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ABSTRACT

In our recent article with Wewers [AW11], we have presented a new proof of the
well-known Semistable Reduction Theorem of Deligne and Mumford [DM69], which
states that all smooth projective and absolutely irreducible curves over a local field
have a semistable model, provided one allows to replace the base field by a finite
extension. Though already the first proof of Deligne and Mumford is constructive in
a theoretical sense, it is in practice very hard to find these specific models or even a
suitable field extension as in the statement of the theorem. The goal of [AW11] was
to provide an alternative proof that allows to come up with a practical algorithm to
actually compute semistable reductions of curves, at least in important special cases.

Our approach to finding a semistable model for a given curve is based on the fol-
lowing observation: when the curve is considered as a non-constant separable cover
of the projective line and if the base field is large enough, the Semistable Reduction
Theorem guarantees the existence of a semistable model for the projective line whose
normalization is a semistable model for the curve under consideration. Without re-
lying on this fact, we take the reversed approach and construct both a large enough
extension of the base field and a suitable model for the projective line that induces a
semistable model for the initial curve. The rational components of these projective line
models can be interpreted as inducing modifications of the original curve model; our
task was thus to find modifications that improve the singularities of the curve model.
The crucial point is that these modifications can be derived from purely local consid-
erations by examining the singularities one by one. With methods from rigid analytic
and formal geometry, the Semistable Reduction Theorem can then be reduced to a
more local statement on coverings of the rigid analytic open unit disk. With theoreti-
cal arguments, it is possible to further reduce to two base cases; namely, it suffices to
determine the improving modifications for prime-cyclic coverings of the open unit disk
and for prime-cyclic coverings of open annuli.

In both of these cases, the improving modifications can be constructed explicitly—
and this is precisely the purpose of the present dissertation. The way to find these
modifications is as follows: A covering of the considered form with prime degree p is
given by a Kummer type equation y p = f , with f a power series or a Laurent series.
The crucial step is to carefully approximate f by a pth power hp ‘as good as possi-
ble’; then the modification searched for can be deduced from the Newton polygon of
f −hp. The main tool to obtain these so-called sufficiently precise approximations is by
extending the method of p-Taylor expansion introduced by Matignon [Mat03] in his
study of the equidistant subcase. One of the reasons why formal p-Taylor expansions
prove so useful is that a field extension as in the statement of the Semistable Reduc-
tion Theorem is automatically produced. The result is that we can explicitly calculate
semistable models for arbitrary cyclic coverings of prime degree. Note that this also
completes the new proof of the Semistable Reduction Theorem started in [AW11].

In addition to the above, we also show how to use our results on prime-cyclic covers
to handle an arbitrary cyclic covering of prime power degree. Moreover, we demon-
strate all our methods by means of suitable examples. For some of the more compli-
cated calculations, we have used the computer algebra system MAGMA [Magma]; the
source code can be found at the respective places in the text.

Keywords: Algorithmic Semistable Reduction, Prime-Cyclic Galois Covers, Formal
p-Taylor Expansion





KURZZUSAMMENFASSUNG

In einer unserer jüngeren Arbeiten mit Wewers [AW11] haben wir einen neuen
Beweis des wohlbekannten Theorems von Deligne und Mumford [DM69] über die
semistabile Reduktion von Kurven dargelegt. Die Aussage des Theorems ist, dass al-
le glatten projektiven und absolut irreduziblen Kurven, die über einem lokalen Kör-
per definiert sind, ein semistabiles Modell besitzen, vorausgesetzt, man lässt zu, den
Grundkörper durch eine geeignete endliche Erweiterung zu ersetzen. Obwohl bereits
der erste Beweis von Deligne und Mumford im theoretischen Sinne als konstruktiv zu
bezeichnen ist, erweist es sich in der Praxis als außerordentlich schwierig, diese spezi-
ellen Modelle zu finden oder auch nur eine geeignete Körpererweiterung im Sinne des
Theorems anzugeben. Das Ziel von [AW11] war, einen alternativen Beweis zu geben,
der es ermöglicht, über einen praxistauglichen Algorithmus die semistabile Reduktion
von Kurven zu berechnen, zumindest in wichtigen Spezialfällen.

Unser Zugang, ein semistabiles Modell für eine gegebene Kurve zu finden, basiert
auf der folgenden Beobachtung: Wenn die betrachtete Kurve als nichtkonstante se-
parable Überlagerung der projektiven Geraden aufgefasst wird und der Grundkörper
groß genug ist, garantiert das Theorem über semistabile Reduktion die Existenz eines
semistabilen Modells für die projektive Gerade, dessen Normalisierung ein semista-
biles Modell für die betrachtete Kurve ist. Ohne auf diese Aussage zurückzugreifen,
nehmen wir den umgekehrten Weg und konstruieren sowohl eine hinreichend große
Körpererweiterung als auch ein geeignetes Modell der projektiven Geraden, das ein se-
mistabiles Modell für die ursprüngliche Kurve induziert. Die rationalen Komponenten
des Modells der projektiven Geraden können dabei so interpretiert werden, dass sie
Modifikationen für das Kurvenmodell induzieren; unsere Aufgabe bestand nun darin,
geeignete Modifikationen zu finden, die die Singularitäten des Kurvenmodells verbes-
sern. Der entscheidende Punkt ist, dass diese Modifikationen durch rein lokale Be-
trachtungen der einzelnen Singularitäten gewonnen werden können. Mit Methoden
der rigid-analytischen und formalen Geometrie kann das Theorem über die semistabi-
le Reduktion dann zu einer lokalen Aussage reduziert werden, die Überlagerungen der
offenen rigid-analytischen Einheitsscheibe betrifft. Mit theoretischen Argumenten ist
eine weitere Reduktion auf zwei Spezialfälle möglich, und zwar genügt es, die verbes-
sernden Modifikationen für prim-zyklische Überlagerungen der offenen Scheibe und
für prim-zyklische Überlagerungen offener Ringbereiche zu bestimmen.

In beiden Fällen können die verbessernden Modifikationen explizit konstruiert wer-
den – was genau der Zweck der vorliegenden Dissertationsschrift ist. Die Modifikatio-
nen werden wie folgt gefunden: Eine Überlagerung der zu betrachtenden Form vom
primen Grad p wird durch eine Kummergleichung y p = f beschrieben, wobei f eine
Potenzreihe oder eine Laurentreihe ist. Der entscheidende Schritt besteht nun darin,
f sorgfältig durch eine pte Potenz ‘so gut wie möglich’ anzunähern; dann kann die
gesuchte Modifikation am Newtonpolygon von f − hp abgelesen werden. Das Haupt-
werkzeug, um diese sogenannten hinlänglich genauen Annäherungen zu finden, ist
eine Erweiterung der p-Taylorentwicklung, einer Methode, die von Matignon [Mat03]
im Zuge seiner Studien des Spezialfalls äquidistanter Geometrie eingeführt wurde. Ei-
ner der Gründe, warum sich formale p-Taylorentwicklungen als so nützlich erweisen,
besteht darin, dass automatisch eine Körpererweiterung produziert wird, wie sie in
der Aussage des Theorems über semistabile Reduktion vorkommt. Folglich können wir



vi

explizit semistabile Modelle für beliebige prim-zyklische Überlagerungen bestimmen.
Dies vervollständigt auch den in [AW11] begonnenen Beweis.

Zusätzlich zeigen wir noch, wie unsere Resultate über prim-zyklische Überlagerun-
gen genutzt werden können, um eine beliebige zyklische Überlagerung von Primpo-
tenzgrad zu handhaben. Darüber hinaus demonstrieren wir alle unsere Methoden an-
hand geeigneter Beispiele. Für einige der umfangreicheren Rechnungen haben wir das
Computeralgebra-System Magma [Magma] genutzt; der Quellcode ist an den entspre-
chenden Stellen im Text abgedruckt.

Schlagwörter: Algorithmische semistabile Reduktion, Prim-zyklische Galois Überla-
gerungen, Formale p-Taylor Entwicklung
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INTRODUCTION

Main Results. When studying the arithmetic of a curve defined over a local field, one
is often interested in having an integral model that has good properties and allows to
better understand the behavior of the curve under reduction modulo the finite place of
the ground field. By an integral model we mean a normal, flat, and proper scheme over
the valuation ring of the local field, having the curve under consideration as generic
fiber. In general, we cannot expect to find a smooth model; but at least the badness
of occurring singularities can be limited by considering a semistable model—that is,
an integral model with absolutely reduced fibers having only ordinary double points
as singularities. The well-known theorem of Deligne and Mumford [DM69, Cor. 2.7]
ensures that such a semistable model can always be found, provided one allows to
replace the base field by a sufficiently large finite extension (see Thm. 1.2 for the
precise statement).

Although several different proofs of this theorem exist (some of them making use of
rigid analytic methods), it is in practice very hard to determine the semistable model
of a given curve, and ‘there is no general method to compute the semistable reduction
when the residue field is of positive characteristic’, as Liu [Liu02, Sect. 10.4.3] states.
Note that already the first proof of Deligne and Mumford—make certain Torsion points
on the Jacobian rational and compute the minimal regular model—is constructive in a
theoretical sense, but this does not seem to yield a practical method except for curves
of very small genus. In our recent article with Wewers [AW11], we have presented
a new proof, which also exploits rigid analytic methods. But in contrast to most of
the proofs published so far, we solely rely on local arguments that do not involve the
global geometry of the curve (for instance, its Jacobian). This makes the proof in
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large parts constructive and allows to come up with a practical algorithm to compute
the semistable reduction of given curves, at least in important special cases (including
cases that were inaccessible before).

Our approach to finding a semistable model for a given curve is based on the follow-
ing observation: when the curve is considered as a non-constant separable cover of the
projective line and if the base field is large enough, the Semistable Reduction Theorem
guarantees the existence of a semistable model for the projective line whose normal-
ization is a semistable model for the curve under consideration. Without relying on
this fact, we take the reversed approach and construct both a large enough extension
of the base field and a suitable model for the projective line that induces a semistable
model for the initial curve. The rational components of these projective line models
can be interpreted as inducing modifications of the original curve model; we therefore
have to find the right modifications leading to a semistable model.

More precisely, the algorithm described in loc.cit. proceeds as follows. Starting with
the standard smooth model for the projective line, normalization yields a model for
the initial curve that will probably be highly singular. When working over a sufficiently
large field, the corresponding special fiber will at least be reduced (this, however,
is based on a theoretical result by Epp [Epp73], and in practice, finding a suitable
field extension is one of the major problems; nevertheless, in the important case of
prime-cyclic coverings to be introduced below, we will be able to explicitly construct a
well-suited field). Even when the special fiber is reduced, there still might be bad sin-
gularities on it; our task is thus to find modifications that improve these singularities.
The crucial point is that these modifications can be derived from purely local consid-
erations by examining each occurring singularity individually (that is, by completion
in the respective points). Namely, using methods from rigid analytic and formal geom-
etry, one is lead to study covering maps between open analytic curves (rigid analytic
spaces providing a non-archimedean analog of open Riemann surfaces with finitely
many holes). More precisely, coverings of the rigid analytic open unit disk have to
be studied. The modifications improving the singularities of the curve model then
correspond to certain closed subdisks that are smallest in the sense of capturing ‘just
enough’ information of the covering, with ‘enough’ meaning, there must be no loss of
genus when restricting the covering to these smaller disks (which are then called ex-
hausting). By considering an appropriate numerical invariant measuring the badness
of occurring singularities, it can be seen that it suffices to repeat the above steps a finite
number of times to end up with a semistable model for the initial curve.

Finding those minimal disks is the most delicate part of the whole process and highly
non-trivial; knowing how to find these disks means proving the Semistable Reduction
Theorem! In general, it is not clear at all how the disks have to be chosen to be minimal
exhausting. When the covering has a solvable Galois group1, induction on the group
order can be used to reduce to the case of prime-cyclic Galois covers of the open unit
disk. To make the induction step work, however, we also need to handle prime-cyclic
coverings of open annuli; in this situation, the objective is to find the so-called maximal
separating boundary domain, which generalizes the notion of the minimal exhausting
disk. Both these cases have still to be settled—and this is precisely the purpose of
the present dissertation. The case of a non-solvable Galois group can be reduced to

1As far as the Semistable Reduction Theorem is concerned, we can assume all occurring coverings to be
Galois.
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the solvable case by considering certain stabilizer subgroups (though at present, this
reduction step is not practical).

In this dissertation, we address the above mentioned two main cases and study
prime-cyclic coverings of the open unit disk and of open annuli. In each case, we
explicitly construct the maximal separating boundary domain (Thms. 2.1 and 4.2),
thereby also providing the final ingredient for our new proof of the Semistable Reduc-
tion Theorem. The construction is done as follows: A covering as above and of prime
degree p is given by a Kummer type equation y p = f , with f a power series or a Lau-
rent series. The crucial step is to carefully approximate f by a pth power hp ‘as good
as possible’; then the equation defining the covering can be rewritten in such a way
that not only an algebraic description of the model and its special fiber is attained, but
the equation is also stable in the sense that it can be used for describing the induced
coverings on subdisks or subannuli. The consequence is that the thickness of the max-
imal separating boundary domain can be read off from the Newton polygon of f − hp,
as Props. 2.33 and 4.12 state.

The main tool for obtaining these so-called sufficiently precise approximations (Defs.
2.25 and 4.5) is by use of formal p-Taylor expansions (Defs. 2.9 and 4.13), a general-
ization of a method introduced by Matignon [Mat03] in his studies of the equidistant
subcase. It takes some work before we can establish with Props. 2.31 and 4.6 the
existence of sufficiently precise approximations. In the disk case, this is due to the
fact that the center point of the minimal exhausting disk is a priori unknown. Though
finding a suitable center for the maximal separating boundary domain is no problem
in the case of open annuli, this situation is still more complicated in that a variety of
different cases can occur due to the richer algebraic structure of analytic functions on
open annuli; some special cases even require to utilize an additional approximation
algorithm. One of the reasons why formal p-Taylor expansions prove so useful is that
a field extension as in the statement of the Semistable Reduction Theorem is auto-
matically produced (thereby also making the theoretical result of Epp effective in the
prime-cyclic case). The result is that we can explicitly calculate semistable models for
arbitrary cyclic coverings of prime degree; see Rems. 2.36 and 4.20. Note that this also
completes the new proof of the Semistable Reduction Theorem started in [AW11].

With the results from above, it also becomes possible to calculate semistable models
for an arbitrary cyclic covering of prime power degree. This is by splitting the covering
into successive prime-cyclic substeps, which can then be handled with our methods for
prime-cyclic coverings of the open unit disk and of open annuli.

The dissertation contains several elaborate examples illustrating all our methods.
First, an equidistant prime-cyclic covering of the projective line is studied in detail; see
Sect. 3. The calculations are non-trivial and the involved field extensions are compli-
cated; yet we can work out the minimal semistable model and the monodromy action
on the stable reduction. We have used the computer algebra system MAGMA [Magma]
to support us in the calculations; the source code can be found at the respective places
in the text, making it possible to reconstruct all details of our computations. As a com-
plement to this example, we study in Sect. 4.6 a prime-cyclic covering not being of
equidistant geometry. This particular curve occurred in the literature before, and using
our new methods, we are able to determine both its monodromy extension and its sta-
ble reduction. In a third example, our methods are applied to the case of a cyclic étale
disk covering of prime-square degree (a situation that could not be handled before),
and we construct the corresponding stable model; see Sect. 5.2.



4 KAI ARZDORF

Structure. In the first section, we review our algorithmic approach to semistable re-
duction, giving necessary background information and recalling results from rigid ana-
lytic and formal geometry; we state the two main cases that have yet to be settled. The
second section deals with the case of prime-cyclic étale Galois covers of the open unit
disk; the detail study of an appropriate example follows in the third section. The ram-
ified situation is treated in the fourth section, where more generally prime-cyclic étale
covers of open annuli are studied. In the fifth and final section, we show how to reduce
the general case of a cyclic Galois cover of prime power degree to the prime-cyclic case.

Acknowledgments. I conclude the introduction by thanking all people who helped
and supported me in writing my PhD-thesis. In particular, I want to express my deep
thanks to Prof. Dr. Stefan Wewers, who encouraged and supported me during the last
three years. Thanks also go to my colleague Julian Rüth for stimulating conversa-
tions, to Michael Stratmann for his responsible mentorship, and to the Professor-Rhein-
Stiftung for its financial support during my studies. Last, but not least, I thank my
parents for being one of their 51er Kapitäns (schneeweiß!) and my fiancée Claudia—
I owe you for your love!

1. ALGORITHMIC APPROACH TO SEMISTABLE REDUCTION

In this section, we explain our approach to the Semistable Reduction Theorem and
the underlying algorithm. Taking a relative viewpoint and using the language of rigid
analytic geometry, the Semistable Reduction Theorem can be reduced to a more local
statement that is better suited for algorithmic purposes. We identify two main cases
that need to be settled for our proof to become complete. Along the way, we recall
a number of facts from rigid analytic and formal geometry, giving auxiliary results as
needed.

Full details concerning the proof and the algorithm can be found in our recent paper
with Wewers [AW11]; the present dissertation is concerned with an in-depth study of
the two mentioned key cases, see Sects. 2 and 4.

1.1. Basic Notation. We mostly follow the notation used by Wewers and the author in
[AW11]. So K shall denote a complete non-archimedean field, with the valuation ring
and its maximal ideal denoted by R and m, the residue field by k := R/m, and the val-
uation by v. A uniformizer of R shall be denoted by π. With the Semistable Reduction
Theorem in mind, we can assume k to be algebraically closed, cf. [Liu02, Lem. 10.4.5].
In later sections, we will assume K to have mixed characteristic (0, p) (one should have
fields like Qnr

p , the maximal unramified extension of the p-adic numbers, in mind). In
this case, we always assume the valuation to be normalized such that v(p) = 1. For
now, however, there is no further restriction on the characteristic.

We also fix an algebraic closure Kac of K and extend the valuation v to Kac (in a
unique way); the corresponding valuation ring is denoted by (Rac,mac). In the follow-
ing, we will often deal with (finite) field extensions of K; these are always considered
as subfields of Kac and provided with the uniquely extended valuation.

The value group of K is denoted by v(K×); the one of the fixed algebraic closure
by v(Kac×). Though in the context of rigid analytic geometry it is more common and
convenient to work with an absolute value | · | := q−v( · ) (where q > 1 denotes an
arbitrary but fixed real number) instead of the exponential valuation v, we only work
with the latter. This is to avoid any conflicts that could arise when working with
inequalities and mixing absolute values and valuations.
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1.2. Models for Curves. We recall the definitions for various models of curves and
give a first version of the Semistable Reduction Theorem (Thm. 1.2); we will later
derive more relative and local formulations (Thms. 1.15 and 1.24).

1.2.1. Semistable Models. Let Y be a smooth projective and absolutely irreducible
curve over K . A model for Y is a normal flat and proper R-scheme YR having Y as
generic fiber: YR⊗R K ∼= Y . The special fiber of YR—denoted by Ȳ —is proper and (due
to the flatness assumption) of pure dimension one; by Zariski’s main theorem, it is
connected.

Definition 1.1. A model YR for a smooth projective and absolutely irreducible K-curve
Y is called semistable if its fibers are absolutely reduced and have at most ordinary
double points as singularities.

If a semistable model for Y exists, Y is said to have semistable reduction. Often a
semistable model only exists after finitely enlarging the base field; in this case, the
field extension is said to realize the semistable reduction, and we say that Y has
potentially semistable reduction. The well-known theorem of Deligne and Mumford
[DM69, Cor. 2.7] states that all K-curves have potentially semistable reduction.

Theorem 1.2 (Semistable Reduction Theorem). Let Y be a smooth projective and abso-
lutely irreducible curve over the local field K. There exists a finite field extension L/K such
that Y ⊗K L has semistable reduction. Moreover, L/K can be chosen to be separable.2

For the rest of this section, we assume that Y is a curve of genus gY ≥ 2; in this
case, the above results can be strengthened. Let the field extension L/K realize the
semistable reduction of Y . There exists a stable model for Y ⊗K L, that is, a semistable
model whose fibers are of arithmetic genus ≥ 2 and which satisfy the additional com-
binatorial property that each of their rational components intersects the other compo-
nents in at least three points. Moreover, this model is unique; it is the unique minimal
semistable model in the sense that it results from any given semistable model by con-
traction of all superfluous rational components. The special fiber of the stable model
does not depend on the field extension over which the stable model is realized; it is
called the reduction of Y . See [Liu02, Def. 10.3.27 and Thm. 10.4.3].

Let L/K be a Galois extension realizing the stable reduction of Y ; denote by Y ss the
stable model of Y ⊗K L and by Ȳ its special fiber, the reduction of Y . The Galois group
Gal(L/K) acts tautologically on Y ⊗K L. Due to the uniqueness of the stable model, the
action extends to the so-called monodromy action

ρ : Gal(L/K)→ Autk(Ȳ )

on the reduction of Y ; see [Liu02, Cor. 10.3.37].

Corollary 1.3. Still keeping the assumption gY ≥ 2, there is a unique minimal field
extension Kmin/K over which a stable model of Y can be defined, in the sense that any
extension realizing the stable reduction of Y contains Kmin. This extension is Galois and
called the monodromy extension; it is characterized by the fact that the monodromy
action of Gal(Kmin/K) on Ȳ is faithful.

Proof. This is essentially [Liu02, Thm. 10.4.44].

2If K has characteristic zero, this is automatic of course.
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Note that the monodromy extension can be obtained as the fixed field Lkerρ, where
L/K denotes any Galois extension realizing the stable model of Y and where ρ is the
corresponding monodromy action.

The above results concerning the monodromy require the residue field of K to be
algebraically closed, which is what we always assume: see our notation and conven-
tions from Sect. 1.1. Sometimes, however, one is interested in curves defined over base
fields that do not have an algebraically closed residue field (as in the examples treated
in Sects. 3 and 4.6, where we deal with curves defined over Q3 resp. Q7). If this is
the case, one might have to pass to a sufficiently large unramified extension for the
monodromy action to be defined and for the monodromy extension to be unique. Yet
this is no serious problem, and for our notions to be consistent with this more general
setting, we make the following definition.

Definition 1.4. Let Y be a smooth projective and absolutely irreducible curve over the
local field K0, and let gY ≥ 2. Assume that the field extension L0/K0 realizes the stable
reduction of Y . Then L0/K0 is called minimal, if base change to the maximal unrami-
fied extension gives the monodromy extension; that is, if L0Knr

0 /K
nr
0 is the monodromy

extension of Y ⊗K0
Knr

0 .

As mentioned in the introduction, it is generally rather difficult to explicitly deter-
mine a semistable model for a given curve, or the field extension needed to realize
the stable reduction. This is despite the fact that—in theory—we know how to obtain
a semistable model: the original proof of Deligne and Mumford shows that the sta-
ble reduction of a K-curve Y is realized over a field extension L/K , which makes the
3- and 4-torsion points on the Jacobian of Y rational. A semistable model can then
be obtained by resolving singularities: the minimal regular model for Y ⊗K L will be
semistable. This approach, however, seems not to be practical. Neither is it easy to
determine the Jacobian of a given curve (at least when its genus is not particularly
small), nor is it easy to then deduce an appropriate field extension for making those
torsion points rational. Further more, the extension obtained in this way would be very
large—probably much larger than needed and most likely too large for doing actual
computations. Yet the above approach of determining a semistable model by calculat-
ing a regular model requires the knowledge a sufficiently large field in advance! This is
because regularity is not stable under base change and all work of computing a regular
model (which in itself is not a trivial task) would be in vain if a further field exten-
sion was needed—for instance, because the special fiber of the regular model was not
reduced.

It should be reasonably clear by now that different methods are required for actually
computing semistable reductions, and this is what our new proof accomplishes: our
approach is based on local considerations and can be turned into a practical procedure,
which can be followed step by step. This will become clear in the sections to follow,
also by means of the explicitly computed examples.

1.2.2. Permanence. Though models are normal by definition, their special fibers usu-
ally contain singular points. Enlarging the base field, we can at least assume the special
fibers to be reduced. This is essentially due to a result by Epp [Epp73]; the details of
the reasoning can be found in [AW11, Prop. 2.3].

Proposition 1.5. Let YR be an R-model for the smooth projective and absolutely irre-
ducible K-curve Y . There exists a finite field extension L/K such that the special fiber
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of the normalized base change YS := (YR ⊗R S)∼—which is an S-model for Y ⊗K L—is
reduced. Furthermore, if L′/L is any field extension, then the usual base change YS ⊗S S′

is normal with reduced special fiber. (Here, S and S′ denote the integral closures of R in L
and L′, respectively.)

Hence, in the context of the Semistable Reduction Theorem, we may always assume
that the special fibers of all occurring models are reduced. We call models with this
property permanent (this notion goes back to Raynaud).

Convention 1.6. We always allow the base field K to get replaced by a finite field
extension (considered as a subfield of Kac). In particular, by Prop. 1.5, we can assume
all models we work with to be permanent, that is, to have reduced special fiber. Of
course, when doing actual calculations, one has to keep track of the field extensions
involved.

Though in theory—and in particular, in our proof of the Semistable Reduction
Theorem—we can always assume to work with permanent models, in practice, it is
usually not clear which field extension is required to make a given model permanent.
This is because Epp’s result has not been made explicit yet; with respect to doing ac-
tual computations, this has to be kept in mind. We will later see that in the important
case of prime-cyclic coverings (treated in Sects. 2 and 4), we can make all steps of our
algorithm explicit and do not have to rely on theoretical assumptions; cf. Rems. 2.36
and 4.20.

1.2.3. Modifications and Singularity Measure. Let YR be a permanent model for the
smooth projective and absolutely irreducible K-curve Y . If YR is not semistable, there
are finitely many non-nodal singularities of the special fiber. Our aim is to modify
YR in such a way that these singularities improve. We will make this more precise
though we will not go into the details, as this paper is mainly concerned with the local
situation to be introduced in later sections; for full details, the reader should consult
[AW11, Sects. 2.3 and 2.4].

For a closed point y ∈ Ȳ on the special fiber of YR, we define the numbers

δy := dimk(p∗O(Ȳ )∼/OȲ ) and my := |p−1(y)| ,

where p : (Ȳ )∼ → Ȳ denotes the normalization morphism of the special fiber. These
numbers provide a measure for the badness of a singularity: y ∈ Ȳ is smooth if and
only if δy = 0; it is an ordinary double point precisely when δy = 1 and my = 2.
We always have δy ≥ mY − 1, and the arithmetic genus of Ȳ can be related to the
genus of its components and the sum of the delta-numbers of its closed points; see
[Liu02, Props. 7.5.4 and 7.5.15].

A modification of YR is a birational R-morphism f : Y ′R → YR, where Y ′R denotes
another R-model of Y ; note that f is the identity on the generic fiber. The modification
is called permanent if Y ′R is permanent; finitely enlarging the base field K , any given
modification becomes permanent, cf. Conv. 1.6. The subset of Ȳ where f is not an iso-
morphism is called the center of f . An irreducible component W ⊂ Ȳ ′ is exceptional if
f (W ) is a closed point. The union of all exceptional components forms the exceptional
divisor; the union of all irreducible components that are not exceptional is called the
strict transform of Ȳ .

Our proof of the Semistable Reduction Theorem requires to consider a special kind
of permanent modifications, which we call simple: every exceptional component of a
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simple modification has to intersect the strict transform, and every such point of inter-
section has to be an ordinary double point of Ȳ ′. A simple modification is considered
an improvement at the singular point y ∈ Ȳ if for every closed point y ′ ∈ f −1(y) not
on the strict transform of Ȳ

either δy ′ < δy or δy ′ = δy , my ′ > my

holds true.

1.2.4. Algorithm. We can now explain the idea behind our algorithmic approach to
finding the semistable reduction of a given curve Y .

We start with some permanent model YR for Y . If YR is not semistable, its special
fiber Ȳ contains a finite number of non-nodal singularities. The genus of Y gives
an upper bound for the sum of the delta-numbers on Ȳ . Applying an improving
modification—assuming for the moment that we can always find one—the respec-
tive delta-numbers get smaller (or at least corresponding m-numbers get larger, but
this can happen only a finite number of times). Hence, after finitely many of these
modifications, all delta-numbers are zero or one (in the latter case, with the corre-
sponding m-numbers being two)—that is, all bad singularities have been resolved and
a semistable model is obtained.

To make our algorithm work, we need to see that improving modifications for a
given model with bad singularities always exist; what is more, we are interested in a
practical way to determine the respective modifications. Our local approach deals with
this issue by studying the completed local rings of singular points using methods from
rigid analytic and formal geometry, which are explained in the next section.

1.3. Notions from Rigid Analytic Geometry. In this section, we recall some ideas
and concepts from rigid analytic and formal geometry; we will not have to use deep
theorems of these fields, but rather use the language specific to rigid analytic geometry
as a device that allows to state our results in a clear, succinct way.

1.3.1. Specialization Map and Tube. As before, let Y denote a smooth projective and
absolutely irreducible K-curve and let YR be a permanent R-model for Y . As explained
in [FvdP04, Example 4.3.3], one can associate a rigid analytic K-space Y rig to Y (in a
functorial way); the underlying set of points of Y rig is just the set of closed points of Y .

Given a point of Y rig—that is, a closed point y ∈ Y —the scheme theoretic closure
{y} in YR intersects the special fiber in a unique closed point ȳ ∈ Ȳ , the specialization
of y . Indeed, {y} is finite and irreducible over R, and thus a local scheme since the
complete field K is in particular Henselian. The resulting map

spYR
: Y rig→ Ȳ

is called the specialization map of Y with respect to the model YR; of course, it heavily
depends on the choice of the model.

The specialization map is surjective; see [Liu02, Cor. 10.1.38]. Given a locally
closed subscheme Z ⊂ Ȳ , the preimage

]Z[YR
:= sp−1

YR
(Z)⊂ Y rig

is not a scheme but can be endowed with the structure of a rigid analytic space; this
is because the preimage is open in the Grothendieck topology for Y rig. It is hence a
smooth rigid analytic K-space, called the formal fiber or tube of Z in YR; see [Bos77]
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or [Ber96, Sect. 1] for more details. Furthermore, if Z is connected, then ]Z[YR
is

connected as well, as follows from [Ber96, Prop. 1.3.3].

1.3.2. Formal Models. Let Y := YR|∧Z denote the formal completion of the model YR

along the subscheme Z . As a formal scheme, Y does no longer have a generic fiber in
the classical sense. However, one can construct and associate a rigid analytic space YK

to Y serving as a generic fiber; this space is canonically isomorphic to the tube ]Z[YR

as defined above, and one has an isomorphism

Γ(Y ,OY )
∼→ Γ(]Z[YR

, �OY rig) (1.1)

between the global sections of the structure sheaf on Y and the sections over ]Z[YR

of analytic functions bounded by 0. Recall that an analytic function f on the rigid
analytic space Y rig is called bounded by 0 or zero-bounded if for all y ∈ Y rig, we have
vy( f (y))≥ 0 (with vy denoting the valuation on the respective residue field).

