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Abstra
tThis work is 
on
erned with the numeri
al examination of a
ousti
ally driven �ows withinthe inner ear on the basis of a 
omputational model. For this purpose, a 
omprehensivesystem of di�erential equations and boundary 
onditions is dedu
ed, whi
h takes, to asatisfa
tory extent, the 
omplexity of the main biophysi
al me
hanisms of the 
o
hlea intoa

ount.Beside an appropriate representation of the �uid dynami
s, also the biome
hani
alproperties of the basilar membrane as well as the internal ampli�
ation me
hanism 
ausedby the outer hair 
ell motility are 
onsidered in order to get realisti
 estimates of thestru
ture and magnitude of the mean �ow �eld. In the present work, the interior �uidsare modeled on the basis of a two-dimensional simpli�ed domain by using 
on
epts fromthe �eld of 
ontinuum me
hani
s. A

ording to an approa
h from Mammano and Nobili[28℄, the me
hani
al rea
tion of the 
o
hlear partition and also the outer hair 
ell motilityare represented as one-dimensional os
illatory systems. With the aid of the perturbationtheory, two linear subproblems are extra
ted that 
an be used for a separate determinationof the a
ousti
 and the a
ousti
 streaming �eld.The present work introdu
es a two-stage approa
h for the numeri
al evaluation ofthe solutions on the basis of the �nite element method. The �rst step deals with thetime-dependent a
ousti
 subproblem. Due to the strong 
oupling between the di�erent
omponents a monolithi
 approa
h is 
onsidered that simultaneously 
al
ulates the inter-a
ting pro
esses. The se
ond step is asso
iated with the stationary a
ousti
 streamingsubproblem that provides a �rst order approximation of the a
ousti
 streaming �eld.Finally, the numeri
al solutions of the 
omputational model are presented. It is shownthat the results are essentially 
onsistent with measurements as well as analyti
al andexperimental 
onsiderations.Keywords: a
ousti
 streaming; 
o
hlea; �uid-stru
ture-intera
tion.
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ZusammenfassungDie vorliegende Arbeit bes
häftigt si
h mit der numeris
hen Untersu
hung von akustis
h in-duzierten Strömungen innerhalb des Innenohres auf Grundlage eines Bere
hnungsmodells.Zu diesem Zwe
k wird ein umfassendes System aus Di�erentialglei
hungen und Rand-bedingungen abgeleitet, das der Komplexität der biophysikalis
hen 
o
hlearen Vorgängegere
ht wird.Um mögli
hst realistis
he Ergebnisse in Bezug auf die Struktur und Gröÿenordnung derakustis
h induzierten Strömungen zu erhalten, werden neben einer angemessenen Darstel-lung der Fluiddynamik zudem au
h die biome
hanis
hen Eigens
haften der Basilar Mem-bran sowie der interne Verstärkungsme
hanismus - der dur
h die Bewegungen der äuÿerenHaarzellen hervorgerufen wird - berü
ksi
htigt. Die inneren Flüssigkeiten werden in dieserArbeit mithilfe von Konzepten der Kontinuumsme
hanik auf einem simpli�zierten zwei-dimensionalen Gebiet modelliert. Die me
hanis
he Rü
kkopplung der Basilar Membranals au
h die Bewegung der äuÿeren Haarzellen werden, entspre
hend eines Ansatzes vonMammano und Nobili [28℄, jeweils dur
h ein eindimensionales s
hwingungsfähiges Systembes
hrieben. Mithilfe der Störungstheorie werden s
hlieÿli
h zwei lineare Teilproblemegewonnen, mit denen jeweils eine separate Bestimmung der akustis
hen S
hwingungenund der akustis
h induzierten Strömung mögli
h wird.Die vorliegende Arbeit stellt ein zweistu�ges Verfahren zur numeris
hen Bestimmungder Lösungen auf Grundlage der Finite-Elemente-Methode vor. Die erste Stufe behan-delt das akustis
he Teilproblem. Aufgrund der starken Kopplung zwis
hen den unter-s
hiedli
hen Komponenten wird ein monolithis
her Ansatz verwendet, der die interagieren-den Prozesse simultan bere
hnet. Die zweite Stufe liefert im Ans
hluss für das zweite Teil-problem eine Näherungslösung erster Ordnung für die akustis
h induzierten Strömungen.Zum Abs
hluss werden die numeris
hen Ergebnisse des Bere
hnungsmodells dargelegt.Darüber hinaus wird gezeigt. dass die Resultate im Wesentli
hen mit Messungen sowieanalytis
hen und experimentellen Untersu
hungen übereinstimmen.S
hlüsselwörter: akustis
h-induzierte Strömungen; Co
hlea; Fluid-Struktur-Interaktion.
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Chapter 1Introdu
tionThe pro
ess of hearing is a quite 
omplex me
hanism whi
h is still not fully understood.The auditory system of humans is 
apable of re
ognizing a
ousti
 signals between 20Hzand 20kHz and a sensitivity range of about 12 orders of magnitude (
f. [38℄). As illustratedin �gure 1.1, the soundwave has to pass initially the outer ear, the external auditory 
analas well as the middle ear (whi
h 
onsists of the tympani
 membrane, the malleus, the in
usand the stapes) before rea
hing the snail-shaped inner ear, whi
h is known as 
o
hlea (
f.�gure 1.2). Within the 
o
hlea the a
ousti
 signal is 
onverted into nerve impulses by anelaborate bio-me
hani
al me
hanism. This me
hanism as well as the triggering pro
ess ofthe nerve impulses are mainly 
aused by the de�e
tion of tiny hair-bundles, the so-
alledstereo
ilia. In the light of this underlying pro
esses, the relevan
e of a
ousti
 streamingand its potential in�uen
e on the bio-me
hani
al me
hanisms are still an open issue.The term a
ousti
 streaming is asso
iated with the mean motions of a �uid or a gasthat are indu
ed by an a
ousti
 �eld. Up to now, a dire
t examination of su
h mean�ows within the 
o
hlea has not yet been possible due to the limited a

essibility and thesmall dimensions of the liquid �lled 
hambers. Furthermore, it 
an be expe
ted that theresultant velo
ities of the a
ousti
 streaming �eld are relatively small in 
omparison to the
hara
teristi
 velo
ities of the sound �eld. This work yields numeri
al estimates of themagnitudes as well as the stru
ture of a
ousti
 streaming within the 
o
hlea on the basisof a simulation pro
ess. The obje
tive of this 
omputational model is the provision of anew instrument for a substantiated dis
ussion on the physiologi
al impa
t of a
ousti
allydriven �ows within the 
o
hlea. In addition, a 
ompletely new approa
h for simulatinga
ousti
 streaming within a �uid-stru
ture 
oupled system like the inner ear is proposedwhi
h might also be used in a wide range of other appli
ations.The physi
al origin of a
ousti
 streaming 
an be found in di�erent dissipation me
h-anisms of a
ousti
 energy. The propagation of sound waves is usually a

ompanied bya mean momentum �ux (better known as Reynolds stress) and a mean mass �ux. Su
ha mean net rate is 
aused when the transport of momentum, or the transport of massrespe
tively, a
ross an unit area is unbalan
ed over one 
y
le (in the 
ase of a pure-tone1
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Figure 1.1: Stru
ture of the human ear. (sour
e Boenninghaus and Lenarz [4℄)stimulation). As a result of the sound wave attenuation it 
an be expe
ted that also themean momentum �ux as well as the mean mass �ux are weakened at regions of a
ousti
energy dissipation. The ex
ess mass that 
an no longer be transported by the sound beammust be released and it appears as if this mass is inje
ted within the �uid. In the sameway, the ex
ess momentum appears as an additional for
e a
ting on the �uid. In prin
iple,these virtual mass sour
es or virtual for
e sour
es are the main 
ause of a
ousti
ally driven�ows. (
f. [26, 9, 6℄)Vis
osity 
an, for example, be identi�ed as one major kind of the dissipation me
ha-nisms. But, vis
ous attenuation of a
ousti
 energy typi
ally be
omes signi�
ant either athigh frequen
ies or next to boundaries due to an enhan
ed fri
tion of adja
ent �uid layers.Sin
e typi
al frequen
ies of the 
o
hlear system are 
omparatively low, only vis
ous atten-uation within the boundary layers 
an be 
onsidered as a 
ause for substantial mean �ows.Even though the dissipation of a
ousti
 energy is restri
ted to su
h a boundary layer, aremarkable mean �ow 
an also o

ur outside of this boundary layer. A fundamental anal-ysis of these boundary driven �ows goes ba
k to Lord Rayleigh [35, �352℄. He 
al
ulatedan e�e
tive slip �ow in order to represent the mean velo
ity of the �uid at the edge ofthe boundary layer relative to the boundary. In this 
ontext, it is interesting to note thatalthough the e�e
tive slip �ow is 
aused by vis
osity, the dimension of this motion does2



Figure 1.2: Stru
ture of the 
o
hlea. (sour
e Boenninghaus and Lenarz [4℄)not depend on an asso
iated vis
osity-
oe�
ient. The reason for this phenomenon lies inthe fa
t that the resistan
e to su
h a mean �ow also depends on the vis
osity itself. (
f.[26, 35℄) Therefore, even if the vis
osity of a �uid is small, the resulting e�e
tive slip �owvelo
ities 
an be
ome substantial.Two very important 
ontributions to the subje
t of a
ousti
 streaming within the innerear, whi
h arise from the 
o
hlear travelling waves, 
ome from Hallauer [20℄ and Lighthill[25℄. Hallauer as well as Lighthill examined the a
ousti
 driven �ows on the basis of the-oreti
al 
onsiderations. Both approa
hes use mathemati
al asymptoti
 and perturbationte
hniques in order to get approximations of the nonlinear �uid motion within the 
o
hlea.While Lighthill fo
usses on the determination of an estimate of the potential velo
itiesof a
ousti
 streaming, Hallauer also 
al
ulates the streamlines of the a
ousti
ally drivenmotions on the basis of his mathemati
al model.In 
ontrast to the theoreti
al 
onsiderations from Hallauer and Lighthill, an experimen-tal examination of a
ousti
 streaming 
an be tra
ed ba
k to Békésy [50℄. In his pioneeringwork he performed inter alia studies on me
hani
al 
o
hlea models. He observed that aboveand below the 
o
hlear partition two eddies arise if the me
hani
al model is stimulated bya sinusoidal ex
itation. It turns out that this eddy-like motion 
an be asso
iated with the3
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Fluid
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First Order
System

Second Order
SystemFigure 1.3: S
hemati
 layout of the 
omputational model used for simulation of a
ousti
ally driven �owswithin the 
o
hlea. On the basis of a perturbation te
hnique, the system is separated into �rst and a se
ondorder system. The �rst order system des
ribes the linear a
ousti
 �eld of the �uid as well as its intera
tionswith the stru
tures, su
h as the oval window, the round window and the basilar membrane. Furthermore,the motility of the outer hair 
ells is taken into a

ount whi
h results in additional for
es a
ting on thebasilar membrane. The �rst order system provides results that 
an be used by the se
ond order system inorder to 
al
ulate an approximation of a
ousti
 streaming.term a
ousti
 streaming. Ea
h eddy is 
hara
terized by an api
al dire
ted mean �ow of the�uid-parti
les that are lo
ated 
lose to the 
o
hlear partition and a basal dire
ted meanmotion at the outer boundaries. The longitudinal position of the eddies depends on thefrequen
y and 
orrelates with the 
hara
teristi
 pla
e. (
f. [50, 48℄) A detailed des
riptionof these eddy-like mean �ows was 
arried out by Tonndorf [48℄.A
ousti
 streaming has already been studied in a lot of numeri
al simulation pro
esses.Di�erent kinds of numeri
al approa
hes for the simulation of a
ousti
 streaming were, forexample, reviewed by Boluriaan and Morris [6℄. But up to now, it has not yet su

eededto establish an adequate method for the numeri
al simulation of a
ousti
 streaming withinbiophysi
al systems like the 
o
hlea. The primary reason for this lies in the fa
t thatthe velo
ity �eld of the �uid is mainly in�uen
ed by the intera
tions with its adja
entstru
tures.In this work a well-proven numeri
al method is adapted that was su

essfully imple-mented by Köster [24℄, who studied the stru
ture of a
ousti
 streaming 
aused by piezo-ele
tri
ally driven mi
ro�uidi
 bio
hips. Köster used a standard perturbation te
hnique inorder to split the nonlinear a
ousti
 streaming problem into two linear subproblems. His
omputational model also in
ludes a more pre
ise treatment of the a
ousti
 radiator, asoriginally suggested by Bradley [9℄.To investigate the in�uen
e of a
ousti
ally driven �ows in the inner ear, an appropriate4




omputational model was developed whi
h has been studied in a simulation pro
ess. In
ontrast to the work from Köster [24℄, this 
omputational model 
onsists not only of a �uid-domain but also of stru
tural 
omponents that have a signi�
ant in�uen
e on the �uid. As
hemati
 layout of the model is shown in �gure 1.3. As one 
an see, the model introdu
edin this thesis 
an also be divided into a �rst order system and a se
ond order system. The�rst order system des
ribes the linear a
ousti
s within the �uid-domain in 
ombinationwith the mutual intera
tions of the 
o
hlear stru
tures, su
h as the basilar membrane, theoval window and the round window. The oval window serves as an a
ousti
 radiator dueto the dire
t 
onta
t with the stapes of the middle ear. The round window is 
overedby a membrane that allows the �uid to move arbitrarily to a 
ertain degree. The basilarmembrane 
an also be brought into motion due to the di�eren
e of the pressure above andbelow the 
o
hlear partition. In turn, su
h a displa
ement of the basilar membrane alsohas an in�uen
e on the velo
ity �eld of its adja
ent �uid. Furthermore, an additional for
eterm that a
ts on the basilar membrane has also to be taken into a

ount for the �rst ordersubproblem in order to represent the motility of the outer hair 
ells. At a se
ond stage thea
ousti
ally driven �ows 
an be determined on the basis of the results of this �rst ordersystem.As illustrated in �gure 1.4, the analysis of a dynami
 system by means of the develop-ment and appli
ation of an appropriate simulation model 
onsists of di�erent steps. Firstof all, the main purpose and the prin
ipal targets of the model should be 
learly spe
i�edby a problem formulation. In this work, the following statement serves as su
h a guidelinethat summarizes the preliminary 
onsiderations and remarks:The model is intended to verify, whether a signi�
ant mean �ow o

urs.The simulation pro
ess should estimate the order of magnitude of these meanmotions as well as its stru
ture.On the basis of a problem formulation, an abstra
t model is usually designed by makingreasonable simpli�
ations, 
olle
ting spe
i�
 data and establishing evaluable mathemati
alrelations. In this 
ontext, it is important to ensure that the basi
 assumptions and simpli�-
ations at this stage of modeling lead to a valid model with regard to its purpose. The basi
mathemati
al model, used in this work, is presented in 
hapter 2. In this 
ontext, funda-mental aspe
ts with respe
t to the anatomi
al dimensions as well as the ma
ro-me
hani
al
hara
teristi
s of the �uid and the 
o
hlear partition are taken into a

ount. If no analyti-
al solutions of the abstra
t mathemati
al model are found, the model 
an be transformedinto a 
omputer-re
ognizable form (also referred to as 
omputational model) in order toobtain numeri
al approximations. The 
onversion of the abstra
t 
o
hlea model into a
omputational model is des
ribed in 
hapter 3. The implementation is realized by theuse of the �nite element method that mainly 
omprises the establishment of a so-
alledvariational formulation, the 
onsideration of the solution spa
es, a spatial and temporaldis
retization and the assemblage of the resultant dis
retized systems of equations that 
anbe solved numeri
ally. In order to verify that the model a

urately represents the essentialfeatures of the real system, the model has to undergo some prede�ned experiments forthe purpose of validation. If the results of these validation-experiments are not satisfying,5
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Problem Formulation
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Project Planning
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Choice of Numerical Methods

Discretization
Implementation

Model Execution

Output Analysis
Verification
Validation

Visualization
InterpretationFigure 1.4: This �gure illustrates the prin
ipal and underlying pro
ess of the development of the 
o
hleamodel presented in this work. As it 
an be seen, the modeling pro
ess is 
hara
terized by an iterative pro
essinvolving the model design, the model translation, the model exe
ution and the output analysis.either the basi
 mathemati
al model or the implementation should be adapted. Therefore,the development and appli
ation of a simulation model is an iterative pro
ess involving thebasi
 modeling, the implementation, the exe
ution and the validation. Chapter 4 des
ribesand analyzes di�erent experiments whi
h were performed to validate the 
orre
t fun
tion-ality of the 
omputational model. In this 
ontext, the 
o
hlear model was 
ompared withthe mammalian 
o
hlea, me
hani
al 
o
hlear models and theoreti
al 
onsiderations. The�nal results 
on
erning a
ousti
 streaming 
an also be found in this 
hapter.This thesis is based on an arti
le that is submitted for publi
ation in an up
oming issueof the Journal of Computational A
ousti
s. In 
ontrast to this arti
le, the present workis supplemented by a lot of additional ba
kground informations 
on
erning the modeling-,implementation- and validation-pro
ess.
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Chapter 2ModelingMost people asso
iate the word "model" with a physi
al, often smaller and simpli�ed 
loneof an original obje
t whi
h 
an be studied for example in wind tunnels or swimming pools.These types of models are known as i
oni
 models. But in general, a model is a representa-tion of an obje
t or a system. Therefore, also illustrations, fun
tional diagrams, se
tionalviews, mathemati
al relationships, or ele
troni
 
ir
uits 
an be regarded as models.Espe
ially in the last few de
ades the importan
e of 
omputational models has in-
reased with the possibility of the exe
ution of 
omputationally intensive 
al
ulations by
omputers. Computational models are based on evaluable mathemati
al relations that 
annormally not be solved analyti
ally. In su
h a 
ase, it is ne
essary to determine the solutionby the use of numeri
al methods. In 
ontrast to other kinds of models, they are easy tomanipulate and the in�uen
e of parameters 
an be simple examined. But the determina-tion of the mathemati
al relations and physi
al laws as well as the numeri
al realizationrequires a lot of system knowledge, expertise and experien
e.In general, models 
an be 
hara
terized by di�erent (
ontrary) properties (
f. e.g. [8℄).The most important aspe
ts are given by the following items:
• explanatory ↔ des
riptive: An explanatory model tries to emulate the internalmode of a
tion of the system. A des
riptive model by 
ontrast tries to imitatethe behavior of the system without the knowledge of the internal mode of a
tion.A

ording to a bla
k box, the imitation is only based on the observation of the system.
• stati
 ↔ dynami
: Dynami
 models take time-dependent pro
esses of the systeminto a

ount, whereas a stati
 model is 
hara
terized by its time-invarian
e.
• system parameter ↔ parameter-adaption: If the internal (physi
al) quantitiesand dimensions of a system are known or 
an be measured, they 
an be dire
tlyused as 
hara
teristi
 model parameters. Otherwise, if some quantities 
annot bedetermined, the unknown parameters might be adjusted by an iterative pro
ess aslong as the behavior of the model does not 
orrespond to the behavior of the system.7
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• deterministi
 ↔ sto
hasti
: In sto
hasti
 models, the in�uen
e of probabilisti
and random e�e
ts are taken into a

ount. Otherwise, a model will be 
alled de-terministi
 if the behavior of the model is 
learly predetermined by the externalin�uen
es.
• time-
ontinuous ↔ time-dis
rete: The state of time-dis
rete models is only de-�ned at separated points in time. In 
ontrast, the state variables of a time-
ontinuousmodel 
an be determined at any time within a spe
i�ed period of time.
• 
ontinuous spa
e ↔ dis
rete spa
e: Similar to the time-dependent properties"dis
rete" and "
ontinuous", a 
orresponding distin
tion 
an be drawn with respe
tto spatial state variables. If a model 
onsist only of individual values that are spatiallyseparated or independent of the lo
ation, the model will be referred to as dis
rete.If the state of a model is given at any point within a spe
i�
 area, the model is
ontinuous over spa
e.The model introdu
ed in this 
hapter 
onstitutes a deterministi
, spa
e-
ontinuous andtime-
ontinuous model. But the model is not 
learly 
lassi�able with respe
t to the otherattributes. For example, the �rst-order-subproblem of the model is an highly dynami
 sys-tem, whereas the se
ond-order subproblem des
ribes only the stationary (time-invariant)�ow of a
ousti
 streaming in steady state. Furthermore it 
an be noted that, althoughthe model is mainly 
onstru
ted by the use of explanatory 
omponents, some aspe
ts aremodeled des
riptively for reasons of simpli
ity. With respe
t to the model-parameters itshould be mentioned that not all quantities are 
learly prede�ned by dire
t measurementsor physi
al estimates. In 
onsideration of their physi
al limits, these parameters musttherefore be spe
i�ed in the 
ourse of the modeling-pro
ess.Sin
e a model normally represents the original system only in 
ertain aspe
ts, its rangeof validity is limited. Therefore, as already dis
ussed in 
hapter 1, every model is basedon a spe
i�
 purpose for whi
h the model has been developed. Ea
h model should yieldadequate answers with respe
t to questions resulting from its purpose, but the validity ofthe model regarding other questions must be doubted. Often, di�erent questions need tobe treated by di�erent models.Another aspe
t in modeling is the resultant 
omplexity of the model. On the one handa model should be as e�
ient and simple as possible. If a model is designed for universalpurposes, the 
omplexity and usually also the sus
eptibility to errors will in
rease. Onthe other hand the model should re�e
t the 
hara
teristi
 aspe
ts as realisti
 as possible.Therefore it is not easy to de
ide whether 
ertain simpli�
ations are reasonable and whethera 
ertain 
omponent is important or not.This 
hapter deals with the establishment of an abstra
t mathemati
al model whi
hdes
ribes the motions of the �uid as well as its intera
tion with the adja
ent tissues. Thebasi
 simpli�
ations and assumptions made by the modeling pro
ess are outlined in se
tion2.1. The di�erential equations that are used for representing the �uid are established inse
tion 2.2. In this 
ontext, a perturbation te
hnique is introdu
ed by whi
h the �uidi
 sys-tem 
an be separated into an a
ousti
 subproblem and an a
ousti
 streaming subproblem.8



2.1. SIMPLIFYING ASSUMPTIONSThe �rst order system is presented in se
tion 2.3 and des
ribes the linear a
ousti
 rea
tionof the �uid (the a
ousti
 subproblem), the passive me
hani
s of the 
o
hlear partition aswell as the motility of the outer hair 
ells. The a
ousti
ally driven �ows are approximatedby the time-averaged se
ond order system (the a
ousti
 streaming subproblem) whi
h isdedu
ed in se
tion 2.4.2.1 Simplifying AssumptionsIn order to obtain an implementable model of the 
o
hlea some simpli�
ations and as-sumptions are made while maintaining fundamental aspe
ts to get a valid representationfor estimating the o

urren
e and stru
ture of a
ousti
ally driven �ows within the �uid-�lled 
hambers of the inner ear. For reasons of 
lari�
ation, the dire
tion that is asso
iatedwith the spiral axis of the 
oiled 
o
hlea is referred to as longitudinal . The plane perpen-di
ular to the longitudinal axis is referred to as transversal . The dire
tion of the basilarmembrane �bres within this transversal plane is denoted as radial . The term verti
alis asso
iated with the dire
tion that is perpendi
ular to the longitudinal and the radialorientations.Dimension The 
hoi
e of the dimension is a 
ru
ial aspe
t in modeling. For a widerange of appli
ations, a three-dimensional model seems to be the most suitable for repre-senting the reality. In 
ontrast to this, a 
onsiderable e�ort would be required, parti
ularlyregarding the development, implementation and exe
ution of a three-dimensional model.Three-dimensional models of the 
o
hlea were, for instan
e, realized by Givelberg andBunn [17℄ who used the immersed boundary method, as well as by Cheng et al. [11℄ andBöhnke and Arnold [5℄ who performed �nite element simulations. However, the o

urren
eof a
ousti
ally driven �ows 
ould not be investigated by these models, due to simplifyingassumptions made by the modeling pro
ess. The present work ignores the variations par-allel to the radial width of the basilar membrane. Therefore, the numeri
al simulationspresented in this work are based on a two-dimensional model. Nevertheless, for a more de-tailed examination of a
ousti
ally driven �ows, a generalization to three dimensions wouldbe desirable.Geometry Due to the redu
tion of the dimension, the spiral 
oiling of the 
o
hlea 
annot be taken into a

ount. It is assumed that the main 
ause of this snail shell shape of amammalian 
o
hlea lies in a better utilization of the spa
e and a more e�
ient a

essibilityof blood vessels and nerve �bers (
f. [50℄). Re
ently, a strong 
orrelation between the
hange of longitudinal 
urvature and the audible range for di�erent mammalian spe
iessuggest that the spiral 
oiling also has a 
ertain in�uen
e on the low-frequen
y hearinglimit. It is assumed that this e�e
t is indu
ed by a stronger fo
us of a
ousti
 energy atthe outer boundaries, parti
ularly at more api
al sites where the 
urvature is higher (
f.[29℄). Altogether, the spiral 
oiling appears to play only a subordinate role and therefore itseems to be reasonable to negle
t the longitudinal 
urvature in order to analyze a
ousti
ally9
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0 mm 10 mm 20 mm 30 mmFigure 2.1: The two-dimensional shape of the un
oiled human 
o
hlea model. The heights of the s
alavestibuli and s
ala tympani are taken from Wyso
ki [52℄. The s
ala vestibuli and the s
ala tympani 
onstitutethe �uid domain Ω and these 
hambers are bordered by the rigid boundary Γr, the oval window Γow andthe round window Γrw. Both du
ts are separated by the 
o
hlear partition Γbm.driven �ows. As it 
an be seen in �gure 2.1 the 
oiled tube of the 
o
hlea is represented byan elongated �at shape. The height of the s
ala vestibuli and s
ala tympani are adaptedfrom Wyso
ki [52℄, who studied the the dimensions of the 
hambers on the basis of 25human 
adavers.Boundaries The boundary of the 
o
hlea model 
an be divided into the rigid boundary
Γr, the oval window Γow and the round window Γrw (
f. �gure 2.1). The oval window
onsists of the stapes whi
h a
t as an a
ousti
 radiator in order to stimulate the 
o
hlearsystem. The piston-like motions of the stapes 
an be represented by 
orresponding dis-pla
ements of the asso
iated boundary. The round window is 
losed by a �exible membranewhi
h allows the �uid to move within the 
o
hlea to a 
ertain extent. For reasons of sim-pli�
ation, the fun
tionality of the round window membrane is imitated by using a spe
i�
boundary 
ondition as des
ribed in se
tion 2.2.3.Co
hlear Partition To further redu
e the 
omplexity of the model, some anatomi
aldetails of the interior stru
tures are also negle
ted. The Reissner's membrane is a verythin (only two-
ell layer thi
k) partition whi
h separates the s
ala tympani from the s
alamedia. It is assumed that the Reissner's membrane a
ts not as a barrier of a
ousti
stimuli, but rather as a separation between the perilymph and the endolymph in orderto preserve the ele
tri
al potential di�eren
e between both �uids. (
f. [49℄) Therefore,the basilar membrane in 
ombination with the s
ala media and its interior stru
tures (e.g.the te
torial membrane, organ of 
orti, hair 
ells) are represented by the 
ommon one-dimensional domain Γbm. Furthermore, it is assumed that the 
o
hlear partition 
an bemodeled as a 
ontinuum and that it 
an only be de�e
ted in verti
al dire
tion. Althoughthe radial width of the basilar membrane 
annot be taken dire
tly into a

ount by a10
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Figure 2.2: Width of the basilar membrane. The data is taken from Nobili [31℄.two-dimensional representation of the 
o
hlea, it is well a

epted that the width plays animportant role within the me
hani
s of hearing. Therefore, the in�uen
e of this width is
onsidered indire
tly by the system of equations as des
ribed in 
hapter 2.3.2. A

ordingto Nobili [31℄, the width of the basilar membrane is 
hosen as it 
an be seen in �gure 2.2.Fluid The s
ala vestibuli as well as the s
ala tympani are �lled with a watery �uid(perilymph). Both 
hambers are 
onne
ted by the heli
otrema at the apex and 
onstitutethe �uid domain Ω. In the 
ourse of the numeri
al simulation of the �uid, it is assumedthat the 
ontinuum hypotheses 
an be applied. Sin
e the exa
t spe
i�
ations of this �uidare not known, the perilymph is, similar to the properties of water, assumed to be a slightly
ompressible, linearly bulk- and shear-vis
ous �uid.2.2 The Fluid Dynami
sFluid dynami
s is a dis
ipline of natural s
ien
es and a bran
h of 
ontinuum me
hani
s.It deals on the one hand with the motions of a �uid in spa
e and time and on the otherhand with the various and mutual for
es within the �uid 
ausing the motions.Due to the mole
ular stru
ture, a �uid is neither fully homogeneous nor isotropi
. Foran exa
t spe
i�
ation of the dynami
s of a �uid, it would be ne
essary to 
onsider themutual intera
tions of individual mole
ules and atoms. In prin
iple, it is quite possible(and sometimes it is also ne
essary) to model the �uid dynami
s on an atomi
 level tounderstand and simulate a variety of phenomena. But often, the exa
t physi
al behaviourof individual parti
les is not relevant and the s
ale of a typi
al length in the system islarge 
ompared to the length s
ales of mole
ular stru
tures. In this 
ase one 
an takeadvantage of the large number of parti
les within a �uid. By averaging physi
al quantities11
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e and time in an appropriate way, an hypotheti
al model 
an be 
onstru
ted. Insu
h a model all kinemati
 and kineti
 quantities 
an be spe
i�ed at in�nitesimally smallpoints. Furthermore, it is assumed that all these quantities vary 
ontinuously so that theirspatial derivatives are also 
ontinuous. If a model des
ribes a physi
al matter as su
h a
ontinuous matter the model will be termed as 
ontinuum. For a wide range of appli
ationsa representation of a matter as a 
ontinuum is well suited.For the mathemati
al formulation of the dynami
s of a 
ontinuum, two di�erent kinds ofdes
riptions have been established. In the Lagrangian spe
i�
ation physi
al properties arede�ned as a fun
tion of individual material points and a time parameter. The Lagrangianspe
i�
ation is usually used for the des
ription of solids, sin
e the primary interest is theevolution of its 
urrent 
on�guration and the analysis of physi
al quantities at spe
i�
lo
ations of the material. In 
ontrast to the Lagrangian spe
i�
ation, the idea of theEulerian spe
i�
ation is to des
ribe physi
al quantities at spe
i�
 lo
ations x in spa
e,regardless of the material parti
les at these pla
es. This kind of des
ription is normallypreferred in the 
ontext of the analysis of �uid �ows due to potentially large 
hanges ofthe material 
on�guration.2.2.1 Conservation EquationsIn 
ontinuum me
hani
s the balan
e equations are the basis for the des
ription of an arbi-trary material, no matter whether it is a solid, a liquid or a 
ompletely di�erent material.The 
onservation of mass equation (whi
h is also referred to as 
ontinuity equation) 
anbe written as
∂ρ

