
EXPLOITING LINKS AND TEXT STRUCTURE ON THE WEB

A QUANTITATIVE APPROACH TO IMPROVING SEARCH QUALITY

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

Dr. rer. nat.

genehmigte Dissertation von

Dipl.-Inf. (FH) Christian Kohlschütter

geboren am 26. Oktober 1979 in Hof/Bayern

2011

Referent: Prof. Dr. techn. Wolfgang Nejdl

Korreferent: Prof. Dr.-Ing. Bernardo Wagner

Tag der Promotion: 21.01.2011

Abstract

As Web search is becoming a routine activity in our daily lives, users scale up their

expectations concerning Search Quality. This comprises factors such as accuracy,

coverage and usability of the overall system. In this thesis, I describe quantitative

strategies to improving search quality from two complementary perspectives, link

structure and text structure, which are key topics in the field of Web Information

Retrieval. I utilize some fundamental properties of the Web, presumably of human

behavior after all, that are theoretically justified as well as relatively easy to apply.

Link Structure. Humans do not create or follow links to Web pages arbitrarily.

In fact, most of the links refer to own pages (at host-level), a fact that I exploit

for simplifying the PageRank computation, particularly the principal Eigenvector of

the corresponding link matrix. Also, apparently humans seem to likely link to pages

that are relevant to the originating document. I present a corresponding method

for automatically identifying a topic of a text query solely based on link structure,

utilizing multiple topic-specific PageRank vectors.

Text Structure. Humans also do not create or read text on Web pages arbitrar-

ily. I show that the creation process of Web text is governed by a statistical law that

corroborates the Quantitative Linguistic theory, yet I extend current models by the

following notions: text on Web pages can be separated into blocks of “short text” and

blocks of “long text”, depending on the number of words contained in the block. A

large amount of actual “full text” is attributed to the class of long text whereas short

text appears to mainly cover the navigational text fragments usually referred to as

“boilerplate”. I present a simple, yet very effective strategy that utilizes this property

for accurate main content extraction, ranking and classification.

As an attempt to unification, I conclude that the processes of browsing HTML

pages and of creating HTML text can be seen as a combination of two orthogonal

motivations. This perspective not only facilitates highly efficient and effective algo-

rithms, it also aids in understanding the corresponding human behavior.

iii

iv

Zusammenfassung

Mit der wachsenden Bedeutung des World Wide Web im täglichen Leben steigt auch die

Erwartungshaltung gegenüber Suchmaschinen und deren Qualität. Dies umfasst Aspekte

wie z.B. Treffergenauigkeit, Abdeckung und Nutzbarkeit (Usability) des Gesamtsystems. In

der vorliegenden Dissertation beschreibe ich quantitative Strategien zur Verbesserung der

Suchqualität aus zwei sich ergänzenden Perspektiven, Linkstruktur und Textstruktur, zwei

Kernthemen im Bereich des Web Information Retrieval. Hierbei betrachte und nutze ich

einige fundamentale Eigenschaften des Web (und vermutlich des menschlichen Verhaltens

im Allgemeinen), welche theoretisch fundiert und zugleich relativ einfach anwendbar sind.

Linkstruktur. Menschen setzen und folgen Hyperlinks auf Webseiten nicht willkürlich.

In der Tat ist es so, dass ein Großteil auf eigene Seiten zeigt (auf Host-Ebene). Diese Eigen-

schaft nutze ich für eine Vereinfachung der PageRank-Berechnung, bei der der Haupteigen-

vektor der dazugehörigen Link-Matrix gesucht wird. Es hat sich gezeigt, dass Links häufig

dann gesetzt werden, wenn die verbundenen Seiten thematisch zusammen hängen. Diese

Eigenschaft nutze ich, um, nur mittels Linkstruktur und themenspezifischen PageRank-

Vektoren, zu einer Freitext-Suchanfrage automatisch relevante Themen zu finden.

Textstruktur. Menschen setzen und lesen auch Text auf Webseiten nicht willkürlich.

Ich zeige, dass der Erzeugungsprozess von Text im Web beschrieben werden kann durch

ein statistisches Textgesetz, welches im Einklang mit Erkenntnissen aus der quantitativ-

linguistischen Texttheorie steht. Hierbei erweitere ich jedoch bestehende Modelle wiefolgt:

Text im Web besteht aus zweierlei Arten von Blöcken, jene mit kurzem Text und solche

mit langem Text, abhängig von der Anzahl der eingeschlossenen Wörter. Ein Großteil des

eigentlichen Haupttext einer Webseite kann mit Langtext beschrieben werden, wohingegen

Kurztext hauptsächlich die navigationsspezifischen Textfragmente, den sogenannten “Boil-

erplate”, beschreibt. Diese textuelle Gesetzmäßigkeit mache ich mit Hilfe einer einfachen

aber effektive Strategie zum akkuraten Extrahieren von Text, zum Ranking und zur Klas-

sifikation von Webseiten nutzbar.

Als Versuch einer Vereinheitlichung schlussfolgere ich, dass die Prozesse der Erzeugung

bzw. Rezeption von HTML Links und Text als Kombination zweier orthogonaler Moti-

vationen beschrieben werden können. Diese Perspektive erlaubt nicht nur hocheffektive

Algorithmen, sie ermöglicht auch ein besseres Verständnis menschlichen Verhaltens.

v

vi

Keywords
Search Engines, Link and Text Structure, Quantitative Models

Schlagworte
Suchmaschinen, Link- und Textstruktur, Quantitative Modelle

vii

viii

Acknowledgments

I am grateful to have had numerous inspiring discussions with many people who shared

their insights with me on a variety of topics, which eventually led to the present thesis.

I would like to thank them all.

First and foremost, I would like to express my deepest gratitude to my supervisor

Professor Dr. Wolfgang Nejdl for giving me the opportunity to conduct my thesis

research, for his advice, guidance and profound support throughout this work.

I am very thankful to also have Professors Dr.-Ing. Bernardo Wagner and Dr.-Ing.

Markus Fidler in the thesis committee, spending their time on my dissertation.

I also owe Professors Dr. Gabriel Altmann and Dr. Reinhard Köhler a special

debt of gratitude for providing a plethora of excellent work in the field of Quantitative

Linguistics, and for helping me, by their publications as well as by private correspon-

dence, to deeper understand the problem domain from a complementary perspective.

Their unparalleled help to introduce me to the community of Quantitative Linguistics

deserves my deepest respect.

Special thanks go to Dr. Peter Fankhauser for dragging my attention to Machine

Learning, for deep and insightful comments and great discussions.

The members, colleagues and former colleagues of the L3S Research Center deserve

many thanks for providing a stimulating and fun environment, for fruitful discussions

and for interesting collaborations at research and project work.

My research was finally made possible by having a full-time position at L3S as a

research associate, which was mainly funded by the European Commission’s FP6/FP7

projects NEPOMUK, ELEONET and SYNC3 and so, indirectly, by the taxpayers.

Many thanks also go to the German National Merit Foundation (Studienstiftung

des deutschen Volkes) for their conceptual support during my studies.

Finally, I would like to thank my parents for their support and encouragement

and for giving me the opportunity, volition and stimulus to seek challenges in the

academia. Most importantly, I thank my wife, Anastasiya, for her love, exceptional

patience and support as well as for her continuous belief in me and my work.

Christian Kohlschütter

ix

x

Publication List

The algorithms and experimental results presented in this thesis have been published

in several conference proceedings in the field of Information Systems and as a book

chapter in the field of Quantitative Linguistics, as follows.

1. Christian Kohlschütter, Paul-Alexandru Chirita, Wolfgang Nejdl. Efficient Par-

allel Computation of PageRank. In: Advances in Information Retrieval, 28th

European Conference on IR Research, ECIR 2006, London, UK, April 10-12,

2006, pp. 241-252, 2006, Springer, 3-540-33347-9.

2. Christian Kohlschütter, Paul-Alexandru Chirita, Wolfgang Nejdl. Using Link

Analysis to Identify Aspects in Faceted Web Search SIGIR 2006 Workshop on

Faceted Search, Aug 10, 2006, Seattle, WA, USA.

3. Christian Kohlschütter, Paul-Alexandru Chirita, Wolfgang Nejdl. Utility Anal-

ysis for Topically Biased PageRank. In: Proceedings of the 16th International

Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May

8-12, 2007, pp. 1211-1212, 2007, ACM, 978-1-59593-654-7.

4. Christian Kohlschütter, Wolfgang Nejdl. A Densitometric Approach to Web

Page Segmentation. CIKM 2008: Proceedings of the 17th ACM Conference on

Information and Knowledge Management, Napa Valley, California, USA

5. Christian Kohlschütter. A Densitometric Analysis of Web Template Content.

18th International World Wide Web Conference (WWW2009), Madrid, Spain

6. Christian Kohlschütter. A Densitometric Classification of Web Template Con-

tent. In: Emmerich Kelih, Viktor Levickij, Gabriel Altmann (Editors), Methods

xi

of Text Analysis: Omnibus volume. – Chernivtsi: CNU, 2009. pp. 133-155.

ISBN 978-966-423-043-5

7. Christian Kohlschütter, Peter Fankhauser, Wolfgang Nejdl. Boilerplate Detec-

tion using Shallow Text Features. WSDM 2010: Third ACM International Con-

ference on Web Search and Data Mining New York City, NY USA. (Nominated

for the Best Paper Award)

In the course of developing the Ph.D. thesis, I have published several other research

papers, which helped me understanding the broader scope of Information Retrieval,

while shaping the focus of the present work. They may be regarded as related work:

8. Paul-Alexandru Chirita, Christian Kohlschütter, Wolfgang Nejdl, Raluca Paiu.

Using ODP Metadata to Personalize Search. In: SIGIR 2005: Proceedings

of the 28th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, Salvador, Brazil, August 15-19, 2005,

pp. 178-185, 2005, ACM, 1-59593-034-5.

9. Tereza Iofciu, Christian Kohlschütter, Raluca Paiu, Wolfgang Nejdl. Keywords

and RDF Fragments: Integrating Metadata and Full-Text Search in Beagle++.

Workshop on The Semantic Desktop - Next Generation Personal Information

Management and Collaboration Infrastructure at the International Semantic

Web Conference 6 November 2005, Galway, Ireland

10. Sergey Chernov, Christian Kohlschütter, Wolfgang Nejdl. A Plugin Architec-

ture Enabling Federated Search for Digital Libraries. In: Digital Libraries:

Achievements, Challenges and Opportunities, 9th International Conference on

Asian Digital Libraries, ICADL 2006, Kyoto, Japan, November 27-30, 2006,

Proceedings, pp. 202-211, 2006, Springer, 3-540-49375-1.