We comment on the construction in the case of an open affine Z , that is, when Z
is the spectrum of B̄ = B/(π) and Y = Spf B. In this situation, the ring B is flat,
topologically of finite type over R, and complete with respect to the π-adic topology.
Then the base change BK := B ⊗R K is an affinoid K-algebra, and the corresponding
affinoid domain YK := Spm BK gives the generic fiber associated to Y ; this is the
classical construction due to Raynaud [Ray74]. As remarked above, the so-constructed
generic fiber coincides with the tube of Z along YR. Using isomorphism (1.1), B can be
recovered as the ring

�BK := { f ∈ BK | vy( f (y))≥ 0 for all y ∈ YK}

of analytic functions on YK bounded by 0; that is, B = �BK . It follows that B̄ describes
the canonical reduction of the affinoid domain ]Z[YR

in the sense of [FvdP04].
When Z is not an open affine, the involved rings are no longer topologically of finite

type over R, and more subtle arguments have to be given to get the associated rigid
space in this more general situation; see [Ber96, Sects. 0 and 1] and [dJ95, Sect. 7].

1.3.3. Open Analytic Curves. When Z = {y} ⊂ Ȳ consists of a single closed point of the
special fiber, the tube Y := ]y[YR

is called the residue class of y ∈ Ȳ (with respect to the
model YR). By the results from Sect. 1.3.2 above, Y can be identified with the generic
fiber associated to the formal R-scheme Spf B, where B := O ∧YR,y denotes the completion
of the local ring at y ∈ YR; moreover, by isomorphism (1.1), B can be identified with
the ring of zero-bounded analytic functions on Y. As a consequence, the rigid analytic
space Y—that is, the residue class of the point y ∈ Ȳ —only depends on the completion
of the model YR at its point y . In this sense, the study of residue classes is of a local
nature.

Definition 1.7. An open analytic curve over K is a rigid analytic K-space Y that can
be realized as a residue class ]y[YR

, where YR is a permanent model for a smooth
projective and absolutely irreducible K-curve Y , and y ∈ Ȳ is a closed point of the
special fiber. The formal R-scheme Y = Spf B, where B = �OY denotes the ring of zero-
bounded analytic functions on Y, is called the canonical formal model of Y; we denote
by K(Y) := Frac B the corresponding fraction field.

Remark 1.8. By the facts stated in Sect. 1.3.1, open analytic curves are smooth and ab-
solutely connected, hence absolutely irreducible. As a consequence, the corresponding
ring of zero-bounded analytic functions is an integral domain (which is also complete
and normal).
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Remark 1.9. Recall that by Conv. 1.6, we always assume all models we work with to
be permanent; in particular, we can use them for the definition of open analytic curves.

Remark 1.10. One should think of open analytic curves as a non-archimedean analog
of open Riemann surfaces with finitely many holes. The drawings throughout this
paper, which illustrate new notions or certain set-ups, are kept in accordance with that
viewpoint; for instance, see Figs. 1.2 and 1.3.

Remark 1.11. The concept of open analytic curves can be studied in greater generality,
as, for example, Wewers [Wew05] does. Nevertheless, for our practical purposes, the
concrete definition from above is sufficient.

1.3.4. Open Unit Disk and Open Annuli. The most basic examples for open analytic
curves are the following.

Definition 1.12. An open disk is a rigid analytic K-space isomorphic to the standard
rigid analytic open unit disk

{x ∈ A1
K | 0< v(x)} ;

an open annulus of thickness ε is isomorphic to

{x ∈ A1
K | 0< v(x)< ε} ,

for some ε > 0 in the value group v(K×). Confer Fig. 1.1.

The next lemma shows that both open disks and open annuli are indeed open
analytic curves (that is, occur as residue classes of permanent models for smooth
K-curves). The lemma also shows that open analytic curves in some sense indicate
how smooth their canonical reduction is.

Lemma 1.13. Let YR be a permanent model for the smooth projective and absolutely
irreducible K-curve Y , and denote by Y := ]y[YR

the residue class associated to a closed
point y ∈ Ȳ on the special fiber of YR. Then the residue class Y is

(1) an open disk if and only if y ∈ Ȳ is a smooth point,
(2) an open annulus if and only if y ∈ Ȳ is an ordinary double point.

In particular, the open unit disk resp. the open annulus of thickness ε can be realized as
the residue class corresponding to the formal scheme Spf R¹tº resp. Spf R¹s, t | st = aº
(with a ∈ K× of valuation v(a) = ε). See the illustration in Fig. 1.1.

Proof. This is [AW11, Prop. 3.4].

1.3.5. Boundary Points and Rank-Two-Valuations. We have remarked in Rem. 1.10 that
open analytic curves should be seen as a non-archimedean analog of open Riemann
surfaces. The notion of boundaries arising under this viewpoint is of interest because
the boundaries can be related to certain valuations encoding useful information on the
respective rigid analytic space.

Definition 1.14. Let Y be an open analytic curve with corresponding formal model
Spf B. A boundary point of Y is a generic point of the special fiber Spec B/(π). The
(finite) set of all boundary points of Y is denoted ∂Y.
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FIGURE 1.1. The residue class of a closed point of the special fiber is
an open disk resp. an open annulus if and only if the point is smooth
resp. an ordinary double point.

Assume that Y is realized as the residue class ]y[YR
of the closed point y ∈ Ȳ on

the special fiber of a curve Y with permanent model YR. Then B is the completion
of the local ring OYR,y . It follows that a boundary point of Y corresponds to a local
branch of the special fiber passing through y . In particular, an open disk has precisely
one boundary point, while an open annulus has two boundary points (which is in
accordance with our intuitive conception of boundaries under the viewpoint of open
Riemann surfaces); cf. Fig. 1.1.

A boundary point ξ ∈ ∂Y corresponds to a height-one prime ideal q of B containing
the uniformizer π of the ground field K; the boundary point thus gives rise to a discrete
valuation vq on Frac B. In geometric terms, it corresponds to the sup-norm (here, under
the valuation-theoretic point of view, to the inf-valuation) at the respective boundary
of the open analytic curve Y. As we have π ∈ q, the restriction of vq to K is equivalent
to the valuation v on K; we assume vq to be normalized such that equality holds
true (in the case of mixed characteristic (0, p), this is done by demanding vq(p) = 1,
cf. Sect. 1.1). Due to the fact that Y is defined in terms of a permanent model, its
special fiber is reduced. As explained in [AW11, Proof of Prop. 2.3], this implies that
the extension of discrete valuations vq/v is weakly unramified; that is, the two value
groups of vq and v coincide. Furthermore, note that the residue field k(q) of vq is
isomorphic to the discretely valued field k(( t̄)), as k(q) is the function field of the local
branch corresponding to ξ.

Denoting the discrete valuation on k(q) by #q (normalized such that #q( t̄) = 1) and
composing the two valuations vq and #q in the sense of [ZS60, Sect. 10], we get a
rank-two-valuation vξ on Frac B:

vξ : Frac B→Q×Z , f 7→ (vq( f ), #q( f /a)) ,

where a ∈ K is any element having valuation v(a) = vq(a) = vq( f ). We denote the
second component of the rank-two-valuation by #ξ; this is a map from Frac B to Z (but
not a valuation). In the case where Y is an open disk and B = R¹tº, this is precisely the
Weierstraß order; that is, #ξ( f ) is the degree of the distinguished polynomial P ∈ R[T]
in the Weierstraß decomposition f = bPu (with b ∈ R and u ∈ R¹tº×).
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Later on, we will use these valuations to formulate some criteria that enable us to
recognize when open analytic curves are open disks or open annuli; see Lems. 1.28
and 1.30.

1.4. Covering Maps. Though the Semistable Reduction Theorem is concerned with
describing the reduction of a single curve, it will prove useful to take up a relative
viewpoint and interpret the curve under consideration as a finite cover of the projective
line. The underlying idea is that in this situation, the Semistable Reduction Theorem
guarantees the existence of a semistable model for the projective line, the normaliza-
tion of which is a semistable model for the initial curve—provided the base field is
large enough. Without relying on this fact, we are going to take the reversed approach
and construct both a sufficiently large field extension and a semistable model for the
projective line, which induces a semistable model for the initial curve; cf. Thm. 1.15.
As we will see below, we can use the rigid analytic methods introduced in Sect. 1.3 to
address these problems in a more local setting; cf. Thm. 1.24.

1.4.1. Relative Viewpoint. Let Y and X be smooth projective and absolutely irreducible
K-curves. Let Φ : Y → X be a finite covering map, that is, a finite and flat K-morphism.3

Then, for any model XR of X , the normalization YR of XR in the function field K(Y ) is
a model of Y , and we get a corresponding morphism ΦR : YR → XR between those
models, which in turn restricts to a morphism on the special fibers, Φ̄ : Ȳ → X̄ . Recall
that by Conv. 1.6, we can assume both XR and YR to be permanent.

Suppose that we want to determine the semistable reduction of Y . Because the
function field K(Y ) is of transcendence degree one over K , we can choose an element
t ∈ K(Y ) such that K(Y ) is finite separable over the rational function field K(t). We
interpret the latter as the function field of the projective line X := P1

K . In geometric
terms, the choice of t corresponds to a finite separable covering map Φ : Y → X . Then
the Semistable Reduction Theorem in the formulation of Thm. 1.2 is an immediate
consequence of the following relative version Thm. 1.15 (both versions are actually
equivalent). It is the relative version that our algorithm is based on.

Theorem 1.15. Let Y be a smooth projective and absolutely irreducible K-curve together
with a finite covering map Y → X to the projective line X = P1

K . After a finite extension
of the base field K (if necessary), there exists a semistable model XR of X such that the
normalization YR of XR in the function field K(Y ) gives a semistable model for Y .

The proof is based on the following idea, which is explained in detail in [AW11,
Sects. 2.6 and 2.7]: We start with some semistable model XR of the projective line (for
instance, with the standard smooth model P1

R) and its corresponding normalization in
K(Y ), denoted by YR. We can assume both models to be permanent, and also that YR

is not semistable (otherwise, we were finished). A modification of XR—that is, a bira-
tional morphism X ′R → XR—induces by normalization in K(Y ) a morphism Y ′R → YR,
which is seen to be a modification of YR. The goal is thus to find suitable modifications
of XR that induce improving modifications of YR; a finite number of these improvement
steps would then suffice to end up with a semistable model for Y , as was explained
in Sect. 1.2.4. The insight, that the modifications we are looking for can be deduced
from purely local considerations, is the heart of our proof and will be explained in the
sections to follow.

3Since the curves we deal with are smooth and absolutely irreducible, we could equally well demand Φ
to be finite and dominant.
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In any case, it suffices to prove Thm. 1.15 under an additional assumption, as
Rem. 1.16 shows. We introduce the necessary terms: a finite cover Y → X between
smooth projective and absolutely irreducible K-curves is called a G-Galois cover if there
is an action of the finite group G on Y such that X is the quotient of Y by G; this is
equivalent to the field extension K(Y )/K(X ) being Galois with Galois group G.

Remark 1.16. In the statement of Thm. 1.15, we can assume the covering Y → X to
be Galois (see [AW11, Prop. 2.11] for the reasoning).

1.4.2. Covers of Open Analytic Curves. Before we can pass from the global to the local
setting, we need to introduce some notions for the local situation.

Let φ : Y→ X be a finite and flat morphism between rigid analytic curves. In this
situation, φ is determined by the ring extension B/A, where B := �OY and A := �OX are
the respective rings of zero-bounded analytic functions; see [dJ95]. Since A and B are
normal integral domains (see Rem. 1.8), B can be recovered as the integral closure
of A in the field extension K(Y)/K(X) (with the usual notation K(Y) = Frac B and
K(X) = Frac A for the rigid analytic function fields).

Definition 1.17. Let the situation be as above. Then φ is called a finite covering map
if B/A is finite. We speak of a G-Galois cover if, moreover, K(Y)/K(X) is Galois with
Galois group G; in this case, G acts on Y such that X is the quotient of Y by G, and
A= BG can be recovered as the G-invariants of B.

Remark 1.18. A finite covering Y → X of open analytic curves induces a surjective
map ∂Y→ ∂X between their boundary points: for ξ ∈ ∂Y, the restriction of vξ to K(X)
coincides with the rank-two-valuation coming from a uniquely determined boundary
point η ∈ ∂X. In other words, every boundary point of Y lies above precisely one
boundary point of X.

1.4.3. From Global to Local. Let Φ : Y → X be a finite G-Galois cover of smooth
projective and absolutely irreducible K-curves. Denote by XR a model for X , and let YR

be the corresponding normalization in K(Y ); this gives a finite morphism YR→ XR. As
always, we can by Conv. 1.6 assume those models to be permanent. The covering map
Φ induces a finite morphism of corresponding rigid analytic spaces, Φrig : Y rig→ X rig.

Let y ∈ Ȳ be a closed point on the special fiber of YR and let x := ΦR(y) ∈ X̄
be its image point, which is a closed point on the special fiber of XR. We denote by
Y := ]y[YR

⊂ Y rig and X := ]x[XR
⊂ X rig the corresponding formal fibers; by Def. 1.7,

these are determined by the complete local rings O ∧YR,y and O ∧XR,x , respectively. The rigid

analytic map Φrig restricts to a map

φ = Φrig|Y : Y→ X

between open analytic curves; it corresponds to the finite ring extension O ∧YR,y/O
∧
XR,x

induced by the covering map ΦR by completion in the respective points. It follows that
φ is a finite covering map in the sense of Def. 1.17. Since Φ is a G-Galois cover, G
acts on Ȳ . The stabilizer subgroup at y ∈ Ȳ makes φ a StabG(y)-Galois cover of open
analytic curves.

We come back to the situation from Sect. 1.4.1, where we began to study the
semistable reduction of the curve Y from a relative point of view by choosing a finite
separable map to the projective line X . Normalization of the standard smooth model
XR led to the model YR and a covering map ΦR : YR→ XR (with XR and YR assumed to
be permanent). As before, we assume the special fiber of YR to contain a finite number
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of non-nodal singularities y1, . . . , yn ∈ Ȳ ; their image points x i := Φ̄(yi) ∈ X̄ are called
critical points. Since the latter are smooth points of X̄ , their residue classes Xi := ]x i[XR

are open disks, whereas the residue classes Yi := ]yi[YR
of the former points are nei-

ther open disks nor open annuli, as follows from Lem. 1.13. The maps φi : Yi → Xi on
residue classes give rise to the setting that we are mainly concerned with in this paper;
namely, the study of non-trivial Galois covers of the rigid analytic open unit disk.

Denote by Yi and Xi the minimal formal models corresponding to Yi and Xi , re-
spectively. As we will see in the next section, modifications in this local setting—that
is, formal blow-ups of Yi →Xi—induce compatible modifications of the R-models we
started with—that is, blow-ups of the covering YR→ XR.

1.4.4. Modifications Determined by Local Data. In this section, X shall denote the rigid
analytic open unit disk, realized as the residue class ]x0[XR

of a permanent model XR.
As usual, we let A := �OX be the ring of zero-bounded analytic functions on X; by
Lem. 1.13, A is a ring of formal power series, giving the canonical model X := Spf A of
the disk.

Definition 1.19. Let A be a power series ring over R. A parameter for A is a function
t ∈ A such that A= R¹tº. When A is considered as the ring of zero-bounded analytic
functions on an open disk X, we also speak of a parameter for X.

Remark 1.20. The choice of a parameter for the open disk X defines an isomorphism
X ∼= {x ∈ A1

K | 0 < v(t(x))} and, in particular, fixes a center for the disk (though
different parameters can determine the same disk center); see the proof of Lem. 1.28.

We also have the notion of closed subdisks.

Definition 1.21. A subset D ⊂ X is called a closed disk if—after a finite extension of
the base field K—there is a parameter t for the open disk X and a positive number
ρ ∈ R>0 such that D is of the form

D= {x ∈ X | ρ ≤ v(t(x))} .

If D is also an affinoid subdomain of X (which happens precisely if ρ ∈ v(Kac×)), we
call D an affinoid disk.

Remark 1.22. Note that closed disks need to have a representation as in the formula of
Def. 1.21 only after a suitable finite extension of the base field. As long as one is dealing
with a finite number of disks, this has little practical impact—one just works with a
large enough finite extension over which all disks can be defined. Things get more
complicated when infinitely many disks are involved; cf. the situation of Thm. 1.24.

An important observation is the fact that we can state modifications of the consid-
ered models in geometric terms. More precisely, affinoid subdisks of X correspond to
formal blow-ups ofX , which in turn correspond to blow-ups of XR with center x0 ∈ X̄ .
We explain the correspondence.

Let D ⊂ X be an affinoid subdisk. Replacing K by a finite extension (if necessary),
there exists a parameter t ∈ A for X and a radius ρ ∈ v(K×), with ρ > 0, such that
D = {x ∈ X | ρ ≤ v(t(x))}. Denote by a ∈ K any element with valuation v(a) = ρ.
Via the ideal (t, a) Ã A, the affinoid disk D gives rise to a formal blow-up X ′ → X .
The general fact that formal blow-ups are induced by algebraic blow-ups is easy to see
in the current situation: We can assume the parameter t ∈ A to be an element of the
local ring OXR,x0

because every t ′ ∈ OXR,x0
sufficiently close to t is a parameter for X
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FIGURE 1.2. The open analytic curve Y is the residue class of the sin-
gular point y0 ∈ YR; it is the generic fiber associated to the formal
model Y = YR|∧y0

. A covering Y → X of formal models induces a
covering φ : Y→ X of rigid analytic curves; when X = XR|∧x0

is for-
mally smooth, X = ]x0[ is an open unit disk. Modifying with respect
to the minimal exhausting disk D⊂ X improves the situation—in the
depicted case by splitting the singularity of Y into several singulari-
ties less bad.

determining the same ideal (t ′, a) = (t, a) Ã A. The algebraic blow-up f : X ′R → XR

given by (t, a)Ã OXR,x obviously induces the aforementioned formal blow-upX ′→X .
It follows that X ′ = X ′R|

∧
W is the formal completion of X ′R along the exceptional divisor

W := f −1(x0), see [BL93, Sect. 2]. As explained in [AW11, Sect. 3.5], W is a rational
component intersecting the strict transform of X̄ in a unique point w ∈W , which is an
ordinary double point; in other words, f is a simple modification. Furthermore, the
closed disk D can be recovered as the formal fiber of W ◦ := W \ {w} (with respect to
the model X ′R).

Now assume that we have a finite covering φ : Y → X of open analytic curves,
coming from a covering ΦR : YR → XR of permanent R-models. As in Sect. 1.4.1, the
modification f of XR induces by normalization a modification g : Y ′R → YR, which we
can assume to be permanent (after a finite extension of the base field, if necessary; cf.
Conv. 1.6). We call g the modification induced by D. Denoting by Z the exceptional
divisor of g, we get a finite map Z → W ; the inverse image of w consists of those
points of Z that also lie on the strict transform of Ȳ . It follows that E := φ−1(D) is
the formal fiber of Z◦ := Z \ Φ̄′−1(w). The effect of modifying the models YR and XR

is thus described by restricting the rigid analytic covering φ to the affinoid disk D⊂ X
and its preimage E ⊂ Y, that is, by studying φ|E : E→ D. The situation is illustrated
in Fig. 1.2.
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FIGURE 1.3. The affinoid disk D ⊂ X is chosen large enough to be
φ-exhausting: the complement of its preimage is an open annulus.
By contrast, the preimage of a disk D̃⊂ X too small does not capture
all genus of Y.

1.4.5. Characterization of Improvements. We get back to the setting and notation from
Sect. 1.4.3. For the formal models Xi coming from the critical points x i ∈ XR, we
would like to find suitable local modifications that induce improving modifications of
the model YR. If we were able to determine these modifications, we would not only
prove the relative version Thm. 1.15 of the Semistable Reduction Theorem, but with
the arguments from Sect. 1.2.4, we would also have a practical resolution algorithm at
hand. Indeed, if the improved model Y ′R were not yet semistable, we would start over
again and examine the remaining critical points of X ′R (which by [AW11, Sect. 2.7]
would be smooth points of X̄ ′) and the corresponding rigid analytic coverings of open
unit disks. As each iteration improves the situation in the sense of Sect. 1.2.3, finitely
many of these improvement steps suffice to produce a semistable model for Y .

The crucial point is that the improving modifications we are looking for have a nice
geometric interpretation: we will see with Thm. 1.24 and Prop. 1.25 below that the
modification improving the situation at yi ∈ YR corresponds to the smallest affinoid
subdisk Di ⊂ Xi that still captures ‘enough information of the covering’ Yi → Xi in the
sense of the next definition.

Definition 1.23. Let φ : Y→ X be a finite Galois cover of the rigid analytic open unit
disk. An affinoid disk D⊂ X is called exhausting (with respect to φ) if the complement
of its preimage Y \φ−1(D) decomposes into a disjoint union of open annuli.

Figure 1.3 illustrates the intuition behind this notion: exhausting disks are large
enough to capture all genus of the covering. By [BL85, Lem. 2.4], every sufficiently
large closed disk D⊂ X is exhausting; a much more delicate task is to prove that there
is a minimal exhausting disk.

Theorem 1.24. Let φ : Y → X be a finite Galois cover of the open unit disk. If Y is
not a disk (that is, if the canonical model of Y is not formally smooth), then the set of
φ-exhausting disks has a unique minimum with respect to inclusion.

This theorem can be considered as a local version of the Semistable Reduction The-
orem, in that Thm. 1.15 is a consequence of Thm. 1.24 and the following key result
Prop. 1.25 (which is shown in [AW11, Lem. 3.10]); observe that the condition ‘Y is not



SEMISTABLE REDUCTION OF PRIME-CYCLIC GALOIS COVERS 17

a disk’ in the above theorem is satisfied for the coverings coming from the examination
of critical points as described in Sect. 1.4.3.

Proposition 1.25. Let the notation be as before and assume that x0 ∈ X̄ is a critical
point of the covering ΦR : YR → XR. Then the modification g : Y ′R → YR induced by the
affinoid disk D ⊂ X = ]x0[XR

is simple if and only if D is φ-exhausting; the modification
is an improvement at every point y ∈ Φ̄−1(x0) if and only if D is minimal among the set
of φ-exhausting disks.

If we could prove Thm. 1.24 by explicitly constructing a minimal element—the
so-called minimal exhausting disk—the algorithmic procedure explained above would
allow us to actually compute the semistable reduction of any given curve. We will
show in Sects. 2 and 4 that such an explicit construction is possible in certain special
cases (to be introduced in the next section 1.4.6).

1.4.6. Two Main Cases. In [AW11], the local version Thm. 1.24 of the Semistable Re-
duction Theorem is proven except for two base cases, in which the existence of a min-
imal element has to be established by direct arguments. The purpose of the present
dissertation is precisely to fill this gap by providing in both of these cases an explicit
construction of the minimal element, thereby also completing our algorithmic proof of
the Semistable Reduction Theorem.

More precisely, when the covering has a solvable Galois group, Thm. 1.24 can be
reduced via an induction argument to the case where the covering is cyclic of prime
order. In this special situation, we can explicitly construct the minimal exhausting disk,
as will be shown in Sect. 2 of this paper. For the induction step to work, however, it
does not suffice to only study coverings of the open unit disk but prime-cyclic covers
of open annuli also have to be considered. In the latter case, we have to establish the
existence of the so-called maximal separating boundary domain, a generalization of
the notion of minimal exhausting disks. Again, we can provide an explicit construction
of the maximal element; see Sect. 4.

When the Galois group is not solvable, one faces additional problems in that it is
more difficult to rule out the possibility that the intersection of the set of exhausting
disks is empty. This obstacle can be overcome by considering the Berkovich analytic
space associated to the open unit disk. The situation can then be simplified by reducing
to the solvable case through considering certain inertia subgroups of the original Galois
group, which are solvable again; see [AW11, Sect. 5] for the details. We expect that
this reduction step can also be made explicit.

1.5. Separating Boundary Domains. To be able to establish the existence of a mini-
mal exhausting disk, we will need some criteria to recognize when a given closed disk
is exhausting and when it is minimal with this property. As we will also have to deal
with covers of open annuli, we have to slightly generalize the notion of exhausting
disks.

1.5.1. Definition. Let X be the rigid analytic open unit disk or an open annulus, and
let A := �OX denote the ring of zero-bounded analytic functions on X. Let η ∈ ∂X be a
boundary point of X. If X is a disk, there is no choice; if X is an annulus, this amounts
to choosing an ‘orientation’ of X. A parameter for X with respect to η is an element
t ∈ A with vη(t) = (0, 1). If X is a disk, then A= R¹tº and we get an isomorphism

X ∼= {x ∈ A1
K | 0< v(t(x))} ;
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FIGURE 1.4. The notion of separating boundary domains generalizes
the notion of exhausting disks and is applicable in situations where
coverings of open annuli are studied. In the picture, one annulus lies
above the ‘outer’ boundary domain A1 ⊂ X and three annuli lie above
the ‘inner’ boundary domain A2 ⊂ X; both A1 and A2 are thus
φ-separating.

see the proof of Lem. 1.28. In this case, the new terminology agrees with the old one
from Def. 1.19. If X is an open annulus, there exists a ∈ K with v(a) > 0 such that
s := a/t ∈ A is a parameter for X with respect to the boundary point distinct from η,
and the choice of t yields an isomorphism

X∼= {x ∈ A1
K | 0< v(t(x))< ε} ,

where ε := v(a); see the proof of Lem. 1.30.

Definition 1.26. Let X be an open disk or an open annulus, and denote by A := �OX
the ring of analytic functions on X bounded by 0. Let η ∈ ∂X be given. A boundary
domain of X with respect to η is a rigid analytic open subspace A⊂ X of the form

A= {x ∈ X | v(t(x))< ε} ,

where t ∈ A is a parameter for X with respect to η and where ε > 0 is an element of
the value group v(K×). The boundary domain A is called separating for a finite Galois
covering φ : Y → X if φ−1(A) decomposes into a disjoint union of open annuli; see
the illustration in Fig. 1.4.

Remark 1.27. Let X be an open disk and let φ : Y→ X be a finite Galois covering.
Then A ⊂ X is a (maximal) φ-separating boundary domain if and only if X \ A is a
(minimal) φ-exhausting disk.

1.5.2. Recognizing Separating Boundary Domains. In order to be able to recognize ex-
hausting disks (or more generally, separating boundary domains), it is essential that
we can identify open annuli. We start with a lemma that allows us to detect open disks.

Lemma 1.28. Let X be an open analytic curve having exactly one boundary point η ∈ ∂X.
Denote by A := �OX the ring of analytic functions on X that are bounded by 0. Assume,
there is t ∈ A satisfying vη(t) = (0,1). Then X is isomorphic to

{x ∈ A1
K | 0< v(t(x))} ;
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that is, X is an open disk and t is a parameter for X.

For the proof, we will need the following well-known fact from commutative algebra
(which is an easy consequence of [AM69, Lem. 10.23]).

Lemma 1.29. Let ψ : (S,mS) → (T,mT ) be a local homomorphism of complete Noe-
therian local rings. If the induced maps S/mS → T/mT and mS/m

2
S → mT/m

2
T are

isomorphisms, then ψ is also an isomorphism.

Proof of Lem. 1.28. Let Ā := A/(π) denote the ring corresponding to the canonical re-
duction of X. The open analytic curve X comes by definition from a permanent model,
so Ā is reduced; it is even an integral domain, as X has by assumption only one bound-
ary point. We conclude that η ∈ ∂X corresponds to the height-one prime ideal (π)Ã A
and that #(π) (the discrete valuation, which together with v(π) constitutes the rank-
two-valuation vη) is defined on Frac Ā. The assumptions on t imply that its image t̄ ∈ Ā
is a uniformizer for the discrete valuation on Frac Ā; the complete local ring Ā thus
coincides with the valuation ring k¹ t̄º of #(π). As a consequence, the maximal ideal
of A is mA = (π, t).

With the assumptions of Lem. 1.29 being satisfied for the local homomorphism
R¹tº → A, it follows that R¹tº and A are isomorphic; that is, X is an open disk
with parameter t.

The next lemma is similar to Lem. 1.28; it lets us detect open annuli.

Lemma 1.30. Let Y be an open analytic curve having exactly two boundary points
ξ1,ξ2 ∈ ∂Y. Denote by B := �OY the ring of zero-bounded analytic functions on Y, and set
BK := B⊗ K. Assume, there is t ∈ B×K satisfying

vξ1
(t) = (0,1) and vξ2

(t) = (ε,−1)

for some ε > 0 in the value group v(K×). Then Y is isomorphic to

{y ∈ A1
K | 0< v(t(y))< ε} ;

that is, Y is an open annulus of thickness ε and t is a parameter for Y.

Proof. Let q1 Ã B and q2 Ã B be the two minimal prime ideals of B lying over (π)Ã R;
they correspond to the two boundary points ξ1 ∈ ∂Y and ξ2 ∈ ∂Y. Due to assumption,
t lies in both valuation rings Bq1

and Bq2
. Therefore,

t ∈ BK ∩ Bq1
∩ Bq2

= B .

The last equality holds true because a normal integral domain is the intersection of the
localizations at all its prime ideals of height-one, see [Mat89, Thm. 11.5].

The assumptions on t also imply that the image t̄ ∈ B/q1 is a uniformizer with
respect to the discrete valuation #q1

on Frac B/q1, so that B/q1 = k¹ t̄º. Denoting by
a ∈ R an arbitrary element with v(a) = ε, the function s := a/t satisfies the same
assumptions as t does, only with the roles of ξ1 and ξ2 interchanged. Consequently,
s ∈ B×K is an element of B, and B/q2 = k¹s̄º.

Taking both results together yields B/(π) = k¹s̄, t̄ | s̄ t̄ = 0º. Indeed, we have a
sequence

0−→ B/(π)−→ B/q1 ⊕ B/q2 −→ k −→ 0 ,

where the first map sends the residue class f̄ ∈ B/(π) to the pair ( f mod q1, f mod q2),
and where the second map sends ( f1 mod q1, f2 mod q2) to the residue class of f1− f2
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in B/mB = k (here mB Ã B denotes the maximal ideal of the local ring B). This se-
quence is seen to be exact: The injectivity of the first map follows from the equality
(π) = q1 ∩ q2, which can be deduced using [Mat89, Thm. 11.5] once more. Exactness
in the middle is equivalent to q1 + q2 = mB, which holds true because

B/(q1 + q2) = (B/q1)/q̄2 = k¹ t̄º/( t̄) = k ;

for this, note that t ∈ B is an element of q2, since vq2
(t) = ε > 0. The surjectivity of the

second map is clear. As the kernel of the second map is k¹s̄, t̄ | s̄ t̄ = 0º, the asserted
equality with B/(π) follows from the exactness of the sequence.

With [Liu02, Lem. 10.3.20], we deduce that B = R¹s, t | st = aº, which implies
that Y is an open annulus of the asserted form and with t a parameter with respect to
ξ1 ∈ ∂Y.

