F1 complex, gamma subunit protein A. thaliana 40.89 9.1 80 1 2.68

1336 15 DAP es 3.03 O23324 ATP-sulfurylase 3, chloroplastic A. thaliana 52.00 7.1 89 1 1.94

1336 15 DAP es 3.03 AT4G14680.1 Pseudouridine synthase/archaeosine

transglycosylase-like family protein

A. thaliana 52.00 7.1 88 1 1.94

Environmental information processing

766 15 DAP es 1.52 Q9SYT0 Annexin D1 A. thaliana 36.18 5.1 1504 21 51.74

767 15 DAP es 1.63 Q9SYT0 Annexin D1 A. thaliana 36.18 5.1 1588 17 47.00

Cellular processes
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ID a

Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

780 15 DAP es 2.64 Q9SYT0 Annexin D1 A. thaliana 36.18 5.1 200 3 8.52

939 15 DAP es 3.30 XP_002512810 Diphosphoinositol polyphosphate phosphohydrolase,

putative (SP: nudix hydrolase family)

R. communis 26.65 5.4 288 2 10.43

1205 15 DAP es 1.59 Q9LX08 Annexin D6 A. thaliana 36.55 8.7 548 11 26.42

1425 15 DAP es 2.37 Q9XEE2 Annexin D2 A. thaliana 36.24 5.7 1276 11 29.65

1355 15 DAP es 3.25 ADD74397 annexin 4 B. juncea 35.50 7.9 416 9 36.83

779 15 DAP es 2.45 AT1G62380.1 ACC oxidase 2 A. thaliana 36.16 4.8 68 2 4.38

412 15 DAP es 10.44 P49310 Glycine-rich RNA-binding protein GRP1A S. alba 16.01 5.1 165 2 16.27

433 15 DAP es 2.68 Q05966 Glycine-rich RNA-binding protein 10 B. napus 16.29 5.4 78 1 5.92

722 15 DAP es 3.18 Q9SVD7 Ubiquitin-conjugating enzyme E2 variant 1D A. thaliana 16.52 6.2 919 12 65.07

1175 15 DAP es 1.80 AT1G30580.1 GTP binding protein A. thaliana 44.44 6.4 800 10 32.23

1205 15 DAP es 1.59 Q39336 Guanine nucleotide-binding protein subunit beta-like

protein

B. napus 35.70 9.1 750 14 40.98

315 15 DAP es 2.14 ABV89642 Universal stress protein family protein B. rapa 17.58 9.0 260 4 42.14

315 15 DAP es 2.14 AT3G03270.1 Adenine nucleotide alpha hydrolases-like superfamily

protein

A. thaliana 22.59 5.4 143 2 15.42

417 15 DAP es 2.50 AT3G17210.1 Heat stable protein 1 A. thaliana 12.18 5.4 354 2 20.18

601 15 DAP es 3.11 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.29 6.2 116 4 12.33

618 15 DAP es 4.89 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.29 6.2 259 7 19.38

969 15 DAP es 5.82 ABD36807 Glutathione S-transferase B. napus 24.72 5.8 104 2 9.68

1089 15 DAP es 3.63 Q9FNE2 Glutaredoxin-C2 A. thaliana 11.75 7.7 209 2 9.91

1157 15 DAP es 1.67 AT4G27585.1 PHB domain-containing membrane-associated protein

family

A. thaliana 44.99 6.4 89 3 8.03

1276 15 DAP es 1.52 AT2G47710.1 Adenine nucleotide alpha hydrolases-like superfamily

protein

A. thaliana 17.29 8.9 95 3 16.05

909 15 DAP es 1.78 AT1G53580.1 Glyoxalase II 3 A. thaliana 32.31 6.6 159 2 3.74

909 15 DAP es 1.78 Q9C8L4 Hydroxyacylglutathione hydrolase 3, mitochondrial A. thaliana 32.31 6.6 159 2 3.74

779 15 DAP es 2.45 CAC85247 Salt tolerance protein 5 B. vulgaris 33.28 4.8 81 1 3.05

Genetic information processing

939 15 DAP es 3.30 AT1G29880.1 Nudix hydrolase homolog 12 (SP: Glycyl-tRNA synthe-

tase 1)

A. thaliana 23.85 4.6 189 5 14.78

1411 15 DAP es 3.06 O23627 Glycyl-tRNA synthetase 1, mitochondrial A. thaliana 81.89 6.6 200 6 8.09

552 15 DAP es 2.18 Q05966 G.-rich RNA-binding protein 10 B. napus 16.29 5.4 523 4 19.53

856 15 DAP es 2.24 AAF31402 Putative G.-rich RNA binding protein 1 C. roseus 14.15 9.6 50 2 10.95

412 15 DAP es 10.44 CAA16739 Pollen-specific protein-like A. thaliana 90.12 5.8 99 1 1.19

43 15 DAP es 2.14 AT5G50920.1 CLPC homolog 1 (SP: Chaperone) A. thaliana 103.39 6.4 3615 52 49.73

234 15 DAP es 1.61 AT3G22630.1 20S proteasome beta subunit D1 A. thaliana 22.53 5.9 402 6 26.47

396 15 DAP es 2.64 Q9SCN8 Cell division control protein 48 homolog A A. thaliana 89.34 5.0 2709 33 40.30

601 15 DAP es 3.11 O23715 Proteasome subunit alpha type-3 A. thaliana 27.36 5.9 307 6 24.10

722 15 DAP es 3.18 AT5G67360.1 Subtilase family protein A. thaliana 79.37 5.9 77 3 4.23

794 15 DAP es 1.70 P34066 Proteasome subunit alpha type-1-A A. thaliana 30.46 4.8 429 5 20.14

794 15 DAP es 1.70 AAL60581 Senescence-associated cysteine protease B. oleracea 40.19 7.8 120 2 9.24

856 15 DAP es 2.24 Q9LZF6 Cell division control protein 48 homolog E A. thaliana 89.90 4.9 974 17 23.09

1028 15 DAP es 2.66 AAL60582 Senescence-associated cysteine protease B. oleracea 39.31 5.4 93 2 13.93

1028 15 DAP es 2.66 AT5G60360.1 Aleurain-like protease A. thaliana 38.93 6.3 53 2 8.10

1104 15 DAP es 1.53 XP_002522624 Immunophilin, putative (SP: peptidy-prolyl isomerase) R. communis 12.00 9.2 499 4 14.29

1134 15 DAP es 1.62 AT3G11830.1 TCP-1/cpn60 chaperonin family protein A. thaliana 59.74 6.0 1427 15 28.73

1151 15 DAP es 3.00 AT3G44110.1 DNAJ homolog 3 A. thaliana 46.41 5.7 51 2 6.43

(continued on next page)
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Table 2 (continued)

ID a Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

1416 15 DAP es 3.22 AT4G04460.1 Saposin-like aspartyl protease family protein A. thaliana 55.54 6.9 51 2 3.54

1425 15 DAP es 2.37 Q9LT08 26S proteasome non-ATPase regulatory subunit 14 A. thaliana 34.33 6.3 245 4 12.99

1477 15 DAP es 4.08 CAZ40339 Putative aminopeptidase R. sativus 99.22 5.8 130 9 11.29

405 15 DAP es 2.27 NP_566406 Adenine nucleotide alpha hydrolases-like protein A. thaliana 21.44 5.5 111 2 18.09

1176 15 DAP es 1.90 O22263 Protein disulfide-isomerase like 2-1 A. thaliana 39.47 5.7 190 3 9.70

1237 15 DAP es 2.30 AT3G51260.1 20S proteasome alpha subunit PAD1 A. thaliana 27.32 7.7 684 11 37.60

1237 15 DAP es 2.30 Q9FK35 Adenylate kinase 2 A. thaliana 27.32 7.7 149 4 14.92

1287 15 DAP es 5.13 Q9SAA2 ATP-dependent Clp protease proteolytic subunit 6,

chloroplastic

A. thaliana 29.36 10.0 128 1 3.32

170 15 DAP es 2.24 AT3G63460.1 Transducin family protein/WD-40 repeat family protein A. thaliana 119.80 4.9 57 1 1.00

1028 15 DAP es 2.66 Q9LHG9 Nascent polypeptide-associated complex subunit

alpha-like protein 1

A. thaliana 21.97 4.1 184 4 19.21

234 15 DAP es 1.61 Q9SFD8 Nuclear transcription factor Y subunit B-9 A. thaliana 26.05 5.6 171 2 11.34

722 15 DAP es 3.18 Q84W89 DEAD-box ATP-dependent RNA helicase 37 A. thaliana 67.58 6.7 1356 22 28.59

897 15 DAP es 1.69 AT1G07660.1 Histone superfamily protein A. thaliana 11.40 12.0 98 2 21.36

939 15 DAP es 3.30 AAF78493 Contains similarity to AP2/EREBP-like transcription factor A. thaliana 47.48 4.8 122 3 5.84

1352 15 DAP es 9.11 AT2G18510.1 RNA-binding (RRM/RBD/RNP motifs) family protein

(SP: putative spliceosome associated protein)

A. thaliana 39.86 7.9 274 3 9.92

41 15 DAP es 2.44 AT1G56070.1 Ribosomal protein S5/Elongation factor G/III/V family

protein

A. thaliana 93.83 5.9 2348 38 37.60

466 15 DAP es 2.99 AT1G23410.1 Ribosomal protein S27a A. thaliana 17.66 10.4 796 9 41.67

474 15 DAP es 4.16 AT1G33120.1 Ribosomal protein L6 family A. thaliana 22.00 10.1 323 3 14.90

764 15 DAP es 2.60 Q9ZSR8 40S ribosomal protein SA B. napus 32.01 5.0 888 12 39.38

897 15 DAP es 1.69 AT2G40010.1 Ribosomal protein L10 family protein A. thaliana 33.65 5.0 193 2 7.57

1157 15 DAP es 1.67 O04487 Probable elongation factor 1-gamma 1 A. thaliana 46.63 5.2 1476 11 22.46

1383 15 DAP es 697.77 Q8LBI1 60S ribosomal protein L5-1 A. thaliana 34.34 9.7 510 8 24.25

417 15 DAP es 2.50 Q9LUV2 Probable protein Pop3 A. thaliana 12.18 5.4 361 2 20.18

601 15 DAP es 3.11 O04663 Eukaryotic translation initiation factor 4E-2 A. thaliana 22.50 5.4 118 4 13.64

722 15 DAP es 3.18 O64380 Polyadenylate-binding protein 3 A. thaliana 72.83 9.3 105 3 3.64

726 15 DAP es 1.99 P42731 Polyadenylate-binding protein 2 A. thaliana 68.63 8.8 1011 18 19.87

729 15 DAP es 7.43 P42731 Polyadenylate-binding protein 2 A. thaliana 68.63 8.8 867 13 15.42

882 15 DAP es 2.38 P41376 Eukaryotic initiation factor 4A-1 A. thaliana 46.67 5.4 1884 29 47.09

913 15 DAP es 2.27 P41376 Eukaryotic initiation factor 4A-1 A. thaliana 46.67 5.4 221 4 11.65

954 15 DAP es 2.89 AAR91929 Eukaryotic translation initiation factor-5A B. napus 17.09 5.7 474 9 57.86

1024 15 DAP es 6.67 ABK78691 Putative elongation factor 1-beta B. rapa 25.04 4.3 1465 14 63.48

1028 15 DAP es 2.66 Q84WM9 Elongation factor 1-beta 1 A. thaliana 24.77 4.4 453 12 15.35

1096 15 DAP es 4.62 Q9C505 Eukaryotic translation initiation factor 5A-3 A. thaliana 17.20 5.5 478 5 24.05

1416 15 DAP es 3.22 AT3G62120.1 Class II aaRS and biotin synthetases superfamily

protein (SP: multifunctional aminoacyl-tRNA ligase-like

protein)

A. thaliana 60.72 6.1 1833 30 50.38

170 15 DAP es 2.24 Q9C5Z2 Eukaryotic translation initiation factor 3 subunit H A. thaliana 38.35 4.7 215 4 9.79

381 15 DAP es 6.62 NP_197529 40S ribosomal protein S8-1 A. thaliana 24.98 10.9 214 4 16.67

433 15 DAP es 2.68 Q9SUM2 Probable small nuclear ribonucleoprotein F A. thaliana 9.86 4.1 93 1 9.09

1219 15 DAP es 42.2 Q8LBI1 60S ribosomal protein L5-1 A. thaliana 34.34 9.7 89 2 4.98

Genetic information processing
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ID a

Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

1287 15 DAP es 5.13 Q40467 Eukaryotic initiation factor 4A-14 N. tabacum 46.85 5.3 270 7 11.62

1355 15 DAP es 3.25 Q8LBI1 60S ribosomal protein L5-1 A. thaliana 34.34 9.7 68 2 7.31

Lipid metabolism

122 15 DAP es 2.28 AAK60339 Biotin carboxylase B. napus 58.38 6.6 51 2 5.23

464 15 DAP es 5.39 Q39315 Acyl-CoA-binding protein B. napus 10.17 5.3 424 6 68.48

897 15 DAP es 1.69 P80030 Enoyl-acyl-carrier-protein reductase NADH,

chloroplastic

B. napus 40.45 9.4 618 11 25.45

433 15 DAP es 2.68 P08971 Acyl carrier protein, chloroplastic B. napus 14.69 4.9 211 1 11.19

1176 15 DAP es 1.90 Q9MA55 Acyl-CoA-binding domain-containing protein 4 A. thaliana 73.03 5.0 70 2 3.59

1355 15 DAP es 3.25 AT1G76150.1 Enoyl-CoA hydratase 2 A. thaliana 34.06 7.7 212 5 19.42

1477 15 DAP es 4.08 AAO03559 Lipoxygenase 2 B. napus 101.38 5.1 195 4 5.16

Metabolism of terpenoids and polyketides

796 15 DAP es 1.93 Q42553 Isopentenyl-diphosphate Delta-isomerase II A. thaliana 32.59 6.1 507 14 44.37

Nucleotide metabolism

1241 15 DAP es 2.21 NP_199848 Adenylate kinase 2 A. thaliana 27.30 7.7 83 2 6.50

1416 15 DAP es 3.22 AT1G63660.1 GMP synthase (glutamine-hydrolyzing), putative/

glutamine amidotransferase, putative

A. thaliana 59.28 6.1 78 4 7.30

170 15 DAP es 2.24 AT4G14930.1 Survival protein SurE-like phosphatase/

nucleotidase

A. thaliana 34.10 4.9 97 1 3.49

Storage

796 15 DAP es 1.93 AAM65577 Globulin-like protein A. thaliana 38.29 5.8 376 6 13.48

1276 15 DAP es 1.52 P27740 Napin-B B. napus 20.10 9.0 345 5 34.27

779 15 DAP es 2.45 AT1G07750.1 RmlC-like cupins superfamily protein A. thaliana 38.29 5.8 401 8 14.04

Uncharacterized

216 15 DAP es 2.25 ACU18911 Unknown G. max 28.49 6.2 60 2 11.46

234 15 DAP es 1.61 ACU13447 Unknown G. max 22.58 5.9 104 2 20.59

552 15 DAP es 2.18 BAJ34207 Unnamed protein product T. halophila 16.24 5.4 451 7 28.31

813 15 DAP es 2.24 XP_002887418 Hypothetical protein ARALYDRAFT_895064 A. lyrata 62.02 4.7 474 15 19.86

813 15 DAP es 2.24 A5BX00 Hypothetical protein V.V_028074 V. vinifera 123.63 5.6 62 2 2.21

1276 15 DAP es 1.52 BAJ33672 Unnamed protein product T. halophila 17.49 6.9 167 5 42.59

170 15 DAP es 2.24 CAB10272 Hypothetical protein A. thaliana 30.20 5.3 84 1 4.00

170 15 DAP es 2.24 CAB87799 Putative protein A. thaliana 119.00 4.8 57 1 1.00

405 15 DAP es 2.27 XP_002500296 Predicted protein Micromonas

sp.

271.99 6.0 75 1 0.55

1176 15 DAP es 1.90 BAB08430 GAMM1 protein-like A. thaliana 39.31 5.5 61 2 5.20

a Spot number in accordance with Supplementary Fig. 2.
b Developmental stage of endosperm (es) 10 and 15 DAP.
c Regulation of spots, spot volume at least 1.5 fold increased in the corresponding developmental stage.
d Accession numbers as given by SwissProt (http://www.uniprot.org), NCBInr (http://www.ncbi.nlm.nih.gov/protein) and TAIR (http://www.Arabidopsis.org/).
e Calculated molecular masses of the identified proteins as deduced from the corresponding genes.
f Calculated isoelectric point of the identified proteins as deduced from the corresponding genes.
g Probability score for the protein identifications based on MS/MS analysis and MASCOT search.
h Number of unique matching peptides.
i Sequence coverage of a protein by identified peptides. 4
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Table 3 – Identification of proteins from spots with changed abundance in the endosperm between 15 DAP and 20 DAP. To determine significant changes in spot volume, a
Student's t-test (p-value ≤ 0.05) was applied on the basis of normalized relative spot volume. Changes in spot volume ≥ 1.5 were considered to represent true alterations.
Identification of proteins was carried out using the MASCOT search algorithm (www.matrixscience.com) against the (i) SwissProt (www.uniprot.org), (ii) NCBInr (www.ncbi.
nig.gov) and (iii) TAIR (www.arabidopsis.org, TAIR release 10) databases. Identified proteins were functionally classified according to the KEGG PATHWAY Database (http://
www.genome.jp/kegg/pathway.html). The pathway categories were adjusted for seed metabolism by adding four functional groups: (i) storage, (ii) defense, (iii) desiccation
and (iv) detoxification.

ID a Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

Amino acid metabolism

900 15 DAP es 2.36 AT1G79230.1 Mercaptopyruvate sulfurtransferase 1 A. thaliana 41.87 5.94 79 1 2.37

122 15 DAP es 1.79 P30184 Leucine aminopeptidase 1 A. thaliana 54.48 5.58 271 4 8.85

143 15 DAP es 1.56 AT1G12050.1 Fumarylacetoacetase, putative A. thaliana 46.07 5.21 125 3 10.93

Biosynthesis of secondary metabolites

527 15 DAP es 1.74 AT1G74470.1 Pyridine nucleotide-disulfide oxidoreductase family protein A. thaliana 51.80 9.63 793 6 15.20

881 15 DAP es 1.50 P16127 Magnesium-chelatase subunit chlI, chloroplastic A. thaliana 46.24 6.06 55 2 7.55

Carbohydrate metabolism

849 15 DAP es 2.02 Q93WJ8 Probable monodehydroascorbate reductase, cytoplasmic isoform 4 A. thaliana 47.45 5.11 210 2 5.98

122 15 DAP es 1.79 AT5G57655.2 Xylose isomerase family protein A. thaliana 53.69 5.52 284 6 13.00

985 15 DAP es 2.01 Q9SID0 Probable fructokinase-1 A. thaliana 35.25 5.19 1238 11 32.00

122 15 DAP es 1.79 Q9SEE5 Galactokinase A. thaliana 54.31 5.61 150 2 4.64

122 15 DAP es 1.79 P25696 Bifunctional enolase 2/transcriptional activator A. thaliana 47.69 5.45 714 11 20.72

779 15 DAP es 1.72 Q38799 Pyruvate dehydrogenase E1 component subunit beta, mitochondrial A. thaliana 39.15 5.57 76 1 3.03

900 15 DAP es 2.36 XP_002893304 Oxidoreductase (SP: alcohol dehydrogenase activity) A. lyrata 40.81 8.64 100 3 10.88

1146 15 DAP es 2.24 AAY86035 Pyruvate kinase C. sinensis 55.53 9.33 61 2 4.31

422 15 DAP es 2.45 AAP37972 Seed specific protein Bn15D33A B. napus 12.66 9.24 55 1 7.76

143 15 DAP es 1.56 AT1G10670.1 ATP-citrate lyase A-1 A. thaliana 46.65 5.26 358 7 17.02

232 15 DAP es 1.56 ADK98071 Oxoglutarate dehydrogenase S. adamantis 16.30 5.60 55 2 7.00

Cellular processes

370 15 DAP es 3.81 XP_002501166 Multidrug/oligosaccharidyl-lipid/polysaccharide flippase Micromonas sp. 62.39 10.40 51 1 1.18

849 15 DAP es 2.02 Q8L5U0 COP9 signalosome complex subunit 4 A. thaliana 44.93 4.72 751 7 17.63

383 15 DAP es 2.45 AAB18643 Actin P. sativum 31.06 5.27 77 1 6.76

881 15 DAP es 1.50 O81644 Villin-2 A. thaliana 107.78 5.05 72 2 3.07

1278 15 DAP es 2.18 AT1G04820.1 Tubulin alpha-4 chain A. thaliana 49.51 4.79 81 4 10.67

488 15 DAP es 2.20 AAS68185 Lipid transfer-like protein B. napus 11.18 9.19 203 3 33.33

Defense

685 15 DAP es 2.00 Q9SE50 Beta-glucosidase 18 A. thaliana 60.42 6.82 310 7 8.71

1278 15 DAP es 2.18 Q84WV2 Beta-glucosidase 20 A. thaliana 61.64 5.65 110 1 2.43

1278 15 DAP es 2.18 AT1G75940.1 Glycosyl hydrolase superfamily protein A. thaliana 61.64 5.65 109 1 2.43

Detoxification

985 15 DAP es 2.01 AT2G37790.1 NAD(P)-linked oxidoreductase superfamily protein

(SP: Aldo-keto reductase family 4 member C10)

A. thaliana 34.89 6.21 109 2 5.41

Energy metabolism

878 15 DAP es 1.82 P25697 Phosphoribulokinase, chloroplastic A. thaliana 44.44 5.65 1048 13 25.32

881 15 DAP es 1.50 P25697 Phosphoribulokinase, chloroplastic A. thaliana 44.44 5.65 347 6 12.41
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ID a

Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

1076 15 DAP es 1.81 P05346 Ribulose bisphosphate carboxylase small chain, chloroplastic B. napus 20.21 9.22 1200 12 58.01

1286 15 DAP es 2.06 AT5G38430.1 Ribulose bisphosphate carboxylase (small chain) family protein181 A. thaliana 20.27 8.86 723 7 31.49

1313 15 DAP es 2.11 P10796 Ribulose bisphosphate carboxylase small chain 1B, chloroplastic A. thaliana 20.27 8.86 447 5 17.13

170 15 DAP es 2.27 P46283 Sedoheptulose-1,7-bisphosphatase, chloroplastic A. thaliana 42.39 6.18 1191 22 32.06

946 15 DAP es 5.08 AT1G12250.1 Pentapeptide repeat-containing protein A. thaliana 30.05 9.64 57 2 9.64

239 15 DAP es 1.55 P21276 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.60 289 4 23.08

312 15 DAP es 2.30 A4QK04 ATP synthase subunit b, chloroplastic A. hirsuta 21.13 9.07 689 8 38.59

442 15 DAP es 2.11 P49107 Photosystem I reaction center subunit N, chloroplastic A. thaliana 18.42 10.00 575 6 33.33

968 15 DAP es 1.63 P11594 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.60 601 8 33.85

170 15 DAP es 2.27 P12333 Chlorophyll a–b binding protein, chloroplastic S. oleracea 28.41 5.18 62 2 6.74

170 15 DAP es 2.27 AT2G34430.1 Light-harvesting chlorophyll–protein complex II subunit B1 A. thaliana 28.15 5.01 62 2 9.40

435 15 DAP es 1.58 AT5G64040.1 Photosystem I reaction center subunit PSI-N, chloroplast,

putative/PSI-N, putative (PSAN)

A. thaliana 18.42 10.00 60 1 5.85

685 15 DAP es 2.00 AT5G04590.1 Sulfite reductase A. thaliana 71.90 9.17 365 13 18.85

900 15 DAP es 2.36 ACB59214 Cytoplasmic thiosulfate:cyanide sulfur transferase B. oleracea 41.51 6.93 87 2 5.01

Environmental information processing

939 15 DAP es 2.57 XP_002512810 Diphosphoinositol polyphosphate phosphohydrolase, putative

(SP: Nudix Hydrolase family)

R. communis 26.65 5.37 288 2 10.43

383 15 DAP es 2.45 CAA46591 BnD22 drought induced protein B. napus 23.52 5.84 70 1 5.50

1278 15 DAP es 2.18 CAA46591 BnD22 drought induced protein B. napus 23.52 5.84 140 1 5.50

779 15 DAP es 1.72 AT1G62380.1 ACC oxidase 2 A. thaliana 36.16 4.84 68 2 4.38

494 15 DAP es 2.19 Q9SHE7 Ubiquitin-NEDD8-like protein RUB1 A. thaliana 17.39 5.71 189 4 21.15

1071 15 DAP es 3.06 P48347 14-3-3-like protein GF14 epsilon A. thaliana 28.90 4.57 1285 14 34.65

1086 15 DAP es 2.66 P69310 Ubiquitin A. sativa 8.52 7.58 510 8 77.63

1094 15 DAP es 1.60 P69310 Ubiquitin A. sativa 8.52 7.58 428 8 77.63

262 15 DAP es 2.11 CAA07494 Heat stress-induced protein B. oleracea 23.47 9.23 489 7 24.31

417 15 DAP es 2.11 AT3G17210.1 Heat stable protein 1 A. thaliana 12.18 5.35 354 2 20.18

1082 15 DAP es 1.51 AT5G20500.1 Glutaredoxin family protein A. thaliana 14.82 5.62 130 2 11.85

946 15 DAP es 5.08 CAA07494 Heat stress-induced protein B. oleracea 23.47 9.23 904 8 24.31

946 15 DAP es 5.08 BAB72020 Water-soluble chlorophyll protein R. sativus 23.83 9.53 341 1 14.41

Genetic information processing

939 15 DAP es 2.57 AT1G29880.1 Nudix hydrolase homolog 12 (SP: Glycyl-tRNA synthetase 1) A. thaliana 23.85 4.59 189 5 14.78

483 15 DAP es 2.19 XP_003569976 Vacuolar-processing enzyme beta-isozyme-like B. distachyon 54.56 6.15 99 1 2.65

80 15 DAP es 1.67 AT5G10540.1 Zincin-like metalloproteases family protein A. thaliana 78.99 5.34 122 4 5.28

143 15 DAP es 1.56 AT5G58290.1 Regulatory particle triple-A ATPase 3 A. thaliana 45.72 5.30 1298 22 50.98

354 15 DAP es 1.53 AT1G29990.1 Prefoldin 6 A. thaliana 14.85 9.57 357 3 22.48

800 15 DAP es 5.16 Q9SGW3 26S proteasome non-ATPase regulatory subunit RPN12A A. thaliana 30.69 4.67 962 8 39.70

836 15 DAP es 1.54 Q9SRG3 Protein disulfide isomerase-like 1-2 A. thaliana 56.33 4.76 993 8 15.94

837 15 DAP es 5.67 Q9XI01 Protein disulfide isomerase-like 1-2 A. thaliana 56.33 4.76 1104 9 19.09

906 15 DAP es 4.42 AT5G66190.1 TCP-1/cpn60 chaperonin family protein A. thaliana 58.89 5.84 200 4 8.41

947 15 DAP es 2.18 Q8LD27 Proteasome subunit beta type-6 A. thaliana 25.14 5.21 104 2 10.73

1104 15 DAP es 1.53 XP_002522624 Immunophilin, putative (SP: peptidy-prolyl isomerase) R. communis 12.00 9.17 499 4 14.29

422 15 DAP es 2.45 NP_567632 Subtilase family protein A. thaliana 82.61 7.88 88 2 1.17

435 15 DAP es 1.58 XP_002863802 Ubiquitin family protein A. lyrata 8.58 9.01 351 10 68.49

946 15 DAP es 5.08 XP_002301464 Peptidyl-prolyl cis-trans isomerase P. trichocarpa 29.07 10.04 126 2 4.51

1146 15 DAP es 2.24 AT5G20890.1 TCP-1/cpn60 chaperonin family protein A. thaliana 57.25 5.52 277 10 14.99

(continued on next page)
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Table 3 (continued)

ID a Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

170 15 DAP es 2.27 AT3G63460.1 Transducin family protein/WD-40 repeat family protein A. thaliana 119.80 4.86 57 1 1.00

779 15 DAP es 1.72 CAC85247 Salt tolerance protein 5 B. vulgaris 33.28 4.84 81 1 3.05

952 15 DAP es 1.55 O48646 Probable phospholipid hydroperoxide glutathione peroxidase 6, mitochondrial A. thaliana 25.57 9.95 495 6 20.26

939 15 DAP es 2.57 AAF78493 Contains similarity to AP2/EREBP-like transcription factor A. thaliana 47.48 4.80 122 3 5.84

143 15 DAP es 1.56 P41379 Eukaryotic initiation factor 4A-2 N. plumbaginifolia 46.80 5.26 321 7 19.61

269 15 DAP es 2.45 Q40468 Eukaryotic initiation factor 4A-15 N. tabacum 46.69 5.26 717 11 17.43

417 15 DAP es 2.11 Q9LUV2 Probable protein Pop3 A. thaliana 12.18 5.35 361 2 20.18

493 15 DAP es 2.11 AT2G43460.1 60S ribosomal protein L38 A. thaliana 8.12 10.64 414 5 60.87

511 15 DAP es 1.58 Q9LVC9 60S acidic ribosomal protein P3-2 A. thaliana 11.86 4.29 311 2 15.83

527 15 DAP es 1.74 P29521 Elongation factor 1-alpha D. carota 49.27 9.83 217 3 6.24

530 15 DAP es 1.73 P13905 Elongation factor 1-alpha A. thaliana 49.47 9.79 411 2 9.80

533 15 DAP es 2.06 AT2G03870.1 Small nuclear ribonucleoprotein family protein A. thaliana 10.77 4.89 119 4 25.25

1041 15 DAP es 7.54 P48006 Elongation factor 1-delta 1 A. thaliana 25.12 4.28 770 7 27.71

1096 15 DAP es 3.74 Q9C505 Eukaryotic translation initiation factor 5A-3 A. thaliana 17.20 5.51 478 5 24.05

1383 15 DAP es 3.10 Q8LBI1 60S ribosomal protein L5-1 A. thaliana 34.34 9.71 510 8 24.25

170 15 DAP es 2.27 Q9C5Z2 Eukaryotic translation initiation factor 3 subunit H A. thaliana 38.35 4.68 215 4 9.79

370 15 DAP es 3.81 BAB02821 Similarity to protein translation inhibitor A. thaliana 15.15 5.33 60 3 23.08

381 15 DAP es 2.76 NP_197529 40S ribosomal protein S8-1 A. thaliana 24.98 10.86 214 4 16.67

383 15 DAP es 2.45 AT5G59950.2 RNA-binding (RRM/RBD/RNP motifs) family protein A. thaliana 18.88 9.71 91 4 17.98

422 15 DAP es 2.45 NP_190957 40S ribosomal protein S21-1 A. thaliana 9.07 9.23 59 1 13.41

435 15 DAP es 1.58 AT1G54270.1 eif4a-2 A. thaliana 46.73 5.35 153 1 2.43

483 15 DAP es 2.19 AT1G75350.1 Ribosomal protein L31 A. thaliana 16.02 10.49 53 1 8.33

900 15 DAP es 2.36 AT1G56070.1 Ribosomal protein S5/Elongation factor G/III/V family protein A. thaliana 93.83 5.85 1507 20 13.64

900 15 DAP es 2.36 BAJ33766 Unnamed protein product (Elongation factor EF-2) T. halophila 93.88 5.85 940 19 14.23

946 15 DAP es 5.08 AT1G54270.1 eif4a-2 A. thaliana 46.73 5.35 52 1 4.37

952 15 DAP es 1.55 Q9XI91 Eukaryotic translation initiation factor 5A-1 A. thaliana 17.35 5.34 339 3 27.22

1219 15 DAP es 2.67 Q8LBI1 60S ribosomal protein L5-1 A. thaliana 34.34 9.71 89 2 4.98

1274 15 DAP es 2.66 AT2G40660.1 Nucleic acid-binding, OB-fold-like protein A. thaliana 42.06 7.70 53 1 2.06

1278 15 DAP es 2.18 AT1G03810.1 Nucleic acid-binding, OB-fold-like protein A. thaliana 15.66 10.23 55 2 5.59

Lipid metabolism

122 15 DAP es 1.79 AAK60339 Biotin carboxylase B. napus 58.38 6.57 51 2 5.23

464 15 DAP es 4.51 Q39315 Acyl-CoA-binding protein B. napus 10.17 5.28 424 6 68.48

985 15 DAP es 2.01 P80030 Enoyl-[acyl-carrier-protein] reductase [NADH], chloroplastic B. napus 40.45 9.39 174 3 10.65

Nucleotide metabolism

881 15 DAP es 1.50 Q9LZG0 Adenosine kinase 2 A. thaliana 37.82 5.01 1729 16 59.13

170 15 DAP es 2.27 AT4G14930.1 Survival protein SurE-like phosphatase/nucleotidase A. thaliana 34.10 4.91 97 1 3.49

Storage

779 15 DAP es 1.72 AT1G07750.1 RmlC-like cupins superfamily protein A. thaliana 38.29 5.79 401 8 14.04

Uncharacterized

80 15 DAP es 1.67 XP_002876580 Hypothetical protein ARALYDRAFT_486548 (SP: Transketolase) A. lyrata 79.80 5.82 1544 22 26.86

269 15 DAP es 2.45 ACJ84369 Unknown M. truncatula 28.22 6.15 360 2 28.10

Genetic information processing
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ID a

Stage b Reg c Accession d Name Organism MM calc e pI
calc f

Score g Peph SC% i

170 15 DAP es 2.27 CAB10272 Hypothetical protein A. thaliana 30.20 5.25 84 1 4.00

170 15 DAP es 2.27 CAB87799 Putative protein A. thaliana 119.00 4.84 57 1 1.00

946 15 DAP es 5.08 NP_001047560 Os02g0643500 O. sativa japonica group 28.94 10.10 128 2 5.42

1274 15 DAP es 2.66 XP_002965025 Hypothetical protein SELMODRAFT_82474 S. moellendorffii 35.06 8.77 85 1 2.51

1274 15 DAP es 2.66 CAN60565 Hypothetical protein VITISV_013997 V. vinifera 57.79 9.96 76 2 4.97

Amino acid metabolism

882 20 DAP es 1.62 ABD65618 Acetylornithine deacetylase, putative B. oleracea 44.79 5.10 79 17.2 4.00

1349 20 DAP es 1.83 AT4G38220.1 Peptidase M20/M25/M40 family protein A. thaliana 47.71 5.91 124 8.8 3.00

885 20 DAP es 1.66 Q5DNB1 S-Adenosylmethionine synthase B. rapa 43.16 5.63 617 26.0 11.00

913 20 DAP es 1.81 Q9LDQ7 S-Adenosylmethionine synthase C. sinensis 42.77 5.25 112 9.4 2.00

1156 20 DAP es 2.05 AT2G36880.1 Methionine adenosyltransferase 3 A. thaliana 42.47 5.73 1916 61.5 22.00

1157 20 DAP es 2.08 AT4G01850.1 S-Adenosylmethionine synthetase 2 A. thaliana 43.23 5.63 246 27.5 5.00

1162 20 DAP es 1.51 Q5DNB1 S-Adenosylmethionine synthase B. rapa 43.16 5.63 393 20.9 5.00

1329 20 DAP es 3.25 Q9FUZ1 S-Adenosylmethionine synthase 2 B. juncea 42.85 5.27 873 36.1 10.00

956 20 DAP es 1.78 Q9SRZ4 Peroxiredoxin-2C A. thaliana 17.40 5.22 197 6.2 2.00

129 20 DAP es 1.50 AT4G13930.1 Serine hydroxymethyltransferase 4 A. thaliana 51.69 6.98 1322 34.2 16.00

129 20 DAP es 1.50 AT4G13890.1 Pyridoxal phosphate (PLP)-dependent transferases superfamily protein A. thaliana 52.23 5.60 314 8.7 5.00

912 20 DAP es 2.26 AAR13689 Peptide methionine sulfoxide reductase B. oleracea 22.72 5.29 248 42.2 2.00

882 20 DAP es 1.62 Q93ZN9 LL-diaminopimelate aminotransferase, chloroplastic A. thaliana 50.36 7.71 891 22.6 10.00

Biosynthesis of secondary metabolites

925 20 DAP es 1.58 XP_002864577 cinnamoyl-CoA reductase family A. lyrata 35.39 5.81 57 12.7 2.00

Carbohydrate metabolism

1157 20 DAP es 2.08 AT1G08200.1 UDP-D-apiose/UDP-D-xylose synthase 2 A. thaliana 43.76 5.51 81 5.4 2.00

885 20 DAP es 1.66 AT1G08200.1 UDP-D-apiose/UDP-D-xylose synthase 2 A. thaliana 43.76 5.51 51 2.8 1.00

913 20 DAP es 1.81 Q9LFA3 Probable monodehydroascorbate reductase, cytoplasmic isoform 3 A. thaliana 46.46 6.47 62 9.7 3.00

1156 20 DAP es 2.05 AT5G28840.1 GDP-D-mannose 3′,5′-epimerase A. thaliana 42.73 5.81 50 6.4 2.00

1157 20 DAP es 2.08 AAK72107 Monodehydroascorbate reductase B. rapa 46.43 5.74 108 30.0 7.00

1162 20 DAP es 1.51 AT5G28840.1 GDP-D-mannose 3′,5′-epimerase A. thaliana 42.73 5.81 227 12.7 5.00

1315 20 DAP es 1.52 Q42564 L-ascorbate peroxidase 3, peroxisomal A. thaliana 31.55 6.53 235 17.8 5.00

885 20 DAP es 1.66 AAK72107 monodehydroascorbate reductase B. rapa 46.43 5.74 129 15.9 5.00

925 20 DAP es 1.58 Q42592 L-Ascorbate peroxidase S, chloroplastic/mitochondrial A. thaliana 40.38 9.01 358 14.5 5.00

99 20 DAP es 2.33 Q9M9K1 Probable 2,3-bisphosphoglycerate-independent phosphoglyceratemutase 2 A. thaliana 60.73 5.46 446 15.7 6.00

103 20 DAP es 1.50 O04499 2,3-Bisphosphoglycerate-independent phosphoglycerate mutase 1 A. thaliana 60.54 5.20 1520 31.4 18.00

891 20 DAP es 2.07 AT2G21330.1 Fructose-bisphosphate aldolase 1 A. thaliana 42.90 6.18 162 10.0 4.00

913 20 DAP es 1.81 P25696 Bifunctional enolase 2/transcriptional activator A. thaliana 47.69 5.45 1458 30.6 11.00

1186 20 DAP es 1.58 AT3G52930.1 Aldolase superfamily protein A. thaliana 38.52 6.04 1282 43.0 17.00

1343 20 DAP es 2.18 O49299 Probable phosphoglucomutase, cytoplasmic 1 A. thaliana 63.13 5.88 1014 22.5 12.00

1401 20 DAP es 1.77 Q1WIQ6 NADP-dependent glyceraldehyde-3-phosphate dehydrogenase A. thaliana 53.03 6.24 1024 25.6 16.00

1401 20 DAP es 1.77 AT3G16950.1 Lipoamide dehydrogenase 1 A. thaliana 60.72 9.00 87 4.6 2.00

123 20 DAP es 1.58 Q96348 Inositol-3-phosphate synthase A. thaliana 56.34 5.27 868 25.7 13.00

910 20 DAP es 1.77 Q39366 Putative lactoylglutathione lyase B. oleracea 31.63 5.02 906 36.9 11.00

1116 20 DAP es 1.67 AAP37972 Seed specific protein Bn15D33A (SP: galactosyltransferase activity) B. napus 12.66 9.24 835 68.1 8.00

1195 20 DAP es 1.64 AT5G59290.1 UDP-glucuronic acid decarboxylase 3 A. thaliana 38.54 9.08 963 45.3 18.00

925 20 DAP es 1.58 BAB01287 Sucrose cleavage protein-like A. thaliana 34.23 5.51 70 2.9 1.00

94 20 DAP es 1.68 O82663 Succinate dehydrogenase [ubiquinone] flavoprotein subunit 1,

mitochondrial

A. thaliana 69.61 5.84 958 26.2 13.00

(continued on next page)
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Table 3 (continued)

ID a Stage b Reg c Accession d Name Organism MM calc e pI
calc f

Score g Peph SC% i

152 20 DAP es 1.89 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.79 447 7.1 3.00

154 20 DAP es 1.94 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.79 375 7.1 3.00

668 20 DAP es 2.12 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.79 561 7.1 3.00

1147 20 DAP es 1.90 AT1G65930.1 Cytosolic NADP+-dependent isocitrate dehydrogenase A. thaliana 45.72 6.13 196 14.1 5.00

1352 20 DAP es 1.71 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.79 304 7.1 3.00

Cellular processes

174 20 DAP es 2.49 Q9FFD2 Probable UDP-arabinopyranose mutase 5 A. thaliana 38.56 4.92 1592 31.3 14.00

813 20 DAP es 2.67 Q56WK6 Patellin-1 A. thaliana 64.01 4.67 830 18.3 13.00

123 20 DAP es 1.58 AT1G75780.1 Tubulin beta-1 chain A. thaliana 50.18 4.54 67 6.5 3.00

218 20 DAP es 1.53 Q9LW57 Probable plastid-lipid-associated protein 6, chloroplastic1 A. thaliana 30.44 5.76 91 11.3 3.00

Defense

311 20 DAP es 2.33 Q9ZSK3 Actin-depolymerizing factor 4 A. thaliana 16.02 6.18 219 20.1 3.00

315 20 DAP es 2.56 Q9ZVF2 MLP-like protein 329 A. thaliana 17.59 5.21 383 26.5 4.00

524 20 DAP es 2.00 Q9LV33 Beta-glucosidase 44 A. thaliana 58.95 9.81 311 13.1 7.00

959 20 DAP es 1.54 Q9ZVF2 MLP-like protein 329 A. thaliana 17.59 5.21 346 23.2 3.00

