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Abstract

This work is concerned with the numerical examination of acoustically driven flows within
the inner ear on the basis of a computational model. For this purpose, a comprehensive
system of differential equations and boundary conditions is deduced, which takes, to a
satisfactory extent, the complexity of the main biophysical mechanisms of the cochlea into
account.

Beside an appropriate representation of the fluid dynamics, also the biomechanical
properties of the basilar membrane as well as the internal amplification mechanism caused
by the outer hair cell motility are considered in order to get realistic estimates of the
structure and magnitude of the mean flow field. In the present work, the interior fluids
are modeled on the basis of a two-dimensional simplified domain by using concepts from
the field of continuum mechanics. According to an approach from Mammano and Nobili
[28], the mechanical reaction of the cochlear partition and also the outer hair cell motility
are represented as one-dimensional oscillatory systems. With the aid of the perturbation
theory, two linear subproblems are extracted that can be used for a separate determination
of the acoustic and the acoustic streaming field.

The present work introduces a two-stage approach for the numerical evaluation of
the solutions on the basis of the finite element method. The first step deals with the
time-dependent acoustic subproblem. Due to the strong coupling between the different
components a monolithic approach is considered that simultaneously calculates the inter-
acting processes. The second step is associated with the stationary acoustic streaming
subproblem that provides a first order approximation of the acoustic streaming field.

Finally, the numerical solutions of the computational model are presented. It is shown
that the results are essentially consistent with measurements as well as analytical and
experimental considerations.

Keywords: acoustic streaming; cochlea; fluid-structure-interaction.
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Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit der numerischen Untersuchung von akustisch in-
duzierten Strémungen innerhalb des Innenohres auf Grundlage eines Berechnungsmodells.
Zu diesem Zweck wird ein umfassendes System aus Differentialgleichungen und Rand-
bedingungen abgeleitet, das der Komplexitét der biophysikalischen cochlearen Vorginge
gerecht wird.

Um moglichst realistische Ergebnisse in Bezug auf die Struktur und Grofenordnung der
akustisch induzierten Stromungen zu erhalten, werden neben einer angemessenen Darstel-
lung der Fluiddynamik zudem auch die biomechanischen Figenschaften der Basilar Mem-
bran sowie der interne Verstarkungsmechanismus - der durch die Bewegungen der dufseren
Haarzellen hervorgerufen wird - beriicksichtigt. Die inneren Fliissigkeiten werden in dieser
Arbeit mithilfe von Konzepten der Kontinuumsmechanik auf einem simplifizierten zwei-
dimensionalen Gebiet modelliert. Die mechanische Riickkopplung der Basilar Membran
als auch die Bewegung der dufseren Haarzellen werden, entsprechend eines Ansatzes von
Mammano und Nobili [28], jeweils durch ein eindimensionales schwingungsfihiges System
beschrieben. Mithilfe der Storungstheorie werden schlieflich zwei lineare Teilprobleme
gewonnen, mit denen jeweils eine separate Bestimmung der akustischen Schwingungen
und der akustisch induzierten Stromung méglich wird.

Die vorliegende Arbeit stellt ein zweistufiges Verfahren zur numerischen Bestimmung
der Losungen auf Grundlage der Finite-Elemente-Methode vor. Die erste Stufe behan-
delt das akustische Teilproblem. Aufgrund der starken Kopplung zwischen den unter-
schiedlichen Komponenten wird ein monolithischer Ansatz verwendet, der die interagieren-
den Prozesse simultan berechnet. Die zweite Stufe liefert im Anschluss fiir das zweite Teil-
problem eine Ndherungslosung erster Ordnung fiir die akustisch induzierten Stromungen.

Zum Abschluss werden die numerischen Ergebnisse des Berechnungsmodells dargelegt.
Dariiber hinaus wird gezeigt. dass die Resultate im Wesentlichen mit Messungen sowie
analytischen und experimentellen Untersuchungen iibereinstimmen.

Schliisselworter: akustisch-induzierte Stromungen; Cochlea; Fluid-Struktur-Interaktion.
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Chapter 1

Introduction

The process of hearing is a quite complex mechanism which is still not fully understood.
The auditory system of humans is capable of recognizing acoustic signals between 20Hz
and 20kHz and a sensitivity range of about 12 orders of magnitude (cf. [38]). As illustrated
in figure [T} the soundwave has to pass initially the outer ear, the external auditory canal
as well as the middle ear (which consists of the tympanic membrane, the malleus, the incus
and the stapes) before reaching the snail-shaped inner ear, which is known as cochlea (cf.
figure [[L2]). Within the cochlea the acoustic signal is converted into nerve impulses by an
elaborate bio-mechanical mechanism. This mechanism as well as the triggering process of
the nerve impulses are mainly caused by the deflection of tiny hair-bundles, the so-called
stereocilia. In the light of this underlying processes, the relevance of acoustic streaming
and its potential influence on the bio-mechanical mechanisms are still an open issue.

The term acoustic streaming is associated with the mean motions of a fluid or a gas
that are induced by an acoustic field. Up to now, a direct examination of such mean
flows within the cochlea has not yet been possible due to the limited accessibility and the
small dimensions of the liquid filled chambers. Furthermore, it can be expected that the
resultant velocities of the acoustic streaming field are relatively small in comparison to the
characteristic velocities of the sound field. This work yields numerical estimates of the
magnitudes as well as the structure of acoustic streaming within the cochlea on the basis
of a simulation process. The objective of this computational model is the provision of a
new instrument for a substantiated discussion on the physiological impact of acoustically
driven flows within the cochlea. In addition, a completely new approach for simulating
acoustic streaming within a fluid-structure coupled system like the inner ear is proposed
which might also be used in a wide range of other applications.

The physical origin of acoustic streaming can be found in different dissipation mech-
anisms of acoustic energy. The propagation of sound waves is usually accompanied by
a mean momentum flux (better known as Reynolds stress) and a mean mass flux. Such
a mean net rate is caused when the transport of momentum, or the transport of mass
respectively, across an unit area is unbalanced over one cycle (in the case of a pure-tone
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Figure 1.1: Structure of the human ear. (source Boenninghaus and Lenarz [{)])

stimulation). As a result of the sound wave attenuation it can be expected that also the
mean momentum flux as well as the mean mass flux are weakened at regions of acoustic
energy dissipation. The excess mass that can no longer be transported by the sound beam
must be released and it appears as if this mass is injected within the fluid. In the same
way, the excess momentum appears as an additional force acting on the fluid. In principle,
these virtual mass sources or virtual force sources are the main cause of acoustically driven

flows. (cf. [26] 9] 6])

Viscosity can, for example, be identified as one major kind of the dissipation mecha-
nisms. But, viscous attenuation of acoustic energy typically becomes significant either at
high frequencies or next to boundaries due to an enhanced friction of adjacent fluid layers.
Since typical frequencies of the cochlear system are comparatively low, only viscous atten-
uation within the boundary layers can be considered as a cause for substantial mean flows.
Even though the dissipation of acoustic energy is restricted to such a boundary layer, a
remarkable mean flow can also occur outside of this boundary layer. A fundamental anal-
ysis of these boundary driven flows goes back to Lord Rayleigh [35, §352]. He calculated
an effective slip flow in order to represent the mean velocity of the fluid at the edge of
the boundary layer relative to the boundary. In this context, it is interesting to note that
although the effective slip flow is caused by viscosity, the dimension of this motion does
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not depend on an associated viscosity-coefficient. The reason for this phenomenon lies in
the fact that the resistance to such a mean flow also depends on the viscosity itself. (cf.
[26, 35]) Therefore, even if the viscosity of a fluid is small, the resulting effective slip flow
velocities can become substantial.

Two very important contributions to the subject of acoustic streaming within the inner
ear, which arise from the cochlear travelling waves, come from Hallauer [20] and Lighthill
[25]. Hallauer as well as Lighthill examined the acoustic driven flows on the basis of the-
oretical considerations. Both approaches use mathematical asymptotic and perturbation
techniques in order to get approximations of the nonlinear fluid motion within the cochlea.
While Lighthill focusses on the determination of an estimate of the potential velocities
of acoustic streaming, Hallauer also calculates the streamlines of the acoustically driven
motions on the basis of his mathematical model.

In contrast to the theoretical considerations from Hallauer and Lighthill, an experimen-
tal examination of acoustic streaming can be traced back to Békésy [50]. In his pioneering
work he performed inter alia studies on mechanical cochlea models. He observed that above
and below the cochlear partition two eddies arise if the mechanical model is stimulated by
a sinusoidal excitation. It turns out that this eddy-like motion can be associated with the
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Figure 1.3: Schematic layout of the computational model used for simulation of acoustically driven flows
within the cochlea. On the basis of a perturbation technique, the system is separated into first and a second
order system. The first order system describes the linear acoustic field of the fluid as well as its interactions
with the structures, such as the oval window, the round window and the basilar membrane. Furthermore,
the motility of the outer hair cells is taken into account which results in additional forces acting on the
basilar membrane. The first order system provides results that can be used by the second order system in
order to calculate an approzimation of acoustic streaming.

term acoustic streaming. Fach eddy is characterized by an apical directed mean flow of the
fluid-particles that are located close to the cochlear partition and a basal directed mean
motion at the outer boundaries. The longitudinal position of the eddies depends on the
frequency and correlates with the characteristic place. (cf. [50], 48]) A detailed description
of these eddy-like mean flows was carried out by Tonndorf [4§].

Acoustic streaming has already been studied in a lot of numerical simulation processes.
Different kinds of numerical approaches for the simulation of acoustic streaming were, for
example, reviewed by Boluriaan and Morris [6]. But up to now, it has not yet succeeded
to establish an adequate method for the numerical simulation of acoustic streaming within
biophysical systems like the cochlea. The primary reason for this lies in the fact that
the velocity field of the fluid is mainly influenced by the interactions with its adjacent
structures.

In this work a well-proven numerical method is adapted that was successfully imple-
mented by Koster [24], who studied the structure of acoustic streaming caused by piezo-
electrically driven microfluidic biochips. Koster used a standard perturbation technique in
order to split the nonlinear acoustic streaming problem into two linear subproblems. His
computational model also includes a more precise treatment of the acoustic radiator, as
originally suggested by Bradley [9].

To investigate the influence of acoustically driven flows in the inner ear, an appropriate



computational model was developed which has been studied in a simulation process. In
contrast to the work from Koster [24], this computational model consists not only of a fluid-
domain but also of structural components that have a significant influence on the fluid. A
schematic layout of the model is shown in figure L3l As one can see, the model introduced
in this thesis can also be divided into a first order system and a second order system. The
first order system describes the linear acoustics within the fluid-domain in combination
with the mutual interactions of the cochlear structures, such as the basilar membrane, the
oval window and the round window. The oval window serves as an acoustic radiator due
to the direct contact with the stapes of the middle ear. The round window is covered
by a membrane that allows the fluid to move arbitrarily to a certain degree. The basilar
membrane can also be brought into motion due to the difference of the pressure above and
below the cochlear partition. In turn, such a displacement of the basilar membrane also
has an influence on the velocity field of its adjacent fluid. Furthermore, an additional force
term that acts on the basilar membrane has also to be taken into account for the first order
subproblem in order to represent the motility of the outer hair cells. At a second stage the
acoustically driven flows can be determined on the basis of the results of this first order
system.

As illustrated in figure [[L4] the analysis of a dynamic system by means of the develop-
ment and application of an appropriate simulation model consists of different steps. First
of all, the main purpose and the principal targets of the model should be clearly specified
by a problem formulation. In this work, the following statement serves as such a guideline
that summarizes the preliminary considerations and remarks:

The model is intended to verify, whether a significant mean flow occurs.
The simulation process should estimate the order of magnitude of these mean
motions as well as its structure.

On the basis of a problem formulation, an abstract model is usually designed by making
reasonable simplifications, collecting specific data and establishing evaluable mathematical
relations. In this context, it is important to ensure that the basic assumptions and simplifi-
cations at this stage of modeling lead to a valid model with regard to its purpose. The basic
mathematical model, used in this work, is presented in chapter 2l In this context, funda-
mental aspects with respect to the anatomical dimensions as well as the macro-mechanical
characteristics of the fluid and the cochlear partition are taken into account. If no analyti-
cal solutions of the abstract mathematical model are found, the model can be transformed
into a computer-recognizable form (also referred to as computational model) in order to
obtain numerical approximations. The conversion of the abstract cochlea model into a
computational model is described in chapter Bl The implementation is realized by the
use of the finite element method that mainly comprises the establishment of a so-called
variational formulation, the consideration of the solution spaces, a spatial and temporal
discretization and the assemblage of the resultant discretized systems of equations that can
be solved numerically. In order to verify that the model accurately represents the essential
features of the real system, the model has to undergo some predefined experiments for
the purpose of validation. If the results of these validation-experiments are not satisfying,
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Figure 1.4: This figure illustrates the principal and underlying process of the development of the cochlea
model presented in this work. As it can be seen, the modeling process is characterized by an iterative process
involving the model design, the model translation, the model execution and the output analysis.

either the basic mathematical model or the implementation should be adapted. Therefore,
the development and application of a simulation model is an iterative process involving the
basic modeling, the implementation, the execution and the validation. Chapter @ describes
and analyzes different experiments which were performed to validate the correct function-
ality of the computational model. In this context, the cochlear model was compared with
the mammalian cochlea, mechanical cochlear models and theoretical considerations. The
final results concerning acoustic streaming can also be found in this chapter.

This thesis is based on an article that is submitted for publication in an upcoming issue
of the Journal of Computational Acoustics. In contrast to this article, the present work
is supplemented by a lot of additional background informations concerning the modeling-,
implementation- and validation-process.



Chapter 2

Modeling

Most people associate the word "model" with a physical, often smaller and simplified clone
of an original object which can be studied for example in wind tunnels or swimming pools.
These types of models are known as iconic models. But in general, a model is a representa-
tion of an object or a system. Therefore, also illustrations, functional diagrams, sectional
views, mathematical relationships, or electronic circuits can be regarded as models.

Especially in the last few decades the importance of computational models has in-
creased with the possibility of the execution of computationally intensive calculations by
computers. Computational models are based on evaluable mathematical relations that can
normally not be solved analytically. In such a case, it is necessary to determine the solution
by the use of numerical methods. In contrast to other kinds of models, they are easy to
manipulate and the influence of parameters can be simple examined. But the determina-
tion of the mathematical relations and physical laws as well as the numerical realization
requires a lot of system knowledge, expertise and experience.

In general, models can be characterized by different (contrary) properties (cf. e.g. []]).
The most important aspects are given by the following items:

e explanatory > descriptive: An explanatory model tries to emulate the internal
mode of action of the system. A descriptive model by contrast tries to imitate
the behavior of the system without the knowledge of the internal mode of action.
According to a black box, the imitation is only based on the observation of the system.

e static +» dynamic: Dynamic models take time-dependent processes of the system
into account, whereas a static model is characterized by its time-invariance.

e system parameter <> parameter-adaption: If the internal (physical) quantities
and dimensions of a system are known or can be measured, they can be directly
used as characteristic model parameters. Otherwise, if some quantities cannot be
determined, the unknown parameters might be adjusted by an iterative process as
long as the behavior of the model does not correspond to the behavior of the system.

7
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e deterministic < stochastic: In stochastic models, the influence of probabilistic
and random effects are taken into account. Otherwise, a model will be called de-
terministic if the behavior of the model is clearly predetermined by the external
influences.

e time-continuous < time-discrete: The state of time-discrete models is only de-
fined at separated points in time. In contrast, the state variables of a time-continuous
model can be determined at any time within a specified period of time.

e continuous space <> discrete space: Similar to the time-dependent properties
"discrete" and "continuous", a corresponding distinction can be drawn with respect
to spatial state variables. If a model consist only of individual values that are spatially
separated or independent of the location, the model will be referred to as discrete.
If the state of a model is given at any point within a specific area, the model is
continuous over space.

The model introduced in this chapter constitutes a deterministic, space-continuous and
time-continuous model. But the model is not clearly classifiable with respect to the other
attributes. For example, the first-order-subproblem of the model is an highly dynamic sys-
tem, whereas the second-order subproblem describes only the stationary (time-invariant)
flow of acoustic streaming in steady state. Furthermore it can be noted that, although
the model is mainly constructed by the use of explanatory components, some aspects are
modeled descriptively for reasons of simplicity. With respect to the model-parameters it
should be mentioned that not all quantities are clearly predefined by direct measurements
or physical estimates. In consideration of their physical limits, these parameters must
therefore be specified in the course of the modeling-process.

Since a model normally represents the original system only in certain aspects, its range
of validity is limited. Therefore, as already discussed in chapter [, every model is based
on a specific purpose for which the model has been developed. Each model should yield
adequate answers with respect to questions resulting from its purpose, but the validity of
the model regarding other questions must be doubted. Often, different questions need to
be treated by different models.

Another aspect in modeling is the resultant complexity of the model. On the one hand
a model should be as efficient and simple as possible. If a model is designed for universal
purposes, the complexity and usually also the susceptibility to errors will increase. On
the other hand the model should reflect the characteristic aspects as realistic as possible.
Therefore it is not easy to decide whether certain simplifications are reasonable and whether
a certain component is important or not.

This chapter deals with the establishment of an abstract mathematical model which
describes the motions of the fluid as well as its interaction with the adjacent tissues. The
basic simplifications and assumptions made by the modeling process are outlined in section
2 The differential equations that are used for representing the fluid are established in
section 2.2 In this context, a perturbation technique is introduced by which the fluidic sys-
tem can be separated into an acoustic subproblem and an acoustic streaming subproblem.



2.1. SIMPLIFYING ASSUMPTIONS

The first order system is presented in section [2.3] and describes the linear acoustic reaction
of the fluid (the acoustic subproblem), the passive mechanics of the cochlear partition as
well as the motility of the outer hair cells. The acoustically driven flows are approximated
by the time-averaged second order system (the acoustic streaming subproblem) which is
deduced in section 241

2.1 Simplifying Assumptions

In order to obtain an implementable model of the cochlea some simplifications and as-
sumptions are made while maintaining fundamental aspects to get a valid representation
for estimating the occurrence and structure of acoustically driven flows within the fluid-
filled chambers of the inner ear. For reasons of clarification, the direction that is associated
with the spiral axis of the coiled cochlea is referred to as longitudinal. The plane perpen-
dicular to the longitudinal axis is referred to as transversal. The direction of the basilar
membrane fibres within this transversal plane is denoted as radial. The term wvertical
is associated with the direction that is perpendicular to the longitudinal and the radial
orientations.

Dimension The choice of the dimension is a crucial aspect in modeling. For a wide
range of applications, a three-dimensional model seems to be the most suitable for repre-
senting the reality. In contrast to this, a considerable effort would be required, particularly
regarding the development, implementation and execution of a three-dimensional model.
Three-dimensional models of the cochlea were, for instance, realized by Givelberg and
Bunn [I7] who used the immersed boundary method, as well as by Cheng et al. [1I] and
Bohnke and Arnold [5] who performed finite element simulations. However, the occurrence
of acoustically driven flows could not be investigated by these models, due to simplifying
assumptions made by the modeling process. The present work ignores the variations par-
allel to the radial width of the basilar membrane. Therefore, the numerical simulations
presented in this work are based on a two-dimensional model. Nevertheless, for a more de-
tailed examination of acoustically driven flows, a generalization to three dimensions would
be desirable.

Geometry Due to the reduction of the dimension, the spiral coiling of the cochlea can
not be taken into account. It is assumed that the main cause of this snail shell shape of a
mammalian cochlea lies in a better utilization of the space and a more efficient accessibility
of blood vessels and nerve fibers (cf. [50]). Recently, a strong correlation between the
change of longitudinal curvature and the audible range for different mammalian species
suggest that the spiral coiling also has a certain influence on the low-frequency hearing
limit. It is assumed that this effect is induced by a stronger focus of acoustic energy at
the outer boundaries, particularly at more apical sites where the curvature is higher (cf.
[29]). Altogether, the spiral coiling appears to play only a subordinate role and therefore it
seems to be reasonable to neglect the longitudinal curvature in order to analyze acoustically
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Figure 2.1: The two-dimensional shape of the uncoiled human cochlea model. The heights of the scala
vestibuli and scala tympani are taken from Wysocki [52]. The scala vestibuli and the scala tympani constitute
the fluid domain Q and these chambers are bordered by the rigid boundary Ty, the oval window Tow and
the round window I'vw. Both ducts are separated by the cochlear partition I'py,.

driven flows. As it can be seen in figure 2] the coiled tube of the cochlea is represented by
an elongated flat shape. The height of the scala vestibuli and scala tympani are adapted
from Wysocki [52], who studied the the dimensions of the chambers on the basis of 25
human cadavers.

Boundaries The boundary of the cochlea model can be divided into the rigid boundary
Iy, the oval window Iy and the round window I'yy, (cf. figure 21). The oval window
consists of the stapes which act as an acoustic radiator in order to stimulate the cochlear
system. The piston-like motions of the stapes can be represented by corresponding dis-
placements of the associated boundary. The round window is closed by a flexible membrane
which allows the fluid to move within the cochlea to a certain extent. For reasons of sim-
plification, the functionality of the round window membrane is imitated by using a specific
boundary condition as described in section 222,31

Cochlear Partition To further reduce the complexity of the model, some anatomical
details of the interior structures are also neglected. The Reissner’s membrane is a very
thin (only two-cell layer thick) partition which separates the scala tympani from the scala
media. It is assumed that the Reissner’s membrane acts not as a barrier of acoustic
stimuli, but rather as a separation between the perilymph and the endolymph in order
to preserve the electrical potential difference between both fluids. (cf. [49]) Therefore,
the basilar membrane in combination with the scala media and its interior structures (e.g.
the tectorial membrane, organ of corti, hair cells) are represented by the common one-
dimensional domain I'},,. Furthermore, it is assumed that the cochlear partition can be
modeled as a continuum and that it can only be deflected in vertical direction. Although
the radial width of the basilar membrane cannot be taken directly into account by a
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Figure 2.2: Width of the basilar membrane. The data is taken from Nobili [31]].

two-dimensional representation of the cochlea, it is well accepted that the width plays an
important role within the mechanics of hearing. Therefore, the influence of this width is
considered indirectly by the system of equations as described in chapter According
to Nobili [3I], the width of the basilar membrane is chosen as it can be seen in figure

Fluid The scala vestibuli as well as the scala tympani are filled with a watery fluid
(perilymph). Both chambers are connected by the helicotrema at the apex and constitute
the fluid domain €. In the course of the numerical simulation of the fluid, it is assumed
that the continuum hypotheses can be applied. Since the exact specifications of this fluid
are not known, the perilymph is, similar to the properties of water, assumed to be a slightly
compressible, linearly bulk- and shear-viscous fluid.

2.2 The Fluid Dynamics

Fluid dynamics is a discipline of natural sciences and a branch of continuum mechanics.
It deals on the one hand with the motions of a fluid in space and time and on the other
hand with the various and mutual forces within the fluid causing the motions.

Due to the molecular structure, a fluid is neither fully homogeneous nor isotropic. For
an exact specification of the dynamics of a fluid, it would be necessary to consider the
mutual interactions of individual molecules and atoms. In principle, it is quite possible
(and sometimes it is also necessary) to model the fluid dynamics on an atomic level to
understand and simulate a variety of phenomena. But often, the exact physical behaviour
of individual particles is not relevant and the scale of a typical length in the system is
large compared to the length scales of molecular structures. In this case one can take
advantage of the large number of particles within a fluid. By averaging physical quantities

11
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over space and time in an appropriate way, an hypothetical model can be constructed. In
such a model all kinematic and kinetic quantities can be specified at infinitesimally small
points. Furthermore, it is assumed that all these quantities vary continuously so that their
spatial derivatives are also continuous. If a model describes a physical matter as such a
continuous matter the model will be termed as continuum. For a wide range of applications
a representation of a matter as a continuum is well suited.