11. Sergey Chernov, Bernd Fehling, Christian Kohlschütter, Wolfgang Nejdl, Dirk

Pieper, Friedrich Summann. Enabling Federated Search with Heterogeneous

Search Engines: Combining FAST Data Search and Lucene. vascoda Federated

Search Project Report. March 2006.

xii

12. Sergey Chernov, Christian Kohlschütter, Wolfgang Nejdl. Exploring a Euro-

pean Market of Learning Objects with ELEONET. Proceedings of 2nd Eu-

ropean Conference on Technology Enhanced Learning (EC-TEL 2007), Crete,

Greece, September 17-20, 2007.

13. Christian Kohlschütter, Maria Nejdl, Dierk Höppner. Enhanced Federated

Search for Digital Object Repositories. 2nd European Workshop on the Use

of Digital Object Repository Systems in Digital Libraries (DORSDL2) in con-

junction with ECDL 2008.

14. Christian Kohlschütter, Fabian Abel, Dimitrios Skoutas. A Novel Interface

for Exploring, Annotating and Organizing News and Blogs Articles. The 3rd

Annual Workshop on Search in Social Media (SSM 2010), co-located with the

ACM WSDM 2010 Conference on Web Search and Data Mining, 2010.

15. Christian Kohlschütter. Exploring the New York Times Corpus with NewsClub.

HCIR 2010, Fourth Workshop on Human-Computer Interaction and Informa-

tion Retrieval in conjuction with IIiX 2010, Aug 2010, New Brunswick, NJ,

USA.

xiii

xiv

But come – be quick – search we the bag, and learn

What stores of gold and silver it contains.

Homer, Odyssey

xvi

Contents

Abstract iii

Zusammenfassung v

Acknowledgments ix

Publication List xi

List of Tables xx

List of Figures xxii

List of Abbreviations xxiii

1 Introduction 1

1.1 Web Search . 2

1.2 Problem Statement . 3

1.3 Proposed Solutions . 3

1.3.1 Link Structure . 3

1.3.2 Text Structure . 5

2 Foundations and Terminology 7

2.1 Search Quality . 7

2.2 Web Page Modeling and Retrieval 8

2.3 Quantitative Evaluation . 10

xvii

3 Link Structure 15

3.1 PageRank in short . 15

3.2 Parallelization and Distribution of PageRank 19

3.2.1 The Two-Dimensional Web 19

3.2.2 Partitioned PageRank . 22

3.2.3 Experiments . 26

3.2.4 Discussion . 30

3.3 Topic-specific PageRank . 30

3.3.1 Deeper inside ODP . 31

3.3.2 Discussion . 34

3.4 Using PageRank for Faceted Search 34

3.4.1 Relevant Background . 36

3.4.2 Web Page Classification using Personalized PageRank 37

3.4.3 Identifying Facets from Web Search Results 39

3.4.4 Implementation and Evaluation 41

3.4.5 Discussion . 43

4 Text Structure 45

4.1 The Block-Level Nature of Web Text 45

4.2 Web Page Segmentation . 46

4.2.1 Problem Discussion . 48

4.2.2 The Block Fusion Algorithm 53

4.2.3 Experimental Evaluation . 57

4.2.4 Segmentation Accuracy . 59

4.2.5 Application to Near-Duplicate Detection 65

4.2.6 Discussion . 66

4.3 A Densitometric Classification of Web Templates 67

4.3.1 Theoretical Background . 68

4.3.2 Corpus-Level Pattern Analysis 71

4.3.3 Template Removal . 81

4.3.4 Discussion . 82

xviii

4.4 Boilerplate Detection using Shallow Text Features 86

4.4.1 Related Work . 86

4.4.2 Web Page Features . 87

4.4.3 Classification Experiments . 90

4.4.4 Quantitative Linguistic Analysis 101

4.4.5 Retrieval Experiments . 109

4.4.6 Discussion . 111

5 Conclusions and Future Work 113

5.1 Summary . 113

5.2 Stratified Random User Models . 115

5.2.1 Random Surfer Model . 115

5.2.2 Random Writer Model . 117

5.3 Future Work . 118

Curriculum Vitae 121

Bibliography 123

xix

List of Tables

3.1 LargeWeb Inter-Partition links and votes 25

3.2 LargeWeb link distribution . 27

3.3 Sample keywords from Google AdWords 43

4.1 Achieved average Accuracies . 61

4.2 Zipf Distribution Parameters . 61

4.3 Duplicate Detection Accuracy . 66

4.4 The top-20 typical terms in segments with �� ≤ 5 79

4.5 The top-20 terms for π1 and π2 . 79

4.6 The most frequent Segments . 84

4.7 Rare Segments with ρ�(b) ≤ 5 . 84

4.8 Class-Distribution in the GoogleNews set 92

4.9 Weka Classification Accuracies for the Google News Collection 96

xx

List of Figures

2.1 The different sets of the binary relevance classification 12

3.1 Linkage dot-plots . 21

3.2 Partitioned Dot-plot (LargeWeb) . 27

3.3 Pages per host (8 individual partitions and global) 27

3.4 Pages per Partition . 28

3.5 Inter-partition links . 28

3.6 Partitioned PageRank convergence 29

3.7 Rank Similarities for the “Business” branch of ODP categories 35

3.8 Screen-shot of the prototype . 40

4.1 A typical modern Web page with large navigation and related material 46

4.2 Visual vs. Densitometric Segmentation (expected results) 53

4.3 Probability Distribution of the Text Density Quotient 58

4.4 Optimizing ϑmax (BF-plain/smoothed) 62

4.5 Optimizing ϑmax (BF-rulebased) 62

4.6 Validation of Zipf’s Law on Block Level 62

4.8 Iteration Behavior . 63

4.7 Impact of wmax on Average Accuracy 63

4.9 Visual vs. Densitometric Segmentation (BF-plain) 64

4.10 Visual vs. Densitometric Segmentation (BF-smoothed) 64

4.11 Visual vs. Densitometric Segmentation (BF-rulebased) 64

4.12 Altmann-Fitter Results . 67

4.13 Text Density / Token Length Ranks 73

xxi

4.14 Density Distribution Model . 76

4.15 Average Token Length . 76

4.16 Document Frequency Ratio . 77

4.17 Full Stop as a simple partitioning criterion 80

4.18 Segment Frequency . 85

4.19 Templates detected by Fingerprinting 85

4.20 Per-Feature Information Gain for the GoogleNews collection 94

4.21 Performance of Boilerplate Detection Strategies 99

4.22 CleanEval Text Density Distribution 101

4.23 Number of Words Distribution (GoogleNews) 102

4.24 Text Density Distribution by class (GoogleNews) 103

4.25 Random Writer Models . 106

4.26 Text Density Distributions . 108

4.27 BLOGS06 Search Results . 110

5.1 Random Surfer Model (simplified) . 115

5.2 Stratified Random Surfer Model . 116

5.3 Random Writer Models . 117

xxii

List of Abbreviations

AuC Area under Curve

BF Block Fusion

BTE Body Text Extraction

CSS Cascading Style Sheets

DOM Document Object Model

HFC Hierarchical Faceted Categories

HTML Hypertext Markup Language

I/O Input/Output

ID Identifier

IR Information Retrieval

LAN Local Area Network

MAP Mean Average Precision

NDCG Normalized Discounted Cumulative Gain

NMI Normalized Mutual Information

ODP Open Directory Project

P2P Peer-to-Peer

RAM Random Access Memory

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

TDQ Text-Density Quotient

TLD Top-level Domain

TREC Text REtrieval Conference

URL Uniform Resource Locator

xxiii

xxiv

Chapter 1

Introduction

Within less than 20 years the Hypertext project“World Wide Web”has turned from a

research project at CERN into a word-wide information and communication platform

for almost 2 billion people1 (or 25% of the world’s population), consisting of an almost

innumerable amount of pages in the order of trillion unique URLs.2 The Web has

become the number-1 user application on the Internet, and is about to replace the

traditional PC Desktop paradigm by providing an entrance to basically everything

through the Web browser [119].

The development of the Web into an omnifarious, omnipresent, and eventually

omniscient system for organizing the world’s data allows for a plethora of new oppor-

tunities from a social, political and economical perspective. However: in order to fully

exploit the capabilities of the Web, we must understand its fundamental properties

and establish corresponding hypotheses, models and theories. At last, we are not

only striving for understanding the data but also the one who makes and consumes

it, that is, the human being.

Given the vast extent of the Web, in terms of size as well as diversity, we may

approach this task from two opposite directions:

1. Bottom-up. Find and select particularly interesting scenarios on the Web, de-

scribe them and integrate them into the big picture.

1http://www.internetworldstats.com/stats.htm
2http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

1

2 CHAPTER 1. INTRODUCTION

2. Top-down. Perform statistical analyses of particular quantitative properties of

the Web at corpus scale and create well-fitting stochastic models.

This exploration is an important aspect in the field of Web Science [59]. While the

former approach may help us to characterize and understand emerging trends and at

describing particular singularities, the latter empowers us to identify the invariants

of the Web at large. The focus of my thesis will be on the latter direction.

1.1 Web Search

A key Web activity that strongly depends on the stability and the invariants of the

Web, and at the same time is required to find and highlight hot topics, emerging trends

and hidden gems, is Web Search. Search engines allow users to access information on

the World Wide Web without exact knowledge of its location.

Traditionally, search engines turn keyword queries into ranked lists of matching

hypertext (HTML) documents that are accessible through hyperlinks, sorted by rel-

evance to the query and supposed importance to the user. Ultimately of course, we

may regard search engines as portals to any kind of information that is accessible on

the Web, not only at document level and not only using keyword search.

Obviously a key challenge is to populate the top-ranked slots solely with docu-

ments that – for every query – match the user’s search intent as closely as possible.

Regardless of how well a particular ranking function works, the quality of the induced

ranking of query results directly depends on the quality of the data that can be re-

trieved. As opposed to knowledge bases with a defined purpose, schema, traceable

provenience information, history recording, consistency checking and a defined target

audience, the Web mostly is unstructured, inconsistent and full of ambiguity, bias,

duplicate and false information. It is therefore essential to discover explicit and la-

tent document properties such as origin, context, popularity, recency, length, writing

style, etc. and use this information as further signals for ranking in addition to the

documents’ actual text.