1100 20 DAP es 1.78 Q9ZVF3 MLP-like protein 328 A. thaliana 17.50 5.35 498 37.1 6.00

1401 20 DAP es 1.77 XP_002876291 Glycosyl hydrolase family 20 protein A. lyrata 61.54 5.85 90 9.4 6.00

Energy metabolism

778 20 DAP es 1.54 Q56WN1 Glutamine synthetase cytosolic isozyme 1-1 A. thaliana 39.09 5.17 396 20.5 5.00

607 20 DAP es 1.58 Q9SJ12 Probable ATP synthase 24 kDa subunit, mitochondrial A. thaliana 27.58 6.30 502 19.2 7.00

944 20 DAP es 2.05 Q9C5C8 Peptide methionine sulfoxide reductase B2, chloroplastic A. thaliana 21.95 9.96 97 4.5 6.00

Environmental information processing

1224 20 DAP es 4.23 Q9LX08 Annexin D6 A. thaliana 36.55 8.66 328 13.5 6.00

236 20 DAP es 2.20 AT1G30580.1 GTP binding A. thaliana 44.44 6.38 382 15.7 4.00

944 20 DAP es 2.05 Q9FLP6 Small ubiquitin-related modifier 2 A. thaliana 11.65 5.23 408 27.2 3.00

1027 20 DAP es 1.59 P48347 14-3-3-like protein GF14 epsilon A. thaliana 28.90 4.57 1679 52.0 24.00

1116 20 DAP es 1.67 P69310 Ubiquitin A. sativa 8.52 7.58 510 77.6 8.00

1281 20 DAP es 1.72 Q9SVD7 Ubiquitin-conjugating enzyme E2 variant 1D A. thaliana 16.52 6.24 919 65.1 12.00

1315 20 DAP es 1.52 P38548 GTP-binding nuclear protein Ran/TC4 V. faba 25.27 6.44 114 11.3 2.00

1224 20 DAP es 4.23 Q39336 Guanine nucleotide-binding protein subunit beta-like protein B. napus 35.70 9.12 711 31.5 13.00

1224 20 DAP es 4.23 AT3G18130.1 receptor for activated C kinase 1C A. thaliana 35.81 6.81 209 14.4 2.00

177 20 DAP es 2.37 AT1G52820.1 2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein A. thaliana 36.40 5.68 278 8.8 2.00

218 20 DAP es 1.53 ABD36807 Glutathione S-transferase B. napus 24.72 5.78 376 45.6 5.00

315 20 DAP es 2.56 ABV89642 Universal stress protein family protein B. rapa 17.58 9.02 260 42.1 4.00

315 20 DAP es 2.56 AT3G03270.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 22.59 5.44 143 15.4 2.00

969 20 DAP es 2.40 ABD36807 Glutathione S-transferase B. napus 24.72 5.78 104 9.7 2.00

969 20 DAP es 2.40 AT3G11930.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 21.44 5.46 97 21.1 3.00

970 20 DAP es 2.72 ABD36807 Glutathione S-transferase B. napus 24.72 5.78 192 18.4 4.00

970 20 DAP es 2.72 AT3G11930.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 21.44 5.46 169 18.1 2.00

1157 20 DAP es 2.08 AT4G27585.1 PHB domain-containing membrane-associated protein family A. thaliana 44.99 6.37 89 8.0 3.00

1162 20 DAP es 1.51 AT4G27585.1 PHB domain-containing membrane-associated protein family A. thaliana 44.99 6.37 414 15.8 5.00

Carbohydrate metabolism
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ID a

Stage b Reg c Accession d Name Organism MM calc e pI
calc f

Score g Peph SC% i

1283 20 DAP es 1.72 AT3G03270.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 22.59 5.44 985 38.3 10.00

1283 20 DAP es 1.72 ABV89642 Universal stress protein family protein B. rapa 17.58 9.02 804 75.5 14.00

Genetic information processing

941 20 DAP es 1.67 P49311 G.-rich RNA-binding protein GRP2A S. alba 16.35 5.41 682 37.3 6.00

154 20 DAP es 1.94 AT1G45000.1 AAA-type ATPase family protein A. thaliana 44.73 9.02 67 6.0 2.00

199 20 DAP es 1.89 AT4G04460.1 Saposin-like aspartyl protease family protein A. thaliana 55.54 6.93 183 7.5 3.00

602 20 DAP es 1.62 AT4G04460.1 Saposin-like aspartyl protease family protein A. thaliana 55.54 6.93 231 7.1 3.00

1027 20 DAP es 1.59 Q9SGW3 26S proteasome non-ATPase regulatory subunit RPN12A A. thaliana 30.69 4.67 521 32.2 7.00

1033 20 DAP es 3.06 Q9M4T8 Proteasome subunit alpha type-5 G. max 25.96 4.55 788 40.1 14.00

1186 20 DAP es 1.58 O22263 Protein disulfide-isomerase like 2-1 A. thaliana 39.47 5.73 1051 26.0 12.00

1422 20 DAP es 1.54 AT1G79930.1 Heat shock protein 91 A. thaliana 91.69 5.01 485 7.7 2.00

1224 20 DAP es 4.23 AT1G18080.1 Transducin/WD40 repeat-like superfamily protein A. thaliana 35.73 8.79 565 23.2 11.00

44 20 DAP es 2.00 AT1G56070.1 Ribosomal protein S5/Elongation factor G/III/V family protein A. thaliana 93.83 5.85 2221 33.2 34.00

463 20 DAP es 2.86 O22860 60S ribosomal protein L38 A. thaliana 8.12 10.64 344 58.0 4.00

668 20 DAP es 2.12 Q9SF40 60S ribosomal protein L4-1 A. thaliana 44.67 10.86 317 17.0 10.00

1157 20 DAP es 2.08 O04487 Probable elongation factor 1-gamma 1 A. thaliana 46.63 5.23 1476 22.5 11.00

1352 20 DAP es 1.71 AT2G18510.1 RNA-binding (RRM/RBD/RNP motifs) family protein (SP:putative

spliceosome associated protein)

A. thaliana 39.86 7.94 274 9.9 3.00

595 20 DAP es 2.61 AT3G01340.1 Transducin/WD40 repeat-like superfamily protein A. thaliana 32.61 5.61 579 16.6 6.00

882 20 DAP es 1.62 P41376 Eukaryotic initiation factor 4A-1 A. thaliana 46.67 5.36 1884 47.1 29.00

913 20 DAP es 1.81 P41376 Eukaryotic initiation factor 4A-1 A. thaliana 46.67 5.36 221 11.7 4.00

331 20 DAP es 3.08 AT2G36160.1 Ribosomal protein S11 family protein A. thaliana 16.25 11.26 118 7.3 1.00

434 20 DAP es 3.20 AT2G43460.1 Ribosomal L38e protein family A. thaliana 8.12 10.64 64 36.2 2.00

562 20 DAP es 1.66 P55852 Small ubiquitin-related modifier 1 A. thaliana 10.97 4.77 471 20.0 4.00

885 20 DAP es 1.66 AT1G09640.1 Translation elongation factor EF1B, gamma chain A. thaliana 46.63 5.23 782 13.0 8.00

885 20 DAP es 1.66 Q9SAB3 Polyadenylate-binding protein RBP45B A. thaliana 44.09 5.49 53 2.2 1.00

1224 20 DAP es 4.23 AAZ67604 80A08_19 B. rapa 36.41 6.88 534 40.3 17.00

Glycan biosynthesis and metabolism

1401 20 DAP es 1.77 AT3G55260.1 Beta-hexosaminidase 1 A. thaliana 61.19 5.85 130 7.2 5.00

Lipid metabolism

891 20 DAP es 2.07 P29108 Acyl-[acyl-carrier-protein] desaturase, chloroplastic B. napus 45.32 5.69 3001 52.3 27.00

1147 20 DAP es 1.90 AT5G46290.1 3-Ketoacyl-acyl carrier protein synthase I A. thaliana 50.38 9.25 896 29.8 16.00

Uncharacterized

813 20 DAP es 2.67 XP_002887418 Hypothetical protein ARALYDRAFT_895064 A. lyrata 62.02 4.75 474 19.9 15.00

813 20 DAP es 2.67 A5BX00 Hypothetical protein V.V_028074 V. vinifera 123.63 5.57 62 2.2 2.00

1147 20 DAP es 1.90 XP_002875287 Hypothetical protein ARALYDRAFT_904762 A. lyrata 50.29 9.20 373 12.9 7.00

1401 20 DAP es 1.77 E4MX61 Unnamed protein product T. halophila 53.21 6.48 925 39.3 22.00

a Spot number in accordance with Supplementary Fig. 3.
b Developmental stage of endosperm (es) 15 and 20 DAP.
c Regulation of spots, spot volume at least 1.5 fold increased in the corresponding developmental stage.
d Accession numbers as given by SwissProt (http://www.uniprot.org), NCBInr (http://www.ncbi.nlm.nih.gov/protein) and TAIR (http://www.Arabidopsis.org/).
e Calculated molecular masses of the identified proteins as deduced from the corresponding genes.
f Calculated isoelectric point of the identified proteins as deduced from the corresponding genes.
g Probability score for the protein identifications based on MS/MS analysis and MASCOT search.
h Number of unique matching peptides.
i Sequence coverage of a protein by identified peptides.
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Table 4 – Identification of proteins from spots with changed abundance in the endosperm compared to the embryo at 15 DAP. To determine significant changes in spot
volume, a Student's t-test (p-value ≤ 0.05) was applied on the basis of normalized relative spot volume. Changes in spot volume ≥ 1.5 were considered to represent true
alterations. Identification of proteins was carried out using the MASCOT search algorithm (www.matrixscience.com) against the (i) SwissProt (www.uniprot.org), (ii) NCBInr
(www.ncbi.nig.gov) and (iii) TAIR (www.arabidopsis.org, TAIR release 10) databases. Identified proteins were functionally classified according to the KEGG PATHWAY
Database (http://www.genome.jp/kegg/pathway.html). The pathway categories were adjusted for seed metabolism by adding four functional groups: (i) storage, (ii) defense,
(iii) desiccation and (iv) detoxification.

ID a Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

Amino acid metabolism

34 15 DAP es 1.89 Q43314 Glutamate dehydrogenase 1 A. thaliana 44.5 6.42 116 4 9.00

23 15 DAP es 1.60 O04937 Glutamate dehydrogenase A N. plumbaginifolia 44.8 6.69 60 1 2.43

266 15 DAP es 2.20 P30184 Leucine aminopeptidase 1 A. thaliana 54.5 5.58 271 4 8.85

384 15 DAP es 1.64 AT1G07780.1 phosphoribosylanthranilate isomerase 1 A. thaliana 29.6 9.52 68 1 3.27

Biosynthesis of secondary metabolites

313 15 DAP es 1.81 AT5G54160.1 Quercetin 3-O-methyltransferase 1 A. thaliana 39.6 5.56 138 4 12.40

313 15 DAP es 1.81 Q9S818 Naringenin,2-oxoglutarate 3-dioxygenase A. thaliana 40.3 5.17 104 3 8.10

62 15 DAP es 2.11 Q42553 Isopentenyl-diphosphate delta-isomerase II A. thaliana 32.6 6.10 507 14 44.37

Carbohydrate metabolism

301 15 DAP es 4.24 Q9C5I1 UDP-sugar pyrophosphorylase A. thaliana 67.8 6.06 77 1 1.63

6 15 DAP es 5.38 AT5G52560.1 UDP-sugar pyrophosphorylase A. thaliana 67.8 6.06 357 6 10.91

348 15 DAP es 2.02 AAY47048 Dehydroascorbate reductase S. lycopersicum 23.5 6.36 309 5 23.81

74 15 DAP es 6.88 AAY47048 Dehydroascorbate reductase S. lycopersicum 23.5 6.36 243 4 21.90

384 15 DAP es 1.64 CAA55209 L-Ascorbate peroxidase R. sativus 27.7 5.41 788 18 62.80

266 15 DAP es 2.20 AT5G57655.2 Xylose isomerase family protein A. thaliana 53.7 5.52 284 6 13.00

266 15 DAP es 2.20 Q9SEE5 Galactokinase A. thaliana 54.3 5.61 150 2 4.64

350 15 DAP es 2.29 Q96533 Alcohol dehydrogenase class-3 A. thaliana 40.7 6.59 454 8 22.69

11 15 DAP es 1.57 Q9SU63 Aldehyde dehydrogenase family 2 member B4,

mitochondrial

A. thaliana 58.6 7.78 1210 14 29.74

266 15 DAP es 2.20 P25696 Bifunctional enolase 2/transcriptional activator A. thaliana 47.7 5.45 714 11 20.72

315 15 DAP es 1.75 AT4G38970.1 fructose-bisphosphate aldolase 2 A. thaliana 43.0 7.54 1696 15 41.71

314 15 DAP es 1.75 P16096 Fructose-bisphosphate aldolase, chloroplastic S. oleracea 42.4 7.62 127 4 9.90

315 15 DAP es 1.75 AT5G57330.1 Galactose mutarotase-like superfamily protein A. thaliana 35.4 5.66 308 7 27.56

315 15 DAP es 1.75 NP_200543 Glucose-6-phosphate 1-epimerase A. thaliana 35.4 5.66 208 7 27.56

33 15 DAP es 2.60 P25857 Glyceraldehyde-3-phosphate dehydrogenase B,

chloroplast

A. thaliana 47.6 6.36 372 6 14.32

260 15 DAP es 2.20 AT4G24620.1 Phosphoglucose isomerase 1 A. thaliana 67.0 5.37 86 3 5.22

314 15 DAP es 1.75 AT1G79550.1 Phosphoglycerate kinase A. thaliana 42.1 5.37 2543 17 53.87

313 15 DAP es 1.81 AT1G79550.1 Phosphoglycerate kinase A. thaliana 42.1 5.37 1619 8 50.12

169 15 DAP es 43.07 Q9SGC1 Probable phosphoglucomutase, cytoplasmic 2 A. thaliana 63.4 5.48 1202 17 26.50

301 15 DAP es 4.24 Q9SGC1 Probable phosphoglucomutase, cytoplasmic 2 A. thaliana 63.4 5.48 1372 15 24.96

6 15 DAP es 5.38 Q9SGC1 Probable phosphoglucomutase, cytoplasmic 2 A. thaliana 63.4 5.48 208 6 10.43

174 15 DAP es 2.94 AT3G52990.1 Pyruvate kinase family protein A. thaliana 57.5 6.74 148 5 11.39

151 15 DAP es 2.80 AT5G63680.1 Pyruvate kinase family protein A. thaliana 55.0 6.25 197 10 14.90

384 15 DAP es 1.64 P48491 Triosephosphate isomerase, cytosolic A. thaliana 27.2 5.27 88 3 8.27

210 15 DAP es 1.59 P48491 Triosephosphate isomerase, cytosolic A. thaliana 27.2 5.27 58 1 4.33

195 15 DAP es 5.43 AAP37972 Seed specific protein Bn15D33A B. napus 12.7 9.24 338 10 31.90

290 15 DAP es 2.08 AT4G35830.1 Aconitase 1 A. thaliana 98.1 5.96 1323 31 32.18
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ID a

Stage b Reg c Accession d Name Organism MM calc e pI
calc f

Score g Peph SC% i

166 15 DAP es 2.41 Q42560 Aconitate hydratase 1 A. thaliana 98.1 5.96 1110 29 30.29

164 15 DAP es 1.51 Q42560 Aconitate hydratase 1 A. thaliana 98.1 5.96 978 26 29.51

165 15 DAP es 3.04 XP_002870438 Aconitate hydratase 2, mitochondrial A. lyrata 106.7 7.25 319 1 17.50

170 15 DAP es 1.90 Q9SIB9 Aconitate hydratase 2, mitochondrial A. thaliana 108.1 6.79 1532 31 27.37

23 15 DAP es 1.60 AT1G65930.1 Cytosolic NADP+-dependent isocitrate dehydrogenase A. thaliana 45.7 6.13 112 2 6.34

234 15 DAP es 2.17 Q43744 Malate dehydrogenase, mitochondrial B. napus 35.7 9.48 91 2 10.26

313 15 DAP es 1.81 Q8RU27 Alpha-1,4-glucan-protein synthase UDP-forming 2 S. tuberosum 41.6 5.66 131 5 11.20

Cellular processes

113 15 DAP es 2.47 Q9SVJ4 Endoglucanase 22 A. thaliana 55.0 6.36 58 1 1.62

23 15 DAP es 1.60 Q8H038 Xyloglucan galactosyltransferase KATAMARI1 homolog O. sativa 66.7 5.54 51 1 1.02

220 15 DAP es 1.52 AT3G07680.1 GOLD family protein A. thaliana 24.3 5.93 517 10 40.87

216 15 DAP es 1.63 AT4G20360.1 RAB GTPase homolog E1B A. thaliana 51.6 5.79 57 1 2.31

151 15 DAP es 2.80 AT4G34490.1 cyclase associated protein 1 A. thaliana 50.9 6.24 619 8 15.13

94 15 DAP es 3.30 AT4G29350.1 Profilin 2 A. thaliana 14.0 4.77 301 4 16.79

95 15 DAP es 1.84 Q64LH1 Profilin-1 A. artemisiifolia 14.1 4.58 520 5 17.56

96 15 DAP es 1.84 Q64LH1 Profilin-1 A. artemisiifolia 14.1 4.58 439 3 16.03

345 15 DAP es 5.81 AT5G23540.1 Mov34/MPN/PAD-1 family protein A. thaliana 34.3 6.34 236 4 12.99

Defense

80 15 DAP es 1.79 AT3G46000.1 Actin depolymerizing factor 2 A. thaliana 15.7 5.10 151 1 8.76

186 15 DAP es 5.41 CAA47357 Allergen Car b I C. betulus 17.2 5.80 53 1 14.47

114 15 DAP es 2.59 ABV89615 Bet v, allergen family protein B. rapa 17.1 5.15 161 4 29.03

147 15 DAP es 6.03 AT1G52400.1 Beta glucosidase 18 A. thaliana 60.4 6.82 264 5 7.01

148 15 DAP es 6.03 AT1G52400.1 Beta glucosidase 18 A. thaliana 60.4 6.82 363 5 5.68

10 15 DAP es 1.57 AT3G03640.1 Beta glucosidase 25 A. thaliana 59.8 6.08 132 6 7.91

149 15 DAP es 3.67 Q9SE50 Beta-glucosidase 18 A. thaliana 60.4 6.82 310 7 8.71

146 15 DAP es 6.83 Q9SE50 Beta-glucosidase 18 A. thaliana 60.4 6.82 329 7 7.01

307 15 DAP es 9.90 Q9SE50 Beta-glucosidase 18 A. thaliana 60.4 6.82 201 5 5.68

144 15 DAP es 1.64 Q9LV33 Beta-glucosidase 44 A. thaliana 58.9 9.81 311 7 13.09

270 15 DAP es 3.98 AT3G16470.3 Mannose-binding lectin superfamily protein A. thaliana 32.1 5.15 438 3 13.80

81 15 DAP es 5.30 Q9ZVF2 MLP-like protein 329 A. thaliana 17.6 5.21 383 4 26.49

270 15 DAP es 3.98 O04309 Myrosinase-binding protein A. thaliana 48.5 4.99 457 3 9.09

23 15 DAP es 1.60 P52778 Protein LlR18A L. luteus 16.8 5.07 54 1 7.69

6 15 DAP es 5.38 P52778 Protein LlR18A L. luteus 16.8 5.07 55 1 7.69

18 15 DAP es 16.86 P52778 Protein LlR18A L. luteus 16.8 5.07 55 1 7.69

Detoxification

91 15 DAP es 3.10 AAD05576 Cu/Zn superoxide dismutase R. sativus 15.1 5.41 508 6 34.21

Energy metabolism

182 15 DAP es 6.09 AT5G38430.1 Ribulose bisphosphate carboxylase (small chain)

family protein181

A. thaliana 20.3 8.86 723 7 31.49

10 15 DAP es 1.57 P48686 Ribulose bisphosphate carboxylase large chain B. oleracea 52.9 5.85 890 23 42.80

11 15 DAP es 1.57 P48686 Ribulose bisphosphate carboxylase large chain B. oleracea 52.9 5.85 611 13 30.27

247 15 DAP es 1.92 P28380 Ribulose bisphosphate carboxylase large chain (Fragment) A. graveolens 50.8 6.19 57 2 3.49

197 15 DAP es 3.52 P10796 Ribulose bisphosphate carboxylase small chain 1B, chloroplastic A. thaliana 20.3 8.86 447 5 17.13

197 15 DAP es 3.52 Q9ZST4 Nitrogen regulatory protein P-II homolog A. thaliana 21.3 9.93 77 1 5.61

10 15 DAP es 1.57 AT2G07698.1 ATP synthase subunit alpha A. thaliana 85.9 5.31 59 2 2.83

(continued on next page)
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Table 4 (continued)

ID a Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

345 15 DAP es 5.81 AT1G50940.1 Electron transfer flavoprotein alpha A. thaliana 38.4 6.56 59 1 5.23

208 15 DAP es 3.16 Q9SJ12 Probable ATP synthase 24 kDa subunit, mitochondrial A. thaliana 27.6 6.30 359 7 22.92

208 15 DAP es 3.16 AT2G18230.1 Pyrophosphorylase 2 A. thaliana 24.7 5.68 71 2 13.30

384 15 DAP es 1.64 Q9XF89 Chlorophyll a–b binding protein CP26, chloroplastic A. thaliana 30.1 5.98 55 2 7.14

136 15 DAP es 3.42 XP_002502857 Early light induced protein-like 5, chloroplast M. sp. RCC299 27.8 4.32 70 2 3.72

23 15 DAP es 1.60 Q9LIK9 ATP sulfurylase 1, chloroplastic A. thaliana 51.4 6.36 721 13 21.60

149 15 DAP es 3.67 AT5G04590.1 Sulfite reductase A. thaliana 71.9 9.17 365 13 18.85

146 15 DAP es 6.83 AT5G04590.1 Sulfite reductase A. thaliana 71.9 9.17 139 5 7.63

Environmental information processing

363 15 DAP es 5.11 Q9XEE2 Annexin D2 A. thaliana 36.2 5.71 2585 18 40.06

345 15 DAP es 5.81 Q9XEE2 Annexin D2 A. thaliana 36.2 5.71 1276 11 29.65

96 15 DAP es 1.84 XP_002880102 Calcium-binding EF hand family protein A. lyrata 15.8 4.29 135 2 15.49

169 15 DAP es 43.07 AT2G46370.1 Auxin-responsive GH3 family protein A. thaliana 64.3 5.38 346 8 16.35

169 15 DAP es 43.07 Q9SKE2 Jasmonic acid-amido synthetase JAR1 A. thaliana 64.3 5.38 323 8 16.35

216 15 DAP es 1.63 AT3G46810.1 Cysteine/Histidine-rich C1 domain family protein A. thaliana 78.9 8.44 173 2 1.02

186 15 DAP es 5.41 P69310 Ubiquitin A. sativa 8.5 7.58 510 8 77.63

188 15 DAP es 2.05 P69310 Ubiquitin A. sativa 8.5 7.58 428 8 77.63

189 15 DAP es 2.05 P69310 Ubiquitin A. sativa 8.5 7.58 333 6 69.74

79 15 DAP es 2.46 Q9SVD7 Ubiquitin-conjugating enzyme E2 A. thaliana 16.5 6.24 825 11 54.11

83 15 DAP es 4.16 AT3G03270.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 22.6 5.44 143 2 15.42

196 15 DAP es 5.64 AT3G03270.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 22.6 5.44 985 10 38.31

231 15 DAP es 1.89 AT3G17020.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 17.8 6.52 65 1 13.50

71 15 DAP es 2.60 AT3G11930.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 21.4 5.46 97 3 21.11

80 15 DAP es 1.79 AT4G39260.1 Cold, circadian rhythm, and RNA binding 1 A. thaliana 16.6 5.44 443 5 14.79

85 15 DAP es 1.77 ADR01108 Copper/zinc superoxide dismutase B. rapa 19.0 6.32 69 1 10.81

78 15 DAP es 4.42 AAK01359 Dehydration stress-induced protein B. napus 19.7 4.67 315 6 30.90

202 15 DAP es 1.86 AT5G20500.1 Glutaredoxin family protein A. thaliana 14.8 5.62 130 2 11.85

195 15 DAP es 5.43 Q9FNE2 Glutaredoxin-C2 A. thaliana 11.7 7.68 209 2 9.91

71 15 DAP es 2.60 ABD36807 Glutathione S-transferase B. napus 24.7 5.78 104 2 9.68

348 15 DAP es 2.02 Q9FRL8 Glutathione S-transferase DHAR2 A. thaliana 23.4 5.75 127 2 7.04

74 15 DAP es 6.88 Q9FRL8 Glutathione S-transferase DHAR2 A. thaliana 23.4 5.75 177 3 10.33

384 15 DAP es 1.64 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.3 6.23 80 2 6.61

204 15 DAP es 3.16 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.3 6.23 293 6 16.74

208 15 DAP es 3.16 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.3 6.23 116 4 12.33

205 15 DAP es 2.60 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.3 6.23 259 7 19.38

228 15 DAP es 1.77 AT2G30860.1 Glutathione S-transferase PHI 9 A. thaliana 24.1 6.19 556 7 37.67

10 15 DAP es 1.57 AT3G24170.1 Glutathione-disulfide reductase A. thaliana 53.8 6.39 163 7 15.63

180 15 DAP es 1.87 Q9SK52 Peroxidase 18 A. thaliana 35.6 5.08 63 1 2.74

350 15 DAP es 2.29 ACR40091 S-Nitrosoglutathione reductase B. juncea 40.1 8.72 185 1 24.33

124 15 DAP es 1.51 CAD31719 Translationally controlled tumor-like protein Cicer arietinum C. arietinum 7.0 6.08 117 1 26.23

120 15 DAP es 1.51 Q944W6 Translationally-controlled tumor protein homolog B. oleracea 19.0 4.48 556 8 39.29

83 15 DAP es 4.16 ABV89642 Universal stress protein family protein B. rapa 17.6 9.02 260 4 42.14

71 15 DAP es 2.60 XP_002882756 Universal stress protein family protein A. lyrata 21.7 5.28 53 3 25.50

196 15 DAP es 5.64 ABV89642 Universal stress protein family protein B. rapa 17.6 9.02 804 14 75.47

Energy metabolism
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ID a

Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

Genetic information processing

270 15 DAP es 3.98 Q940A6 Pentatricopeptide repeat-containing protein A. thaliana 94.6 9.49 51 1 0.72

345 15 DAP es 5.81 Q9LT08 26S proteasome non-ATPase regulatory subunit 14 A. thaliana 34.3 6.34 245 4 12.99

210 15 DAP es 1.59 Q8H0X6 Cysteine proteinase inhibitor 6 A. thaliana 26.3 5.84 130 3 11.11

246 15 DAP es 7.23 AT1G60420.1 DC1 domain-containing protein A. thaliana 65.1 4.75 292 5 9.69

197 15 DAP es 3.52 Q38935 FK506-binding protein 2-1 A. thaliana 16.3 9.29 103 3 23.53

197 15 DAP es 3.52 AAC49390 Immunophilin A. thaliana 15.7 9.29 85 3 24.66

184 15 DAP es 3.01 XP_002522624 Immunophilin, putative R. communis 12.0 9.17 499 4 14.29

23 15 DAP es 1.60 AT1G29150.1 Non-ATPase subunit 9 A. thaliana 46.7 6.25 1215 21 39.14

108 15 DAP es 3.45 AT4G31300.1 N-terminal nucleophile aminohydrolases superfamily

protein

A. thaliana 25.1 5.21 106 2 10.73

216 15 DAP es 1.63 AT3G60820.1 N-terminal nucleophile aminohydrolases superfamily

protein

A. thaliana 24.6 7.71 518 7 24.22

246 15 DAP es 7.23 AT1G77510.1 PDI-like 1-2 A. thaliana 56.3 4.76 693 8 12.20

247 15 DAP es 1.92 AT1G77510.1 PDI-like 1-2 A. thaliana 56.3 4.76 662 7 15.16

255 15 DAP es 2.20 AT1G77510.1 PDI-like 1-2 A. thaliana 56.3 4.76 771 5 11.61

143 15 DAP es 3.14 P34790 Peptidyl-prolyl cis-trans isomerase A. thaliana 18.4 9.01 587 7 46.51

246 15 DAP es 7.23 O80763 Probable nucleoredoxin 1 A. thaliana 65.1 4.75 310 5 9.69

372 15 DAP es 1.57 O23708 Proteasome subunit alpha type-2-A A. thaliana 25.7 5.40 431 5 31.91

208 15 DAP es 3.16 O23715 Proteasome subunit alpha type-3 A. thaliana 27.4 5.90 307 6 24.10

210 15 DAP es 1.59 O23715 Proteasome subunit alpha type-3 A. thaliana 27.4 5.90 658 10 44.98

72 15 DAP es 2.67 Q7DLR9 Proteasome subunit beta type-4 A. thaliana 27.6 6.10 1636 12 53.66

245 15 DAP es 4.84 ABB17025 Protein disulfide isomerase B. carinata 55.7 4.86 383 12 18.66

260 15 DAP es 2.20 ABB17025 Protein disulfide isomerase B. carinata 55.7 4.86 2150 28 55.80

314 15 DAP es 1.75 O22263 Protein disulfide-isomerase like 2-1 A. thaliana 39.5 5.73 857 11 26.32

314 15 DAP es 1.75 AAC36164 Putative serpin A. thaliana 23.2 4.30 52 1 4.23

135 15 DAP es 5.22 AT4G34870.1 Rotamase cyclophilin 5 RD A. thaliana 18.4 9.84 106 1 8.72

174 15 DAP es 2.94 AT3G18190.1 TCP-1/cpn60 chaperonin family protein A. thaliana 57.7 8.68 86 3 6.34

314 15 DAP es 1.75 AT2G47470.1 Thioredoxin family protein A. thaliana 39.5 5.73 747 11 26.32

96 15 DAP es 1.84 Q9XGS0 Thioredoxin M-type, chloroplastic B. napus 19.3 10.27 142 1 9.04

247 15 DAP es 1.92 Q9LT79 U-box domain-containing protein 25 A. thaliana 46.0 7.86 59 1 1.66

184 15 DAP es 3.01 Q9LT79 U-box domain-containing protein 25 A. thaliana 46.0 7.86 56 1 1.66

132 15 DAP es 9.56 AAF78493 Contains similarity to AP2/EREBP-like transcription factor A. thaliana 47.5 4.80 66 2 6.33

80 15 DAP es 1.79 Q05966 G.-rich RNA-binding protein 10 B. napus 16.3 5.42 523 4 19.53

210 15 DAP es 1.59 AAF31402 Putative G.-rich RNA binding protein 1 C. roseus 14.2 9.61 52 1 10.95

245 15 DAP es 4.84 AAF31402 Putative G.-rich RNA binding protein 1 C. roseus 14.2 9.61 57 1 10.95

114 15 DAP es 2.59 AAF31402 Putative G.-rich RNA binding protein 1 C. roseus 14.2 9.61 72 1 7.30

132 15 DAP es 9.56 AT2G02090.1 SNF2 domain-containing protein A. thaliana 86.2 5.42 55 1 0.92

71 15 DAP es 2.60 AT5G28640.1 SSXT family protein A. thaliana 22.4 5.78 56 1 6.67

90 15 DAP es 1.81 A6YGA0 30S ribosomal protein S18, chloroplastic Leptosira terrestris 11.6 11.68 73 1 8.00

95 15 DAP es 1.84 Q9LH85 60S acidic ribosomal protein A. thaliana 11.7 4.40 57 1 7.83

96 15 DAP es 1.84 Q9LH85 60S acidic ribosomal protein P2-3 A. thaliana 11.7 4.40 64 1 7.83

216 15 DAP es 1.63 P17745 Elongation factor Tu, chloroplastic A. thaliana 51.6 5.79 58 1 2.31

208 15 DAP es 3.16 O04663 Eukaryotic translation initiation factor 4E-2 A. thaliana 22.5 5.39 118 4 13.64

174 15 DAP es 2.94 Q9T034 Probable phenylalanyl-tRNA synthetase alpha chain A. thaliana 55.8 9.02 496 11 15.67

Glycan biosynthesis and metabolism

202 15 DAP es 1.86 CAJ15148 Sialyltransferase-like protein L. japonicus 49.4 9.77 66 1 1.58

(continued on next page)
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Table 4 (continued)

ID a Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

Lipid metabolism

315 15 DAP es 1.75 Q01771 Acyl-acyl-carrier-protein desaturase, seed specific, chloroplastic B. napus 45.3 6.04 292 8 22.81

266 15 DAP es 2.20 AAK60339 biotin carboxylase B. napus 58.4 6.57 51 3 5.23

314 15 DAP es 1.75 CAA52786 Stearoyl-acyl carrier protein desaturase B. napus 45.5 6.04 56 1 3.24

78 15 DAP es 4.42 AT4G39730.1 Lipase/lipooxygenase family protein A. thaliana 20.1 4.83 134 2 8.84

Metabolism of cofactors and vitamins

315 15 DAP es 1.75 Q9LR75 Coproporphyrinogen-III oxidase, chloroplastic A. thaliana 43.8 6.25 478 12 28.76

Nucleotide metabolism

132 15 DAP es 9.56 Q52K88 Nudix hydrolase 13, mitochondrial A. thaliana 23.2 4.51 190 4 14.36

90 15 DAP es 1.81 AT3G56490.1 HIS triad family protein 3 (SP: protein kinase C inhibitor-like protein) A. thaliana 16.0 6.79 294 5 50.34

180 15 DAP es 1.87 AT4G23895.3 Nucleoside diphosphate kinase A. thaliana 52.0 5.84 507 2 12.85

180 15 DAP es 1.87 Q8RXA8 Nucleoside diphosphate kinase 4, chloroplastic S.oleracea 25.7 9.71 643 8 28.09

Uncharacterized

90 15 DAP es 1.81 P42855 14 kDa zinc-binding protein (Fragment) B. juncea 12.6 6.62 119 4 54.87

94 15 DAP es 3.30 AT1G42960.1 Expressed protein localized to the inner membrane of the chloroplast A. thaliana 17.8 9.42 64 2 13.69

74 15 DAP es 6.88 AAF79440 F18O14.33 A. thaliana 50.1 6.92 149 1 2.50

197 15 DAP es 3.52 AT4G01900.1 GLNB1 homolog A. thaliana 21.3 9.93 73 1 5.61

199 15 DAP es 9.92 AT2G39050.1 Hydroxyproline-rich glycoprotein family protein A. thaliana 35.6 6.21 137 3 12.30

135 15 DAP es 5.22 EEC81610 Hypothetical protein OsI_25113 O. sativa 69.9 11.07 77 1 2.37

81 15 DAP es 5.30 AT1G61600.1 Protein of unknown function A. thaliana 48.7 10.31 51 1 1.90

94 15 DAP es 3.30 AT1G61600.1 Protein of unknown function (DUF1262) A. thaliana 48.7 10.31 50 1 1.90

136 15 DAP es 3.42 AT2G24620.1 S-Locus glycoprotein family protein A. thaliana 18.2 9.61 53 1 5.10

62 15 DAP es 2.11 AT4G14930.1 Survival protein SurE-like phosphatase/nucleotidase A. thaliana 34.1 4.91 146 1 3.49

91 15 DAP es 3.10 Q9ZUX4 Uncharacterized protein At2g27730, mitochondrial A. thaliana 11.9 10.10 91 1 7.08

18 15 DAP es 16.86 BAA99394 Vacuolar calcium binding protein R. sativus 27.1 3.95 245 4 12.90

Xenobiotics biodegradation and metabolism

378 15 DAP es 1.57 AT2G32520.1 Carboxymethylenebutenolidase A. thaliana 25.9 5.14 114 3 11.30

Amino acid metabolism

309 15 DAP em 2.24 ABD65618 Acetylornithine deacetylase, putative B. oleracea 44.79 5.10 79 6.0 17.20

318 15 DAP em 1.95 AT4G01850.1 S-Adenosylmethionine synthetase 2 A. thaliana 43.23 5.63 246 7.0 27.48

319 15 DAP em 2.04 AT3G14990.1 Glutamine amidotransferase-like superfamily protein A. thaliana 41.83 5.18 90 1.0 2.81

309 15 DAP em 2.24 AT4G33680.1 Pyridoxal phosphate (PLP)-dependent transferases superfamily protein

(SP: Serine hydroxy methyltransferase)

A. thaliana 50.36 7.71 880 10.0 22.56

150 15 DAP em 1.51 Q9SZJ5 Serine hydroxymethyltransferase, mitochondrial A. thaliana 57.36 8.80 776 17 30.75

319 15 DAP em 2.04 P29102 3-Isopropylmalate dehydrogenase, chloroplastic B. napus 43.32 6.05 916 15 38.92

309 15 DAP em 2.24 Q93ZN9 LL-Diaminopimelate aminotransferase, chloroplastic A. thaliana 50.36 7.71 891 10 22.56

8 15 DAP em 1.55 Q0WM29 Methylmalonate-semialdehyde dehydrogenase acylating, mitochondrial A. thaliana 65.88 9.66 65 1 1.81

Biosynthesis of secondary metabolites

318 15 DAP em 1.95 AAK68820 Similar to dihydroflavonol reductase A. thaliana 43.67 5.51 60 2 5.40

319 15 DAP em 2.04 AAP96742 ThiJ-like protein B. rapa 41.66 5.24 224 3 9.18
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ID a

Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

Carbohydrate metabolism

318 15 DAP em 1.95 AT1G08200.1 UDP-D-apiose/UDP-D-xylose synthase 2 A. thaliana 43.76 5.51 81 2 5.40

318 15 DAP em 1.95 AAK72107 Monodehydroascorbate reductase B. rapa 46.43 5.74 108 9 29.95

322 15 DAP em 2.11 P52417 Glucose-1-phosphate adenylyltransferase small subunit 2,

chloroplastic

V. faba 56.02 6.20 226 7 15.04

13 15 DAP em 2.13 AT2G24270.1 Aldehyde dehydrogenase 11A3 A. thaliana 53.03 6.24 976 17 29.23

352 15 DAP em 2.37 AT4G16155.1 Dihydrolipoyl dehydrogenases A. thaliana 67.05 8.66 404 9 16.83

316 15 DAP em 2.26 AT2G21330.1 Fructose-bisphosphate aldolase 1 A. thaliana 42.90 6.18 162 4 10.03

13 15 DAP em 2.13 AT3G16950.1 Lipoamide dehydrogenase 1 A. thaliana 60.72 9.00 87 2 4.56

352 15 DAP em 2.37 AT3G16950.1 Lipoamide dehydrogenase 1 A. thaliana 60.72 9.00 393 3 19.12

13 15 DAP em 2.13 Q1WIQ6 NADP-dependent glyceraldehyde-3-phosphate dehydrogenase A. thaliana 53.03 6.24 1024 16 25.60

162 15 DAP em 1.58 AT1G76550.1 Phosphofructokinase family protein A. thaliana 67.52 6.92 72 4 7.29

259 15 DAP em 1.75 AT4G24620.1 Phosphoglucose isomerase 1 A. thaliana 67.01 5.37 247 7 12.56

352 15 DAP em 2.37 AT3G02360.1 6-Phosphogluconate dehydrogenase family protein A. thaliana 53.54 7.67 751 17 32.30

241 15 DAP em 2.34 AT3G60750.1 Transketolase A. thaliana 79.92 5.92 2075 20 24.83

322 15 DAP em 2.11 AT5G48300.1 ADP glucose pyrophosphorylase 1 A. thaliana 56.62 6.13 177 6 12.31

17 15 DAP em 2.95 AT1G65930.1 Cytosolic NADP+-dependent isocitrate dehydrogenase A. thaliana 45.72 6.13 196 5 14.15

Cellular processes

41 15 DAP em 2.62 AT5G16510.1 Alpha-1,4-glucan-protein synthase family protein A. thaliana 38.56 4.92 179 2 5.75

274 15 DAP em 1.56 Q9FM01 Probable UDP-glucose 6-dehydrogenase 2 A. thaliana 53.06 5.51 354 8 19.38

161 15 DAP em 4.92 Q8H038 Xyloglucan galactosyltransferase KATAMARI1 homolog O. sativa 66.67 5.54 53 1 1.02

274 15 DAP em 1.56 P29511 Tubulin alpha-6 chain A. thaliana 49.51 4.79 2390 27 57.56

271 15 DAP em 1.56 P29511 Tubulin alpha-6 chain A. thaliana 49.51 4.79 1230 19 50.44

50 15 DAP em 1.87 AT3G48890.1 Membrane-associated progesterone binding protein 3 A. thaliana 25.37 4.38 52 1 4.29

177 15 DAP em 1.59 Q9STE8 Protein TOC75-3, chloroplastic A. thaliana 89.13 9.55 1985 20 22.13

310 15 DAP em 3.61 AT5G09810.1 Actin 7 A. thaliana 41.71 5.20 147 6 15.92

319 15 DAP em 2.04 Q96292 Actin-2 A. thaliana 41.85 5.27 1940 26 54.91

19 15 DAP em 1.58 NP_180328 Vacuolar protein-sorting-associated protein 4 A. thaliana 48.56 6.55 55 1 5.06

Defense

13 15 DAP em 2.13 XP_002876291 Glycosyl hydrolase family 20 protein A. lyrata 61.54 5.85 90 6 9.38

161 15 DAP em 4.92 P52778 Protein LlR18A L. luteus 16.85 5.07 51 1 7.69

19 15 DAP em 1.58 P52778 Protein LlR18A L. luteus 16.85 5.07 57 1 7.69

380 15 DAP em 2.57 XP_002887781 Metacaspase 7 A. lyrata 45.48 4.61 80 1 2.87

Detoxification

218 15 DAP em 1.81 AAC15842 Superoxide dismutase R. sativus 23.79 5.97 187 6 20.28