For the mathematical formulation of the dynamics of a continuum, two different kinds of
descriptions have been established. In the Lagrangian specification physical properties are
defined as a function of individual material points and a time parameter. The Lagrangian
specification is usually used for the description of solids, since the primary interest is the
evolution of its current configuration and the analysis of physical quantities at specific
locations of the material. In contrast to the Lagrangian specification, the idea of the
Eulerian specification is to describe physical quantities at specific locations @ in space,
regardless of the material particles at these places. This kind of description is normally
preferred in the context of the analysis of fluid flows due to potentially large changes of
the material configuration.

2.2.1 Conservation Equations

In continuum mechanics the balance equations are the basis for the description of an arbi-
trary material, no matter whether it is a solid, a liquid or a completely different material.
The conservation of mass equation (which is also referred to as continuity equation) can
be written as
op .

5= div(pv) (2.1)
where p(x,t) denotes the scalar density field, v(x,t) the vectorial field of the velocity and
t the time-parameter. In principle, the continuity equation states that the time rate of
change of the total mass within an arbitrarily chosen spatial volume must be equal to
the inflow of mass through the borders of the volume. In a similar way, the balance of
linear momentum can be expressed in terms of the stress tensor o by which the force that
acts on the surface of a spatial region can be determined. If external volume forces (e.g.
gravitation) are neglected, the forces acting through the volume surface must be identical
to the time rate of change of the total linear momentum within the volume. Therefore,
the conservation law of linear momentum can be written as

ov
p<§ + (grad v) - 'v>: dive. (2.2)

Both conservation equations are formulated on the basis of the Eulerian specification. Fur-
thermore, it was shown (e.g. [36]) that the principle of the balance of angular momentum
results in the relation

0. =0.. (2.3)

1] J?
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Symbol Value Name Unit
P 998.0 ambient density kg/m?3
co 1484.0 small signal sound speed m/s
¢ 3.0x 1073 bulk viscosity N s/m?
n 1.0x 1073 shear viscosity N s/m?

Table 2.1: Constants that are needed for the simulation of the fluid dynamics.

This means that the stress tensor must be symmetric.

A continuum-mechanical system will usually include an additional conservation equa-
tion that also takes thermodynamical effects into account. In this context, either the
internal energy or the entropy of the continuum has to be considered as an additional
unknown function. In this work it is assumed that these thermodynamical effects have
no significant influence which means that potential energy fluctuations do not change the
velocity-, density- or pressure field considerably. Therefore, the mechanical system can be
decoupled from the balance law of energy or entropy and its associated fields do not have
to be explicitly taken into account by the simulation process. (cf. [47])

2.2.2 Constitutive Relations

The conservation laws of mass, linear momentum and angular momentum constitute a
system of 7 equations that contains 13 unknown functions (v;, p, O'ij). In order to iden-
tify a unique solution of these different field functions the system of equations must be
supplemented by further relations that are usually referred to as constitutive relations. In
contrast to the conservation equations, which are fundamental principles of physics and
which are applicable for all kinds of materials, the constitutive relations are normally de-
duced from experimental observations and may differ from material to material. Normally,
the development of such constitutive relations is accompanied with an idealization of the
reality.

In contrast to solids, fluids are normally characterized by the relative motility of its
molecules. Or more precisely, a fluid at rest cannot preserve shear stresses (cf. [19]).
Therefore, it has been proven useful to split the stress tensor into an hydrostatic stress
tensor and a stress deviator tensor with zero trace. In doing this, the stress tensor can be
written as

1
a:§traI+s:—pI+s. (2.4)

The scalar function p(x,t) denotes the pressure field. It turned out that the dynamics of
a variety of different fluids and gases for a wide range of applications can be modeled very
well if a linear relationship between the deviatoric stress and the strain rate is assumed.
In this context, the local strain rate of a material can be described in terms of the velocity
by the tensor (cf. e.g. [19])

D =

%(grad’v + (grad v)T>. (2.5)
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CHAPTER 2. MODELING

For the specification of the constitutive relationship, the linear relationship should be in
conformity with some basic assumptions of material theory. According to [47] and [19],
the following items should, inter alia, be taken into account:

e Although fluids are in principle not isometric at the atomic level, an identical behavior
of the hydrodynamic properties with respect to all directions can be usually observed
at the macro-mechanical level.

e A physical quantity at a specific location is assumed to depend only on the physical
properties of its local neighborhood.

e The dynamics of the fluid are only affected by its current and preceding configura-
tions. This means that the system is deterministic. In most cases, it is sufficient to
limit this kind of "memory" by taking only the current rate of change into account.

e The principle of material frame indifference states that the choice of the reference
frame for describing the constitutive relations should have no influence on fluid dy-
namics.

As a consequence of these basic assumptions, it was shown (cf. [36]) that the linear
relationship between the deviatoric stress tensor and the strain rate tensor can be written
- in its most general form - as

s = Atr(D)I + 2nD (2.6)

where A and 7 constitutes appropriate constants of proportionality. The constant A is
usually replaced by the expression ( — %77 in order to establish material coefficients that
are associated with either the isotropic variation or the deviatoric variation. Due to their
physical interpretation, the coefficients 1 and ( are then referred to as shear viscosity and
bulk viscosity. Using 2.4] and 2.6, the stress tensor can be evaluated to

o=—pl+(¢— ;77) tr(D)I + 2nD. (2.7)

Now, the number of unknown functions can be reduced by inserting this explicit definition
of the stress tensor into the balance of momentum equation In doing so, the divergence
of the stress tensor can be determined according to the specification of the strain rate tensor
to

diva:—gradp+((+g)graddivv+77Av. (2.8)

Due to the usage of the pressure field as an additional unknown scalar function, another
constitutive relation is needed. Since no thermal effects are considered by the modeling
process, it is assumed that the pressure depends solely on the density and is given by a
thermal equation of state p = p(p). In acoustics, the deviations of the pressure and the
density from its respective ambient values can be approximated by the linear relationship

dp
a Op | p©

(0)

p—p p— ") =co*(p— p"”) (2.9)
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where the constant of proportionality can be identified as the square of the so-called small
signal sound speed cg.

2.2.3 Boundary Conditions

In this work, it is assumed that the velocity of the viscous perilymph vanishes relative to
the solid boundaries. This specification is well known as no-slip-condition. By the use
of the Eulerian specification, the no-slip condition at the rigid boundaries can be simply
stated as

v(x,t) =0 for all x € I',. (2.10)

With regard to moving boundaries, the no-slip condition implies that the fluid-motion is
equal to the associated motion of the boundary. Thus, if ¢ (mo,t) denotes an arbitrary

displacement of the boundary which is deflected out of its resting position x, the velocity
at the displaced position can be evaluated to

o¢(x,,t

v(@y+ ((Tg 1), ) = % (2.11)
For the purpose of simplification explicit changes of the domain, caused by the displace-
ments of the moving boundaries, are neglected. This simplification is reasonable and pos-
sible, since the oscillations of the boundaries are substantially smaller than the proportions
of the cochlea model. Equation 2.I1] constitutes a Lagrangian specification of the velocity
at the boundary. For the adaption of the boundary condition to an Eulerian specification,
a vectorial Taylor expansion of the left hand side can be performed to obtain

a¢
v(xy,t) = Frie <gradv(m0,t)>-c — . (2.12)

If £ denotes the vertical displacement of the basilar membrane and if &, represents the
horizontal displacement of the stapes within the oval window, the boundary condition 2. 12l
can be simply concretized by using the identities

¢=(0 &) for all € Ty U Do, (2.13)
C=(&w 0)" for all & € Toy,. (2.14)

In contrast to the coupling between the fluid and the basilar membrane, it is assumed that
the round window has no significant influence on the fluid in the case of usual acoustic
stimulations. Therefore, a fluid-structure-interaction with the round window is not directly
taken into account by the modeling process presented in this work. On the one hand the
membrane within the round window prevents the leakage of fluid, on the other hand it is
flexible enough to allow free movements of the fluid up to a certain extent. This behavior
can be imitated if the boundary pretends to be non-existent with respect to the longitudinal
velocity component. In other words, no explicit boundary condition is applied on the first
velocity component at the round window.

15



CHAPTER 2. MODELING

Furthermore, it is assumed that no external forces act on the fluid across the outer
boundaries. In terms of the stress tensor o, this condition can be written as

o(x,t) -n(x,t)=0 forallz e T (2.15)

where n indicates the (unit) outward normal vector with respect to the boundary of the
fluid volume. At the beginning of the simulation process tg, it is presumed that the system
is at rest. As a consequence, the velocity field as well as the displacement variables are set

to zero. r[;h)e pressure and the density field are predefined by its constant ambient values
0

p(o) and p'’. Formally, the initial conditions can be written as
v(x,tg) =0 for all x € Q, (2.16)
p(x, o) = p¥ for all = € Q, (2.17)
plx,ty) = o for all x € Q, (2.18)
&(x,t9) =0 for all ¢ € 'y, (2.19)
Eow(T,tg) =0 for all & € I'oy. (2.20)

2.2.4 Perturbation Expansion

As mentioned above, acoustic streaming is a nonlinear phenomenon caused by the nonlinear
terms within the governing equations of the fluidic system. A direct numerical simulation
of the fully nonlinear Navier-Stokes-Equations in order to analyze acoustic streaming was
performed, for instance, by Yano [53] or Boluriaan and Morris [7]. In contrast to the mean
flows expected within the cochlea, their models aim to simulate acoustic streaming that is
characterized by an high Reynolds number. In this context, the Reynolds number is a mea-
sure that quantifies the relative importance of inertial forces in relation to viscous forces
with respect to the mean flows. In the scope of low Reynolds numbers, the use of a pertur-
bation technique has advantages over the fully nonlinear approach, since the perturbation
approach represents the nonlinear problem by a set of linear sub-problems. Normally, it
is sufficient to consider only the first two linear sub-problems. This perturbation method
has already been successfully adopted by several authors (e.g. [24] 9, 26]).

For the implementation of the perturbation approach, the unknown functions are rep-
resented by Taylor expansions in the small Mach number ¢ < 1, which is defined as the
ratio between a typical velocity of the fluid particles and the small signal sound speed cy.
The Taylor series of the velocity-field is, for instance, given by

ov(x,t,¢) 0?v(x,t,€) ) 5
v(x,t,e) =v(@,t,6)|e=0 + ——F—| e+—F5—| € +0(c). (2.21)
——— Oe =0 Oe =0
=w(® —o( —o®

Similarly, the other field-functions (pressure, density,...) can also be represented by such
a perturbation expansion in e. This approach is, of course, only applicable under the
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assumption that the perturbed problem arises smoothly from an initial problem through the
continuous variation of the parameter e. In this context, the initial problem is characterized
by a zero Mach number, which means that there will be no particle motions, provided that
the sound speed remains constant. Then the system can be fully described by the ambient

values p(o) and p(o).

Terms of higher order can now be determined by the use of a successive method. This
procedure is based on the principle that terms of different order are independent from each
other (cf. [14]). This means that after substituting the respective perturbation expansions
for the unknown functions, each equation can be separated into a set of equations, whereby
each relation consists only of terms of the same order.

Lighthill [26] pointed out that this separation of different terms should primarily depend
on their numerical dimension and not on their mathematical order. He concluded that the
resultant second order system (which is used for the evaluation of acoustic streaming)
neglect a fourth order quantity that would take inertial effects of the mean flows into
account. These inertial effects become more and more significant for applications that are
characterized by an high Reynolds number. In these cases, the successive perturbation
method would probably fail to approximate the mean flows correctly.

In steady state, the first order functions describe the harmonic excess values of the
fundamental acoustic field with the angular frequency w, provided that the system is stim-
ulated by a sinusoidal excitation of the same frequency. Then, the second order functions
can be associated with the second order harmonic field of double the frequency as well as
a second order steady streaming. (cf. [24] [9]) In this work, the main focus lies on the
determination of this secondary steady flow field, since it constitutes a first order approxi-
mation of acoustic streaming. Any higher-order mean flows are neglected, due to the rapid
decrease of their magnitudes. Therefore, only the first order approximation of the resultant
mean flows is considered in this work.

The first order system of the perturbation approach (hereinafter also referred to as
acoustic subproblem) is established in chapter 2331l The acoustic streaming subproblem,
which corresponds to the averaged second order system, is deduced in chapter 2.4

2.3 The First Order System

On the basis of the perturbation theory, the nonlinear system of equations that describes
the behavior of the fluid is separated into a first and a second order system. As mentioned
above, the first order system describes the fundamental acoustic field which is mainly
influenced by the fluid-structure-interaction with the structural components of the cochlear
system (cf. figure [[L3]). This section deals on the one hand with the derivation of the
first order perturbation of the fluidic system (cf. chapter 23] and on the other with
the mathematical modeling of the relevant mechanical and physiological properties that
represents the dynamics of the basilar membrane (cf. chapter [Z3.2)).
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2.3.1 The Acoustic Subproblem

After substituting the perturbation expansions (cf. equation2.2T]) for the velocity-, pressure-
and density-functions and considering only the first order terms, the first order conservation
principles of mass and momentum can be written as

(9,0(1)

W = _p(O) div ’U(l), (222)
oo

o o = div oW, (2.23)

According to equation 28], the divergence of the first order stress tensor is given by
dive™ = — grad pV) + (C+ g) grad divo') + nA oW, (2.24)

In the same way, also the thermal equation of state 2.9 can be transformed into a first
order version which results in the simple relation

P = co?plh. (2.25)

By combining the previous equations, the stress tensor as well as the first order density
function can be eliminated. Then, the acoustic subproblem that describes the fundamental
acoustic field within the fluid is given by the following system of equations:

(1)
1 Op
oz = dive, (2.26)
8’0(1) n
' ot —gradp™ + (¢ + 3) grad div oM A, (2.27)

Finally, the boundary conditions have to be adapted. The first order approximation of the
Eulerian specification of the no-slip condition can be evaluated by taking only the
first order terms into account. Therefore, the first order velocity components at the basilar
membrane and at the oval window can be written as

T
U(l)(a;7t) = [0 %g(m,t)} for all x € 'y, (2.28)

T
v(l)(g;,t) = [%gow(m,t) 0] for all ¢ € T'oy. (2.29)

2.3.2 The Passive Mechanics of the Cochlear Partition

The interactions between the fluid and the basilar membrane have a significant influence
on the sound field within the inner ear. Therefore, it is essential to take the mechanical
behavior of the cochlear partition into account. In this context, an approach, developed
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Figure 2.3: Cross section of a mammalian organ of corti: (1) Inner hair cell. (2) Outer hair cells. (8)
Tectorial membrane. (4) Stereocilia. (5) Basilar membrane. (6) Tunnel of corti. (7) Cells of Deiters.
(8) Nerve fibres. The arrows indicate the principal motions of the organ of corti. The pressure difference
between the upper and lower chamber causes upward and downward movements of the basilar membrane.
Furthermore, the tectorial membrane moves along the reticular lamina due to their different pivots.

by Mammano and Nobili [28, [33], is adapted that has proven to be a well-functioning one-
dimensional model for describing the deflections of the basilar membrane as cause of the
pressure differences across the partition. In the first part of this section the main ideas for
describing the basilar membrane as a linear system of damped oscillators are presented.
The second part of this section focuses on the representation of an additional force term
in order to model a physiologically mechanism, known as cochlear amplifier.

The idea that the inner ear may work as a frequency analyzer due to longitudinally
varying physical properties of the organ of corti can be traced back to Helmholtz. He
noted that the cochlear partition consists of an array of radially orientated fibres and that
the length of these fibres increase from base to apex. Therefore, he hypothesized that
these fibres may have different resonance frequencies at which they resonate. But it turned
out that the damping of the surrounding fluid prevents a significant resonant behaviour
of individual fibres. Nevertheless, the assumption that the cochlea acts principally as a
frequency analyzer has proven to be true. (cf. [I])

Helmholtz idea that the cochlear partition can in principle be represented by a number
of oscillators, which are characterized by different physical properties, is taken up by the
model used here. Figure 2.4] shows a schematic illustration of such an array of oscillators.
Each oscillator consists of a mass which can be set into vibration through a spring. The
springs are characterized by its respective stiffness. Furthermore each spring-mass system
is attached to a damper which tends to reduce the oscillation. But in contrast to such a
discrete arrangement of individual oscillators, the basilar membrane is rather modeled as a
continuum within the context of this work. According to Mammano and Nobili [28], such
a damped oscillation of a continuous one-dimensional system that describes the vertical
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Figure 2.4: The mechanical properties of the basilar membrane can be represented by an array of damped
oscillators. Each oscillator is characterized by its specific mass m, viscosity h and stiffness k. Vertical
displacements £(x) are caused by external forces.

displacement of the basilar membrane £(xz,t) under the action of external forces can be
represented by the differential equation

0%¢(x,t) 98 (x, t)

m@) =g T @)=

if it is assumed that all forces depend linearly on the displacement of the basilar membrane.
The coefficient functions describe different physical properties of the basilar membrane.
An adequate choice of these parameter functions is not easy, because the structure of the
organ of corti is not homogeneous and the material properties are difficult to determine.
Furthermore, it is not clear to what extent certain characteristics may be relevant for
the oscillation process. However, in order to ensure that the coefficients range within
the physical limits, they are estimated on the basis of some theoretical and dimensional
considerations having regard to the biophysical structure of the organ of corti (cf. figure

28).
The first term on the left hand side of equation Z30] is associated with the mechanical
inertia of the system. The coefficient m(x) describes the mass per unit length at the

+k(@)E(x,t) = fp (z,1) — fp_(x,t) +I(2,1) (2.30)

position x. According to a matlab-routine from Nobili [3I], the mass is estimated by some
dimensional considerations of the organ of corti. It is assumed that the organ of corti at the
base has approximately a width of 50um and a height of 40um and that both properties
increase exponentially up to four times from base to apex. An estimation of the effective
mass per unit length at a specific location can be determined by the product of an average
density of the tissue (which is assumed to be equal to the density of water), the height of
the organ of corti and an effective width. This effective width is calculated as the geometric
mean of the width of the organ of corti and the half of the width of the basilar membrane.
The resultant mass per unit length is illustrated in figure 2.5l

The second term of the left hand side of equation 2.30] describes the damping of the
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Figure 2.5: Effective mass per unit length of the basilar membrane that is assumed to be relevant for the
inertial effects of the basilar membrane.

cochlear partition. In consideration of the realistic structure of the organ of corti, the
displacement of the basilar membrane is characterized by a rotary motion of the tunnel of
Corti as shown in figure 28l The reason for such a motion lies in the significant rigidity of
the pillar cells. In contrast to the pillar cells, the outer hair cells and Deiters’ cells can be
much more easily deformed. As a result, the oscillation of the cochlear partition is probably
accompanied by shearing motions of the outer hair cells and Deiters’ cells. Within this
work it is assumed that the damping is therefore mainly governed by the intrinsic viscosity
of these cells. On the basis of the definition of shear viscosity within Newtonian fluids, the
resistance per unit length can be roughly estimated by

Hohc(m) 65
ra oy 231
" ) O (2.31)

where 7aq, Wone(x) and Hgpe(x) are associated with the mean viscosity of the cells, the
radial width and the transversal height of the effective segment at the longitudinal position
x. According to [31I], it is assumed that at the base of the cochlea the mean viscosity is
approximately 30 times higher than the viscosity of water and that the effective ratio
between the radial width and the transversal height is about 10. As it can be seen in figure
it is further assumed that the viscosity per unit length decreases about four times
from base to apex.

For an infinitesimal small longitudinal segment, the associated resistance per unit length
caused by the shear viscosity can be approximated - in a similar way as above - to

B %
— [ Mmon4 2.32
P <m (=) 83:(925) (2:32)
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Figure 2.6: Damping properties of the basilar membrane. @] The positional viscosity is specified by the
vertical shearing motion of the segment consisting of the outer hair cells and the Deiters’ cells along the
radial direction. @] The shearing resistance coefficient is associated with vertical shearing motions of the
basilar membrane segments along the longitudinal axis.
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Figure 2.7: Virtual stiffness per unit length of the basilar membrane that is assumed to be relevant for
the resistance caused by a displacement of the cochlear partition.

where A(z) is the cross-sectional area of the organ of corti at the location x and 7)., a mean
effective viscosity of the associated layer. As the spatial derivative of the velocity term
indicates, a longitudinal shearing driven resistance can only occur if velocities of adjacent
layers differ. On the basis of the same proportions of the organ of corti as already used
for the estimation of the mass and under the assumption that the effective viscosity njon is
equal to the viscosity of water, the coefficient 7o, A(z) can be estimated as illustrated in
figure . In comparison to the positional shearing driven resistance it turns out that
the longitudinal coupling plays only a subordinate role and the longitudinal segments can
oscillate almost independently from each other.

The last term of the left hand side of equation 230 represents the force per unit length
applied by the stiffness of the cochlear partition. Measurements (e.g. [50]) indicate that
the stiffness decreases by two to four orders of magnitude from base to apex. But, the
physical dimensions of different measurements vary over a wide range. Furthermore, it
is debatable whether these measurements are physiologically relevant within the working
cochlea, since they are measured during displacements that are considerably larger than
realistic displacements. (cf. [38]) Similar to [28], the stiffness is therefore chosen in such
a way that the characteristic frequencies of the traveling wave roughly correspond to the
(human) frequency-position map which was introduced by Greenwood [I8] (cf. chapter
E1.3). As a result of this procedure, the stiffness is set to 2 x 10°kg/m s? at the base and
decreases by 3.5 orders of magnitude from base to apex. (cf. figure 2.7

The right hand side of equation 230 considers external forces acting on the basilar
membrane. As a result of the fluid pressure above and below the basilar membrane, two
hydrodynamic forces f,  and f,_ occur. Since the pressure acts - at a specific location z

- on the whole width wp,,(x) of the basilar membrane, the hydrodynamic forces may be
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written as

1
Joyp(z,t) = §wbm(x) p(l)(w’t)‘w:(m;to)' (2.33)

Due to the assignment of two different pressure values at the location & = (z,0) (caused
by the one-dimensional representation of the basilar membrane), the second component of
the coordinates are additional labeled by a sign to indicate the location. Thus, a positive
(negative) sign refers to the location that belongs to the upper (lower) duct. Actually,
due to the anatomical structure and the lateral fixation of a basilar membrane segment
(cf. figure 2.3]), the pressure should not be accumulated uniformly along the radial width.
This issue is taken into account (in a simplified manner) by introducing an effective width
which is assumed to be half of the geometric width.

The force 1 is associated to the internal amplification mechanism provided by the outer
hair cells.