∂t
= − div(ρv) (2.1)where ρ(x, t) denotes the s
alar density �eld, v(x, t) the ve
torial �eld of the velo
ity and

t the time-parameter. In prin
iple, the 
ontinuity equation states that the time rate of
hange of the total mass within an arbitrarily 
hosen spatial volume must be equal tothe in�ow of mass through the borders of the volume. In a similar way, the balan
e oflinear momentum 
an be expressed in terms of the stress tensor σ by whi
h the for
e thata
ts on the surfa
e of a spatial region 
an be determined. If external volume for
es (e.g.gravitation) are negle
ted, the for
es a
ting through the volume surfa
e must be identi
alto the time rate of 
hange of the total linear momentum within the volume. Therefore,the 
onservation law of linear momentum 
an be written as
ρ

(∂v

∂t
+ (grad v) · v

)

= divσ. (2.2)Both 
onservation equations are formulated on the basis of the Eulerian spe
i�
ation. Fur-thermore, it was shown (e.g. [36℄) that the prin
iple of the balan
e of angular momentumresults in the relation
σij = σji. (2.3)12



2.2. THE FLUID DYNAMICSSymbol Value Name Unit
ρ(0) 998.0 ambient density kg/m3

c0 1484.0 small signal sound speed m/s
ζ 3.0× 10−3 bulk vis
osity N s/m2

η 1.0× 10−3 shear vis
osity N s/m2Table 2.1: Constants that are needed for the simulation of the �uid dynami
s.This means that the stress tensor must be symmetri
.A 
ontinuum-me
hani
al system will usually in
lude an additional 
onservation equa-tion that also takes thermodynami
al e�e
ts into a

ount. In this 
ontext, either theinternal energy or the entropy of the 
ontinuum has to be 
onsidered as an additionalunknown fun
tion. In this work it is assumed that these thermodynami
al e�e
ts haveno signi�
ant in�uen
e whi
h means that potential energy �u
tuations do not 
hange thevelo
ity-, density- or pressure �eld 
onsiderably. Therefore, the me
hani
al system 
an bede
oupled from the balan
e law of energy or entropy and its asso
iated �elds do not haveto be expli
itly taken into a

ount by the simulation pro
ess. (
f. [47℄)2.2.2 Constitutive RelationsThe 
onservation laws of mass, linear momentum and angular momentum 
onstitute asystem of 7 equations that 
ontains 13 unknown fun
tions (vi, ρ, σij). In order to iden-tify a unique solution of these di�erent �eld fun
tions the system of equations must besupplemented by further relations that are usually referred to as 
onstitutive relations. In
ontrast to the 
onservation equations, whi
h are fundamental prin
iples of physi
s andwhi
h are appli
able for all kinds of materials, the 
onstitutive relations are normally de-du
ed from experimental observations and may di�er from material to material. Normally,the development of su
h 
onstitutive relations is a

ompanied with an idealization of thereality.In 
ontrast to solids, �uids are normally 
hara
terized by the relative motility of itsmole
ules. Or more pre
isely, a �uid at rest 
annot preserve shear stresses (
f. [19℄).Therefore, it has been proven useful to split the stress tensor into an hydrostati
 stresstensor and a stress deviator tensor with zero tra
e. In doing this, the stress tensor 
an bewritten as
σ =

1

3
trσI + s = −pI + s. (2.4)The s
alar fun
tion p(x, t) denotes the pressure �eld. It turned out that the dynami
s ofa variety of di�erent �uids and gases for a wide range of appli
ations 
an be modeled verywell if a linear relationship between the deviatori
 stress and the strain rate is assumed.In this 
ontext, the lo
al strain rate of a material 
an be des
ribed in terms of the velo
ityby the tensor (
f. e.g. [19℄)

D :=
1

2

(

grad v + (grad v)T
). (2.5)13



CHAPTER 2. MODELINGFor the spe
i�
ation of the 
onstitutive relationship, the linear relationship should be in
onformity with some basi
 assumptions of material theory. A

ording to [47℄ and [19℄,the following items should, inter alia, be taken into a

ount:
• Although �uids are in prin
iple not isometri
 at the atomi
 level, an identi
al behaviorof the hydrodynami
 properties with respe
t to all dire
tions 
an be usually observedat the ma
ro-me
hani
al level.
• A physi
al quantity at a spe
i�
 lo
ation is assumed to depend only on the physi
alproperties of its lo
al neighborhood.
• The dynami
s of the �uid are only a�e
ted by its 
urrent and pre
eding 
on�gura-tions. This means that the system is deterministi
. In most 
ases, it is su�
ient tolimit this kind of "memory" by taking only the 
urrent rate of 
hange into a

ount.
• The prin
iple of material frame indi�eren
e states that the 
hoi
e of the referen
eframe for des
ribing the 
onstitutive relations should have no in�uen
e on �uid dy-nami
s.As a 
onsequen
e of these basi
 assumptions, it was shown (
f. [36℄) that the linearrelationship between the deviatori
 stress tensor and the strain rate tensor 
an be written- in its most general form - as

s = λ tr(D)I + 2ηD (2.6)where λ and η 
onstitutes appropriate 
onstants of proportionality. The 
onstant λ isusually repla
ed by the expression ζ − 2
3η in order to establish material 
oe�
ients thatare asso
iated with either the isotropi
 variation or the deviatori
 variation. Due to theirphysi
al interpretation, the 
oe�
ients η and ζ are then referred to as shear vis
osity andbulk vis
osity . Using 2.4 and 2.6, the stress tensor 
an be evaluated to

σ = −pI + (ζ − 2

3
η) tr(D)I + 2ηD. (2.7)Now, the number of unknown fun
tions 
an be redu
ed by inserting this expli
it de�nitionof the stress tensor into the balan
e of momentum equation 2.2. In doing so, the divergen
eof the stress tensor 
an be determined a

ording to the spe
i�
ation of the strain rate tensor2.5 to

divσ = − grad p+ (ζ +
η

3
) grad div v + η∆v. (2.8)Due to the usage of the pressure �eld as an additional unknown s
alar fun
tion, another
onstitutive relation is needed. Sin
e no thermal e�e
ts are 
onsidered by the modelingpro
ess, it is assumed that the pressure depends solely on the density and is given by athermal equation of state p = p(ρ). In a
ousti
s, the deviations of the pressure and thedensity from its respe
tive ambient values 
an be approximated by the linear relationship

p− p(0) =
∂p

∂ρ

∣
∣
∣
∣
ρ(0)

(ρ− ρ(0)) = c0
2(ρ− ρ(0)) (2.9)14



2.2. THE FLUID DYNAMICSwhere the 
onstant of proportionality 
an be identi�ed as the square of the so-
alled smallsignal sound speed c0.2.2.3 Boundary ConditionsIn this work, it is assumed that the velo
ity of the vis
ous perilymph vanishes relative tothe solid boundaries. This spe
i�
ation is well known as no-slip-
ondition. By the useof the Eulerian spe
i�
ation, the no-slip 
ondition at the rigid boundaries 
an be simplystated as
v(x, t) = 0 for all x ∈ Γr. (2.10)With regard to moving boundaries, the no-slip 
ondition implies that the �uid-motion isequal to the asso
iated motion of the boundary. Thus, if ζ(x0, t) denotes an arbitrarydispla
ement of the boundary whi
h is de�e
ted out of its resting position x0, the velo
ityat the displa
ed position 
an be evaluated to
v(x0 + ζ(x0, t), t) =

∂ζ(x0, t)

∂t
(2.11)For the purpose of simpli�
ation expli
it 
hanges of the domain, 
aused by the displa
e-ments of the moving boundaries, are negle
ted. This simpli�
ation is reasonable and pos-sible, sin
e the os
illations of the boundaries are substantially smaller than the proportionsof the 
o
hlea model. Equation 2.11 
onstitutes a Lagrangian spe
i�
ation of the velo
ityat the boundary. For the adaption of the boundary 
ondition to an Eulerian spe
i�
ation,a ve
torial Taylor expansion of the left hand side 
an be performed to obtain

v(x0, t) =
∂ζ

∂t
−
(

grad v(x0, t)

)

·ζ − . . . . (2.12)If ξ denotes the verti
al displa
ement of the basilar membrane and if ξow represents thehorizontal displa
ement of the stapes within the oval window, the boundary 
ondition 2.12
an be simply 
on
retized by using the identities
ζ = ( 0 ξ )T for all x ∈ Γbm+ ∪ Γbm−, (2.13)
ζ = ( ξow 0 )T for all x ∈ Γow. (2.14)In 
ontrast to the 
oupling between the �uid and the basilar membrane, it is assumed thatthe round window has no signi�
ant in�uen
e on the �uid in the 
ase of usual a
ousti
stimulations. Therefore, a �uid-stru
ture-intera
tion with the round window is not dire
tlytaken into a

ount by the modeling pro
ess presented in this work. On the one hand themembrane within the round window prevents the leakage of �uid, on the other hand it is�exible enough to allow free movements of the �uid up to a 
ertain extent. This behavior
an be imitated if the boundary pretends to be non-existent with respe
t to the longitudinalvelo
ity 
omponent. In other words, no expli
it boundary 
ondition is applied on the �rstvelo
ity 
omponent at the round window. 15



CHAPTER 2. MODELINGFurthermore, it is assumed that no external for
es a
t on the �uid a
ross the outerboundaries. In terms of the stress tensor σ, this 
ondition 
an be written as
σ(x, t) · n(x, t) = 0 for all x ∈ Γ (2.15)where n indi
ates the (unit) outward normal ve
tor with respe
t to the boundary of the�uid volume. At the beginning of the simulation pro
ess t0, it is presumed that the systemis at rest. As a 
onsequen
e, the velo
ity �eld as well as the displa
ement variables are setto zero. The pressure and the density �eld are prede�ned by its 
onstant ambient values

p(0) and ρ(0). Formally, the initial 
onditions 
an be written as
v(x, t0) = 0 for all x ∈ Ω, (2.16)
p(x, t0) = p(0) for all x ∈ Ω, (2.17)
ρ(x, t0) = ρ(0) for all x ∈ Ω, (2.18)
ξ(x, t0) = 0 for all x ∈ Γbm, (2.19)
ξow(x, t0) = 0 for all x ∈ Γow. (2.20)2.2.4 Perturbation ExpansionAs mentioned above, a
ousti
 streaming is a nonlinear phenomenon 
aused by the nonlinearterms within the governing equations of the �uidi
 system. A dire
t numeri
al simulationof the fully nonlinear Navier-Stokes-Equations in order to analyze a
ousti
 streaming wasperformed, for instan
e, by Yano [53℄ or Boluriaan and Morris [7℄. In 
ontrast to the mean�ows expe
ted within the 
o
hlea, their models aim to simulate a
ousti
 streaming that is
hara
terized by an high Reynolds number . In this 
ontext, the Reynolds number is a mea-sure that quanti�es the relative importan
e of inertial for
es in relation to vis
ous for
eswith respe
t to the mean �ows. In the s
ope of low Reynolds numbers, the use of a pertur-bation te
hnique has advantages over the fully nonlinear approa
h, sin
e the perturbationapproa
h represents the nonlinear problem by a set of linear sub-problems. Normally, itis su�
ient to 
onsider only the �rst two linear sub-problems. This perturbation methodhas already been su

essfully adopted by several authors (e.g. [24, 9, 26℄).For the implementation of the perturbation approa
h, the unknown fun
tions are rep-resented by Taylor expansions in the small Ma
h number ǫ ≪ 1, whi
h is de�ned as theratio between a typi
al velo
ity of the �uid parti
les and the small signal sound speed c0.The Taylor series of the velo
ity-�eld is, for instan
e, given by

v(x, t, ǫ) = v(x, t, ǫ)|ǫ=0
︸ ︷︷ ︸

=:v(0)

+
∂v(x, t, ǫ)

∂ǫ

∣
∣
∣
∣
ǫ=0

ǫ

︸ ︷︷ ︸

=:v(1)

+
∂2v(x, t, ǫ)

∂ǫ2

∣
∣
∣
∣
ǫ=0

ǫ2

︸ ︷︷ ︸

=:v(2)

+O(ǫ3). (2.21)Similarly, the other �eld-fun
tions (pressure, density,...) 
an also be represented by su
ha perturbation expansion in ǫ. This approa
h is, of 
ourse, only appli
able under the16



2.3. THE FIRST ORDER SYSTEMassumption that the perturbed problem arises smoothly from an initial problem through the
ontinuous variation of the parameter ǫ. In this 
ontext, the initial problem is 
hara
terizedby a zero Ma
h number, whi
h means that there will be no parti
le motions, provided thatthe sound speed remains 
onstant. Then the system 
an be fully des
ribed by the ambientvalues p(0) and ρ(0).Terms of higher order 
an now be determined by the use of a su

essive method. Thispro
edure is based on the prin
iple that terms of di�erent order are independent from ea
hother (
f. [14℄). This means that after substituting the respe
tive perturbation expansionsfor the unknown fun
tions, ea
h equation 
an be separated into a set of equations, wherebyea
h relation 
onsists only of terms of the same order.Lighthill [26℄ pointed out that this separation of di�erent terms should primarily dependon their numeri
al dimension and not on their mathemati
al order. He 
on
luded that theresultant se
ond order system (whi
h is used for the evaluation of a
ousti
 streaming)negle
t a fourth order quantity that would take inertial e�e
ts of the mean �ows intoa

ount. These inertial e�e
ts be
ome more and more signi�
ant for appli
ations that are
hara
terized by an high Reynolds number. In these 
ases, the su

essive perturbationmethod would probably fail to approximate the mean �ows 
orre
tly.In steady state, the �rst order fun
tions des
ribe the harmoni
 ex
ess values of thefundamental a
ousti
 �eld with the angular frequen
y ω, provided that the system is stim-ulated by a sinusoidal ex
itation of the same frequen
y. Then, the se
ond order fun
tions
an be asso
iated with the se
ond order harmoni
 �eld of double the frequen
y as well asa se
ond order steady streaming. (
f. [24, 9℄) In this work, the main fo
us lies on thedetermination of this se
ondary steady �ow �eld, sin
e it 
onstitutes a �rst order approxi-mation of a
ousti
 streaming. Any higher-order mean �ows are negle
ted, due to the rapidde
rease of their magnitudes. Therefore, only the �rst order approximation of the resultantmean �ows is 
onsidered in this work.The �rst order system of the perturbation approa
h (hereinafter also referred to asa
ousti
 subproblem) is established in 
hapter 2.3.1. The a
ousti
 streaming subproblem,whi
h 
orresponds to the averaged se
ond order system, is dedu
ed in 
hapter 2.4.2.3 The First Order SystemOn the basis of the perturbation theory, the nonlinear system of equations that des
ribesthe behavior of the �uid is separated into a �rst and a se
ond order system. As mentionedabove, the �rst order system des
ribes the fundamental a
ousti
 �eld whi
h is mainlyin�uen
ed by the �uid-stru
ture-intera
tion with the stru
tural 
omponents of the 
o
hlearsystem (
f. �gure 1.3). This se
tion deals on the one hand with the derivation of the�rst order perturbation of the �uidi
 system (
f. 
hapter 2.3.1) and on the other withthe mathemati
al modeling of the relevant me
hani
al and physiologi
al properties thatrepresents the dynami
s of the basilar membrane (
f. 
hapter 2.3.2). 17



CHAPTER 2. MODELING2.3.1 The A
ousti
 SubproblemAfter substituting the perturbation expansions (
f. equation 2.21) for the velo
ity-, pressure-and density-fun
tions and 
onsidering only the �rst order terms, the �rst order 
onservationprin
iples of mass and momentum 
an be written as
∂ρ(1)

∂t
= −ρ(0) div v(1), (2.22)

ρ(0)
∂v(1)

∂t
= divσ(1). (2.23)A

ording to equation 2.8, the divergen
e of the �rst order stress tensor is given by

divσ(1) = − grad p(1) + (ζ +
η

3
) grad div v(1) + η∆ v

(1). (2.24)In the same way, also the thermal equation of state 2.9 
an be transformed into a �rstorder version whi
h results in the simple relation
p(1) = c0

2ρ(1). (2.25)By 
ombining the previous equations, the stress tensor as well as the �rst order densityfun
tion 
an be eliminated. Then, the a
ousti
 subproblem that des
ribes the fundamentala
ousti
 �eld within the �uid is given by the following system of equations:
1

c02

∂p(1)

∂t
= −ρ(0) div v(1), (2.26)

ρ(0)
∂v(1)

∂t
= − grad p(1) + (ζ +

η

3
) grad div v(1) + η∆v

(1). (2.27)Finally, the boundary 
onditions have to be adapted. The �rst order approximation of theEulerian spe
i�
ation of the no-slip 
ondition 2.12 
an be evaluated by taking only the�rst order terms into a

ount. Therefore, the �rst order velo
ity 
omponents at the basilarmembrane and at the oval window 
an be written as
v
(1)(x, t) =

[

0
∂

∂t
ξ(x, t)

]T for all x ∈ Γbm, (2.28)
v
(1)(x, t) =

[

∂

∂t
ξow(x, t) 0

]T for all x ∈ Γow. (2.29)2.3.2 The Passive Me
hani
s of the Co
hlear PartitionThe intera
tions between the �uid and the basilar membrane have a signi�
ant in�uen
eon the sound �eld within the inner ear. Therefore, it is essential to take the me
hani
albehavior of the 
o
hlear partition into a

ount. In this 
ontext, an approa
h, developed18



2.3. THE FIRST ORDER SYSTEM
3

1

2

4

5

6

7

8Figure 2.3: Cross se
tion of a mammalian organ of 
orti: (1) Inner hair 
ell. (2) Outer hair 
ells. (3)Te
torial membrane. (4) Stereo
ilia. (5) Basilar membrane. (6) Tunnel of 
orti. (7) Cells of Deiters.(8) Nerve �bres. The arrows indi
ate the prin
ipal motions of the organ of 
orti. The pressure di�eren
ebetween the upper and lower 
hamber 
auses upward and downward movements of the basilar membrane.Furthermore, the te
torial membrane moves along the reti
ular lamina due to their di�erent pivots.by Mammano and Nobili [28, 33℄, is adapted that has proven to be a well-fun
tioning one-dimensional model for des
ribing the de�e
tions of the basilar membrane as 
ause of thepressure di�eren
es a
ross the partition. In the �rst part of this se
tion the main ideas fordes
ribing the basilar membrane as a linear system of damped os
illators are presented.The se
ond part of this se
tion fo
uses on the representation of an additional for
e termin order to model a physiologi
ally me
hanism, known as 
o
hlear ampli�er .The idea that the inner ear may work as a frequen
y analyzer due to longitudinallyvarying physi
al properties of the organ of 
orti 
an be tra
ed ba
k to Helmholtz. Henoted that the 
o
hlear partition 
onsists of an array of radially orientated �bres and thatthe length of these �bres in
rease from base to apex. Therefore, he hypothesized thatthese �bres may have di�erent resonan
e frequen
ies at whi
h they resonate. But it turnedout that the damping of the surrounding �uid prevents a signi�
ant resonant behaviourof individual �bres. Nevertheless, the assumption that the 
o
hlea a
ts prin
ipally as afrequen
y analyzer has proven to be true. (
f. [1℄)Helmholtz idea that the 
o
hlear partition 
an in prin
iple be represented by a numberof os
illators, whi
h are 
hara
terized by di�erent physi
al properties, is taken up by themodel used here. Figure 2.4 shows a s
hemati
 illustration of su
h an array of os
illators.Ea
h os
illator 
onsists of a mass whi
h 
an be set into vibration through a spring. Thesprings are 
hara
terized by its respe
tive sti�ness. Furthermore ea
h spring-mass systemis atta
hed to a damper whi
h tends to redu
e the os
illation. But in 
ontrast to su
h adis
rete arrangement of individual os
illators, the basilar membrane is rather modeled as a
ontinuum within the 
ontext of this work. A

ording to Mammano and Nobili [28℄, su
ha damped os
illation of a 
ontinuous one-dimensional system that des
ribes the verti
al19



CHAPTER 2. MODELING
h

m

k

ξ

Figure 2.4: The me
hani
al properties of the basilar membrane 
an be represented by an array of dampedos
illators. Ea
h os
illator is 
hara
terized by its spe
i�
 mass m, vis
osity h and sti�ness k. Verti
aldispla
ements ξ(x) are 
aused by external for
es.displa
ement of the basilar membrane ξ(x, t) under the a
tion of external for
es 
an berepresented by the di�erential equation
m(x)

∂2ξ(x, t)

∂t2
+ h(x)

∂ξ(x, t)

∂t
+ k(x)ξ(x, t) = fp+(x, t)− fp−(x, t) + ϑ(x, t) (2.30)if it is assumed that all for
es depend linearly on the displa
ement of the basilar membrane.The 
oe�
ient fun
tions des
ribe di�erent physi
al properties of the basilar membrane.An adequate 
hoi
e of these parameter fun
tions is not easy, be
ause the stru
ture of theorgan of 
orti is not homogeneous and the material properties are di�
ult to determine.Furthermore, it is not 
lear to what extent 
ertain 
hara
teristi
s may be relevant forthe os
illation pro
ess. However, in order to ensure that the 
oe�
ients range withinthe physi
al limits, they are estimated on the basis of some theoreti
al and dimensional
onsiderations having regard to the biophysi
al stru
ture of the organ of 
orti (
f. �gure2.8).The �rst term on the left hand side of equation 2.30 is asso
iated with the me
hani
alinertia of the system. The 
oe�
ient m(x) des
ribes the mass per unit length at theposition x. A

ording to a matlab-routine from Nobili [31℄, the mass is estimated by somedimensional 
onsiderations of the organ of 
orti. It is assumed that the organ of 
orti at thebase has approximately a width of 50µm and a height of 40µm and that both propertiesin
rease exponentially up to four times from base to apex. An estimation of the e�e
tivemass per unit length at a spe
i�
 lo
ation 
an be determined by the produ
t of an averagedensity of the tissue (whi
h is assumed to be equal to the density of water), the height ofthe organ of 
orti and an e�e
tive width. This e�e
tive width is 
al
ulated as the geometri
mean of the width of the organ of 
orti and the half of the width of the basilar membrane.The resultant mass per unit length is illustrated in �gure 2.5.The se
ond term of the left hand side of equation 2.30 des
ribes the damping of the20
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Figure 2.5: E�e
tive mass per unit length of the basilar membrane that is assumed to be relevant for theinertial e�e
ts of the basilar membrane.
o
hlear partition. In 
onsideration of the realisti
 stru
ture of the organ of 
orti, thedispla
ement of the basilar membrane is 
hara
terized by a rotary motion of the tunnel ofCorti as shown in �gure 2.8. The reason for su
h a motion lies in the signi�
ant rigidity ofthe pillar 
ells. In 
ontrast to the pillar 
ells, the outer hair 
ells and Deiters' 
ells 
an bemu
h more easily deformed. As a result, the os
illation of the 
o
hlear partition is probablya

ompanied by shearing motions of the outer hair 
ells and Deiters' 
ells. Within thiswork it is assumed that the damping is therefore mainly governed by the intrinsi
 vis
osityof these 
ells. On the basis of the de�nition of shear vis
osity within Newtonian �uids, theresistan
e per unit length 
an be roughly estimated by
ηrad

Hohc(x)

Wohc(x)

∂ξ

∂t
(2.31)where ηrad, Wohc(x) and Hohc(x) are asso
iated with the mean vis
osity of the 
ells, theradial width and the transversal height of the e�e
tive segment at the longitudinal position

x. A

ording to [31℄, it is assumed that at the base of the 
o
hlea the mean vis
osity isapproximately 30 times higher than the vis
osity of water and that the e�e
tive ratiobetween the radial width and the transversal height is about 10. As it 
an be seen in �gure2.6(a), it is further assumed that the vis
osity per unit length de
reases about four timesfrom base to apex.For an in�nitesimal small longitudinal segment, the asso
iated resistan
e per unit length
aused by the shear vis
osity 
an be approximated - in a similar way as above - to
∂

∂x

(

ηlonA(x)
∂2ξ

∂x∂t

) (2.32)21
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(b)Figure 2.6: Damping properties of the basilar membrane. (a) The positional vis
osity is spe
i�ed by theverti
al shearing motion of the segment 
onsisting of the outer hair 
ells and the Deiters' 
ells along theradial dire
tion. (b) The shearing resistan
e 
oe�
ient is asso
iated with verti
al shearing motions of thebasilar membrane segments along the longitudinal axis.
22
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Figure 2.7: Virtual sti�ness per unit length of the basilar membrane that is assumed to be relevant forthe resistan
e 
aused by a displa
ement of the 
o
hlear partition.where A(x) is the 
ross-se
tional area of the organ of 
orti at the lo
ation x and ηlon a meane�e
tive vis
osity of the asso
iated layer. As the spatial derivative of the velo
ity termindi
ates, a longitudinal shearing driven resistan
e 
an only o

ur if velo
ities of adja
entlayers di�er. On the basis of the same proportions of the organ of 
orti as already usedfor the estimation of the mass and under the assumption that the e�e
tive vis
osity ηlon isequal to the vis
osity of water, the 
oe�
ient ηlonA(x) 
an be estimated as illustrated in�gure 2.6(b). In 
omparison to the positional shearing driven resistan
e it turns out thatthe longitudinal 
oupling plays only a subordinate role and the longitudinal segments 
anos
illate almost independently from ea
h other.The last term of the left hand side of equation 2.30 represents the for
e per unit lengthapplied by the sti�ness of the 
o
hlear partition. Measurements (e.g. [50℄) indi
ate thatthe sti�ness de
reases by two to four orders of magnitude from base to apex. But, thephysi
al dimensions of di�erent measurements vary over a wide range. Furthermore, itis debatable whether these measurements are physiologi
ally relevant within the working
o
hlea, sin
e they are measured during displa
ements that are 
onsiderably larger thanrealisti
 displa
ements. (
f. [38℄) Similar to [28℄, the sti�ness is therefore 
hosen in su
ha way that the 
hara
teristi
 frequen
ies of the traveling wave roughly 
orrespond to the(human) frequen
y-position map whi
h was introdu
ed by Greenwood [18℄ (
f. 
hapter4.1.3). As a result of this pro
edure, the sti�ness is set to 2× 105kg/m s2 at the base andde
reases by 3.5 orders of magnitude from base to apex. (
f. �gure 2.7)The right hand side of equation 2.30 
onsiders external for
es a
ting on the basilarmembrane. As a result of the �uid pressure above and below the basilar membrane, twohydrodynami
 for
es fp+ and fp− o

ur. Sin
e the pressure a
ts - at a spe
i�
 lo
ation x- on the whole width wbm(x) of the basilar membrane, the hydrodynami
 for
es may be23



CHAPTER 2. MODELINGwritten as
fp±(x, t) =

1

2
wbm(x) p

(1)(x, t)
∣
∣
x=(x,±0)

. (2.33)Due to the assignment of two di�erent pressure values at the lo
ation x = (x, 0) (
ausedby the one-dimensional representation of the basilar membrane), the se
ond 
omponent ofthe 
oordinates are additional labeled by a sign to indi
ate the lo
ation. Thus, a positive(negative) sign refers to the lo
ation that belongs to the upper (lower) du
t. A
tually,due to the anatomi
al stru
ture and the lateral �xation of a basilar membrane segment(
f. �gure 2.3), the pressure should not be a

umulated uniformly along the radial width.This issue is taken into a

ount (in a simpli�ed manner) by introdu
ing an e�e
tive widthwhi
h is assumed to be half of the geometri
 width.The for
e ϑ is asso
iated to the internal ampli�
ation me
hanism provided by the outerhair 
ells.2.3.3 Outer Hair Cell MotilityThe verti
al motions of the basilar membrane are a

ompanied with a shearing displa
e-ment of the te
torial membrane in relation to the reti
ular lamina. This kind of motionis the result of di�erent pivots of the te
torial membrane and the reti
ular lamina aroundwhi
h they rotate. (
f. [28℄) The stereo
ilia of the outer hair 
ells are de�e
ted by theshearing �ow of the endolymph and due to a partial 
onta
t of the stereo
ilia with thebottom of the te
torial membrane. The de�e
tion of these hair bundles 
auses in turn a
hange of the 
ell potential due to a me
hanoele
tri
al transdu
tion me
hanism. If thestereo
ilia are de�e
ted in the dire
tion of its tallest outgrowth, the outer hair 
ell willbe depolarized. Otherwise, a hyperpolarization is 
aused by a de�e
tion in the oppositedire
tion. Having regard to the anatomi
al stru
ture of the 
o
hlear 
ross-se
tion a de-polarization is the result of an upward motion of the basilar membrane (in the dire
tionof the s
ala media). In 
ontrast, a movement of the basilar membrane in the dire
tion ofthe s
ala tympani brings about a hyperpolarization of the outer hair 
ells. As a result ofele
tri
al stimulation the outer hair 
ells are 
apable of 
hanging its length. Therefore, thelength 
hange is often referred to as ele
tromotility. The outer hair 
ell motility is mainlydriven by a motor protein, whi
h is known as prestin and whi
h 
an be found in the lateralmembrane of ea
h 
ell. (
f. [1℄) Measurements indi
ate (
f. [1℄) that the length 
hanges ofouter hair 
ells are fast enough to have a me
hani
al e�e
t on vibrations at a
ousti
 fre-quen
ies. However, to this day there is some dispute about the exa
t internal me
hanismsof the motility and the spe
i�
 properties of the outer hair 
ells. Be
ause this work is notprimarily 
on
erned with an exa
t representation of the 
omplex pro
esses of the outerhair 
ell motility, a simpli�ed stimulus-response model (bla
k box model) is adapted as itwas suggested by Nobili et al. [33℄ in order to take the feedba
k from the outer hair 
ellsinto a

ount. In this 
ontext, it is assumed that the relationship between the de�e
tion ζof the hair bundles and the for
e ϑ, whi
h is applied by the outer hair 
ells due to their24
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(a)