Energy metabolism

8 15 DAP em 1.55 P92549 ATP synthase subunit alpha, mitochondrial A. thaliana 55.01 6.22 1196 24 28.40

380 15 DAP em 2.57 P11594 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.60 610 7 25.77

198 15 DAP em 3.11 P49108 Photosystem II 10 kDa polypeptide, chloroplastic B. campestris 14.64 9.27 355 4 31.91

75 15 DAP em 1.52 XP_002878030 photosystem II reaction center PsbP family protein A. lyrata 25.55 9.90 215 6 22.27

162 15 DAP em 1.58 AT5G04590.1 Sulfite reductase A. thaliana 71.90 9.17 454 12 17.60

Environmental information processing

346 15 DAP em 1.60 Q9LX08 Annexin D6 A. thaliana 36.55 8.66 548 11 26.42

330 15 DAP em 1.73 AT1G30580.1 GTP binding protein A. thaliana 44.44 6.38 800 10 32.23

346 15 DAP em 1.60 Q39336 Guanine nucleotide-binding protein subunit beta-like protein B. napus 35.70 9.12 750 14 40.98

(continued on next page)
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Table 4 (continued)

ID a Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

104 15 DAP em 3.40 AT1G23260.1 MMS ZWEI homolog 1 A. thaliana 17.84 5.04 89 4 20.25

104 15 DAP em 3.40 Q93YP0 Ubiquitin-conjugating enzyme E2 variant 1A A. thaliana 17.84 5.04 111 4 20.25

75 15 DAP em 1.52 AT2G47710.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 17.29 8.93 77 3 32.10

150 15 DAP em 1.51 P25890 Catalase P. sativum 57.31 6.78 52 3 7.49

225 15 DAP em 1.57 CAA07494 Heat stress-induced protein B. oleracea 23.47 9.23 52 2 15.14

318 15 DAP em 1.95 AT4G27585.1 PHB domain-containing membrane-associated protein family A. thaliana 44.99 6.37 89 3 8.03

300 15 DAP em 2.43 AT1G62740.1 Stress-inducible protein, putative571 A. thaliana 64.48 5.80 445 14 16.46

Genetic information processing

150 15 DAP em 1.51 Q39230 Seryl-tRNA synthetase A. thaliana 51.60 6.27 982 14 24.39

380 15 DAP em 2.57 O65282 20 kDa chaperonin, chloroplastic A. thaliana 26.79 9.35 199 5 25.30

19 15 DAP em 1.58 Q9SSB5 26S protease regulatory subunit 7 homolog A A. thaliana 47.77 6.36 2483 34 57.51

282 15 DAP em 1.81 AT2G04030.1 Chaperone protein htpG family protein A. thaliana 88.61 4.78 974 18 22.95

5 15 DAP em 3.76 AT5G50920.1 CLPC homolog 1 A. thaliana 103.39 6.35 3615 52 49.73

5 15 DAP em 3.76 P42762 ERD1 protein, chloroplastic A. thaliana 103.17 5.84 164 1 2.12

300 15 DAP em 2.43 Q43468 Heat shock protein STI G. max 63.55 5.76 373 5 4.04

221 15 DAP em 3.60 P34791 Peptidyl-prolyl cis-trans isomerase CYP20-3, chloroplastic A. thaliana 28.19 9.68 196 5 22.69

225 15 DAP em 1.57 P34791 Peptidyl-prolyl cis-trans isomerase CYP20-3, chloroplastic A. thaliana 28.19 9.68 417 6 16.92

322 15 DAP em 2.11 Q9ZU25 Probable mitochondrial-processing peptidase subunit alpha-1 A. thaliana 54.37 5.91 905 13 16.90

259 15 DAP em 1.75 ABB17025 Protein disulfide isomerase B. carinata 55.71 4.86 2355 34 63.65

177 15 DAP em 1.59 XP_002520530 Sorting and assembly machinery (sam50) protein, putative R. communis 88.97 9.55 874 4 14.60

309 15 DAP em 2.24 AAN74635 DEAD box RNA helicase P. sativum 46.85 5.27 917 2 38.01

324 15 DAP em 1.82 AT5G11170.1 DEAD/DEAH box RNA helicase family protein A. thaliana 48.31 5.33 748 18 31.62

322 15 DAP em 2.11 Q56XG6 DEAD-box ATP-dependent RNA helicase 15 A. thaliana 48.31 5.33 681 15 31.15

366 15 DAP em 1.93 Q9FLU1 DNA-binding protein BIN4 A. thaliana 49.45 5.02 66 1 1.98

218 15 DAP em 1.81 ACG26589 G.-rich protein 2b Z. mays 20.29 5.91 95 1 7.69

117 15 DAP em 1.69 Q03250 G.-rich RNA-binding protein 7 A. thaliana 16.88 5.81 231 2 16.48

157 15 DAP em 2.29 P59259 Histone H4 A. thaliana 11.40 11.96 111 1 9.71

50 15 DAP em 1.87 Q9FL92 Probable WRKY transcription factor 16 A. thaliana 155.60 5.92 54 1 0.80

300 15 DAP em 2.43 Q9FL92 Probable WRKY transcription factor 16 A. thaliana 155.60 5.92 56 1 0.80

274 15 DAP em 1.56 Q9FL92 Probable WRKY transcription factor 16 A. thaliana 155.60 5.92 67 1 0.80

203 15 DAP em 1.71 Q3E902 40S ribosomal protein S21-2 A. thaliana 9.46 9.90 549 2 17.65

318 15 DAP em 1.95 AT5G36230.1 ARM repeat superfamily protein A. thaliana 47.19 5.38 63 2 5.60

50 15 DAP em 1.87 P48006 Elongation factor 1-delta 1 A. thaliana 25.12 4.28 966 11 35.50

319 15 DAP em 2.04 Q43467 Elongation factor Tu, chloroplastic G. max 52.06 6.22 308 5 13.36

310 15 DAP em 3.61 P17745 Elongation factor Tu, chloroplastic A. thaliana 51.60 5.79 1807 18 34.03

104 15 DAP em 3.40 AT1G69410.1 Eukaryotic elongation factor 5A-3 A. thaliana 17.20 5.51 131 1 6.33

309 15 DAP em 2.24 P41376 Eukaryotic initiation factor 4A-1 A. thaliana 46.67 5.36 1884 29 47.09

Environmental information processing
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ID a

Stage b Reg c Accessiond Name Organism MM calc e pI
calc f

Score g Peph SC% i

241 15 DAP em 2.34 AT5G44320.1 Eukaryotic translation initiation factor 3 subunit 7 A. thaliana 66.18 5.32 145 4 8.16

157 15 DAP em 2.29 AT5G26710.1 Glutamyl/glutaminyl-tRNA synthetase A. thaliana 81.01 6.68 320 11 11.27

156 15 DAP em 3.71 AT5G26710.1 Glutamyl/glutaminyl-tRNA synthetase A. thaliana 81.01 6.68 360 10 10.71

50 15 DAP em 1.87 AT1G74230.1 Glycine-rich RNA-binding protein 5 A. thaliana 28.71 4.45 86 1 2.77

298 15 DAP em 68.72 O23627 Glycyl-tRNA synthetase 1, mitochondrial A. thaliana 81.89 6.63 972 24 24.69

161 15 DAP em 4.92 AT2G23350.1 Poly(A) binding protein 4 A. thaliana 71.61 6.44 459 9 14.80

162 15 DAP em 1.58 P42731 Polyadenylate-binding protein 2 A. thaliana 68.63 8.82 55 5 7.95

318 15 DAP em 1.95 O04487 Probable elongation factor 1-gamma 1 A. thaliana 46.63 5.23 1476 11 22.46

291 15 DAP em 2.11 AT1G56070.1 Ribosomal protein S5/Elongation factor G/III/V family protein A. thaliana 93.83 5.85 2348 38 37.60

292 15 DAP em 2.37 AT1G56070.1 Ribosomal protein S5/Elongation factor G/III/V family protein A. thaliana 93.83 5.85 2221 34 33.21

346 15 DAP em 1.60 AT1G18080.1 Transducin/WD40 repeat-like superfamily protein A. thaliana 35.73 8.79 631 12 38.53

104 15 DAP em 3.40 AT3G21000.1 Gag-Pol-related retrotransposon family protein A. thaliana 46.29 5.89 55 1 2.47

Glycan biosynthesis

13 15 DAP em 2.13 AT3G55260.1 Beta-hexosaminidase 1 A. thaliana 61.19 5.85 130 5 7.21

Lipid metabolism

17 15 DAP em 2.95 AT5G46290.1 3-Ketoacyl-acyl carrier protein synthase I A. thaliana 50.38 9.25 896 16 29.81

104 15 DAP em 3.40 AAZ66933 117M18_14 B. rapa 24.79 9.58 238 7 29.02

19 15 DAP em 1.58 P52410 3-Oxoacyl-acyl-carrier-protein synthase I, chloroplastic A. thaliana 50.38 9.25 263 4 8.88

316 15 DAP em 2.26 P29108 Acyl-acyl-carrier-protein desaturase, chloroplastic B. napus 45.32 5.69 2497 25 56.78

271 15 DAP em 1.56 AAK60339 Biotin carboxylase B. napus 58.38 6.57 1013 21 42.62

274 15 DAP em 1.56 AAK60339 Biotin carboxylase B. napus 58.38 6.57 72 7 15.89

104 15 DAP em 3.40 AT5G10160.1 3R-Hydroxymyristoyl ACP dehydrase A. thaliana 24.11 9.99 123 3 12.33

Nucleotide metabolism

352 15 DAP em 2.37 ABE87611 Phosphoribosyltransferase; Orotidine 5-phosphate

decarboxylase

M. truncatula 51.24 7.02 183 2 5.33

352 15 DAP em 2.37 AT3G54470.1 Uridine 5′-monophosphate synthase A. thaliana 51.82 6.94 288 4 7.56

Uncharacterized

225 15 DAP em 1.57 AAY86774 C2 domain-containing protein N. caerulescens 18.48 5.15 50 1 6.06

150 15 DAP em 1.51 AT1G17370.1 Oligouridylate binding protein 1B A. thaliana 46.02 7.89 68 2 6.21

104 15 DAP em 3.40 CAE05556 OSJNBb0116K07.9 O. sativa 53.41 7.75 61 1 1.79

241 15 DAP em 2.34 XP_001753354 Predicted protein P. patens 18.79 9.99 54 1 5.10

309 15 DAP em 2.24 BAD36713 PRLI-interacting factor L O. sativa 49.14 6.07 114 1 7.61

a Spots in accordance with Supplementary Fig. 8.
b Developmental stage of endosperm (es) and embryo (em) at 15 DAP.
c Regulation of spots, spot volume at least 1.5 fold increased in the corresponding developmental stage.
d Accession numbers as given by SwissProt (http://www.uniprot.org), NCBInr (http://www.ncbi.nlm.nih.gov/protein) and TAIR (http://www.Arabidopsis.org/).
e Calculated molecular masses of the identified proteins as deduced from the corresponding genes.
f Calculated isoelectric point of the identified proteins as deduced from the corresponding genes.
g Probability score for the protein identifications based on MS/MS analysis and MASCOT search.
h Number of unique matching peptides.
i Sequence coverage of a protein by identified peptides.

4
1
7

J
O

U
R

N
A

L
O

F
P
R

O
T

E
O

M
I
C

S
1
0
8

(
2
0
1
4
)

3
8
2
–
4
2
6

C
h
a
p
ter 2

: P
u
b
lica

tio
n
s a

n
d
 M

a
n
u
scrip

ts

6
9



Table 5 – Identification of proteins from spots with changed abundance in the endosperm compared to the embryo at 20 DAP. To determine significant changes in spot
volume, a Student's t-test (p-value ≥ 0.05) was applied on the basis of normalized relative spot volume. Changes in spot volume ≥ 1.5 were considered to represent true
alterations. Identification of proteins was carried out using the MASCOT search algorithm (www.matrixscience.com) against the (i) SwissProt (www.uniprot.org), (ii) NCBInr
(www.ncbi.nig.gov) and (iii) TAIR (www.arabidopsis.org, TAIR release 10) databases. Identified proteins were functionally classified according to the KEGG PATHWAY
Database (http://www.genome.jp/kegg/pathway.html). The pathway categories were adjusted for seed metabolism by adding four functional groups: (i) storage, (ii) defense,
(iii) desiccation and (iv) detoxification.

ID a Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

Amino acid metabolism

332 20 DAP es 1.63 P46645 Aspartate aminotransferase, cytoplasmic isozyme 1 A. thaliana 44.24 6.97 743 13 30.37

334 20 DAP es 2.26 P46643 Aspartate aminotransferase, mitochondrial A. thaliana 47.73 9.13 957 14 31.63

34 20 DAP es 1.96 Q43314 Glutamate dehydrogenase 1 A. thaliana 44.50 6.42 116 4 9.00

23 20 DAP es 1.76 O04937 Glutamate dehydrogenase A N. plumbaginifolia 44.77 6.69 60 1 2.43

381 20 DAP es 2.26 Q8GXE2 1,2-Dihydroxy-3-keto-5-methylthiopentene dioxygenase 2 A. thaliana 22.57 4.91 168 3 17.19

20 20 DAP es 1.87 AT2G36880.1 Methionine adenosyltransferase 3 A. thaliana 42.47 5.73 1916 22 61.54

384 20 DAP es 2.12 AT1G07780.1 Phosphoribosylanthranilate isomerase 1 A. thaliana 29.62 9.52 68 1 3.27

Biosynthesis of secondary metabolites

341 20 DAP es 1.61 AT1G72680.1 Cinnamyl-alcohol dehydrogenase A. thaliana 38.65 6.76 97 2 6.76

Carbohydrate metabolism

301 20 DAP es 3.34 Q9C5I1 UDP-sugar pyrophosphorylase A. thaliana 67.81 6.06 77 1 1.63

383 20 DAP es 1.57 BAB84009 Ascorbate peroxidase B. oleracea 27.54 5.42 922 17 63.60

348 20 DAP es 2.07 AAY47048 Dehydroascorbate reductase S. lycopersicum 23.52 6.36 309 5 23.81

74 20 DAP es 2.84 AAY47048 Dehydroascorbate reductase S. lycopersicum 23.52 6.36 243 4 21.90

376 20 DAP es 1.84 NP_195093 D-Threo-aldose 1-dehydrogenase A. thaliana 34.51 5.40 55 2 5.64

20 20 DAP es 1.87 AT5G28840.1 GDP-D-mannose 3′,5′-epimerase A. thaliana 42.73 5.81 50 2 6.37

384 20 DAP es 2.12 CAA55209 L-Ascorbate peroxidase R. sativus 27.67 5.41 788 18 62.80

350 20 DAP es 4.25 Q96533 Alcohol dehydrogenase class-3 A. thaliana 40.67 6.59 454 8 22.69

334 20 DAP es 2.26 AT3G52930.1 Aldolase superfamily protein A. thaliana 38.52 6.04 56 2 7.26

33 20 DAP es 1.63 P25857 Glyceraldehyde-3-phosphate dehydrogenase B, chloroplast A. thaliana 47.63 6.36 372 6 14.32

341 20 DAP es 1.61 P04796 Glyceraldehyde-3-phosphate dehydrogenase, cytosolic S. alba 36.90 8.71 632 13 37.28

358 20 DAP es 2.83 AT1G76550.1 Phosphofructokinase family protein A. thaliana 67.52 6.92 450 13 25.45

311 20 DAP es 2.56 P12783 Phosphoglycerate kinase, cytosolic T. aestivum 42.10 5.55 77 2 7.48

169 20 DAP es 7.52 Q9SGC1 Probable phosphoglucomutase, cytoplasmic 2 A. thaliana 63.44 5.48 1202 17 26.50

301 20 DAP es 3.34 Q9SGC1 Probable phosphoglucomutase, cytoplasmic 2 A. thaliana 63.44 5.48 1372 15 24.96

358 20 DAP es 2.83 P21342 Pyrophosphate-fructose 6-phosphate 1-phosphotransferase

subunit alpha

S. tuberosum 67.11 7.03 260 6 14.94

376 20 DAP es 1.84 Q38799 Pyruvate dehydrogenase E1 component subunit beta,

mitochondrial

A. thaliana 39.15 5.57 65 1 3.03

383 20 DAP es 1.57 AT3G55440.1 Triosephosphate isomerase A. thaliana 27.15 5.27 1049 9 28.74

369 20 DAP es 1.57 AT3G55440.1 Triosephosphate isomerase A. thaliana 27.15 5.27 1238 11 45.67

384 20 DAP es 2.12 P48491 Triosephosphate isomerase, cytosolic A. thaliana 27.15 5.27 88 3 8.27

362 20 DAP es 1.87 AAK50346 Putative 6-phosphogluconolactonase B. carinata 29.19 6.75 235 10 36.43
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ID a

Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

195 20 DAP es 4.08 AAP37972 Seed specific protein Bn15D33A B. napus 12.66 9.24 338 10 31.90

185 20 DAP es 3.62 AAP37972 Seed specific protein Bn15D33A B. napus 12.66 9.24 835 5 68.10

16 20 DAP es 2.13 AT5G15490.1 UDP-glucose 6-dehydrogenase family protein A. thaliana 53.08 5.68 2273 4 45.63

340 20 DAP es 2.67 AT5G59290.1 UDP-glucuronic acid decarboxylase 3 A. thaliana 38.54 9.08 963 18 45.32

170 20 DAP es 1.67 Q9SIB9 Aconitate hydratase 2, mitochondrial A. thaliana 108.13 6.79 1532 31 27.37

326 20 DAP es 2.13 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.79 447 3 7.07

349 20 DAP es 1.72 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.79 561 3 7.07

328 20 DAP es 2.00 Q9SJH7 Citrate synthase 3, peroxisomal A. thaliana 56.14 7.79 304 3 7.07

23 20 DAP es 1.76 AT1G65930.1 Cytosolic NADP+-dependent isocitrate dehydrogenase A. thaliana 45.72 6.13 112 2 6.34

234 20 DAP es 1.90 Q43744 Malate dehydrogenase, mitochondrial B. napus 35.69 9.48 91 2 10.26

311 20 DAP es 2.56 O82662 Succinyl-CoA ligase GDP-forming subunit beta, mitochondrial A. thaliana 45.32 6.32 1249 20 44.42

Cellular processes

311 20 DAP es 2.56 P80607 Alpha-1,4-glucan-protein synthase UDP-forming Z. mays 41.18 5.70 452 10 23.35

113 20 DAP es 2.11 Q9SVJ4 Endoglucanase 22 A. thaliana 54.98 6.36 58 1 1.62

52 20 DAP es 2.83 AAD03693 Fibrillin B. napus 25.86 4.98 266 1 44.73

311 20 DAP es 2.56 AT3G08900.1 UDP-arabinopyranose mutase 3 A. thaliana 41.25 5.28 563 17 40.61

23 20 DAP es 1.76 Q8H038 Xyloglucan galactosyltransferase KATAMARI1 homolog O. sativa 66.67 5.54 51 1 1.02

16 20 DAP es 2.13 P20363 Tubulin alpha-3/alpha-5 chain A. thaliana 49.62 4.82 404 9 25.11

4 20 DAP es 2.67 Q56WK6 Patellin-1 A. thaliana 64.01 4.67 830 13 18.32

52 20 DAP es 2.83 Q94FZ9 Plastid lipid-associated protein 1, chloroplastic B. campestris 35.62 5.19 449 7 32.11

220 20 DAP es 1.64 AT3G07680.1 GOLD family protein A. thaliana 24.32 5.93 517 10 40.87

52 20 DAP es 2.83 Q8RWG8 Ran-binding protein 1 homolog b A. thaliana 24.37 4.68 220 3 14.75

94 20 DAP es 7.34 AT4G29350.1 Profilin 2 A. thaliana 13.99 4.77 301 4 16.79

95 20 DAP es 2.75 Q64LH1 Profilin-1 A. artemisiifolia 14.10 4.58 520 5 17.56

96 20 DAP es 2.75 Q64LH1 Profilin-1 A. artemisiifolia 14.10 4.58 439 3 16.03

345 20 DAP es 4.44 AT5G23540.1 Mov34/MPN/PAD-1 family protein A. thaliana 34.33 6.34 236 4 12.99

Defense

114 20 DAP es 4.11 ABV89615 Bet v, allergen family protein B. rapa 17.15 5.15 161 4 29.03

147 20 DAP es 3.92 AT1G52400.1 Beta glucosidase 18 A. thaliana 60.42 6.82 264 5 7.01

148 20 DAP es 3.92 AT1G52400.1 Beta glucosidase 18 A. thaliana 60.42 6.82 363 5 5.68

149 20 DAP es 2.47 Q9SE50 Beta-glucosidase 18 A. thaliana 60.42 6.82 310 7 8.71

146 20 DAP es 5.58 Q9SE50 Beta-glucosidase 18 A. thaliana 60.42 6.82 329 7 7.01

307 20 DAP es 4.34 Q9SE50 Beta-glucosidase 18 A. thaliana 60.42 6.82 201 5 5.68

144 20 DAP es 3.41 Q9LV33 Beta-glucosidase 44 A. thaliana 58.95 9.81 311 7 13.09

270 20 DAP es 5.11 AT3G16470.3 Mannose-binding lectin superfamily protein A. thaliana 32.07 5.15 438 3 13.80

81 20 DAP es 8.75 Q9ZVF2 MLP-like protein 329 A. thaliana 17.59 5.21 383 4 26.49

270 20 DAP es 5.11 O04309 Myrosinase-binding protein A. thaliana 48.47 4.99 457 3 9.09

129 20 DAP es 2.41 P52778 Protein LlR18A L. luteus 16.85 5.07 67 4 7.69

23 20 DAP es 1.76 P52778 Protein LlR18A L. luteus 16.85 5.07 54 1 7.69

18 20 DAP es 352.11 P52778 Protein LlR18A L. luteus 16.85 5.07 55 1 7.69

20 20 DAP es 1.87 P52778 Protein LlR18A L. luteus 16.85 5.07 52 1 7.69

(continued on next page)
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Table 5 (continued)

ID a Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

Dessiccation

52 20 DAP es 2.83 AT2G44060.1 Late embryogenesis abundant protein, group 2 A. thaliana 36.01 4.52 53 4 16.31

Detoxification

92 20 DAP es 1.63 P09678 Superoxide dismutase Cu–Zn B. oleracea 15.16 5.76 496 4 25.66

91 20 DAP es 3.80 AAD05576 Cu/Zn superoxide dismutase R. sativus 15.09 5.41 508 6 34.21

Energy metabolism

182 20 DAP es 7.38 AT5G38430.1 Ribulose bisphosphate carboxylase (small chain) family protein181 A. thaliana 20.27 8.86 723 7 31.49

197 20 DAP es 2.88 P10796 Ribulose bisphosphate carboxylase small chain 1B, chloroplastic A. thaliana 20.27 8.86 447 5 17.13

16 20 DAP es 2.13 ATCG00490.1 Ribulose-bisphosphate carboxylases A. thaliana 52.92 5.85 205 5 11.27

197 20 DAP es 2.88 Q9ZST4 Nitrogen regulatory protein P-II homolog A. thaliana 21.26 9.93 77 1 5.61

345 20 DAP es 4.44 AT1G50940.1 Electron transfer flavoprotein alpha A. thaliana 38.38 6.56 59 1 5.23

208 20 DAP es 2.84 Q9SJ12 Probable ATP synthase 24 kDa subunit, mitochondrial A. thaliana 27.58 6.30 359 7 22.92

208 20 DAP es 2.84 AT2G18230.1 Pyrophosphorylase 2 A. thaliana 24.66 5.68 71 2 13.30

311 20 DAP es 2.56 AT1G12840.1 Vacuolar ATP synthase subunit C A. thaliana 42.59 5.28 647 14 32.80

4 20 DAP es 2.67 A4QKH8 ATP synthase subunit b, chloroplastic C. bursa-pastoris 21.04 9.05 98 1 4.35

131 20 DAP es 5.03 P0CJ48 Chlorophyll a-b binding protein 2, chloroplastic A. thaliana 28.21 5.16 52 1 3.00

384 20 DAP es 2.12 Q9XF89 Chlorophyll a-b binding protein CP26, chloroplastic A. thaliana 30.14 5.98 55 2 7.14

340 20 DAP es 2.67 Q9LTL8 Cytochrome P450 71B24 A. thaliana 56.77 6.64 50 1 1.41

381 20 DAP es 2.26 P11594 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.60 51 2 11.92

23 20 DAP es 1.76 Q9LIK9 ATP sulfurylase 1, chloroplastic A. thaliana 51.43 6.36 721 13 21.60

149 20 DAP es 2.47 AT5G04590.1 Sulfite reductase A. thaliana 71.90 9.17 365 13 18.85

146 20 DAP es 5.58 AT5G04590.1 Sulfite reductase A. thaliana 71.90 9.17 139 5 7.63

Environmental information processing

376 20 DAP es 1.84 Q9SYT0 Annexin D1 A. thaliana 36.18 5.09 1504 21 51.74

385 20 DAP es 2.70 Q9SYT0 Annexin D1 A. thaliana 36.18 5.09 2250 22 51.74

363 20 DAP es 5.54 Q9XEE2 Annexin D2 A. thaliana 36.24 5.71 2585 18 40.06

345 20 DAP es 4.44 Q9XEE2 Annexin D2 A. thaliana 36.24 5.71 1276 11 29.65

96 20 DAP es 2.75 XP_002880102 Calcium-binding EF hand family protein A. lyrata 15.82 4.29 135 2 15.49

76 20 DAP es 1.79 P93087 Calmodulin C. annuum 16.82 3.94 1283 10 69.13

169 20 DAP es 7.52 AT2G46370.1 Auxin-responsive GH3 family protein A. thaliana 64.31 5.38 346 8 16.35

169 20 DAP es 7.52 Q9SKE2 Jasmonic acid-amido synthetase JAR1 A. thaliana 64.31 5.38 323 8 16.35

362 20 DAP es 1.87 P38548 GTP-binding nuclear protein Ran/TC4 V. faba 25.27 6.44 1246 12 52.49

88 20 DAP es 2.50 P35134 Ubiquitin-conjugating enzyme E2 11 A. thaliana 16.54 8.92 93 2 30.41

179 20 DAP es 1.93 Q9SVD7 Ubiquitin-conjugating enzyme E2 variant 1D A. thaliana 16.52 6.24 919 12 65.07

83 20 DAP es 4.48 AT3G03270.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 22.59 5.44 143 2 15.42

196 20 DAP es 4.01 AT3G03270.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 22.59 5.44 985 10 38.31
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ID a

Stage b Reg c Accession d Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

231 20 DAP es 1.77 AT3G17020.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 17.76 6.52 65 1 13.50

381 20 DAP es 2.26 AT3G11930.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 21.44 5.46 53 1 5.53

71 20 DAP es 6.53 AT3G11930.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 21.44 5.46 97 3 21.11

374 20 DAP es 3.60 AT3G11930.1 Adenine nucleotide alpha hydrolases-like superfamily protein A. thaliana 21.44 5.46 169 2 18.09

376 20 DAP es 1.84 AT4G33670.1 Aldo-keto reductase family 4 member C8 A. thaliana 34.51 5.40 73 2 5.64

129 20 DAP es 2.41 Q9SAR5 Ankyrin repeat domain-containing protein 2 A. thaliana 36.96 4.34 191 4 14.33

78 20 DAP es 3.84 AAK01359 Dehydration stress-induced protein B. napus 19.72 4.67 315 6 30.90

195 20 DAP es 4.08 Q9FNE2 Glutaredoxin-C2 A. thaliana 11.75 7.68 209 2 9.91

71 20 DAP es 6.53 ABD36807 Glutathione S-transferase B. napus 24.72 5.78 104 2 9.68

374 20 DAP es 3.60 ABD36807 Glutathione S-transferase B. napus 24.72 5.78 192 4 18.43

348 20 DAP es 2.07 Q9FRL8 Glutathione S-transferase DHAR2 A. thaliana 23.39 5.75 127 2 7.04

74 20 DAP es 2.84 Q9FRL8 Glutathione S-transferase DHAR2 A. thaliana 23.39 5.75 177 3 10.33

384 20 DAP es 2.12 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.29 6.23 80 2 6.61

204 20 DAP es 2.84 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.29 6.23 293 6 16.74

208 20 DAP es 2.84 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.29 6.23 116 4 12.33

205 20 DAP es 3.82 AT1G10370.1 Glutathione S-transferase family protein A. thaliana 25.29 6.23 259 7 19.38

70 20 DAP es 2.10 P46422 Glutathione S-transferase PM24 A. thaliana 24.11 5.91 105 3 11.79

381 20 DAP es 2.26 O04885 Lactoylglutathione lyase B. juncea 20.77 5.49 707 16 55.14

110 20 DAP es 1.63 Q9SRZ4 Peroxiredoxin-2C A. thaliana 17.40 5.22 197 2 6.17

350 20 DAP es 4.25 ACR40091 S-Nitrosoglutathione reductase B. juncea 40.07 8.72 185 1 24.33

83 20 DAP es 4.48 ABV89642 Universal stress protein family protein B. rapa 17.58 9.02 260 4 42.14

71 20 DAP es 6.53 XP_002882756 Universal stress protein family protein A. lyrata 21.69 5.28 53 3 25.50

196 20 DAP es 4.01 ABV89642 Universal stress protein family protein B. rapa 17.58 9.02 804 14 75.47

Genetic information processing

239 20 DAP es 2.33 Q9LKR3 Luminal-binding protein 1 A. thaliana 73.58 4.94 3095 30 40.96

270 20 DAP es 5.11 Q940A6 Pentatricopeptide repeat-containing protein A. thaliana 94.55 9.49 51 1 0.72

52 20 DAP es 2.83 Q94JW0 Deoxyhypusine hydroxylase A. thaliana 34.07 4.72 59 1 3.50

98 20 DAP es 1.89 P34893 10 kDa chaperonin A. thaliana 10.81 7.68 470 1 61.22

381 20 DAP es 2.26 O65282 20 kDa chaperonin, chloroplastic A. thaliana 26.79 9.35 169 3 13.04

129 20 DAP es 2.41 AT1G53850.1 20S proteasome alpha subunit E1 A. thaliana 25.93 4.55 52 1 5.06

131 20 DAP es 5.03 CAD10778 20S proteasome subunit alpha V P. patens 26.24 4.70 68 1 3.80

106 20 DAP es 2.16 Q38806 22.0 kDa heat shock protein A. thaliana 21.98 5.48 167 5 22.05

345 20 DAP es 4.44 Q9LT08 26S proteasome non-ATPase regulatory subunit 14 A. thaliana 34.33 6.34 245 4 12.99

52 20 DAP es 2.83 XP_002862370 26S proteasome regulatory subunit A. lyrata 31.90 4.66 529 7 32.42

246 20 DAP es 3.23 AT1G60420.1 DC1 domain-containing protein A. thaliana 65.13 4.75 292 5 9.69

16 20 DAP es 2.13 AT3G44110.1 DNAJ homolog 3 A. thaliana 46.41 5.72 51 2 6.43

(continued on next page)
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Table 5 (continued)

ID a Stage b Reg c Accession d Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

197 20 DAP es 2.88 Q38935 FK506-binding protein 2-1 A. thaliana 16.34 9.29 103 3 23.53

4 20 DAP es 2.67 AT4G24190.1 Hsp90-7 A. thaliana 94.15 4.79 74 1 1.70

197 20 DAP es 2.88 AAC49390 Immunophilin A. thaliana 15.68 9.29 85 3 24.66

184 20 DAP es 3.16 XP_002522624 Immunophilin, putative R. communis 12.00 9.17 499 4 14.29

23 20 DAP es 1.76 AT1G29150.1 Non-ATPase subunit 9 A. thaliana 46.72 6.25 1215 21 39.14

246 20 DAP es 3.23 AT1G77510.1 PDI-like 1-2 A. thaliana 56.33 4.76 693 8 12.20

143 20 DAP es 3.21 P34790 Peptidyl-prolyl cis-trans isomerase A. thaliana 18.36 9.01 587 7 46.51

246 20 DAP es 3.23 O80763 Probable nucleoredoxin 1 A. thaliana 65.13 4.75 310 5 9.69

372 20 DAP es 1.67 O23708 Proteasome subunit alpha type-2-A A. thaliana 25.69 5.40 431 5 31.91

208 20 DAP es 2.84 O23715 Proteasome subunit alpha type-3 A. thaliana 27.36 5.90 307 6 24.10

383 20 DAP es 1.57 Q9XG77 Proteasome subunit alpha type-6 N. tabacum 27.29 5.89 72 3 11.79

106 20 DAP es 2.16 Q9XI05 Proteasome subunit beta type-3-A A. thaliana 22.78 5.17 454 5 29.41

70 20 DAP es 2.10 Q7DLR9 Proteasome subunit beta type-4 A. thaliana 27.63 6.10 1371 14 47.97

227 20 DAP es 1.60 Q9LIP2 Proteasome subunit beta type-5-B A. thaliana 29.47 5.79 1305 10 26.74

245 20 DAP es 3.09 ABB17025 Protein disulfide isomerase B. carinata 55.71 4.86 383 12 18.66

110 20 DAP es 1.63 ACD56608 Putative protein disulfide isomerase family protein G. kirkii 55.56 4.84 81 1 1.82

349 20 DAP es 1.72 NP_199115 Regulatory particle triple-A ATPase 4A A. thaliana 44.79 9.02 175 5 12.78

135 20 DAP es 2.52 AT4G34870.1 Rotamase cyclophilin 5 RD A. thaliana 18.37 9.84 106 1 8.72

176 20 DAP es 1.68 AT5G67360.1 Subtilase family protein A. thaliana 79.37 5.90 77 3 4.23

96 20 DAP es 2.75 Q9XGS0 Thioredoxin M-type, chloroplastic B. napus 19.26 10.27 142 1 9.04

70 20 DAP es 2.10 Q9LT79 U-box domain-containing protein 25 A. thaliana 46.03 7.86 50 1 1.66

381 20 DAP es 2.26 Q9LT79 U-box domain-containing protein 25 A. thaliana 46.03 7.86 55 1 1.66

184 20 DAP es 3.16 Q9LT79 U-box domain-containing protein 25 A. thaliana 46.03 7.86 56 1 1.66

16 20 DAP es 2.13 CAD41363 OSJNBa0088A01.2 O. sativa 20.50 12.28 116 1 6.84

328 20 DAP es 2.00 AT2G18510.1 RNA-binding (RRM/RBD/RNP motifs) family protein A. thaliana 39.86 7.94 274 3 9.92

227 20 DAP es 1.60 AT1G17880.1 Basic transcription factor 3 A. thaliana 17.94 7.55 91 1 11.52

176 20 DAP es 1.68 Q84W89 DEAD-box ATP-dependent RNA helicase 37 A. thaliana 67.58 6.70 1356 22 28.59

245 20 DAP es 3.09 AAF31402 Putative G.-rich RNA binding protein 1 C. roseus 14.15 9.61 57 1 10.95

114 20 DAP es 4.11 AAF31402 Putative G.-rich RNA binding protein 1 C. roseus 14.15 9.61 72 1 7.30

110 20 DAP es 1.63 Q9M8R9 Regulator of ribonuclease-like protein 1 A. thaliana 17.83 5.62 56 2 12.05

71 20 DAP es 6.53 AT5G28640.1 SSXT family protein A. thaliana 22.45 5.78 56 1 6.67

95 20 DAP es 2.75 Q9LH85 60S acidic ribosomal protein A. thaliana 11.73 4.40 57 7.83

96 20 DAP es 2.75 Q9LH85 60S acidic ribosomal protein P2-3 A. thaliana 11.73 4.40 64 1 7.83

349 20 DAP es 1.72 Q9SF40 60S ribosomal protein L4-1 A. thaliana 44.67 10.86 317 10 17.00
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ID a

Stage b Reg c Accession d Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

52 20 DAP es 2.83 P48006 Elongation factor 1-delta 1 A. thaliana 25.10 4.30 133 4 17.70

208 20 DAP es 2.84 O04663 Eukaryotic translation initiation factor 4E-2 A. thaliana 22.50 5.39 118 4 13.64

358 20 DAP es 2.83 P42731 Polyadenylate-binding protein 2 A. thaliana 68.63 8.82 1012 19 21.94

176 20 DAP es 1.68 O64380 Polyadenylate-binding protein 3 A. thaliana 72.83 9.33 105 3 3.64

129 20 DAP es 2.41 AT3G55620.1 Translation initiation factor IF6 A. thaliana 26.47 4.48 315 5 22.86

Lipid metabolism

141 20 DAP es 1.51 P33207 3-Oxoacyl-acyl-carrier-protein reductase, chloroplastic A. thaliana 33.53 10.12 65 2 5.02

78 20 DAP es 3.84 AT4G39730.1 Lipase/lipooxygenase family protein A. thaliana 20.12 4.83 134 2 8.84

Metabolism of cofactors and vitamins

119 20 DAP es 7.05 XP_002890203 Soul heme-binding family protein A. lyrata 25.50 4.54 153 2 6.90

131 20 DAP es 5.03 AT4G29270.1 HAD superfamily acid phosphatase A. thaliana 28.73 9.14 62 1 4.30

Metabolism of terpenoids and polyketides

340 20 DAP es 2.67 AT3G46440.1 UDP-XYL synthase 5 A. thaliana 38.36 7.82 812 1 37.83

Nucleotide metabolism

139 20 DAP es 1.51 Q9FK35 Adenylate kinase 2 A. thaliana 27.32 7.74 64 2 6.45

Storage

381 20 DAP es 2.26 AT4G14710.1 RmlC-like cupins superfamily protein A. thaliana 23.34 4.86 154 3 16.58

Uncharacterized

239 20 DAP es 2.33 NP_001149638 cePP protein Z. mays 45.27 4.67 55 1 2.01

94 20 DAP es 7.34 AT1G42960.1 Expressed protein localized to the inner membrane of the chloroplast A. thaliana 17.82 9.42 64 2 13.69

74 20 DAP es 2.84 AAF79440 F18O14.33 A. thaliana 50.13 6.92 149 1 2.50

197 20 DAP es 2.88 AT4G01900.1 GLNB1 homolog A. thaliana 21.26 9.93 73 1 5.61

199 20 DAP es 6.49 AT2G39050.1 Hydroxyproline-rich glycoprotein family protein A. thaliana 35.63 6.21 137 3 12.30

135 20 DAP es 2.52 EEC81610 Hypothetical protein OsI_25113 O. sativa 69.89 11.07 77 1 2.37

25 20 DAP es 2.19 NP_001045523 Os01g0969100 O. sativa 44.30 5.82 92 3 6.03

81 20 DAP es 8.75 AT1G61600.1 Protein of unknown function A. thaliana 48.74 10.31 51 1 1.90

94 20 DAP es 7.34 AT1G61600.1 Protein of unknown function (DUF1262) A. thaliana 48.74 10.31 50 1 1.90

383 20 DAP es 1.57 Q9SJ32 Putative F-box/FBD/LRR-repeat protein A. thaliana 50.35 9.65 50 1 1.37

91 20 DAP es 3.80 Q9ZUX4 Uncharacterized protein At2g27730, mitochondrial A. thaliana 11.94 10.10 91 1 7.08

18 20 DAP es 352.11 BAA99394 Vacuolar calcium binding protein R. sativus 27.09 3.95 245 4 12.90

Xenobiotics biodegradation and metabolism

378 20 DAP es 1.67 AT2G32520.1 Carboxymethylenebutenolidase A. thaliana 25.91 5.14 114 3 11.30

Amino acid metabolism

69 20 DAP em 2.22 XP_002530662 3-isopropylmalate dehydratase, putative R. communis 26.91 6.54 89 3 5.51

21 20 DAP em 1.91 P29102 3-isopropylmalate dehydrogenase, chloroplastic B. napus 43.32 6.05 51 3 11.08

69 20 DAP em 2.22 AT2G43090.1 Aconitase/3-isopropylmalate dehydratase protein A. thaliana 26.77 6.41 295 4 21.51

(continued on next page)
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Table 5 (continued)

ID a Stage b Reg c Accession d Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

Carbohydrate metabolism

273 20 DAP em 2.04 P25696 Bifunctional enolase 2/transcriptional activator A. thaliana 47.69 5.45 60 1 2.70

352 20 DAP em 1.58 AT4G16155.1 Dihydrolipoyl dehydrogenases A. thaliana 67.05 8.66 404 9 16.83

352 20 DAP em 1.58 AT3G16950.1 Lipoamide dehydrogenase 1 A. thaliana 60.72 9.00 393 3 19.12

7 20 DAP em 1.51 AT1G12000.1 Phosphofructokinase family protein A. thaliana 61.42 5.74 577 12 14.31

259 20 DAP em 1.67 AT4G24620.1 Phosphoglucose isomerase 1 A. thaliana 67.01 5.37 247 7 12.56

21 20 DAP em 1.91 Q9LD57 Phosphoglycerate kinase 1, chloroplastic A. thaliana 50.08 5.86 2382 21 44.49

352 20 DAP em 1.58 AT3G02360.1 6-Phosphogluconate dehydrogenase family protein A. thaliana 53.54 7.67 751 17 32.30

21 20 DAP em 1.91 ACK56136 Transaldolase D. longan 47.88 6.38 192 4 10.23

276 20 DAP em 3.85 XP_002876580 Transketolase A. lyrata 79.80 5.82 1544 21 26.86

241 20 DAP em 3.95 AT3G60750.1 Transketolase A. thaliana 79.92 5.92 2075 20 24.83

17 20 DAP em 1.94 AT1G65930.1 Cytosolic NADP+-dependent isocitrate dehydrogenase A. thaliana 45.72 6.13 196 5 14.15

Cellular processes

41 20 DAP em 2.48 AT5G16510.1 Alpha-1,4-glucan-protein synthase family protein A. thaliana 38.56 4.92 179 2 5.75

274 20 DAP em 1.56 Q9FM01 Probable UDP-glucose 6-dehydrogenase 2 A. thaliana 53.06 5.51 354 8 19.38

