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ABSTRACT

System theory deals with constructing models of systems to establish a relation
between the inputs and the outputs of a system. System identification, as a sub area
of system theory, makes this construction of the model possible by the observation
of inputs and outputs. Such a construction is beneficial if a derivation of the model
by first order principles, as e.g., physical laws, is difficult due to a complex or an
unknown system structure.

From the perception of system theory, computer networks are systems in which
the data arrivals represent the inputs and the data departures the outputs of
a network path. In this thesis, we establish an analytical system identification
methodology for computer networks with random service by the measurement
of data arrivals and data departures. To apply the developed methodology to
computer networks, we implement it into practical procedures.

We establish our system identification methodology in the framework of the
stochastic network calculus, a system theory for computer networks. Thereby, the
identification applies to linear systems that feature properties, which are characteris-
tic for computer networks, such as multi-hop paths, various scheduling disciplines,
and random service due to cross traffic, channel characteristics, or protocol be-
havior. This universality for linear systems is achieved by the use of a black-box
model, where the system model is determined by measurements and no specific
assumptions have to be made beforehand on the internal system structure. In the
framework of the network calculus, the so-called service curve, which gives a com-
plete description of a linear system, represents the system model. It specifies the
coherence between time and data, thereby it provides a description of the system
on arbitrary time scales.

We illustrate that the area of available bandwidth estimation also belongs to
system identification. On the contrary to our system identification methodology,
available bandwidth estimation typically uses a gray-box model of the system,

i.e., a concrete system model is assumed in advance that is parameterized by
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measurements. Available bandwidth estimation often disregards the variability of
the service by the assumption of a deterministic system. Effects that occur due to the
discrepancy of this assumption and the characteristics of networks are attenuated by
post processing of the measured data e.g., by averaging of multiple measurements.
These simplifications also lead to descriptions that usually account for only one
time scale. Furthermore, such tools often make assumptions that apply only to
networks with specific properties e.g., first-in first-out (FIFO) packet scheduling,
single-hop topologies, or constant rate channels, by the use of a gray-box model.

Our description of the systems in the network calculus also provides explanations
for a number of fallacies observed by the application of available bandwidth
estimation tools. Such explanations are possible due to our description of networks
by linear time-variant systems. The description accounts for randomness, which is
often disregarded.

We transfer the analytical system identification methodology into practical prob-
ing procedures. We design therefore one procedure for networks, in which proper-
ties can be assumed to be stationary for short time periods, as paths in production
networks, and a second procedure for networks, in which properties are stable for
infinite scales, such as dedicated testbeds.

By applying these procedures to networks with the earlier mentioned properties
(multi-hop paths, various scheduling disciplines, and random service due to cross
traffic, channel characteristics, or protocol behavior), we validate the methodology
by comparison to results from well-known available bandwidth estimation tools
and to analytical results. In doing so, we also provide system models for computer
networks and protocols deployed therein for which only asymptotic results were

known before.

Keywords: system identification, performance evaluation, network calculus, TCP,
WLAN, random systems, available bandwidth estimation, computer networks,
effective service curve
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ZUSAMMENFASSUNG

Die Systemtheorie beschiftigt sich mit der Erstellung von Modellen zur Beschrei-
bung der Beziehung zwischen Eingangs- und Ausgangssignalen von Systemen.
Die Systemidentifikation, als Teilgebiet der Systemtheorie, ermoglicht diese Erstel-
lung anhand von Beobachtungen der Eingangs- und Ausgangssignale. Dies ist von
Vorteil, wenn eine Herleitung des Modells auf Grundlagen, wie z.B. physikalischen
Gesetzen, aufgrund von einer komplexen oder unbekannten Struktur des Systems
schwierig ist. Auch Rechnernetze sind im Rahmen der Systemtheorie Systeme, in
denen die Eingangssignale Datenankiinfte und die Ausgangssignale Datenabgange
sind. In dieser Arbeit wird eine analytische Methodik zur Systemidentifikation
fiir Rechnernetze mit zufilligem Dienstangebot hergeleitet, wobei das System-
modell durch Messung der Datenankiinfte und -abgénge eines Netzwerkpfades
erstellt wird. Zur Anwendung in Rechnernetzen wird diese Methodik in praktische
Verfahren umgesetzt.

Die analytische Methodik zur Systemidentifikation wird im Rahmenwerk des
stochastischen Netzwerkkalkiils etabliert, welches eine Systemtheorie fiir Rech-
nernetze ist. Dies ermoglicht die Anwendung auf lineare Systeme, welche fiir
Rechnernetze charakteristische Eigenschaften besitzen, wie Pfade mit mehreren
Knoten, verschiedene Abarbeitungsverfahren von Warteschlangen und zuféilligem
Dienstangebot durch existierenden Datenverkehr, Kanaleigenschaften oder Proto-
kollverhalten. Diese Allgemeingiiltigkeit fiir lineare Systeme wird durch Verwen-
dung eines Black-Box-Modells erreicht, wobei das gesamte Systemmodell durch
Messungen bestimmt wird und keine spezifischen Annahmen im Voraus {iiber die
interne Struktur des Systems getroffen werden. Die sogenannte Dienstkurve, welche
eine vollstindige Spezifikation eines linearen Systems darstellt, reprasentiert das
Systemmodell. Sie gibt den Zusammenhang zwischen Zeit und Datenmenge an,
wodurch sie Systeme auf beliebigen Zeitskalen beschreibt.

Wie in dieser Arbeit gezeigt wird, ist die Schatzung der verfiigbaren Bandbreite
ebenfalls im Bereich der Systemidentifikation anzuordnen. Im Gegensatz zu der

in dieser Arbeit entwickelten Methodik, verwenden Programme zur Schitzung



der verfiigbaren Bandbreite tiblicherweise ein Gray-Box-Modell, d.h. es wird bere-
its ein konkretes Systemmodell angenommen, welches noch durch Messungen
parametrisiert wird.

Die bisherigen Programme vernachléssigen allerdings meist die Variabilitat des
Dienstangebots, dadurch dass ein deterministisches System angenommen wird.
Auftretende Effekte, die durch die Diskrepanz zwischen diesen Annahmen und
Eigenschaften von Netzwerken entstehen, werden durch Nachbearbeitung der
gemessen Daten abgeschwicht, z.B. durch Mittelung tiber mehrere Messungen.
Durch diese Vereinfachungen sind oft nur Beschreibungen mit Betrachtungen einer
Zeitskala moglich. Zudem gelten Programme, die Gray-Box-Modelle verwenden,
nur fiir Netzwerke mit den jeweils angenommen Eigenschaften, wie z.B. das FIFO
Abarbeitungsverfahren von Warteschlangen, Rechnernetze, die nur aus einem
Knoten bestehen, oder Ubertragungskanile mit konstanter Rate.

Zur Anwendung der in dieser Arbeit erstellten Methodik wird diese in praktische
Verfahren umgesetzt. Hierbei wird ein Verfahren fiir Netzwerke entwickelt, in denen
die Eigenschaften fiir kurze Zeitrdume als stationdr angenommen werden kénnen,
wie z.B. Netzwerkpfade in produktiven Netzen. Des Weiteren wird ein zweites
Verfahren fiir Netze entwickelt, in denen Eigenschaften fiir eine unbegrenzte Zeit
stabil sind, was z.B. in dedizierten Testumgebungen der Fall ist.

Die Beschreibung der Systeme im Netzwerkkalkiil erklart einige bekannte Irr-
tiimer, die bei der Anwendung von Programmen zur Messung der verfiigbaren
Bandbreite entstehen. Dies wird dadurch ermoglicht, dass in der erstellten Methodik
die bisher oft vernachléssigte Variabilitiat durch die Beschreibung von Netzwerken
als lineare zeit-variante Systeme berticksichtigt wird.

Zur Validierung werden die praktischen Verfahren in Netzwerken mit den be-
reits genannten Eigenschaften (Pfade mit mehreren Knoten, verschiedenen Abar-
beitungsverfahren von Warteschlangen und zufélligem Dienstangebot durch exis-
tierenden Datenquerverkehr, Kanaleigenschaften oder Protokollverhalten) einge-
setzt und die Ergebnisse mit denen von bekannten Programmen zur Messung der
verfiigbaren Bandbreite sowie mit analytischen Ergebnissen verglichen. Dabei wer-
den zusétzlich Systemmodelle fiir Netzwerke und fiir darin verwendete Protokolle

erstellt fiir die bisher nur asymptotische Ergebnisse bekannt waren.
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DISSERTATION



INTRODUCTION

System identification deals with building models of systems by observing signals
at the ingress and the egress of the systems. In system theory, a system is defined

as [69]:

“... an object in which different variables interact at all kinds of time

and space scales and that produces observable signals”.

This definition applies for many subject areas as biology, chemistry, economics,
engineering, or physics just to name a few [127]. Constructing models of systems
from the knowledge of system internals or from measurements supports the com-
prehension and analysis of these systems. For example, in engineering sciences the
stability of systems, which prevails if a system reacts on bounded inputs only with
bounded outputs, is often analyzed. We denote the system theory from engineering,
such as electrical engineering or mechanical engineering, as the classical system
theory in the following.

