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Abstract

Quantum key distribution (QKD) is the task of generating a mathematically proven
secret key, shared between two remote parties. It is probably the most mature ap-
plication of quantum mechanics. QKD protocols based on continuous variables, like
the amplitude and phase quadratures of light fields, have made great progress in this
field during the last years, offering high key rates in local area networks under the
assumption that potential adversaries are restricted to collective attacks. Recently, a
security proof for continuous variables appeared, which provides security without im-
posing any restrictions to adversaries, and which also considers effects due to the finite
number of measurements. The proof considers a QKD protocol based on Einstein-
Podolsky-Rosen (EPR) entangled states and requires strong correlations between the
quadratures of the two subsystems.

In this thesis the feasibility of QKD under arbitrary attacks is experimentally demon-
strated by an execution of the protocol up to the error correction step. Requirements
for the error correction, which would be necessary to generate a secret key, are given.
In the presented implementation, EPR entanglement was generated by superimposing
two squeezed vacuum modes. The generated continuous-wave squeezed vacuum states
represent the first demonstration of such actively stabilized states at the telecommu-
nication wavelength of 1550 nm, with a noise variance more than 10 dB smaller than
the vacuum noise variance. Furthermore, a phase-locking scheme was developed that
was able to stabilize the generation and measurement of the EPR entangled states
with unprecedented strong entanglement.

Restricting potential adversaries to collective attacks relaxes the requirements for
the experimental implementation. In this thesis simulations show that distances be-
tween the two parties of up to 30 km are feasible for a reasonable number of mea-
surements. This was also shown for entangled states which were generated from a
squeezed vacuum mode and a vacuum mode. For such states the first demonstration
of the EPR paradox is presented. A complete run of the QKD protocol, including the
key generation, was implemented using the EPR entangled states from two squeezed
vacuum resources and a post-selection technique.

Keywords: quantum key distribution, continuous variables, Einstein-Podolsky-Rosen
entanglement, two-mode squeezed states, coherent attacks, collective attacks.





Kurzfassung

Quantenschlüsselverteilung bezeichnet die Verteilung eines mathematisch beweisbar
sicheren Schlüssels zwischen zwei Parteien und ist vermutlich die am weitesten entwick-
elte Anwendung der Quantenmechanik. Protokolle zur Quantenschlüsselverteilung, die
auf kontinuierlichen Variablen, wie z.B. den Amplituden- und Phasenquadraturen von
Lichtfeldern, beruhen, haben in den letzten Jahren große Fortschritte gemacht und ver-
sprechen unter der Annahme von kollektiven Attacken hohe Schlüsselraten in lokalen
Telekommunikationsnetzwerken. Erst kürzlich erschien ein Sicherheitsbeweis, der kein-
erlei Annahmen bezüglich mögliche Attacken macht und auch berücksichtigt, dass der
Schlüssel eine endliche Länge hat. Das im Beweis verwendete Protokoll basiert auf
Einstein-Podolsky-Rosen (EPR) verschränkten Zuständen und setzt starke Korrela-
tionen zwischen den Quadraturen der beiden Untersysteme voraus.

Im Rahmen dieser Arbeit wurde die Durchführbarkeit von Quantenschlüsselverteil-
ung unter beliebigen Attacken durch Ausführung des Protokolls bis hin zur Fehlerkor-
rektur experimentell nachgewiesen. Die Voraussetzungen, die ein möglicher Fehlerkor-
rekturalgorithmus erfüllen müsste, um mit den korrigierten Daten einen Schlüssel
zu erzeugen, werden dargestellt. In der präsentierten Implementierung des Protokolls
wurde EPR Verschränkung durch die Überlagerung zweier gequetschter Vakuummod-
en erzeugt. Dabei wurden erstmals gequetschte Vakuummoden bei einer Wellenlänge
von 1550 nm mit einer mehr als 10 dB niedrigeren Varianz als die des Vakuums aktiv
stabilisiert. Zudem wird ein Phasenstabilisierungsschema vorgestellt, mit dem sowohl
die Erzeugung, als auch die Messung von EPR Zuständen mit der bisher stärksten
gemessenen Verschränkung stabilisiert werden konnte.

Wie in dieser Arbeit mit Simulationen gezeigt wird, verringert eine Beschränkung
auf kollektive Attacken die Anforderungen an die experimentelle Umsetzung und
ermöglicht Distanzen bis zu 30 km zwischen beiden Parteien für eine realisierbare An-
zahl an Messungen. Weiterhin erlauben kollektive Attacken auch die Benutzung von
EPR Zuständen, die durch Überlagerung einer gequetschten Vakuummode mit einer
Vakuummode erzeugt werden. Für solche Zustände wurde in dieser Arbeit die erste
Demonstration des EPR Paradoxons präsentiert. Weiterhin wurde mittels der ver-
schränkten Zustände, die aus zwei gequetschten Vakuummoden erzeugt wurden, und
mit Hilfe von Postselektion ein vollständiger Lauf eines Quantenschlüsselverteilungs-
protokolls implementiert.

Schlüsselworte: Quantenschlüsselverteilung, kontinuierliche Variablen, Einstein-Po-
dolsky-Rosen Verschränkung, zwei-moden gequetschte Zustände, kohärente Attacken,
kollektive Attacken.
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CHAPTER1
Introduction

Quantum key distribution is a quantum information protocol which enables two par-

ties, Alice and Bob, to exchange a key to cipher messages which are sent over an

insecure channel, e.g. the internet. Cryptographic algorithms used for secure communi-

cation can be classified into two categories: symmetric and asymmetric ciphers [Gis02].

For symmetric ciphers both parties need to share the same key, Alice for encrypting

the message and Bob for decrypting it. Hence, the key needs to be shared before

the actual communication, as otherwise Bob cannot read the message. To overcome

this problem asymmetric algorithms were invented. The key used in asymmetric al-

gorithms consists of two parts, a public one which is known to the general public, and

a private one which is kept secret. Alice then uses Bob’s public key to encrypt a mes-

sage and only Bob, who possesses the private key, can decrypt the message. As these

algorithms are usually slow to compute, public key algorithms are most often used to

exchange a key for a symmetric cipher. The security of such public key algorithms

is only based on the fact that present computers are slow in factoring large numbers

into their prime number decompositions. Indeed, with today’s computers it would

last many thousands of years to decipher an encrypted message. Nevertheless, it was

shown that this time can be dramatically reduced by quantum computers, since with

quantum algorithms the computing time for a prime number decomposition of a num-

ber is only polynomial in the length of its bit representation and not exponential as

with classical algorithms [Sho97]. A cipher whose security is based on the assumption

that present computers are too slow to decipher a message within reasonable time is

called computationally secure.

The one-time pad algorithm, which is a symmetric cipher that is mathematically

secure instead of just computationally secure, was already invented during World War

I and published in 1926 by G. Vernam [Ver26]. To guarantee its security the following
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requirements must be fulfilled

(i) the key has to be as long as the message,

(ii) the key has to be uniformly random,

(iii) the key has to be known only to Alice and Bob,

(iv) the key has to be used only once.

While this scheme is perfectly secure as long as the requirements are fulfilled, the key

has still to be distributed between the communicating parties without anybody else

being able to gain knowledge about it. This problem is addressed by quantum key

distribution (QKD). The first QKD protocol, BB84, was invented by Bennett and

Brassard in 1984 [Ben84]. Here, Alice prepares a photon in a certain polarization

state and sends it to Bob. The polarization of the photon is prepared in either the

vertical/horizontal basis or in the anti-diagonal/diagonal basis. A vertically or anti-

diagonally polarized photon encodes bit 0 and a horizontally or diagonally polarized

photon encodes bit 1. As Bob does not know which basis Alice has chosen, he chooses

one at random and measures the polarization. After Alice has sent a certain number of

photons to Bob they communicate their choice of bases and discard all measurements

performed in a different basis. They proceed by revealing a part of Bob’s measurement

results and compare them with Alice’s preparation. If the number of different values

from the revealed measurement outcomes is above a certain threshold they abort, as

an eavesdropper may have been present. Otherwise, they correct the errors in their

unrevealed outcomes and generate a key. The security of this protocol is based on

the no-cloning theorem [Sak11], which states that quantum states cannot be copied

without introducing errors. It is also based on the fact that a measurement of a

non-eigenstate changes the quantum state.

1.1 Continuous-Variable Quantum Key

Distribution

While the protocol described above uses discrete polarization states of single photons

to distribute a key between Alice and Bob, in principle any two non-commuting ob-

servables of a quantum system would work. Besides the polarization, two commonly

used ones are the amplitude and phase quadratures of light fields which have con-

tinuous eigenspectra. Using amplitude and phase modulation of Gaussian states for

encoding a key and homodyne detection for decoding it, enables the use of fast and

cheap standard telecommunication components like amplitude and phase modulators
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and PIN photo diodes. In comparison, implementations of the BB84 protocol have to

employ specialized single photon sources and single photon detectors. The first proto-

col using continuous variables was introduced by Cerf in 2001 [Cer01] and was based

on squeezed states. Shortly afterwards a QKD protocol based on Gaussian modulation

of coherent states was proposed [Gro02] and implemented [Gro03]. Further develop-

ments of the implementation of this protocol can be found in [Lod07, Fos09, Jou12].

Recently, distances between Alice and Bob of up to 80 km were reached using this

scheme [Jou13].

Instead of prepare-and-measure schemes, like the BB84 protocol for discrete variable

QKD and like the Gaussian modulation protocol for continuous variables, entangle-

ment-based systems can also be used [Eke91, Urs07, He06, Rod07, Su09]. In such

systems a bipartite entangled state is generated and distributed to Alice and Bob, who

perform measurements by randomly choosing an observable from two non-commuting

ones. While in prepare-and-measure schemes the key has to be generated a priori

by a random number generator and has to be encoded to a quantum state by state

preparation, in entanglement-based schemes the key is directly provided by the quan-

tum measurement. A combination of the two protocols, a Gaussian modulation of

entanglement, was reported to be beneficial in terms of achievable distance between

the two communicating parties [Mad12].

To analyse the security of a given protocol, possible attacks by an adversary are

classified into individual, collective and coherent (general) attacks. Individual attacks

are attacks for which the adversary does not need a quantum memory [App08, Jen10,

Ari10] to store quantum states and thus measures all exchanged states individually.

If the adversary instead possesses a quantum memory, the quantum states can be

stored and measured collectively. However, to fall into this class of attacks, the same

observable has to be measured for all states. Coherent attacks, also called general

attacks in the following, are attacks where instead of measuring the same observable

for each quantum state, different observables might be employed on different quantum

states. For this class of attacks no assumptions on the adversary’s ability are made.

Assuming that an infinite number of continuous-variable quantum states are ex-

changed reduces general attacks to collective attacks [Ren09]. Indeed, Gaussian at-

tacks are optimal collective attacks [GP06, Nav06] and a secure key rate can be deduced

from the Devetak-Winter bound [Dev05, Lod07, Ren05a]. However, if only a finite

number of quantum systems are exchanged, as is the case in every real implementa-

tion, the situation is more complicated. For collective attacks the security of the QKD

protocol using Gaussian modulation was proven [Lev10]. An implementation of this

protocol can be found in [Jou13]. Using the smooth min-entropy formalism [Ren05a],

a QKD protocol with security for general attacks was provided in [Fur12b]. This pro-

tocol, as well as a similar protocol for collective attacks [Fur12b], employs quadrature
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entangled states. With these two protocols, as well as with the one for Gaussian mod-

ulation, the generated key is universally composable secure [Can01, Ren05a]. This

means that if combined with other cryptographic primitives, like the one-time pad,

the key will remain secret. Proofs based on the mutual information, as for instance

the Devetak-Winter bound, are instead not composable secure [Ren05a].

This thesis describes an experimental implementation of the entanglement-based

protocol of Ref. [Fur12b] for distributing a finite key which is composable secure under

collective attacks. Furthermore, it provides a first implementation of a contin-uous-

variable QKD setup which is able to generate a key with finite size that is secure

against general attacks.

1.2 Einstein-Podolsky-Rosen Entanglement

The security proof of the finite-size continuous-variable QKD protocol for general

attacks demands quadrature entangled states with strong Einstein-Podolsky-Rosen

(EPR) entanglement [Fur12b]. EPR entanglement [Rei89] is stronger than insepara-

bility, and is connected to the famous EPR Gedanken experiment in which Einstein,

Podolsky and Rosen questioned the completeness of quantum mechanics by presuming

local realism [Ein35]. Only in 1981, Aspect et al. [Asp81] proved the completeness of

quantum mechanics by demonstrating a violation of the Bell inequalities [Bel64]. The

first demonstration of the EPR paradox was performed in 1992 by Ou et al. [Ou92].

Recently the concept of steering, which was introduced by Schrödinger in his response

to EPR’s paper [Sch35], gained new attention due to theoretical work by Wiseman

et al. [Wis07], who showed that for Gaussian states a demonstration of steering is

equivalent to a demonstration of the EPR paradox.

This thesis presents an instructive description of steering, as well as the first ex-

perimental demonstration of the EPR paradox and steering using quadrature entan-

gled states that are generated by superimposing a squeezed vacuum state with a

vacuum state. Furthermore, it describes the generation of the strongest EPR entan-

gled states to date, which were phase controlled in all degrees of freedom. Highly

entangled states that are stable over long time scales are not only necessary for the

QKD protocol providing security against general attacks, but also for other demand-

ing quantum information protocols like the superactivation of zero-capacity quantum

channels [Smi08, Smi11].
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1.3 Structure of the Thesis

The structure of the thesis is as follows:

• Chapter 2 introduces the theory of Gaussian quantum information. This chapter

provides the necessary theoretical background.

• Chapter 3 describes the experimental techniques used throughout the thesis.

• Chapter 4 presents experimental results of the generation and characterization

of squeezed vacuum states at 1550 nm. It further gives an instructive descrip-

tion of the steering process, which is followed by the description of the first

experimental realization of the EPR paradox and steering with two-mode entan-

gled states generated by superimposing a squeezed vacuum mode with vacuum

mode. The generation and stable control of EPR entangled states generated by

superimposing two squeezed vacuum modes concludes the chapter.

• Chapter 5 is devoted to the theoretical description of Gaussian finite-size quan-

tum key distribution. Here, the QKD protocols are introduced used in the

following two chapters.

• Chapter 6 describes the realization of the QKD protocol providing security under

collective attacks. First, the secure key rates for the two types of entanglement

generated in Chapter 4 are analyzed. A description of the experimental setup to

gain a secret key follows, including a description of the generation of quantum

random numbers. Furthermore the generation of a secure key using a post

selection technique is provided.

• Chapter 7 describes and analyzes the first experimental continuous-variable

setup which is able to generate a key with security against general attacks. The

feasibility of generating a key is discussed.

• Chapter 8 summarizes the experimental results and concludes the thesis.
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CHAPTER2
Gaussian Quantum Information Theory

In this chapter the theory of continuous variable gaussian quantum information is

reviewed. The basics given here are used in the following chapters. The chapter follows

with some additions the review “Gaussian Quantum Information” by Weedbrook et

al. [Wee12].

We start by postulating the quantized electric field operator Ê of an N -mode free

space radiation field at position r and time t to be

Ê(r, t) = i

N∑
k=1

Ek

(
âke

i(k·r−ωkt) + â†ke
−i(k·r−ωkt)

)
, (2.1)

where Ek = ek(~ωk/2ε0V )
1
2 with ek being the polarization vector, ~ is Planck’s con-

stant h/2π, ωk is the angular frequency of the kth mode, ε0 is the electric permittivity

of the vacuum and V is an arbitrary volume. k denotes the wave-vector of the kth

mode. âk and â†k are the kth mode bosonic annihilation and creation operators, respec-

tively. Hence, the N quantized radiation fields are described by N quantum harmonic

oscillators. The 2N annihilation and creation operators can be arranged in vectorial

form

b̂ := (â1, â
†
1, . . . , âN , â

†
N)T . (2.2)

They satisfy the bosonic commutation relation

[b̂µ, b̂ν ] = Ωµν (µ, ν = 1, . . . , 2N) , (2.3)
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where Ω is given by

Ω :=
N⊕
k=1

ω =

ω . . .

ω

 , ω :=

(
0 1

−1 0

)
. (2.4)

Hereby, we chose the normalization such, that ~ = 2, which yields a variance of

the vacuum noise of 1, cf. Section 2.3. As there is no common consensus, other

normalizations like ~ = 1 or ~ = 1/2 can be found in the literature, corresponding to

a vacuum noise variance of 1/2 or 1/4, respectively. Ω is also known as the symplectic

form which will become clear in Section 2.2.

We define the photon-number operator by

n̂k := â†kâk , (2.5)

which accounts for the number of photons in the kth mode.

2.1 Quadrature Operators

With the annihilation and creation operators we can define the quadrature field oper-

ators

X̂k := âk + â†k , (2.6)

P̂k := i(â†k − âk) . (2.7)

In contrast to the annihilation and creation operators the quadrature field operators

are Hermitian and hence observables. We call X̂k the amplitude quadrature operator

and P̂k the phase quadrature operator of the kth mode. The operators correspond

to the position and momentum operators of the quantum harmonic oscillator. In

vectorial form they read

x̂ := (X̂1, P̂1, . . . , X̂N , P̂N)T . (2.8)

The quadrature operators satisfy the commutation relation

[x̂µ, x̂ν ] = 2iΩµν (µ, ν = 1, . . . , 2N) , (2.9)

which follows from Eq. (2.3). Using this result the Heisenberg uncertainty rela-
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tion [Sak11] of the quadrature operators reads

Var(x̂µ) Var(x̂ν) ≥
1

4
|[x̂µ, x̂ν ]|2 = (Ωµν)

2 = |Ωµν | , (2.10)

where Var(Â) denotes the variance 〈Â2〉 − 〈Â〉2 of an operator Â. Here 〈Â〉 denotes

the mean of Â.

As the quadrature operators X̂k and P̂k are observables, they have eigenstates |Xk〉
and |Pk〉,

X̂k|Xk〉 = Xk|Xk〉 , (2.11)

P̂k|Pk〉 = Pk|Pk〉 , (2.12)

with continuous eigenvalues Xk ∈ R and Pk ∈ R. We call these eigenstates the

quadrature states [Leo97]. Quadrature states are orthogonal

〈Xk|X ′k〉 = δ(Xk −X ′k) , 〈Pk|P ′k〉 = δ(Pk − P ′k) (2.13)

and complete ∫
dXk|Xk〉〈Xk| =

∫
dPk|Pk〉〈Pk| = 1 . (2.14)

Although quadrature states are not normalizable and hence experimentally not fea-

sible, they are useful to define the quadrature wave functions of the quantum state

|Ψ〉 [Leo97]

Ψ(Xk) := 〈Xk|Ψ〉 , (2.15)

Ψ̃(Pk) := 〈Pk|Ψ〉 . (2.16)

The moduli square of these wave functions, |Ψ(Xk)|2 and |Ψ̃(Pk)|2, are the quadra-

ture probability distributions of |Ψ〉 which are measurable by homodyne detection, cf.

Chapter 3.4.

For N modes Eqs. (2.11) and (2.12) can be written as

x̂|x〉T = x|x〉T (2.17)

with x ∈ R2N and |x〉 := (|x1〉, . . . , |x2N〉)T . Here, the continuous variables x are the

continuous eigenvalues of the 2N quadrature operators x̂. Together with the bilinear

form Ω, cf. Eq. (2.4), the continuous variables x form a symplectic space, the phase

space K := (R2N ,Ω). For two vectors ξ,η ∈ R2N , Ω acts as the symplectic scalar
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product

(ξ,η) = ξT · Ω · η =
2N∑

µ,ν=1

Ωµνξµην .

2.2 Symplectic Transformations

Symplectic transformations are a change of basis in the phase space K. Like all basis

transformations in linear algebra symplectic transformations must keep the scalar

product invariant. Hence, a symplectic transformation S must fulfill

ξT · Ω · η !
= (Sξ)T · Ω · (Sη)

= ξT · STΩS · η

for all ξ,η ∈ R2N . Thus,

Ω = STΩS . (2.18)

As the symplectic form originates from the commutation relation, cf. Eq. (2.3), sym-

plectic transformations keep the commutation relation invariant, i.e. physical quantum

states are transformed into physical quantum states.

2.3 Fock States

Fock states, named after V. A. Fock, are the eigenstates |nk〉 of the photon-number

operator n̂k as defined in Eq. (2.5)

n̂k|nk〉 = nk|nk〉 . (2.19)

If |nk〉 is a Fock state with eigenvalue nk, âk|nk〉 and â†k|nk〉 are also Fock states, having

the eigenvalues nk − 1 and nk + 1, respectively,

âk|nk〉 =
√
nk|nk − 1〉 , (2.20)

â†k|nk〉 =
√
nk + 1|nk + 1〉 . (2.21)

These equations show why âk and â†k are called annihilation and creation operator,

respectively. âk annihilates a photon from the kth mode of the field, while â†k instead

creates a photon in that mode.

Since nk is an integer and the photon number cannot be negative [Leo97]

âk|0〉 = 0 . (2.22)

10



2.3 Fock States

Hence, |0〉 is the ground state with mean photon number 0. As it contains no photons

this state is called the vacuum state. Its quadrature wave function Ψ0(Xk) = 〈Xk|0〉
can be obtained by solving

0 = 〈Xk|âk|0〉 (2.23)

=
1

2
〈Xk|

(
X̂k + iP̂k

)
|0〉 (2.24)

=
1

2

∫
dX ′k〈Xk|

(
X̂k + iP̂k

)
|X ′k〉〈X ′k|0〉 (2.25)

=
1

2

∫
dX ′k

(
X ′k〈Xk|X ′k〉+ 2

∂

∂Xk

〈Xk|X ′k〉
)
〈X ′k|0〉 (2.26)

=
1

2

(
Xk + 2

∂

∂Xk

)
〈Xk|0〉 , (2.27)

where in the first line we used the property â|0〉 = 0 from Eq. (2.22). The second

line used the definition of the quadrature operators, Eq. (2.6) and (2.7), whereas

in the third line the closure relation for the quadrature states from Eq. (2.14) was

inserted. In the fourth line the relation 〈Xk|P̂k|X ′k〉 = −2i(∂/∂Xk)〈Xk|X ′k〉 from

quantum mechanics text books, e.g. [Sak11], was applied1. The fifth and final line

made use of the closure relation for quadrature states again and yields a differential

equation for the quadrature wave function of the vacuum state. This differential

equation is solved by

Ψ0(Xk) = (2π)−1/4 exp

(
−X

2
k

4

)
. (2.28)

The normalization factor was chosen to yield
∫

dXk|Ψ0(Xk)|2 = 1. Taking the mod-

ulus square gives the probability distribution of the vacuum state for a measurement

of the Xk quadrature

|Ψ0(Xk)|2 = (2π)−1/2 exp

(
−X

2
k

2

)
. (2.29)

By computing the Fourier transform of Ψ0(Xk) we can obtain the phase quadrature

wave function of the vacuum

Ψ̃0(Pk) = (2π)−1/4 exp

(
−P

2
k

4

)
, (2.30)

1remember that we have chosen ~ = 2 for normalization purposes
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which yields for the probability distribution

|Ψ̃0(Pk)|2 = (2π)−1/2 exp

(
−P

2
k

2

)
. (2.31)

Hence, the vacuum state has a Gaussian quadrature probability distribution with mean

0 and variance 1 in both amplitude and phase quadrature.

2.4 Density Operator

The physical information about a quantum system is encoded in its quantum state,

which is described by its density operator

ρ̂ =
∑
i

pi|φi〉〈φi| (2.32)

on a Hilbert space H. Here, pi is the probability to find the system in the state |φi〉
with

∑
i pi = 1. The density operator is Hermitian (ρ̂ = ρ̂†) and positive semi-definite

(ρ̂ ≥ 0), which means that all its eigenvalues are real and positive.

The trace of an arbitrary operator Â is defined as

Tr Â =
∑
i

〈i|Â|i〉 , (2.33)

where {|i〉} forms an orthonormal basis. The trace of a density operator is Tr ρ̂ = 1.

In general Tr ρ̂2 ≤ 1, and the identity Tr ρ̂2 = 1 only holds if ρ̂ is in a pure state, i.e.

ρ̂ = |φ〉〈φ|. Tr ρ̂2 is called the purity of the quantum system.

With the trace we can now define the mean of an arbitrary operator Â. It is given

by

〈Â〉 = Tr ρ̂Â . (2.34)

2.5 Wigner Function

Any density operator, as defined in Section 2.4, has a representation defined on a real

symplectic space, a phase space. This representation is called Wigner Function. It

was introduced by Eugene Wigner in 1932 in his paper [Wig32].

We start by introducing the Weyl operator, which is defined as

D̂(ξ) := exp(ix̂T · Ω · ξ) , (2.35)

where x̂ is the vector of the 2N quadrature operators as defined in Eq. (2.8), Ω is the
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symplectic form and ξ ∈ R2N a phase space vector. The Weyl operator describes a

translation in phase space, i.e. it translates the mean of the quadrature operators by

ξ.

Using the Weyl operator an arbitrary density operator ρ̂ corresponds to a Wigner

characteristic function

χ(ξ) = Tr ρ̂D̂(ξ) . (2.36)

The Wigner characteristic function can be transformed into a Wigner function via

Fourier transformation

W (x) =

∫
d2Nξ

(2π)2N
exp

(
−ixT · Ω · ξ

)
χ(ξ) , (2.37)

where x ∈ R2N is a phase space vector. The Wigner function is real for any density

operator and is normalized to 1, i.e.∫
dx1 . . . dx2NW (x) = 1 .

While the Wigner function is a representation of a quantum system, it is not a

probability distribution as it can take negative values for certain quantum states.

Nevertheless, it can be treated as a quasi-probability distribution. A projection of the

Wigner function to an arbitrary quadrature xµ yields a probability distribution for

this quadrature

〈xµ|ρ̂|xµ〉 =

∫
dx1 . . . dxµ−1 dxµ+1 . . . dx2NW (x) . (2.38)

The purity of a quantum state can be expressed by the Wigner function via

Tr ρ̂2 = 4π

∫
dx1 . . . dx2N (W (x))2 . (2.39)

Let us now compute the Wigner function of the vacuum state as an example. For

one mode Eq. (2.37) can be simplified to [Leo97]

W (X,P ) =
1

4π

∫
dx exp(iPx/2)〈X − x

2
|ρ̂|X +

x

2
〉 . (2.40)

Plugging in the density operator of the vacuum state ρ̂ = |0〉〈0| yields

W (X,P ) =
1

4π

∫
dx exp(iPx/2)Ψ0

(
X − x

2

)
Ψ∗0

(
X +

x

2

)
, (2.41)
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where Ψ0(X) is the quadrature wave function of the vacuum state from Eq. (2.28).

By carrying out the integration we obtain the Wigner function of the vacuum state

W (X,P ) =
1

2π
exp

(
−X

2

2
− P 2

2

)
. (2.42)

By projecting the Wigner function on X or P , cf. Eq. (2.38), the quadrature

probability density functions from Eq. (2.29) and (2.31), respectively, are obtained.

Figure 2.1 shows a plot of the Wigner function and the quadrature probability distri-

butions.

X quadrature
P quadrature
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Figure 2.1: Wigner function of the vacuum state. The black traces show the proba-
bility distributions of the X and P quadratures obtained by projecting the Wigner function
on the respective quadrature.

The Wigner function can also be used to calculate quantum mechanical averages.

We assume Â(x̂) to be an arbitrary operator defined as a function of the quadrature

operators x̂. Its average with respect to the quantum state ρ̂ can be calculated by

〈Â(x̂)〉 =

∫
dx1 . . . dx2NA(x)W (x) . (2.43)

Here, A(x) is the c-number representation of Â(x̂)

Â(x̂)→ A(x) .

To make this work, Â must be in Weyl-Wigner ordering which is described in detail

in [Sch01]. For what follows we note, that any symmetric ordered operator is already

Weyl-Wigner ordered.
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2.6 Statistical Moments of Quantum States

The properties of a quantum state ρ̂ are described by its statistical moments. In

particular, we consider here the first and second moments of a state. For a certain

class of quantum states, the so-called Gaussian states, the first two moments are

sufficient to fully characterize the state. The quantum states that we are interested in

in this thesis belong to this class of states.

The first moment, also known as the mean value, is given by

x := 〈x̂〉 = Tr ρ̂x̂ . (2.44)

Using Eq. (2.43) this can be rewritten in terms of the Wigner function which yields

for the µth component

〈xµ〉 =

∫
dx1 . . . dx2NxµW (x) . (2.45)

The second moment is called the covariance matrix γ. An arbitrary element of the

covariance matrix is defined by

γµν :=
1

2
〈∆x̂µ∆x̂ν + ∆x̂ν∆x̂µ〉 (2.46)

=
1

2
Tr ρ̂ (∆x̂µ∆x̂ν + ∆x̂ν∆x̂µ) , (2.47)

where ∆x̂µ = x̂µ − 〈x̂µ〉. Using the linearity property of the mean Eq. (2.46) can be

rewritten as

γµν =
1

2
〈x̂µx̂ν + x̂ν x̂µ〉 − 〈x̂µ〉〈x̂ν〉 ,

where the first term is the mean of a symmetric operator. Applying Eq. (2.43) the

covariance matrix element can be calculated from the Wigner function by

γµν =

(∫
dx1 . . . dx2NxµxνW (x)

)
− 〈x̂µ〉〈x̂ν〉 . (2.48)

Taking the example of the vacuum state, whose Wigner function is given by Eq.