2.3.3 Outer Hair Cell Motility

The vertical motions of the basilar membrane are accompanied with a shearing displace-
ment of the tectorial membrane in relation to the reticular lamina. This kind of motion
is the result of different pivots of the tectorial membrane and the reticular lamina around
which they rotate. (cf. [28]) The stereocilia of the outer hair cells are deflected by the
shearing flow of the endolymph and due to a partial contact of the stereocilia with the
bottom of the tectorial membrane. The deflection of these hair bundles causes in turn a
change of the cell potential due to a mechanoelectrical transduction mechanism. If the
stereocilia are deflected in the direction of its tallest outgrowth, the outer hair cell will
be depolarized. Otherwise, a hyperpolarization is caused by a deflection in the opposite
direction. Having regard to the anatomical structure of the cochlear cross-section a de-
polarization is the result of an upward motion of the basilar membrane (in the direction
of the scala media). In contrast, a movement of the basilar membrane in the direction of
the scala tympani brings about a hyperpolarization of the outer hair cells. As a result of
electrical stimulation the outer hair cells are capable of changing its length. Therefore, the
length change is often referred to as electromotility. The outer hair cell motility is mainly
driven by a motor protein, which is known as prestin and which can be found in the lateral
membrane of each cell. (cf. [1]) Measurements indicate (cf. [I]) that the length changes of
outer hair cells are fast enough to have a mechanical effect on vibrations at acoustic fre-
quencies. However, to this day there is some dispute about the exact internal mechanisms
of the motility and the specific properties of the outer hair cells. Because this work is not
primarily concerned with an exact representation of the complex processes of the outer
hair cell motility, a simplified stimulus-response model (black box model) is adapted as it
was suggested by Nobili et al. [33] in order to take the feedback from the outer hair cells

into account. In this context, it is assumed that the relationship between the deflection ¢

of the hair bundles and the force 19, which is applied by the outer hair cells due to their
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Figure 2.8: A displacement of the basilar membrane is accompanied with a rotational motion of the tunnel
of corti around a pivotal point. Due to the rigidity of the pillar cells in combination with the reticular lamina
the outer hair cells and Deiters’ cells are deformed in order to compensate these motions. In this work, it
1s assumed that the internal shearing motion of the outer hair cells and the Deiters’ cells respectively are
mainly responsible for the damping effect. At the same time, the laminar shearing motion of the tectorial
membrane relative to the reticular lamina causes a deflection of the stereocilia of the inner and outer hair
cells. This parallel shift is the result of a different pivotal point around which the tectorial membrane
rotates. A deflection of the hair bundles towards the largest one (which in principle can be associated with
an upward displacement of the basilar membrane) causes in turn a contraction of the outer hair cells due
to a mechanoelectrical transduction mechanism (cf. figure @]) In contrast, an elongation of the outer
hair cells is the result of a hair bundle deflection in the opposite direction (cf. figure .
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Figure 2.9: The relationship between the outer hair cell driven force and the hair bundle deflection can
be represented by a sigmoid function (solid line). Due to saturation cffects the force is limited to a value
a(xz). At the origin the sigmoidal function can be approzimated by a linear function (dotted line) with a

slope of a(x)B(x).

length changes, can be represented as
9z, ¢(x,1)) = o(x) sig(B(x)¢ (x, 1)) (2.34)

where sig is a sigmoid functionl] as illustrated in figureZ9and a(x) and 3(z) are parameters
that depend on the specific internal processes involved in the outer hair cell motility. The
reason for describing the outer hair cell driven force by a sigmoidal relationship can be
mainly found in saturation effects within the outer hair cells that limit the force. For small
deflections of the hair-bundles these saturation-effects can be neglected and equation 2.34]
can be linearly approximated by

Wz, ((2,1) = a(z)B(x)((2,t) (2.35)
(cf. [1, 38, 28, [33])

In order to calculate the force-feedback the deflection of the hair-bundles have to be
determined on the basis of the vertical displacement of the basilar membrane. It is as-
sumed that the motions of the tectorial membrane relative to the reticular lamina can be
represented as a separate oscillator and that this subsystem is mainly stimulated by the
vertical acceleration of the basilar membrane displacements. In terms of a linear differen-
tial equation and according to [28] [33] the deflection ¢ of the hair bundles can therefore be
written as

82< z,t oC(x,t 825 ot
__2%5—2-+ tn&x)_—%z—2-+k%m($)€ﬁmt)::gmn(x)n%nxx)__zég_l

'The sigmoid function used in this work is defined as sig(x) := 1 — 82++1 The sigmoid function is
chosen in such a way that its values ranges from —1 to 1 and that its slope at the origin is equal to 1.

Mim () (2.36)
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Figure 2.10: The mass (per unit length) of the tectorial membrane that is believed to be relevant for the
inertial effects of the subordinate oscillator that describes the motion of the tectorial membrane relative to
the reticular lamina.

where My, (x), hym (z) and ki, (x) are coefficient functions used for constituting the specific
inertia, damping and stiffness of the oscillating subsystem. Due to the different orientation
of the subsystem and due to some internal losses of the coupling, the external force acting
on the subsystem is only a fraction of the vertical acceleration driven forces. This effect
was taken into account by the additional gain function gy, (x). According to Nobili et al.
[33], it is assumed that the gain function is constant along the cochlear partition and that
the effective force acting on the subsystem is only a tenth of the vertical force.

The effective mass myy, (x) can be associated with the mass of the tectorial membrane.
The radial width and transversal height of the tectorial membrane at the base of the cochlea
can be assumed to be approximately 70um and 15um respectively. If both proportions
are assumed to increase exponentially up to four times and if the density of the tectorial
membrane is nearly equal to that of water, the mass of the tectorial membrane per unit
length can be estimated as shown in figure 2-I0l (cf. [31])

The damping is mainly caused by the shearing motion of the endolymph between the
tectorial membrane and the reticular lamina. Due to the laminar regime of this shear, the
damping coefficient can be estimated by

Weap(2) OC(2)
Hgap(2) ot

Tlend (237)

With 7end, Weap(2) and Hgap () being the viscosity of the endolymph, the width and the
height of the gap between the reticular lamina and the tectorial membrane at the position
x. Under the assumption that the endolymph viscosity is approximately 1.5 x 1073 kg/m s

(cf. [50]) and that the ratio between the radial width and the transversal height of the cleft
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Figure 2.11: The viscosity of the secondary oscillator that causes the damping. It is assumed that the
viscosity is mainly dominated by the shearing motions of the endolymph between the tectorial membrane
and the reticular lamina.

increases from 80 at the base to 320 at the apex, the damping is specified as illustrated in

figure 2171

It can be observed that the maximal displacement of the traveling wave in the active
cochlea is shifted a little bit in the direction of the apex in contrast to the passive cochlea
(cf. [38]). Having regard to this characteristic, the resonance frequency fres of the supple-
mentary oscillator is believed to decrease exponentially from 18000Hz at the base to 60Hz
at the apex. As a consequence, the stiffness can be uniquely determined by the relationship

ktm(x) = mtm(x) ' (freS(x))2- (238)

As pointed out by Nobili et al. [33], at a specific location z the inertial force will be nearly
canceled by the stiffness driven force if the frequency of an acoustically-induced vibration
is close enough to the local resonance frequency. In such a case, the oscillation (at this
specific local region) is mainly dominated by the damping term and equation can be
represented as

¢ (z,t) N Gom (2)mim (z) 9% (,t)
o T hw(2) o2

By integrating equation 2:39 over time and by using equation .35 the force that will be
approximately applied to regions of resonant behavior can be written as

o(z) B(x) gom () mem () 9E(2, 1)
P (22) ot

. (2.39)

I, &(a,1) ~ . (2.40)

As a component of the right hand side of equation 2.30 the outer hair cell driven force
¥ acts directly on the motions of the basilar membrane. The configuration of equation
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Figure 2.12: The effective stiffness of the subordinate oscillator induces a counteracting force that is
applied in the opposite direction of its displacement.

2.40 indicates that the force works in principle as a negative damping term at regions of a
nearly resonant behavior. In order to get numerical estimates of the parameters a(x) and

B(x) that describe the sigmoidal shape of the functional relationship 2234 it is assumed
that the outer hair cell driven force can potentially neutralize the positional viscosity of
the basilar membrane up to a certain degree. Therefore, if the positional damping term as
given in equation 231 is equated with the damping term of equation 240} the coefficient
function of equation can be calculated to

)‘(x)nradHohc ($)htm (3:)
a(x)B(x) = . 2.41
)l = J (2.41)

Thereby, the additional parameter function A(x) serves as a control parameter in order
to specify the degree of damping cancellation. If A is equal to one, the total positional
viscosity can potentially be canceled by the outer hair cell driven force. A value above one
can also cancel damping effects caused by longitudinal shearing resistances. (cf. [28], 33])

2.3.4 Equilibrium state

If the first order system is stimulated by an harmonic vibration of the oval window, the
system will reach a stable state of equilibrium after a certain amount of time has elapsed.
According to Koster [24], the equilibrium state of the fluid can be expressed by harmonic
oscillations of the individual field variables at fixed positions. In terms of sin- and cos-
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Figure 2.13: At any fized location x within the fluid domain of the cochlea model, the equilibrium state
can be clearly described by the sine-cosine decomposition. Figure illustrates the equilibrium state of
the velocity on the basis of the vectors v°°® and v®™, whereas the pressure is characterized by the values

P and p©™ as it can be seen in figure .

functions, the stable state can be written as

v (z, 1) = v (2) sin(wt) + v (z) cos(wt), (2.42)
pD(x, t) = p®(x) sin(wt) + p'°(x) cos(wt). (2.43)

Therefore, the oscillatory motion of the fluid can be uniquely characterized by the time-
independent functions v (z), v (), p*™(x) and p'°°(z). In this work, the repre-
sentation of the equilibrium state with the help of equations 242 and 2,43l will be referred to
as sine-cosine decomposition. Sometimes it is more convenient to use the complex exponen-
tial form in order to represent the equilibrium state. Then, the velocity- and pressure-field
are given by

i (@, 1) = o) el @l (244)

)

P (@, t) = pi™™) () el +or @ (245)

where the superscript (amp) denotes the amplitude and ¢ the argument of the associated
quantity. Such a complex representation must, of course, be understood in the sense that
only its real part specifies the value of the physical quantity.
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2.4 The Second Order System

2.4.1 The Acoustic Streaming Subproblem

The acoustic streaming subproblem is established on the basis of the second order system
that results from the perturbation approach as described in chapter Z.2.4 In steady state,
the second order equations are associated with the second harmonic fields in combination
with a steady flow field. While the determination of the second harmonic field is of no
interest to this work, the evaluation of the steady flow field yields a first order approxima-
tion of acoustic streaming. In order to extract the steady flow field (hereinafter indicated
by the superscript (dc)) from the second order system, the operator (-) that determines
the temporal average of time-dependent functions can be applied. The mean of the second
order equation that is associated with the balance-of-mass principle 2.1 can be written as

PO divo® = m (2.46)

where the term m corresponds with a virtual mass-source. This source distribution is

caused by the first order acoustic subproblem and describes the supply of mass (cf. [9]).
In terms of the first order fields, the mass-source can be evaluated to

= —% div(pMo ) (2.47)

Similarly, the steady components of the secondary flow fields must fulfill the time-averaged
second order version of the balance-of-momentum principle 2] which is given by

dc)

grad p% — (¢ + g) grad div v nAv'%) = (2.48)

where f denotes a virtual force-source distribution. The force-source acts as an external
volume-force and depends on the acoustic field. By using first order terms, the force-source
distribution can be expressed as

ovV
W) — O (grad v o). (2.49)

F=- ot

€0

According to Bradley [9], the correct treatment of the boundary condition leads to an
important boundary driven mechanism of acoustic streaming which was often neglected
by other works. This mechanism is based on the rigorous distinction between the Fulerian
and the Lagrangian specification of motion as described at the beginning of chapter 221 As
can be seen from equations 2.1l and 2.12], the difference between both kinds of descriptions
at the boundary arises from considering the full Taylor expansion. While both specifica-
tions are identical in the case of the first order perturbation approximation, the difference
becomes apparent by taking the second order terms of the perturbation expansion into
account.
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By substituting the respective perturbation expansion for the field variables of equa-
tion 2.12] and by applying the mean-operator, the time-averaged second order boundary
condition can be written as

v\ = —((grad vW)¢W). (2.50)

The mean of the second order Lagrangian velocity component vanishes, since each point of
the boundary oscillates around a fixed locations. The displacement ¢ can be evaluated by
solving the initial value problem which is given by equation 2XITl By performing the usual
perturbation approach, the first order approximation of the displacement can be calculated

to
v(l)

Qw%ﬁz/ﬁw%am:?. (2.51)

1w

By using equations 2.50] and 2.51] in combination with vector identitie, the mean of the
second order Eulerian velocity can be expressed as

v@ = L,y Lo 0y, (2.52)
p(O)Coz 2

As discussed by Bradley [9], this equation allows a better understanding of the underlying
mechanisms of the resultant mean flows than equation Under the assumptions of
pure rectilinear (not elliptical) motions of the moving boundaries, it becomes apparent
that the first term of the right hand side of equation acts as a sink (or a source) since
the resultant mean flow has the same direction as the first order velocity (cf. [9, 26]). The
second term was often neglected in other works. The magnitude of the cross product of
the velocity and the displacement is proportional to the enclosed area of the ellipse that
is formed by the trajectory of the associated fluid particle. The direction of the resultant
vector is perpendicular to this surface. Due to the rectilinear motion of the boundaries,
this cross product vanishes at the boundaries. But if the fluid motion of the adjacent fluid
layers is characterized by elliptical trajectories, the curl of this cross product will induce
a slipping mean flow at the boundaries. A detailed consideration of the physical origin of
these mean flows can be found in [9].

2rot(a x b) = (grad a)b — (grad b)a + adivb — bdiva
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Chapter 3

Implementation

This chapter is concerned with the numerical implementation of the mathematical model of
the cochlea system as described in chapter @2l The mathematical model consists of a number
of different partial differential equations in combination with specific boundary conditions,
which have to be fulfilled on their associated domain. In this work the finite element method
is used in order to calculate a numerical solution of this system of equations. The finite
element method is a powerful technique for the numerical evaluation of (initial) boundary
value and eigenvalue problems for a wide range of applications. Within the framework of
the finite element analysis, the solution of a given differential equation is approximated
by a linear combination of a set of specific basis functions. In contrast to some other
methods (e.g. Galerkin methods), these basis functions (which are also referred to as form
functions or interpolation functions) are characterized by its systematic construction on a
set of individual simple sub-domains that form the entire domain of interest. (cf. [36])

The schematic design of the global simulation process for the computation of the acous-
tic streaming field within the inner ear can be seen in algorithm Bl In principle only the
stimulation frequency of the harmonic stapes displacement within the oval window and
the outer hair cell activity parameter, which controls the influence of the additional outer
hair cell force, are required in order to start the numerical computation. All other physical
parameters and properties are predefined (cf. chapter ) and can be configured within an
external parameter file.

In a first step (cf. line @ of algorithm B.I]), the fluid domain as well as the one-
dimensional domain that hosts the basilar membrane have to be divided into a set of
subdomains, the so-called elements. The choice of these elements and the underlying
strategy of the discretization process (also known as meshing) are discussed in chapter
Bl On the basis of these meshes, finite element spaces can be systematically introduced
by defining appropriate approximation functions upon the individual subdomains (cf. line
[B). Section B.3] deals with the specific configuration of the different function spaces which
are used for the approximation of the different field functions. In order to establish a
discretized formulation of the mathematical model, the differential equations have to be
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initially transformed into a so-called weak form (also known as variational formulation). In
contrast to the original differential equation, the requirements on the solution of the weak
formulation with respect to its differentiability are weakened. Furthermore, the solution of
the weak form does not need to fulfill the differential equation at individual specific points,
but rather (to some extent) on average over an arbitrarily chosen region in the sense of a
specific weighted integral statement. (cf. [36] 23]) The derivations of the individual vari-
ational formulations are presented in section 322l On the basis of the weak formulations
a spatial discretization can now be performed by using appropriate linear combinations of
the basis function for the spatial functions. With respect to the first order acoustic sub-
problem, this leads to a number of different linear systems of ordinary differential equations
(cf. chapter B4AT]). Its associated matrices can be stepwise assembled by performing local
calculations for each element (cf. line ). In the next step, which is associated with line
of algorithm [BJ], the individual systems are combined to a single system of ordinary
differential equations. The resultant matrix equation can be seen in chapter 3.4.2] Lines[7]
to [[2] are associated with the temporal discretization of the ordinary differential system of
equations. The time integration scheme that is used in this work is presented in chapter
The fully discretization process of the first order acoustic subproblem finally results
in a single linear system of equations per time-step.

If the stable state of equilibrium is reached at which all field variables can be described
by an harmonic function (cf. chapter 2:3.4]), the acoustically driven motions can be eval-
uated on the basis of the results of the first order subproblem. Similar to the acoustic
subproblem, individual submatrices can be constituted by using the weak formulations of
the second order subproblem. Although, no interactions between the fluid and its adjacent
structures are considered by the second order flows, an overall matrix, which contains all
submatrices, has to be assembled because a mixed formulation is used for the description
of the fluid motions. The load vector depends on the acoustic field and can be determined
by calculating certain mean values over one cycle. As discussed in chapter B.4.3], the steady
state motion of the acoustic streaming problem can be represented by a single linear system
of equation which can be solved in one step.

The resultant linear systems of equations have to be solved by the use of an appropriate
solver. As discussed in chapter B.6 the generalized minimal residual method is applicable
for approximating the solutions of the first as well as the mean second order system.
Furthermore, the rate of convergence can be significantly improved by using an incomplete
LU decomposition as a preconditioner (cf. section 3.6.3)).

At the end of the algorithm, the results are analyzed, prepared, recorded and visualized
by the routines of the post-processing.

The computational realization is based on the finite element toolbox ALBERTA [43] and
the PETSc library [2]. The toolbox ALBERTA provides basic data structures and routines
in order to support the establishment of appropriate meshes and finite element spaces. In
addition, it maintains great flexibility to allow the direct integration and implementation
of new numerical methods. (cf. [42] [44]) After finishing the respective finite element
discretizations, the resultant systems of equations are solved with the help of the PETSc
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library [2].

Algorithm 3.1 Global algorithm for the calculation of acoustic streaming within the inner
ear

Require: frequency f, outer hair cell activity parameter A
Ensure: acoustic streaming field

1: procedure MAIN ROUTINE(f, \)

2: generate the meshes

3 load finite element spaces

4 calculate first order submatrices

5 assemble first order system matrices
6: calculate effective stiffness matrix

7 t<+0

8 repeat

9: t—t+ At
10: calculate effective load at time ¢
11: solve first order system at time-step ¢
12: until equilibrium state is reached
13: calculate second order submatrices
14: assemble second order system matrix
15: calculate second order load vector
16: solve second order system
17: post processing

18: end procedure

3.1 Mesh Generation

According to line [ of algorithm B, the first step of the numerical simulation process
presented here is an adequate construction of the underlying mesh which can be used for
the finite element calculations.

The starting point of the mesh generation is a coarse triangulation of the upper duct
of the cochlear system which is initially represented by a rectangular box as it is, in
principle, illustrated in figure B.Ifa)| In order to achieve the final mesh, this triangulation
is modified and extended by a three-stage process. The first step consists of a refinement of
the mesh in order to minimize potential errors between the exact solution and its numerical
approximation. In contrast to a global refinement of the whole mesh, the computational
effort of the simulation process can be significantly reduced by using only local refinements.
The concrete refinement strategy used in this work is discussed in chapter B2l At the
second stage the geometry of the scala tympani and scala vestibuli above and below the
cochlear partition has to be taken into account by the meshing routines (cf. chapter B1.3).
Finally, an additional one-dimensional mesh is introduced which is needed in connection
with the numerical implementation of the mechanical properties of the basilar membrane
and its outer hair cell feedback force. The specific construction of this mesh with respect
to the individual fluid triangles above and below this partition is reviewed in chapter B4l
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3.1.1 Reference Elements

According to [42] it is useful to introduce two different reference elements in order to
simplify the numerical evaluations with respect to the finite element analysis upon each
individual element.

A set X of d+ 1 different points x; € R™ will constitute a single element (also referred
to as simplez) of the mesh M if the vectors 1 — g, ..., €4 — x( are linear independent.
The element S? is defined as the convex hull of these points, or in terms of a mathematical

formulation S? can be written as

d
BiZO,Zﬁizl,miGX} (3.1)
=0

SUX) =3 Biwi
=0

From a geometrical point of view a single simplex can be associated with a triangle in the
case of d = 2 or, respectively, by a line-segment in the case of d = 1.

For reasons of simplicity, the numerical quadrature (which will be needed in the context
of the finite element analysis) is not performed on each individual element itself but rather
on a normalized element. In this work, this normalized element is given by

s¢ . i=5%0,e,,...,e,) (3.2)

where e, are the unit vectors of the coordinate system. As it can be easily seen, the element

S?nor) can be linked to a specific element S%(X) by a linear affine mapping «(v) (cf. [42)).
In contrast to this normalized element, it is more comfortable to establish the basis
functions of the finite element spaces by the use of barycentric coordinates due to its

symmetry properties. On the basis of the element

S?bar) = S%ey, . e ) (3.3)

the barycentric coordinates are associated with the coefficient §; which are introduced

by the definition B.Il Therefore, the element S‘(jbar) will be referred to as barycentric

simplex. The relation between the barycentric coordinates on the one hand and the world
coordinates of a specific or the normalized element on the other hand can be described by
an invertible mapping.

As illustrated by the following scheme, each element Sd(X ) of a mesh can therefore be

parameterized over the normalized element S?nor) and the barycentric representation S((ibar)
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by the invertible mappings x(v) and x(3).

d 3.4
S(bar) ( )

In addition, these both mappings induce uniquely an invertible mapping 3(v) from the
normalized coordinates to the barycentric coordinates.

3.1.2 Refinement of the mesh

With regard to the refinement of a triangular mesh, it must be kept in mind that the
resultant mesh has also to fulfill the characteristics of a regular triangulation. Thereby,
the term regular triangulation refers to a mesh in which the intersection of any two triangles
is either the entire edge of both triangles, a single vertex or empty. Therefore, the splitting
of only one triangular element into two sub-triangles will probably lead to a so-called
hanging verter at the bisected edge, if this edge does not belong to the outer boundary of
the triangulation.

A relative simple method for mesh refinement would be a global refinement of all
elements into e.g. k? uniform sub-elements in such a way that each edge would be divided
into k equidistant edges. But it is apparent that such a global refinement method leads
to a significant increase of computational effort and memory consumption with respect
to a finite element analysis. Therefore, in order to minimize the computing time and the
memory requirements on the one hand and, simultaneously, to maximize the accuracy
of the finite element approximation on the other hand, the objective of local refinement
strategy is to construct a mesh as optimal as possible by taking both requests into account

(cf. [42)).

Furthermore, particular attention should be paid to the quality of individual elements.
A large distortion of a triangle is characterized by considerable differences of its individual
side lengths and angles respectively. Since large distortions are usually accompanied by
an higher approximation error, the refinement method should split the triangles in such a
way that its sub-elements are as equilateral as possible.
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Figure 3.1: On the basis of a coarse mesh@] that represents the scala vestibular a recursive routine locally
refines the mesh in order to reduce the error of the finite element computations. The specific refinement
strategy is based on an heuristic approach. The resulting mesh@] is characterized by a gradual increase
of its density along the basilar membrane until a point is reached where the traveling wave will probably be
dissipated.
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The method used in this work for refining the coarse mesh is based on an initial marking-
routine which specifies for each element the number of refinements that should be performed
by the refinement procedure. The typical traveling wave motion of the basilar membrane
displacement (as described in detail in chapter EL1.3]) is a result of its interactions with
the adjacent fluid. Therefore, it can be expected that these displacement pattern will be
reflected in the fluid motion to a certain extent. The significant increase of the amplitude
of the traveling wave up to a maximum at the characteristic place in combination with a
substantial decrease of its wave length indicates that the fluctuations of the field variables
increase along the cochlear partition until the characteristic place is reached.

Another important aspect (as discussed in detail in chapter 1.4)) is that the field
variables within the thin Stokes boundary layer next to the basilar membrane should be
accurately approximated by the finite element space. According to Lighthill [26], the
thickness of this Stokes boundary layer can be estimated to range from about 10um to
400pm in dependence of the stimulation frequency of audible sound.

On the basis of these heuristic arguments, the number of refinements of the elements
next to the basilar membrane is gradually increased along the partition until a specific
location is reached. This location is specified by the expected decay of the traveling wave,
which can be estimated by using the frequency-position map from Greenwood [I8] as
described in chapter 1.3l

After the elements have been marked according to the strategy described above, the
refinement algorithm can be performed. In doing this, the mesh is repeatedly traversed
until no element of the mesh is marked anymore by a positive refinement number. At each
element, which is labelled with a positive refinement number, a subroutine is called for the
purpose of performing a local refinement. If necessary, not only the triangle itself, but also
elements in the neighbourhood have to be refined in such way that the regularity of the
mesh is preserved. The recursive subroutine used in this work is schematically described
in algorithm and already provided by the ALBERTA library [42].

In order to ensure the quality of the mesh, the splitting of a single triangle is only
allowed at the midpoint of its longest edge. To avoid a hanging vertex, the algorithm will
only perform a refinement if the longest edge of the triangle is also the longest edge of its
adjacent triangle. In this case, both triangles can be refined simultaneously by using the
midpoint of the common edge as a new vertex of all four sub-elements. Otherwise, the
neighbouring triangle must first be refined until the common edge is at least as long as
both other sides of the adjacent triangle. Therefore, the local refinement procedure is a
recursive process and a single refinement of an individual triangle can entail a lot of other
refinements of other triangles.