According to [85], the term system identification was established in [134] in 1956
and deals with the identification of dynamic system in the area of control theory. In
the subsequent years, system identification attracted great attention for automatic
control [12]. The conjunction of automatic control and system identification led to
adaptive control, whereat the controller is adjusted to the system by identification
of it. This enables the adjustment of the controller for unknown systems or the
parametrization of an assumed system model, e.g., if the system behavior changes
slowly over time [13].

Although the term system identification was phrased in the area of control theory,
the idea of determining system models from observations exists in many other
areas as statistics, time series analysis, machine learning, neural networks, etc., as

elaborated in [85]. For further details on system identification in the classical system
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disturbance
nput output
—p> system P
(a) general system
cross traffic
A
arrivals departures

(b) computer network as a system

Figure 1.1: Interpretation of a computer network as a system. In computer networks the
inputs become the arrivals and the outputs the departures.

theory and on the classical system theory itself, we refer to [84]. In this thesis, we
extend system identification to computer networks.

Fig. 1.1a presents a general system with inputs, outputs, and disturbances. In a
mathematical notion, the system is an operator that maps inputs to outputs [74].
This mapping is specified by a mathematical operation and a system model. We
also refer to it as the system description in a non-mathematical notion. For example
in the classical system theory, the mathematical operation is the convolution and the
impulse response is the system model. The disturbances further affect the system
and prevent an exact relation between the inputs and the outputs.

Fig. 1.1b shows a computer network with data arrivals and departures. The data
traverse a network path from the ingress to the egress of that path; we refer to
this data flow as the through flow. This through flow interacts with existing traffic
on its path, the so-called cross traffic. If the computer network is interpreted as a
system, the inputs to the system are the arrivals of the through flow and the outputs
are the departures of the flow. The system behavior is defined e.g., by the cross
traffic, the employed protocols and scheduling disciplines in the network, and the

characteristics of the transport medium as wired or wireless links. For example, in
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real networks the cross traffic is usually random. Depending on the model class
of a system the randomness of the cross traffic can be viewed as disturbances
or as a characteristic inherent in the system. Assuming a deterministic system,
the randomness of cross traffic disturbs the exact relation between the inputs and
outputs, but assuming a system with random service, the randomness codetermines
the model. In computer networks, the analysis is often with respect to quality of
service (QoS) parameters as e.g., throughput, which is represented as the available
bandwidth in this work, and delay. Such parameters are of interest for real-time
applications that have specific requirements on these parameters.

A system theory for computer networks is the network calculus [15, 29, 61, 74],
which provides a framework for deterministic systems as well as systems that
feature randomness. It makes use of the min-plus algebra or the max-plus algebra.
Compared to the classical algebra, the plus operator is replaced by the minimum
operator or by the maximum operator with respect to the algebra, and the multipli-
cation operator becomes the plus operator. Although the classical system theory
and the network calculus deviate in the algebra, many analogies exist, e.g., the
convolution operations exists in the min-plus as well as the max-plus algebra and
fundamental classes to categorize systems in the classical system theory can also be
applied to computer networks e.g., linearity versus non-linearity and time-variance
versus time-invariance’.

The system model in the network calculus is expressed by a service curve. Phrased
simply, a service curve in the min-plus algebra specifies the amount of data that a
system is able to forward between two instances of time. In the max-plus algebra, a
service curve states the time required to forward a specific amount of data.

The foundation of the network calculus was laid in 1991 in [31, 32], in which
traffic is described by constraints on its burstiness. This description allows the
derivation of performance bounds such as delay and backlog bounds for systems.
More precisely, the work is the foundation of the deterministic network calculus
since worst-case bounds are used for the description of the data traffic, the systems,
and the performance bounds. To this day, descriptions for systems as constant rate

links, various scheduling disciplines, delay elements, traffic shapers, and window

1 For details on theses model classes, see Chap. 2 and Appendix A.1



1.1 SYSTEM IDENTIFICATION OF COMPUTER NETWORKS

flow control protocols exist just to name a few. Even more, the network calculus
offers the analysis of combinations of systems as connections in parallel or series.
Comprehensive summaries exist in [29, 43, 74].

For the description of networks with random service, the network calculus
provides two different approaches. On the one hand, an approach for linear and
non-linear time-varying systems is established in [29, 68, 74], where the system
model is represented by a random process. On the other hand, there is the stochastic
extension, namely the stochastic network calculus, that accounts for randomness
by using probabilistic bounds on the system model. The basis of the stochastic
network calculus was laid by the extension of the seminal work [31, 32] in [25, 27, 71].
Comprehensive summaries are given in the monographs [29, 61] and the survey [43].
To this day, stochastic network calculus has allowed the analysis of state of the art
Internet traffic models e.g, in [81, 96, 113].

While network calculus is a system theory for computer networks, it also finds
its way to other fields such as real time systems [123], information theory [86, 87],
sensor networks [118], smart grids [128], and battery lifetime [75, 131].

In the framework of the network calculus, many works engage in finding the
system model with the full knowledge of the internals of the systems. Such models
are known in the notion of system identification as white-box models [69]. However,
with incomplete knowledge or when complexity prevents a direct derivation of a
white-box model, system identification leads to models built by measurements. In
the classical system theory, many works exist in the field of system identification,
see e.g., [69, 84]. Contrary, in the framework of the network calculus only few works

are available for system identification.

1.1 SYSTEM IDENTIFICATION OF COMPUTER NETWORKS

In system identification, system models are built from measurements of the inputs
and the outputs of systems, in which the internal system structure is only partially
available or completely unknown. If the internal structure is partially known and

only the parameters of an assumed model are determined by measurements, these
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models are called gray-box models. Whereas, if no internals are known for a system,
we refer to black-box models, at which the system model is completely determined
by measurements [69].

To this day, there are only few approaches for system identification in the frame-
work of the network calculus. Gray-box models are used for building deterministic
system models of routers in [22, 125] based on measurements. In [80], it is shown
that system identification on the basis of black-box models is also feasible in the
framework of the deterministic network calculus. This establishes system identifica-
tion in the network calculus that applies to a broad range of min-plus linear systems
since the identification procedure does not rely on any specific system structure.
The latter work has its origin in the framework of the network calculus, but it is also
related to available bandwidth estimation since the probing approaches originate
from the available bandwidth estimation tools presented in [58, 111].

Besides the approaches named above, which are developed in the framework
of the network calculus, available bandwidth estimation also belongs to system
identification. The available bandwidth specifies the unused capacity of a network
path, which is of interest e.g., for applications to test whether required sending
rates are achievable or to adapt to the available bandwidth, for congestion control
not to overload a path, or for testing the quality of service (QoS) of a path. Many
tools developed for available bandwidth estimation assume a deterministic single-
hop network with fluid traffic and a first-in first-out (FIFO) scheduling discipline
e.g., [54, 58, 59, 94, 111, 122]. The resulting system model, the tools rely on, is a
gray-box model. It leads to the description of the available bandwidth by usually a
single value and assumes it to be constant over time, notwithstanding in practical
networks it varies over time. The available bandwidth is derived from information
that is imprinted on packets when they traverse the network path. This information
is extracted e.g., by measurements of the end-to-end delay from timestamped probe
packets or by an evaluation of the dispersion of packets. Available bandwidth
estimation tools that rely on delay measurements are presented in [58, 59], and
tools that measure the packet dispersion are described in [54, 94, 122].

Obviously, many assumptions made for the construction of the system model,

which is used by these tools, are not met in practical computer networks. The
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available bandwidth is not deterministic since traffic in the network is random and
typically a network path consists of multiple hops. The assumptions of constant
rate links and FIFO scheduling are appropriate for wired networks but must
be adapted to wireless networks. For example, the medium access procedure
in wireless networks that are based on the IEEE 802.11 standard results in a
non-FIFO scheduling behavior, see [21, 108]. Additionally, the medium access
procedure in these networks leads to non-work-conserving systems since before
data is transmitted via the channel, a random latency occurs even if the channel is
idle [67].

Existing available bandwidth estimation tools produce acceptable results if the
assumptions are mildly violated, e.g., if the assumption of determinism holds for
time scales observed by a bandwidth estimation tool. In [20, 60], the impact of
the simplified model used by many bandwidth estimation tools is reported. The
applicability of the available bandwidth estimation tools [54, 58, 59, 78, 94, 111, 122]
to IEEE 802.11 networks is limited. The tools show partially a strong deviation
from the expected available bandwidth as demonstrated by measurements [20].
In addition, underestimation of the available bandwidth due to randomness of
the cross traffic and multi-hop networks is reported in [60]. On the one hand,
this led to available bandwidth estimation tools adapted to IEEE 802.11 networks
e.g., [62, 64, 78], on the other hand, the impact of the assumption of a deterministic
system with fixed-capacity links and FIFO scheduling is analyzed and relaxed with
respect to randomness in [35, 52, 82, 83, 104, 105].