(2.42), the mean and the covariance matrix calculated from Eq. (2.45) and (2.48),

respectively, are

x =

(
0

0

)
, γ =

(
1 0

0 1

)
. (2.49)

Given the mean x and the covariance matrix γ from a general N -mode Gaussian
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state, the Wigner function can be written as [Wee12]

W (x) =
1

(2π)N
√

det γ
exp

(
−1

2
(x− x)Tγ−1(x− x)

)
. (2.50)

2.7 Gaussian States

In the last section we have seen the statistical properties of the vacuum state, a state

which is probably the most fundamental Gaussian state. Another state that will

become useful later, is a thermal state. A thermal state is a state which maximizes

the von Neumann entropy for a fixed number of photons Tr ρ̂thn̂ = n. The density

operator of such a state is given by [Bar97]

ρ̂th =
∞∑
n=0

nn

(n+ 1)n+1
|n〉〈n| . (2.51)

Following the procedure given above for the vacuum state, the Wigner function ob-

tained for the thermal state takes a Gaussian form. Hence, a thermal state is also a

Gaussian state and its mean and covariance matrix is given by

x =

(
0

0

)
, γ =

(
2n+ 1 0

0 2n+ 1

)
. (2.52)

To identify further Gaussian states, we will have a look at the following map

x→ Sx+ d , γ → SγST , (2.53)

where S is a symplectic matrix, i.e. SΩST = Ω, and d ∈ R2N is a translation vec-

tor. Obviously Gaussian states will be transformed into Gaussian states and since

S is symplectic, the new state will be physical. In the following we denote (d, S) as

symplectic map.

A translation of the vacuum state in phase space by dα ∈ R2, i.e.

x = dα =

(
x

p

)
, γ = 12 , (2.54)

where 12 is the 2× 2 identity matrix, is called a displaced vacuum state or a coherent

state [Wee12]. α = (x+ ip)/2 is called the complex amplitude and the coherent state

is denoted as |α〉, satisfying â|α〉 = α|α〉 [Gla63]. Hence, the coherent state is an

eigenstate of the annihilation operator.
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A squeezed state [Bar97] is generated by

d =

(
0

0

)
, Ssqz(r) =

(
e−r 0

0 er

)
, (2.55)

where r ∈ R is the squeezing parameter. For r > 0 the state is squeezed in the

amplitude quadrature, while for r < 0 it is squeezed in the phase quadrature. Applying

Ssqz to a vacuum state yields a squeezed vacuum state, while applying it to a thermal

state it generates a squeezed (thermal) state. In the same manner Ssqz generates a

squeezed displaced vacuum state or squeezed coherent state, when applied to a coherent

state. The generation of squeezed states is described in Chapter 3.3.

2.8 Linear Optical Elements

In this section we will introduce two passive optical elements that keep Gaussian states

Gaussian, namely a (static) phase shifter and a beam splitter. Based on the trans-

formation caused by a beam splitter we will be able to describe two-mode squeezed

vacuum states and optical loss.

Phase Shifts A phase shift, or phase rotation, of a mode with respect to another

mode is usually introduced by changing its propagation length. The phase shift by an

angle θ is described in phase space by the transformation

d =

(
0

0

)
, Srot(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
. (2.56)

So far we have only given the symplectic maps from Eqs. (2.54), (2.55) and (2.56) on

1-mode systems. Applying such a transformation to a submode of an N -mode system

can be described by

d = (0, 0, . . . , d′1, d
′
2, . . . , 0, 0)T , S = 12 ⊗ · · · ⊗ S ′ ⊗ · · ·12 , (2.57)

where (d′ = (d′1, d
′
2)T , S ′) is a symplectic transformation according to Eq. (2.53) and

12 denotes the 2× 2 identity matrix.

Beam Splitters and Two-Mode Squeezed Vacuum States A beam splitter

is an optical element which combines two modes with a ratio given by the power

transmissivity τ ∈ [0, 1] yielding two output modes. Let γ be a 4 × 4 covariance

matrix which describes the input fields prior to the combination by a beam splitter.
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For example these modes are given by

x = 0 , (2.58)

γ =

(
Ssqz(r) 0

0 Ssqz(−r)

)
14

(
Ssqz(r)

T 0

0 Ssqz(−r)T

)
=


e−2r 0 0 0

0 e2r 0 0

0 0 e2r 0

0 0 0 e−2r

 ,

(2.59)

which describes two squeezed vacuum modes squeezed with squeezing parameters r

and −r.

The symplectic map (d, S) of a beam splitter is defined by

d = 0 , SBS(τ) =

(√
1− τ12

√
τ12

−
√
τ12

√
1− τ12

)
, (2.60)

where τ is the power transmissivity. It transforms Eqs. (2.58) and (2.59) according to

Eq. (2.53) for τ = 0.5 into

x′ = 0 , (2.61)

γ′ =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)

sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 . (2.62)

This state is called a two-mode squeezed vacuum state. In general we call all states

“two-mode squeezed vacuum states” that are generated by superimposing two squeezed

vacuum states with possibly different squeezing parameters r1 and r2, at a beam split-

ter with arbitrary power transmissivity. We include into this definition states which

have either r1 = 0 or r2 = 0 and are, hence, generated by superimposing a squeezed

vacuum state with a vacuum state.

For an N -mode system a beam splitter combining modes k and l can be described

by the symplectic map

d = 0 , (2.63)(
Sk,lBS(τ)

)
i,j

=

{ √
1− τδi,j +

√
τ(δ2k−i,2l−j − δ2l−i,2k−j) i, j ∈M

δi,j i, j ∈ [1, 2N ] \M , (2.64)

where M = {2k − 1, 2k, 2l − 1, 2l}.
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Optical Loss Optical loss to a mode A with mean xA and covariance matrix γA
can be described by superimposing this mode with a vacuum mode at a beam splitter.

Thereby the beam splitter’s transmissivity τ describes the amount of optical loss ε ∈
[0, 1]. The output modes of the beam splitter are given by(

xA
0

)
→ SBS(ε)

(
xA
0

)
, (2.65)

γA ⊗ 12 → SBS(ε)(γA ⊗ 12)SBS(ε)T . (2.66)

Taking the partial trace over the mode that contains the loss yields

xA →
√

1− εxA (2.67)

γA → (1− ε)γA + ε12 . (2.68)

Often the optical efficiency η = 1− ε instead of the optical loss ε is given. Assuming

two different optical efficiencies η1 and η2 on mode A, the new state reads

xA →
√
η1η2xA (2.69)

γA → η1η2γA + (1− η1η2)12 , (2.70)

which can be derived by applying Eqs. (2.67) and (2.68) twice. Hence, subsequent

optical efficiencies can be multiplied to yield a total efficiency.

2.9 Williamson Form and Symplectic Eigenvalues

Every N -mode covariance matrix γ can be transformed by a symplectic transformation

S into its Williamson form [Wil36, Wee12]

SγST =


s1

s1

. . .

sN
sN

 , (2.71)

where s1, . . . , sN are positive, real values, called the N symplectic eigenvalues . The

symplectic eigenvalues can be determined by taking the modulus of the eigenvalues of

iΩγ.

Equation (2.71) describes that every N -mode Gaussian state γ can be obtained from

an N -mode thermal state with nµ = 1
2
(sµ − 1) , (µ = 1, . . . , N), cf. Eq. (2.52), by a
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symplectic transform S. Hereby, S can be decomposed into an appropriate sequence

of Ssqz, Srot and SBS. This means that γ can be obtained from a thermal state by

squeezing, phase rotating and combining modes.

As the covariance matrix of Eq. (2.71) has to describe physical thermal states, i.e.

∀µ : nµ ≥ 0, it follows ∀µ : sµ ≥ 1. Therefore the symplectic spectrum of a covariance

matrix can be used to check whether the covariance matrix is bonafide, i.e. whether

it describes a physical quantum state. Hence, in terms of covariance matrices the

Heisenberg uncertainty principle, cf. Eq. (2.10), is equivalent to

γ > 0 , iΩγ ≥ 1 , (2.72)

where A > x, with A ∈ R2N×2N symmetric, means that all eigenvalues of A − x12N

are larger than 0.

Symplectic eigenvalues are also useful to determine whether a state is inseparable or

separable, cf. Section 2.11.1, and to compute the entropy of a state, cf. Section 2.12.

2.10 Symplectic Invariants of Two-Mode Gaussian

States

Symplectic invariants are, as the name implies, quantities that do not change under

symplectic transformations. For a 2-mode state the covariance matrix reads in block

form

γ =

(
A C

CT B

)
. (2.73)

The symplectic invariants of this state are [Ser04, Buo10]

I1 = detA , (2.74)

I2 = detB , (2.75)

I3 = detC (2.76)

and

I4 = det γ . (2.77)

The symplectic invariants can be used to express certain quantities of the state. For

example the purity of a Gaussian state ρ̂ can be evaluated by plugging Eq. (2.50) into
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Eq. (2.39) which yields

Tr ρ̂2 =
1√

det γ
= 1/

√
I4 , (2.78)

where in the last step Eq. (2.77) has been used.

2.11 Measures of Entanglement

In Section 2.8 we have introduced two-mode squeezed states which are bipartite en-

tangled states. In this section we will describe different measures of entanglement. In

general, we can distinguish between separable and inseparable (i.e. entangled) states.

Criteria for inseparability are described in Section 2.11.1. A subclass of all inseparable

states are the so-called Einstein-Podolsky-Rosen (EPR) entangled states. EPR entan-

glement is a direction dependent property and will be described in Section 2.11.2. A

subclass of the EPR states which necessarily shows the EPR property in both direc-

tions, are states that violate a Bell inequality. A Bell inequality [Bel64] can never be

violated in the Gaussian setting, i.e. using exclusively Gaussian states and Gaussian

measurements [Bel86, Ban98]. Since this thesis deals with the Gaussian setting, we

will not consider Bell states here.

2.11.1 Inseparability Criteria

Inseparability of bipartite states can be certified using two independent criteria, the

positive partial transpose (PPT) criterion [Sim00] and the Duan criterion [Dua00].

PPT criterion The PPT criterion works by transposing one of the modes in the

covariance matrix of the bipartite system. If the new system after this transformation

is physical, the system is separable, while it is inseparable if the partially transposed

system is unphysical. The partial transposition of mode µ is described in terms of

covariance matrices by

γ → RµγR
T
µ =: γ(Tµ) µ = 1, 2 , (2.79)

where R1 = diag(1,−1, 1, 1) and R2 = diag(1, 1, 1,−1). The partial transposition

therefore flips the Wigner function describing the respective subsystem at the Pµ axis.

The physicality of γ(Tµ) can be checked by the Heisenberg uncertainty relation from

Eq. (2.72),

iΩγ(Tµ) ≥ 1 , (2.80)
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which is equivalent to computing the symplectic eigenvalues of γ(Tµ) which have to be

≥ 1.

The PPT criterion is also applicable for systems with more than two modes. How-

ever, only for bipartite systems it is necessary and sufficient inseparability criterion.

Duan criterion The Duan criterion directly employs the correlations of amplitude

quadrature measurements and the correlations of phase quadrature measurements at

both subsystems. It reads

Var

(
|a|X̂A +

1

a
X̂B

)
+ Var

(
|a|P̂A −

1

a
P̂B

)
≥ 2

(
a2 +

1

a2

)
, (2.81)

where we denoted the first subsystem by A and the second by B, and a is an arbitrary

nonzero real number. A violation of this inequality certifies inseparability of the quan-

tum state. To maximize the violation the optimal parameter a can be determined by

minimizing the left hand side of Eq. (2.81) which yields

a = ±

(
Var(X̂B) + Var(P̂B)− 2

Var(X̂A) + Var(P̂A)− 2

) 1
4

, (2.82)

where the sign of a is determined by the sign of Cov(X̂A, X̂B). Here, Cov denotes the

covariance. For symmetric states, i.e. for states with Var(X̂B)+Var(P̂B) = Var(X̂A)+

Var(P̂A), a = ±1 and Eq. (2.81) simplifies to

Var
(
X̂A ± X̂B

)
+ Var

(
P̂A ∓ P̂B

)
≥ 4 . (2.83)

Symmetric states are obtained when using a balanced beam splitter for entanglement

generation and by having the same optical loss in both output arms of the beam

splitter.

Note, that the Duan criterion is sufficient but not necessary for inseparability.

2.11.2 Einstein-Podolsky-Rosen Entanglement Criteria

In 1935 Einstein, Podolsky and Rosen formulated their famous Gedanken experi-

ment [Ein35] which led Schrödinger in his reply introduce the notion of entangle-

ment [Sch35]. EPR argued that quantum mechanics is not a complete theory. A

theory is said to be complete if “every element of the physical reality [has] a counter

part in the physical theory” [Ein35]. Their argument is based on the assumption of

“local realism” which means that “if, without in any way disturbing a system, we can

predict with certainty [...] the value of a physical quantity, then there exists an element

22



2.11 Measures of Entanglement

of physical reality corresponding to this physical quantity” [Ein35]. In their Gedanken-

experiment EPR considered two spatially separated particles A and B, whose positions

and momenta are maximally correlated. Measuring the position of particle A yields

both particles to be in individual but correlated position eigenstates as the wave func-

tion collapses. Hence, the position of particle B can be predicted with certainty by

the position measurement of particle A. The position of particle B therefore has phys-

ical reality. Otherwise, measuring the momentum of particle A yields both particles

to be in individual but correlated momentum eigenstates. Thus, the momentum has

physical reality and can be predicted with certainty. Since the physical reality of a

quantity of particle B cannot depend on the choice of measurement at particle A due

to the assumption of local realism, both quantities, position and momentum, must

have physical reality. However, this leads to a contradiction in quantum mechanics

as position and momentum operators do not commute and thus cannot have physical

reality at the same time. This paradox was solved by EPR by dropping the assump-

tion that quantum mechanics is a complete theory as they strongly believed in local

realism. This was ruled out later by the violation of Bell inequalities [Bel64, Asp81],

showing that the EPR paradox can only be solved by dropping the assumption of local

realism. Using amplitude and phase quadrature measurements of light fields the EPR

paradox was first demonstrated by Ou et al., in 1992 [Ou92]. The criterion they used

was introduced by Reid in 1989 [Rei89] and will be discussed in the following.

Amplitude and phase quadratures of two-mode squeezed states are not maximally

correlated as this can only be the case for infinite squeezing which can only be reached

with infinite energy. Nevertheless, Reid showed that the EPR paradox can even be

realized for less than maximum correlations. Using the quantum mechanical Cauchy-

Schwarz inequality the correlation coefficient of the field quadratures x̂µ and x̂ν can

be defined as [Rei89]

C(x̂µ, x̂ν) =
Cov(x̂µ, x̂ν)√

Var(x̂µ) Var(x̂ν)
. (2.84)

Perfect correlations, as for the position and momentum operators of the correlated

particles, yield |C(X̂A, X̂B)| = |C(P̂A, P̂B)| = 1. As the field quadratures are not

maximally correlated the prediction of a measurement outcome at subsystem B of the

correlated system cannot be made with certainty after a measurement at subsystem

A. The uncertainty of the inference can be quantified as

∆2
infX̂B = Var(X̂B − gX̂A) (2.85)
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for the amplitude quadrature and

∆2
infP̂B = Var(P̂B − hP̂A) (2.86)

for the phase quadrature. g and h are thereby arbitrary scaling parameters that can

be used to maximize the inference accuracy. By requiring
∂∆2

infX̂B
∂g

= 0 and
∂∆2

infP̂B
∂h

= 0

we obtain

g =
Cov(X̂B, X̂A)

Var(X̂A)
(2.87)

and

h =
Cov(P̂B, P̂A)

Var(P̂A)
(2.88)

which yields

VarB|A(X̂A, X̂B) := min
g

∆2
infX̂B = Var(X̂B)− Cov(X̂B, X̂A)2

Var(X̂A)
(2.89)

and

VarB|A(P̂A, P̂B) := min
h

∆2
infP̂B = Var(P̂B)− Cov(P̂B, P̂A)2

Var(P̂A)
. (2.90)

Thus, a measurement of X̂A specifies a value of X̂B with an uncertainty of at least

VarB|A(X̂A, X̂B), and a measurement of P̂A specifies a value of P̂B with an uncertainty

of at least VarB|A(P̂A, P̂B). EPR’s concept of local realism leads to the conclusion

that values for both X̂B and P̂B must have been predetermined with the uncertainties

specified above as the physical reality of a quantity cannot depend on the choice of

measurement at the spatially separated subsystem A. However, as amplitude and

phase quadratures are non-commuting operators, the Heisenberg uncertainty relation

from Eq. (2.10) requires

VarB|A(X̂A, X̂B) · VarB|A(P̂A, P̂B) ≥ 1 . (2.91)

Thus, a demonstration of a violation of this inequality shows the EPR paradox. The

inequality (2.91) shows a directional dependence as swapping the roles of subsystems

A and B yields

VarA|B(X̂A, X̂B) · VarA|B(P̂A, P̂B) ≥ 1 . (2.92)
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The inequalities (2.91) and (2.92) do not have to be violated at the same time [Hae12]

as violating one of those is sufficient to demonstrate the EPR paradox. Note, that

the EPR paradox is also demonstrated if the Heisenberg uncertainty relation for the

inferred variances, ∆2
infX̂B · ∆2

infP̂B ≥ 1, is violated with a non-optimal choice of the

scaling parameters g and h.

Using the symplectic invariants from Section 2.10, the EPR criteria from Eqs. (2.91)

and (2.92) can be expressed as [Fra12]

VarB|A(X̂A, X̂B) · VarB|A(P̂A, P̂B) =
I4

I2

, (2.93)

and

VarA|B(X̂A, X̂B) · VarA|B(P̂A, P̂B) =
I4

I1

. (2.94)

2.12 Von Neumann Entropy and Mutual

Information

The von Neumann entropy of a quantum state ρ̂ is defined as [Wil12]

H(ρ̂) := −Tr (ρ̂ log2 ρ̂) . (2.95)

Assume that one party, called Alice, prepares quantum states |Ψx〉 with probability

p(x) and sends them to another party, called Bob. Bob does not know which quantum

state was sent to him, but what he knows is that it will be |Ψx〉 with probability

p(x). The density operator of Alice’s state as expected by Bob can then be written

as ρ̂ =
∑

x p(x)|Ψx〉〈Ψx|. The von Neumann entropy H(ρ̂) quantifies the uncertainty

of Bob’s knowledge about Alice’s state or in other words it quantifies the information

Bob gains when he measures Alice’s state.

The von Neumann entropy has the following properties:

• H(ρ̂) ≥ 0 . H(ρ̂) = 0⇔ ρ̂ is a pure state.

• H(ρ̂) = H(Û ρ̂Û †), where Û is a unitary operator. Because a symplectic trans-

formation can be written as a unitary transformation of the density matrix, the

von Neumann entropy does not change under symplectic transformations.

• The von Neumann entropy is additive for tensor product states, i.e. H(ρ̂1⊗ ρ̂2) =

H(ρ̂1) +H(ρ̂2).
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• The von Neumann entropy is concave, i.e. H (
∑

x p(x)ρ̂x) ≥
∑

x p(x)H(ρ̂x). The

concavity property means that the entropy increases when mixing states.

In the following we assume a bipartite system with parties A and B. We denote

the density operator of the whole system as ρ̂AB and the density operators of the

subsystems as ρ̂A = TrB ρ̂AB and ρ̂B = TrA ρ̂AB with the partial traces TrA and TrB
taken over the respective subsystem.

The joint entropy of the state is then given by

H(AB) := H(ρ̂AB) = −Tr (ρ̂AB log2 ρ̂AB) (2.96)

and the marginal entropies by

H(A) := H(ρ̂A) = −Tr (ρ̂A log2 ρ̂A) (2.97)

and

H(B) := H(ρ̂B) = −Tr (ρ̂B log2 ρ̂B) . (2.98)

If ρ̂AB is a pure state, the marginal entropies are equal, H(A) = H(B), which is also

true for multipartited systems, e.g. if ρ̂ABE is pure, H(AB) = H(E). This property is

called the self-duality property of the von Neumann entropy.

The conditional entropy is given by

H(A|B) := H(AB)−H(B) . (2.99)

H(A|B) can be smaller than zero, as for entangled states the uncertainty of the whole

system is smaller than for any subsystem, i.e. H(AB) < H(A). This can be seen for

the two-mode squeezed state from Eq. (2.62). H(AB) = 0 as the state is pure, but

H(B) = H(A) > 0 as the local subsystems are thermal states. After introducing the

mutual information, we will see how to calculate the entropy of arbitrary Gaussian

states.

The mutual information quantifies the amount of information, measured in bits,

which both subsystems share. It is given by

I(A : B) := H(A) +H(B)−H(AB) (2.100)

= H(A)−H(A|B) (2.101)

= H(B)−H(B|A) . (2.102)

Hence, the mutual information quantifies also how much the knowledge about a sub-
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system, e.g. about subsystem B, reduces the uncertainty H(A) about the other sub-

system.

In the following we will calculate the von Neumann entropy of an arbitrary N -mode

Gaussian state with covariance matrix γ [Ser04]. The Williamson form of γ is given

by

SγST = ⊗Ni=1si12

by means of a symplectic transformation S. si are the symplectic eigenvalues of γ.

As a symplectic transformation of a covariance matrix can be written as a unitary

transformation of the corresponding density matrix, the von Neumann entropy of the

state does not change. Hence, using the additivity property of the von Neumann

entropy for tensor product states, we can write

H(γ) =
N∑
i=1

H(si12) , (2.103)

which reduces the calculation of the entropy to the entropy of thermal states with

mean photon number ni = 1
2
(si − 1).

The density operator of a thermal state with mean photon number n is given

by [Bar97]

ρ̂th =
∞∑
n=0

nn

(n+ 1)n+1
|n〉〈n| , (2.104)

cf. Eq. (2.51). Plugging this into the von Neumann entropy from Eq. (2.95) yields

H(ρ̂th) = − 1

1 + n

∞∑
n=0

(
n

1 + n

)n
log2

nn

(1 + n)n+1
(2.105)

=
1

1 + n

(
−
∞∑
n=0

(
n

1 + n

)n
n log2 n+

∞∑
n=0

(
n

1 + n

)n
(n+ 1) log2 (1 + n)

)
.

(2.106)

Using the geometric series
∑∞

n=0

(
n

1+n

)n
= 1 + n and

∑∞
n=0

(
n

1+n

)n
n = n(1 + n)

simplifies H(ρ̂th) to

H(ρ̂th) = n log2

1 + n

n
+ log2(1 + n) . (2.107)

In terms of symplectic eigenvalues this is transformed into

H(ρ̂th) = H(si12) = f(si) , (2.108)
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with

f(s) =
s+ 1

2
log2

(
s+ 1

2

)
− s− 1

2
log2

(
s− 1

2

)
. (2.109)

Hence, for an N -mode Gaussian state with symplectic eigenvalues si the von Neumann

entropy can be calculated by

H(γ) =
N∑
i=1

f(si) . (2.110)

Using this result all quantities given in this section can be calculated for Gaussian

states.

2.13 Partial Homodyne Measurement on a

Bipartite Gaussian State

Quadrature measurements can be performed by homodyne detection as we will see

in Chapter 3.4. We will now assume the situation where we perform a measurement

on subsystem B of a bipartite Gaussian system and we are interested in the state of

subsystem A after the measurement. We write the covariance matrix γ of the bipartite

state in block form as in Eq. (2.73). Performing a measurement in the X quadrature

on subsystem B leaves the subsystem A in the state [Wee12]

γ′A = A− C(MXBMX)MPCT , (2.111)

while performing a P quadrature measurement leaves A in the state

γ′A = A− C(MPBMP )MPCT . (2.112)

Here, MX = diag(1, 0) and MP = diag(0, 1). MP denotes the Moore-Penrose pseudo-

inverse since M{X,P}BM{X,P} are singular. The pseudo-inverse can be evaluated by

(MXBMX)MP = B−1
11 MX and (MPBMPX)MP = B−1

22 MP , where B is written as B =(
B11 B12

B21 B22

)
.

We will use this result later in Chapter 5 to calculate the key rates for quantum key

distribution.
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CHAPTER3
Experimental Techniques

Overview

In this chapter the experimental techniques used in this thesis are introduced. Sec-

tion 3.1 describes the preparation of the main laser beam and its source. Section 3.2

introduces the second-harmonic generation which generated the pump beam for the

squeezed-light source, which is described in Section 3.3. Balanced homodyne detection

was used for measurements of the field quadratures and is described in Section 3.4.

The reconstruction process of a state’s covariance matrix is introduced in Section 3.5.

Section 3.6 describes the data acquisition process used to obtain digitized samples from

the output of the balanced homodyne detection, and Section 3.7 gives an insight in

how lowpass filters, which were used for the preparation of signals for data acquisition,

introduce correlations between samples.

3.1 Coherent Light Preparation

The main light source of the experiments described in the following chapters, was a 1 W

fiber laser at a wavelength of 1550 nm from NKTPhotonics. Figure 3.1 shows the light

preparation, which the beam had passed before it was used for these experiments. The

laser beam from the source was coupled out of a polarization-maintaining fiber which

had a mode-field diameter of 10.5 µm. The beam was collimated using an aspheric lens.

For spatial mode and noise filtering as well as for being a beam reference for the down-

stream experiment, the beam was fed through an impedance matched three-mirror

travelling-wave ring cavity, called mode cleaner (MC), which had a finesse of about

300. To keep the cavity on resonance a Pound-Drever-Hall (PDH) scheme [Bla01] was

used to generate an error signal for a control loop [Abr00] which actuated the position
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EOM

1550nm
Laser PD115 MHz

Figure 3.1: Coherent light preparation. The light from a 1550 nm fiber laser is coupled
out of the fiber. The free beam passes a mode cleaning ring cavity which is locked using a
Pound-Drever-Hall scheme. EOM: electro-optical modulator, PD: photo detector.

of one of the cavity’s mirrors with a piezo-electric transducer. The PDH scheme

employed phase modulation sidebands at 115 MHz which were imprinted on the laser

beam by an electro-optical modulator (EOM). The reflected light from the cavity

was detected by a resonant photo detector whose photo current was demodulated at

115 MHz and lowpass filtered. The electronic sinusoidal signal used for the generation

of the phase modulation and for the demodulation of the photo current was served by

a computer programmable AD9959 digital synthesizer.

3.2 Pump Beam Preparation for Parametric

Down-Conversion

Figure 3.2 shows the generation of the 775 nm pump beam for the parametric squeezed-

light sources described in the next Section. We used parametric up-conversion in a

periodically poled potassium titanyl phosphate (PPKTP) crystal for the generation of

the second harmonic of the fundamental beam at 1550 nm. To enhance the conversion

efficiency from 1550 nm to 775 nm the crystal with a length of 9.3 mm was placed in a

standing-wave cavity formed by the curved end-face of the crystal which was coated

high-reflective for both wavelengths, and an external coupling mirror with a reflectivity

of about 90 % for the fundamental and a small residual reflectivity for the harmonic.

The curved end-face of the crystal had a radius of curvature of 12 mm and the cou-

pling mirror had a radius of curvature of 25 mm. The plane end-face of the crystal
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EOM

115 MHz

PP
KT

P

PD

DBS

Figure 3.2: Second harmonic generation using parametric up-conversion in PPKTP. The
linear cavity is locked to the fundamental beam using a Pound-Drever-Hall scheme. The
generated harmonic beam at 775 nm is separated from the fundamental by a dichroic beam
splitter. EOM: electro-optical modulator, PD: photo detector, DBS: dichroic beam splitter.

was coated anti-reflective for both wavelengths. To reach phase-matching the crystal

was covered by a copper housing whose temperature could be actuated by a Peltier

element. For thermal isolation the copper housing was encased by polyoxylmethylene

(POM). A resistor with negative temperature coefficient served as temperature sensor

and was used together with a servo controller and the Peltier element to keep the

crystal at a constant temperature. The cavity was kept on resonance by a control loop

which employed the same PDH scheme as described above. For the second-harmonic

generation the phase modulation sidebands were also at 115 MHz. The generated

775 nm beam was separated from the fundamental field by a dichroic beam splitter

(DBS).

Using the same scheme and the same wavelengths a conversion efficiency of about

95 % was reported in [Ast11]. Due to a lower fundamental light power the conversion

efficiency of the second-harmonic generation used in this thesis was about 85 %.