An example of the resulting mesh is illustrated in figure BIB.1(b)l It should be noted
that the meshes that are generated for the finite element calculations are, of course, con-
siderably finer than the meshes illustrated in this work.
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Algorithm 3.2 Recursive algorithm of the refinement

Require: mesh M, individual triangle 5% needed to be refined
Ensure: refined mesh
1: procedure REFINE(M, S?)

2: identify longest edge E of triangle S°

3: if E belongs not to the boundary of M then

4: identify neighbouring triangle S* adjacent to F
5: while S* has a longer edge than E do

6: refine(M, S*)

7 identify neighbouring triangle 5 adjacent to E
8: end while

9: decrement refinement number

10: split triangles S? and S at the centre of E

11: update M

12: else

13: decrement refinement number

14: split triangle 52 at the centre of E

15: update M

16: end if

17: end procedure

3.1.3 Shape of the Mesh

Up to now, only the upper half of the mesh, which represents the scala vestibular, is gener-
ated by the refinement procedure of a coarse rectangular triangulation. The mesh can now
be supplemented by reflecting each element with respect to the longitudinal axis which
contains the cochlear partition. The advantage of this approach is that the arrangement
of edges that are adjacent to the cochlear partition and that belong to the upper duct is
in conformity with the arrangement of the edges on the other side of the partition. Al-
though there seems to be a connection of the mesh through the cochlear partition, the
elements above and below the basilar membrane are separated from each other. There-
fore, the line segments that are adjacent to the basilar membrane belong to the outer
boundary of the mesh. From the technical point of view, the line segments at the cochlear
partition must therefore be implemented in duplicate in order to represent the boundary
between the basilar membrane and the scala vestibular as well as the boundary between
the basilar membrane and the scala tympani. In order to connect both chambers at the
helicotrema, the upper and the lower mesh are glued together at the apex. This means
that the corresponding segments and vertices at the helicotrema are - in contrast to the
cochlear partition - shared by both chambers. As shown below, this specific configuration
facilitates the numerical implementation of the mutual interactions between the basilar
membrane and the fluid at both sides. A positive side effect is that the reflection of the
refined upper part reduces the computational effort, since the expensive refinement-routine
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3.2. VARIATIONAL FORMULATION

has only to be performed for the half of the mesh. The supplemented mesh that results
from the reflection as described above can be seen in figure .

Finally, the mesh has to be adapted in such a way that the shape of both chambers (as
already discussed in chapter [21]) is sufficiently represented by the fluid domain. Therefore,
the transversal heights of the scala vestibular and scala tympani are modified according
to the measurements from Wysocki [52] by multiplying the vertical coordinates with ap-
propriate scaling factors. As a consequence, the boundary is linearly approximated by the
triangular elements. In comparison to the model simplifications made above, the error
that arises due to the linear approximation of the smooth boundaries may be considered
as negligible. The effect of the vertical scaling is illustrated in figure

3.1.4 Basilar Membrane as a Submesh

The fluid domain is just one component of the whole cochlea model. In addition to the fluid
domain, also the basilar membrane and its interactions with the fluid have to be taken into
account by the numerical implementation. As already described above (cf. chapter [ZT]),
the basilar membrane should be represented by an one-dimensional line between the fluid
filled chambers. The additional one-dimensional mesh is constructed in such a way that
the individual line segments coincide with the corresponding boundary edges of the fluid
domain. In summary, the cochlear partition consists of three different virtual "layers" of
the same line-segments. The first two layers are associated with the fluid domain and act as
the boundaries between the cochlear partition and the lower chamber or, respectively, the
upper chamber. The third layer represents the basilar membrane for the implementation
of its physical properties. The identical arrangement of each layer with respect to the
location and width of each line segment is not mandatory, but it significantly simplifies the
numerical realization of the fluid structure interaction. Therefore, the basilar membrane
can in principle implemented as a submesh of the fluid domain, since its set of vertices is
a subset of the vertices that belong to the fluid mesh.

3.2 Variational Formulation

The finite element method is based on the wvariational formulation of the boundary value
problem. The derivation of the variational formulation can be divided into three steps:

1. In the first step, the partial differential equations of the boundary value problem
must be multiplied with test-functions. In this context, the test-functions have to
be chosen in such a way that they are in agreement with the respective boundary-
conditions.

2. After that, the resultant statements must be integrated over the domain of interest.

3. If possible, the requirements concerning the differentiability of individual field vari-
ables should be finally weakened by applying Green’s first identity.
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Figure 3.2: @] The discretization of the fluid domain can be supplemented by reflecting the upper half of
the mesh with respect to the longitudinal axis. In contrast to the cochlear partition, where both parts of the
mesh are separated from each other, the mesh has to be connected at the helicotrema. @] On the basis of
the measurements from Wysocki [52], the shape of the cochlea can be linearly approzimated by applying a
scaling procedure with respect to the vertical azis.
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3.2. VARIATIONAL FORMULATION

As can be seen from the structure of this section, the different weak forms can be
associated with the individual components of the cochlear model as illustrated in figure

L3

For reasons of simplicity this chapter uses the Einstein summation convention for es-
tablishing the weak forms. Therefore, all terms, where an index occurs twice, are to be
understood as the summation of the term over all possible values intended for this index.

3.2.1 The First Order System

Acoustic Subproblem The fluid dynamics of the first order problem can be mainly
described by the first order conservation equations of mass 2.22] and linear momentum
223l The weak form of the first order equation of the conservation of momentum is given
by

vV o0v,
p(o)/ v, " dax + / —Zagl.) do — / T)iagl.)n dzr =0 (3.5)
o 'Ot o ox; r v

where the line above a variable indicates the test-functions. Due to the boundary condition
2,15, the boundary integral vanishes. According to the specification of the stress tensor
2.7 the second integral can be expanded to

ov; ov, roul)  awl)
/_gg»dm:n/_( L 2% >da:
0 63:]. J Q 8xj 63:]. 63:2.

_ (1) _
92 0v, Qv v,

+ (C - —’I’/)/ 6@' k dx — / 5ij p(l) dx.
3 Q 8x]. Oz, Q axj

(3.6)

In order to unify the presentation of the spatial discretization process, it is convenient
to use a more general (and abstract) notation of the variational formulation. In principle,
the weak form can be interpreted as the sum of different bilinear mappings (which will also
referred to as dual pairs) of the type

() VI V9 5 R (3.7)

where VY denotes the underlying function space with regard to the field variable g and
V9" represents its associated dual space. Thereby, the first argument (the element of
the dual space) arises from a linear mapping K" € L(Vh, VI, HI" € L(V", V9% or

M9 e L(V;‘, V9 that will be applied on a function h € V" or on its first or second time
derivative respectively. In conformity with this notation, the variational formulation B3]
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which is expanded by the use of equation B.6l can therefore be rewritten as
(H””%’)gl),@ﬁvvwxvvl 4 <H“2”2@gl),@2>vv2*xvvz+
(K”mvgl),z‘;1>vmxvv1 n <Kv202v;1),52>vv2*w2+

(0D, 5 ey + (K200, 5 )it (3.8)

(Kvlpp(l),51>vvl*xvv1 + <K02pp(1)a52>vv2*xvv2 =0

where the subscript of each dual pair indicates the respective spaces that are used by the
bilinear mapping. The individual function spaces are specified in chapter 3.3l

The first order equation that describes the balance of mass must also be converted into
its variational formulation, which is given by

1 opY

Y O <o>/
602 Qp ot w+p Qp

oW

dz = 0. (3.9)
Bxi

In the same way as described above, the variational form of the mass balance can be
represented - by using the dual pair notation - as

(HPPV Byyoescyn + (K0 pyyoescve + (KPP0, p)yoe s = 0. (3.10)

Basilar Membrane In this work, the passive dynamics of the cochlear partition are
represented by the differential equation .30l Its variational formulation can be evaluated

to
[ omesars [ a2y
mé{——5 dr + MonA— T+
Py OF Pom O D20t

(3.11)

_0¢ _ _
/ hef— da + / ké€dx = | &f da
Fbm at rlbm Fbm

where the force-term on the right hand side can be written as

- 5]0 dz = / wbmgp(1)|w:(x’+0) dx
bm b

Fom (3.12)
-,

wbmfp(l)\w:(x,_o) dzx —|—/F apéC da.
bm
Similar to above, the weak form can now be transformed into a generalized statement,
which consist of different dual pairs:

(MG, ) yesye + (H¥E, E)yeesye  +

(K€, E)yer e + (KW &) per et (3.13)

(K*¢, &) yersye = 0.

bm
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Outer Hair Cell Motility The additional force ¢ that might be applied by the outer-
hair-cell motility and that acts as an additional load on the basilar membrane can be
specified on the basis of the hair bundle deflection described by equation 2.36l According to
the strategy mentioned above, the weak form of this differential equation can be calculated
to
_0%¢ C _
T, ot? Tom T,
m m (3.14)
fom

JemMim( == d.
P Ot?

If each integral is understood as a bilinear form, the variational formulation can be written
as

<MCC57 Oveexve + (HCE, Ovensye +

; o (3.15)
(K¢, Oyeenye + (MEE, Q) yerrye = 0.

It is important to note that, in contrast to the fluid-viscosity coefficients n and ¢ and
the small signal sound speed cg which are assumed to be constant in the present study,
most of the coefficients, used for the representation of the basilar membrane and the outer
hair cell motility, are assumed to vary along the longitudinal axis. As a consequence, the
non-constant coefficients must be explicitly taken into account by performing a numerical
quadrature (cf. chapter B.4.4).

3.2.2 The Second Order System
Similar to the first order problem, the fluid-dynamics of the acoustic streaming subproblem

can be converted into a variational formulation by using the mean second order equation
of the momentum conservation 2248 Its variational formulation is given by

v, 9, 10v\™ o™
Q 8xj Q (3x (93:]. axi

(3.16)
9 v, av,(fc) .
+(¢ - 577)/ 0ij — dz = / v;f; d.
Q Ox; O, Q
The generalized formulation of this weak form can be written as
levl dc) >WU1* Wv1 + Gv2v2 (dc @2>WUQ*XWU2+
v1v2 U >Wv1*><Wv1 + U2v1 (dc 1_)2>W”2*><W”2+
(3.17)

{ {
(G (G
<Gv1pp(dc v >W“1*XW“1 <Gv2pp , U >WU2*><WU2 =
( +

Svl >Wv1*><Wv1 S >Wv2*><Wv2
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where a set of different dual pairs need to be introduced. The force-source-distribution f
is represented by the dual elements S“* € W"*.

The weak form of the mean second order equation 246l which was originally deduced
from the balance of mass equation, can be evaluated to

oulde)
p(o)/p# dw:/pfn de. (3.18)
Q Oz, Q

According to the other weak forms, this variational formulation can also be converted into
its uniform version

(Gpvlvgdc),ﬁ>wm><wz? + <Gpv2’0§dc),ﬁ>wp* xWp = <Sp,]5>Wp*><Wp (319)

where S?” € WP* is associated with the mass-source-distribution .

3.3 Function Spaces

3.3.1 Spatial Solution Spaces

The construction of the finite element spaces must be based on the structure of the correct
solution spaces of the individual field variables. This work uses an approach that applies
different discretization techniques with respect to the spatial and the temporal variables.
For the examination of the spatial solution space, the time variable is assumed to be fixed
to a specific time. Then, the actual state of the system can be described on the basis of
solution spaces that only take the spatial dimensions into account. For a more generalized
consideration of the solution spaces that also take the time-dependence into account see
e.g. [24].

Due to the composition of the individual bilinear forms that constitute the variational
formulation, it seems to be obvious to define the solution space as the space that consists
of all smooth functions f € C°°() of which all partial derivatives up to an order k as
well as the function itself are square-integrable functions (and therefore a member of the
Lebesgue-space L?(€2)). In doing so, the number k depends on the order of derivatives
that can be found within their associated bilinear forms. But it has been shown that this
function space is too small for the representation of solutions that arise from problems that
are described by a variational formulation of partial differential equations. (cf. e.g. [23])
From the topological point of view, the correct solution space can be established by the
completion of this function space with respect to the so-called Sobolev-norm, which can be

written as
1
2
lglls = (Z Haaguo) (3.20)

o<k
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The superscript « is associated with the multi-index notation which allows a simple repre-
sentation of different differential operators. This function space is well-known as Sobolev-
space H* and since the Sobolev-space is complete with respect to the norm || - ||z, it
constitutes a Banach space. The functions of the Sobolev-space can be characterized by
its weak derivatives. In this context, a function h € L?(12) is referred to as weak derivative

with respect to the multi-index « of the function g € L*(Q), if

z = (—1)ll o da _
/Qggod (—1) /Qh8 pd (3.21)

holds for all ¢ € C§°(£2). Then, it can be shown (cf. e.g. [23]) that a function is an
element of the Sobolev-space H* if and only if its weak derivatives up to the order k and
the function itself are elements of the Lebesgue space L%(Q).

The function spaces of the individual field variables can be identified on the basis of the
resultant bilinear forms that are constituted by the variational formulations. By taking the
specific boundary conditions into account, the function spaces of the longitudinal velocity
component are given by

ow
VU= {vl € H'(Q) | v (z) = for all € Ty,
(3.22)
vi(x) =0forall € I' Ul U Fbm},
Vi = L2(). (3.23)

In the context of the Sobolev-spaces, a specification of function values at the boundary
does not make sense, since the d-dimensional Lebesgue measure of the boundary is zero.
In order to overcome this difficulty, it has been shown (cf. e.g. [23]) that under certain
conditions regarding the domain €2, a H'(2)-function can be uniquely extended by means
of the linear trace operator

T: (HY(Q), - 1) = (L269), [ - [lo)- (3.24)

Therefore, if the function-values at the boundary domain are interpreted as a square-
integrable and d — 1-measurable function, the Dirichlet-condition can be established by
using the trace-operator T But for reasons of simplicity, the trace operator will not be
explicitly stated in the context of the declaration of the Dirichlet conditions.

By adapting the respective boundary conditions, the function spaces of the vertical

!In principle, the trace theorem can not be applied on the cochlea domain in its current form, since the
domain does not fulfill the requirements of a so-called Lipschitz domain. But the domain can be simply
transformed into a Lipschitz domain by inserting a thin gap between the upper boundary of the basilar
membrane and its lower counterpart.
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velocity component can be written as

3
V2 = {v2 IS Hl(Q) vy(x) = N for all x € 'y U pm—,

(3.25)
vi(x)=0foral x c ' Ul U Frw},

VP = L2(Q). (3.26)

Since the integrals of the variational formulations that are associated with the pressure do
not contain any spatial derivatives of the pressure variable, the pressure field as well as its
time-derivative can be represented by an element of the function space

VP =VP = [2(Q). (3.27)

So far, only the function spaces of the fields that describe the fluid dynamics have been
considered. In a similar way, also function spaces of the fields that are associated with the
basilar membrane displacement and hair bundle deflection can be introduced. In contrast
to the velocity and the pressure field, the domain of the functions that are associated with
the dynamics of the basilar membrane is a one-dimensional sub-space. On the basis of the
weak form [B.IT], the function spaces of the basilar membrane displacement and its temporal
derivatives are given by

VE = VE = L2(Ty), (3.28)
VE = H' (Tpm). (3.29)

The variational formulation of the differential equation that describes the hair bundle
deflection implies that the respective function spaces can be written as

V= VE =V = L3(Thm). (3.30)

The acoustic streaming subproblem constitutes a stationary problem. Therefore, the
solution does not depend on the time. On the basis of the variational formulation, the
function spaces of the velocity components can be written as

WY = {vl e H'(Q) | v (@) = % for all & € r}, (3.31)
Wb — {vg € H'(Q) | vy(z) = vgdc) for all z € F} (3.32)
(de)

where the mean velocity component v at the boundaries can be evaluated from the
boundary condition which bases on the results of the first order acoustic subproblem.
Similar to the acoustic system, the variational formulation of the secondary system does
not consist on spatial derivatives of the pressure variable. Therefore, the pressure can be
represented by an element of the function space

WP = L*(Q). (3.33)
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Figure 3.3: Arrangement of the local nodes and their respective barycentric coordinates on line-
segments as well as triangular elements. Nodes that are associated with function spaces of polynomials
of degree at most two are marked by black dots. The hollow pentagons indicate the nodes in the case of
function spaces that are constructed on the basis of polynomials of degree at most one.

3.3.2 Local Finite Element Spaces

As part of the discretization process the infinite-dimensional solution spaces (as specified
above) have to be replaced by appropriate finite-dimensional subspaces. The usual ap-
proach for the construction of such finite-dimensional subspaces in the context of the finite
element method is based on finite-dimensional local function spaces which are defined on
each individual simplex of the mesh. These local function spaces may then be combined in
such a way that the resultant global finite-dimensional space is a subspace of the solution
space.

In most cases, the field variables on a single simplex can be approximated with sufficient
accuracy by using polynomials of degree at most a number d. It is quite obvious that
such a polynomial (restricted to a single simplex S) is an element of the Sobolev-Space

H!(S). Tt has been shown (cf. e.g. [23]) that a global function composed of individual
local polynomials is an element of the Sobolev-Space H!(M) if and only if the global

function is a continuous function on M. Therefore, the overall function does not need to
be continuously differentiable across the edges of the simplices. In contrast to the other
variables, the pressure is an element of the less restrictive space L?. As a consequence, the
global function space that is used for the approximation of the pressure field does not even
need to be continuous across the simplex-borders.

Of course, it would be possible to specify each local polynomial by using its respective
coefficients as degrees of freedom. But this approach would not be very useful, since the
global continuity condition can not be directly taken into account. In the context of the
finite element method, the local functions are usually determined by the specification of its
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Associated Node Local Basis Function
0 0 1

/ngar) =(1,0) Lgbar)(sgbar)) =B

/B(bar) =(0,1) L(bar)(S(bar)) = p

Table 3.1: Basis functions on line segments that span the space of polynomials of degree at most one (cf.
142]). Each basis function can be associated with a certain node where it doesn’t vanish.

function values and/or spatial derivatives at a number of individual distinct points (also
referred to as nodes) within the simplex.

Since all field variables that are needed in the context of the cochlear model presented
here do not need to be continuously differentiable at the edges of the simplices, it is
sufficient to use elements of the well-known Lagrange family. The Lagrange elements are
characterized by solving the interpolation problem that specifies only the function values
(and not the spatial derivatives) at each node. There are two properties that are essential
for the application of the Lagrange elements in the context of the finite element method:

(1) The polynomial is well-defined by the function values at the nodes of a certain sim-
plex.

(2) The polynomial restricted to any sub-simplex is well-defined by the function values
at the nodes of the certain sub-simplex.

The interpolation functions of the Lagrange family are polynomials of up to degree
k. The space of these polynomials can be naturally identified with the Euclidean space
RP, where the dimension p of this space is given by the binomial coefficient (dzk). The
interpolation problem can now be interpreted as a mapping from the Euclidean space RY,
which serves as a representation of the function values at the ¢ nodes, into the polynomial
space mentioned above. In this context, it becomes apparent that the number of nodes must
not exceed the dimension of the polynomial space in order to ensure that the interpolation
problem is solvable and furthermore that this solution is also well-defined. On the basis
of the declaration of a set of polynomials N* that belong to the Lagrange family and that
are characterized by the condition

N'(n?) = 8 (3.34)

for all nodes n’ the mapping can be simply specified by an appropriate linear combination
of these basis functions. In this case, the resultant interpolation function also complies with
property (1), since this kind of mapping ensures the existence as well as the uniqueness
of the interpolating polynomial. By the restriction on an arbitrary sub-simplex, the same
line of argument can be used to show property (2). (cf. [23])

In this work, polynomials of degree at most one (for the force-like variables) and at
most two (for velocity or displacement-like variables) are used. In order to distinguish
both types of local function spaces with regard to their maximal polynomial degree, the
respective space will be referred to as linear or quadratic. The arrangement of the nodes
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Associated Node Local Basis Function
’B?bdr) (1,0) Q(()bar)(sébar)) = (26, — 1)B,
’B(bdr) (0,1) Q%bar)( %bar)) = (26, - 1B,
/B(bar) (% %) Q (bar) (Slbar ) = 48,8,

Table 3.2: Basis functions on line segments that span the space of polynomials of degree at most two (cf.
42]). Each basis function can be associated with a certain node where it doesn’t vanish.

Associated Node Local Basis Function
’B?bdr) (1,0,0) L?bdr)(s?bar)) =By
’B(bdr) (0,1,0) L(bdr)(S?bar)) =
/G(bar) (0,0,1) L?bar)(sfbar)) = [y

Table 3.3: Basis functions on triangular elements that span the space of polynomials of degree at most
one (cf. [42]). Each basis function can be associated with a certain node where it doesn’t vanish.

in the linear case as well as the quadratic case for both line-segments and triangles is
illustrated in figure B3l The respective set of basis functions that comply with equation
B34 are listed in the tables Bl B.2) B.3] and [B.4] with respect to the barycentric reference
system.

Each linear and quadratic basis function with respect to a specific simplex is then
defined as

L(S) i= L{par(S(oar) © B(@), (3.35)
Q'(SY) = Qar)(S{hary) © B@). (3.36)

The local function spaces for the linear and the quadratic case are now given by

L'(Sd) = span {L ] 1=1,2, }, (3.37)
Q(5% := span {Q Ni=1,2,. -} (3.38)

3.3.3 Global Finite Element Spaces
As mentioned above, it is necessary to ensure that the global functions are continuous
across the edges of the simplices in order to guarantee that the Sobolev-spaces contain the

resultant functions. In terms of a mathematical formulation, the overall linear function
space with respect to the fluid-domain can be stated as

LMY = { fe e

Q rQ Q
= span{L1 s Loy ey LdimE(MQ)}

vS2e MY flg: € 5(52)}
(3.39)
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Associated Node Local Basis Function

/B?bar) = (1,0,0) Q(bar)( (bar)) (26, = 1)B,
/szar) =(0,1,0) Q(bar)(S(bar)) (28, - 1)B,
Bloar = (0,0,1) bar)(S{bar) 1= (285 = 1B,
lg?bar) = (0, %’ %) Q(bar)(S?bar)) 46,5,
B?bar) = (%’ 0, %) bar (S?bar ) = ﬂoﬂz
/B?bar) = (%a %a 0) bar (S?bar ) = 051

Table 3.4: Basis functions on triangular elements that span the space of polynomials of degree at most
two (cf. [42]). Each basis function can be associated with a certain node where it doesn’t vanish.

where the functions L? establish a basis of the global function space and will be specified
below. In the same way, the overall quadratic function space can be represented by

QM : = {f e COMY) |vs?e MY : flg € 9(52)}

)

The continuity condition involves the necessity that all function values at those local nodes
that are positioned at the same location but belong to different simplices are identical.
Then, the continuity condition can be guaranteed due to the interpolation condition (2)
as mentioned above. Therefore, it is useful to join these adjacent local nodes to a common
global node. From a mathematical point of view, a global node constitutes an equivalence
class of the set of all local nodes of a mesh. In this context, two nodes are members of the
same equivalence class if and only if both nodes can be represented by identical barycentric
coordinates with respect to a common sub-simplex (to which both nodes belong).

(3.40)

For the implementation, it is useful to label each global node and each global basis
function by an index. Therefore, let

IEM®) = fi e N|1<i < dim£(MY)}, (3.41)
12 .= fi e N|1<i < dimQ(MY)} (3.42)

be the index-families that are associated with the global linear and the global quadratic
function spaces. If each global node is uniquely labelled by such an index, the basis
functions L? or Q? respectively of the global function spaces can be defined indirectly by

LQ(n]) 5;  forall j € TE(MT) (3.43)

5  forall j € I2MY) (3.44)
with n. being the global node that acts as a representative for all local nodes that belong
to this global node. The uniqueness of these basis-functions is a direct consequence of the

interpolation condition (1). In the same way, similar global function spaces with regard to
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the basilar membrane domain can be established. The function space of piecewise linear
functions on individual line-segments of the basilar membrane is given by

LM ) ;= { feco(mtem)

vsle Mt flg € E(Sl)}

(3.45)
Tbm
= Span{L{bm’ Lgbm’ veey Ldlbm,c(MFbm)}
The function space that uses piecewise quadratic polynomials can be written as
QM m) : = { fect ) ' VSt e M flg € Q(Sl)}
(3.46)

— Fbm I‘bm Fbm
_span{ 17 Qy ""’QdimQ(Mrbm) .