To summarize, few system identification methodologies exist in the network
calculus. These methodologies show the applicability of gray-box and black-box
models but neglect the randomness of systems. Also, available bandwidth estima-
tion belongs to system identification, in which the system is often described by a
single value. The usual system model utilized for available bandwidth estimation
ignores the randomness inherent in real computer networks and thereby neglects
that the available bandwidth varies on different time scales. Few approaches in-
clude randomness in their system description, but these are typically customized to

networks for which specific assumptions apply.
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1.2 CONTRIBUTION

We contribute an analytical methodology in the framework of the stochastic network
calculus to the system identification of computer networks that belong to the class
of linear systems. Thereby, we enable the determination of system models for net-
works with random service without the knowledge of the internal system structure
by relying on a black-box model. The implementation of this methodology into
practical procedures allows us to validate the procedure and also to determine the
system model of various networks by measurements. Utilizing the network calculus
for the modeling of systems, brings also new insights into available bandwidth
estimation. Below, we state the contributions in detail.

The first main contribution is the derivation of the system identification method-
ology in the min-plus and the max-plus algebra. For this derivation, we prove
the relation between two descriptions for networks with random service in the
framework of the network calculus: a description by random processes, which
characterizes the randomness by a linear time-variant system operator, and a proba-
bilistic description, which uses a probabilistic bound to account for the randomness.
Using the relation between these two descriptions, we solve the inversion problem
that is the derivation of the system model from delay or backlog measurements.
This leads to our system identification methodology that characterizes the system
model by a service curve. We give evidence that probing the network path with con-
stant rate packet trains, which consist of multiple successive equally spaced packets,
and that extracting quantiles from the delay distributions or backlog distributions
for various probing rates, leads to service curves that conform to the well-known
definition of the e-effective service curve, which is introduced in [25]. Furthermore,
we prove conditions when steady state delay and backlog distributions exist, which
are required for our system identification methodology. We derive our methodology
in the two algebras that are used in the network calculus. The max-plus algebra
is advantageous in practical applications for the derivation of the service curve
from measurements. The min-plus algebra is widely used in the network calculus,

because it simplifies the calculation for multiplexing of traffic, and it provides
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a more intuitive description. We prove the relation between our methodologies
in both algebras by the definition of a pseudo-inverse, which only results in a
difference of at most one packet. Using this framework of the network calculus,
the system identification methodology holds for a broad range of systems, ranging
from simple constant rate links up to complex systems of multi-hop networks with
random cross traffic and non-work-conserving systems as IEEE 802.11 networks
and also complex protocols.

Second, we contribute new insights to available bandwidth estimation. Since
our system description belongs to the class of time-varying systems and it thereby
applies for networks with random service, it explains effects where available band-
width estimation deviates from real-world results. These effects are ascribed to the
choice of the system model often used for available bandwidth estimation, which
neglects properties inherent in real computer networks. First, we prove that the
leftover service curve [29, 42] resembles the definition of the available bandwidth for
single-hop networks. Furthermore, we show that the expected value of the available
bandwidth leads to an overestimation of the departures. For multi-hop networks,
we prove that the definition of the available bandwidth [82, 83] is recovered by a
service curve description only in the limit. Additionally, our methodology accounts
for the service availability on arbitrary scales and not only in the limit, which
explains the underestimation reported for available bandwidth estimation tools in
multi-hop networks [60].

The specification of the probing procedures is the third main contribution. The
system identification methodology leaves space for the parameter selection for
the probing procedure, which is based on constant rate packet trains. The set of
probing rates, the number of iterations, and the train length have to be specified
for a practical system identification procedure. In theory, the number of iterations
and the train length should be infinite. However, in practice we show that these
parameters can be reduced to finite values by means of statistical methods, including
the specification of the reliability by confidence intervals. For the identification, we
require that the probing rates lead to steady state delay or backlog distributions.
We follow two different design goals for the probing procedure. The first procedure

targets on systems, where stationary path characteristics can only be assumed in
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the short-term, e.g., as it applies to Internet paths for several hours [135]. For such
systems, providing fast results is preferred. Therefore, we introduce a heuristic to
decrease the measurement duration by reducing the required train length for the
system identification. Furthermore, the rate selection achieves a fast convergence to
the maximum rate that observes steady state backlog or delay distributions. This
procedure can also be pruned to the task of estimating the available bandwidth as
a single value. The second procedure targets on systems, where the assumption
of stationarity applies also in the long-term and long measurement durations are
acceptable as e.g., in dedicated testbeds arranged for testing network topologies and
protocols. Moreover, a fine granular rate selection is used to extract more details
from the system.

The fourth main contribution is the experimental validation and evaluation of
our system identification procedures in controlled testbed environments [1, 130]
and by simulation. We compare our system identification procedures to well-known
available bandwidth estimation tools and system identification methodologies from
the deterministic network calculus. We show results for various kinds of networks
and protocols as single- and multi-hop networks with random traffic, wireless
networks with non-work-conserving behavior and protocols such as window flow
control, congestion control, and the transmission control protocol (TCP), which

is the prevalent transport protocol in the Internet. We validate our estimated

system models by comparing it to known analytical results for various networks.

The experiments also confirm the findings for multi-hop networks, where service
availability only recovers the available bandwidth in the limit. Beyond that, we
deliver service curves for networks, where no analytical results exist so far or only

fragmentary findings are available e.g., as asymptotic results. These results include

service curves for wireless IEEE 802.11 networks and also for the TCP protocol.

The service curve estimates include results on the short-term and the long-term
behavior and thereby generate a comprehensive analysis of the systems compared
to existing asymptotic results.

Especially, the application to TCP and wireless networks shows that our system
identification methodology has a broad range of application, which goes beyond

the field of available bandwidth estimation approaches. Furthermore, TCP is a
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challenging protocol since analytical results only exist for simplifying assump-
tions [24, 93, 100], although it is the standard transport protocol in the Internet [92].
Recently, the delay introduced by TCP is brought into focus in [24, 37, 48] since it
is utilized by real-time applications [92] and large delays have a negative impact
on the quality of user experience [37]. Many modifications of TCP are justified
by simulations and experiments. Examples are active queue management (AQM)
approaches as random early detection (RED) [46] and implementations in the TCP
stack as e.g., various congestion control protocols as TCP Cubic [51]. Our system
identification methodology offers a systematic evaluation of these features and
estimates the service of the entire end-to-end path from sender to receiver and not
only parts of it. Moreover, the estimates comprise the behavior of the protocol for
arbitrary input rates. Thereby, the estimates provide models that are applicable
to application traffic, which goes beyond simple bulk transfer. Such models are
required for today’s application as depicted in [115].

To sum up, our system identification procedure is applicable to linear systems
with random service, which is inherent in many computer networks. By choosing
an appropriate model class for computer networks, we can overcome weaknesses
of deterministic models used for available bandwidth estimation or system identi-
fication, so far. The service curve as a system model gives a coherent description
of delay and rate. Also, by using the framework of the network calculus, we bring
new insights into the field of available bandwidth estimation by explaining effects

identified before as fallacies in this area.

1.3 THESIS STRUCTURE

The rest of the thesis is structured as follows. In Chap. 2, we introduce the basics of
system models known in the network calculus. We include system models for the
classes of deterministic systems and systems with random service in the min-plus
as well as in the max-plus algebra and show how performance bounds such as

delay and backlog are computed in the network calculus.

11
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We discuss the state of the art of system identification approaches in Chap. 3.
This includes system identification approaches derived in the framework of the
network calculus and also approaches from available bandwidth estimation, which
we present from a system theoretic perspective.

In Chap. 4, we summarize the aspects of the problem, which are dealt with in
this thesis.

In the subsequent Chap. 5, we derive our system identification methodology. We
interrelate network calculus approaches for systems with random service introduced
in Chap. 2 and present our system identification methodology in the max-plus and
the min-plus algebra. This chapter also includes a first intuitive example for system
identification of an On-Off server.

In Chap. 6, we establish the connection from the network calculus to common
definitions of the available bandwidth. We also present analytical results for ef-
fects that arise if the definition, which is commonly used in available bandwidth
estimation, is applied to random networks.

Chap. 7 provides practical guidelines on the selection of the probing parameters
as the probing rates, the train lengths, and the number of iterations. We therefore
derive probing procedures for two different design goals. On the one hand, for
a fast estimation procedure, preferable in productive networks, and on the other
hand, an estimation procedure that gives more detailed estimates by using more
probing rates and longer packet trains. This procedure is usually acceptable in
dedicated networks for identification purposes.

Chap. 8 presents service curve estimates for various protocols and networks
obtained from simulations and experiments. These estimates are used for validation
where analytical results exist; if no results are available so far, these estimates
contribute to new system models.

At last, Chap. 9 concludes the thesis and gives a perspective of the future work.

12
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3

SYSTEM MODELS FOR COMPUTER NETWORKS

This chapter introduces system models that exist in the framework of the network
calculus for the description of deterministic networks and networks with random
service. A system? is described in the network calculus by the convolution operation
and a service curve. This description specifies the mapping from inputs to outputs
with the service curve as the system model. It can be defined either in the min-
plus or in the max-plus algebra. In the classical system theory, the description
is analog to the convolution and the impulse response of a linear time-invariant
system. For linear systems, the service curve and the impulse response are complete
descriptions of the respective systems.