When considering covers Y→ X of open analytic curves, with X an open annulus,
we can use the above lemma to deduce under certain conditions (which are quite easy
to check in practice) that Y is also an open annulus. In other words, with Lem. 1.31,
we obtain a criterion that allows us to recognize separating boundary domains; the
criterion will be applied, for example, in the proof of Prop. 2.33.

Lemma 1.31. Let X be an open annulus of thickness ε and let Y→ X be a finite covering
of open analytic curves of degree n. Denote by B := �OY and A := �OX the corresponding
rings of zero-bounded analytic functions. Let t ∈ A be a parameter for X. Assume that Y4

has exactly two boundary points ξ1,ξ2 ∈ ∂Y and that there is w ∈ B satisfying

(1) NormB/A(w) = tmu , with a unit u ∈ A× ,
(2) gcd(n, m) = 1 .

Then Y is an open annulus of thickness ε/n.

Proof. Due to assumption (1), the norm of w is a unit in AK := A⊗ K . By the same
argument as in the previous lemma 1.30, it follows that w is a unit of BK .

The two boundary points ξ1,ξ2 ∈ ∂Y lie above the two boundary points η1,η2 ∈ ∂X,
respectively (cf. Rem. 1.18). For i ∈ {1, 2}, the corresponding extension of rank-two-
valuations vξi

/vηi
is weakly unramified with respect to the first component and totally

ramified of degree n with respect to the second component. Indeed, denote by qi Ã B
and pi Ã A the height-one prime ideals corresponding to ξi and ηi . Because the open
analytic curves Y and X are obtained as residue classes of permanent models, the
extension of discrete valuation rings Bqi

/Api
is weakly unramified, as both value groups

coincide with the value group of the valuation on K; see Sect. 1.3.5. As ξi is the only
boundary point of Y lying above ηi ∈ ∂X, we deduce from the fundamental equality
relating ramification and inertia degree with the extension degree that the extension of
residue fields is of degree [Frac B/qi : Frac A/pi] = n. Both residue fields are complete
discretely valued fields, and these, in turn, have the algebraically closed k as their
residue field; consequently, the extension has to be totally ramified of degree n, as
asserted.

Using assumption (1), we can thus calculate

vξ1
(w) = vξ1

(tmu)/n= (0, m) and vξ2
(w) = vξ2

(tmu)/n= (mε/n,−m) .

Due to assumption (2), there exist a, b ∈ Z with am+ bn= 1. Setting

v := wa t b ∈ B×K , (1.2)

4Recall that the open analytic curve Y is connected; see Rem. 1.8.
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it is easy to verify that v satisfies the assumptions of Lem. 1.30 with regard to Y. As a
consequence, Y is an open annulus of thickness ε/n and v is a parameter with respect
to ξ1 ∈ ∂Y.

1.5.3. Recognizing Improvements. In the previous section, we have deduced the crite-
rion Lem. 1.31 to recognize separating boundary domains. With respect to Prop. 1.25,
we will also need to know when a given exhausting disk is minimal (that is, when
the corresponding modification is an improvement), or more generally, when a given
separating boundary domain is maximal.

The following facts come from the considerations in [AW11, Lem. 2.9]. The first
lemma is well-suited for the study of disk coverings as carried out in Sect. 2, while the
second lemma is better suited for our study of coverings of open annuli in Sect. 4.

Lemma 1.32. With the usual notation, let φ : Y→ X be a covering of the rigid analytic
open unit disk induced by a finite Galois covering ΦR : YR → XR of permanent R-models
through localizing in a smooth critical point of XR. The modification associated to the
exhausting disk D ⊂ X is an improvement of the model YR, if and only if the reduction
Ē of the affinoid E := φ−1(D) is either smooth of positive genus or contains at least two
singular points.

Lemma 1.33. With the usual notation, let φ : Y→ X be a covering of a rigid analytic
open annulus X of thickness ε, induced by a finite Galois covering ΦR : YR → XR of
permanent R-models through localizing in an ordinary double point of XR. Let t ∈ �OX be
a parameter of X with respect to the boundary point η ∈ ∂X, and assume the boundary
domain A = {x ∈ X | v(t(x)) < ρ}, with ρ ∈ v(K×) and 0 < ρ < ε, to be separating.
Then A is maximal, if and only if the reduction of the affinoid

φ−1({x ∈ X | ρ = v(t(x))})⊂ Y

is either smooth or contains a singular point.

2. PRIME-CYCLIC ÉTALE GALOIS COVERS OF THE OPEN UNIT DISK

As mentioned in Sect. 1.4.6, one of our objectives is to determine the minimal ex-
hausting disk for prime-cyclic Galois coverings of the open unit disk. As explained
there, this case serves as the induction basis when dealing with a general solvable Ga-
lois group; we will deal with this situation in this section, but under the additional
assumption of the covering being étale. In Sect. 4, we will handle the ramified case
and, somewhat more generally, study coverings of open annuli (the other situation that
has be taken care of for the induction argument to work).

2.1. Setting. Throughout this section, we assume K to be of mixed characteristic
(0, p). We will study a prime-cyclic étale Galois covering φ : Y → X of the rigid
analytic open unit disk, and we want to prove Thm. 1.24 in the case that the covering
is of degree p. This really is the essential and hardest case, and it is the contents of the
next theorem (the proof of which will occupy the rest of this section).

Theorem 2.1. Let φ : Y→ X be a p-cyclic étale Galois cover of the rigid analytic open
unit disk X. If the covering is non-trivial (that is, if Y is not a disk) then the set of
φ-exhausting disks has a unique minimum with respect to inclusion, and this minimum
can explicitly be constructed.
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As before, we denote by B := �OY and A := �OX the corresponding rings of zero-
bounded analytic functions, giving the canonical models Y := Spf B and X := Spf A.
The assumption that φ is a p-cyclic Galois cover translates by Def. 1.17 into the fol-
lowing: B is the integral closure of A in the p-cyclic Galois extension Frac B/Frac A. By
Kummer theory, the latter is given by an irreducible equation of the form

y p = f , (2.1)

with an element f ∈ (Frac A)× that is not a pth power in Frac A. This requires K to be
large enough to contain a primitive pth root of unity; by Conv. 1.6, we may (and will)
assume K to do so.

Multiplying with appropriate pth powers, we can assume f to be an element of A.
Choosing a parameter t ∈ A (therewith also fixing a center for the disk X), we can
write A= R¹tº and express f as a power series in t over R,

f =
∞
∑

i=0

ai t
i .

Due to our assumption that the covering shall be étale, we can even assume that f is a
unit of A. Indeed, by Weierstraß preparation (for example, [BGR84, Sect. 5.2.2]), we
can write f = bPu, with an element b ∈ R\{0}, a distinguished Weierstraß polynomial
P ∈ R[t] of degree n, and an invertible power series u ∈ R¹tº×. Replacing K by a
finite extension (if necessary), we can replace y by b1/p y and assume b = 1. Then, if
f is not a unit of A, there has to be x ∈ K with f (x) = P(x) = 0 (again, it might be
necessary to pass to a finite extension of K). We have v(x) > 0, as can be deduced
from the Newton polygon of P (see Sect. 2.2.3 for a quick reminder of this concept).
The zero x ∈ R therefore corresponds to a point of the open unit disk X. But then
the multiplicity of x in P has to be divisible by p—otherwise the covering would be
ramified in this point, contradicting our assumption. After a variable change collecting
all powers (t − x)p into y , we can hence assume that P = 1 and, accordingly, that
f ∈ A× is a unit.

In the following, we will often refer to the above setting, which we call the geometric
situation: that is,

the power series f ∈ A is a unit of A and not a pth power in A . (GEOM)

Recall that a formal power series is invertible precisely when its constant coefficient is
a unit (so after a further extension of K , we could assume a0 = 1).

2.2. Special Fiber. In order to determine appropriate modifications of Y , we first
have to understand what the special fiber of Y looks like. Just reducing the cover
defining equation y p = f is often of limited use since y might not generate B over A.
Or, the reduced equation might describe a non-reduced scheme, whereas by Conv. 1.6,
the models we are studying are all assumed to be permanent. As an example, consider
the 3-cyclic Galois cover given by the equation y3 = 1+ 3t3 + 3t5: reduction modulo
3 leads to the non-reduced scheme given by the third power ȳ3 = 1.

The basic idea is to first approximate f by a pth power hp ‘as good as possible’ and
then make a change of coordinates (heuristically speaking, all pth powers contained
in f should be taken care of by y p). This will lead to an equation for a generator w of
B over A, and this equation will be suitable for reduction.
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2.2.1. Best Approximation. The next proposition shows how to obtain an algebraic
description of the covering Y→ X, that is, of the corresponding ring extension B/A of
zero-bounded analytic functions. Similar assertions in the context of discrete valuation
rings are well-known, cf. [Hen00].

Proposition 2.2. Let Y → X be a p-cyclic étale Galois cover of the rigid analytic open
unit disk, and denote by B := �OY and A := �OX the corresponding rings of zero-bounded
analytic functions. Assume that the covering is given by a Kummer equation y p = f , with
f ∈ A× as in (GEOM). Denote by η ∈ ∂X the unique boundary point of the disk and by
vη the associated rank-two-valuation. Then the following holds true:

(1) The subset

{vη( f − hp) | h ∈ A} ⊂Q×Z

has a unique maximum (µ, m), with 0≤ µ < p/(p− 1) and with m prime to p.
(2) Let h ∈ A be any best-approximating element (that is, an element giving the

maximal possible value vη( f − hp) = (µ, m)).
(a) If µ= 0, we have B = A[w], with w ∈ B satisfying wp = f .
(b) Otherwise, we have B = A[w], with w := (y − h)/λ ∈ B satisfying

(λw+ h)p − hp

λp = wp + · · ·+ pλ1−php−1w =
f − hp

λp

(and where λ ∈ K is some element of valuation v(λ) = µ/p).

Remark 2.3. The classical notion of Artin conductors (as in [Ser79, Sect. VI.2]) can
be generalized by defining them in terms of the rank-two-valuations coming from the
boundary points of open analytic curves. For example, in the situation of the corollary,
the Artin conductor at η ∈ ∂X is aη = (p − 1)(1− m). These generalized Artin con-
ductors measure the ramification at the boundaries of open analytic curves and can be
used to formulate another criterion to recognize separating boundary domains. But
since our intention is to keep all calculations as simple and practical as possible, we
stick to the more basic criteria explained in Sect. 1.5.2.

Proof of Prop. 2.2. We first assume that f̄ ∈ Ā := A/(π) = k¹ t̄º is not a pth power;
then the Kummer equation y p = f remains irreducible over Ā, and for all h ∈ A, we
have v(π)( f − hp) = 0. Hence, in this case, µ = 0 is the maximal value that can occur.
Also, the maximal value for m= #η( f − hp) is seen to be ord t̄(d f̄ )+ 1, which is prime

to p. This is because changing h changes f − hp by a pth power of k¹ t̄º—these are
precisely the power series in t̄ p over k—and every change by a pth power can be
obtained in this way. We will show further below that w ∈ B with

wp = f (2.2)

generates the ring extension B/A.
Next, we consider the case where f̄ ∈ Āp. The proof is similar to the previous case,

but it is more difficult to justify that the maximum of v(π)( f − hp) is attained. We
choose h ∈ A× such that µ := v(π)( f − hp) > 0. Set g̃ := f − hp and consider the
variable change w̃ := y − h leading to the irreducible equation

F̃(w̃) = (w̃+ h)p − hp − g̃ = w̃p + · · ·+ php−1w̃− g̃ = 0 , (2.3)
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where F̃ is a monic irreducible polynomial of degree p over A. Choosing λ ∈ K with
v(λ)≤ µ/p and setting g := g̃/λp, we can make a further variable change

w :=
w̃

λ
=

y − h

λ
, (2.4)

resulting in the irreducible polynomial equation

F(w) =
(λw+ h)p − hp

λp − g = wp + · · ·+ php−1λ1−pw− g = 0 . (2.5)

We are going to show that we always have µ < p/(p − 1). Indeed, by contradiction
suppose that µ ≥ p/(p − 1). We can then make the variable change (2.4) choosing
λ := ζp−1, with ζp ∈ K a primitive pth root of unity; note that v(λ) = 1/(p−1)≤ µ/p.
Reducing Eq. (2.5) modulo the maximal ideal (π, t) Ã A results in an Artin–Schreier
type equation over the algebraically closed residue field A/(π, t) = k, which has p
distinct solutions (one has to use the fact that h has, as an invertible power series, a unit
as leading coefficient). Since A is complete with respect to (π, t), those solutions over
k lift by Hensel’s lemma to solutions in A—contradicting the fact that F is irreducible.
As a consequence, the possible values for v(π)( f − hp), with h ∈ A, are bounded from
above. Because v(π) is discrete, we can choose h ∈ A× such that the maximal possible
value µ < p/(p− 1) is attained.

We still have to see that the rank-two-valuation vη attains a maximum (µ, m). We
first show that K contains an element with valuation µ/p. For this, we come back to
Eq. (2.3) and consider an arbitrary (but fixed) extension vq of v(π) to Frac B. Since B/A
is finite, vq dominates B and thus corresponds to a height-one-prime ideal q Ã B, with
π ∈ q. By the same reasoning as before, vq/v(π) is seen to be weakly unramified: open
analytic curves are defined in terms of permanent models and the value groups of vq
and v(π) therefore coincide with v(K×); see Sect. 1.3.5. Then, by the strong triangle
inequality, since vq( g̃) = v(π)( g̃) = µ < p/(p − 1), at least one of the other terms in
Eq. (2.3) needs to have valuation µ as well. One easily sees that we necessarily have
vq(w̃) = µ/p. Consequently, there is also a field element of K having this valuation.
We can thus consider the variable change (2.4) under the assumption that h gives the
best possible approximation µ = v(π)( f − hp) and λ ∈ K has valuation v(λ) = µ/p.
Then the reduction F̄ := F mod (π) remains irreducible over Ā := A/(π), which is to
say that ḡ is not a pth power. Indeed, F̄ is a purely inseparable equation of the form
w̄p = ḡ. If we had ḡ = q̄p, we could set h1 := h+ λq, with q ∈ A denoting any lift of
q̄. But then v(π)( f − hp

1) > v(π)( f − hp)—contradicting the choice of h. As in the case
µ = 0, it is now easy to see that the second component of vη also attains a maximum
m when h ∈ A runs over all elements giving the maximal value µ= v(π)( f −hp) for the
first component, and that m is maximal if and only if (m, p) = 1.

To finish the proof of the proposition, it remains to show that B/A is generated by
w ∈ B satisfying Eq. (2.2) in the first case and satisfying Eq. (2.5) otherwise (in the
latter case, w shall be as in (2.4), with h ∈ A giving the best possible approximation5

(µ, m) = vη( f − hp) and with λ ∈ K of valuation v(λ) = µ/p). For this, it suffices to
see that A[w] is normal. Indeed, this would allow us to identify A[w] with the integral
closure B of A in Frac B, as A[w] is integral over A and has Frac B as its fraction field.
Since A[w] is Cohen–Macaulay (as a complete intersection over the local Noetherian
ring A), by Serre’s criterion on normality it is normal if and only if it is normal at its

5For the argument to follow, it would actually suffice to choose any element h ∈ A maximizing the first
component v(π) of the rank-two-valuation vη.
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points of codimension one, see [Liu02, Thm. 8.2.23 and Cor. 8.2.24]. These points
are either closed points of the generic fiber, which are normal because w generically
describes the étale cover Y→ X of rigid analytic curves, or generic points of the special
fiber. There is precisely one of the latter points because the ideal (π) remains prime in
A[w]: as seen above, F̄ := F mod (π) remains irreducible over Ā := A/(π).

To show normality at (π)Ã A[w], we have to see that the corresponding localization
A[w](π) = S[w] is normal. Here we have written S := A(π) for the valuation ring
of v(π); denote its integral closure in Frac B by T . Since F̄ remains irreducible over
S̄ := S/(π) = Frac A/(π), the fundamental equality relating ramification degree, inertia
degree, and extension degree shows that T has to be a single discrete valuation ring
as well (or in other words, that the valuation v(π) has only one extension to Frac B,
which also means that there is only one boundary point of Y lying above η ∈ ∂X).
Moreover, the extension of residue fields T̄/S̄ is generated by w̄. Then Nakayama’s
lemma implies that w generates T over S; that is, T = S[w]. As a consequence, S[w]
is normal. All in all, we conclude that A[w] is normal, therewith finishing the proof of
the proposition.

Corollary 2.4. In the situation of Prop. 2.2, there is precisely one boundary point ξ ∈ ∂Y
lying above η ∈ ∂X, the unique boundary point of the disk.

Proof. See the last section in the proof of Prop. 2.2.

Corollary 2.5. When the covering Y → X in the statement of Prop. 2.2 is non-trivial
(that is, when Y is not a disk itself), we always have m > 1. In particular, this holds true
in the situation of Thm. 2.1.

Proof. Suppose that we have m = 1. Then the element w ∈ B (notation as in the
proof of Prop. 2.2) satisfies vξ(w) = (0,1), where ξ denotes the unique boundary
point of Y (note that the rank-two-valuation vξ/vη is weakly unramified with respect
to the first component and totally ramified of degree p with respect to the second
component; cf. the proof of Lem. 1.31). But then, by Lem. 1.28, Y is seen to be a
disk—contradiction.

Remark 2.6. In principle, the procedure described in the proof of Prop. 2.2 allows to
produce a best approximation of f by a pth power. However, this requires the base field
K to be large enough to have vξ/v be weakly unramified. This is all right for our new
proof of the Semistable Reduction Theorem because, in theory, we can always assume
to work with permanent models. But in practice, we usually do not know how large
the base field has to be; a practical way of determining best approximations therefore
requires other means (for example, the method of formal p-Taylor expansions to be
introduced in the next section 2.2.2). Nevertheless, the above algorithm will prove
very useful in the situation Sect. 4.5.2 is devoted to.

It is easy to recognize best approximations.

Lemma 2.7. Let the power series f ∈ A× be as in the geometric situation (GEOM).
Denote by (µ, m) the value of a best possible approximation of f by a pth power in the
sense of Prop. 2.2. Let h̃ ∈ A be given and set (µ̃, m̃) := vη( f − h̃p). If p - m̃ then h̃p

provides a best possible approximation of f —that is, (µ̃, m̃) = (µ, m).
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Proof. Let h ∈ A× be any element giving the best possible approximation (µ, m) of f
by a pth power. By contradiction, suppose that vη( f − h̃p) < (µ, m). Then the strong
triangle inequality shows that

vη( f − h̃p) = vη(h̃
p − hp)< (µ, m) . (2.6)

Write h̃ = h+∆ and set (α, k) := vη(∆). Since h is a unit in A, we derive from the
binomial expansion h̃p − hp = php−1∆+ · · ·+∆p the inequality

vη(h̃
p − hp)≥min{(1+α, k), (pα, pk)} , (2.7)

with equality holding true in case 1+α 6= pα. Using (2.6) and (2.7), we conclude that
p/(p−1)> µ≥min{1+α, pα}, and therefore inequality (2.7) can be strengthened to

vη(h̃
p − hp) = (pα, pk) .

Indeed, suppose that 1+α≤ pα; then p/(p−1)> 1+α and consequently 1+α > pα—
contradiction. But then

vη( f − h̃p) = (pα, pk)

follows, contradicting the assumption that m̃ is prime to p.

Remark 2.8. In the above proof, we do not use the fact that K is discretely valued—
we only use the strong triangle inequality (which holds true for all algebraic exten-
sions of K) to compare a best possible approximation with another approximation. We
conclude that best possible approximations remain so under base change to arbitrary
algebraic extensions of K , and that best approximations can be recognized with the
condition of the lemma (that is, #η( f −hp) prime to p). This becomes important in the
proof of Prop. 2.31: there, we have to deal with approximating power series defined
over the integral extension Rac/R of infinite degree and we need the uniqueness result
from Prop. 2.28, which is based on the above Lem. 2.7.

Our next task is to actually determine an element h such that hp approximates f
as good as possible. This is done by extending a method introduced by Matignon, see
below.

2.2.2. Formal p-Taylor Expansion. In earlier work, Matignon and Lehr also have exam-
ined p-cyclic Galois covers of the projective line, but they did so under the assumption
of equidistant geometry. The latter means that for the projective line, there exists
a smooth model separating the branch points of the covering. In this specific situ-
ation, the semistable model of the considered curve is of a rather simple structure;
namely, the reduction is treelike. This allows to make ad-hoc assertions on where
to find the separable components. Lehr [Leh01] started by offering an algorithm that
gives the stable model under the additional condition that the cardinality of the branch
locus is not greater than p. In this case, the necessary modifications can be read off
from the Taylor expansion of the polynomial defining the cover. In subsequent work,
Matignon [Mat03] generalized the classical Taylor expansion by introducing the notion
of p-Taylor expansion, which enabled him to get rid of the cardinality restriction.

Inspired by these ideas, we will now introduce so-called formal p-Taylor expansions;
in the context of our new resolution algorithm, these allow to determine all required
blow-ups without any of the above limitations. Note that in contrast to the global
situation studied by Matignon (that is, covers of the projective line), we are in a purely
local setting in which the property of equidistant geometry does not even make sense;
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this greater generality also allows us to extend our methods to coverings of prime
power degree, see Sect. 5.

For integers n ∈ N0, set νn := 1+ 1/p+ · · ·+ 1/pn ∈ Q. Note that νn → p/(p− 1)
for n→∞; we will use this fact several times (for example, see Rems. 2.17 and 2.24).

Definition 2.9. Let A be a power series ring over R. A formal p-Taylor expansion of
level n ∈ N0 for f ∈ A× is given by a parameter t for A and a function h ∈ A× such that
the following condition on the coefficients in the power series expansion

f − hp =:
∞
∑

i=0

a′i t
i ∈ R¹tº

holds true:

(∗) v(a′jp)≥ νn for all j ∈ N0 .

This is abbreviated to ( f ; h, t; a′i).

When considering power series (or in Sect. 4, formal Laurent series)
∑

a′i t
i , coeffi-

cients a′i with index of the form i = p j, j ∈ Z, are called p-coefficients. In terms of this
notion, Def. 2.9 states that a formal p-Taylor expansion ( f ; h, t; a′i) approximates f by
a pth power in such a way that all p-coefficients of f − hp are simultaneously made
small (with ‘how small’ depending on the level n of the expansion).

Before we can establish the existence of formal p-Taylor expansions, we need a
lemma that allows us to uniformly approximate elements of R by pth powers (up to a
given level n ∈ N0).

Lemma 2.10. For all n ∈ N0, there exists a finite field extension Kn/K such that for all
a ∈ R, there is b ∈ Rn with

v(a− bp)> νn + v(a) .

(Here Rn denotes the integral closure of R in Kn.)

Proof. For notational convenience, set K−1 := K and R−1 := R. After fixing some
uniformizer π−1 of R−1, we inductively define for n ∈ N0:

Kn := Kn−1(πn | πp
n = πn−1) .

Then the corresponding rings of integers are Rn = Rn−1[πn | πp
n = πn−1]. We show

that Kn/K is as in the statement of the lemma; more precisely, for any given a ∈ R, we
will inductively construct elements b[n] ∈ Rn that satisfy

v(a− (b[n])p)> νn + v(a) . (2.8)

For this, we set

b[−1] := 0 ∈ R−1 and b[n] := b[n−1] +δ[n] ∈ Rn ,

with the improvement term δ[n] ∈ Rn defined as follows: as the residue field of Rn−1 is
the algebraically closed field k, we can expand elements of the complete Rn−1 as power
series in the corresponding uniformizer πn−1; in particular, we can write

a− (b[n−1])p =:
∞
∑

i=0

(a[n−1]
i )pπi

n−1 ,

with a[n−1]
i ∈ Rn−1, and then set

δ[n] :=
∞
∑

i=0

a[n−1]
i πi

n ∈ Rn .
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We assert that the elements b[n] satisfy inequality (2.8). This will be an easy conse-
quence of the calculation

a− (b[n])p = a− (b[n−1] +δ[n])p

= (a− (b[n−1])p)− (δ[n])p −
p−1
∑

j=1

�

p

j

�

(b[n−1]) j(δ[n])p− j . (2.9)

For the induction basis n= 0, note that b[−1] = 0; the first term of (2.9) is therefore
just the element a, and the third term vanishes completely. By construction, the second
term kills the first term, but only up to mixed terms, which, however, are of valuation
strictly larger than

1+ p ·
v(a)

p
= ν0 + v(a) :

they result as sums of products of a binomial
�p

j

�

(with 0 < j < p) and p factors
of valuation at least v(a)/p (with at least one of these factors having strictly larger
valuation).

For the induction step, let n > 0 be given and assume that b[n−1] fulfills inequality
(2.8). Then the first term of (2.9) gives the approximation with respect to level n− 1.
Analog to the case n= 0, the second term kills the first term up to mixed terms, which
are of valuation strictly larger than

1+ p ·
νn−1 + v(a)

p
> 1+

νn−1

p
+ v(a) = νn + v(a) ,

as they result as sums of products of a binomial
�p

j

�

(with 0 < j < p) and p factors
of valuation at least (νn−1 + v(a))/p (with at least one of these factors having strictly
larger valuation). The summands of the third term have valuation strictly larger than

1+ j ·
v(a)

p
+ (p− j) ·

νn−1 + v(a)
p

≥ νn + v(a) .

This shows the induction step and finishes the proof.

Remark 2.11. The assertion of Lem. 2.10 is stronger than needed for the proof of
Prop. 2.12; there, it suffices to have an estimation of the form v(a− bp) ≥ νn. Never-
theless, the stronger statement will be needed in Sect. 4.5.1, where we will introduce
formal p-Taylor expansions for Laurent series.

The next proposition shows that we can always obtain formal p-Taylor expansions—
provided, we allow the base field to get finitely enlarged. In view of Conv. 1.6, this
poses no problem; the crucial point is that we can explicitly state a suitable field,
making this method also well-suited for our practical, algorithmic purposes.

Proposition 2.12. Let A be a power series ring over R and let f ∈ A× be given. Fix a
level n ∈ N0. After replacing K by a suitable finite field extension, there exists, for each
parameter t, a formal p-Taylor expansion ( f ; h, t; a′i); moreover, we can assume a′0 = 0.
Both the extension field and the expansion can be determined by a practical algorithm.

Remark 2.13. With notation as in Lem. 2.10, the proof of Prop. 2.12 will show that
an extension field as in the statement of the proposition is given by

L := (. . . ((K(a1/p
0 )0)1) . . .)n = K(a1/p

0 )(Π | Π
pN = π′) ,
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with a1/p
0 a pth root of the constant coefficient of f (t), with π′ a uniformizer of the

integral closure of R in K(a1/p
0 ), and with N = 1+ · · ·+ (n+ 1) = (n+ 1)(n+ 2)/2.

Proof of Prop. 2.12. With respect to the chosen parameter t, we expand f ∈ A as a
power series

f =
∞
∑

i=0

ai t
i ∈ R¹tº .

Note that a0 ∈ R is a unit, as f ∈ A is assumed to be a unit. By a similar construction
as in the proof of Lem. 2.10, we will inductively construct elements h[n], whose pth
powers approximate f up to level n ∈ N0. In each step, it will be necessary to pass to
a successively larger finite extension of K . To avoid confusion with the notation from
Lem. 2.10, we denote the respective extensions by K[n]/K and the corresponding rings
of integers by R[n]; for notational convenience, we also set K[−1] := K and R[−1] := R.

For n ∈ N0, we define

h[−1](t) := 0 ∈ R[−1]
¹tº and h[n](t) := h[n−1](t) +δ[n](t) ∈ R[n]¹tº ,

with the improvement term

δ[n](t) :=
∞
∑

j=0

b[n]j t j ∈ R[n]¹tº

having coefficients b[n]j , whose pth powers approximate the p-coefficients a[n−1]
jp from

the previous approximation step

f (t)− (h[n−1](t))p =:
∞
∑

i=0

a[n−1]
i t i ∈ R[n−1]

¹tº

at least up to valuation νn, that is,

v(a[n−1]
jp − (b[n]j )

p)≥ νn . (2.10)

By Lem. 2.10, all elements b[n]j as required are contained in the ring of integers R[n] of
the finite extension

K[n] := (K[n−1])n

of degree pn+1 (with notation as in the lemma). Note that other field extensions
K[n]/K[n−1] can work as well: it is only necessary that the extensions are finite and
contain enough elements for approximations in the sense of (2.10). For instance, when
f were a polynomial function (and not a true power series), we could brutally adjoin
pth roots

b[n]j := (a[n−1]
jp )1/p

to K[n−1] and use these for the definition of δ[n](t): as f (t) would consist of only
finitely many terms, the resulting field extension would still be finite (though probably
of a larger degree than actually needed); this is noted in Rem. 2.14.

We assert that h[n] gives rise to an approximation of level n; for this, we have to
verify that the p-coefficients of f − (h[n])p have valuation at least νn. We calculate

f − (h[n])p = f − (h[n−1] +δ[n])p

= ( f − (h[n−1])p)− (δ[n])p −
p−1
∑

j=1

�

p

j

�

(h[n−1]) j(δ[n])p− j . (2.11)
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For the induction basis n = 0, note that h[−1] = 0. Hence, the first term of (2.11)
is just f and the third term vanishes completely. By construction, the second term
approximates the p-coefficients from the first term with valuation at least ν0, but there
are also mixed terms interfering; these, however, are also of valuation at least ν0 = 1:
they result as sums of products of a binomial

�p
j

�

(with 0 < j < p) and p factors of
non-negative valuation.

For the induction step, let n > 0 be given and assume that h[n−1] ∈ R[n−1]
¹tº

satisfies condition (∗) of Def. 2.9. Then the first term of (2.11) gives the approximation
with respect to level n−1. Analog to the case n= 0, the second term approximates the
p-coefficients from the first term with valuation at least νn, with the additional mixed
terms that arise having valuation at least

1+ p ·
νn−1

p
> νn ,

as they result as sums of products of a binomial
�p

j

�

(with 0 < j < p) and p factors of
valuation at least νn−1/p. The summands of the third term are seen to be of valuation
at least

1+ (n− j) ·
νn−1

p
≥ νn .

As a consequence, h[n] provides an approximation of level n. This shows the induction
step.

We still have to see that h[n] ∈ R[n] is a unit for all n ∈ N0. But this is evident
because the pth power of the constant coefficient of h[n](t) approximates the constant
coefficient a0 ∈ R× of the unit f =

∑∞
i=0 ai t

i ∈ A× with strictly positive valuation νn > 0

(and therefore is a unit as well). Also, assuming K to contain a pth root a1/p
0 of a0, the

approximating function h[0](t) =
∑∞

j=0 b[0]j t j ∈ R[0]¹tº of level zero can be defined

using this element as constant coefficient, that is, with b[0]0 := a1/p
0 . The consequence

is that the so-defined approximation kills the constant coefficient of f (t), and we may
assume all subsequent approximations of higher level to do so as well (as b[0]0 can be
kept as constant coefficient of h[n]). In other words, p-Taylor expansions ( f ; h, t; a′i)
can be assumed to satisfy a′0 = 0. This completes the proof of the proposition.