As in the case of the global nodes that are associated with the fluid domain, each global
node of the basilar membrane domain is indicated by a unique number. The indices of a
global node and the basis functions are chosen in such a way that the following relations
hold:

Lfb"‘(nj) = 0;j for all j € IE(MFbm), (3.47)
Qi (n)) =06  forall j e 19, (3.48)

For the assembly of the matrices that are used to represent the discretized system it is
important to use an increasing set of numbers for the index families used in the previous
equations. Therefore, these index families are given by

PP L e N |1 < < dim £(M )}, (3.49)
1QMm) . fi e N |1 < i < dim Q(M )}, (3.50)

Furthermore, it is useful to combine the respective basis functions of the global finite
element spaces L?, Q?, Lgbm and Qf‘”m into the common vectors LQ, QQ, L' and Qrbm.

3.4 Spatial Discretization

3.4.1 The First Order System

Acoustic Subproblem In the last chapter the spatial solution spaces of the individ-
ual physical field variables have been introduced. As part of the discretization process,
these infinite dimensional function spaces are replaced by the global finite element spaces,
presented in chapter B33l In this context, the individual scalar solution functions are ap-
proximated by the linear combination of the respective basis functions. In this work, the
two components of the velocity field as well as its first time derivatives are represented by
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the quadratic finite element functions () with respect to the two-dimensional fluid domain
Q. Therefore, the individual velocity components can be written as

)07 o)) 351
oD 30.Q% oM. QY :

where the hat-symbol above a variable refers to a nodal vector. A single component of
a nodal vector is characterized by its connection to a specific global node. According to
the linear combination it becomes obvious that the function value at a specific node of
the resultant approximation function is identical to the associated component of the nodal
vector.

It has been shown that the right choice of the finite element spaces of the mixed system
that takes the velocity field as well as the pressure field into account has a major influence
on the stability, accuracy and convergence of the simulation process (cf. [36]). If the basis
functions of the pressure field are, for example, chosen in such a way that their polynomial
degree is identical to the order of the basis functions that are used to represent the velocity,
the system will become - in a certain way - overconstrained. As a consequence, a significant
spatial oscillation of the pressure function can be observed. In contrast, a stable system
can be achieved by fulfilling the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition,
which can be written as

- (K", p) + (K", p)
11 Ssu

P
PEVP\{0} yevv\ {0} Ipllollv|lx

(3.52)

where V¥ = V"' x V" and ¢ > 0 is referred to a constant. The validity of the LBB
condition has not only to be verified for functions of the underlying solution space (as e.g.
shown by [24]), but also for the discretized finite element spaces. In order to ensure that the
LBB-condition is also valid for the discretized finite element spaces, it has been shown that
the maximal polynomial degree of the basis functions that are used for representing the
pressure field has to be at least one order lower than the respective basis functions of the
velocity components (cf. [36]). Therefore, since the velocity components are approximated
by the use of quadratic basis functions, the function space of the pressure field is constituted
by basis functions that are piecewise linear:

p(l) ~ 13(1) . LQ, p(l) ~ f)(l) . LQ‘ (3_53)

Up to now, the discretized function spaces of the velocity fields do not consider the bound-
ary conditions. The Dirichlet condition can be implemented by the specification of the
respective function values at the boundary nodes. Therefore, it is useful to introduce a set
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of different index families in order to realize the boundary conditions:

BEM bt - [L(M?) - pO(MTbmE) - 1QM?)
BEMTPm) - L(M?)  gR(Mm) - QM)
BLMToY) - (L) gRMTv) - 1Q(MT) (3.54)
BEOMT) LI ROt - ja®),
BLM™) o[£ oM™ - QM)

Y

Each family is a subset either of the linear or the quadratic finite element function space.
An index ¢ is an element of one of these subsets if its associated node n, belongs to the
respective boundary. Due to the construction of the mesh of the fluid domain in connection
with the line-segments of the cochlear partition (cf. section B.1.4]), the nodes of the basilar
membrane (in the linear as well as in the quadratic case) can be linked to the adjacent
boundary nodes of the fluid domain. The various mappings from the nodes of the basilar
membrane to the nodes that belong either to the upper duct or to the lower chamber of
the cochlear model are illustrated by the following scheme:

BE(MFblll+) BQ(MFbll]+)
Dot U+
[E(M T bm) (M " bm)
¥
Pb— Yp—
RL(M bm—) BQ(M bm—) (3.55)

These mappings constitute bijections except of the function ¢ which is only an injective
function since the quadratic basis functions need additional nodes in the middle of each
simplex. For reasons of simplicity, different sets of boundary nodes can be combined into a
single set for which the Dirichlet condition must be applied. Since the Dirichlet conditions
of the first velocity component differs from the second velocity component, two different
sets of nodes have to be established:

By = BO™) Y RO ) |y po(M o) | po(™),

B2 = BRAM ™) G RAM™) [y BA(MI) RV [ RO,

(3.56)
(3.57)

As described in chapter 2311 the acoustic subproblem is mainly characterized by the
first order equation of the conservation of mass and by the first order equation of the
conservation of linear momentum in combination with the specification of the stress tensor.
This system of differential equations can be transformed into a semi-discretized system by
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using its variational formulation as introduced in chapter B2l As mentioned above, the
system will initially be discretized with respect to the spatial dimensions. The temporal
discretization process is described in chapter The semi-discretized system can be
represented by using a set of different matrices. These matrices can be assembled on the
basis of the dual pairs as introduced in chapter B2l In doing this, each solution space has
to be replaced by an appropriate finite element space. If the test-functions are successively
substituted by different basis functions of the underlying finite element space and if the field
variables are approximated by using equations B.5T] and B.53], a linear system of equation
can be established. Before determining the structure of this linear system of equation,
the individual matrices should be introduced. In principle, the matrices can be associated
with different terms of the original differential system of equation. The Newtonian fluid
is characterized by the linear dependence between the stress tensor and the deformation

tensor (cf. equation 7). This stress tensor is implemented in terms of the matrices K",

K", K" K", K"? and K"?’. The first two matrices are given by the following

specifications:
Koo Z 00 ifi e By (3.58)
K <KU”’1Q?, Q?)Q*Xg otherwise ,

g ifi c B2
vav _ (51 0 0 ifi e B(l) (359)
" (K™"Q), Q) o xq otherwise .

At a specific node, the Dirichlet condition can be applied by using the Kronecker delta
operator 0;; as it can be seen in the first row of both matrix-specifications. Of course, the
corresponding function value must still be specified. As it will be shown later, the function
value can then be set either on the right hand side of the overall system of equation or within
other matrices in an appropriate way. The matrices that link both velocity components
can be assembled by using the formulas

e vy
vivs _ 0 0 ifi e B(l) (3.60)
K (K"7Q, Q) g xo otherwise

0 if i € BY?

K2 = 0 ) (3.61)

K (K™"Q},Q;)orxg otherwise .

In order to preserve the Dirichlet condition, the respective rows (that are associated with
a node that belongs to the Dirichlet boundary) have to vanish. For the same reasons, the
configuration of the matrices that implement the interaction with the pressure field is given
by

- v
;‘]jlp N {0 vipr Q2 ~Q he B.(ll) (3.62)
(KLY, Q" )arxo otherwise

e s
vap _ 0 - ifi e B(l) (3.63)
K (K™PL7,Q;)g*xq otherwise .
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The principle of the conversation of momentum states that the force that is applied on a
collection of fluid particles and that can be represented by the use of the stress tensor is
equal to the rate of change of linear momentum (cf. [36]). In the case of the first order
system, the time-rate of change of the momentum can be discretized with the help of the
matrices H”'"* and H"?"2. Its components can be evaluated to
oo _ ifi e Bq(’ll) (3.64)
K (HUIUIQ?, Q?>Q*><Q otherwise ,
vavs ifi € B (3.65)
K (H””QQ?, Q?)Q*XQ otherwise .
All terms of the momentum equations are taken into account by the matrices introduced
above. But, the function values at the Dirichlet nodes still need to be specified. At the
oval window, the first velocity component is given by the time-derivative of the predefined
displacement of the stapes. Since the longitudinal velocity component vanishes at all other
nodes of Bq(’ll) and there is no other load that has to be considered, the right hand side

vector of the velocity v, is given by

F7t =

(2

t (3.66)

owl®) - jf ¢ [AM™")
0 otherwise .

Similarly, the second component of the velocity is affected by the vertical displacement
of the basilar membrane. But in contrast to the oval window, the displacement of the
cochlear partition is not predefined and it depends on the mutual interaction with the fluid.
Therefore, the respective function values at the basilar membrane need to be determined
in dependence of the nodal and unknown vector E that specifies the first time-derivative
of the basilar membrane displacement (see below). In doing this, the velocity at the node
n, that belongs to either the upper or lower partition boundary can be equated with the

component 1, (i) of the velocity vector € in the case of the upper boundary, or with

the component v, ~'(i) in the case of the lower boundary respectively. This relation can
be realized by using a matrix that is given by

_5i¢b+(j) ifi e BQ(MFbrn+)
H;? t= —0ip, (5 ifi€ B(M bm-) (3.67)
0 otherwise .

Since the second velocity component vanishes at the other boundaries and since no external
load exists, the right hand vector F"? is a null vector. Now, all these matrices can be used
to transform the variational formulation of the balance-of-momentum equation into its
semi-discretized formulation, which can be written as

H o+ KO p ket 4 krpt) — B (3.68)

12250 Kee () Keeee () | Krp() |1 0. (3.69)
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Similar to the principle of conservation of momentum, also the balance of mass equation
consists of two different parts. The first part describes the rate of change of the mass with
respect to the time. Its first order term can be transformed into a discretized formulation
by establishing the matrix HP”. Since no boundary conditions are specified with regard to
the pressure field, the entries of this matrix can be evaluated to

Q +Q
HP? = (HPPLS, L) e (3.70)

The second part is associated with the supply of mass. It constitutes a mixed term, due
to the link to the velocity field. By applying the common discretization method on the
first order problem, the matrices KP”' and K”? can be deduced. Its components can be
calculated to

Q +Q

K’i’;’l — <va1Qj LY s (3.71)
Q +Q

K’i’;b — <va2Qj L s (3.72)

All in all, the discretized first order equation that origins from the mass conservation can
now be written in terms of the former matrices as

H7p Y + K 4 kel = o, (3.73)

The equations B.68], B.69 and [3.73] constitutes the semi-discretized version of the first order
fluidic subproblem.

Basilar Membrane The displacement of the basilar membrane is mainly driven by the
difference between the pressure above and below the cochlear partition. Since the mesh of
the basilar membrane is, moreover, identical to parts of the boundary that belongs to the
fluid domain, it is advisable to use the same type of basis functions for the evaluation of the
dynamics of the basilar membrane as used for the pressure field. Therefore, the function
space that represents the displacement of the cochlear partition should be discretized by
using the space £(M"™) (cf. equation B.4%).

Otherwise, the velocity of adjacent fluid-particles depends on the displacement of the
basilar membrane. Therefore, it would be useful if the displacement of the basilar mem-
brane is also available at nodes that are exclusively used by the quadratic basis functions.

In order to meet both requirements a combined approach is used. Although the prin-
ciple computation is based on linear basis functions, the displacement at the additional
quadratic nodes are also interpolated on the basis of values at the adjacent linear nodes.
In doing this, the additional nodes (that are used in order to constitute the quadratic basis
functions but that do not belong to the linear basis functions) can be described by the
index family

TQ\E = [T\ £(4) | § € TEMTm) L (3.74)

A simple linear interpolation technique that can be used for determining the displacement
at the nodes that correspond to the index family [3.74needs to have access to the respective
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values at its direct neighbors. Therefore, the indices of the neighbors of the node that is
associated with index i € I2\F are given by the set

Vi) = {je T£(M T om) | j belongs to the same simplex as i }. (3.75)

In summary, the discretization process is realized by using matrices, whose structure is
based on the function space Q(M"'*™) (cf. equation B46). But in contrast to the matrices
above, its entries are assembled by using dual pairs that are defined on the function space
L(M" ") (cf. equation BA5). Then, the stiffness matrix is given by

1 ifi,j €19\ and i = j
Kée —1 if i € 19\£ and j € IV (i) (3.76)
K <K55LFbm L™ pexr if (k) = i, (1) = j exist '
0 otherwise .

The first two rows realize the interpolation of the displacement by evaluating the average
value of the two neighbouring displacement values. The third row is associated with the
longitudinal varying stiffness of the basilar membrane.

Of course, it would also be possible to directly implement the linear interpolation by an
adaption of the entries of the matrix K"*?. Furthermore, other implementation techniques

might also be implemented like cubic C? splines. But a possible higher accuracy seems to
be disproportionate to the resultant computational effort.

As described in chapter 2321 the damping of the oscillatory model consists of two
different damping components. Both, the longitudinal shearing resistance as well as the
intrinsic viscosity of the cochlear partition at a specific point are considered by the matrix

(3.77)

e _ {(HffLFbm L™ peser, if (k) =, 0(1) = j exist
1]

0 otherwise .

The discretized counterpart of the term that describes the inertial reaction of the basilar
membrane is given by

& (3.78)

\EE (ML L™ per, if (k) = i, (1) = j exist
0 otherwise .

Now, the dynamics of the passive basilar membrane are fully described by the matrices
K&, H% and M*®. As mentioned above, the cochlear system is stimulated by the fluid-
pressure above and below the partition. This external pressure-load can be represented by
a matrix, whose components can be evaluated to

Kfp _ (K L, aLkb Joexr i o(k) =1i,0(1) = j exist (3.79)
J 0 otherwise .
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Furthermore, an additional force may be applied by the outer hair cell motility. Since this
external load is assumed to be proportional to small deflections of the hair bundles, the
discretization process yields the matrix
KL em pYemy, o if (k) =i, (1) = j exist
J 0 otherwise .

Now, a semi-discretized system that simulates the displacement of the cochlear partition
can be established by using the matrices introduced above. In doing this, the variational
formulation B11] can be transformed into the ordinary differential equation

M€ + H%E + K¢ + Kp!) + K¢ = 0. (3.81)

Outer Hair Cell Motility As described in chapter 2.3.3] the deflection of the stere-
ocilia is modeled as an additional oscillator. Therefore, the associated differential equation
consists of a stiffness-, a damping- and a mass-term. These physical characteristics are
reflected in the matrices KCC, H and M. The matrices can be evaluated on the basis of
the variational formulation B.I4. According to the basis functions of the basilar membrane
motion, the deflections of the hair bundles are also approximated by piecewise linear func-
tions, because the displacement of the cochlear partition is a direct cause of the deflection.
The components of the matrices can be assembled by using the following formulas:

K¢ = (KL, L) pes, (3.82)
HZC]C — <HCCL§‘bm7 L;bm>L* <L (383)
Mee = (ML, L) e, (3.84)

The coupling to the basilar membrane displacement is realized by the matrix M whose
components can be calculated to

MSS = (ML, L) o (3.85)

7

By the use of these matrices, the differential equation that describes the deflection of the
hair bundles can be transformed into its semi-discretized formulation, which is given by

MCSE + HE + K¢ + Mg = 0, (3.86)

3.4.2 Multiphysical Coupling

The first order system can be regarded as a multiphysical problem, since the system can
only be realistically described by the simultaneous consideration of multiple physical phe-
nomena. The multiphysical coupling of the acoustic subproblem can be summarized by
the following interactions:
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e The displacement of the basilar membrane is directly affected by the fluid pressure
above and below the cochlear partition.

e The fluid velocity at the basilar membrane above and below the cochlear partition
depends on the displacement of the basilar membrane.

e The outer hair cell force appears as an additional load which acts on the basilar
membrane.

e The outer hair cell force is mainly influenced by the displacement of the basilar
membrane as a consequence of the relative motions of the reticular lamina with
respect to the tectorial membrane.

Therefore, the dynamics of the fluid, the basilar membrane and the tectorial membrane
constitute three different physical processes that have to be simultaneously taken into
account by the overall simulation process, since the individual processes have a mutual
influence on each other.

In contrast to the interaction of these three components, the coupling between the
fluid and the round window is realized through an internal boundary condition with re-
spect to the longitudinal velocity field (cf. chapter 2.2.3]). Due to this specific kind of
implementation, the interaction between the round window and the fluid can therefore not
be considered as a multiphysical phenomenon. Also the fluid itself may be considered as a
coupled system, since the pressure and the velocity variables are coupled by the conserva-
tion principles and constitutive relations as described above. Since the fluid dynamics are
modeled as a whole by the interplay between the pressure and the velocity field, this kind
of interaction is referred to as a mized formulation rather than a coupled phenomenon.

Multiphysical interactions between two physical processes are often categorized by the
degree to which they are coupled. In literature, a distinction is often made between a
strong and weak coupling. But neither a formal definition nor a quantification has been
established up to now in order to objectify the degree of coupling.

In principle, two different approaches for the numerical implementation of a multiphys-
ical problem can be distinguished. The first approach for simulating multiple processes
involves the consideration of the coupled processes as one monolithic system of equations.
It is a straightforward method which naturally takes the coupling into account even if
the mutual interactions have significant influences on each individual process. The major
drawback of this procedure is that the resultant system of equations may become quite
large and its associated matrix is potentially badly conditioned. In contrast, the second ap-
proach is based on separate sub-routines that are specialized in the numerical computation
of the different physical phenomena that are involved. In this case, the coupling is realized
by the transfer of relevant data, which can be taken into account by specific boundary
conditions, load terms, geometric shape or constitutive relations. If the coupling is not
unidirectional, the results of the processes may have a mutual influence to such an extent
that the computation of each sub-system has to be repeated (under consideration of the
updated data) by an iterative sub-process in order to achieve accurate results. Whether
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such an iterative process is really necessary depends mainly on the degree of influence on
each other. In many applications, it seems to be sufficient to transfer the coupling-relevant
data from one process to the other just one time per time-step or even only an occasional
update every few times steps is enough to adequately represent the multiphysical system.
An advantage of such a partitioned method lies in a more effective computation of each
individual sub-process since each sub-routine can be numerically optimized and in most
cases the resultant sub-systems of equations are significantly smaller and better condi-
tioned than the overall system. Furthermore, the modular design of the implementation,
which is characterized by the application of different modules for each individual physical
phenomena, facilitates the reuse of the software with respect to other computations. (cf.

|36, [15])

In this work, the multiphysical problem is realized by a monolithic system of equa-
tions. It can be assumed that a partitioned realization of the coupling involves a substan-
tial computational effort that is probably needed by the application of the sub-iterations
(as mentioned above) due to the strong interdependence between the fluid, the basilar
membrane and the outer hair cell motility. Therefore, it can not be expected that the
partitioned implementation has significant advantages with respect to the computational
effort over a monolithic realization. Furthermore, the modular design is accompanied with
a substantial increase of the code complexity, due to the additional implementation of ad-
equate interfaces, data transfer protocols, finite element interpolations and the monitoring
of the sub-iteration processes. Moreover, the cochlear system is a highly specific problem
(in particular with regard to the basilar membrane), so that the resultant code can not be
easily adopted by other applications for the simulation of acoustically driven flows within
a fluid-structure coupled system. Nevertheless, also the monolithic scheme is accompanied
by increased requirements on the software architecture.

According to the equations [3.68], B.69] B.73] B.81] and B.86], the fully coupled monolithic
system of the first order acoustic subproblem can be represented as

Mii+ Ha+ Ku=F (3.87)

which constitutes a system of second order linear ordinary differential equations. The nodal
vector u combines the individual nodal vectors of the fluid velocity, fluid pressure, basilar
membrane displacement and hair bundle deflection and this overall vector can be written
as

u:[ogn o pM g ¢ (3.88)

Due to the similarity of equation B.87 to equations of motions where the vector u is

usually identified with the displacement of the motion, the matrices M, H and K are
often referred to as the mass matrix, the damping matrix and the stiffness matrix. From a
physical point of view it must be noted that these terms are not precise with respect to the
ordinary differential equation presented here, since the nodal vector u consists not only of
displacement components but also of velocity components. By using the sub matrices of
the individual equations as introduced in section [3. 4] the stiffness matrix can be written
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as

-K'Ulvl K" K" 0
KU2U1 KU2U2 KU2P 0 0

K= | K KPP 0 0 0. (3.89)
0 O Kfp Kff KfC
0 0 0 0 K¢

The discretized damping matrix of the first order subproblem can be represented as

{7 0 0 0 0
0o H™ o0 H” 0
0

H=| o 0 H” o0 (3.90)
0 0 0 H¥ o0
0 0 0 0o H
Finally, the overall mass matrix can be determined to
0 00 0 0]
000 O 0
M=1|0 00 O 0 (3.91)
000 M¥ o
0 0 0 MY M

By the monolithic matrix representation, the interdependencies (or in other words the
coupling) between different field variables are easily recognizable by the sub-matrices that
are not located on the main diagonal.

The right hand side of the first order semi-discretized formulation B.87 consists only
of entries belonging to the longitudinal velocity components that are associated with the
displacement of the oval window. Therefore, the load vector can be written as

T
F:[F“ 00 0 o] . (3.92)

3.4.3 The Second Order System

Acoustic Streaming Subproblem As shown in chapter [Z4] the mean motion of the
secondary flow is characterized on the one hand by the second order supply-terms of the
mass and momentum and on the other hand by the virtual source-distributions of mass
and momentum. The supply of linear momentum in terms of the second order mean
variables v'% and p'® can be represented by the matrices GU1V', GU2"2, GU1V2, GV2!,
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G"'"? and G"”. In order to take also the boundary conditions into account, the indices of
the boundary nodes are combined into the set

BY,,) = BAM™) y BAM™) | B brt) | BOGMTEmT) |y BOM™), (3.93)

Using this index family, the first two matrices can be assembled by using the relations

vivr _ 0ij ifi e Bq(’dc) (3.94)
N (lele?7 Q?>Q*XQ otherwise ,
vpvs _ ) 0ij if i € By,

G =1 om0 02 ) (3.95)
(G Qj Q. )0 xg otherwise .

As in the case of the first order subproblem, the Kronecker delta symbol allows the spec-
ification of the velocity components at the boundaries by the values of the right hand
side. By taking into account that all other entries at those rows that are associated with a
boundary node must vanish, the matrices that connect both velocity components are given

by
V1V 0 ifi € BY .
Gijl P = V102 2 Q .(d ) (396)
(G Qj ,Q;)o*xo otherwise ,
QU2 0 0 g ifi e B(dc) (3-97)
“ (GU?Ule Q. )0 xg otherwise .

Due to the LBB-condition (cf. section B.4.]]) the maximal degree of the polynomial ba-
sis functions that represent the pressure variable must be one order less than the basis
functions of the velocity field. Therefore, the coupling to the pressure variable can be
implemented by the matrices

0 itt e BY
G’ = viprQ A0 (de) (3.98)
J (G'L,Q; ) xg otherwise

0 itt e BY
Gi' =9 wapr@ 0 () (3.99)
K (G™PL},Q;)o*xg otherwise .

The force source distribution results in the load vector S”* and S”2, whose components can

be calculated to )
QUL — fl(m) ifi e Bz]dc) (3'100)
’ (SUI, Q?>Q*><Q otherwise ,

o {fQ(a:) if i € Bfy, (3.101)

(S5, Q?>Q*><Q otherwise .

According to equation 249 the first row of these relations specifies the values at the
Dirichlet boundaries, whereby the coordinate @ indicates the respective location of the
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actual node. The second row is associated with the force distribution within the bulk.
Now, the semi-discretized system that represents the supply of force in combination with
the force source distribution can be written as

Gt g 4 grinplde) — g (3.102)
szvlogdc) + Gv2v2\7§d6) + Gvgpf)(dc) —qv2. (3103)

The supply of mass with respect to the second order subproblem is associated with the
matrices GP”* and GP”2. Similar to above, the set

BY,,, = BE) g BEAIT) | BEAITm) | EATT ) () BT (3.104)
C
specifies the indices that are associated with the boundary nodes in order to establish
the Dirichlet boundary condition. With the help of this set of indices, the entries of the
matrices can be calculated to

. . p
o _ 0 o 7€ Bag (3.105)
K (Gplej L. )cexc otherwise

ifi € BY
i oy 10 (de) (3.106)
(G Q]- L") c+xc otherwise .