In the classical system theory, four fundamental classes arise from combinations
of properties a system has as linearity versus non-linearity and time-invariance
versus time-variance. If a system is time-invariant, the response to an input signal
does not depend on the instant of time when the signal is applied to the ingress
of the system. In the classical system theory, linearity implies that the output in
response to a signal consisting of an addition of two single inputs is equal to the
addition of the outputs of the individual signals and that a scaling of the input
signal leads to the same scaling of the output signal. In the network calculus, these
properties transfer according to the respective algebra as described below for the
min-plus and the max-plus algebra3. Time-(in)variance applies to the min-plus
algebra. Using the max-plus algebra, a system is (in)variant with respect to the
amount of data to which is referred as shift-(in)variance.

Besides this classification, systems in the network calculus are often classified
as deterministic systems or systems with random service, which follows from the

differentiation of the deterministic network calculus and the stochastic network

The terms computer network and system are used interchangeably in the following, at which the
system is the abstraction of the network.
For the definition of the properties, we refer to Appendix A.1

13
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calculus as e.g., in [30]. We follow this classification in this chapter and present
service curves for deterministic systems that are time- or shift-invariant and service
curves for networks with random service that are time- or shift-variant or that use
probabilistic invariant bounds on the service curve.

Many other similarities exist between the network calculus and the classical
system theory [74], e.g., transforms exist that have similar features as the Laplace
transform and the Fourier transform used in the classical system theory [44].
Properties of these transforms are advantageous for system identification, which
we elaborate in Chap. 3 and Chap. 5.

The network calculus makes use of the min-plus algebra and the max-plus
algebra. In the min-plus algebra, the plus is replaced by the minimum operation
and the multiplication by the plus operation. Accordingly in the max-plus algebra,
the plus is exchanged by the maximum operation and the multiplication by the plus
operation. Instead of the minimum and the maximum often the infimum and the
supremum are used, respectively, as a generalization. This generalization includes
the application to sets or functions, for which a minimum or a maximum may not
exists. For details on these algebras see [15, 29, 74].

In the network calculus, the inputs to a system are denoted as the arrivals and
the outputs as the departures. The outputs of a system follow by the convolution,
which is introduced in the next sections, of the arrivals and the service curve of
the system. In the min-plus algebra, functions describe the cumulative amount of
data in the interval (0, t|* with the convention that A(0)=D(0)=0. We denote the
arrivals in the interval by A(t), the departures by D(t), and the service curve by
S(t). The functions in the max-plus algebra are functions of data instead of time,
i.e., for unit size packets this coincides with the index n > 0 of a packet. The arrivals
are Ty (n) and the departures Tp(n), which specify the arrival time and departure
time, respectively, of a packet with index n. Ts(n) denotes the service curve.

We introduce three different kinds of system models: service curves for deter-

ministic systems, service curves for systems with random service described by

From the convention of right-continuous functions the interval (0, {] follows. Right-continuous
functions arise from the application of a packetizer to fluid flows [29, 74], which is used to transform
fluid traffic to packetized traffic throughout this work. Often also left-continuous functions are
assumed, for a discussion see [74, Sec. 2.3.2].

14
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Figure 2.1: Graphical representations of arrivals with constant rate one. Fig. (a) shows the
arrivals for fluid traffic in the min-plus algebra, Fig. (b) illustrates the packetized
arrivals of Fig. (a), and Fig. (c) presents the related arrivals in the max-plus
algebra.

stochastic processes, and service curves for systems with random service specified
by invariant functions. The invariant functions come along with a violation prob-
ability € that specifies the probability that these invariant functions are violated.
We therefore have different labels for the different kinds of service curves and in
each case one for the specific algebra. For deterministic systems the service curve is
denoted by S(f) or Ts(n), for random systems described by stochastic processes
by S(t,t) or Ts(v,n), and for random systems specified by probabilistic bounds by
SE(t) or Tg(n).

We assume fluid traffic in the min-plus algebra. To address packetized traffic in
the min-plus algebra, we use the concept of the packetizer, whereas in the max-plus
algebra, we only consider unit size packets to reduce the notational complexity,
which is sufficient throughout this work. With additional effort, it can be extended
to networks with variable packet sizes, see [29, Chap. 6].

As an example for the min-plus and the max-plus algebra, Fig. 2.1 shows constant
rate arrivals for a rate of one. Fig. 2.1a presents the arrivals in the min-plus algebra.
Since we use fluid traffic, it follows that A(t) = t. Fig. 2.1b shows the packetized
arrivals of A(t) = t for a unit packet size that are A(t) = |t] following from the
concept of a packetizer as e.g., defined in [74, Sec. 1.7]. Fig. 2.1c displays the arrivals
in the max-plus algebra, where the first packet has the index n = 0.

One benefit of the network calculus is the simple derivation of performance

bounds i.e., backlog and delay bounds, if the service curve and the arrivals are
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known. Both algebras allow the computation of delay and backlog bounds, whereas
the min-plus algebra is beneficial for the computation of the backlog and the
max-plus algebra for the delay, as shown in the subsequent sections.

In the following, we present details on the service curves. We first introduce
conventions for data flows assumed throughout this work in Sec. 2.1. In Sec. 2.2,
we present the description for deterministic systems that build the foundation
for the random systems. For the basics we refer to [29, 74], in [29] a time-discrete
traffic model is used in the min-plus algebra and mostly a fluid one in [74]. For
the discrete traffic model, the infimum operation can be replaced by a minimum
operation [29]. In this work, we use continuously the infimum in the min-plus
algebra, also if we refer to [29]. Sec. 2.3 introduces two concepts for the description
of random systems. First, we describe the approach from [29, Chap. 5] that extends
the univariate functions to bivariate ones, e.g., S(t) becomes S(,t), to account for
variability. Second, in Sec. 2.3.2, we present the framework of the stochastic network
calculus, which provides a probabilistic framework for random systems. Here, we
describe primarily the approach from [25], for a broad overview on the stochastic

network calculus we refer to [15, 29, 30, 43, 61].

2.1 CONVENTIONS FOR DATA FLOWS

Before we present the service curves, we introduce some general conventions valid
throughout this work. We assume that data are processed in order and no reordering
occurs in the network. Furthermore, we define sets for univariate and bivariate
functions in the min-plus algebra and the max-plus algebra, which arise from
the variety of model classes. We assume functions are continuous in the min-plus
algebra, we also refer to it as fluid data flows, and discrete in the max-plus algebra
based on a unit packet size. To establish a connection between the min-plus algebra
and the max-plus algebra, we use the concept of a packetizer [29, 74], which results
in right-continuous functions in the min-plus algebra.

For the univariate functions, we define the sets F, G, and G*. In the min-plus

algebra, F is the set of univariate non-negative continuous or right-continuous
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wide-sense increasing functions, i.e., for any function f € F and V0 < 7 < t it holds
that f(t) >0, f(7) < f(t), f(0) = 0and f(t),T,t € Rj = [0, 00).

In the max-plus algebra, the domain of the functions is discrete because of the
assumption of unit size packets. Therefore, we specify the set of univariate non-
negative discrete wide-sense increasing functions g, i.e., for any function ¢ € G and
V0 < v < n it holds that ¢(v) < g(n), ¢(n) € Ry, and n,v € No = {0,1,2,...}.

We further define the set G* € G with the restriction that g(n) € R* = (0, c0)5.

For the bivariate functions, we define the sets F and G. In the min-plus alge-
bra, F is the set of bivariate non-negative continuous or right-continuous wide-
sense increasing functions, i.e.,, for any function f € F and VO < 7 < t it
holds that f(t,t) >0, f(t1,t) < f(t—=9,t), f(t,t) < f(T,t+6),0 < 6, f(t,t) =0
and f(t),7,t € RJ.

In the max-plus algebra, G is the set of bivariate non-negative discrete wide-sense
increasing functions, i.e., for any function ¢ € G and V0 < v < n it holds that

g(v,n) <glv—1,n),g(v,n) < glv,n+1),g(v,n) € RS, and v,n € Ny.

2.2 DETERMINISTIC INVARIANT SYSTEMS

In the following, we describe the basic principles for deterministic time-invariant
and shift-invariant systems. In the min-plus algebra, these systems are described by
functions of time ¢, such that the output y(t) = IT(u(t)) for any input signal u(t) is
equal to the time-shifted output y(t — ) = II(u(t — J)) for any time-shifted input
u(t — o), where IT is the mapping function from inputs onto outputs and 6 > 0 a
time-shift. In the max-plus algebra, the functions become functions of data instead
of time and invariance refers to shift-invariance i.e., invariant in terms of the packet
index. We refer to Appendix A.1 for details on the related system properties.

We present the service curve definitions in the min-plus algebra as well as the
max-plus algebra, present the derivation of the performance bounds backlog and

delay, show the connections between both algebras, and present transformations

Note that we define the restriction g(1n) € R™ only to comply with the set F for the inversion from
the max-plus algebra to the min-plus algebra defined in Sec. 2.2.3, where f(0) =0
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in a rate domain, which features useful properties for building service curves and

deriving performance bounds.