161 20 DAP em 3.88 Q8H038 Xyloglucan galactosyltransferase KATAMARI1 homolog O. sativa 66.67 5.54 53 1 1.02

274 20 DAP em 1.56 P29511 Tubulin alpha-6 chain A. thaliana 49.51 4.79 2390 27 57.56

271 20 DAP em 1.56 P29511 Tubulin alpha-6 chain A. thaliana 49.51 4.79 1230 19 50.44

240 20 DAP em 2.38 AT5G49910.1 Chloroplast heat shock protein 70-2 | A. thaliana 76.95 5.03 1960 27 34.26

21 20 DAP em 1.91 P53492 Actin-7 A. thaliana 41.71 5.20 1305 20 45.62

365 20 DAP em 1.73 AT4G35220.1 Cyclase family protein A. thaliana 29.97 5.59 445 7 19.12

284 20 DAP em 2.06 AT4G16143.1 Importin alpha isoform 2 A. thaliana 58.87 4.86 59 2 4.86

Defense

161 20 DAP em 3.88 P52778 Protein LlR18A L. luteus 16.85 5.07 51 1 7.69

380 20 DAP em 2.14 XP_002887781 Metacaspase 7 A. lyrata 45.48 4.61 80 1 2.87

Detoxification

258 20 DAP em 2.06 Q9S795 Betaine aldehyde dehydrogenase 1, chloroplastic A. thaliana 54.40 5.04 144 2 4.99

218 20 DAP em 1.94 AAC15842 Superoxide dismutase R. sativus 23.79 5.97 187 6 20.28

Energy metabolism

273 20 DAP em 2.04 P48686 Ribulose bisphosphate carboxylase large chain B. oleracea 52.92 5.85 1836 27 42.80

178 20 DAP em 1.88 P05346 Ribulose bisphosphate carboxylase small chain, chloroplastic B. napus 20.21 9.22 943 12 58.01

181 20 DAP em 1.86 P05346 Ribulose bisphosphate carboxylase small chain, chloroplastic B. napus 20.21 9.22 1200 12 58.01

256 20 DAP em 1.57 P21240 RuBisCO large subunit-binding protein subunit beta, chloroplastic A. thaliana 63.77 6.18 488 7 15.00

252 20 DAP em 1.58 P08927 RuBisCO large subunit-binding protein subunit beta, chloroplastic P. sativum 62.95 5.76 1230 17 29.08

121 20 DAP em 1.89 Q9FT52 ATP synthase subunit d, mitochondrial A. thaliana 19.57 4.94 557 6 30.95

299 20 DAP em 1.68 Q9FGI6 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial A. thaliana 81.47 6.24 1235 18 26.74

103 20 DAP em 1.92 Q39258 V-type proton ATPase subunit E1 A. thaliana 26.04 6.02 672 10 29.57
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ID a

Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

284 20 DAP em 2.06 P56757 ATP synthase subunit alpha, chloroplastic A. thaliana 55.29 5.04 1639 18 37.28

56 20 DAP em 1.71 P23321 Oxygen-evolving enhancer protein 1-1, chloroplastic A. thaliana 35.12 5.39 1562 17 52.41

103 20 DAP em 1.92 Q9S841 Oxygen-evolving enhancer protein 1-2, chloroplastic A. thaliana 35.00 5.84 1450 17 48.34

379 20 DAP em 3.31 P11594 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.60 601 8 33.85

69 20 DAP em 2.22 P11594 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.60 780 9 35.77

380 20 DAP em 2.14 P11594 Oxygen-evolving enhancer protein 2, chloroplastic S. alba 27.91 7.60 610 7 25.77

68 20 DAP em 1.70 Q96334 Oxygen-evolving enhancer protein 2, chloroplastic (fragment) B. juncea 23.33 4.76 80 2 14.29

68 20 DAP em 1.70 AT1G61520.1 Photosystem I light harvesting complex A. thaliana 29.16 9.11 665 6 17.58

198 20 DAP em 2.51 P49108 Photosystem II 10 kDa polypeptide, chloroplastic B. campestris 14.64 9.27 355 4 31.91

69 20 DAP em 2.22 AT1G06680.1 Photosystem II subunit P-1 A. thaliana 28.08 7.67 513 6 25.48

Environmental information processing

123 20 DAP em 4.16 BAE72093 9-cis-epoxycarotenoid dioxygenase 4 L. sativa 64.02 8.59 56 1 1.21

54 20 DAP em 1.62 AAK26634 GF14 omega B. napus 29.11 4.53 475 13 47.69

61 20 DAP em 1.62 AT5G12110.1 Glutathione S-transferase, C-terminal-like A. thaliana 24.77 4.37 413 1 15.35

225 20 DAP em 2.11 CAA07494 heat stress-induced protein B. oleracea 23.47 9.23 52 2 15.14

69 20 DAP em 2.22 O04885 Lactoylglutathione lyase B. juncea 20.77 5.49 106 4 26.49

56 20 DAP em 1.71 Q8W593 Probable lactoylglutathione lyase, chloroplast A. thaliana 39.14 7.66 92 1 3.14

Genetic information processing

240 20 DAP em 2.38 ACL01101 Zinc finger protein P. edulis 17.43 10.62 54 1 6.10

380 20 DAP em 2.14 O65282 20 kDa chaperonin, chloroplastic A. thaliana 26.79 9.35 199 5 25.30

68 20 DAP em 1.70 O65282 20 kDa chaperonin, chloroplastic A. thaliana 26.79 9.35 1000 13 50.20

54 20 DAP em 1.62 AT5G60360.1 Aleurain-like protease A. thaliana 38.93 6.29 53 2 8.10

61 20 DAP em 1.62 AT5G60360.1 Aleurain-like protease A. thaliana 38.93 6.29 453 7 17.04

240 20 DAP em 2.38 ABE79560 Chaperone DnaK M. truncatula 75.71 5.05 886 1 30.13

252 20 DAP em 1.58 P35480 Chaperonin CPN60, mitochondrial B. napus 62.32 9.22 895 17 30.49

256 20 DAP em 1.57 P29197 Chaperonin CPN60, mitochondrial A. thaliana 61.24 5.53 2238 31 46.62

5 20 DAP em 3.36 AT5G50920.1 CLPC homolog 1 A. thaliana 103.39 6.35 3615 52 49.73

5 20 DAP em 3.36 P42762 ERD1 protein, chloroplastic A. thaliana 103.17 5.84 164 1 2.12

221 20 DAP em 4.31 P34791 Peptidyl-prolyl cis-trans isomerase CYP20-3, chloroplastic A. thaliana 28.19 9.68 196 5 22.69

225 20 DAP em 2.11 P34791 Peptidyl-prolyl cis-trans isomerase CYP20-3, chloroplastic A. thaliana 28.19 9.68 417 6 16.92

219 20 DAP em 1.71 P34791 Peptidyl-prolyl cis-trans isomerase CYP20-3, chloroplastic A. thaliana 28.19 9.68 377 5 13.08

259 20 DAP em 1.67 ABB17025 Protein disulfide isomerase B. carinata 55.71 4.86 2355 34 63.65

252 20 DAP em 1.58 AAF05855 Putative T-complex protein 1, theta subunit A. thaliana 56.92 5.15 54 4 9.09

54 20 DAP em 1.62 AAL60582 Senescence-associated cysteine protease B. oleracea 39.31 5.38 93 3 13.93

7 20 DAP em 1.51 P28769 T-complex protein 1 subunit alpha A. thaliana 59.19 5.89 749 16 29.17

(continued on next page)
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Table 5 (continued)

ID a Stage b Reg c Accessiond Name Organism MM
calc e

pI
calc f

Score g Peph SC% i

284 20 DAP em 2.06 XP_002864384 Trigger factor type chaperone family protein A. lyrata 61.69 5.01 51 1 2.36

276 20 DAP em 3.85 AT5G10540.1 Zincin-like metalloproteases family protein A. thaliana 78.99 5.34 122 4 5.28

61 20 DAP em 1.62 Q9ZUU4 Ribonucleoprotein, chloroplastic A. thaliana 30.70 4.91 129 2 6.23

218 20 DAP em 1.94 ACG26589 G.-rich protein 2b Z. mays 20.29 5.91 95 1 7.69

365 20 DAP em 1.73 AT1G07660.1 Histone superfamily protein A. thaliana 11.40 11.96 98 2 21.36

274 20 DAP em 1.56 Q9FL92 Probable WRKY transcription factor 16 A. thaliana 155.60 5.92 67 1 0.80

54 20 DAP em 1.62 Q84WM9 Elongation factor 1-beta 1 A. thaliana 24.77 4.37 453 4 15.35

61 20 DAP em 1.62 Q9SCX3 Elongation factor 1-beta 2 A. thaliana 24.19 4.27 478 6 25.45

56 20 DAP em 1.71 P17745 Elongation factor Tu, chloroplastic A. thaliana 51.60 5.79 76 1 2.31

241 20 DAP em 3.95 AT5G44320.1 Eukaryotic translation initiation factor 3 subunit 7 A. thaliana 66.18 5.32 145 4 8.16

167 20 DAP em 2.59 Q9ZPI1 Lysyl-tRNA synthetase A. thaliana 70.84 5.85 365 9 11.82

61 20 DAP em 1.62 AT3G12390.1 Nascent polypeptide-associated complex (NAC), alpha subunit

family protein

A. thaliana 21.97 4.11 72 3 10.84

54 20 DAP em 1.62 Q9LHG9 Nascent polypeptide-associated complex subunit alpha-like

protein 1

A. thaliana 21.97 4.11 184 4 19.21

161 20 DAP em 3.88 AT2G23350.1 Poly(A) binding protein 4 A. thaliana 71.61 6.44 459 9 14.80

365 20 DAP em 1.73 AT2G40010.1 Ribosomal protein L10 family protein A. thaliana 33.65 5.05 193 2 7.57

Lipid metabolism

17 20 DAP em 1.94 AT5G46290.1 3-Ketoacyl-acyl carrier protein synthase I A. thaliana 50.38 9.25 896 16 29.81

271 20 DAP em 1.56 AAK60339 Biotin carboxylase B. napus 58.38 6.57 1013 21 42.62

274 20 DAP em 1.56 AAK60339 Biotin carboxylase B. napus 58.38 6.57 72 7 15.89

365 20 DAP em 1.73 P80030 Enoyl-acyl-carrier-protein reductase NADH, chloroplastic B. napus 40.45 9.39 618 11 25.45

Nucleotide metabolism

273 20 DAP em 2.04 AT2G41680.1 NADPH-dependent thioredoxin reductase C A. thaliana 57.91 6.32 178 6 11.72

352 20 DAP em 1.58 ABE87611 Phosphoribosyltransferase; Orotidine 5-phosphate decarboxylase M. truncatula 51.24 7.02 183 2 5.33

352 20 DAP em 1.58 AT3G54470.1 Uridine 5′-monophosphate synthase A. thaliana 51.82 6.94 288 4 7.56

Uncharacterized

225 20 DAP em 2.11 AAY86774 C2 domain-containing protein N. caerulescens 18.48 5.15 50 1 6.06

56 20 DAP em 1.71 AAG00253 F1N21.10 A. thaliana 40.00 7.65 82 1 3.08

241 20 DAP em 3.95 XP_001753354 Predicted protein P. patens 18.79 9.99 54 1 5.10

a Spots in accordance with Supplementary Fig. 9.
b Developmental stage of endosperm (es) and embryo (em) at 20 DAP.
c Regulation of spots, spot volume at least 1.5 fold increased in the corresponding developmental stage.
d Accession numbers as given by SwissProt (http://www.uniprot.org), NCBInr (http://www.ncbi.nlm.nih.gov/protein) and TAIR (http://www.Arabidopsis.org/).
e Calculated molecular masses of the identified proteins as deduced from the corresponding genes.
f Calculated isoelectric point of the identified proteins as deduced from the corresponding genes.
g Probability score for the protein identifications based on MS/MS analysis and MASCOT search.
h Number of unique matching peptides.
i Sequence coverage of a protein by identified peptides.
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The Native Structure and Composition of the Cruciferin
Complex in Brassica napus□S
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Thomas Nietzel‡, Natalya V. Dudkina§, Christin Haase‡, Peter Denolf¶, Dmitry A. Semchonok§1, Egbert J. Boekema§,
Hans-Peter Braun‡2, and Stephanie Sunderhaus‡3

From the ‡Department of Plant Proteomics, Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz University of Hannover,
Herrenhäuser Strasse 2, 30419 Hannover, Germany, the §Electron Microscopy Group, Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, Nijenborgh 47, 9747 AG Groningen, The Netherlands, and ¶BioScience, Oilseeds
Research, Bayer CropScience NV, Technologiepark 38, 9052 Zwijnaarde, Belgium

Background:Cruciferin represents themost abundant protein inBrassica napus seedswhere its efficient storage is essential
under minimized space conditions.
Results: The cruciferin complex has an octameric barrel-like structure of �420 kDa.
Conclusion: The barrel-like structure represents a compact building block optimized for maximal storage of amino acids.
Significance: Novel insights into structure and packing of seed storage proteins.

Globulins are an important group of seed storage proteins in

dicotyledonous plants. They are synthesized during seed devel-

opment, assembled into very compact protein complexes, and

finally stored in protein storage vacuoles (PSVs). Here, we

report a proteomic investigation on the native composition and

structure of cruciferin, the 12 S globulin ofBrassica napus. PSVs

were directly purified frommature seeds by differential centrif-

ugations. Upon analyses by blue native (BN) PAGE, two major

types of cruciferin complexes of � 300–390 kDa and of �470

kDa are resolved. Analyses by two-dimensional BN/SDS-PAGE

revealed that both types of complexes are composed of several

copies of the cruciferin � and � polypeptide chains, which are

present in various isoforms. Protein analyses by two-dimen-

sional isoelectric focusing (IEF)/SDS-PAGE not only revealed

different � and � isoforms but also several further versions of

the two polypeptide chains thatmost likely differwith respect to

posttranslational modifications. Overall, more than 30 distinct

forms of cruciferin were identified by mass spectrometry. To

obtain insights into the structure of the cruciferin holocomplex,

a native PSV fraction was analyzed by single particle electron

microscopy.More than 20,000 images were collected, classified,

and used for the calculation of detailed projection maps of the

complex. In contrast to previous reports on globulin structure in

other plant species, the cruciferin complex of Brassica napus

has an octameric barrel-like structure, which represents a very

compact building block optimized formaximal storage of amino

acids within minimal space.

Seed storage proteins accumulate during the seed filling
process and serve as a source of nitrogen and amino acids for
the germinating embryo. In dicotyledonous plants, e.g. sun-
flower, soybean,Arabidopsis, and rapeseed, the most abundant
storage proteins are the 2 S albumins and 7 S and 12 S globulins,
the latter ones representing the phylogenetically most widely
distributed group of storage proteins. Mature 12S globulins
consist of two polypeptide chains, which are covalently linked
by a disulfide bond. Both chains stem from the same precursor
molecule, which is co-translationally synthesized into the
rough endoplasmic reticulum. During import, the endoplasmic
reticulum signal peptide is cleaved off and a disulfide bond is
formed between theN- andC-terminal parts of the polypeptide
chain (1, 2). These proglobulins are then assembled into trimers
(3), transported through the Golgi apparatus, and finally stored
asmature hexamers in protein storage vacuoles (PSVs).4 In this
process, at least a second cleavage of the proglobulin occurs,
which forms the mature protein with � and � polypeptide
chains. The latter step is a prerequisite for hexamer assembly (4,
5). The site of this second cleavage is between an asparagine and
glycine residue and both amino acids are highly conserved
among the group of the 12 S globulins (5, 6). Several proteases,
so-called vacuolar processing enzymes, which belong to a novel
family of cysteine proteinases, are responsible for this second
cleavage of the monomers (7). Recently, it was shown that vac-
uolar processing enzymes as well as the corresponding storage
proteins are sorted in the Golgi apparatus simultaneously in
two different types of vesicles. Subsequently, these vesicles fuse
to form a prevacuolar compartment, themultivesicular body in
which the proteolytic process takes place (8, 9). Later, multive-
sicular bodies fuse into a PSV. Most members of the 12 S glob-
ulins are believed to undergo these two events of posttransla-
tional cleavage (4, 6, 7), and the resulting polypeptide chains are
referred to as the � polypeptide chain (the original N-terminal

□S This article contains supplemental Table 1 and Figs. 1 and 2.
1 Supported by HARVEST Marie Curie Research Training Network Grant

PITN-GA-2009-238017.
2 To whom correspondence may be addressed: Dept. of Plant Proteomics,
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of Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany. Tel.: 49-511-
762-2674; Fax: 49-511-762-3608; E-mail: braun@genetik.uni-hannover.de.

3 To whom correspondence may be addressed: Dept. of Plant Proteomics,
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511-762-5290; Fax: 49-511-762-3608; E-mail: sunderhaus@genetik.uni-
hannover.de.

4 The abbreviations used are: PSV, protein storage vacuole; BN, blue native;
AA, amino acid(s); DAP, days after pollination; BN PAGE, blue native PAGE;
IEF, isoelectric focusing.
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part of the precursor protein) and the � polypeptide chain (the
original C-terminal part).
Also in Brassica napus, a 12 S globulin, cruciferin, is the

major storage protein and accounts for �60% of the total seed
protein (10). Five different B. napus cruciferins belong to three
different families, which are listed in the reviewed UniProtKB
database. The P1 family contains only one protein, CRU1, with
a sequence length of 509 amino acids (AA) (�1 � 296 AA and
�1 � 190 AA). In contrast, the P2 family contains three pro-
teins: BnC1with a sequence length of 490AA (�2� 277AAand
�2 � 190 AA); BnC2 with a sequence length of 496 AA (�3 �

283 AA and �3 � 190 AA) and CRU2/3 with a sequence length
of 488 AA (�2/3 � 275 and �2/3 � 190 AA). The P3 family
contains one protein, CRU4 with a sequence length of 465 AA
(�4 � 254AA and�4 � 189AA). Similar to other 12S globulins,
all cruciferin familymembers are secreted into the endoplasmic
reticulum, and all exhibit the typical conserved 12S globulin
cleavage site between asparagine and glycine. They are thought
to be transported as trimers via the Golgi apparatus and stored
as hexamers in PSVs (11–15).
Currently, little is known about the structure and organiza-

tion of B. napus cruciferin within the PSV, although this most
likely is important for ensuring efficient use of storage space in
developing seeds. The first reports on the quaternary structure
of a 12S globulin were given by Badley et al. (16) in 1975. Using
electron microscopy, it was shown that the soybean 12S globu-
lin glycinin extracted from soy flour is composed of two hexa-
gonal rings with alternating � and � polypeptide chains. This
dodecameric model was also supported by Marcone et al. (17)
for amaranth globulin isolated from defatted flour. However,
for rapeseed and sunflower globulin a triagonal antiprism of six
subunits was suggested (18). In subsequent x-ray crystallo-
graphic studies, soybean proglycinin and rapeseed procrucife-
rin overexpressed in Escherichia coli were reported to exhibit
triangular patterns (19–21). The crystal structure of a mature
soybean glycinin extracted from a mutant soybean cultivar
indicates a hexamic particle formed by two face-to-face stack-
ing trimers (22). Two conclusions can be drawn from these
results: (i) quaternary structures of 12S globulins may vary
between species, and (ii) the quaternary structure of 12S glob-
ulins also can differ for the same species, depending on the
expression system used for globulin biosynthesis (e.g. soybean
versus E. coli). Consequently, detailed structural information of
native cruciferin is best obtained directly from the plant species
of interest without the use of heterologous expression systems.
In this study, B. napus cruciferin complexes were directly

isolated frommature seeds under native conditions. The result-
ing fractionswere highly enrichedwith cruciferin. Purified pro-
teins were used for investigations by various gel electrophoresis
systems, mass spectrometry and single particle EM. A large
variation with respect to isoelectric points and molecular mass
was observed for the cruciferin � and � polypeptide chains. In
contrast to 12S globulin complexes from other plant species,
the cruciferin complex exhibits a unique octameric structure
that allows packaging of the amino acids under most space-
saving conditions.

EXPERIMENTAL PROCEDURES

Cultivation of B. napus—B. napus plants were cultivated in
growth chambers under the following conditions: 16-h light (16
klux) at 22 °C, 8-h dark at 18 °C with a relative humidity of 55%.
Seeds were harvested 53 to 60 days after pollination (DAP) and
directly used for the isolation of PSVs.
Isolation of Protein Storage Vacuoles—Native proteins from

PSVs were isolated as described previously (23). All steps were
carried out at 4 °C or on ice. 14 g ofmature seedswere harvested
and directly homogenized in 100 ml of glycerol (100% (v/v))
using a mortar and a pestle. The homogenate was filtered
through one layer of Miracloth (20–25 �m, Calbiochem) and
centrifuged for 10 min at 1100 � g. To collect PSVs, the super-
natant was centrifuged for 20 min at 41,000 � g. The pellet was
again resuspended in glycerol (30 ml, 100% (v/v)) and centri-
fuged for 20 min at 41,000 � g. This pellet contained the PSV
fraction and was further resuspended in 10 ml of TE buffer (1
mM EDTA, 5 mM Tris-HCl, pH 8.5) to disrupt the PSV and
loaded onto a discontinuous sucrose step gradient (30, 45, and
68% (w/v) sucrose in TE buffer) for 2 h at 78,000 � g. The
fraction above the 30% sucrose layer represents the vacuolar
matrix containing the storage proteins and was directly used or
frozen in liquid nitrogen and stored at �80 °C.
Gel Electrophoresis Procedures—Proteins were analyzed by

one-dimensional blue native polyacrylamide gel electrophore-
sis (BN PAGE) and by two-dimensional BN/SDS-PAGE using
100 �l of the frozen PSV matrix fraction supplemented with 5
�l of “blue loading buffer” (5% (w/v) Coomassie Blue in 750mM

aminocaproic acid) according to the protocol outlined inWittig
et al. (24). Mitochondria from Arabidopsis thaliana were pre-
pared as outlined in Sunderhaus et al. (25) and solubilized by 5
g/g digitonin. One-dimensional SDS-PAGE was carried out as
described by Schägger and von Jagow (26) using 30 �l of the
frozen PSV matrix fraction. For two-dimensional isoelectric
focusing/SDS-PAGE (IEF/SDS-PAGE), 50 �l of the PSV frac-
tion were mixed with 300 �l of resuspension buffer (8 M urea,
2 M thiourea, 50 mM DTT, 2% CHAPS (w/v), 5% IPG buffer
3–11 nl (v/v), 12 �l/ml DeStreak reagent, bromphenol blue)
and directly applied into a strip holder. Isoelectric focusing was
carried out with the Ettan IPGphor 3 apparatus (GE Health-
care) using 3–11 nl of Immobiline DryStrip gels (18 cm). Rehy-
dration took place at 30V for 12 h and focusing during 4 steps at
500 V (1 h), 500–1000 V (1 h), 1000–8000 V (3 h), and 8000 V
(6 h). Afterward, strips were equilibrated for 15 min in equili-
bration solution (6 M urea, 30% glycerol (87%, v/v), 2% SDS, 50
mM Tris-HCl, pH 8.8, bromphenol blue) with (i) 1% DTT (w/v)
and (ii) 2.5% iodacetamide (w/v). IPG strips were finally trans-
ferred horizontally onto a 16.5% tricine gel, and electrophoresis
was carried out for 20 h at 35 mA/mm gel layer.
Gel Staining Procedures—All polyacrylamide gels were stained

with Coomassie colloidal (27, 28).
Generation of Antibodies against Cruciferin—Two different

polyclonal antibodies directed against peptides of the � or �

polypeptide chains of B. napus cruciferin were generated
(Eurogentec S.A. Antisera Production, Seraing, Belgium). For
details, see supplemental Fig. 1.

Native Structure and Composition of Cruciferin in B. napus
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Western Blotting—Proteins separated on polyacrylamide gels
were blotted onto nitrocellulosemembranes for antibody stain-
ing using theTrans Blot Cell fromBio-Rad. Blottingwas carried
out as described in Kruft et al. (29). Immunostainings were
performed using the VectaStain ABC kit (Vector Laboratories,
Burlingame, CA).
MS Analyses—Tryptic digestion of proteins and peptide

extraction were carried out as published in Sunderhaus et al.
(25). MS analyses were performed using an EASY-nLC-system
(Proxeon) coupled to a MicrOTOF-Q-II mass spectrometer
(Bruker Daltonics). Identification of proteins was carried out
using the MASCOT search algorithm against (i) SwissProt (ii)
NCBI non-redundant protein database and (iii) The Arabidop-
sis Information Resource (Tair release 9).
Electron Microscopy and Image Analyses—Fractions con-

taining cruciferin were applied to carbon-coated copper grids
and negatively stained with 2% uranyl acetate. Electronmicros-
copy was performed on a Philips CM120 electron microscope.
Data were collected with a 4K slow-scan CCD camera (Gatan)
at a magnification of 130,000 with a pixel size (after binning the
images) of 0.23 nmat the specimen level. Single particle analysis
was performed with the Groningen Image Processing (GRIP)
software package on a CPU cluster as outlined byDudkina et al.
(30). The three-dimensional model of cruciferin was created
with a Blender three-dimensional creation suite. X-ray struc-
ture of procruciferin from B. napus (Protein Data Bank code
3KGL (20)) was used for the superimposing on projectionmaps
of cruciferin. The octamer of cruciferin was generated from the
hexameric x-ray structure of procruciferin maintaining mono-
mer-monomer interfaces by using the Chimera program from
the University of California, San Francisco (31).

RESULTS

PSVs were isolated from freshly harvested seeds at 53 to 60
DAP under most gentle conditions using the glycerol protocol
published by Jiang et al. (23). The total protein fraction was
directly extracted from PSVs.
Characterization of Cruciferin Complexes from B. napus

Storage Vacuoles—BN PAGE was originally developed for the
characterization of native mitochondrial protein complexes
but also proved to be a very suitable procedure for the investi-
gation of protein complexes from other cellular compartments
(24). To characterize the protein composition of the PSVs, their
soluble fraction was directly supplemented with Coomassie
blue and subsequently loaded onto a one-dimensional BN gel.
As a control and molecular mass standard, respiratory protein
complexes of A. thaliana mitochondria were solubilized by 5
g/g digitonin and separated on the same gel (Fig. 1). Three
bands are visible in the lane of the PSV fraction: a central broad
band sharply confined at its lower border at 300 kDa with a
more diffuse upper border at�390 kDa is flanked by two bands
of lower abundances at �150 and 470 kDa. Judging from the
molecular masses of the bands, it can be expected that they
represent multisubunit protein complexes.
To investigate the subunit compositions of the PSV protein

complexes, two-dimensional BN/SDS-PAGE was carried out
for separating the subunits of the resolved complexes (Fig. 2A).
Under the denaturing conditions of the second gel dimension,

the smaller 150-kDa complex dissociated into three subunits of
�40, 25, and 20 kDa. The two larger complexes dissociated into
�15 different subunits of 60 to 12 kDa. The protein patterns of
both bands indicate that the two complexes have the same com-
position but differ in subunit stoichiometry. In contrast to the
one-dimensional BN PAGE, even larger forms of this complex
are visible on the two-dimensional gel, which is schematically
summarized in Fig. 2B.
To verify that separated fractions contain cruciferin, pep-

tide-specific antibodies were generated against the � and �

polypeptide chain of the protein (see supplemental Fig. 1).
Two-dimensional BN/SDS gels were then blotted onto nitro-
cellulose membranes and incubated with antibodies directed
against both chains (Fig. 3).

FIGURE 1. Separation of soluble proteins from PSVs by BN PAGE indicates
presence of three major classes of protein complexes of 150, 300 –390,
and 470 kDa. The proteins of storage vacuoles of B. napus (lane B) and of a
mitochondrial fraction of A. thaliana (molecular mass standard; lane A) were
separated on a native gradient gel according to molecular mass. Molecular
masses are given in kDa. Designations of A. thaliana mitochondrial protein
complexes are given as follows: I�III2, supercomplex containing NADH dehy-
drogenase and dimeric cytochrome c reductase; I, NADH dehydrogenase; V,
F0F1 ATP synthase; III2, dimeric cytochrome c reductase; F1, F1 part of the ATP
synthase; IVa and IVb, larger and smaller form of cytochrome c oxidase.

FIGURE 2. Separation of proteins isolated from PSVs by two-dimensional
BN/SDS-PAGE (A) suggests specified associations of cruciferin. Arrows indi-
cate the occurrence of 10 defined cruciferin complexes with a maximum of 15
different protein species (given on the scheme in B). Highly abundant sub-
forms are indicated in filled circles, less abundant subforms are in open circles.
Molecular masses are given in kDa above and to the right of the gel.
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The obtained results illustrate the purity of the PSV fraction.
A strong signal is present in the 30-kDa range, representing �

polypeptide chains from the different cruciferin families. Addi-
tionally, a strong signal is visible in the 55-kDa range indicating
that few cruciferins still have an intact disulfide bond between
both polypeptide chains after the �-mercaptoethanol treat-
ment preceding the second dimension. Some weaker signals in
themolecular mass range below 20 kDamost likely represent �

polypeptide chain breakdown products. Blots developed with
antibodies against the � polypeptide chain of cruciferin show a
strong signal in the 20 to 25 kDa range as well as in the 60 kDa
range (data not shown). The two-dimensional gel shows that
the broad band observed in the one-dimensional gel is actually
composed of several individual bands and that cruciferin is
present in all those bands, also in the 470-kDa band. Addition-
ally, cruciferin at least partially occurs in larger forms up to
1500 kDa on one-dimensional BNgels but does not formpart of
the 150-kDa complex.
Analyses of Cruciferin � and � Polypeptide Chains at Reduc-

ing/Non-reducing Conditions—To investigate the size of the
monomeric cruciferin complex as well as its � and � polypep-
tide chains, cruciferin isolated from PSVs was dissolved in
either denaturating buffer containing DTT to reduce the disul-
fide bond between the N and the C terminus or in buffer with-
out DTT to keep the protein in its native monomeric form.
Fractions were separated using one-dimensional SDS gels and
blotted onto nitrocellulose membranes, which were incubated
with antibodies against either the � or the � chain (Fig. 4).

Under denaturing conditions, antibodies directed against the
� polypeptide chain produced a strong signal visible in the
30-kDa range. Some additional but much weaker signals are
observable in the range of 27 and 33 kDa and in the lowmolec-
ular mass range between 14 and 20 kDa. No signals could be
detected above 35 kDa, indicating that all cruciferin is cleaved
into � and � polypeptide chains by this treatment. In addition,
incubation with antibodies directed against the � polypeptide
chain produced a strong signal at 18 to 20 kDa as well as some
minor bands in the range of 30–35 and at �50 kDa (Fig. 4A).
Under non-reducing conditions both antibodies gave the same
signals in the 27–33 kDa and 18–20 kDa range, respectively,
but with notably reduced intensities. Additionally, a number of
new signals are visible in the range of �52 kDa (Fig. 4B).
Because these proteins are detected by the antibodies directed

against the � and the � polypeptide chains, these bands most
likely represent cruciferins with intact disulfide bonds.
Because isoforms of cruciferin precursor proteins as well as

their respective� and� polypeptide chains cannot be separated
on one-dimensional SDS gels due to similar molecular masses,
the PSV fraction was analyzed by two-dimensional IEF/SDS-
PAGE (Fig. 5). IEF is often capable of separating proteins with
the same or similar molecular masses due to different occur-
rences of ionizable amino acids within isoforms.
As shown in Fig. 5 and byWestern blotting (data not shown),

�polypeptide chains are separated in a range between 27 and 36
kDa and isoelectric points between 6.7 and 8.8 (red box). The
corresponding � polypeptide chains are separated in a range
between 19 and 21 kDa and isoelectric points between 5.9 and
9.5 (green box).
For assigning cruciferin polypeptide chains from the three

individual cruciferin families to each detected spot/band on our
one-dimensional BN (Fig. 1), two-dimensional BN/SDS (Fig. 3),
one-dimensional SDS (Fig. 4), and two-dimensional IEF/SDS
(Fig. 5) gels, protein identifications by mass spectrometry were
carried out. A total number of 95 spots, representing the most
abundant proteins, were picked from the four gel systems and
analyzed by LC-ESI-Q-TOF-MS/MS (supplemental Fig. 2 and
supplemental Table 1). Members of all five cruciferin families
were detected as well as the 2 S storage protein Napin. The
latter one is also known to accumulate during the seed filling
process in B. napus PSVs. Furthermore, five proteins were
identified, which do not belong to the family of storage
proteins.
Altogether, mass spectrometry enabled the assignment of

spots on two-dimensional IEF/SDS gels to distinct cruciferin
families and polypeptide chains (Fig. 6).With respect to� poly-
peptide chains, four spots in the range of 34-kDa spots were
identified as �CRU1 (P1); another four spots in the range of 32
kDa were assigned to �BnC1, �BnC2, and �CRU2/3 (P2); and
two spots in the range of 27 kDa represent �CRU4 (P3). All six

FIGURE 3. Immunoblotting analyses of a B. napus PSV fraction separated
by two-dimensional BN/SDS-PAGE reveals high enrichment of crucife-
rin. Gels were either stained by Coomassie colloidal (A) or blotted onto nitro-
cellulose (B). Western blots were incubated with antibodies directed against
the � chain of cruciferin. Molecular masses of standard proteins are shown
above and to the right of the gel (in kDa).

FIGURE 4. Immunoblotting analyses of a B. napus PSV fraction separated
by one-dimensional SDS-PAGE reveals cruciferin complexes of �48 to 58
kDa under non-reducing conditions. PSV fractions were separated under
reducing conditions (A; �DTT) and non-reducing conditions (B; �DTT). Gels
were either stained Coomassie colloidal or blotted onto nitrocellulose mem-
branes and incubated with antibodies directed against the � or the � chains
of cruciferin as indicated. Molecular masses of standard proteins are shown to
the right and to the left in kDa.

Native Structure and Composition of Cruciferin in B. napus

JANUARY 25, 2013 • VOLUME 288 • NUMBER 4 JOURNAL OF BIOLOGICAL CHEMISTRY 2241

 at L
E

IB
N

IZ
 U

N
IV

E
R

S
IT

Ä
T

 H
A

N
N

O
V

E
R

 on S
eptem

ber 21, 2015
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

Chapter 2: Publications and Manuscripts

83



spots in the range of 19 to 21 kDa were distinguishable exclu-
sively by their isoelectric points, and they all represent � poly-
peptide chains. Four spots exhibiting isoelectric points of�8 to
9.5 were identified as �CRU1 and �CRU4 (P1 and P3), and two
spots exhibiting isoelectric points from �5.8 to 6.8 were
assigned to �BnC1, �BnC2, and �CRU2/3 (P2).
The Cruciferins of Rapeseed Are Phosphorylated—Phosphor-

ylation of cruciferins was investigated using antibodies
directed against phosphoserine, phosphothreonine, and phos-
photyrosine. For this approach, storage vacuole protein frac-
tions were separated by two-dimensional IEF/SDS-PAGE and
blotted onto filter membranes (Fig. 7). Several cruciferin forms
belonging to both the � and the � chains are recognized by all
three sera. Overall, the � chain of cruciferin reacts stronger
with the sera than the � chain. The strongest immune signals
were obtained with the serum directed against phosphoserine
(Fig. 7D).

Structure of the Native Cruciferin Storage Form in Mature

PSVs—For a structural analysis of the native cruciferin oligo-
mers, PSV fractions purified from developing (53 DAP) or
mature seeds (60 DAP) were examined and analyzed by single
particle EM (Fig. 8). Altogether, 23,000 protein projections
were analyzed to obtain final averages at�20 Å resolution after
several iterations of alignment and classification. As can be seen
from class averages, the majority of molecules appeared to be
oriented in a top or bottom view positions (Fig. 8, a, b, d, e, f, h,
i, j, and l), whereas only a smaller group of projections repre-
sented side views (Fig. 8, c, g, and k). The top and bottom views
clearly demonstrate a 4-fold symmetry. By combining the infor-
mation obtained on the top and side views, it can be concluded
that the structure is composed of two layers, each consisting of
four identical subunits in a tetrameric configuration enclosing a
pore in the center of the complex. A groove divides the side-
view projection into two halves, each of which appears to be
mirror the other one in the projection. This indicates that the
two sets of tetramers are facing each other in antiparallel
positions.
From the single particle EM data shown in Fig. 8, we gener-

ated a model of the cruciferin storage complex (Fig. 8m). It is
composed of eight subunits arranged in an octameric configu-
ration rather than the hexamer, which was proposed by other
studies for globulins from other organisms (11–15, 20, 22).
From the dimensions observed in the projection maps, we esti-
mated themass of the octamer to be�420 kDa. Estimation was
done by using a formula for the cylinder-shaped complex as
m� �R2h/�, wherem is themass of the protein,R and h are the
radius and the height of the cylinder, and � is the average pro-

FIGURE 5. Resolving a PSV fraction according to isoelectric point and
molecular mass reveals existence of cruciferin � chains in a pH range
from 6. 7 to 8.8 (red box) and �-chains in a pH range from 5.9 to 9.5 (green
box). Molecular masses of standard proteins as well as the pI range are given
on the right and above the gel, respectively.

FIGURE 6. Analyses of cruciferin subunits by LC-MS/MS allows assigning
clusters of spots on two-dimensional IEF/SDS gels to the three distinct
cruciferin families. Names of families and polypeptide chain attribution are
given to the right and below the gel. Molecular masses and pIs are given to the
left and above the gel, respectively. P1, family 1 containing cruciferin Cru 1; P2,
family 2 containing cruciferin BnC1, BnC2, and Cru 2/3; P3, family 3 containing
cruciferin Cru 4.

FIGURE 7. Immunological analysis of cruciferin phosphorylation. Protein
storage vacuole fractions were resolved by two-dimensional IEF/SDS-PAGE
and blotted onto membranes, and blots were developed using antibodies
directed against three different phosphorylation sites. As a control, phosphor-
ylated BSA (phosphorylated at tyrosine (f); phosphorylated at threonine (Œ);
phosphorylated at serine (●)) was separated within the same gel. A, Coo-
massie-stained reference gel. B, immunoblot developed with an IgG directed
against phosphorylated tyrosine; C, immunoblot developed with an IgG
directed against phosphorylated threonine; D, immunoblot developed with
an IgG directed against phosphorylated serine. Note that the phosphoty-
rosine-BSA control on C is not indicated because it partially was beyond the
limit of the blot. However, the specificity of the IgG was verified by indepen-
dent experiments (not shown).
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tein density, which is 1.5 g/cm3 (32). Thus, each monomer,
composed of an � and � polypeptide chain, should have a
molecular mass of �50 kDa. The obtained model is in agree-
ment with the observations from electrophoretic analyses
showing average molecular masses of � and � chains of �32
kDa and 20 kDa, respectively. To interpret the projectionmaps,
we generated the octamer of cruciferin from the x-ray structure
of procruciferin and superimposed the densitymap of the octa-
mer on our projectionmaps (Fig. 8,n–p). Importantly, by fitting
the crystal structure, we gain a resolution by a factor of 5 (33).
Based on the close fit, we conclude that the analyzed projec-
tions indeed represent the top and side views of the cruciferin
complex in an octameric configuration. There is an additional
mass in every monomer in our projections, seen as spikes (Fig.
8, e and i, red arrows), which do not belong to the monomers of
the hexameric cruciferin complex solved by x-ray diffraction.
This could be a result of incompleteness of the hexamer struc-
ture, which has missing residues as seen from the deposited
atomic coordinates. Alternatively, crystallization conditions
might cause changes in the protein configuration or subunit
arrangements.

DISCUSSION

In this study, the structural properties of cruciferin proteins
as well as the supramolecular structure of the complex formed

by cruciferin subunits is investigated. In previous studies, stor-
age protein complexes were analyzed e.g. by the expression of
the proteins in a heterologous expression system, which
allowed purification of the complexes to a level of purity ren-
dering them amenable for crystallographic structural analysis.
Here, we chose a different approach. Protein complexes were
purified directly from freshly harvested seeds and analyzed
using gel electrophoretic approaches, mass spectrometry, and
single particle electron microscopy. Although the latter
method is compromised in the resolution obtained at the struc-
tural level, it allows investigations of the protein from native
environment. Differences in the results obtained by both
approaches and their implications are discussed below.
Suitability of the Vacuolar Fraction for Biochemical and

Structural Analyses—The purity of the isolated cruciferin frac-
tion was demonstrated by the different gel electrophoresis pro-
cedures in combination with antibodies directed against cruci-
ferin � and � polypeptide chains (Figs. 3 and 4) as well as by
mass spectrometry. Results from the 95 analyzed spots/bands
revealed that only five proteins do not belong to the family of
storage proteins. These are as follows: glyceraldehyde-3-phos-
phate dehydrogenase, elongation factor 1-�, myrosinase bind-
ing protein, protein disulfide isomerase, and oleosin (supple-
mental Fig. 2 and supplemental Table 1). The first three
proteins most likely represent cytosolic constituents, whereas
the protein disulfide isomerase is reported to be an integral part
of protein storage vacuoles (34). Oleosin is a component of oil
bodies in B. napus seeds (35). The purity of the vacuolar frac-
tion is additionally confirmed by electron microscopy. Nega-
tively stained specimens were found to exclusively contain olig-
omeric Cruciferin, either in side or in top views. Therefore, the
PSV fractions obtained are well suited for a detailed analysis of
native B. napus cruciferin.
Heterogeneity of B. napus Cruciferin—The analyses of cruci-

ferin and its polypeptide chains were carried out using dif-
ferent electrophoretic approaches. The results obtained by
one-dimensional BN, one-dimensional SDS, two-dimensional
BN/SDS, and two-dimensional IEF/SDS/PAGE, respective
immunoblots, andmass spectrometry analyses suggest a strong
diversity in physicochemical properties of the cruciferin poly-
peptide chains, proteins, and protein complexes (Table 1). In all
gel systems, � polypeptide chains show molecular masses
between 27 and 36 and � polypeptide chains between 19 and 21
kDa. Partially, molecularmasses differ from the calculated ones
in a range of 6 kDa, especially for � chains. Isoelectric points of
some cruciferin polypeptides differ significantly comparedwith
their calculated pIs in databases. In general, the � polypeptide
chains showa very diverse pI range on IEF/SDSgels between 5.9
and 9.5. This is also reflected by the calculated pIs (6.1 and 8.6).
Hence, � polypeptide chains can be considered to be rather
basic. Surprisingly,� chains, which previously were observed to
have an acidic pI, are found at higher pH values (36, 37). Their
apparent isolelectric points on IEF/SDS gels are all between pH
6.8 and 8.6. This clearly indicates a neutral rather than an acidic
pI (Table 1 and Fig. 6).
A certain level of heterogeneitywas also observed on the level

of the cruciferin holo-complex. The main band for cruciferin
complexes on BN gels smeared over a range of nearly 100 kDa.