(b)Figure 2.8: A displa
ement of the basilar membrane is a

ompanied with a rotational motion of the tunnelof 
orti around a pivotal point. Due to the rigidity of the pillar 
ells in 
ombination with the reti
ular laminathe outer hair 
ells and Deiters' 
ells are deformed in order to 
ompensate these motions. In this work, itis assumed that the internal shearing motion of the outer hair 
ells and the Deiters' 
ells respe
tively aremainly responsible for the damping e�e
t. At the same time, the laminar shearing motion of the te
torialmembrane relative to the reti
ular lamina 
auses a de�e
tion of the stereo
ilia of the inner and outer hair
ells. This parallel shift is the result of a di�erent pivotal point around whi
h the te
torial membranerotates. A de�e
tion of the hair bundles towards the largest one (whi
h in prin
iple 
an be asso
iated withan upward displa
ement of the basilar membrane) 
auses in turn a 
ontra
tion of the outer hair 
ells dueto a me
hanoele
tri
al transdu
tion me
hanism (
f. �gure (a)). In 
ontrast, an elongation of the outerhair 
ells is the result of a hair bundle de�e
tion in the opposite dire
tion (
f. �gure (b)). 25
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−β−1 β−1Figure 2.9: The relationship between the outer hair 
ell driven for
e and the hair bundle de�e
tion 
anbe represented by a sigmoid fun
tion (solid line). Due to saturation e�e
ts the for
e is limited to a value
α(x). At the origin the sigmoidal fun
tion 
an be approximated by a linear fun
tion (dotted line) with aslope of α(x)β(x).length 
hanges, 
an be represented as

ϑ(x, ζ(x, t)) = α(x) sig
(
β(x)ζ(x, t)

) (2.34)where sig is a sigmoid fun
tion1 as illustrated in �gure 2.9 and α(x) and β(x) are parametersthat depend on the spe
i�
 internal pro
esses involved in the outer hair 
ell motility. Thereason for des
ribing the outer hair 
ell driven for
e by a sigmoidal relationship 
an bemainly found in saturation e�e
ts within the outer hair 
ells that limit the for
e. For smallde�e
tions of the hair-bundles these saturation-e�e
ts 
an be negle
ted and equation 2.34
an be linearly approximated by
ϑ(x, ζ(x, t)) ≈ α(x)β(x)ζ(x, t) (2.35)(
f. [1, 38, 28, 33℄)In order to 
al
ulate the for
e-feedba
k the de�e
tion of the hair-bundles have to bedetermined on the basis of the verti
al displa
ement of the basilar membrane. It is as-sumed that the motions of the te
torial membrane relative to the reti
ular lamina 
an berepresented as a separate os
illator and that this subsystem is mainly stimulated by theverti
al a

eleration of the basilar membrane displa
ements. In terms of a linear di�eren-tial equation and a

ording to [28, 33℄ the de�e
tion ζ of the hair bundles 
an therefore bewritten as

mtm(x)
∂2ζ(x, t)

∂t2
+ htm(x)

∂ζ(x, t)

∂t
+ ktm(x)ζ(x, t) = gtm(x)mtm(x)

∂2ξ(x, t)

∂t2
(2.36)1The sigmoid fun
tion used in this work is de�ned as sig(x) := 1 −

2
e2x+1

. The sigmoid fun
tion is
hosen in su
h a way that its values ranges from −1 to 1 and that its slope at the origin is equal to 1.26
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Figure 2.10: The mass (per unit length) of the te
torial membrane that is believed to be relevant for theinertial e�e
ts of the subordinate os
illator that des
ribes the motion of the te
torial membrane relative tothe reti
ular lamina.where mtm(x), htm(x) and ktm(x) are 
oe�
ient fun
tions used for 
onstituting the spe
i�
inertia, damping and sti�ness of the os
illating subsystem. Due to the di�erent orientationof the subsystem and due to some internal losses of the 
oupling, the external for
e a
tingon the subsystem is only a fra
tion of the verti
al a

eleration driven for
es. This e�e
twas taken into a

ount by the additional gain fun
tion gtm(x). A

ording to Nobili et al.[33℄, it is assumed that the gain fun
tion is 
onstant along the 
o
hlear partition and thatthe e�e
tive for
e a
ting on the subsystem is only a tenth of the verti
al for
e.The e�e
tive mass mtm(x) 
an be asso
iated with the mass of the te
torial membrane.The radial width and transversal height of the te
torial membrane at the base of the 
o
hlea
an be assumed to be approximately 70µm and 15µm respe
tively. If both proportionsare assumed to in
rease exponentially up to four times and if the density of the te
torialmembrane is nearly equal to that of water, the mass of the te
torial membrane per unitlength 
an be estimated as shown in �gure 2.10. (
f. [31℄)The damping is mainly 
aused by the shearing motion of the endolymph between thete
torial membrane and the reti
ular lamina. Due to the laminar regime of this shear, thedamping 
oe�
ient 
an be estimated by
ηend

Wgap(x)

Hgap(x)

∂ζ(x)

∂t
(2.37)with ηend, Wgap(x) and Hgap(x) being the vis
osity of the endolymph, the width and theheight of the gap between the reti
ular lamina and the te
torial membrane at the position

x. Under the assumption that the endolymph vis
osity is approximately 1.5×10−3 kg/m s(
f. [50℄) and that the ratio between the radial width and the transversal height of the 
left27
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Figure 2.11: The vis
osity of the se
ondary os
illator that 
auses the damping. It is assumed that thevis
osity is mainly dominated by the shearing motions of the endolymph between the te
torial membraneand the reti
ular lamina.in
reases from 80 at the base to 320 at the apex, the damping is spe
i�ed as illustrated in�gure 2.11.It 
an be observed that the maximal displa
ement of the traveling wave in the a
tive
o
hlea is shifted a little bit in the dire
tion of the apex in 
ontrast to the passive 
o
hlea(
f. [38℄). Having regard to this 
hara
teristi
, the resonan
e frequen
y fres of the supple-mentary os
illator is believed to de
rease exponentially from 18000Hz at the base to 60Hzat the apex. As a 
onsequen
e, the sti�ness 
an be uniquely determined by the relationship
ktm(x) = mtm(x) ·

(
fres(x)

)2. (2.38)As pointed out by Nobili et al. [33℄, at a spe
i�
 lo
ation x the inertial for
e will be nearly
an
eled by the sti�ness driven for
e if the frequen
y of an a
ousti
ally-indu
ed vibrationis 
lose enough to the lo
al resonan
e frequen
y. In su
h a 
ase, the os
illation (at thisspe
i�
 lo
al region) is mainly dominated by the damping term and equation 2.36 
an berepresented as
∂ζ(x, t)

∂t
≈
gtm(x)mtm(x)

htm(x)

∂2ξ(x, t)

∂t2
. (2.39)By integrating equation 2.39 over time and by using equation 2.35, the for
e that will beapproximately applied to regions of resonant behavior 
an be written as

ϑ(x, ξ(x, t)) ≈
α(x)β(x)gtm(x)mtm(x)

htm(x)

∂ξ(x, t)

∂t
. (2.40)As a 
omponent of the right hand side of equation 2.30, the outer hair 
ell driven for
e

ϑ a
ts dire
tly on the motions of the basilar membrane. The 
on�guration of equation28
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Figure 2.12: The e�e
tive sti�ness of the subordinate os
illator indu
es a 
ountera
ting for
e that isapplied in the opposite dire
tion of its displa
ement.2.40 indi
ates that the for
e works in prin
iple as a negative damping term at regions of anearly resonant behavior. In order to get numeri
al estimates of the parameters α(x) and
β(x) that des
ribe the sigmoidal shape of the fun
tional relationship 2.34, it is assumedthat the outer hair 
ell driven for
e 
an potentially neutralize the positional vis
osity ofthe basilar membrane up to a 
ertain degree. Therefore, if the positional damping term asgiven in equation 2.31 is equated with the damping term of equation 2.40, the 
oe�
ientfun
tion of equation 2.35 
an be 
al
ulated to

α(x)β(x) =
λ(x)ηradHohc(x)htm(x)

Wohc(x)gtm(x)mtm(x)
. (2.41)Thereby, the additional parameter fun
tion λ(x) serves as a 
ontrol parameter in orderto spe
ify the degree of damping 
an
ellation. If λ is equal to one, the total positionalvis
osity 
an potentially be 
an
eled by the outer hair 
ell driven for
e. A value above one
an also 
an
el damping e�e
ts 
aused by longitudinal shearing resistan
es. (
f. [28, 33℄)2.3.4 Equilibrium stateIf the �rst order system is stimulated by an harmoni
 vibration of the oval window, thesystem will rea
h a stable state of equilibrium after a 
ertain amount of time has elapsed.A

ording to Köster [24℄, the equilibrium state of the �uid 
an be expressed by harmoni
os
illations of the individual �eld variables at �xed positions. In terms of sin- and cos-29
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(b)Figure 2.13: At any �xed lo
ation x within the �uid domain of the 
o
hlea model, the equilibrium state
an be 
learly des
ribed by the sine-
osine de
omposition. Figure (a) illustrates the equilibrium state ofthe velo
ity on the basis of the ve
tors v
(cos) and v

(sin), whereas the pressure is 
hara
terized by the values
p
(cos) and p

(sin) as it 
an be seen in �gure (b).fun
tions, the stable state 
an be written as
v
(1)(x, t) = v

(sin)(x) sin(ωt) + v
(cos)(x) cos(ωt), (2.42)

p(1)(x, t) = p(sin)(x) sin(ωt) + p(cos)(x) cos(ωt). (2.43)Therefore, the os
illatory motion of the �uid 
an be uniquely 
hara
terized by the time-independent fun
tions v(sin)(x), v(cos)(x), p(sin)(x) and p(cos)(x). In this work, the repre-sentation of the equilibrium state with the help of equations 2.42 and 2.43 will be referred toas sine-
osine de
omposition. Sometimes it is more 
onvenient to use the 
omplex exponen-tial form in order to represent the equilibrium state. Then, the velo
ity- and pressure-�eldare given by
v(1)i (x, t) = v(amp)

i (x) e[ωt+ϕvi
(x)]i, (2.44)

p(1)(x, t) = p(amp)
i (x) e[ωt+ϕpi

(x)]i (2.45)where the supers
ript (amp) denotes the amplitude and ϕ the argument of the asso
iatedquantity. Su
h a 
omplex representation must, of 
ourse, be understood in the sense thatonly its real part spe
i�es the value of the physi
al quantity.30



2.4. THE SECOND ORDER SYSTEM2.4 The Se
ond Order System2.4.1 The A
ousti
 Streaming SubproblemThe a
ousti
 streaming subproblem is established on the basis of the se
ond order systemthat results from the perturbation approa
h as des
ribed in 
hapter 2.2.4. In steady state,the se
ond order equations are asso
iated with the se
ond harmoni
 �elds in 
ombinationwith a steady �ow �eld. While the determination of the se
ond harmoni
 �eld is of nointerest to this work, the evaluation of the steady �ow �eld yields a �rst order approxima-tion of a
ousti
 streaming. In order to extra
t the steady �ow �eld (hereinafter indi
atedby the supers
ript (dc)) from the se
ond order system, the operator 〈·〉 that determinesthe temporal average of time-dependent fun
tions 
an be applied. The mean of the se
ondorder equation that is asso
iated with the balan
e-of-mass prin
iple 2.1 
an be written as
ρ(0) div v(dc) = m̃ (2.46)where the term m̃ 
orresponds with a virtual mass-sour
e. This sour
e distribution is
aused by the �rst order a
ousti
 subproblem and des
ribes the supply of mass (
f. [9℄).In terms of the �rst order �elds, the mass-sour
e 
an be evaluated to

m̃ = − 1

c02
div〈p(1)v(1)〉 (2.47)Similarly, the steady 
omponents of the se
ondary �ow �elds must ful�ll the time-averagedse
ond order version of the balan
e-of-momentum prin
iple 2.2, whi
h is given by

grad p(dc)− (ζ +
η

3
) grad div v(dc)− η∆v

(dc) = f̃ (2.48)where f̃ denotes a virtual for
e-sour
e distribution. The for
e-sour
e a
ts as an externalvolume-for
e and depends on the a
ousti
 �eld. By using �rst order terms, the for
e-sour
edistribution 
an be expressed as
f̃ = − 1

c02
〈p(1)

∂v(1)

∂t
〉 − ρ(0)〈(grad v(1))v(1)〉. (2.49)A

ording to Bradley [9℄, the 
orre
t treatment of the boundary 
ondition leads to animportant boundary driven me
hanism of a
ousti
 streaming whi
h was often negle
tedby other works. This me
hanism is based on the rigorous distin
tion between the Eulerianand the Lagrangian spe
i�
ation of motion as des
ribed at the beginning of 
hapter 2.2. As
an be seen from equations 2.11 and 2.12, the di�eren
e between both kinds of des
riptionsat the boundary arises from 
onsidering the full Taylor expansion. While both spe
i�
a-tions are identi
al in the 
ase of the �rst order perturbation approximation, the di�eren
ebe
omes apparent by taking the se
ond order terms of the perturbation expansion intoa

ount. 31



CHAPTER 2. MODELINGBy substituting the respe
tive perturbation expansion for the �eld variables of equa-tion 2.12 and by applying the mean-operator, the time-averaged se
ond order boundary
ondition 
an be written as
v
(dc) = −〈(grad v(1))ζ(1)〉. (2.50)The mean of the se
ond order Lagrangian velo
ity 
omponent vanishes, sin
e ea
h point ofthe boundary os
illates around a �xed lo
ations. The displa
ement ζ 
an be evaluated bysolving the initial value problem whi
h is given by equation 2.11. By performing the usualperturbation approa
h, the �rst order approximation of the displa
ement 
an be 
al
ulatedto

ζ(1)i (x0, t) ≈
∫

v(1)i (x0, t) dt =
v(1)i

iω
. (2.51)By using equations 2.50 and 2.51 in 
ombination with ve
tor identities2, the mean of these
ond order Eulerian velo
ity 
an be expressed as

v
(dc) = − 1

ρ(0)c02
〈p(1)v(1)〉+ 1

2
rot〈ζ(1) × v

(1)〉. (2.52)As dis
ussed by Bradley [9℄, this equation allows a better understanding of the underlyingme
hanisms of the resultant mean �ows than equation 2.50. Under the assumptions ofpure re
tilinear (not ellipti
al) motions of the moving boundaries, it be
omes apparentthat the �rst term of the right hand side of equation 2.52 a
ts as a sink (or a sour
e) sin
ethe resultant mean �ow has the same dire
tion as the �rst order velo
ity (
f. [9, 26℄). These
ond term was often negle
ted in other works. The magnitude of the 
ross produ
t ofthe velo
ity and the displa
ement is proportional to the en
losed area of the ellipse thatis formed by the traje
tory of the asso
iated �uid parti
le. The dire
tion of the resultantve
tor is perpendi
ular to this surfa
e. Due to the re
tilinear motion of the boundaries,this 
ross produ
t vanishes at the boundaries. But if the �uid motion of the adja
ent �uidlayers is 
hara
terized by ellipti
al traje
tories, the 
url of this 
ross produ
t will indu
ea slipping mean �ow at the boundaries. A detailed 
onsideration of the physi
al origin ofthese mean �ows 
an be found in [9℄.

2rot(a× b) = (grada)b− (grad b)a+ a div b− b diva32



Chapter 3ImplementationThis 
hapter is 
on
erned with the numeri
al implementation of the mathemati
al model ofthe 
o
hlea system as des
ribed in 
hapter 2. The mathemati
al model 
onsists of a numberof di�erent partial di�erential equations in 
ombination with spe
i�
 boundary 
onditions,whi
h have to be ful�lled on their asso
iated domain. In this work the �nite element methodis used in order to 
al
ulate a numeri
al solution of this system of equations. The �niteelement method is a powerful te
hnique for the numeri
al evaluation of (initial) boundaryvalue and eigenvalue problems for a wide range of appli
ations. Within the framework ofthe �nite element analysis, the solution of a given di�erential equation is approximatedby a linear 
ombination of a set of spe
i�
 basis fun
tions. In 
ontrast to some othermethods (e.g. Galerkin methods), these basis fun
tions (whi
h are also referred to as formfun
tions or interpolation fun
tions) are 
hara
terized by its systemati
 
onstru
tion on aset of individual simple sub-domains that form the entire domain of interest. (
f. [36℄)The s
hemati
 design of the global simulation pro
ess for the 
omputation of the a
ous-ti
 streaming �eld within the inner ear 
an be seen in algorithm 3.1. In prin
iple only thestimulation frequen
y of the harmoni
 stapes displa
ement within the oval window andthe outer hair 
ell a
tivity parameter, whi
h 
ontrols the in�uen
e of the additional outerhair 
ell for
e, are required in order to start the numeri
al 
omputation. All other physi
alparameters and properties are prede�ned (
f. 
hapter 2) and 
an be 
on�gured within anexternal parameter �le.In a �rst step (
f. line 2 of algorithm 3.1), the �uid domain as well as the one-dimensional domain that hosts the basilar membrane have to be divided into a set ofsubdomains, the so-
alled elements. The 
hoi
e of these elements and the underlyingstrategy of the dis
retization pro
ess (also known as meshing) are dis
ussed in 
hapter3.1. On the basis of these meshes, �nite element spa
es 
an be systemati
ally introdu
edby de�ning appropriate approximation fun
tions upon the individual subdomains (
f. line3). Se
tion 3.3 deals with the spe
i�
 
on�guration of the di�erent fun
tion spa
es whi
hare used for the approximation of the di�erent �eld fun
tions. In order to establish adis
retized formulation of the mathemati
al model, the di�erential equations have to be33



CHAPTER 3. IMPLEMENTATIONinitially transformed into a so-
alled weak form (also known as variational formulation). In
ontrast to the original di�erential equation, the requirements on the solution of the weakformulation with respe
t to its di�erentiability are weakened. Furthermore, the solution ofthe weak form does not need to ful�ll the di�erential equation at individual spe
i�
 points,but rather (to some extent) on average over an arbitrarily 
hosen region in the sense of aspe
i�
 weighted integral statement. (
f. [36, 23℄) The derivations of the individual vari-ational formulations are presented in se
tion 3.2. On the basis of the weak formulationsa spatial dis
retization 
an now be performed by using appropriate linear 
ombinations ofthe basis fun
tion for the spatial fun
tions. With respe
t to the �rst order a
ousti
 sub-problem, this leads to a number of di�erent linear systems of ordinary di�erential equations(
f. 
hapter 3.4.1). Its asso
iated matri
es 
an be stepwise assembled by performing lo
al
al
ulations for ea
h element (
f. line 4). In the next step, whi
h is asso
iated with line5 of algorithm 3.1, the individual systems are 
ombined to a single system of ordinarydi�erential equations. The resultant matrix equation 
an be seen in 
hapter 3.4.2. Lines 7to 12 are asso
iated with the temporal dis
retization of the ordinary di�erential system ofequations. The time integration s
heme that is used in this work is presented in 
hapter3.5. The fully dis
retization pro
ess of the �rst order a
ousti
 subproblem �nally resultsin a single linear system of equations per time-step.If the stable state of equilibrium is rea
hed at whi
h all �eld variables 
an be des
ribedby an harmoni
 fun
tion (
f. 
hapter 2.3.4), the a
ousti
ally driven motions 
an be eval-uated on the basis of the results of the �rst order subproblem. Similar to the a
ousti
subproblem, individual submatri
es 
an be 
onstituted by using the weak formulations ofthe se
ond order subproblem. Although, no intera
tions between the �uid and its adja
entstru
tures are 
onsidered by the se
ond order �ows, an overall matrix, whi
h 
ontains allsubmatri
es, has to be assembled be
ause a mixed formulation is used for the des
riptionof the �uid motions. The load ve
tor depends on the a
ousti
 �eld and 
an be determinedby 
al
ulating 
ertain mean values over one 
y
le. As dis
ussed in 
hapter 3.4.3, the steadystate motion of the a
ousti
 streaming problem 
an be represented by a single linear systemof equation whi
h 
an be solved in one step.The resultant linear systems of equations have to be solved by the use of an appropriatesolver. As dis
ussed in 
hapter 3.6, the generalized minimal residual method is appli
ablefor approximating the solutions of the �rst as well as the mean se
ond order system.Furthermore, the rate of 
onvergen
e 
an be signi�
antly improved by using an in
ompleteLU de
omposition as a pre
onditioner (
f. se
tion 3.6.3).At the end of the algorithm, the results are analyzed, prepared, re
orded and visualizedby the routines of the post-pro
essing.The 
omputational realization is based on the �nite element toolbox Alberta [43℄ andthe PETS
 library [2℄. The toolbox Alberta provides basi
 data stru
tures and routinesin order to support the establishment of appropriate meshes and �nite element spa
es. Inaddition, it maintains great �exibility to allow the dire
t integration and implementationof new numeri
al methods. (
f. [42, 44℄) After �nishing the respe
tive �nite elementdis
retizations, the resultant systems of equations are solved with the help of the PETS
34



3.1. MESH GENERATIONlibrary [2℄.Algorithm 3.1 Global algorithm for the 
al
ulation of a
ousti
 streaming within the innerearRequire: frequen
y f , outer hair 
ell a
tivity parameter λEnsure: a
ousti
 streaming �eld1: pro
edure Main Routine(f, λ)2: generate the meshes3: load �nite element spa
es4: 
al
ulate �rst order submatri
es5: assemble �rst order system matri
es6: 
al
ulate e�e
tive sti�ness matrix7: t← 08: repeat9: t← t+∆t10: 
al
ulate e�e
tive load at time t11: solve �rst order system at time-step t12: until equilibrium state is rea
hed13: 
al
ulate se
ond order submatri
es14: assemble se
ond order system matrix15: 
al
ulate se
ond order load ve
tor16: solve se
ond order system17: post pro
essing18: end pro
edure3.1 Mesh GenerationA

ording to line 2 of algorithm 3.1, the �rst step of the numeri
al simulation pro
esspresented here is an adequate 
onstru
tion of the underlying mesh whi
h 
an be used forthe �nite element 
al
ulations.The starting point of the mesh generation is a 
oarse triangulation of the upper du
tof the 
o
hlear system whi
h is initially represented by a re
tangular box as it is, inprin
iple, illustrated in �gure 3.1(a). In order to a
hieve the �nal mesh, this triangulationis modi�ed and extended by a three-stage pro
ess. The �rst step 
onsists of a re�nement ofthe mesh in order to minimize potential errors between the exa
t solution and its numeri
alapproximation. In 
ontrast to a global re�nement of the whole mesh, the 
omputationale�ort of the simulation pro
ess 
an be signi�
antly redu
ed by using only lo
al re�nements.The 
on
rete re�nement strategy used in this work is dis
ussed in 
hapter 3.1.2. At these
ond stage the geometry of the s
ala tympani and s
ala vestibuli above and below the
o
hlear partition has to be taken into a

ount by the meshing routines (
f. 
hapter 3.1.3).Finally, an additional one-dimensional mesh is introdu
ed whi
h is needed in 
onne
tionwith the numeri
al implementation of the me
hani
al properties of the basilar membraneand its outer hair 
ell feedba
k for
e. The spe
i�
 
onstru
tion of this mesh with respe
tto the individual �uid triangles above and below this partition is reviewed in 
hapter 3.1.4.35



CHAPTER 3. IMPLEMENTATION3.1.1 Referen
e ElementsA

ording to [42℄ it is useful to introdu
e two di�erent referen
e elements in order tosimplify the numeri
al evaluations with respe
t to the �nite element analysis upon ea
hindividual element.A set X of d+1 di�erent points xi ∈ R
n will 
onstitute a single element (also referredto as simplex ) of the mesh M if the ve
tors x1 − x0, ..., xd − x0 are linear independent.The element Sd is de�ned as the 
onvex hull of these points, or in terms of a mathemati
alformulation Sd 
an be written as

Sd(X) =

{ d∑

i=0

βixi

∣
∣
∣
∣
βi ≥ 0,

d∑

i=0

βi = 1,xi ∈ X
} (3.1)From a geometri
al point of view a single simplex 
an be asso
iated with a triangle in the
ase of d = 2 or, respe
tively, by a line-segment in the 
ase of d = 1.For reasons of simpli
ity, the numeri
al quadrature (whi
h will be needed in the 
ontextof the �nite element analysis) is not performed on ea
h individual element itself but ratheron a normalized element. In this work, this normalized element is given by

Sd(nor) := Sd(0,e1, ...,ed) (3.2)where ei are the unit ve
tors of the 
oordinate system. As it 
an be easily seen, the element
Sd(nor) 
an be linked to a spe
i�
 element Sd(X) by a linear a�ne mapping x(ν) (
f. [42℄).In 
ontrast to this normalized element, it is more 
omfortable to establish the basisfun
tions of the �nite element spa
es by the use of bary
entri
 
oordinates due to itssymmetry properties. On the basis of the element

Sd(bar) := Sd(e1, ...,ed+1) (3.3)the bary
entri
 
oordinates are asso
iated with the 
oe�
ient βi whi
h are introdu
edby the de�nition 3.1. Therefore, the element Sd(bar) will be referred to as bary
entri
simplex. The relation between the bary
entri
 
oordinates on the one hand and the world
oordinates of a spe
i�
 or the normalized element on the other hand 
an be des
ribed byan invertible mapping.As illustrated by the following s
heme, ea
h element Sd(X) of a mesh 
an therefore beparameterized over the normalized element Sd(nor) and the bary
entri
 representation Sd(bar)36



3.1. MESH GENERATIONby the invertible mappings x(ν) and x(β).
Sd(nor)

Sd(X)

Sd(bar)

x(ν)

ν(x)

x(β)

β(x)

β(ν)ν(β)

(3.4)In addition, these both mappings indu
e uniquely an invertible mapping β(ν) from thenormalized 
oordinates to the bary
entri
 
oordinates.3.1.2 Re�nement of the meshWith regard to the re�nement of a triangular mesh, it must be kept in mind that theresultant mesh has also to ful�ll the 
hara
teristi
s of a regular triangulation. Thereby,the term regular triangulation refers to a mesh in whi
h the interse
tion of any two trianglesis either the entire edge of both triangles, a single vertex or empty. Therefore, the splittingof only one triangular element into two sub-triangles will probably lead to a so-
alledhanging vertex at the bise
ted edge, if this edge does not belong to the outer boundary ofthe triangulation.A relative simple method for mesh re�nement would be a global re�nement of allelements into e.g. k2 uniform sub-elements in su
h a way that ea
h edge would be dividedinto k equidistant edges. But it is apparent that su
h a global re�nement method leadsto a signi�
ant in
rease of 
omputational e�ort and memory 
onsumption with respe
tto a �nite element analysis. Therefore, in order to minimize the 
omputing time and thememory requirements on the one hand and, simultaneously, to maximize the a

ura
yof the �nite element approximation on the other hand, the obje
tive of lo
al re�nementstrategy is to 
onstru
t a mesh as optimal as possible by taking both requests into a

ount(
f. [42℄).Furthermore, parti
ular attention should be paid to the quality of individual elements.A large distortion of a triangle is 
hara
terized by 
onsiderable di�eren
es of its individualside lengths and angles respe
tively. Sin
e large distortions are usually a

ompanied byan higher approximation error, the re�nement method should split the triangles in su
h away that its sub-elements are as equilateral as possible. 37
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0 mm 10 mm 20 mm 30 mm(b)Figure 3.1: On the basis of a 
oarse mesh (a) that represents the s
ala vestibular a re
ursive routine lo
allyre�nes the mesh in order to redu
e the error of the �nite element 
omputations. The spe
i�
 re�nementstrategy is based on an heuristi
 approa
h. The resulting mesh (b) is 
hara
terized by a gradual in
reaseof its density along the basilar membrane until a point is rea
hed where the traveling wave will probably bedissipated.
38



3.1. MESH GENERATIONThe method used in this work for re�ning the 
oarse mesh is based on an initial marking-routine whi
h spe
i�es for ea
h element the number of re�nements that should be performedby the re�nement pro
edure. The typi
al traveling wave motion of the basilar membranedispla
ement (as des
ribed in detail in 
hapter 4.1.3) is a result of its intera
tions withthe adja
ent �uid. Therefore, it 
an be expe
ted that these displa
ement pattern will bere�e
ted in the �uid motion to a 
ertain extent. The signi�
ant in
rease of the amplitudeof the traveling wave up to a maximum at the 
hara
teristi
 pla
e in 
ombination with asubstantial de
rease of its wave length indi
ates that the �u
tuations of the �eld variablesin
rease along the 
o
hlear partition until the 
hara
teristi
 pla
e is rea
hed.Another important aspe
t (as dis
ussed in detail in 
hapter 4.1.4) is that the �eldvariables within the thin Stokes boundary layer next to the basilar membrane should bea

urately approximated by the �nite element spa
e. A

ording to Lighthill [26℄, thethi
kness of this Stokes boundary layer 
an be estimated to range from about 10µm to
400µm in dependen
e of the stimulation frequen
y of audible sound.On the basis of these heuristi
 arguments, the number of re�nements of the elementsnext to the basilar membrane is gradually in
reased along the partition until a spe
i�
lo
ation is rea
hed. This lo
ation is spe
i�ed by the expe
ted de
ay of the traveling wave,whi
h 
an be estimated by using the frequen
y-position map from Greenwood [18℄ asdes
ribed in 
hapter 4.1.3.After the elements have been marked a

ording to the strategy des
ribed above, there�nement algorithm 
an be performed. In doing this, the mesh is repeatedly traverseduntil no element of the mesh is marked anymore by a positive re�nement number. At ea
helement, whi
h is labelled with a positive re�nement number, a subroutine is 
alled for thepurpose of performing a lo
al re�nement. If ne
essary, not only the triangle itself, but alsoelements in the neighbourhood have to be re�ned in su
h way that the regularity of themesh is preserved. The re
ursive subroutine used in this work is s
hemati
ally des
ribedin algorithm 3.2 and already provided by the Alberta library [42℄.In order to ensure the quality of the mesh, the splitting of a single triangle is onlyallowed at the midpoint of its longest edge. To avoid a hanging vertex, the algorithm willonly perform a re�nement if the longest edge of the triangle is also the longest edge of itsadja
ent triangle. In this 
ase, both triangles 
an be re�ned simultaneously by using themidpoint of the 
ommon edge as a new vertex of all four sub-elements. Otherwise, theneighbouring triangle must �rst be re�ned until the 
ommon edge is at least as long asboth other sides of the adja
ent triangle. Therefore, the lo
al re�nement pro
edure is are
ursive pro
ess and a single re�nement of an individual triangle 
an entail a lot of otherre�nements of other triangles.An example of the resulting mesh is illustrated in �gure 3.13.1(b). It should be notedthat the meshes that are generated for the �nite element 
al
ulations are, of 
ourse, 
on-siderably �ner than the meshes illustrated in this work.
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CHAPTER 3. IMPLEMENTATIONAlgorithm 3.2 Re
ursive algorithm of the re�nementRequire: mesh M , individual triangle S2 needed to be re�nedEnsure: re�ned mesh1: pro
edure refine(M,S2)2: identify longest edge E of triangle S23: if E belongs not to the boundary of M then4: identify neighbouring triangle S2
′ adja
ent to E5: while S2