2.2.1  System Models in the Min-Plus Algebra

In the min-plus algebra, the arrival function A(t) € F specifies the cumulative
amount of data arriving at the system in the time interval (0, t] and the departure
function D(t) € F is the cumulative amount of data departing from the system in
the time interval (0, t]. A deterministic time-invariant system has the service curve

S(t) € Fif

D(t) > Tier[l()ft]{A(T) +S(t—1)} = AR S(¢) (2.1)

holds for all t > 0, where ® is the convolution operator. If the system is linear, an
exact service curve exists and the inequality becomes an equality

D(t) = inf }{A(T) +S(t—1)}. (2.2)

Te(0,t

If no service curve can be stated, which holds with equality, the maximal non-trivial
service curve is typically sought in Eq. (2.1). These service curve definitions are
formulated in [7, 28, 34]. The concept of the service curve was previously introduced
in [33, 102, 103, 116].

A basic example of a service curve is a constant rate link with capacity C, which
has the service curve S(t) = Ct. If the link has the delay 7, the service curve
becomes S(t) = [C(t — T)]*, where [x]T := max(0, x).

Analog to the concatenation of systems in the classical system theory, the con-
catenation of single systems results in the network calculus from the convolution of
the individual service curves Sy (f) of the systems in series. The end-to-end service

curve Sy (t) of a network path with hops h = {1,2,..., H} becomes
Snet(t) = Sl(t) ® Sz(t) & - SH(t)

For further examples of systems, we refer to [29, 74].

18
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The use of the service curve of a system enables the derivation of performance
bounds i.e., backlog and delay bounds [29, 74]. The performance bounds in the
min-plus algebra are as follows.

The backlog B(t) in the system at time t > 0 is the difference between the

cumulative arrivals and the cumulative departures

B(t) = A(t) — D(t). (2:3)

If D(t) is substituted by Eq. (2.1) and if A(t) is bounded from above by a function
E(t) € F, so that A(t) — A(t) <E(t—1) for all 0 < T < t holds, E(t) is an

envelope function for A(t), the maximal backlog B,y is bounded by

Buax < sup{E(7) — S(1)}, (2.4)

>0

which corresponds to the maximal vertical deviation between E(t) and S(t).

The delay of data arriving at time ¢ is
W(t) =inf{w >0: A(t) - D(t +w) < 0}.
With the envelope E(t) the maximal delay bound becomes
Winax < inf{w > 0: sg}g{E(r) —S(t+w)} <0}, (2.5)
=

which is the maximal horizontal deviation between E(t) and S(t).

2.2.2  System Models in the Max-Plus Algebra

In the max-plus algebra, the arrivals are given by T4(n) € G*, which specifies the
arrival times of packets with index n ={0,1,2, - - }. Accordingly, the departure

timestamps are denoted as Tp(n) € G*. The following description holds for unit
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size packets. A deterministic shift-invariant system offers the service defined by the

service curve Ts(n) € G if for all n > 0 the inequality

Tp(n) < rél[gx]{TA(V) +Ts(n—v)} = Ta® Ts(n) (2.6)

holds [29]. For a max-plus linear system an exact service curve exists and Eq. (2.6)

becomes an equality:

Tp(n) = max {Ta(v) + Ts(n —v)}. (2.7)

velon]

Since we assume discrete functions in the max-plus algebra as in [29], the convolu-
tion uses the maximum operation. Equivalent definitions exist for fluid traffic in
the max-plus algebra e.g., in [74, Sec. 3.2.], where the maximum is substituted by
the supremum.

The concatenation of H systems follows from the successive application of the
convolution, i.e., Ts,, (1) = Ts, ® Ts, ® ... ® Ts,,(n) as in the min-plus algebra. For
further examples of systems, we refer to [29].

Below, we present the performance bounds for delay and backlog in the max-plus
algebra as given in [29].

The delay of a packet with index  is
W(n) = Tp(n) — Ta(n).

If Te(n) is an envelope function for T4 (n), so that Ta(n) — Ta(v) > Te(n —v) for

all 0 < v < n holds, the maximal delay bound is
Wiaxr < max{Ts(v) — Te(v)},
>0

which is the maximal vertical deviation between Ts(n) and Tg(n).

In [40], the backlog in the system for an arriving packet 7 is given by

B(n) =min{b >0:Ty(n) > Tp(n—"0)},
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with envelope Tg(n) the maximal backlog becomes
Byay < min{b >0: m>aa<{T3(1/ —b) —Te(v)} <0},
v>

which is the maximal horizontal deviation between Ts(n) and Tg(n).

The comparison of the equations for backlog and delay calculation in both
algebras shows that the derivation of the backlog is simpler in the min-plus algebra
and the derivation of the delay is simpler in the max-plus algebra. In both cases it

follows by subtraction.

2.2.3 Connection between the Min-Plus and the Max-Plus Algebra

The min-plus algebra and the max-plus algebra are two different algebras for the
description of systems. In the min-plus algebra the domain of the functions is
time and the codomain is the amount of data, whereas in the max-plus algebra
it is reversed. In this work, we assume fluid traffic in the min-plus algebra and
discrete traffic in the max-plus algebra. To state connections between fluid traffic
and discrete traffic, we apply the concept of the packetizer P*(x) to fluid traffic.
In [29, 74], the packetizer is defined by PL(x) = sup;en{L(1) 11 z)<yy } with the
cumulative arrivals x to the packetizer, the cumulative packet length function L(i),
where i is ith packet, L(0) =0 by definition, and Lir(i)<xy 18 the indicator function,
i.e., it is one if the expression {L(i) < x} is true, else it equals zero.® The packetizer
simplifies to PL(x) = | x| for unit size packets [29, 74], where | x| means rounding
down. The continuous functions of fluid traffic become right-continuous by the

application of the packetizer.

PSEUDO-INVERSION FROM MAX-PLUS TO MIN-PLUS!: To obtain the func-

tions in the min-plus algebra, we utilize the cumulative service requirement defined

Note that in Sec. 2.2.2 the index n of the first packet is # = 0 in the max-plus algebra, which translates
into i = n 4 1 for the definition of the packetizer.
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in [29, Lem. 6.2.8], which determines the packets arriving (or departing) at (or from)

the system. For unit size packets, the inversion for the arrivals T4 (n) € G* is

Tgl(t) = Z 1{TA(n)§t}‘ (28)

n>0

For unit size packets an equal inversion is T, (t) = sup{n > 0: Ta(n) < t} +1
since the cumulative length up to and including packet n is n 4 1. Note that
for t < T4(0) no packet has arrived and the sum equals zero. Eq. (2.8) yields a
right-continuous function in the min-plus algebra.

For the inversion of a service curve according to Eq. (2.1)
Ts'(t) =inf{n > 0: Ts(n) >t}

is established in [29, Lem. 6.3.2]. The result is a left-continuous service curve that is

deviant to the assumption of right-continuous functions assumed in this work.

PSEUDO-INVERSION FROM MIN-PLUS TO MAX-PLUS: To obtain functions
in the max-plus algebra from functions in the min-plus algebra, we use the pseudo-
inverse from [74, Sec. 3.1.4]. The inversion holds for the arrivals A(t) as well as the
departures D(t). Here, we only show the inversion for the arrivals.

The arrivals in the max-plus algebra follow from arrivals in the min-plus algebra

by
A7) =inf{t >0: A(t) >n+1}.

Since the cumulative length for packet index n = {0,1,2,...} is n + 1, the pseudo-
inverse is defined for the time where A(t) > n+ 1.
To our knowledge, no inversion of the service curve from the min-plus algebra to

the max-plus algebra is established so far.
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2.2 DETERMINISTIC INVARIANT SYSTEMS

2.2.4 Transformations in the Network Calculus

In the classical system theory, transforms as the Laplace transform and the Fourier
transform exist for linear time-invariant systems, which transform functions from
the time domain into the frequency domain. For example, the Fourier transform
shows the spectral densities in the frequency domain. These transforms are ad-
vantageous to solve the convolution operation because this operation becomes
a multiplication in the frequency domain, which simplifies the computation for
complex systems. The solution in the time domain is obtained by an inverse trans-
formation from the frequency domain.

Corresponding transforms exist in the network calculus; these are the convex
and concave Fenchel conjugates, for the definitions see [114]. The application of
the Fenchel conjugates in the min-plus algebra and the analogy to the Fourier
transform is extensively analyzed in [44]. The application of the Fenchel conjugates
to communication networks is also shown in [6, 53, 101]. The domain of the Fenchel
conjugates is called the rate domain in [43] since it decomposes a curve to its rate
components. Below, we first state the Fenchel conjugates on the basis of service
curves. Second, we list an abstract of properties of the transforms, which are
beneficial for the following chapters, simplify the concatenation of systems, and are
advantageous for the derivation of bounds on the service curve and of performance

bounds.

TRANSFORM IN THE MIN-PLUS ALGEBRA: The transform is the convex Fenchel

conjugate e.g., for the service curve:

Ss(r) = sup{rt — S(t)}.

teRy

If S(t) is differentiable the transform is called the Legendre transform. In reference

to the network calculus, the variable r is the rate component of the function S(t).
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2.2 DETERMINISTIC INVARIANT SYSTEMS
TRANSFORM IN THE MAX-PLUS ALGEBRA: The transform is the concave Fenchel
conjugate e.g., for the service curve:

ﬁTS(s) = inf {sn—Ts(n)}.

n€Ny

Strictly speaking, since Ts(n) € G, we apply the discrete concave Fenchel conju-
gate [98]. The variable s corresponds to the reciprocal rate 1/7 if applied in the

framework of the network calculus.