In order to implement the Dirichlet boundary condition, the respective entries on the main
diagonal of the matrix GPP must be set to 1. In terms of mathematical formulation, this
matrix is given by

. . . p
qre = )0 € By (3.107)
K 0 otherwise .

Similar to the force source distribution, the mass source distribution (cf. equation 2.47)

can be implemented as a right hand vector S”. Thereby, a distinction between the internal
distribution and the boundary values must be drawn. Then, its components are given by

m(x ifi e BY
57 = ) 0 Nk (3.108)
(SP,L;")p+xc otherwise .

Finally, this load vector in combination with the matrices, introduced above, can be
brought together in the system of equations

GPp ™) + GMI\) 4GP = 87 (3.109)

in order to obtain the semi-discretized formulation of the second order mass conservation
equation.
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The overall mean second order system, which yields a first order approximation of the
acoustically driven flows, can be established by combining equations B.102] 3103l and B.109L
This system can be written as

val vag Gmp ‘A/(dc) Svl

1
QU2VT @U2vz @ueP ‘A,gdc) — |sv2| . (3.110)
QP @Pv2 @PP f)(dc) SP

3.4.4 Assemblage

This chapter is concerned with the assemblage of the individual sub-matrices that are
needed to establish the time-variant first order system [3.87 as well as the stationary mean
second order system B.IT0. In principle, the assemblage strategies are based on the toolbox
ALBERTA [42], 44]. Most of the entries of these matrices can be written as a dual pair

(LN, Rj>, where N, and R, denote (not necessarily the same class of) basis functions and
L represents an elliptic differential operator (cf. [23] 42]). Such an elliptic differential
operator can be written as

(Lu)(z) = — div(A(z) grad u(z)) + (b(x))T (grad u(x)) + c(x)u(zx) (3.111)

where the coefficient functions are given as

A: M — R™
b: M —RY, (3.112)
c: M — R

The individual components of these coefficients should belong to the function space L*°.
In this work, all differential operators can be represented by an elliptic differential operator
as shown in equation BITIl According to the derivation of the variational formulation (cf.
chapter B.2]), the dual pair can be transformed into the form

(LN, Rj) = /(grad N)T A (grad R;) dz+
(3.113)
/Ni b” (grad R)) d + /c N, R, dz

Furthermore, the integral over the whole mesh can be splitted into a set of integrals
that are specified on each individual simplex. Therefore, the dual pair can be updated
according to the relation

SN (3.114)
S S
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where each index i of the global basis functions have to be replaced by an index [ that
is associated with the respective local basis function via the mapping | = kg(i). As
described in chapter B.3.2] the basis functions are specified with respect to the barycentric
coordinates. Therefore, the basis functions can be replaced by their barycentric counterpart
with the help of the mapping B(x). By the use of the chain rule, the gradient of the basis
functions can be calculated to

grad N*@ () = grad N1 (B())

T ks() (3.115)
7
— (Ds(@)) (s V(B0 )
In contrast to the basis functions, the numerical integration is performed over the normal-

ized reference element. By transforming the integral from the world coordinates  to the

normalized coordinates v and by using equation B.IT5] the first term of the right hand side
of equation B.IT4] can be evaluated to

/ (erad N*O(@))T A(x) (grad B9 (z)) da =
S

/S<grad5 N?{Si)(ﬂ(u))>T (Dﬂ(m(l/)) A(x) (Dlg(m(y))T> (3.116)

<grad5 leé;)r)(ﬁ(u))> | det Da(v)| dv

The gradient of the basis functions can be precalculated for all simplices, since it depends
only on the unvarying normalized and barycentric elements as well as the predefined basis
functions itself. Therefore, only the term in the middle that consists of the coefficient
function and the Jacobian-matrices of the barycentric coordinates with respect to the
world coordinates as well as the determinant have to be evaluated for each individual
element. The second term of the right hand side of equation BIT4] can also be expressed
in terms of the normalized coordinates as

/S N*O(z) (b(2))T (grad R'O()) dz =

[5 <N’{éi)r)(ﬁ(u))> <D,3(a:(v) b(a:))T (3.117)

(sras B (80 ) et D) v

In compliance with the first term, only the parts that depend on the world coordinates
have to be evaluated at each individual simplex. The last term within the squared brackets
of equation B.I14] can be calculated to

/ c(z) N*D(z) RO (2) da =
S

/c(m) <Nk(i) (ﬁ(u))) <Rk(z‘) (ﬁ(l/))) |det Dz (v)] dv (3.118)
s (bar) (bar)
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Under the assumption that the coefficient functions are constant on each simplex of the
mesh, a numerical quadrature method must only performed only once at the beginning of
the assemblage process for all combinations of the local basis functions. All other terms
are constant and can be separated from the integrals. A more detailed description of the
assemblage process can be found in [42] 44].

As shown in chapter 2l some coefficient functions vary depending on the spatial coor-
dinates. In these cases, a numerical quadrature approach has to be used in order to get
numerical approximations of the respective integrals. According to [42] 23], the quadrature
methods are based on the formula

/ fw)dva > wf(v,) (3.119)
s i=0

where w, denotes a weight that is associated with an ith quadrature point v,.

3.5 Temporal Discretization

Up to now, the first order problem is only transformed into a semi-discretized formulation,
since equation [B.87 further depends on the continuous time-variable ¢. In principle, it
would also be conceivable to discretize the time in a similar way as the spatial variables
by the use of finite elements. But, if the entire time frame is discretized by finite elements,
the approach will result in an excessive increase of the number of required finite element
nodes and - as a consequence - the associated system of equations would be very huge.
The number of variables can be significantly reduced, if the temporal discretization by
space-time finite elements is only performed with respect to a short time-slot. Then, an
iterative method can be used to solve the dynamics of the system within the entire time
frame by an individual consideration of successive time-slots. The methods that use finite
elements for the time-discretization are known as space-time finite element methods.

In this work, the time-discretization is realized by an implicit direct finite difference
scheme due to the simplicity and robustness of these methods. The term "direct" means
that, in contrast to e.g. mode superposition methods, the system of equation will be not
initially transformed into a different formulation before the numerical integration is per-
formed. The finite difference scheme is characterized by the division of the entire time
interval into a set of sub-intervals At; = [¢;,t;+1]. On the basis of these segments the solu-
tion is successively approximated at each instant of time ¢;. Obviously, the computational
effort of the time-integration is directly proportional to the number of time-steps. There-
fore, the length of an sub-interval should be chosen in such a way that on the one hand the
resultant approximation will be as good as possible and that on the other hand the required
computational effort will be minimized. In this work, the time-steps At; are assumed to
be constant with respect to a specific simulation experiment. The acoustic reaction of the
first order linear subproblem is mainly induced by the harmonic stimulation at the oval
window. Therefore, it seems to be a good idea to link the length of a sub-interval to the
respective stimulation frequency.
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In many applications, explicit integration methods are preferred due to a potentially
more effective computation at each time-step. But, it can be shown that the stability of
explicit integration methods can only be guaranteed for intervals below an upper limit.
This upper limit depends on each individual problem itself and it may be that the time-
steps have to be chosen very small. In this context, a time integration technique is referred
to as stable if the growth of an arbitrarily induced error is bounded. In contrast to explicit
integration schemes, implicit methods are more robust in the face of the choice of the
time-step. Commonly, implicit methods are not restricted to such an upper limit and they
can therefore be considered as an unconditionally stable approach.

As already mentioned above, the spatial discretization of the first order problem results
in a second order linear ordinary system of differential equations (cf. equation B.87)). Tt is
always possible to transform such a second order system into a first order formulation by
the introduction of new variables. On the basis of such a conversion, a standard approach
for first order problems like the implicit backward Euler method, the Crank-Nicolson method
or the Runge—Kutta method might be performed. These methods mainly differ from each
other in regard to the degree of precision with which the solution might be approximated.
But due to the doubling of the variables, which is accompanied with a significant higher
computational effort and an increased requirement of memory, this kind of procedure is
not implemented for the numerical integration of the first order problem.

Therefore, a direct discretization of the second order ordinary differential equation is
preferred. This work uses an approach that was originally suggested by Houbolt [2I]. The
approximation technique from Houbolt is a second order method, which means that the
error per time-step is of the order At?. Furthermore, the scheme is numerically stable since
it is an implicit approach. (cf. [3]) The integration scheme from Houbolt uses the following
backward finite difference approximations for the first and second time-derivative:

. 1
Yrat = TGAL <2ut2At —9u,_,, + 18u, - 11ut+At>’ (3.120)
. 1
Yiiat= " A2 <ut2At —du,_p, +5u, — 2ut+At> : (3.121)

The semi-discretized formulation of the first order problem at time ¢ + At can be written
as

Mi,, p,+ HO o+ Ko =Fya (3.122)
By substituting the approximations [3.120] and B.121] for the velocity-like vector u,, ,, and

the acceleration-like vector u, AP the fully discretized first order subproblem can be rep-
resented by the simple linear system of equations

Au ., =b. (3.123)

t+AL
In this context, the matrix A can be evaluated to

2 11
A= M+ Huik 3.124
AL T oA T (3.124)
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As it can be seen, it is sufficient to determine the matrix A only once at the beginning of
the numerical time integration process due to the stationary character of the mass matrix
M, the damping matrix H and the stiffness matrix K. The load term b can be calculated
to

1 1 4 3
b :<FM + EH) ut_zAt — <@M + EH) ut_At

) 3

(3.125)

In contrast to the stationary matrix on the left hand side of equation B123] the load term
b has to be updated at each time-step due to the dependency on the time-varying load

vector F, | \, (which takes account of the predefined displacements of the oval window) and
the inclusion of the state vectors u at the preceding three time-steps.

In literature, several other techniques for the numerical discretization can of course
be found. For example, the Newmark-method and the Wilson-method (cf. e.g. [3]) are
two other similar approaches that can also be used in the context of a linear second order
ordinary differential equation.

3.6 Linear Solver

The discretization process of the first order system results in a sequence of linear systems
of equations (cf. B123). Under the assumption of a constant time-step, the linear systems
are characterized by a constant, large, sparse and non-symmetric matrix as well as a time-
varying right hand side vector. In order to get a numerical solution of each system, the
generalized minimal residual method (GMRES) is used due to its applicability for non-
symmetric systems. The iterative GMRES approach was originally developed by Saad and
Schultz [40] and it is based on a projection method that approximates the solution within
the so-called Krylov subspace.

The acoustically driven flow field can be achieved by solving the symmetric system
of equations as described in chapter B43l Although the symmetry of the matrix allows
the usage of more efficient methods (e.g. the Lanczos algorithm), the GMRES method
is also used for solving the mean second order system. Due to its major importance for
the numerical simulation process presented in this work, the main aspects of the GMRES-
method are briefly outlined in this chapter. The notation is orientated towards the original
work from Saad and Schultz [40]. Further details to this subject can additionally be found
in [39].

The speed of convergence of an iterative solver can be significantly enhanced by trans-
forming the linear system of equations into a better conditioned system. The basic usage
of a preconditioner in the context of the GMRES-method is described in section B.6.2l In
this work, an incomplete LU decomposition is used as a preconditioner. The algorithm
used for deducing such an incomplete factorization is presented in section [3.6.3]

70



3.6. LINEAR SOLVER

3.6.1 Generalized Minimal Residual Method

In general, the linear system of equation can be represented as

Az =b (3.126)

with A € R™ "™ being a regular matrix, € R" the vector of unknowns and b € R” the

right hand side vector. If x¢ denotes an initial guess of the solution, the error can be
quantified by the residual
g = b-— A$0. (3127)

The GMRES-method aims to minimize the residual within the affine space g + IC,;, where
K, denotes the Krylov subspace which can be specified on the basis of the residual vector
and the system matrix as

Km(A, 7o) = span{rg, Arg, Arg,..., A" 1rg}. (3.128)

Initially, an orthonormal basis of the Krylov subspace is constructed by means of an
orthogonal projection method from Arnoldi as described in algorithm B3] from line 8 to 131
Having regard to the numerical stability, the algorithm adapts the modified Gram-Schmidt
orthonormalization process. To further enhance the reliability of the orthonormalization
process, the Gram-Schmidt based algorithm can, for example, be replaced by the more
computationally intensive Householder orthogonalization (cf. [39]). It is important to note
that the Hessenberg matrix H™ can be extracted from Arnoldi’s procedure as a byproduct
of the orthogonalization process. Hessenberg matrices are characterized by their vanishing
entries below the first subdiagonal. If the orthogonal basis vectors of the Krylov space K,y
are combined into the matrix V™ the relation

AVM = v, HM (3.129)

can be directly deduced from algorithm [3:3l Furthermore it can be seen that the first basis
vector v can be identified with the residual vector rg. According to the equation

x = xo + VIMly (3.130)

all elements & of the affine subspace can be expressed as a linear combination of the

orthogonal basis functions by the use of an appropriate choice of the vector y. In terms of
a formal notation, the GMRES-method is based on the minimization of the function

J(y) = [|b— Azl = [|b— A(zo + VI"ly)| (3.131)

where the approximation @ should, by definition, belong to the affine Krylov subspace and
can therefore be concretized by using equation BI30l In consideration of equations 3127
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Algorithm 3.3 Generalized Minimal Residual Method

Require: regular matrix A, right hand side vector b, initial guess &g, maximal dimension m of
the Krylov space, tolerance e
Ensure: best approximation of the solution within the Krylov subspace

1: procedure GMRES(A,b,xg,m,c)
2 T()(*b*Amg, ﬂ(‘ ||7"()||27 ’Ul%’l’g/ﬂ
3: if g < e then
4: return xg
5: end if
6 Allocate H= (H, )1<i<m+1 =0
j/LSLs
1<j<m
7 for j=1—mdo
8: w; +— Av; > Arnoldi’s method
9: fori=1—jdo
10: Hij —w;j-v;
11: W; < Wy 7ﬁijvi
12: end for
13: H]-JFLJ- — Hw]HQ
14: fori=1—j5—-1do > Triangular Matrix Transformation
Hiy =si ¢i) \Hipq;
16: end for
. T 2.0 2
17 0 /H; 2+ Hy,
18: G < H;/0, s« H, /0
19: Hjj )
20: §j — ijj, §j+1 — —Sjyj
21: if [g,,,| > e and j <m then
22: Vjt1 F’wj‘/HjJrLj
23: else > Least Squares Problem
24: fori=j—=1do _
25: Yi = %ﬂ(gl - Z?g:i-l,—l Hikyk)
26: end for _
27: return € = xo + Y 1_, Yiv;
28: end if

29: end for
30: end procedure
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and 3.129] the expression within the norm of equation B.I31] can be transformed as

b— A(xo + V[m}y) = 1o — AVl
= fv; — Vi H™y (3.132)
= VI"tl(ge, — HIMy)

where the notation = ||7g||2 is used for reasons of simplicity. Since the orthonormal

matrix V™" has no effect on the euclidean norm, the minimal residual within the affine
Krylov subspace can also be specified by the equivalent formulation

™ = 2o + VIMyl™ where (3.133)

y™ .= argmin,, ||Ge; — H™y]l2. (3.134)
The advantage over the initial formulation of the the minimization problem (cf. equation
[B.I31)) lies in the more efficient computation in combination with the simultaneous control
of the residual size. This effective computation can be achieved through a transformation
of the Hessenberg matrix

§11 §12 ﬁlm
H21 EQQ EQm
i — f,, H, (3.135)
Hm—l—l,m

into an upper triangular form by performing plane rotations in order to successively elim-
inate the entries H, , . in an iterative process. In this context, each rotation matrix can
be written as

i+1

1

C; S;
Q, = (3.136)

=8 ¢

1

where the 2 x 2-block that causes the rotation is positioned at the i-th row and ¢-th column.
The two values ¢; and s; result from the current state of the matrix that depends on the
rotations performed before. If this current state is described by

H™ .= q,...0H" (3.137)
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the two values can be calculated to

Fm,]
G =—— ‘}Hi“”’_[ —, (3.138)
V(A2 4 (El )2
Him
s; = 2 (3.139)

YD+

Of course, these transformations must also be applied to the term Se; in order to get an
equivalent restatement of the euclidean norm. After m rotations, this vector and the upper
triangular matrix can be represented as

g = Q- U Pe, (3.140)
R:=Q, - QHM =HM™, (3.141)

Due to the invariance of the euclidean norm to the rotations €2;, the minimization problem
[BI34 can therefore be written as

miny, || Be; — H™y||; = miny, g — R™y]J,. (3.142)

In this case, the residual can be minimized by determining the unknown vector y in such a
way that the first m entries of the resultant vector within the norm vanish. This is possible
due to the triangular configuration of the matrix R™. But the last entry of the resultant

vector can not be affected by y, since the last row of the matrix consists only of zeros. As
a consequence, the euclidean norm of the minimal residual must be equal to the absolute
value of the last entry g, . ;.

As illustrated in algorithm B3] from line [I4] to line 22] and as described by Saad [39],
the respective rotations can be performed at each iteration separately for each new column
of the matrix H™ without additional computational effort. Therefore, the decrease of the
residual error can be directly monitored at each iteration without calculating the current
approximation. If the residual error falls below the predefined tolerance, the approximation
can be calculated by determining y[m} (as mentioned above) and inserting these coefficients

into the linear combination B33 (cf. algorithm B3] from line 4] to 27]).

Apart from numerical errors, the GMRES-procedure yields the exact solution after n
iterations at the latest. But the computational effort as well as the memory requirements
are directly related to the maximal dimension of the Krylov subspace and therefore also
to the maximal number of iterations. The demands on the memory can be limited by
predefining the maximal dimension of the Krylov space. If the residual error still exceeds
the predefined tolerance, the GMRES-algorithm might be start again by taking the cur-
rent approximation as the initial guess of the subsequent run. This approach is known
as restarted GMRES. This restarted version was also used for the numerical simulations
performed in this work, where the maximal dimension of the Krylov subspace was set to
30.
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3.6.2 Preconditioning

The efficiency of the iterative solvers can be significantly improved by using a precondi-
tioner. The preconditioner should transform the linear system into an equivalent formula-
tion that is characterized by a better rate of convergence. The transformation can usually
performed by the application of a left preconditioner P; and/or a right preconditioner P,.
Then, the preconditioned system of equations can be written as

P,AP,zp =Pb  where xp=P, 'z, (3.143)

Usually, the preconditioners are constructed in such a way that the resultant matrix of
the preconditioned system approximates the identity matrix as well as possible; in short
P;AP, ~ 1. But, in order to take profit from the preconditioning process, the construction
of the transformation matrices should involve a minimum of computational effort. In the
context of the GMRES-method, the right hand side preconditioning has advantages over
the left approach because of two different aspects. Firstly, the current norm of the residual
(computed at each iteration) refers, in contrast to the left preconditioning approach, not to
the preconditioned system but rather to the initial system. This point might be important,
since the stop criterion is normally specified with respect to the initial system. Secondly,
the right hand side application allows a variation of the preconditioner at each iteration
which opens possibilities for a better influence on the iterative progress. A formal and
more detailed consideration of preconditioning can, for example, be found in [39].

For the implementation of a right preconditioner the algorithm B3] has to be modified
at two lines. At line 8 the precondition matrix P, have to be inserted at the right hand
side and, at line 27, the approximation must be calculated according to

@ =0+ P, VMy. (3.144)

3.6.3 Incomplete LU decomposition

This work uses an incomplete LU decomposition (ILU) as a preconditioner. As the name
implies, this incomplete factorization is based on the well-known LU decomposition, which
splits the original matrix into a product of a lower triangular and an upper triangular
matrix. The execution of the full decomposition process is computationally intensive and
although the matrix A is only sparsely populated, it can be expected that the resultant
factorization consists of two dense (triangular) matrices. In contrast, the incomplete LU
decomposition can be written as

A=LU+R (3.145)

with L being a sparse lower triangular matrix, U a sparse upper triangular matrix and R
the residual that takes the resultant error into account. In literature, different approaches
can be found for establishing different kinds of such a decomposition.
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Algorithm 3.4 Incomplete LU decomposition

Require: matrix A, maximum level of fill p
Ensure: incomplete LU decomposition

1: procedure 1LU(A,p)

2 fori=1—ndo > Initialization
3 for j=1—ndo

4 if Aij # 0 then

5: Al.j +~0

6: else

7 Aij < 00

8 end if

9: end for

10: end for

11: for i=2 — ndo

12: fork=1—i—1do > Extended Gaussian Elimination
13: if lof,, <pand A, # 0 then

14: Aj = A/ Ay

15: for j=k+1—ndo

16: Aij — Aij — AikAkj

17: lofij — mim{lofij7 lof ,, + 1ofkj +1}

18: end for

19: end if

20: end for

21: for k=1—ndo > Erasure
22: if lof,, > p then

23: Aik ~—0

24: end if

25: end for

26: end for
27: end procedure
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In this work, the so-called ILU(p)-procedure is adopted to calculate an appropriate
preconditioner. As illustrated in algorithm 4] from line 2 to 0 this approach is, in prin-
ciple, based on the Gaussian elimination which is supplemented by an additional marking
strategy in order to specify the non-zero pattern of the matrices. The Gaussian algorithm
successively eliminates the entries below the main diagonal by adding an appropriate mul-
tiple of row k to row ¢ for all rows ¢ = k41, ...,n. This method yields the upper triangular
matrix U as well as the lower triangular matrix L as a byproduct. Both of them can be
stored in a single matrix, since the entries of the main diagonal of the lower triangular
matrix are equal to one and do not need to be stored explicitly. The marking strategy is
based on the so-called level of fill value lofij, which can be simultaneously calculated for
each entry. Initially, almost all entries of the matrix have a level of fill of co except for
the non-zero entries as well as the entries upon the main diagonal, which are labeled with
the level 0 (cf. algorithm 3.4l from line 2] to [[0]). Each modification of a specific entry is
accompanied with an update of its level of fill. According to line [I7] the new level of fill
can be calculated as

lof;; = min{lof ;;, lof ; + lof} ; + 1}. (3.146)

Once a whole row has been updated, all entries, whose level of fill exceeds the predefined
maximum level p, are not taken into account by the incomplete LU decomposition and
are therefore erased (cf. algorithm [3:4] from line 211 to 25]). The analysis and a detailed
description of the incomplete LU decomposition can for example be found in [39].

In this work, the GMRES-method was transformed by using a preconditioner generated
by the ILU(2) method. It has been shown that an higher maximum level normally induces
a longer calculation time.

3.7 Sine-Cosine Decomposition

For reasons of convenience, the equilibrium state is represented by using the sine-cosine
decomposition as introduced in chapter 2.3.4l Since the sine-cosine decomposition is iden-
tical with the first non-constant term of the Fourier series, the coefficients u®™ and 4(®,

which represent the steady state of the time-varying solution vector u, can be determined
according to the relations

N-
u = Z (t* + nAt) sin(2rf(t* + nAt)), (3.147)
n=0
g N-1
u = = Z u(t* + nAt) cos(2r f(t* + nAt)) (3.148)
N n=0
where N := T /At and t* is the time at which the equilibrium state is achieved. The

(sin) (

(cos)

velocity coefficients v and v\ the pressure coefficients p®™ and p®®). as well as

the displacement coefficients of the basilar membrane €™ and ¢(°® can be extracted in
consideration of equation 388l
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With the help of the sine-cosine decomposition, the time-averaged load vector of the
second order system [BI10] can be determined in a simplified way. By substituting the
sine-cosine representation for the velocity and pressure functions and applying the mean-
operator, the mass source distribution 247 can be written as

1 . .
m=———div (p(cos)v(cos) + p(sm)v(sm)). (3.149)
2602
In addition, the force source distribution [2.49] can be expressed in terms of the sine- and
cosine-coefficients as

(0)
- . . p . .
f _ _:_fz (p(cos)v(sm) _ p(sm)v(cos)) _7 ((grad ’U(COS))’U(COS) + (grad U(sm))v(sm)) - (3150)
0
Since the boundary condition 2.52]is also based on the results of the first order equilibrium
state, it is convenient to use its simplified representation which is given as

(de) _ _ 1 (cos),,(cos) (sin), (sin) L (cos) (sin) 151
v 2702 (p' ' 4 po )+47rf rot (v x v). (3.151)
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Chapter 4

Results

In this chapter the numerical results of the computational model, introduced in this work,
are presented. In order to ensure the correct functionality of the model, the numerical
results are compared to experimental studies, measurements and analytical estimates.