′ has a longer edge than E do6: re�ne(M,S2
′)7: identify neighbouring triangle S2

′ adja
ent to E8: end while9: de
rement re�nement number10: split triangles S2 and S2
′ at the 
entre of E11: update M12: else13: de
rement re�nement number14: split triangle S2 at the 
entre of E15: update M16: end if17: end pro
edure3.1.3 Shape of the MeshUp to now, only the upper half of the mesh, whi
h represents the s
ala vestibular, is gener-ated by the re�nement pro
edure of a 
oarse re
tangular triangulation. The mesh 
an nowbe supplemented by re�e
ting ea
h element with respe
t to the longitudinal axis whi
h
ontains the 
o
hlear partition. The advantage of this approa
h is that the arrangementof edges that are adja
ent to the 
o
hlear partition and that belong to the upper du
t isin 
onformity with the arrangement of the edges on the other side of the partition. Al-though there seems to be a 
onne
tion of the mesh through the 
o
hlear partition, theelements above and below the basilar membrane are separated from ea
h other. There-fore, the line segments that are adja
ent to the basilar membrane belong to the outerboundary of the mesh. From the te
hni
al point of view, the line segments at the 
o
hlearpartition must therefore be implemented in dupli
ate in order to represent the boundarybetween the basilar membrane and the s
ala vestibular as well as the boundary betweenthe basilar membrane and the s
ala tympani. In order to 
onne
t both 
hambers at theheli
otrema, the upper and the lower mesh are glued together at the apex. This meansthat the 
orresponding segments and verti
es at the heli
otrema are - in 
ontrast to the
o
hlear partition - shared by both 
hambers. As shown below, this spe
i�
 
on�gurationfa
ilitates the numeri
al implementation of the mutual intera
tions between the basilarmembrane and the �uid at both sides. A positive side e�e
t is that the re�e
tion of there�ned upper part redu
es the 
omputational e�ort, sin
e the expensive re�nement-routine40



3.2. VARIATIONAL FORMULATIONhas only to be performed for the half of the mesh. The supplemented mesh that resultsfrom the re�e
tion as des
ribed above 
an be seen in �gure 3.2(a).Finally, the mesh has to be adapted in su
h a way that the shape of both 
hambers (asalready dis
ussed in 
hapter 2.1) is su�
iently represented by the �uid domain. Therefore,the transversal heights of the s
ala vestibular and s
ala tympani are modi�ed a

ordingto the measurements from Wyso
ki [52℄ by multiplying the verti
al 
oordinates with ap-propriate s
aling fa
tors. As a 
onsequen
e, the boundary is linearly approximated by thetriangular elements. In 
omparison to the model simpli�
ations made above, the errorthat arises due to the linear approximation of the smooth boundaries may be 
onsideredas negligible. The e�e
t of the verti
al s
aling is illustrated in �gure 3.2(b).3.1.4 Basilar Membrane as a SubmeshThe �uid domain is just one 
omponent of the whole 
o
hlea model. In addition to the �uiddomain, also the basilar membrane and its intera
tions with the �uid have to be taken intoa

ount by the numeri
al implementation. As already des
ribed above (
f. 
hapter 2.1),the basilar membrane should be represented by an one-dimensional line between the �uid�lled 
hambers. The additional one-dimensional mesh is 
onstru
ted in su
h a way thatthe individual line segments 
oin
ide with the 
orresponding boundary edges of the �uiddomain. In summary, the 
o
hlear partition 
onsists of three di�erent virtual "layers" ofthe same line-segments. The �rst two layers are asso
iated with the �uid domain and a
t asthe boundaries between the 
o
hlear partition and the lower 
hamber or, respe
tively, theupper 
hamber. The third layer represents the basilar membrane for the implementationof its physi
al properties. The identi
al arrangement of ea
h layer with respe
t to thelo
ation and width of ea
h line segment is not mandatory, but it signi�
antly simpli�es thenumeri
al realization of the �uid stru
ture intera
tion. Therefore, the basilar membrane
an in prin
iple implemented as a submesh of the �uid domain, sin
e its set of verti
es isa subset of the verti
es that belong to the �uid mesh.3.2 Variational FormulationThe �nite element method is based on the variational formulation of the boundary valueproblem. The derivation of the variational formulation 
an be divided into three steps:1. In the �rst step, the partial di�erential equations of the boundary value problemmust be multiplied with test-fun
tions. In this 
ontext, the test-fun
tions have tobe 
hosen in su
h a way that they are in agreement with the respe
tive boundary-
onditions.2. After that, the resultant statements must be integrated over the domain of interest.3. If possible, the requirements 
on
erning the di�erentiability of individual �eld vari-ables should be �nally weakened by applying Green's �rst identity . 41
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0 mm 10 mm 20 mm 30 mm(b)Figure 3.2: (a) The dis
retization of the �uid domain 
an be supplemented by re�e
ting the upper half ofthe mesh with respe
t to the longitudinal axis. In 
ontrast to the 
o
hlear partition, where both parts of themesh are separated from ea
h other, the mesh has to be 
onne
ted at the heli
otrema. (b) On the basis ofthe measurements from Wyso
ki [52℄, the shape of the 
o
hlea 
an be linearly approximated by applying as
aling pro
edure with respe
t to the verti
al axis.
42



3.2. VARIATIONAL FORMULATIONAs 
an be seen from the stru
ture of this se
tion, the di�erent weak forms 
an beasso
iated with the individual 
omponents of the 
o
hlear model as illustrated in �gure1.3.For reasons of simpli
ity this 
hapter uses the Einstein summation 
onvention for es-tablishing the weak forms. Therefore, all terms, where an index o

urs twi
e, are to beunderstood as the summation of the term over all possible values intended for this index.3.2.1 The First Order SystemA
ousti
 Subproblem The �uid dynami
s of the �rst order problem 
an be mainlydes
ribed by the �rst order 
onservation equations of mass 2.22 and linear momentum2.23. The weak form of the �rst order equation of the 
onservation of momentum is givenby
ρ(0)

∫

Ω
v̄i

∂v(1)i

∂t
dx+

∫

Ω

∂v̄i

∂xj

σ(1)ij dx−
∫

Γ
v̄iσ

(1)
ij nj dx = 0 (3.5)where the line above a variable indi
ates the test-fun
tions. Due to the boundary 
ondition2.15, the boundary integral vanishes. A

ording to the spe
i�
ation of the stress tensor2.7, the se
ond integral 
an be expanded to

∫

Ω

∂v̄i

∂xj

σ(1)ij dx = η

∫

Ω

∂v̄i

∂xj

(∂v(1)i

∂xj

+
∂v(1)j

∂xi

)

dx

+ (ζ − 2

3
η)

∫

Ω
δij
∂v̄i

∂xj

∂v(1)k

∂xk

dx−
∫

Ω
δij
∂v̄i

∂xj

p(1) dx. (3.6)
In order to unify the presentation of the spatial dis
retization pro
ess, it is 
onvenientto use a more general (and abstra
t) notation of the variational formulation. In prin
iple,the weak form 
an be interpreted as the sum of di�erent bilinear mappings (whi
h will alsoreferred to as dual pairs) of the type

〈·, ·〉 : V g∗× V g → R (3.7)where V g denotes the underlying fun
tion spa
e with regard to the �eld variable g and
V g∗ represents its asso
iated dual spa
e. Thereby, the �rst argument (the element ofthe dual spa
e) arises from a linear mapping Kgh ∈ L(V h, V g∗), Hgh ∈ L(V ḣ, V g∗) or
Mgh ∈ L(V ḧ, V g∗) that will be applied on a fun
tion h ∈ V h or on its �rst or se
ond timederivative respe
tively. In 
onformity with this notation, the variational formulation 3.5,43



CHAPTER 3. IMPLEMENTATIONwhi
h is expanded by the use of equation 3.6, 
an therefore be rewritten as
〈Hv1v1v̇(1)1 , v̄1〉V v1∗×V v1 + 〈Hv2v2v̇(1)2 , v̄2〉V v2∗×V v2+

〈Kv1v1v(1)1 , v̄1〉V v1∗×V v1 + 〈Kv2v2v(1)2 , v̄2〉V v2∗×V v2+

〈Kv1v2v(1)2 , v̄1〉V v1∗×V v1 + 〈Kv2v1v(1)1 , v̄2〉V v2∗×V v2+

〈Kv1pp(1), v̄1〉V v1∗×V v1 + 〈Kv2pp(1), v̄2〉V v2∗×V v2 = 0

(3.8)where the subs
ript of ea
h dual pair indi
ates the respe
tive spa
es that are used by thebilinear mapping. The individual fun
tion spa
es are spe
i�ed in 
hapter 3.3.The �rst order equation that des
ribes the balan
e of mass must also be 
onverted intoits variational formulation, whi
h is given by
1

c02

∫

Ω
p̄
∂p(1)

∂t
dx+ ρ(0)

∫

Ω
p̄
∂v(1)i

∂xi

dx = 0. (3.9)In the same way as des
ribed above, the variational form of the mass balan
e 
an berepresented - by using the dual pair notation - as
〈Hppṗ(1), p̄〉V p∗×V p + 〈Kpv1v(1)1 , p̄〉V p∗×V p + 〈Kpv2v(1)2 , p̄〉V p∗×V p = 0. (3.10)Basilar Membrane In this work, the passive dynami
s of the 
o
hlear partition arerepresented by the di�erential equation 2.30. Its variational formulation 
an be evaluatedto

∫

Γbm

mξ̄
∂2ξ

∂t2
dx+

∫

Γbm

ηlonA
∂ξ̄

∂x

∂2ξ

∂x∂t
dx+

∫

Γbm

heξ̄
∂ξ

∂t
dx+

∫

Γbm

kξ̄ξ dx =

∫

Γbm

ξ̄f dx

(3.11)where the for
e-term on the right hand side 
an be written as
∫

Γbm

ξ̄f dx =

∫

Γbm

wbmξ̄p
(1)∣∣

x=(x,+0)
dx

−
∫

Γbm

wbmξ̄p
(1)∣∣

x=(x,−0)
dx+

∫

Γbm

αβξ̄ζ dx. (3.12)Similar to above, the weak form 
an now be transformed into a generalized statement,whi
h 
onsist of di�erent dual pairs:
〈M ξξξ̈, ξ̄〉V ξ∗×V ξ + 〈Hξξξ̇, ξ̄〉V ξ∗×V ξ +

〈Kξξξ, ξ̄〉V ξ∗×V ξ + 〈Kξpp(1), ξ̄〉V ξ∗×V ξ+

〈Kξζζ, ξ̄〉V ξ∗×V ξ = 0. (3.13)44



3.2. VARIATIONAL FORMULATIONOuter Hair Cell Motility The additional for
e ϑ that might be applied by the outer-hair-
ell motility and that a
ts as an additional load on the basilar membrane 
an bespe
i�ed on the basis of the hair bundle de�e
tion des
ribed by equation 2.36. A

ording tothe strategy mentioned above, the weak form of this di�erential equation 
an be 
al
ulatedto
∫

Γbm

mtmζ̄
∂2ζ

∂t2
dx+

∫

Γbm

htmζ̄
∂ζ

∂t
dx+

∫

Γbm

ktmζ̄ζ dx =

∫

Γbm

gtmmtmζ̄
∂2ξ

∂t2
dx. (3.14)If ea
h integral is understood as a bilinear form, the variational formulation 
an be writtenas

〈M ζζζ̈ , ζ̄〉V ζ∗×V ζ + 〈Hζζζ̇ , ζ̄〉V ζ∗×V ζ +

〈Kζζζ, ζ̄〉V ζ∗×V ζ + 〈M ζξξ̈, ζ̄〉V ζ∗×V ζ = 0. (3.15)It is important to note that, in 
ontrast to the �uid-vis
osity 
oe�
ients η and ζ andthe small signal sound speed c0 whi
h are assumed to be 
onstant in the present study,most of the 
oe�
ients, used for the representation of the basilar membrane and the outerhair 
ell motility, are assumed to vary along the longitudinal axis. As a 
onsequen
e, thenon-
onstant 
oe�
ients must be expli
itly taken into a

ount by performing a numeri
alquadrature (
f. 
hapter 3.4.4).3.2.2 The Se
ond Order SystemSimilar to the �rst order problem, the �uid-dynami
s of the a
ousti
 streaming subproblem
an be 
onverted into a variational formulation by using the mean se
ond order equationof the momentum 
onservation 2.48. Its variational formulation is given by
∫

Ω
δij
∂v̄i

∂xj

p(dc) dx+ η

∫

Ω

∂v̄i

∂xj

(∂v(dc)i

∂xj

+
∂v(dc)j

∂xi

)

dx

+ (ζ − 2

3
η)

∫

Ω
δij
∂v̄i

∂xj

∂v(dc)k

∂xk

dx =

∫

Ω
v̄if̃ i dx. (3.16)The generalized formulation of this weak form 
an be written as

〈Gv1v1v(dc)1 , v̄1〉W v1∗×W v1 + 〈Gv2v2v(dc)2 , v̄2〉W v2∗×W v2+

〈Gv1v2v(dc)2 , v̄1〉W v1∗×W v1 + 〈Gv2v1v(dc)1 , v̄2〉W v2∗×W v2+

〈Gv1pp(dc), v̄1〉W v1∗×W v1 + 〈Gv2pp(dc), v̄2〉W v2∗×W v2 =

〈Sv1, v̄1〉W v1∗×W v1 + 〈Sv2, v̄2〉W v2∗×W v2

(3.17)45



CHAPTER 3. IMPLEMENTATIONwhere a set of di�erent dual pairs need to be introdu
ed. The for
e-sour
e-distribution f̃is represented by the dual elements Svi ∈W vi∗.The weak form of the mean se
ond order equation 2.46, whi
h was originally dedu
edfrom the balan
e of mass equation, 
an be evaluated to
ρ(0)

∫

Ω
p̄
∂v(dc)i

∂xi

dx =

∫

Ω
p̄m̃ dx. (3.18)A

ording to the other weak forms, this variational formulation 
an also be 
onverted intoits uniform version

〈Gpv1v(dc)1 , p̄〉W p∗×W p + 〈Gpv2v(dc)2 , p̄〉W p∗×W p = 〈Sp, p̄〉W p∗×W p (3.19)where Sp ∈W p∗ is asso
iated with the mass-sour
e-distribution m̃.3.3 Fun
tion Spa
es3.3.1 Spatial Solution Spa
esThe 
onstru
tion of the �nite element spa
es must be based on the stru
ture of the 
orre
tsolution spa
es of the individual �eld variables. This work uses an approa
h that appliesdi�erent dis
retization te
hniques with respe
t to the spatial and the temporal variables.For the examination of the spatial solution spa
e, the time variable is assumed to be �xedto a spe
i�
 time. Then, the a
tual state of the system 
an be des
ribed on the basis ofsolution spa
es that only take the spatial dimensions into a

ount. For a more generalized
onsideration of the solution spa
es that also take the time-dependen
e into a

ount seee.g. [24℄.Due to the 
omposition of the individual bilinear forms that 
onstitute the variationalformulation, it seems to be obvious to de�ne the solution spa
e as the spa
e that 
onsistsof all smooth fun
tions f ∈ C∞(Ω) of whi
h all partial derivatives up to an order k aswell as the fun
tion itself are square-integrable fun
tions (and therefore a member of theLebesgue-spa
e L2(Ω)). In doing so, the number k depends on the order of derivativesthat 
an be found within their asso
iated bilinear forms. But it has been shown that thisfun
tion spa
e is too small for the representation of solutions that arise from problems thatare des
ribed by a variational formulation of partial di�erential equations. (
f. e.g. [23℄)From the topologi
al point of view, the 
orre
t solution spa
e 
an be established by the
ompletion of this fun
tion spa
e with respe
t to the so-
alled Sobolev-norm, whi
h 
an bewritten as
‖g‖k :=

(
∑

|α|≤k

‖∂αg‖0
) 1

2 (3.20)46



3.3. FUNCTION SPACESThe supers
ript α is asso
iated with the multi-index notation whi
h allows a simple repre-sentation of di�erent di�erential operators. This fun
tion spa
e is well-known as Sobolev-spa
e Hk and sin
e the Sobolev-spa
e is 
omplete with respe
t to the norm ‖ · ‖k, it
onstitutes a Bana
h spa
e. The fun
tions of the Sobolev-spa
e 
an be 
hara
terized byits weak derivatives. In this 
ontext, a fun
tion h ∈ L2(Ω) is referred to as weak derivativewith respe
t to the multi-index α of the fun
tion g ∈ L2(Ω), if
∫

Ω
gϕ dx = (−1)|α|

∫

Ω
h∂αϕ dx (3.21)holds for all ϕ ∈ C∞

0 (Ω). Then, it 
an be shown (
f. e.g. [23℄) that a fun
tion is anelement of the Sobolev-spa
e Hk if and only if its weak derivatives up to the order k andthe fun
tion itself are elements of the Lebesgue spa
e L2(Ω).The fun
tion spa
es of the individual �eld variables 
an be identi�ed on the basis of theresultant bilinear forms that are 
onstituted by the variational formulations. By taking thespe
i�
 boundary 
onditions into a

ount, the fun
tion spa
es of the longitudinal velo
ity
omponent are given by
V v1 =

{

v1 ∈ H
1(Ω)

∣
∣
∣
∣
v1(x) =

∂ξow

∂t
for all x ∈ Γow,

v1(x) = 0 for all x ∈ Γr ∪ Γbm+ ∪ Γbm−

}, (3.22)
V v̇1 = L2(Ω). (3.23)In the 
ontext of the Sobolev-spa
es, a spe
i�
ation of fun
tion values at the boundarydoes not make sense, sin
e the d-dimensional Lebesgue measure of the boundary is zero.In order to over
ome this di�
ulty, it has been shown (
f. e.g. [23℄) that under 
ertain
onditions regarding the domain Ω, a H1(Ω)-fun
tion 
an be uniquely extended by meansof the linear tra
e operator

T : (H1(Ω), ‖ · ‖1)→ (L2(δΩ), ‖ · ‖0). (3.24)Therefore, if the fun
tion-values at the boundary domain are interpreted as a square-integrable and d − 1-measurable fun
tion, the Diri
hlet-
ondition 
an be established byusing the tra
e-operator T.1 But for reasons of simpli
ity, the tra
e operator will not beexpli
itly stated in the 
ontext of the de
laration of the Diri
hlet 
onditions.By adapting the respe
tive boundary 
onditions, the fun
tion spa
es of the verti
al1In prin
iple, the tra
e theorem 
an not be applied on the 
o
hlea domain in its 
urrent form, sin
e thedomain does not ful�ll the requirements of a so-
alled Lips
hitz domain. But the domain 
an be simplytransformed into a Lips
hitz domain by inserting a thin gap between the upper boundary of the basilarmembrane and its lower 
ounterpart. 47



CHAPTER 3. IMPLEMENTATIONvelo
ity 
omponent 
an be written as
V v2 =

{

v2 ∈ H
1(Ω)

∣
∣
∣
∣
v2(x) =

∂ξ

∂t
for all x ∈ Γbm+ ∪ Γbm−,

v1(x) = 0 for all x ∈ Γr ∪ Γow ∪ Γrw

}, (3.25)
V v̇2 = L2(Ω). (3.26)Sin
e the integrals of the variational formulations that are asso
iated with the pressure donot 
ontain any spatial derivatives of the pressure variable, the pressure �eld as well as itstime-derivative 
an be represented by an element of the fun
tion spa
e

V p = V ṗ = L2(Ω). (3.27)So far, only the fun
tion spa
es of the �elds that des
ribe the �uid dynami
s have been
onsidered. In a similar way, also fun
tion spa
es of the �elds that are asso
iated with thebasilar membrane displa
ement and hair bundle de�e
tion 
an be introdu
ed. In 
ontrastto the velo
ity and the pressure �eld, the domain of the fun
tions that are asso
iated withthe dynami
s of the basilar membrane is a one-dimensional sub-spa
e. On the basis of theweak form 3.11, the fun
tion spa
es of the basilar membrane displa
ement and its temporalderivatives are given by
V ξ = V ξ̈ = L2(Γbm), (3.28)

V ξ̇ = H1(Γbm). (3.29)The variational formulation of the di�erential equation that des
ribes the hair bundlede�e
tion implies that the respe
tive fun
tion spa
es 
an be written as
V ζ = V ζ̇ = V ζ̈ = L2(Γbm). (3.30)The a
ousti
 streaming subproblem 
onstitutes a stationary problem. Therefore, thesolution does not depend on the time. On the basis of the variational formulation, thefun
tion spa
es of the velo
ity 
omponents 
an be written as

W v1 =

{

v1 ∈ H
1(Ω)

∣
∣
∣
∣
v1(x) = v(dc)1 for all x ∈ Γ

}, (3.31)
W v2 =

{

v2 ∈ H
1(Ω)

∣
∣
∣
∣
v2(x) = v(dc)2 for all x ∈ Γ

} (3.32)where the mean velo
ity 
omponent v
(dc) at the boundaries 
an be evaluated from theboundary 
ondition 2.52 whi
h bases on the results of the �rst order a
ousti
 subproblem.Similar to the a
ousti
 system, the variational formulation of the se
ondary system doesnot 
onsist on spatial derivatives of the pressure variable. Therefore, the pressure 
an berepresented by an element of the fun
tion spa
e
W p = L2(Ω). (3.33)48
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(b)Figure 3.3: Arrangement of the lo
al nodes and their respe
tive bary
entri
 
oordinates on (a) line-segments as well as (b) triangular elements. Nodes that are asso
iated with fun
tion spa
es of polynomialsof degree at most two are marked by bla
k dots. The hollow pentagons indi
ate the nodes in the 
ase offun
tion spa
es that are 
onstru
ted on the basis of polynomials of degree at most one.3.3.2 Lo
al Finite Element Spa
esAs part of the dis
retization pro
ess the in�nite-dimensional solution spa
es (as spe
i�edabove) have to be repla
ed by appropriate �nite-dimensional subspa
es. The usual ap-proa
h for the 
onstru
tion of su
h �nite-dimensional subspa
es in the 
ontext of the �niteelement method is based on �nite-dimensional lo
al fun
tion spa
es whi
h are de�ned onea
h individual simplex of the mesh. These lo
al fun
tion spa
es may then be 
ombined insu
h a way that the resultant global �nite-dimensional spa
e is a subspa
e of the solutionspa
e.In most 
ases, the �eld variables on a single simplex 
an be approximated with su�
ienta

ura
y by using polynomials of degree at most a number d. It is quite obvious thatsu
h a polynomial (restri
ted to a single simplex S) is an element of the Sobolev-Spa
e
H1(S). It has been shown (
f. e.g. [23℄) that a global fun
tion 
omposed of individuallo
al polynomials is an element of the Sobolev-Spa
e H1(M) if and only if the globalfun
tion is a 
ontinuous fun
tion on M . Therefore, the overall fun
tion does not need tobe 
ontinuously di�erentiable a
ross the edges of the simpli
es. In 
ontrast to the othervariables, the pressure is an element of the less restri
tive spa
e L2. As a 
onsequen
e, theglobal fun
tion spa
e that is used for the approximation of the pressure �eld does not evenneed to be 
ontinuous a
ross the simplex-borders.Of 
ourse, it would be possible to spe
ify ea
h lo
al polynomial by using its respe
tive
oe�
ients as degrees of freedom. But this approa
h would not be very useful, sin
e theglobal 
ontinuity 
ondition 
an not be dire
tly taken into a

ount. In the 
ontext of the�nite element method, the lo
al fun
tions are usually determined by the spe
i�
ation of its49



CHAPTER 3. IMPLEMENTATIONAsso
iated Node Lo
al Basis Fun
tion
β
0
(bar) = (1, 0) L0

(bar)(S
1
(bar)) := β0

β
1
(bar) = (0, 1) L1

(bar)(S
1
(bar)) := β1Table 3.1: Basis fun
tions on line segments that span the spa
e of polynomials of degree at most one (
f.[42℄). Ea
h basis fun
tion 
an be asso
iated with a 
ertain node where it doesn't vanish.fun
tion values and/or spatial derivatives at a number of individual distin
t points (alsoreferred to as nodes) within the simplex.Sin
e all �eld variables that are needed in the 
ontext of the 
o
hlear model presentedhere do not need to be 
ontinuously di�erentiable at the edges of the simpli
es, it issu�
ient to use elements of the well-known Lagrange family . The Lagrange elements are
hara
terized by solving the interpolation problem that spe
i�es only the fun
tion values(and not the spatial derivatives) at ea
h node. There are two properties that are essentialfor the appli
ation of the Lagrange elements in the 
ontext of the �nite element method:(1) The polynomial is well-de�ned by the fun
tion values at the nodes of a 
ertain sim-plex.(2) The polynomial restri
ted to any sub-simplex is well-de�ned by the fun
tion valuesat the nodes of the 
ertain sub-simplex.The interpolation fun
tions of the Lagrange family are polynomials of up to degree

k. The spa
e of these polynomials 
an be naturally identi�ed with the Eu
lidean spa
e
R
p, where the dimension p of this spa
e is given by the binomial 
oe�
ient (d+kk ). Theinterpolation problem 
an now be interpreted as a mapping from the Eu
lidean spa
e R

q,whi
h serves as a representation of the fun
tion values at the q nodes, into the polynomialspa
e mentioned above. In this 
ontext, it be
omes apparent that the number of nodes mustnot ex
eed the dimension of the polynomial spa
e in order to ensure that the interpolationproblem is solvable and furthermore that this solution is also well-de�ned. On the basisof the de
laration of a set of polynomials N i that belong to the Lagrange family and thatare 
hara
terized by the 
ondition
N i(nj) = δij (3.34)for all nodes nj the mapping 
an be simply spe
i�ed by an appropriate linear 
ombinationof these basis fun
tions. In this 
ase, the resultant interpolation fun
tion also 
omplies withproperty (1), sin
e this kind of mapping ensures the existen
e as well as the uniquenessof the interpolating polynomial. By the restri
tion on an arbitrary sub-simplex, the sameline of argument 
an be used to show property (2). (
f. [23℄)In this work, polynomials of degree at most one (for the for
e-like variables) and atmost two (for velo
ity or displa
ement-like variables) are used. In order to distinguishboth types of lo
al fun
tion spa
es with regard to their maximal polynomial degree, therespe
tive spa
e will be referred to as linear or quadrati
. The arrangement of the nodes50



3.3. FUNCTION SPACESAsso
iated Node Lo
al Basis Fun
tion
β
0
(bar) = (1, 0) Q0

(bar)(S
1
(bar)) := (2β0− 1)β0

β
1
(bar) = (0, 1) Q1

(bar)(S
1
(bar)) := (2β1− 1)β1

β
2
(bar) = (12 ,

1
2 ) Q2

(bar)(S
1
(bar)) := 4β0β1Table 3.2: Basis fun
tions on line segments that span the spa
e of polynomials of degree at most two (
f.[42℄). Ea
h basis fun
tion 
an be asso
iated with a 
ertain node where it doesn't vanish.Asso
iated Node Lo
al Basis Fun
tion

β
0
(bar) = (1, 0, 0) L0

(bar)(S
2
(bar)) := β0

β
1
(bar) = (0, 1, 0) L1

(bar)(S
2
(bar)) := β1

β
2
(bar) = (0, 0, 1) L2

(bar)(S
2
(bar)) := β2Table 3.3: Basis fun
tions on triangular elements that span the spa
e of polynomials of degree at mostone (
f. [42℄). Ea
h basis fun
tion 
an be asso
iated with a 
ertain node where it doesn't vanish.in the linear 
ase as well as the quadrati
 
ase for both line-segments and triangles isillustrated in �gure 3.3. The respe
tive set of basis fun
tions that 
omply with equation3.34 are listed in the tables 3.1, 3.2, 3.3 and 3.4 with respe
t to the bary
entri
 referen
esystem.Ea
h linear and quadrati
 basis fun
tion with respe
t to a spe
i�
 simplex is thende�ned as

Li(Sd) := Li(bar)(S
d
(bar)) ◦ β(x), (3.35)

Qi(Sd) := Qi(bar)(S
d
(bar)) ◦ β(x). (3.36)The lo
al fun
tion spa
es for the linear and the quadrati
 
ase are now given by

L(Sd) := span
{
Li(Sd) | i = 1, 2, ...

}, (3.37)
Q(Sd) := span

{
Qi(Sd) | i = 1, 2, ...