Remark 2.14. When f is a polynomial function, the proof of Prop. 2.12 shows that
p-Taylor expansions can be defined over finite field extensions that result from K by
successively adjoining pth roots of all p-coefficients encountered in the inductive pro-
cedure. In particular, this brute force approach is possible for disk coverings coming
from the global situation in the course of applying our resolution algorithm (that is, by
localizing a p-cyclic covering YR→ XR in critical points as described in Sect. 1.4.3).

Remark 2.15. We will later use approximations like those coming from p-Taylor ex-
pansions to determine the minimal exhausting disk. It will then become important to
consider the expansions with respect to a suitable parameter, as the minimal exhaust-
ing disk is determined not alone by its radius but its center is also of crucial importance.
The proof of Lem. 2.35 will show that a good parameter t (that is, a good disk center)
has been found when expansions ( f ; h, t; a′i) with a′0 = 0 and a′1 small enough exist;
the existence of these more special approximations will be established in Prop. 2.31
using a similar construction as above but considering a generic parameter.
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We have shown that formal p-Taylor expansions of arbitrary high level exist and can
be practically constructed. The next corollary shows that expansions of high enough
level give rise to best approximations in the sense of Prop. 2.2.

Corollary 2.16. Let the power series f ∈ A× be as in the geometric situation (GEOM),
and denote by (µ, m) the value of a best possible approximation of f by a pth power in
the sense of Prop. 2.2. When the level n ∈ N0 of a formal p-Taylor expansion ( f ; h, t; a′i)
is chosen high enough to have νn > µ hold true, we have vη( f − hp) = (µ, m).

Remark 2.17. Since µ < p/(p − 1) by Prop. 2.2 and νn → p/(p − 1) for n → ∞, it
is always possible to choose the level n ∈ N0 high enough to satisfy the condition of
the corollary. In practice, though, we do not know in advance how high the level has
to be chosen; yet the method of p-Taylor expansion constitutes a practical algorithm
to produce best approximations: finitely many steps will always suffice and by the
results of Rem. 2.8, we will be able to recognize a best approximation as such. What
is important: this is without any prior assumptions on the base field—the algorithm
automatically produces a suitable extension field (in contrast to the algorithm from
Prop. 2.2, see Rem. 2.6). This makes Epp’s result [Epp73] constructive in the situation
under consideration.

Proof of Cor. 2.16. Set (µ̃, m̃) := vη( f − hp). If m̃ were not prime to p, we would have
the chain of inequalities µ̃ > νn > µ due to condition (∗) of a p-Taylor expansion and
our requirements on the level n. But this is not possible since f can be approximated
by a pth power only up to valuation µ, cf. Rem. 2.8. As a consequence, m̃ is prime to p.
But then, also by loc.cit., (µ̃, m̃) has to coincide with the value (µ, m) of a best possible
approximation of f by a pth power.

Now that we can practically obtain best approximations, we can use Prop. 2.2 to
practically describe the ring extension B/A corresponding to the p-cyclic covering φ :
Y → X. Further below, when we will use formal p-Taylor expansions to identify the
minimal φ-exhausting disk, we will need approximations that in some sense are even
better, see Cor. 2.23. Namely, we will need approximations that are so good that they
also induce a description of the ring extension for the restricted covering φ−1(D)→D,
withD⊂ X an affinoid subdisk. Such approximations will be called sufficiently precise;
the exact definition will be given in Sect. 2.2.4.

2.2.3. Modified Newton Polygon. The notion of sufficiently precise approximations will
be defined in terms of certain Newton polygons. In this section, we recall the basics of
this concept.

Definition 2.18. As always, let K be a local field with discrete valuation v. Let a
polynomial f =

∑n
i=0 ai t

i ∈ K[t] be given. The Newton polygon of f is defined to be
the lower convex hull of the set of points Pi := (i, v(ai)) in the plane, see Fig. 2.1.

The Newton polygon allows to determine the valuation of the zeros of f and their
respective multiplicities.

Lemma 2.19. In the situation of Def. 2.18, let µ j ∈ Q and λ j ∈ N denote the slope resp.
the length of the t-axis-projection of the jth line segment in the Newton polygon of f .
Then f has precisely λ j roots of valuation −µ j (in the algebraic closure Kac of K).

Proof. See [Neu02, Satz 6.3].
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FIGURE 2.1. From the Newton polygon associated to the polynomial
f = 3+ 3t2+ 31/2 t3+ 31/2 t5+ 32 t6+ 32 t7 ∈Qac

3 [t], we deduce that
f has three zeros of valuation 1/6, two zeros of valuation 0, and two
zeros of valuation −3/4.

The Newton polygon concept is not limited to polynomials; it can be carried over
to the context of formal power series (or formal Laurent series) by defining the New-
ton polygon as the limit of the Newton polygons for finite partial sums, see [Kob84,
Sect. IV.4]. In the following, we need to consider a variant of the Newton polygon,
which is well-adapted to our specific situation of p-cyclic coverings. We will make use
of the special point P ′0 := (0, p/(p − 1)). Later on, the role of P ′0 in determining the
correct radius for the minimal exhausting disk will become clear; see Sect. 2.3.1.

Definition 2.20. The modified Newton polygon of the power series f =
∑∞

i=0 ai t
i ∈ A

is the lower convex hull over the points Pi := (i, v(ai)), for positive integers i ∈ N, and
the specially defined point

P0 :=

(

(0, v(a0))

P ′0 = (0, p/(p− 1))

if v(a0)< p/(p− 1) ,

otherwise .

In other words, the modified Newton polygon of f shall start at the point (0, v(a0))
when v(a0)< p/(p− 1) and at P ′0 = (0, p/(p− 1)) otherwise.

For notational convenience, when we refer to a point Pi in the modified Newton
polygon, we denote by v(Pi) its value on the v( · )-axis. For example, by definition of
P0 in the modified Newton polygon, we always have v(P0)≤ p/(p− 1).

Remark 2.21. It is important to keep in mind that the (modified) Newton polygon
of an element f ∈ A depends on the parameter t ∈ A chosen, as the (modified) New-
ton polygon is defined in terms of the power series expansion with respect to that
parameter. However, we will skip the reference to the parameter when the risk of
misconception is low.

Definition 2.22. If the modified Newton polygon of a power series f ∈ A has line
segments with negative slope, the line segment Pl Pk with negative slope of smallest
absolute value is called the critical line segment; k will be called the critical index and
Pk the critical point.

In the following section, we will define the notion of sufficiently precise approxima-
tions in terms of the critical line segment of an approximation.

2.2.4. Sufficiently Precise Approximation. The result of Cor. 2.16 can be somewhat
strengthened by demanding the level to be even higher.
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Corollary 2.23. Let the power series f ∈ A× be as in the geometric situation (GEOM),
and denote by (µ, m) the value of a best possible approximation of f by a pth power in
the sense of Prop. 2.2. When the level n ∈ N0 of a formal p-Taylor expansion ( f ; h, t; a′i)
with a′0 = 0 is chosen high enough to have

νn >
p

p− 1
−

p/(p− 1)−µ
m

, (2.12)

the modified Newton polygon of ( f − hp)(t) contains a critical line segment Pl Pk and the
following holds true:

(1) Pk = Pm = (m,µ) ,
(2) either p - l or Pl = P ′0 = (0, p/(p− 1)) .

Remark 2.24. As µ < p/(p− 1) by Prop. 2.2, the right hand side of inequality (2.12)
is also strictly smaller than p/(p− 1). Since νn→ p/(p− 1) for n→∞, it is therefore
always possible to choose the level n ∈ N0 high enough to satisfy the condition of the
corollary. Concerning practical applications, the same remarks as in Rem. 2.17 apply:
we will recognize when a level high enough has been reached.

Proof of Cor. 2.23. Let the level n of the p-Taylor expansion ( f ; h, t; a′i) with a′0 = 0
be chosen as demanded. We then certainly have νn > µ, so Cor. 2.16 shows that
vη( f − hp) = (µ, m). It follows that the modified Newton polygon of f − hp has a
critical line segment Pl Pm, with Pm = (m,µ) being the critical point.

As a′0 = 0, the modified Newton polygon of f − hp starts at the special point P ′0 =
(0, p/(p− 1)). Consequently, the absolute value of the slope of the critical segment is
at most of value

p/(p− 1)−µ
m

,

resulting from connecting P ′0 = (0, p/(p − 1)) and Pm = (m,µ). If l were a non-zero
multiple of p—that is, if we had l = p j, with j ∈ N—we would have v(a′l) > νn due to
the approximation coming from a p-Taylor expansion of level n; this would result in a
line segment too steep—contradiction. Therefore, either p - l or Pl = P ′0.

This motivates the following definition.

Definition 2.25. Let the power series f ∈ A× be as in the geometric situation (GEOM).
The approximation of f via h ∈ A× is called sufficiently precise with respect to the
parameter t ∈ A, if the modified Newton polygon of ( f − hp)(t) contains a critical
line segment Pl Pk and the following holds true: p - k, and either p - l or Pl = P ′0 =
(0, p/(p− 1)).

Remark 2.26. By Cor. 2.23, all p-Taylor expansions ( f ; h, t; a′i) of sufficiently high
level and with a′0 = 0 give rise to sufficiently precise approximations of f .

Remark 2.27. Sufficiently precise approximations h ∈ A× of f ∈ A× are in particular
best approximations: when the critical line segment in the modified Newton polygon of
f − hp is Pl Pk then (v(Pk), k) is the value of a best approximation of f by a pth power
in the sense of Prop. 2.2. As a consequence, the critical point Pk of any sufficiently
precise approximation is independent of the parameter t ∈ A chosen, as we always
have Pk = Pm = (m,µ). To better fit our usual notation, we will therefore most of
the time denote the critical point resp. the critical line segment of sufficiently precise
approximations by Pm resp. Pl Pm.
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We have the following uniqueness result concerning the critical line segment.

Proposition 2.28. Let the power series f ∈ A× be as in the geometric situation (GEOM).
With respect to a fixed parameter t, all sufficiently precise approximations h ∈ A× of f
give rise to the same critical line segment Pl Pm.

Proof. Fix a parameter t and denote by h ∈ A× any element giving a sufficiently precise
approximation of f by a pth power (with respect to t). Recall that the value (µ, m)
of best approximations is uniquely determined and that best approximations can be
recognized as such, see Prop. 2.2 and Rem. 2.8. The asserted uniqueness of the critical
line segment then follows from applying these facts to the power series fρ := f (pρ t)
and the approximating functions hρ := h(pρ t), with ρ ∈ v(Kac×) and ρ > 0.

For this, note that the modified Newton polygon of fρ − hp
ρ is obtained by turning6

the one of f − hp counterclockwise, with P ′0 = (0, p/(p − 1)) being the center point.
Hence, for small ρ, the critical index of fρ−hp

ρ remains m, and precisely when ρ turns
the original critical line segment horizontal—that is, when ρ equals the absolute value
of the slope of the original critical line segment—the unique critical index either jumps
from m to l (when l > 0) or the approximation of fρ via hp

ρ is with value p/(p − 1)
(when Pl = P ′0); see Fig. 2.2 for an illustration of the situation. In any case, the
behavior will be independent of the chosen sufficiently precise approximation.

Remark 2.29. A more technical proof of the above lemma can easily be obtained
using a variant of Lem. 4.9 (which is used to prove the analog result of Prop. 2.28 for
coverings of open annuli; cf. Prop. 4.7 and its proof).

As a consequence of Prop. 2.28, we can make the following definition.

Definition 2.30. Let the power series f ∈ A× be as in the geometric situation (GEOM).
Let h ∈ A× be any sufficiently precise approximation of f with respect to a parameter
t ∈ A, and denote the corresponding critical line segment by Pl Pm. The absolute value
of its slope,

ρ0 := |slope(Pl Pm)| ,

is called the critical radius of f with respect to t.

The notion critical ‘radius’ stems from the fact that the power series fρ (notation
as in the proof of Prop. 2.28) describes f considered as a function on a subdisk with
radius ρ; this will be explained in Sect. 2.3.1. There, we will also see that the critical
radius gives the radius of the minimal exhausting disk we are looking for—provided
we have chosen a suitable parameter.

Proposition 2.31. Let f ∈ A× come from the geometric situation (GEOM) and assume
the covering given by f via Eq. (2.1) to be non-trivial. After replacing K by a suitable
finite field extension, there exists a parameter t ∈ A such that the critical segment Pl Pm

of any sufficiently precise approximation of f with respect to t satisfies l 6= 1. Both the
extension field and the parameter can be determined by a practical algorithm.

Proof. We fix some parameter t for the power series ring A. Of course, this t will prob-
ably not be ‘good’ in the sense of the proposition to prove. As was briefly mentioned
in Rem. 2.15, we intend to use a generic version of our p-Taylor algorithm to deduce

6To be precise, it is a shear and not a true rotation.
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a suitable parameter. More precisely, the idea is to work with a generic parameter by
introducing a new variable T and formally defining

FT (t) := f (t + T ) =
∞
∑

i=0

Ai(T ) t
i , with Ai(T ) ∈ R¹Tº .

In the end, we will be able to specialize T appropriately to obtain the desired result.
Note that the power series ring R¹Tº is endowed with the Gauß valuation coming
from R. In the following, we will have to work with successively larger integral exten-
sions S of R¹Tº (not necessarily finite), which we will endow with an arbitrary but
fixed extension of the Gauß valuation. FT (t) (and all other occuring functions alike)
will be considered as power series in t over S.

Analog to the proof of Prop. 2.12, we inductively define approximation power series
of FT (t) by setting

H[−1]
T (t) := 0 and H[n]T (t) := H[n−1]

T (t) +∆[n]T (t) , (2.13)

with the improvement term

∆[n]T (t) :=
∞
∑

j=0

B[n]j (T ) t
j (2.14)

having coefficients

B[n]j (T ) := (A[n−1]
jp (T ))1/p , (2.15)

which are pth roots of the p-coefficients from the previous approximation step

FT (t)− (H
[n−1]
T (t))p =:

∞
∑

i=0

A[n−1]
i (T ) t i . (2.16)

Note that each step usually requires to pass to successively bigger integral extensions
S of R¹Tº. Due to the brute force like approach, those extensions might well be of
infinite degree; when f is a polynomial function, however, finite extensions suffice.
Also note that H[n]T (t)

p kills the constant coefficient of FT (t) because H[n]T (t) has by
construction a pth root of A0(T ) as constant coefficient. With A0(T ) being a unit of S,
it follows that H[n]T (t) is a unit of S¹tº.

Exactly as in the non-generic calculations, we obtain from the equations

FT − (H
[n]
T )

p = FT − (H
[n−1]
T +∆[n]T )

p

= (FT − (H
[n−1]
T )p)− (∆[n]T )

p −
p−1
∑

j=1

�

p

j

�

(H[n−1]
T ) j(∆[n]T )

p− j

that H[n]T gives rise to an approximation for FT of level n (with respect to the chosen
valuation on S); see the proof of Prop. 2.12. Specializing T will yield an approximation
for the initial function f . Such a specialization map S→ Rac can be defined as follows:
For arbitrary ξ ∈ mac, we get an R-homomorphism R¹Tº → Rac by sending T to ξ;
note that we need ξ to lie in the maximal ideal mac Ã Rac for the image series to
converge. Then S ⊗R¹tº Rac is an integral extension of Rac and therefore coincides
with the integrally closed Rac. It follows that the homomorphism R¹Tº → Rac can
be extended to an R-homomorphism S → Rac. The resulting function h := H[n]

ξ
(t)

will provide an approximation for f of level n and with respect to the new parameter
t ′ := t − ξ. As h ∈ Rac

¹t ′º will usually not be defined over R—unless, for example, f
is polynomial—this is not a p-Taylor expansion in the original sense of the definition.
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Nevertheless, the approximation property (∗) of Def. 2.9 is satisfied, and we will use
the usual notation ( f ; h, t ′; a′i). Note that a′0 = 0 by construction. The proof of Cor. 2.23
shows that, when the level n ∈ N0 is chosen high enough, this approximation will be
sufficiently precise in the sense that the critical line segment in the modified Newton
polygon of ( f − hp)(t ′) satisfies the conditions from Def. 2.25. Note that the required
level can be estimated as in the statement of Cor. 2.23—and that this can be done prior
to the current process of finding a good parameter.

We would like to find ξ ∈ mac leading to a small enough first coefficient A[n]1 (ξ). To
this end, observe that by the inductive definition (2.13)–(2.16) of the approximating
functions, the coefficients A[n]i (T ) depend on only the first ip terms of the previous

approximation step FT − (H
[n−1]
T )p. As a consequence, for finite level n ∈ N0, the co-

efficient A[n]1 (T ) can be defined over a finite extension S̃/R¹Tº. We can then consider
its norm

a(T ) := NormS̃/R¹Tº(A
[n]
1 (T )) ∈ R¹Tº .

By Weierstraß preparation, we have a = bPu, with an element b ∈ R, a distinguished
polynomial P ∈ R[T], and an invertible power series u ∈ R¹Tº×. We would like
to see that P is non-constant, as we could then define a specialization map sending
T to a zero ξ ∈ Rac of the distinguished polynomial P, with the consequence that
A[n]1 (T ) would be send to zero as well. The resulting sufficiently precise p-Taylor-like
expansion ( f ; h, t ′; a′i) would then satisfy a′1 = 0, so that the corresponding critical line
segment could not involve the point P1. Because best approximations remain so under
base change to arbitrary algebraic extensions (Rem. 2.8), the uniqueness result from
Prop. 2.28 carries over to approximations defined over Rac. As a consequence, the
critical segment Pl Pm of any true sufficiently precise approximation of f with respect
to the so-determined parameter t ′ would then also satisfy l 6= 1. In practice, such
approximations could be obtained (after finitely enlarging the base field K) using, for
example, the Taylor algorithm from Prop. 2.12. Consequently, when the Weierstraß
polynomial P happens to be non-constant (which is the case for the calculations in
Sect. 3), we are finished with the proof.

Unfortunately, without additional assumptions on f , the polynomial P is not always
non-constant. It is, however, when we are in the situation where h= 1 provides a best
possible approximation (µ, m) of f : Recall that in the case of a power series ring, the
second component #η of the rank-two-valuation vη gives the Weierstraß order. The
crucial fact that P is non-constant would therefore follow if we could show

#η(A
[n]
1 (T ))≥ 1, (2.17)

as this would imply #η(a(T ))≥ 1.7 Under the above assumption that h= 1 gives a best
approximation, we can see by an inductive argument that inequality (2.17) holds true.
For this, note that A[−1]

1 (T ) = f ′(T ) is the derivative of f (T ) and that, in the current
situation, vη( f ′) = (µ, m−1). Since f describes a non-trivial covering, we have m> 1

by Cor. 2.5, and therefore #η(A
[−1]
1 (T )) ≥ 1 as desired. Subsequent approximation

steps do not change this behavior and we retain #η(A
[n]
1 (T )) ≥ 1, for all n ∈ N0. This

is because A[n]1 (T ) results from A[n−1]
1 (T ) by adding terms of valuation strictly larger

7Admittedly, we slightly abuse notation here by also writing #η for some extension to S̃.
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than µ: indeed, we deduce from the approximation formulas (2.13)–(2.16) that the
new first coefficient is

A[n]1 (T ) = A[n−1]
1 (T )− p B[0]0 (T )

p−1 B[n]1 (T ) ,

where B[0]0 (T ) = A0(T )1/p is a unit, and B[n]1 (T ) has valuation at least µ/p; since
µ < p/(p− 1) holds true, we have 1+ µ/p > µ. The terms subtracted from A[n−1]

1 (T )
therefore have no influence on its Weierstraß order—it remains m−1≥ 1. We deduce
that P is non-constant in the situation where h= 1 provides a best approximation.

It remains to show how to proceed when P is constant. In this case, take any best
approximation h1 ∈ A× of f and set f2 := f /hp

1. In practice, this pre-approximation
of f can be done (after a finite extension of the base field) by means of a sufficiently
precise formal p-Taylor expansion with respect to the parameter t we started with, see
Rem. 2.27. Since 1 is a best possible approximation of f2, the reasoning from above
shows that (after a further finite extension of the base field) there is a parameter
t ′ ∈ A and a sufficiently precise approximation h2 ∈ A× of f2(t ′) with a critical line
segment Pl Pm satisfying l 6= 1. But then h := h1h2 provides the desired approximation
of the initial function f (with respect to t ′): the line segments with negative slope in
the modified Newton polygons of f − hp and f2 − hp

2 coincide, as the former power
series results from the latter by multiplication with the unit hp

1 ∈ A×. In particular, the
approximation of f (t ′) via h is sufficiently precise and has a critical line segment Pl Pm

with l 6= 1.

Remark 2.32. The proof of Prop. 2.31 shows that, when f is polynomial (which hap-
pens, for example, when the disk covering is induced by a global p-cyclic covering
through localizing in critical points), the generic p-Taylor algorithm can be used to
produce sufficiently precise approximations of f over a finite extension of R. If in this
case #η(A

[n]
1 (T )) happens to be strictly positive, both a suitable parameter and a suffi-

cently precise approximation as in the statement of the proposition can be determined
at once (without the need to do an additional pre-approximation step). This is the
situation in the example treated in Sect. 3.

2.3. Minimal Exhausting Disk. We can now turn to our main task of determining the
minimal exhausting disk for p-cyclic disk coverings.

Proposition 2.33. Let the situation be as in Sect. 2.1; that is, f ∈ A× shall be as in
(GEOM) and define a non-trivial p-cyclic covering φ : Y → X of the open unit disk.
After replacing K by a suitable finite field extension, Prop. 2.31 guarantees the existence
both of a parameter t ∈ A and of a sufficiently precise approximation h ∈ A× of f (t)
with a critical line segment Pl Pm satisfying l 6= 1. Denote by ρ0 = |slope(Pl Pm)| the
corresponding critical radius. Then the affinoid disk

D := {x ∈ X | ρ0 ≤ v(t(x))}

is the minimal exhausting disk for the covering φ.

The proof will occupy the rest of Sect. 2.3.

2.3.1. Exceptional Divisor. A first step towards proving Prop. 2.33 is to understand
what effect the modification induced by D has on the formal model of Y. As explained
in Sect. 1.4.4, the exceptional divisor corresponds to the reduction of the affinoid

E := φ−1(D) .
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We therefore have to study the rigid analytic map

φ1 := φ|E : E→D

and the corresponding cover of formal models Spf B1 → Spf A1, where B1 := �OE and
A1 := �OD denote the respective rings of zero-bounded analytic functions.

Replacing K by a finite extension (if necessary), we obtain a parameter t1 for D
by appropriately rescaling the disk parameter of X by setting t1 := p−ρ0 t, where pρ0

shall denote some element of K with valuation ρ0. In terms of t1, we can describe
A1 as the Tate algebra A1 = R〈t1〉. The restricted covering φ1 is still given by the
Kummer equation (2.1), but now considered as an equation over A1. As before, we
would obtain a description of the ring extension B1/A1 if we could approximate f by
a pth power such that a variable change of the form (2.4) would lead to an equation
remaining irreducible in reduction. Note that this approximation has to be done using
the Gauß valuation vρ0

on D (that is, the valuation on A1 with respect to t1). We will
see below that the desired approximation is accomplished by the sufficiently precise
approximation h ∈ A× of f ; we write f − hp =:

∑∞
i=0 a′i t

i .
The power series expansion of f − hp with respect to t1 = p−ρ0 t is given by

f − hp =
∞
∑

i=0

a′i p
iρ0 t i

1 ;

note that this coincides with the power series denoted fρ0
−hp

ρ0
in the proof of Prop. 2.28.

It follows that

vρ0
( f − hp) = µ+mρ0

holds true. More precisely, a coefficient a′i p
iρ0 of the expansion with respect to t1 has

minimal valuation µ+mρ0 precisely when the point Pi = (i, v(a′i)) lies on the critical
line segment Pl Pm of the approximation ( f −hp)(t) (all other terms have strictly larger
valuation); cf. Fig. 2.2. Also, by definition of the critical radius, we have

µ+mρ0

(

< p/(p− 1) if l > 0 ,

= p/(p− 1) if Pl = P ′0 .

In a way, this is the reason for defining the modified Newton polygon using the special
point P ′0 = (0, p/(p − 1)), as the critical radius will then lead to approximations with
valuation at most p/(p − 1). The latter is the maximal value that makes sense to
consider, as better approximations would imply that E = φ−1(D) would decompose
into p copies of D (as f (t1) ∈ A1 were then a pth power). Since there is only one
boundary above the boundary of X (Cor. 2.4), D could then not be exhausting.

We assume K to contain some element λ1 of valuation v(λ1) = (µ+mρ0)/p. We
can then write

f − hp = λp
1

∞
∑

i=0

bi t
i
1 ,

with coefficients bi = a′i p
iρ0/λ

p
1 ∈ R. The variable change

w1 :=
y − h

λ1

then leads to the equation

wp
1 + · · ·+ pλ1−p

1 hp−1w1 =
f − hp

λ
p
1

(2.18)



SEMISTABLE REDUCTION OF PRIME-CYCLIC GALOIS COVERS 39

FIGURE 2.2. When restricting a covering of the open unit disk to the
preimage of a closed subdisk with radius ρ0 > 0, the equation defin-
ing the original covering has to be rewritten in terms of the scaled
parameter t1 = p−ρ0 t; this has the effect of shearing the correspond-
ing modified Newton polygon. The drawing is for Eq. (3.6) from the
example treated in Sect. 3.

over A1. Since all coefficients bi with index i < l or index i > m have strictly positive
valuation, Eq. (2.18) reduces modulo (π) to the polynomial equation

w̄p
1 + c̄w̄1 = b̄l t̄

l
1 + · · ·+ b̄m t̄m

1 (2.19)

over k[ t̄1]. Here we have denoted the reduction of pλ1−p
1 hp−1 by c̄. This is a non-zero

element precisely when v(λ1) = 1/(p − 1) (that is, when Pl = P ′0). It follows that
the reduction is given either by an Artin–Schreier type equation (when Pl = P ′0) or by
a purely inseparable equation (when l > 0). In any case, since m is prime to p (as
the approximation via h is sufficiently precise), Eq. (2.19) is irreducible and hence so
is also Eq. (2.18). By the same arguments as in the proof of Prop. 2.2 (using Serre’s
criterion on normality), we deduce that w1 generates B1 over A1. As a consequence,
the exceptional divisor of the modification induced by D—corresponding to the special
fiber of Spf B1—is described by the reduced equation (2.19).

2.3.2. Proof of the Proposition. We are now in a position to prove Prop. 2.33. The
proposition is a direct consequence of the next two lemmata, which we will prove
using the preliminary considerations from Sect. 2.3.1 above.

Lemma 2.34. With notation as in Prop. 2.33, D⊂ X is φ-exhausting.

Proof. To show that D is exhausting—or equivalently, to show that A := X \ D is a
separating boundary domain—we have to see that V := φ−1(A) ⊂ Y is a disjoint
union of open annuli. By Cor. 2.4, there is only one boundary point ξ ∈ ∂Y lying
above η ∈ ∂X (the unique boundary point of the open disk). Hence, if A were to be
separating, V would necessarily be a single open annulus.

Denote the rings of zero-bounded analytic functions on V and A by B2 := �OV and
A2 := �OA, respectively. The restricted covering ψ := φ|V : V→ A corresponds to the
ring extension B2/A2, where B2 is determined as the integral closure of A2 in the exten-
sion of Frac A2 given by the Kummer equation (2.1) (now considered as an equation
over A2). As

A= {x ∈ X | v(t(x))< ρ0} ,

we have A2 = R¹s, t | st = pρ0
º. We want to apply Lem. 1.31 with respect to the

covering ψ and deduce that V is an open annulus.
For this, we first have to check that there is also only one boundary point ξ2 ∈ ∂V

lying above η2 ∈ ∂A (the boundary point of A distinct from the one coming from the
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disk X). The boundary η2 corresponds to the height-one prime ideal p2 := (π, t)Ã A2.
Denoting the corresponding discrete valuation on Frac A2 by vp2

, we need to see that
there is only one extension of vp2

to Frac B2. But this is easy by what we have already
seen: Writing Eq. (2.1) in terms of s = pρ0 t−1 (which serves as a parameter of A with
respect to η2), we are led to an equation analog to Eq. (2.18); its reduction

w̄p
1 + c̄w̄1 = b̄ms̄−m + · · ·+ b̄l s̄

−l

describes an extension of the residue field Frac k¹s̄º of vp2
with degree f = p. We

deduce from the fundamental equality p = e f g that vp2
can have only one extension

to Frac B2 and, accordingly, that only one boundary point ξ2 ∈ ∂V lies above η2 ∈ ∂A.
In a next step, we have to find an element w ∈ B2 satisfying conditions (1) and

(2) of Lem. 1.31. Let h ∈ A× be the sufficiently precise approximation of f from the
statement of Prop. 2.33, and denote the corresponding critical line segment by Pl Pm,
with Pm = (m,µ). Assume K to be large enough to contain λ ∈ K with v(λ) = µ/p. We
assert that the element

w :=
y − h

λ
∈ B ⊂ B2 (2.20)

has the required properties.
Observe that the Kummer equation (2.1) remains irreducible over the larger ring

A2 ⊃ A. Indeed, we have seen above that the extension of valuations vξ2
/vη2

has
residue degree f = p. As the valuation ring of vξ2

dominates B2, the field extension
Frac B2/Frac A2 also needs to have degree p, and therefore Eq. (2.1) has to be irre-
ducible over A2. As a consequence, the equation

wp + · · ·+ php−1λ1−pw =
f − hp

λp ,

resulting from the variable change (2.20), is irreducible as well and therefore is the
minimal polynomial of w. We can hence calculate

Norm(w) =
f − hp

λp =: g .

By Weierstraß preparation, we obtain a decomposition g = Pu, with a distinguished
polynomial P = c1 t + · · · + tm ∈ R[t] of degree m and an invertible power series
u ∈ R¹tº. We express P in terms of t and s = pρ0 t−1, writing

P = tm(c1 t1−m + · · ·+ 1) = tm(c1pρ0(1−m)sm−1 + · · ·+ 1) .

It follows from g = Pu, with u a unit, that the line segments with negative slope in the
modified Newton polygons of P(t) and g(t) coincide. Note that the critical radius ρ0

is smaller or equal to the absolute value of the slope of any of these segments because,
by definition, ρ0 corresponds to the line segment with negative slope of smallest ab-
solute value in the modified Newton polygon of f − hp = λp g. As a consequence, all
coefficients ci p

ρ0(i−m), with 0 < i < m, have non-negative valuation and are therefore
elements of R. But then 1+ · · ·+ c1pρ0(1−m)sm−1 is a unit of R¹sº and, a fortiori, also
a unit of A2 = R¹s, t | st = pρ0

º. It follows that w satisfies condition (1) of Lem. 1.31.
As the critical index m is prime to p, condition (2) is also satisfied.

We can thus apply the lemma and therewith conclude that A is separating, or in
other words, that D is exhausting.