PROPERTIES OF THE TRANSFORMS: Below, we list an abstract of properties of
the transforms useful in the framework of the network calculus. For a comprehensive

list see [44].

Convolution in the Rate Domain: Analog to the Fourier and the Laplace trans-
form, the Fenchel conjugates simplify the concatenation of systems since the con-
volution becomes an addition in the rate domain for the min-plus algebra as
well as the max-plus algebra, see [44, 53]. For example, in the min-plus algebra

D(t) = A® S(t) becomes Fp(r) = Fa(r) +Js(r).

Inverse of Fenchel Conjugates: The convex Fenchel conjugate is its own inverse,
for closed convex functions it holds that §{Fs(r)} = S(¢). For non-convex functions
the conjugate returns the convex closure of S(t), so that {Fs(r)} < S(t). Equiva-
lently, the concave Fenchel conjugate is its own inverse for closed concave functions,

or for non-concave functions it yields the concave closure with §{§ (r)} > Ts(n).

Performance Bounds from Fenchel Conjugates: If constant rate arrivals are as-

sumed, ie., A(t) = rt and Ts(n) = ", the maximal backlog results from

the convex Fenchel conjugate of the min-plus service curve By < Ss(r) =

SUP; g+ {rt —S(t)} and the delay from the concave Fenchel conjugate of the max-
n

plus service curve Wiy < —minyen, {2 — Ts(n) } = max,en,{Ts(n) — 2}.
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2.3 RANDOM SYSTEMS

The previous section presents system models defined in the deterministic network
calculus by two algebras, which are closely related. These system models build
the basis for this section that presents system models for random system. Even
if following equations are similar, the difference is in the details. For the min-
plus algebra, we omit the computation of the delay, and for the max-plus algebra,
we omit the computation of the backlog. As presented before, in each case the
computation is beneficial in the respective other algebra.

We introduce two concepts for the description of random systems, for which
we follow the classification of [30], where these two concepts treat service curves
as random processes or as non-random functions. In the former case, bivariate
functions capture time- or shift-variant characteristics of the systems, where the
functions are interpreted as random processes. In the latter case, the random systems
are described by invariant functions specifying the variability as a probabilistic

bound.

2.3.1  System Models as Stochastic Processes

In this section, we present the basics for time- and shift-variant systems in the
network calculus, i.e., the assumption of an invariant mapping operator for the
system description does not apply. We follow the perception of [30] and assume the
following functions represent stochastic processes. Originally, this framework was
introduced as a deterministic extension of the network calculus for time-variant
systems in the min-plus algebra in [29, Chap. 5]. To account for time-variance the
univariate functions of the arrivals, the departures, and the service curves from the
deterministic network calculus, which are presented in Sec. 2.2, are extended to
bivariate functions. These functions depend on the time instances (7, t) instead of
on the length of the time interval (f — 7). The extensions for shift-variant systems in
the max-plus algebra are presented in [68]. The functions become bivariate functions

depending on the packet indexes (v, n) instead of the amount of data.
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This system description by bivariate functions is less intensively studied than the
description for deterministic systems presented in Sec. 2.2. Analog to the systems
described in Sec. 2.2 performance bounds exist, but in contrast, the connection
between the min-plus and the max-plus algebra, see Sec. 2.2.3, and the transforms,
see Sec. 2.2.4, are not declared so far. The use of bivariate functions and the lack
of corresponding transforms make the declaration hard. For example, for the
deterministic systems described in Sec. 2.2 the property of invariance, which is
missing for the bivariate functions, is utilized in [29, Lem. 6.2.8] to connect the

descriptions in the max-plus and the min-plus algebra.

2.3.1.1 System Models in the Min-Plus Algebra

For the description, we abbreviate the arrivals A(0, t) and departures D(0,t) by A(t)
and D(t). The functions A(t,t) = A(t) — A(t) € Fand D(t,t) = D(t) —D(t) € F
specify the arrivals and departures, respectively, in the time interval (7, t]. A system

offers the service defined by the service curve S(7,t) € F if the inequality

D(t) > Tg[})ft]{A(T) +S(t,t)} = A®S(1), (2.9)

is satisfied for all ¢+ > 0. For linear systems, an exact service curve exists and the

inequality becomes an equality:

D(t) = inf]{A(T) +S(7,t)}. (2.10)

Te(0,t

This extension for discrete time systems is introduced in [29, Chap. 5], where the
infimum becomes a minimum.

The service curve of a network path that consists of H hops follows from
Snet(T, 1) =51 ® -+ - @ SH(T, ). (2.11)

A fundamental difference to the invariant systems is that for the concatenation of

systems the commutative property does not hold, i.e., S1(t) ® Sa(t) # Sa(t) ® S1(¢).
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Analog to the deterministic systems, performance bounds exists. The backlog at

time t > 0 is

from which the backlog bound

B(t) < sup {A(t,t) —S(t,t)}
T€(0,£]

follows with Eq. (2.9). For all ¢ the backlog is bound by [29, Thm.5.5.5]:

Biax < sup{ sup {A(7,t) — S(T,t)}} )

>0 | refo]

Compared to the backlog bound for deterministic system given in Eq. (2.4), this
bound has to be evaluated for T and t and does not simplify due to the usage of

bivariate functions.

2.3.1.2  System Models in the Max-Plus Algebra

The max-plus algebra for deterministic shift-invariant systems is also extended
to shift-variant systems in [68]. The functions T4 (v,n) = Ta(n) — Ta(v) € G and
Tp(v,n) = Tp(n) — Tp(v) € G specify the arrivals and departures in the max-plus
algebra, respectively, according to the packet indexes [v,n]. The service curve

Ts(v,n) € G for all n > 0 is defined by the inequality:

Tp(n) < max {Ta(v) + Ts(v,n)} =: Ta ® Ts(n). (2.12)

velon]

For linear systems, the inequality becomes an equality

Tp(n) = max {Ta(v) + Ts(v,n)} (2.13)

ve(o,n]

with an exact service curve.

The delay of packet 7 is

W(Tl) = TD(n) — TA(n),
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and inserting Eq. (2.12), the delay W(#n) is bounded by

W(n) < Vrg[g;]{Ts(v,n) — Ta(v,n)}.

For all n, the bound becomes

Wiax < max{ max {Ts(v,n) — Ta(v,n)}}.
n>0 “vel0,n]

2.3.2  System Models as Probabilistic Bounds

The deterministic system theory in Sec. 2.2 derives worst-case performance bounds
and requires the existence of deterministic envelopes for arrival traffic. In random
systems, non-trivial worst-case bounds potentially do not exist. If the sample space
of the applied probabilistic models is infinite, no finite bounds exist for the models
e.g., for the exponential distribution used in the M|M|1 queueing system [70] and
Internet traffic models as [76, 106]. Furthermore, delay sensitive applications allow
small violations of performance bounds, e.g., see [41]. Since the service curve in
Sec. 2.3.1 assumes random processes, the performance bounds hold for realizations
of these processes and are in this sense worst-case performance bounds for the
specific realizations. The stochastic network calculus overcomes the drawbacks of
the deterministic network calculus and meets the requirements of random systems
and applications by describing service and traffic as probabilistic bounds, i.e., the
variability is described by invariant functions in combination with a violation
probability with respect to these functions, see e.g. [15, 29, 61]. Compared to the
approach for random systems described in Sec. 2.3.1, the probabilistic bounds
comprise a complete description of the random system and not only of a specific
realization. This approach allows the derivation of probabilistic bounds on the
arrivals, the service curve, and the departures and with that also on the performance
bounds delay and backlog. Here, we limit the description to the e-effective service
curve developed in [25] with related performance bounds in the min-plus algebra

and the equivalent description in the max-plus algebra, which is given in [132]. For
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the Fenchel transform, we show its applicability to systems in the min-plus algebra
in [87]. Since the transform is already stated in Sec. 2.2.4, we omit it in this section.

Till this day, the connection between the max-plus and the min-plus algebra has
not been stated for these system descriptions since the probabilistic extension makes
the connection difficult. We prove a connection in Sec. 5.3.3 that is sufficient for the

application of our system identification approach.

2.3.2.1 System Models in the Min-Plus Algebra

With the arrivals A(t) € F and departures D(f) € F a system has an ¢-effective
service curve S¢(t) € F if

P|D(t) > inf}{A(T)%—Sg(t—T)} >1—g¢ (2.14)

(0t

applies for all t > 0, where ¢ is the violation probability [25].

The service curve is defined by a probabilistic bound on the departures. The con-
volution A ® S%(t) is equal to or smaller than D(t) with a probability of 1 — ¢ at least.
In addition to the definition of the service curve, [25] also contains performance
bounds for the e-effective service curve.

With deterministic envelope E(t) € F (see Sec. 2.2.1) for the arrivals A(t) the

backlog is bounded for all ¢t > 0 by

P|B(t) > sup{E(7) —S*(7)}| <e.

>0

2.3.2.2  System Models in the Max-Plus Algebra

The equivalent approach to the min-plus e-effective service curve in the max-plus
algebra is introduced in [132]. The definition of the e-effective service T5(n) € G in
the max-plus algebra follows from the relation

P|Tp(n) < max}{TA(V)—i—Tg(n—v)} >1—¢ (2.15)

velon

for all n > 0 with the arrivals To(n) € G* and the departures Tp(n) € G*.