}. (3.38)3.3.3 Global Finite Element Spa
esAs mentioned above, it is ne
essary to ensure that the global fun
tions are 
ontinuousa
ross the edges of the simpli
es in order to guarantee that the Sobolev-spa
es 
ontain theresultant fun
tions. In terms of a mathemati
al formulation, the overall linear fun
tionspa
e with respe
t to the �uid-domain 
an be stated as
L(MΩ) : =

{

f ∈ C0(MΩ)

∣
∣
∣
∣
∀S2 ∈MΩ : f |S2 ∈ L(S2)

}

= span

{

LΩ
1 , L

Ω
2 , ..., L

Ω
dimL(MΩ)

} (3.39)51



CHAPTER 3. IMPLEMENTATIONAsso
iated Node Lo
al Basis Fun
tion
β
0
(bar) = (1, 0, 0) Q0

(bar)(S
2
(bar)) := (2β0− 1)β0

β
1
(bar) = (0, 1, 0) Q1

(bar)(S
2
(bar)) := (2β1− 1)β1

β
2
(bar) = (0, 0, 1) Q2

(bar)(S
2
(bar)) := (2β2− 1)β2

β
3
(bar) = (0, 12 ,

1
2 ) Q3

(bar)(S
2
(bar)) := 4β1β2

β
4
(bar) = (12 , 0,

1
2 ) Q4

(bar)(S
2
(bar)) := 4β0β2

β
5
(bar) = (12 ,

1
2 , 0) Q5

(bar)(S
2
(bar)) := 4β0β1Table 3.4: Basis fun
tions on triangular elements that span the spa
e of polynomials of degree at mosttwo (
f. [42℄). Ea
h basis fun
tion 
an be asso
iated with a 
ertain node where it doesn't vanish.where the fun
tions LΩ

i establish a basis of the global fun
tion spa
e and will be spe
i�edbelow. In the same way, the overall quadrati
 fun
tion spa
e 
an be represented by
Q(MΩ) : =

{

f ∈ C0(MΩ)

∣
∣
∣
∣
∀S2 ∈MΩ : f |S2 ∈ Q(S2)

}

= span

{

QΩ
1 , Q

Ω
2 , ..., Q

Ω
dimQ(MΩ)

} (3.40)The 
ontinuity 
ondition involves the ne
essity that all fun
tion values at those lo
al nodesthat are positioned at the same lo
ation but belong to di�erent simpli
es are identi
al.Then, the 
ontinuity 
ondition 
an be guaranteed due to the interpolation 
ondition (2)as mentioned above. Therefore, it is useful to join these adja
ent lo
al nodes to a 
ommonglobal node. From a mathemati
al point of view, a global node 
onstitutes an equivalen
e
lass of the set of all lo
al nodes of a mesh. In this 
ontext, two nodes are members of thesame equivalen
e 
lass if and only if both nodes 
an be represented by identi
al bary
entri

oordinates with respe
t to a 
ommon sub-simplex (to whi
h both nodes belong).For the implementation, it is useful to label ea
h global node and ea
h global basisfun
tion by an index. Therefore, let
IL(M

Ω) :=
{
i ∈ N

∣
∣ 1 ≤ i ≤ dimL(MΩ)

}, (3.41)
IQ(MΩ) :=

{
i ∈ N

∣
∣ 1 ≤ i ≤ dimQ(MΩ)

} (3.42)be the index-families that are asso
iated with the global linear and the global quadrati
fun
tion spa
es. If ea
h global node is uniquely labelled by su
h an index, the basisfun
tions LΩ
i or QΩ

i respe
tively of the global fun
tion spa
es 
an be de�ned indire
tly by
LΩ
i (nj) = δij for all j ∈ IL(M

Ω), (3.43)
QΩ
i (nj) = δij for all j ∈ IQ(MΩ) (3.44)with nj being the global node that a
ts as a representative for all lo
al nodes that belongto this global node. The uniqueness of these basis-fun
tions is a dire
t 
onsequen
e of theinterpolation 
ondition (1). In the same way, similar global fun
tion spa
es with regard to52



3.4. SPATIAL DISCRETIZATIONthe basilar membrane domain 
an be established. The fun
tion spa
e of pie
ewise linearfun
tions on individual line-segments of the basilar membrane is given by
L(MΓbm) : =

{

f ∈ C0(MΓbm)

∣
∣
∣
∣
∀S1 ∈MΓbm : f |S1 ∈ L(S1)

}

= span

{

LΓbm

1 , LΓbm

2 , ..., L
Γbm

dimL(MΓbm)

}. (3.45)The fun
tion spa
e that uses pie
ewise quadrati
 polynomials 
an be written as
Q(MΓbm) : =

{

f ∈ C0(MΓbm)

∣
∣
∣
∣
∀S1 ∈MΓbm : f |S1 ∈ Q(S1)

}

= span

{

QΓbm

1 , QΓbm

2 , ..., Q
Γbm

dimQ(MΓbm)

}. (3.46)As in the 
ase of the global nodes that are asso
iated with the �uid domain, ea
h globalnode of the basilar membrane domain is indi
ated by a unique number. The indi
es of aglobal node and the basis fun
tions are 
hosen in su
h a way that the following relationshold:
LΓbm

i (nj) = δij for all j ∈ IL(M
Γbm), (3.47)

QΓbm

i (nj) = δij for all j ∈ IQ(MΓbm). (3.48)For the assembly of the matri
es that are used to represent the dis
retized system it isimportant to use an in
reasing set of numbers for the index families used in the previousequations. Therefore, these index families are given by
IL(M

Γbm) :=
{
i ∈ N

∣
∣ 1 ≤ i ≤ dimL(MΓbm)

}, (3.49)
IQ(MΓbm) :=

{
i ∈ N

∣
∣ 1 ≤ i ≤ dimQ(MΓbm)

}. (3.50)Furthermore, it is useful to 
ombine the respe
tive basis fun
tions of the global �niteelement spa
es LΩ
i , QΩ

i , LΓbm

i and QΓbm

i into the 
ommon ve
tors LΩ, QΩ, LΓbm and Q
Γbm.3.4 Spatial Dis
retization3.4.1 The First Order SystemA
ousti
 Subproblem In the last 
hapter the spatial solution spa
es of the individ-ual physi
al �eld variables have been introdu
ed. As part of the dis
retization pro
ess,these in�nite dimensional fun
tion spa
es are repla
ed by the global �nite element spa
es,presented in 
hapter 3.3.3. In this 
ontext, the individual s
alar solution fun
tions are ap-proximated by the linear 
ombination of the respe
tive basis fun
tions. In this work, thetwo 
omponents of the velo
ity �eld as well as its �rst time derivatives are represented by53



CHAPTER 3. IMPLEMENTATIONthe quadrati
 �nite element fun
tions Q with respe
t to the two-dimensional �uid domain
Ω. Therefore, the individual velo
ity 
omponents 
an be written as

v(1)1 ≈ v̂
(1)
1 ·Q

Ω, v(1)2 ≈ v̂
(1)
2 ·Q

Ω,
v̇(1)1 ≈ ˙̂v(1)

1 ·Q
Ω, v̇(1)2 ≈ ˙̂v(1)

2 ·Q
Ω, (3.51)where the hat-symbol above a variable refers to a nodal ve
tor. A single 
omponent ofa nodal ve
tor is 
hara
terized by its 
onne
tion to a spe
i�
 global node. A

ording tothe linear 
ombination it be
omes obvious that the fun
tion value at a spe
i�
 node ofthe resultant approximation fun
tion is identi
al to the asso
iated 
omponent of the nodalve
tor.It has been shown that the right 
hoi
e of the �nite element spa
es of the mixed systemthat takes the velo
ity �eld as well as the pressure �eld into a

ount has a major in�uen
eon the stability, a

ura
y and 
onvergen
e of the simulation pro
ess (
f. [36℄). If the basisfun
tions of the pressure �eld are, for example, 
hosen in su
h a way that their polynomialdegree is identi
al to the order of the basis fun
tions that are used to represent the velo
ity,the system will be
ome - in a 
ertain way - over
onstrained. As a 
onsequen
e, a signi�
antspatial os
illation of the pressure fun
tion 
an be observed. In 
ontrast, a stable system
an be a
hieved by ful�lling the so-
alled Ladyzhenskaya-Babuska-Brezzi (LBB) 
ondition,whi
h 
an be written as

inf
p∈V p\{0}

sup
v∈V v\{0}

〈Kpv1v1, p〉 + 〈K
pv2v2, p〉

‖p‖0‖v‖1
> c (3.52)where V

v = V v1 × V v2 and c > 0 is referred to a 
onstant. The validity of the LBB
ondition has not only to be veri�ed for fun
tions of the underlying solution spa
e (as e.g.shown by [24℄), but also for the dis
retized �nite element spa
es. In order to ensure that theLBB-
ondition is also valid for the dis
retized �nite element spa
es, it has been shown thatthe maximal polynomial degree of the basis fun
tions that are used for representing thepressure �eld has to be at least one order lower than the respe
tive basis fun
tions of thevelo
ity 
omponents (
f. [36℄). Therefore, sin
e the velo
ity 
omponents are approximatedby the use of quadrati
 basis fun
tions, the fun
tion spa
e of the pressure �eld is 
onstitutedby basis fun
tions that are pie
ewise linear:
p(1) ≈ p̂

(1) · LΩ, ṗ(1) ≈ ˙̂p(1) · LΩ. (3.53)Up to now, the dis
retized fun
tion spa
es of the velo
ity �elds do not 
onsider the bound-ary 
onditions. The Diri
hlet 
ondition 
an be implemented by the spe
i�
ation of therespe
tive fun
tion values at the boundary nodes. Therefore, it is useful to introdu
e a set54



3.4. SPATIAL DISCRETIZATIONof di�erent index families in order to realize the boundary 
onditions:
BL(MΓbm+ )⊂ IL(M

Ω), BQ(MΓbm+)⊂ IQ(MΩ),
BL(MΓbm−)⊂ IL(M

Ω), BQ(MΓbm−)⊂ IQ(MΩ),
BL(MΓow ) ⊂ IL(M

Ω), BQ(MΓow ) ⊂ IQ(MΩ),
BL(MΓrw ) ⊂ IL(M

Ω), BQ(MΓrw ) ⊂ IQ(MΩ),
BL(MΓr ) ⊂ IL(M

Ω), BQ(MΓr) ⊂ IQ(MΩ). (3.54)
Ea
h family is a subset either of the linear or the quadrati
 �nite element fun
tion spa
e.An index i is an element of one of these subsets if its asso
iated node ni belongs to therespe
tive boundary. Due to the 
onstru
tion of the mesh of the �uid domain in 
onne
tionwith the line-segments of the 
o
hlear partition (
f. se
tion 3.1.4), the nodes of the basilarmembrane (in the linear as well as in the quadrati
 
ase) 
an be linked to the adja
entboundary nodes of the �uid domain. The various mappings from the nodes of the basilarmembrane to the nodes that belong either to the upper du
t or to the lower 
hamber ofthe 
o
hlear model are illustrated by the following s
heme:

BL(MΓbm+ ) BQ(MΓbm+ )

IL(M
Γbm) IQ(MΓbm)

BL(MΓbm−) BQ(MΓbm− )

ϕ

φb+

φb−

ψb+

ψb− . (3.55)These mappings 
onstitute bije
tions ex
ept of the fun
tion ϕ whi
h is only an inje
tivefun
tion sin
e the quadrati
 basis fun
tions need additional nodes in the middle of ea
hsimplex. For reasons of simpli
ity, di�erent sets of boundary nodes 
an be 
ombined into asingle set for whi
h the Diri
hlet 
ondition must be applied. Sin
e the Diri
hlet 
onditionsof the �rst velo
ity 
omponent di�ers from the se
ond velo
ity 
omponent, two di�erentsets of nodes have to be established:
Bv1(1) = BQ(MΓow ) ∪ BQ(MΓbm+) ∪ BQ(MΓbm− ) ∪ BQ(MΓr), (3.56)
Bv2(1) = BQ(MΓow ) ∪ BQ(MΓrw ) ∪ BQ(MΓbm+ ) ∪ BQ(MΓbm− ) ∪ BQ(MΓr). (3.57)As des
ribed in 
hapter 2.3.1, the a
ousti
 subproblem is mainly 
hara
terized by the�rst order equation of the 
onservation of mass and by the �rst order equation of the
onservation of linear momentum in 
ombination with the spe
i�
ation of the stress tensor.This system of di�erential equations 
an be transformed into a semi-dis
retized system by55



CHAPTER 3. IMPLEMENTATIONusing its variational formulation as introdu
ed in 
hapter 3.2.1. As mentioned above, thesystem will initially be dis
retized with respe
t to the spatial dimensions. The temporaldis
retization pro
ess is des
ribed in 
hapter 3.5. The semi-dis
retized system 
an berepresented by using a set of di�erent matri
es. These matri
es 
an be assembled on thebasis of the dual pairs as introdu
ed in 
hapter 3.2. In doing this, ea
h solution spa
e hasto be repla
ed by an appropriate �nite element spa
e. If the test-fun
tions are su

essivelysubstituted by di�erent basis fun
tions of the underlying �nite element spa
e and if the �eldvariables are approximated by using equations 3.51 and 3.53, a linear system of equation
an be established. Before determining the stru
ture of this linear system of equation,the individual matri
es should be introdu
ed. In prin
iple, the matri
es 
an be asso
iatedwith di�erent terms of the original di�erential system of equation. The Newtonian �uidis 
hara
terized by the linear dependen
e between the stress tensor and the deformationtensor (
f. equation 2.7). This stress tensor is implemented in terms of the matri
es Kv1v1,
K
v2v2, Kv1v2, Kv2v1, Kv1p and K

v2p. The �rst two matri
es are given by the followingspe
i�
ations:
Kv1v1
ij =

{

δij if i ∈ Bv1(1)
〈Kv1v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.58)

Kv2v2
ij =

{

δij if i ∈ Bv2(1)
〈Kv2v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.59)At a spe
i�
 node, the Diri
hlet 
ondition 
an be applied by using the Krone
ker deltaoperator δij as it 
an be seen in the �rst row of both matrix-spe
i�
ations. Of 
ourse, the
orresponding fun
tion value must still be spe
i�ed. As it will be shown later, the fun
tionvalue 
an then be set either on the right hand side of the overall system of equation or withinother matri
es in an appropriate way. The matri
es that link both velo
ity 
omponents
an be assembled by using the formulas

Kv1v2
ij =

{

0 if i ∈ Bv1(1)
〈Kv1v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.60)

Kv2v1
ij =

{

0 if i ∈ Bv2(1)
〈Kv2v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.61)In order to preserve the Diri
hlet 
ondition, the respe
tive rows (that are asso
iated witha node that belongs to the Diri
hlet boundary) have to vanish. For the same reasons, the
on�guration of the matri
es that implement the intera
tion with the pressure �eld is givenby

Kv1p
ij =

{

0 if i ∈ Bv1(1)
〈Kv1pLΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.62)

Kv2p
ij =

{

0 if i ∈ Bv2(1)
〈Kv2pLΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.63)56



3.4. SPATIAL DISCRETIZATIONThe prin
iple of the 
onversation of momentum states that the for
e that is applied on a
olle
tion of �uid parti
les and that 
an be represented by the use of the stress tensor isequal to the rate of 
hange of linear momentum (
f. [36℄). In the 
ase of the �rst ordersystem, the time-rate of 
hange of the momentum 
an be dis
retized with the help of thematri
es Hv1v1 and H
v2v2. Its 
omponents 
an be evaluated to
Hv1v1ij =

{

0 if i ∈ Bv1(1)
〈Hv1v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.64)

Hv2v2ij =

{

0 if i ∈ Bv2(1)
〈Hv2v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.65)All terms of the momentum equations are taken into a

ount by the matri
es introdu
edabove. But, the fun
tion values at the Diri
hlet nodes still need to be spe
i�ed. At theoval window, the �rst velo
ity 
omponent is given by the time-derivative of the prede�neddispla
ement of the stapes. Sin
e the longitudinal velo
ity 
omponent vanishes at all othernodes of Bv1(1) and there is no other load that has to be 
onsidered, the right hand sideve
tor of the velo
ity v1 is given by

Fv1i =

{
∂ξow(x)
∂t if i ∈ IQ(MΓow )

0 otherwise . (3.66)Similarly, the se
ond 
omponent of the velo
ity is a�e
ted by the verti
al displa
ementof the basilar membrane. But in 
ontrast to the oval window, the displa
ement of the
o
hlear partition is not prede�ned and it depends on the mutual intera
tion with the �uid.Therefore, the respe
tive fun
tion values at the basilar membrane need to be determinedin dependen
e of the nodal and unknown ve
tor ˙̂
ξ that spe
i�es the �rst time-derivativeof the basilar membrane displa
ement (see below). In doing this, the velo
ity at the node

ni that belongs to either the upper or lower partition boundary 
an be equated with the
omponent ψb+−1(i) of the velo
ity ve
tor ˙̂
ξ in the 
ase of the upper boundary, or withthe 
omponent ψb−−1(i) in the 
ase of the lower boundary respe
tively. This relation 
anbe realized by using a matrix that is given by

Hv2ξij =







−δiψb+(j) if i ∈ BQ(MΓbm+ )

−δiψb−(j) if i ∈ BQ(MΓbm−)

0 otherwise . (3.67)Sin
e the se
ond velo
ity 
omponent vanishes at the other boundaries and sin
e no externalload exists, the right hand ve
tor Fv2 is a null ve
tor. Now, all these matri
es 
an be usedto transform the variational formulation of the balan
e-of-momentum equation into itssemi-dis
retized formulation, whi
h 
an be written as
H
v1v1 ˙̂v(1)

1 +K
v1v1v̂

(1)
1 +K

v1v2v̂
(1)
2 +K

v1pp̂
(1) = F

v1, (3.68)
H
v2v2 ˙̂v(1)

2 +K
v2v1v̂

(1)
1 +K

v2v2v̂
(1)
2 +K

v2pp̂
(1) +H

v2ξ ˙̂ξ = 0. (3.69)57



CHAPTER 3. IMPLEMENTATIONSimilar to the prin
iple of 
onservation of momentum, also the balan
e of mass equation
onsists of two di�erent parts. The �rst part des
ribes the rate of 
hange of the mass withrespe
t to the time. Its �rst order term 
an be transformed into a dis
retized formulationby establishing the matrix H
pp. Sin
e no boundary 
onditions are spe
i�ed with regard tothe pressure �eld, the entries of this matrix 
an be evaluated to

Hppij = 〈HppLΩ
j , L

Ω
i 〉L∗×L. (3.70)The se
ond part is asso
iated with the supply of mass. It 
onstitutes a mixed term, dueto the link to the velo
ity �eld. By applying the 
ommon dis
retization method on the�rst order problem, the matri
es K

pv1 and K
pv2 
an be dedu
ed. Its 
omponents 
an be
al
ulated to

Kpv1
ij = 〈Kpv1QΩ

j , L
Ω
i 〉L∗×L, (3.71)

Kpv2
ij = 〈Kpv2QΩ

j , L
Ω
i 〉L∗×L. (3.72)All in all, the dis
retized �rst order equation that origins from the mass 
onservation 
annow be written in terms of the former matri
es as

H
pp ˙̂p(1) +K

pv1v̂
(1)
1 +K

pv2v̂
(1)
2 = 0. (3.73)The equations 3.68, 3.69 and 3.73 
onstitutes the semi-dis
retized version of the �rst order�uidi
 subproblem.Basilar Membrane The displa
ement of the basilar membrane is mainly driven by thedi�eren
e between the pressure above and below the 
o
hlear partition. Sin
e the mesh ofthe basilar membrane is, moreover, identi
al to parts of the boundary that belongs to the�uid domain, it is advisable to use the same type of basis fun
tions for the evaluation of thedynami
s of the basilar membrane as used for the pressure �eld. Therefore, the fun
tionspa
e that represents the displa
ement of the 
o
hlear partition should be dis
retized byusing the spa
e L(MΓbm) (
f. equation 3.45).Otherwise, the velo
ity of adja
ent �uid-parti
les depends on the displa
ement of thebasilar membrane. Therefore, it would be useful if the displa
ement of the basilar mem-brane is also available at nodes that are ex
lusively used by the quadrati
 basis fun
tions.In order to meet both requirements a 
ombined approa
h is used. Although the prin-
iple 
omputation is based on linear basis fun
tions, the displa
ement at the additionalquadrati
 nodes are also interpolated on the basis of values at the adja
ent linear nodes.In doing this, the additional nodes (that are used in order to 
onstitute the quadrati
 basisfun
tions but that do not belong to the linear basis fun
tions) 
an be des
ribed by theindex family

IQ\L := IQ(MΓbm)\
{
ϕ(i)

∣
∣ i ∈ IL(M

Γbm)
}. (3.74)A simple linear interpolation te
hnique that 
an be used for determining the displa
ementat the nodes that 
orrespond to the index family 3.74 needs to have a

ess to the respe
tive58



3.4. SPATIAL DISCRETIZATIONvalues at its dire
t neighbors. Therefore, the indi
es of the neighbors of the node that isasso
iated with index i ∈ IQ\L are given by the set
IN (i) :=

{
j ∈ IL(M

Γbm)
∣
∣ j belongs to the same simplex as i}. (3.75)In summary, the dis
retization pro
ess is realized by using matri
es, whose stru
ture isbased on the fun
tion spa
e Q(MΓbm) (
f. equation 3.46). But in 
ontrast to the matri
esabove, its entries are assembled by using dual pairs that are de�ned on the fun
tion spa
e

L(MΓbm) (
f. equation 3.45). Then, the sti�ness matrix is given by
Kξξ
ij =







1 if i, j ∈ IQ\L and i = j

−1
2 if i ∈ IQ\L and j ∈ IN (i)

〈KξξLΓbm

l , LΓbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.76)The �rst two rows realize the interpolation of the displa
ement by evaluating the averagevalue of the two neighbouring displa
ement values. The third row is asso
iated with thelongitudinal varying sti�ness of the basilar membrane.Of 
ourse, it would also be possible to dire
tly implement the linear interpolation by anadaption of the entries of the matrix K

v2v2. Furthermore, other implementation te
hniquesmight also be implemented like 
ubi
 C2 splines. But a possible higher a

ura
y seems tobe disproportionate to the resultant 
omputational e�ort.As des
ribed in 
hapter 2.3.2, the damping of the os
illatory model 
onsists of twodi�erent damping 
omponents. Both, the longitudinal shearing resistan
e as well as theintrinsi
 vis
osity of the 
o
hlear partition at a spe
i�
 point are 
onsidered by the matrix
Hξξij =

{

〈HξξLΓbm

l , LΓbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.77)The dis
retized 
ounterpart of the term that des
ribes the inertial rea
tion of the basilarmembrane is given by

Mξξ
ij =

{

〈M ξξLΓbm

l , LΓbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.78)Now, the dynami
s of the passive basilar membrane are fully des
ribed by the matri
es

K
ξξ, Hξξ and M

ξξ. As mentioned above, the 
o
hlear system is stimulated by the �uid-pressure above and below the partition. This external pressure-load 
an be represented bya matrix, whose 
omponents 
an be evaluated to
Kξp
ij =

{

〈KξpLΩ
l , L

Γbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.79)59



CHAPTER 3. IMPLEMENTATIONFurthermore, an additional for
e may be applied by the outer hair 
ell motility. Sin
e thisexternal load is assumed to be proportional to small de�e
tions of the hair bundles, thedis
retization pro
ess yields the matrix
Kξζ
ij =

{

〈KξζLΓbm

l , LΓbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.80)Now, a semi-dis
retized system that simulates the displa
ement of the 
o
hlear partition
an be established by using the matri
es introdu
ed above. In doing this, the variationalformulation 3.11 
an be transformed into the ordinary di�erential equation

M
ξξ¨̂
ξ +H

ξξ ˙̂
ξ +K

ξξ
ξ̂ +K

ξp
p̂
(1) +K

ξζ
ζ̂ = 0. (3.81)Outer Hair Cell Motility As des
ribed in 
hapter 2.3.3, the de�e
tion of the stere-o
ilia is modeled as an additional os
illator. Therefore, the asso
iated di�erential equation
onsists of a sti�ness-, a damping- and a mass-term. These physi
al 
hara
teristi
s arere�e
ted in the matri
es Kζζ, Hζζ and M

ζζ. The matri
es 
an be evaluated on the basis ofthe variational formulation 3.14. A

ording to the basis fun
tions of the basilar membranemotion, the de�e
tions of the hair bundles are also approximated by pie
ewise linear fun
-tions, be
ause the displa
ement of the 
o
hlear partition is a dire
t 
ause of the de�e
tion.The 
omponents of the matri
es 
an be assembled by using the following formulas:
Kζζ
ij = 〈KζζLΓbm

j , LΓbm

i 〉L∗×L, (3.82)
Hζζij = 〈HζζLΓbm

j , LΓbm

i 〉L∗×L, (3.83)
Mζζ
ij = 〈M ζζLΓbm

j , LΓbm

i 〉L∗×L. (3.84)The 
oupling to the basilar membrane displa
ement is realized by the matrix M
ζξ whose
omponents 
an be 
al
ulated to

Mζξ
ij = 〈M ζξLΓbm

j , LΓbm

i 〉L∗×L. (3.85)By the use of these matri
es, the di�erential equation that des
ribes the de�e
tion of thehair bundles 
an be transformed into its semi-dis
retized formulation, whi
h is given by
M

ζζ¨̂
ζ +H

ζζ ˙̂
ζ +K

ζζ
ζ̂ +M

ζξ¨̂
ξ = 0. (3.86)3.4.2 Multiphysi
al CouplingThe �rst order system 
an be regarded as a multiphysi
al problem, sin
e the system 
anonly be realisti
ally des
ribed by the simultaneous 
onsideration of multiple physi
al phe-nomena. The multiphysi
al 
oupling of the a
ousti
 subproblem 
an be summarized bythe following intera
tions:60
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• The displa
ement of the basilar membrane is dire
tly a�e
ted by the �uid pressureabove and below the 
o
hlear partition.
• The �uid velo
ity at the basilar membrane above and below the 
o
hlear partitiondepends on the displa
ement of the basilar membrane.
• The outer hair 
ell for
e appears as an additional load whi
h a
ts on the basilarmembrane.
• The outer hair 
ell for
e is mainly in�uen
ed by the displa
ement of the basilarmembrane as a 
onsequen
e of the relative motions of the reti
ular lamina withrespe
t to the te
torial membrane.Therefore, the dynami
s of the �uid, the basilar membrane and the te
torial membrane
onstitute three di�erent physi
al pro
esses that have to be simultaneously taken intoa

ount by the overall simulation pro
ess, sin
e the individual pro
esses have a mutualin�uen
e on ea
h other.In 
ontrast to the intera
tion of these three 
omponents, the 
oupling between the�uid and the round window is realized through an internal boundary 
ondition with re-spe
t to the longitudinal velo
ity �eld (
f. 
hapter 2.2.3). Due to this spe
i�
 kind ofimplementation, the intera
tion between the round window and the �uid 
an therefore notbe 
onsidered as a multiphysi
al phenomenon. Also the �uid itself may be 
onsidered as a
oupled system, sin
e the pressure and the velo
ity variables are 
oupled by the 
onserva-tion prin
iples and 
onstitutive relations as des
ribed above. Sin
e the �uid dynami
s aremodeled as a whole by the interplay between the pressure and the velo
ity �eld, this kindof intera
tion is referred to as a mixed formulation rather than a 
oupled phenomenon.Multiphysi
al intera
tions between two physi
al pro
esses are often 
ategorized by thedegree to whi
h they are 
oupled. In literature, a distin
tion is often made between astrong and weak 
oupling. But neither a formal de�nition nor a quanti�
ation has beenestablished up to now in order to obje
tify the degree of 
oupling.In prin
iple, two di�erent approa
hes for the numeri
al implementation of a multiphys-i
al problem 
an be distinguished. The �rst approa
h for simulating multiple pro
essesinvolves the 
onsideration of the 
oupled pro
esses as one monolithi
 system of equations.It is a straightforward method whi
h naturally takes the 
oupling into a

ount even ifthe mutual intera
tions have signi�
ant in�uen
es on ea
h individual pro
ess. The majordrawba
k of this pro
edure is that the resultant system of equations may be
ome quitelarge and its asso
iated matrix is potentially badly 
onditioned. In 
ontrast, the se
ond ap-proa
h is based on separate sub-routines that are spe
ialized in the numeri
al 
omputationof the di�erent physi
al phenomena that are involved. In this 
ase, the 
oupling is realizedby the transfer of relevant data, whi
h 
an be taken into a

ount by spe
i�
 boundary
onditions, load terms, geometri
 shape or 
onstitutive relations. If the 
oupling is notunidire
tional, the results of the pro
esses may have a mutual in�uen
e to su
h an extentthat the 
omputation of ea
h sub-system has to be repeated (under 
onsideration of theupdated data) by an iterative sub-pro
ess in order to a
hieve a

urate results. Whether61



CHAPTER 3. IMPLEMENTATIONsu
h an iterative pro
ess is really ne
essary depends mainly on the degree of in�uen
e onea
h other. In many appli
ations, it seems to be su�
ient to transfer the 
oupling-relevantdata from one pro
ess to the other just one time per time-step or even only an o

asionalupdate every few times steps is enough to adequately represent the multiphysi
al system.An advantage of su
h a partitioned method lies in a more e�e
tive 
omputation of ea
hindividual sub-pro
ess sin
e ea
h sub-routine 
an be numeri
ally optimized and in most
ases the resultant sub-systems of equations are signi�
antly smaller and better 
ondi-tioned than the overall system. Furthermore, the modular design of the implementation,whi
h is 
hara
terized by the appli
ation of di�erent modules for ea
h individual physi
alphenomena, fa
ilitates the reuse of the software with respe
t to other 
omputations. (
f.[36, 15℄)In this work, the multiphysi
al problem is realized by a monolithi
 system of equa-tions. It 
an be assumed that a partitioned realization of the 
oupling involves a substan-tial 
omputational e�ort that is probably needed by the appli
ation of the sub-iterations(as mentioned above) due to the strong interdependen
e between the �uid, the basilarmembrane and the outer hair 
ell motility. Therefore, it 
an not be expe
ted that thepartitioned implementation has signi�
ant advantages with respe
t to the 
omputationale�ort over a monolithi
 realization. Furthermore, the modular design is a

ompanied witha substantial in
rease of the 
ode 
omplexity, due to the additional implementation of ad-equate interfa
es, data transfer proto
ols, �nite element interpolations and the monitoringof the sub-iteration pro
esses. Moreover, the 
o
hlear system is a highly spe
i�
 problem(in parti
ular with regard to the basilar membrane), so that the resultant 
ode 
an not beeasily adopted by other appli
ations for the simulation of a
ousti
ally driven �ows withina �uid-stru
ture 
oupled system. Nevertheless, also the monolithi
 s
heme is a

ompaniedby in
reased requirements on the software ar
hite
ture.A

ording to the equations 3.68, 3.69, 3.73, 3.81 and 3.86, the fully 
oupled monolithi
system of the �rst order a
ousti
 subproblem 
an be represented as
Mü+Hu̇+Ku = F (3.87)whi
h 
onstitutes a system of se
ond order linear ordinary di�erential equations. The nodalve
tor u 
ombines the individual nodal ve
tors of the �uid velo
ity, �uid pressure, basilarmembrane displa
ement and hair bundle de�e
tion and this overall ve
tor 
an be writtenas

u =
[

v̂
(1)
1 v̂

(1)
2 p̂

(1)
ξ̂ ζ̂

]T . (3.88)Due to the similarity of equation 3.87 to equations of motions where the ve
tor u isusually identi�ed with the displa
ement of the motion, the matri
es M, H and K areoften referred to as the mass matrix, the damping matrix and the sti�ness matrix. From aphysi
al point of view it must be noted that these terms are not pre
ise with respe
t to theordinary di�erential equation presented here, sin
e the nodal ve
tor u 
onsists not only ofdispla
ement 
omponents but also of velo
ity 
omponents. By using the sub matri
es ofthe individual equations as introdu
ed in se
tion 3.4.1, the sti�ness matrix 
an be written62
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K =