1.2. PROBLEM STATEMENT 3

1.2 Problem Statement

A big challenge for improving the overall quality of search results is to find methods

and generic, shallow, quantitative features that can be utilized at Web-scale, i.e., that

are independent of a particular language, user community or document subset and

that are relatively easy to compute. We may classify these shallow features into two

broader, complementary categories. The ones, which are dependent on structures at

text level and those, which are dependent on structures at hyper-text level, that is,

the link structure.

Both categories exhibit a multitude of problems and possible solutions. In this

thesis, I will focus on the following question: how can we stochastically model human

behavior when compositing HTML pages on the Web, and how can we utilize this for

Web search? More specifically, the following questions arise:

Problem 1 How can we – at Web scale – model and utilize the inherent link structure

of a Web page (its outgoing and incoming links) for improving search quality?

Problem 2 How can we – at Web scale – model and utilize the inherent textual

structure of a Web page for improving search quality?

1.3 Proposed Solutions

1.3.1 Link Structure

An established strategy to estimating the importance of a web page, regardless of

its content, is the PageRank algorithm. It essentially models the average user’s web

surfing behavior by an interpolation between a random walk with restart in the Web

graph (the links between individual pages on the Web) and a static, adjustable visiting

probability for each individual page. As these visiting probabilities can be arranged

differently for individual users, communities and situations, PageRank is a good can-

didate for conveying personalized and topic-specific rankings in Web search and thus

promises better top-ranked search results.

4 CHAPTER 1. INTRODUCTION

Efficient Parallel Computation of PageRank [77]. Unfortunately, the com-

putation of PageRank is a time- and memory-extensive process as one needs to itera-

tively compute a score for each individual page in the Web graph (billions of pages),

based upon the the scores of all other pages that link to this particular page (zero to

millions of pages). I present an improvement to the PageRank algorithm to speed-up,

parallelize and distribute the PageRank computation. My reformulation exploits the

property of the Web’s link structure of host-based link locality, which allows for an

optimized computation for all pages referring from the same host (over 90% of all

links in the corpus), yielding a dramatic reduction of communication overhead (to

only 0.6%) over traditional parallelized and non-parallelized solutions.

Utility Analysis for Topically Biased PageRank [78]. As a direct con-

sequence of the accelerated computation of PageRank (by orders of magnitudes) we

can now explore the actual capabilities of topic-specific PageRanks on a much broader

scale. For instance, it is crucial to know to which granularity such a biased computa-

tion makes sense. I present the results of a thorough quantitative analysis of biasing

PageRank on categories of the Open Directory Project (ODP) web catalog. I show

that the quality of Biased PageRank generally increases with the nesting level up to

a certain point, thus sustaining the usage of more specialized categories to bias on,

in order to improve topic-specific search. Particularly deeper categories apparently

do not yield a significantly different ranking compared to their ancestor categories,

which indicates a real-world upper bound to the problem of topic-specific PageRank.

Using Link Analysis to Identify Aspects in Faceted Web Search [76].

Now being able to compute individual topic-specific scores for page importance, two

questions come up naturally: Can we use these individual scores to identify the topic-

specificity of an individual web page? If so, can we infer topics inherent in a search

query by looking at the corresponding search results? I affirm both questions by the

demonstration and evaluation of a corresponding system utilizing ODP categories

to compute topically-biased PageRank vectors for all pages of a 9 million pages Web

crawl and a validation test collection from Google AdWords. In 91.6% of the evaluated

test cases the system was able to infer the topic of a query – without understanding

or even looking at the textual contents of the retrieved pages.

1.3. PROPOSED SOLUTIONS 5

1.3.2 Text Structure

An established strategy to retrieving textual pages that are relevant to a particular

keyword query is to treat each document as a bag of words. That is, regardless of

the text’s structure each occurrence of a query term is regarded a match. While this

makes perfect sense in reviewed, high-quality knowledge bases, the approach is some-

what inappropriate for the Web. There is no restriction on how Web pages may be

constructed or look like, they may be composites of several independent texts, they

may contain a feedback section for user comments and they may particularly be con-

taminated by non-relevant text fragments, such as navigational elements, templates

and advertisements, commonly referred to as boilerplate text [12]. Segmenting and

cleansing the pages from the non-relevant text may generally improve the quality of

search results and thus is an important aspect of our problem.

A Densitometric Approach to Web Page Segmentation [75]. Unfortu-

nately, the automatic decomposition of a web page into individual segments is a

non-trivial task, especially since there appears to be no generic solution that fits all

web sites; the internal HTML and CSS structures are just too diverse across the

Web as they may be defined individually by the web site owner/designer. One may

consider a visual analysis of the content for the purpose of segmentation, based on

the rendered graphical representation as in the Web browser – which still is compu-

tationally expensive. I present an approach that combines the benefits of the two

approaches: while still working at HTML hypertext-level, I utilize metrics that esti-

mate the visual density of a text area, similar to the approaches that would be applied

by a vision-based strategy, by introducing the “text density” metric, which denotes

the average number of words per line in an HTML text node (lines are constituted by

word-wrapping the text at a fixed boundary). The approach reduces the segmentation

problem to a 1D-partitioning task, where adjacent text elements with dissimilar text

densities indicate a segmentation gap. I present an evaluation of my BlockFusion

algorithm (that employs this text density metric) on a large reference Web corpus

for the segmentation problem and a smaller reference collection for a near-duplicate

detection task, in both cases yielding a significantly higher goodness (87%) than the

state-of-the-art.

6 CHAPTER 1. INTRODUCTION

A Densitometric Classification of Web Template Content [74, 73]. The

successful adaption of the density metric to the problem of web page segmentation

indicates that there is a direct relationship between text density and the text class

or style of a particular element. Using a statistical analysis on a large reference Web

corpus, I show that at the level of text density there is a strong distinction between

two classes of text, namely navigational boilerplate and full text. Using a simple Beta-

Gaussian mixture model, we can describe the text density distribution of the corpus

very accurately, achieving an almost perfect fit (99.8%); this structure corroborates

recent findings from the field of Quantitative Linguistics. Moreover, I apply the model

to the problem of boilerplate detection and also show that there is a high correlation

between the frequency of a text block and its brevity (number of words).

Boilerplate Detection using Shallow Text Features [79]. Obviously, besides

text density there may be other shallow text features that could be used to detect

and separate boilerplate text from the real content. In the present thesis, I evaluate

the applicability of overall 67 shallow features to the problem of boilerplate detection.

I show that using a simple decision tree classifier with only two types of features

(text density + link density, or number of words + link density, respectively), we can

achieve a detection quality that is superior to state-of-the-art techniques. From this

findings I derive a simple, plausible and well-fitting stochastic model for describing

the boilerplate-aware text creation process (98.8%), based upon a simple Shannon

RandomWriter model. With the help of this model, we can finally quantify the impact

of boilerplate removal to retrieval performance, seeing significant improvements over

the baseline, at almost no cost.

Chapter 2

Foundations and Terminology

We start by introducing important notions and foundations of Web Search in general

and in particular towards a definition of “quality” in this domain.

2.1 Search Quality

In simple words, the main purpose of performing a search on the Web is to find.

What to expect to be found, what can be found, what to request, what is actually

searched, what is actually found and what is perceived as found depends upon several

interconnected factors between the searcher, the searchable items, the origin and/or

producer of these items and the algorithms and tools that are being employed in the

search process. Given the enormous size and diversity of the Web, and its increasing

societal importance, we can eventually expect any kind of information to be available

for search and retrieval.

As the realistic result of such a complex process can only be suboptimal, the

goal is not to achieve optimality but to approximate it. Given the fuzzy definition

of the search process, we should probably define “search quality” only as a subjec-

tive impression of the goodness of fit between the expected results (considering an

imaginary optimum) and the observed results. We may then attempt to quantify

the improvement of search quality by measuring and evaluating certain properties of

7

8 CHAPTER 2. FOUNDATIONS AND TERMINOLOGY

the retrieved search results. Any statistically significant improvement of one or more

particular properties can thus be regarded an improvement of search quality.

Generally, we can see the Web as a special kind of (read: universal) document

collection that be used for purposes of information retrieval. Yet, as opposed to tra-

ditional, smaller, centrally-maintained data collections, the sheer size and diversity of

the information on the Web as a whole not only poses challenges in terms of technical

feasibility (complexity of acquisition, storage/maintenance of data as well as algorith-

mic computation) but it also enables us to analyze human behavior (in their roles as

information seekers as well as information producers) on a very large scale, as opposed

to finding peculiarities of the data in the smaller collections. If we are thus able to

find a (maybe even incomplete) statistical formulation or stochastic approximation of

human behavior that can be observed at macro scale, these properties may directly

help us to improve the goodness of fit and thus, search quality.

In this thesis, I narrow the scope of what can be found to hyper-text (HTML) doc-

uments and what can be requested to free text – which commonly is being referred

to as keyword search. This simplified problem domain still covers the most common

actions in Web Search, for example through search engines like Google1, Yahoo!2 or

Bing3 and enables us to employ standard text retrieval methods as a baseline. A

wealth of further readings on the principles of Web Search and Information Retrieval

in general can be found in [9, 87, 100, 31]. In the following sections, I will high-

light some important aspects of Web document modeling for the purpose of retrieval

(search) as well as metrics and strategies to evaluate result quality.

2.2 Web Page Modeling and Retrieval

Document. In our context we may refer the term web page to the raw HTML-coded

data, to the parsed plain text, to the associated metadata such as URL, title and

link structure (in- and outgoing hyperlinks), and to the rendered representation in

1http://www.google.com/
2http://www.yahoo.com/
3http://www.bing.com/

2.2. WEB PAGE MODELING AND RETRIEVAL 9

the browser as well (to render, the browser needs to additionally take referenced/em-

bedded resources like CSS style sheets, images etc. into account). Even though the

definition of a “document” in general is a subject of discussion [21], I will use the

terms document, web page and page synonymously here. Apart from the individual

documents, putting them into context (such as the neighborhood of pages that link to

a particular document) or into a class (e.g., all pages from Germany) gives additional

information that can be used for the retrieval of individual web pages, especially when

searching for the top-k best matching results.

Index. It is generally advisable to use all possible dimensions of a document as

features for search, but from a technical perspective it is desirable to maximize the

utility value of the data while minimizing acquisition, computation and storage costs.