3.3 Squeezed-Light Generation

Figure 3.3 shows the experimental setup for squeezed-light generation. Squeezed vac-

uum states are generated by degenerate parametric down-conversion [Ger05] which

was implemented using PPKTP as nonlinear medium like for the second-harmonic

generation. Hence, the mechanical implementation of the squeezed-light source was

the same as described in Section 3.2, except for the reflectivity of the coupling mirror

which was 90 % for 1550 nm and 20 % for 775 nm. To lock the cavity on resonance
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Figure 3.3: Squeezed-light generation using degenerate type I parametric down-conversion
in PPKTP in a linear standing-wave cavity. The cavity length is locked using a control
beam with phase modulation sidebands coupled into the cavity from the left. The back
reflected light is separated from the incoming light with a Faraday rotator and a polarizing
beam splitter and detected by a resonant photo detector. The pump field is coupled into the
cavity from the right. Its phase is locked using an error signal generated by demodulating
the photo detector’s output out-of-phase to the demodulation of the output for the cavity
length error signal. The squeezed beam is separated from the pump by a dichroic beam
splitter. EOM: electro-optical modulator, FR: Faraday rotator, PD: photo detector, DBS:
dichroic beam splitter, PS: phase shifter.

we employed a control beam with a power of about 800µW which was coupled into

the cavity through the high-reflective mirror. The back reflected light was separated

from the incoming light by a Faraday rotator and a polarizing beam splitter and was

detected by a resonant photo detector. Phase modulation sidebands at 33.9 MHz im-

printed on the control beam were used to generate an error signal for the length of

the cavity. The pump beam at 775 nm was coupled into the cavity from the partial

reflective side. The phase of the pump with respect to the control beam was locked

using an error signal generated by demodulating the photo detector’s output. For

this purpose the electronic local oscillator for the demodulation was shifted by 90◦ in

phase to the electronic local oscillator used for the generation of the error signal for the

cavity length. In the figure this is indicated by cos and sin next to the demodulation

symbol. The phase of the pump was actuated by a mirror attached to a piezo and

controlled to a phase angle which yielded deamplification of the control beam. The

squeezed beam was separated from the pump by a dichroic beam splitter. To generate

squeezed vacuum states with this setup the control beam had to be shot-noise limited
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Figure 3.4: Principle of balanced homodyne detection. A strong optical local oscillator was
superimposed with the signal field at a balanced beam splitter. Both output beams were
detected by photo diodes whose photo currents were subtracted. The phase of the local
oscillator field with respect to the signal field defined the measured quadrature angle and
could be actuated by a phase shifter. PS: phase shifter, PD: photo detector.

in the frequency band of the measurement. This requirement limited the power that

could be used for the control beam as well as the lower end of the measured frequency

band because the control beam was only shot-noise limited above about 7 MHz for the

power we used. Indeed we were not able to use less power in the control beam as the

locks for the cavity length and the pump phase got unstable otherwise. The demod-

ulation of the photo detector’s signal with two electronic local oscillators which were

90◦ out of phase, was implemented on a single printed circuit board. The schematic

of this electronic circuit is shown in Appendix A, Fig. A.1.

3.4 Balanced Homodyne Detection

The measurement of the field quadratures was performed by balanced homodyne detec-

tion. The experimental setup for balanced homodyne detection is depicted in Fig. 3.4.

A bright local oscillator beam was superimposed with the signal field at a balanced

beam splitter. Both output beams were detected by photo diodes whose photo cur-

rents were subtracted. The phase of the local oscillator beam thereby defined the

measured quadrature angle and could be actuated by a mirror attached to a piezo.

Let us denote the mode of the local oscillator by b̂ and the mode of the signal field

by â. The phase between these modes is denoted by ϕ. According to Eq. (2.2) we can

write the operators in vectorial form

x̂ = (b̂eiϕ, b̂†e−iϕ, â, â†)T .
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Applying the symplectic form SBS(τ) from Eq. (2.60) with τ = 0.5 yields

SBS(0.5)x̂ =



1√
2

(
b̂eiϕ + â

)
1√
2

(
b̂†e−iϕ + â†

)
1√
2

(
−b̂eiϕ + â

)
1√
2

(
−b̂†e−iϕ + â†

)

 . (3.1)

The photo current of each photo diode is proportional to the number of detected

photons. Thus,

î1 ∝
1

2

(
b̂†e−iϕ + â†

)(
b̂eiϕ + â

)
(3.2)

=
1

2

(
b̂†b̂+ b̂†âe−iϕ + â†b̂eiϕ + â†â

)
(3.3)

=
1

2

(
b̂†b̂+ (â†b̂eiϕ)† + â†b̂eiϕ + â†â

)
(3.4)

and

î2 ∝
1

2

(
−b̂†e−iϕ + â†

)(
−b̂eiϕ + â

)
(3.5)

=
1

2

(
b̂†b̂− (â†b̂eiϕ)† − â†b̂eiϕ + â†â

)
. (3.6)

By subtracting the photo currents we obtain

î1 − î2 ∝ (â†b̂eiϕ)† + â†b̂eiϕ , (3.7)

where we assumed that the photo diodes have the same gain and, hence, the pro-

portionality factor is the same. We now rewrite both modes by â = |α| + δα̂ and

b̂ = |β| + δβ̂ Here, |α| and |β| describe a coherent excitation of the field and δα̂ and

δβ̂ are the noise contributions. We assume δα̂ and δβ̂ to be small und thus take only

first order noise terms into account. With this linearization of the modes, Eq. (3.7)

can be written as

î1 − î2 ∝ 2|β||α| cosϕ+ |β|
(
δα̂†eiϕ + δα̂e−iϕ

)
+ |α|

(
δβ̂†e−iϕ + δβ̂eiϕ

)
. (3.8)

Generalizing the definition of the quadrature operators from Eq. (2.6) and (2.7) to an

arbitrary angle ϕ,

X̂âk(ϕ) := âke
−iϕ + â†ke

iϕ , (3.9)

where the X quadrature operator from Eq. (2.6) is reproduced with ϕ = 0 and the
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P quadrature operator from Eq. (2.7) is reproduced with ϕ = π
2
, the equation of the

subtracted photo currents takes the form

î1 − î2 ∝ 2|β||α| cosϕ+ |β|X̂δâ(ϕ) + |α|X̂δb̂(ϕ) . (3.10)

To measure only X̂δâ(ϕ) the local oscillator power |β| has to be much larger than

|α|. Indeed for squeezed vacuum states |α| = 0. As described in Section 3.3 we use

a control beam for locking purposes of the squeezed-light source, thus, |α| 6= 0, and

the requirement |β| � |α| has to hold. The first term of Eq. (3.10) describes the beat

between the local oscillator and the control beam and can be used as an error signal

for a lock of the local oscillator’s phase to π
2
, i.e. to the phase quadrature. Arbitrary

quadratures can be measured by locking the local oscillator’s phase to an appropriate

value using other techniques [DiG07, Ebe13b].

3.5 Tomographic Reconstruction of the Covariance

Matrix

For the characterization of our generated state we reconstructed the full covariance

matrix according to a protocol presented and experimentally demonstrated in [DiG07].

Assuming the two modes of a bipartite states are possessed by Alice and Bob, the

protocol works as follows:

1. Alice and Bob both measure simultaneously the amplitude quadrature.

2. Alice and Bob both measure simultaneously the phase quadrature.

3. Alice measures the amplitude quadrature, whereas Bob simultaneously measures

the phase quadrature.

4. Alice measures the phase quadrature, whereas Bob simultaneously measures the

amplitude quadrature.

5. Alice and Bob both measure a linear combination of the amplitude and phase

quadrature. In our case we chose the 45◦ angle for both parties.

Including a vacuum noise measurement for reference, the covariance matrix can be

reconstructed using the measurements given above by

γ =


〈X̂2

A〉 1
2
〈X̂AP̂A + P̂AX̂A〉 〈X̂AX̂B〉 〈X̂AP̂B〉

〈P̂ 2
A〉 〈P̂AX̂B〉 〈P̂AP̂B〉

〈X̂2
B〉 1

2
〈X̂BP̂B + P̂BX̂B〉

〈P̂ 2
B〉

 . (3.11)
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Here, we omitted the lower part of the covariance matrix for readability as the matrix

is symmetric. 1
2
〈X̂P̂ + P̂ X̂〉 can be calculated by

1

2
〈X̂P̂ + P̂ X̂〉 = 〈X̂(45◦)2〉 − 1

2

(
〈X̂2〉+ 〈P̂ 2〉

)
(3.12)

using the 45◦ measurement. This can be seen by using the definition of the quadrature

operators X̂ and P̂ given in Eqs. (2.6) and (2.7) and the definition of the generalized

quadrature operator in Eq. (3.9). A detailed calculation can be found for instance

in [Sam12].

3.6 Data Acquisition

While the measurement of noise variances can be performed by using a spectrum

analyzer, for quantum cryptography we are interested in the correlated homodyne

signals between Alice and Bob in the time domain. For this purpose we used an analog-

to-digital converter (ADC) that converts the analog output signal of the homodyne

detector’s electronics into a time series of samples.

Let us assume that the signal we would like to digitize is of the form

x(t) = sin(2πf0t) .

An analog-to-digital converter which samples this signal with frequency fs, converts

this into

x(n) = sin(2πf0n/fs) ,

where n is the sample number. This situation is displayed in Fig. 3.5. fs is called the

sampling frequency and is usually given in samples per second. Sampling at a certain
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Figure 3.5: Sampling of a continuous time signal.
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Figure 3.6: Ambiguity of the sampled values when sampling with fs = 4f0. Blue: sin(f0),
red: sin(5f0).

rate might lead to ambiguities in the frequency domain as shown in Fig. 3.6, where we

sampled the continuous time signal from above with a sampling frequency of fs = 4f0.

Sampling a sinusoidal signal with frequency 5f0 with the same sampling frequency

would lead to exactly the same samples. Indeed, while sampling with frequency fs we

cannot distinguish between signals of frequency f0 and signals of frequency f0 +kfs for

any integer k [Lyo04]. Thus, the signal at 5f0 in the example is aliased to a signal at

f0. The aliasing effect in frequency domain is depicted in Fig. 3.7a. From 0 to fs
2

the

digital frequency is the same as the physical frequency. Higher physical frequencies

are aliased into the digital frequency band from 0 to fs
2

, where fs
2

is called the Nyquist

frequency. However, not only the frequency of signals with frequencies larger than

the Nyquist frequency changes after digitalization, the phase of these signals also

changes [Smi03]. This is shown in Fig. 3.7b. For frequencies between fs
2

and fs the

phase of the sampled signal is shifted by π
2
.

The resolution of an ADC is given by the number of bins the range of the converter

is divided into. Using a pre-amplifier the range of the signal can usually be adjusted

to fit well within the ADC range. The ADCs used throughout this thesis both have

a resolution of n = 14 bits, yielding 2n = 16384 different conversion outcomes. The

resolution voltage, i.e. the voltage span of a single bin, is given for an n bit ADC by

Vres =
Vmax − Vmin

2n
,

where Vmax − Vmin is the voltage range of the ADC. Assuming a symmetric voltage

swing around zero, i.e. Vmax = −Vmin, we obtain

Vres =
Vmax

2n−1
.

To avoid aliasing the amplitude of a sinusoidal signal at a frequency larger than fs
2
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Figure 3.7: Frequency and phase of sampled signals versus their physical frequency before
sampling. The grey shaded area illustrates where the sampled signals correspond to the
physical ones, while the white area illustrates where signal frequencies are aliased to the
digital frequency band.

needs to be attenuated by a lowpass filter to have an amplitude smaller than the

resolution voltage. The maximum possible amplitude of a signal that is within the

signal range and therefore does not saturate the ADC, is Vmax. Hence, the amplitude

of such a signal has to be attenuated by

20 · log10

Vmax

Vres

= 20 · log10(2n−1) ≈ 6(n− 1)[dB] .

Thus, for our 14 bit ADCs the attenuation of a lowpass filter has to be at least 78 dB at

the Nyquist frequency. In practice smaller attenuation values than the one calculated

above might be sufficient, depending on the signal range compared to the range of the

ADC, the frequency content of the analog signal and the noise of the ADC. Lowpass

filters are discussed in detail in Section 3.7.

Usually, we are only interested in a measurement of signals within a certain fre-

quency band. As we already discussed in Section 3.3 the control beam used to lock

the squeezed-light source is only shot-noise limited above 7 MHz. Hence, only mea-

surements at Fourier frequencies above 7 MHz are not deteriorated by additional ex-

cess noise. To achieve such a measurement two different methods were implemented

within this thesis depending on the properties of the used ADC. The first one is de-

picted in Fig. 3.8 and uses a slow ADC with a sampling frequency of fs = 500 kHz.

To map the desired measurement frequency band to the frequency band of the ADC,

the output of the homodyne detector’s circuit was demodulated at the measurement

frequency, e.g. 8 MHz, using a double-balanced mixer. Subsequently the output of the

double-balanced mixer was lowpass filtered to achieve the necessary attenuation of fre-

quencies above the Nyquist frequency of the sampling process. Thus, the bandwidth
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Figure 3.8: Data acquisition of the homodyne detector’s output using a slow ADC. The
output signal of the homodyne detector is electronically demodulated at a frequency of 8 MHz
and lowpass filtered before it is sampled by the ADC. PS: phase shifter, PD: photo detector,
ADC: analog-to-digital converter.

of the measurement was determined by the -3 dB cutoff frequency of the lowpass filter.

The second method used a fast ADC with a sampling frequency of 256 MHz. This

setup is shown in Fig. 3.9. The output of the homodyne detector’s circuit was lowpass

filtered to attenuate frequencies above the Nyquist frequency of 128 MHz and sampled

by the fast ADC. After sampling, the samples were digitally mixed with a sinusoid at,

for instance, 8 MHz and lowpass filtered with a digital finite impulse response filter

(FIR filter). Such filters are described in Section 3.7. Afterwards the samples were

down-sampled to a lower sampling frequency. Here, the FIR filter had to be designed

such that it sufficiently attenuates frequencies above the new Nyquist frequency. Due

to the digital mixing process the resolution of the post processed samples is larger

PD
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ADC
&
post processing

Figure 3.9: Data acquisition of the homodyne detector’s output using a fast ADC. The
output signal of the homodyne detector is lowpass filtered and sampled with a high sampling
frequency of, for instance, 256 MHz. The demodulation is performed digitally in a post
processing step. PS: phase shifter, PD: photo detector, ADC: analog-to-digital converter.
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than the resolution of the ADC.

The advantage of the second method in comparison to the first is that less analog

electronic components are needed. In particular when sampling more than one channel,

analog filters have the disadvantage that the frequency responses of two copies is

never exactly the same. Furthermore a higher bandwidth of the demodulated signal is

easier to achieve with the second method. On the contrary the digital post processing

needed for the second method is quite demanding concerning computing power. For

the quantum cryptography experiment described in Chapter 5, the second method is

a necessary ingredient as the lowpass filter for anti-aliasing purposes of the first, has

a cutoff frequency below the frequency of the measurement intervals.

3.7 Filters and Sample Correlations

As we have seen in the last section, (lowpass) filters are unavoidable for data acquisi-

tion. In this section we briefly introduce the response functions of analog and digital

filters and how the filters correlate formerly uncorrelated signals or samples. A more

detailed introduction to digital filters can be found for instance in [Lyo04] and [Smi03].

The response of a filter can be described equivalently by its impulse, step and

frequency response. Figure 3.10a shows the impulse response of an exemplary digital

finite impulse response filter. The impulse response is the output of a filter on an input

signal that describes a short impulse, i.e. an input signal that is zero except for one

sample. After filtering the impulse is broadened and shows ringing. By integrating the

impulse response we obtain the step response which is shown in Fig. 3.10b. The step

response is the response of a filter to a sharp step in the input signal. The figure shows

that the slope of the step decreased after filtering and that the output signal shows

overshoot and ringing. By calculating the Fourier transform of the impulse response
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Figure 3.10: Impulse and step response of an exemplary finite impulse response filter.
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Figure 3.11: Frequency response of an exemplary finite impulse response filter.

the frequency response of the filter as depicted in Fig. 3.11 is obtained. The frequency

response is displayed as a Bode plot expressing both the magnitude and phase of the

filter versus frequency. Here, the frequency axis is plotted in units of the sampling

frequency.

From the frequency response we can calculate the autocorrelation function of the

filter. The autocorrelation function of a continuous function in time f(t) is defined as

Autocorr(τ) =

∫ ∞
−∞

dtf(t)f ∗(t− τ) , (3.13)

where f ∗(t) is the complex conjugate of f(t). It can easily be computed using the

Fourier transform F
Autocorr(τ) = F−1

[
|F(f)|2

]
, (3.14)

which also works for sampled data using the Fast Fourier Transform algorithm. The

autocorrelation function of sampled data describes the amount of correlation between

one sample and its neighbours. The autocorrelation of our exemplary finite impulse

response filter is shown in Fig. 3.12. From this figure we see that formerly uncorrelated

samples that are filtered with a lowpass filter, get correlated as the autocorrelation

is not zero for lags between 1 and about 15. In fact this is always true for any non-

uniform frequency response. Measuring for instance a vacuum state with a homodyne

detector and sampling the output of the detector with the data acquisition method that

uses an analog mixer and a lowpass filter for anti-aliasing purposes, yields correlated

samples despite the fact that vacuum state measurements are uncorrelated in time.

This has to be taken into account for the quantum key distribution experiment, cf.

Chapter 5, where samples obtained from subsequent measurements are not allowed to

be correlated. While the filter used in the example above has an autocorrelation which
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Figure 3.12: Autocorrelation function of an exemplary finite impulse response filter.

shows ringing, a filter with linear phase in the passband like a Bessel type filter, does

not, and therefore reduces the number of correlated samples. Reducing the order of

the filter as much as possible also reduces the number of correlated samples.

3.7.1 Analog Filters

Analog filters are implemented using resistors, capacitors and coils, and for active

designs also include operational amplifiers. Specific topologies of implementations of

such filters can be found in [Hor89]. Three main types of frequency responses of analog

filters exists, namely, Bessel, Butterworth and Chebyshev filters. All of them differ

in the flatness of the passband magnitude, the phase, and the roll-off at frequencies

larger than the cutoff frequency. Bessel filters are designed to have a maximally linear

phase response in the passband, Butterworth filters to have maximally flat magnitude

in the passband and Chebyshev filters to have a much steeper roll-off at the expense

of passband or stopband ripples. The frequency response of Bessel filters implemented

with analog electronics depends much less on the actual component values as for

Butterworth or even Chebyshev filters, making them preferable when two or more

filters with exactly the same frequency response are needed.

As an example the frequency responses of 4th order lowpass filters of all three types

with a cutoff frequency of 1 Hz are shown in Fig. 3.13.

The corresponding autocorrelation functions are depicted in Fig. 3.14. Note, that

the x-axis in the figure scales with the sampling frequency, while the shape stays the

same. The sampling frequency used here is fs = 40 Hz. The autocorrelation function

of the Bessel filter drops fast towards 0 and shows no ringing, while for a Butterworth

filter some ringing occurs. For a Chebyshev filter the ringing is much worse, yielding

many correlated samples. Hence, a Bessel filter used as anti-aliasing filter is the best

choice concerning the correlation of samples. To reach the same attenuation at the

Nyquist frequency however, a higher order is needed for the Bessel filter than for the
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filter with a cutoff frequency of 1 Hz. Note, that the x-axis depends on the actual sampling
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other types.

3.7.2 Digital Filters

Finite impulse response filters (FIR filters) are filters with a finite impulse response

as their name implies, i.e. they are filters with an impulse response that becomes zero

after a finite number of samples. The order of a FIR filter is given by its number of

coefficients h, called taps. Denoting the input samples by x(n), the output y(n) of an

M -tap FIR filter is defined as [Lyo04]

y(n) =
M−1∑
k=0

h(k)x(n− k) . (3.15)
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This equation shows that a FIR filter computes weighted averages over the input

samples both for low- and highpass filters. Hence, this gives an intuition for why a

filter correlates samples. For the determination of the filter’s taps, i.e. for the design

of the filter to match a certain requirement, we refer to the literature, e.g. [Lyo04].
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CHAPTER4
Generation of EPR Entanglement at

1550 nm

Overview

Since the foundation of quantum mechanics, entanglement has proven to be a valuable

resource in quantum information tasks and has spread a variety of applications [Hor09]

ranging from teleportation [Bou97, Fur98] and quantum dense coding [Ben92, Bra00]

to quantum dense metrology [Was10, Ste12] and quantum cryptography [Wee12]. It

is also an important ingredient to quantum repeaters [Bri98] and quantum computa-

tion [DiV95].

This chapter is organized as follows. Section 4.1 describes the characterization of

the squeezed-light source and presents the first ever measurement of stably locked

squeezed states with more than 10 dB squeezing at the telecommunication wavelength

of 1550 nm. An introduction and overview about generation of continuous variable en-

tanglement is given in Section 4.2. Section 4.3 describes the concept of EPR steering

which goes back to Schrödinger. The first experimental demonstration of the EPR

paradox and EPR steering using bipartite states generated from a single squeezed

vacuum mode is described in Section 4.4. The results of this section were published

in [Ebe11, Ebe13a]. Section 4.5 is about entanglement generated by two squeezed

vacuum modes. There, more than 10 dB two-mode squeezed states were generated

with a setup that was fully locked in all degrees of freedom. The experiment demon-

strated the feasibility of demanding applications like a recently published quantum

information protocol about superactivation of zero-capacity channels [Smi11], and like

finite-size continuous variable quantum key distribution with security against most

general attacks, cf. Chapter 5 and the following and [Fur12b]. The results of this

experiment were published in [Ebe13b].
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4.1 Experimental Results of Squeezed-Light

Generation at 1550 nm

Using the devices described in Chapter 3 the following presents a characterization

of the squeezed-light source. For the lock of the squeezed-light source the control

beam had a power of 800µW. The phase-matching temperature of the nonlinear

crystal was about 50 ◦C. For the homodyne measurement the local oscillator power was

10 mW. The phase of the local oscillator could be locked to the phase and amplitude

quadrature, respectively. It was locked to the phase quadrature which corresponds to

the anti-squeezed quadrature, using the direct-current (DC) output of the homodyne

detector’s electronics as an error signal. As shown in Eq. (3.10) the output has the form

|β||α| cosϕ, where |β| is the local oscillator’s power, |α| is the power of the control beam

transmitted through the nonlinear cavity and ϕ is the phase between the beams. To

lock to the amplitude quadrature and thus to measure the squeezed quadrature, phase

modulation sidebands imprinted on the control beam were employed. To generate

an error signal, the alternating current (AC) output of the homodyne detector was

demodulated at the modulation frequency and lowpass filtered subsequently.

Figure 4.1 shows the results. For each pump power of the parametric down-con-

-12
-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  50  100  150  200  250

N
or

m
al

iz
ed

 N
oi

se
 V

ar
ia

nc
e 

[d
B

]

Pump Power [mW]

squeezing

anti-squeezing

Figure 4.1: Measurement of the squeezed and anti-squeezed quadrature noise variances
normalized to the noise variance of a vacuum state. The solid lines show a theoretical model
fitted to the data, see Eq. (4.1).

46



4.1 Experimental Results of Squeezed-Light Generation at 1550 nm

version process the quadrature angle of the homodyne detector was locked to the

squeezed quadrature first and then to the anti-squeezed quadrature. At both quadra-

ture settings we measured the noise variance at a Fourier frequency of 8.5 MHz with

a bandwidth of 300 kHz using a spectrum analyzer. Prior to the measurement the

signal port of the homodyne detector was blocked and the noise variance of a vacuum

state was measured for reference. Both squeezing and anti-squeezing noise variances

were normalized to this reference measurement of a vacuum state. The error bars in

the abscissa of the graph are due to the systematic error of the power meter used

for the pump power measurement which was assumed to be 3 %. For a pump power

of 235 mW a nonclassical noise reduction of 11.1 dB compared to the vacuum noise

variance was achieved. The corresponding anti-squeezed noise variance was 16.3 dB

above noise variance of the vacuum.

The solid lines in the figure show a theoretical model fitted to the data. The squeezed

(sqz) and anti-squeezed (asqz) quadrature variances of the field can be described as a

function of the pump power P by [Tak07]

Varsqz,asqz = 1± η
4
√
P/Pth

(1∓
√
P/Pth)2 + 4K(f)2

, (4.1)

where η is the detection efficiency, Pth is the threshold power and K(f) = 2πf/κ the

ratio between Fourier frequency f = 8.5 MHz and the cavity decay rate κ = (T +L)c/l

with the output coupler transmission T , the intra-cavity loss, the speed of light in

vacuum c and the cavity’s optical round trip length l = 79.8 mm. The model fits best

with a total optical loss of 1 − η = 5.8 %, a threshold power of Pth = 268 mW and

T + L = 0.1018.

The results above represent the first generation and measurement of more than

10 dB squeezed vacuum states with a setup that was locked in all degrees of freedom.

In [Ebe11] squeezed vacuum states with 9.9 dB were presented, generated at the same

experiment, but with another squeezed-light source that had more optical loss, but

was also fully locked. Squeezed vacuum states with more than 10 dB nonclassical noise

reduction with a manual control of the source’s resonance condition and a manually

controlled phase of the local oscillator for homodyne detection were first reported

in [Vah08] using lithium niobate as nonlinear medium at 1064 nm. Using PPKTP

this result was later improved to 12.7 dB [Ebe10]. At 1550 nm 12.3 dB were reported

in [Meh11] using a similar setup but also without locks. Squeezed vacuum states in

the audio band which are not accessible with our locking scheme due to the bright

control beam at the carrier frequency, are for instance reported in [Vah10, The11].
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4.2 Generation of Entanglement

XP

XP XP

XP

τ:(1-τ)

ϕent

ϕA

ϕB

Figure 4.2: Principle of generating and detecting Gaussian continuous-variable entangle-
ment. Two squeezed vacuum modes, here represented by their Wigner functions, are super-
imposed with phase ϕent = π/2 at a beam splitter with power transmissivity τ . The two
output modes are entangled and measured by balanced homodyne detection. The detected
quadratures are determined by the phase ϕA and ϕB of the local oscillators.

Bipartite Gaussian continuous variable entanglement can be generated by super-

imposing two squeezed vacuum modes at a beam splitter with power transmissivity

τ [Fur98, Bow03]. This principle is depicted in Fig. 4.2. As described in Chapter 3.3

the squeezed vacuum modes in the experiment were squeezed in the amplitude quadra-

ture X and anti-squeezed in the phase quadrature P . Prior to the superposition of

the modes the phase of one of them is shifted with respect to the other by ϕent. In the

figure we chose ϕent = π
2

and a power transmissivity of the beam splitter of τ = 0.5.

The output modes of the beam splitter are quadrature entangled and can be measured

by homodyne detection. Using the formalism presented in Chapter 2 and allowing the
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4.3 Einstein-Podolsky-Rosen Steering

squeezing parameters r1 and r2 for the squeezed modes to be different, the covariance

matrix of the bipartite state after the superposition reads

γ = SBS(τ)(Ssqz(r1)⊗ Ssqz(r2))14(STsqz(r1)⊗ STsqz(r2))STBS(τ) . (4.2)

Since we consider only modes without coherent excitation, the first statistical moments

vanish. In the model we allow to set either r1 or r2 to 0, yielding a bipartite state that

is generated by splitting a squeezed vacuum mode at a beam splitter. This special type

of entanglement will be the topic of Section 4.4, while the case for r1 6= 0 and r2 6= 0

will be described in Section 4.5. As experimental settings are never lossless, a full

theoretical description of the output modes has to include optical loss, cf. Chapter 2.8.

The verification of entanglement is described in Chapter 2.11.

Continuous variable entanglement was first observed by Ou et al. [Ou92] using type

II parametric down-conversion and by Furusawa et al. [Fur98] using type I parametric

down-conversion as we do in this thesis. Further observations of CV entanglement

using these schemes were reported for instance in [Zha00, Sch02, Lau05, Kel08, Wan10]

with type II parametric down-conversion, in [Bow03, Tak06, DiG07, Hag11, Ebe11,

Ste13] with type I parametric down-conversion and in [Sil01] with the optical Kerr

effect.

4.3 Einstein-Podolsky-Rosen Steering

In his reply to the seminal EPR paper [Ein35] Schrödinger coined the concept of

steering [Sch35]. His findings were that if the finest description of a quantum system

is its decomposition into pure states, quantum mechanics has a process that violates

local realism. The modern view of steering, which gave rise to a new interest in

this phenomenon, was introduced by Wiseman et al. in [Wis07]. In their paper

they showed that for Gaussian states steering is equivalent to the demonstration of

the EPR paradox by the violation of inequality (2.91) or (2.92) introduced by Reid,

cf. Section 2.11.2. While there is also a description of steering in terms of classical

and quantum models of states [Fra12], we will consider steering here as the question

whether there is a common refinement of quantum states. The argument given here

was published in [Hae12] and is equivalent to the description in [Fra12] and [Wis07].