K
v1v1 K

v1v2 K
v1p 0 0

K
v2v1 K

v2v2 K
v2p 0 0

K
pv1 K

pv2 0 0 0

0 0 K
ξp

K
ξξ

K
ξζ

0 0 0 0 K
ζζ












. (3.89)The dis
retized damping matrix of the �rst order subproblem 
an be represented as
H =












H
v1v1 0 0 0 0

0 H
v2v2 0 H

v2ξ 0

0 0 H
pp

0 0

0 0 0 H
ξξ

0

0 0 0 0 H
ζζ












. (3.90)Finally, the overall mass matrix 
an be determined to
M =












0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 M
ξξ

0

0 0 0 M
ζξ

M
ζζ












. (3.91)
By the monolithi
 matrix representation, the interdependen
ies (or in other words the
oupling) between di�erent �eld variables are easily re
ognizable by the sub-matri
es thatare not lo
ated on the main diagonal.The right hand side of the �rst order semi-dis
retized formulation 3.87 
onsists onlyof entries belonging to the longitudinal velo
ity 
omponents that are asso
iated with thedispla
ement of the oval window. Therefore, the load ve
tor 
an be written as

F =
[

F
v1 0 0 0 0

]T . (3.92)
3.4.3 The Se
ond Order SystemA
ousti
 Streaming Subproblem As shown in 
hapter 2.4, the mean motion of these
ondary �ow is 
hara
terized on the one hand by the se
ond order supply-terms of themass and momentum and on the other hand by the virtual sour
e-distributions of massand momentum. The supply of linear momentum in terms of the se
ond order meanvariables v

(dc) and p(dc) 
an be represented by the matri
es G
v1v1, Gv2v2, Gv1v2, Gv2v1,63
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G
v1p and G

v2p. In order to take also the boundary 
onditions into a

ount, the indi
es ofthe boundary nodes are 
ombined into the set
Bv(dc) = BQ(MΓow ) ∪ BQ(MΓrw ) ∪ BQ(MΓbm+ ) ∪ BQ(MΓbm−) ∪ BQ(MΓr). (3.93)Using this index family, the �rst two matri
es 
an be assembled by using the relations

Gv1v1
ij =

{

δij if i ∈ Bv(dc)
〈Gv1v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.94)

Gv2v2
ij =

{

δij if i ∈ Bv(dc)
〈Gv2v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.95)As in the 
ase of the �rst order subproblem, the Krone
ker delta symbol allows the spe
-i�
ation of the velo
ity 
omponents at the boundaries by the values of the right handside. By taking into a

ount that all other entries at those rows that are asso
iated with aboundary node must vanish, the matri
es that 
onne
t both velo
ity 
omponents are givenby

Gv1v2
ij =

{

0 if i ∈ Bv(dc)
〈Gv1v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.96)

Gv2v1
ij =

{

0 if i ∈ Bv(dc)
〈Gv2v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.97)Due to the LBB-
ondition (
f. se
tion 3.4.1) the maximal degree of the polynomial ba-sis fun
tions that represent the pressure variable must be one order less than the basisfun
tions of the velo
ity �eld. Therefore, the 
oupling to the pressure variable 
an beimplemented by the matri
es

Gv1p
ij =

{

0 if i ∈ Bv(dc)
〈Gv1pLΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.98)

Gv2p
ij =

{

0 if i ∈ Bv(dc)
〈Gv2pLΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.99)The for
e sour
e distribution results in the load ve
tor Sv1 and S

v2, whose 
omponents 
anbe 
al
ulated to
Sv1i =

{

f̃1(x) if i ∈ Bv(dc)
〈Sv1, QΩ

i 〉Q∗×Q otherwise , (3.100)
Sv2i =

{

f̃2(x) if i ∈ Bv(dc)
〈Sv2, QΩ

i 〉Q∗×Q otherwise . (3.101)A

ording to equation 2.49, the �rst row of these relations spe
i�es the values at theDiri
hlet boundaries, whereby the 
oordinate x indi
ates the respe
tive lo
ation of the64



3.4. SPATIAL DISCRETIZATIONa
tual node. The se
ond row is asso
iated with the for
e distribution within the bulk.Now, the semi-dis
retized system that represents the supply of for
e in 
ombination withthe for
e sour
e distribution 
an be written as
G
v1v1v̂

(dc)
1 +G

v1v2v̂
(dc)
2 +G

v1pp̂
(dc) = S

v1, (3.102)
G
v2v1v̂

(dc)
1 +G

v2v2v̂
(dc)
2 +G

v2pp̂
(dc) = S

v2. (3.103)The supply of mass with respe
t to the se
ond order subproblem is asso
iated with thematri
es Gpv1 and G
pv2. Similar to above, the set

Bp(dc) = BL(MΓow ) ∪ BL(MΓrw ) ∪ BL(MΓbm+ ) ∪ BL(MΓbm− ) ∪ BL(MΓr) (3.104)spe
i�es the indi
es that are asso
iated with the boundary nodes in order to establishthe Diri
hlet boundary 
ondition. With the help of this set of indi
es, the entries of thematri
es 
an be 
al
ulated to
Gpv1
ij =

{

0 if i ∈ Bp(dc)
〈Gpv1QΩ

j , L
Ω
i 〉L∗×L otherwise , (3.105)

Gpv2
ij =

{

0 if i ∈ Bp(dc)
〈Gpv2QΩ

j , L
Ω
i 〉L∗×L otherwise . (3.106)In order to implement the Diri
hlet boundary 
ondition, the respe
tive entries on the maindiagonal of the matrix G

pp must be set to 1. In terms of mathemati
al formulation, thismatrix is given by
Gpp
ij =

{

δij if i ∈ Bp(dc)
0 otherwise . (3.107)Similar to the for
e sour
e distribution, the mass sour
e distribution (
f. equation 2.47)
an be implemented as a right hand ve
tor Sp. Thereby, a distin
tion between the internaldistribution and the boundary values must be drawn. Then, its 
omponents are given by

Spi =

{

m̃(x) if i ∈ Bp(dc)
〈Sp, LΩ

i 〉L∗×L otherwise . (3.108)Finally, this load ve
tor in 
ombination with the matri
es, introdu
ed above, 
an bebrought together in the system of equations
G
pp
p̂
(dc) +G

pv1v̂
(dc)
1 +G

pv2v̂
(dc)
2 = S

p (3.109)in order to obtain the semi-dis
retized formulation of the se
ond order mass 
onservationequation. 65



CHAPTER 3. IMPLEMENTATIONThe overall mean se
ond order system, whi
h yields a �rst order approximation of thea
ousti
ally driven �ows, 
an be established by 
ombining equations 3.102, 3.103 and 3.109.This system 
an be written as






G
v1v1 G

v1v2 G
v1p

G
v2v1 G

v2v2 G
v2p

G
pv1 G

pv2 G
pp













v̂
(dc)
1

v̂
(dc)
2

p̂
(dc)






=







S
v1

S
v2

S
p






. (3.110)3.4.4 AssemblageThis 
hapter is 
on
erned with the assemblage of the individual sub-matri
es that areneeded to establish the time-variant �rst order system 3.87 as well as the stationary meanse
ond order system 3.110. In prin
iple, the assemblage strategies are based on the toolboxAlberta [42, 44℄. Most of the entries of these matri
es 
an be written as a dual pair

〈LN i, Rj〉, where N i and Ri denote (not ne
essarily the same 
lass of) basis fun
tions and
L represents an ellipti
 di�erential operator (
f. [23, 42℄). Su
h an ellipti
 di�erentialoperator 
an be written as

(Lu)(x) := − div(A(x) grad u(x)) + (b(x))T (grad u(x)) + c(x)u(x) (3.111)where the 
oe�
ient fun
tions are given as
A : M → R

d×d,
b : M → R

d,
c : M → R. (3.112)The individual 
omponents of these 
oe�
ients should belong to the fun
tion spa
e L∞.In this work, all di�erential operators 
an be represented by an ellipti
 di�erential operatoras shown in equation 3.111. A

ording to the derivation of the variational formulation (
f.
hapter 3.2), the dual pair 
an be transformed into the form

〈LN i, Rj〉 =
∫

(gradN i)
T A (gradRj) dx+

∫

N i b
T (gradRj) dx+

∫

c N i Rj dx

(3.113)Furthermore, the integral over the whole mesh 
an be splitted into a set of integralsthat are spe
i�ed on ea
h individual simplex. Therefore, the dual pair 
an be updateda

ording to the relation
〈LN i, Rj〉 =

∑

S∈M

[∫

S
(gradNkS(i))T A (gradRkS(j)) dx+

∫

S
NkS(i) bT (gradRkS(j)) dx+

∫

S
c NkS(i) RkS(j) dx

] (3.114)66



3.4. SPATIAL DISCRETIZATIONwhere ea
h index i of the global basis fun
tions have to be repla
ed by an index l thatis asso
iated with the respe
tive lo
al basis fun
tion via the mapping l = kS(i). Asdes
ribed in 
hapter 3.3.2, the basis fun
tions are spe
i�ed with respe
t to the bary
entri

oordinates. Therefore, the basis fun
tions 
an be repla
ed by their bary
entri
 
ounterpartwith the help of the mapping β(x). By the use of the 
hain rule, the gradient of the basisfun
tions 
an be 
al
ulated to
gradNkS(i)(x) = gradNkS(i)

(bar)(β(x))

=

(

Dβ(x)

)T(

gradβ N
kS(i)
(bar)(β(x))

) (3.115)In 
ontrast to the basis fun
tions, the numeri
al integration is performed over the normal-ized referen
e element. By transforming the integral from the world 
oordinates x to thenormalized 
oordinates ν and by using equation 3.115, the �rst term of the right hand sideof equation 3.114 
an be evaluated to
∫

S
(gradNk(i)(x))T A(x) (gradRl(j)(x)) dx =

∫

S

(

gradβ N
k(i)
(bar)(β(ν))

)T (

Dβ(x(ν)) A(x) (Dβ(x(ν))T
)

(

gradβ R
k(i)
(bar)(β(ν))

)

|detDx(ν)| dν

(3.116)The gradient of the basis fun
tions 
an be pre
al
ulated for all simpli
es, sin
e it dependsonly on the unvarying normalized and bary
entri
 elements as well as the prede�ned basisfun
tions itself. Therefore, only the term in the middle that 
onsists of the 
oe�
ientfun
tion and the Ja
obian-matri
es of the bary
entri
 
oordinates with respe
t to theworld 
oordinates as well as the determinant have to be evaluated for ea
h individualelement. The se
ond term of the right hand side of equation 3.114 
an also be expressedin terms of the normalized 
oordinates as
∫

S
Nk(i)(x) (b(x))T (gradRl(j)(x)) dx =

∫

S

(

Nk(i)
(bar)(β(ν))

) (

Dβ(x(ν) b(x)

)T

(

gradβ R
k(i)
(bar)(β(ν))

)

|detDx(ν)| dν

(3.117)In 
omplian
e with the �rst term, only the parts that depend on the world 
oordinateshave to be evaluated at ea
h individual simplex. The last term within the squared bra
ketsof equation 3.114 
an be 
al
ulated to
∫

S
c(x) Nk(i)(x) Rl(j)(x) dx =

∫

S
c(x)

(

Nk(i)
(bar)(β(ν))

) (

Rk(i)(bar)(β(ν))

)

|detDx(ν)| dν
(3.118)67



CHAPTER 3. IMPLEMENTATIONUnder the assumption that the 
oe�
ient fun
tions are 
onstant on ea
h simplex of themesh, a numeri
al quadrature method must only performed only on
e at the beginning ofthe assemblage pro
ess for all 
ombinations of the lo
al basis fun
tions. All other termsare 
onstant and 
an be separated from the integrals. A more detailed des
ription of theassemblage pro
ess 
an be found in [42, 44℄.As shown in 
hapter 2, some 
oe�
ient fun
tions vary depending on the spatial 
oor-dinates. In these 
ases, a numeri
al quadrature approa
h has to be used in order to getnumeri
al approximations of the respe
tive integrals. A

ording to [42, 23℄, the quadraturemethods are based on the formula
∫

S
f(ν) dν ≈

n∑

i=0

wif(νi) (3.119)where wi denotes a weight that is asso
iated with an ith quadrature point νi.3.5 Temporal Dis
retizationUp to now, the �rst order problem is only transformed into a semi-dis
retized formulation,sin
e equation 3.87 further depends on the 
ontinuous time-variable t. In prin
iple, itwould also be 
on
eivable to dis
retize the time in a similar way as the spatial variablesby the use of �nite elements. But, if the entire time frame is dis
retized by �nite elements,the approa
h will result in an ex
essive in
rease of the number of required �nite elementnodes and - as a 
onsequen
e - the asso
iated system of equations would be very huge.The number of variables 
an be signi�
antly redu
ed, if the temporal dis
retization byspa
e-time �nite elements is only performed with respe
t to a short time-slot. Then, aniterative method 
an be used to solve the dynami
s of the system within the entire timeframe by an individual 
onsideration of su

essive time-slots. The methods that use �niteelements for the time-dis
retization are known as spa
e-time �nite element methods.In this work, the time-dis
retization is realized by an impli
it dire
t �nite di�eren
es
heme due to the simpli
ity and robustness of these methods. The term "dire
t" meansthat, in 
ontrast to e.g. mode superposition methods, the system of equation will be notinitially transformed into a di�erent formulation before the numeri
al integration is per-formed. The �nite di�eren
e s
heme is 
hara
terized by the division of the entire timeinterval into a set of sub-intervals ∆ti = [ti, ti+1]. On the basis of these segments the solu-tion is su

essively approximated at ea
h instant of time ti. Obviously, the 
omputationale�ort of the time-integration is dire
tly proportional to the number of time-steps. There-fore, the length of an sub-interval should be 
hosen in su
h a way that on the one hand theresultant approximation will be as good as possible and that on the other hand the required
omputational e�ort will be minimized. In this work, the time-steps ∆ti are assumed tobe 
onstant with respe
t to a spe
i�
 simulation experiment. The a
ousti
 rea
tion of the�rst order linear subproblem is mainly indu
ed by the harmoni
 stimulation at the ovalwindow. Therefore, it seems to be a good idea to link the length of a sub-interval to therespe
tive stimulation frequen
y.68



3.5. TEMPORAL DISCRETIZATIONIn many appli
ations, expli
it integration methods are preferred due to a potentiallymore e�e
tive 
omputation at ea
h time-step. But, it 
an be shown that the stability ofexpli
it integration methods 
an only be guaranteed for intervals below an upper limit.This upper limit depends on ea
h individual problem itself and it may be that the time-steps have to be 
hosen very small. In this 
ontext, a time integration te
hnique is referredto as stable if the growth of an arbitrarily indu
ed error is bounded. In 
ontrast to expli
itintegration s
hemes, impli
it methods are more robust in the fa
e of the 
hoi
e of thetime-step. Commonly, impli
it methods are not restri
ted to su
h an upper limit and they
an therefore be 
onsidered as an un
onditionally stable approa
h.As already mentioned above, the spatial dis
retization of the �rst order problem resultsin a se
ond order linear ordinary system of di�erential equations (
f. equation 3.87). It isalways possible to transform su
h a se
ond order system into a �rst order formulation bythe introdu
tion of new variables. On the basis of su
h a 
onversion, a standard approa
hfor �rst order problems like the impli
it ba
kward Euler method, the Crank-Ni
olson methodor the Runge�Kutta method might be performed. These methods mainly di�er from ea
hother in regard to the degree of pre
ision with whi
h the solution might be approximated.But due to the doubling of the variables, whi
h is a

ompanied with a signi�
ant higher
omputational e�ort and an in
reased requirement of memory, this kind of pro
edure isnot implemented for the numeri
al integration of the �rst order problem.Therefore, a dire
t dis
retization of the se
ond order ordinary di�erential equation ispreferred. This work uses an approa
h that was originally suggested by Houbolt [21℄. Theapproximation te
hnique from Houbolt is a se
ond order method, whi
h means that theerror per time-step is of the order ∆t2. Furthermore, the s
heme is numeri
ally stable sin
eit is an impli
it approa
h. (
f. [3℄) The integration s
heme from Houbolt uses the followingba
kward �nite di�eren
e approximations for the �rst and se
ond time-derivative:
u̇t+∆t = −

1

6∆t

(

2ut−2∆t− 9ut−∆t+ 18ut− 11ut+∆t

), (3.120)
üt+∆t = −

1

∆t2

(

ut−2∆t− 4ut−∆t+ 5ut− 2ut+∆t

). (3.121)The semi-dis
retized formulation of the �rst order problem at time t+∆t 
an be writtenas
Müt+∆t+Hu̇t+∆t+Kut+∆t = Ft+∆t. (3.122)By substituting the approximations 3.120 and 3.121 for the velo
ity-like ve
tor u̇t+∆t andthe a

eleration-like ve
tor üt+∆t, the fully dis
retized �rst order subproblem 
an be rep-resented by the simple linear system of equations

Aut+∆t = b. (3.123)In this 
ontext, the matrix A 
an be evaluated to
A =

2

∆t2
M+

11

6∆t
H+K. (3.124)69



CHAPTER 3. IMPLEMENTATIONAs it 
an be seen, it is su�
ient to determine the matrix A only on
e at the beginning ofthe numeri
al time integration pro
ess due to the stationary 
hara
ter of the mass matrix
M, the damping matrix H and the sti�ness matrix K. The load term b 
an be 
al
ulatedto

b =

(
1

∆t2
M+

1

3∆t
H

)

ut−2∆t −
(

4

∆t2
M+

3

2∆t
H

)

ut−∆t

+

(
5

∆t2
M+

3

∆t
H

)

ut+ Ft+∆t. (3.125)In 
ontrast to the stationary matrix on the left hand side of equation 3.123, the load term
b has to be updated at ea
h time-step due to the dependen
y on the time-varying loadve
tor Ft+∆t (whi
h takes a

ount of the prede�ned displa
ements of the oval window) andthe in
lusion of the state ve
tors u at the pre
eding three time-steps.In literature, several other te
hniques for the numeri
al dis
retization 
an of 
oursebe found. For example, the Newmark-method and the Wilson-method (
f. e.g. [3℄) aretwo other similar approa
hes that 
an also be used in the 
ontext of a linear se
ond orderordinary di�erential equation.3.6 Linear SolverThe dis
retization pro
ess of the �rst order system results in a sequen
e of linear systemsof equations (
f. 3.123). Under the assumption of a 
onstant time-step, the linear systemsare 
hara
terized by a 
onstant, large, sparse and non-symmetri
 matrix as well as a time-varying right hand side ve
tor. In order to get a numeri
al solution of ea
h system, thegeneralized minimal residual method (GMRES) is used due to its appli
ability for non-symmetri
 systems. The iterative GMRES approa
h was originally developed by Saad andS
hultz [40℄ and it is based on a proje
tion method that approximates the solution withinthe so-
alled Krylov subspa
e.The a
ousti
ally driven �ow �eld 
an be a
hieved by solving the symmetri
 systemof equations as des
ribed in 
hapter 3.4.3. Although the symmetry of the matrix allowsthe usage of more e�
ient methods (e.g. the Lan
zos algorithm), the GMRES methodis also used for solving the mean se
ond order system. Due to its major importan
e forthe numeri
al simulation pro
ess presented in this work, the main aspe
ts of the GMRES-method are brie�y outlined in this 
hapter. The notation is orientated towards the originalwork from Saad and S
hultz [40℄. Further details to this subje
t 
an additionally be foundin [39℄.The speed of 
onvergen
e of an iterative solver 
an be signi�
antly enhan
ed by trans-forming the linear system of equations into a better 
onditioned system. The basi
 usageof a pre
onditioner in the 
ontext of the GMRES-method is des
ribed in se
tion 3.6.2. Inthis work, an in
omplete LU de
omposition is used as a pre
onditioner. The algorithmused for dedu
ing su
h an in
omplete fa
torization is presented in se
tion 3.6.3.70



3.6. LINEAR SOLVER3.6.1 Generalized Minimal Residual MethodIn general, the linear system of equation 
an be represented as
Ax = b (3.126)with A ∈ R

n×n being a regular matrix, x ∈ R
n the ve
tor of unknowns and b ∈ R

n theright hand side ve
tor. If x0 denotes an initial guess of the solution, the error 
an bequanti�ed by the residual
r0 = b−Ax0. (3.127)The GMRES-method aims to minimize the residual within the a�ne spa
e x0+Km where

Km denotes the Krylov subspa
e whi
h 
an be spe
i�ed on the basis of the residual ve
torand the system matrix as
Km(A, r0) = span{r0,Ar0,A

2r0, . . . ,A
m−1r0}. (3.128)Initially, an orthonormal basis of the Krylov subspa
e is 
onstru
ted by means of anorthogonal proje
tion method from Arnoldi as des
ribed in algorithm 3.3 from line 8 to 13.Having regard to the numeri
al stability, the algorithm adapts the modi�ed Gram-S
hmidtorthonormalization pro
ess. To further enhan
e the reliability of the orthonormalizationpro
ess, the Gram-S
hmidt based algorithm 
an, for example, be repla
ed by the more
omputationally intensive Householder orthogonalization (
f. [39℄). It is important to notethat the Hessenberg matrix H

[m] 
an be extra
ted from Arnoldi's pro
edure as a byprodu
tof the orthogonalization pro
ess. Hessenberg matri
es are 
hara
terized by their vanishingentries below the �rst subdiagonal. If the orthogonal basis ve
tors of the Krylov spa
e Kmare 
ombined into the matrix V
[m], the relation

AV
[m] = Vm+1H

[m] (3.129)
an be dire
tly dedu
ed from algorithm 3.3. Furthermore it 
an be seen that the �rst basisve
tor v1 
an be identi�ed with the residual ve
tor r0. A

ording to the equation
x = x0 +V

[m]
y (3.130)all elements x of the a�ne subspa
e 
an be expressed as a linear 
ombination of theorthogonal basis fun
tions by the use of an appropriate 
hoi
e of the ve
tor y. In terms ofa formal notation, the GMRES-method is based on the minimization of the fun
tion

J(y) := ‖b−Ax‖2 = ‖b−A(x0 +V
[m]

y)‖2 (3.131)where the approximation x should, by de�nition, belong to the a�ne Krylov subspa
e and
an therefore be 
on
retized by using equation 3.130. In 
onsideration of equations 3.12771



CHAPTER 3. IMPLEMENTATION
Algorithm 3.3 Generalized Minimal Residual MethodRequire: regular matrix A, right hand side ve
tor b, initial guess x0, maximal dimension m ofthe Krylov spa
e, toleran
e ǫEnsure: best approximation of the solution within the Krylov subspa
e1: pro
edure gmres(A,b,x0,m,ǫ)2: r0 ← b−Ax0, β ← ‖r0‖2, v1← r0/β3: if β < ǫ then4: return x05: end if6: Allo
ate H = (H

ij
)1≤i≤m+1

1≤j≤m

= 07: for j = 1→ m do8: wj ← Avj ⊲ Arnoldi's method9: for i = 1→ j do10: H
ij
← wj · vi11: wj ← wj −H

ij
vi12: end for13: H

j+1,j ← ‖wj‖214: for i = 1→ j − 1 do ⊲ Triangular Matrix Transformation15: (

H
ij

H
i+1,j

)

←
(

ci si

−si ci

)(

H
i,j

H
i+1,j

)16: end for17: δ ←
√

H
jj

2 +H
j+1,j

218: cj ← H
jj
/δ, sj ← H

j+1,j/δ19: H
jj
← δ20: g

j
← cjgj, g

j+1← −sjgj21: if |g
j+1| ≥ ǫ and j < m then22: vj+1 ← wj/Hj+1,j23: else ⊲ Least Squares Problem24: for i = j → 1 do25: yi =

1
Hii

(g
i
−∑j

k=i+1 Hik
yk)26: end for27: return x = x0 +

∑j

i=1 yivi28: end if29: end for30: end pro
edure
72



3.6. LINEAR SOLVERand 3.129, the expression within the norm of equation 3.131 
an be transformed as
b−A(x0 +V

[m]
y) = r0 −AV

[m]
y

= βv1 −Vm+1H
[m]

y

= V
[m+1](βe1 −H

[m]
y)

(3.132)where the notation β = ‖r0‖2 is used for reasons of simpli
ity. Sin
e the orthonormalmatrix V
[m+1] has no e�e
t on the eu
lidean norm, the minimal residual within the a�neKrylov subspa
e 
an also be spe
i�ed by the equivalent formulation

x
[m] := x0 +V

[m]
y
[m], where (3.133)

y
[m] := argminy ‖βe1 −H

[m]
y‖2. (3.134)The advantage over the initial formulation of the the minimization problem (
f. equation3.131) lies in the more e�
ient 
omputation in 
ombination with the simultaneous 
ontrolof the residual size. This e�e
tive 
omputation 
an be a
hieved through a transformationof the Hessenberg matrix

H
[m] =












H11 H12 · · · H1m

H21 H22 · · · H2m

H32 · · · H3m. . . ...
Hm+1,m












(3.135)
into an upper triangular form by performing plane rotations in order to su

essively elim-inate the entries Hi+1,i in an iterative pro
ess. In this 
ontext, ea
h rotation matrix 
anbe written as

Ωi =


















1 . . .
1

ci si

−si ci
1 . . .

1


















(3.136)
where the 2×2-blo
k that 
auses the rotation is positioned at the i-th row and i-th 
olumn.The two values ci and si result from the 
urrent state of the matrix that depends on therotations performed before. If this 
urrent state is des
ribed by

H
[m,i] := Ωi · · ·Ω1H

[m] (3.137)73



CHAPTER 3. IMPLEMENTATIONthe two values 
an be 
al
ulated to
ci =

H[m,i]
i+1,i

√

(H[m,i]
ii )2 + (H[m,i]

i+1,i)
2
, (3.138)

si =
H[m,i]
ii

√

(H[m,i]
ii )2 + (H[m,i]

i+1,i)
2
. (3.139)Of 
ourse, these transformations must also be applied to the term βe1 in order to get anequivalent restatement of the eu
lidean norm. After m rotations, this ve
tor and the uppertriangular matrix 
an be represented as

g := Ωm · · ·Ω1βe1, (3.140)
R := Ωm · · ·Ω1H

[m] = H
[m,m]. (3.141)Due to the invarian
e of the eu
lidean norm to the rotations Ωi, the minimization problem3.134 
an therefore be written as

miny ‖βe1 −H
[m]

y‖2 = miny ‖g −R
[m]

y‖2. (3.142)In this 
ase, the residual 
an be minimized by determining the unknown ve
tor y in su
h away that the �rst m entries of the resultant ve
tor within the norm vanish. This is possibledue to the triangular 
on�guration of the matrix R
[m]. But the last entry of the resultantve
tor 
an not be a�e
ted by y, sin
e the last row of the matrix 
onsists only of zeros. Asa 
onsequen
e, the eu
lidean norm of the minimal residual must be equal to the absolutevalue of the last entry gm+1.As illustrated in algorithm 3.3 from line 14 to line 22 and as des
ribed by Saad [39℄,the respe
tive rotations 
an be performed at ea
h iteration separately for ea
h new 
olumnof the matrix H

[m] without additional 
omputational e�ort. Therefore, the de
rease of theresidual error 
an be dire
tly monitored at ea
h iteration without 
al
ulating the 
urrentapproximation. If the residual error falls below the prede�ned toleran
e, the approximation
an be 
al
ulated by determining y
[m] (as mentioned above) and inserting these 
oe�
ientsinto the linear 
ombination 3.133 (
f. algorithm 3.3 from line 24 to 27).Apart from numeri
al errors, the GMRES-pro
edure yields the exa
t solution after niterations at the latest. But the 
omputational e�ort as well as the memory requirementsare dire
tly related to the maximal dimension of the Krylov subspa
e and therefore alsoto the maximal number of iterations. The demands on the memory 
an be limited byprede�ning the maximal dimension of the Krylov spa
e. If the residual error still ex
eedsthe prede�ned toleran
e, the GMRES-algorithm might be start again by taking the 
ur-rent approximation as the initial guess of the subsequent run. This approa
h is knownas restarted GMRES . This restarted version was also used for the numeri
al simulationsperformed in this work, where the maximal dimension of the Krylov subspa
e was set to30.74



3.6. LINEAR SOLVER3.6.2 Pre
onditioningThe e�
ien
y of the iterative solvers 
an be signi�
antly improved by using a pre
ondi-tioner. The pre
onditioner should transform the linear system into an equivalent formula-tion that is 
hara
terized by a better rate of 
onvergen
e. The transformation 
an usuallyperformed by the appli
ation of a left pre
onditioner Pl and/or a right pre
onditioner Pr.Then, the pre
onditioned system of equations 
an be written as
PlAPrxP = Plb where xP = P−1

r x. (3.143)Usually, the pre
onditioners are 
onstru
ted in su
h a way that the resultant matrix ofthe pre
onditioned system approximates the identity matrix as well as possible; in short
PlAPr ≈ I. But, in order to take pro�t from the pre
onditioning pro
ess, the 
onstru
tionof the transformation matri
es should involve a minimum of 
omputational e�ort. In the
ontext of the GMRES-method, the right hand side pre
onditioning has advantages overthe left approa
h be
ause of two di�erent aspe
ts. Firstly, the 
urrent norm of the residual(
omputed at ea
h iteration) refers, in 
ontrast to the left pre
onditioning approa
h, not tothe pre
onditioned system but rather to the initial system. This point might be important,sin
e the stop 
riterion is normally spe
i�ed with respe
t to the initial system. Se
ondly,the right hand side appli
ation allows a variation of the pre
onditioner at ea
h iterationwhi
h opens possibilities for a better in�uen
e on the iterative progress. A formal andmore detailed 
onsideration of pre
onditioning 
an, for example, be found in [39℄.For the implementation of a right pre
onditioner the algorithm 3.3 has to be modi�edat two lines. At line 8, the pre
ondition matrix Pr have to be inserted at the right handside and, at line 27, the approximation must be 
al
ulated a

ording to

x = x0 +PrV
[m]

y. (3.144)3.6.3 In
omplete LU de
ompositionThis work uses an in
omplete LU de
omposition (ILU) as a pre
onditioner. As the nameimplies, this in
omplete fa
torization is based on the well-known LU de
omposition, whi
hsplits the original matrix into a produ
t of a lower triangular and an upper triangularmatrix. The exe
ution of the full de
omposition pro
ess is 
omputationally intensive andalthough the matrix A is only sparsely populated, it 
an be expe
ted that the resultantfa
torization 
onsists of two dense (triangular) matri
es. In 
ontrast, the in
omplete LUde
omposition 
an be written as
A = LU+R (3.145)with L being a sparse lower triangular matrix, U a sparse upper triangular matrix and Rthe residual that takes the resultant error into a

ount. In literature, di�erent approa
hes
an be found for establishing di�erent kinds of su
h a de
omposition. 75