The performance bounds are derived as probabilistic bounds on the service as
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well as on the arrivals in [132]. Here, we present performance bounds accord-
ing to [25] for random service but deterministic arrivals that are bounded by
Ta(v,n) > Tg(n—v),Y0<v <n.

With packet delay W(n) = Tp(n) — Ta(n) and applying Eq. (2.15) for Tp(n), the
delay becomes

P {W(n) > max {Tg(n —v) — Ta(n — 1/)}} <e

ve(o,n]

Using the envelope Tg(n — v), the delay is bounded for all n > 0 by
P [W(n) > m>ag<{T§(v) — TE(V)}:| <e
vz

This chapter introduces service curves for deterministic networks and networks
with random service. The next chapter presents related work to system identification,
in which among others the system model of a deterministic system is determined
by system identification. The service curves presented for networks with random

service are used to establish our system identification methodology in Chap. 5.
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STATE OF THE ART IN SYSTEM IDENTIFICATION OF
COMPUTER NETWORKS

Numerous approaches exist for system identification of computer networks. The
approaches differ e.g., in their probing methodology, i.e., which kind of data traffic
is sent to probe the network, the assumed model class, which may include classes for
deterministic and random systems with assumptions on the scheduling disciplines,
or the used framework, as queueing theory or the network calculus. In the following,
we present the state of the art in end-to-end active measurement approaches
for system identification of computer networks. End-to-end active measurement
approaches send actively probing traffic with specific traffic characteristics into the
network and observe the packets at the ingress and the egress of the network path
to identify the system. On the contrary, passive measurement approaches exist,
which rely on capturing production traffic. Here, we focus on active measurement
approaches. These are essential for system identification of computer networks, see
e.g., [16, 91], because passive approaches are only able to see characteristics that
are imprinted in the captured traffic. Active approaches have a greater flexibility
for the identification by using specific probing traffic.

We add available bandwidth estimation approaches to the field of system identi-
fication because they describe the systems usually by a single value. In terms of
the network calculus, the system model of the available bandwidth is given by the
service curve S(t) = at, where « is the available bandwidth estimate. We make
this intuitive relation between the available bandwidth and the framework of the
network calculus explicit in Chap. 6.

System identification in the classical system theory distinguishes between gray-
box and black-box models [84]. For gray-box models, the internal system structure
is known, which allows the creation of an analytical model with free parameters.

The identification process is constrained to the estimation of these free param-
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3.1 AVAILABLE BANDWIDTH ESTIMATION

eters. From this characterization it follows that available bandwidth estimation
approaches, which characterize the system by one value, use a gray-box model with
one free parameter. For black-box models no internal structure is predetermined.
The complete system model is identified by measurements. It is thereby not limited
to any specific structure of the system.

In system identification known from the classical system theory, systems are
stimulated by, e.g., the Dirac impulse, step functions, and sine waves to measure the
response of the systems and subsequently deduce the system model from it [84]. In
system identification for computer networks, systems are stimulated by data traffic
with different characteristics. In the following, we present the approaches known
from the literature and summarize their probing procedures.

We start with the description of available bandwidth estimation approaches
in Sec. 3.1. First, we present approaches that assume the network is a determin-
istic system. Second, we describe approaches that consider networks featuring
randomness due to random cross traffic. At last, we show available bandwidth
approaches for wireless networks. In the first two cases, the system models base
on simplifications for wired networks, i.e., if the models account for randomness,
it is because of random cross traffic, and the scheduling is often assumed to be
work-conserving and FIFO. These assumptions do not apply to wireless networks
with non-work-conserving, non-FIFO scheduling, and non deterministic channels.

In Sec. 3.2, we present existing system identification approaches that utilize the
framework of the deterministic network calculus from Chap. 2. Few approaches
exist so far that rely on this system theory for computer networks. We introduce
approaches, which use a gray-box model for the characterization of routers and

black-box models for the identification of end-to-end network paths.

3.1 AVAILABLE BANDWIDTH ESTIMATION

The available bandwidth describes the portion of the capacity of a network path

that is unused by existing traffic to which we refer as cross traffic. For a single-hop
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network with one link % in a time interval [t, t + ¢], the available bandwidth is

defined in [82] by

1 t+o
wiltt+0) =5 [ G (x)dx, (3.1)

where C,(t) is the capacity of the link and u;,(t) € {0,1} is its utilization at time ¢
by cross traffic with rate 3 fttw Cp(x)uy(x)dx. Further, if the cross traffic has a long-
term rate, which is defined as Aj, := limsup,_, @, where A(t) are the cumulative
arrivals up to time t, we refer to a}° = liminfs_,e a,(t,t +J) = C, — Ay as the
long-term available bandwidth.

The available bandwidth of a network path that consists of multiple links is de-

fined by the minimum of the available bandwidths of the individual links [59, 60, 83]:

et (t,t +0) = min {ay(t,t +0)}, (3-2)
heH

where H is the set of links of the path. For the estimation of the available bandwidth
a comprehensive number of approaches exists. These approaches assume different
system models to establish the estimation. Below, we introduce these approaches in

respect to the assumed system model and the consequential restrictions.

3.1.1  Single-hop Network with Fluid Constant Rate Traffic and Constant Capacity

In the following model of a deterministic system, the link capacity C and also the
cross traffic rate A are assumed to be constant over time and the traffic is assumed to
be fluid. The available bandwidth at a single-hop network with link capacity C that
is utilized by A follows from «;,(t) = C — A. This fluid constant rate network model is
widely used for available bandwidth estimation approaches [38, 54, 59, 94, 111, 122].
Obviously, this model does not apply for most practical networks due to non
deterministic characteristics of traffic, but most tools are aware of the variability
of the available bandwidth. At the end of this section, we present how the tools
approach the contradiction between the deterministic system assumption and the

variability in practical networks.
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For the estimation of the available bandwidth, tools transmit pairs or trains of
probe packets with defined gaps between the packets via a network path and
measure the gap or the rate of the packets at the egress of the path. The use
of constant rate packet pairs or packet trains and the additional assumption of
FIFO scheduling in a single-hop network leads to the gap response curve and the
rate response curve, respectively. These curves specify the relation between the
dispersion of the packets or the rate at the ingress and the egress of a system.
The relation of the input gap gr and the output gap go of a packet pair is given

in [54, 82] as:

I , 81> =
8o = igM sr=ca, (3-3)
- /81<ct=x

where C is the capacity, A the cross traffic rate and s the packet size. Accordingly,
the rate response curve with arrival rate r; and departure rate rp of a packet train

is in [82, 95] defined by:

rr ,VISC—A
ro= . . (3-4)
Crlﬁ ,rr>C—A

For both response curves applies that the outputs of the network are equal to the
inputs as long as the arrival rate is less or equal to the available bandwidth. If
the probing rate exceeds the available bandwidth, the departure rate rp equals the
portion of the arrival rate r; as part of the total arrival rates r; 4+ A. This relation
follows from the assumption of FIFO scheduling.

In [60], available bandwidth approaches are classified by direct probing and
iterative probing. For the direct approach, the link capacity must be known or
estimated separately. With the known capacity and one probing rate above the
available bandwidth the segment for which r; exceeds the available bandwidth
follows from the estimation. The estimate of the available bandwidth results from
the intersection with the known segment for which r; is below the available band-
width. Thus, for the direct probing approaches, a single probing rate is sufficient.
The iterative approach makes use of the two segments of the response curves from

Eq. (3.3) and Eq. (3.4) by iteratively adapting the probing rate. If a transition from
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the first segment of the response curve, where the outputs equal the inputs, to the
second segment is detected, the available bandwidth is exceeded. In this way, the
tools estimate the available bandwidth. The system models presented in Eq. (3.3)
and Eq. (3.4) also imply that the one way delays are constant if the probing rate is
below the available bandwidth and increase if it is above due to queueing in the
network.

Available bandwidth estimation tools that use a direct approach are e.g., IGI [54],
and Spruce [122], and tools that use an iterative approach are, e.g., BART [38],
Pathchirp [111], Pathload [58, 59], PTR [54], and TOPP [94]. The tools usually use
constant rate packet probes. One exception is Pathchirp, which uses packet trains, at
which the gap between successive packets decreases due to a geometric progression.
Tools that use an iterative approach and detect the transition between the segments
of the response curve are also called congestion inducing techniques [111] since the
transition is caused by congestion.

The tools Pathload and Pathchirp do not require FIFO scheduling since they
detect the increase of one way delays by iteratively adapting the probing rate as
elaborated in [20]. Therefore, they do not rely on one of the response curves, the
assumption of work-conserving scheduling is sufficient, i.e., the delays increase
only if the arrival rate exceeds the available bandwidth.

In reality, traffic is random, see e.g., [76], and packetized. These effects disturb
the clear shape of the two segments of the response curves. To overcome these
disturbances, available bandwidth estimation tools use post processing of the
measurement results as e.g., averaging over estimates of several packet pairs or
packet trains sent at the same rate [54, 58, 59, 79, 111, 122], linear regression to
reconstruct the shape of the response curve [94], or a Kalman filter to eliminate
the disturbance created by random traffic [38, 119]. Furthermore, the tool Pathload
returns the available bandwidth as a range to account for the variability of it.