Lemma 2.35. With notation as in Prop. 2.33, D ⊂ X gives rise to an improving modifi-
cation.
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Proof. As set out in Sect. 2.3.1, the exceptional divisor of the modification induced by
the closed disk D is described by Eq. (2.19), which is either an Artin–Schreier equation
(in the case Pl = P ′0) or a purely inseparable equation (in the case l > 0).

In the former case, the exceptional divisor is a smooth component of positive genus
(note that m > 1 by Cor. 2.5). In the latter case, we have to use our assumption on
the chosen parameter t; namely, t is such that the sufficiently precise approximation
h gives rise to a critical line segment Pl Pm with Pl 6= P1. We therefore even have
l > 1. It follows that the differential of the right hand side of the purely inseparable
Eq. (2.19) has at least two distinct zeros; as a consequence of the Jacobian criterion
of regularity, the exceptional divisor then has at least two distinct singularities not on
the strict transform. In any case, Lem. 1.32 shows that D corresponds to an improving
modification.

Having constructed the minimal exhausting disk for the covering φ : Y→ X from
Sect. 2.1, we have also proven Thm. 2.1.

Remark 2.36. We wish to emphasize once more the suitability of the above approach
for practical purposes. Determining a sufficiently precise approximation means to de-
termine a good radius for the minimal exhausting disk; determining a parameter in the
sense of Prop. 2.31 means to determine a center point of the minimal exhausting disk.
As both can be done explicitly with the method of formal p-Taylor expansion using both
the non-generic and the generic version of the algorithm (Props. 2.12 and 2.31)—and
without any prior assumptions on the base field K (Rems. 2.24 and 2.26)—we are able
to explictly construct the minimal exhausting disk.

3. EXAMPLE: EQUIDISTANT PRIME-CYCLIC GALOIS COVER

Let us illustrate the methods from Sect. 2 by calculating in detail the stable reduction
of the covering

Φ : Y → X := P1
Q3

that was mentioned at the beginning of Sect. 2.2: the covering of the projective line
over the 3-adic field Q3 shall be given by the Kummer type equation

y3 = 1+ 3t3 + 3t5 =: f (t) . (3.1)

It follows from the Riemann–Hurwitz formula [Har77, Cor. IV.2.4] that Y is a curve of
genus gY = 4.

Note that the covering has the equidistant geometry property: the five zeros of f
have valuation −1/5 and their pairwise distance is of valuation 1, as can be deduced
from the Newton polygons of f (t) and f (t + a)/t, where a ∈ Qac

3 denotes any zero of
f (t). But this is irrelevant for the computations to follow since our algorithm does not
rely on this fact. It will become apparent, however, that even in this basic example the
calculations involved are highly non-trivial.

For realizing the semistable reduction of Y , we will have to pass to a sufficiently
large finite field extension of Q3. To make notation in the upcoming calculations more
transparent, we will from now on consider Y as a K-curve, where K/Q3 is a fixed
but large enough finite field extension containing all elements that we need in the
course of applying our algorithm; the ring of integers of K is denoted by R, the (finite)
residue field by k. Keeping track of the field elements that we actually need, we will



42 KAI ARZDORF

a posteriori be able to determine the minimal field extension over which a semistable
model of Y can be realized.

3.1. From Global to Local. We start our study by taking the standard smooth model
XR := P1

R for X . We need to get an equation describing the corresponding model YR

(defined as the normalization of XR in K(Y )) to be able to determine the critical points
of the covering, that is, the points where our resolution algorithm has to be applied.

Equation (3.1) reduces modulo 3 to the third power ȳ3 = 1, which describes a non-
reduced scheme. Therefore, y does not generate the ring extension corresponding to
the affine part Spec R[t] ⊂ XR and its Φ-preimage, since we know YR to be permanent
due to our assumption that K is large enough. We thus have to find a better suited
element. Assuming K is large enough to contain an element λ ∈ K with valuation
v(λ) = 1/3, we substitute w := (y − 1)/λ and obtain

w3 + 3λ−1w2 + 3λ−2w = 3λ−3(t3 + t5) .

This equation is well-suited, as it has reduced and irreducible reduction of the form

w̄3 = t̄3 + t̄5 (3.2)

and therefore describes the ring extension corresponding to the considered part of
the model; cf. the proof of Prop. 2.2 and the reasoning using Serre’s criterion. The
differential of the right hand side of the purely inseparable Eq. (3.2) is d( t̄3+ t̄5) = 5 t̄4;
its only zero—corresponding to a single critical point—is at t̄ = 0̄. As t̄ = ∞ is seen
to be not critical, there is exactly one point where our resolution algorithm has to be
applied. Namely, we need to study the residue class

X := ]0̄[XR
,

which is a rigid analytic open unit disk, and the induced covering thereof—that is, the
cover of open analytic curves

φ : Y := Φrig−1
(X)→ X

given by the same equation (3.1) as before, but now considered as an equation over
the completed ring R¹tº= �OX. Note that t serves as a disk parameter for X.

3.2. Applying the Algorithm. Because φ is a non-trivial 3-cyclic étale Galois cover of
the rigid analytic open unit disk, we are in the situation of Sect. 2; consequently, we
can apply our techniques from there to determine all relevant modifications.8

3.2.1. Suitable Center. For a first improvement of the model, we have to find the mini-
mal exhausting disk with respect to φ. To begin with, we calculate the generic 3-Taylor
expansion of f by following the lines of the proof of Prop. 2.31. As f is polynomial
(and not a true power series), this approach—though brute force like—will involve
only finite extensions, cf. Rem. 2.32.

We hence introduce a new variable T and examine
FT (t) := f (t + T )

= (1+ 3T 3 + 3T 5) + (9T 2 + 15T 4) t + (9T + 30T 3) t2

+ (3+ 30T 2) t3 + 15T t4 + 3t5 ,

(3.3)

8In order that φ is a Galois cover, the field K needs to contain a primitive third root of unity (which
we could assume); however, for our techniques from Sect. 2 to be applicable, it is only important that the
covering is given by an equation of Kummer type (as is the case here).
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which we interpret as a power series in t over the power series ring R¹Tº. Passing to
the integral degree-nine-extension S/R¹Tº by adjoining elements αT and βT with

α3
T = 1+ 3T 3 + 3T 5 and β3

T = 3+ 30T 2 ,

we can set

HT (t) := αT + βT t ,

therewith obtaining the approximation

FT −H3
T = (9T 2+15T 4−3α2

TβT ) t+(9T +30T 3−3αTβ
2
T ) t

2+15T t4+3t5 ,

which is sufficiently precise as no third powers of t occur at all. The norm of the first
coefficient (with respect to S/R¹Tº) is the third power of the polynomial

m(T ) := 3+30T 2+18T 3+198T 5+180T 7+189T 8+342T 10+145T 12 , (3.4)

which is of Eisenstein type over Q3. In particular, this is a non-constant distinguished
polynomial over R, so we are lucky in that we do not need a pre-approximation step to
be able to determine a suitable disk center; see the proof of Prop. 2.31 and Rem. 2.32.

We assume K to be large enough to contain a zero ξ ∈ R of m(T ); this zero will be
a suitable center point for the minimal exhausting disk. Keeping track of the elements
required in the course of our algorithm, we note that K has to contain

K1 :=Q3(ξ | m(ξ) = 0) ,

which is a totally ramified extension field of degree twelve (and as such also contains
an element λ of valuation 1/3, as was needed in the very first step in Sect. 3.1).

3.2.2. First Improvement. We specialize Eq. (3.3) accordingly, sending T to ξ, to obtain
an equation for the covering φ with respect to the better suited parameter t1 := t−ξ:

y3 = Fξ(t1) = (1+ 3ξ3 + 3ξ5) + (9ξ2 + 15ξ4) t1 + (9ξ+ 30ξ3) t2
1

+ (3+ 30ξ2) t3
1 + 15ξt4

1 + 3t5
1 .

(3.5)

Then

h := Hξ(t1) = αξ + βξ t1 ,

with third roots αξ of 1+ 3ξ3 + 3ξ5 and βξ of 3+ 30ξ2, gives a sufficiently precise
3-Taylor expansion of f with respect to the parameter t1. This is provided βξ is chosen
in accordance with ξ and αξ: the requirement, that the first coefficient of f − h3

(considered as a power series in t1) shall be killed, determines which of the three
possible roots for βξ has to be taken, in that

βξ =
9ξ2 + 15ξ4

3α2
ξ

has to hold true. As a consequence, αξ generates the field

K2 := K1(αξ,βξ) = K1(αξ | α3
ξ = 1+ 3ξ3 + 3ξ5)
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over K1; the extension is of degree three and totally ramified. The field K , not specified
in detail, has to contain K2 as a subfield. We obtain the expansion

f − h3 = (4860+ 62496ξ+ 40500ξ2 + 402468ξ3 − 135000ξ4

+ 223560ξ5 + 256833ξ6 − 81000ξ7 + 604299ξ8

− 573750ξ9 + 140940ξ10 − 326250ξ11)/4097 t2
1

+ 15ξt4
1 + 3t5

1 .

(3.6)

By construction, there is no linear term.
The coefficients of f − h3 (with respect to t1) have valuation9

�

∞,∞,
45

36
,∞,

39

36
,
36

36

�

;

the critical index and its valuation is thus (µ, m) = (1,5), and the critical line segment
is given by P2P5 = (2, 45/36) (5,36/36) (depicted in Fig. 2.2). We calculate the critical
radius to be

ρ0 :=
45/36− 36/36

5− 2
=

1

12
.

Proposition 2.33 then implies that

D := {x ∈ X | ρ0 ≤ v(t1(x))}

is the minimal φ-exhausting disk. As explained in Sects. 1.4.4 and 2.3.1, the modifica-
tion induced by D is described by restricting φ to this smaller closed disk. On the level
of equations, this means to express Eq. (3.5) in terms of

t2 :=
t1

ξ
=

t − ξ
ξ

,

which serves as a parameter for D. Note that v(ξ) = ρ0 and that we could take the
initial center (defined by t = 0) as a center for D as well; for the calculations to follow,
however, t2 is better suited. For the restricted covering φ−1(D) → D, we obtain the
equation

y3 = (1+ 3ξ3 + 3ξ5) + (9ξ3 + 15ξ5) t2 + (9ξ
3 + 30ξ5) t2

2

+ (3ξ3 + 30ξ5) t3
2 + 15ξ5 t4

2 + 3ξ5 t5
2

(3.7)

over R〈t2〉.
With respect to the rank-two-valuation on X, the approximation of f by h3 is of

value (µ, m) = (1, 5); the approximation with respect to the Gauß valuation vρ0
on D

is therefore of value 1 + 5 · 1/12 = 17/12. As the element 3ξ5 ∈ K2 has valuation
v(3ξ5) = 17/36, the usual variable change

w1 :=
y − h

3ξ5

leads to an equation suitable for reduction: we obtain a description of the exceptional
divisor in terms of the purely inseparable extension of k[ t̄2] given by

w̄3
1 = t̄2

2 + 2 t̄4
2 + t̄5

2 . (3.8)

9As always, the valuation is normalized such that the valuation of the prime characteristic p is v(p) = 1;
in the current case, v(3) = 1.
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The terms not killed in the reduction process correspond to points on the original
critical line segment (which is turned horizontal when considering the equation over
the smaller disk D); Figure 2.2 shows the modified Newton polygons.

The differential 2( t̄2+ t̄3
2+ t̄4

2)d t̄2 of the right hand side of Eq. (3.8) has four distinct
zeros in k, as we can assume K to be large enough to have k containing F9: this means
that K has to contain

K3 := K2(u | u2 + 2u+ 2= 0) , (3.9)

the unique unramified extension of K2 of degree two. There are then four critical
points, and in each of these, our algorithm needs to be applied once more.

3.2.3. Starting Over Again. In particular, we have to examine the residue class of 0̄—
the open subdisk

X1 := {x ∈ X | 0< v(t2(x))} ⊂ X

with parameter t2 = (t − ξ)/ξ—and the induced covering

φ1 : Y1 := φ−1(X1)→ X1

thereof. The covering is described by Eq. (3.7), interpreted as an equation over the
power series ring R¹t2º= �OX1

.
By the above results, h gives rise to a sufficiently precise 3-Taylor expansion of f

with respect to the parameter t2 on X1. The corresponding critical line segment is
P ′0P2 = (0,3/2)(2,17/12) (in particular, this segment does not start at P1 and so the
considered parameter t2 is well-suited for our purposes). Already, we can deduce that
we will end up with a smooth component of genus one, see the proof of Lem. 2.35. By
Prop. 2.33, the radius of the minimal φ1-exhausting disk D1 ⊂ X1 is

ρ̃1 =
3/2− 17/12

2
=

1

24
.

This is with respect to the parameter t2, though; with respect to t1, the radius is

ρ1 = ρ0 + ρ̃1 =
1

12
+

1

24
=

1

8
.

Note that K3 does not contain elements of this valuation since the ramification degree
of K3/Q3 is 36, which is only divisible by 4 and not by 8. Hence, another ramified
degree-two-extension M/K3 is required, and we define

M := K3(η | η2 = 31/4) .

Here 31/4 denotes any of the fourth roots of 3, which all lie in K3. (Indeed, substituting
ξ4 t for t in the polynomial t4 − 3 and then dividing by ξ12 leads to the polynomial
t4 − 3/ξ12, which reduces to t̄4 − 1 ∈ F9[ t̄]; as F9 contains all fourth roots of unity,
the latter polynomial decomposes into distinct linear factors, and so does, by Hensel’s
lemma, the initial polynomial.) We assume K to contain M ; see Fig. 3.1 for a diagram
of the field extensions involved so far.

As an eighth root of 3, the element η has the required valuation v(η) = 1/8 and
can thus be used to obtain a disk parameter

t3 :=
t1

η
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K

e<∞, f<∞

M = K3(η | η2 = 31/4)
= L3(α | α3 = 1+ 3ξ3 + 3ξ5)

e=2

e=3K3 = K2(u | u2 + 2u+ 2= 0)

f=2 L3 = L2(ξ | m1(ξ) = 0)

e=3K2 = K1(α | α3 = 1+ 3ξ3 + 3ξ5)

e=3 L2 = L1(e2 | e2
2 = e1)

e=2K1 =Q3(ξ | m(ξ) = 0)

e=12

L1 =Q9(e1 | e4
1 = 3)

e=4

Q9 =Q3(u | u2 + 2u+ 2= 0)

f=2

Q3

FIGURE 3.1. The tower of fields built up in the course of applying
our algorithm is shown on the left hand side; the alternative way of
generating the field extension for the study of the monodromy action
is shown on the right hand side. M/Q3 is a Galois extension of degree
[M : Q3] = 144 (e = 72, f = 2); with respect to the Semistable
Reduction Theorem, we are only interested in the ramified part—that
is, in the Galois extension M/Q9.

for the affinoid disk D1. Note that η4 ∈ M has valuation v(η4) = 1/2, so the variable
change

w2 :=
y − h

η4 ,

with h considered as a power series in t3, leads to an equation well-suited for reduc-
tion: as expected, we obtain an Artin–Schreier equation

w̄3
2 + w̄2 = ū5 t̄2

3 (3.10)
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FIGURE 3.2. The models of the 3-cyclic Galois cover φ : Y → X as
produced by our algorithm. The modification induced by the closed
disk D⊂ X splits the original singularity on the special fiber of Y into
four singularities less bad. Subsequent modifications, correspond-
ing to smaller disjoint closed disks D1, . . . ,D4, lead to four smooth
components of genus one. The stable reduction Ȳ thus consists of
four elliptic components Y1, . . . , Y4, which are separated by a single
rational component and which lie above four rational components
X1, . . . , X4 ⊂ X̄ , respectively.

over k[ t̄3], describing a smooth component Y1 of genus one lying over a rational com-
ponent X1. Here, ū is a generator for the residue field extension F9/F3; see (3.9).

3.2.4. Critical Points Remaining. We claim that the other three critical points behave
the same: that is, over each of these points, the algorithm terminates with a smooth
component of genus one. Consequently, the stable model of Y is as in the sketch of
Fig. 3.2.

Claim 3.1. With notation as before, we can realize the stable reduction of Y over the
field M. The reduction Ȳ of the minimal semistable model Y ss consists of four elliptic
components Y1, . . . , Y4, which are separated by a single rational component.

To justify our claim, we go back to the first improvement step described in Sect. 3.2.2.
There, we chose a zero ξ of the Eisenstein polynomial m(t) as a center point for the
minimal exhausting disk. Since m is irreducible over Q3, the Galois group of the poly-
nomial acts transitively on the twelve zeros of m; consequently, those zeros cannot
be distinguished and we could have taken any other as well. The Newton polygon of
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m(t + ξ)/t reveals that two of the other zeros of m lie close beside the chosen ξ—
the valuation of the distance being 1/6—while the remaining nine zeros are further
away—the distance being of valuation 1/10. It follows that the zeros of m fall into
four clusters of three zeros.

Taking into account that, in Sect. 3.2.3, we determined the radius of the closed
disk from the final blow-up to be of valuation 1/8, the four clusters give rise to four
disjoint closed disks Di ⊂ X, each of which induces a modification leading to a smooth
component Yi of genus one (lying above a rational component X i). Note that the four
elliptic components Yi are separated by a rational component (corresponding to the
blow-up induced by D) and that the arithmetic genus of Y1, . . . , Y4 adds up to gY = 4,
the genus of Y . Hence, all relevant components in the semistable reduction of Y have
been found. As there are no superfluous rational components, this gives the minimal
semistable model Y ss of Y .

Note that a more formal argument can easily be given by considering the mon-
odromy action on the stable reduction. This will become obvious in the following
section, where we determine the monodromy action explicitly.

3.3. Minimal Semistable Model and Monodromy Action. Now that we have found
a field extension M/Q3 over which the stable reduction of Y can be realized, as well
as the corresponding stable model, we would like to determine the actual monodromy
extension. More precisely, we want to show that the ramified part M/Q9 of the exten-
sion M/Q3 produced by our algorithm is the minimal extension needed for realizing
the stable reduction of Y (in the sense of Def. 1.4).

Claim 3.2. With notation as before, M/Q9 is a totally ramified Galois extension of degree
[M : Q9] = 72. Its Galois group Gal(M/Q9) acts faithfully on the special fiber Ȳ of the
stable model Y ss for Y ⊗Q9

M; as a consequence, M/Q9 corresponds to the monodromy
extension of Y .

To justify the claim, we will establish a number of facts that, taken together, im-
ply our assertions. To start with, we generate the field extension M/Q3 in a slightly
different way and study the behavior of the polynomials involved.

3.3.1. Computer Algebra System. We will use the computer algebra system MAGMA
[Magma] for performing the necessary calculations. The choice came down to this
(instead of one of the open source alternatives) due to MAGMA’s rather strong func-
tionality in working with iterated field extensions of high degree, also in the case of
p-adic fields. Along the way, we state the source code that was used to obtain the
respective results; this allows to reconstruct all details of our calculations.

As p-adic rings are completions, their elements can generally not be represented
exactly in a computer algebra system: only a finite amount of data can be stored and
processed. Usually, elements are interpreted as power series in a fixed uniformizing
element with the infinite expansion truncated at some point—the so-called precision.
Effectively, this means to work in a finite quotient of the ring. Since all structural
information of a p-adic field (that is, the fraction field of a p-adic ring) is already
contained in its ring of integers, field elements can be represented as the product of
a unit (known to the chosen fixed precision) with a suitable (negative or positive)
power of the uniformizer. MAGMA uses the big-O-notation in its output to indicate
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the precision up to which a result is known. Confer the corresponding implementation
documentation [Magma].

Because of the limited precision we have to work with, all results obtained are
a priori not exact and have to be taken with some care. Due to Krasner’s lemma
[BGR84, Sect. 3.4.2], however, one knows that the obtained results reflect the exact
situation, provided the finite precision for the local field was chosen high enough. For
example, if a polynomial is recognized to be irreducible up to a certain finite precision
(depending on the zeros of the polynomial), then we know that it really is irreducible
over the local field; or, if a field extension is generated by the zero of a polynomial that
itself is known only up to a certain precision, then the extension generated coincides
with the extension generated by a zero of the exact polynomial, if only the precision is
high enough.

Remark 3.3. In the above sense, all of the following results obtained with MAGMA’s
p-adic functionality are only true ‘modulo showing that the precision is chosen high
enough’. This could be overcome by tracking the field elements involved and determin-
ing in every step how high the precision needs to be; we dispense with that. However,
the provided source code can serve as a sound basis for those calculations.

The following creates a 3-adic field with precision 12, which serves as the base field
we start with.

Q3 := pAdicField(3,12);

3.3.2. Field Tower. To generate the field M , we proceed in several steps. We begin with
the maximal unramified subextension of M/Q3. It is the unique unramified extension

Q9 :=Q3(u | u2 + 2u+ 2= 0)

of degree two over Q3.

Q9<u> := UnramifiedExtension(Q3,2);

The next step is to take care of the tamely ramified part. We set

L1 :=Q9(e1 | e4
1 = 3) and L2 := L1(e2 | e2

2 = e1) .

The tamely ramified extension L2/Q9 is Galois of degree [L2 : Q9] = 8, as L2 contains
all eighth roots of unity (since the residue field F9 does).

A<t> := PolynomialRing(Q9);

L1<e1> := TotallyRamifiedExtension(Q9,t^4-3);

A<t> := PolynomialRing(L1);

L2<e2> := TotallyRamifiedExtension(L1,t^2-e1);

The polynomial m(t) from (3.4), which is irreducible over Q9 and which gives the
center ξ of the minimal exhausting disks D and D1 (see Sects. 3.2.2 and 3.2.3), splits
over L1 resp. L2 into four factors,

m= m1m2m3m4 ,

each factor being of degree three.

m := 3+30*t^2+18*t^3+198*t^5+180*t^7+189*t^8\

+342*t^10+145*t^12;

facm := Factorization(m);
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Observe that the expressions for the involved polynomials and field extensions get
more and more complex; for instance, the first factor of m is as follows:

m1 = t3 + (((169839u− 191763)e2
1 + (19098u+ 19098)e1 − 127799u)e1

+O(e48
1 ))t

2 + ((6882ue3
1 + 25586e2

1 + (−14892u− 29784)e1

+ (28195u+ 28195))e6
1 +O(e48

1 ))t + (82152e3
1 + (−125639u

− 251278)e2
1 + (82218u+ 82218)e1 − 181808u)e1 +O(e48

1 ) .

Note that the 4-cyclic Galois group Gal(L1/Q9) acts transitively on the four factors
m1, . . . , m4. Also, recall that we saw the zeros of m fall into four clusters of three zeros
(Sect. 3.2.4)—these precisely correspond to the four factors of m over L1, which in
turn correspond to the four distinct rational components X1, . . . , X4 ⊂ X̄ . It becomes
clear again that the stable model Y ss of Y consists of four elliptic components lying
over four rational components: having found the part Y1→ X1 of the stable reduction,
the remaining parts of the stable model are determined by the monodromy action,
which, in particular, transitively permutes the factors m1, . . . , m4 of m, thus giving rise
to the isomorphic parts Y2→ X2,. . . ,Y4→ X4. For later usage, we note:

Fact 3.4. The cyclic Galois group Gal(L1/Q9) ∼= Z/4 permutes the factors m1, . . . , m4

of m; as a consequence, the monodromy action on the reduction of Y permutes the
four isomorphic parts Y1→ X1, . . . , Y4→ X4.

We continue with generating the field extension M/Q9. The next step is to choose
one of the factors of m over L2, say m1, and to adjoin one of its roots ξ to L2. This
gives the field

L3 := L2(ξ | m1(ξ) = 0) ,

which is totally ramified of degree three over L2. To do so in MAGMA, we cannot
directly use the polynomial m1. This is because MAGMA requires totally ramified field
extensions to be defined by Eisenstein polynomials, whereas m1 is not of Eisenstein
type. However, by an appropriate substitution of the variable t, we can transform m1

into an Eisenstein polynomial m̃1 suitable for us. The idea behind this is similar to that
of p-Taylor expansion: what we want is a polynomial where the corresponding Newton
polygon consists of only one line segment, with the absolute value of the slope being
the valuation of the uniformizing element we are looking for. By a combination of
shifting, scaling, and inverting of the variable t, we can transform the original Newton
polygon into the desired form.

More specifically, in the above situation, we first substitute e2/t for t, then multiply
by t3, and finally divide by the leading coefficient.

A<t> := PolynomialRing(L2);

m1 := A!facm[1][1];

m1t := Evaluate(m1,t*e2);

m1t := Coefficients(m1t)[4]+Coefficients(m1t)[3]*t\

+ Coefficients(m1t)[2]*t^2+Coefficients(m1t)[1]*t^3;

m1t := m1t/Coefficients(m1t)[4];

[Valuation(CC)/AbsoluteRamificationDegree(L2) : CC in \

Coefficients(m1t)];
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The resulting polynomial m̃ is indeed Eisenstein—its coefficients being of valuation
�

1

8
,
2

8
,
11

8
,0
�

—and as such can be used in MAGMA to generate the extension L′3 = L2(ξ̃).
10 As m1

splits into linear factors over L′3, we have that L′3 = L3 = L2(ξ). We also observe that
m3 splits into linear factors as well, whereas m2 and m4 remain irreducible.

m1t := A![Expand(CC) : CC in Coefficients(m1t)];

L3<xit> := TotallyRamifiedExtension(L2,m1t);

A<t> := PolynomialRing(L3);

facm1 := Factorization(A!m1);

xi := -Coefficients(facm1[1][1])[1];

Factorization(A!facm[3][1]);

IsIrreducible(A!facm[2][1]);

IsIrreducible(A!facm[4][1]);

Recall the situation from Sect. 3.2.2: after adjoining ξ, we had to adjoin a root α of

n(t) := t3 − (1+ 3ξ3 + 3ξ5)

to get the totally ramified degree-three-extension K2/K1. Again, since n is not Eisen-
stein, we cannot use it directly in MAGMA; instead, we have to transform it into a
suitable Eisenstein polynomial ñ.

n := t^3-(1+3*xi^3+3*xi^5);

nt := Evaluate(n,t*xi^5+1)/(3*xi^3);

nt := Evaluate(nt,xit*t+Coefficients(nt)[1]);

nt := nt/Coefficients(nt)[4];

[Valuation(CC)/AbsoluteRamificationDegree(L3) : CC in \

Coefficients(nt)];

With the coefficients having valuation
�

1

24
,

2

24
,
13

24
,0
�

,

the resulting polynomial ñ is indeed Eisenstein and can be used in MAGMA to generate
a field extension M ′ = L3(α̃).

11 As n splits over M ′ into linear factors, we have

M ′ = L3(α | α3 = 1+ 3ξ3 + 3ξ5) .

Over the field M ′, the polynomials m2 and m4 also split into linear factors.

nt := A![Expand(CC) : CC in Coefficients(nt)];

M<at> := TotallyRamifiedExtension(L3,nt);

A<t> := PolynomialRing(M);

facn := Factorization(A!n);

a := -Coefficients(facn[1][1])[1];

Factorization(A!facm[2][1]);

Factorization(A!facm[4][1]);

10This is one of the places where we assume that our calculations are done with high enough precision:
the resulting m̃1 is not known to the full precision of the base ring and as such cannot be used in MAGMA
for generating an extension field; one has to assure MAGMA that this polynomial is known to a sufficiently
high precision and it shall work with the polynomial as is (this is done with the ‘Expand’ command).

11Here, the analog of Footnote 10 also applies.
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Taking the degree of the respective extensions into account, we deduce that M ′ is
the splitting field over Q9 of the separable polynomials t8− 3 and m(t); the extension
M ′/Q9 is hence Galois and totally ramified of degree 72. But it also follows that M ′

coincides with M : as seen above, the polynomials used to generate M (Sects. 3.2.1–
3.2.3) all split over M ′ into linear factors, and both M and M ′ have degree 72 over Q9.
We have established the following fact, proving the first part of Claim 3.2.

Fact 3.5. M/Q9 is a totally ramified Galois extension of degree [M :Q9] = 72.

3.3.3. Monodromy Action I. It remains to show that Γ := Gal(M/Q9) acts faithfully on
the reduction Ȳ of Y . We will again proceed in several steps.

As above, let the stable model of Y be denoted by Y ss and the induced semistable
model of X (resulting as the quotient of Y ss under the action of the p-cyclic Galois
group of the covering Φ) by X ss. As seen in Claim 3.1 and its proof, Ȳ consists of four
elliptic components Y1, . . . , Y4, which are separated by a single rational component;
also, the components Yi lie above rational components X i of X̄ (which again are sepa-
rated by a single rational component). In the following, we will study the action of Γ
on Ȳ → X̄ and the action of certain subgroups on the single parts Yi → X i .

We know from Fact 3.4 that Γ transitively permutes the components X1, . . . , X4 ⊂ X̄
and that the normal subgroup Gal(M/L1) fixes these (the permutation representation
on the four components is hence via the quotient Gal(L1/Q9) ∼= Z/4). Consequently,
we can study the action of Gal(M/L1) on a single component, say on X1. This com-
ponent corresponds to the modification with center ξ and is described in terms of the
parameter t3 = (t −ξ)/η. We would like to see what effect the Galois automorphisms
from Gal(M/L1) have thereon.

Each σ ∈ Gal(M/L1) fixes two points of the rational component X1 (namely, the
point where ξ reduces to and the point at infinity) and can therefore only act via
multiplication with a root of unity contained in F9. As Gal(M/L1) is of order 18= 2 ·9,
this root of unity can only be 1 (corresponding to the identity) or −1 (giving a non-
trivial action). We calculate

σ(t3) =
t −σ(ξ)
σ(η)

=
η

σ(η)

�

t3 +
ξ−σ(ξ)
η

�

. (3.11)

Since the distance between the zeros of m1 is 1/6—whereas v(η) = 1/8—we obtain
in reduction

σ( t̄3) =
η

σ(η)
t̄3 .

This depends only on the 2-cyclic quotient Gal(L2/L1) = Gal(M/L1)/Gal(M/L2) (with
its non-trivial element acting via multiplication by −1); the kernel of the action of
Gal(M/L1) on X1 is thus P = Gal(M/L2). The kernel with respect to one of the other
components X2,. . . ,X4 is a conjugate of the normal P, that is, also P. Taken together
with Fact 3.4, we obtain

Fact 3.6. The action of Γ = Gal(M/Q9) on X̄ has kernel P = Gal(M/L2).

To see that Γ acts faithfully on the reduction of Y , it is thus enough to show that the
wild ramification subgroup P = Gal(M/L2) acts faithfully on Ȳ . A first step towards
this aim is to establish the following fact.

Fact 3.7. P acts non-trivially on Y1; that is, the kernel P1 of P → Aut(Y1) is of order
|P1|= 3.
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Recall that Y1 is described by Eq. (3.10). To determine the effect of an element
σ ∈ P on Y1, we have to see what happens with w̄2 and t̄3. We have already seen that
t̄3 is fixed by all elements of P. Concerning the reduction w̄2 of w2 = (y −h)/η2 (with
h= α+ βηt3), we calculate

σ(w2) =
y −σ(h)
η2

and, accordingly,

σ(w2)−w2 =
h−σ(h)
η2 =

(α−σ(α)) +η(β t3 −σ(β)σ(t3))
η2 .