CHAPTER 3. IMPLEMENTATION
Algorithm 3.4 In
omplete LU de
ompositionRequire: matrix A, maximum level of �ll pEnsure: in
omplete LU de
omposition1: pro
edure ilu(A,p)2: for i = 1→ n do ⊲ Initialization3: for j = 1→ n do4: if A

ij
6= 0 then5: A

ij
← 06: else7: A

ij
←∞8: end if9: end for10: end for11: for i = 2→ n do12: for k = 1→ i− 1 do ⊲ Extended Gaussian Elimination13: if lof

ik
≤ p and A

kk
6= 0 then14: A

ik
← A

ik
/A

kk15: for j = k + 1→ n do16: A
ij
← A

ij
−A

ik
A

kj17: lof
ij
← min{lof

ij
, lof

ik
+ lof

kj
+ 1}18: end for19: end if20: end for21: for k = 1→ n do ⊲ Erasure22: if lof

ik
> p then23: A

ik
← 024: end if25: end for26: end for27: end pro
edure
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3.7. SINE-COSINE DECOMPOSITIONIn this work, the so-
alled ILU(p)-pro
edure is adopted to 
al
ulate an appropriatepre
onditioner. As illustrated in algorithm 3.4 from line 12 to 20, this approa
h is, in prin-
iple, based on the Gaussian elimination whi
h is supplemented by an additional markingstrategy in order to spe
ify the non-zero pattern of the matri
es. The Gaussian algorithmsu

essively eliminates the entries below the main diagonal by adding an appropriate mul-tiple of row k to row i for all rows i = k+1, . . . , n. This method yields the upper triangularmatrix U as well as the lower triangular matrix L as a byprodu
t. Both of them 
an bestored in a single matrix, sin
e the entries of the main diagonal of the lower triangularmatrix are equal to one and do not need to be stored expli
itly. The marking strategy isbased on the so-
alled level of �ll value lof ij, whi
h 
an be simultaneously 
al
ulated forea
h entry. Initially, almost all entries of the matrix have a level of �ll of ∞ ex
ept forthe non-zero entries as well as the entries upon the main diagonal, whi
h are labeled withthe level 0 (
f. algorithm 3.4 from line 2 to 10). Ea
h modi�
ation of a spe
i�
 entry isa

ompanied with an update of its level of �ll. A

ording to line 17, the new level of �ll
an be 
al
ulated as
lof ij = min{lof ij, lof ik + lofkj + 1}. (3.146)On
e a whole row has been updated, all entries, whose level of �ll ex
eeds the prede�nedmaximum level p, are not taken into a

ount by the in
omplete LU de
omposition andare therefore erased (
f. algorithm 3.4 from line 21 to 25). The analysis and a detaileddes
ription of the in
omplete LU de
omposition 
an for example be found in [39℄.In this work, the GMRES-method was transformed by using a pre
onditioner generatedby the ILU(2) method. It has been shown that an higher maximum level normally indu
esa longer 
al
ulation time.3.7 Sine-Cosine De
ompositionFor reasons of 
onvenien
e, the equilibrium state is represented by using the sine-
osinede
omposition as introdu
ed in 
hapter 2.3.4. Sin
e the sine-
osine de
omposition is iden-ti
al with the �rst non-
onstant term of the Fourier series, the 
oe�
ients u(sin) and u

(cos),whi
h represent the steady state of the time-varying solution ve
tor u, 
an be determineda

ording to the relations
u
(sin) =

2

N

N−1∑

n=0

u(t∗ + n∆t) sin(2πf(t∗ + n∆t)), (3.147)
u
(cos) =

2

N

N−1∑

n=0

u(t∗ + n∆t) cos(2πf(t∗ + n∆t)) (3.148)where N := T/∆t and t∗ is the time at whi
h the equilibrium state is a
hieved. Thevelo
ity 
oe�
ients v
(sin) and v

(cos), the pressure 
oe�
ients p(sin) and p(cos), as well asthe displa
ement 
oe�
ients of the basilar membrane ξ(sin) and ξ(cos) 
an be extra
ted in
onsideration of equation 3.88. 77



CHAPTER 3. IMPLEMENTATIONWith the help of the sine-
osine de
omposition, the time-averaged load ve
tor of these
ond order system 3.110 
an be determined in a simpli�ed way. By substituting thesine-
osine representation for the velo
ity and pressure fun
tions and applying the mean-operator, the mass sour
e distribution 2.47 
an be written as
m̃ = − 1

2c02
div
(
p(cos)v(cos) + p(sin)v(sin)). (3.149)In addition, the for
e sour
e distribution 2.49 
an be expressed in terms of the sine- and
osine-
oe�
ients as

f̃ = −πf
c02
(
p(cos)v(sin)− p(sin)v(cos))−

ρ(0)

2

(
(grad v(cos))v(cos) + (grad v(sin))v(sin)). (3.150)Sin
e the boundary 
ondition 2.52 is also based on the results of the �rst order equilibriumstate, it is 
onvenient to use its simpli�ed representation whi
h is given as

v
(dc) = − 1

2ρ(0)c02

(
p(cos)v(cos) + p(sin)v(sin))+

1

4πf
rot
(
v
(cos)× v

(sin)). (3.151)
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Chapter 4ResultsIn this 
hapter the numeri
al results of the 
omputational model, introdu
ed in this work,are presented. In order to ensure the 
orre
t fun
tionality of the model, the numeri
alresults are 
ompared to experimental studies, measurements and analyti
al estimates.The a

ura
y of the �rst order system is 
ru
ial for the 
orre
tness of the results of these
ond order system, whi
h provides estimations for the o

urren
e of a
ousti
ally driven�ows within the inner ear. Therefore, the �rst part of this 
hapter (
f. se
tion 4.1) is
on
erned with an a

urate veri�
ation of this a
ousti
 system. It is analyzed under anharmoni
 stimulation of the oval window at di�erent frequen
ies, amplitudes and outerhair 
ell a
tivity parameters.Parti
ular attention is paid to the equilibrium state of the �rst order system, sin
e it isthe basis for the numeri
al 
al
ulation of a
ousti
 streaming. This steady state is a
hievedwithin a short time frame. The transient e�e
t is 
onsidered in se
tion 4.1.1. Today, itis well a

epted that the motions of the basilar membrane 
an be 
hara
terized on thebasis of a typi
al traveling wave pattern. The basilar membrane motions arise, inter alia,through the hydrodynami
 for
es as well as the outer hair 
ell driven for
es, whi
h areboth analyzed in se
tion 4.1.2. The resultant displa
ements in 
omparison to the travelingwave pattern of the 
o
hlear partition are reviewed in se
tion 4.1.3. Furthermore, it hasbeen shown that some boundary layer e�e
ts are mainly responsible for a
ousti
ally driven�ows. In se
tion 4.1.4, the motion within this thin boundary layer are therefore 
omparedwith an analyti
al approximation developed by Lighthill [25℄.As dis
ussed in 
hapter 2.3.3, the motility of the outer hair 
ells 
an be 
ontrolledby the a
tivity parameter λ. The outer hair 
ell motility is modeled in su
h a way thatthe resultant for
es (that a
t on the 
o
hlear partition) partially eliminate the positionaldamping of the basilar membrane. As a result, an a
tivity parameter greater than oneindu
es potentially a lo
al negative damping. Due to the linearization of the sigmoid-fun
tion, the natural limitation of the outer hair 
ell for
e 
an not be taken into a

ountby the model presented in this work. Therefore, in order to maintain the stability of thepresent linear model, the a
tivity parameter should be smaller than one. If the a
tivity79



CHAPTER 4. RESULTSparameter is set to zero, the outer hair 
ell motility will not be taken into a

ount bythe simulation pro
ess and the 
omputational model 
an be referred to as passive. Inthe 
ontext of this work the term a
tive, in 
ontrast, is asso
iated with λ = 0.9 whi
hensures the stability of the system on the one hand and on the other hand provides asigni�
ant ampli�
ation of the 
o
hlear displa
ement as it 
an be seen in this 
hapter.Unless otherwise indi
ated, the amplitude of the oval window displa
ement is set to 10nm.The se
ond part of this 
hapter 4.2 deals with the time-averaged se
ond order systemthat yields a �rst order approximation of the a
ousti
 streaming �ow �eld. In this 
ontextdi�erent physi
al me
hanisms are 
onsidered that are responsible for the o

urren
e ofa
ousti
 streaming. First of all, the distin
tion between the Lagrangian and the Eulerianspe
i�
ation of the a
ousti
 �eld yields a mean �ow �eld that appears without takingthe se
ond order system into a

ount (
f. se
tion 4.2.1). As dis
ussed in 
hapter 4.2.2,it be
omes apparent that this a
ousti
 driven �ow �eld transports mass. Therefore, thetransported mass must be released at regions where the a
ousti
 �eld dissipates. Thisphenomenon is re�e
ted in the mass sour
e distribution that appears at the right handside of the se
ondary mass 
onservation equation. The mass sour
e driven se
ond ordermean �ows are reviewed in se
tion 4.2.2. In a similar same way, also momentum 
an betransported by the a
ousti
 �eld whi
h results in a virtual for
e sour
e distribution withinthe se
ond order system. The impa
t of this for
e distribution on indu
ing a
ousti
allydriven �ows is dis
ussed in se
tion 4.2.3. As already mentioned above, it turned out thatthe most important 
ause for a
ousti
 streaming �eld 
an be asso
iated with the for
eswithin the thin boundary layer next to the basilar membrane. Therefore, the stresseswithin this boundary layer are 
ompared with Lighthill's approximations. The resultantse
ond order �ow �eld is des
ribed and evaluated in the last se
tion 4.2.4. In this 
ontext,the �ow �eld is 
ompared with experiments made by Tonndorf [48℄ and the magnitude ofthe resultant velo
ities are 
ontrasted with the analyti
al results from Lighthill [25℄.4.1 Harmoni
 Stimulation of the First Order System4.1.1 Initial Transient E�e
tIn all experiments performed in this work, the 
omputational model is stimulated by anharmoni
 ex
itation of the oval window. At the beginning of ea
h experiment, the modelis in a resting state, whi
h means that the pressure of the �uid is 
onstant over the wholedomain and that there are no motions with respe
t to the velo
ity of the �uid and thedispla
ement of the 
o
hlear partition.Before the system a
hieves a steady state, it takes about 6 to 16 periods in the 
ontextof the numeri
al simulations presented here. The duration of this transient e�e
t dependsmainly on the outer hair 
ell a
tivity parameter due to an in
reased mutual in�uen
ebetween the �uid, the basilar membrane and the outer hair 
ell motility. The a

ura
y ofthe os
illatory equilibrium state 
an be further enhan
ed by extending the duration of thisinitial time frame.80



4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEMThe �gures of appendix A.1 illustrate the �rst two periods of this transient e�e
t ata stimulation frequen
y of 1024Hz in the passive 
o
hlea model. After a quarter period,the velo
ity of the sinusoidal stimulation at the oval window is maximal and an inwarddire
ted motion 
an be observed as shown in �gure A.1. As a result of this inward stapesdispla
ement, the adja
ent pressure of the �uid within the s
ala vestibuli in
reases. In
ontrary, the velo
ity of the �uid at the round window is not pres
ribed by a Diri
hletboundary 
ondition and the motions are 
ompletely �exible. As a 
onsequen
e, the pressurenext to the round window is nearly time-invariant and its amount is the ambient value.Without loss of generality, the ambient pressure of the 
omputational model is 
hosen tobe zero for the purpose of simpli�
ation. (In reality, the ambient pressure is approximatelyequal to the atmospheri
 pressure, sin
e the oval window separates the s
ala tympani froman air-�lled spa
e within the middle ear. (
f. [13℄))Due to the pressure-di�eren
e a
ross the 
o
hlear partition, a for
e is exerted upon thebasilar membrane a

ording to equation 2.33. This pressure-driven for
e 
auses instantlya displa
ement of the 
o
hlear partition, whi
h also begins to vibrate a

ording to itslo
al physi
al properties (sti�ness, damping, mass, width, ...) and the for
es a
ting onthe basilar membrane. It 
an be 
learly seen that the displa
ement, in turn, signi�
antlyin�uen
es the velo
ity �eld of the �uid.While the wave front of the pressure propagates along the longitudinal axis, the velo
ityof the oval window displa
ement de
reases whi
h indu
es a negative ex
ess pressure at theadja
ent �uid layers as shown in �gure A.2. The negative pressure di�eren
e at the base ofthe basilar membrane in 
ombination with the elasti
 rea
tion of basilar membrane 
auses,in turn, a lo
al upward dire
ted displa
ement of the 
o
hlear partition.As illustrated by the following �gures (A.3-A.8), this interplay between the pressure dif-feren
es, �uid motions and basilar membrane os
illations results in a typi
al �uid-stru
ture
oupled wave motion along the 
o
hlear partition up to a point of dissipation. In this 
on-text, a distin
tion between the pressure wave within the �uid and the displa
ement waveon the 
o
hlear partition 
an be drawn (
f. [38℄).4.1.2 For
es a
ting on the Basilar MembraneAfter a
hieving a steady state of os
illation, the system 
an be analyzed on the basis of thesine-
osine representation or, alternatively, the amplitude-phase des
ription as des
ribedin 
hapter 2.3.4 and 3.7.Figure 4.1(a) illustrates the dynami
s of the pressure above and below the 
o
hlearpartition using the sine-
osine representation. First of all, it 
an be noted that the ex
esspressure vanishes at the base of the s
ala tympani over the whole period. In 
ontrast,the pressure at the base of the s
ala vestibuli varies due to the ex
itation of the ovalwindow. The hydrodynami
 for
es 
an be 
hara
terized by its wavelike variation alongthe basilar membrane. It 
an be observed that the wavelength de
reases from base to thepla
e where the wave dissipates. Ex
ept for the basal region, the pressure above and belowthe 
o
hlear partition are, in a 
ertain sense, opposite to ea
h other. More spe
i�
ally, a81
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(b)Figure 4.1: (a) Pressure above and below the basilar membrane at a stimulation frequen
y of 1024Hz inthe passive 
o
hlea model: p
(cos)
+ (red line); p

(cos)
−

(red dashed line); p
(sin)
+ (blue line); p

(sin)
−

(blue dashedline). (b) Resultant for
es per unit length a
ting on the basilar membrane: fp
(cos) (red line); fp(sin) (blueline).
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4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEM
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Figure 4.2: Comparison between the motility driven for
es ϑ of the outer hair 
ells and the hydrodynami
for
es fp at a stimulation frequen
y of 1024Hz in the a
tive 
o
hlea model: fp
(cos) (red line); fp(sin) (blueline), ϑ(cos) (red dashed line); ϑ(sin) (blue dashed line).

lo
al maximum of the pressure on the upper side of the basilar membrane (at a spe
i�
time) is a

ompanied with a lo
al minimum on the lower side and vi
e versa. Furthermore,it 
an be seen that the propagation of the pressure wave along the 
o
hlear partition is
hara
terized by a de
reasing phase velo
ity.As mentioned above, this pressure wave arises through the intera
tion between the �uidand the physi
al properties of the basilar membrane. The basilar membrane is stimulatedby the pressure driven for
es a
ting on the partition. A

ording to equation 2.33 thehydrodynami
 for
es per unit length, illustrated in �gure 4.1(b), are proportional to thepressure di�eren
es and the width of the basilar membrane at ea
h lo
ation. Similar tothe individual pressure for
es, the 
ombined hydrodynami
 for
e 
an also be 
hara
terizedby its wavelike propagation along basilar membrane in 
ombination with a de
reasingwavelength and phase velo
ity.Beside these hydrodynami
 for
es, the ampli�
ation me
hanism based on the outer hair
ell motility 
auses an additional internal for
e in the a
tive 
o
hlea model. Figure 4.2illustrates these internal for
es at equilibrium state that arise from a stimulation frequen
yof 1024Hz. In 
ontrast to the hydrodynami
 for
es, the envelope of this motility drivenfor
e is 
hara
terized by a signi�
ant in
rease up to a 
ertain pla
e where the for
e rea
hesits maximum. At this lo
ation, the internal outer hair 
ell for
e is 
onsiderably greaterthan the external pressure for
e. Behind this point, the for
e dissipates within a shortdistan
e. Furthermore, it 
an be observed that both for
es have a phase di�eren
e ofabout 90 degree. 83
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(b)Figure 4.3: Envelopes (a) and phases (b) of the traveling wave in the passive 
o
hlea model 
omputed at
onstant stape displa
ement for a set of di�erent frequen
ies: 128Hz (red line), 256Hz (blue line), 512Hz(green line), 1024Hz (bla
k line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).
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(b)Figure 4.4: Maximal displa
ement of the basilar membrane in the passive 
o
hlea model (a) and the a
tive
o
hlea model (b) at di�erent stimulation amplitudes and frequen
ies: 128Hz (red line), 256Hz (blue line),512Hz (green line), 1024Hz (bla
k line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).
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Figure 4.5: The frequen
y-position map (solid line) from Greenwood [18℄ assigns the 
hara
teristi
 pla
esto their 
orresponding stimulation frequen
y. The triangles illustrate the 
hara
teristi
 pla
es resultingfrom the passive 
o
hlea model whereas the dots represent the 
hara
teristi
 pla
es in the a
tive 
ase.4.1.3 Traveling Wave on the Basilar MembraneThe pressure waves are the result of the interplay between the �uid and the 
o
hlearpartition. Today, it is well a

epted that the dynami
s of the basilar membrane 
an bedes
ribed as a traveling wave. The term "traveling wave" is asso
iated with a 
hara
teristi
displa
ement pattern of the 
o
hlear partition. This pattern is 
hara
terized by followingproperties (
f. [38, 13℄):
• The amplitude of the traveling wave in
reases until a point of maximal displa
ement(peak) is rea
hed. Often, this lo
ation is referred to as 
hara
teristi
 pla
e. Behindthis pla
e, the amplitude falls to zero within a short distan
e.
• The phase of the os
illatory displa
ements de
reases monotoni
ally along the basilarmembrane. This phase lag may amount to up to several 
y
les until the travelingwave dissipates.
• The traveling wave is 
aused by (passive) me
hani
al intera
tions between the �uidand the stru
tures of the 
o
hlea. This means that the traveling wave is, in parti
ular,not a result of any other internal (physiologi
al) pro
esses.
• In 
ontrast to the a
ousti
 waves, whi
h propagate at speeds of about 1500m/s, thevelo
ity of the traveling wave motion of the basilar membrane is signi�
antly slower.The present 
omputational model has been performed for a set of di�erent frequen
ies,stimulation amplitudes and outer hair 
ell a
tivity parameters.86



4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEMPassive Co
hlea Model Figure 4.3 shows the envelopes and phases of the travelingwaves of the basilar membrane at stimulation frequen
ies of 128Hz, 256Hz, 512Hz, 1024Hz,2048Hz, 4096Hz and 8192Hz in the passive 
ase. The sine- and 
osine-
oe�
ients of theasso
iated displa
ements 
an be found in appendix A.3. It be
omes apparent that theresultant displa
ements of the 
o
hlear partition meet the requirements of the typi
altraveling wave motion as des
ribed above. The phase lag adds up to just under four 
y
lesat the lower frequen
ies and in
reases to more than �ve 
y
les at higher frequen
ies.As it 
an be 
learly seen, the longitudinal position of the 
hara
teristi
 pla
e dependsmainly on the frequen
y. Greenwood [18℄ empiri
ally developed a fun
tional relationshipthat assigns the 
hara
teristi
 pla
es to their 
orresponding stimulation frequen
y. Withregard to the human 
o
hlea this frequen
y-position map is given by
f = 350 ·

(

10
2.1
lbm

(x−lbm) − 0.85

) (4.1)where lbm denotes the length of the basilar membrane. Figure 4.5 shows that the maximaldispla
ements of the traveling wave are lo
ated up to about 5mm 
loser to the base in thepassive 
o
hlea model than in the 
ase of Greenwood's examination.There is a broad 
onsensus that the energy that 
auses the traveling wave motion ismainly transmitted by the �uid and only insigni�
antly by the basilar membrane itself (
f.[38, 28℄). A

ording to equation 2.32, longitudinal 
oupling 
an only be provided by theshearing resistan
e term. The results of the 
omputations have also shown that this termhas no signi�
ant in�uen
e on the shape of the traveling waves.A

ording to experimental data at basal sites of the 
o
hlea, the amplitude of thebasilar membrane displa
ement in
reases linearly with the stimulation intensity below aspe
i�
 sound pressure level. But above this spe
i�
 stimulation level, it 
an be observedthat the growth of 
o
hlear response is not as high as the in
rease of the stimulationlevel. (
f. [38℄) Measurements of the guinea pig 
o
hlea, for example, show that above asound pressure level of about 20dB the rate of response de
reases down to 0.12dB/dB (
f.[45, 46, 22, 34℄). Therefore, it be
omes evident that the me
hani
s of the 
o
hlea mustbe a�e
ted by some nonlinearities. Of 
ourse, su
h a nonlinear phenomena 
an not bere�e
ted by the appli
ation of a linear 
o
hlea model as used in this approa
h. Figure 4.4(a)illustrates the linearity of the 
omputational model presented here. This nonlinear behavior
an be (partially) taken into a

ount by the implementation of the sigmoid-fun
tion (asalready dis
ussed in 
hapter 2.3.3) that des
ribes the nonlinear relation between the outerhair 
ell for
e and the hair bundle de�e
tion.A
tive Co
hlea Model So far, only the traveling wave in the passive 
o
hlea modelhas been 
onsidered. But, su
h a passive behavior represents only the me
hani
s of a dead
o
hlea. The dynami
s of the living ear are quite di�erent to those of a postmortem 
o
hlea.As already dis
ussed, the 
omputational model, presented here, provides the possibility to
ontrol the a
tivity of the outer hair 
ell driven for
e by means of a parameter 0 ≤ λ ≤ 1,as originally suggested by Mammano [28℄. 87
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Figure 4.6: Envelopes of the traveling wave at a 
onstant frequen
y of 1024Hz for a set of di�erent outerhair 
ell a
tivity parameters. The undermost line illustrates the envelope in the passive 
ase (λ = 0.0)whereas the uppermost line is asso
iated with the a
tive 
o
hlea model (λ = 0.9). It 
an be seen thatthe in
remental in
rease of the a
tivity parameter by a value of 0.1 is a

ompanied with a su

essiveampli�
ation of the envelope.In prin
iple, this approa
h is based on the lo
al 
ompensation of the positional vis
osityof the basilar membrane. If λ is set to zero, no outer hair 
ell driven for
e will a
t on thebasilar membrane. This 
ase des
ribes the passive me
hani
s of the 
o
hlea as alreadyanalyzed above. Otherwise, the �uid vis
osity 
an be almost 
ompletely 
an
eled, byin
reasing the outer-hair-
ell a
tivity parameter.Figure 4.6 shows the resultant envelopes of the traveling waves at di�erent outer hair
ell a
tivity parameters. In order to ensure the stability of the os
illations of the 
o
hlearpartition, the upper limit of the a
tivity parameter is set to 0.9. Thus, the resultant netdamping (whi
h takes the 
an
elation of the outer hair 
ell motility into a

ount) is at least10% of the original damping that arises from the positional vis
osity of a radial segment.First of all, it should be noted that the ampli�
ation of the traveling wave motion isa

ompanied by a spatial shift of the peak in the dire
tion of the apex. Su
h a shift is mostly
onsistent with experimental studies. It is an indi
ation that the energy of the travelingwave motion is enhan
ed by the outer hair 
ells. (
f. [38℄) Therefore, the 
hara
teristi
pla
es are 
loser to the fun
tional relationship from Greenwood than in the passive 
ase(
f. �gure 4.5).It 
an be 
learly seen that the maximal displa
ement of the basilar membrane in
reasesin dependen
e of the outer hair 
ell a
tivity parameter up to the tenfold of the maximaldispla
ement in the passive 
ase. In literature di�erent de�nitions of the 
o
hlear ampli�ergain are used (
f. [38℄). In this paper, the gain is understood as the di�eren
e betweenthe amplitudes of the a
tive and the passive 
o
hlea at the same lo
ations on the basilarmembrane. Within the 
o
hlea of the guinea pig, gains between 65dB and 78dB weremeasured at the 
hara
teristi
 pla
es of frequen
ies between 17kHz and 19kHz(
f. [45,88
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(b)Figure 4.7: Envelopes (a) and phases (b) of the traveling wave in the a
tive 
o
hlea model 
omputed at
onstant stape displa
ement for a set of di�erent frequen
ies: 128Hz (red line), 256Hz (blue line), 512Hz(green line), 1024Hz (bla
k line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).
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Figure 4.8: Positional gain of the envelopes at di�erent frequen
ies in the a
tive 
o
hlea model (λ = 0.9)with respe
t to the envelopes in the passive 
o
hlea model (λ = 0.0): 128Hz (red line), 256Hz (blue line),512Hz (green line), 1024Hz (bla
k line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).46, 22, 34℄). As shown in �gure 4.8, su
h a gain of the amplitude 
an not be 
ompletelyreprodu
ed by the 
omputational model presented in this work. Nevertheless, the modelpresented in this work provides an instrument to investigate the e�e
ts of the ampli�
ationme
hanisms on the resultant a
ousti
ally driven �ows. On the basis of these results, further
on
lusions may be drawn with regard to the impa
t of a
ousti
 streaming at even highergains.In addition, the traveling wave is 
hara
terized by an higher phase lag than inthepassive 
o
hlea model (
f. �gure 4.7 (b)). In 
onsideration of the envelopes (
f. �gure 4.7(a)) it 
an be seen that the respe
tive shapes in the a
tive model are signi�
antly sharperthan in the passive 
ase. This property of the ampli�
ation me
hanism is believed to bea very important aspe
t with respe
t to the a
ousti
 per
eption, be
ause it enhan
es thefrequen
y sele
tivity.4.1.4 Motions within the Stokes Boundary LayerBe
ause the dissipation of a
ousti
 energy within the thin Stokes boundary layer next tothe basilar membrane is a major 
ause for se
ond order �ows, parti
ular attention has tobe paid on an a

urate numeri
al approximation of the motions within these boundarylayers. The results of the 
omputational model presented in this work 
an be validated by
omparing the numeri
ally determined motions with some theoreti
al 
onsiderations fromLighthill [25℄. In his very important 
ontribution, Lighthill estimated the dimension ofa
ousti
 streaming within the inner ear on the basis of a mathemati
al des
ription of the�ow �eld adja
ent to the basilar membrane. In this 
ontext, he suggested to approximatethe three-dimensional distribution of the �uid motion next to the traveling wave of the90



4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEM

0

0.5

1.0

1.5

0 1 2 3 4 5

Distance to the cochlear partition [
√

η/(ρ(0)ω) m]

x
-V

e
lo
c
it
y
[ω

ξ
m
/
s]

(a)

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

0 1 2 3 4 5

Distance to the cochlear partition [
√

η/(ρ(0)ω) m]

y
-V

e
lo
c
it
y
[ω

ξ
m
/
s]

(b)Figure 4.9: Comparison between the numeri
al results of the 
omputational model (solid lines) presentedin this work and the theoreti
al approximation (dashed lines) of the �uid motions within the Stokes bound-ary layer from Lighthill [25℄ near to the 
hara
teristi
 pla
e at a stimulation frequen
y of 1024Hz in thepassive model. Figure (a) illustrates the longitudinal velo
ity 
omponents whereas (b) shows the verti
al
omponents. The red, blue and bla
k lines are asso
iated with the the 
osine-part, the sine-part and theamplitude of the respe
tive velo
ity 
omponent.
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CHAPTER 4. RESULTSbasilar membrane by the superposition of solutions of the Lapla
e equation
∂2φ

∂x2
2
+
∂2φ

∂x3
2
− k2φ = 0 (4.2)where φ denotes the velo
ity potential. By the use of the so-
alled WKB method (alsoknown as Liouville-Green method), Lighthill reasoned that the �uid motion outside of athin boundary layer of the basilar membrane near to the 
hara
teristi
 pla
e 
an be mainlyapproximated by a two-dimensional 
ir
ular motion perpendi
ular to the radial axis. Interms of a mathemati
al formulation, this motion 
an be written as

v1 =
∂φ

∂x1

= iξe−kx2 , (4.3)
v2 =

∂φ

∂x2

= ξe−kx2 . (4.4)But in order to meet the no-slip boundary 
onditions at the basilar membrane, equation4.3 and 4.4 have to be adapted a

ording to Rayleigh's law of streaming [35℄, yielding
v1 = iξ

(

1− e−x2
√

iωρ/η

), (4.5)
v2 = ξ

(

1 +
(
1− e−x2

√
iωρ/η

)ω

c

√
η

iωρ

). (4.6)Figure 4.9 shows the numeri
ally determined motions within the thin boundary layer in
omparison to the analyti
al results from Lighthill. The thi
kness of the boundary layer 
anbe approximately determined to 5
√

η/ρω. With regard to typi
al stimulation frequen
iesand the spatial dimensions of the 
o
hlea, the Stokes boundary layer is 
omparatively small.Therefore, it is very important that the �nite element dis
retization pro
ess 
onstru
ts amesh that is su�
iently small to ensure an adequate approximation of the velo
ity andpressure �eld. It 
an be noted that the motions 
lose to the boundary are nearly identi
al.The greater the distan
e to the 
o
hlear partition, the greater the deviation of the numeri
alresults from the analyti
al approximations.In 
onsideration of the di�eren
es between both approa
hes, these deviations betweenthe results seem to be relatively small. In 
ontrast to the 
omputational model presentedhere, Lighthill's model negle
ted the energy dissipation due to vis
ous for
es within the bulkas well as some interfering e�e
ts arising from the intera
tion with the solid boundaries.In addition to this, by the use of the Lapla
e equation 4.2 it is assumed that the motions
an be des
ribed as an irrotational and in
ompressible �ow. Otherwise, also the numeri
alevaluation has the well-known limitations in a

ura
y, based on the lo
al resolution of themesh, the 
hoi
e of form-fun
tions as well as other numeri
al e�e
ts. Whilst taking all theseaspe
ts into a

ount, the 
omputational model yields very good results when 
omparingthe numeri
al results of the motion within the Stokes boundary layer with the analyti
alapproximations from Lighthill.92