FIGURE 8. Structural analyses of the cruciferin complex by single particle
electron microscopy. Top view (a, b, d–f, and h) and side view (c and g) pro-
jection maps of negatively stained cruciferin complexes isolated 53 DAP and
top view (i, j, l) and side view (k) projections of cruciferin isolated 60 DAP.
Panels e, f, g, and j demonstrate the views of a, b, c, and i correspondingly after
symmetrization. a represents a sum of 705 projections; b, 582 projections;
c, 372 projections, d, 575 projections; h projections, 335 projections; i, 5000
projections; k, 5000 projections; l, 5000 projections. m shows the model of the
octameric cruciferin complex based on the negatively stained projection
maps. n–p demonstrate the superimposing of procruciferin density maps
(purple) on projection maps from j–l correspondingly. The bar is 5 nm. The red
arrows point to additional mass in every monomer in our projections, which is
not visible in the monomers of the hexameric cruciferin complex solved x-ray
diffraction.
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This band includes protein complexes ranging from 300 to 390
kDa (Fig. 1), whereas the estimated mass of the cruciferin octa-
mer based onEManalyses is�420 kDa. The difference between
the estimatedmass of the complex and the one observed on BN
gels is most likely caused by the barrel-like structure of the
octamer. Indeed, the three-dimensional structure of cruciferin
is considerably compact. In contrast, the structures of the res-
piratory complexes of A. thaliana mitochondria are much
more irregular (complex I, for instance, has an L-like shape).
Because the BN gel was calibrated by the masses of the respira-
tory complexes, the apparent molecular mass of the cruciferin
complex is very likely to be underestimated. Apart from that,
calculation of the mass from the EM projections does not take
into account the presence of the central pore and space between
the monomers, thereby providing slight overestimation for the
mass of cruciferin.
Phosphorylation of Cruciferin—To explain pI variations on

two-dimensional IEF/SDS gels, an immune blotting approach
was carried out (Fig. 7). Western blots developed with antibod-
ies directed against phosphoserine, phosphothreonine, and
phosphotyrosine indicate stable phosphorylations on several
but not all cruciferin forms separated by IEF/SDS-PAGE (Fig.
7). Similar results were previously reported for B. napus and
A. thaliana (39–41). In fact, it was shown that cruciferin is one
of the most phosphorylated proteins in A. thaliana seeds. In
contrast, our MS analyses did not reveal direct evidence for
cruciferin phosphorylation in B. napus. This negative result
probably is due to the fact that phosphopeptides were not
enriched during sample preparation for MS (e.g. by Immobi-
lized metal ion affinity chromatography (IMAC) or TiO2

affinity chromatography). Most likely, phosphorylation sites
in cruciferins are substoichiometrically phosphorylated. As a
consequence, non-phosphorylated peptides dominated the
mass spectra.
The Supramolecular Structure of Directly IsolatedCruciferin—

By combining a mild purification procedure with analyses by
BN PAGE and single particle EM, we were able to structurally
characterize cruciferin oligomers from mature seeds. Because
proteins for crystallization experiments often are produced by
overexpression in heterologous systems, mainly E. coli, several
factors ensuring a correct assembly may be missing, e.g. signal
peptide cleavage, the proteolytic cleavage of the � and � poly-
peptide chains and their assembly in the endoplasmic reticu-
lum as well as the following formation into oligomers. Further-
more, many results on seed storage proteins are obtained using
defatted flours for industrial purposes or NaCl extraction,
whichmay strongly disturb the native conformation of the pro-

teins (17, 18, 42–44). Therefore, further analyses should be car-
ried out to verify hexameric globulin structure in seeds as
reported before for other plants. Finally, globulin complexes
from additional species should be characterized to obtainmore
general insights into their oligomeric organization.
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a  b  s  t  r a  c t

The endosperm  plays an important  role  for the  development  of zygotic  embryos,  while  somatic  embryos

lack  a seed  coat and endosperm  and often  show physiological  disorders. This study aims  at  elucidat-

ing  the  cellular and  physiological  processes within  the  endosperm  of  the  ornamental  species  Cyclamen

persicum  Mill.  Histological  analyses  were  performed  from  0  to 11 weeks  after  pollination (WAP).  At

3  WAP, a syncytium was  clearly visible  with  a globular  zygotic  embryo. From  4  WAP, cellularization  of

the  endosperm,  at 5 WAP a small torpedo  shaped embryo,  and from  7 WAP cell  expansion was observed.

By  11 WAP the endosperm  appeared fully differentiated.  Total  soluble proteins  were  extracted  from  the

endosperm  at  4, 5,  7,  9  and  11 WAP and  resolved  using two  dimensional isoelectric  focussing/sodium

dodecyl  sulphate–polyacrylamide  gel  electrophoresis  (2D IEF/SDS–PAGE).  A  shift from high-molecular-

mass  proteins  to  low-molecular-mass  proteins  during  endosperm development  was  observed.  A  total of

1137  protein  spots/gel were  detected  in the  three protein  fractions  extracted  at 7,  9 and  11 WAP. Mass

spectrometry  analysis  of  the  48  predominant  protein spots in endosperm  at  7, 9 and  11  WAP resulted  in

the  identification  of 62  proteins,  ten of which  were  described for  the  first  time  in Cyclamen.  Additionally,

186  proteins  were  identified  using  the  C.  persicum  embryo  proteome reference  map. Proteins  involved

in  abscisic  acid signalling  and oxidative  stress  responsive  proteins  were  found to  be  important for  seed

development  in Cyclamen.  The  new insights  into  endosperm  physiology  including storage compounds

are  discussed.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Within many plant seeds, the endosperm functions mainly

to provide nutrients to  the embryo, thereby supporting its

development and also its later  germination [1–4]. In  addition,

the endosperm insulates the embryo from  mechanical pressure

imposed by the seed coat [5], and plays a  role in signalling towards

the embryo [4]. Recently, the function of the endosperm espe-

cially as an integrator of seed growth and development based on

signalling between endosperm and embryo as well as mechanical

barrier has been emphasized [6].

The endosperm, depending on the species, may  be  a transient

tissue which is  largely reabsorbed during late seed development

e.g. in Arabidopsis, or  it may  be enlarged and persistent even upon

Abbreviations: CBB, Coomassie Brilliant Blue;  IEF,  isoelectric focussing;

SDS–PAGE,  sodium dodecyl sulphate–polyacrylamide gel electrophoresis; 2D, two-

dimensional.
∗ Corresponding author. Fax: +49 511 762 3608.

E-mail address: traud.winkelmann@zier.uni-hannover.de (T. Winkelmann).

seed maturity e.g. in Cyclamen and cereals. In the case of Arabidopsis,

the cotyledon offers a  comparable storage function as repre-

sented by the endosperm [3,4]. Endosperm development generally

progresses through several characteristic stages, i.e.  syncytium for-

mation by several nuclear divisions, cellularization, growth and

differentiation and finally maturation including accumulation of

storage compounds, development of desiccation tolerance and dor-

mancy [7].  Plants are able to accumulate carbohydrates [8], proteins

[9] and fatty acids [10] as storage compounds in their endosperm.

Therefore the endosperm functions as the storage organ and devel-

opmental control unit for the embryo and for the germinating seed

[2,11].

Cyclamen persicum is  a  popular ornamental crop with high

economic relevance. For commercial propagation, the F1 hybrid

cultivars are of predominant meaning. However, relatively high

costs for seed production due to inbreeding depression of  parent

lines and intensive manual work are challenging problems. There-

fore, there is  an interest in an alternative vegetative propagation

system. Somatic embryogenesis has been reported to represent

an efficient in vitro propagation technique in Cyclamen [12–15].

However, somatic embryos often show physiological disorders,

0168-9452/$ – see  front matter ©  2012 Elsevier Ireland Ltd. All rights reserved.
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asynchronous development and misshaping during development.

In addition, unlike zygotic embryos, somatic embryos lack a  seed

coat and the endosperm. One marked difference being the availabil-

ity of storage compounds i.e.  carbohydrates, proteins and lipids in

the endosperm.

For Cyclamen seeds, the storage polysaccharide xyloglucan

[16,17], the storage proteins 11S and 7S globulin [17] and trun-

cated forms of  enolase proposed to function as storage proteins

[18] have been reported. But so far,  a profound knowledge about

the components and physiological processes within the endosperm

development of Cyclamen seeds is lacking.

Proteomic studies have been shown to be  a  powerful tool for

monitoring the present physiological status of cells and tissues

under specific developmental conditions [19] and during devel-

opment [20,21] and have been performed successfully for seeds

and seed  compartments in many crops recently, e.g. in maize [22],

coffee [23] or rice [24].

In  this study, we aimed (i) to identify the key events during

endosperm development at the cellular level by  histological anal-

yses, and (ii) to elucidate on the basis of  alterations in  the protein

profiles of C. persicum endosperm during seed development the

predominant role of the endosperm for the embryo development.

2.  Materials and methods

2.1.  Plant material

The  diploid C. persicum commercial F1 cultivar ‘Maxora Light

Purple’ bred by the company Varinova (Berkel en Rodenrijs,

Netherlands) was grown in the greenhouse at a heating set point of

17 ◦C and a ventilation set point of 20 ◦C.  Closed flower buds were

emasculated and self-pollinated after  48 h.  Fruits were  harvested

weekly from 0  (before pollination) to 11  weeks after pollination

(WAP). Three biological replications were collected for each  stage.

2.2. Histological analyses

Histological  analyses were performed from day  0 (before pol-

lination) to 11 WAP. For each stage, histological analyses were

repeated twice to ensure two biological and technical replications.

The samples were fixed in  FAA (formaldehyde acetic  acid) solu-

tion containing 67% ethanol, 20% H2O, 1.8% formaldehyde and 5%

glacial acetic acid for at least 24 h and then stored at 4 ◦C.  The tissues

were dehydrated in a  vacuum using graded alcohol series (70–96%

ethanol and 100% isopropanol) and embedded in paraffin wax [25].

Sections of  3–8 �m were cut  using a  microtome and stained

using FCA (Fuchsine Chrysoidine Astra blue, Morphisto, Germany)

solution according to Hoenemann et al. [25] and Morphisto histol-

ogy manual (www.morphisto.de). The slides were  visualized using

a light microscope (Carl Zeiss, Germany) and the photographs were

taken using AxioCam MR3  and edited with the AxioVision software

(Carl Zeiss, Germany).

2.3.  Proteomic analyses

2.3.1.  Phenolic protein extraction

Proteomic  analyses were performed for tissue harvested at 4,

5, 7, 9 and 11 WAP. Three biological replicates were  collected for

each stage. The samples were prepared under a  stereo microscope

(Carl Zeiss, Germany) directly frozen in liquid nitrogen and stored

at �80 ◦C until the time of analysis.

Total  proteins were extracted and precipitated according to

Hurkman and Tanaka [26] protocol modified by Colditz et al.  [27].

Whole seeds were used for proteome analyses at 4 and 5 WAP  as

the endosperm was still liquid  (Fig. 1a  and b). For 7, 9 and 11 WAP,

endosperm and seed coat were collected (Fig. 1c). 60 mg  (9 and

11  WAP) and 80 mg  (4, 5,  and 7 WAP) of endosperm tissue were

pulverized in a bead mill and homogenized in extraction buffer

(700 mM sucrose, 500 mM Tris, 50 mM EDTA, 100 mM  KCl, 2 mM

PMSF and 2% (v/v) (-mercaptoethanol, pH 8.0). Saturated phenol

(pH 6.6/7.9) was added to the samples and proteins were precip-

itated in  the phenolic phase with 100 mM  ammonium acetate in

methanol at −20 ◦C overnight.

2.3.2.  Two dimensional (2D) IEF/SDS–PAGE

For first dimension isoelectric focussing (IEF), immobilized dry

strips (18 cm)  with pH gradients 3–11 were rehydrated with pro-

tein samples in rehydration buffer (8 M urea, 2% (w/v) CHAPS,

100 mM DTT, 0.5% (v/v) IPG buffer). Isoelectric focussing was done

using IPGphor system (GE Healthcare). IPG  strips were equil-

ibrated in equilibration solution I  (30% (v/v) glycerol, 50 mM

Tris–HCl pH 8.8, 6 M  urea, 2% (w/v) SDS, a  trace of bromophe-

nol blue, 0.01 g DTT ml−1 (w/v)) and equilibration solution II (same

compounds like equilibration solution I, but DTT substituted by

0.025 g iodoacetamide ml−1).

For second dimension of sodium dodecyl sulphate–polyacr-

ylamide gel electrophoresis (SDS–PAGE) IPG  strips were fixed hor-

izontally onto SDS–tricine–polyacrylamide gels of 12% acrylamide.

Electrophoresis was carried out for 20 h at 30 mA mm−1 using Bio-

rad Protean IIXL gel system (Biorad, München, Germany). Gels were

subsequently stained overnight using colloidal Coomassie Brilliant

Blue (CBB-250 G, Merck, Darmstadt, Germany) after treatment with

the fixing solution (40% (v/v) methanol, 10% (v/v) acetate) for at

least 2 h [28,29].

2.3.3.  Quantitative gel evaluation

The  gels were scanned on an ImageScanner III (GE Healthcare,

Freiburg, Germany) and evaluated using Delta 2D  software, version

4.0 (Decodon, Greifswald, Germany) with three replicates for each

group (4, 5, 7,  9 and 11 WAP). Spots detection was done automati-

cally and occasionally corrected manually. In gel normalization was

performed using the Delta 2D  software for the overlays of three

replicate gels each. Spots with a  relative spot volume of less than

0.005% were deleted. Significant changes in spot patterns of the dif-

ferent endosperm groups were determined using Student’s t-test

(confidence interval ≥95%) based on the relative spot volume.

2.4.  Mass spectrometry

Protein  spots were cut out from the 2D IEF/SDS gel using a

manual spot picker (Genetix; spot diameter, 1.4 mm)  and were

assigned the unique spot number identifier according to Delta 2D

software. Mass spectrometry analyses were carried out accord-

ing to [30]. The gel pieces were de-stained by washing in water,

dried under vacuum and dehydrated using acetonitrile and then

incubated with 0.1 M NH4HCO3.  Trypsin digestion (2 mg/ml resus-

pension buffer [Promega] in 0.1 M  NH4HCO3)  was performed at

37 ◦C overnight. The resulting tryptic peptides were extracted by

incubation with 5%  formic acid in 50% acetonitrile for 15 min  at

37 ◦C.  The supernatant was set aside and a  second extraction with

100% acetonitrile was  performed. Finally, the supernatant was

combined with the first one. Extracted peptides were dried by

vacuum centrifugation and stored at �20 ◦C. The peptides were

analysed via LC–MS/MS using a Proxeon Easy – nLC (pre-column:

100 �m diameter/2 cm length, main column: 75 �m diame-

ter/10 cm length; Acclaim® PepMap, Germany) and a  micrOTOF

– QII ESI-MS/MS (Bruker Daltonics, Bremen, Germany). Spec-

tra were generated using the “HyStar compass post processing”

software (Bruker Daltonics, Bremen, Germany). Proteins were

identified using the MASCOT search algorithm against the NCBI

non-redundant protein database (http://www.ncbi.nlm.nih.gov,

RefSeq  collection (Release 47, May  2011), plant sub-database),
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Fig. 1. C.  persicum seed: (a) at  4  WAP; (b) pierced seed  at 4 WAP with liquid endosperm and (c) at  11 WAP seed showing the zygotic embryo (Em).

the SWISS-PROT (http://www.expasy.org) and TAIR 10  databases

(www.arabidopsis.org).  Only proteins with a  MASCOT score of at

least  40 were selected. Hypothetical/unknown protein sequences

were further blasted through  SWISS-PROT. The identified proteins

were grouped according to their physiological pathway based on

KEGG PATHWAY modified by  [31].

3. Results

3.1. Histological analysis of endosperm development

Histological analyses applying FCA staining served as a basis

for the proteomic analyses to  identify the key events during

endosperm development. At  the beginning, ovules were observed

before pollination had been carried out (0 WAP) in  which the

embryo sac  was clearly visible (Fig. 2, 0 WAP). One week after

pollination, the chalazal and micropylar ends of  the embryo sac

could be identified and the outer cell layers forming the testa were

stained brown to  orange indicating secondary cell wall  formation

and lignin/suberin accumulation. By 2 WAP, endosperm develop-

ment had already begun characterized by a  mass of multinucleate

cytoplasm in the centre of the seed (Fig. 2, 2  WAP). At  3 WAP, the

syncytium was clearly visible with a  tiny globular embryo in  the

middle (not shown). At  this stage the endosperm was at a  tran-

sition stage to  become cellular. Cellularization of the endosperm

begun at 4  WAP  from the periphery of the embryo sac. At 5 WAP, a

small torpedo shaped embryo was observed within the cellularized

endosperm. The development of the endosperm from 6 to 11 WAP

was characterized by changes in  cell shape and cell wall  thick-

ness. At 7  WAP, the endosperm was observed to consist of loosely

packed cells which by  11 WAP  formed a  compact mass of  cells.

The endosperm surrounding region was observed to be a  distinct

development domain (Fig. 2).

3.2. Comparison of zygotic embryo and endosperm proteomes

Proteomic analyses were performed in  order to  characterize the

C. persicum endosperm proteome. For this purpose, 2D IEF/SDS gel

electrophoresis was carried out with protein samples derived from

five seed developmental stages at 4, 5, 7, 9  and 11 WAP  (Fig. 3).

Since the endosperm at 4 and 5 WAP  was still liquid and separation

from other tissue was not  possible, whole seeds were analysed.

After solidification of the endosperm, it  was easy to  isolate  from

the embryo as  both tissues are separated by the epidermis of the

embryo. Hence, proteomic analyses at 7,  9 and 11 WAP  were carried

out with isolated endosperm tissue. Proteomic analyses led to the

resolution of approximately 1000 separate protein spots per single

gel after CBB staining. From the endosperm protein gels, protein

identification was achieved via  two different methods:

(i) Identification based on similar protein spot patterns when

compared with the C.  persicum digital proteome ref-

erence map  for zygotic and somatic embryos [18,31]

(http://www.gelmap.de/cyclamen). Because of a  high similar-

ity  level (186 of 490 spots) in protein pattern observed between

the  zygotic embryo and endosperm gels (Suppl. Fig. S1), this

reference map  was  used for protein identification in 7, 9  and

11  WAP  endosperm gels. The transfer of protein spot labels from

the zygotic embryo to endosperm gel was performed automati-

cally  using Delta 2D software and each spot was further verified

manually.  A total of 186 protein spots out of 490 detected spots

were  identified. Among them, 19 spots had multiple proteins

identified (see Appendix A in  Supporting Information).

(ii)  Additional protein identification via LC–ESI-MS/MS of selected

protein  spots that revealed altered abundance patterns dur-

ing  the time-course analysed but were not annotated in  the

C.  persicum digital proteome reference map  (Table 1, see also

Appendix B in Supporting Information).

Mass  spectrometric analyses were performed for 48 protein

spots predominantly appearing in  7, 9 and 11 WAP  endosperm gels.

In 39 out  of these 48 spots, 62 proteins were identified while 9

spots had no  identity matches. This represents 81% identification

rate. Ten proteins were described for the first time in Cyclamen,

including zeaxanthin epoxidase, F-box protein, PR 10 family pro-

tein, glucose and ribitol dehydrogenase, seed maturation protein,

vacuolar processing enzyme 1a, ethylene receptor, sugar carrier

protein C, phytoene desaturase and wax  synthase.

3.3. Overall shift in proteins’ molecular mass during endosperm

development

The whole seed proteomes at 4 and 5 WAP  had a  high proportion

of high-molecular-mass proteins that were partly observed also

in 7 WAP  endosperm gel but were characteristically lacking in the

11 WAP  endosperm gel (Fig. 3a). Additionally, at early seed devel-

opment stages (4 and 5 WAP), the low-molecular-mass proteins

were absent (Fig. 3a). Therefore, a shift from high-molecular-mass

proteins  in the early seed development stages to  low-molecular-

mass proteins during seed maturation stage was  observed (Suppl.

Fig. S2).

A  total of 174 protein spots were of different abundance

between 7 and 11 WAP  (112 spots at least 1.5-fold higher in abun-

dance at 7 WAP, Fig. 4), an indication of the metabolic difference

between these stages. In contrast, only 45 spots were of different

abundance between 9 and 11 WAP  (36 spots at least 1.5-fold higher

in abundance at 11 WAP, Fig. 5).
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Table 1

C.  persicum endosperm proteins identified by  LC–MS/MS after IEF/SDS–PAGE (a full list  of the proteins identified can be found in the

appendix).

aProtein spot number as assigned by Delta  2D spot detection.
bMascot score.
cSequence coverage.
dCalculated molecular mass (kDa).
eCalculated isoelectric point.
fMolecular weight (MW)  in gel as compared to the  theoretically expected MW:  (m)  MW in gel corresponding to the theoretically expected

MW  ± 15 kDa; (s) MW in gel lower than theoretically expected and (l) MW in gel larger than theoretically expected.
gProtein name according to the best hit of MASCOT search against NCBInr, SwissProt and Tair 10 databases. For “hypothetical protein”,

“unknown” or “unnamed protein product” a BLAST search of the “unnamed” protein sequence was performed against SwissProt database.
hPhysiological pathway according to  KEGG PATHWAY modified by Rode et al.  [31].
iMean relative spot volume obtained in the three gel replicates of 7, 9  and 11 WAP.  These values are illustrated by graphs at  the  right side

of  each row for all shown spots. The first bar (purple) represents 7 WAP, the second (red) 9 WAP  and the third (green) 11  WAP.
jCoefficient of variation as calculated using  Delta  2D software.
kRatio of protein spot abundance (ratio =  v  (11  WAP)/v (7 WAP or  9 WAP)). Statistically significant values of at least 1.5 fold more or 1.5

fold  less (all values ≤0.6) abundant protein spots are  given. Green figures are indicating values of significant higher abundances in 11 WAP

endosperm,  purple indicates spots that are  significant higher abundant in 7  WAP  endosperm and red  in 9 WAP  endosperm.
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Fig. 2. Histological analysis of development of C.  persicum seed,  0–11  WAP, using Fuchsine Chrysoidine Astra blue which stains cell walls blue, lignified or cutinized cell

walls in orange to  brownish red and nuclei in light purple. (For interpretation of the  references to colour in this figure legend, the reader is  referred to  the  web version of the

article.)

3.4.  Proteins changing in abundance during endosperm

development

3.4.1. Cell division and growth proteins

Several proteins involved in cell division and growth were iden-

tified, such as annexin (2 spots), cell division cycle  protein  (2 spots),

alpha tubulin and actin 1 (4 spots) (Table 2 ). Annexin (spots 110

and 331) and actin 1 (spots 100 and 351) were 1.5 fold higher

abundant  in  7 WAP  as compared to 11 WAP  indicating that at there

was a decrease in cell division activity from 7 WAP  to  9 and 11  WAP.

3.4.2. Stress related proteins

A  number of proteins were identified that play a  role in

the control of the oxidative state of cells and in the elimina-

tion of reactive oxygen species. They are catalase, aluminium

induced protein, glutathione reductase and osmotin-like protein
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Table  2

C.  persicum endosperm proteins identified using  the  C. persicum proteome reference map by Rode et  al. [18,31].
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Table  2 (Continued)
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Table  2  (Continued)
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Table  2 (Continued)

aProtein spot number as assigned during Delta 2D protein spot detection. Corresponding spots of all gels are labelled with the same spot number.
bProteins identified using C. persicum embryo proteome reference map [31].
cSpot ID represents the protein spot number as presented in the  C. persicum embryo proteome reference map.
dMean relative spot volume obtained in the three gel  replicates of  7,  9  and 11  WAP. These values are illustrated by  graphs at the right side of each row for all shown spots.

The first bar (purple) represents 7 WAP, the  second (red) 9  WAP and the third (green) 11 WAP.
eCoefficient of variation as calculated using Delta 2D software.
fRatio of protein spot abundance (ratio =  v (11 WAP)/v (7 WAP  or 9  WAP)). Statistically significant values of at  least 1.5 fold more or 1.5 fold less (all values ≤0.6) abundant

protein spots are given. Green figures are  indicating values of significant higher abundances in  11  WAP  endosperm, purple indicates spots that are significant higher abundant

in 7 WAP  endosperm and red in  9 WAP  endosperm.

and were higher abundant in 7 WAP  as compared to  11 WAP, while

S-formylglutathione hydrolase, universal stress protein  and thiore-

doxin peroxidase 1 were 1,5 fold higher abundant in 11 WAP  as

compared to  7 WAP.

Heat shock proteins (HSP101, HSP20, HSP60 and HSP70) had

predominant distribution with 28 spots indicating high protein

turnover. Of these, only 15 spots were statistically significant. HSP

60 (spots 43 and 46) was 1.5 fold higher abundant in  7 WAP  as com-

pared to 11 WAP. HSP 20 and HSP 70 did not show any clear  pattern

of expression.

3.4.3. ABA pathway

Several  proteins involved in ABA biosynthesis signalling

pathway were found to be differentially abundant: zeaxanthin

epoxidase, ZEP (spots 15, 349, and 416), phytoene desat-

urase (spot 346) and SAL1 phosphatase. ZEP was  identified

in three spots with different molecular weight and isoelec-

tric point, of which, 2 spots were found increased from 7  to

11 WAP  and one was reduced 7 to  11 WAP. Phytoene desat-

urase was 1.5  fold higher abundant in 11 WAP  as compared to

7 WAP.
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Fig. 3. (a) IEF/SDS gels of the five seed development stages selected for proteomic analyses. (b)  IEF/SDS overlay image of 7 and 11 WAP endosperm proteomes (each three

replicates) using Delta 2D software. Green spots were at least 1.5-fold more abundant at 11  WAP  and purple spots were at least 1.5-fold more abundant at 7 WAP. Spots

with similar abundance in both endosperm stages  appear in  white. (c) IEF/SDS overlay image of  9 and 11  WAP  endosperm proteomes (each three replicates) using Delta 2D

software. Green spots (36) were at least 1.5-fold more abundant at  11 WAP and red spots (9) were at least 1.5-fold more abundant at 9 WAP. Spots with similar abundance

in both endosperm stages appear in yellow. (For interpretation of the references to colour in this  figure legend, the reader is  referred to the web version of the article.)

Further evidence for plant hormone signalling being involved

in endosperm and probably embryo development came from

the identification of BR signalling kinase (spot 313) (brassinolide

signalling) and ethylene receptor 1 (spot 312) (both higher abun-

dant in endosperm 11WAP, Fig.  5).

3.4.4. Storage reserves in Cyclamen seed

One protein spot was identified as 7S globulin (spot 416) which

had been previously described in  Cyclamen endosperm [17], but  no

further classical storage proteins were  identified in the mass spec-

trometric analyses. The enzyme xyloglucan endotransglycosylase

(XTH) which is involved in  the production of xyloglucans, the spe-

cial storage carbohydrates of Cyclamen, was also identified at the

same spot as  previously described by Winkelmann et al. [17]. This

spot increased in volume from 7 to 11  WAP.

Several  proteins were identified that play a  role in the

fatty acid/lipid pathway. They are 3-oxoacyl-[acyl-carrier-protein]

synthase I, Enoyl-ACP reductase, GDSL esterase/lipase, and wax

synthase. These results suggest that lipids are storage reserve in

Cyclamen. Wax  synthase (spot 427) and 3-oxoacyl-[acyl-carrier-

protein] synthase I (spot 354) were 1.5 fold higher abundant at

7 WAP  while Enoyl-ACP reductase (spot 394) was 1.5 fold higher

abundant at 11 WAP.

A large proportion of the proteins identified belong to  the eno-

lase group (27 spots). These include both enolase 1 and 2  as

described in  Rode et al. [18]. In  the comparison of 11  and 7 WAP

groups, 6 enolase spots were significantly higher abundant (at least

1.5-fold) in 7 WAP  while 9 enolase spots were significantly higher

abundant in 11 WAP. The enolase spots that were higher abun-

dant in 11 WAP  correspond to the ‘small enolases’ which were first

described for Cyclamen by Rode et al. [18]. Truncated forms of eno-

lase lacking the catalytic groups, found in high abundance in  C.

persicum zygotic embryos, have been proposed to be candidates for

a  new group of storage proteins so far not  described in  plants [18].
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Fig. 4. Proteins of significantly changed abundance between the 7 and 11  WAP  endosperm proteomes. Green spots were at least 1.5-fold more abundant at  11 WAP  and

purple spots were at  least 1.5-fold more abundant at 7 WAP. Spots with  similar abundance in both endosperm stages appear in white. Proteins discussed in the text are

indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to  the web version of the article.)

4. Discussion

4.1. Key events in endosperm development in C. persicum

After several nuclear divisions, the syncytium stage of

endosperm development was clearly visible at  3 WAP, while cellu-

larization of  the endosperm was observed from 4 WAP  (Fig. 2). This

correlates with Hoenemann et al. [25] who also reported cellular-

ization of Cyclamen seed at 30 days  after pollination. Endosperm

cellularization was observed to  begin from the periphery of the

seed, by formation of cell walls in the multinucleate cytoplasm,

characterized by addition of new layers of cells until closure in the

centre. This  indicates that Cyclamen also undergoes nuclear type of

endosperm development as observed in many cereals and legumes

[4,32,33]. In  Arabidopsis, cellularization was  reported to  begin from

the micropylar domain when the embryo reaches the globular stage

of development [34]. This could also be true for Cyclamen as the

globular embryo was first observed at 3 WAP  while cellularization

of the endosperm was seen to begin from 4 WAP. Endosperm cellu-

larization appeared to  be complete between 7 and 8 WAP. After

cellularization, the endosperm was observed to increase in size

through cell division and cell elongation as was  previously reported

Fig. 5. Proteins of significantly changed abundance between the  9 and 11  WAP  endosperm proteomes. Green spots (36) were at  least  1.5-fold more abundant at  11 WAP

and red spots (9) were at least 1.5-fold more abundant at 9  WAP.  Spots with similar abundance in both endosperm stages appear in white. Proteins discussed in the text are

indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to  the web version of the article.)
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in a flow cytometric study by Schmidt et al. [35]  and by 11 WAP,

the endosperm appeared to be fully differentiated consisting of a

compact mass of cells.

Small  globular zygotic embryos were  observed at 3 WAP  within

the multinucleate endosperm. In a histological analysis of C. per-

sicum zygotic embryos, globular embryos were  first observed at

30 days after pollination [25]. At  5  WAP, a  tiny torpedo-shaped

embryo was detected and from 9 to  11  WAP, mature torpedo-

shaped embryos were observed.

The endosperm cell wall was observed to be thick, characterized

by the deep blue colour of the FCA stain  (Fig. 2). In C.  purpurascens,

using electron microscopy, the endosperm cell wall was  reported

to be ‘pitted’ with unevenly thickened cell walls  and dark  hollows

on the inside cell wall surface [36]. Endosperm cell walls contain

little cellulose and large amounts of hemicelluloses, e.g. xyloglu-

can, which has also been reported to  be a storage polysaccharide

in Cyclamen [16,17]. These specialized cell walls are  an important

source of  carbohydrates during germination, and they function in

water retention, signalling, mechanical protection of the embryo

and dormancy [34].

4.2.  High similarity of zygotic embryo and  endosperm proteomes

There  was  high similarity level (186  of 490 spots)  in  protein

pattern observed between the zygotic embryo and endosperm pro-

teome (Suppl. Fig. S1). These included the 7S and 11S globulin, the

small enolases and XTH enzyme among others. The same simi-

larity between the endosperm and zygotic embryo has also been

reported for tomato [37] and Jatropha curcas [38]. These indicate

the great similarity in  regard to  function and metabolism between

the zygotic embryo and endosperm. Additionally, the  existing dif-

ferences still indicate the novel role played by each of these tissues.

However, it has to be stressed, that the applied gel-based proteomic

approach considered only proteins of  relatively high abundance.

4.3.  Decreasing cell division and primary metabolism is in line

with  previous reports of seed development in Cyclamen

A decrease in abundance of cell division related proteins was

observed between 7 and 9/11 WAP  pointing to a  decrease in cell

division activity. Gallardo et al. [39] reported a  decreased abun-

dance of annexin before accumulation of major storage  proteins

in M. truncatula. Schmidt et al. [35]  using flow cytometry like-

wise showed the mitotic activity of C.  persicum endosperm to  be

high at 28  days after pollination, decreasing sharply up to  49 days

and remaining relatively low  up to  119 days after pollination. The

decline in mitotic activity is an indication that cell growth occur-

ring at these stages is a result of cell elongation and expansion,

characteristic of seed filling stage.

Six enzymes were identified that are  involved in TCA  cycle,

including 2-oxoacid dehydrogenase family protein, aconitase,

isocitrate dehydrogenase, dihydrolipoamide s-acetyltransferase,

malic enzyme and succinate dehydrogenase. These proteins were

decreasing in abundance from 7 to  11 WAP. Mechin et al. [22]

also reported a similar trend for TCA cycle enzymes in  maize

endosperm, between 4 and 21 days after pollination. Furthermore,

pyruvate dehydrogenase which catalyses conversion of  pyruvate to

acetyl-CoA, linking glycolytic pathway to TCA cycle [40],  was also

decreasing in abundance from 7 to 11 WAP. This is an indication that

in later stages of seed development, a proportion of the pyruvate

synthesized by  glycolysis does not join the TCA  cycle. It  is  impor-

tant to  note that pyruvate can be converted back to carbohydrates

through gluconeogenesis, to  fatty acids through acetyl-CoA or used

in amino acid metabolism. This decrease in TCA cycle enzymes

in later stages of seed development could suggest that  pyruvate

synthesized  at later stages of seed development is used for accu-

mulation of seed storage reserves.

4.4.  Storage proteins in Cyclamen

The  endosperm is a storage tissue, characterized by the accu-

mulation of storage compounds in high amounts. Indeed, in this

study we could identify 7S globulin and the putative storage protein

group of small enolases to be especially high abundant in  the latest

stages of endosperm development (11 weeks >  9 weeks >  7 weeks).

This is in  accordance to Winkelmann et al. [17] and Rode et al.

[18,41] who had shown these proteins in endosperm and matured

embryos of Cyclamen, respectively. Reinhardt [42] illustrated that

Cyclamen seeds accumulate all three categories of energy rich

molecules, such as starch, fatty acids and proteins in comparable

ratios. Concerning this fact, there should be more storage proteins

in the endosperm regarding quality and quantity than those two

protein species identified in the recent study. The lack of storage

protein identification could be due to  technical reasons. The pro-

teins could not be purified from the tissue or resolved by  the gel

e.g. due to their hydrophobic character (e.g. the major seed storage

proteins in grasses, prolamines are soluble in  60–70% ethanol [9])

or size (proteins with a  higher molecular weight than 150 kDa and

lower than 5 kDa cannot be resulted by the gel system used here).

In addition, the lack of sequence information for the non model

organism Cyclamen is  a bottleneck for the identification of species

specific storage proteins. An enrichment of low molecular proteins

in the later stages of endosperm development could be  an indicator

of “small” units of so far unknown storage protein complexes.

4.5. Other storage compounds in Cyclamen

Besides the above discussed storage proteins that accumulate

in protein bodies [42], Cyclamen seeds contain carbohydrates and

fatty acids/lipids as further storage reserves as demonstrated in  thin

sections by staining [42].  Regarding carbohydrates, xyloglucans,

the special storage carbohydrates found in secondary cell walls of

Cyclamen [16] were most likely assembled in endosperm cells in the

later phase of seed development by the enzyme xyloglucan endo-

transglycosylase (XTH). Since XTHs had been identified before in

endosperm tissue of another genotype [17], this finding proves the

reproducibility and stability of the proteomic data. Xyloglucans are

hemicelluloses being present in  the primary cell wall of somatic

cells, but also serving as densely packed and easy to mobilize car-

bohydrate stores in  endosperm cell walls, e.g. in Myrsinaceae to

which also the genus Cyclamen belongs [34].

Other evidence for the important role of carbohydrates as stor-

age reserves can be deduced from the high percentage (34%)

of identified endosperm proteins that are  involved in carbohy-

drate metabolism. Sugars not only serve as carbon and energy

sources, but also as signalling molecules, osmotic regulators [43]

and membrane protectants during desiccation stress [44].  Sugars

are considered to  be supplied by the endosperm to  the growing

embryo. This  requires sugar transporters one type of which – sugar

carrier C  – was  identified in  the course of the present study. Sugar

transporters are membrane-bound and highly hydrophobic and

generally not separable by 2D IEF/SDS PAGE. However, the phenolic

protein extraction used for Cyclamen endosperm tissue led to  their

detection in  four different spots (313, 314, 326, and 346). The exact

localization and direction of transport needs further investigations.

Cyclamen endosperm serves as storage organ containing pro-

teins or amino acids and carbohydrates providing energy, carbon,

nitrogen and further components to the embryo during later germi-

nation. Moreover, fatty acids/lipids are storage reserves in  Cyclamen

seed as demonstrated by Reinhardt [42] by the detection of  lipid
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bodies using sudan black staining and supported in this study by

identification of enzymes involved in fatty acid/lipid metabolism.

4.6.  Stress and ABA signalling are important for seed development

Several enzymes involved in stress regulation processes were

found to be induced during the analysed time course of endosperm

development. This list of proteins includes proteins which generally

function in cellular stress response (e.g. universal stress proteins;

spots 68, 70, 140, and 181) as well as the predominant abun-

dant heat shock proteins of different classes, which are involved

in protein folding and processing mechanisms (molecular chap-

erones) as  well as stress-related protein structural alterations. In

addition, they contribute to processes that  have been  associated

with seed longevity, such as thermotolerance, tolerance to embryo

desiccation or  oxidative stress resistance [45]. Next to  several HSP

members, enzymes involved in detoxification of reactive oxygen

species (ROS) showed also predominant values  of abundance, such

as catalases (spots 59, 61, 426, and 428), peroxiredoxin type II  (spot

179), thioredoxin peroxidase 1 (spot 176), manganese/copper/zinc

and iron superoxide dismutases (spots 312; 194, 213, 298, and

422), glutathione reductase (spot 350), S-formylglutathione hydro-

lase (spot 115), apoptosis-related protein (spot203), aluminium

induced protein (spot 127), anti-oxidant 1 (spot 262) and osmotin-

like proteins (spots 306 and 478). Thus, these oxidative stress

responsive proteins play a  major role during endosperm develop-

ment in C. persicum. For the induced catalases and peroxiredoxins,

antioxidant-responsive elements (ARE) core sequences were iden-

tified in  the corresponding promoter regions of the Arabidopsis and

maize genes and putative protein-DNA interactions may  allow fast

responses to altered ROS levels [46,47]. Future studies will  aim at

gaining insights into the role  of ROS during embryogenesis and

endosperm development in  C.  persicum.

In addition, the Arabidopsis AtPER1 and its homologue from bar-

ley, Per1, have been described to be dormancy-related and thus

highly involved in seed physiology during desiccation and also

resumption of respiration upon rehydration of germinating seeds,

providing protection against ROS [48,49]. On the other hand,  more

recent results indicate that these peroxiredoxins function as molec-

ular chaperones under oxidative stress conditions via inhibition of

germination rather than regulators of seed dormancy [50,51]. How-

ever, these proteins are specific for seed physiology since they are

localized to  embryo, endosperm and aleurone cells [51].

Although the induction patterns of the protein members of the

anti-oxidative system are quite diverse during the analysed stages

of C. persicum endosperm development, by  trend  most enzymes are

higher abundant at 11 WAP  than at the previous 9 and 7 WAP  stages.

This is true for the superoxide dismutases, glutathione reductase,

peroxiredoxin, thioredoxins and anti-oxidant 1. In contrast, cata-

lases and apoptosis-related protein are higher abundant at 7 WAP.

Interestingly, the enzymes related to ABA biosynthesis show a sim-

ilar diversity of abundance patterns. In  general, endogenous ABA

acts as  a positive regulator for the late maturation program in

embryogenesis while at the same time is  a negative regulator of

the germination programs [52]. The expression of  peroxiredoxins

in endosperm and embryo from the cotyledon stage of develop-

ment are found to be ABA-dependent via  ABA-responsive elements

(ABRE), following their induction via ARE promoter elements at

earlier stages [53].