The reduction of the latter expression describes the effect of σ ∈ P on w̄2; though t̄3

itself does not change under these automorphisms, the action on t3 (as described in
(3.11)) must very well be taken into account.

3.3.4. Interlude: Calculating Galois Actions. To study the action of Galois automor-
phisms on field elements and on polynomials with the help of MAGMA, we have writ-
ten a number of procedures based on facts from basic field theory.

Recall that the E1-homomorphisms of a simple field extension E2 := E1(a1) into
an algebraic closure Eac

2 are in one-to-one correspondence with the distinct zeros of
the minimal polynomial pa1

(t) ∈ E1[t] in Eac
2 ; see [Bos01, Lem. 3.4.8]. More pre-

cisely, those homomorphisms are determined by the image of a1, and precisely the
zeros of pa1

(t) can be taken as image elements. This is also applicable for towers
En := En−1(an−1), . . . , E2 := E1(a1) of simple field extensions: iterating through each
extension, one notes where the respective generator ai can be mapped to. Each ho-
momorphism is then represented by a list of field elements [ã1, . . . , ãn] and the action
on an arbitrary field element a can be calculated by first representing a in terms of the
generators a1, . . . , an and then substituting ã1, . . . , ãn for these.

This is what the recursively defined procedures FindHoms and ApplyHom do. The
former generates a list of all E1-homomorphisms of E2 into a sufficiently large exten-
sion field by iterating through the simple extensions that were used to generate the
field E2 over E1; each homomorphism gets represented as a list of suitable field ele-
ments. The latter procedure can be used to apply a homomorphism (given in the above
list form) by iterating through the subextensions with its generators, and substituting
in each step the respective list element.

function ApplyHom(f,homs)

if IsEmpty(homs) then

result := f;

else

hom := homs[#homs];

C := Coefficients(f);

result := 0;

for i in [0..#C-1] do

result := result+ApplyHom(C[i+1],Prune(homs))*hom^i;

end for;

end if;

return result;

end function;
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function FindHoms(homs,E1,E2,A)

result := [**];

if not E1 eq BaseField(E2) then

for psi in FindHoms(homs,E1,BaseField(E2),A) do

result := result cat FindHoms(psi,BaseField(E2),E2,A);

end for;

else

pol := DefiningPolynomial(E2);

fac := Factorization(A!ApplyHom(pol,homs cat \

[*SetToIndexedSet(Generators(A))[1]*]));

for i in [1..#fac] do

result := Append(result,Append(homs,\

-Coefficients(fac[i][1])[1]));

end for;

end if;

return result;

end function;

The procedure ApplyHom can also be used to act on polynomials (by simultaneously
acting on all coefficients). For this, one has to extend the list representing a given
homomorphism with an additional entry for the generator of the polynomial ring. This
is done with the following procedure.

function ExtendHomList(homs,A)

for i in [1..#homs] do

Append(~homs[i],SetToIndexedSet(Generators(A))[1]);

end for;

return homs;

end function;

3.3.5. Monodromy Action II. We will use the procedures described in Sect. 3.3.4 to
calculate the differences σ(w2) − w2 for all automorphisms σ ∈ P; this will show
which of the automorphisms act trivially on the component Y1 ⊂ Ȳ .

First, we generate a list of all automorphisms from P.

homs := FindHoms([**],L2,M,A);

homs2 := ExtendHomList(homs,A);

We denote the nine list elements by σ1, . . . ,σ9; these correspond to the elements of
P = Gal(M/L2). We then apply these automorphisms and determine the differences
∆i := w2 −σi(w2) resp. the corresponding valuations v(∆i) and reductions ∆̄i .

f := 1+3*t^3+3*t^5;

f2 := Evaluate(f,e2*t+xi);

b := (9*xi^2+15*xi^4)/(3*a^2);

h2 := Evaluate(a+b*t,e2*t);

k<u>,phi := ResidueClassField(RingOfIntegers(M));

for i in [1..#homs] do

sigmaxi := ApplyHom(M!xi,homs[i]);

sigmah2 := Evaluate(ApplyHom(h2,homs2[i]),t+(xi-sigmaxi)/e2);

delta := (sigmah2-h2)/e1^2;
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σi ∈ P v(∆i) ∆̄i ∈ F9

σ1 ∞1 0
σ2 0 u2

σ3 0 u6

σ4 0 u2

σ5 1/24 0
σ6 0 u6

σ7 0 u2

σ8 0 u6

σ9 1/24 0

1 The actual value is v(σ1) = 275/24; with respect
to the finite precision we are bound to, this corre-
sponds to an arbitrary small element.

FIGURE 3.3. The effect of the automorphisms σi from the wild ramifi-
cation subgroup P = Gal(M/L2) on the elliptic component Y1, stated
in terms of the differences ∆i = w2 −σi(w2).

print "Hom #",i,": min =",Minimum([Valuation(CC)/\

AbsoluteRamificationDegree(M) : CC in Coefficients(delta)]);

print " \\bar{delta} =",PolynomialRing(k)![phi(CC) : \

CC in Coefficients(delta)];

end for;

The essentials of our computations are presented in Fig. 3.3. We deduce that precisely
the automorphisms σ1, σ5, and σ9 act trivially on Y1, giving a kernel P1 of order three.
This justifies the assertion from Fact 3.7.

The kernel Pi of the action of P = Gal(M/L2) on one of the other components
Yi ⊂ Ȳ is given by Pi = τP1τ

−1, where τ ∈ Γ = Gal(M/Q9) is a Galois automorphism
with τ(Y1) = Yi (such automorphisms exist because Γ transitively permutes the parts
Yi → X i , see Fact 3.4). The crucial point is to see that P1 is not invariant under
conjugation with elements of Γ. If this were to be true, the kernel with respect to the
action on the whole of Ȳ —namely, the intersection of the kernels P1, . . . , P4—would
necessarily be trivial.

To this end, we examine the permutation representation of P1 on the twelve zeros
ξ1, . . . ,ξ12 of m(t), which we enumerate with respect to the four clusters they fall into:
ξ1 := ξ,ξ2,ξ3 shall be the zeros of m1, the zeros of m2 shall be ξ4,ξ5,ξ6, and so on.
We then apply the three automorphisms from P1 to ξ1, . . . ,ξ12 and determine in which
way the twelve elements get permuted.

xis := [**];

for i in [1..4] do

facmi := Factorization(A!facm[i][1]);

for j in [1..#facmi] do

Append(~xis,-Coefficients(facmi[j][1])[1]);

end for;

end for;
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P1 := [*homs[1],homs[5],homs[9]*];

for i in [1..#P1] do

perm := [**];

for j in [1..#xis] do

sigmaxi := ApplyHom(xis[j],P1[i]);

max,k := Maximum([sigmaxi-CC : CC in xis]);

Append(~perm,k);

end for;

print "Action of element #",i,"from P1 on [1,..,12]:",perm;

end for;

This leads to the following result.

Fact 3.8. With notation as above, the permutation representation of P1 Ã P on the
twelve zeros of m(t) is of the form

σ1 = id , σ5 = (1 3 2) (7 8 9) , σ9 = (1 2 3) (7 9 8) .

In particular, P1 is not invariant under conjugation with elements from Gal(M/Q9).

As a consequence of the established facts 3.5–3.8, Claim 3.2 is finally justified: as
Γ = Gal(M/Q9) is seen to act faithfully on Ȳ , the totally ramified Galois extension
M/Q9 of degree 72 indeed corresponds to the monodromy extension of Y .

4. PRIME-CYCLIC ÉTALE GALOIS COVERS OF OPEN ANNULI

In Sect. 2, we were able to construct the minimal exhausting disk for prime-cyclic
étale covers of the open unit disk. The ramified situation will naturally lead us to the
study of coverings of open annuli, which is another important ingredient in our proof
of the Semistable Reduction Theorem; namely, for being able to reduce the case of a
general solvable Galois group to the prime-cyclic case, coverings of open annuli have
to be handled.

4.1. Ramified Covers of the Open Unit Disk. Let φ : Y → X be a p-cyclic Galois
covering of the open unit disk X, and assume φ to be ramified in the finitely many
points x1, . . . , xn ∈ X. Choosing an appropriate parameter t for the ring A := �OX of
zero-bounded analytic functions on X, we can assume x1 = 0.

Again, our goal is to construct the minimal φ-exhausting disk D, which leads to
a modification improving the model of Y. Instead of constructing this disk at once,
we introduce intermediate steps by considering the minimal exhausting disk D̃ that
contains all ramification points—that is, we show that the set of all φ-exhausting disks
containing all ramification points x1, . . . , xn has a unique minimum, and we give an
explicit construction of this minimal element. In contrast to the étale situation, finding
a suitable center point for D̃ is hence no issue: we can take x1 = 0. Note that D̃
necessarily contains

Dram := {x ∈ X | min
i=1,...,n

v(x i)≤ v(x)} .

For the moment, suppose we can find and construct D̃. As D̃ ⊃ D, two cases can
occur. In the first case, D̃=D holds true and we have found the minimal φ-exhausting
disk we are looking for. In the second case, D̃)D; note that then D̃=Dram holds true.
Though in this case, D̃ does not correspond to an improving modification in the sense
of Sect. 1.2.3, it nevertheless improves the situation: the modification induced by D̃
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separates at least some of the original ramification points in reduction. Consequently,
the residue classes of critical points will contain strictly fewer ramification points than
before. As this can happen only a finite number of times, we will finally end up with
an improving modification, as desired.

The above shows that it suffices to determine the minimal φ-exhausting disk con-
taining all ramification points of the covering. This is equivalent to determining the
maximal separating boundary domain for the étale covering φ−1(A)→ A of the open
annulus A := X \Dram. We note:

Remark 4.1. The ramified disk case is settled as soon as one understands the slightly
more general12 situation of p-cyclic étale Galois covers of open annuli; the same argu-
ments also show that this is enough to settle the case of ramified p-cyclic coverings of
open annuli. Note that the reduction step might require to replace K by a sufficiently
large finite extension to have the involved models be permanent (see Sect. 1.2.2).
Though the situation is more complex than in the disk case, our algorithmic procedure
will automatically produce a suitable finite extension, with the consequence that the
reduction step is all right also with respect to practical applications; see Rem. 4.20.

4.2. Setting. We present the situation the rest of Sect. 4 is devoted to, and we fix
some notation, which will be in force during the remainder of this section. The base
field K is still assumed to be of characteristic (0, p) and to contain a primitive pth root
of unity.

4.2.1. Étale Coverings of Open Annuli. In the following, X shall denote an open annulus
of thickness ε ∈ v(K×) and φ : Y → X a p-cyclic étale Galois covering thereof. We
wish to prove the analog of Thm. 2.1 for coverings of open annuli.

Theorem 4.2. Let φ : Y→ X be a p-cyclic étale Galois cover of the open annulus X. Fix
a boundary point η1 ∈ ∂X. Then the set of φ-separating boundary domains with regard
to η1 has a unique maximum with respect to inclusion, and this maximum can explicitly
be constructed.

Denote by B := �OY and A := �OX the respective rings of zero-bounded analytic func-
tions. We will construct the maximal separating boundary domain with respect to the
boundary point η1 ∈ ∂X; the boundary point distinct from η1 will be denoted η2 ∈ ∂X.
Let t ∈ A be a parameter with respect to η1. As explained in Sect. 1.5, this gives an
isomorphism

X∼= {x ∈ A1
K | 0< v(t(x))< ε} .

In this sense, η1 is conceived as the ‘outer’ boundary and η2 as the ‘inner’ boundary of
the annulus X. Also, denoting by a ∈ K any element with valuation v(a) = ε, we have

A= R¹s, t | st = aº .

Taking s = at−1 into account, elements f ∈ A can thus be interpreted as Laurent series
in t,

f =
∞
∑

i=−∞
ai t

i ;

12Not every étale Galois cover of an open annulus is the restriction of a Galois cover of an open disk; for
example, consider the étale covering of {x | 0< v(t(x))< 1} given by y p =

∑∞
i=−∞ p|i/p| t i .
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FIGURE 4.1. When representing a zero-bounded analytic function
on an open annulus X (of thickness ε) as a formal Laurent series
∑∞

i=−∞ ai t
i in a parameter t, all points Pi = (i, v(ai)) lie in a sector of

the upper half plane, which is bounded from below by a line through
the origin of slope −ε. When the function has no zeros within X,
only non-negative or negative enough slopes occur in the associated
Newton polygon.

here the coefficients ai ∈ R have to satisfy the growth condition

v(ai)≥max(−iε, 0) , (4.1)

involving the thickness ε of the annulus. Figure 4.1 visualizes this condition.
As explained in Sect. 1.4.2, the covering φ is given by the ring extension B/A, where

B is determined as the integral closure of A in the p-cyclic extension of fraction fields
K(Y)/K(X). As K is assumed to contain a primitive pth root of unity, the extension is
given by an irreducible Kummer equation

y p = f , with f ∈ A . (4.2)

In contrast to the situation from Sect. 2.1, we can in general not assume that f ∈ A is a
unit: there are zero-bounded analytic functions without zeros on X, which still are not
invertible as elements of A (for example, t ∈ A). Nevertheless, due to the assumption
of φ being étale, reasoning as in loc.cit. shows that we can still assume f to have
no zeros on X. The Newton polygon of f will then only involve line segments with
non-negative slopes (corresponding to zeros beyond the outer boundary η1) or slopes
smaller or equal to −ε (corresponding to zeros beyond the inner boundary η2); see
Fig. 4.1 for an illustration of the situation.

With the usual notation for the rank-two-valuations associated to the boundary
points of X, we set (α0, i0) := vη1

( f ). As always, by Conv. 1.6, we are free to as-

sume that K contains a pth root a1/p
i0

of ai0 . We can then replace y by a1/p
i0

y tbi0/pc

in Eq. (4.2) and consider the new equation y p = f /ai0 t i0 . Observe that the function
on the right hand side is still an element of A, as the growth condition (4.1) remains
satisfied due to the Newton polygon of f being of the ‘étale’ form described above. We
will therefore assume from now on that

vη1
( f ) = (0, i0) , with 0≤ i0 < p . (4.3)

Only the case i0 = 0 is interesting and requires further investigation because X itself
is readily recognized to be separating when i0 ∈ {1, . . . , p − 1}: Indeed, in this case,
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Eq. (4.2) leads to an irreducible and purely inseparable equation both over the outer
boundary and over the inner boundary, as in reduction we get

ȳ p = t̄ i0 + terms of higher order and ȳ p = s̄−i0 + terms of higher order ,

respectively.13 As a consequence, above each of the two boundary points of X, there
is only one boundary point of Y; moreover, y ∈ B satisfies conditions (1) and (2) of
Lem. 1.31 since Norm(y) = f = t i0u ∈ A, with u ∈ A a unit and with i0 prime to p. We
conclude that X is separating.

We will thus assume i0 = 0 from now on; therewith, we have reduced our studies
to the case where f ∈ A is a unit.

4.2.2. Number of Boundary Points Above. Recall Cor. 2.4, which states that, in the case
of p-cyclic étale coverings of the disk, there is only one boundary point lying above the
boundary of the disk. This is no longer true when studying p-cylic coverings of open
annuli: both above η1 and η2 ∈ ∂X, there might be lying p boundary points of Y.

Lemma 4.3. Let A be an open annulus of thickness v(π) (with π denoting a uniformizer
of R) and consider a p-cyclic étale Galois cover thereof. Then at least one of the two
boundary points of A does not split in the covering.

Proof. In the situation of the lemma, the ring �OA of zero-bounded analytic functions
on A is a regular local ring. By contradiction, suppose that the covering decomposes
over both boundaries of A. As a consequence of the theorem on purity of branch loci,
the covering then has to decompose over the whole of A—contradicting the fact that
open analytic curves are absolutely connected, see Rem. 1.8.

With the above lemma, we can reduce to a simpler situation concerning φ; namely,
we can assume the covering to not split over at least one of the boundaries of X.
Indeed, suppose that both boundary points η1,η2 ∈ ∂X decompose in φ. We then
subdivide the annulus X of thickness ε into a chain of subannuli

Ai := {x ∈ X | iv(π)< v(t(x))< (i+ 1)v(π)} , for i = 0, . . . ,ε/v(π)− 1 ,

and consider the corresponding restricted coveringsφi : φ−1(Ai)→ Ai . Note that each
annulus Ai is of thickness v(π). By Lem. 4.3 and its proof, the covering φ0 is either
trivial or does not decompose over the inner boundary of A0. In the former case, A0

is contained in the maximal φ-separating boundary domain A ⊂ X (with respect to
η1), and we continue and examine A1, A2, and so forth. As the open analytic curve Y
is not a disjoint union of p open annuli, we eventually end up with an Ai over which
the restricted covering φi does not decompose. Then the union of A0, . . . ,Ai−1, and
of the maximal φi-separating boundary domain (with respect to the outer boundary)
constitutes the maximal φ-separating boundary domain A⊂ X.

By the results that we are to establish in Sect. 4.5.2, we will be able to recognize
(within finitely many steps) whether the covering decomposes over a given boundary.
With respect to determining the maximal separating boundary domain of φ, we can
hence assume without loss of generality that over at least one boundary point of X,
there is only one boundary point of Y.

13For being able to write down the second equation, K needs to contain an element with valuation
vp2
( f )/p (where vp2

denotes the discrete valuation associated to η2 ∈ ∂X); as always, we may assume K to

do so.
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Analog to the disk case, we speak of the geometric situation; that is,

the Laurent series f ∈ A is a unit of A and not a pth power in A ,
and over at least one of the two boundaries of X, the covering
given by y p = f does not split.

(GEOM2)

Figure 1.4 on page 18 shows a 3-cyclic covering with only one boundary lying above
the outer boundary of the annulus but three above the inner one.

4.3. Sufficiently Precise Approximation. As in the disk case, to obtain a suitable de-
scription of the model YR that enables us to deduce the maximal separating boundary
domain, the defining equation (4.2) has to be rewritten using a good enough approx-
imation of f by a pth power hp. The critical radius (in the current situation better
called ‘critical thickness’) giving the maximal separating boundary domain can then be
read off from the modified Newton polygon of f − hp via its critical line segment.

4.3.1. Definition. The concept of sufficiently precise approximations carries over from
the disk case to the current situation of coverings of open annuli. Again, the definition
is stated in terms of the critical line segment in the modified Newton polygon of the
approximation; our previous definitions (Defs. 2.20 and 2.22) are easy to adapt to the
current situation.

Definition 4.4. The modified Newton polygon of the Laurent series f =
∑∞

i=−∞ ai t
i ∈ A

is the lower convex hull over the points Pi := (i, v(ai)), for integers i ∈ Z\{0}, and the
specially defined point

P0 :=

(

(0, v(a0))

P ′0 = (0, p/(p− 1))

if v(a0)< p/(p− 1) ,

otherwise .

We call

k :=min{i ∈ Z | v(Pi)≤ v(Pj) for all j ∈ Z}

the critical index of f .14 The corresponding point Pk is called the critical point of f ;
it is the leftmost of all lowest-valued points. If there are line segments with negative
slope, the line segment Pl Pk with negative slope of smallest absolute value is called the
critical line segment (it will necessarily have the critical point as right vertex point).

As in Def. 2.25, we want to call approximations sufficiently precise, if they give rise
to a critical line segment basically not involving p-coefficients. Due to the more general
situation in this section, we have to state the conditions with a bit more care.

Definition 4.5. Let the Laurent series f ∈ A× be as in the geometric situation (GEOM2).
Let h ∈ A× be given. Denote by Pk the critical point in the modified Newton polygon of
f −hp and by Pl Pk the critical line segment (provided there is one). The approximation
of f via h is called sufficiently precise if one of the following conditions is satisfied:

(1) m prime to p and either there is no critical line segment or slope(Pl Pk)≤−ε ,
(2) m prime to p and slope(Pl Pk)>−ε and

(a) P ′0 ∈ Pl Pk or
(b) P ′0 /∈ Pl Pk and l ∈ Z prime to p ,

(3) m= 0 and l ∈ Z prime to p .

We call (1) the trivial case, (2a) and (3) the non-split resp. split separable case, and
(2b) the inseparable case; cf. Fig. 4.2.

14Since f ∈ A satisfies the growth condition (4.1), a well-defined minimum always exists.
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Again, the existence of sufficiently precise approximations is the heart of our proof
of Thm. 4.2. The assertion, that sufficiently precise approximations exist, is the con-
tents of the next proposition; it will take some work to establish this result. In Sect. 4.5.1,
we adapt the method of p-Taylor expansion to the current situation, and this will in
most cases enable us to produce sufficiently precise approximations of f within finitely
many steps. There are some cases, however, that require additional means. For those,
we have to adopt the approximation algorithm inherent in the proofs of Prop. 2.2 and
Lem. 4.9; see Sect. 4.5.2. The greater complexity of the present situation is due to the
fact that the open annulus X has two boundaries and we have to deal with Laurent
series instead of power series.

Proposition 4.6. Let the Laurent series f ∈ A× be as in the geometric situation (GEOM2).
Replacing K by a finite field extension, there is a sufficiently precise approximation h ∈ A×

of f by a pth power. Both the extension field and the approximation can be determined
by a practical algorithm.

4.3.2. Critical Thickness. The analog of Prop. 2.28 holds true in the current situation:
essentially, the critical line segment in the modified Newton polygon of f − hp does
not depend on which sufficiently precise approximation h has been chosen; we can
therefore use it for the definition of the critical thickness, which we assert to give the
maximal separating boundary domain (Prop. 4.12).

Proposition 4.7. Let the Laurent series f ∈ A× be as in the geometric situation (GEOM2)
and let h ∈ A× be any sufficiently precise approximation of f by a pth power. Denote by
Pk the critical point in the modified Newton polygon of f −hp and by Pl Pk the critical line
segment (provided there is one). The case of Def. 4.5, into which the critical point resp.
the critical segment falls, does not depend on which sufficiently precise approximation has
been chosen and neither does m. In the split separable case (3) and in the inseparable
case (2b), also l does not depend on the approximation chosen.

Definition 4.8. Let the Laurent series f ∈ A× be as in the geometric situation (GEOM2).
Denote by Pk the critical point in the modified Newton polygon of some sufficiently pre-
cise approximation of f by a pth power and by Pl Pk the critical line segment (provided
there is one). The critical thickness of f (with respect to η1) is

ρ0 :=

(

ε

min{|slope(Pl Pk)|,ε}

if there is no critical segment ,

otherwise .

In other words, the critical thickness essentially is the absolute value of the slope of
the critical line segment (as long as meaningful).

Proposition 4.7 will be an easy consequence of Lem. 4.9, a technical lemma that will
be used several times throughout this section and is, in a way, a sophisticated adaption
of the uniqueness result from Prop. 2.2 (which was used to prove the assertion in the
case of disk covers, see Prop. 2.28 and its proof).

We will use analog notation as in Sect. 2.3.1 and consider the discrete valuation vρ
corresponding to a radius15 ρ ∈ v(K×), with 0< ρ ≤ ε, and satisfying

vρ(t) = ρ .

15This is with respect to the boundary under consideration.
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We will also consider different extensions to rank-two-valuations, depending on whether
vρ is seen as a valuation corresponding to the inner boundary of the boundary domain

Aρ := {x ∈ X | v(t(x))< ρ} ,

or as a valuation on the affinoid

Bρ := {x ∈ X | ρ = v(t(x))}

(for ρ < ε). In the former case, we have the rank-two-valuation v−ρ that is associated
to the inner boundary of Aρ in the sense of Sect. 1.3.5; in the latter case, we consider
the rank-two-valuation v+ρ , whose second component corresponds to the place t̄ = 0
of the residue field Frac k[ t̄].

Lemma 4.9. Let f ∈ A× be as in the geometric situation (GEOM2) and let η ∈ ∂X be a
boundary point over which there is only one boundary of Y. Then:

(1) The set

{vη( f − hp) | h ∈ A} ⊂Q×Z

has a unique maximum (µ, m), with µ ≤ p/(p − 1) and with m prime to p.
Moreover, for any ρ ∈ v(K×) with 0< ρ ≤ ε, the set

{vρ( f − hp) | h ∈ A with vη( f − hp) = (µ, m)} ⊂ v(K×) (4.4)

also takes a unique maximum µ̃, with µ̃≤ µ+mρ.
(2) If µ+mρ ≤ p/(p− 1) holds true and if the extension of vρ to Frac B is weakly

unramified, the Kummer equation (4.2) has irreducible reduction both over the
inner boundary of Aρ and, provided ρ < ε, over the affinoid Bρ.
(a) In the case µ̃ = p/(p − 1), the reduction is given by an Artin–Schreier

equation and the set {v−ρ ( f − hp) | h ∈ A×} has the unique maximum
(p/(p− 1),−m).

(b) In all other cases, the reduction is given by a purely inseparable equation
and the set {v+ρ ( f − hp) | h ∈ A×} has a unique maximum (µ̃, m̃), with
m̃≤ m and m̃ prime to p.

Proof. By assumption, the covering given by Eq. (4.2) does not split over η ∈ ∂X;
that is, Eq. (4.2) remains irreducible over the residue field of vp (with vp denoting
the discrete valuation associated to η ∈ ∂X, as usual). The same arguments as in
the proof of Prop. 2.2 then show that {vp( f − hp) | h ∈ A} takes a unique maximum
µ ≤ p/(p − 1). In contrast to the disk case, a best approximation with value exactly
p/(p − 1) is possible, as we have to deal with Laurent series instead of power series
and this can lead to an irreducible Artin–Schreier equation of the form ȳ p + ȳ = ḡ,
with ḡ ∈ k(( t̄)) \ k¹ t̄º.

Since open analytic curves are defined in terms of permanent models and the dis-
crete valuations corresponding to the boundaries are therefore weakly unramified, rea-
soning as in the proof of Prop. 2.2 shows that the second component of vη also attains
a maximum m ∈ Z, when running over all elements h ∈ A× giving the best possible
approximation µ with respect to the first component. This is because both in the case
of purely inseparable reduction (that is, µ < p/(p − 1)) and in the case of separable
reduction (that is, µ = p/(p− 1)) unwanted p-coefficients can be eliminated, so that
the maximal value m that can occur is characterized by the fact that it is prime to p.
For each ρ ∈ v(K×), the set (4.4) is bounded from above by µ+ mρ, corresponding
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to the coefficient with index m. As vρ is discrete, a maximal value µ̃ is thus attained.
This shows (1).

For (2), suppose that µ+mρ ≤ p/(p−1) holds true and that the extension of vρ to
Frac B is weakly unramified (by Epp’s result, this could in theory be realized through
replacing K by a sufficiently large finite extension). Let h̃ ∈ A× be a maximal element
as in (1), that is, an element with vη( f − h̃p) = (µ, m) and vρ( f − h̃p) = µ̃ ≤ µ+mρ.
Due to our assumption on vρ, there is λ ∈ K with valuation v(λ) = µ̃/p. Then the
usual variable change w := (y − h̃)/λ transforms Eq. (4.2) into

wp + · · ·+ ph̃p−1λ1−pw = · · ·+ ut m̃ + terms of positive valuation , (4.5)

with m̃ ≤ m and vρ(ut m̃) = 0, and where ‘positive valuation’ is with respect to vρ.
Equation (4.5) reduces to an Artin–Schreier equation resp. to a purely inseparable
equation, depending on whether µ̃ is equal to p/(p − 1) or is strictly smaller. In any
case, the reduction is seen to be irreducible—both over Frac k¹ t̄−1

º (the residue field
corresponding to the inner boundary of Aρ) and over Frac k[ t̄] (the residue field cor-
responding to the valuation on Bρ). Otherwise, the approximation by h̃ could be
improved as in the proof of Prop. 2.2—contradicting the fact that h̃ is supposed to be
a best approximation with respect to vρ. The crucial point is that this only involves
terms of order smaller than m/p and therefore the best approximating property of h̃
with respect to vη will not get lost.

In the above way, we can eliminate unwanted p-coefficients. We obtain: in the case
of separable reduction (that is, if µ̃= µ+mρ = p/(p−1)), the maximal possible value
for v−ρ ( f − hp) is (p/(p − 1),−m); in the case of inseparable reduction, the maximal
possible value for v+ρ ( f − hp) is (µ̃, m̃), with m̃≤ m prime to p.

Proof of Prop. 4.7. With the formula of Def. 4.8, define the critical thickness ρ0 corre-
sponding to (and a priori depending on) the sufficiently precise approximation h ∈ A×.

If the covering given by the Kummer equation (4.2) does not split over the outer
boundary η1 ∈ ∂X, the set {vη1

( f − h̃p) | h̃ ∈ A} takes a unique maximum (µ, m), with
m prime to p; see Lem. 4.9. It is clear that Pk = Pm = (m,µ) holds true; in particular,
the critical point is then uniquely determined by the covering. Finitely enlarging the
base field K (if necessary), we can assume by Epp’s result [Epp73] that the extension
of vρ0

to Frac B is weakly unramified. We are hence in the situation of Lem. 4.9, which
will show that all relevant information concerning the critical point resp. the critical
segment is determined by the covering (that is, by f ) and does not depend on the
chosen sufficiently precise approximation.

More precisely, by the lemma, there is a unique maximum

µ̃ :=max{vρ0
( f − h̃p) | h̃ ∈ A with vη1

( f − h̃p) = (µ, m)} ≤ µ+mρ0 ;

by definition of ρ0, we always have µ+mρ0 ≤ p/(p−1) and µ̃= µ+mρ0 = vρ0
( f −hp).

According to Def. 4.5, we distinguish several cases. When the approximation by h falls
into case (2b), we have µ̃ = µ+mρ0 < p/(p− 1). Then v+ρ0

( f − h̃p) attains a unique

maximum (µ̃, m̃), when running over all elements h̃ giving a best approximation with
respect to vη1

; we have m̃ ≤ m prime to p. As m̃ is characterized by this fact and
as v+ρ0

( f − hp) = (µ̃, l), the maximal possible value m̃ has to coincide with l. As a
consequence, Pl is then also uniquely determined by the covering and so is then, in
particular, the critical thickness ρ0.
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The other cases are similar. In case (2a), we have µ+mρ0 = p/(p− 1) and we are
led to a separable Artin–Schreier equation in reduction; though l is no longer uniquely
determined, the slope corresponding to the critical line segment is still determined
just in terms of the covering, as we have slope(Pl Pm) = slope(P ′0Pm). In case (1),
application of the lemma with respect to ρ0 = ε shows that the best approximation of
f by a pth power with respect to vε is of value µ+mε and that (µ+mε,−m) is the
maximal value for v−ε ; consequently, all sufficiently precise approximations will either
give no critical segment at all or a critical line segment of slope smaller or equal to −ε.

Finally, when the covering splits over the outer boundary η1 ∈ ∂X, we necessarily
have Pk = P ′0 and we are in case (3). By assumption, the covering cannot also split over
the inner boundary η2 ∈ ∂X. To show that l—and then also the slope of the critical
line segment—are uniquely determined, we can hence argue as in (2a): Lem. 4.9
has to be applied with respect to η2 and the correctly interpreted critical thickness
ρ̃0 = ε− |slope(Pl P

′
0)|.