The accuracy of the first order system is crucial for the correctness of the results of the
second order system, which provides estimations for the occurrence of acoustically driven
flows within the inner ear. Therefore, the first part of this chapter (cf. section EI]) is
concerned with an accurate verification of this acoustic system. It is analyzed under an
harmonic stimulation of the oval window at different frequencies, amplitudes and outer
hair cell activity parameters.

Particular attention is paid to the equilibrium state of the first order system, since it is
the basis for the numerical calculation of acoustic streaming. This steady state is achieved
within a short time frame. The transient effect is considered in section LTIl Today, it
is well accepted that the motions of the basilar membrane can be characterized on the
basis of a typical traveling wave pattern. The basilar membrane motions arise, inter alia,
through the hydrodynamic forces as well as the outer hair cell driven forces, which are
both analyzed in section The resultant displacements in comparison to the traveling
wave pattern of the cochlear partition are reviewed in section [£.1.3] Furthermore, it has
been shown that some boundary layer effects are mainly responsible for acoustically driven
flows. In section [£.1.4] the motion within this thin boundary layer are therefore compared
with an analytical approximation developed by Lighthill [25].

As discussed in chapter 2.3.3], the motility of the outer hair cells can be controlled
by the activity parameter A. The outer hair cell motility is modeled in such a way that
the resultant forces (that act on the cochlear partition) partially eliminate the positional
damping of the basilar membrane. As a result, an activity parameter greater than one
induces potentially a local negative damping. Due to the linearization of the sigmoid-
function, the natural limitation of the outer hair cell force can not be taken into account
by the model presented in this work. Therefore, in order to maintain the stability of the
present linear model, the activity parameter should be smaller than one. If the activity
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parameter is set to zero, the outer hair cell motility will not be taken into account by
the simulation process and the computational model can be referred to as passive. In
the context of this work the term active, in contrast, is associated with A = 0.9 which
ensures the stability of the system on the one hand and on the other hand provides a
significant amplification of the cochlear displacement as it can be seen in this chapter.
Unless otherwise indicated, the amplitude of the oval window displacement is set to 10nm.

The second part of this chapter deals with the time-averaged second order system
that yields a first order approximation of the acoustic streaming flow field. In this context
different physical mechanisms are considered that are responsible for the occurrence of
acoustic streaming. First of all, the distinction between the Lagrangian and the Eulerian
specification of the acoustic field yields a mean flow field that appears without taking
the second order system into account (cf. section L2.1]). As discussed in chapter [£2.2]
it becomes apparent that this acoustic driven flow field transports mass. Therefore, the
transported mass must be released at regions where the acoustic field dissipates. This
phenomenon is reflected in the mass source distribution that appears at the right hand
side of the secondary mass conservation equation. The mass source driven second order
mean flows are reviewed in section In a similar same way, also momentum can be
transported by the acoustic field which results in a virtual force source distribution within
the second order system. The impact of this force distribution on inducing acoustically
driven flows is discussed in section 23l As already mentioned above, it turned out that
the most important cause for acoustic streaming field can be associated with the forces
within the thin boundary layer next to the basilar membrane. Therefore, the stresses
within this boundary layer are compared with Lighthill’s approximations. The resultant
second order flow field is described and evaluated in the last section 2.4l In this context,
the flow field is compared with experiments made by Tonndorf [48] and the magnitude of
the resultant velocities are contrasted with the analytical results from Lighthill [25].

4.1 Harmonic Stimulation of the First Order System

4.1.1 Initial Transient Effect

In all experiments performed in this work, the computational model is stimulated by an
harmonic excitation of the oval window. At the beginning of each experiment, the model
is in a resting state, which means that the pressure of the fluid is constant over the whole
domain and that there are no motions with respect to the velocity of the fluid and the
displacement of the cochlear partition.

Before the system achieves a steady state, it takes about 6 to 16 periods in the context
of the numerical simulations presented here. The duration of this transient effect depends
mainly on the outer hair cell activity parameter due to an increased mutual influence
between the fluid, the basilar membrane and the outer hair cell motility. The accuracy of
the oscillatory equilibrium state can be further enhanced by extending the duration of this
initial time frame.
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The figures of appendix [A.1] illustrate the first two periods of this transient effect at
a stimulation frequency of 1024Hz in the passive cochlea model. After a quarter period,
the velocity of the sinusoidal stimulation at the oval window is maximal and an inward
directed motion can be observed as shown in figure [AIl As a result of this inward stapes
displacement, the adjacent pressure of the fluid within the scala vestibuli increases. In
contrary, the velocity of the fluid at the round window is not prescribed by a Dirichlet
boundary condition and the motions are completely flexible. As a consequence, the pressure
next to the round window is nearly time-invariant and its amount is the ambient value.
Without loss of generality, the ambient pressure of the computational model is chosen to
be zero for the purpose of simplification. (In reality, the ambient pressure is approximately
equal to the atmospheric pressure, since the oval window separates the scala tympani from
an air-filled space within the middle ear. (cf. [13]))

Due to the pressure-difference across the cochlear partition, a force is exerted upon the
basilar membrane according to equation 233l This pressure-driven force causes instantly
a displacement of the cochlear partition, which also begins to vibrate according to its
local physical properties (stiffness, damping, mass, width, ...) and the forces acting on
the basilar membrane. It can be clearly seen that the displacement, in turn, significantly
influences the velocity field of the fluid.

While the wave front of the pressure propagates along the longitudinal axis, the velocity
of the oval window displacement decreases which induces a negative excess pressure at the
adjacent fluid layers as shown in figure[A.2l The negative pressure difference at the base of
the basilar membrane in combination with the elastic reaction of basilar membrane causes,
in turn, a local upward directed displacement of the cochlear partition.

As illustrated by the following figures (A.3HA ), this interplay between the pressure dif-
ferences, fluid motions and basilar membrane oscillations results in a typical fluid-structure
coupled wave motion along the cochlear partition up to a point of dissipation. In this con-
text, a distinction between the pressure wave within the fluid and the displacement wave
on the cochlear partition can be drawn (cf. [38]).

4.1.2 Forces acting on the Basilar Membrane

After achieving a steady state of oscillation, the system can be analyzed on the basis of the
sine-cosine representation or, alternatively, the amplitude-phase description as described

in chapter 2.3.4] and B.7]

Figure illustrates the dynamics of the pressure above and below the cochlear
partition using the sine-cosine representation. First of all, it can be noted that the excess
pressure vanishes at the base of the scala tympani over the whole period. In contrast,
the pressure at the base of the scala vestibuli varies due to the excitation of the oval
window. The hydrodynamic forces can be characterized by its wavelike variation along
the basilar membrane. It can be observed that the wavelength decreases from base to the
place where the wave dissipates. Except for the basal region, the pressure above and below
the cochlear partition are, in a certain sense, opposite to each other. More specifically, a
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Figure 4.1: Pressure above and below the basilar membrane at o stimulation frequency of 1024Hz in

the passive cochlea model: p$°s) (red line); p'°® (red dashed line); p(fi") (blue line); p©™ (blue dashed

line). Resultant forces per unit length acting on the basilar membrane: [, (red line); f,*™ (blue
line).
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Figure 4.2: Comparison between the motility driven forces ¥ of the outer hair cells and the hydrodynamic
forces fp at a stimulation frequency of 102{/Hz in the active cochlea model: f,° (red line); f, ™™ (blue
line), 9°°°) (red dashed line); 9™ (blue dashed line).

local maximum of the pressure on the upper side of the basilar membrane (at a specific
time) is accompanied with a local minimum on the lower side and vice versa. Furthermore,
it can be seen that the propagation of the pressure wave along the cochlear partition is
characterized by a decreasing phase velocity.

As mentioned above, this pressure wave arises through the interaction between the fluid
and the physical properties of the basilar membrane. The basilar membrane is stimulated
by the pressure driven forces acting on the partition. According to equation the
hydrodynamic forces per unit length, illustrated in figure are proportional to the
pressure differences and the width of the basilar membrane at each location. Similar to
the individual pressure forces, the combined hydrodynamic force can also be characterized
by its wavelike propagation along basilar membrane in combination with a decreasing
wavelength and phase velocity.

Beside these hydrodynamic forces, the amplification mechanism based on the outer hair
cell motility causes an additional internal force in the active cochlea model. Figure
illustrates these internal forces at equilibrium state that arise from a stimulation frequency
of 1024Hz. In contrast to the hydrodynamic forces, the envelope of this motility driven
force is characterized by a significant increase up to a certain place where the force reaches
its maximum. At this location, the internal outer hair cell force is considerably greater
than the external pressure force. Behind this point, the force dissipates within a short
distance. Furthermore, it can be observed that both forces have a phase difference of
about 90 degree.
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Figure 4.3: Em)elopes and phases of the traveling wave in the passive cochlea model computed at
constant stape displacement for a set of different frequencies: 128Hz (red line), 256Hz (blue line), 512Hz
(green line), 1024Hz (black line), 2048Hz (purple line), L096Hz (orange line), 8192Hz (brown line).
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Figure 4.4: Mazimal displacement of the basilar membrane in the passive cochlea model and the active
cochlea model at different stimulation amplitudes and frequencies: 128Hz (red line), 256Hz (blue line),
512Hz (green line), 1024Hz (black line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).
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Figure 4.5: The frequency-position map (solid line) from Greenwood [I18] assigns the characteristic places
to their corresponding stimulation frequency. The triangles illustrate the characteristic places resulting
from the passive cochlea model whereas the dots represent the characteristic places in the active case.

4.1.3 Traveling Wave on the Basilar Membrane

The pressure waves are the result of the interplay between the fluid and the cochlear
partition. Today, it is well accepted that the dynamics of the basilar membrane can be
described as a traveling wave. The term "traveling wave" is associated with a characteristic
displacement pattern of the cochlear partition. This pattern is characterized by following

properties (cf. [38, [13]):

e The amplitude of the traveling wave increases until a point of maximal displacement
(peak) is reached. Often, this location is referred to as characteristic place. Behind
this place, the amplitude falls to zero within a short distance.

e The phase of the oscillatory displacements decreases monotonically along the basilar
membrane. This phase lag may amount to up to several cycles until the traveling
wave dissipates.

e The traveling wave is caused by (passive) mechanical interactions between the fluid
and the structures of the cochlea. This means that the traveling wave is, in particular,
not a result of any other internal (physiological) processes.

e In contrast to the acoustic waves, which propagate at speeds of about 1500m/s, the
velocity of the traveling wave motion of the basilar membrane is significantly slower.

The present computational model has been performed for a set of different frequencies,
stimulation amplitudes and outer hair cell activity parameters.
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Passive Cochlea Model Figure 3] shows the envelopes and phases of the traveling
waves of the basilar membrane at stimulation frequencies of 128Hz, 256Hz, 512Hz, 1024Hz,
2048Hz, 4096Hz and 8192Hz in the passive case. The sine- and cosine-coefficients of the
associated displacements can be found in appendix [A.3l It becomes apparent that the
resultant displacements of the cochlear partition meet the requirements of the typical
traveling wave motion as described above. The phase lag adds up to just under four cycles
at the lower frequencies and increases to more than five cycles at higher frequencies.

As it can be clearly seen, the longitudinal position of the characteristic place depends
mainly on the frequency. Greenwood [I8] empirically developed a functional relationship
that assigns the characteristic places to their corresponding stimulation frequency. With
regard to the human cochlea this frequency-position map is given by

_ . ﬁil(zflbm) _
#=1350-(10%m 0.85 (4.1)

where [, denotes the length of the basilar membrane. Figure shows that the maximal
displacements of the traveling wave are located up to about d5mm closer to the base in the
passive cochlea model than in the case of Greenwood’s examination.

There is a broad consensus that the energy that causes the traveling wave motion is
mainly transmitted by the fluid and only insignificantly by the basilar membrane itself (cf.
[38 28]). According to equation 232] longitudinal coupling can only be provided by the
shearing resistance term. The results of the computations have also shown that this term
has no significant influence on the shape of the traveling waves.

According to experimental data at basal sites of the cochlea, the amplitude of the
basilar membrane displacement increases linearly with the stimulation intensity below a
specific sound pressure level. But above this specific stimulation level, it can be observed
that the growth of cochlear response is not as high as the increase of the stimulation
level. (cf. [38]) Measurements of the guinea pig cochlea, for example, show that above a
sound pressure level of about 20dB the rate of response decreases down to 0.12dB/dB (cf.
[45) [46], 22, 34]). Therefore, it becomes evident that the mechanics of the cochlea must
be affected by some nonlinearities. Of course, such a nonlinear phenomena can not be
reflected by the application of a linear cochlea model as used in this approach. Figure
illustrates the linearity of the computational model presented here. This nonlinear behavior
can be (partially) taken into account by the implementation of the sigmoid-function (as
already discussed in chapter [Z3.3]) that describes the nonlinear relation between the outer
hair cell force and the hair bundle deflection.

Active Cochlea Model So far, only the traveling wave in the passive cochlea model
has been considered. But, such a passive behavior represents only the mechanics of a dead
cochlea. The dynamics of the living ear are quite different to those of a postmortem cochlea.
As already discussed, the computational model, presented here, provides the possibility to
control the activity of the outer hair cell driven force by means of a parameter 0 < A < 1,
as originally suggested by Mammano [28§].
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Figure 4.6: Envelopes of the traveling wave at a constant frequency of 1024Hz for a set of different outer
hair cell activity parameters. The undermost line illustrates the envelope in the passive case (A = 0.0)
whereas the uppermost line is associated with the active cochlea model (A = 0.9). It can be seen that
the incremental increase of the activity parameter by a value of 0.1 is accompanied with a successive
amplification of the envelope.

In principle, this approach is based on the local compensation of the positional viscosity
of the basilar membrane. If X is set to zero, no outer hair cell driven force will act on the
basilar membrane. This case describes the passive mechanics of the cochlea as already
analyzed above. Otherwise, the fluid viscosity can be almost completely canceled, by
increasing the outer-hair-cell activity parameter.

Figure shows the resultant envelopes of the traveling waves at different outer hair
cell activity parameters. In order to ensure the stability of the oscillations of the cochlear
partition, the upper limit of the activity parameter is set to 0.9. Thus, the resultant net
damping (which takes the cancelation of the outer hair cell motility into account) is at least
10% of the original damping that arises from the positional viscosity of a radial segment.

First of all, it should be noted that the amplification of the traveling wave motion is
accompanied by a spatial shift of the peak in the direction of the apex. Such a shift is mostly
consistent with experimental studies. It is an indication that the energy of the traveling
wave motion is enhanced by the outer hair cells. (cf. [38]) Therefore, the characteristic
places are closer to the functional relationship from Greenwood than in the passive case

(cf. figure A.5]).

It can be clearly seen that the maximal displacement of the basilar membrane increases
in dependence of the outer hair cell activity parameter up to the tenfold of the maximal
displacement in the passive case. In literature different definitions of the cochlear amplifier
gain are used (cf. [38]). In this paper, the gain is understood as the difference between
the amplitudes of the active and the passive cochlea at the same locations on the basilar
membrane. Within the cochlea of the guinea pig, gains between 65dB and 78dB were
measured at the characteristic places of frequencies between 17kHz and 19kHz(cf. [45]
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Figure 4.7: Envelopes and phases of the traveling wave in the active cochlea model computed at
constant stape displacement for a set of different frequencies: 128Hz (red line), 256Hz (blue line), 512Hz
(green line), 1024Hz (black line), 2048Hz (purple line), L096Hz (orange line), 8192Hz (brown line).
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Figure 4.8: Positional gain of the envelopes at different frequencies in the active cochlea model (A = 0.9)
with respect to the envelopes in the passive cochlea model (A = 0.0): 128Hz (red line), 256Hz (blue line),
512Hz (green line), 1024 Hz (black line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).

46, 22, B34]). As shown in figure 8], such a gain of the amplitude can not be completely
reproduced by the computational model presented in this work. Nevertheless, the model
presented in this work provides an instrument to investigate the effects of the amplification
mechanisms on the resultant acoustically driven flows. On the basis of these results, further
conclusions may be drawn with regard to the impact of acoustic streaming at even higher
gains.

In addition, the traveling wave is characterized by an higher phase lag than inthe
passive cochlea model (cf. figure EL7[(B)). In consideration of the envelopes (cf. figure BTl
(a)) it can be seen that the respective shapes in the active model are significantly sharper
than in the passive case. This property of the amplification mechanism is believed to be
a very important aspect with respect to the acoustic perception, because it enhances the
frequency selectivity.

4.1.4 Motions within the Stokes Boundary Layer

Because the dissipation of acoustic energy within the thin Stokes boundary layer next to
the basilar membrane is a major cause for second order flows, particular attention has to
be paid on an accurate numerical approximation of the motions within these boundary
layers. The results of the computational model presented in this work can be validated by
comparing the numerically determined motions with some theoretical considerations from
Lighthill [25]. In his very important contribution, Lighthill estimated the dimension of
acoustic streaming within the inner ear on the basis of a mathematical description of the
flow field adjacent to the basilar membrane. In this context, he suggested to approximate
the three-dimensional distribution of the fluid motion next to the traveling wave of the
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Figure 4.9: Comparison between the numerical results of the computational model (solid lines) presented
in this work and the theoretical approzimation (dashed lines) of the fluid motions within the Stokes bound-
ary layer from Lighthill [25] near to the characteristic place at a stimulation frequency of 1024Hz in the
passive model. Figure illustrates the longitudinal velocity components whereas shows the wvertical
components. The red, blue and black lines are associated with the the cosine-part, the sine-part and the
amplitude of the respective velocity component.
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basilar membrane by the superposition of solutions of the Laplace equation
0? 0?
¢ 99

2 2
8302 Bxg

— k% =0 (4.2)

where ¢ denotes the velocity potential. By the use of the so-called WKB method (also
known as Liouville-Green method), Lighthill reasoned that the fluid motion outside of a
thin boundary layer of the basilar membrane near to the characteristic place can be mainly
approximated by a two-dimensional circular motion perpendicular to the radial axis. In
terms of a mathematical formulation, this motion can be written as

v, = §—¢ = i¢eF*2, (4.3)
Ty

vy = 9 = ge k2, (4.4)
Oz,

But in order to meet the no-slip boundary conditions at the basilar membrane, equation
4.3 and 44 have to be adapted according to Rayleigh’s law of streaming [35], yielding

v, = i€ <1 —~ e—mviwﬂ/’f) : (4.5)

v, = §<1 +(1- e“\/m)%\/g) (4.6)

Figure [£.9] shows the numerically determined motions within the thin boundary layer in
comparison to the analytical results from Lighthill. The thickness of the boundary layer can

be approximately determined to 5y/7n/pw. With regard to typical stimulation frequencies

and the spatial dimensions of the cochlea, the Stokes boundary layer is comparatively small.
Therefore, it is very important that the finite element discretization process constructs a
mesh that is sufficiently small to ensure an adequate approximation of the velocity and
pressure field. It can be noted that the motions close to the boundary are nearly identical.
The greater the distance to the cochlear partition, the greater the deviation of the numerical
results from the analytical approximations.

In consideration of the differences between both approaches, these deviations between
the results seem to be relatively small. In contrast to the computational model presented
here, Lighthill’s model neglected the energy dissipation due to viscous forces within the bulk
as well as some interfering effects arising from the interaction with the solid boundaries.
In addition to this, by the use of the Laplace equation it is assumed that the motions
can be described as an irrotational and incompressible flow. Otherwise, also the numerical
evaluation has the well-known limitations in accuracy, based on the local resolution of the
mesh, the choice of form-functions as well as other numerical effects. Whilst taking all these
aspects into account, the computational model yields very good results when comparing
the numerical results of the motion within the Stokes boundary layer with the analytical
approximations from Lighthill.
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4.2 Fluid Flows driven by the Second Order System

4.2.1 Difference between Eulerian and Lagrangian Mean Motions

As already mentioned in chapter 247l a distinction between the Fulerian and the La-
grangian specification of the fluid-motion is essential for studying acoustically driven flows.
With respect to the first order system, such a distinction is not necessary since both spec-
ifications lead to equal results in the case of the equilibrium state. But with regard to the
second order system a difference between both descriptions arises through the nonlinear
terms.

The distinction between both concepts has already been considered in the context of
the derivation of the second order boundary condition 2.52] The same approach can also
be used to describe the difference of both velocity specifications within the bulk of the
fluid. At the boundaries the Lagrangian velocity vanishes due to the no-slip condition.
But if the Lagrangian second order mean velocity v'©) is taken into account, the difference
can be evaluated to

o) _ L) _ _ (0)1 Moy 4 lrot@(l) x vy (4.7)
p\9¢y2 2

where C(l) denotes the first order displacement of the fluid particle (cf. [9, 26]). The
analysis of the resultant velocities, calculated by the computational model, has revealed
that this difference plays only a subordinate role in the context of acoustic streaming within
the bulk of the inner ear.

With respect to the boundary condition at the cochlear partition, it becomes apparent
that the first summand on the right hand side of equation A7 can be associated with
a vertical inflow or outflow. In consideration of the specific assumptions made by the
modeling process, the second term describes, in contrast, a slipping flow. Both the resultant
slipping flows and the vertical flows are illustrated in figure 10l Tt can be noticed that
the amount of the slipping velocity exceeds the amount of the vertical velocities by several
orders of magnitude.

The Eulerian slipping flow at the basilar membrane was also taken into account in the
work from Lighthill [25]. On the basis of the first order velocity components and [4.0]
Lighthill calculated the second order mean velocity at the cochlear partition as

o _ | P @)

T (4.8)

It has been revealed that the slipping flow calculated by the computational model slightly
exceeds the theoretical estimates from Lighthill (cf. figure {.10).
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Figure 4.10: Difference between the Lagrangian and the FEulerian second order mean wvelocity at the
cochlear partition. Due to the no-slip condition this difference coincides with the boundary condition of
the acoustic streaming subproblem. The z-component of this difference is associated with a slipping flow
at the basilar membrane. Figure compares the numerically determined slip velocity (solid line) with
the theoretical estimate of the flow velocity (dashed line) from Lighthill [25] at a stimulation frequency
of 1024/Hz in the passive cochlea model. Figure illustrates the x,-component of this difference which
corresponds to a vertical flow.
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Figure 4.11: The vector field ofﬁgure[@] illustrates the mass that is transported by the acoustic intensity
field. In the red colored regions the acoustic intensity field weakens and therefore these areas act as a mass
source. In contrast to that, the blue colored region acts as a mass sink since the acoustic intensity field

become more intense. Figure@] shows the resultant second order mean flow caused by the mass sources
and mass sinks of the first order system.
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4.2.2 Mass Source driven Streaming

According to Bradley [9], the mean mass of second order that is transported within the
fluid can be written as

<J(2)> - p(o),v(dc) + <p(1),v(1)>

4.9)
_ (0, (de) 1 (
=p v\ + o7 (I)

(1))

transported either by the acoustic streaming flow field (first term) or by the acoustic
intensity field (second term). The velocity of the acoustic intensity driven mass transport,
given by p(—lo)<I ), is shown in figure This kind of mass transport is not associated
with a real existing flow. It occurs if the fluid is on average more dense when the direction
of the fluid motion corresponds to the orientation of the mass current than at the time
when the fluid moves in the opposite direction. In such a case it is quite obvious that the
transport of mass is not balanced over one period and a net mass current appears.

where I := p denotes the acoustic intensity. It can be seen that mass can be

By integrating the intensity driven mass transport over the closed surface S = §V of
an arbitrarily chosen volume V' and by applying the divergence theorem, the relation

1

— [ D) dsz/mdv (4.10)
0 % 14

holds. Therefore, it becomes apparent that the acoustic intensity driven mass transport
is closely related to the mass source distribution mm which appears in the second order
mass equation It can be concluded that the net inward flux of the intensity driven
mass transport field through a closed surface coincides with the amount of mass that is
released within the enclosed region by the mass source term m. Equation ETI0]is valid
for an arbitrarily chosen volume. Therefore, mass sources can occur in all regions where
the acoustic intensity weakens. In contrast, regions can also act as a sink if the acoustic
intensity field strengthens. (cf. [9])

As already discussed in section L2Z.T] also the oscillating boundary structures are ca-
pable of acting as a source or as a sink of mass. If the volume V in equation [£I0lis chosen
to be identical to the whole fluid-volume of the cochlear enclosure it can be seen that the
amount of mass taken up by the basilar membrane and the oval window is equal to the
amount of mass that is injected by the mass source distribution.