What at least ends up being searchable is an index structure consisting of simplified

representations of each web page’s text (a tokenized, stemmed, truncated, weighted

bag of words or term vector populating an inverted index, optionally with positional

information for phrase queries), and a text-independent weight indicating relative

page importance with respect to the other pages indexed.

Query. Analogously, the textual query issued by the user may be analyzed in

various ways (to detect certain phrases, patterns, etc.), but in the simple case, the

words are translated to terms in the same way as for the documents, again forming

a bag of words (web search queries tend to be really short, though, likely less than 3

words [63]). Additionally, the user might be able to specify a page bias on particular

web pages through other means than the keywords. The user may want to restrict

the source to pages from Germany or put a focus on pages related to another page or

cluster of pages, for example.

Retrieval. Matching the query with indexed information yields the search results.

The matching mainly is based upon the proximity between the query’s bag of terms

and each document’s bag of terms, optionally weighted by each term’s utility in the

corpus and the document (e.g., plain TF ×IDF [98] or Okapi BM25 [99]). Proximity

can be defined as the cosine between the term vectors (Vector Space Model [101])

or as a multi-dimensional Euclidean distance (Extended Boolean Model [102]), for

example; the closer the more relevant a document is regarded with respect to a query.

10 CHAPTER 2. FOUNDATIONS AND TERMINOLOGY

To account for the popularity or authoritativeness of the source (regardless of the

actual content) the scoring process may also take the contextual relevance of a web

page as a scoring factor (w.r.t. the corpus or to the page bias, if specified). In top-k

retrieval, the results are then being ranked in decreasing order of score, whereas only

the k highest ranking results are being shown to the user. It is thus crucial to satisfy

the user already through these k results.

Noise. By definition, this retrieval process may deliver too few results (if the

query is incorrectly specified, over-specified or, in the unlikely case on the Web, that

there are no matches for a particular query) as well as irrelevant results. The latter

may surely be due to an individual ranking/scoring algorithm but is mainly due to

noise in the searchable data, whereas we may refer noise to any kind of unwanted (=

non-relevant) information, including spam.

Since a document that contains all possible terms would achieve top scores, which

clearly is not desirable, it is not sufficient to only weight individual terms according

to their overall semantic relevance but also to detect a document’s main content (the

central information) or at least detect any irrelevant elements and remove/down-

weight them. Similarly, a page should not necessarily be regarded relevant to a query

just because of its popularity (in terms of incoming links), nor should all outgoing

links be treated equally (links in a navigation menu fulfill a structurally different

purpose than hyperlinks in full text, for example). Thus, an important challenge

(also from a technical perspective) is to avoid and remove noise as early as possible

and to reduce the impact of the remaining noise to the search task.

2.3 Quantitative Evaluation

When it comes to measuring and comparing the performance of a model or algorithm,

numerous metrics may be employed. For our tasks, we are mainly interested in two

types of tests: the goodness of a binary classification (how well can we separate

correct/relevant from incorrect/irrelevant search results?) as well as the goodness of

a statistical model to the real data (how well can we describe it?). While it is obviously

simple to rephrase a stochastic model as mathematical formula, the creation of a“gold

2.3. QUANTITATIVE EVALUATION 11

standard” for the purpose of evaluating classification goodness requires substantial

human effort. Each individual item (e.g., a web page) needs to be judged relevant

(binary, graded or labeled with different classes) with respect to the given query or

context. To gain insights about the Web as a whole, the judgment process needs to

be performed on a somewhat representative basis.

Even though a model or algorithm has to bear up against the properties of the

entirety, this does not necessarily implicate “the bigger the better”. An evaluation

on just one thousand documents each from a different website may deliver more

insight about the Web’s properties than an evaluation on a million documents from

a single source. The key is to preserve the inherent structures of the Web’s entirety

within the evaluated subset, especially diversity (to avoid overfitting) and the Web’s

Zipfian properties (word and link distributions, for example). Subsets can be created

by manually constructing datasets (e.g., a web crawl using an authoritative seed

or a collection of separate, special purpose datasets), or by random sampling of a

very big, unbiased initial Web dataset (e.g. a large-scale web crawl). To achieve

reproducible results, oftentimes (quasi-)standard collections are employed (e.g., in

the TREC competitions [107], the Webspam challenge4, CleanEval [12], and others),

which usually have been compiled carefully. In this thesis, I use such collections

whenever possible, feasible and useful.

Once a collection and the evaluation criteria on what is relevant and non-relevant

are defined, we can count the number of relevant/irrelevant items (e.g., documents)

that are retrievable in the collection and those that are contained in the set of items

that are actually for a particular query and relate those numbers in various ways

to understand the actual quality of the search results. Especially for top-k keyword

search on the Web, it makes sense to only consider the subset of those top-k ranked

items, as users tend to only scan through the first few results [97].

When regarding the retrieved and retrievable items as sets, we may separate four

types of results: true positives (retrieved and relevant), true negatives (not retrieved

and irrelevant), false positives (retrieved but irrelevant), false negatives (not retrieved

but relevant), see Figure 2.1. Note that usually non-retrievable (but possibly relevant)

4http://webspam.lip6.fr/

12 CHAPTER 2. FOUNDATIONS AND TERMINOLOGY

TPFN FP TN

Relevant Irrelevant

Retrievable

Retrieved

true
positives

false
positives

false
negatives

true
negatives

Not Retrievable

Figure 2.1: The different sets of the binary relevance classification

items are not considered at all. Items may be non-retrievable either because they are

not in the collection or non-existent at all (= imaginary). Thus, in our context,

relevant and irrelevant refer to retrievable items only.

Furthermore, since a ranked list of results can also be seen as a model or an

estimator for the ideal response, we may also use some standard statistical methods

for discrete random variables as an indicator of quality. As no universal measure

appears to be in sight, I will use the following, complementing measures.

Precision, Recall and F-measure. Precision is the probability that a retrieved

document is relevant; also: P (n) = Precision at rank n (only the top-n results).

Recall is the probability that a relevant document is retrieved. The F-measure F1 is

the harmonic mean between Precision and Recall.

P =
|TP |

|Retrieved| R =
|TP |

|Relevant| F1 = 2 · P ·R
P +R

MAP. Mean average precision. Given a set of queries, we compute the average

precision AvP for each query from all P (r) with r having a relevant result (i.e.,

relr > 0, i.e. 1 in the binary case), and then average again over all queries.

AvP = |Relevant|−1 · [
�n

r P (r), ∀relr > 0] MAP = |Queries|−1 ·
�

q AvP (q)

2.3. QUANTITATIVE EVALUATION 13

ROC. The Receiver operating characteristic relates recall (true positive rate, sen-

sitivity) to fall-out (false positive rate, 1 − specificity, FP/Irrelevant). Fall-out is

the probability that a non-relevant document is retrieved by the query. Recall and

fall-out are computed for all top-p ranks, yielding a curve in ROC’s fall-out/recall

space. Ideally, we may get a straight line with 100% recall (and thus zero fall-out) –

and a diagonal in the worst case (random guess) since any lower curves may be in-

verted (switching relevant/irrelevant), thus yielding higher scores again. ROC usually

is summarized by the area under curve (AUC), which can, for example, be retrieved

from the curve’s Gini coefficient.

AUC =
G1 + 1

2

NDCG. Normalized discounted cumulative gain. DCGp, the discounted cumu-

lative gain at rank p, attributes greater importance to highly ranked items by loga-

rithmically discounting the relevance of lower-ranked ones; it is then normalized by

an hypothetical ideal (IDCG) to provide the NDCG. The ideal ranking comprises a

list of monotonically decreasing relevance scores (in the case of a binary classification

this means that no relevant document is preceded by an irrelevant one).

DCGp = rel1 +
p�

i=2

reli
log2i

NDCGp =
DCGp

IDCGp

Kendall Tau. Given a specific ranking of results, the Kendall τ coefficient mea-

sures the association to another ranking. As opposed to putting focus on the absolute

position in the ranking, this metric evaluates the overall concordance of the two rank-

ings (i.e., how often does an item i precede another item k in both rankings).

τ =
(number of concordant pairs)− (number of discordant pairs)

(number of pairs)

RMSE. The Root Mean Square Error is the square root of the variance between

the response values Y and the predicted response values Ŷ .

RMSE(Ŷ) =

�
E
�
(Ŷ − Y)2

�

14 CHAPTER 2. FOUNDATIONS AND TERMINOLOGY

R2 Coefficient of Determination. Similarly to RMSE, R2 describes the vari-

ation of the data that cannot be explained by the model. After a least squares

regression, R2 constitutes the square of the correlation coefficient between the re-

sponse values Y and the predicted response values Ŷ . R2
adj is an adjusted variant

that punishes additional features/independent variables if they do not improve the

model more than by chance (n = sample size, p = number of independent variables).

R2 =

�
i(Ŷi − Ȳ)2�
i(Yi − Ȳ)2

=
Cov(x, y)

V ar(x)V ar(y)
R2

adj = 1− (1−R2)
n− 1

n− p− 1

The Kullback-Leibler (KL) divergence is a measure for change in information

entropy (the additional communication effort necessary) from a probability distribu-

tion P to Q. We can treat it as the Information Gain if P is used instead of Q.

DKL(P�Q) = H(P,Q)−H(P) =
�

i

P (i) log
P (i)

Q(i)

Mutual Information is the strength of dependence between two random vari-

ables X and Y . It is essentially the KL-divergence of the joint probability compared

to the product of the individual probabilities, i.e., we expect a higher information

gain if X and Y are closely related than if they were independent.

I(X;Y) = DKL (p(x, y)�p(x)p(y))

Normalized Mutual Information (NMI) measures the mutual dependence

of the two solutions by relating their entropies. Several variations of normalization

exist. In this thesis I use Strehl’s & Ghosh’s variant [111], which is defined as

NMI (X, Y) =
I(X;Y)�
H(X) H(Y)

.

Chapter 3

Link Structure

In this chapter, we deal with the first problem: How can we – at Web scale – model

and utilize the inherent link structure of a Web page (its outgoing and incoming links)

for improving search quality?

3.1 PageRank in short

Computing the importance of a web page purely from its structural importance at

hyperlink-level (regardless of its content) is a highly active research field since the

Web’s early times. The most popular algorithm being PageRank [92], which recur-

sively determines the importance of a web page by the importance of all the pages

pointing to it. Regarding the link structure aspect of my thesis, I will focus on this

particular ranking strategy.