Remark 4.10. The above proof shows that, in the case where the covering does not
split over the outer boundary, the critical point of any sufficiently precise approxima-
tion corresponds to the value (µ, m) of a best approximation in the sense of Lem. 4.9.
We will therefore usually denote the critical point resp. the critical segment (provided
there is one) of sufficiently precise approximations by Pm resp. Pl Pm.

The next corollary is an immediate consequence of Prop. 4.7 and its proof, and
it is an important ingredient for our proof of Prop. 4.12, which explicitly describes
the maximal separating boundary domain for the covering φ : Y → X; namely, the
corollary is the key result for showing that Aρ0

is maximal separating, as it gives an
explicit description of the reduction over the inner boundary of Aρ0

and, if ρ0 < ε,
over the affinoid Bρ0

.

Corollary 4.11. Let f ∈ A× be as in the geometric situation (GEOM2). Denote by Pm the
critical point of some sufficiently precise approximation of f and, provided there is one,
by Pl Pm the critical line segment; the critical thickness shall be denoted ρ0. We distinguish
cases according to Def. 4.5.

(1) In the trivial case, the Kummer equation (4.2) has irreducible reduction over the
inner boundary of X, given either by w̄p = · · ·+ t̄m or w̄p + w̄ = · · ·+ t̄m, with
m prime to p.

(2) In the non-split separable case resp. in the inseparable case, Eq. (4.2) has irre-
ducible reduction over the inner boundary of Aρ0

and also over the affinoid Bρ0
.

The reduction is given by
(a) an Artin–Schreier equation w̄p + w̄ = · · ·+ t̄m resp. by
(b) a purely inseparable equation w̄p = ūl t̄

l + · · ·+ t̄m ,
with l < m and l, m prime to p (and with ūl denoting a unit of k).

(3) In the split separable case, Eq. (4.2) splits over the inner boundary of Aρ0
but

remains irreducible over the affinoid Bρ0
, as the reduction is given by an Artin–

Schreier equation w̄p + w̄ = t̄ l + · · · , with l < 0 prime to p and the right hand
side a polynomial in t̄−1 of degree |l|.

(It might be necessary to replace K by a specific finite field extension to be able to write
down the respective equations.)

4.4. Maximal Separating Boundary Domain. We can now state what the maximal
separating boundary domain will be.
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Proposition 4.12. Let the situation be as in Sect. 4.2; that is, f ∈ A× shall be as in
(GEOM2) and define a p-cyclic covering φ : Y→ X of the open annulus of thickness ε.
After replacing K by a suitable finite field extension, Prop. 4.6 guarantees the existence of
a sufficiently precise approximation h ∈ A× of f . Denote by Pm the corresponding critical
point and, provided there is one, by Pl Pm the critical segment; the critical thickness defined
as in Def. 4.8 shall be denoted ρ0. Then the boundary domain

A := {x ∈ X | v(t(x))< ρ0}

is the maximal separating boundary domain with respect to η1 ∈ ∂X.

Proof. We distinguish two cases. When the covering splits over the outer boundary
η1 ∈ ∂X, there are p open annuli lying above any separating boundary domain with
respect to η1. The critical segment then falls into case (3) of Def. 4.5; that is, we have
Pm = P ′0 and l < 0 prime to p. For any ρ ≤ ρ0, there are p boundaries lying above the
inner boundary16 of

Aρ = {x ∈ X | v(t(x))< ρ} ,

and ρ0 is largest with this property. Indeed, for ρ < ρ0, we have vρ( f −hp)> p/(p−1),
so f is a pth power with respect to that boundary; for ρ = ρ0, we get a splitting Artin–
Schreier equation over that boundary, see Cor. 4.11. On the other hand, for all ρ > ρ0,
the point Pl from the critical line segment prevents the existence of approximations
with value p/(p − 1) or better (with respect to the inner boundary), so there is only
one boundary lying above. All in all, A is recognized to be maximal separating.

When the covering does not split over η1 ∈ ∂X, any separating boundary domain
with respect to η1 will have a single open annulus lying above. As in the proof of
Lem. 2.34, we will use Lem. 1.31 to show that A is separating, or in other words, that
V := φ−1(A) is an open annulus. Denote by A1 := �OA and B1 := �OV the zero-bounded
analytic functions on A and V, respectively. Recall that B1 is the integral closure of
A1 in the extension of Frac A1 given by the Kummer equation (4.2) (considered as an
equation over A1).

We first have to see that there is also only one boundary point of V lying above the
inner boundary of A, but this is an immediate consequence of Cor. 4.11—no matter
whether the line segment falls into case (1), (2a), or (2b) of Def. 4.5. Let λ ∈ K be some
arbitrary element of valuation v(λ) = vp1

( f − hp)/p (with vp1
denoting the discrete

valuation corresponding to the boundary η1). Then the element w := (y − h)/λ ∈ B1

satisfies the irreducible equation

wp + · · ·+ php−1λ1−pw =
f − hp

λp

over A1, and therefore

Norm(w) =
f − hp

λp =: g .

With the same reasoning as in the disk case (cf. the proof of Lem. 2.34), it follows from
the definition of the critical thickness that g ∈ A1 can be written as tmu, with u ∈ A×1
a unit and m the index of the critical point; note that m is prime to p. Therefore, w is
seen to meet requirements (1) and (2) of Lem. 1.31; we conclude that A is separating.

16That is, the boundary distinct from the one induced by η1 ∈ ∂X.
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When ρ0 = ε holds true, A is obviously maximal with that property. Now assume
ρ0 < ε. Then the critical line segment falls into case (2a) or (2b) of Def. 4.5. Corol-
lary 4.11 shows that the affinoid φ−1(B), the preimage of

B= {x ∈ X | ρ0 = v(t(x))} , (4.6)

has irreducible reduction either described by an Artin–Schreier equation or by a purely
inseparable equation of the form

w̄p = ūl t̄
l + · · ·+ t̄m (4.7)

(with a non-zero element ūl ∈ k, with l < m, and with l, m prime to p). In the
former case, the reduction is smooth; in the latter case, the reduction contains at least
one singular point as the differential of the right hand side of Eq. (4.7) has at least one
zero distinct from 0 and∞. As a consequence, Lem. 1.33 shows that A is maximal.

Up to showing that sufficiently precise approximations always exist and can be con-
structed by a practical algorithm—both will be shown in the next section—we have
explicitly determined the maximal separating boundary domain for the covering φ
and have thereby also proven Thm. 4.2.

4.5. Existence of Sufficiently Precise Approximations. We still need to see that suf-
ficiently precise approximations of f exist and, moreover, can be obtained by a practical
procedure.

4.5.1. Generalization of Formal p-Taylor Expansion. The main means to practically find
sufficiently precise approximations is again the algorithm of formal p-Taylor expansion
(adapted to the current situation of Laurent series). As before, one important aspect of
this method is the fact that no prior assumptions on the base field have to be made. In
contrast to the disk case, determining the maximal separating boundary domain does
not involve finding a suitable center point (as all boundary domains with respect to
η1 ∈ ∂X can be written in terms of the chosen parameter t). With respect to this issue,
we are in a more simple situation and it suffices to consider the non-generic version of
the algorithm.

Definition 4.13. Let the situation be as presented in Sect. 4.2; that is, A shall be the
ring of zero-bounded analytic functions on the open annulus X of thickness ε, and
t ∈ A shall be a fixed parameter with respect to the chosen boundary η1 ∈ ∂X. A
formal p-Taylor expansion of level n ∈ N0 for f ∈ A× is given by a function h ∈ A× such
that the following condition on the coefficients in the Laurent series expansion

f − hp =:
∞
∑

i=−∞
a′i t

i

holds true:

(∗) v(a′jp)≥ νn +max{− jpε, 0} for all j ∈ Z .

This is abbreviated to ( f ; h, t; a′i).

With a formal p-Taylor expansion ( f ; h, t; a′i), we obtain an approximation of f by a
pth power in which all p-coefficients of f −hp are simultanously small. More precisely,
when the level is n ∈ N0, the valuation of all p-coefficients will be at least νn above
‘ground level’ (meaning the minimal valuation the respective coefficient needs to have
by (4.1) to give an element of A). In other words, all p-coefficients can be raised within
a tubelike area of diameter p/(p − 1); Figure 4.2 shows this tubular neighborhood
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FIGURE 4.2. When the covering φ : Y → X does not split over
η1 ∈ ∂X, the critical point Pm from a sufficiently precise approxima-
tion of f lies in one of the areas marked (A), (B), (C), or (D); oth-
erwise, Pm = P ′0 is the point (E). Depending on this, only specific
cases of Def. 4.5 can occur: for Pm ∈ (A), only cases (2a) and (2b)
are possible; for Pm ∈ (B)∪ (C)∪ (D), the only possible cases are (1)
and (2b); the point (E) corresponds to case (3). Ultimately, this also
determines in which way a sufficiently precise approximation can be
obtained; see the proof of Prop. 4.6 in Sect. 4.5.3.

(partitioned into several subareas, which play a role when proving the existence of
sufficiently precise approximations in Sect. 4.5.3).

Proposition 4.14. With notation as in Def. 4.13, let f ∈ A× be given and fix a level
n ∈ N0. After replacing K by a suitable finite field extension, there exists a formal p-Taylor
expansion ( f ; h, t; a′i). Both the extension field and the expansion can be determined by a
practical algorithm.

Remark 4.15. With notation as in Lem. 2.10, the proof of Prop. 4.14 will show that
an extension field as in the statement of the proposition is given by

L := (. . . (K0)1) . . .)n = K(Π | ΠpN = π) ,

with π a uniformizer of R and with N = 1+ · · ·+ (n+ 1) = (n+ 1)(n+ 2)/2.

Remark 4.16. In contrast to the disk case, we cannot assume p-Taylor expansions to
satisfy a′0 = 0. The reason is that we have to deal with Laurent series instead of power
series and there might be mixed terms interfering with the zeroth coefficient, see the
proof of Prop. 4.14. This can lead to an additional twist when constructing sufficiently
precise approximating functions; see the proof of Prop. 4.6 in Sect. 4.5.3.

Proof of Prop. 4.14. The proof is completely analog to the proof of Prop. 2.12: we in-
ductively construct elements h[n], whose pth powers approximate f up to level n ∈ N0.
As before, it will be necessary in each step to pass to a successively larger finite ex-
tension K[n] of K , with corresponding ring of integers R[n]; the zero-bounded analytic
functions on X considered as a K[n]-curve will be denoted A[n]. For notational conve-
nience, we also set K[−1] := K and R[−1] := R, as well as A[−1] := A.

For n ∈ N0, we then define

h[−1](t) := 0 ∈ A[−1] and h[n](t) := h[n−1](t) +δ[n](t) ∈ A[n] , (4.8)
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with the improvement term

δ[n](t) :=
∞
∑

j=−∞
b[n]j t j ∈ A[n] (4.9)

having coefficients b[n]j ∈ R[n], the pth powers of which approximate the p-coefficients

a[n−1]
jp from the previous approximation step

f (t)− (h[n−1](t))p =:
∞
∑

i=−∞
a[n−1]

i t i ∈ A[n−1] (4.10)

at least up to valuation νn +max{− jpε, 0}, that is,

v(a[n−1]
jp − (b[n]j )

p)≥ νn +max{− jpε, 0} . (4.11)

Note that since f (t) satisfies the growth condition (4.1), the constructed elements
h[n](t) also do and are thus indeed elements of A[n]. Moreover, h[n](t) is a unit of A[n]

as a[n]0 ∈ R[n] is seen to be of valuation zero.
By Lem. 2.10, all elements b[n]j as required are contained in the ring of integers R[n]

of the finite extension

K[n] := (K[n−1])n

of degree pn+1 (with notation as in the lemma). Unlike in the disk case, inequality
(4.11) requires the full strength of Lem. 2.10. Of course, other field extensions can
work as well; in particular, when f is polynomial, we could also brutally adjoin all pth
roots

b[n]j := (a[n−1]
jp )1/p

needed and use these for the definition of δ[n](t).
Precisely as in the proof of Prop. 2.12, one shows that h[n] provides an approxima-

tion of level n by calculating

f − (h[n])p = f − (h[n−1] +δ[n])p

= ( f − (h[n−1])p)− (δ[n])p −
p−1
∑

j=1

�

p

j

�

(h[n−1]) j(δ[n])p− j (4.12)

and keeping track of the valuation of the involved terms (again using the fact that the
involved functions satisfy the growth condition (4.1)).

Observe that, in contrast to the disk case, we can in general not achieve that h[n](t)p

kills the zeroth coefficient of f (t). This is because multiplication of terms with negative
and positive powers of t might very well result in expressions also contributing to the
zeroth coefficient. The estimate v(a′0) ≥ νn from property (∗) of Def. 4.13 is the best
we can get with this algorithm.

Though νn → p/(p− 1) for n→∞, we always have νn < p/(p− 1) for finite level
n ∈ N0. Note that in the current situation, best approximations might very well have
value p/(p − 1); see Lem. 4.9. The consequence is that the p-Taylor algorithm will
not always be enough to produce sufficiently precise approximations, as the critical
segment might keep involving unwanted p-coefficients—no matter how high the level
is chosen; cf. Fig. 4.3. To be able to prove that sufficiently precise approximations can
always be obtained, we first have to establish some facts concerning the approximation
algorithm from the proof of Lem. 4.9.
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4.5.2. Potentially Separable Reduction. As remarked above, the p-Taylor algorithm will
not always be enough to produce sufficiently precise approximations of f . Namely, this
happens whenever the covering has potentially separable reduction over one of the
boundaries involved and we have to deal with approximations of valuation p/(p− 1)
or larger. In this situation, the naive approximation algorithm inherent in the proofs
of Prop. 2.2 and Lem. 4.9 will prove very useful, as it can also handle approximations
with value p/(p− 1) or larger. We recall how the algorithm works.

Let the situation be as before; that is, the Laurent series f ∈ A× shall satisfy
(GEOM2) and define via Eq. (4.2) the p-cyclic covering φ : Y → X of the open
annulus X of thickness ε. When the covering does not split over η1 ∈ ∂X, we want
to approximate f by a pth power as good as possible—that is, maximize vη1

( f − hp),
which we know in that situation to be not larger than p/(p− 1) (see Lem. 4.9); when
the covering splits over η1, we want to find an approximation with value better than
p/(p− 1).

Algorithm 4.17. With setting and notation as above, assume that K is large enough to
have the extensions of vη1

to K(Y) be weakly unramified. We start with some arbitrary
h ∈ A× and set µ := vη1

( f −hp). Suppose that µ < p/(p−1). Due to assumption on K ,
there is λ ∈ K with valuation v(λ) = µ/p. Then the variable change w := (y − h)/λ
leads to an equation reducing to a purely inseparable equation of the form w̄p = ḡ over
Frac k¹ t̄º (here we have written g := ( f −hp)/λp). Precisely if ḡ is a pth power—say,
ḡ = q̄p—the approximation can be improved through replacing h by h+λq, giving an
approximation with value strictly larger than µ. The analog reasoning applies when
µ = p/(p− 1). In that case, the above variable change leads to an equation reducing
to an Artin–Schreier type equation w̄p + w̄ = ḡ. Precisely if there is q̄ with q̄p + q̄ = ḡ,
the initial approximation can be improved through replacing h by h+ λq, and this
gives an approximation with value strictly larger than p/(p − 1). As the base field K
is discretely valued, finitely many of these improvement steps suffice to either produce
a best possible approximation of f by a pth power with value µ ≤ p/(p− 1) or some
approximation with value strictly larger than p/(p− 1).

For the above to work, it is crucial that—right from the start—the base field is large
enough to contain elements λ with all required valuations; if one had to enlarge K
during this algorithmic procedure, the value group of the base field would get larger,
and all work would be in vain. In the theoretical setting of a finite covering Y→ X of
open analytic curves (that is, in the setting Prop. 2.2 and Lem. 4.9 were proven), this
poses no problem as open analytic curves come by definition from permanent models
and the involved valuations are weakly unramified. But for practical applications, the
algorithm would only be useful if we could state a sufficiently large extension field in
advance. As remarked before, this is in general not possible and one of the reasons
why we rely on formal p-Taylor approximations. Fortunately, precisely when the latter
is not enough to produce sufficiently precise approximations, Alg. 4.17 will turn out
to be of practical value because it will then be possible to explicitly state a finite field
extension K ′/K over which the extensions of vη1

to K(Y) will be weakly unramified.
For the argumentation to follow, we temporarily abandon our usual notation from

Sect. 4 and assume to come from the global situation of a p-cyclic covering of the pro-
jective line, Φ : Y → X = P1

K , given by a Kummer equation y p = f , with f ∈ R[t].
We will show that K ′ has to be chosen so large that Y contains enough K ′-rational
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points specializing to each component in the reduction of Y , and with these special-
izations not coinciding with the reduction of ramification points. To make this more
precise, we choose an affinoid subdomain U ⊂ X rig with good reduction and which
does not contain any ramification points of Φ. For example, we could define U as
the complement in X rig of all residue classes containing ramification points. We may
assume U to be connected. Then the reduction Ū of U is a smooth irreducible affine
k-curve. Let V := Φrig−1(U) ⊂ Y rig denote the preimage of U. In general, V does
neither have good nor potentially good reduction; however, when V has potentially
separable reduction—which is what we assume from now on—V does not only have
potentially good reduction, but it is also easy to determine a finite extension K ′/K over
which this good reduction is attained.

Lemma 4.18. Let the situation be as described. Choose some K-rational point x ∈ U.17

Then the residue field K ′ of some arbitrary point in the Φrig-preimage of x is a finite
extension of K over which V has separable reduction. In particular, Alg. 4.17 can be used
over K ′ to produce within finitely many steps a best approximation of f by a pth power
with respect to the Gauß valuation on U.

Proof. By definition of U, the residue class X in which x lies does not contain ramifica-
tion points of Φ, so f (x) is a unit of R. Changing parameters, we may assume x = 0.
Then the constant coefficient a0 ∈ R of f =

∑<∞
i=0 ai t

i is a unit, and over the finite
extension K ′ := K(α | αp = a0)—that is, the residue field of points lying above x—we
can normalize f such that a0 = 1.

Restricting Φrig to the preimage Y := Φrig−1(X), we are in the well-known situation
of an étale covering φ := Φrig|Y : Y→ X of the open unit disk; the covering is given
by y p = f , with f considered as a power series over the integral closure R′ of R in
K ′. The results of Sect. 2 imply that f can either be best approximated by a pth power
with value strictly smaller than p/(p− 1), or φ decomposes after passing to a further
finite extension K ′′/K ′ over which Y has a permanent model. As the former situation
is excluded by our assumptions on V, the latter is the case—that is, f is a pth power
in R′′¹tº (with R′′ denoting the integral closure of R in K ′′).

We claim that f is then already a pth power in R′¹tº, so the extension K ′′/K ′ was
not necessary. To see this, we may assume K ′′/K ′ to be Galois. Let σ ∈ Gal(K ′′/K ′) be
any of the Galois automorphisms and denote by g :=

∑∞
i=0 bi t

i ∈ R′′¹tº a pth root of
f . Then

∞
∑

i=0

σ(bi)t
i = σ(g) = ζp g

holds true, with ζp ∈ K a pth root of unity; that is,

σ(bi) = ζp bi , for all i ∈ N0 . (4.13)

As bp
0 = 1 holds true, b0 is a pth root of unity and as such contained in K . It then

follows from considering Eq. (4.13) for i = 0 that ζp = 1. Since σ ∈ Gal(K ′′/K ′) was
arbitrary, this implies that g ∈ R′¹tº, as asserted.

Our arguments show that over the finite extension K ′/K , the preimage Y of X de-
composes into p distinct open disks, which are the residue classes of p distinct points

17Since the affinoid U has good reduction and since the residue field of K is algebraically closed, U
always contains K-rational points.
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on the reduction of V. Consequently, the reduction of the covering V→ U is generically
étale over K ′.

The above reasoning requires to have some affinoid U with good reduction. When-
ever we come from the global situation—for example, in the course of applying our
resolution algorithm—this is the case and poses no problem. In particular, we can then
assume the valuation at the boundary of an open annulus to have weakly unramified
extensions—provided there is potentially separable reduction over that boundary; if
this is the case, Alg. 4.17 can be used to produce within finitely many steps approxi-
mations with value p/(p− 1) or greater.

But we are also fine in situations arising by subsequent local studies. For example,
we have seen in Sect. 4.1 that we can reduce the study of a ramified disk covering
to the study of an étale covering of some open annulus A by considering the affinoid
disk Dram containing all ramification points of the covering. In this situation, we can
define U⊂Dram to be the complement of the residue classes of ramification points and
choose K so large that the preimage of U contains a K-rational point; in practice, when
the covering is given by an equation of the form y p = f , this means to adjoin a pth
root of f (x) to K , for some x ∈ U. The base field will then be large enough to have
the covering attain separable reduction over the inner boundary of A—provided it has
potentially separable reduction there. Or, in the situation Sect. 4 is mainly devoted
to (that is, the study of a p-cyclic covering φ : Y → X of the open annulus X of
thickness ε), we can explicitly determine a finite extension K ′/K such that Alg. 4.17
can be successfully applied with respect to the valuation vρ for some fixed ρ ∈ v(K×),
with 0 < ρ < ε—provided the covering has potentially separable reduction over the
affinoid Bρ = {x ∈ X | ρ = v(t(x))}.

The results that we need for our proof of Prop. 4.6 are summerized in the following
corollary.

Corollary 4.19. Let the situation be as in Sect. 4.2; that is, φ : Y→ X shall be a p-cyclic
étale covering of the open annulus X of thickness ε.

(1) Assume φ to come from the global situation in the course of applying our reso-
lution algorithm (or else, assume to start with permanent models). We can then
determine a finite extension K ′/K such that the following holds true: if φ has po-
tentially separable reduction over the boundary η ∈ ∂X, the separable reduction
is attained over K ′.

(2) For fixed radius ρ ∈ v(K×), with 0< ρ < ε, we can determine a finite extension
K ′/K such that the following holds true: if φ has potentially separable reduction
over the inner boundary of Aρ, the separable reduction is attained over K ′.

Consequently, in these specific situations, Alg. 4.17 proves to be practical (and can be used
to produce the desired best approximations).

4.5.3. Combining the Algorithms. We revert to our main setting with notation as in
Sect. 4.2; that is, we study the rigid analytic p-cyclic étale covering φ : Y→ X of the
open annulus X, with the covering given by f ∈ A× satisfying (GEOM2).

Combining the methods from Sects. 4.5.1 and 4.5.2, we can finally establish the
existence of sufficiently precise approximations for f .

Proof of Prop. 4.6. We first suppose that the covering given by f does not have poten-
tially separable reduction over the outer boundary η1 ∈ ∂X. In particular, the covering
does then not split over η1. By Lem. 4.9, {vη1

( f −hp) | h ∈ A} takes a unique maximum



72 KAI ARZDORF

(µ, m), with µ < p/(p− 1) and m prime to p. So if sufficiently precise approximations
of f are to exist, Pm = (m,µ) necessarily has to be the corresponding critical point.
As in the proof of Cor. 2.16, any formal p-Taylor expansion ( f ; h, t; a′i) of level n ∈ N0

high enough to have νn > µ will satisfy

(µ, m) = vη1
( f − hp)

and extract the correct critical point Pm. Note that Pm falls into one of the areas marked
(A), (B), or (C) in Fig. 4.2; we distinguish cases accordingly.

When Pm ∈ (A)∪ (B),

ρ̃0 := |slope(P ′0Pm)|=
p/(p− 1)−µ

m
≤ ε

corresponds to the steepest slope the critical line segment in a sufficiently precise ap-
proximation of f could have. This is because we always have v(P0) ≤ p/(p − 1) by
definition of the modified Newton polygon (Def. 4.4). When the covering does not
have potentially separable reduction over the inner boundary of the boundary domain

Aρ̃0
:= {x ∈ X | v(t(x))< ρ̃0} ,

Lem. 4.9 shows that there are best approximations h̃ of f with respect to vη1
that in

addition satisfy

v+ρ̃0
( f − h̃p) = (µ̃, m̃) , with µ̃ < p/(p−1) = µ+mρ̃0 and m̃< m prime to p .

Accordingly, the line through the points (m̃, µ̃) and (m, p/(p− 1)) resp. (m̃, µ̃− m̃ρ̃0)
and (m,µ) will intersect the v( · )-axis at a value

α :=
p

p− 1
−m ·

p/(p− 1)− µ̃
m− m̃

< p/(p− 1) .

It follows that all p-Taylor expansions ( f ; h, t; a′i) of level n ∈ N0 with νn > α will give
a critical segment Pl Pm in the modified Newton polygon of f − hp, with l < m and
l prime to p. This is because h cannot provide a better approximation with respect
to vρ̃0

than h̃ does, and all p-coefficients of f − hp are by property (∗) of p-Taylor
expansions (Def. 4.13) too small to be involved in the critical segment. Note that
applying the theoretical Lem. 4.9 might have required to work over a sufficiently large
finite extension of K; however, this does not make our algorithm less practical: the
result that, in the current situation, the p-Taylor algorithm will after finitely many
steps yield a sufficiently precise approximation falling into case (2b) of Def. 4.5 is
independent of this.

On the other hand, when the covering has potentially separable reduction over the
inner boundary of Aρ̃0

, we can assume by Cor. 4.19 that the base field K is so large that
Alg. 4.17 can be applied over K with respect to vρ̃0

. As a consequence, the reasoning
of Lem. 4.9 becomes practical; that is, starting with a best approximation of f with
respect to vη1

(which, as above, can be practically obtained by a p-Taylor expansion of
level n with νn > µ), we can improve the approximation within finitely many steps to
obtain an element h̃ ∈ A with

vη1
( f − h̃p) = (µ, m) and vρ̃0

( f − h̃p) = p/(p− 1) .

In other words, the corresponding critical segment Pl Pm passes through P ′0 and we
have obtained a sufficiently precise approximation of f falling into case (1) or (2a)
of Def. 4.5. As an aside, the fact that P ′0 lies on the critical segment is the reason
why in the present situation, formal p-Taylor expansions are generally not enough to
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FIGURE 4.3. In those situations in which the critical line segment of a
sufficiently precise approximation passes through P ′0 = (0, p/(p−1)),
the p-Taylor algorithm might not be enough to produce a sufficiently
precise approximation, as points like P0 = (0, v(a′0)) could prevent
extraction of the correct critical segment.

produce a sufficiently precise approximation of f : the Taylor algorithm cannot force
v(a′0) ≥ p/(p − 1) to have P0 = P ′0 = (0, p/(p − 1)) hold true; cf. Rem. 4.16 and see
Fig. 4.3 for an illustration of the situation.

Next, assume that Pm lies in area (C) of Fig. 4.2. In this case, all p-Taylor expansions
( f ; h, t; a′i) of level n ∈ N0 with

νn > µ+mε <
p

p− 1

give rise to sufficiently precise approximations of f , as all p-coefficients will then be
too small to interfere with the critical segment: either, there will be no critical segment
at all or a critical segment with a slope smaller or equal to −ε; or, this segment will be
Pl Pm, with l < m and l prime to p. The former corresponds to case (1) of Def. 4.5, the
latter to case (2b).

Now suppose that φ has potentially separable reduction over η1 ∈ ∂X. By Cor. 4.19,
we can then assume K to be so large that we can practically apply Alg. 4.17 with respect
to vη1

. When φ does not split over η1 ∈ ∂X, this allows to produce within finitely many
steps an approximation h̃ ∈ A satisfying

vη1
( f − h̃p) = (p/(p− 1), m) and m< 0 prime to p ;

when φ splits over η1, we can find an approximation with

vp1
( f − h̃p)> p/(p− 1)

(here, as usual, vp1
denotes the discrete valuation associated to η1). If sufficiently pre-

cise approximations of f are to exist in these situations, the corresponding critical point
will necessarily be Pm = (m, p/(p−1)) in the former case and Pm = P ′0 = (0, p/(p−1))
in the latter case (that is, Pm falls into area (D) resp. (E) of Fig. 4.2). And indeed,
it is not difficult to see that the approximation given by h̃ can be improved such that
a sufficiently precise approximation in the sense of Def. 4.5 is attained. Namely, we
can adapt the iterative procedure from the p-Taylor algorithm (formulas (4.8)–(4.11)
in the proof of Prop. 4.14) to our current situation: instead of starting the inductive
definition with 0, we start with h[−1] := h̃ as initial approximation. The crucial point is
that the inductive process does not negatively affect the approximation property with
respect to vη1

: to see this, set

µ̃ := vp1
( f − h̃p)≥ p/(p− 1)
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and observe that all terms involved in the improvement functions δ[n](t) have val-
uation at least µ̃/p, so that all mixed terms in (4.12) will have valuation at least
1+ µ̃/p ≥ µ̃ (the latter inequality holds because µ̃/p ≥ 1/(p−1)). We assert that after
a finite number n ∈ N0 of these improvement steps, we will end up with a sufficiently
precise approximation for f .

When the covering does not split over η1, it suffices to choose n ∈ N0 so high that

νn > p/(p− 1) +mε

holds true; note that m < 0, so the right hand side is strictly smaller than p/(p − 1)
and n can be chosen as demanded. Then all p-coefficients will be so small that there
is either no critical segment at all or it has a slope smaller or equal to −ε (case (1) of
Def. 4.5), or there is a critical segment Pl Pm, with l < m prime to p (corresponding
to case (2b)). On the other hand, when the covering splits over η1, the assumptions
on f imply that the covering does not also split over η2 ∈ ∂X. Then f can be best
approximated over that boundary: denote by (λ̃, l̃) the value of a best approximation
of f by a pth power with respect to vη2

. We have λ̃ < p/(p− 1) and l̃ < 0 prime to p
(if l̃ were to be positive, the covering would, in contradiction to our assumption, not
split over η1 ∈ ∂X). Analog to the situation at the beginning of this proof, when the
number n of improvement steps is chosen so high that νn > λ̃ holds true, the point
Pl̃ = (l̃, λ̃− l̃ε) will be a vertex point in the corresponding modified Newton polygon,
although Pl̃ does not have to be a vertex point of the critical segment (which could
start at some index l > l̃). However, choosing n ∈ N0 so high that

νn >
p

p− 1
−

p/(p− 1)− λ̃
−l̃

holds true (which is possible since the right hand side is strictly smaller than p/(p−1)),
all p-coefficients in the so-precise approximation will lie above the line going through
Pl̃ and P ′0; the result is a critical segment Pl P

′
0 falling into case (3) of Def. 4.5.