4.2. FLUID FLOWS DRIVEN BY THE SECOND ORDER SYSTEM4.2 Fluid Flows driven by the Se
ond Order System4.2.1 Di�eren
e between Eulerian and Lagrangian Mean MotionsAs already mentioned in 
hapter 2.4.1, a distin
tion between the Eulerian and the La-grangian spe
i�
ation of the �uid-motion is essential for studying a
ousti
ally driven �ows.With respe
t to the �rst order system, su
h a distin
tion is not ne
essary sin
e both spe
-i�
ations lead to equal results in the 
ase of the equilibrium state. But with regard to these
ond order system a di�eren
e between both des
riptions arises through the nonlinearterms.The distin
tion between both 
on
epts has already been 
onsidered in the 
ontext ofthe derivation of the se
ond order boundary 
ondition 2.52. The same approa
h 
an alsobe used to des
ribe the di�eren
e of both velo
ity spe
i�
ations within the bulk of the�uid. At the boundaries the Lagrangian velo
ity vanishes due to the no-slip 
ondition.But if the Lagrangian se
ond order mean velo
ity v
(L) is taken into a

ount, the di�eren
e
an be evaluated to

v
(dc)− v

(L) = − 1

ρ(0)c02
〈p(1)v(1)〉+ 1

2
rot〈ζ(1)× v

(1)〉 (4.7)where ζ
(1) denotes the �rst order displa
ement of the �uid parti
le (
f. [9, 26℄). Theanalysis of the resultant velo
ities, 
al
ulated by the 
omputational model, has revealedthat this di�eren
e plays only a subordinate role in the 
ontext of a
ousti
 streaming withinthe bulk of the inner ear.With respe
t to the boundary 
ondition at the 
o
hlear partition, it be
omes apparentthat the �rst summand on the right hand side of equation 4.7 
an be asso
iated witha verti
al in�ow or out�ow. In 
onsideration of the spe
i�
 assumptions made by themodeling pro
ess, the se
ond term des
ribes, in 
ontrast, a slipping �ow. Both the resultantslipping �ows and the verti
al �ows are illustrated in �gure 4.10. It 
an be noti
ed thatthe amount of the slipping velo
ity ex
eeds the amount of the verti
al velo
ities by severalorders of magnitude.The Eulerian slipping �ow at the basilar membrane was also taken into a

ount in thework from Lighthill [25℄. On the basis of the �rst order velo
ity 
omponents 4.5 and 4.6,Lighthill 
al
ulated the se
ond order mean velo
ity at the 
o
hlear partition as

v(dc)1 =

√
√
√
√ ρ

µπf

(v(amp)
2 )2

4
. (4.8)It has been revealed that the slipping �ow 
al
ulated by the 
omputational model slightlyex
eeds the theoreti
al estimates from Lighthill (
f. �gure 4.10). 93
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(b)Figure 4.10: Di�eren
e between the Lagrangian and the Eulerian se
ond order mean velo
ity at the
o
hlear partition. Due to the no-slip 
ondition this di�eren
e 
oin
ides with the boundary 
ondition ofthe a
ousti
 streaming subproblem. The x-
omponent of this di�eren
e is asso
iated with a slipping �owat the basilar membrane. Figure (a) 
ompares the numeri
ally determined slip velo
ity (solid line) withthe theoreti
al estimate of the �ow velo
ity (dashed line) from Lighthill [25℄ at a stimulation frequen
yof 1024Hz in the passive 
o
hlea model. Figure (b) illustrates the x2-
omponent of this di�eren
e whi
h
orresponds to a verti
al �ow.
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0 mm 10 mm 20 mm 30 mm(b)Figure 4.11: The ve
tor �eld of �gure (a) illustrates the mass that is transported by the a
ousti
 intensity�eld. In the red 
olored regions the a
ousti
 intensity �eld weakens and therefore these areas a
t as a masssour
e. In 
ontrast to that, the blue 
olored region a
ts as a mass sink sin
e the a
ousti
 intensity �eldbe
ome more intense. Figure (b) shows the resultant se
ond order mean �ow 
aused by the mass sour
esand mass sinks of the �rst order system.
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CHAPTER 4. RESULTS4.2.2 Mass Sour
e driven StreamingA

ording to Bradley [9℄, the mean mass of se
ond order that is transported within the�uid 
an be written as
〈J (2)〉 : = ρ(0)v(dc) + 〈ρ(1)v(1)〉

= ρ(0)v(dc) +
1

c02
〈I〉

(4.9)where I := p(1)v(1) denotes the a
ousti
 intensity . It 
an be seen that mass 
an betransported either by the a
ousti
 streaming �ow �eld (�rst term) or by the a
ousti
intensity �eld (se
ond term). The velo
ity of the a
ousti
 intensity driven mass transport,given by 1
ρ(0)
〈I〉, is shown in �gure 4.11(a). This kind of mass transport is not asso
iatedwith a real existing �ow. It o

urs if the �uid is on average more dense when the dire
tionof the �uid motion 
orresponds to the orientation of the mass 
urrent than at the timewhen the �uid moves in the opposite dire
tion. In su
h a 
ase it is quite obvious that thetransport of mass is not balan
ed over one period and a net mass 
urrent appears.By integrating the intensity driven mass transport over the 
losed surfa
e S = δV ofan arbitrarily 
hosen volume V and by applying the divergen
e theorem, the relation

1

c02

∫

δV
〈I〉 dS =

∫

V
m̃ dV (4.10)holds. Therefore, it be
omes apparent that the a
ousti
 intensity driven mass transportis 
losely related to the mass sour
e distribution m̃ whi
h appears in the se
ond ordermass equation 2.46. It 
an be 
on
luded that the net inward �ux of the intensity drivenmass transport �eld through a 
losed surfa
e 
oin
ides with the amount of mass that isreleased within the en
losed region by the mass sour
e term m̃. Equation 4.10 is validfor an arbitrarily 
hosen volume. Therefore, mass sour
es 
an o

ur in all regions wherethe a
ousti
 intensity weakens. In 
ontrast, regions 
an also a
t as a sink if the a
ousti
intensity �eld strengthens. (
f. [9℄)As already dis
ussed in se
tion 4.2.1, also the os
illating boundary stru
tures are 
a-pable of a
ting as a sour
e or as a sink of mass. If the volume V in equation 4.10 is 
hosento be identi
al to the whole �uid-volume of the 
o
hlear en
losure it 
an be seen that theamount of mass taken up by the basilar membrane and the oval window is equal to theamount of mass that is inje
ted by the mass sour
e distribution.The a
ousti
ally driven �ows indu
ed by the mass transport me
hanism are illustratedin �gure 4.11 (b). But the numeri
al results show that the velo
ities of the resultanta
ousti
 streaming �ow �eld 
aused by the mass transport me
hanism are negligible in
omparison to the other me
hanisms.96
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Figure 4.12: The graph illustrates the resultant Reynolds stresses of the 
omputational model (solidlines) within in the Stokes boundary layer in 
omparison to theoreti
al approximations (dashed lines) fromLighthill [25℄. The data originates from the 
hara
teristi
 pla
e at a stimulation frequen
y of 1024Hz withrespe
t to the passive 
o
hlea model. The red lines depi
t the shear stress 
omponent that des
ribes the
x2-�ux of x1-momentum per unit area. In 
ontrast, the blue lines are asso
iated with the normal stress
omponent that represents the x1-�ux of x1-momentum per unit area.4.2.3 For
e Sour
e Driven StreamingIn this se
tion, the in�uen
e of the for
e-sour
e term 2.49 on the 
apability to generatesigni�
ant mean motions is analyzed. In order to understand the physi
al origin of theresulting for
es, Bradley [9℄ pointed out that the for
e-sour
e distribution, a

urate to these
ond order, 
an be written as the produ
t of the �uid-a

eleration a = ∂v

∂t + (grad v)vand the density:
f̃ = −〈(ρa)〉+O(ǫ3). (4.11)Therefore, the exerted for
e depends mainly on the phase between the �uid a

elerationand the density. The for
e f̃ 
an also be represented in terms of the well-known Reynoldsstress tensor whi
h 
an be expressed as ρvivj. By using integration by parts, the (�rstorder) mass 
onservation 2.22 and the produ
t rule, the for
e sour
e distribution 
an bewritten as the spatial variation of the Reynolds stress:
f̃ = −ρ(0)〈

∂v(1)i v(1)j

∂xi

〉ej. (4.12)This for
e 
an furthermore be de
omposed into a shear stress 
omponent and a normalstress 
omponent. The shear stress 
omponents des
ribe the �ux of momentum per unitarea perpendi
ular to its orientation whereas the normal stress 
omponents are 
hara
ter-ized by equal dire
tions of the for
e and its �ux.The results of the experiments, performed by the 
omputational model, show that the97
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(b)Figure 4.13: Figure (a) shows the Eulerian spe
i�
ation of the maximal mean velo
ity outside the Stokesboundary layer that are determined by the 
omputational model. By 
omparison, �gure (b) illustratesLighthill's estimate (
f. [25℄) of the maximal mean velo
ity. The velo
ities are 
al
ulated on the basis ofthe numeri
al results of the �rst order system at di�erent frequen
ies and outer hair 
ell a
tivities: 128Hz(red line), 256Hz (blue line), 512Hz (green line), 1024Hz (bla
k line), 2048Hz (purple line), 4096Hz (orangeline), 8192Hz (brown line).
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4.2. FLUID FLOWS DRIVEN BY THE SECOND ORDER SYSTEMfor
es are predominant at the adja
ent boundary layers of the basilar membrane near to the
hara
teristi
 pla
e. This observation is in 
onformity with the theoreti
al 
onsiderationsfrom Lighthill [25℄ whose estimation of a
ousti
 streaming is mainly based on the Reynoldsstresses o

urring within the Stokes boundary layer. In his work he evaluated an e�e
tiveslip velo
ity outside of the thin Stokes boundary layer. In terms of the velo
ity amplitudeof the os
illating basilar membrane, this e�e
tive slip �ow 
an be expressed as
πfk

2
(ξ(amp))2 − 3πf

2
ξ(amp)

∂ξ(amp)

∂x1

. (4.13)The �rst term as well as one third of the se
ond term originate from the shear stress
omponent that transports the x1-momentum in the x2-dire
tion. In 
ontrast, two thirdsof the se
ond summand 
an be attributed to the normal 
omponent of the Reynolds stressdriven for
e. A detailed derivation of this slipping �ow estimate 
an be found in the workfrom Lighthill [25℄.Figure 4.12 shows the numeri
ally determined stresses in 
omparison to the stresses thatare 
al
ulated on the basis of the velo
ity 
omponents 4.5 and 4.6 used by Lighthill. Thesmall deviations between both models 
an presumably be explained by previous di�eren
esregarding the �uid velo
ity (
f. �gure 4.9) and the boundary 
ondition (
f. �gure 4.10 (a))as well as the di�eren
es with respe
t to the underlying assumptions at the developmentof both models. Due to the very small dimensions of the Stokes boundary layer, numeri
alerrors must also be 
onsidered as a possible 
ause for this deviation.The formula from Lighthill 
an be used to 
al
ulate the e�e
tive slip velo
ity of a
ousti
streaming on the basis of the �rst order �eld resulting from the 
omputational model. Theresultant maximal velo
ities are shown in �gure 4.13 (b). In turn, �gure 4.13 (a) illustratesthe maximal mean velo
ities outside of the Stokes boundary layer that are 
al
ulated onthe basis of the 
omputational model. By 
omparing both results it 
an be noti
ed thatthe velo
ities of the 
omputational model are up to one order of magnitude larger thanLighthill's estimates.4.2.4 Békésy's eddiesThe numeri
al simulation of the 
omputational model has shown that a
ousti
 streaming ismainly driven by boundary layer me
hanisms (
f. 
hapter 4.2.3). A
ousti
ally driven �owsthat are based on mass-transport me
hanisms (
f. 
hapter 4.2.2) are not as signi�
antas the previously mentioned phenomenon. At a spe
i�
 frequen
y, the mean �uid motionof se
ond order 
an be best des
ribed by two eddies, whi
h are almost symmetri
ally ar-ranged to the 
o
hlear partition. Of 
ourse, this 
ir
ular movement must be thought of assuperimposed by the �rst order �u
tuations. But a separated evaluation is useful, sin
eboth motions 
an be des
ribed on di�erent time-lines due to their di�eren
e between bothvelo
ities. The dire
tion of the rotation of ea
h eddy is spe
i�ed by an api
al dire
ted mo-tion of the parti
les that are lo
ated next to the partition. Thus, an opposite dire
ted �owo

urs 
lose to the outer boundary. The velo
ity of ea
h eddy varies along its streamlines.99
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0 mm 10 mm 20 mm 30 mm(a)

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure 4.14: The Eulerian (a) and the Lagrangian (b) mean velo
ity �eld of the se
ond order system ata stimulation frequen
y of 1024Hz in the passive 
o
hlea model. The �ow �eld 
onstitutes a �rst order ap-proximation of a
ousti
 streaming and is 
hara
terized by two eddies above and below the 
o
hlear partitionnear to the 
hara
teristi
 pla
e. It 
an be seen that the no-slip 
ondition at the basilar membrane of theLagrangian �ow �eld is a

ompanied by an Eulerian slipping �ow. It is important to note that both �guresare not dire
tly 
omparable with respe
t to the velo
ities represented by the arrow lengths, due to a di�erents
aling of both ve
tor �elds that is oriented towards their respe
tive maximal velo
ity.
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Figure 4.15: Lagrangian spe
i�
ation of the maximal mean velo
ity at di�erent stimulation frequen
iesand outer hair 
ell a
tivities: 128Hz (red line), 256Hz (blue line), 512Hz (green line), 1024Hz (bla
k line),2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).Next to the 
o
hlear partition, the �uid is a

elerated in the dire
tion of the apex until apoint of maximal velo
ity is rea
hed. Shortly behind the position of maximal velo
ity, thedire
tion of the �uid motion turns ba
k and the velo
ity de
reases.Dependen
y of the frequen
y The longitudinal position of the 
enter of ea
h eddy isnearly identi
al to the position of the maximal displa
ement of the basilar membrane.Dependen
y of the amplitude As it 
an be seen in �gure 4.16, the maximal velo
ity ofthe mean �ow is proportional to the square of the stimulation amplitude. Su
h a quadrati
dependen
e on the velo
ity was also observed by the experiments from Tonndorf [48℄. Inaddition, the results indi
ate that the amplitude has no (signi�
ant) in�uen
e on the shapeof the eddies. In other words, the 
hange of the amplitude 
auses only a spatially uniform(s
alar) s
aling of the ve
tor �eld that represents the mean �ow.Dependen
y of the outer hair 
ell ampli�
ation Figure 4.15 illustrates that thevelo
ity of the a
ousti
ally driven �ows grows almost exponentially with the outer hair
ell a
tivity parameter. But in 
ontrast to the amplitude, this growth depends on variousfa
tors su
h as the gain of the displa
ement of the basilar membrane, the phase velo
ity ofthe traveling wave and its envelope. Furthermore, the a
tivity parameter also in�uen
esthe shape of the eddies. By 
omparing the eddies of the a
tive model (
f. 
hapter A.4)with the passive model (
f. 
hapter B.3) it 
an be 
learly seen that the in
rease of thea
tivity parameter is a

ompanied with a de
rease of the eddy size.In summary, it 
an be noted that the numeri
al results are almost in 
onformity withthe experimental studies from Tonndorf [48℄. 101
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(b)Figure 4.16: Maximal mean velo
ity (Lagrangian spe
i�
ation) at di�erent stimulation frequen
ies andstimulation amplitudes in the passive 
o
hlea model (a) as well as in the a
tive model (b): 128Hz (red line),256Hz (blue line), 512Hz (green line), 1024Hz (bla
k line), 2048Hz (purple line), 4096Hz (orange line),8192Hz (brown line).
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Chapter 5Con
lusionThis work was 
on
erned with the numeri
al simulation of a
ousti
ally driven �ows withinthe inner ear. It is the �rst time that the o

urren
e and magnitude of a
ousti
 streamingwas su

essfully analyzed on the basis of a 
omputational model. The relevan
e of a
ousti
streaming with respe
t to its physiologi
al impa
t on the me
hanisms of hearing is still anopen question. Therefore, the results of this work provide instruments in order to supportthe dis
ussion about the in�uen
e of nonlinear �ow e�e
ts within the 
o
hlea.Up to now, a
ousti
ally driven �ows were either examined by performing experimentson me
hani
al models (
f. [48℄) or on the basis of analyti
al 
onsiderations (
f. [20, 25℄).As mentioned by Tonndorf [48℄, me
hani
al models have the advantage of allowing dire
tobservation of nonlinear mean �ows. But due to a di�erent s
aling of the me
hani
al modelin relation to the human 
o
hlea, the experiments 
an only provide information about theprin
iple stru
ture of a potential mean �ow. Furthermore, the me
hani
al model has somesigni�
ant limitations 
on
erning its usability, for example with respe
t to the stimulationamplitude and the frequen
y range.In 
ontrast, Lighthill [25℄ analyti
ally derived an estimate of the of magnitude of a
ous-ti
 streaming outside the Stokes boundary layer near to the 
hara
teristi
 pla
e. But hisanalyti
al model is based on substantial simpli�
ations and it does not des
ribe the 
on-
rete �ow �eld of the se
ondary mean motion.The 
omputational model presented in this work over
omes most of these di�
ulties.On the one hand the model has been performed on the basis of realisti
 dimensions withregard to the physi
al properties and, furthermore, there has been no 
onstraints 
on
erningthe usability as in the 
ase of me
hani
al model. On the other hand, the simpli�
ationsmade by the modeling pro
ess are not as substantial as in an analyti
al model. In this
ontext it should be emphasized that the 
omputational model provides information aboutboth the stru
ture of the se
ondary �ow �eld as well as the magnitude of the mean motion.In 
omparison to other 
o
hlea models, a very 
omprehensive and 
omplex model hasbeen developed in order to be able to simulate the a
ousti
ally driven �ows within theinner ear. The 
omplexity of the presented model is the result of the expli
it 
onsideration103



CHAPTER 5. CONCLUSIONof the dynami
al behavior of three major 
omponents: the �uid, the basilar membraneand the outer hair 
ell motility.Parti
ular attention has been paid to an appropriate representation of the �uid in orderto ensure that the system yields a

urate results with respe
t to the linear and nonlinear�ow motions. The dynami
s of the �uid was simulated by using 
on
epts from the �eld of
ontinuum me
hani
s.The 
onsideration of the intera
tions of the �uid with the biologi
al stru
ture thatseparates the s
ala tympani from the s
ala vestibular was a very important aspe
t inorder to virtually reprodu
e the 
hara
teristi
 �ow �eld. Therefore, the 
o
hlear partitionwas modeled as an os
illatory system as suggested by Mammano and Nobili [28℄. But in
ontrast to the model from Mammano and Nobili, the external hydrodynami
 for
es havebeen dire
tly 
al
ulated on the basis of the �uid dynami
s and not with the help of aphenomenologi
al approa
h. While the dynami
al rea
tion of the basilar membrane wasevaluated in the time domain, Mammano and Nobili examined the displa
ements of the
o
hlear partition in the frequen
y domain.The displa
ement pattern of the basilar membrane and also the �ow �eld of the �uidsigni�
antly di�er between the a
tive 
ase, where the outer hair 
ell motility is taken intoa

ount, and the passive 
ase, where this ampli�
ation me
hanism is negle
ted. Thereforethe e�e
t of the outer hair 
ell motility on the resultant se
ondary �ow �eld has alsobeen analyzed. The additional for
e exerted by the outer hair 
ells was 
al
ulated on thebasis of an approa
h suggested by Mammano and Nobili (
f. [28, 33℄), who modeled theampli�
ation me
hanisms as an additional os
illatory subsystem.In summary, a set of di�erent di�erential equations and boundary 
onditions werededu
ed that des
ribe the 
omplex dynami
s of the whole 
o
hlear system. By the use ofa well-known approa
h from the perturbation theory, it was possible to split the systemof equations into a set of su

essive linear subsystems. With regard to the numeri
alsimulation of a
ousti
 streaming, this perturbation approa
h was so far only used in the
ontext of pure �uidi
 systems. Therefore, it is the �rst time that this approa
h wasextended to an highly �uid-stru
ture 
oupled problem like the 
o
hlea.The resultant �rst order subsystem des
ribes the linear a
ousti
 rea
tion of the sys-tem. The spatial dis
retization of this a
ousti
 system, performed by means of the �niteelement method, resulted in a system of ordinary di�erential equations whi
h, in turn, wasdis
retized by using an impli
it integration method. Due to the strong 
oupling betweenthe �uid, the basilar membrane and the outer hair 
ell motility, the di�erent pro
esses weresyn
hronously solved by a monolithi
 approa
h. The simulation of this linear a
ousti
 re-a
tion was a very 
omputationally intensive part of the whole pro
ess, but the a

urate
al
ulation of the �rst order solution was a 
ru
ial requirement for the su

essful determi-nation of the se
ond order mean �ows.The results of this �rst order subsystem were validated against experimental studies,analyti
al 
onsiderations and other models. It has been shown that an harmoni
 stim-ulation at the oval window indu
es the expe
ted typi
al traveling wave motion of the104




o
hlear partition. Furthermore, the relationship between the stimulation frequen
y andthe asso
iated 
hara
teristi
 pla
es 
omplies with empiri
al experiments (
f. [18℄). It hasbeen proven that the main 
ause for a
ousti
ally driven �ows 
an be found in a boundarylayer driven me
hanism. Therefore, parti
ular attention has been paid to the �uid mo-tions within the thin Stokes boundary layer of the 
o
hlear partition, whi
h 
omply, in themain, with analyti
al approximations developed by Lighthill [25℄ on the basis of theoreti
al
onsiderations from Lord Rayleigh [35, �352℄.It turned out that if the outer hair 
ell motility is taken into a

ount by the simula-tion pro
ess, the traveling wave pattern will, inter alia, be lo
ally enhan
ed near to the
hara
teristi
 pla
e. This signi�
ant ampli�
ation is, in addition, a

ompanied with anin
reased phase lag and an api
al peak shift as also observed by Mammano and Nobili [28℄in their 
omputational model. It should be noted that the linearized model of the outerhair 
ell motility 
an not be used to reprodu
e the nonlinear behavior of the ampli�
ationme
hanism. Nevertheless, it has been shown that this linear model was an appropriateinstrument to analyze the e�e
t of the outer hair 
ell driven ampli�
ation on the resultantmean �ows.The time-averaged se
ond order subsystem yielded a �rst order approximation of thea
ousti
ally driven �ows within the inner ear. The appli
ation of the �nite element methodresulted in a stationary system of equations where the right hand ve
tor in
ludes the resultsof the �rst order system in terms of a virtual for
e- and mass-sour
e distribution.It turned out that the resultant a
ousti
 streaming �ow �eld is in a

ordan
e withthe experimental studies from Tonndorf [48℄. Furthermore, the results of the numeri
alsimulations indi
ate that the maximal velo
ity of the a
ousti
ally driven �ows are up toone order of magnitude larger than the analyti
al estimates from Lighthill [25℄.This work opens up new opportunities in the 
ontext of investigations with respe
t tothe bio-me
hani
s of hearing. Furthermore, the model shows potential for further improve-ments with regard to 
onvergen
e and a

ura
y. Also an extension for three-dimensionalexaminations would be desirable.
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Appendix AResults of the Passive Co
hlea Model
A.1 Initial Transient E�e
t

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.1: Current state of the 
o
hlea system after 1
4
T se
onds at 1024Hz stimulation frequen
y. Theve
tor �eld illustrates the velo
ity v

(1) whereas the intensity of the red (or blue) 
olor represents the amountof the positive (or negative) pressure p
(1).
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.2: Current state of the 
o
hlea system after 1
2
T se
onds at 1024Hz stimulation frequen
y. Theve
tor �eld illustrates the velo
ity v

(1) whereas the intensity of the red (or blue) 
olor represents the amountof the positive (or negative) pressure p
(1).

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.3: Current state of the 
o
hlea system after 3
4
T se
onds at 1024Hz stimulation frequen
y. Theve
tor �eld illustrates the velo
ity v

(1) whereas the intensity of the red (or blue) 
olor represents the amountof the positive (or negative) pressure p(1).
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A.1. INITIAL TRANSIENT EFFECT

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.4: Current state of the 
o
hlea system after T se
onds at 1024Hz stimulation frequen
y. Theve
tor �eld illustrates the velo
ity v
(1) whereas the intensity of the red (or blue) 
olor represents the amountof the positive (or negative) pressure p

(1).

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.5: Current state of the 
o
hlea system after 5
4
T se
onds at 1024Hz stimulation frequen
y. Theve
tor �eld illustrates the velo
ity v

(1) whereas the intensity of the red (or blue) 
olor represents the amountof the positive (or negative) pressure p
(1).
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.6: Current state of the 
o
hlea system after 3
2
T se
onds at 1024Hz stimulation frequen
y. Theve
tor �eld illustrates the velo
ity v

(1) whereas the intensity of the red (or blue) 
olor represents the amountof the positive (or negative) pressure p
(1).

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.7: Current state of the 
o
hlea system after 7
4
T se
onds at 1024Hz stimulation frequen
y. Theve
tor �eld illustrates the velo
ity v

(1) whereas the intensity of the red (or blue) 
olor represents the amountof the positive (or negative) pressure p(1).
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A.1. INITIAL TRANSIENT EFFECT

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.8: Current state of the 
o
hlea system after 2T se
onds at 1024Hz stimulation frequen
y. Theve
tor �eld illustrates the velo
ity v
(1) whereas the intensity of the red (or blue) 
olor represents the amountof the positive (or negative) pressure p(1).
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APPENDIX A. RESULTS OF THE PASSIVE COCHLEA MODELA.2 Rotary Vibrations at Equilibrium State

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(a)

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.9: Equilibrium state of the �rst order system at the stimulation frequen
y of 128Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p

(cos). Figure (b) visualizes their imaginary 
ounterparts v
(sin)and p

(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(a)

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.10: Equilibrium state of the �rst order system at the stimulation frequen
y of 256Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(a)

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.11: Equilibrium state of the �rst order system at the stimulation frequen
y of 512Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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−1.5 mm

0 mm
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0 mm 10 mm 20 mm 30 mm(a)

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.12: Equilibrium state of the �rst order system at the stimulation frequen
y of 1024Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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−1.5 mm

0 mm
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0 mm 10 mm 20 mm 30 mm(a)

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.13: Equilibrium state of the �rst order system at the stimulation frequen
y of 2048Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(a)

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.14: Equilibrium state of the �rst order system at the stimulation frequen
y of 4096Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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−1.5 mm
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.15: Equilibrium state of the �rst order system at the stimulation frequen
y of 8192Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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A.3. DISPLACEMENT OF THE BASILAR MEMBRANEA.3 Displa
ement of the Basilar Membrane
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Figure A.16: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 128Hz inthe passive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure A.17: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 256Hz inthe passive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure A.18: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 512Hz inthe passive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure A.19: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 1024Hz inthe passive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure A.20: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 2048Hz inthe passive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure A.21: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 4096Hz inthe passive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure A.22: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 8192Hz inthe passive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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0 mm 10 mm 20 mm 30 mmFigure A.23: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 128Hz in the passive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.24: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 256Hz in the passive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.25: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 512Hz in the passive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.26: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 1024Hz in the passive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.27: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 2048Hz in the passive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.28: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 4096Hz in the passive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.29: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 8192Hz in the passive 
o
hlea model.
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APPENDIX B. RESULTS OF THE ACTIVE COCHLEA MODELB.1 A
ousti
 Flow Fields at Equilibrium State
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0 mm 10 mm 20 mm 30 mm(b)Figure B.1: Equilibrium state of the �rst order system at the stimulation frequen
y of 128Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p

(cos). Figure (b) visualizes their imaginary 
ounterparts v
(sin)and p

(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.2: Equilibrium state of the �rst order system at the stimulation frequen
y of 256Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.3: Equilibrium state of the �rst order system at the stimulation frequen
y of 512Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.4: Equilibrium state of the �rst order system at the stimulation frequen
y of 1024Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.5: Equilibrium state of the �rst order system at the stimulation frequen
y of 2048Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.6: Equilibrium state of the �rst order system at the stimulation frequen
y of 4096Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.7: Equilibrium state of the �rst order system at the stimulation frequen
y of 8192Hz in thepassive 
o
hlea model. Figure (a) illustrates the real part of the velo
ity �eld v
(cos) of the rotary vibrationin 
ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary 
ounterparts v

(sin)and p
(sin). The intensity of the red (blue) 
olor represents the amount of the positve (negative) pressure.
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B.2. DISPLACEMENT OF THE BASILAR MEMBRANEB.2 Displa
ement of the Basilar Membrane
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Figure B.8: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 128Hz in thea
tive 
o
hlea model. The red line represents the 
osine part ξ
(cos) of the os
illatory motion, whereas theblue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure B.9: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 256Hz in thea
tive 
o
hlea model. The red line represents the 
osine part ξ
(cos) of the os
illatory motion, whereas theblue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure B.10: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 512Hz inthe a
tive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure B.11: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 1024Hz inthe a
tive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.

−30

−20

−10

0

10

20

30

0 5 10 15 20 25 30

Distance from base [10−3m]

B
M

-D
is
p
l.
/
S
ta

p
e
s-
A
m
p
l.

Figure B.12: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 2048Hz inthe a
tive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure B.13: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 4096Hz inthe a
tive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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Figure B.14: Traveling wave motion of the basilar membrane at the stimulation frequen
y of 8192Hz inthe a
tive 
o
hlea model. The red line represents the 
osine part ξ(cos) of the os
illatory motion, whereasthe blue line is asso
iated with the sine 
omponent ξ(sin). The bla
k line illustrates the envelope.
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B.3. ACOUSTIC STREAMING FLOW FIELDB.3 A
ousti
 Streaming Flow Field
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0 mm 10 mm 20 mm 30 mmFigure B.15: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 128Hz in the a
tive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.16: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 256Hz in the a
tive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.17: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 512Hz in the a
tive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.18: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 1024Hz in the a
tive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.19: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 2048Hz in the a
tive 
o
hlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.20: Lagrangian spe
i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 4096Hz in the a
tive 
o
hlea model.
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i�
ation of a
ousti
i
ally driven �ows indu
ed by a stimulation frequen
yof 8192Hz in the a
tive 
o
hlea model.
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