We start with the same situation as in Section 2.11.2, namely, Alice and Bob share

the subsystems A and B of a two-mode squeezed state. Bob locally observes a mixed

state, which can be decomposed into a convex combination of purer states. This

decomposition yields a more precise description of Bob’s quantum system. Using

any information Alice has on the state gives a decomposition into conditional states,

i.e. into states that are conditioned on Alice’s measurement outcomes. Indeed these
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Figure 4.3: Illustration of EPR steering. Bob’s locally mixed state can be decomposed
using two distinct sets of states that are conditioned on Alice’s measurement outcomes and
are purer than Bob’s mixed state. Here, the blue ellipse at Bob depicts a state conditioned
on Alice X quadrature measurement outcome X1. Similarly the green ellipse shows a state
conditioned on the P quadrature measurement outcome P1. According to local realism the
set used to decompose Bob’s state cannot depend on Alice’s choice of measurement. Hence,
the blue and the green conditional state should have a common refinement. Such a refined
state is displayed in the inset by the red circle. The black dashed circle shows a pure state
for reference. Thus, no common refinement exists as the red circle depicts an unphysical
state.

conditional states are purer than Bob’s mixed state. This situation is shown in Fig. 4.3,

where exemplary measurement outcomes X1 and P1 for Alice measuring the amplitude

quadrature and phase quadrature, respectively, are depicted by the blue and green lines

on the left hand side. The related conditional states on Bob’s system are indicated by

the accordingly colored ellipses on the right hand side of the figure. For all outcomes

Alice can obtain for an amplitude quadrature measurement, the conditional states on

Bob’s side have the same shape but have different position along the X-axis. Similarly,

for all outcomes she can obtain by measuring the phase quadrature, the conditional

states have the same shape but have different position along the P -axis. Both sets

of conditional states form a decomposition of Bob’s mixed state. According to EPR’s

argument of local realism the set of conditional states used for decomposing Bob’s

mixed state cannot depend on Alice’s choice of measurement. Hence, there must exist

a common refinement of both sets. As such a decomposition is required to be of purer
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4.4 EPR Entanglement Generation Using a Single Squeezed Vacuum Resource

states than the conditional states for X and P , a state belonging to the common

refinement must have a noise variance in the X quadrature smaller than the noise

variance of the X-conditional states and a noise variance in the P quadrature smaller

than the P -conditional states. Such a state is depicted in the inset of the figure by

the red circle. For reference a pure state is shown by the black dashed ellipse. Hence,

the common refinement of the conditional states is unphysical and does therefore not

exist. The bipartite entangled state is thus called steering from Alice to Bob.

Like EPR entanglement, steering has a directional dependence. Steering from Alice

to Bob does not imply steering from Bob to Alice and vice versa [Hae12]. Non steering

is certified in the picture given above by the red, refined state being physical.

4.4 EPR Entanglement Generation Using a Single

Squeezed Vacuum Resource

The EPR paradox was first demonstrated by Ou et al., in 1992 [Ou92] using two-

mode squeezed states generated by type II parametric down-conversion. As shown by

Bowen et al., in 2003 [Bow03], the total optical loss induced to those states has to

be lower than 50 % to observe the EPR paradox. In this section we will demonstrate

the EPR paradox, and hence EPR steering, for the first time using states generated

by superimposing a squeezed vacuum and a vacuum mode. As we will see, for such

states the maximal allowable loss to still observe the EPR paradox is more severe. The

applicability for quantum key distribution of the EPR states described in this section

will be analyzed in Chapter 6.1.

4.4.1 Theoretical Description

Starting with a squeezed vacuum mode, entanglement can be generated by splitting

it at a beam splitter, i.e. superimposing it with a vacuum mode. In terms of the

description given in Section 4.2, r2 = 0. For a perfect setup without optical loss, the

bipartite state is always EPR entangled for any squeezing parameter r := r1 6= 0 as

we will see in the following. Assuming the amplitude quadrature to be squeezed, the

covariance matrix of the bipartite state reads for a balanced beam splitter

γ =
1

2


1 + e−2r 0 1− e−2r 0

0 1 + e2r 0 1− e2r

1− e−2r 0 1 + e−2r 0

0 1− e2r 0 1 + e2r

 . (4.3)
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Figure 4.4: Conditional variances for amplitude and phase quadratures and the EPR crite-
rion calculated for a pure bipartite entangled state generated by superimposing a squeezed
vacuum mode with a vacuum mode. On the X-axis the variance of the squeezed quadrature
of the squeezed vacuum mode normalized to the variance of a vacuum state is shown.

Hence, the conditional variances from Eqs. (2.89) and (2.90) take the form

VarB|A(X̂A, X̂B) = VarA|B(X̂A, X̂B) =
2

1 + e2r
, (4.4)

VarB|A(P̂A, P̂B) = VarA|B(P̂A, P̂B) =
2

1 + e−2r
. (4.5)

Using this results, the conditional variance product, i.e. the criterion for EPR entan-

glement, reads

VarB|A(X̂A, X̂B) · VarB|A(P̂A, P̂B) = VarA|B(X̂A, X̂B) · VarA|B(P̂A, P̂B) =
2

1 + cosh 2r
,

(4.6)

which is smaller than 1 for all r 6= 0.

The conditional variances and the EPR conditional variance product for the pure

bipartite state are plotted in Fig. 4.4 versus the squeezed noise variance of the in-

put state which is connected to the squeezing parameter r by Vsqz = e−2r. While for

increasing squeezing VarB|A(P̂A, P̂B) increases up to the bound of 2, VarB|A(X̂A, X̂B)

decreases towards 0. The EPR criterion also decreases for increasing squeezing to-
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Figure 4.5: Simulation of the EPR conditional variance product of a bipartite entangled
state generated by superimposing a squeezed mode with a vacuum mode at a balanced beam
splitter, versus symmetrical optical loss. The different curves were calculated for 3 dB, 6 dB
and 10 dB squeezed vacuum.

wards 0. Hence, the achievable EPR conditional variance product is only limited by

the variance of the squeezed quadrature of the squeezed input state.

However, as experimental implementations are never lossless the optical loss of a

setup has to be taken into account. Let us denote the amount of optical loss induced

by the setup by ε and the covariance matrix describing the state prior to entanglement

generation by γ. Since

SBS(τ) [(1− ε)γ + ε14]STBS(τ) = (1− ε)SBS(τ)γSTBS(τ) + εSBS(τ)STBS(τ) (4.7)

= (1− ε)SBS(τ)γSTBS(τ) + ε14 , (4.8)

optical loss introduced to the squeezed mode before the superposition with a vacuum

mode at a beam splitter with power transmissivity τ is the same as applying the loss

to both output modes of the beam splitter. Hence, symmetrical loss introduced to the

entangled modes can be modeled by applying the loss to the squeezed mode.

The EPR conditional variance product versus the amount of symmetrical optical

loss is shown in Fig. 4.5 for an initially pure squeezed vacuum state with a squeezed

noise variance of 3 dB, 6 dB and 10 dB below the vacuum noise variance. In the
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Chapter 4: Generation of EPR Entanglement at 1550 nm

calculation the beam splitter was balanced. Independent of the squeezed variance of

the squeezed input state, the optical loss is allowed to be at most 33.3 % to observe

EPR entanglement. Indeed, EPR entanglement can be observed with this scheme if

(1− Vsqz)
2(1− ε)

(
1

3
− ε
)
> 0 (4.9)

holds [Ebe11]. Here, Vsqz is the variance of the squeezed state normalized to the

variance of a vacuum state.

4.4.2 Experimental Setup

The experimental setup to demonstrate EPR entanglement is shown in Fig. 4.6. The

coherent light preparation, the pump beam generation and the squeezed-light source,

including its locking scheme, used in this setup has been described in Chapter 3.

The squeezed output mode of the squeezed-light source was split at a balanced beam

splitter and thus superimposed with a vacuum mode. Both output modes of the

beam splitter were detected by homodyne detection. Homodyne detection has been

introduced in Chapter 3.4. For the lock of the phase of both local oscillators a single

sideband technique was employed. For this purpose a small fraction of about 15 mW

of the main laser beam was frequency shifted using an acousto-optical modulator

(AOM) and superimposed with the squeezed beam at the dichroic beam splitter that

separated the squeezed vacuum mode from the pump. To become a reference for

the squeezed quadrature, the single sideband was phase locked to the control beam.

The frequency shifted light field reflected by the dichroic beam splitter and the small

fraction of about 500 ppm of the control beam leaking through it were detected by

a resonant photo detector in transmission of another dichroic beam splitter which

was highly reflective for the pump and highly transmissive for the fundamental. The

output of the photo detector was demodulated at the single sideband’s frequency of

80 MHz and fed back to a phase shifter in the path of the single sideband using a servo

controller. Since the AOM introduced also an amplitude modulation at the AOM’s

frequency, the demodulation phase for the error signal generation should have been

set to the phase quadrature. Due to the large phase noise of our fiber laser this was

not possible as the generated error signal was very noisy. Thus, we measured the

amplitude quadrature instead and stabilized the power of the frequency shifted beam

to have a more stable offset caused by the amplitude modulation. To generate error

signals for the homodyne detectors’ local oscillator phases at Alice’s and Bob’s side, the

AC outputs of their respective detectors were demodulated with an electronic 80 MHz

sinusoid, called electronic local oscillator. By changing the phase of the electronic local

oscillator, the phase of the optical local oscillator could be locked to arbitrary values.
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Figure 4.6: Experimental setup of EPR entanglement generation by superimposing a
squeezed mode with a vacuum mode. At the source a squeezed mode was generated by
parametric down-conversion and then split at a balanced beam splitter. Both outputs of the
beam splitter were detected by homodyne detection. To lock the local oscillators’ phases at
Alice and Bob we employed a single sideband technique. A fraction of the main laser beam
was frequency shifted by 80 MHz using an acousto-optical modulator (AOM) and phase
locked to the control beam of the squeezed-light source. The beat of the single sideband and
the local oscillator was detected by the homodyne detector whose high frequency output
was demodulated at 80 MHz to generate an error signal for the phase of the local oscillator.
Both homodyne detectors’ outputs were recorded simultaneously by a data acquisition sys-
tem. AOM: acousto-optical modulator, PS: phase shifter, DBS: dichroic beam splitter, PD:
photo detector.
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To record data the AC outputs of both homodyne detectors were plugged into the

slow data acquisition system described in Chapter 3.6 which sampled with a sampling

frequency of 500 kHz.

4.4.3 Results

For each quadrature combination of the tomographic reconstruction protocol, cf. Chap-

ter 3.5, we recorded 5× 106 samples. Furthermore, we recorded 5× 106 samples of a

vacuum state measurement by blocking the signal ports of Alice’s and Bob’s homo-

dyne detectors. For a pump power of 235 mW the reconstructed covariance matrix

reads

γ =


0.541 0.135 0.459 −0.095

0.135 24.633 −0.037 −23.293

0.459 −0.037 0.548 0.264

−0.095 −23.293 0.264 23.840

 . (4.10)

One can directly see certain properties of the state from the entries in the matrix.

The values on the principal diagonal are the variances for the amplitude and phase

quadrature measurements at Alice’s and Bob’s detector. The diagonal entries of the

two 2×2 blocks in the upper right and lower left give the strengths of the correlations

in the amplitude quadrature and the anti-correlations in the phase quadrature between

both detectors, respectively. In a perfect orthogonal measurement the remaining en-

tries should turn out to be zero since they give the covariance between amplitude and

phase quadratures. The small deviations from zero show that the measurements were

not perfectly orthogonal but close.

Figure 4.7 shows the EPR covariance product for the Alice to Bob direction versus

the pump power used to pump the squeezed-light source. For each pump power setting

the recorded data was divided into 10 chunks. For each chunk the covariance matrix

was reconstructed and the EPR-Reid criterion from Eq. (2.91) was calculated. The

standard deviation of these 10 values are shown as error bars. For the pump power a

systematic error of the power meter of 3 % was assumed. All states generated during

the measurement were EPR entangled and for a pump power of 235 mW an EPR

conditional variance product of 0.31 was reached. The solid line in the figure shows

a theoretical model fitted to the data. The simulation is based on the model from

Eq. (4.1) for the noise variances of the squeezed and anti-squeezed quadratures of a

squeezed vacuum state versus pump power. The fitting parameters of this model were

obtained from the characterization of our squeezed-light source in Section 4.1. Using

this model the covariance matrix of the bipartite entangled state was simulated taking

into account additional optical loss which was a free parameter in the fit. The model

fitted best with an additional optical loss of 0.9 % in both arms which could be due
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Figure 4.7: Conditional variance product versus pump power for the squeezed-light source.
EPR entanglement was certified for all pump powers we used and an EPR-value of 0.31 was
reached for 235 mW. The red solid line shows a theoretical model fitted to the data.

to additional anti-reflective coatings compared to the measurement of the squeezed

state. Hence, the total optical loss introduced to our state was 6.6 %. Calculating

the EPR-Reid criterion for the direction from Bob to Alice yielded similar values as

expected for a state with symmetrical optical loss.

The modulus of the correlation coefficients from Eq. (2.84) for the state generated

with 235 mW pump power was about 0.84 for the amplitude and 0.96 for the phase

quadrature. In comparison maximally entangled states as considered by EPR in their

1935 paper [Ein35] have a correlation coefficient of 1.

The measurement presented here is an improved version of the first demonstration

of EPR entanglement and steering for an entangled state generated by involving only

one squeezed mode, which was presented in [Ebe11]. The setup described here was

improved to get rid of the excess noise observed in [Ebe11] which was due to an

imperfect data acquisition process. Entanglement generated from a single squeezed

mode was formerly generated for instance in [DiG07], however, no EPR entanglement

was observed due to too high optical loss.
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4.5 Entanglement Generation Using Two Squeezed

Vacuum Resources

Recently a continuous variable quantum key distribution protocol which provides com-

posable security against most general attacks with a finite number of samples was

proven to be secure [Fur12b]. To perform such an experiment with a positive key rate,

the protocol requires a high degree of two-mode squeezing, low channel loss and a

large number of samples in the order of 108. To achieve these requirements not only

more than 10 dB entanglement measured by the Duan criterion is necessary but also

a stable control of the entanglement generation. This section describes an experiment

providing both, a high degree of entanglement and a stable control in all degrees of

freedom. A quantum key distribution experiment using these state is described in

Chapter 5.

The principle of the entanglement generation by superimposing two squeezed vac-

uum modes was discussed in Section 4.2. As shown in Fig. 4.2 we denote the phase

between the squeezed vacuum modes by ϕent. The output modes of the beam splitter

were detected by homodyne detection, cf. Chapter 3.4, where the phases of the local

oscillators ϕA and ϕB determined the measured quadrature angle. While the setup

presented in [Ste13] was intrinsically stable for about 500 ms without lock, our setup

had to be stable for more than 15 min to make an application of the entanglement in

the quantum key distribution experiment described in Chapter 5 possible. This was

achieved by locking all degrees of freedom, including ϕent. In particular ϕent was diffi-

cult to lock, since the control and auxiliary beams were only allowed to have low power

as they had to be shot-noise limited in the measurement frequency band. Otherwise,

to achieve highly entangled states, the induced optical loss for locking purposes could

only be small.

4.5.1 Experimental Realization and Locking Scheme

The second squeezed-light source implemented for the entanglement generation was

build identically to the one described in Chapter 3.3, but had a slightly lower pump

power threshold of about 190 mW, which might be due to slightly different outcoupling

efficiencies, see below. The locking scheme used to lock ϕent, ϕA and ϕB involved two

single sidebands generated by frequency shifting a fraction of the main laser beam.

A schematic of the identical experimental setups for both squeezed-light sources is

depicted in Fig. 4.8. The lock of the cavity length and the pump phase worked ex-

actly as described in Chapter 3.3. While for the first squeezed-light source the phase

modulation sidebands had a frequency of 33.9 MHz, we used 35.5 MHz for the second

one. In the figure the frequencies for the second squeezed-light source are denoted in

58



4.5 Entanglement Generation Using Two Squeezed Vacuum Resources

PD33.9
       (35.5)

PD78, SSB
       (82, SSB)

50:50

+78 MHz
(+82 MHz)

AOM

FI

FI

EOM

PSdump

33.9 MHz
(35.5 MHz)

control

beam

pu
m

p 
be

am

77
5 

nm

Squeezed-Light
Source

sq
ue

ez
in

g 
+

si
ng

le
 s

id
eb

an
d

15
50

 n
m

DBS

single sideband

PPKTP
PS

Figure 4.8: Locking scheme of the squeezed-light source and introduction of the single side-
band. The cavity length and the pump phase were locked as described in Chapter 3.3. The
single sideband was superimposed with the control beam in front of the cavity. A Faraday
isolator in the path prevented parasitic cavities. PD78,SSB was used to generate an error
signal for the phase lock of the single sideband to the control beam. The frequencies writ-
ten in parentheses are the modulation frequencies used for the second squeezed-light source,
while the frequencies without parentheses were used for the first one. EOM: electro-optical
modulator, PD: photo detector, FI: Faraday isolator, AOM: acousto-optical modulator, PS:
phase shifter, DBS: dichroic beam splitter, PPKTP: Periodically Poled Potassium Titanyl
Phosphate.

parentheses. The single sideband, at 78 MHz for the first and 82 MHz for the second

squeezed-light source, respectively, was generated by an AOM and had a power of

about 30µW. In contrast to the setup described in Section 4.4 for the entanglement

generation involving only one squeezed vacuum mode, the single sideband was super-

imposed with the control beam before entering the cavity. A resonant photo detector,

in the figure called PD78,SSB, was used to generate an error signal for the phase lock

of the single sideband to the control beam. The advantage of this setup over the

previous one was, that the amplitude modulation of the single sideband was no longer

important. Thus, the set point of the phase lock was much more stable.

Figure 4.9 shows schematically the experimental setup for the superposition of the

squeezed modes and the phase lock of ϕent. The fringe visibility of the superposition
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Figure 4.9: Locking scheme for the phase ϕent between the squeezed vacuum modes. A
small fraction of one of the output modes of the balanced beam splitter was superimposed
with an auxiliary local oscillator whose beat with the 78 MHz single sideband was detected by
the photo detector PD78. To generate an error signal for ϕent the output signal of this photo
detector was demodulated at 78 MHz. To lock the phase of the auxiliary local oscillator, the
beat with the 82 MHz single sideband was detected at the other output port. The phase of
the electronic local oscillator used to demodulate the output signal of PD78 determined the
set point for the lock of ϕent. PS: phase shifter, PD: photo detector.

of the squeezed vacuum modes was 99.5 %. The output modes are labeled mode A and

mode B in the figure. A fraction of 1 % of mode B was tapped-off and superimposed

with an auxiliary local oscillator with a power of about 5 mW at a balanced beam

splitter. One of the outputs was detected with a resonant photo detector at 82 MHz

and used to generate an error signal for the phase of the auxiliary local oscillator.

The other output was detected with a photo detector resonant at 78 MHz to generate

an error signal for ϕent. The phase of the electronic local oscillator used for the

demodulation of the photo detector’s signal determined the angle of ϕent. While

the usage of an auxiliary local oscillator involved an additional phase lock, the beat

between the single sidebands at 4 MHz was too weak to be detectable.

Figure 4.10 shows a schematic of the homodyne detectors used to measure the field

quadratures of both entangled modes A and B. At each homodyne detector a local

oscillator field with a power of 10 mW was superimposed with an entangled mode

at a balanced beam splitter with a fringe visibility of 99.5 %. The phase of each

local oscillator was locked using an error signal generated by demodulating the output
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Figure 4.10: Schematic of the homodyne detection of both entangled modes A and B. The
phases of the local oscillators were locked using error signals generated by demodulating the
output signals of the respective homodyne detector’s electronic circuit.

signal of the homodyne detector’s electronics at 82 MHz. By tuning the phases of the

electronic local oscillators used for the demodulation processes, the set points for the

lock of ϕA and ϕB could be independently set to any angle.

Both output signals of the homodyne detectors were recorded simultaneously with

the fast data acquisition system described in Chapter 3.6.

4.5.2 Results

A two-mode squeezed vacuum state was generated with a pump power of about

200 mW for the first and 150 mW for the second squeezed-light source. ϕent was

controlled to an angle of π
2
. The vacuum noise reference was measured by blocking the

signal ports of the homodyne detectors. By controlling ϕA and ϕB to the amplitude

or phase quadrature we made a partial tomographic measurement, cf. Chapter 3.5.

For each quadrature setting we recorded 106 data points from which we partially re-
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Figure 4.11: Histogram of the Duan inseparability criterion from Eq. (2.81) obtained by
bootstrapping the measured samples. The solid line shows a fit of a Gaussian curve to the
histogram.

constructed the covariance matrix

γ =


21.813 (0) −21.725 −0.010

(0) 25.750 −0.140 26.120

−21.725 −0.140 21.801 (0)

−0.010 26.120 (0) 26.685

 . (4.11)

Here, the values given in brackets could not directly be measured as they correspond

to non-commuting operators. In principle, these entries of the covariance matrix can

be calculated from additional measurements at a linear combination of the amplitude

and phase quadrature, cf. Chapter 3.5. Since ϕent was precisely controlled to π
2
, as well

as the phases of the homodyne detectors’ local oscillators were precisely controlled to

the amplitude and phase quadratures, the covariances, which were not determined,

should be close to 0 [Ste13].

Figure 4.11 shows a histogram of the Duan inseparability criterion from Eq. (2.81).

The histogram was calculated by bootstrapping the measured 106 samples into 104

chunks of 2×105 length [Efr86, Bic08]. A Gaussian function was fitted to the histogram

yielding 0.360±0.001 for the Duan criterion. This corresponds to 10.45±0.01 dB below

the threshold to separability.
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Figure 4.12: Histogram of the EPR entanglement criterion by Reid from Eq. (2.91) obtained
by bootstrapping the measured samples. The solid line shows a fit of a Gaussian curve to
the histogram.

Figure 4.12 shows a histogram of the EPR criterion by Reid in the direction from

Alice to Bob from Eq. (2.91). The histogram was computed the same way as for the

Duan criterion. The Gaussian fit yielded an EPR value of 0.0309 ± 0.0002. For the

other direction similar results were obtained. In Ref. [Ste13] 0.41 for the Duan criterion

and 0.04 for the EPR criterion were measured at 1064 nm, already outperforming all

previous experiments on continuous variable entanglement.

The correlation coefficients from Eq. (2.84) for our state read

C(X̂A, X̂B) ≈ C(P̂A, P̂B) ≈ 0.996 . (4.12)

This demonstrates that our states are quite close to the maximally entangled states

considered in the original EPR paper [Ein35].

To demonstrate the stability of the active control loops, Fig. 4.13 shows the variance

of the sum of the amplitude quadrature operators, Var(X̂A + X̂B), and the variance

of the difference of the phase quadrature operators, Var(P̂A − P̂B), versus time. Both

variances were normalized to a joint measurement of vacuum states at the homodyne

detectors, Var(X̂vac
A + X̂vac

B ) and Var(P̂ vac
A − P̂ vac

B ), respectively. Over the measurement

time of 10 s the noise variances were stable at about 10.0 dB and at about 10.9 dB for

the amplitude and phase quadrature, respectively. Without our active control loops
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the noise suppression would reach the same values, however, only stable over short

time scales. For instance, in Ref. [Ste13], where ϕent was not locked, the measurement

time was only 200µs. The stability of our phase lock was not limited to the 10 s being

presented in the figure. Indeed, we observed the stable production of our entangled

states for more than 15 min, cf. Chapter 6. In principle, our active control loops allow

an extension of the measurement time to arbitrary duration if the dynamic ranges of

the used piezo actuators are large enough to compensate for thermal drifts.

The optical loss of our squeezed-light sources was slightly asymmetric with an out-

coupling efficiency of about 96 % for the first and about 97.5 % for the second source.

The fringe visibility at the entangling beam splitter was about 99.5 %. Taking into

account the 1 % optical loss introduced by the tap-off in one arm for the phase lock

at the entangling beam splitter, the fringe visibility of about 99.5 % at the homodyne

detectors’ beam splitters, the quantum efficiency of the homodyne detector’s photo

diodes of about 99 % and propagation loss of about 1 %, the observed values for the

Duan and EPR-Reid criterion are reproduced quite well. We observed no evidence for

phase noise, showing the good performance of the implemented control scheme.
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4.6 Summary

To summarize, a characterization of squeezed vacuum states at the telecommunication

wavelength of 1550 nm was presented. The states were the first actively stabilized

squeezed states with a noise variance in the squeezed quadrature of more than 10 dB

below the vacuum noise. The generated states revealed 11.1 dB non-classical noise

reduction in the squeezed quadrature and a corresponding anti-squeezed noise variance

of 16.6 dB compared to the vacuum noise.

Futhermore, the observed squeezed vacuum states were used to demonstrate both

the EPR paradox and EPR steering by superimposing them with a vacuum mode.

This was possible since the experimental setup induced an optical loss of only 6.6 %,

which is much less than the threshold of 33.3 % below which EPR entanglement can be

observed for such bipartite states. Using a squeezed vacuum mode with a noise variance

in the squeezed quadrature which was 11.1 dB below the vacuum noise variance, an

EPR conditional variance product of 0.31 < 1 was reached.

Using instead two squeezed vacuum modes which were superimposed at a bal-

anced beam splitter, 10.45 ± 0.01 dB entanglement certified by the Duan insepara-

bility criterion was observed. The EPR conditional variance product for this state was

0.0309±0.0002. Both values represent the largest entanglement strength ever observed

so far in the continuous variable regime. Since the correlation coefficients for the am-

plitude and phase quadratures were with about 0.996 very close to 1, the generated

states were a good approximation for the states considered by Einstein, Podolsky and

Rosen in their famous Gedanken experiment. Furthermore, the entanglement gener-

ation and detection process was locked in all degrees of freedom and was stable over

more than 15 min which was the necessary measurement time to record 108 samples

for the QKD experiments as described in Chapter 6.
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CHAPTER5
Theory of Gaussian Finite-Size Quantum

Key Distribution

Overview

This chapter describes the protocols for entanglement-based quantum key distribution

under collective and general attacks, respectively, as used in the implementations pre-

sented in Chapters 6 and 7. The security proofs of the protocols take, in particular, the

finite key size into account as in real implementations an infinite number of measure-

ments cannot be performed. The security proofs which are used in this chapter, were

developed by F. Furrer et al. [Fur12b]. For collective attacks the security proof was

extended to states with an asymmetry in the field quadrature variances in [Ebe13a].

This chapter is organized as follows. Section 5.1 introduces the definition of com-

posable security. A generic protocol for quantum key distribution is described in

Section 5.2. The secure key length of this generic protocol is given in Section 5.3.

Section 5.4 is devoted to quantum key distribution with the restriction on an adver-

sary to collective attacks. Here, the generic protocol is adapted to a more specific

protocol that provides security against collective attacks, and the secure key length is

given. The protocol and the secure key length for quantum key distribution without

restrictions on the eavesdropper are given in Section 5.5.

5.1 Security

Quantum key distribution is the task of distributing keys between two parties in

such a way that the keys are only known by them and completely unknown to an

adversary. We call the two parties among which the key is distributed, Alice and
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Bob, and the adversary Eve. As resource for the key distribution we use a bipartite

entangled state whose density operator is denoted by ρ̂AB. If ρ̂AB is in a pure state, it

is completely detached from the environment. Hence, outcomes from measurements

performed on this state are uncorrelated to any other system and thus secret. Since

distributed continuous variable quantum states, as considered in the previous chapters,

are affected by optical loss, e.g. when transmitted through optical fibers, the states

are not pure. Let ρ̂ABE describe a pure quantum state with TrE(ρ̂ABE) = ρ̂AB. ρ̂ABE
is then called a purification of ρ̂AB. As the ABE system is pure it is uncorrelated

with its environment and hence, the E system contains all correlations of ρ̂AB with its

environment. Thus, all optical loss of a state is contained by the E system.

5.1.1 Universally Composable Security

Key distribution is usually part of a larger cryptographic system. For example it is

often used in combination with the one-time pad algorithm for encrypting messages.

The notion of universally composable security [Can01] describes that the security of a

cryptographic system is not compromised when it is composed with an other arbitrary

system. If, for example, a part of a secret key is compromised by an adversary,

universal security implies that any other bit remains secure [Ren05a, Koe07].

Definitions of universal composable security are based on the idea to compare the

distance of a key S generated by a real cryptographic system, to a perfectly secure key

U generated by an ideal system which is independent of any knowledge of potential

adversaries. S is then said to be secure if it is close to U , where the distance measure

has to be chosen appropriately [Ren05a].

Let S be a key distributed according to a probability distribution PS. We will

describe the classical key values s by orthogonal quantum states |s〉 on the Hilbert

space HS. The state ρ̂S is then given by

ρ̂S =
∑
s∈S

PS(s)|s〉〈s| . (5.1)

ρ̂S might be part of a quantum system ρ̂SE on HS ⊗HE, where the state ρ̂sE on HE is

a quantum state depending on the classical value s. ρ̂SE is then given by

ρ̂SE =
∑
s∈S

PS(s)|s〉〈s| ⊗ ρ̂sE , (5.2)

which we call a classical-quantum state (cq-state).
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Using this definition a key S is εs-secure if [Ren05a, Fur11]

1

2
‖ρ̂SE − ρ̂U ⊗ σ̂E‖ ≤ εs , (5.3)

where ρ̂U =
∑

s∈S
1
|S| |s〉〈s| describes a perfectly secure key U which is separable to

an arbitrary quantum state σ̂E possessed by an adversary. The perfectly secure key

U is thereby uniformly distributed, i.e. each key value has a probability of 1
|S| . The

distance between the real key and the perfect key, including a quantum adversary

E, is measured with the trace norm ‖·‖ and bounded by 2εs. This means that if

ρ̂SE fulfills Eq. (5.3), the key S is identical to the secure key U with probability

(1− εs). In [Ren05a] it was shown that S keeps indeed secure if composed with other

cryptographic systems as required by the definition of universally composable security.