Model: Random Walk with Restart. The main concept behind the PageRank

paradigm is the propagation of importance from one Web page towards others, via its

out-going (hyper-)links. Each page p ∈ P (P is the set of all considered pages) has an

associated rank score r(p), forming the rank vector �r. Let L be the set of links, where

(s, t) is contained iff page s points to page t and L(p) be the set of pages p points

to (p’s outgoing links). Links and pages finally form the web graph G = (P, L). To

compute �r, the following iteration step is then repeated until all scores r stabilize to

a certain defined residual degree δ < ε:

15

16 CHAPTER 3. LINK STRUCTURE

∀t ∈ P : r(i)(t) = (1− α) · τ(t) + α
�

(s,t)∈L

r(i−1)(s)

|L(s)| (3.1)

The formula consists of two portions, the jump component (left side of the sum-

mation) and the walk component (right side), weighted by α (usually around 0.85).

r(i−1)(s)·|L(s)|−1 is the uniformly distributed fraction of importance a page s can offer

to one of its linked pages t for iteration i. Intuitively, this models a “random surfer”

following an outgoing link from the current page (random walk) with probability α,

which, with probability 1− α, gets bored and then restarts the process by opening a

random page (random jump). The main utility of α is to guarantee convergence and

avoid “rank sinks” [18].

In fact we may interpret this behavior as a Markov process associated to the web

graph, having �r as the state vector and A (see Eq. 3.2) the transition probability from

one page to another. Thus we can write Equation 3.1 in matrix terms as follows:

�r = (1− α) · �τ + α A�r (3.2)

Parallelization. Equation 3.1 represents the linear system representation of this

matrix computation, using the Jacobi iterative method. Several improvements for a

centralized computation of PageRank have been researched in detail [8, 27, 53, 65, 66,

82, 69, 89]. For example, other stationary iterative solvers may be used, such as the

Gauß-Seidel method, which converges two times faster than Jacobi [8] but turned out

to not be as efficiently parallelizable as the Jacobi method, since it requires access to

the preliminary results of the current iteration (and thus, additional communication).

There already are parallel Gauss-Seidel implementations for certain scenarios such

as the one described in [70], using block-diagonally-bordered matrices; however, they

all admit their approach was designed for a static matrix; after each modification, a

specific preprocessing (sorting) step is required, which can take longer than the actual

computation. Because the web is highly dynamic, almost 40% of all links change in

less than one week [30], disregarding this preparation step would veil the real overall

processing time. Steady reorganization of coordinates in a huge link matrix simply

imposes an unjustified management overhead.

3.1. PAGERANK IN SHORT 17

Existing approaches to PageRank parallelization can be divided into two classes:

Exact Computations and Approximations. For exact computations of PageRank, the

web graph is initially partitioned into blocks of individual pages: grouped randomly

[103], lexicographically sorted by page [86, 106, 124] or balanced according to the

number of links [49]. Then, standard iterative methods such as Jacobi (Equation 3.1)

or Krylov subspace [49] are performed over these pieces in parallel. The partitions

periodically must exchange information: Depending on the strategy this can expose

suboptimal convergence speed because of the Jacobi method and result in heavy

inter-partition I/O (e.g., in [86], computing the rank for a page t requires access to

all associated source page ranks r(s) across all partitions).

On the other hand, approximations might be sufficient to get a rank vector which

is comparable, but not equal to the exact one. Instead of ranking pages, higher-level

formations are used, such as the inter-connection/linkage between hosts, domains,

server network addresses or directories, which can be orders of magnitudes faster.

The inner structure of these formations (at page level) can then be computed in an

independently parallel manner (“offline”), as in BlockRank [64], SiteRank [120], the

U-Model [20], ServerRank [116] or HostRank/DirRank [37].

Personalized PageRank. The so-called Personalized PageRank[92] promises an

improvement in ranking with respect to individual interests/facets, which are specified

through a set of relevant pages. As opposed to the regular PageRank, the random

jumps now only address a given set of pages to which the computation should be

biased. A unified representation of both approaches (random/biased) is the following:

∀t ∈ P : rB(t) = (1− α) · πB(t) + α
�

(s,t)∈L

rB(s)

|L(s)| (3.3)

Here, πB(t) describes the likelihood that the surfer reaches page t from a jump.

In the case of regular (“unbiased”) PageRank, we treat all pages of the web graph as

being contained in B, so: πP (t) = τ(t) = |P |−1, in general it is:

πB(t) =

1
|B| iff t ∈ B

0 otherwise
(3.4)

18 CHAPTER 3. LINK STRUCTURE

The distribution of scores in the rank vector �rB follows a power law (just as the

actual numbers of incoming and outgoing links to a page [19]) and thus is scale-free.

Therefore multiplying a PageRank score with the keyword-based document relevance

score W (d, q) (e.g., based on the TF × IDF measure) causes important pages (with

respect to the given biasing set B) to gain higher scores ρB. Note that the number

of retrieved documents does not change when switching to another biasing set, since

no facet-specific keywords are added. Instead the document ranking is changed:

ρB(d, q) = W (d, q) · rB(d) (3.5)

Personalizing PageRank is in fact just a biasing towards an individualized set of

scores (it is not anyhow “personal” by definition). As a non-user specific approach,

Haveliwala’s Topic-Sensitive PageRank[54] makes use of linear combinations of just 16

Personalized PageRank vectors, each biased on one of the 16 top categories of ODP

respectively. The weights for the linear combination are derived from each topic’s

term vector (hence, access to full-text information is required):

�rB� =
�

β

[ωβ�rβ] (3.6)

Other, more recent approaches to generate personalized rankings extend this

scheme. Qiu and Cho [96] for example enhance Topic-Sensitive PageRank to contain

user specific weights for combining the 16 biased vectors. They learn these weights

through machine learning on the user’s click history. Aktas et al. [38] have success-

fully applied Personalized PageRank with respect to domain name features (country

and generic TLD topic assignment). Finally, Jeh and Widom [62] and more recently

Sarlos et al. [104] have investigated the means to compute Personalized PageRank

in a scalable way for a large set of users. They both exploited the idea of decompos-

ing the biasing set into small sets with a single non-zero entry followed by a linear

combination of the resulting Personalized PageRank vectors.

3.2. PARALLELIZATION AND DISTRIBUTION OF PAGERANK 19

3.2 Parallelization and Distribution of PageRank

In this section I introduce a new approach to computing the exact PageRank vector

in a parallelized fashion. Exact results are obtained faster than distributed strategies

based on the Jacobi method, improving by orders of magnitude over the other algo-

rithms generating exact PageRank scores. I show that the convergence improvements

of the Gauß-Seidel method for solving linear systems [8] can also be efficiently ap-

plied in a parallelized PageRank scenario, without being restricted to static matrices

as in [70]. We can achieve this by modeling the Web graph in a two-dimensional

fashion (with the URL’s hostname as the primary criterion), thus separating it into

reasonably disjunct partitions, which are then used for distributed, incremental web

crawling [30] and PageRank computation.

3.2.1 The Two-Dimensional Web

Computing the PageRank vector for a large web graph using a materialized in-memory

matrix A is definitely not possible. A common solution is to store the links in a

format like “Destination Page ID, Out-degree, Source Page IDs...” (which resembles

L). Because pages only link to a few others this results in much lower memory

requirements of the link structure, in the magnitude of | L | · n −1 · c bytes (n =

average out-degree; c = const.)

Of course, compression techniques [80] or intelligent approaches to disk-based

“swapping” [53, 27, 89] can improve the space requirements even further (e.g. by

relying on a particular data order, or on the presence of caches). But with the

permanent growth of the web, even such techniques will soon hit memory limits of a

single computer, or unacceptably slow down the computation process. See [89] for a

thorough discussion of these optimizations.

I thus propose a new, complementing strategy for keeping the web graph and rank

information completely in RAM of several networked machines, utilizing a separation

between global (host) and local information about each page.

20 CHAPTER 3. LINK STRUCTURE

Host-based Link Locality

Bharat et al. [17] have shown that there are two different types of web links dom-

inating the web structure, “intra-site” links and “inter-site” ones. A “site” can be a

domain (.yahoo.com), a host (geocities.yahoo.com) or a directory on a web server

(http://www.geocities.com/someuser/). In general, we can define a site as an in-

terlinked collection of pages identified by a common name (domain, host, directory

etc.), and under the control of the same authority (an authority may of course own

several sites).

Due to the web sites’ hypertext-navigable nature, it is supposable that a site

contains more internal than external links. In fact a high amount of all non-dangling

links are intra-host or intra-domain (> 93%) [64]. This assumed block structure has

been visualized by Kamvar et al. [64] using dot-plots of small parts (domain-level)

of the ”LargeWeb” graph’s link matrix [55]. In these plots, the point (i, j) is black, if

there is a link from page pi to pj, clear otherwise.

I performed such a plot under the same setting, but on whole-graph scale. The out-

come is interesting: a clear top-level-domain (TLD) dominant structure (see Figure

3.1a). For example, the .com TLD represents almost 40% of the complete structure

and has high connectivity with .net and .org, whereas the .jp domain shows al-

most no inter-linkage with other TLDs. However, if we only inspect the .com domain

(see Figure 3.1b, the dot-plot depicts a diagonally dominant structure. The diago-

nal represents links from target pages nearby the source page (which are inter-host

pages). Both results are primarily caused by the lexicographical order of URLs (with

hostnames reversed, e.g. http://com.yahoo.www /index.html).

But is this costly sorting over all URLs necessary at all? To further analyze

the impact of hostname-induced link locality, we can inspect the LargeWeb dot-plot

in a normalized (histographical) fashion, where a dot’s grayscale value depicts the

cumulative percentage of links in a specific raster cell. In addition, we do not sort

the pages lexicographically, but only group them per host and permute all hosts

randomly to avoid any lexicographical or crawl-order-dependent relationship between

them. The clear diagonal dominance now also becomes visible on whole-graph scale

(Figure 3.1c).

3.2. PARALLELIZATION AND DISTRIBUTION OF PAGERANK 21

From Numbers to Tuples

It should be obvious that the web was already designed to be two-dimensional: Host-

names are namespaces aimed to disambiguate different local contexts (i.e., paths like

“/dir/index.html”).

Previous approaches to web graph partitioning always resulted in having one

unique ID associated to each page, eventually sorted lexicographically [64, 86, 106]

or in crawling order to exploit specific graph properties [89]. Such a single page ID

provides a very compact representation of the web graph, which can be visualized

in a matrix dot-plot as shown above. But it also requires continuous reorganization

(sorting) for newly added or removed pages in the course of incremental crawling.