The approaches presented in this section rely on deterministic systems and may
be applicable to networks with low variability. Compared to the system description
from Fig. 1.1, these approaches interpret randomness as disturbance. The negative

impact on the estimate of the mismatch between the assumption of a deterministic
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system and practical networks is e.g., presented in [60]. The next section presents

approaches that consider randomness due to cross traffic.

3.1.2  Networks with Random Traffic and Constant Link Capacity

In Sec. 3.1.1, we discuss a system model that assumes a deterministic system
with constant rate fluid traffic. Available bandwidth estimation tools that are
based on this model mitigate effects of randomness by post processing. Below, we
present approaches that consider the randomness of cross traffic but preserve the
assumptions of constant link capacities and FIFO scheduling.

The impact of random and packetized traffic on the rate response curves is ana-
lyzed with a queueing theoretic framework for single-hop and multi-hop networks,
e.g., in [35, 52, 82, 83, 104]. The gap response curve and the rate response curve
from Egs. (3.3) and (3.4) are a lower bound and an upper bound, respectively,
for the relation between inputs and outputs in a single-hop network with FIFO
scheduling with random traffic as shown in [82]. The authors of [82] also prove that
the estimate approaches these bounds with increasing length of the packet size or
the packet trains. In [83], the work is extended to multi-hop networks, in which the
authors show that the gap response curve is again a lower bound. This bound can
also be approached by increasing the packet size or the length of packet trains.

In [35, 52, 104], the distribution of the output gap is derived under the assumption
of a known queueing model as M|D|1 in [104], M|G|1 in [52], and a known cross
traffic model in [35]. In [52], the empirical distribution of the output dispersion is
fitted to the analytical model to estimate the available bandwidth.

The estimation of the random cross traffic process from delay measurements
of probe packets is defined as an inversion problem in [91]. It is shown that an
inversion, which retrieves the complete process, for a single-hop network with FIFO
scheduling, cross traffic with stationary independent increments, and a renewal
process as probing process is possible. Besides this scenario, limitations of active
probing are presented and estimators are defined and evaluated, also for conditions

where the before mentioned constraints are not met.
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In [124], an approach for available bandwidth estimation based on the definition

a :=max{ry: Plro > r;—rs] > v},

is presented, where a is the available bandwidth, r; is the arrival rate, 7o is the
departure rate, r5 defines a tolerance for the difference between the arrival and the
departure rate and 7y is a bound on the probability. The parameters r; and 7y are
user defined and are based on application requirements. This approach assumes
also FIFO scheduling, but it also applies to other scheduling disciplines.

The available bandwidth estimation approaches presented in this section account
for random cross traffic in the network. Still, most of them rely on assumptions
as specific queueing models and traffic models. One exception is the approach
presented in [124], which is more general in terms of the assumptions but is specific
in the selection of the free parameters. These are specific for the application and are
not embedded in any framework as queueing theory or the network calculus. Thus,
it prevents the derivation of general results as backlog and delay bounds. The next
section presents available bandwidth estimation approaches for networks to which
usually defined assumptions such as links with fixed capacity and FIFO scheduling

do not apply, namely wireless IEEE 802.11 networks.

3.1.3 Wireless Networks with Random Service and non FIFO Scheduling

A broad range of available bandwidth estimation approaches are developed for
wireless IEEE 802.11 networks since these networks are wide-spread and feature
challenging characteristics as a time-varying channel and an approximately fair and
non-work-conserving scheduling discipline. This stands in contrast to wired net-
works, where usually constant link capacities and work-conserving FIFO scheduling
are assumed’”. Wireless networks are systems with random service due to random
cross traffic and due to time-varying link capacities of the wireless medium caused

by interference. Furthermore, IEEE 802.11 networks have a complex medium access

7 For wired networks, we refer to Ethernet based (IEEE 802.3) networks with the prevalent scheduling
discipline FIFO at intermediate hops.

37



3.1 AVAILABLE BANDWIDTH ESTIMATION

control (MAC) in comparison to wired networks. The medium access is controlled
by the distributed coordination function (DCF), and an automatic repeat request
(ARQ) protocol is used to retransmit packets that are corrupted during transmission.
The MAC leads to non-work-conserving and approximately fair scheduling [21, 67],
which is a fundamental difference to wired networks where schedulers are typically
work-conserving. The non-work-conserving behavior results from the DCFE, where a
station has to wait for a random time before it tries to access the channel, and due
to the ARQ protocol, where the next packet can only be sent if an acknowledgement
is received. Recall that, the response curves defined in Egs. (3.3) and (3.4) hold for
work-conserving FIFO scheduling. In the following, we present available bandwidth
estimation tools designed for wireless IEEE 802.11 networks.

The available bandwidth estimation tool Wbest [78] considers time-varying link
capacities by measuring the capacity using the median of gaps of a sequence
of back-to-back probe packets. Nevertheless, the median is not concluded from
a system model. On the contrary, the minimum over the gaps is used in wired
networks [55], which follows from the assumption of constant rate links. Wbest
assumes FIFO scheduling for measuring traffic in the downstream from an access
point to a wireless station, thus, it relies on the rate response curve from Eq. (3.4).

Adaptations of the rate response curve, which is given Eq. (3.4), for IEEE 802.11
networks are made in [20, 108]. In [20], the rate response curve is specified under
the assumption of fluid constant rate traffic and fair scheduling. The gap response
curve, see Eq. (3.3), is extended for fluid constant rate traffic and fair scheduling
plus a queue with FIFO scheduling to model competing traffic on the same node
and random access delays in [108].

The tools TOPP [94] and BART [38] are extended for wireless IEEE 802.11 net-
works in [65] and [62], respectively, by taking into account the access delays of
the medium access control under the assumption of FIFO scheduling. In [62], the
Kalman filter is adapted for wireless networks. It is also employed in [21] for a
passive available bandwidth estimation approach for IEEE 802.11 networks utilizing
a generalized processor sharing model.

IEEE 802.11 networks have challenging characteristics in the perspective of avail-

able bandwidth estimation. Tools address them by customizing their estimation
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methodology to these characteristics, e.g., by the adaptation of the post processing
of results or by the adaptation of the response curves. The next section contains
system identification approaches that are aimed at accounting for a broad range
of networks by avoiding customized system models, which only apply to specific
networks. The approaches, presented in the next section, include also the time of
the service availability to the system description. This stands in contrast to available
bandwidth estimation tools, which describe the system usually by a single value

and thereby disregard the time scale.

3.2 SYSTEM IDENTIFICATION IN THE NETWORK CALCULUS

The network calculus is a system theory for computer networks. So far, only few
approaches were developed directly in this framework for system identification.
Next, we outline the existing approaches from [6, 22, 53, 80, 125]. In the network
calculus, the system model of the network path is a service curve as introduced
for systems with various characteristics in Chap. 2. The service curve describes the
mapping from the inputs to the outputs of the system.

A system identification approach for router modeling, which relies on a gray-
box model, is presented in [22, 125]. Service curves known from the deterministic
network calculus (see Sec. 2.2) are assumed as system models, in detail the approach
is based on service curves of the guaranteed rate model and the packet scale
rate guarantee model for which service curves exist in the network calculus. The
estimation approach is presented in [125] and relies on passive measurements.
It is extended in [22] for active measurements. Therein, the approach is used to
analyze the performance of various routers as hardware and software routers and
the impact of virtualization on software routers. The use of service curves for router
modeling extends the standard performance metric, i.e, the packet forwarding rate,
with timing information such as jitter and delay in a coherent representation.

System identification approaches using a black-box model in the framework of
the deterministic network calculus are discussed in [6, 53, 80]. Using such black-box

models, makes the identification of a broad range of networks possible without
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relying on specific models. These approaches include fundamental networks as
single-hop networks, network paths with multiple bottleneck links, and various
scheduling disciplines, in which the system is described by a service curve, see [80].

In [6, 53], system identification approaches are sketched based on the Fenchel
transform. The work in [80] presents an extensive analysis of probing approaches
used for available bandwidth estimation, which are on the one hand passive
measurement approaches, and on the other hand the approaches implemented by
the tools Pathchirp [111] and Pathload [58, 59].

For passive measurements, it is shown in [80] that for non-linear networks it is
only possible to achieve a not useful bound on the service curve.

Active measurement approaches have the freedom to control the arrival traffic
and thereby can avoid regimes where the network shows a non-linear behavior. For
example, such regimes occur in overloaded links with FIFO scheduling.

One active measurement approach for available bandwidth estimation, which
is analyzed in [80] using the framework of the network calculus, is based on the
probing methodology of the tool Pathchirp [111]. The tool probes the network path
by packet trains, in which the gap between packets is decreasing according to a
geometric progression. Using the convex Fenchel transform, see Sec. 2.2.4, of the

probe traffic arrivals 34 and the departures Sp, the estimate of the service S(t) is

S(t) =F@p —Fa)-

Another active measurement approach analyzed in [80] is based on the tool
Pathload [58, 59], which employs packet trains with constant rate to probe the
network. The final estimate results from repeated packet trains with several prob-
ing rates. It is shown that a service curve S(t) can be estimated with constant
rate arr