5.2 Generic Protocol

This Section describes the protocol we will use to establish a secure key. The protocol

is the same whether considering collective or coherent attacks, except for the parameter

estimation phase.

Preliminaries For the classical post-processing Alice and Bob need an authenti-

cated channel to communicate. So in a first step Alice and Bob need to establish such

a channel and have to make sure that they prove to each other that they really are

who they claim to be. This can be for instance realized by a pre-shared secret key. We

will not go into detail of authentication but assume that Alice and Bob have such an

authenticated channel. Further details can be found in [Sti94, Gem94]. Furthermore,

Alice and Bob make sure that they both share the same parameters of the quantum

key distribution protocol.

Distribution of Quantum States and Homodyne Measurements Alice pre-

pares entangled states with her EPR source, keeps one subsystem and sends the other

to Bob. Both parties simultaneously perform homodyne measurements in either the

X or P quadrature which is chosen at random. An outcome of such a synchronous

measurement is called a sample. This process is repeated until 2N measurements were

performed on 2N quantum states, forming two strings of length 2N .

Check of Abort Conditions and Sifting After having performed 2N measure-

ments Alice and Bob check possible abort conditions of the generic protocol’s actual

implementation and abort if necessary. If they do not abort, they perform sifting, i.e.
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they communicate which quadrature they measured. Samples measured with a differ-

ent choice of quadrature are discarded leaving Alice and Bob with strings of length N

in average. For collective attacks the discarded data can later be used for parameter

estimation.

Parameter Estimation To perform parameter estimation Alice and Bob randomly

choose a common subset of length k from the sifted data which they reveal. The actual

procedure of the parameter estimation depends on whether collective or general attacks

are considered. The details are therefore described in the respective Sections below.

The output of the parameter estimation procedure is the number of secret bits `, they

can generate from their data.

Binning, Error Correction and Privacy Amplification Alice and Bob generate

the raw key from their unrevealed measurement outcomes. For this purpose they map

their samples to bins which were negotiated prior to the run of the protocol. For each

sample they remember the index of the bin the sample was mapped to. Details will be

given in the description of the respective protocol for security against collective and

general attacks. The number of bins will be finite in both cases.

After binning, Alice and Bob have to make sure that they share the same raw key

strings they proceed with. Because of the finite correlations between the two parts of

the bipartite EPR state, errors are indispensable and have to be corrected by error

correction algorithms. Error correction can either be processed by correcting Bob’s

data to match Alice’s, which is called direct reconciliation or by correcting Alice’s

data to match Bob’s which is called reverse reconciliation. When transmitting Bob’s

state through an optical fiber, reverse reconciliation enables larger distances as the

eavesdropper’s guess about Bob’s state is worse than about Alice’s as Bob’s state

is noisier [Gro03]. To check that they share the same string after error correction

they perform a correctness test. This test is implemented by Alice and Bob each

hashing their error corrected strings to a certain hash length using two-universal hash

functions [Sti94] and comparing the outcomes.

Finally, Alice and Bob perform privacy amplification [Sti02, Ren05b, Ass06]. Using

two-universal hash functions they reduce their raw key strings to the length calculated

in the parameter estimation step. The correlations of the key to an eavesdropper are

thereby removed from the strings, leaving Alice and Bob with a secret key.
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5.3 Secure Key Length

In Section 5.1.1 we have already introduced εs-secrecy of a protocol to ensure univer-

sally composable security. In the following we will extend the security definitions to

the protocol given above and then calculate the secret key rate.

5.3.1 Security Definitions

The security definitions follow the ones given in [Ren05a, Fur12b].

Robustness We call a protocol robust if it does not abort when no eavesdropper is

present. This ensures that the protocol is not trivial.

Correctness Denoting Alice’s key as SA and Bob’s key as SB, a protocol is εc-correct

if

Probability(SA 6= SB) ≤ εc .

Secrecy As introduced in Section 5.1.1, a protocol is εs-secret if

1

2
ppass‖ρ̂SAE − ρ̂U ⊗ σ̂E‖ ≤ εs . (5.4)

Here, ppass denotes the probability that the protocol does not abort.

Security We call a protocol ε-secure if it is εc-correct and εs-secret with εc + εs ≤ ε.

5.3.2 Smooth Min-Max Entropies

In this section we will briefly introduce the formalism of smooth min- and max-

entropies as they play a crucial role in calculating the secure key length. Although

the smooth min- and max-entropies in the infinite dimensional case are defined using

von Neumann algebras, we will stick here for the ease of presentation to the tradi-

tional approach using density operators on Hilbert spaces as the results will look the

same. For the finite dimensional case we refer to [Ren05a], whereas for the extension

to infinite dimensions we refer to [Fur11, Ber11, Fra12, Fur12a].

Let H be a Hilbert space. We define by P(H) the set of non-negative operators on

H. ρ̂ is a density operator acting on H, if ρ̂ ∈ P(H) and Tr ρ̂ = 1.

The conditional min-entropy of a bipartite state ρ̂AB ∈ P(HA ⊗ HB) with respect

to σ̂B ∈ P(HB) is defined by

Hmin(ρ̂AB|σ̂B) = − log2 inf{λ ∈ R|λ1⊗ σ̂B ≥ ρ̂AB} , (5.5)
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with Hmin(ρ̂AB|σ̂B) = −∞, if λ1 ⊗ σ̂B ≥ ρ̂AB cannot be fulfilled for any λ. The

min-entropy with respect to the subsystem B is defined as

Hmin(ρ̂AB|B) = sup
σ̂B∈P(HB)

Hmin(ρ̂AB|σ̂B) . (5.6)

The min-entropy has the interpretation of being the logarithm of the guessing proba-

bility of a classical variable X. The guessing of X is thereby assisted by a quantum

state on Eve’s system E depending on the classical value x [Fur11]. The density

operator describing this cq-state is given by

ρ̂XE =
∑
x∈X

PX(x)|x〉〈x| ⊗ ρ̂xE

with PX(x) being the probability distribution of X. The guessing probability is defined

as the probability that Eve correctly guesses x by performing an optimal measurement

on her state.

pguess = max
{Êx}

∑
x∈X

PX(x) Tr(ρ̂xEÊx) , (5.7)

where {Êx} is the set of all possible measurements on Eve’s system. The conditional

min-entropy is then given by

pguess = 2Hmin(X|E) . (5.8)

The max-entropy of ρ̂AB conditioned on subsystem B is dual to the min-entropy and

defined as

Hmax(ρ̂AB|B) = −Hmin(ρ̂AE|E) , (5.9)

where ρ̂ABE is a purification of ρ̂AB.

The smoothed versions of the min- and max-entropies take all states into account

that are ε-close to ρ̂AB,

Hε
min(ρ̂AB|B) = sup

ˆ̃ρAB∈Bε(ρ̂AB)

Hmin(ˆ̃ρAB|B) , (5.10)

Hε
max(ρ̂AB|B) = inf

ˆ̃ρAB∈Bε(ρ̂AB)
Hmax(ˆ̃ρAB|B) , (5.11)

where Bε(ρ̂AB) is the set of all states that are ε-close to ρ̂AB. Hence, the smoothed

versions describe the min- and max-entropy of a state when we know the state only

approximately. The duality condition of Eq. (5.9) is also valid for the smoothed

versions, i.e.

Hε
max(ρ̂AB|B) = −Hε

min(ρ̂AE|E) . (5.12)
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An important property of the (smooth) min- and max-entropies is that they coincide

with the von Neumann entropy in the limit of infinite identical but independed repe-

titions. For a state ρ̂AB ∈ P(HA ⊗ HB) the state after n identical and independend

repetitions is described by ρ̂⊗nAB. The asymptotic equipartition property of the smooth

min- and max-entropies states that for any ε > 0 and n ≥ 8
5

log2
2
ε2

1

n
Hε

min(An|Bn) ≥ H(A|B)− 1√
n

∆ (5.13)

and

1

n
Hε

max(An|Bn) ≤ H(A|B) +
1√
n

∆ , (5.14)

if H(A) <∞. Here,

∆ = 4 log2

(
2−

1
2
Hmin(A|B) + 2

1
2
Hmax(A|B) + 1

)√
log2

2

ε2
. (5.15)

With this property the desired behaviour for the smooth min- and max-entropies can

be seen

lim
ε→0

lim
n→∞

1

n
Hε

min(An|Bn) = H(A|B) = lim
ε→0

lim
n→∞

1

n
Hε

max(An|Bn) . (5.16)

Another useful relation is the entropic uncertainty relation. For a state ρ̂ABE ∈
P(HA ⊗HB ⊗HE) it reads

Hε
min(X|B) +Hε

max(Y |E) ≥ − log2 c , (5.17)

where ρ̂XB is the cq-state after measuring ÊA at Alice’s subsystem, and ρ̂Y E is the cq-

state after measuring F̂A at the same subsystem. c is a constant describing the overlap

between the measurement operators Ê and F̂ . It is given by c = maxx,y‖(Êx
A)

1
2 (F̂ y

A)
1
2‖2.

The entropic uncertainty relation can be used to estimate Hε
min by Hε

max. The quality

of the estimation is given by the constant c. This property will later be used to

estimate the secure key length in the case of general attacks, cf. Section 5.5.

5.3.3 Privacy Amplification

Assume that Alice and Bob have already performed error correction and have obtained

two identical raw key strings. As these strings still contain information possessed by

Eve they have to perform so-called privacy amplification to remove her information.

The result of this procedure is a new but shorter string that is uniformly distributed
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and uncorrelated to Eve. As Alice and Bob share the same strings we can reduce

the description of privacy amplification to the bipartite problem involving only Alice

and Eve in the following. Privacy amplification is implemented using a family of

two-universal hash functions.

A hash function is a function f : X → K which maps a finite bit string X with

length |X| to a bit string K with length |K| < |X|. A set of such functions F = {f}
is called a family of two-universal hash functions if any two distinct elements of X

collide with probability of at most 1
|K| when the hash function f is drawn from F at

random, i.e. [Sti94]

Probability
f∈F

(f(x) = f(y)) ≤ 1

|K|
∀x, y ∈ X, x 6= y .

The leftover hash lemma states that using an input with sufficiently high entropy,

the output of such a family of two-universal hash functions suffices the conditions

of privacy amplification. Indeed the lemma was e.g. shown in [Ben95] for classical

side-information and in [Tom11, Fur09, Fur12a] for quantum side-information. Hence,

no matter whether Eve possesses classical or quantum side-information, applying a

two-universal family of hash functions yields privacy amplification.

Given a cq-state ρ̂XE which describes Alice’s raw key string and Eve’s side-informa-

tion, the leftover hash lemma is given by

〈‖T̂f (ρ̂XE)− 1

|K|
ρ̂U ⊗ σ̂E‖〉F ≤

√
|K| · 2−Hmin(X|E) , (5.18)

where T̂f implements the hash function f , ρ̂U =
∑

k∈K
1
|K| |k〉〈k| is the density operator

describing the uniformly distributed keys, σ̂E is the reduced state on Eve’s subsystem

and 〈·〉F is the expectation value over the hash functions f . The left hand side of

Eq. (5.18) describes the distance of Alice’s raw key given Eve’s side information after

hashing to a uniformly distributed string which is independent of Eve. The leftover

hash lemma states that this distance can be made arbitrarily small by choosing |K|
appropriately small.

This result can be generalized to the smooth min-entropy by [Fur12a]

〈‖T̂f (ρ̂XE)− 1

|K|
ρ̂U ⊗ σ̂E‖〉F ≤

√
|K| · 2−Hε

min(X|E) + 4ε , (5.19)

Using this result we can now derive a formula for the secure key length.
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5.3.4 Finite-Key Length

We assume that Alice and Bob have already performed the quantum part of the

protocol, checked the abort conditions and parameter estimation tests and binned their

data to retrieve the raw key strings XA and XB. In the next step of the protocol they

perform error correction. We will assume direct reconciliation, i.e. Alice communicates

`EC bits to Bob who changes his key XB to match Alice’s. After error correction Alice

and Bob check whether their keys are the same. For this purpose Alice draws a

hash function from a family of two-universal hash functions at random and sends

Bob both, the hash of her raw key string and the hash function. The hash function

she uses maps the whole raw key string to a string of length log2
1
εc

according to the

correctness definition. Bob then checks whether he gets the same hash by applying

the hash function to his raw key string and aborts the protocol if he does not. The

correctness test leaks log2
1
εc

bits to Eve through the public communication. In the

following we denote the random variable which corresponds to the communication

due to error correction, by M . The number of revealed bits is thereby assumed to be

log2|M | = `EC + log2
1
εc

.

To derive the secret key length we start at the secrecy definition (5.4) which can be

bounded by the privacy amplification result of Eq. (5.19) by applying a hash function

drawn from a two-universal family of hash functions at random to the raw key string

XA. Thereby we denote the cq-state shared by Alice and Eve after successful parameter

estimation by ρ̂XAE. Substituting K with the alphabet SA, which has a length of

` = log2|SA|, yields [Fur12a]

1

2
‖ρ̂XAE − ρ̂U ⊗ σ̂E‖ ≤

√
2`−H

ε
min(XA|EM)−2 + 2ε ≤ εs

ppass

, (5.20)

where the bound on the right is given by Eq. (5.4). This condition is fulfilled for

` ≤ Hε
min(XA|EM)− 2 log2

ppass

ε1
+ 2 , (5.21)

where ε1 is defined by ε ≤ (εs − ε1)/(2ppass).

This can be further simplified by using [Fur12a]

Hε
min(XA|EM) ≥ Hε

min(XAM |E)− log2|M | ≥ Hε
min(XA|E)− log2|M | ,

and − log2 ppass ≥ 0 which yields

` ≤ Hε
min(XA|E)− `EC − log2

1

4ε21εc
. (5.22)
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In Sections 5.4 and 5.5 we will see how to estimate Hε
min(XA|E) in the case of collective

and coherent attacks.

5.3.5 Estimation of the Error Correction Leakage Term

In a real implementation of the quantum key distribution protocol given above, the

number of bits `EC communicated from Alice to Bob or from Bob to Alice used to

perform error correction can be exactly determined after each run. But for the theo-

retical analysis of possible key rates, `EC has to be estimated. In the case of infinite

repetitions, i.e. n→∞, a lower bound for `EC is given by [Sle73, Sca09]

`EC = λH(XA|XB) , (5.23)

where we assumed direct reconciliation, i.e. communication from Alice to Bob. Here,

the parameter λ ≥ 1 reflects that existing error correction algorithms do not achieve

the theoretical bound of H(XA|XB). An intuitive interpretation of Eq. (5.23) can be

gained from the interpretation of the conditional entropy that describes the uncertainty

about XA in the case XB is known. Hence, Alice has to send H(XA|XB) bits to

Bob to enable him to know Alice’s string with certainty. More often instead of the

leakage parameter λ, the error correction efficiency β is used. The number of perfectly

correlated bits that can be extracted from partially correlated strings XA and XB is

given by their mutual information [Sca09]. The efficiency of an algorithm to achieve

this, is described by β with 0 < β ≤ 1. Hence,

number of extractable bits = βI(XA : XB) . (5.24)

Using this, the leakage term can be written as

`EC = λH(XA|XB) (5.25)

= λ (H(XA)− I(XA : XB)) (5.26)

= H(XA)− βI(XA : XB) , (5.27)

which connects the leakage parameter λ and the error correction efficiency β by

λ =
H(XA)− βI(XA : XB)

H(XA|XB)
. (5.28)

For our simulations in the following Chapters we will assume that the leakage term is

close to the optimum for infinite repetitions.
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5.3.6 Key Rate in the Regime of Infinite Samples

Taking Eq. (5.22) the key rate r = `
n

in the limit of n→∞ and ε→ 0 becomes

r = lim
n→∞

lim
ε→0

`

n
(5.29)

= lim
n→∞

lim
ε→0

1

n

(
Hε

min(XA|E)− `EC − log2

1

4ε21εc

)
(5.30)

= H(XA|E)−H(XA|XB) (5.31)

= I(XA : XB)− I(XA : E) , (5.32)

where we have used Eq. (5.16), and Eq. (5.23) for the error correction leakage term

with perfect error correction, i.e. λ = 1. Assuming imperfect error correction yields

r = βI(XA : XB)− I(XA : E) . (5.33)

This result is the Devetak-Winter bound for the secure key rate [Dev05, Sca09]. I(XA :

E) is thereby known as the Holevo bound, usually written as χ(XA : E).

5.4 Collective Attacks

We will now use the results of the last section to calculate the secure key length with

the restriction of Eve to collective attacks. Collective attacks are attacks where Eve

possesses a quantum memory and measures her states collectively. However, all states

are measured with the same operation. Although Eve is restricted to this type of

attacks, these attacks are rather powerful. Due to Eve’s restriction to perform the

same attacks on each quantum state, the distributed entangled states can be assumed

to be identical and not correlated to each other. This is exactly the situation where

the asymptotic equipartition property of Eq. (5.13) can be applied. The calculation

presented in this section was first carried out in [Fur12b] and later extended to states

with asymmetries in the field quadrature variances in [Ebe13a].

5.4.1 Protocol

The protocol for security against collective attacks is almost the same as the generic

protocol described in Section 5.2.

Preliminaries Prior to executing the protocol Alice and Bob negotiate the binning

intervals, the number of measured samples, the number of samples k used for parameter

estimation and the security parameters.
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Distribution of Quantum States and Homodyne Measurements This step

is performed as described in the generic protocol.

Sifting Alice and Bob communicate the quadratures they used to measure their

samples. Samples measured in different quadratures are discarded from the sample

strings but are later used for parameter estimation. The discarded samples are there-

fore publicly announced.

Parameter Estimation Alice and Bob choose randomly a common subset of k

samples from their sample strings which they reveal. From this data and the data

discarded during sifting they reconstruct the covariance matrix as described in Chap-

ter 3.5. In particular, they estimate a confidence set Cεpe with the property that with

probability 1− εpe the real covariance matrix lies within Cεpe .

Discarding Samples from X or P Quadrature (Optional) When using en-

tangled states that are generated from a single squeezed-light source, the samples

measured in the anti-squeezed quadrature might be discarded and then publicly an-

nounced for use in the parameter estimation step. To take into account the three

possibilities, namely discarding samples measured in the X quadrature, discarding

samples measured in the P quadrature and discarding nothing at all, we introduce a

parameter pX which describes the probability of a remaining sample being measured

in the X quadrature. This yields pX = 0 for discarding X measurements, pX = 1

for discarding P measurements and pX ≈ 0.5 for discarding none of them. For the

latter the actual value of pX depends on the run as we assume a finite number of

measurements.

Binning To generate the raw key Alice and Bob map their unrevealed samples to

bins I0 =
(
−∞,−α{X,P} + δ{X,P}

]
, I1 =

(
−α{X,P} + δ{X,P},−α{X,P} + 2δ{X,P}

]
, . . . ,

I 2α
δ
−1 =

(
α{X,P} − δ{X,P},∞

)
. Each sample is assigned the index of the bin the sample

fell into, i.e. the alphabets of the raw keys are given by χX =
{

0, 1, . . . , 2αX
δX
− 1
}

and

χP =
{

0, 1, . . . , 2αP
δP
− 1
}

. In practice, we always choose α such that no sample exceeds

α. In that sense, only δ is a free parameter in the protocol.

Post Selection (Optional) To reduce errors Alice and Bob can perform a simple

post selection step. After binning Alice searches her data for samples which were

mapped to a certain bin and sends Bob a remove flag for those samples. The two

parties then remove the flagged samples from their sample strings. This procedure

can be performed for more than one bin and also from Bob to Alice.
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Error Correction After binning Alice and Bob have to ensure that they both pro-

ceed with the same raw key. To achieve this they sacrifice `EC bits by classical com-

munication. The size of `EC will be estimated for the simulations as described in

Section 5.3.5. For an actual run of the protocol, `EC can be directly measured. After

the run of the error correction algorithm Alice and Bob perform a correctness test as

in the generic protocol.

Estimation of the Secret Key Length Alice and Bob compute the secret key

length ` taking into account the number of bits used for error correction. If the key

length is lower than zero they abort. Otherwise they proceed with the next step.

Privacy Amplification To obtain bit strings only known to Alice and Bob, both

parties map the alphabet χ to a binary representation. Afterwards privacy amplifica-

tion is implemented in the way described in the generic protocol.

5.4.2 Secure Key Length

For the calculation of the secure key length we start at the key length formula of

Eq. (5.22) for the generic protocol but assume reverse information reconciliation, i.e.

classical communication from Bob to Alice. Let us denote the classical variable corre-

sponding to the n measurement outcomes of Alice and Bob after binning but before

error correction and privacy amplification by Xn
A and Xn

B. We denote by ρ̂Xn
AX

n
BE

n the

corresponding cq-state conditioned on the event that the protocol passes, where En is

the (infinite dimensional) quantum system of the eavesdropper. Under the assumption

of collective attacks ρ̂Xn
AX

n
BE

n has tensor-product structure, hence, ρ̂Xn
AX

n
BE

n = ρ̂⊗nXAXBE.

Applying the asymptotic equipartition property from Eq. (5.13) yields

Hε
min(XB|E) ≥ nH(XB|E)−

√
n∆ , (5.34)

where ∆ is given by [Fur12b]

∆ = 4 log2

(
2

1
2
Hmax(XB)+1 + 1

)√
log2

8

(εs − ε1)2
. (5.35)

To compute H(XB|E) we use that the classical-quantum state ρ̂XBE has the form

ρ̂XBE = pX |X〉〈X|θ ⊗ ρ̂XXBE + (1− pX)|P 〉〈P |θ ⊗ ρ̂PXBE where ρ̂XXBE and ρ̂PXBE are the

states obtained when Alice and Bob measured the X or P quadrature, respectively.

Thereby the classical variable θ describes the system which keeps track of the measured
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quadrature angle and is known by the eavesdropper, [Ebe13a]

H(XB|Eθ) = H(XBEθ)−H(Eθ)

= H(θ) +
∑
θ

pθH(XBE)θ −H(θ)−
∑
θ

pθH(E)θ

= pXH(XB|E)X + (1− pX)H(XB|E)P .

Assuming Gaussian attacks we introduce a confidence set Cεpe which contains all co-

variance matrices compatible with the k samples used for parameter estimation. We

assume that the parameter estimation is performed such that the real covariance ma-

trix lies within Cεpe with probability of at least 1 − εpe. The length of the secure key

length can then be bounded by

` ≤ n · inf
γ∈Cεpe

∑
θ

pθH(XB|E)γ,θ −
√
n∆− `EC − log2

1

ε2sεc
. (5.36)

The infimum is thereby taken over the confidence set and we have chosen ε1 = εs
2

,

because for large enough n the logarithm is neglegible small. As Eve’s system purifies

the state shared by Alice and Bob we can use the self-duality property of the von

Neumann entropy, H(E)γ = H(AB)γ. Thus,

H(XB|E)γ,θ = H(E|XB)γ,θ +H(XB)γ,θ −H(AB)γ . (5.37)

Using partial homodyne detecion, cf. Chapter 2.13, and results from [Fur12b] yields

H(E|XB)γ,X ≥ H(E)γ(X=0) = H
(
A− C(MXBMX)MPCT

)
γ

and

H(E|XB)γ,P ≥ H(E)γ(P=0) = H
(
A− C(MPBMP )MPCT

)
γ
,

where H(E)γ({X,P}=0) is the post-measurement state at the eavesdropper’s side when

Bob measured X = 0 or P = 0. The bipartite covariance matrix is written in block

form as in Eq. (2.73), MX and MP are defined as in Chapter 2.13 and MP denotes

the Moore-Penrose inverse.

The Shannon entropy of the classical variable XB, H(XB)γ,θ, is given by

H(XB)γ,θ = pXH(XB)γ,X + (1− pX)H(XB)γ,P (5.38)

with

H(XB)γ,X = −
∑
y

pXXB(y) log2 p
X
XB

(y) , (5.39)
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where pXXB(y) is the probability that a measurement outcome from Bob, measured in

the X quadrature, falls into bin y. Given the boundaries of this bin, xyB and xy+1
B ,

pXXB(y) can be calculated by

pXXB(y) =

∫ xy+1
B

xyB

dx
1√

2πγ3,3

exp

(
− x2

2γ3,3

)
=

1

2

(
erf

(
xy+1
B√
2γ3,3

)
− erf

(
xyB√
2γ3,3

))
,

in the case that no post selection was performed. Here, γ3,3 denotes the entry in the

covariance matrix corresponding to the X quadrature variance of Bob’s subsystem,

and erf is the error function.

Similarly Hmax(XB), which is part of ∆, can be estimated by [Fur11]

Hmax(XB) ≤ 2 log2

(
√
pX
∑
y

√
pXXB(y) +

√
(1− pX)

∑
y

√
pPXB(y)

)
. (5.40)

In a real run of this protocol both H(XB) and Hmax(XB) can be calculated directly

from Bob’s measurement outcomes. Thus, the infimum is only taken of

H(E)γ({X,P}=0) −H(AB)γ .

Plugging it all together, the key rate, defined as r = `
n
, has the form

r =
`

n
= inf

γ∈Cεpe
pX [H(E|XB)γ,X +H(XB)γ,X ]

+ (1− pX) [H(E|XB)γ,P +H(XB)γ,P ]−H(AB)γ

− 1√
n

∆− `EC

n
− 1

n
log2

1

ε2sεc
.

(5.41)

5.4.3 Parameter Estimation

To calculate the secure key rate we need to construct the confidence set Cεpe , which is

defined such that the covariance matrix describing the real state lies within Cεpe with

probability 1 − εpe. As our states are two-mode squeezed vacuum states, only the

second order moments do not vanish and the state is fully described by its covariance

matrix. It is reconstructed during the parameter estimation step from the discarded

samples and the revealed common subset of length k using a maximum likelihood
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estimator. The sample covariance matrix is estimated by

γ̃µν =
1

nµν

nµν∑
i=1

xµi x
ν
i ,

where xµi and xνi are the samples measured simultaneously by Alice and Bob in µ

and ν quadrature, respectively. nµν is the number of samples used for the covariance

estimation. The distribution of the sample covariance matrix γ̃ is given by [Joh07]

nγ̃ ∼ W4(γ, n− 1) ,

where W4(γ, n − 1) is the Wishart distribution. Hence, the standard deviation for a

single entry of the covariance matrix takes the form

σµν ≈

√
γ̃2
µν + γ̃µµγ̃νν

nµν
.

For a sufficiently large number of samples the confidence set is constructed by

Cεpe =
{
γ|γ̃µν − zεpeσµν ≤ γµν ≤ γ̃µν + zεpeσµν

}
, (5.42)

where zεpe is chosen such that

1− erf

(
zεpe√

2

)
≤ εpe

is fulfilled.

5.5 General Attacks

While collective attacks are relatively easy to analyse, the security when we make

no assumptions on the attacks of the eavesdropper, is hard to proof in the continu-

ous variable regime. The following protocol allows to distill a key which cannot be

eavesdropped even with general attacks. It was published in [Fur12b].

5.5.1 Protocol

The protocol for security against general attacks is almost the same as the generic

protocol described in Section 5.2.
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Preliminaries Prior to executing the protocol Alice and Bob negotiate the binning

interval length δ and the cut-off value α, the number of measured samples 2N , the

number of samples k used for parameter estimation, and the security parameters.

Distribution of Quantum States and Homodyne Measurements This step

is performed as in the generic protocol.

Check of Abort Condition and Sifting Alice and Bob check their measurement

results whether they are within the allowed region [−α, α]. If they find a value outside

this interval, they abort the protocol. Otherwise they perform sifting as in the generic

protocol.

Binning After sifting Alice and Bob map their remaining samples to the bins I0 =

(−∞,−α+δ], I1 = (−α+δ,−α+2δ], . . . , I2α
δ
−2

= (α−2δ, α−δ], I2α
δ
−1

= (α−δ,∞).

For each sample they remember the index of the bin the sample was mapped to, i.e.

the outcome range is χ =
{

0, 1, . . . , 2α
δ
− 1
}

with |χ| = 2α
δ

.

Parameter Estimation For parameter estimation Alice and Bob choose randomly

a common subset of length k from the sifted and binned data which they reveal. The

parameter estimation test is performed by calculating the (generalized) Hamming

distance

dpe(X
pe
A , X

pe
B ) =

1

k

k∑
µ=1

|(Xpe
A )µ − (Xpe

B )µ| , (5.43)

where Xpe
A and Xpe

B are the revealed binned sample strings from Alice and Bob, re-

spectively.

Error Correction By performing error correction Bob corrects his binned data to

match Alice’s. During the run of the algorithm they track the number of communicated

bits. Reverse reconciliation is currently not supported by the security proof of the

protocol [Fur12b]. After error correction the correctness is determined as in the generic

protocol.

Estimation of the Key Length With the number of bits communicated during

error correction Alice and Bob can calculate the number of secret bits.