The acoustically driven flows induced by the mass transport mechanism are illustrated
in figure LIT[(b)] But the numerical results show that the velocities of the resultant
acoustic streaming flow field caused by the mass transport mechanism are negligible in
comparison to the other mechanisms.
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Figure 4.12: The graph illustrates the resultant Reynolds stresses of the computational model (solid
lines) within in the Stokes boundary layer in comparison to theoretical approzimations (dashed lines) from
Lighthill [25]. The data originates from the characteristic place at a stimulation frequency of 1024/ Hz with
respect to the passive cochlea model. The red lines depict the shear stress component that describes the
zo-flur of x,-momentum per unit area. In contrast, the blue lines are associated with the normal stress

component that represents the x,-flur of x,-momentum per unit area.

4.2.3 Force Source Driven Streaming

In this section, the influence of the force-source term [2.49] on the capability to generate
significant mean motions is analyzed. In order to understand the physical origin of the
resulting forces, Bradley [9] pointed out that the force-source distribution, accurate to the

second order, can be written as the product of the fluid-acceleration a = %—1; + (grad v)v
and the density:

f=—{(pa)) + O(e). (4.11)

Therefore, the exerted force depends mainly on the phase between the fluid acceleration
and the density. The force f can also be represented in terms of the well-known Reynolds

stress tensor which can be expressed as PV By using integration by parts, the (first

order) mass conservation 2.22] and the product rule, the force source distribution can be
written as the spatial variation of the Reynolds stress:

f=-p"—T e, (4.12)

This force can furthermore be decomposed into a shear stress component and a normal
stress component. The shear stress components describe the flux of momentum per unit
area perpendicular to its orientation whereas the normal stress components are character-
ized by equal directions of the force and its flux.

The results of the experiments, performed by the computational model, show that the
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Figure 4.13: Figure shows the Eulerian specification of the mazimal mean velocity outside the Stokes
boundary layer that are determined by the computational model. By comparison, figure illustrates
Lighthill’s estimate (cf. [25]) of the mazimal mean velocity. The velocities are calculated on the basis of
the numerical results of the first order system at different frequencies and outer hair cell activities: 128Hz
(red line), 256Hz (blue line), 512Hz (green line), 1024 Hz (black line), 2048Hz (purple line), 4096Hz (orange

Maximal mean velocity [m/s]

Maximal mean velocity [m/s]

104
10
10
107
108
107

10—10

—
/Vél -
— e ;&!
e — —
— — l%ilj
— (Z/
N S S
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Outer hair cell activity parameter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Outer hair cell activity parameter

(b)

line), 8192Hz (brown line).
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forces are predominant at the adjacent boundary layers of the basilar membrane near to the
characteristic place. This observation is in conformity with the theoretical considerations
from Lighthill [25] whose estimation of acoustic streaming is mainly based on the Reynolds
stresses occurring within the Stokes boundary layer. In his work he evaluated an effective
slip velocity outside of the thin Stokes boundary layer. In terms of the velocity amplitude
of the oscillating basilar membrane, this effective slip flow can be expressed as

(amp)
Tk (amp)\2  3TS .(amp) g

(4.13)
2 ox

1

The first term as well as one third of the second term originate from the shear stress
component that transports the x;,-momentum in the z,-direction. In contrast, two thirds
of the second summand can be attributed to the normal component of the Reynolds stress
driven force. A detailed derivation of this slipping flow estimate can be found in the work
from Lighthill [25].

Figure d.12/shows the numerically determined stresses in comparison to the stresses that
are calculated on the basis of the velocity components and used by Lighthill. The
small deviations between both models can presumably be explained by previous differences
regarding the fluid velocity (cf. figure L9) and the boundary condition (cf. figure ELI0[(a))
as well as the differences with respect to the underlying assumptions at the development
of both models. Due to the very small dimensions of the Stokes boundary layer, numerical
errors must also be considered as a possible cause for this deviation.

The formula from Lighthill can be used to calculate the effective slip velocity of acoustic
streaming on the basis of the first order field resulting from the computational model. The
resultant maximal velocities are shown in figure LI3[(b)} In turn, figure EI3[(a)|illustrates
the maximal mean velocities outside of the Stokes boundary layer that are calculated on
the basis of the computational model. By comparing both results it can be noticed that
the velocities of the computational model are up to one order of magnitude larger than
Lighthill’s estimates.

4.2.4 Békésy’s eddies

The numerical simulation of the computational model has shown that acoustic streaming is
mainly driven by boundary layer mechanisms (cf. chapter .2.3]). Acoustically driven flows
that are based on mass-transport mechanisms (cf. chapter [£.22.2)) are not as significant
as the previously mentioned phenomenon. At a specific frequency, the mean fluid motion
of second order can be best described by two eddies, which are almost symmetrically ar-
ranged to the cochlear partition. Of course, this circular movement must be thought of as
superimposed by the first order fluctuations. But a separated evaluation is useful, since
both motions can be described on different time-lines due to their difference between both
velocities. The direction of the rotation of each eddy is specified by an apical directed mo-
tion of the particles that are located next to the partition. Thus, an opposite directed flow
occurs close to the outer boundary. The velocity of each eddy varies along its streamlines.

99



CHAPTER 4. RESULTS

1.5 mm 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1

1.5 mm 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1

0 mm 10 mm 20 mm 30 mm

Figure 4.14: The Eulem’an[@] and the Lagrangian [@] mean velocity field of the second order system at
a stimulation frequency of 1024 Hz in the passive cochlea model. The flow field constitutes a first order ap-
prozimation of acoustic streaming and is characterized by two eddies above and below the cochlear partition
near to the characteristic place. It can be seen that the mo-slip condition at the basilar membrane of the
Lagrangian flow field is accompanied by an Eulerian slipping flow. It is important to note that both figures
are not directly comparable with respect to the velocities represented by the arrow lengths, due to a different
scaling of both vector fields that is oriented towards their respective mazimal velocity.
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Figure 4.15: Lagrangian specification of the mazimal mean velocity at different stimulation frequencies
and outer hair cell activities: 128Hz (red line), 256Hz (blue line), 512Hz (green line), 1024/Hz (black line),
2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).

Next to the cochlear partition, the fluid is accelerated in the direction of the apex until a
point of maximal velocity is reached. Shortly behind the position of maximal velocity, the
direction of the fluid motion turns back and the velocity decreases.

Dependency of the frequency The longitudinal position of the center of each eddy is
nearly identical to the position of the maximal displacement of the basilar membrane.

Dependency of the amplitude As it can be seen in figure 16, the maximal velocity of
the mean flow is proportional to the square of the stimulation amplitude. Such a quadratic
dependence on the velocity was also observed by the experiments from Tonndorf [48]. In
addition, the results indicate that the amplitude has no (significant) influence on the shape
of the eddies. In other words, the change of the amplitude causes only a spatially uniform
(scalar) scaling of the vector field that represents the mean flow.

Dependency of the outer hair cell amplification Figure illustrates that the
velocity of the acoustically driven flows grows almost exponentially with the outer hair
cell activity parameter. But in contrast to the amplitude, this growth depends on various
factors such as the gain of the displacement of the basilar membrane, the phase velocity of
the traveling wave and its envelope. Furthermore, the activity parameter also influences
the shape of the eddies. By comparing the eddies of the active model (cf. chapter [A4])
with the passive model (cf. chapter [B.3) it can be clearly seen that the increase of the
activity parameter is accompanied with a decrease of the eddy size.

In summary, it can be noted that the numerical results are almost in conformity with
the experimental studies from Tonndorf [48].
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Figure 4.16: Mazimal mean velocity (Lagrangian specification) at different stimulation frequencies and
stimulation amplitudes in the passive cochlea model as well as in the active model: 128Hz (red line),
256Hz (blue line), 512Hz (green line), 102/Hz (black line), 2048Hz (purple line), 4096Hz (orange line),
8192Hz (brown line).
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Chapter 5

Conclusion

This work was concerned with the numerical simulation of acoustically driven flows within
the inner ear. It is the first time that the occurrence and magnitude of acoustic streaming
was successfully analyzed on the basis of a computational model. The relevance of acoustic
streaming with respect to its physiological impact on the mechanisms of hearing is still an
open question. Therefore, the results of this work provide instruments in order to support
the discussion about the influence of nonlinear flow effects within the cochlea.

Up to now, acoustically driven flows were either examined by performing experiments
on mechanical models (cf. [48]) or on the basis of analytical considerations (cf. [20] 25]).
As mentioned by Tonndorf [48], mechanical models have the advantage of allowing direct
observation of nonlinear mean flows. But due to a different scaling of the mechanical model
in relation to the human cochlea, the experiments can only provide information about the
principle structure of a potential mean flow. Furthermore, the mechanical model has some
significant limitations concerning its usability, for example with respect to the stimulation
amplitude and the frequency range.

In contrast, Lighthill [25] analytically derived an estimate of the of magnitude of acous-
tic streaming outside the Stokes boundary layer near to the characteristic place. But his
analytical model is based on substantial simplifications and it does not describe the con-
crete flow field of the secondary mean motion.

The computational model presented in this work overcomes most of these difficulties.
On the one hand the model has been performed on the basis of realistic dimensions with
regard to the physical properties and, furthermore, there has been no constraints concerning
the usability as in the case of mechanical model. On the other hand, the simplifications
made by the modeling process are not as substantial as in an analytical model. In this
context it should be emphasized that the computational model provides information about
both the structure of the secondary flow field as well as the magnitude of the mean motion.

In comparison to other cochlea models, a very comprehensive and complex model has
been developed in order to be able to simulate the acoustically driven flows within the
inner ear. The complexity of the presented model is the result of the explicit consideration
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of the dynamical behavior of three major components: the fluid, the basilar membrane
and the outer hair cell motility.

Particular attention has been paid to an appropriate representation of the fluid in order
to ensure that the system yields accurate results with respect to the linear and nonlinear
flow motions. The dynamics of the fluid was simulated by using concepts from the field of
continuum mechanics.

The consideration of the interactions of the fluid with the biological structure that
separates the scala tympani from the scala vestibular was a very important aspect in
order to virtually reproduce the characteristic flow field. Therefore, the cochlear partition
was modeled as an oscillatory system as suggested by Mammano and Nobili [28]. But in
contrast to the model from Mammano and Nobili, the external hydrodynamic forces have
been directly calculated on the basis of the fluid dynamics and not with the help of a
phenomenological approach. While the dynamical reaction of the basilar membrane was
evaluated in the time domain, Mammano and Nobili examined the displacements of the
cochlear partition in the frequency domain.

The displacement pattern of the basilar membrane and also the flow field of the fluid
significantly differ between the active case, where the outer hair cell motility is taken into
account, and the passive case, where this amplification mechanism is neglected. Therefore
the effect of the outer hair cell motility on the resultant secondary flow field has also
been analyzed. The additional force exerted by the outer hair cells was calculated on the
basis of an approach suggested by Mammano and Nobili (cf. [28] [33]), who modeled the
amplification mechanisms as an additional oscillatory subsystem.

In summary, a set of different differential equations and boundary conditions were
deduced that describe the complex dynamics of the whole cochlear system. By the use of
a well-known approach from the perturbation theory, it was possible to split the system
of equations into a set of successive linear subsystems. With regard to the numerical
simulation of acoustic streaming, this perturbation approach was so far only used in the
context of pure fluidic systems. Therefore, it is the first time that this approach was
extended to an highly fluid-structure coupled problem like the cochlea.

The resultant first order subsystem describes the linear acoustic reaction of the sys-
tem. The spatial discretization of this acoustic system, performed by means of the finite
element method, resulted in a system of ordinary differential equations which, in turn, was
discretized by using an implicit integration method. Due to the strong coupling between
the fluid, the basilar membrane and the outer hair cell motility, the different processes were
synchronously solved by a monolithic approach. The simulation of this linear acoustic re-
action was a very computationally intensive part of the whole process, but the accurate
calculation of the first order solution was a crucial requirement for the successful determi-
nation of the second order mean flows.

The results of this first order subsystem were validated against experimental studies,
analytical considerations and other models. It has been shown that an harmonic stim-
ulation at the oval window induces the expected typical traveling wave motion of the
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cochlear partition. Furthermore, the relationship between the stimulation frequency and
the associated characteristic places complies with empirical experiments (cf. [I8]). It has
been proven that the main cause for acoustically driven flows can be found in a boundary
layer driven mechanism. Therefore, particular attention has been paid to the fluid mo-
tions within the thin Stokes boundary layer of the cochlear partition, which comply, in the
main, with analytical approximations developed by Lighthill [25] on the basis of theoretical
considerations from Lord Rayleigh [35] §352].

It turned out that if the outer hair cell motility is taken into account by the simula-
tion process, the traveling wave pattern will, inter alia, be locally enhanced near to the
characteristic place. This significant amplification is, in addition, accompanied with an
increased phase lag and an apical peak shift as also observed by Mammano and Nobili [28]
in their computational model. It should be noted that the linearized model of the outer
hair cell motility can not be used to reproduce the nonlinear behavior of the amplification
mechanism. Nevertheless, it has been shown that this linear model was an appropriate
instrument to analyze the effect of the outer hair cell driven amplification on the resultant
mean flows.

The time-averaged second order subsystem yielded a first order approximation of the
acoustically driven flows within the inner ear. The application of the finite element method
resulted in a stationary system of equations where the right hand vector includes the results
of the first order system in terms of a virtual force- and mass-source distribution.

It turned out that the resultant acoustic streaming flow field is in accordance with
the experimental studies from Tonndorf [48]. Furthermore, the results of the numerical
simulations indicate that the maximal velocity of the acoustically driven flows are up to
one order of magnitude larger than the analytical estimates from Lighthill [25].

This work opens up new opportunities in the context of investigations with respect to
the bio-mechanics of hearing. Furthermore, the model shows potential for further improve-
ments with regard to convergence and accuracy. Also an extension for three-dimensional
examinations would be desirable.
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Appendix A

Results of the Passive Cochlea Model

A.1 Initial Transient Effect
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Figure A.1: Current state of the cochlea system after %T seconds at 1024 Hz stimulation frequency. The

W whereas the intensity of the red (or blue) color represents the amount
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Figure A.2: Current state of the cochlea system after %T seconds at 1024 Hz stimulation frequency. The
vector field illustrates the velocity v whereas the intensity of the red (or blue) color represents the amount

of the positive (or negative) pressure p.
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Figure A.3: Current state of the cochlea system after %T seconds at 1024 Hz stimulation frequency. The
vector field illustrates the velocity v whereas the intensity of the red (or blue) color represents the amount

of the positive (or negative) pressure p't).
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Figure A.5: Current state of the cochlea system after %T seconds at 1024 Hz stimulation frequency. The
vector field illustrates the velocity v whereas the intensity of the red (or blue) color represents the amount
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Figure A.6: Current state of the cochlea system after %T seconds at 1024 Hz stimulation frequency. The
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Figure A.7: Current state of the cochlea system after %T seconds at 1024 Hz stimulation frequency. The

vector field illustrates the velocity v whereas the intensity of the red (or blue) color represents the amount
(1)

of the positive (or negative) pressure p'’.
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Figure A.8: Current state of the cochlea system after 2T seconds at 1024Hz stimulation frequency. The
vector field illustrates the velocity v whereas the intensity of the red (or blue) color represents the amount

of the positive (or negative) pressure p't).
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A.2 Rotary Vibrations at Equilibrium State
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Figure A.9: Equilibrium state of the first order system at the stimulation frequency of 128Hz in the
passive cochlea model. F’igure@] illustrates the real part of the velocity field v(e®) of the rotary vibration

in combination with the real pressure field p'°°>

(sin)

. Figure @] visualizes their imaginary counterparts L)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure A.10: FEquilibrium state of the first order system at the stimulation frequency of 256Hz in the
passive cochlea model. F'L'gure illustrates the real part of the velocity field v(o®) of the rotary vibration

in combination with the real pressure field p'=®.

(sin)

Figure [(b)| visualizes their imaginary counterparts i)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure A.11: Equilibrium state of the first order system at the stimulation frequency of 512Hz in the
passive cochlea model. F'L'gure illustrates the real part of the velocity field v(o®) of the rotary vibration

in combination with the real pressure field p'=®.

(sin)

Figure [(b)| visualizes their imaginary counterparts i)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure A.12: FEquilibrium state of the first order system at the stimulation frequency of 1024/Hz in the
passive cochlea model. F'L'gu're illustrates the real part of the velocity field v of the rotary vibration
(sin)
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in combination with the real pressure field p Figure @] visualizes their tmaginary counterparts v
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and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure A.13: FEquilibrium state of the first order system at the stimulation frequency of 2048Hz in the
passive cochlea model. F'L'gu're illustrates the real part of the velocity field v of the rotary vibration

(cos) (sin)

in combination with the real pressure field p Figure @] visualizes their tmaginary counterparts v

(sin)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure A.14: FEquilibrium state of the first order system at the stimulation frequency of 4096Hz in the
passive cochlea model. F'L'gu're illustrates the real part of the velocity field v of the rotary vibration

in combination with the real pressure field p'°®. Figure [(8)] visualizes their imaginary counterparts M)

and p®™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure A.15: FEquilibrium state of the first order system at the stimulation frequency of 8192Hz in the
passive cochlea model. Figure illustrates the real part of the velocity field p(os) of the rotary vibration

in combination with the real pressure field p'°®. Figure visualizes their imaginary counterparts v®™

and p®™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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A.3 Displacement of the Basilar Membrane
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Figure A.16: Traveling wave motion of the basilar membrane at the stimulation frequency of 128Hz in
the passive cochlea model. The red line represents the cosine part §(°°S) of the oscillatory motion, whereas

the blue line is associated with the sine component f(sm). The black line illustrates the envelope.
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Figure A.17: Traveling wave motion of the basilar membrane at the stimulation frequency of 256Hz in
the passive cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component f(Si"). The black line illustrates the envelope.
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Figure A.18: Traveling wave motion of the basilar membrane at the stimulation frequency of 512Hz in
the passive cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component §(Si"). The black line illustrates the envelope.
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Figure A.19: Traveling wave motion of the basilar membrane at the stimulation frequency of 1024Hz in
the passive cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component f(Si"). The black line illustrates the envelope.
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Figure A.20: Traveling wave motion of the basilar membrane at the stimulation frequency of 204/8Hz in
the passive cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component §(Si"). The black line illustrates the envelope.
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Figure A.21: Traveling wave motion of the basilar membrane at the stimulation frequency of 4096Hz in
of the oscillatory motion, whereas

the passive cochlea model. The red line represents the cosine part f(cos)

the blue line is associated with the sine component f(Si"). The black line illustrates the envelope.
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Figure A.22: Traveling wave motion of the basilar membrane at the stimulation frequency of 8192Hz in
the passive cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component §(Si"). The black line illustrates the envelope.
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A.4 Acoustic Streaming Flow Field
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Figure A.23: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 128Hz in the passive cochlea model.
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Figure A.24: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 256Hz in the passive cochlea model.
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Figure A.25: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 512Hz in the passive cochlea model.
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Figure A.26: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 1024 Hz in the passive cochlea model.
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Figure A.27: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 2048Hz in the passive cochlea model.
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Figure A.28: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 4096Hz in the passive cochlea model.
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Figure A.29: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 8192Hz in the passive cochlea model.
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B.1 Acoustic Flow Fields at Equilibrium State
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Figure B.1: Fquilibrium state of the first order system at the stimulation frequency of 128Hz in the
passive cochlea model. F’igure@] illustrates the real part of the velocity field v(e®) of the rotary vibration

in combination with the real pressure field p'°°>

(sin)

. Figure @] visualizes their imaginary counterparts L)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure B.2: FEquilibrium state of the first order system at the stimulation frequency of 256Hz in the
passive cochlea model. F'L'gu're illustrates the real part of the velocity field ple®) of the rotary vibration

in combination with the real pressure field p'=®.

(sin)

Figure [(b)| visualizes their imaginary counterparts i)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure B.3: FEquilibrium state of the first order system at the stimulation frequency of 512Hz in the
passive cochlea model. F'L'gu're illustrates the real part of the velocity field ple®) of the rotary vibration

in combination with the real pressure field p'=®.

(sin)

Figure [(b)| visualizes their imaginary counterparts i)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure B.4: Equilibrium state of the first order system at the stimulation frequency of 1024Hz in the
passive cochlea model. Figu're illustrates the real part of the velocity field v of the rotary vibration

in combination with the real pressure field p'=®.

(sin)

Figure [(b)| visualizes their imaginary counterparts i)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure B.5: Equilibrium state of the first order system at the stimulation frequency of 2048Hz in the
passive cochlea model. Figure illustrates the real part of the velocity field v of the rotary vibration
(sin)

in combination with the real pressure field p'=®.

(sin)

Figure @] visualizes their tmaginary counterparts v

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure B.6: FEquilibrium state of the first order system at the stimulation frequency of 4096Hz in the
passive cochlea model. Figu're illustrates the real part of the velocity field v of the rotary vibration

in combination with the real pressure field p'=®.

(sin)

Figure [(b)| visualizes their imaginary counterparts i)

and p**™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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Figure B.7: Equilibrium state of the first order system at the stimulation frequency of 8192Hz in the
passive cochlea model. Figure illustrates the real part of the velocity field p(o®) of the rotary vibration

in combination with the real pressure field p'°®. Figure visualizes their imaginary counterparts v®™

and p®™. The intensity of the red (blue) color represents the amount of the positve (negative) pressure.
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B.2 Displacement of the Basilar Membrane
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Figure B.8: Traveling wave motion of the basilar membrane at the stimulation frequency of 128Hz in the
active cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas the

sin)

blue line is associated with the sine component f( . The black line illustrates the envelope.
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Figure B.9: Traveling wave motion of the basilar membrane at the stimulation frequency of 256Hz in the
active cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas the

blue line is associated with the sine component §(Sin). The black line illustrates the envelope.
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Figure B.10: Traveling wave motion of the basilar membrane at the stimulation frequency of 512Hz in
the active cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component §(Si"). The black line illustrates the envelope.
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Figure B.11: Traveling wave motion of the basilar membrane at the stimulation frequency of 1024Hz in
the active cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component f(Si"). The black line illustrates the envelope.
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Figure B.12: Traveling wave motion of the basilar membrane at the stimulation frequency of 204/8Hz in
the active cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component §(Si"). The black line illustrates the envelope.
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Figure B.13: Traveling wave motion of the basilar membrane at the stimulation frequency of 4096Hz in
the active cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component §(Si"). The black line illustrates the envelope.
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Figure B.14: Traveling wave motion of the basilar membrane at the stimulation frequency of 8192Hz in
the active cochlea model. The red line represents the cosine part f(cos) of the oscillatory motion, whereas

the blue line is associated with the sine component §(Si"). The black line illustrates the envelope.
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B.3 Acoustic Streaming Flow Field
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Figure B.15: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 128Hz in the active cochlea model.
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Figure B.16: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 256Hz in the active cochlea model.
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Figure B.17: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 512Hz in the active cochlea model.
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Figure B.18: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 1024Hz in the active cochlea model.
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Figure B.19: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 2048Hz in the active cochlea model.
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Figure B.20: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 4096Hz in the active cochlea model.
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Figure B.21: Lagrangian specification of acousticically driven flows induced by a stimulation frequency
of 8192Hz in the active cochlea model.
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