In  conclusion, this study has identified the time course of the

major cellular events during endosperm development in C. per-

sicum. Proteomic analyses supported the histological as well as

previous flow cytometric studies and revealed several insights into

major metabolic changes and storage reserve synthesis. Accom-

plished by  metabolomic analyses the in  vitro system of somatic

embryogenesis may  be  optimized by  adjusting culture medium

and  culture conditions in a way that mimics the situation in the

endosperm. Therefore, the application of abscisic acid for matura-

tion of  somatic embryos should be tested and optimized in  terms

of concentration and time course. Secondly the role of reactive

oxygen species during development of somatic embryos will be

investigated in  future studies.
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Somatic embryogenesis can efficiently foster the propagation of Theobroma cacao, but the poor

quality of resulted plantlet hinders the use of this technique in the commercial scale. The

current study has been initiated to systematically compare the physiological mechanisms

underlying somatic and zygotic embryogenesis in T. cacao on the proteome level. About 1000

protein spots per fraction could be separated by two-dimensional isoelectric focusing/SDS

PAGE. More than 50 of the protein spots clearly differed in abundance between zygotic and

somatic embryos: 33 proteins spots were at least 3-fold higher in abundance in zygotic

embryos and 20 in somatic embryos. Analyses of these protein spots differing in volume by

mass spectrometry resulted in the identification of 68 distinct proteins. Many of the identified

proteins are involved in genetic information processing (21 proteins), carbohydrate metabo-

lism (11 proteins) and stress response (7 proteins). Somatic embryos especially displayed

many stress related proteins, few enzymes involved in storage compound synthesis and an

exceptional high abundance of endopeptidase inhibitors. Phosphoenolpyruvate carboxylase,

which was accumulated more than 3-fold higher in zygotic embryos, represents a prominent

enzyme in the storage compound metabolism in cacao seeds. Implications on the

improvement of somatic embryogenesis in cacao are discussed.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Cacao (Theobroma cacao L) is a tropical tree of the Malvaceae

family [1] that has a high economic value because it is the

main source of chocolate. Furthermore, there is a growing

interest in cacao due to its high content of polyphenols which

have been suggested to prevent brain and cardiovascular

diseases [2–5]. Despite its utility, the propagation of cacao is

still limited because of its allogamous mating system [6] that

results in inbreeding depression of parental lines. For this

reason, somatic embryogenesis has been developed as an

alternative strategy for the large scale propagation of elite
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genotypes of cacao. Studies carried out to date on somatic

embryogenesis in T. cacao were focused at the morphological,

biochemical and gene expression level. It was the aim of most

of these studies to define a medium for optimal induction of

embryos [7–12]. Despite all these efforts, plantlets resulting

from somatic embryos still exhibit a disturbed development

and poor conversion ability. Insufficient accumulation of

storage compounds and enzymatic imbalances in somatic

embryos were earlier suspected to cause developmental

irregularities in cacao [13] and in carrot [14].

The early seedling growth of angiosperms depends both on

the storage compounds accumulated during maturation of

the embryo and also on the enzymatic system that mobilizes

nutrient elements to provide optimal germination. Protein

mobilization releases reduced nitrogen needed for growth and

development [15]. Sugar compounds such as starch and

sucrose act as energy suppliers with lipid reserves [16]. In

Arabidopsis, the use of metabolic inhibitors revealed that

transcription is not required for the completion of germina-

tion; the potential of germination consequently is considered

to be programmed during embryo and seed maturation [17].

Therefore, maturation is a critical point to evaluate the

potential quality and viability of somatic embryogenesis-

derived seedlings. In order to establish somatic embryogene-

sis in cacao as a standard technique in commercial scale, it is

of prime interest to investigate the physiological processes

that govern maturation with the hope to enhance conversion

ability of somatic embryos.

Proteomics is a set of biochemical tools which are used to

describe the expression, function, and regulation of the entire

set of proteins encoded by an organism. Proteins are molecules

that directly influence cellular biochemistry; thus, the prote-

ome is thought to reflect more accurately the cellular state

than the transcriptome which only represents an information

intermediate during the process of protein biosynthesis [18–20].

The continuing development of MS-based proteomics led to

gradually improved capacities of protein separation, identifi-

cation and quantification. From the pioneer 2-D gel electro-

phoresis procedures to themost accurate linear quadrupole ion

trap–orbitrap system, impressive strides have been achieved in

terms of resolution, mass accuracy and throughput [21]. Hence,

proteomics, which first was applied to plant biology about two

decades ago, has yielded valuable information for the com-

prehensive understanding of a broad range of physiological

processes [20,22–24].

The efficiency of proteomics to analyze physiological

processes makes it a promising approach to investigate

somatic embryogenesis. This is reflected by the increasing

number of proteome studies in the field of somatic embryo-

genesis. Several plant systems such as Picea glauca [25],

Cyclamen persicum [26–29] and Phoenix dactylifera [30] have been

investigated. In cacao, proteome studies are still at an early

stage [31]. The few studies in cacao based on this technology

mostly focused on improving cacao derived products through

post-harvest treatments [32–34]. In the present study, two

dimensional gel electrophoresis coupled to protein identifica-

tion bymass spectrometry is used to compare the proteomes of

T. cacao somatic embryos with their zygotic counterparts at the

torpedo stage. New insights into embryogenesis and germina-

tion physiology in T. cacao are presented which are relevant for

the further improvement of this prominent regeneration

strategy (somatic embryogenesis).

2. Materials and methods

2.1. Plant material

In the frame of our investigation, zygotic and somatic embryos

were investigated by a comparative proteomic analysis. Both

types of embryoswere investigated at the torpedo stage, a stage

comparable to stage IIIz defined by Alemanno et al. 1997 [13].

Studies were carried out on the cacao genotype “PA 150” (PA

stands for Parinari, a local name in Peru), which is included in

the gene-bank of the Institute of Agricultural Research for

Development at Nkolbisson (Yaounde, Cameroon). This geno-

type is known for its high productivity and its resistance to

Phytophthora [35].

Zygotic embryos were harvested at the torpedo stage from

12-week-old fruits (Fig. 1A). At this stage the endosperm

surrounding the zygotic embryoswas liquid (Fig. 1B). Theprotocol

used to produce somatic embryos is taken from Minyaka et al.

2008 [11]. Driver and Kuniyuki [36] mineral solution (known as

DKW solution) was used to prepare all culture media. The

somatic embryogenesis process is divided into three steps. The

first step lasted14 days: petals andstaminodes (startingmaterial)

of immature floral buds (Fig. 1C) were cultured in PCG (primary

callus growth) medium. This medium was supplemented with

250 mg l−1 glutamine, 100 mg l−1 myo-inositol, 1 ml l−1 DKW

vitamin stock (100 mg ml−1 myo-inositol, 2 mg ml−1 thiamine-

HCl, 1 mg ml−1 nicotinic acid and 2 mg ml−1 glycine), 20 g l−1

glucose, 18 μM 2,4 dichlorophenoxyacetic acid (2,4-D) and

45.4 nM TDZ (Thidiazuron). As a second step, developing callus

cultures were transferred to SCG (secondary callus growth)

medium for 14 days. This SCG medium was supplemented with

0.5 ml l−1 DKW vitamin, 20 g l−1 glucose, 9 μM 2,4-D and 1.2 μM

kinetin. At the third step, callusesweremaintained for 21 days in

ED (embryo development) medium which is a growth regulator

freemediumsupplementedwith 1 ml l−1DKWvitamins, 30 g l−1

sucrose and 1 g l−1 glucose. Some torpedo embryos were visible

after this first cultivation on ED medium, but two additional

rounds of subcultures of three weeks each were required to

increase the number of embryos.

2.2. Protein extraction

Three independent extractions (biological replicates) for each

embryo type were carried out. The entire embryo was used as

starting material for total protein extractions using a phenol

based procedure [37]: 100 mg of harvested plant material was

shock frozen in liquid nitrogen, then pulverized in a bead mill

and subsequently dissolved in extraction buffer (700 mM

sucrose, 500 mM Tris, 50 mM EDTA, 100 mM KCl, 2% (v/v)

β-mercaptoethanol and 2 mM PMSF, pH adjusted to 8.0). The

dissolved plant material was incubated on ice for 30 min and

saturated phenol (pH 6.6/7.9; Amresco, Solon, USA) was

added. After incubation, several centrifugation steps were

carried out according to Colditz et al. [37]. Finally, proteins
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were precipitated with 100 mM ammonium acetate in meth-

anol at −20 °C overnight. The resulting protein pellet was

washed thrice at 4 °C with 100 mM ammonium acetate in

methanol and finally once with 80% acetone.

2.3. Two-dimensional IEF/SDS–PAGE and protein staining

Three independent electrophoresis runs were performed from

each type of material. Proteins were separated in the first gel

dimension according to their isoelectric point. The soluble

protein fraction extracted from 100 mg fresh embryo tissue was

resuspended in 350 μl rehydration buffer encompassing 8 M

urea, 2 M thiourea, 2% (w/v) CHAPS, 100 mM DTT, 0.5% (v/v)

IPG-buffer (pH 3–11, GE Healthcare, Freiburg, Germany) and a

trace of bromophenol blue. The dissolved proteins were then

loaded on Immobiline dry strip gels (18 cm, pH 3–11 non-linear,

GE healthcare, Freiburg, Germany), overlaid withmineral oil and

electrofocused for 24 h with voltages set from 30 to 8000 V

according toMihr and Braun [38] using an IPGphor apparatus (GE

Healthcare,Munich, Germany). Following IEF, the IPG stripswere

immediately treated with equilibration buffer (50 mM Tris–HCl,

pH 8.8, 6 M urea, 30% [v/v] glycerin and 2% [w/v] SDS) containing

1% DTT for 15 min, followed by another treatment for 15 min

with equilibration buffer containing 2.5% iodoacetamide. The

second electrophoretic dimension was performed on 12%

polyacrylamide Tricine–SDS gels [39,40]. Gels were run at

30 mA for 20 h using the Biorad Protean II-XL gel apparatus

(Biorad, Munich, Germany). After gel electrophoresis runs, the

gelswere fixedwith 10% (v/v) acetate in 40% (v/v)methanol for at

least 2 h and stained with Coomassie Blue CBB G-250 (Merck,

Darmstadt, Germany) [41,42].

2.4. Quantitative analysis of zygotic and somatic embryo

proteomes

Three gels from each type of the studied material were

considered for the quantitative analysis. Evaluation of 2D gels

was carried out according to Berth et al. [43]. Briefly, scans of

Coomassie stained gels were analyzed with DELTA 2D soft-

ware, version 4.0 (Decodon, Greifswald, Germany). Spots were

detected automatically and some minor corrections were

performed manually. A student's t-test (p-value≥0.05) based on

the normalized relative spot volume was applied to determine

significant alteration in spot pattern between zygotic and

somatic embryo proteomes. Spots of at least 3 fold alteration in

abundance with a p-value≥0.05 were considered to represent

significant differences in protein levels and analyzed in more

detail.

2.5. Mass spectrometry analysis and physiological cluster-

ing of identified proteins

Spots of interest were picked manually from the Coomassie

stained gels using a GelPal Protein Excision System (Genetix,

Queensway, U.K.) and in-gel proteolytic digestion with trypsin

was carried out as previously described by Klodmann et al. [44].

In brief, acetonitrilewasused for dehydration of gel pieceswhich

were then processed for cysteine alkylation through two

Fig. 1 – Zygotic and somatic embryos of T. cacao, genotype PA 150. (A) 12-week-old fruit, a closed fruit beside an opened

(bar=1.5 cm). (B) Longitudinal section of one seed displaying a zygotic embryo (labeled with a red arrow) embedded in liquid

endosperm (bar=0.25 cm). (C) Immature floral buds used as starting material for somatic embryogenesis (bar=0.5 cm).

(D) Somatic embryos after 6 weeks of differentiation on solid medium free of growth regulator (bar=0.5 cm).
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successive incubations of 30 min, first at 56 °C in 20 mM DTT

and secondly at room temperature in 55 mM iodoacetamide.

The proteolytic digestion was based on incubation of the

dehydrated gel pieces overnight at 37 °C in trypsin solution

(2 μg trypsin [Promega, Madison, WI, USA] per ml resuspension

buffer [0.1 M NH4HCO3]). Afterwards, tryptic peptides were

extracted with acetonitrile at 37 °C; basic peptides were

extracted with 5% formic acid at the same temperature.

Mass spectrometric analysis of resulting tryptic peptides

was performed with the EASY-nLC System (Proxeon) coupled

to a MicroTOF-Q II mass spectrometer (Bruker, Daltonics).

Proteins were identified using the MASCOT search algorithm

(www.matrixscience.com) against UniProtKB (www.expasy.

org) and NCBInr (www.ncbi.nig.gov) databases. Only proteins

with a ppm below 20, a MASCOT score above 50 and coverage

by at least 2 unique peptides were considered and function-

ally classified according to the KEGG PATHWAY Database

(http://www.genome.jp/kegg/pathway.html). Categories were

adjusted for seed metabolism by adding functional groups

e.g. “stress response” and “defense”.

3. Results

Somatic embryo production in T. cacao is nowadays well

mastered as demonstrated by the studies of Li et al. 1998 [7],

Minyaka et al. 2008 [11] and Niemenak et al. 2008 [12]. The most

challenging issue at the moment is the conversion of these

embryos into healthy plantlets. Any improvement in this

respect would represent an important step towards usage of

somatic embryogenesis in T. cacao on a commercial scale. The

present study aims at elucidating the physiological mecha-

nisms that govern embryogenesis of this economically impor-

tant plant species. This issue is addressed by a comparative

proteomic-based investigation of zygotic and somatic embryos.

Both types of embryos were cultivated up to an equivalent

developmental stage: the torpedo stage (Fig. 1B, D). Somatic

embryos showed an asynchronous development and were fre-

quently misshaped, while their zygotic counterparts appeared

morphologically well-shaped and homogeneous. Only well-

shaped somatic embryos were processed for proteomic

analyses.

3.1. Two-dimensional analysis of proteomes from zygotic

and somatic embryos

Total protein fractions extracted from somatic and zygotic

embryos were separated by 2D IEF/SDS–PAGE. Visual inspec-

tion of the gels revealed that both fractions were composed of

similar components (spots on the 2D gels). However, individ-

ual protein abundances largely differed between the two

fractions. Overall, about 1000 spots were detectable per gel in

somatic and zygotic embryos (Fig. 2A). To accurately evaluate

quantitative changes in protein abundance between the two

types of embryos, protein gels were analyzed by the DELTA-2D

software package. Firstly, three biological repetitions for each

type of embryo were used to calculate average gels. Secondly,

the average gels for somatic and zygotic embryos were com-

pared. This comparison revealed that 33 protein spots were at

least 3-fold more abundant in the zygotic embryo proteome,

whereas 20 protein spots were at least 3-fold higher in

abundance in the somatic embryo proteome (Fig. 2B).

3.2. Protein identification

Protein spots of at least 3-fold higher abundance in one or the

other type of embryo were used for protein identifications by

mass spectrometry (53 distinct spots). For 32 spots, protein

identifications were successful (58%). Cacao is a non-model

plant; its genome has just been described [45]. Hence, only a

limited number of cacao proteins have been correctly annotated

up to date. Table 1 shows proteins of increased abundance in the

zygotic embryo proteomes. Those of increased abundance in

somatic embryo proteomes are presented in Table 2. Detailed

information onMSparameters of each identified protein is given

in Table 3 (supplementarymaterial). Within the 32 protein spots

successfully analyzed, 68 distinct proteins were identified, 30 of

which belong to the SE proteomes and 38 to the ZE proteomes.

Within 19 spots, more than one protein was identified. This

indicates that proteins overlapped during electrophoretic se-

paration (Table 3). Functional classification of the identified

proteins, which was carried out in accordance to KEGG

PATHWAYDatabase, allowed the distinction of seven functional

categories: (1) carbohydrate metabolism, (2) energy metabolism,

(3) amino acid metabolism, (4) genetic information processing,

(5) cellular processes, (6) stress response and (7) defense. Within

these functional categories, carbohydrate metabolism, genetic

information processing and amino acid metabolism likewise

were of significant dimension in both proteomes but represent-

ed by different proteins. Proteins of stress response and energy

metabolismwereofhigher abundance in SE. Twoprotein species

of an ABC transporter were of increased abundance in ZE

proteomes. In both proteomes, three protein categories were

especially important, which overall include 56% of all identified

proteins. These categories are: genetic information processing

(21 proteins [14 proteins in ZE and 7 in SE]), carbohydrate

metabolism (11 proteins [6 proteins in ZE and 5 in SE]) and stress

response (7 proteins) (Table 1 and 2).

A few spots were found to include identical proteins.

These proteins are considered to represent different protein

species resulting from posttranslational modifications which

introduce changes of molecular weight (MW) and/or isoelec-

tric point (pI). Examples are a class III peroxidase (spots 29

and 31), ABC transporter E family member 2 (spots 2 and 25),

trypsin inhibitor (spots 44 and 45), 21 kDa seed protein (spots

44 and 45) and phosphoglycerate dehydrogenase (spots 37

and 38).

Proteins involved in genetic information processing and

carbohydrate metabolism represent 30 and 16% of the proteins

which are of increased abundance in one of the two types of

embryos. In the ZE proteome, except for sucrose synthase (spot

51), all other proteins are glycolytic enzymes: phosphoenolpyr-

uvate carboxylase (spots 50), phosphoglucomutase (spot 52),

pyrophosphate-fructose 6-phosphate 1-phosphotransferase

(spot 53), pyruvate decarboxylase isozyme 2-like (spot 52) and

pyruvate kinase (spot 38) (Table 1). In the SE proteome, proteins

of carbohydrate metabolism belong to different pathways

such as (i) tricarboxylic acid cycle (1 protein), (ii) glyoxylate

cycle (1 protein), (iii) pyruvate metabolism (2 proteins) and
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(iv) ascorbate metabolism (1 protein) (Table 2). Five proteins

in the zygotic embryo proteome were considered of special

interest regarding their physiological function. These proteins

are phosphoenolpyruvate carboxylase (spot 50), sucrose

synthase (spot 51), aspartic proteinase (spot 17), ubiquitin

(spot 50) and histone H2A (spot 22). They were respectively

4.82, 4.02, 3.04, 4.82 and 8.04 fold more abundant than in SE

proteomes. In the SE proteome, besides proteins involved in

carbohydrate metabolism and genetic information processing,

stress related proteins were of special abundance (7 proteins).

Another interesting finding within the SE proteome was the

relatively high abundance of a trypsin inhibitor found in spots

44 and 45. These two proteins species were 9.67 and 3.84 fold

more abundant than in the ZE proteome.

4. Discussion

T. cacao, due to its allogamous status [6], requires an efficient

vegetative propagation system. Somatic embryogenesis was

reported the first time in the study of Esan 1975 [46]. It then

has been improved successively over the two last decades

[7,11,12]. Currently, this clonal technique is considered to

represent a prominent in vitro regeneration system for cacao.

Several advantages are associated with this technique such as

multiplication of elite genotypes, mass propagation [12] and

the development of genetic transformation systems [47].

Unfortunately, the complexity of this developmental system

and the numerous unknown factors that control it discour-

aged its systematical exploration. The current limitation

encountered with this propagation system especially is the

poor plantlet growth and low survival rate after transplanting

[48]. Proteomics, which nowadays became a powerful bio-

chemical technique to unravel in depth physiological pro-

cesses, has been applied to embryogenesis in several plant

systems [25,26,28–30,49]. These studies led to valuable infor-

mation. In this study, we applied a comparative proteomic

approach to describe physiological differences between

zygotic and somatic embryos that may explain the poor

development of plantlets derived from somatic embryogene-

sis in T. cacao. Three independent electrophoresis runs from

Fig. 2 – Proteome of T. cacao embryos. (A) IEF–SDS PAGE of total soluble protein fractions extracted from 100 mg fresh embryo

tissue. Molecular masses range from 5 to 100 kDa are given on the left side. Isoelectric points, pI 3–11 are given above the gel

image. Gels were stained with CBB-G 250. ZE=Zygotic embryos. SE=Somatic embryos. (B) Overlay image of IEF–SDS PAGE of

zygotic and somatic embryo proteomes using the DELTA 2D software. Red-labeled spots were at least 3-fold more abundant in

zygotic embryos and green-labeled spots were at least 3-fold more abundant in somatic embryos.
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either SE or ZE material enabled the resolution of about 1000

protein spots. The analysis of scanned gels confirmed the

reproducibility of the experiments. Several proteins were

found to be of differential abundance between ZE and SE

including enzymes involved in protein folding processes.

Enzymes of special interest are discussed in the following

sections.

4.1. Carbohydrate metabolism, the backbone physiological

pathway in embryogenesis

Zygotic and somatic embryos both highly accumulate

enzymes of carbohydrate metabolism. Only one enzyme

involved in sucrose metabolism, sucrose synthase (spot 51),

was found in the frame of the current study. The other

Table 1 – Proteins of increased abundance in the zygotic embryo proteomes.

Protein a Category b Physiological function b Abundance c ID d

Sucrose synthase 1 Carbohydrate

metabolism

Starch and sucrose metabolism 4.02 51

Phosphoenolpyruvate carboxylase Carbohydrate

metabolism

Glycolysis/gluconeogenesis 4.82 50

Phosphoglucomutase, cytoplasmic-like Carbohydrate

metabolism

Glycolysis/gluconeogenesis 3.29 52

Pyrophosphate-fructose 6-phosphate 1-phosphotransferase

subunit beta-like

carbohydrate

metabolism

Glycolysis/gluconeogenesis 3.71 53

Pyruvate decarboxylase isozyme 2-like Carbohydrate

metabolism

Glycolysis/gluconeogenesis 3.29 52

Pyruvate kinase, putative Carbohydrate

metabolism

Glycolysis/gluconeogenesis 5.20 38

Phosphoglycerate dehydrogenase Amino acid metabolism Glycine, serine and threonine

metabolism

4.13 37

Phosphoglycerate dehydrogenase Amino acid metabolism Glycine, serine and threonine

metabolism

5.20 38

DNA replication licensing factor MCM3-like protein Genetic information

processing

Replication and repair 4.02 51

Histone H2B like protein Genetic information

processing

Transcription 8.04 22

Histone H2A Genetic information

processing

Transcription 8.04 22

Splicing factor 3A subunit, putative Genetic information

processing

Transcription 3.04 17

60S ribosomal protein L4-1 Genetic information

processing

Translation 3.88 7

40S ribosomal protein S17 (RPS17A) Genetic information

processing

Translation 9.04 23

Elongation factor 1 gamma, putative Genetic information

processing

Translation 3.23 34

Elongation factor Genetic information

processing

Translation 4.02 51

Leucyl-tRNA synthetase, cytoplasmic-like Genetic information

processing

Translation 4.82 50

Lysyl-tRNA synthetase-like Genetic information

processing

Translation 5.85 19

Ubiquitin Genetic information

processing

Folding, sorting and degradation 4.82 50

T complex protein Genetic information

processing

Folding, sorting and degradation 3.71 53

Aspartic proteinase nepenthesin-1 precursor, putative Genetic information

Processing

Folding, sorting and degradation 3.04 17

Plasminogen activator inhibitor 1 RNA-binding protein Genetic information

processing

Folding, sorting and degradation 3.88 7

ABC transporter E family member 2 Cellular processes Transport and catabolism 4.66 2

ABC transporter E family member 2 Cellular processes Transport and catabolism 4.80 25

a Proteins identified in the current study. Protein name according to the best hit of MASCOT search against SwissProt and NCBI databases. Bold

printed proteins are of major interest and discussed in detail in the text. Detailed information on mass spectrometry parameters for each spot

analyzed is given in the supplementary material (Table 3).
b Functional protein classification according to the KEGG PATHWAY Database. Additional categories are included when necessary.
c Protein spot abundance: statistically significant values of at least 3 fold more abundant protein spots are given for the zygotic embryos

proteomes (relative spot volume ZE/relative spot volume SE). These protein spots are given in red on Fig. 2B.
d Spot ID as given on Fig. 2B.
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proteins of this functional category are involved in energy

metabolism (glycolysis, TCA cycle, glyoxylate cycle). Indeed,

embryogenesis is a complex developmental process which is

extensively basedon carbohydratemetabolism (including sugar

conversion), as previously reported in Piceamarina, P. glauca [50],

C. persicum [26,28,29] and in P. dactylifera [30]. The explanation

for extensive carbohydrate metabolism is the heavy energy

demand required for metabolic processes that occur during cell

division and elongation.

In this study, although carbohydrate and energy metabolism

was expressed in both types of embryos investigated, a clear

change in specific proteinabundancewasobserved. In the course

of our investigation, glycolytic proteins were found of higher

abundance in ZEwhile SE proteomes included higher abundance

ofproteins involved inothermetabolic pathwaysof carbohydrate

metabolism such as lactoylglutathione lyase (spot 46, 47), malate

synthase (spot 6), a putative L-galactose-1-phosphate phospha-

tase (spot 47) and malate dehydrogenase (spot 32). The latter

protein,which belongs to the tricarboxylic acid (TCA) cycle, is one

of the most abundant proteins found in SE proteomes. It was

found to be of 46.02 fold higher abundance than in ZE proteomes.

Furthermore, oxidative phosphorylation, represented by NADH–

ubiquinoneoxidoreductase (spots 11), ATP synthase (spot 40) and

flavoprotein wrbA (spot 45) were 3.84, 3.79 and 4 fold more

abundant in SE, indicating that these embryos undergo extensive

oxidation processes. The higher level of TCA cycle and oxidative

phosphorylation enzymes in SE suggests a more active aerobic/

respiration pathway. This intensive energymetabolismmight be

the reason for the absence of dormancy (common feature of SE)

as previously suggested by Sghaier-Hammami et al. [30].

Moreover, increased accumulation of pyruvate decarboxylase

in ZE (PDC; EC 4.1.1.1; spot 52), which catalyzes the decarbox-

ylation of pyruvate to acetaldehyde in the frame of an ethanol

fermentation pathway [51], reinforces ideas of anaerobic

fermentation as the major energy pathway in ZE. This might

be the consequence of limited oxygen availability for the ZE,

which is surrounded by seed coat and endosperm. Further-

more, the high abundance of malate synthase (spot 32) in SE,

which represents a marker of beta-oxydation and which

normally takes place in seed germination [52,53], indicates

Table 2 – Proteins of increased abundance in the somatic embryo proteomes.

Protein a Category b Physiological function b Abundance c ID d

Lactoylglutathione lyase Carbohydrate metabolism Pyruvate metabolism 4.11 46

Lactoylglutathione lyase Carbohydrate metabolism Pyruvate metabolism 5.00 47

Malate synthase, glyoxysomal Carbohydrate metabolism Glyoxylate and dicarboxylate metabolism 4.50 6

Malate dehydrogenase, glyoxysomal Carbohydrate metabolism TCA cycle 46.06 32

Putative L-galactose-1-phosphate phosphatase Carbohydrate metabolism Ascorbate metabolism 5.00 47

Glutamate dehydrogenase 2 Amino acid metabolism Alanine, Aspartate and Glutamate

Metabolism

11.26 35

Eukaryotic translation initiation factor 3

subunit G-B

Genetic information

processing

Translation 46.06 32

60S ribosomal protein L18-2 Genetic information

processing

Translation 9.67 44

30S ribosomal protein 2, chloroplastic Genetic information

processing

Translation 15.00 42

Trypsin inhibitor Genetic information

processing

Folding, sorting and degradation 9.67 44

Trypsin inhibitor Genetic information

processing

Folding, sorting and degradation 3.84 45

21 kDa seed protein Genetic information

processing

Folding, sorting and degradation 9.67 44

21 kDa seed protein Genetic information

processing

Folding, sorting and degradation 3.84 45

NADH-ubiquinone oxidoreductase-related Energy metabolism Oxidative phosphorylation 3.84 45

ATP synthase beta subunit 1 Energy metabolism Oxidative phosphorylation 3.79 40

Flavoprotein wrbA isoform 1 Energy metabolism Oxidative phosphorylation 4.00 11

Probable protein phosphatase 2C 59 Defense Defense 5.00 47

Bacterial-induced peroxidase Stress response Stress response 18.53 29

Class III peroxidase Stress response Stress response 18.53 29

Class III peroxidase Stress response Stress response 6.38 31

Peroxidase N1-like Stress response Stress response 46.06 32

Peroxidase Stress response Stress response 11.26 35

Osmotin-like pathogenesis-related protein Stress response Stress response 15.00 42

Probable glutathione S-transferase-like Stress response Stress response 11.01 9

a Proteins identified in the current study. Protein name according to the best hit of MASCOT search against SwissProt and NCBI databases. Bold

printed proteins are of major interest and discussed in detail in the text. Detailed information on mass spectrometry parameters for each spot

analyzed is given in the supplementary material (Table 3).
b Functional protein classification according to the KEGG PATHWAY Database. Additional categories are included when necessary.
c Protein spot abundance: statistically significant values of at least 3 fold more abundant protein spots are given for the somatic embryos

proteomes (relative spot volume SE/relative spot volume ZE). These protein spots are given in green on Fig. 2B.
d Spot ID as given on Fig. 2B.
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the breakdown of lipid compounds. This finding reinforces

the idea of a high energy demand in SE. Furthermore, it

reveals involvement of lipid compounds as energy supplier in

cacao embryos. Interestingly, these observations demonstrate

that, compared to their zygotic counterpart, SE of T. cacao

may undergo precocious mobilization of storage com-

pounds which might be the reason for the less vigor of

derived plantlets compared to those originating from ZE. An

earlier study carried out on globulin mobilization in SE of

Elaeis guineensis resulted in a similar conclusion [54].

Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is

found in increased abundance in ZE. This glycolytic protein

is a CO2-fixing enzyme that catalyzes the irreversible β-

carboxylation of phosphoenolpyruvate (PEP) in the presence

of HCO3
− and Mg2+ to yield oxaloacetate (OAA) and inorganic

phosphorus (Pi) [55]. In earlier studies, this enzyme was only

related to photosynthesis but, over the last decade, a growing

number of studies revealed that, under non-photosynthesis

conditions, especially in seeds, PEPC re-fixes HCO3
− liberated

by respiration and, together with PEP, yield oxaloacetate that

can be converted to aspartate, malate or other intermediates

of the TCA cycle [56–58]. Thus, this metabolic pathway main-

tains the pool of carbon residues necessary for the biosynthe-

sis of oil and storage proteins that take place in later stage of

embryo development [59–61]. Intriguingly, the consistent

accumulation of PEPC in cacao embryos raises the question

of the role of this enzyme in cacao seed maturation and

germination which, according to its high lipid content, might

display an extensive PEPC activity as demonstrated with

castor oilseed [62,63].

Sucrose synthase (SuSy, EC 2.4.1.13; spot 51 in Fig. 2B) is the

only enzyme of sugar metabolism found in the frame of our

study. This enzyme was 4.02 fold higher in abundance in ZE

proteomes. SuSy is a cytoplasmic enzyme that catalyzes the

reversible break down of sucrose. This enzyme has been studied

by several research groups and has been associatedwith a broad

range of physiological functions mostly related to carbohydrate

metabolism [64,65]. Iraqi and Tremblay [50] suggested that this

enzyme catalyzes the synthesis of sucrose from glucose and

fructose in order to maintain the optimal sucrose level in plant

tissues during embryo maturation. Other studies reported its

involvement in starch and cell wall synthesis [66]. The low

abundance of SuSy in SE suggests a possible disturbance in

carbohydrate metabolism that might result in irregularities in

storage compound and cell wall metabolism.

4.2. High abundance of stress related proteins in somatic

embryos of T. cacao

In the frame of our study, stress induced proteinswere found in

higher abundance in SE proteomes where they represented the

dominant group of proteins (more than 23%of the total proteins

classified as more abundant in SE [Table 2]). The most

representative proteins among this group were peroxidases

(spots 29, 31, 32 and 35), pathogenesis related protein (spot 42)

and glutathione S-transferase (GSTs) (spot 9). This observation

is in accordancewith the one of Rode et al. 2011 [28]whonoticed

that SE of C. persicum were more stressed than their ZE

counterpart. Indeed, somatic cells of plants require a number

of stress factors to switch their developmental program to a

specific physiological state that allows the reprogramming of

gene expression towards acquisition of embryonic competence

[67–70]. In T. cacao, a set of stress factors encompassing

wounding, salt component (MgSO4) and several growth

regulators (TDZ, 2,4-D and Kinetin) are required to turn

somatic cells of floral explant into competent embryonic

callus cultures [7,8,11]. Among plant growth regulators of

auxin family, 2,4-D is especially recognized as oxidative

stress inducer [67,68,71]. For instance, GSTs which appear in

increased abundance in SE proteomes in this study have been

earlier described as auxin-induced proteins involved in the

acquisition of cellular totipotency during somatic embryo-

genesis [68,71]. Further explanations for this extensive

activity of oxidative stress enzymes come from oxidative

phosphorylation described in the previous section. Indeed,

oxidative phosphorylation is the source of reactive hydrogen,

a poisonous compound for plant tissues. Peroxidases and

GSTs, which are endowed with xenobiotic functions [72,73],

are of great importance for eliminating H2O2 resulting from

oxidative phosphorylation.

4.3. Aspartic proteinase, dominant enzyme in protein

mobilization in T. cacao embryo

Aspartic proteinase precursor (spot 17) was found 3.04 fold

more abundant in ZE proteomes. This enzyme represents the

only protein involved in a catabolic pathway, which was of

increased abundance in this study. Aspartic proteinase (EC

3.4.23) is the dominant endopeptidase component involved in

storage protein processing found in cacao seeds [74]. In

addition, this enzyme was found to be exceptionally more

active in cacao seeds than in seeds of other plant species [75].

Regarding the crucial role of this enzyme, which is responsible

for the initial breakdown of proteins during germination

[15,76], its relatively early accumulation in ZE in the torpedo

stage, might be an indication of the onset ofmaturationwhich

did not take place in SE.

4.4. Exceptional high accumulation of endopeptidase in-

hibitor in somatic embryos

In contrast to the active protein biosynthesis and the

significant accumulation of aspartic proteinase precursor

noticed in ZE, SE highly accumulate peptidase inhibitors.

Indeed, two types of endopeptidase inhibitors were found in

high abundance in SE proteomes. From a total of four protein

species identified as members of this family, two belonged to

the group of trypsin inhibitors while the two others were

identified as 21 kDa seed proteins. The latter was also

described as homolog of soybean trypsin inhibitor [77]. Thus,

all these endopeptidase inhibitors can be considered as

trypsin inhibitors. Trypsin inhibitor has been earlier reported

in Daucus carota to be associated with somatic embryogenesis

[78]. Unfortunately, no biological function of this enzyme

related to somatic embryogenesis has been established yet.

Recently, Guilloteau et al. [76] found trypsin inhibitor to be

part of an active aspartic proteinase complex in cacao seeds.

They suggested this trypsin inhibitor sub-unit to protect

storage proteins from precocious hydrolysis that might result

from the high aspartic proteinase content in cacao seeds.
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Nevertheless, the role of this enzyme in cacao seeds remains

far from being elucidated.

4.5. Differences in protein folding processes in zygotic and

somatic embryos

Ubiquitin (spot 50) and T complex protein (spot 53) are the two

proteins of increased abundance found in our experimental

system to be involved with protein folding processes. They

appeared in ZE proteomes and they were respectively 4.82 and

3.71 fold more abundant than in SE proteomes. Ubiquitin has

been previously described as a biochemical tag endowed

with the capacity to link covalently with other proteins for

degradation and refolding of proteins [79]. The low accumu-

lation of this protein in SE proteomes suggests a possible

disturbance on protein folding in these embryos. On the other

hand, T complex protein is a protein binding component

whose physiological role is not yet clearly elucidated.

However, it has been described as a binding factor that

transfers DNA fragments from Agrobacterium tumefaciens into

plant nucleus [80]. Recently, Hurov et al. [81] reported the

intervention of proteins belonging to T complex family in

protecting cells from spontaneous DNA damage. The high

abundance of T complex protein in ZE proteomes suggests

the involvement of this protein in a specific pathway

important in embryo development in T. cacao. Furthermore,

due to its presumable involvement in protecting DNA from

damage, this protein, which might not be sufficiently

accumulated in SE, might cause susceptibility of DNA in

this type of embryo and therefore explain the cause

of somaclonal variations that frequently occur during so-

matic embryogenesis. The increased accumulation of his-

tones (histone H2A and histone H2B; spot 22) that both were

8.04 fold higher in abundance in ZE proteomes, corroborate

this view because of their participation in DNA integrity.

5. Concluding remarks

The data presented here clearly demonstrate the efficiency of

MS-based proteomic investigations in describing in depth

physiological processes. The comparison between SE and ZE

proteomes come-up with new insights into embryogenesis of

T. cacao. The absence of dormancy and the occurrence of

somaclonal variations, current features of somatic embryogen-

esis, have been connected to changes in specific proteins

abundances. Furthermore, the consequences of the exposure

of plant material to stress factors during this specific develop-

mental process have been described. Trypsin inhibitor, whose

function in seed biology is not yet clearly understood, appeared

in this study to be intrinsically associated with somatic

embryogenesis in T. cacao. ZE proteomes revealed the impor-

tance of aspartic proteinase, phosphoenolpyruvate carboxylase

and sucrose synthase in T. cacao embryogenesis. The most

pronounced difference among the two types of embryos

concerns carbohydrate metabolism: ZE proteomes display a

high glycolytic activity while SE are characterized by intensive

aerobic/respiration pathway activity as documented by the

exceptional increased of TCA cycle proteins as well as proteins

of oxidative phosphorylation. Thus, regarding these specific

physiological features, somatic embryogenesis, which is an

induced developmental process, is driven by an adapted

metabolism. These new findings shed light to the procedure of

inducing SE.

Both types of embryos were harvested in similar morpho-

logical shapes; however their developmental stages might

have been slightly different. Thus, it cannot be excluded that

some of the observed differences in protein abundances were

related to this developmental variation. Further proteomic

approaches should therefore also include series of zygotic and

somatic embryo stages.

Finally, a large number of uncharacterized proteins have

also been found in this study (Table 3; supplementary

material). The reason for this fact is the poor availability of

cacao proteins in databases. Although the cacao genome has

recently been sequenced, there is still a great need for protein

characterization in this plant species.

Supplementary data to this article can be found online at

http://dx.doi.org/10.1016/j.jprot.2012.11.007.
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Abstract 

 

Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part 

in energy production as well as nutrient remobilization. The carbon skeletons are generally 

converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of 

cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to 

prevent accumulation of toxic concentrations. Here we present a mitochondrial sulfur 

catabolic pathway catalyzing complete oxidation of L-cysteine to pyruvate and thiosulfate. 

After transamination to 3-mercaptopyruvate the sulfhydryl group from L-cysteine is 

transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur 

dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second 

persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo 

development and for vegetative growth under light limiting conditions. Characterization of a 

double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and 

sulfurtransferase 1 revealed that a persulfide intermediate interferes with amino acid 

catabolism and induces early senescence.  

 

Introduction 

 

Amino acid catabolism in plants is involved in the regulation of steady state levels of free 

amino acids and is particularly important in conditions of increased protein turnover such as 

germination and senescence. It is critical for nutrient redistribution from senescing leaves to 

newly formed sink organs such as young leaves and developing seeds. The degradation of 

amino acids also contributes to energy production in situations of carbohydrate starvation, 

which may occur during drought or unfavorable light conditions. Pool sizes of free amino 
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acids are highly diverse and dynamically change in response to environmental or 

developmental factors (Hildebrandt et al. 2015). However, the intracellular concentration of 

cysteine is amongst the lowest known for protein amino acids. The thiol group of cysteine is 

highly reactive, it can deplete cells of pyridoxal phosphate by forming thiazolidine derivatives 

and in addition autooxidation in the presence of transition metals generates reactive oxygen 

species (Osman et al. 1997). Therefore, intercellular concentrations have to be tightly 

controlled in order to avoid toxic effects. However, cysteine levels also must be sufficiently 

high to support protein synthesis and the production of other essential molecules such as 

glutathione, coenzyme A and reduced sulfur for the biosynthesis of iron sulfur clusters, biotin, 

thiamin, and molybdenum cofactor (Balk and Pilon 2011, Van Hoewyk et al. 2008). Thus, 

synthesis as well as the degradation of cysteine has to be tightly regulated. 

 

During degradation, the carbon skeleton of cysteine is converted to pyruvate via removal of 

the amino and sulfhydryl group. These reactions can be catalyzed by different pathways. 

Cysteine desulfhydrases deaminate cysteine to pyruvate, ammonia, and hydrogen sulfide 

(H2S). Specific isoforms using L-Cys (DES1, EC 4.4.1.1) and D-Cys (D-CDES, EC 4.4.1.15) 

as a substrate are present in the cytosol and the mitochondrial matrix, respectively (Alvarez et 

al. 2010, Riemenschneider et al. 2005). Both enzymes are induced during senescence and 

therefore have been implicated in cysteine catabolism for nutrient remobilization. DES1 

deficient Arabidopsis mutants accumulate cysteine and in addition show alterations in 

autophagosome formation and stomatal opening, which are reversible by supplementation 

with H2S (Alvarez et al. 2010, 2012, Jin et al. 2013). Taken together, these results 

demonstrate that the desulfhydration reaction is relevant for cysteine homeostasis and also 

regulates production of the signaling molecule H2S. However, the further fate of H2S, which 

is highly toxic already at low micromolar concentrations, has not been analyzed yet. Cysteine 

desulfurases (NifS-like proteins, EC 2.8.1.7) provide sulfur for the synthesis of iron-sulfur 

clusters, biotin, and thiamin (Couturier et al. 2013).  

 

We recently demonstrated a role of the sulfur dioxygenase ETHE1 (EC 1.13.11.18) in plant 

cysteine catabolism (Krüßel et al. 2014). ETHE1 is localized in the mitochondrial matrix and 

oxidizes glutathione persulfide (GSSH) to sulfite. Knockout of the ETHE1 gene 

(AT1G53580) in Arabidopsis leads to an arrest of embryo development at early heart stage 

(Holdorf et al. 2012). Knockdown mutants are viable but show a delay in embryo 

development (Krüßel et al. 2014). Interestingly, ETHE1 is highly induced by carbohydrate 
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starvation and mutants develop premature leaf senescence under light limiting growth 

conditions indicating a role in the use of amino acids as alternative energy source.  

Here we present the additional steps of the ETHE1 dependent mitochondrial sulfur catabolic 

pathway catalyzing complete oxidation of L-cysteine to pyruvate and thiosulfate. After 

transamination to 3-mercaptopyruvate the sulfhydryl group from L-cysteine is transferred to 

glutathione by sulfurtransferase 1. Interestingly, this enzyme also converts sulfite to the final 

product thiosulfate by addition of a second persulfide group. 