Privacy Amplification Using almost two-universal hash functions Alice and Bob

reduce their raw keys to the length calculated in the last step. This procedure provides

Alice and Bob a secret key which is unknown to the eavesdropper.
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5.5.2 Secure Key Length

We recall the secure key length for the generic protocol from Eq. (5.22) which reads

` ≤ Hε
min(XA|E)− `EC − log2

1

4ε21εc
. (5.44)

Since we do not restrict the eavesdropper to a certain class of attacks, we cannot, for

instance, use the asymptotic equipartition theorem as it was possible for the restriction

to collective attacks. While the smooth min-entropy cannot be calculated for impure

two-mode squeezed states, it can be estimated using the entropic uncertainty relation

from Eq. (5.17). Its application yields [Fur12a]

` ≤ n · log2

1

c(δ)
−Hε′

max(XA|XB)− `EC − log2

1

4ε21εc
, (5.45)

where we have used that the overlap of a sequence of n measurements is cn. The

overlap c(δ) is thereby given by

c(δ) =
δ2

2π
S

(1)
0

(
1,
δ2

4

)2

, (5.46)

where S
(1)
0 is the radial prolate spheroidal wave function of the first kind. For small δ

it can be approximated by S
(1)
0

(
1, δ

2

4

)
≈ 1.

The remaining smooth max-entropy can be estimated by

Hε′

max(XA|XB) ≤ n log2 γ(dpe + µ) , (5.47)

where

γ(t) = (t+
√

1 + t2)

(
t√

1 + t2 − 1

)t
(5.48)

and

µ =
2α

δ

√
N(k + 1)

nk2
ln

1

εs − ε1 − 2
√

2g(pαX , p
α
P , N)

. (5.49)

Remember, that N is the number of samples left after sifting, k is the number of

samples used for parameter estimation and n = N − k. g(pαX , p
α
P , N) is the pass

probability, i.e. the probability that no sample in the amplitude and phase quadrature

is outside of [−α, α]. Thereby, pαX and pαP are the probabilities that the modulus of a

single sample measured in the amplitude and phase quadrature, respectively, does not

exceed α. Thus,

g(pαX , p
α
P , N) = 1− (pαXp

α
P )

N
2 . (5.50)
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CHAPTER6
Realization of Quantum Key

Distribution under Collective Attacks

Overview

This chapter describes the realization of a table-top continuous-variable QKD system

under collective attacks using the EPR entangled states characterized in Chapter 4.

Collective attacks are a certain type of attacks that are, although a restriction to

an eavesdropper, experimentally difficult to implement. For a collective attack the

eavesdropper has a quantum memory and measures all his states collectively using

the same operation. The employed protocol for collective attacks was introduced in

Chapter 5 and takes the finite key size into account.

This chapter is organized as follows: Section 6.1 presents simulation results of the se-

cure key rate for EPR entangled states generated by superimposing a squeezed vacuum

mode with a vacuum mode. The generation and characterization of such entangled

states is described in Chapter 4.4. By omitting samples measured in the anti-squeezed

quadrature, which are less correlated than samples measured in the squeezed quadra-

ture, reasonable distances between Alice and Bob can be achieved when sending one

of the entangled modes through an optical fiber. While the necessary resources to

generate entanglement are reduced to a minimum by using such states, EPR entan-

gled states generated by superimposing two squeezed vacuum states, cf. Chapter 4.5,

provide better key rates. Simulations for such states are shown in Section 6.2. The

experimental implementation of a setup which is able to perform many measurements

that are randomly chosen between the amplitude and phase quadrature, is presented

in Section 6.3. Section 6.4 describes the generation of quantum random numbers by

measuring the field quadratures of a vacuum state. The random numbers were uti-

lized for the random choice of quadratures by Alice and Bob. Section 6.5 describes
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the results of the performed table-top QKD. The first part of this section is devoted to

the verification of some of the simulation results, while the second part describes the

generation of a secret key using a post selection technique, cf. Chapter 5. Section 6.6

proposes an experimental setup of a synchronized remote detector which can be used

to place Bob at another location. Expected secure key rates for a distribution of a se-

cret key between the Institute for Gravitational Physics and the Institute of Quantum

Optics in Hanover, are presented. Section 6.7 summarizes the results.

6.1 Secure Key Rates for Entanglement Using a

Single Squeezed Vacuum Resource

In this section the secure key rate is investigated that can be obtained when performing

the protocol described in Chapter 5.4 using entanglement generated by superimposing

a squeezed vacuum mode with a vacuum mode at a balanced beam splitter. The

experimental setup used to generate such entangled states is described in Chapter 4.4.

The starting point for the investigation is the reconstructed covariance matrix of the

measured states given in Eq. (4.10).

Figure 6.1 shows the key rate given in secure bits normalized to the number of

measured samples versus the number of measured samples. Only samples from the X

quadrature were taken into account for raw key generation (pX = 1). The security

parameters were chosen to be εc = εs = εpe = 10−16 and α was chosen as 8 times the

standard deviation of theX quadrature sample distribution, cf. Chapter 5.4. The num-

ber of samples k revealed for parameter estimation was optimized to yield a maximal

number of secure bits in the key. To improve the parameter estimation we assumed the

diagonal entries of the covariance matrix to be computed from all measured samples

in the respective quadratures and the covariances to be computed from the omitted

samples or from the k revealed samples, respectively. The error correction efficiency

was assumed to be β = 0.9. The different curves in the figure are plotted for a different

number of intervals 2nbits , yielding interval lengths of δ = 2α/2nbits . From the figure

we read that the maximal key rate is achieved with nbits ≥ 6. For 109 samples the key

rate is about 0.16 bits/sample and even for 108 samples it is not much less with about

0.13 bits/sample.

Figure 6.2 shows the same simulations as Fig. 6.1 but this time with the X quadra-

ture measurements omitted (pX = 0). Due to the lower correlations in the P quadra-

ture the key rate drops below 0.08 bits/sample, reaching its maximum for nbits ≥ 8.

The number of samples necessary to reach a positive key rate is about the same as

when omitting the P quadrature samples.

As the key rates for both quadratures alone are positive, a key can, in principle, be
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Figure 6.1: Secure key rate in secure bits per measured sample versus the number of
measured samples. Here, only X quadrature measurements are included, i.e. pX = 1. The
number of samples k used for parameter estimation was optimized for each curve and each
number of measured samples to yield a maximal number of secure bits.
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Figure 6.2: Secure key rate in secure bits per measured sample versus the number of
measured samples. Here, only P quadrature measurements are included, i.e. pX = 0. The
number of samples k used for parameter estimation was optimized for each curve and each
number of measured samples to yield a maximal number of secure bits.
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Figure 6.3: Number of secure bits per measured sample versus the number of measured
samples. Here, both X and P quadrature measurements are included, i.e. pX = 0.5. nbits = 6
for the X quadrature and nbits = 8 for the P quadrature. The number of samples k used for
parameter estimation was optimized for the black solid curve to yield a maximal number of
secure bits. The other curves are plotted with a fixed k.

generated from the X and P quadrature samples independently by first considering

only samples from the X quadrature and then considering only samples from the

P quadrature. The security analysis above allows us to simplify this process and

to generate a key from both quadratures simultaneously. For this purpose we set

pX = 0.5. The key rate for this situation is shown in Fig. 6.3 with nbits = 6 for the X

quadrature and nbits = 8 for the P quadrature as determined from the previous two

figures. The black curve in the figure shows the key rate with an optimized number

of samples k used for parameter estimation. To see the effect of k also curves with a

fixed number of k = 106, 107 and 108 are plotted. As the number of secure bits per

sample with about 0.20 bits/sample at 109 samples is larger than when omitting the

P quadrature samples, it is advantageous to draw a key from both quadratures in a

table-top setup.

Figure 6.4 shows the key rate for nbits = 6 versus the distance between Alice and

Bob when both parties are connected with an optical standard telecommunication

fiber with an attenuation of 0.2 dB/km. For the calculation we assumed that the

entanglement source is located at Alice’s site and that the eavesdropper only has
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Figure 6.4: Secure key rate versus distance when sending one part of the entangled beam
through an optical fiber. The key rate is given as the number of secure bits per measured
sample, i.e. before sifting. We assumed a coupling efficiency of 95 % into the optical fiber
and an optical loss of 0.2 dB/km. The curves are plotted for different number of measured
samples.

access to the subsystem which is transmitted to Bob through the fiber and is therefore

affected by optical loss of the transmission line. In addition to the optical attenuation

of the fiber we assumed a coupling efficiency of the free beam to the fiber of 95 % as

measured in [Meh10]. According to [Lod05], who considered a similar system, no excess

noise is introduced by the fiber. Excess noise introduced by the homodyne detector’s

electronic dark noise instead is already included in the covariance matrix given in

Eq. (4.10). Furthermore, we assumed that phase noise is not present in the setup

as the local oscillator for homodyne detection could be served by an auxiliary laser

at Bob’s site which is phase locked to the control beam accompanying the entangled

mode. Besides using reverse information reconciliation, all samples measured in the

P quadrature were omitted (pX = 1). Taking into account only samples from the P

quadrature would yield a maximum transmission line length for an infinite number

of measurements of 3 km and taking into account both would yield about 9 km in

comparison to about 37.5 km when only samples from the squeezed quadrature are

considered. The curves in the figure are calculated for different numbers of measured

samples, including a curve calculated for an infinite number of samples, which is
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shown for reference, and which was also calculated with the assumption of 90 % error

correction efficiency. For 108 number of samples the maximal possible transmission

line has a length of about 9 km and for 109 samples the transmission line can have

a length of up to 17.5 km. As shown in [Jou13] the measurement of 109 samples is

challenging but experimentally feasible.

So far we assumed εpe = 10−16. Figure 6.5 shows the dependence of the key rate,

and thus the maximal length of the transmission line, on εpe for a number of measured

samples of 2N = 108 and 109. The key rate for an infinite number of measurements

is shown for reference. For 109 samples the maximal length of the transmission line

increases from about 17.5 km for εpe = 10−16 to about 19 km for εpe = 10−10. The

figure also shows that the key rate for a fiber link of about 5 km length does not

depend significantly on εpe for 109 samples.

Figure 6.6 shows the secure key rate for an infinite number of samples for different

error correction efficiencies β. As it is clearly visible in the figure the error correction

efficiency becomes more crucial for increasing length of the transmission line between

Alice and Bob. While for short transmission lines the achievable key rate only drops

by no more than 50 %, for long transmission lines the maximal achievable distance

ranges from about 25 km for 70 % error correction efficiency to about 41.5 km for

95 % efficiency. Nowadays the best available binary codes have an error correction

efficiency of up to 95 % [Jou11, Jou13]. Non-binary codes [Dav98], as used here for the

calculation of the key rate, are also under active development [Ulr57, Sas10, And12].

Note, that the achievable efficiency of error correction codes is crucially dependent on

the signal-to-noise ratio and therefore the code that works best for each distance has

to be found. Note further, that the given key rates in the figure are for an infinite

number of samples. The effect of the finite number of the measured samples on the

key rate was shown above for an error correction efficiency of 90 %.

We have seen that entanglement-based quantum key distribution under the restric-

tion of the eavesdropper to collective attacks is possible within a reasonable distance

between Alice and Bob and for a reasonable number of measurements that have to

be performed, despite the fact that a vacuum mode was involved in the entanglement

generation process. In comparison to the full scheme involving two squeezed modes

which will be analysed in the next Section, the scheme investigated here, reduces the

complexity of the source as no phase lock at the beam splitter that generates the

entanglement, is necessary. To address the fact that we have to omit the samples

measured in the P quadrature, one could tune the probability with which Alice and

Bob measure X or P to have only as much samples measured in the P quadrature as

are needed to have a reasonably small confidence set. With more samples measured

in the X quadrature the overall key length increases for the same number of total

measurements.
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Figure 6.5: Secure key rate versus distance like in Fig. 6.4, but for different parameter
estimation parameters εpe. The array of curves are plotted for a total number of measured
samples of 108 and 109. For reference the key rate is also plotted for an infinite number of
samples.
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Figure 6.6: Secure key rate versus distance between Alice and Bob for an infinite number
of samples for different assumed error correction efficiencies.
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6.2 Secure Key Rates for Entanglement Using Two

Squeezed Vacuum Resources

In comparison to entanglement generated by superimposing a squeezed vacuum mode

with a vacuum mode, entanglement generated by two squeezed vacuum modes is

much stronger according to entanglement measures such as the Duan inseparability

criterion or the EPR-Reid entanglement criterion, cf. Chapter 2.11. In this section

the secure key rate for such states is investigated. The experimental setup and a

characterization of the entanglement is given in Chapter 4.5. The starting point for

the following analysis is the reconstructed covariance matrix of the measured states

given in Eq. (4.11). It was shown that in a table-top setup the key rates are about 3

times larger for 109 samples than with entanglement generated from a single squeezed

vacuum resource. Furthermore, the achievable distance for 109 samples is about 1.5

times larger for 90 % error correction efficiency. However, for small error correction

efficiencies the achievable distances are smaller and it is beneficial to use only a single

squeezed vacuum resource.

The analysis is started by assuming a table-top setting for which the secure key rate

is investigated which can be achieved by the states from Chapter 4.5. The security

parameters were chosen as εc = εs = εpe = 10−16 if not stated otherwise. α was

chosen 8 times the standard deviation of the respective quadrature sample distribution.

For parameter estimation we used the same procedure as in Section 6.1. The error

correction efficiency was assumed to be β = 0.9.

Figure 6.7 shows the secure key rate, i.e. the number of secure bits per measurement

(before sifting), which can be extracted when the P quadrature measurements were

discarded (pX = 1). The different curves in the figure are plotted for different number

of intervals 2nbits . From the figure we read that at least nbits = 8 are needed to

extract the most bits. While for a total of 108 samples about 0.19 bits/sample can be

extracted, about 0.29 bits/sample can be extracted for 109 samples.

The secure key rate which can be achieved when the samples measured in the X

quadrature are discarded instead, is shown in Fig. 6.8. The curves in the figure look

quite similar to the ones in Fig. 6.7 as the state is almost symmetric. The number of

samples needed to reach a positive key rate is a little smaller than when discarding sam-

ples from the X quadrature. Also the number of extractable bits per sample is higher.

This is due to the state’s better correlations in the P than in the X quadrature. For

108 samples 0.28 bits/sample can be extracted and for 109 samples 0.37 bits/sample.

To increase the number of secure bits per sample a key can be extracted from

both quadratures. Figure 6.9 shows this situation for nbits = 8 for both quadratures.

The green solid line shows the key rate with an optimized number of samples k for

92



6.2 Secure Key Rates for Entanglement Using Two Squeezed Vacuum Resources
S

ec
ur

e 
B

its
/S

am
pl

e

Samples

nbits = 6
7
8
9

 0.001

 0.01

 0.1

 1

106 107 108 109 1010

Figure 6.7: Secure key rate versus the number of measured samples. Here, only X quadra-
ture measurements were included, i.e. pX = 1. The number of samples k used for parameter
estimation were optimized to yield a maximal key rate.
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Figure 6.8: Secure key rate versus the number of measured samples. Here, only P quadra-
ture measurements were included, i.e. pX = 0. The number of samples k used for parameter
estimation were optimized to yield a maximal key rate.
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Figure 6.9: Secure key rate versus the number of measured samples. Here, both X and P
quadrature measurements were included, i.e. pX ≈ 0.5. For the green solid line the number
of samples k used for parameter estimation was optimized to yield a maximal key rate. For
comparison the key rates for k=106, 107 and 108 are shown.

parameter estimation. To make the effect of k on the key rate visible curves for

k = 106, 107 and 108 are also shown. For 108 samples a maximum of 0.35 bits/sample

can be extracted. Here, the blue solid line shows that the optimal k is about 107. In

comparison, for 109 samples 0.57 secret bits/sample are possible to extract. Compared

to the key rates when omitting samples measured either in the X quadrature or in the

P quadrature, the secret bits per sample are not twice as large. This penalty is due to

the larger confidence set, cf. Chapter 5.4.3, for keys extracted from both quadrature

settings since Cov(X̂A, X̂B) and Cov(P̂A, P̂B) have to be estimated from only about
k
2

samples each. If omitting the samples from one of the quadratures, the respective

covariance can be estimated with about N
2

samples instead.

Figure 6.10 shows the secure key rate versus the distance between Alice and Bob

when sending Bob’s part of the state through an optical standard telecommunication

fiber. For the calculation an optical coupling efficiency of the free-space mode into the

optical fiber of 95 % and an optical loss of 0.2 dB/km was assumed, cf. Section 6.1.

Figure 6.10a shows the number of secure bits when only samples from theX quadrature

were taken into account, while for Fig. 6.10b only samples from the P quadrature

were used. The different curves in the figures were plotted for a different number of
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(a) For the simulation only samples measured in the X quadrature were taken into ac-
count, i.e. pX = 1.

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35  40  45

S
ec

ur
e 

B
its

/S
am

pl
e

Distance [km]

107

108

109

1010

infinite

(b) For the simulation only samples measured in the P quadrature were taken into account,
i.e. pX = 0.

Figure 6.10: Secure bits per measured sample versus distance when sending one part of the
entangled beams through an optical fiber. We assumed a coupling efficiency of 95 % into the
optical fiber and an optical loss of 0.2 dB/km. The curves are plotted for different number
of measured samples.
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Figure 6.11: Secure bits per measured sample versus the distance between Alice and Bob
when sending one part of the entangled beams through an optical fiber. We assumed a
coupling efficiency of 95 % into the optical fiber and an optical loss of 0.2 dB/km. For each
distance and each curve the number of samples k used for parameter estimation was opti-
mized to achieve the largest number of secure bits. The curves are plotted for different total
number of measured samples. Samples from both quadratures were used in the simulation
to generate a key.

total samples. To maximize the number of secret bits the number of samples used

for parameter estimation was optimized for each distance and each number of total

samples. For comparison the number of secure bits for an infinite number of samples

is shown. Here, the error correction efficiency was also assumed to be 90 %. The

difference in the achievable distance between both figures are due to the different

squeezing in both quadratures. For 108 samples a distance of about 16.5 km can be

achieved, while for 109 samples the transmission line length can be up to about 28 km.

The same calculation is shown in Fig. 6.11 for a key generated from both quadratures.

While the achievable distances are about the same, the number of secure bits per

sample are larger as more samples exist from which a key can be generated. Hence, it

is preferable to generate a key from both quadratures.

The dependence of the secure key rate and the achievable distance on the parameter

estimation security parameter εpe is shown in Fig. 6.12 for a total number of samples

of 108 and 109. While for short distances the number of secure bits is only slightly

increased with a larger security parameter the achievable distance increases for about
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2 km for both 108 and 109 samples when relaxing εpe to 10−10.

Figure 6.13 shows the effect of the error correction efficiency β on the achievable

distance. For the calculation an infinite number of samples was assumed as this gives

an upper limit to the achievable distance. When assuming a finite number of samples,

the distances reduce as shown above. The effect of the error correction efficiency is

severe as for 70 % a distance of only about 10 km is reached. For 90 % efficiency which

was assumed for the simulations above, about 40 km are possible. The best available

codes for a binary alphabet have 95 % efficiency [Jou13]. If such an algorithm would

be available for a non-binary alphabet as used in our protocol, up to 67 km would be

possible. With a perfect error correction, even a distance of 177 km could be bridged.

To briefly summarize Section 6.1 and Section 6.2, entanglement generated by two

squeezed vacuum resources performs better in terms of key rate and communication

distance than entanglement generated by a single squeezed vacuum resource with

a realistic number of samples in the order of 108 and 109 for high error correction

efficiencies. For low error correction efficiencies, however, larger communication dis-

tances between Alice and Bob can be achieved with entanglement generated by a single

squeezed vacuum resource. Since the achievable key rate and also the achievable dis-

tance between Alice and Bob depend strongly on the error correction efficiency, large

effort has to be put into these algorithms.

6.3 Implementation of Random Amplitude and

Phase Quadrature Measurements

To implement the quantum key distribution protocol for collective or general attacks,

Alice and Bob have to choose randomly the quadrature in which they measure a

sample. The security proof requires that the quadratures are identically and indepen-

dently distributed (i.i.d.). This is accomplished by using a quantum random number

generator, which is described in Section 6.4. This section describes the experimen-

tal implementation of the switching process of the local oscillator used for homodyne

detection. The presented scheme was developed in the framework of this thesis.

Figure 6.14 shows the experimental setup of the homodyne detection process that

allows to measure the amplitude and phase quadratures randomly with a rate much

higher than the usual unity gain frequencies of about 1 kHz of phase locks with piezo

mounted mirrors used as actuators. The local oscillator was phase locked to the signal

by employing the locking scheme described in Chapter 4.5 using a low frequency

actuator. The output of the servo controller was lowpass filtered by an analog filter

with a cutoff frequency of about 100 kHz with a sufficiently high order. We applied

phase shifts of 0 or π
2

to a fast fiber-coupled electro-optical phase modulator to measure
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Figure 6.12: Secure bits per measured sample versus distance in dependence of the param-
eter estimation security parameter εpe.
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Figure 6.13: Effect of the error correction efficiency β on the achievable distance. The key
rates are calculated for an infinite number of samples.
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Figure 6.14: Experimental setup for a fast random choice of measuring amplitude or phase
quadrature. A piezo driven mirror is used to phase lock the local oscillator to the signal.
The servo controller for this lock has a high order lowpass filter to average over the actual
phase of the local oscillator which is driven to 0 or π

2 by a fiber-coupled electro-optical phase
modulator (EOM) using a digital pattern generator PCI Express card with programmable
high voltage level.

either the amplitude or phase quadrature. The fiber-coupled phase modulator had a

half-wave voltage of about 3.5 V and was connected to a digital pattern generator PCI

Express card, which had a programmable voltage for the high level. If the rate of

switching between amplitude and phase quadrature is high enough, the phase lock’s

servo controller averages over the phase of the local oscillator. If the average is stable

over time the local oscillator can be locked to measure exactly the amplitude and

phase quadrature. Here it is important that the local oscillator phase lock can be set

to arbitrary values as the average is somewhere between both quadratures.

In practice, measuring the amplitude and phase quadrature randomly, usually yields

an unstable average over time as long sequences of, for instance, the amplitude quadra-

ture are not unlikely. To circumvent this problem we used a scheme shown in Fig. 6.15.

For both Alice and Bob, a possible choice of quadratures is plotted versus time. For

each quadrature choice phase shifts are applied to the fiber-coupled phase modulator.

For a choice of an amplitude quadrature measurement (X), we first apply a phase

shift to the local oscillator of π
2

which is followed by a phase shift of 0 with respect

to the signal beam. For a choice of a phase quadrature measurement (P ) instead, a

phase shift of 0 is followed by a phase shift of π
2
. This scheme allows the average over

the local oscillator’s phase to be constant in time as it can only happen that the local

oscillator has the same phase for the time of a whole interval. This can be seen in the

figure when for instance Alice chooses to measure first X and then P . If she chooses
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Figure 6.15: Measurement process with random quadrature choice. For an X quadrature
choice a phase shift of the local oscillator by π

2 , followed by a phase shift of 0, is applied.
For a P quadrature choice instead a phase shift of 0 is followed by a phase shift of π

2 . A
measurement of length ∆t is performed synchronously in the second half of the interval.
Using this scheme the mean phase of the local oscillator is independent of the quadrature
choices.

to measure X twice instead, the phase of the local oscillator switches between X and

P after half an interval.

While in this thesis the probabilities of measuring X or P were always 50 %, the

presented scheme provides the possibility to use unequal probabilities without any

modification.

Both parties agree on synchronous measurements in the second half of the interval.

In particular they wait some time between the step of the phase of the local oscillator

and the start of the measurement as the classical control signals at DC and at the

single sideband frequencies give rise to overshoot and ringing in the homodyne detec-

tor’s output. To not saturate the front-end of the analog-to-digital converter card we

implemented a sample-and-hold circuit that holds the homodyne detector’s output at

a constant level during a certain time interval around phase changes. The implemen-

tation of the homodyne detector’s electronics including a sample-and-hold circuit can

be found in the Appendix, Fig. A.2.

To record both homodyne detectors’ output signals simultaneously, we used a PCI

Express card, Signatec PX14400A, with a fast analog-to-digital converter with two

channels. For this purpose the outputs of the homodyne detectors were anti-alias

filtered with a 4th-order Butterworth filter with a cutoff frequency of 50 MHz. The
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(b) thermal state

Figure 6.16: QQ-plot of a homodyne measurement of a vacuum state and a thermal state
with Alice’s homodyne detector to test the Gaussianity of the measurement outcomes. The
thermal state was part of an entangled state. For the thermal state the measured quadra-
tures where chosen at random and samples measured in the P quadrature were omitted.
The quadrature variances of both states were normalized to 1. The figures show that the
implemented scheme with a randomly chosen quadrature for each measured sample does not
change the Gaussian distribution of the measurement outcomes. Thus, no significant phase
noise was introduced.

recording was triggered by an output signal of the pattern generator which also drove

the fiber-coupled phase modulators. 256 samples were recorded with a sampling fre-

quency of 256 MHz at each trigger event, yielding a measurement time of 1µs. The

repetition rate of the trigger events was 100 kHz. For each channel the samples were

digitally mixed at 8 MHz, lowpass filtered with a 200-tap FIR filter with 200 kHz cutoff

frequency and down sampled by taking only the 200th sample.

To check whether the fast switching process between the quadratures caused any un-

desired non-Gaussian effects in the homodyne detector’s output signal, we determined

the Gaussianity of the measured samples. For reference we blocked the input port of

Alice’s homodyne detector and recorded 105 samples of a vacuum state measurement.

The Gaussianity was checked with a QQ-plot which is shown in Fig. 6.16a. A QQ-

plot compares the quantiles of the measured samples to the theoretical quantiles of a

Gaussian distribution. Samples drawn from a Gaussian distribution therefore follow a

straight line in the QQ-plot. More details about checking the Gaussianity of samples

can be found in [Sam12]. Figure 6.16b shows a QQ-plot for 105 measured samples
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Figure 6.17: Autocorrelation function of 105 samples measured with blocked signal port
of Alice’s homodyne detector. The inset represents a zoom into the first 40 data points.
The autocorrelation function shows that the measurement process does not introduce any
correlations between subsequent samples.

from a thermal state in the X quadrature. Here, the measured quadrature was chosen

at random as described above and measurements performed in the P quadrature were

omitted. For comparison we normalized the thermal state’s X quadrature variance to

1. The QQ-plot does not show a significant deviation from a straight line for both

the vacuum and the thermal state. Hence, the switching process does not introduce

non-Gaussian effects which cannot be described by the first two statistical moments.

QQ-plots of the P quadrature data and also of Bob’s homodyne measurement look

similar to the ones in Fig. 6.16.

A prerequisite for quantum key distribution is that subsequently measured samples

are independent of each other. This was checked by calculating the autocorrelation

function of the samples recorded when measuring a vacuum state. Figure 6.17 shows

the autocorrelation of 105 samples measured with Alice’s homodyne detector with

blocked signal port. The measurement was performed and timed as described above.

As it is clearly visible from the inset which shows a zoom into a lag between 0 and 40,

subsequent samples were independent of each other. This shows that the measurement

apparatus does not introduce correlations.
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6.4 Quantum Random Number Generation

6.4 Quantum Random Number Generation

Random numbers have a wide range of applications like gambling, simulations and

cryptography. Nowadays mostly pseudo-random numbers (PRNs) are used which

employ deterministic numeric algorithms, called generators, to produce numbers that

appear random to outsiders who do not know the algorithm [Jam90]. The randomness

of random numbers is tested with a large number of complicated statistical tests.

Accepted test suites are TestU01 [Lec07], NIST [Ruk01] and dieharder [Bro12]. Even

though PRNs are easy to calculate, generators with good statistical properties are

hard to find [Hel98].

In this thesis random numbers are utilized in the quantum cryptography exper-

iment by Alice and Bob independently to determine the quadrature, amplitude or

phase, they measure. Pseudo-random numbers, even those produced by good gen-

erators, weaken the protocol as an adversary knows, by definition, which generators

were used and therefore only has to find out the so-called seed, the start value for

the deterministic numeric algorithm. Hence, the number of bits the adversary needs

knowledge about to gain information about the measured quadratures is rather lim-

ited. Therefore, we used a quantum random number generator (QRNG) to generate

these random numbers. QRNGs, also called truly random number generators, rely on

random physical processes making the generated numbers random and unpredictable.

Perfectly suitable for this task are quantum mechanical systems as measurement out-

comes of non-eigenstates of the measurement observable are postulated to be truly

random and unpredictable. While quantum mechanics ensures the randomness of the

measurement results, the measured quantum states have to be carefully chosen as

they also need to be uncorrelated with some adversary. For example using one part

of a bipartite entangled state yields random results, but as long as the adversary has

access to the other subsystem the random numbers are no longer unique. Hence, the

quantum state, which the random number generator processes, has to be pure (which

is indeed not the case for a subsystem of a bipartite entangled state). In this thesis

we used field quadrature measurements on a vacuum state. Such a QRNG was first

implemented by [Gab10] and [Sym11]. Quantum random number generators exhibit-

ing also the randomness feature of quantum mechanics, but using different quantum

systems are for example [Jen00, Ste00, Dyn08, Bro09, Fue10, Wah11, Xu12].