Remark 4.20. Of course, for a given covering φ : Y→ X, we do not know in advance
whether the covering has potentially separable reduction over one of the boundaries
involved. The above nevertheless constitutes a practical algorithm to determine suffi-
ciently precise approximations, as we can run both of our algorithms strictly parallel.
After finitely many steps, either the p-Taylor algorithm gives a critical point Pm falling
into one of the areas marked (A), (B), or (C) in Fig. 4.2, or else, Alg. 4.17 applied to
the outer boundary of X shows that φ has separable reduction over that boundary. In
the former case, we continue with the Taylor algorithm and let Alg. 4.17 with respect
to ρ̃0 = |slope(P ′0Pm)| run parallel; in the latter case, we improve the initial approxi-
mation with the Taylor algorithm. In any case, after finitely many steps, we will have
explicitly determined both a finite field extension and a sufficiently precise approxima-
tion of f that can be defined thereover. In particular, Epp’s result [Epp73] becomes
constructive also in the current situation.

This also finishes our study of prime-cyclic coverings of open annuli and therewith
completes our algorithmic proof of the Semistable Reduction Theorem presented in
[AW11].

4.6. Example: Non-Equidistant Prime-Cyclic Galois Cover. We can use our algo-
rithmic method to calculate the semistable reduction of prime-cyclic coverings even
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when they do not have the equidistant geometry property. This is of practical rele-
vance: In [GRSS10], Greenberg et al. are interested in the Q-rational points and in
the Jacobian of the genus-twelve-curve Y that in affine coordinates is given by the
equation

y7 =
x3 − 2x2 − x + 1

x3 − x2 − 2x + 1
=: q(x) (4.14)

over Q[x]. A description of the stable reduction of Y at the prime p = 7 would lead
to a clearer understanding of the above issues, as Stoll communicated to us. With our
algorithm, we are able to determine the desired stable model despite the fact that Y
will be seen to not have equidistant geometry.

4.6.1. From Global to Local. As in the example from Sect. 3, we will work over a
sufficiently large (but a priori not further specified) finite extension K of Q7, with
corresponding ring of integers R and finite residue field k. In particular, we can assume
that all occurring models are permanent. A posteriori, we will be able to deduce the
minimal extension needed for realizing the stable reduction of Y , using arguments
similar to those of Sect. 3.3.

We interpret Y as a covering Φ : Y → X := P1
K of the projective line, given by the

Kummer type equation (4.14). Taking the standard smooth model XR := P1
R as a first

model for X , we need to get a description of YR, which is defined as the normaliza-
tion of XR in K(Y ). Since Eq. (4.14) reduces modulo 7 to the irreducible and purely
inseparable equation

ȳ7 = q̄( x̄) =
( x̄ + 4)3

( x̄ + 2)3
, (4.15)

the model YR is indeed described by Eq. (4.14) (considered as an equation over R); cf.
the reasoning using Serre’s criterion in the proof of Prop. 2.2.

The critical points—corresponding to the zeros and poles of the differential dq̄—
are x̄1 = 3 ∈ k and x̄2 = 5 ∈ k on the special fiber of XR. Note that these are also
the points, where the six ramification points of Φ specialize to: the three zeros of q
specialize to x̄1 and the three poles specialize to x̄2. This has the following consequence
(for an elementary argument, using the cross-ratio on the projective line, consider
[GHvdP88]).

Remark 4.21. The covering Φ : Y → X given by Eq. (4.14) does not have the property
of equidistant geometry.

The next step in our algorithm is to examine the residue classes of x̄1 and x̄2 (which
are open disks) and their preimages, and to study the corresponding finite coverings
of open analytic curves. Note that x̄1 and x̄2 are exchanged by the involution

σ : Y → Y , (x , y) 7→ (x−1, y−1)

(which is compatible with the covering map Φ : Y → X ), so we only have to deal with
one of the critical points, say x̄1, as the other critical point behaves the same.

4.6.2. Ramified Covering of the Open Unit Disk. Let the nominator and denominator of
q(x) be denoted by r(x) and s(x), respectively. The substitution y1 := y s(x) leads
to the alternative equation y7

1 = r(x) s(x)6 for the covering Φ. Since we want to pay
attention to the critical point x̄1 = 3, we further substitute x =: 3+ t and obtain

y7
1 = f (t) , (4.16)
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with

f = 33787663+ 363867140t + 1833730444t2 + 5752789575t3

+ 12606899422t4 + 20525955749t5 + 25780233433t6

+ 25597791097t7 + 20426318570t8 + 13243325186t9

+ 7023914883t10 + 3057882354t11 + 1093133274t12

+ 320002575t13 + 76243422t14 + 14633941t15 + 2227253t16

+ 262453t17 + 23075t18 + 1424t19 + 55t20 + t21 .

Considered as an equation over A= R¹tº, this describes the 7-cyclic Galois covering18

φ : Y→ X

of open analytic curves, with the open unit disk X being the residue class of x̄1, with
Y := Φrig−1(X), and withφ := Φrig|Y. The coveringφ is ramified over three points (cor-
responding to the zeros of f (t) with positive valuation). We are thus in the situation
of Sect. 4.1. As explained there, the first step is to construct the minimal exhausting
disk containing all ramification points. For this, we have to study the étale covering of
the open annulus A := X \Dram, with Dram denoting the smallest closed subdisk of X
containing all ramification points.

Since the ramification points are of valuation 1/3 and their pairwise distance is of
valuation 1/2, we have

Dram := {x ∈ X | 1/3≤ v(t(x))} ;

in particular, we can take t as a parameter for A, that is,

A= {x ∈ X | 0< v(t(x))< 1/3} .

The corresponding ring of zero-bounded analytic functions is A := R¹s, t | st = aº,
where a ∈ K is an element of valuation v(a) = 1/3; we take a to be a third root of 7
and hence assume K to contain the field

K1 :=Q7(a | a3 = 7) .

With respect to the parameter t, the coefficients of f =
∑21

i=0 ai t
i have respective

valuation

[1,2, 1,0, 0,0, 0,0, 1,1, 0,0, 0,0, 0,1, 1,0, 0,0, 0,0] .

In the notation of Sect. 4.2.1, we thus have i0 = 3 6= 0. As a consequence, A is immedi-
ately recognized to be separating, and a first improving blow-up of Y→ X corresponds
to the affinoid disk Dram. To get a description of the corresponding exceptional divisor,
we first express f in terms of

t1 :=
t

a

18Here, the analog of Footnote 8 also applies: φ is only a Galois covering when K contains a primitive
seventh root of unity; for our techniques to be applicable, it suffices to have the covering given by an equation
of Kummer type.
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(which serves as a parameter for the closed disk Dram) and then normalize the polyno-
mial f (t1) = 33787663+ . . . by dividing through the zeroth coefficient a0 = 33787663
to obtain

f1 := 1+ 140a/13 t1 + 9172a2/169 t2
1 + 1618475/2197 t3

1

+ terms in t1 of positive valuation .
(4.17)

Assuming K to contain

K2 := K1(λ | λ7 = a0) ,

the substitution y2 := y1/λ leads to the equation

y7
2 = f1(t1) , (4.18)

which reduces to the irreducible and purely inseparable equation

ȳ7
2 = 1+ t̄3

1

over k[ t̄1]. As this describes the exceptional divisor of the modification induced by
Dram, the only remaining critical point is at t̄1 = 0 (corresponding to the only zero of
the differential d(1+ t̄3

1)).

4.6.3. Étale Covering of an Open Subdisk. Accordingly, we have to examine the residue
class of t̄1 = 0—that is, the open disk

X1 := {x ∈ X | 0< v(t1(x))} ⊂ X

—and the induced covering φ1 : Y1 := φ−1(X1)→ X1 thereof, which is described by
Eq. (4.18) considered as an equation over the power series ring R¹t1º= �OX1

.
It is immediate from (4.17) that 1 is a sufficiently precise approximation of f1(t1).

As the first four coefficients of f1 − 17 have respective valuation
�

∞,
4

3
,
2

3
, 0
�

,

the critical line segment of f1 is given by P ′0P3 (note that the first coefficient 140a/13
is small enough to not interfere with this segment). Consequently, our resolution algo-
rithm will terminate with a smooth component of positive genus. More precisely, the
critical radius is ρ1 = 7/18, so a parameter for the critical disk D1 ⊂ X1 is given by
t2 := t1/ab, where b ∈ K is any element of valuation v(b) = 1/18; we assume K to
contain

K3 := K2(b | b6 = a) .

As b3 is an element of valuation v(b3) = 1/6, the usual variable change

w :=
y2 − 1

b3 ,

leads to an equation that reduces to the irreducible Artin–Schreier equation

w̄7 + w̄ = t̄3
2 (4.19)

over k[ t̄2]. We have thus found a smooth component Y1 of genus three (lying over a
rational component X1).
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FIGURE 4.4. The semistable models of Y and X , as produced by our
algorithm, are depicted on the right hand side. The stable model for
Y , resulting from blowing-down superfluous rational components, is
shown on the left (together with the corresponding quotient model
for X ).

4.6.4. Stable Model and Monodromy Action. All in all, we have obtained the following
result (illustrated in Fig. 4.4).

Claim 4.22. With notation as above, the totally ramified field extension K3/Q7 of degree
[K3 : Q7] = 126 realizes the stable model Y ss of Y . The stable reduction is given by two
smooth components Y1, Y2 ⊂ Ȳ of genus three intersecting in a single ordinary double
point.

Remark 4.23. One reason why it was so easy to determine the stable model of Y is
that the invariant m = 6 (corresponding to the ramification of the covering) is strictly
smaller than the characteristic p = 7 of the residue field. For p-cyclic coverings with
m< p—and under the assumption of equidistant geometry—Lehr [Leh01] has already
given an explicit construction of corresponding semistable models. We therefore ex-
pected the above situation to be more simple than the general case (even without
having equidistant geometry).

We want to show that K3/Q7 is the minimal extension needed for realizing the
stable reduction of Y (in the sense of Def. 1.4). For this, we study the compositum
M := K3Qnr

7 with the maximal unramified extension Qnr
7 /Q7. Since Qnr

7 contains the
eighteenth roots of unity, the subfield

L :=Qnr
7 (b | b18 = 7)⊂ M

is a cyclic Galois extension of degree eighteen. It is uniquely determined because the
ramification is tame. In particular, L is seen to contain a primitive seventh root ξ of
unity: the extension degree [L : Qnr

7 ] = 18 is divisible by 6, which is the degree of ξ
over Qnr

7 . Consequently, the wildly ramified extension of degree seven,

M = L(λ | λ7 = a0) ,
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M = L(α | α7 = a0)

f=∞

e=7

K

e<∞, f<∞

K3 = K2(b | b6 = a)

e=6 L =Qnr
7 (b | b18 = 7)

e=18K2 = K1(α | α7 = a0)

e=7 Qnr
7

f=∞
K1 =Q7(a | a3 = 7)

e=3

Q7

FIGURE 4.5. The tower of fields built up in the course of applying
our algorithm is shown on the left hand side; the extensions of the
maximal unramified extension used for the study of the monodromy
action are shown on the right hand side. M/Qnr

7 is a totally ramified
Galois extension of degree [M : Qnr

7 ] = 126; the subfield L ⊂ M
corresponds to the maximal tamely ramified subextension of degree
18 over Qnr

7 .

with a0 = 33787663 ∈ Q7, is also cyclic. As M is the splitting field of the separable
polynomials t18−7 and t7− a0 over Qnr

7 , we have that M/Qnr
7 is Galois of degree 126.

We write Γ := Gal(M/Qnr
7 ) for the Galois group of the total extension, T := Gal(M/L)

for the wild ramification subgroup, and P := Gal(L/Qnr
7 ) for the cyclic quotient cor-

responding to the maximal tamely ramified subextension. A diagram of the involved
field extensions can be found in Fig. 4.5.

In the following, we will consider Y and X as curves over Qnr
7 , and Y ss as a model

for Y ⊗Qnr
7

M . As usual, we write X ss for the corresponding quotient model of X .

Claim 4.24. With notation as above, the Galois extension M/Qnr
7 of degree 126 is the

monodromy extension of Y .

Proof. We have to show that Γ acts faithfully on the special fiber of Y ss. As the cen-
ters of the modifications leading to the separable genus-3-components Y1, Y2 ∈ Ȳ are
defined over Qnr

7 (namely, x1 = 3 and x2 = 5), the action of Γ does not permute the
two components and therefore restricts to an action on each of these; we will see that
already the restricted actions are faithful.
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The Artin–Schreier type equation (4.19) describes the component Y1 ⊂ Ȳ that we
have found with our algorithm; Y1 lies above the rational component X1 ⊂ X̄ , which
is determined by the parameter t2 = t/b7. As t2 is already defined over the subfield
L ⊂ M , the induced action of Γ on X1 is via the cyclic quotient P = Gal(L/Qnr

7 ). Choose
some generator σ ∈ P; then σ(b) = ζb, with ζ ∈ L a primitive eighteenth root of unity.
We calculate

σ(t2) =
t

σ(b7)
=

t

ζ7 b7 = t2ζ
11 .

As ordζ = 18 is prime to the residue field characteristic p = 7, the reduction of ζ
remains an element of order eighteen, and so does the reduction of ζ11. We deduce
that P acts faithfully on X1. Consequently, the action of Γ on X1 has kernel precisely
T = Gal(M/L).

It remains to show that T acts faithfully on Y1, which is defined in terms of the
variable w = (y2 − 1)/b3, with y2 = y1/λ. Denote a generator of the 7-cyclic group
T = Gal(M/L) by τ; it sends λ ∈ M to ξλ, with ξ a primitive seventh root of unity,
and fixes b. We calculate

τ(y2) =
y1

τ(λ)
=

y1

ξλ
=

y2

ξ

and

τ(w) =
τ(y2)− 1

b3 =
y2/ξ− 1

b3 =
(b3w+ 1)/ξ− 1

b3 =
w

ξ
+

1− ξ
b3ξ

.

Note that v(1− ξ) = 1/6 = v(b3), so (1− ξ)/b3ξ reduces to a non-zero element u of
Fac

7 (the residue field of M). As the seventh root of unity ξ reduces to 1, we have

τ(w̄) = w̄+ u ,

and τ is seen to have order seven on Y1; that is, the action of T on Y1 is faithful.
Taking the above results together, we obtain that Γ = Gal(M/Qnr

7 ) acts faithfully
on Y1 and, a fortiori, on the stable model of Y ss. Hence, M/Qnr

7 is the minimal field
extension realizing the stable reduction of Y (considered as a curve over Qnr

7 ).

5. CYCLIC GALOIS COVERS OF PRIME POWER DEGREE

In Sect. 2, we were able to construct the minimal exhausting disk for prime-cyclic
étale coverings of the open unit disk; together with the results from Sect. 4 on coverings
of open annuli, this allows us to also deal with a cyclic covering of prime power degree
by splitting the covering into prime-cyclic substeps (which can then be treated with the
methods already described).

5.1. Reduction to Prime-Cyclic Covers. As in Sects. 2 and 4, we will assume K to be
of mixed characteristic (0, p). Let n ∈ N with n ≥ 2, and consider an étale pn-cyclic
Galois cover φ : Y→ X of the open unit disk. As usual, we denote by A := �OX the ring
of zero-bounded analytic functions on the open disk X; choosing a disk parameter t,
we can write A= R¹tº. Assuming K to contain a primitive pnth root of unity, we can
further assume that the covering is given by a Kummer equation

y pn
= f ,

with f ∈ A×; cf. the reasoning in Sect. 2.1. We introduce new variables z1, . . . , zn−1 and
consider the system of equations

zp
1 = f , zp

2 = z1, . . . , y p = zn−1 ;
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FIGURE 5.1. A p2-cyclic covering φ : Y → X of the open unit disk
can be handled by splitting the covering into two successive p-cyclic
substeps φ2 : Y → Z and φ1 : Z → X. The minimal exhausting
disk D1 with respect to φ1 might be too small with respect to the
total covering φ; it becomes necessary to examine the covering of
the open annulus φ−1

1 (X \D1) and to determine the corresponding
maximal separating boundary domain A2 with respect to φ2.

this splits the covering φ into n subcoverings of open analytic curves

φ1 : Z1→ X, . . . , φn : Y→ Zn−1 ,

each cyclic of order p. We will handle these subcoverings one after another, starting
with φ1; note that Z1, . . . , Zn−1 will usually neither be open disks nor open annuli.

The first step is to consider the covering φ1 : Z1 → X given by zp
1 = f . More

precisely, the open analytic curve Z1 corresponds to the integral closure of A in the
field extension of Frac A given by zp

1 = f . The covering φ1 is a p-cyclic étale covering
of the open unit disk and can thus be handled with the methods from Sect. 2. In
particular, we can find the minimal exhausting disk D1 ⊂ X with respect to φ1. With
regard to the composed covering φ2 ◦ φ1 : Z2 → X, however, the affinoid disk D1

might be too small to be exhausting. In other words, although the preimage

V1 := φ−1
1 (A

[1]
1 )⊂ Z1

of the φ1-separating boundary domain A[1]1 := X \ D1 is a single open annulus, the
latter does not have to be separating with respect to φ2 : Z2 → Z1; this situation is
depicted in Fig. 5.1. It hence becomes necessary to study the induced covering of the
open annulus V1 in detail and to determine the maximal separating boundary domain
A2 ⊂ V1 (with respect to the boundary point of V1 lying above the unique boundary
point of the open disk X). By the results of [AW11, Sect. 4.6],

A
[2]
1 := φ1(A2)⊂ A

[1]
1 ⊂ X

will be a separating boundary domain with respect to φ2 ◦φ1 and it will also be maxi-
mal with this property.
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The remaining steps (if there are any left) are similar. Since A2 is separating for
the étale covering of the open annulus V1, the preimage V2 := φ−1

2 (A2) is a disjoint
union of (isomorphic) open annuli. We pick one of them and determine the maximal
separating boundary domain with respect to the restricted φ3; this also determines the
maximal separating boundary domain for the composed cover φ3◦φ2◦φ1. Continuing
this way, we will finally end up with a boundary domain A[n]1 ⊂ X that is maximal
separating with respect to φ. The modification induced by the corresponding minimal
exhausting disk will then improve the model of Y.

For doing actual computations, it will be necessary to write the equations for the
subcoverings in terms of suitable parameters. For example, with notation as above,
the second step requires to get hold of a parameter for the open annulus V1 ⊂ Z1

and to write the equation corresponding to the covering φ2 (restricted to φ−1
2 (V1)) in

terms of this parameter.

Remark 5.1. The above situation will generally require to handle true power series
and Laurent series. This is in contrast to those situations that arise by localizing a
global p-cyclic covering of P1

K in critical points (where we can get by with polynomial
equations).

Remark 5.2. The way to handle the ramified situation is similar: in this case, one
has to introduce intermediate steps by first constructing the minimal exhausting disk
containing all ramification points; cf. the p-cyclic situation in Sect. 4.1. More generally,
the approach of Sect. 5.1 allows to determine the stable reduction of an arbitrary cyclic
covering Y → X of prime power degree, provided one has a semistable model for X :
one reduces to the local situation and studies appropriate prime-cyclic substeps, which
will be coverings of open disks or open annuli (and which can therefore be handled
with the methods described in Sects. 2 and 4 of the present paper).

5.2. Example: Cyclic Galois Cover of Prime Square Degree. To exemplify the ap-
proach described in Sect. 5.1, we will thoroughly study a p2-cyclic covering of the open
unit disk. Though the chosen example is quite simple, it illustrates the key elements of
our method and should be well-suited to convey the main ideas.

5.2.1. Setting. Let Φ : Y → X := P1
Q3

be the 32-cyclic covering of the projective line
that is given by the Kummer type equation

y9 = 1+ t2 ; (5.1)

by the Riemann–Hurwitz formula [Har77, Cor. IV.2.4], the curve Y is seen to be of
genus gY = 4. As in all examples treated before, we will study the covering over a
sufficiently large finite extension K of Q3, with corresponding valuation ring R and
residue field k; a posteriori, we will be able to specify a field extension that works for
us.

We start our resolution algorithm by taking the standard smooth model XR for P1
K .

As the right hand side of Eq. (5.1) is not a third power in reduction, the equation
describes the normalization YR of XR in Y (cf. the reasoning using Serre’s criterion in
the proof of Prop. 2.2). The corresponding special fiber Ȳ consists of the irreducible
curve with equation ȳ9 = 1 + t̄2. Since t̄ = 0 is the unique zero of the differential
d(1+ t̄2) = 2 t̄d t̄, this curve has precisely one singular point; namely, the point with
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affine coordinates ( t̄, ȳ) = (0, 0). We can hence restrict ourselves to the study of the
9-cyclic étale Galois covering

φ : Y→ X ,

where the open unit disk X := ]0[XR
is the residue class of the critical point 0 ∈ k,

where Y is the preimage of X under Φrig, and where the covering is given by Eq. (5.1)
considered as an equation over A= R¹tº= �OX. Let

φ1 : Z→ X with z3 = 1+ t2 (5.2)

and

φ2 : Y→ Z with y3 = z (5.3)

be the p-cyclic substeps. Note that Z is not an open disk but an open analytic curve of
genus one.

5.2.2. Minimal Exhausting Disk. Obviously, the minimal exhausting disk with respect
to the 3-cyclic étale covering φ1 is

D1 := {x ∈ X | 3/4≤ v(t(x))} ,

as h = 1 is seen to give a sufficiently precise approximation of the polynomial 1+ t2

(which describes the covering φ1 via (5.2)); note that t = 0 serves as a well-suited
center, as the critical segment P ′0P2 of the approximation is not determined by P1.
Denote the corresponding maximal separating boundary domain byA1 := X\D1; this is
an open annulus of thickness 3/4. The disk parameter t also serves as a parameter for
A1 when considered as an element of the corresponding ring of zero-bounded analytic
functions

A1 := �OA1
= R¹s, t | st = aº ,

where a ∈ K is an element of valuation 3/4. Consequently, we need K to contain
elements of valuation 1/4; we assume K to contain a fourth root of 3—that is, to
contain the field

K1 :=Q3(α | α4 = 3) .

We can then take a := α3.
The preimage V1 := φ−1

1 (A1) of the maximal φ1-separating boundary domain is a
single open annulus of thickness 1/4 and described by the ring B1 = A1[w], with

w := z− 1 (5.4)

satisfying the irreducible equation

w3 + 3w2 + 3w = t2 (5.5)

over A1; see the proof of Lem. 2.34. By Lem. 1.31 and its proof, the element

v :=
t

w
∈ B1 (5.6)

(which is as in (1.2)) can be used as a parameter for the open annulusV1. To determine
the maximal separating boundary domain with respect to φ2 (restricted to the φ2-
preimage of V1), the corresponding equation (5.3) has to be rewritten in terms of v.
This will require us to express t as a Laurent series in v. Substituting w = t/v into
Eq. (5.5) yields the relation

t2v−3 + 3t v−2 + 3v−1 = t . (5.7)
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It is clear that iterative substitution of Eq. (5.7) into itself leads to a power series
expansion of t in terms of v−1:

t = 3v−1 + 3t v−2 + t2v−3

= 3v−1 + 3 (3v−1 + 3t v−2 + t2v−3)v−2 + (3v−1 + 3t v−2 + t2v−3)2v−3

= · · ·= 3v−1 + 9v−3 + 36v−5 + 162v−7 + 783v−9 + 3969v−11 + . . . .

(5.8)

Plugging the relations (5.4), (5.6), and (5.8) into Eq. (5.2), we obtain

y3 = z = w+ 1= t v−1 + 1 (5.9)

= · · ·+ 3969v−12 + 783v−10 + 162v−8 + 36v−6 + 9v−4 + 3v−2 + 1 . (5.10)

The valuations

[. . . , 4,∞, 3,∞, 4,∞, 2,∞, 2,∞, 1,∞, 0]

of the coefficients of v−12, . . . , v0 suggest that h= 1 gives a sufficiently precise approx-
imation of the right hand side of (5.10), with critical point P−2 and a critical segment
of slope −1/4 (resulting in a critical thickness 1/4). Indeed, by (5.9), our assertion
on the critical thickness is equivalent to showing that v1/4(w) = 1/2 (where the val-
uation v1/4 is meant with respect to the parameter v of the open annulus V1, that is,
v1/4(v) = 1/4). Substituting t = vw from Eq. (5.6) into Eq. (5.5) and then dividing by
w2, we obtain

w+ 3+ 3w−1 = v2 .

Using the strong triangle inequality, it immediately follows that both v1/4(w) < 1/2
and v1/4(w)> 1/2 are not possible; hence, v1/4(w) = 1/2 as asserted.

The critical thickness being 1/4 means that we are in the trivial case (1) of Def. 4.5;
in other words, V1 as a whole is recognized to be separating, with exactly one open
annulus lying above. Consequently, A1 is recognized as the maximal separating bound-
ary domain with respect to the total covering φ = φ2 ◦φ1. See Fig. 5.2 for a sketch of
the situation.

5.2.3. Describing the Modification. Now that we have found the minimal φ-exhausting
disk, we want to describe the effect of the corresponding modification and determine
the stable model of Y .

The element t1 := t/α3 can be taken as a parameter for the affinoid disk D1. The
preimage E1 := φ−1(D1)⊂ Z is an affinoid with good reduction, given by the equation

z3
1 +α

2z2
1 + z1 = t2

1 (5.11)

obtained from Eq. (5.2) by substituting

z1 :=
z− 1

α2 . (5.12)

The corresponding special fiber is a smooth curve of genus one, given by the Artin–
Schreier type equation

z̄3
1 + z̄1 = t̄2

1 . (5.13)

By Eqs. (5.3) and (5.12), the covering φ2 (restricted to E2 := φ−1
2 (E1)) is given by

y3 = z = 1+α2z1 . (5.14)
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FIGURE 5.2. The 9-cyclic covering φ : Y → X of the rigid analytic
open unit disk is split into two 3-cyclic substeps φ1 : Z → X and
φ2 : Y→ Z. The minimal φ1-exhausting disk D1 is also exhausting
with respect to φ, as a single open annulus is lying above φ−1

1 (A1).
The preimage in Z of the interior D◦1 is given by three isomorphic
copies, and it suffices to determine the maximal separating boundary
domain A2 for one of them. In the end, we obtain that the stable
reduction Ȳ of Y is given by four components of genus one, with
three of them each intersecting the fourth in an ordinary double
point.

Note that z1 is by Eq. (5.13) a unit with respect to the inf-valuation on E2. Assuming
K to contain an element λ ∈ K of valuation v(λ) = 1/6, the usual substitution

y1 :=
y − 1

λ

then transforms Eq. (5.14) into an equation having irreducible reduction

ȳ3
1 = z̄1 , (5.15)

which therefore describes the special fiber of E2 (cf. the argument in the proof of
Prop. 2.2 using Serre’s criterion on normality). As noted, K must contain an element
of valuation 1/6; since K already contains elements of valuation 1/4, this leads to a
further totally ramified extension of degree three. We will suppose K to contain the
field

K2 := K1(β | β3 = α) ;
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then λ= β2 is an element of valuation 1/6, as needed.
The remaining critical points with respect to φ correspond to the zeros of the dif-

ferential of the right hand side of Eq. (5.15); using the relation from (5.13) between
z̄1 and t̄1, we calculate

dz̄1 = d( t̄2
1) = 2 t̄1d t̄1 . (5.16)

It follows that t̄1 = 0 is the only critical point on the reduction of D1. To describe the
critical points on the reduction of E1, the residue field k has to contain an element i
with i2 = −1; that is, the base field K is required to contain the (unique) unramified
extension

Q9 :=Q3(i | i2 =−1) ,

of degree two. There are then exactly three critical points on the reduction of E1;
namely, by Eq. (5.13), the points with coordinates ( t̄1, z̄1) = (0, 0), (0, i), and (0,−i).
In other words, the φ1-preimage of the critical disk

D
◦
1 := {x ∈D1 | 0< v(t1(x))}= {x ∈ X | 3/4< v(t(x))}

corresponding to t̄1 = 0 is the disjoint union of three copies of D◦1. It hence suffices
to study the covering φ2 restricted to the preimage of one of these disks. Already
now, we can deduce that the next improving modification will give a smooth elliptic
component because the differential (5.16) has only a single zero of order one. We thus
have established the following result.

Claim 5.3. The stable reduction Ȳ of Y consists of four elliptic components, with three
of them each intersecting the fourth in an ordinary double point; see the illustration in
Fig. 5.2.

Remark 5.4. As we have found all four components of the stable reduction Ȳ by
considering the φ-preimage of D1 and the covering of D◦1, we could have skipped the
calculations from Sect. 5.2.2. Namely, it follows already from genus considerations
that a model for Y with four elliptic components must be semistable; in particular, the
boundary domain A1 = X \D1 has to be φ-separating.

5.2.4. Final Modification. To make the final blow-up explicit, we let Z1 denote one
of the open disks in the φ1-preimage of D◦1, say the residue class in E1 of the point
( t̄1, z̄1) = (0, 0). The covering φ2 (restricted to the preimage of Z1) is given by
Eq. (5.14), now considered as an equation over the ring of zero-bounded analytic
functions on Z1. We need to write the right hand side of this equation as a power
series in t1 (which serves as a parameter both for D◦1 and the isomorphic Z1). For this,
the explicit relation between z1 and t1, given by Eq. (5.11), has to be used. Analog to
the situation in Sect. 5.2.2, it is clear that iterated substitution of Eq. (5.11) in itself
leads to a power series expansion of z1 in terms of t1:

z1 = t2
1 − 3z2

1 − z3
1

= t2
1 − 3(t2

1 − 3z2
1 − z3

1)
2 − (t2

1 − 3z2
1 − z3

1)
3

= t2
1 − 3t4

1 + . . . .

Only the first term t2
1 is relevant for our calculations, as the critical line segment for

the resulting equation

y3 = 1+α2z1 = 1+α2(t2
1 − 3t4

1 + . . . )
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K

e<∞, f<∞

L = K2Q9 = K2(i | i2 =−1)
=Q9(β | β12 = 3)

f=2

e=12

K2 = K1(β | β3 = α)

e=3

K1 =Q3(α | α4 = 3)

e=4 Q9 =Q3(i | i2 =−1)

f=2

Q3

FIGURE 5.3. The tower of fields built up in the course of applying our
algorithm. The ramified part L/Q9 is of degree twelve.

is immediately seen to be P ′0P2 = (0,3/2) (2,1/2). This gives a critical radius 1/2 with
respect to t1 (or 3/4+ 1/2 = 5/4 with respect to t) and leads to a smooth genus-one-
component in reduction. Description of the latter component requires an element of
valuation 1/2; such elements are already contained in K2.

Our algorithm has thus produced the extension field L := K2Q9 of Q3 over which a
semistable model of Y can be found; see the field diagram in Fig. 5.3. The extension
is of degree [L : Q3] = 24 (with e = 12 and f = 2); with respect to the Semistable
Reduction Theorem, only the ramified part is of interest and we obtain:

Claim 5.5. The stable model of Y can be realized over L = Q9(β | β12 = 3), which is a
totally ramified extension of Q9 of degree twelve.

Remark 5.6. The above example was quite simple as no serious calculations were in-
volved; in particular, it was not necessary to do complicated p-Taylor approximations.
Nevertheless, all steps for determining the semistable model of a cyclic covering with
prime power degree get fairly well illustrated, and it should be clear how to proceed
in more complicated situations.
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