 

 Sulfurtransferases catalyze the transfer of a sulfur atom from a suitable sulfur donor to 

nucleophilic sulfur acceptors. 20 putative sulfurtransferase isoforms are annotated in the 

Arabidopsis genome and some of them have already been characterized on a protein basis 

(Bartels et al. 2007). They might play a role in plant development and stress response, 

however, the exact function has not been identified yet. In vitro, the activity is measured using 

either thiosulfate or 3-mercaptopyruvate as a sulfur donor and cyanide as an acceptor. Mao et 

al. (2011) recently demonstrated that the mitochondrial sulfurtransferase Str1 (AT1G79230) 

contributes the main mercaptopyruvate sulfurtransferase activity (about 80 %) in Arabidopsis. 

Knockout plants had no visible phenotype under long-day growth conditions, but seed 

development was severely compromised.  The majority of seeds were shrunken and not able 

to germinate. Embryo development arrested at the heart stage producing abnormal 

morphological shapes and eventually aborted. 

 

In order to identify the role of mitochondrial cysteine catabolism and the individual reaction 

steps in seed development as well as plant energy metabolism, we produced and characterized 

a double mutant from the ETHE1 knockdown line ethe1-1 (Krüßel et al. 2014) and the Str1 

knockout line str1-1 (Mao et al. 2011). 

 

Materials and methods 

 

Plant material and growth conditions 

 

All Arabidopsis thaliana plants used for this study were of the Columbia ecotype (Col-O). 

Plants were grown in climate chambers under long-day conditions (16h light/8h dark) or 

short-day conditions (8h light/16h dark) at 22 °C, 85 µmol s-1 m-2 light and 65 % humidity. 

The T-DNA insertion line SALK_021573 (ethe1-1) for the gene AT1G53580 has been 
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characterized in our lab before (Krüßel et al. 2014). Seeds of the line SALK_015593 (str1-1) 

for the gene AT1G79230 were obtained from the Nottingham Arabidopsis Stock Centre 

(University of Nottingham, UK). This line has been described by Mao et al. (2011). The 

ethe1-1 x str1-1 double mutant was produced by crossing of the two T-DNA insertion lines 

described above.Homozygous mutant lines were identified by genomic PCR using gene-

specific primers (5’-TGGAATTGGGTTATATGGTGG-3’ and 5’-

CGGATCAATCAACTGCTCATC-3’ for ethe1-1 and 5’-

AAAGGGGATCTTTAGTGCAGC-3’ and 5’- GTGGGAAGGAAGCAAATTCTC-3’ for 

str1-1) and the T-DNA left border primer LBb1.3 (5’-ATTTTGCCGATTTCGGAAC-3’).  

Complete rosettes of wild type and mutant plants were harvested at dawn and used for 

metabolite analysis. 

 

Expression and purification of ETHE1 and Str1 

 

Expression and purification of recombinant ETHE1 protein was performed like described 

before (Krüßel et al. 2014). The plasmid containing Arabidopsis Str1 was generously 

provided by Jutta Papenbrock (Institute for Botany, Leibniz University Hannover) and 

expressed in the same way as ETHE1. 

 

Cell suspension cultures and isolation of mitochondria 

 

Arabidopsis cell suspension cultures were established and maintained as described by May 

and Leaver (1993) and Sunderhaus et al. (2006). Mitochondria were prepared following to the 

procedure outlined by Werhahn et al. (2001).  

 

Sulfur dioxygenase activity test 

 

SDO activity was measured at 25°C in a Clarke-type oxygen electrode (Oroboros Oxygraph 

and Hansatech DW1 Oxygrapy) following the procedure described in Hildebrandt and 

Grieshaber (2008). The reaction contained 1 to 2 µg/ml purified enzyme or 150 to 300 µg/ml 

mitochondrial protein in 0.1 M potassium phosphate buffer pH 7.4. For the standard activity 

test, 1 mM GSH (final concentration) was added, followed by 15 µl/ml of a saturated 

elemental sulfur solution in acetone. Acetone did not inhibit enzyme activity. Rates were 
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measured during the linear phase of oxygen depletion, which occurred in the first 2 to 3 

minutes.  

 

Phenotype analysis 

 

For general phenotype analysis a modified version of the procedure described in Boyes et al. 

(2001) was used. Plants were grown under long-day or short-day conditions and growth 

parameters were measured once per week.  

Embryo morphology was analyzed with a microscope equipped with Normarski optics. Seeds 

were dissected from the siliques and cleared in Hoyer’s solution (15 ml distilled water, 3.75 g 

gum arabic, 2.5 ml glycerine, 50 g chloral hydrate) overnight before analysis.   

Germination rates were determined for seeds of wild type, ethe1-1 and three different 

morphological types of  str1-1 and ethe1-1xstr1-1. The seeds were surface sterilized with 6% 

sodium hypochloride and 100% ethanol followed by five washing steps with sterilized water. 

For vernalization seeds were incubated for 2 days at 4°C in the dark. Approximately 20 seeds 

were sown per plate (3 replicates per sample) on MS-medium without a carbon source and 

incubated for another 2 days at 4°C in the dark. Afterwards the plates were placed into a 

growth chamber (24°C, 16 h light/8 h dark). After 24, 48 and 72h germinated seeds were 

counted. A seed is considered to be germinated when the radicle raptures the endosperm and 

the testa. 

 

Metabolite analysis 

 

Products of the sulfur dioxygenase reaction were analyzed by HPLC (Hildebrandt and 

Grieshaber, 2008). 

 

For metabolite profiling complete rosettes of wild type and mutant plants grown under short 

day conditions were harvested at the end of the dark period at the age of 42 days and 100 

days. Metabolite analysis by GC-MS was performed essentially as described by Lisec et al. 

(2006) and by extracting of metabolites for injection of extracts from 1mg fresh weight of 

plant material into the GC/TOF-MS. Chromatograms and mass spectra were evaluated by 

using TagFinder 4.0 software (Luedemann et al. 2008) and Xcalibur 2.1 software (Thermo 

Fisher Scientific, Waltham, USA). Metabolites were identified in comparison to database 

entries of authentic standards (Kopka et al. 2005, Schauer et al. 2005). Peak areas of the mass 
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(m/z) fragments were normalized to the internal standard (ribitol) and fresh weight of the 

samples. Identification and annotation of detected peaks are shown in Supplemental Table S1 

following recent recommendations for reporting metabolite data (Fernie et al. 2011). 

 

Results 

 

Enzymatic steps of the mitochondrial cysteine catabolic pathway 

 

In a previous study we demonstrated that the mitochondrial sulfur dioxygenase ETHE1 

oxidizes persulfide groups derived from 3-mercaptopyruvate to sulfite and postulated a role 

for this reaction sequence in L-cysteine catabolism (Krüßel et al. 2014). In order to identify 

the complete pathway and provide evidence for the individual reaction steps (Fig. 1A), we 

measured sulfur dioxygenase activity in mitochondria after the addition of L-cysteine as a 

substrate (Fig. 1B) and in addition reconstituted part of the pathway with isolated recombinant 

enzymes (Fig. 1 C, D). Our results indicate that L-cysteine is oxidized by the ETHE1 pathway 

after transamination to 3-mercaptopyruvate. Mitochondrial oxygen consumption with L-

cysteine as a substrate was detectable only if 2-oxoglutarate was included in the reaction 

mixture as an amino group acceptor for transamination. The activity was very low in the 

ethe1-1 knockdown mutant showing that the oxygen consumption rate in wild type 

mitochondria was indeed specific for the ETHE1 dependent pathway (Fig. 1B).  

 

Next, we tested whether ETHE1 in combination with the main mitochondrial sulfurtransferase 

Str1 is able to catalyze the remaining part of the postulated pathway, i.e. transfer of the 

sulfhydryl group from 3-mercaptopyruvate to glutathione, oxidation to sulfite, and addition of 

a second persulfide group to produce thiosulfate (Fig. 1A). Isolated recombinant ETHE1 

enzyme oxidizes glutathione persulfide (GSSH), which is non-enzymatically produced from 

reduced glutathione (GSH) plus elemental sulfur (S8), to sulfite but cannot use the sulfhydryl 

group of 3-mercaptopyruvate as a substrate (left side of Fig. 1C and D). However, in the 

presence of isolated recombinant sulfurtransferase 1 protein, the sulfur dioxygenase activity is 

comparable with elemental sulfur or 3-mercaptopyruvate added as a substrate (right side of 

Fig. 1C). Thus, the sulfurtransferase is able to produce GSSH as a substrate for ETHE1 by 

transferring the sulfhydryl group of 3-mercaptopyruvate to GSH. Thiosulfate did not serve as 

a substrate for this reaction sequence (data not shown). Our results also provide evidence for a 

second function of Str1 in the cysteine catabolic pathway. The main product of persulfide 
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oxidation by ETHE1 in the presence of Str1 is thiosulfate, indicating that the sulfurtransferase 

adds an additional persulfide group to the sulfite produced by the sulfur dioxygenase reaction 

(left side of Fig. 1D).     

 

Physiological roles of mitochondrial cysteine catabolism 

 

Having identified the individual steps of mitochondrial cysteine catabolism we next addressed 

the physiological role of this reaction sequence during the Arabidopsis life cycle. T-DNA 

insertion lines for both, ETHE1 and Str1 have already been characterized (Holdorf et al. 2012, 

Krüßel et al. 2014, Mao et al. 2011) and show different phenotypes. Therefore, in order to 

unravel the metabolic reason for the individual effects we produced a double mutant from the 

strong knockdown line ethe1-1 (Krüßel et al. 2014) and the knockout line str1-1 (Mao et al. 

2011).   

 

Seed and embryo development is severely impaired in the ethe1-1 x str1-1 double mutant 

 

Since embryo development is effected in ETHE1 as well as Str1 deficient mutants, we first 

analyzed the seeds of the ethe1-1 x str1-1 double mutant to see whether down-regulation of 

both enzymes had additive effects. In summary, embryo development of the double mutant 

was comparable to str1-1 (Fig. 2). Wild type embryos developed very uniformly reaching the 

mature stage at seven days after pollination (DAP), whereas several growth stages were 

simultaneously present in ethe1-1 siliques, and not until 10 DAP all of them were mature (Fig. 

2B). In contrast, embryogenesis was severely delayed in str1-1 and the ethe1-1 x str1-1 

double mutant. Most of the mutant embryos were still in the pre-globular or globular stage at 

5 DAP when the wild type had already reached cotyledon stage (Fig. 2B). At 7 DAP wild type 

seeds were already dark green indicating that the embryos had developed their full 

photosynthetic capacity (Fig. 2A). In contrast, seeds of str1-1 plants and the double mutant 

were smaller, of a white, light green or even light brown color, and contained embryos in the 

globular to cotyledon stage. Starting from about 10 DAP different degrees of a brown, 

shriveled seed phenotype became apparent (Fig. 2A, Supp Figs. S1 and S2).  Embryos 

developed morphological abnormalities such as giant heart stage or asymmetric cotyledons 

(Fig. 2A, Supp Figs. S3 and S4). Less than 50 % of the str1-1 and ethe1-1 x str1-1 embryos 

finally reached the mature stage whereas the rest aborted mainly at heart stage. 
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While mature ethe1-1 seeds were morphologically indistinguishable from the wild type, only 

about one fifth of the seeds from str1-1 plants and the double mutant appeared normal. The 

rest of the seeds were to about equal parts of a rectangular shape or severely shrunken (Fig. 

3). Germination was slightly delayed in ethe1-1 with 82 ± 3 % germinated seeds after 24 h 

compared to 93 ± 8 % in the wild type (Fig. 3). However, already after 48 h there was no 

significant difference between germination rates of ethe1-1 and wild type seeds. In contrast, 

the germination capacity of str1-1 seeds was severely compromised. Even normal looking 

seeds were not completely germinated after 72 h, and in rectangular and shriveled seeds rates 

dropped to 43 ± 8 % and 20 ± 5 % respectively. Interestingly, seeds of the double mutant 

germinated significantly better than those of the str1-1 mutant (marked by crosses in Fig. 3). 

The normal looking seeds behaved like ethe1-1 seeds and also higher percentages of the 

misshaped seeds compared to the str1-1 mutant were able to germinate (63 ± 10 % of 

rectangular and 35 ± 5 % of shriveled seeds).  

 

Patterns of early leaf senescence under light limitation 

 

When grown under long-day conditions (16h light/8h dark) the phenotype of the three 

analyzed mutant lines was comparable to the wild type (Supp Fig S5). Shortening of the light 

period to 8 hours per day led to reduced growth and early leaf senescence in ethe1-1 plants as 

described before (Krüßel et al. 2014), whereas the str1-1 plants were indistinguishable from 

the wild type (Fig. 4). While development proceeded very uniformly in the wild type as well 

as in both individual mutant lines, the phenotype of the ethe1-1 x str1-1 double mutant was 

diverse. Growth rates of the nine double mutant plants analyzed differed by a factor of 5 

between 0.6 and 3 mm · day-1 (Fig. 4A inserted graph). Plants number 3, 4, 6, 7, and 8 grew 

fast and were indistinguishable from the wild type until 10 weeks after sowing. Then, leafs 

progressively developed chlorotic patches in two of the large plants (number 4 and 6). In 

contrast, growth rates of 4 double mutant plants (number 1, 2, 5, and 9) were reduced in a 

similar way as in ethe1-1. However, only two of these small plants (number 2 and 5) started to 

become chlorotic after seven weeks of growth while the other two (number 1 and 9) remained 

dark green until leaves were harvested at the age of 100 days.   

 

In order to identify the metabolic reason for these phenotype variations we analyzed 

metabolite profiles of wild type and mutant plants grown under short-day conditions (Supp. 

Tab. S2). Samples were harvested immediately after the dark period at two different 
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developmental stages: After 42 days neither wild type nor mutant plants showed any visible 

signs of senescence (“young plants” Supp. Fig. S6). However, ethe1-1 rosettes were 

significantly smaller than the wild type (6.0 ± 0.8 compared to 9.3 ± 0.9 cm) and contained 

less leaves (18.7 ± 1.2 vs. 23.9 ± 2.5). The rosette diameter of ethe1-1 x str1-1 double mutants 

varied between 1.6 and 8.5 cm, and small as well as big plants were used for the metabolite 

analysis. The second set of leaf samples was harvested after 100 days (“old plants”; Fig. 4B), 

when all plants had already started flowering. Ethe1-1 leaves were about 50 % chlorotic and 

the double mutant displayed the four different phenotypes described above (see Fig. 4B), with 

an ethe1-1-like phenotype (plants 2 and 5), a wild-type-like phenotype (plants 3, 7, and 8), 

and two intermediate forms, i.e. small green plants (plants 1 and 9), and large plants with 

yellowing leaves (plants 4 and 6).  

 

Already in the young plants harvested at 42 days after sowing a number of specific changes in 

the metabolite profiles of the mutants compared to the wild type became apparent (Figs. 5 and 

6, Supp Tab S2). Nitrogen-rich amino acids accumulated in all mutants, and the 

concentrations of secondary metabolites involved in nitrogen turnover such as putrescine and 

spermidine were also significantly increased (Fig. 5A; upper panel). In addition, we detected 

significantly higher concentrations of the amino acids taking part in photorespiration, glycine 

and serine, in str1-1 and the double mutant (Fig. 5C). Interestingly, serine was also elevated in 

ethe1-1 plants without the concomitant increase in glycine leading to a significant decrease of 

the glycine/serine ratio, which is often used as an indicator of photorespiratory activity. 

Specific effects on the TCA cycle also became apparent. In all three mutants succinate and 

fumarate concentrations were significantly lower than in the wild type (1.9 to 6.5fold), and 

malate was additionally decreased in str1-1 and the double mutant (Fig. 6).  

 

The metabolite profile of young ethe1-1 plants revealed two characteristic changes that were 

not present in str1-1 or the double mutant. There was a significant increase in the amino acids 

associated with energy metabolism, i.e. branched-chain amino acids, lysine, and aromatic 

amino acids (Fig. 5B, upper panel). In addition, carbohydrate metabolism was effected with a 

strong accumulation of galactinol (5.3fold) and raffinose (8fold) and lower but still significant 

increases in sucrose and fructose concentrations while glucose was slightly decreased (Fig. 6). 

Metabolite profiles of the old plants harvested 100 days after sowing reflected patterns typical 

for leaf senescence. In particular, a general increase relative to the young plants in 

concentrations of free amino acids most pronounced in those involved in nitrogen 
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remobilization, a strong decrease in the glycine/serine ratio, and an accumulation of sugars 

were detected in wild type as well as mutant plants (Figs. 5 and 6).  

 

Next, we analyzed the metabolite profiles of the individual plants using the hierarchical 

clustering tool available in MeV (Fig. 7). The metabolite profile of str1-1 was very similar to 

the wild type in the old plants so that the clustering algorithm was not able to distinguish 

between these two groups. However, all five ethe1-1 plants were clearly grouped together on 

the basis of their metabolite profiles and, most interestingly, 8 of the 9 ethe1-1 x str1-1 plants 

clustered correctly according to their phenotype. The small and chlorotic double mutant plants 

(number 2 and 5), which looked like ethe1-1 plants of the same age, also had the most similar 

metabolite profiles followed by the big plants with chlorotic leaves (number 6 and 7). Four of 

the five double mutant plants that were still entirely green at the time of harvest clustered 

together, and again profiles of the small rosettes (number 1 and 9) were clearly separated from 

those of the big rosettes (number 7 and 8). Only one of the double mutant plants with no 

visible phenotype (number 3) was mixed up with the wild type and str1-1 plants. Since not 

only the plants but also the metabolites were clustered it was possible to derive patterns 

typical for the individual phenotypes (marked by the black boxes in Fig. 7). A strong 

accumulation of galactinol and raffinose was present only in plants with the ethe1-1-

phenotype, while sugar levels in general were decreased compared to the wild type in ethe1-1 

as well as all double mutant plants (see also Fig. 6). Concentrations of urea as well as the 

amino acids and metabolites associated with nitrogen remobilization were low in all plants 

with small rosettes (see also Fig. 5A, lower panel). Features characteristic for plants with 

chlorotic leaves were an increase of serine and glycine concentrations, a decrease in ascorbate 

and dehydroascorbate content, and specific changes in TCA cycle intermediates with a 

relative increase in citrate and 2-oxoglutarate and a decrease in succinate and fumarate (see 

also Fig. 6). Proline and alanine accumulated in all ethe1-1 and double mutant plants 

compared to the wild type and str1-1. 
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Discussion 

 

We identified a mitochondrial cysteine catabolic pathway and revealed the physiological 

relevance of individual reaction steps for seed development and plant growth under limited 

light conditions. 

 

Three mitochondrial enzymes oxidize L-cysteine to pyruvate and thiosulfate 

 

Our results show that L-cysteine can be transaminated to 3-mercaptopyruvate in Arabidopsis 

mitochondria. Subsequently, the thiol group is transferred to GSH by sulfurtransferase 1, 

oxidized to sulfite by the sulfur dioxygenase ETHE1 and transferred to an additional 

persulfide to produce thiosulfate by sulfurtransferase 1. A similar reaction sequence has been 

described in animal mitochondria (Hildebrandt and Grieshaber 2008). However, persulfide 

groups are derived from the oxidation of hydrogen sulfide catalyzed by sulfide:quinone 

oxidoreductase, which is not present in plants.  

 

A cysteine aminotransferase is present in Arabidopsis mitochondria 

 

The protein catalyzing the initial transamination step of the cysteine degradation pathway has 

not been identified so far, and no cysteine aminotransferase is annotated in the Arabidopsis 

genome. The same activity has been found in animal mitochondria and postulated to be an 

additional function of an aspartate aminotransferase (Ubuka et al. 1978). 31 aminotransferases 

with different substrate specificities have been described in Arabidopsis so far, and 10 of them 

are probably localized in the mitochondrial matrix (Hildebrandt et al. 2015). These 

mitochondrial aminotransferases are annotated to be specific for ornithine, aspartate, 

branched-chain amino acids, alanine, and glyoxylate, and it will be the subject of future 

studies to find out whether one of them or an additional enzyme not identified as an 

aminotransferase so far catalyzes the transamination of L-cysteine. 

 

Two physiological roles for plant mitochondrial sulfurtransferase 

 

Sulfurtransferases are ubiquitous enzymes present in all the different compartments of plant, 

animal and also prokaryotic cells. However, their metabolic functions have not been 

completely understood yet. The detoxification of cyanide has initially been considered to be 
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the main role of sulfurtransferases since cyanide is a very good acceptor for persulfide groups 

in vitro and sulfur addition converts it to less toxic thiocyanate (Westley 1973). In plants, 

cyanide is produced in equimolar amounts during the biosynthesis of the hormone ethylene 

(Peiser et al. 1984). However, most of it is metabolized to asparagine via β-cyanoalanine, and 

the contribution of sulfurtransferases to cyanide detoxification seems to be rather low 

(Machingura et al. 2014, Meyer et al. 2003). Additional physiologically relevant functions of 

sulfurtransferases might be control of the sulfane sulfur pool, maintenance of iron–sulfur 

clusters, and molybdenum cofactor synthesis (Matthies et al. 2004, Ogata and Volini 1990, 

Westley et al. 1983). Here we demonstrate that the mitochondrial sulfurtransferase Str1 is part 

of a cysteine catabolic pathway in Arabidopsis and even catalyzes two of the four reaction 

steps. In the in vitro assay using cyanide as a sulfur acceptor Str1 has a higher activity with 3-

mercaptopyruvate than with thiosulfate as a substrate and is therefore called 

mercaptopyruvate sulfurtransferase (Papenbrock and Schmidt 2000). In accordance with this 

result, we found that Str1 readily transfers the thiol group from 3-mercaptopyruvate but not 

from thiosulfate to GSH to produce GSSH as a substrate for the sulfur dioxygenase reaction. 

As already described in animals, sulfurtransferases can also produce thiosulfate by 

transferring a persulfide group from a suitable donor such as GSSH to sulfite (Hildebrandt 

and Grieshaber 2008). We detected the same activity in Arabidopsis Str1 representing the 

final step in mitochondrial L-cysteine degradation.   

 

Cysteine degradation and additional persulfide transfer reactions are essential during 

embryo development 

 

Complete knockout of either sulfurtransferase 1 or ETHE1 in Arabidopsis severely affects 

embryo development indicating that cysteine catabolism is highly important during this 

developmental stage. The reason for the seed defects could either be accumulation of a toxic 

intermediate or nutrient deficiency. Since both mutant lines are affected, the potential toxic 

intermediate is most likely produced prior to the first transsulfuration step, i.e. it might be 3-

mercaptopyruvate, L-cysteine or the dimer L-cystine, which forms non-enzymatically from 

oxidized cysteine but, at least in animals, is supposed to be less toxic (Baker 2006). An 

alternative explanation would be the presence of two independent toxic intermediates in the 

individual mutant lines, since the sulfurtransferase probably has additional functions to its role 

in cysteine degradation such as cyanide detoxification. The seed phenotype of ethe1-1 x str1-1 

plants resembled the str1-1 single mutant and was not worsened but in contrast even slightly 
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improved by the additional down-regulation of sulfur dioxygenase activity. This result would 

be in agreement with the postulated accumulation of toxic cyanide due to Str1 knockout and 

toxic persulfide due to ETHE1 knockdown. Persulfide accumulation is most likely reduced in 

the double mutant since the sulfurtransferase producing it is missing. In addition, residual 

persulfides potentially resulting from other reactions would readily react with cyanide and 

thus lessen the toxic effect.  

 

As heterotrophic organs seeds depend on nutrient supply by the mother plant. Carbon is 

imported as sucrose, which is also the main substrate for energy production in the developing 

seed. Nitrogen is derived from remobilization of amino acids by protein degradation in the 

senescing leaves and mainly transported as glutamine and asparagine (Masclaux-Daubresse et 

al. 2010). It is currently not clear, whether the degradation of amino acids other than 

glutamine and asparagine substantially contributes to the nutrition of the developing embryo, 

and knowledge on the general role of amino acid catabolism in seeds is very limited. 

However, there is some evidence indicating that amino acids, analogous to the situation in 

starving leaves, can serve as alternative respiratory substrates to generate energy (Galili et al. 

2014). Knockdown of ETHE1 leads to an accumulation of most amino acids in the seeds 

(Krüßel et al. 2014). Thus, defects in cysteine degradation probably interfere with protein 

catabolism in general and might create a shortage of nitrogen supply. However, this option 

has to be further investigated.   

 

Defects in cysteine catabolism induce metabolic shifts characteristic for developmental 

senescence 

 

Plant senescence is a highly coordinated physiological process essential for nutrient 

remobilization to the growing seeds (Lim et al. 2007). This developmental stage is associated 

with a shift from anabolic metabolism to catabolic pathways catalyzing the degradation of 

proteins, carbohydrates, lipids, and nucleic acids in the leaves. Recently, comprehensive 

metabolite profiles of the senescence process in Arabidopsis have been published, providing a 

catalog of metabolite patterns characteristic for the onset of developmental senescence that 

can be used as markers (Watanabe et al. 2013). Interestingly, specific shifts in the metabolite 

profile already occur in presenescent tissues before chlorosis becomes apparent. 
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We detected several senescence specific metabolite changes in young rosettes of all mutant 

lines analyzed. The concentrations of amino acids as well as secondary metabolites associated 

with nitrogen turnover were elevated in the mutants compared to the wild type. High 

asparagine/aspartate and glutamine/glutamate ratios are typical metabolite markers for the 

onset of senescence in Arabidopsis, and nitrogen-rich amino acids are closely associated with 

nitrogen remobilization and transport (Watanabe et al. 2013). Polyamines are synthesized 

from arginine or ornithine and thus interconnected with the major N pools. Due to their high 

intracellular concentrations they are considered to be major sinks and storage forms of 

assimilated N and also might play a role in the detoxification of excess ammonium (Moschou 

et al. 2012). Thus, the increased concentrations of putrescine and spermidine in the mutant 

plants could be an indication for higher rates of protein turnover. However, in contrast to the 

nitrogen-rich amino acids high levels of polyamines seem to delay the onset of senescence 

(Moschou et al. 2012). 

 

A change in the spatiotemporal distribution of TCA cycle intermediates within individual 

leaves has been shown to occur in Arabidopsis plants gown under short day conditions before 

the onset of senescence (Watanabe et al. 2013). Concentrations of succinate and fumarate 

were consistently reduced in all three mutants related to cysteine catabolism. Since for the 

present study samples were harvested at the end of the dark period, the TCA cycle can be 

assumed to be in the cyclic mode in wild type leaves to meet the high energy demand during 

the night. Thus, the strong decrease in the central part of the cycle would indicate a change in 

the flux mode towards production of precursors for other pathways and may be connected to a 

higher nitrogen turnover (Sweetlove et al. 2010). 

 

Serine and glycine levels have been shown to increase during senescence at least in plants 

grown under short day conditions (Watanabe et al. 2013). We observed the same trend in 

young rosettes of the three mutant lines. Glycine and to a lesser extent also serine accumulate 

during the day due to their role in photorespiration leading to an increased glycine/serine ratio 

(Timm et al. 2013). High glycine and serine levels in the morning might indicate changes in 

the photorespiratory pathway that prevent efficient removal at night. In addition, one carbon-

metabolism could be affected in the mutants since catabolic reactions of serine as well as 

glycine transfer methyl groups to tetrahydrofolate (Hildebrandt et al. 2015).  
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According to these results, defects in the mitochondrial cysteine degradation pathway lead to 

several metabolic shifts that normally occur during senescence. However, since str1-1 plants 

developed normally additional effects were obviously necessary to actually induce premature 

leaf senescence.  

 

A persulfide intermediate inhibits amino acid catabolism, affects the C/N status, and induces 

early senescence under light limitation 

 

Our results show that the sulfur dioxygenase ETHE1, which is involved in cysteine 

degradation, is relevant for vegetative growth and the onset of senescence particularly under 

light limiting conditions. This finding is in line with recent studies demonstrating the 

important function of autophagy and protein turnover for energy production during the night 

as well as for nitrogen remobilization (Guiboileau et al. 2012, 2013, Izumi et al. 2013). 

Autophagy-defective Arabidopsis mutants display reduced growth under short-day conditions 

and earlier and more rapid leaf senescence than the wild type (Guiboileau et al. 2012, Izumi et 

al. 2013). Thus, regular protein turnover for nutrient remobilization during the night is 

essential mainly under short light periods. Knockdown ETHE1 could lead to a general 

disturbance in amino acid catabolism and thus cause similar defects as a block of earlier steps 

in the autophagic process. Indeed, branched-chain amino acids, aromatic amino acids, and 

lysine accumulated in young ethe1-1 plants at the end of the dark period. Energy yield from 

the oxidation of these amino acids is particularly high, and they typically increase during 

carbohydrate starvation probably to serve as an alternative substrate for ATP production 

(Araujo et al. 2011, Hildebrandt et al. 2015). However, we did not detect a depletion of 

carbohydrates in the ethe1-1 plants, but in contrast sugar levels except glucose were even 

increased compared to the wild type. Thus, the accumulation of amino acids was probably not 

caused by an increase in protein turnover as a reaction to carbohydrate starvation. An 

alternative explanation could be inhibition or down-regulation of individual steps in the 

catabolic pathways. Interestingly, the accumulation of amino acids connected to energy 

metabolism was specific for ethe1-1 and not present in the ethe1-1 x str1-1 double mutant 

indicating that most likely this effect was caused by a persulfide intermediate that is not 

produced in the absence of the sulfurtransferase. Persulfides are highly reactive (nucleophilic 

and reducing) and have been identified as critical components of redox cell signaling in 

mammals (Ida et al. 2014). GSSH as well as protein bound cysteine persulfides are 

endogenously produced and maintained in animal cells, and our results indicate that these 
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reactive sulfur species might have a similar function in plant tissues. The catabolic pathways 

for branched-chain and aromatic amino acids are rather complicated and only partially known 

in plants (Hildebrandt et al. 2015). Therefore, it is difficult to speculate about which particular 

step might be inhibited or regulated by a persulfide intermediate, and further, more detailed 

metabolite analyzes will be necessary to identify the position of the block. 

 

In contrast to the situation in seeds, the function of sulfurtransferase 1 does not seem to be 

essential for vegetative growth in Arabidopsis. The str1-1 mutant showed no phenotype 

differences compared to the wild type under the conditions tested indicating that all necessary 

physiological functions can probably be compensated by one of the additional 19 

sulfurtransferase isoforms (Bartels et al. 2007). Most notably, the early senescence phenotype 

characteristic for ethe1-1 plants grown under short-day conditions was not present in the Str1 

deficient mutant. Thus, like the inhibitory effect on amino acid catabolism premature 

senescence is most likely caused not by a general decrease in cysteine degradation but rather 

by accumulation of a persulfide intermediate. In this case it could be expected that the 

phenotype can be rescued in the double mutant, which we observed only in some of the 

plants. The high variability in str1-1 seed development already indicates that the 

compensation mechanism by sulfurtransferase isoforms does not always work equally well. 

Therefore, the different phenotypes of the ethe1-1 x str1-1 double mutant might be due to 

distinct expression profiles of sulfurtransferases which are able to replace Str1 to a different 

extent. Considering their potential role in cell signaling the balance between persulfide 

production and removal can be expected to be critical for plant development, and persulfide 

accumulation will have different effects depending on the extent, timing and intracellular 

localization. This interesting aspect has to be further investigated.  

 

Another question still remaining open is which factors actually induce premature senescence 

under short day conditions in ETHE1 deficient plants. A shift in the C/N-status reflected by 

an accumulation of hexoses in combination with increased concentrations of amino acids and 

other metabolites related to nitrogen remobilization is discussed to be an internal signal for 

the induction of leaf senescence (Aguera et al. 2010, Wingler et al 2009). While metabolites 

associated with nitrogen remobilization were high in all mutant plants analyzed, hexoses as 

well as the stress-related sugars galactinol and raffinose particularly accumulated in ethe1-1 

plants. Thus, the increase in free sugar levels in combination with a low nitrogen status might 

act as a metabolic signal for the onset of senescence in young ETHE1 deficient plants. 
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However, the mechanistic context between persulfide and sugar accumulation still has to be 

established.  

 

After 100 days of growth under short day conditions metabolite profiles of wild type and 

str1-1 plants clearly indicated that the senescence process had already started although only 

minor chlorotic patches were visible in the leaves. Some of the characteristic differences 

detected in ethe1-1 and ethe1-1 x str1-1 plants can be attributed to the advanced senescence 

state of these mutants compared to the wild type (Watanabe et al. 2014). A high degree of 

chlorosis correlated with increased concentrations of the stress related sugars raffinose and 

galactinol, as well as the amino acids connected to photorespiration glycine and serine. Levels 

of ascorbate and dehydroascorbate were low, which might indicate a more oxidized state of 

the dying cells. In addition, changes in the TCA cycle mode probably reflect the lower energy 

demand and increased nutrient remobilization during late senescence.  

 

Interestingly, some metabolite patterns detected in ethe1-1 and double mutant plants were 

contrary to the characteristic senescence profile of Arabidopsis leaves and could therefore 

reflect specific effects of persulfides. The accumulation of nitrogen-rich amino acids as well 

as hexoses was clearly reduced in ethe1-1 plants. Hexose concentrations were also low in the 

ethe1-1 x str1-1 double mutant indicating that carbohydrate starvation was induced by the 

defect in ETHE1 protein and independent of the presence of the sulfurtransferase. 

Interestingly, nitrogen remobilization correlated with the size of the double mutant plants. 

Concentrations of arginine, asparagine, and ornithine were low in ethe1-1 and the small plants 

of the double mutant but comparable to wild type levels in the big double mutant plants, 

indicating that growth repression might be connected to consistent changes in the nitrogen 

status.  

 

Conclusions 

 

None of the previously published pathways of cysteine catabolism consider the ultimate fate 

of the thiol group. However, our results clearly demonstrate that a tight regulation of the 

concentrations of reactive persulfide intermediates is highly important. An exciting question 

for further research will be whether persulfides also have a defined signaling function in 

plants as described in animals. By now it is already obvious that either toxic or regulatory 

effects of persulfides interfere with central aspects of plant metabolism during seed 
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development as well as vegetative growth under light limiting conditions. Thus, a better 

understanding of the underlying mechanism will provide a basis for improving plant yield and 

fitness.   
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Figures 

 

 
Fig. 1: Reaction steps of the mitochondrial L-cysteine catabolic pathway. A, Reaction scheme of the 
oxidation of L-cysteine to pyruvate and thiosulfate catalyzed by a cysteine transaminase (Atr), sulfurtransferase 
1 (Str1), and the sulfur dioxygenase ETHE1. B, Sulfur dioxygenase (SDO) activity [nmol/mg protein/min] of 
mitochondria isolated from wild type and ethe1-1 cell culture after addition of either L-cysteine (5 mM, black 
bars) or L-cysteine (5 mM) plus 2-oxoglutarate (5 mM, grey bars) as a substrate. C, Sulfur dioxygenase activity 
[µmol O2/mg protein/min] of isolated recombinant ETHE1 enzyme in the absence and presence of isolated 
recombinant sulfurtransferase 1 (Str1) after addition of reduced glutathione (1 mM) plus elemental sulfur (15 
µl/ml) (GSH + S8), which non-enzymatically produce glutathione persulfide (black bars), or reduced glutathione 
(1 mM) plus 3-mercaptopyruvate (5 mM) (GSH + 3-MP, grey bars). D, Concentrations of the persulfide 
oxidation products sulfite (black bars) and thiosulfate (grey bars) in the reaction mixture containing 2 µg/ml 
purified recombinant ETHE1 enzyme in the absence or presence of 20 µg/ml purified recombinant 
sulfurtransferase 1 ten minutes after the addition of GSH plus sulfur as a substrate.  
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Fig. 2: Embryo development in the ethe1-1 x str1-1 double mutant compared to ethe1-1 and str1-1 single 

mutants and the wild type. A, Representative images of seeds and embryos at 7 and 14 days after pollination 
(DAP). B, Progression of embryo development from ovule to mature stage. Approximately 220 seeds were 
analyzed for each day and genotype, and bars respresent the percentage of embryos in the developmental stage 
indicated. 
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Fig. 3: Phenotype and germination rates of mature seeds in the ethe1-1 x str1-1 double mutant compared 

to ethe1-1 and str1-1 single mutants and the wild type. Whereas wild type and ethe1-1 plants consistently 
produced intact seeds, three different phenotypes (I, intact; II, rectangular, III, shriveled) were present in str1-1 
plants and the double mutant in a ratio indicated below the respective seed type. Bars represent the germination 
rates [%] of the different seed types after 24 h (dark grey), 48 h (medium grey), and 71 h (light grey). Asterisks 
indicate values significantly different from the wild type, and values that are significantly different in the double 
mutant from the corresponding data points in the str1 mutant are marked with a plus (p < 0.05, Student’s t-test).  
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Fig. 4: Phenotype of the ethe1-1 x str1-1 double mutant compared to ethe1-1 and str1-1 single mutants and 

the wild type under short-day growth conditions (8 h light/16 h dark). A, Means ± standard deviations of 
maximal rosette diameters from 9 to 10 plants [cm]. Since double mutant plants had a very heterogeneous 
phenotype, growth curves of the individual plants are shown in the inserted graph. B, Rosettes of the 9 double 
mutant plants analyzed and representative plants of the ethe1-1 and str1-1 single mutants and the wild type after 
100 days of growth under short-day conditions.  
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Fig. 5: Amino acid profile of the ethe1-1 x str1-1 double mutant compared to ethe1-1 and str1-1 single 

mutants and the wild type under short-day growth conditions (8 h light/16 h dark). Complete rosettes of 3-
5 plants were harvested at dawn at the age of 42 days (young plants) and 100 days (old plants) and analyzed by 
GC/MS. Amino acid contents are given as relative peak areas normalized to young wild type plants. 
*Significantly different from corresponding wild type samples (p<0.05, Student’s t-test). 
  

Chapter 2: Publications and Manuscripts

144



 

 
 

Fig. 6: Heatmap of metabolite changes related to sugar metabolism and the TCA cycle in young and old 
wild type and mutant plants. Log2 ratios of fold changes in relation to young wild type samples are indicated 
by shades of blue or red color according to the scale bar. Data represent mean values of three to nine biological 
replicates for each data point. Rosettes were harvested at dawn after 42 days (young) and 100 days (old) of 
growth under short-day conditions (8h light/16h dark). The complete dataset (means ± standard deviations, 
statistical analysis) is presented in Supplemental Table S2. 
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Fig. 7: Clustering of individual mutant and wild type plants harvested after 100 days of growth under 

short-day conditions according to their metabolite profiles. Log2 ratios of fold changes in relation to the 
mean peak area of each metabolite are indicated by shades of blue or red color according to the scale bar. 
Rosettes of 4 wild type plants (w1-4), 4 str1-1 plants (s1-4), 5 ethe1-1 plants (e1-5), and the nine ethe1-1 x str1-1 
plants shown in Fig. 4B (d1-9) were harvested at dawn after 100 days of growth under short-day conditions (8h 
light/16h dark). Hierarchical clustering was performed using MeV software. Plant numbers are given in the 
upper part of the figure together with some phenotype information. Black boxes mark metabolite patterns 
characteristic for individual phenotypes. The complete dataset (means ± standard deviations, statistical analysis) 
is presented in Supplemental Table S2. 
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Abstract 

The sulfur dioxygenase ETHE1 oxidizes persulfides in the mitochondrial matrix and is involved 

in the degradation of L-cysteine. ETHE1 has an essential but yet undefined function in early 

embryo development of Arabidopsis thaliana. In leaves, ETHE1 is strongly induced by extended 

darkness and takes part in the use of amino acids as alternative respiratory substrates during 

carbohydrate starvation. Thus, we tested the effect of darkness on seed development in an 

ETHE1 deficient mutant compared to the wild type. Since ETHE1 knock out is embryo lethal, the 

knock down line ethe1-1 with about 1 % residual sulfur dioxygenase activity was used for this 

study. We performed phenotype analysis, metabolite profiling and comparative proteomics to 

investigate the general effect of extended darkness on seed metabolism and further define the 

particular function of the mitochondrial sulfur dioxygenase ETHE1 in seeds. Shading of the 

siliques had no morphological effect on embryogenesis in wild type plants. However, the 

developmental delay that was already visible in ethe1-1 seeds under control conditions was 

further enhanced in the darkness. Interestingly, dark conditions strongly affected seed quality 

parameters of wild type as well as mutant plants. The lipid content of the seeds was severely 

decreased to about 20 % of light conditions, and there was also a clear reduction in free sugar 

concentrations. In contrast, amino acids accumulated with the strongest effect on the nitrogen-

rich amino acids asparagine and glutamine. Proteome as well as metabolite data revealed a major 

regulatory effect of light on nitrogen turnover in the developing seeds. In addition, first evidence 

for a function of branched-chain amino acid catabolism in seed energy production was provided. 

Knockdown of ETHE1 lead to alterations in endosperm cellularization as well as mitochondrial 
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structure. Interestingly, the effect on amino acid profiles was clearly different from that found in 

leaves indicating that in seeds the ETHE1 dependent pathway interacts with alanine and glycine 

rather than branched-chain amino acid metabolism. 