Otherwise, a mixture of hosts along the URL IDs would render a host no longer char-

acterizable by a closed interval of IDs, thereby losing the advantage of link locality.

One may introduce gaps in the numbering to reduce the sorting costs, but still, all

subsequent pages will have to be renumbered once the gap is filled. In a distributed

scenario, this can cause extensive network I/O by repeatedly moving pages from one

partition to another.

I therefore propose a different page identification scheme, based on the affiliation

of each page to a specific host and independently of pages from other hosts. More

specifically, we may use a tuple consisting of two independent, positive integers, a

HostID (only dependent on the URL’s hostname) and a LocalID (identifying the

local components – path and query string). This simplifies the addition of new local

pages to a specific host, as well as of new hosts, since it avoids any renumbering.

(a) LargeWeb, sorted (b) .com subgraph of (a) (c) LargeWeb, normalized

Figure 3.1: Linkage dot-plots

22 CHAPTER 3. LINK STRUCTURE

As an implementation-specific note, it is expected that for current web graphs, it

is sufficient to store the tuples as two uint32 four-byte integers. We then can address

a maximum of 4.29 billion hosts and a maximum of 4.29 billion pages per host in 8

bytes. For small hosts, we could even reduce the local part to 16 bits, thereby further

cutting down memory footprint.

3.2.2 Partitioned PageRank

Let us now consider the impact of such a partitioning scheme on the PageRank

algorithm. I first present an analysis that unifies two of the most common algorithms

for solving linear systems, Gauß-Seidel and Jacobi. Then, we will apply this analysis

to propose an improved parallel PageRank algorithm, and finally I will discuss several

optimization issues.

Unifying Jacobi and Gauss-Seidel

It has been observed that the Gauß-Seidel iteration method compared to the Jacobi

method can speed-up PageRank convergence by a factor of 2, as it uses scores of the

current iteration as soon as they become available [8]:

∀(s, t) ∈ L : r(i)(t) = (1− α) τ(t) + α

�
�

s<t

r(i)(s)

|L(s)| +
�

s>t

r(i−1)(s)

|L(s)|

�
(3.7)

As opposed to the Jacobi iteration, the Gauß-Seidel variant requires iterating over

the links (s, t) ∈ L in a strictly ascending order. At first glance, this seems to be a

major drawback when we want to apply it to a distributed, partitioned web graph.

To clarify the impact of the restriction of link order, we now derive a common base

algorithm for both, Jacobi (equation 3.1) and Gauß-Seidel (equation 3.7) algorithms:

Let us define an intermediate ranking vector r(i−1,i) that combines the vectors of the

previous and the current iteration, depending on the state of a ranked page p in the

set of available pages P (P = P � ∪ P ��; � p : p ∈ P � ∧ p ∈ P ��; P � contains all pages

3.2. PARALLELIZATION AND DISTRIBUTION OF PAGERANK 23

which have already been ranked for iteration i; P �� contains all other pages, whose

scores have not been touched since iteration i− 1):

r(i−1,i)(p) :=

r(i)(p) if p ∈ P �

r(i−1)(p) if p ∈ P ��
; r(i)(t) = (1− α) τ(t) + α

�

(s,t)∈L

r(i−1,i)(s)

|L(s)| (3.8)

Under this setting, for the Gauß-Seidel method, P � = { p | p < k } and P �� =

{ p | p ≥ k }, with k ∈ {1, 2, ..., |P |}, whereas for the Jacobi method, we have P � = ∅
and P �� = P . Both iteration methods, Jacobi and Gauß-Seidel, can then be simplified

to this joint formula:

r(�)(t) = (1− α) τ(t) + α
�

(s,t)∈L

r(�)(s)

|L(s)| , with r(�)(t) = r(i−1,i)(t) (3.9)

From Equation 3.8, we know that before each iteration i, �r(�) = �r(i−1) and after

the iteration �r(�) = �r(i). The state of �r(�) during the iteration then only depends on

the order of links (s, t) ∈ L (the way how P � and P �� are determined). This iteration

method has worst-case convergence properties of Jacobi and best-case of Gauß-Seidel,

depending on the order of elements, random order vs. strictly ascending order, while

always providing the same per-iteration running time as the Jacobi iteration.

We further generalize the impact of the rules for P � and P ��: We can argue that if

only a small fraction F of all links concerned (|F | � | L |) is not in strictly ascending

order, the overall convergence speed still remains in the magnitude of standard Gauß-

Seidel. In our case, in order to be able to parallelize the Gauß-Seidel algorithm, we

will assign inter-host/inter-partition links (about 6%) to this small fraction.

Reformulating PageRank

For such an optimization, let us reformulate our above mentioned unified PageRank

equation using our new two-dimensional page numbering scheme. Thus, page vari-

ables “p” will be replaced by page tuples p = (px, py), with px representing the page’s

24 CHAPTER 3. LINK STRUCTURE

HostID, host(p), and py its LocalID, local(p). To account for the separation of inter-

and intra-host links, the formula now reads as follows:

r(�)(t) = (1− α) τ(t) + α
�
v(�)I (t) + v(�)E (t)

�

v(�)I (t) =
�

(s,t)∈L

r(�)(s)

|L(s)| ∀ host(s) = host(t)

v(�)E (t) =
�

(s,t)∈L

r(�)(s)

|L(s)| ∀ host(s) �= host(t)

(3.10)

Since v(�)I (t) solely requires access to local (intra-host) rank portions, it can effi-

ciently be computed from scores stored in RAM. The local problem of ranking intra-

host pages is solvable via a fast, non-parallel Gauß-Seidel iteration process. There is

no need for intra-host vote parallelization – instead, we parallelize on the host-level,

thus necessitating only inter-host communication, which is limited to the exchange of

external votes.

This approach produces exactly the same ranks as the original PageRank, while

being more scalable than the other parallel PageRank algorithms. This is mainly due

to the parallelization of the Gauß-Seidel algorithm, in which we take advantage of the

web’s host-oriented block structure.

Reaching Optimal Performance

Communication Cost Optimization. While votes between hosts of the same

partition (server) can easily be conveyed in RAM, votes across hosts of different

partitions require network communication. The gross total for exchanging external

votes over the network must not be underestimated. With the LargeWeb graph setup,

almost 33 million are exchanged between partitions. For bigger web graphs, this could

rise up to a few billion exchanges and can easily lead to network congestion if too

much information is transmitted per vote.

As opposed to other approaches, where a vote consisted of target page ID (some-

times along with source page ID) and score, we simply reduce this to transmitting a

3.2. PARALLELIZATION AND DISTRIBUTION OF PAGERANK 25

single value per page (the score), because the link structure does not change during

the iteration cycle. More generally, the link structure of all the pages that exchange

votes between two partitions pages only needs to be determined whenever the graph

changes (in the case of incremental web crawling) and then to be sent to the specific

target partition. Moreover, the source page does not need to be specified in order

to compute the PageRank score, but only the target page ID (see Equation 3.10).

Additionally, by grouping the list of target pages by host, we need to transmit each

target host ID only once.

Most notably, each partition has to transmit only one single value per target

page, not per link to that page, since all votes from local pages that link to a specific

page can be aggregated to a single value (surprisingly, this simple but very effective

approach did not appear in any previous work):

v(�)E (t) =
�

β∈Π

�

(s,t)∈Lβ

r(�)(s)

|L| =
�

β∈Π

v(�)β (t) ∀ host(s) �= host(t) (3.11)

with Π being the set of partitions containing links towards t, and β each one of these

partitions.

Transferring vβ(t) (the sum of votes from partition Lβ to t) as a single value

reduces the network load dramatically. Using this optimization, we see a reduction

of vote exchanges by 89% with the LargeWeb graph. Table 3.1 lists the differences

between inter-partition links and votes and their quota of all links.

Type Amount Percent

Total Links 601,183,777 100%
Inter-Partition Links 32,716,628 5.44%
Inter-Partition Votes 3,618,335 0.6%

Table 3.1: LargeWeb Inter-Partition links and votes

Computational Load Balancing. In order to keep the convergence behavior

of the centralized PageRank in our parallel scenario, inter-partition votes must be

exchanged after every iteration (see [86] for a discussion of consequences of not doing

so). To keep the overall computation time still low, all intra-partition computations

26 CHAPTER 3. LINK STRUCTURE

and after that all network communication should terminate isochronously (at the same

time). Because intra-partition computation is directly proportional to the number of

pages per partition (see Equation 3.10), this either means that all available servers

must be equally fast, or the graph has to be at least partitioned adequately to the

performance of the servers. Moreover, other slow-down factors could also influence the

running time, such as different network throughput rates of the network controllers

and system boards (even with the same nominal speed).

A good strategy to load-balancing Parallel PageRank in a heterogeneous environ-

ment could be running a small test graph on all new servers, measure computation

speeds, and balance the real graph accordingly. In any case, memory overflows due

to bad balancing parameters like in [49] are avoided, and no manual interaction to

find these parameters is necessary.

3.2.3 Experiments

For the PageRank experiments, I first converted the Stanford LargeWeb graph [55]

into the new tuple representation, resulting in 62.8M pages and 601M links distributed

over 470,000 hosts with averaged 137.5 pages each (the maximum was 5084 pages per

host); the inter-host link percentage1 is 6.19% (see Table 3.2). I then sorted the

available hosts by their page count in descending order and distributed the pages

host-wise in a round-robin manner over 8 partitions of equal size (18 of the graph just

fitted into the RAM of the smallest server).

Although the pages-per-host distribution was not strictly exponential, it resulted

in an equal page and link distribution (see Figures 3.2, 3.3, 3.4, 3.5). Remarkably, the

intra-partition ratio (inter-host links inside the same partition) is negligible, as the

inter-partition link rate nearly equals to the inter-host ratio. This means that hosts

can arbitrarily be shifted from one partition to another (which is necessary for fast

re-balancing with incremental web crawling).

1Unfortunately, the last 8 million pages of DNR-LargeWeb could not be converted, since there
was no URL associated with them – thus, our numbers slightly differ from the ones in [64].