The following protocol to generate random numbers from field quadrature measure-

ments on a vacuum state relies on the protocol published by Gabriel et al., in [Gab10].
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50:50
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PBS PD

PD

λ/2

dump
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Figure 6.18: Experimental setup for quantum random number generation by exploiting
the randomness of quadrature field measurements on a vacuum state. The laser’s output
was attenuated by a variable beam splitter and used as local oscillator beam for homodyne
detection of a vacuum mode. To make sure that really a vacuum mode was measured, the
signal port of the homodyne detector was blocked with a beam dump. PBS: Polarizing Beam
Splitter, PD: Photo Diode.

6.4.1 Experimental Setup

The experimental setup is shown in Fig. 6.18. We used a homodyne detector, as

described in Chapter 3.4, to measure a field quadrature of a vacuum state. The

homodyne detector’s local oscillator was served by an NP Photonics, Inc., fiber laser

at 1550 nm with an output power of about 25 mW which was reduced to about 6 mW

by a combination of a half-waveplate and a polarizing beam splitter. The beam was

split at a 50 : 50 beam splitter and detected by two FCI-InGaAs-300 photo diodes.

To ensure measurements on a vacuum state and to prevent a possible adversary from

injecting an entangled state, the signal port was blocked. The photo current of the two

photo diodes was subtracted and converted to a voltage by a transimpedance amplifier.

The output of the homodyne detector electronics was anti-alias filtered by a 50 MHz

forth-order Butterworth filter and sampled with a sampling frequency of 256 MHz by

a Signatec PX14400A data acquisition card. The sampled data was digitally highpass

filtered to remove the DC offset, mixed with a sinusoidal at 8 MHz, lowpass filtered

at 5 MHz with a 200-tap FIR filter and downsampled to 2 MHz. This undersampling

removed all correlations between the samples introduced by the lowpass filtering after

the mixing process, cf. Chapter 3.7. The output of this postprocessing procedure is the

raw data for the random number generation. It shows a white power spectral density

and an autocorrelation indicating that the samples are independent, as depicted in

Fig. 6.19. The electronic dark noise clearance was measured to be about 18 dB.

The whole setup was placed on a portable 30 × 30 cm2 breadboard to allow for

transportation to future experiments which need quantum random numbers. The

breadboard features a fiber coupler for the input beam. Hence, the laser serving the
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Figure 6.19: Linear spectral density and autocorrelation of a quadrature measurement of a
vacuum state. The inset in the right figure shows a zoom into the first 20 data points. The
linear spectral density shows a white spectrum and the autocorrelation that the measured
samples were uncorrelated.

local oscillator is not part of the breadboard and can be replaced easily.

6.4.2 Random Number Generation

The measurement of the vacuum fluctuations is distorted by the electronic dark noise of

the measurement device, the homodyne detector electronics. Since we want to extract

the inherent randomness of the vacuum state measurement and not the randomness of

the electronic dark noise, the amount of information which can be extracted is given

by

Sextractable = S(Xvac)− S(Xdark noise) , (6.1)

where S is the Shannon entropy and X describes the classical distribution of the

measurement outcomes of the field quadratures of the vacuum state, Xvac, and the

electronic dark noise, Xdark noise, respectively. For this purpose we divide the mea-

surement outcomes of the homodyne detection of the vacuum state into N distinct

intervals with same probability p. S(Xvac) is then given by

S(Xvac) = −
N∑
k=1

p log p = logN , (6.2)

where the logarithm is taken to basis 2, and where we used the fact that N · p = 1.

The Shannon entropy of the electronic dark noise is calculated by

S(Xdark noise) = −
N∑
k=1

pk log pk , (6.3)
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where pk is the probability of an electronic dark noise measurement outcome to be

within the kth interval. Assuming the electronic dark noise to follow a Gaussian

distribution, pk can be calculated by

pk =

∫ xk+1

xk

dx
1√

2πσ2
exp

(
− x2

2σ2

)
(6.4)

=
1

2

(
erf

(
xk+1√

2σ2

)
− erf

(
xk√
2σ2

))
, (6.5)

where σ2 is the variance of the electronic dark noise normalized to the variance of

the vacuum and erf is the error function. xk and xk+1 are the boundaries of the kth

interval which can be derived iteratively, starting with x1 = −∞, by evaluating

xk+1 =
√

2 erf−1

(
2

N
+ erf(xk/

√
2)

)
. (6.6)

Here, the variance of the vacuum is assumed to be 1.

Taking the number of intervals N as a power of 2, each interval can be assigned a

unique bit combination of n bits, where there is no bit combination belonging to no

interval. The Shannon entropy of the vacuum is then given by S(Xvac) = logN =

n. Figure 6.20 shows the extractable amount of information Sextractable given in bits

versus the number of bits n for an electronic dark noise clearance of 18 dB, i.e. σ2 =

10−18 dB/10. From the figure we deduce an optimal n of 5 bits, yielding Sextractable =

2.51 bits.

Assigning each measurement outcome a bit combination of n bits yields a string of

raw random numbers. To remove the residual information from the electronic dark

noise, we use randomness extraction by hash functions [Sti02, Tom11]. A hash function

is a mathematical one-way function projecting an arbitrary number of bits to a fixed

number of bits, called the message digest, in such a way that small changes in the

input string changes the output string dramatically. In our particular implementation

we use SHA512 [RFC11] which was developed by the National Security Agency (NSA)

and published in 2001 by the National Institute of Standards and Technology (NIST).

The message digest of SHA512 has a size of 512 bits. Hence, to reduce 5 bits to 2.51 bits

we put several measurements into a single bit string of (5/2.51) ·512 bits length which

was reduced to 512 bits by a single run of SHA512.

While in principle the speed of the random number generation would be about

5 MBit/s, limited by the bandwidth of the homodyne detector, our setup is limited

by the speed of the post processing. Indeed our setup reached about 1.5 MBit/s.

Implementing the post processing, in particular the mixing and down sampling process,

using a field programmable gate array (FPGA) this can easily be improved.
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Figure 6.20: Extractable information in bits given by the Shannon entropy Sextractable

versus the number of bits n assigned to a measured sample.

6.4.3 Statistical Tests of the Generated Random Numbers

We tested our quantum random numbers with three different statistical test suites.

The results of the Crush battery of the TestU01 test suite are shown in Tab. 6.1. Since

most tests were run many times with different parameter sets, the results are given as

the number of test runs passed per the number of total test runs.

The test results of the NIST test suite are summarized in Tab. 6.2. Here also most

tests were run with different parameter sets. Each statistical test was run 1000 times

and is indicated as passed if the minimum pass rate was reached. More detailed results

can be found in Appendix B.

Table 6.3 shows the summarized results of the dieharder test suite. Detailed results

can be found in Appendix B.

To summarize, all tests of all test suites were passed, indicating that the generated

random numbers were really random.

Test Result Test Result

Serial Over 2/2 Collision Over 8/8

Birthday Spacings 7/7 Close Pairs 3/3

Close Pairs Bit Match 2/2 Simp Poker 4/4

Coupon Collector 4/4 Gap 4/4
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Run 2/2 Permutation 2/2

Collision Permut 2/2 Max Oft 4/4

Sample Prod 2/2 Sample Mean 1/1

Sample Corr 1/1 Appearance Spacings 2/2

Weight Distrib 4/4 Sum Collector 1/1

Matrix Rank 6/6 Savir 2 1/1

GCD 2/2 Random Walk 1 6/6

Linear Comp 2/2 Lempel Ziv 1/1

Fourier 3 2/2 Longest Head Run 2/2

Periods in Strings 2/2 Hamming Weight 2 2/2

Hamming Corr 3/3 Hamming Indep 6/6

Run 2/2 Auto Cor 4/4

Table 6.1: Results of the TestU01 Crush test suite.

Test Passed Test Passed

Frequency 1/1 Block Frequency 1/1

Cumulative Sums 2/2 Runs 1/1

Longest Run 1/1 Rank 1/1

FFT 1/1 Non Overlapping Template 148/148

Overlapping Template 1/1 Universal 1/1

Approximate Entropy 1/1 Random Excursions 8/8

Random Excursion Variants 18/18 Serial 2/2

Linear Complexity 1/1

Table 6.2: Summarized test results of the NIST test suite.

Test Passed Test Passed

diehard birthdays 1/1 diehard operm5 1/1

diehard rank 32x32 1/1 diehard rank 6x8 1/1

diehard bitstream 1/1 diehard opso 1/1

diehard oqso 1/1 diehard dna 1/1

diehard count 1s str 1/1 diehard count 1s byt 1/1

diehard parking lot 1/1 diehard 2dsphere 1/1

diehard 3dsphere 1/1 diehard squeeze 1/1

diehard sums 1/1 diehard runs 2/2

diehard craps 2/2 marsaglia tsang gcd 2/2
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sts monobit 1/1 sts runs 1/1

sts serial 30/30 rgb bitdist 12/12

rgb minimum distance 4/4 rgb permutations 4/4

rgb lagged sum 32/32 rgb kstest test 1/1

dab bytedistrib 1/1 dab dct 1/1

dab filltree 2/2 dab filltree 2 2/2

dab monobit 2 1/1

Table 6.3: Summarized test results of the Dieharder test suite.

6.5 Experimental Quantum Key Distribution

Results

This section describes the experimental results of the implemented QKD system. In

the first part some of the simulation results from Section 6.5.1 are verified. Since no

non-binary error correction algorithm was available, Section 6.5.2 describes the key

generation using a post selection procedure and a binary error correction algorithm.

6.5.1 Verification of Simulation Results

Using the entangled states generated by superimposing two squeezed vacuum states,

cf. Chapter 4.5, and the random measurement of amplitude and phase quadratures

described in Section 6.3, we recorded 2N = 108 samples. Assuming a non-binary

error correction algorithm with 90 % efficiency, Fig. 6.21 shows the number of secure

bits per sample versus the number of intervals 2nbits when taking samples from both

quadratures to generate a key (pX ≈ 0.5). The two curves are plotted for k = 1× 107

and k = 2 × 107 samples used for parameter estimation, respectively, which were

chosen at random. α was chosen 6 times the standard deviation of the respective

quadrature, which is just above the modulus of the largest measured sample. The

security parameters were chosen εc = εs = εpe = 10−16. For nbits ≥ 8 the maximal key

rate was achieved. For less than nbits = 5 the key rate was zero and no secure key

could be extracted.

Figure 6.22 shows the secure key rate for nbits = 8 versus the number samples k

used for parameter estimation. For each value of k, k samples were chosen at random

from the total of N ≈ 5×107. The random choice explains the noisy curve which gets

less noisy for larger k. In the range of k = 6 × 106 to k = 107 the maximum number

of secure bits is achieved.

Both nbits = 8 and k = 107 are in good agreement with the optimal values obtained
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Figure 6.21: Secure key rate for 2N = 108 measurements for two different number of sam-
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Figure 6.22: Secure key rate versus the number of samples k used for parameter estimation
for nbits = 8.
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from the simulations described in Section 6.2. With this choice the length of the secure

key generated from a total of 108 samples, is 0.355 × 108 bits which is also in good

agreement with the value obtained from Fig. 6.9.

6.5.2 Generation of a Secret Key using Post Selection

With the measured 2N = 108 samples we generated a secure key from both quadratures

using the post selection feature introduced in Chapter 5.4 and a binary error correction

algorithm. To be able to use an error correction algorithm that works on a binary

alphabet instead of a non-binary one as assumed in the simulations, the obtained

bit error rate needs to be reduced. This is accomplished by the post selection. The

protocol parameters we used were α as 6 times the standard deviation of the respective

quadrature, nbits = 6, εs = εc = 10−16, εpe = 10−10 and k = 107. The non-optimal

choice of nbits was devoted to the fact that with an increasing number of intervals

the number of bit errors after binning increases. However, better error correction

efficiencies are achieved with less errors.

Parameter Estimation From the k revealed samples the covariance matrix of the

state was estimated. It reads

γ =


19.696 (0) −19.678 (0)

(0) 23.311 (0) 23.708

−19.678 (0) 19.817 (0)

(0) 23.708 (0) 24.314

 , (6.7)

where the numbers in parentheses were not determined.

Binning and Post Selection Enumerating the 64 intervals like in the proto-

col description in Section 5.4.1 from the left to the right, we omitted the intervals

27, 29, 31, 33, 35 and 37 by post selecting both Alice’s and Bob’s data. The effect of

the post selection is shown in Fig. 6.23. Figure 6.23a shows a scatter plot of the

amplitude quadrature measurement outcomes of simultaneous measurements at Alice

and Bob. A scatter plot for phase quadrature outcomes at both parties is shown in

Fig. 6.23b. While without post selection a histogram of the measurement outcomes

would follow a Gaussian distribution, the pattern visible in the middle of the plots is

caused by the post selection. The plots indicate not only the width of the remaining

intervals in the middle but also the reduction of the error rate. Note, that because of

the equal width of the intervals most samples belong into the inner intervals.

To obtain a bit representation of the raw key, each interval is assigned a unique

bit combination of 6 bits. Thus, each of the remaining samples after post selection is
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Figure 6.23: Scatter plots of the outcomes of Alice and Bob simultaneously measuring
amplitude or phase quadrature. The figure shows the effect of the post selection procedure.
The interval width can clearly be seen by the five small squares in the middle.

assigned a bit string representing the interval the sample is mapped to. Since the error

correction works best for small bit error rates and a uniform distribution of zeros and

ones, special care has to be taken of the bit assignment to the intervals. For the bit

assignment we used a modification of a common Gray code, where the modification

was developed in collaboration with Jörg Duhme. A Gray code [Gra53] is designed

such that the bit representation of intervals next to each other differ only in one bit.

This design keeps the error rate small as it is quite likely that a measurement outcome

of one of the two parties falls into an adjacent interval of the one the outcome of the

other party has fallen into. A part of a 6 bit Gray code is shown in Fig. 6.24a.

Figure 6.24b shows a part of the modified Gray code we used. The gray shaded

intervals are the intervals that are removed by post selection. The bit representations

of these intervals are not important and thus not shown. The code is designed such

that the bit strings of the intervals that are next to each other without the removed

ones again differ only in one bit. To obtain an as uniform bit distribution as possible,

however, the two most inner intervals are represented by bit strings that are bit flipped.

Even though this two intervals do not have exactly the same probability, the proba-

bilities are similar as the interval width is small. Since at this interval the structure of

the Gray code is broken, the bit error rate increases. However, the uniformity is more

important for a high efficiency error correction algorithm than the error rate. The
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Figure 6.24: Illustration of a Gray code and the modified Gray code we used in our exper-
iment. The gray shaded areas on the right indicate the intervals removed by post selection.

complete modified Gray code used in the experiment can be found in Appendix C.

With the modified Gray code we calculated the bit error rate versus measurement

time which is shown in Fig. 6.25. For this purpose the remaining samples after post

selection and parameter estimation were converted into two bit strings, one belonging

to Alice and one belonging to Bob. The bit error rate was calculated by splitting

Alice’s and Bob’s available bits into chunks of 105 bits and comparing them. The bit

error rate showed only small drifts between 3.75 % and 3.90% during the measurement

time which demonstrates the stability of the system.

Error Correction After raw key generation the unavoidable bit errors have to be

corrected. The error correction algorithm used in this experiment was a low-density-

parity-check (LDPC) code [Gal62]. An introduction to these codes can be found,

for instance, in [Sho03]. The LDPC code we used here was implemented by the

Austrian Institute of Technology (AIT). Since the algorithm worked on a block size

of 256 kBit, the binary raw key was split into 446 blocks. For each block 68,160

parity bits were communicated from Alice to Bob, who corrected his raw key to fit

Alice’s. With a total of 446 processed blocks, 30,399,360 bits ≈ 30 MBit were disclosed.

According to Chapter 5.3.5 the theoretical bound for the number of bits that have to

be communicated to correct the errors, is given by H(XA|XB). For the generated

raw key it is 27,192,821 bits. Hence, the leakage parameter λ is given by ratio of
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Figure 6.25: Bit error rate after post selection versus measurement time.

communicated bits and theoretical bound,

λ =
30,399,360

27,192,821
≈ 1.118 .

This corresponds to an error correction efficiency of β = 96.4 %, which is a remarkably

high efficiency.

In the confirmation Alice and Bob check whether the error correction succeeded.

For this purpose they both hashed their corrected raw key to 53 bits and compared

the outcome. The size of the hash is given by the correctness parameter εc = 10−16

via log2
1
εc

. The correctness check was implemented by the software from the AIT.

Calculation of Secure Key Length Using the covariance matrix, which was re-

constructed in the parameter estimation step, and calculating the entropy and max-

entropy of the raw key from the measured samples (which includes the effect of the

post selection), the secure key length was calculated to 42,353,303 bit. ≈ 42 MBit.

From this the bits disclosed by the error correction had to be subtracted, however,

the bits disclosed by the confirmation have already been included. Hence, the overall

secure key length was 11,953,943 bit ≈ 11.95 MBit.
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Privacy Amplification Privacy amplification reduces the total raw key length of

116,916,224 bit to the secure length of 11,953,943 bit by two-universal hash functions,

cf. Chapter 5.4. This step was also implemented by the software from the AIT. With

a reduction rate of 0.1022, the final secure key size was 11,948,832 bit ≈ 11.95 MBit

or in bytes approximately 1.5 MB.

In Appendix D the first 7645 bits of the key are published.

6.6 Towards a Possible Local-Area Quantum Key

Distribution Link

While in this thesis Alice and Bob were located at the same optical table, placing Bob

somewhere else would demonstrate the feasibility of the protocol for real applications.

The Institute for Gravitational Physics in Hanover is located about 1 km apart from

the Institute of Quantum Optics. The two institutes are connected with two standard

telecommunication fibers. A measurement of the transmission of these fibers yielded

43 % and 56 % for a wavelength of 1550 nm. The low transmission is probably due to

the many fiber connectors as the transmission line is split into 8 pieces.

Polarization Control
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PS

EOM

50:50

PBS
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Detector

PD
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Figure 6.26: Proposed experimental setup for a remote detector. The local oscillator beam
and the entangled mode are polarization multiplexed and transmitted through a standard
telecommunication fiber. The two beams (red) are separated at a polarizing beam splitter
and recombined at a balanced beam splitter for homodyne detection after the transmis-
sion of the local oscillator beam through a fiber-coupled electro-optical modulator which
is used to apply phase shifts between both beams. For the synchronization of Alice’s and
Bob’s measurement an auxiliary 1310 nm beam can be employed (orange). DBS: Dichroic
Beam Splitter, PD: Photo Detector, PBS: Polarizing Beam Splitter, EOM: Electro-Optical
Modulator, PS: Phase Shifter.
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Figure 6.26 shows a possible implementation of a remote detector. The local os-

cillator, which is necessary for homodyne detection, is submitted through the fiber

together with the entangled subsystem by polarization multiplexing. To separate the

local oscillator beam from the entangled mode a polarizing beam splitter can be used.

Since standard telecommunication fibers are not polarization maintaining, the polar-

ization has to be controlled with a fiber-based polarization controller. To detect the

polarization state a small fraction of the light can be tapped-off from the beam and

detected by a polarization meter. Once the polarization is stabilized and the local os-

cillator is separated from the entangled mode, the local oscillator can be phase shifted

with respect to the entangled mode according to the scheme presented in Section 6.3.

For the locking of the local oscillator’s phase the single sideband fields accompanying

the entangled mode can be used. To be able to generate an error signal a phase-

locked electronic local oscillator will be necessary. Such a signal may be obtained

by frequency references used by the two parties which are locked to the global posi-

tioning system (GPS). To achieve synchronized measurements at Alice and Bob an

auxiliary laser beam at 1310 nm can be employed which can be separated from the

main 1550 nm beams by a dichroic beam splitter. By modulating the amplitude of

this laser with a square wave, a clock for the measurements can be transferred. To

close a possible loop-hole for an attacker, the power of the transmitted local oscillator

has to be monitored during the QKD run [Lo07, Ma13]. If the local oscillator power

is not monitored, an attacked could change the power and thereby the vacuum noise

reference of Bob’s balanced homodyne detector.

A simulation of the expected secure key rate is shown in Fig. 6.27. For the simulation

we started at the covariance matrix from Eq. (4.11) which already includes detection

loss. In the figure the secure key rates for different error correction efficiencies β

are plotted versus the transmission line’s optical loss. While for Fig. 6.27a the total

number of measurements was 108, it was 109 for Fig. 6.27b. The black dashed lines in

the figures indicate the expected total optical loss for the two available transmission

lines. Besides the measured transmission of the fiber, we further included an optical

coupling efficiency of 95 % of the free-space entangled mode to the optical fiber and

additional propagation loss of 10 % caused by the polarization controller and imperfect

optical components. For the simulation samples from both quadratures were taken

into account, i.e. pX = 0.5. Other simulation parameters were α as 8 times the

standard deviation of the respective quadrature, nbits = 8 for both quadratures and

εs = εc = εpe = 10−16. The number of samples k used for parameter estimation was

optimized to get the largest secure key rate.

For the available transmission line with the lower optical loss, a secure key can be

generated for 108 samples with an error correction efficiency of 90 %, whereas for the

transmission line with the higher optical loss no secure key is possible. Since a 90 %
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(b) Number of total measurements: 2N = 109.

Figure 6.27: Secure key rate for different error correction efficiencies β versus optical loss.
The black dashed lines indicate the optical loss of the two transmission lines including addi-
tional propagation loss caused by the detection scheme.
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error correction efficiency might be difficult to achieve for the given parameter regime,

a measurement of 109 samples will be beneficial. Here, a secure key can already be

generated with an error correction efficiency of 80 % for the low loss transmission line,

and with 85 % efficiency for the lossier one.

6.7 Summary

To summarize, simulations have shown that QKD seems possible for the two EPR

entanglement types described in Chapter 4. In both cases feasible distances between

Alice and Bob are in the range of 10 to 20 km for reasonable numbers of measured

samples on the order of 108 to 109. While for high error correction efficiencies entan-

glement generated by superimposing two squeezed vacuum modes yields larger key

rates and distances for the same number of measured samples, for low error correction

efficiencies it is beneficial to use entanglement generated by only one squeezed vacuum

mode.

By the implementation of a sophisticated scheme for actively controlling all phases

and for fast measurements with a random choice of quadrature for each measurement,

108 samples could be recorded. With these a key of about 1.5 MB size, which was

secure under collective attacks, was generated. This was achieved by using a post

selection technique and a binary error correction with a high efficiency.

Furthermore, an experimental setup for Bob’s detector being at another location

was proposed. Simulations have shown that a QKD link between the Institute for

Gravitational Physics and the Institute of Quantum Optics in Hanover is feasible

using the existing fiber connections.
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CHAPTER7
Quantum Key Distribution under

General Attacks

Overview

The development of continuous-variable QKD began in the early 2000s, however, only

in 2012 a security proof providing composable security under general attacks with

a finite number of samples was published [Fur12b]. The protocol employs two-mode

squeezed vacuum states with highly entangled states and low optical loss. This chapter

experimentally demonstrates the feasibility of the generation of such a composable

secret key with the setup presented in Chapter 6 by following the protocol which was

introduced in Chapter 5.5.

This chapter is organized as follows. Section 7.1 describes the experimental determi-

nation of the optimal protocol parameters. Using these optimal parameters Section 7.2

presents the execution of the QKD protocol up to the error correction step. It is shown

that the generation of a secret key is possible with an error correction code that has

an efficiency larger than 83.7 %. Finally, Section 7.3 summarizes the results.

7.1 Determination of Protocol Parameters

Using a pump power of about 200 mW and 150 mW for the two squeezed-light sources,

respectively, 2 × 108 samples were recorded measured with Alice’s and Bob’s homo-

dyne detectors with random quadrature choice according to the scheme presented in

Chapter 6.3. Furthermore, a vacuum noise reference was recorded prior to the run

of the protocol for normalization purposes by blocking the signal input ports of the

homodyne detectors. To determine the optimal parameters of the protocol, which

are the cut-off value α, the scaling factors and the number of samples k used in the
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parameter estimation step, a characterization of the quantum states in a trusted envi-

ronment is helpful. A trusted environment means that Alice and Bob are sure that no

eavesdropper is present. If that is not possible, the protocol can still be executed with

non-optimal parameters, which reduces the key rate. However, security can still be

guaranteed. In a trusted environment Alice and Bob are able to characterize the quan-

tum states by state tomography. For the state used here, the reconstructed covariance

matrix reads

γ =


21.932 (0) −22.092 (0)

(0) 24.891 (0) 25.229

−22.092 (0) 22.436 (0)

(0) 25.229 (0) 25.772

 , (7.1)

where the numbers in the parentheses were not measured since they are unimportant

for the characterization of the protocol’s parameters. Due to a slight asymmetry of the

field quadrature variances of Alice’s and Bob’s state, they have to scale their samples

with the scaling factors given in Tab. 7.1 to yield the same variance. The asymmetries

might have been arisen due to an imperfect balance of the beam splitter used for the

generation of entanglement or due to asymmetric optical loss.

Quadrature Alice Bob

Amplitude 1.00569 0.99434
Phase 1.00873 0.99134

Table 7.1: Scaling parameters for Alice’s and Bob’s measured samples to yield a symmetric
variance of the field quadratures.

From the covariance matrix we simulated the secure key rate under general attacks

assuming an error correction efficiency of β = 95 %. Figure 7.1 shows the results

given as secure bits per number of measured samples versus the number of measured

samples. The security parameters were set to εs = εc = 10−6. For each value on

the x-axis the cut-off parameter α and the number of samples k used for parameter

estimation were optimized to yield a maximal key rate. The different curves are shown

for different interval widths δ defined by α and the number of intervals 2nbits by the

relation δ = 2α
2nbits

. The optimal key rate is achieved using nbits ≥ 10. Positive key

rates are expected for more than 2.8 × 107 measured samples. For 2 × 108 samples

the expected key rate from the simulation is about 0.14 bits/sample. For this value

the optimal cut-off parameter is α = 50.2 and the optimal number of samples for

parameter estimation is k = 2 × 107. From the simulation we expect the security

parameter dPE, which is determined in the parameter estimation step of the protocol,

to be approximately 3.54 for nbits = 10.
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Figure 7.1: Simulated secure key rate under general attacks versus the number of measured
samples. The different curves are plotted for a different number of intervals 2nbits . The cut-
off parameter α and the number of samples k used for parameter estimation were optimized
to yield a maximal key rate.

7.2 Demonstration of the Feasibility of Secret Key

Generation

After the determination of the protocol’s optimal parameters the protocol was executed

and 2 × 108 samples were recorded by homodyne measurements. Due to the lack

of an error correction algorithm, we analyzed the measured samples to demonstrate

the feasibility of extracting a secret key. In a first step the abort condition has to

be checked, namely that no sample exceeded α. Table 7.2 shows the maximal and

minimal values of the scaled data measured by Alice and Bob. Hence, α = 50.2 is by

far not exceeded and the protocol was not aborted.

Alice Bob

Min -30.0505 -30.4676
Max 30.5348 29.7306

Table 7.2: Minimal and maximal measurement outcomes of Alice and Bob after scaling to
check the abort conditions.
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Figure 7.2: Secure key rate versus the number of samples k used for parameter estimation
for nbits = 10. For each value of k, k samples were chosen at random from the samples left
after sifting and the secure key rate was determined.

After sifting 100,001,118 samples remained which were binned into intervals as given

in the protocol description, cf. Chapter 5.5. Here, we used nbits = 10.

To determine the effect of the number of samples k used for parameter estimation,

we calculated the secure key rate for nbits = 10 assuming an error correction efficiency

of 95 %. The curve in Fig. 7.2 was calculated by drawing k samples at random from

the samples left after sifting and by determining the security parameter dPE according

to Eq. (5.43). The maximal key rate of 0.16 bits/sample is achieved for k = 1.87× 107

samples.

Using this value for k we calculated a histogram of the security parameter dPE which

is shown in Fig. 7.3. The histogram was computed by drawing 3,000 times k samples

at random and calculating dPE for each set of samples. The histogram shows the

narrow distribution of dPE. A fit of a Gaussian distribution, shown as the red solid

line in the figure, revealed dPE = 3.5386± 0.0006.

Figure 7.4 shows the dependence of the secret key rate under general attacks on

the error correction efficiency. A secret key can be extracted with an error correction

efficiency larger than 83.7 %. This shows that even though we assumed an error

correction efficiency of 95 % to calculate the secure key rates above, a secret key can

even be distilled with lower efficiencies which are more likely to be achieved.

122



7.2 Demonstration of the Feasibility of Secret Key Generation
C

ou
nt

s

dPE

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

3.5368 3.5374 3.5380 3.5386 3.5392 3.5398 3.5404

Figure 7.3: Histogram of security parameter dPE calculated by drawing 3,000 times k =
1.87 × 107 samples at random from the samples left after sifting. The red curve shows a
Gaussian distribution fitted to the data.
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Figure 7.4: Secure key rate versus error correction efficiency.
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7.3 Summary

To summarize, it was experimentally demonstrated for the first time that a contin-

uous-variable QKD system, which is secure under general attacks, is feasible. By mea-

suring 2×108 samples of two-mode squeezed vacuum states with a random quadrature

choice an error correcting code with an efficiency larger than 83.7 % would be neces-

sary to distill a secret key. Assuming an error correction efficiency of 85 % this would

yield a secret key of 4 MBit size. The size of the secret key can be increased by a

factor of 10 if an error correction with 95 % efficiency will be used instead.