  

Introduction 
 

Seed development of plants starts with the unique event of double fertilization. The resulting seed 

compartments endosperm and embryo undergo specific developmental sequences with dramatic 

changes on cellular and molecular level from tissue differentiation and growth to storage 

deposition during seed filling. The endosperm is essential for embryo development. It embeds the 

embryo and is surrounded by the seed coat. In A. thaliana the endosperm is of transient nature 

and only the aleurone layer remains until seed maturity (Novack et al. 2010). Its development is 

characterized by a stepwise differentiation including transition from a syncytial to a cellular 

phase (Olsen 2004, Berger 2003, Brown et al. 2003, Brown et al. 1999). The process of 

cellularization has a great impact on the accurate embryo development (Hehenberger et al. 2012) 

and conducts the initiation of embryo growth (Brown et al. 1999). During seed maturation the 

embryo massively accumulates storage compounds within the cotyledons and becomes a highly 

specialized storage tissue. At early stages starch and hexoses accumulate transiently, but their 

amount gradually decreases accompanied by a rapid increase of protein and lipid storage 

(Borisjuk et al. 2005, Baud et al. 2002). The synthesis of storage compounds requires provision 

of sufficient amounts of precursor molecules, reductants and energy (Gallardo et al. 2008, Fait et 

al. 2006). Nutrients such as sugars and amino acids delivered from the mother plant are 

precursors for storage product biosynthesis in seeds (Melkus et al. 2009). An adaption of energy 

metabolism including photosynthesis and respiration is essential to enable efficient storage 

product accumulation. Seed plastids hold special structures and have adapted their metabolism to 

cope with reduced light levels available for photosynthetic reactions (Borisjuk et al. 2013, 

Borisjuk et al. 2004). The permeability of gases into seeds is low, and plastidial activity during 

the maturation phase contributes to oxygen allocation and reassimilation of CO2 (Borisjuk and 

Rolletschek 2009, Rolletschek et al. 2005, Borisjuk et al. 2005, Ruuska et al. 2004). Highest 

photosynthetic activity is observed during storage product synthesis, suggesting a correlation of 

metabolic processes and photosynthesis (Fait et al. 2006, Ruuska et al. 2002). Recently it was 

postulated that amino acids are not only precursors for storage proteins within seeds, but might 

also serve as alternative substrates for mitochondrial metabolism during situations of high energy 
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demand (Galili et al. 2014). In vegetative tissues amino acid catabolism is induced by carbon 

starvation situations e.g. periods of extended darkness (Hildebrandt et al. 2015, Araujo et al. 2011 

and 2010) First studies denote a potential effect of amino acid degradation also on the energy 

status of seeds (Credali et al. 2013, Angelovici et al. 2011, Gu et al. 2010, Angelovici et al. 2009, 

Weigelt et al. 2008, Zhu and Galili 2003). However, biosynthesis as well as catabolism of amino 

acids in seeds is still largely unknown. The mitochondrial sulfur dioxygenase ETHE1 

(AT1G53580) is part of a sulfur catabolic pathway that catalyzes the oxidation of sulfide or 

persulfides derived from amino acids to thiosulfate and sulfate. In Arabidopsis leaves ETHE1 has 

a key function in amino acid catabolism in situations of carbohydrate starvation such as extended 

darkness (Krüßel et al. 2014). In seeds, ETHE1 knock out leads to alterations in endosperm 

formation and finally causes seed abortion (Holdorf et al. 2012). It has been shown that a sulfur 

dioxygenase activity of 1% present in an ETHE1 knock down mutant (ethe1-1) is sufficient for 

embryo survival, but development is severely delayed (Krüßel et al. 2014), which underlines the 

importance of this enzyme for seed metabolism. 

 

This study aimed to investigate the physiological role of the mitochondrial sulfur dioxygenase 

ETHE1 in seeds. One major aspect was to establish whether the functional context of ETHE1 in 

leaves, the use of amino acids as alternative respiratory substrates, is relevant during embryo 

development. Therefore, our experimental approach included shading of the siliques combined 

with metabolite and proteome analysis. Our results show a strong effect of extended darkness on 

amino acid metabolism in seeds and indicate an additional role of ETHE1 in cell structure 

formation. 
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Results 

 

A combination of phenotype analysis, metabolite profiling and comparative proteomics was used 

to investigate amino acid metabolism in general and the particular function of the mitochondrial 

sulfur dioxygenase ETHE1 in seeds. Since ETHE1 knock out is embryo lethal (Holdorf et al. 

2012), the knock down line ethe1-1 described in Krüßel et al. (2014) was used for all 

experiments. 

 

ETHE1 knock down causes a delay in embryogenesis which is further enhanced in the 

darkness 

 

In leaves ETHE1 is strongly induced by extended darkness and has a key function in the use of 

amino acids as alternative respiratory substrates during carbohydrate starvation (Krüßel et al. 

2014). Thus, we tested the effect of darkness on seed development in the ethe1-1 mutant by 

covering the young siliques with aluminium foil one day after pollination (DAP, Supp. Fig. 1). 

The role of photosynthesis in seeds is still largely unknown. Since carbohydrates are mainly 

provided by the mother plant, additional functions compared to leaves can be expected. 

Therefore, we first tested the effect of darkness on seed development in wild type plants. Overall 

development of the siliques and the number of seeds produced was not influenced by the shading 

procedure (data not shown). However, the seeds did not turn green at 4-5 DAP like under light 

conditions but appeared yellowish (Figure 1A). Seeds grown under light and dark conditions 

were harvested over a period of 1 to 9 DAP. For each time point (1-9 DAP) and light condition 

(light, dark) embryo development in seeds from 5 siliques was analyzed using a seed clearing 

method. Interestingly, there were no morphological differences between wild type embryos 

growing under light or dark conditions. Development from globular to mature stage proceeded 

very uniformly, and all seeds in a silique were in the same developmental stage (Figure 1B). In 

contrast, we observed a delay of embryogenesis in ethe1-1 seeds with several embryo stages 

present within one silique. Dark conditions induced a stronger phenotype in ethe1-1 seed, which 

became apparent starting from 3 DAP were most of the embryos were still in the globular stage, 

while light grown ethe1-1 embryos were in the transition stage. At 9 DAP most of the embryos 

were fully matured, but some were still in the cotyledon and bending cotyledon stage. The 
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developmental delay of ethe1-1 seeds compared to the wild type observed under control 

conditions is further increased by about two days in darkness. 

 

Darkness leads to reduced seed weight and a changed biomass composition 

 

Mature seeds of wild type as well as ethe1-1 plants grown under light or dark conditions were of 

the same size and morphologically indistinguishable. However, the final seed weight was 

drastically reduced in darkness for both genotypes (Figure 2A). To investigate whether the lower 

weight is caused by a shift in storage product accumulation, we analyzed the final biomass 

composition of the dormant seeds (Figure 2B). For both, wildtype and ethe1-1 seeds, lipid 

contents were decreased to about 20% of light grown seeds. In addition shading of the siliques 

induced an accumulation of free amino acids. Most notably contents of the nitrogen-rich amino 

acids Asn and Gln increased more than 20-fold in the darkness compared to control conditions 

(Figure 2C) In contrast, the protein content was slightly reduced in dark grown seeds, whereas 

final starch levels remained unaffected. However, concentrations of hexoses and sucrose were 

strongly decreased after the dark treatment in wild type as well as ethe1-1 seeds. In agreement 

with the postulated impact of photosynthesis on germination timing (Allorent et al. 2015), we 

observed a reduced germination capacity of dark grown seeds (Supp. Fig. 2). Only minor 

differences were observed regarding biomass composition and germination rate between wildtype 

and ethe1-1 seeds. 

 

Proteomics and metabolite profiles 

 

To further investigate the role of ETHE1 in seed metabolism as well as the influence of light on 

storage product accumulation we performed comparative proteomics and analyzed metabolite 

profiles of wild type and ethe1-1 seeds grown under light and dark conditions. Samples were 

taken at two different time points (Figure 1A, indicated by blue arrows). We selected 5 DAP, 

since the developmental delay in the mutant seeds was most pronounced at this stage. The 

endosperm still has an important function and covers a large part of the seed. A second set of 

samples was collected at 9 DAP, when the seed was completely filled by the embryo and there 

was no morphological difference between the genotypes or light conditions. Seeds from 8 batches 

including 10 plants each were pooled and used for shotgun proteomics as well as metabolite 
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analysis via GC/MS. In total 3958 unique proteins were identified in the shotgun proteomics 

approach. Technical replicates of the samples clustered very well in a principal component 

analysis and the different groups were clearly separated so that it was possible to identify sets of 

differentially abundant proteins (Figure 3). Since the effect of silique shading on the storage 

compound composition of mature seeds was similar in wild type and ethe1-1 we first 

concentrated on the wild type data set to identify the role of light in the seed filling process 

(Figure 3, comparison 1). We considered 9 DAP to be the most relevant stage for addressing this 

question because the metabolic activity of the embryo is directed to lipid and storage protein 

synthesis (Le et al. 2010). Next we analyzed the effect of ETHE1 deficiency on seed metabolism 

by comparing wild type and mutant seed proteomes at an early (5 DAP) as well as a later 

(9 DAP) developmental stage (Figure 3, comparison 2a and 2b). 

 

Effects of light on seed energy metabolism and storage product accumulation 

 

The metabolite profiles of wild type as well as ethe1-1 seeds revealed only a mild shortage of 

carbohydrates in the absence of photosynthesis. The level of sucrose, which is the main sugar 

present at 9 DAP, was nearly identical, and also glucose and fructose which are dominant earlier 

in development were only moderately reduced to 65-95 % of the level present in seeds grown 

under light conditions. The TCA cycle intermediates citrate, 2-oxoglutarate, succinate, fumarate, 

and malate were even increased up to 4-fold (Figure 4). In contrast, we detected strong changes 

in the amino acid composition of seeds grown in shaded siliques (Figure 4). Like already detected 

in the mature seeds, the most pronounced effect was on amino acids used for nitrogen storage and 

transport with a 67 fold increase in asparagine concentrations in dark-grown seeds compared to 

control conditions at 9 DAP. At 5 DAP there was also a clear accumulation of branched-chain 

and aromatic amino acids detectable in the darkness, which became less pronounced later in 

development. The proteome comparison indicated a large impact of the availability of light on 

various metabolic pathways. In wild type seeds harvested at 9 DAP, 338 proteins were of 

significantly higher abundance in the dark treated samples compared to control conditions and 

324 proteins were reduced. To get a global overview of pathways potentially affecting seed 

composition, proteins were annotated to functional categories, and all spectra obtained from 

proteins of significantly changed abundance were summed up (Figure 5A). As expected, there 

was a clear reduction of photosynthesis related proteins including light reaction and Calvin cycle 
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in dark grown seeds. Interestingly, plastidial proteins with other functions were mainly 

upregulated. We also detected a strong influence of light on mitochondrial protein composition 

with several up- and downregulated proteins. A high turnover of lipids was indicated by an 

increase of proteins related to lipid biosynthesis as well as degradation. Protein synthesis was also 

increased under dark conditions, while protein degradation as well as amino acid metabolism was 

rather down regulated. Since metabolite profiling had indicated a strong effect of darkness on 

asparagine concentrations, we specifically analyzed proteins involved in asparagine metabolism. 

Aspartate amino transferase 2, which produces aspartate as the precursor for asparagine 

synthesis, was significantly increased in darkness at 5 and 9 DAP. We also detected 2 peptides of 

asparagine synthase, but the number of spectra was not sufficient for solid quantification. To 

identify the most explicit changes induced by darkness, log 2 ratios of differentially abundant 

proteins were plotted to the number of spectral counts. By considering a fold change of at least 

1.5 and a minimum of 5 spectral counts to represent major changes, the number of regulated 

proteins decreased to 76 proteins with higher abundance and 99 proteins with lower abundance in 

dark grown seeds of wildtype compared to light conditions (Figure 5B). As expected, the 

majority of proteins with a decreased abundance in darkness are related to light reactions of 

photosynthesis such as photosystem I and II and cytochrome b6f subunits. In addition, dark 

grown seeds show a reduced abundance of proteins balancing redox levels such as stromal 

ascorbate peroxidase, glutathione-disulfide reductase, copper/zinc superoxide dismutase 1, 

peroxiredoxin-2E and thioredoxin 3, whereas proteins related to fatty acid degradation 

(transducin family protein, cycloartenol synthase 1) and proteins involved in nucleotide 

metabolism (pyrimidine 1, purine biosynthesis 4, Inosine-5'-monophosphate dehydrogenase 2, 

carbamoyl phosphate synthetase B) showed an increased abundance. Several enzymes related to 

protein turnover and fatty acid synthesis were strongly affected by changing light conditions. 

However, proteins annotated to these pathways showed a regulation in both directions suggesting 

that instead of regulating a whole pathway, individual sub-steps are modulated. 

 

Effects of ETHE1 deficiency on seed metabolism and development 

 

While the composition of mature seeds was very similar in the ETHE1 knockdown mutant and in 

the wild type, specific differences in the metabolite profile became apparent at earlier 

developmental stages (Figure 4). At 5 DAP alanine and glycine concentrations were 4 to 5 fold 
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increased compared to the wild type under light as well as dark growth conditions. Comparison to 

the metabolite profile of wild type seeds harvested at 4 DAP confirmed, that this effect was not 

due to the earlier developmental stage present in the mutant. There was a trend towards a general 

increase in free amino acids in ethe1-1 seeds compared to the wild type (on average 1.7 fold in 

the light and 1.9 fold in the darkness) (Figure 4C). Hexose levels in the mutant were also elevated 

at 5 DAP, which could however be linked to the earlier developmental stage of the ethe1-1 

embryo, since in the wild type hexose concentrations decreased between 4 and 5 DAP (Figure 

4A). Sucrose as well as TCA cycle intermediates were unaffected (Figure 4C). At 9 DAP the 

metabolite profiles of the ETHE1 deficient seeds were more similar to the wild type than at the 

earlier stage. Amino acid concentrations were only slightly increased (on average 1.3 fold), 

hexose levels were 1.5-2.5 fold higher, and sucrose was decreased to 70 % of wild type level in 

the light and to 60 % in shaded siliques. 

 

The proteome analyses of ethe1-1 seeds compared to wildtype revealed 175 (5 DAP) and 291 

(9 DAP) proteins significantly higher in abundance whereas 176 (5 DAP) and 199 (9 DAP) 

proteins showed a reduced abundance (a full list of proteins with significantly changed 

abundance is given in the supplementary material). To get a global overview of pathways 

potentially influenced by ETHE1, proteins were annotated to functional categories and all spectra 

obtained from proteins of significantly changed abundance at 5 DAP and 9 DAP were summed 

up (Figure 6A, Figure 7A). To characterize the proteome changes induced by an ETHE1 knock 

down in more detail, log 2 ratios of differentially abundant proteins observed at 5 DAP and 9 

DAP were plotted to the number of spectral counts. A fold change of at least 1.5 and a minimum 

of 5 spectral counts were considered representing major changes (Figure 6B, Figure 7B).  

 

Overall, the proteome profiles of ethe1-1 seeds show similar patterns of regulated pathways at the 

two stages investigated, mainly affecting mitochondrial metabolism, protein turnover, amino acid 

metabolism and cell organisation. However, the ethe1-1 seed proteome at 9 DAP differs from 

that at 5 DAP in respect to light reaction of photosynthesis, Calvin cycle and other plastidial 

proteins, which are decreased at 5 DAP and increased at 9 DAP compared to wildtype proteomes. 

Proteins related to sucrose metabolism such as sucrose synthase 1 and sucrose phosphate 

synthase 1F are exclusively increased in ethe1-1 seeds at 5 DAP. Protein turnover might be 

enhanced in ethe1-1 seeds during development indicated by increased abundance of proteins 
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related to protein biosynthesis as well as degradation at both stages. In contrast proteins related to 

amino acid metabolism are reduced at 5 DAP (tryptophan synthase beta-subunit 1, 

acetylornithine aminotransferase) and 9 DAP (glutamate synthase 2, glutamine synthase, 

S-adenosyl-l-homocysteine hydrolase 2, dehydroquinate dehydratase, alanine:glyoxylate 

aminotransferase 3, aspartate aminotransferase 3 and cysteine synthase C1). However, although 

alanine concentrations were strongly increased in the mutant seeds at 5 DAP, there was no 

significant effect on protein abundance of alanine aminotransferase 1 catalyzing synthesis as well 

as degradation of alanine (1.16 fold at 5 DAP, 1.19 fold at 9 DAP). Several enzymes involved in 

cell wall formation were significantly changed in abundance at 5 DAP (UDP-arabinopyranose 

mutase 1, root hair defective 3 GTP-binding protein, beta-1,3-glucanase 3, beta glucosidase 18 

and PHE ammonia lyase 1) and 9 DAP (FASCICLIN-like arabinogalactan protein 8, beta-D-

xylosidase 4, pectinacetylesterase family protein, UDP-D-apiose/UDP-D-xylose synthase 2). In 

addition ethe1-1 seeds show an accumulation of tubulin at 5 DAP which is further increased at 9 

DAP.  

 

ETHE1 knock down leads to impaired endosperm cellularization 

 

Endosperm cellularization has been shown to be affected by ETHE1 knockout (Holdorf et al. 

2012), and our proteomic results indicate that changes in cell wall establishment and cellular 

organization are also present in the knockdown line ethe1-1 at 5 DAP as well as 9 DAP. 

Therefore, we measured the size of central endosperm cells obtained at 7 DAP, in microscopic 

sections of wild type as well as mutant seeds stained with Toluidine Blue O (Figure 8A and B). 

The area of about 50 cells per sample type was calculated. The average cell size in wild type 

endosperm was 156±40 µm². In contrast ethe1-1 seeds showed characteristically enlarged 

endosperm cells with a size of 305±96 µm2. Darkness further increased the endosperm cell size in 

the mutant, while endosperm of wildtype seeds was not affected. 

 

Aberrant mitochondria in ethe1-1seeds 

 

Previous results obtained with the ETHE1 knockout mutant (Holdorf et al. 2012) as well as our 

proteome study indicate potential effects of ETHE1 deficiency on seed mitochondria. Therefore, 

we next investigated the ultracellular structure of embryo and endosperm cells in ethe1-1 at 
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5 DAP by using transmission electron microscopy (TEM). The overall organellar structure was 

relatively normal compared to wildtype, with the exception of the appearance of mitochondria 

(Figure 8C). The main population of mitochondria in both wildtype and ethe1-1 were similar in 

structure (e.g. well distinguished double membrane, lamellar cristae, and relative small area of 

electron-transparent matrix). The maximal differences in size of mitochondria in embryo of 

wildtype cells (0.08-0.28 µm²) and of ethe1-1 (0.04-0.38 µm²) displayed high heterogeneity of 

population in both genotypes. Similar results were achieved by comparison of mitochondria in 

endosperm, namely mitochondria size in wildtype (0.05-0.42 µm²) and ethe1-1 (0.04-0.34 µm²). 

Extremely high variability of individual organelles did not allow defining any statistically 

significant differences. However, embryo cells of ethe1-1 showed aberrant mitochondria, which 

differed from wildtype at the ultrastructural level in means of strongly enlarged size (up to 5-fold 

in length), less pronounced lamellar cristae, larger electron transparent areas in the matrix and 

some electron-dense insertions (Figure 8C). 

 

Discussion 

 

The sulfurdioxygenase ETHE1, which is involved in cysteine catabolism, has an essential but yet 

undefined function in Arabidopsis seed development.   In this study, metabolomics and shotgun 

mass spectrometry based proteomics were implemented to (i) investigate the general role of 

amino acid metabolism in seeds and the specific impact of changing light conditions on seed 

filling and (ii) the characterization of ETHE1 function in developing seeds. 

 

Impact of changing light conditions on seed metabolism 

 

Darkness reduces the seed filling capacity 

 

In serveral dicotyledonous species such as Arabidopsis embryos become green during 

development. Seed plastids differ in their structure from those present in leaves, and since 

carbohydrates are mainly supplied by the mother plant, one can assume that plastidial metabolism 

is changed as well (Ruuska et al. 2002). Nevertheless, it has been proposed that seed 

photosynthesis has a great impact on seed metabolism and supports efficient storage product 

accumulation (Andriotis et al. 2010, Fait et al. 2006, Goffman et al. 2005). Our results confirm 
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that shading of siliques, which obviously prevents photosynthesis, has a great impact on storage 

metabolism characterized by reduced lipid and sugar levels, slightly reduced protein content and 

an accumulation of free amino acids in the seeds. It is very likely that the reduced storage 

capacity in darkness leads to the lower seed weight we observed, since under light conditions 

storage product accumulation coincides with increasing seed weight (Baud and Lepiniec 2009). 

Similar results were obtained in a previous study on B. napus seeds grown in darkness (Borisjuk 

et al. 2013). Since gas diffusion into seeds is low, a major function of seed photosynthesis in fatty 

acid synthesis might be to supply oxygen required for mitochondrial ATP production (Borisjuk 

and Rolletschek 2009, Borisjuk et al. 2005). Interestingly, we found an accumulation of TCA 

cycle intermediates in dark grown seeds, which could be an indication for decreased respiration 

rates. The role of photosynthesis in seed development can also be studied by using inhibitors 

(Allorent et al. 2015). Brushing of Arabidopsis siliques with DCMU to block photosystem II 

activity had no effect on storage protein or lipid content. Also, only minor differences in primary 

metabolites were detected, with the exception of an increase in GABA, proline and galactinol. 

Therefore, it can be assumed that darkness applied to the growing seeds might cause additional 

effects on development and metabolism. 

 

Darkness induces an accumulation of nitrogen-rich amino acids 

 

Nitrogen loading of the seeds is achieved via the import of amino acids (asparagine, glutamine, 

and alanine), which during seed filling are mainly used for storage protein synthesis (Higashi et 

al. 2006). We observed that the nitrogen-rich amino acids asparagine (Asn) and glutamine (Gln) 

were most dramatically increased under dark conditions. One reason for this effect could be an 

induction of Asn synthesis in the absence of light. In leaves asparagine synthetase shows a 

diurnal pattern of activity and is inhibited by light as well as high levels of reduced carbon 

(Nozawa et al. 1999). So far no information is available on the relevance of Asn synthesis vs. 

import in seeds, but it is postulated that Asn has a role in storage product accumulation and might 

act as signal of the internal nitrogen status (Hernandez-Sebastia et al. 2005). We detected 

asparagine synthase in our seed proteome data set, but the number of detected spectra was too 

low for quantification. Another reason for the accumulation of Asn during darkness might be 

reduced nitrogen uptake by the embryo. It is known that nitrogen uptake of the embryo is realized 

by amino acid permease 1 (AAP1), and a defect of this transporter results in accumulation of 
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amino acids in the endosperm at early developmental stages due to limited amino acid shuffling 

to the embryo (Sanders et al. 2009). Asn is imported from the mother plant and subsequent 

degradation and metabolism might be important to produce other essential amino acids. It has 

been shown that defective Asn catabolism causes abnormal seeds and reduced seed weight in 

L. japonicus (Credali et al. 2013). However, we were not able to identify asparaginase in our seed 

samples.  

 

Darkness induces accumulation of branched chain and aromatic amino acids at early stage of 

seed development 

 

In vegetative tissues, amino acids serve as alternative substrate for mitochondrial respiration in 

situations of carbon starvation induced by extended darkness (Araujo et al. 2011). The branched-

chain amino acids valine, leucine, and isoleucine as well as lysine are particularly relevant in this 

functional context since their catabolic pathways produce high amounts of ATP and directly 

transfer electrons into the respiratory chain. Today only limited information on amino acid 

metabolism in seeds is available. Recently, results related to amino acid catabolism obtained from 

leaves were hypothetically transferred to seeds. It is proposed that in response to specific 

developmental processes and stress situations, amino acid catabolism together with 

photosynthesis contributes to energy supply in seeds (Galili et al. 2014). The metabolite profiles 

of dark grown seeds revealed only a mild shortage of carbohydrates in the absence of 

photosynthesis, which was expected since sugars are delivered from the mother plant and further 

metabolized (Melkus et al. 2009). Thus, shading of the silique does not necessarily induce carbon 

starvation conditions, but we could show that it nevertheless induces amino acid accumulation. 

Interestingly, at least in young seeds (at 5 DAP) levels of branched-chain and aromatic amino 

acids were clearly elevated. This first experimental evidence highlights that amino acids are 

presumably not only used for protein biosynthesis but might also contribute to the energy status 

in developing seeds by alternative respiration.  
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Physiological function of ETHE1 in seeds 

 

ETHE1 is required for cell organisation and cell wall establishment 

 

Phenotype analysis revealed that ethe1-1 mutants display a higher sensitivity to changing light 

conditions, indicated by an enhanced delay of embryogenesis during darkness. However, the final 

biomass composition of the dormant seeds was not affected by a knock down of ETHE1. In 

ethe1-1 seeds, the endosperm is composed of enlarged irregularly shaped cells during 

cellularization. Our proteomic results confirm that ETHE1 is involved in the establishment of cell 

walls during development. Proteins related to cell wall degradation such as glucanase and 

glucosidase were increased in abundance in the mutant compared to the wild type and cell wall 

proteins were reduced. Overall, we found high amounts of tubulin in ethe1-1 seeds. In plants, 

tubulins accumulate during high activity of cell division, cell expansion processes, and also 

during development (Wasteneys 2002). A high turnover of cell wall elements and defective cell 

structure establishment might not only affect endosperm cellularization but also nutrient transport 

to the embryo during development of ethe1-1 seeds. It has been shown that a mutant blocking 

transfer cell formation (pea E2748) is defective in normal establishment of embryonic epidermis, 

which induces enlarged cell wall layers and impaired embryo growth (Borisjuk et al. 2002). 

Therefore, proper tissue formation is essential for nutrient transport. Our data might indicate that 

ethe1-1 mutant embryos suffer from nutrient starvation due to impaired tissue formation. It is 

proposed that a switch from high hexose to high sucrose level is essential to ensure proper 

differentiation and cell expansion that elevates storage activity of the embryo (Rolland et al. 

2006, Weber et al. 2005). At 5 DAP high concentrations of glucose and fructose and 

comparatively low levels of sucrose were detected. Enhanced abundance of sucrose synthase 

activity might induce an increase of relative levels of hexoses observed in ethe1-1 seeds. 

However, analyzing wildtype seeds with an equal embryo stage (4 DAP) indicates that the 

difference observed are rather linked to the general delay of seed development than to a specific 

ETHE1 function. The switch to high sucrose levels required for proper embryo development is 

clearly visible at 9 DAP, though sucrose levels are decreased in ethe1-1 compared to wildtype 

seeds.  
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ETHE1 knock down leads to accumulation of amino acids and impaired mitochondrial structure 

 

Amino acid concentrations in ethe1-1 seeds show a general trend towards accumulation 

compared to the wildtype. In particular, ethe1-1 seeds accumulated high amounts of alanine and 

glycine. The endosperm is the first sink within the seed, and amino acids concentration is high 

during early stages. Melkus et al. (2009) demonstrated that a decrease of amino acid levels in the 

endosperm coincides with storage activity in the embryo. At 5 DAP the abundance of 

photosynthesis related proteins was reduced in ethe1-1 seeds. Therefore oxygen supply at that 

time can be expected to be rather low and might facilitate anoxic conditions. Evidence is given 

that alanine accumulates under hypoxic conditions (van Dongen et al. 2013) and it is proposed 

that the catalytic activity of alanine aminotransferase is involved in low-oxygen tolerance due to 

degradation of alanine after hypoxia (Miyashita et al. 2007). Indeed, protein abundance of alanine 

aminotransferase was slightly, albeit not significant, increased in the mutant (1.16 fold at 5 DAP 

and 1.19 fold at 9 DAP). Another line of evidence is given by the presence of unusually shaped, 

enlarged mitochondria in ethe1-1 seeds. Recently it has been shown that in leaves the 

establishment of giant mitochondria is induced by darkness, at reduced carbon levels and under 

hypoxia (Jaipargas et al. 2015). However, for seeds only little information on mitochondrial 

structure is available. Giant mitochondria were observed in the egg cells during double 

fertilization, but so far not in other stages of embryogenesis (Kuroiwa and Kuroiwa 1992).  

ETHE1 knock down leads to a severe defect in mitochondrial structure, underlining its 

importance in seed energy metabolism. 
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Material and Methods 

 

Plant growth and seed harvesting 

 

A. thaliana wildtype (ecotype Columbia) and ethe1-1 (SALK_021573, Nottingham Arabidopsis 

Stock Centre, University of Nottingham) plants were grown in a climate chamber under longday 

conditions (16h light/8h dark, 22°C, 85 µmol s-1 m-2 light intensity and 65% humidity). Flowers 

were labeled at the day of pollination. Subsequently siliques were harvested from 1 to 9 DAP. 

For dark treatment, siliques were shaded with aluminium foil 24 hours after flower tagging while 

the rest of the plant and control siliques were grown under normal light conditions. 

 

Phenotypic analysis of seed samples 

 

Whole-mount preparations were used for microscopic analysis of A. thaliana wildtype and 

ethe1-1 embryo development grown under light and dark conditions. Seeds from at least 5 

siliques each were cleared by incubation with Hoyer´s solution [15 mL distilled water, 3.75 g 

gum Arabic, 2.5 mL glycerine, 50 g chloral hydrate] overnight. Embryo development was 

analysed by using a Normarski optics and light microscopy. Observed embryo stages were 

counted. For analyzing seed tissue differentiation histological sections were prepared form 7 

DAP ethe1-1 and wildtype seeds grown under light and dark conditions. Seed samples were fixed 

with 1.25% formaldehyde and 0.1 M phosphate buffer overnight followed by dehydration of the 

samples by a series of ethanol aqueous solutions (30-99%). After dehydration samples were 

infiltrated with Historesin (Leica). Sections of 3.5 µm were prepared using a microtome 

(HYRAX M55, Zeiss) and Sec55 low profile blades (MICROM). Sections were stained with 

0.5% Toluidine Blue O in 200mM phosphate buffer. Photographs of cleared seeds and sections 

were taken with a Zeiss microscope (Axioskop2) and AxioCam MRc5 camera. Seed size and 

weight were measured for dormant seeds of ethe1-1 and wildtype grown under light and dark 

conditions for 100 seeds each. Significant differences were calculated using a Student´s t-test (p-

value ≤0.05). For electron microscopy of mitochondria seeds of wildtype and ethe1-1 (5 DAP) 

were fixed and embedded in accordance to Tschiersch et al. (2011). Digital records of seed 

mitochondria were made on a Zeiss 902 electron microscope at 80 kV. 
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Germination rates 

 

Arabidopsis seeds of wildtype (ecotype Columbia, Col0) and ethe1-1 grown under light and dark 

conditions were surface sterilized with 6% sodium hypochloride and 100% ethanol followed by 

five washing steps with sterilized water . For vernalization seeds were incubated for 2 days at 

4°C in the dark. Approximately 20 seeds were sown per plate (3 replicates per sample) on MS-

medium [60mM sucrose, 1% Agar, 0.5% MS-medium (Duchefa), pH 5.7-5.8 with KOH] and MS 

medium without a carbon source and incubated for another 2 days at 4°C in the dark. Afterwards 

the plates were placed to a growth chamber (24°C, 16 h light/8 h dark). After 72h germinated 

seeds were counted. A seed is considered to be germinated when the radicle raptures the 

endosperm and the testa.  

  

Silique culture 

 

Siliques were harvested from wildtype and ethe1-1 plants at 2 DAP and cultured in a medium 

[1.5% MS and 2mM MES, pH 5.6] (control). For amino acid treatments 0.1mM, 0.5mM and 

1 mM cysteine and leucine were added to the silique culture. A concentration of 10 mM resulted 

in seed abortion for both genotypes (data not shown). Siliques were cultured for 3 days in a 

climate chamber under longday conditions (seed stage equivalent to 5 DAP). Subsequently, seeds 

were harvested and embryo stages investigated by seed clearing and light microscopy as 

described above. 

 

Metabolite profiling 

 

Metabolites of ethe1-1 and wildtype seeds (4, 5 and 9 DAP) grown under light and dark 

conditions were extracted and subsequently analysed by GC-TOF MS as described by Lisec et al. 

(2006). Chromatograms and mass spectra were evaluated by using TagFinder 4.0 software 

(Luedemann et al., 2008) and Xcalibur 2.1 software (Thermo Fisher Scientific, Waltham, USA). 

Metabolites were identified in comparison to database entries of authentic standards (Kopka et 

al., 2005; Schauer et al., 2005). Peak areas of the mass (m/z) fragments were normalized to the 

internal standard (ribitol) and fresh weight of the seed samples. Identification and annotation of 

detected peaks followed recent recommendations for reporting metabolite data (Fernie et al., 
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2011). Metabolites (starch, total proteins, total lipids and amino acids) of dormant wildtype and 

ethe1-1 seeds grown under light and dark conditions were extracted and analyzed as described in 

Schwender et al. (2015). 

 

Sample preparation for mass spectrometry 

 

Proteins of wildtype and ethe1-1 (5DAP, 9 DAP, light, dark) were extracted from 30 mg of 

pulverized seeds (pooled sample) by adding 150 µL extraction buffer [4% SDS (w/v), 125mM 

TRIS, 20% glycerol (v/v)] and incubating at 60°C for 5 min. Another 150 µL of ddH2O were 

added to the sample followed by centrifugation at 18000xg for 10 min. The protein concentration 

of the supernatant was measured by using the Pierce™ BCA Protein Assay Kit (Thermo Fisher 

Scientific, Dreieich, Germany). To each sample (total protein 50 µg) 2-mercapto ethanol with a 

trace of bromophenol blue was added to a final concentration of 5%. SDS gel electrophoresis 

using a 1D glycine gel (stacking gel 4% acrylamide, separating gel 14% acrylamide) was 

performed according to Leammli (1970). The gel run was stopped before proteins entered the 

separation gel. The gel was fixed with 10% (v/v) acetate in 40% (v/v) methanol for 45 min and 

stained with Coomassie blue CBB G-250 (Merck, Darmstadt, Germany) for 30 min as described 

by Neuhoff et al. (1985 and 1990). Gel bands were cut using a scalpell and diced into 1.0-1.5 mm 

cubes. Carbamidomethylated followed by tryptic digestion and extraction of proteins was 

performed according to Klodmann et al. (2010). Resulting peptides were resolved in 20 µL of 2% 

[v/v] ACN, 0.1% [v/v] formic acid (FA) prior to MS analysis. 

 

Shot gun mass spectrometry and relative protein quantification 

 

Shot gun mass spectrometry was performed by using a Q-Exactive (Thermo Fisher Scientific, 

Dreieich, Germany) mass spectrometer coupled to an Ultimate 3000 (Thermo Fisher Scientific, 

Dreieich, Germany) UPLC. Three times (technical replicates) four microliter of peptide solution 

per seed sample were injected into a 2 cm, C18, 5 µm, 100 Å reverse phase trapping column 

(Acclaim PepMap100, Thermo Fisher Scientific, Dreieich, Germany). Peptide separation was 

done on a 50 cm, C18, 3 µm, 100 Å reverse phase analytical column (Acclaim PepMap100, 

Thermo Fisher Scientific, Dreieich, Germany). Peptides were eluted by using a non-linear 2% 

[v/v] to 34% [v/v] acetonitrile gradient in 0.1% [v/v] formic acid of 60 minutes. For MS analysis 
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a spray voltage of 2.2 kV, capillary temperature to 275°C and S-lens RF level to 50% was tuned. 

For full MS scans, the number of microscans was adjusted to 1, resolution to 70,000, AGC target 

to 1e6, maximum injection time to 400 ms, number of scan ranges to 1 and scan range to 400 to 

1600m/z. For dd-MS2, the number of microscans was adjusted to 1, resolution to 17,500, AGC 

target to 1e5, maximum injection time to 120 ms, Loop count to 10, MSX count to 1, isolation 

window to 3.0 m/z, fixed first mass to 100.0 m/z and NCE to 27.0. Data dependent (dd) settings 

were adjusted to underfill ratio of 0.5%, intensity threshold to 2.0e3; apex trigger to 10 to 60 s, 

charge exclusion to unassigned 1, 5, 5 – 8, >8, peptide match to preferred, exclude isotopes to on 

and dynamic exclusion to 45.0 s. Protein identification and was done by using Proteome 

Discoverer (Thermo Fisher Scientific). MS/MS data were queried against the Tair10plus database 

using the MASCOT search engine (peptide confidence high, minimum peptide count 1). For 

quality control of MS shotgun run a principle component analysis (PCA) using Perseus software 

was performed. Protein abundance was quantified by spectral counting and significant 

differences between samples were calculated using a Student´s t-test (p-value ≤ 0.05). 
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Figures 

 

 

Figure 1: Seed development of A. thaliana wildtype and ethe1-1 seeds under light and dark conditions. A: 
Representative seeds and embryos of wildtype (wt) and ethe1-1 from 1 to 9 days after pollination (DAP) grown 
under light and dark conditions, bars = 100 µm. B: Progression of embryo development in wt and ethe1-1 seeds. A 
total of 180 siliques and 7781 seeds between 1 and 9 DAP were analyzed of wildtype and ethe1-1 grown under light 
and dark conditions. Blue arrows indicates stages investigated by metabolomics and proteomics. 
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Figure 2: Seed weight, seed size and biomass composition of dormant seeds. A: Seed size and weight of 100 
dormant seeds from wildtype and ethe1-1 plants grown under light and dark conditions. Asterisks indicate significant 
changes based on a Student´s t-test (p-value ≤0.05) B: Storage compounds and amino acids were extracted from 
dormant seeds from wildtype and ethe1-1 grown under light and dark conditions and quantified. C: amino acid 
profiles of dormant seeds from wildtype and ethe1-1. wtL wildtype seeds grown under light conditions, wtD 
wildtype seeds grown under conditions dark conditions, mL ethe1-1 seeds grown under light conditions, mD ethe1-1 

seeds grown under dark conditions. 
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Figure 3: Priciple component analysis and overview of proteomic comparisons. For quality of shotgun mass 
spectrometry data principle component analysis (PCA) was performed by using Perseus software. Proteomic 
comparisons are indicated by numbers (1, 2a, 2b) in the PCA plots of 4 and 5 DAP seeds (A) and 9 DAP seeds (B). 
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Figure 4: Metabolite profiles. Metabolites (sugar metabolites, TCA cycle intermediates, amino acids) of ethe1-1 
and wildtype seeds (4, 5 and 9 DAP) grown under light and dark conditions were extracted and subsequently 
analysed by GC-TOF MS. Peak areas of the mass (m/z) fragments were normalized to the internal standard (ribitol) 
and fresh weight of the seed samples. wtL wildtype seeds grown under light conditions, wtD wildtype seeds grown 
under conditions dark conditions, mL ethe1-1 seeds grown under light conditions, mD ethe1-1 seeds grown under 
dark conditions. 
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Figure 5: Regulated pathways and proteins in dark grown seeds. A: Distribution of regulated proteins showing a 
potentially abundance in dark grown seeds across functional categories, B: Signigicantly regulated proteins in dark 
grown seeds. red= decreased abundance with a ratio >1.5 ( log2 = 0.58) and >5 spectra; blue = increased abundance 
with a ratio >1.5 and >5spectra, grey = signigicantly abundant proteins with a ratio <1.5 and <5 spectra. Sigifincance 
levels were calcultated with a Student´s t-test (p-value ≤ 0.05). Differences between the samples are given in log2 
ratios. 
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Figure 6: Regulated pathways and proteins in ethe1-1 seeds at 5 DAP compared to wildtype. A: Distribution of 
regulated proteins showing a potentially abundance in ethe1-1 seeds at 5 DAP across functional categories, B: 
Signigicantly regulated proteins in ethe1-1 seeds. red= decreased abundance with a ratio >1.5 ( log2 = 0.58) and >5 
spectra; blue = increased abundance with a ratio >1.5 and >5spectra, grey = signigicantly abundant proteins with a 
ratio <1.5 and <5 spectra. Sigifincance levels were calcultated with a Student´s t-test (p-value ≤ 0.05). Differences 
between the samples are given in log2 ratios. 
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Figure 7: Regulated pathways and proteins in ethe1-1 seeds at 9 DAP compared to wildtype. A: Distribution of 
regulated proteins showing a potentially abundance in ethe1-1 seeds at 9 DAP across functional categories, B: 
Signigicantly regulated proteins in ethe1-1 seeds. red= decreased abundance with a ratio >1.5 ( log2 = 0.58) and >5 
spectra; blue = increased abundance with a ratio >1.5 and >5spectra, grey = signigicantly abundant proteins with a 
ratio <1.5 and <5 spectra. Sigifincance levels were calcultated with a Student´s t-test (p-value ≤ 0.05). Differences 
between the samples are given in log2 ratios. 
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Figure 8: Endosperm cellularization and mitochondria structure. A: Seed sections (7DAP) of wildtype and 
ethe1-1 seeds grown under light and dark conditions. Sections were stained with Toluidine Blue O to visualize 
endospserm cellularization, bars = 100 µm B: Endosperm cell size of ca. 50 cells is given as area [µm2] obtained 
from microscopy images using AxioVision software (Version 4.8.1). Asterisks indicate significant changes to 
wildtype light (wtL) based on a Student´s t-test (p-value ≤0.05) C: Electron microsopic analysis of mitochondrial 
structure from ethe1-1 seeds compared to wildtype bars = 500 nm. wtL wildtype seeds grown under light conditions, 
wtD wildtype seeds grown under conditions dark conditions, mL ethe1-1 seeds grown under light conditions, mD 
ethe1-1 seeds grown under dark conditions. 
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Supplementary figure 1: Experimental design. A. thaliana wildtype (ecotype Columbia) and ethe1-1 plants were 
grown in a climate chamber under longday conditions (16h light/8h dark, 22°C, 85 µmol s-1 m-2 light intensity and 
65% humidity). Flowers were labeled at the day of pollination. Subsequently siliques were harvested from 1 to 
9 DAP. For dark treatment, siliques were shaded with aluminium foil 24 hours after flower tagging while the rest of 
the plant and control siliques were grown under normal light conditions. Seeds were investigated by phenotyping, 
comparative proteomics and measuring metabolite profiles. 
 
 
 

 

Supplementary figure 2: Germination rates. Sterilized seeds of wildtype and ethe1-1 grown under light and dark 
conditions were were sown per plate (3 replicates per sample) on MS-medium [60mM sucrose, 1% Agar, 0.5% MS-
medium (Duchefa), pH 5.7-5.8 with KOH] and MS medium without sucrose and incubated for another 2 days at 4°C 
in the dark. Afterwards the plates were placed to a growth chamber (24°C, 16 h light/8 h dark). After 72h germinated 
seeds were counted. A seed is considered to be germinated when the radicle raptures the endosperm and the testa. 
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