3.2. PARALLELIZATION AND DISTRIBUTION OF PAGERANK 27

Type Amount Percent

Total 601,183,777 100%
Intra-Host 563,992,416 93.81%
Inter-Host 37,191,361 6.19%

Inter-Partition 32,716,628 5.44%
Intra-Partition 4,474,733 0.74%

Table 3.2: LargeWeb link distribution

Figure 3.2: Partitioned Dotplot
(LargeWeb)

 1

 10

 100

 1000

0 % 25 % 50 % 75 % 100 %

N
u
m

b
e
r

o
f
p
a
g
e
s

o
n
 h

o
st

Top-k% hosts (sorted by size)

Global
Partition 1
Partition 2
Partition 3
Partition 4
Partition 5
Partition 6
Partition 7
Partition 8

Figure 3.3: Pages per host
(8 individual partitions and global)

Implementation

I have implemented Partitioned Parallel PageRank in Java using a P2P-like network

with a central coordinator instance. This coordinator is only responsible for arranging

the iteration process at partition-level and does not know anything about the rank

scores or the link structure (it is much simpler than the coordinator in [124]). Before

the computation, all nodes announce themselves to the coordinator, communicating

the hosts they cover. The iteration process is started as soon as all nodes are ready.

The coordinator then broadcasts the global host structure to all known nodes and

instructs them to iterate. Whenever a node’s subgraph changes, it sends lists of

external outgoing link targets to the corresponding nodes.

For every iteration step, a node will compute its votes using our reformulated

PageRank (Equation 3.10); the partition itself is again divided into subpartitions

processed in parallel. The nodes then aggregate all outgoing inter-partition votes by

target page and send them directly to the other nodes responsible for these target

28 CHAPTER 3. LINK STRUCTURE

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8

A
m

o
u
n
t
o
f
p
a
g
e
s

Partition #

Page Distribution

Figure 3.4: Pages per Partition

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

L
in

k
P

e
rc

e
n
ta

g
e

Partition

Inter-Partition In-Link Percentage
Inter-Partition Out-Link Percentage

Figure 3.5: Inter-partition links

pages, in the order specified beforehand. Finally, each node reports its local rank

status (using the sum and number of its PageRank scores) to the coordinator, in

order to compute the global residual δ. As soon as all nodes have succeeded, the

coordinator decides whether to continue iterating, by broadcasting another “iterate”

command unless the residual reached the threshold ε.

The addition of new pages during incremental crawling may happen at any time.

If the addition covers new hosts, the coordinator selects a node according to the

current balancing. From then on, this node is responsible for all pages of that host.

The assignment is broadcast to all nodes in case that there were dangling links to

that (previously uncovered) host.

Results

Most of the experiments have been on four Linux machines, an AMD Dual Opteron

850 2.4 GHz, 10GB RAM (“A”), an Intel Dual Xeon 2.8 GHz, 6GB RAM (“B”)

and two Intel Xeon 3.0 GHz, 1.5GB RAM (“C” and “D”). They were connected via

100MBit Ethernet LAN and not under load before the experiments. I divided the

LargeWeb graph into eight partitions and distributed them among the four servers

according to available memory (Machine A holds four partitions, B two, C and D

one) and performed unbiased PageRank computations.

I examined the convergence behavior, rank distribution and elapsed time both

globally and per-partition. All per-partition results matched almost perfectly with

3.2. PARALLELIZATION AND DISTRIBUTION OF PAGERANK 29

the global counterpart and therefore confirmed our assumptions (see Figure 3.6).

The PageRank computation converged below ε = 10−3 after 17 iterations. The entire

computation took less than 9 minutes, with only 66 seconds accounted for rank com-

putation, the rest being network I/O. With a Gigabit-Ethernet connection, network

communication costs would probably go down to the same magnitude as computation

costs. Compared to the running times of a centralized PageRank computation with

disk I/O, using our networked servers, parallel PageRank is about 10 times faster

per iteration. The recomputation itself (ignoring network transmission) was about 75

times faster.

 0.001

 0.01

 0.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
e

s
id

u
a

l

Iteration #

Global residual

 0.001

 0.01

 0.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
e

s
id

u
a

l

Iteration #

Partition 1
Partition 2
Partition 3
Partition 4
Partition 5
Partition 6
Partition 7
Partition 8

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
o

m
p

u
ta

tio
n

 T
im

e
 (

s)

Iteration #

Partition 1 (machine A)
Partition 2 (machine A)
Partition 3 (machine B)
Partition 4 (machine B)
Partition 5 (machine C)
Partition 6 machine A)
Partition 7 (machine A)
Partition 8 (machine D)

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V
o

te
 P

ro
p

a
g

a
tio

n
 T

im
e

 (
s)

Iteration #

Partition 1 (machine A)
Partition 2 (machine A)
Partition 3 (machine B)
Partition 4 (machine B)
Partition 5 (machine C)
Partition 6 machine A)
Partition 7 (machine A)
Partition 8 (machine D)

Figure 3.6: Partitioned PageRank convergence, vote calculation and network commu-
nication times using 8 partitions on 4 machines; ε = 0.001

30 CHAPTER 3. LINK STRUCTURE

3.2.4 Discussion

I have presented an efficient method to perform the PageRank calculation in parallel

over arbitrary large web graphs. We accomplish this by introducing a novel two-

dimensional view of the web, having the host ID as the only discriminator, as well

as by adapting the Gauß-Seidel method for solving linear systems in this scenario.

Additionally, I have presented optimizations for the distributed computation, such

as vote aggregation and utilizing the partitioning scheme for fast re-balancing in the

course of incremental crawling.

Of note, even though my algorithm was initially published in 2006, it may still

be regarded one of the most computationally efficient methods [84]. It might be

interesting how the algorithm performs on a massive parallel machine and when other

PageRank-specific enhancements that reduce convergence time (for example, through

less coordination operations), under extensive memory demanding scenarios.

A large-scale application of my algorithm for topic detection follows below.

3.3 Topic-specific PageRank

Full-text search is probably one of the most important facilities to access documents

in the Web. Unlike controlled collections such as digital libraries, the Web does not

have a rich set of annotations. Consequently, when the user wants to focus her query

to a specific subject, she has to reformulate it with additional terms describing her

topic of interest. Yet this also implies that the set of possible results is restricted to

those documents which contain the given query terms. If the user wants for example

to find “sales contact” persons in the topic of “Business concerning natural textile

fabrics”, she has to express all this information as terms. This query augmentation

will clearly deprive her from finding most pages containing only the phrase “sales

contact” and the name of some textile company.

Since most queries submitted to Web search engines consist only of very few key-

words, search results are susceptible to be implicitly biased towards generally popular

web sites. This is due to enriching text retrieval methods like TFxIDF with link

3.3. TOPIC-SPECIFIC PAGERANK 31

analysis algorithms as PageRank [92]. A promising approach to solve this dilemma

of under- and over-specification was to bias PageRank to favor a specific set of pages,

called biasing set [54]. In most cases these biasing sets have been selected as subcat-

egories of given large scale taxonomies, such as the Open Directory (ODP)2.

Although there exist a few prior studies analyzing the properties of such topically

biased PageRank [29], many aspects remained unstudied. In this thesis I complete

the investigation. We perform a utility analysis for topically biased PageRank and

clarify the relation between the parameters of an ODP category (e.g., depth, number

of children and siblings, number of pages therein, etc.) and the quality of the resulted

biased rankings. I also investigate the correlation between the biased ranking and

the generic, non-biased one. Finally, I sketch some applications of biased PageRank

which could benefit from our study.

3.3.1 Deeper inside ODP

Setup. I empirically analyzed the quality of the ODP-biased PageRank vectors using

both quantitative measures, i.e., Kendall Tau similarity [68], and qualitative ones, i.e.,

Mean Average Precision (MAP). The testbed was a 9.2M document web graph fo-

cused on the ODP catalog, which I have recently gathered using the Heritrix3 crawler.

About 100 biasing (sub-)categories were randomly chosen from four top level cate-

gories, namely Business, Computers, Recreation and Sports. This selection process

was executed as follows: For each of the four top categories, three subcategories were

randomly picked; then, for one of them, again randomly three subcategories were

taken and so on, until no deeper levels were available. Almost all paths ended at

level 6 (with level 1 being one of the ODP root categories). Finally, Biased PageRank

vectors were computed using the pages residing in each of these categories as biasing

sets and using my parallel PageRank implementation presented in Section 3.2.

I also selected five queries per category randomly using Google AdWords4, which

suggests commonly used query terms to some specific keywords of interest. Whenever

2http://dmoz.org
3http://crawler.archive.org/
4http://adwords.google.com/

32 CHAPTER 3. LINK STRUCTURE

such a query resulted in less than one hundred results within our local index, it was

replaced by another one, randomly selected as well. Nevertheless, in most cases several

thousands of results were obtained per query. Note that these queries are implicitly

focused on each given ODP topic, and thus they should have resulted in rather similar

outputs for Non-biased and Biased PageRank.

Finally, I performed searches using the generated queries and Biased PageRank

for each associated category, as well as its parent and each of its child categories.

Moreover, also unbiased searches (with regular PageRank) were performed for each

query. In all cases, the output results were sorted by Lucene5 TFxIDF-based score

multiplied with the specific (Biased) PageRank scores. For the quantitative analysis,

the top-30 matches from each result list were compared using Kendall Tau, whereas

for the qualitative one, Mean Average Precision was employed on the top-10 results.

Three persons evaluated all search results, rating them with 1 if they were relevant

both to the given query and category, and with 0 otherwise. The MAP scores for

each (query, category) pair were averaged over all subjects to obtain a single value

per pair. These were then further averaged over all queries, thus calculating a MAP

for each category, as used in Figure 3.7.

Results. In order to visualize the results we model the categories as a directed

hierarchical graph. Figure 3.7 presents a fragment of that graph corresponding to

the top category /Business), which is representative for the remaining graph as well.

Nodes represent categories and edges between them denote parent–child or child–

parent relationships. An edge’s width depicts the (averaged) Kendall similarity be-

tween the two categories. The thicker it is, the more similar the linked categories are.

A node’s contour line width represents the ratio between MAP for Biased PageRank

and MAP for Non-biased PageRank (marked as “NoBias”). Again, the thicker this

line is, the higher is the precision for Biased PageRank when compared to NoBias6.

We now summarize our results as follows:

• There is no relationship between the Kendall similarity of Biased and Unbiased

PageRank (edge weights) and the category level. Even though one would expect

5http://lucene.apache.org/
6For /Business/Textiles and Nonwovens/Textiles/Fabrics, MAP for NoBias was 0; it is

depicted as a dashed line.

3.3. TOPIC-SPECIFIC PAGERANK 33

lower categories to produce results more similar to each other (as their biasing

sets become rather small), this phenomenon does not always occur. More, there

are higher level categories whose Biased PageRank vectors are quite similar (e.g.,

Textiles / Textiles_And_Nonwovens), although their biasing sets are larger.