Since error correction codes with high efficiencies are available for binary alpha-

bets, cf. Chapter 6.5, and error correction codes working on a non-binary alphabet

exist [Ulr57], it seems feasible that a code which fulfills the requirements set here, can

be developed.

124



CHAPTER8
Summary and Outlook

The demonstration of a complete implementation of a continuous-variable QKD sys-

tem which is secure under general attacks, and whose keys have a finite size, is one

of the most desired goals in the field of quantum cryptography. The first quantitative

security analysis [Fur12b] of such a protocol is based on EPR entangled states with

challenging but feasible parameters. Its realization requires 10 dB squeezed vacuum

states, low optical loss and a measurement of at least 108 samples.

In this thesis the feasibility of such a continuous-variable QKD system with security

under general attacks was demonstrated by an execution of the protocol up to the

error correction step. Simulations have shown that the error correction efficiency

which is at least necessary to distill a secret key is 83.7 %. While a non-binary error

correction code with the required performance does not exist yet, this result provides

a high motivation for the development of such an algorithm. Existing binary error

correction codes can reach efficiencies of more than 95 % [Jou13] as demonstrated by

the code provided by the AIT used in this thesis for another experiment. Thus, it seems

feasible that non-binary codes might reach the required efficiency in the given setting

by optimizing existing codes for Gaussian distributed values. Since the experimental

data recorded for this thesis can be used to distill a secret key when an error correction

code, which fulfills the requirements, becomes available, the results of this thesis pave

the way for the first demonstration of a complete continuous-variable finite-size QKD

system which is secure under general attacks.

The feasibility demonstration required a stable setup with strong EPR entangled

states and a measurement of each of the 2 × 108 samples in either the amplitude or

phase quadrature. The latter was achieved by a detection scheme developed in this

thesis, which enabled homodyne measurements with random choice of quadrature at

a rate of 100 kHz. The strong EPR entanglement was generated by superimposing
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two squeezed vacuum modes whose squeezed quadrature variances were more than

10 dB below the variance of the vacuum state. The observed entanglement at the

telecommunication wavelength of 1550 nm exceeded 10 dB for the Duan inseparability

criterion and represents the strongest EPR entanglement ever observed. The stable

operation could be achieved by a new phase locking scheme, which was developed in

this thesis. The observed entanglement and its stability will also make new highly

demanding quantum information protocols possible, like the superactivation of zero-

capacity channels [Smi11].

This thesis also presented the first demonstration of the EPR paradox for entangled

states generated by superimposing a squeezed vacuum mode with a vacuum mode.

Despite this vacuum contribution, remarkably strong EPR entanglement could be ver-

ified. This result might simplify the implementation of (future) quantum information

protocols. One of them is continuous-variable QKD with the restriction of the ad-

versary to collective attacks. Since an implementation of a collective attack requires

quantum memories, collective attacks are, although a restriction, difficult to achieve

experimentally. Simulations in this thesis have shown that QKD distances between

Alice and Bob of up to 20 km are feasible with such states.

With the restriction to collective attacks a complete QKD protocol was implemented

using the entangled states generated by two squeezed vacuum resources. With 108

measurements, a secret key of 1.5 MB size was distributed in a table-top setup. Since

simulations in this thesis have shown that distances between Alice and Bob of up

to 30 km are reasonable using these states and state-of-the-art fiber technology, a

possible implementation of Bob’s remote detector was proposed. By measuring 109

samples, a QKD link between the Institute for Gravitational Physics and the Institute

of Quantum Optics in Hanover seems feasible with existing fiber links.
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CHAPTERA
Electronics

In the following you will find the schematic of a resonant photo detector which was used

to lock the squeezed-light source’s cavity length and the pump phase. This circuit was

developed in collaboration with Sebastian Steinlechner. You will also find a schematic

of the homodyne detector which was developed for the QKD experiments within the

framework of this thesis.
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Appendix A: Electronics

Figure A.1: Schematic of a resonant photo detector whose photo current is demodulated
with two electronic local oscillators which are 90◦ out of phase. This circuit was developed
in collaboration with Sebastian Steinlechner.
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Appendix A: Electronics

Figure A.2: Schematic of the homodyne detector electronics used for the quantum key
distribution experiments. The electronic circuit was developed in the framework of this
thesis. The AC output of the detector can be set to hold with a sample-and-hold circuit to
prevent the analog-to-digital converter’s front-end to saturate during phase steps.
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CHAPTERB
Random Number Test Results

In Tab. B.1 more detailed results of the NIST test suite testing the random numbers

generated in Chapter 6.4 are given. The minimum pass rate is approximately 980 for

1000 test runs and approximately 591 for 605 test runs. The p-value gives the result

of the uniformity test of the p-values of the statistical tests of the random numbers.

Test Passed p-value

Frequency 990/1000 0.422638

BlockFrequency 994/1000 0.26093

CumulativeSums 992/1000 0.478839

CumulativeSums 991/1000 0.402962

Runs 995/1000 0.202268

LongestRun 988/1000 0.518106

Rank 992/1000 0.5221

FFT 983/1000 0.120909

NonOverlappingTemplate 989/1000 0.820143

NonOverlappingTemplate 984/1000 0.572847

NonOverlappingTemplate 993/1000 0.285427

NonOverlappingTemplate 987/1000 0.846338

NonOverlappingTemplate 988/1000 0.890582

NonOverlappingTemplate 993/1000 0.980341

NonOverlappingTemplate 991/1000 0.721777

NonOverlappingTemplate 990/1000 0.607993

NonOverlappingTemplate 986/1000 0.903338

NonOverlappingTemplate 995/1000 0.017186

NonOverlappingTemplate 989/1000 0.225998
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NonOverlappingTemplate 984/1000 0.568739

NonOverlappingTemplate 988/1000 0.635037

NonOverlappingTemplate 989/1000 0.869278

NonOverlappingTemplate 991/1000 0.146982

NonOverlappingTemplate 990/1000 0.404728

NonOverlappingTemplate 990/1000 0.897763

NonOverlappingTemplate 989/1000 0.014150

NonOverlappingTemplate 988/1000 0.437274

NonOverlappingTemplate 992/1000 0.282626

NonOverlappingTemplate 994/1000 0.635037

NonOverlappingTemplate 989/1000 0.999340

NonOverlappingTemplate 989/1000 0.653773

NonOverlappingTemplate 992/1000 0.697257

NonOverlappingTemplate 985/1000 0.530120

NonOverlappingTemplate 992/1000 0.217857

NonOverlappingTemplate 993/1000 0.146982

NonOverlappingTemplate 993/1000 0.897763

NonOverlappingTemplate 990/1000 0.741918

NonOverlappingTemplate 993/1000 0.900569

NonOverlappingTemplate 986/1000 0.620465

NonOverlappingTemplate 992/1000 0.999698

NonOverlappingTemplate 987/1000 0.229559

NonOverlappingTemplate 993/1000 0.866097

NonOverlappingTemplate 993/1000 0.632955

NonOverlappingTemplate 995/1000 0.253122

NonOverlappingTemplate 990/1000 0.651693

NonOverlappingTemplate 986/1000 0.645448

NonOverlappingTemplate 992/1000 0.153763

NonOverlappingTemplate 990/1000 0.442831

NonOverlappingTemplate 993/1000 0.345650

NonOverlappingTemplate 989/1000 0.666245

NonOverlappingTemplate 995/1000 0.745908

NonOverlappingTemplate 989/1000 0.365253

NonOverlappingTemplate 991/1000 0.973718

NonOverlappingTemplate 995/1000 0.289667

NonOverlappingTemplate 994/1000 0.465415

NonOverlappingTemplate 991/1000 0.177628

NonOverlappingTemplate 989/1000 0.105618

NonOverlappingTemplate 992/1000 0.550347
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NonOverlappingTemplate 988/1000 0.279844

NonOverlappingTemplate 981/1000 0.112047

NonOverlappingTemplate 991/1000 0.945296

NonOverlappingTemplate 984/1000 0.496351

NonOverlappingTemplate 987/1000 0.908760

NonOverlappingTemplate 990/1000 0.928857

NonOverlappingTemplate 993/1000 0.490483

NonOverlappingTemplate 984/1000 0.378705

NonOverlappingTemplate 997/1000 0.148653

NonOverlappingTemplate 993/1000 0.429923

NonOverlappingTemplate 990/1000 0.614226

NonOverlappingTemplate 988/1000 0.637119

NonOverlappingTemplate 981/1000 0.162606

NonOverlappingTemplate 995/1000 0.486588

NonOverlappingTemplate 996/1000 0.484646

NonOverlappingTemplate 988/1000 0.366918

NonOverlappingTemplate 994/1000 0.169044

NonOverlappingTemplate 993/1000 0.896345

NonOverlappingTemplate 993/1000 0.444691

NonOverlappingTemplate 993/1000 0.593478

NonOverlappingTemplate 988/1000 0.530120

NonOverlappingTemplate 990/1000 0.452173

NonOverlappingTemplate 987/1000 0.953089

NonOverlappingTemplate 992/1000 0.126658

NonOverlappingTemplate 989/1000 0.790621

NonOverlappingTemplate 993/1000 0.837781

NonOverlappingTemplate 995/1000 0.853049

NonOverlappingTemplate 990/1000 0.796268

NonOverlappingTemplate 988/1000 0.262249

NonOverlappingTemplate 989/1000 0.163513

NonOverlappingTemplate 991/1000 0.245490

NonOverlappingTemplate 993/1000 0.002484

NonOverlappingTemplate 994/1000 0.662091

NonOverlappingTemplate 991/1000 0.242986

NonOverlappingTemplate 989/1000 0.684890

NonOverlappingTemplate 982/1000 0.792508

NonOverlappingTemplate 988/1000 0.783019

NonOverlappingTemplate 991/1000 0.083018

NonOverlappingTemplate 991/1000 0.156373
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NonOverlappingTemplate 989/1000 0.141256

NonOverlappingTemplate 989/1000 0.556460

NonOverlappingTemplate 987/1000 0.274341

NonOverlappingTemplate 991/1000 0.292519

NonOverlappingTemplate 991/1000 0.105618

NonOverlappingTemplate 990/1000 0.212184

NonOverlappingTemplate 992/1000 0.739918

NonOverlappingTemplate 988/1000 0.108791

NonOverlappingTemplate 988/1000 0.753844

NonOverlappingTemplate 990/1000 0.928857

NonOverlappingTemplate 990/1000 0.672470

NonOverlappingTemplate 991/1000 0.719747

NonOverlappingTemplate 989/1000 0.624627

NonOverlappingTemplate 993/1000 0.811080

NonOverlappingTemplate 989/1000 0.612147

NonOverlappingTemplate 986/1000 0.486588

NonOverlappingTemplate 990/1000 0.731886

NonOverlappingTemplate 990/1000 0.067300

NonOverlappingTemplate 992/1000 0.915317

NonOverlappingTemplate 991/1000 0.463512

NonOverlappingTemplate 992/1000 0.837781

NonOverlappingTemplate 989/1000 0.220159

NonOverlappingTemplate 991/1000 0.424453

NonOverlappingTemplate 990/1000 0.591409

NonOverlappingTemplate 987/1000 0.111389

NonOverlappingTemplate 981/1000 0.203351

NonOverlappingTemplate 994/1000 0.272977

NonOverlappingTemplate 985/1000 0.301194

NonOverlappingTemplate 990/1000 0.777265

NonOverlappingTemplate 989/1000 0.446556

NonOverlappingTemplate 986/1000 0.786830

NonOverlappingTemplate 990/1000 0.345650

NonOverlappingTemplate 984/1000 0.928857

NonOverlappingTemplate 990/1000 0.622546

NonOverlappingTemplate 991/1000 0.632955

NonOverlappingTemplate 995/1000 0.110083

NonOverlappingTemplate 993/1000 0.459717

NonOverlappingTemplate 991/1000 0.889118

NonOverlappingTemplate 990/1000 0.016717
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NonOverlappingTemplate 988/1000 0.190654

NonOverlappingTemplate 987/1000 0.126658

NonOverlappingTemplate 982/1000 0.328297

NonOverlappingTemplate 986/1000 0.411840

NonOverlappingTemplate 989/1000 0.680755

NonOverlappingTemplate 989/1000 0.678686

NonOverlappingTemplate 990/1000 0.605916

NonOverlappingTemplate 989/1000 0.213309

NonOverlappingTemplate 991/1000 0.344048

NonOverlappingTemplate 993/1000 0.864494

NonOverlappingTemplate 986/1000 0.614226

NonOverlappingTemplate 991/1000 0.248014

NonOverlappingTemplate 988/1000 0.115387

NonOverlappingTemplate 988/1000 0.896345

NonOverlappingTemplate 994/1000 0.439122

NonOverlappingTemplate 992/1000 0.751866

NonOverlappingTemplate 984/1000 0.459717

NonOverlappingTemplate 993/1000 0.526105

NonOverlappingTemplate 987/1000 0.43359

NonOverlappingTemplate 992/1000 0.13264

OverlappingTemplate 987/1000 0.154629

Universal 987/1000 0.676615

ApproximateEntropy 992/1000 0.61007

RandomExcursions 601/605 0.008316

RandomExcursions 596/605 0.71126

RandomExcursions 597/605 0.673507

RandomExcursions 600/605 0.373906

RandomExcursions 600/605 0.39101

RandomExcursions 598/605 0.104062

RandomExcursions 599/605 0.993624

RandomExcursions 595/605 0.006702

RandomExcursionsVariant 601/605 0.235792

RandomExcursionsVariant 600/605 0.489508

RandomExcursionsVariant 600/605 0.847183

RandomExcursionsVariant 601/605 0.139257

RandomExcursionsVariant 601/605 0.043982

RandomExcursionsVariant 600/605 0.607646

RandomExcursionsVariant 602/605 0.649265

RandomExcursionsVariant 602/605 0.417519
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RandomExcursionsVariant 600/605 0.330628

RandomExcursionsVariant 598/605 0.231756

RandomExcursionsVariant 598/605 0.002775

RandomExcursionsVariant 604/605 0.052219

RandomExcursionsVariant 604/605 0.396813

RandomExcursionsVariant 603/605 0.171079

RandomExcursionsVariant 605/605 0.476590

RandomExcursionsVariant 605/605 0.399734

RandomExcursionsVariant 605/605 0.248226

RandomExcursionsVariant 603/605 0.001462

Serial 996/1000 0.807412

Serial 994/1000 0.262249

LinearComplexity 989/1000 0.162606

Table B.1: Detailed test results of the NIST test suite.

Test ntup tsamples psamples p-value Assessment

diehard birthdays 0 100 100 0.3884704 PASSED

diehard operm5 0 1000000 100 0.55251594 PASSED

diehard rank 32x32 0 40000 100 0.99410513 PASSED

diehard rank 6x8 0 100000 100 0.97719572 PASSED

diehard bitstream 0 2097152 100 0.60253587 PASSED

diehard opso 0 2097152 100 0.07574160 PASSED

diehard oqso 0 2097152 100 0.68587200 PASSED

diehard dna 0 2097152 100 0.18255631 PASSED

diehard count 1s str 0 256000 100 0.95503950 PASSED

diehard count 1s byt 0 256000 100 0.84876632 PASSED

diehard parking lot 0 12000 100 0.76062712 PASSED

diehard 2dsphere 2 8000 100 0.70029124 PASSED

diehard 3dsphere 3 4000 100 0.90753640 PASSED

diehard squeeze 0 100000 100 0.36167153 PASSED

diehard sums 0 100 100 0.27127137 PASSED

diehard runs 0 100000 100 0.95206939 PASSED

diehard runs 0 100000 100 0.63807658 PASSED

diehard craps 0 200000 100 0.72016648 PASSED

diehard craps 0 200000 100 0.69167638 PASSED

marsaglia tsang gcd 0 10000000 100 0.42416794 PASSED

marsaglia tsang gcd 0 10000000 100 0.66397295 PASSED
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sts monobit 1 100000 100 0.21857258 PASSED

sts runs 2 100000 100 0.92528417 PASSED

sts serial 1 100000 100 0.79439247 PASSED

sts serial 2 100000 100 0.95162417 PASSED

sts serial 3 100000 100 0.67673321 PASSED

sts serial 3 100000 100 0.44488057 PASSED

sts serial 4 100000 100 0.97921100 PASSED

sts serial 4 100000 100 0.61503056 PASSED

sts serial 5 100000 100 0.96431388 PASSED

sts serial 5 100000 100 0.81003836 PASSED

sts serial 6 100000 100 0.45914896 PASSED

sts serial 6 100000 100 0.83284907 PASSED

sts serial 7 100000 100 0.21432008 PASSED

sts serial 7 100000 100 0.70647400 PASSED

sts serial 8 100000 100 0.44655300 PASSED

sts serial 8 100000 100 0.95247071 PASSED

sts serial 9 100000 100 0.35387383 PASSED

sts serial 9 100000 100 0.59526540 PASSED

sts serial 10 100000 100 0.75611550 PASSED

sts serial 10 100000 100 0.90583829 PASSED

sts serial 11 100000 100 0.90925764 PASSED

sts serial 11 100000 100 0.79254373 PASSED

sts serial 12 100000 100 0.21588964 PASSED

sts serial 12 100000 100 0.23330235 PASSED

sts serial 13 100000 100 0.08820465 PASSED

sts serial 13 100000 100 0.18195414 PASSED

sts serial 14 100000 100 0.04856379 PASSED

sts serial 14 100000 100 0.91273832 PASSED

sts serial 15 100000 100 0.64666580 PASSED

sts serial 15 100000 100 0.12294428 PASSED

sts serial 16 100000 100 0.69688422 PASSED

sts serial 16 100000 100 0.86885641 PASSED

rgb bitdist 1 100000 100 0.04644339 PASSED

rgb bitdist 2 100000 100 0.13024664 PASSED

rgb bitdist 3 100000 100 0.27828879 PASSED

rgb bitdist 4 100000 100 0.52826795 PASSED

rgb bitdist 5 100000 100 0.20056436 PASSED

rgb bitdist 6 100000 100 0.40752888 PASSED

rgb bitdist 7 100000 100 0.80573943 PASSED
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rgb bitdist 8 100000 100 0.67450283 PASSED

rgb bitdist 9 100000 100 0.79206671 PASSED

rgb bitdist 10 100000 100 0.92872550 PASSED

rgb bitdist 11 100000 100 0.05891923 PASSED

rgb bitdist 12 100000 100 0.81773369 PASSED

rgb minimum distance 2 10000 1000 0.26792489 PASSED

rgb minimum distance 3 10000 1000 0.92847498 PASSED

rgb minimum distance 4 10000 1000 0.69985331 PASSED

rgb minimum distance 5 10000 1000 0.33412276 PASSED

rgb permutations 2 100000 100 0.19821866 PASSED

rgb permutations 3 100000 100 0.72714891 PASSED

rgb permutations 4 100000 100 0.80520528 PASSED

rgb permutations 5 100000 100 0.15495129 PASSED

rgb lagged sum 0 1000000 100 0.13625584 PASSED

rgb lagged sum 1 1000000 100 0.57627143 PASSED

rgb lagged sum 2 1000000 100 0.92628115 PASSED

rgb lagged sum 3 1000000 100 0.61029073 PASSED

rgb lagged sum 4 1000000 100 0.11121035 PASSED

rgb lagged sum 5 1000000 100 0.80844367 PASSED

rgb lagged sum 6 1000000 100 0.51696720 PASSED

rgb lagged sum 7 1000000 100 0.40013489 PASSED

rgb lagged sum 8 1000000 100 0.92473452 PASSED

rgb lagged sum 9 1000000 100 0.92921267 PASSED

rgb lagged sum 10 1000000 100 0.52457511 PASSED

rgb lagged sum 11 1000000 100 0.89559666 PASSED

rgb lagged sum 12 1000000 100 0.62524584 PASSED

rgb lagged sum 13 1000000 100 0.96003619 PASSED

rgb lagged sum 14 1000000 100 0.45500972 PASSED

rgb lagged sum 15 1000000 100 0.71193312 PASSED

rgb lagged sum 16 1000000 100 0.45610632 PASSED

rgb lagged sum 17 1000000 100 0.05903645 PASSED

rgb lagged sum 18 1000000 100 0.43360572 PASSED

rgb lagged sum 19 1000000 100 0.03581270 PASSED

rgb lagged sum 20 1000000 100 0.08951826 PASSED

rgb lagged sum 21 1000000 100 0.84439253 PASSED

rgb lagged sum 22 1000000 100 0.59972137 PASSED

rgb lagged sum 23 1000000 100 0.57228060 PASSED

rgb lagged sum 24 1000000 100 0.08421815 PASSED

rgb lagged sum 25 1000000 100 0.58546967 PASSED
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rgb lagged sum 26 1000000 100 0.22839848 PASSED

rgb lagged sum 27 1000000 100 0.07446733 PASSED

rgb lagged sum 28 1000000 100 0.99397643 PASSED

rgb lagged sum 29 1000000 100 0.98871515 PASSED

rgb lagged sum 30 1000000 100 0.82128134 PASSED

rgb lagged sum 31 1000000 100 0.31772728 PASSED

rgb kstest test 0 10000 1000 0.37105156 PASSED

dab bytedistrib 0 51200000 1 0.75754608 PASSED

dab dct 256 50000 1 0.47880465 PASSED

dab filltree 32 15000000 1 0.28587930 PASSED

dab filltree 32 15000000 1 0.17581146 PASSED

dab filltree2 0 5000000 1 0.31178897 PASSED

dab filltree2 1 5000000 1 0.29090704 PASSED

dab monobit2 12 65000000 1 0.03318549 PASSED

Table B.2: Detailed test results of the Dieharder test suite.

139





CHAPTERC
Modified Gray Code

The modification of the 6 bit Gray code [Gra53] was developed in collaboration with

Jörg Duhme.

000001

000011

100011

110011

110001

010001

011001

011101

011111

011110

011010

010010

000010

001010

001000

101000

111000

011000

010000

000000

000100

010100

010101

000101

001101

001111

001011

001001

011011

101001

010011

111001

101100

000110

100100

010110

110100

110110

110000

110010

111010

101010

101011

111011

111111

101111

100111

000111

010111

110111

110101

111101

101101

100101

100001

100000

100010

100110

101110

001110

001100

011100

111100

111110
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CHAPTERD
Generated Key

These are the first 7645 bits of the key that was generated in Chapter 6.5.

1000101111010111110111100010100100010011110111100110001001101101000011000

111101110011111100010011111001010111010110110100101010001100111000100011101

000011010001010100111001110011111011101101000011100001101000101000000010010

100100010001000110001011001011111111000111010010110000001010000111111101101

111001100000111110111010000110010100101101010111001101010101011110010101101

001010010101011100101110000001110101111111101101111010010011011101010110001

000111100001100011100000111101000000110010111100000110100111110001101001111

111010100101000110110111000000011000000001101111000010101101001111101111001

000100110111110010111111110101001111011111111110010000000100011011100111011

100111101000100001111100001001111101011101110010010011111010100000100100011

111111001011011111111011010010101000100111001110110100111110000100110010011

010010110100101000110000100100100101110101000001010100100111010000100111011

010100010011111101011000101011011101011000011001100000000100001110010011000

111110011100001010000110100101000101100110001000001111010110011101010010011

001000010110001011101010010110001111000110100000101000010110111010110010010

111101010110111100001010111101000101000010110001100001001010000101110100010

101100101101110000110010100011101100011111000100011110011111101111010001001

001000000111011010000010010011000100011110111010111000011010111100110101001

001010100101101001010010010011111001001110111010111000100111110100001110100

010100101001010010011111010110010100100101000101001111110101000001001010111

100011001010011111001001011000011110010111110011000101111100101000110001101

110101101111010110100000110100010110010110110111010110100110110100010101100

110010010101100001010101111110110001110110001101111111011100011001100101101

011101100111101000100100100101011110010101111100010011000011101110010100000
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110100100011101010001110111010011011100110111111100000000011100100100011000

111000010010011101100000111111011001001111111110001111010000110000010111011

100000010101010111101011101100001001110010001000110111101001001001110100110

111111111001011101001101001100001011101100100011010101101011001111011011101

000011011111010100100011010010010011000011101110011101000011110101100001000

010000000011101101111011010011100110110001101100001001100001011010111101011

111001011111110110110101101010110000011011110010011101000010110111000100101

011111000111100111001011100010111010111110111110110010100000100100001101101

001000011101111010000111100010010010111101111011111101111001110100010011101

011011110101000000010111011100000001111011010110011110100111101000000100001

011100010001100111110001101110101101011110100011100111100101111011001110100

001001110000100011101101111001110101010100100101111111100010000100101011101

111101001100100100100001111001110001011110010100001001101101100111110000100

110100111101011011110100000101000000100011000000111001001000010010011000111

001001101001001000100111010101100011010010100110101101010100111000010100001

101010110001110010111111010101110100011010111000100001100101100001100111110

001000111011010011010011101100010001010101010111010100111111100011111000100

101111110110011111100110111010110011101011101110111001101001110000100101000

101000100001000011100001010111010011111100001000110011000010010000010011110

111001000101111111101110101011100110011100101000110110001001001111011110100

100110101111111111010100100000010111011010101001000000111101010110100000100

001001111000101110111000001011000000110000011001110101011100110000000101011

111001101010001011100100010001000011011100001101100000001111100111101110010

011011000000100111100010011100011010011111000100110111001110010110001110111

010100010101001110100100110001111001000010110000100011000110001111011011010

000111100111111110000001101111011111111011100001001111000010101011100111001

010111111011011001001000101101101000001100000110100001101110010011110101101

000110110010111110000010100001100110111110010011001010100111001100000010110

001000010100100001110001000110000100010100010010011011100011001000100111110

101010100011110101011000010111101110010001100011101111110010100000010000011

111110001100111101000100001101011100000101100010101110101101001111000000011

100111110000011000000010111110000110010010110110101001110011101010101001010

000011000100010110101001111101010100111101111101000110001101110011110101111

000100011001111010010111101010010001010010100111010010010010011100001000100

000010001100101111101011001110000011111001001101101000010000001100110001100

000100111111010110001100110110000110001011110101000110101001010011001000000

101101010111111111100100101010010001000011111101001110111100101000000100000

111010111001011000001011010101101001001111000100101011100101000111011010101

000111101001101100100010111011100111111010100110010110110010101100000101100
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000110110100101110110000011111001011100000100111101101111001111100011000010

111101000011100001010111011110000011011011011000101100010101000110100111100

010010010011111110111001101011101011110101110110111101110000000100111010011

101001111100001100001101100101011110110000111000111011000000011011101110011

000001000010100000001110010111010110101110001101011110100100001010001110110

111101010100000010110100101000110100001010101010100101010001111010001110101

000101001101100100101101101001101101101111001000101011010100101010101101110

010010111011011001001111000010001011100001110101000101111000010111011101111

100010111001011001101011101101101010111100100001000101001110101101011010101

100100100010110111111101101110010011010111110001100011110011111011111000110

110011011111000001111011110011100001100011011101111001101010100111010011100

111111000000011011000001010110100010010101111011000001011010011000101011011

010110000001110010011010101010000101001011000000110100100000011000100001110

001000111000100000110100101010010000010011011011111100011110000110011101111

100101010000010001001100100010010110011101110111101011001100100111111100111

111001000101111111101110000001010010000100100100101110111010010010111101111

100101101000001110111110000010110010011110110001100100101000000010001101101

111010110001000000000001010000010100110000110110111101100000101111101010001

010110110111100110011111000011001000001000011001100111000010101111011101000

001010100010001010010010000111111000000111010000100010111110111011100001011

001011111101001011110011000100111000110011110011001001011111010000011000001

000011101110010111011010001101010010010010110011000101001100001001000001101

001010110011111100111100011010011001010100101111101111011110111010111001100

110010011100110100111000011101101000101111100100111011101001110111001110110

111010100111101110001110101011010110001111110010100010111011011011011111101

111001000111110010110000111100100111000011000100001010101011110100110100111

101111101011100011111101001110110010110001010101110011101011011011100001001

001011110111010110011110110011110010100001000110000000111000000000100101100

011010101101010110010011001111011010111100101010001000000100010101101011101

111000000001000110010111011101001111110000100110001111010111010101101011111

110010011011010001101111100010100111100000110111100111100001000101011110101

110011100000000111110000100010011010000011111111100101110110101110010011001

110100010000000000101111100001000111011110010000000011100101111011110111101

001111000101000110111011011011010011111001001000101100101110111111110110111

100111010111011010010000000001100100000101010110100011001000101101011101110

011000110110000101011001110010100000111110010101111000101100101001011101001

100011011011111100110010010110100101101110011000010100101110101001100111001

010001111111000111001000111011110000001011101000111010110101001001110100101

011100000001011000010010111101100000111101111010000001101010011001011110 . . .
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