• The size of the biasing set neither correlates with the Kendall similarity, nor

with the PageRank quality (in terms of MAP). Large biasing sets may result in

both high and minimal improvements over non-biased PageRank. I thus suspect

that a higher correlation might be achieved when comparing the connectivity

of the pages within each biasing set with MAP. However, if this connectivity is

expressed in terms of total amount of out-links, again no correlation occurs.

• The MAP ratings generally increase until ODP level five, and then drop sharply.

This shows that bottom level ODP categories tend to be less useful biasing sets

as page amount and connectivity are rather low.

• MAP is not correlated with the Kendall similarity.

• Kendall similarity to Unbiased PageRank almost always tends to 0. This is quite

important, as it shows that biasing does have a significant impact on ranking.

• Kendall similarities between parent and child categories are generally very low

(< 0.2). This indicates that it would be useful to employ more specialized

(deeper) categories to bias PageRank on, rather than using the top-level cate-

gories only as in previous work.

• Kendall similarities between sibling categories are generally very low (< 0.2; see

the upper right part of the figure for an excerpt of such similarities). Thus,

ODP sibling categories are well defined, being quite distinct from each other.

Practical Applications. It is important to note that biasing PageRank using

ODP is highly useful in many applications. To name but a few, it can be employed

for (1) Personalized Web Search (i.e., bias on user’s topics of interest), (2) Faceted

Search (i.e., promote the selected facet by biasing), (3) Automatic Extension of the

ODP (i.e., derive new qualitative pages to add into each category), etc.

34 CHAPTER 3. LINK STRUCTURE

3.3.2 Discussion

In this section, I presented a quality analysis of Biased PageRank under different,

nested categories of the Open Directory taxonomy. It could be shown that the MAP

quality of Biased PageRank generally increases with the ODP level, yet it also starts

dropping sharply at some point, when the amount and connectivity of the pages

contained within that category level are too low. Moreover, biasing on different

siblings or on children of a given category generally yields quite different outputs,

thus sustaining the usage of more specialized (deeper) categories to bias PageRank

on, in order to obtain a better search outcome.

As computing Biased PageRank for all possible ODP categories is still rather

time consuming, future work should focus on algorithms based upon these findings

to automatically select only those categories which yield search results very different

from regular PageRank, while also significantly improving its quality.

3.4 Using PageRank for Faceted Search

It is often difficult to find terms which precisely separate relevant from irrelevant

pages, because they are either ambiguous or can at least be seen from different per-

spectives. While modern search engines may satisfy the average user’s needs by

focusing on general importance (i.e., a keyword search for “bush” primarily returns

pages about George W. Bush), as soon as other aspects are concerned, the only way

out is to specify additional keywords (i.e., do a search for “bush gardening” to focus

on horticultural issues) and hope that these auxiliary terms are not too restrictive.

But the more aspects are specified as terms (such as “scientific article” and “British”),

chances are high that many highly relevant documents are filtered out because not

all terms are matched [57].

The emerging paradigm of Faceted Search [57, 122, 35, 36] may help in this sit-

uation. Here, the system automatically determines possible aspects from the result

set and presents them to the user, modeled as categories of orthogonal dimensions

3.4. USING PAGERANK FOR FACETED SEARCH 35

N
oB

ia
s

B
us

in
es

s

nu
m

B
ia

s=
10

72
52

sim
N

oB
ia

s=
0.

00
60

hi
ts

av
g=

10
86

30

0.

00
20

0.

00
60

In
du

str
ia

l_
G

oo
ds

_a
nd

_S
er

vi
ce

s

nu
m

B
ia

s=
82

38
sim

N
oB

ia
s=

0.
00

60
hi

ts
av

g=
69

24
0

0.

02
1

Tr
an

sp
or

ta
tio

n_
an

d_
Lo

gi
sti

cs

nu
m

B
ia

s=
29

58
sim

N
oB

ia
s=

-0
.0

02
0

hi
ts

av
g=

37
83

0.

00
30

Te
xt

ile
s_

an
d_

N
on

w
ov

en
s

nu
m

B
ia

s=
51

07
sim

N
oB

ia
s=

-0
.0

05
0

hi
ts

av
g=

21
27

0.

00
20

0.

02
4

0.

09
7

0.

18
3

Fi
be

rs

nu
m

B
ia

s=
43

8
sim

N
oB

ia
s=

0.
00

10
hi

ts
av

g=
10

74
7

0.

02

In
du

str
ia

l_
Ya

rn
s_

an
d_

Se
w

in
g_

Th
re

ad
s

nu
m

B
ia

s=
38

9
sim

N
oB

ia
s=

0.
0

hi
ts

av
g=

36
09

0.

04

Te
xt

ile
s

nu
m

B
ia

s=
25

83
sim

N
oB

ia
s=

0.
0

hi
ts

av
g=

36
54

0.

31
7

0.

01
2

0.

07
2

0.

60
6

Ca
rp

et
s

nu
m

B
ia

s=
30

5
sim

N
oB

ia
s=

0.
0

hi
ts

av
g=

50
73

0.

0

N
ew

s_
an

d_
M

ed
ia

nu
m

B
ia

s=
19

sim
N

oB
ia

s=
0.

00
20

hi
ts

av
g=

32
92

6

0.

16
8

Fa
br

ic
s

nu
m

B
ia

s=
98

2
sim

N
oB

ia
s=

0.
01

7
hi

ts
av

g=
14

38

0.

39
8

0.

66
5

0.

03
1

0.

25
6

Im
po

rt_
an

d_
Ex

po
rt

nu
m

B
ia

s=
42

sim
N

oB
ia

s=
0.

0
hi

ts
av

g=
14

27

0.

06
4

N
at

ur
al

_B
le

nd
s

nu
m

B
ia

s=
12

0
sim

N
oB

ia
s=

0.
00

50
hi

ts
av

g=
15

75
1

0.

09
2

Fi
ni

sh
in

g

nu
m

B
ia

s=
76

sim
N

oB
ia

s=
0.

00
50

hi
ts

av
g=

28
76

0.

08
5

0.

27
3

0.

09
4

Co
tto

n

nu
m

B
ia

s=
42

sim
N

oB
ia

s=
0.

00
80

hi
ts

av
g=

12
68

0.

16
2

Si
lk

nu
m

B
ia

s=
25

sim
N

oB
ia

s=
0.

0
hi

ts
av

g=
20

1

0.

47
4

W
oo

l

nu
m

B
ia

s=
19

sim
N

oB
ia

s=
-0

.0
02

0
hi

ts
av

g=
70

7

0.

23
2

H
em

p

nu
m

B
ia

s=
5

sim
N

oB
ia

s=
0.

00
30

hi
ts

av
g=

38
0

0.

05
2

Li
ne

n_
an

d_
Fl

ax

nu
m

B
ia

s=
9

sim
N

oB
ia

s=
0.

00
10

hi
ts

av
g=

90
5

0.

08

0.
16

0.

73
2

0.

42
3

0.

38
1

0.

27

0.

07
7

To
p/

Bu
sin

es
s/I

nd
us

tri
al

_G
oo

ds
_a

nd
_S

er
vi

ce
s

To
p/

Bu
sin

es
s/T

ra
ns

po
rta

tio
n_

an
d_

Lo
gi

sti
cs

0.

02
3

To
p/

Bu
sin

es
s/T

ex
til

es
_a

nd
_N

on
w

ov
en

s

0.

01
3

-0

.0
01

0

0.

00
40

0.

02
5

0.

01

F
ig
u
re

3.
7:

R
an

k
S
im

il
ar
it
ie
s
fo
r
th
e
“B

u
si
n
es
s”

b
ra
n
ch

of
O
D
P
ca
te
go
ri
es

36 CHAPTER 3. LINK STRUCTURE

like topic, cultural background or target audience and finally enables the user to it-

eratively narrow (“drill-down”) the search until he is satisfied with the results. These

“facets”7 are represented as metadata, they do not interfere with full-text keywords as

opposed to text-based clustering approaches [57]. While faceted search works well in

situations where facet metadata is annotated to the documents like in library systems

or enterprise search applications (e.g., restaurant search), on dynamic, large scale col-

lections of heterogeneous documents such as the Web, the faceted classification of

pages and the identification of facets within search results still are unresolved prob-

lems. The lack of annotations and the omnipresence of noise within this collection

hamper a direct adoption of enterprise faceted search.

In this section, I focus on the question how we can still utilize the few annotations

from taxonomies or folksonomies like ODP or del.icio.us for faceted web search. I

present an efficient method for automatically identifying facets in web search results

solely by link analysis. First experiments have shown that we get a high precision of

the suggested faceted classifications without requiring additional data structures or

categorization algorithms.

3.4.1 Relevant Background

Faceted search. Faceted search is a relatively young research area, and thus there

exist only few approaches to tackle the problems it raises, especially when generalizing

this kind of search for the entire web environment. Facets allow for different views on

the result set, which can be obtained through a specialized user interface [122], thus

enabling the user to choose different possible starting paths for the exploration of the

collection. The Flamenco System8 for example allows for both searching and browsing

an image collection from various perspectives, such as gender, country of affiliation

for Nobel prize winners. There exist at least two types of facets: (1) Hierarchical and

(2) Flat. The concept of Hierarchical Faceted Categories (HFC) was introduced by

Hearst et al. in [58, 122], and it relies on a set of category hierarchies (one per facet),

7Note: In this context, I use the term “facet” as a synonym to “aspect” or “category”, whereas I
call the orthogonal axes “facet dimensions”.

8http://flamenco.sims.berkeley.edu/

3.4. USING PAGERANK FOR FACETED SEARCH 37

built manually in advance. Thus, they classify the documents available in a collection

space according to each of the hierarchies separately, producing several navigation

paths across the same set of points. Inherently, users will find their sought documents

faster, as more routes towards them exist. The main approach we discuss here, i.e.

using “page topic(s)” as one facet for categorizing web results, also falls in the HFC

type. The second type of facets is a flat one, in which there is no clear relation between

the elements generated within the same facet dimension. I am not aware of any prior

work creating this kind of facets from within textual web documents. Whereas initially

facets were thought of purely independent, orthogonal and predefined dimensions,

extensions beyond this basic approach allow the exploration of correlated and dynamic

facets [13] and approach an optimal ranking of facet dimensions by modeling the

interaction of users with faceted search engines [83].

Large scale taxonomies / folksonomies. One of the largest efforts to manually

annotate web pages is the Open Directory Project (ODP)9. Over 85,000 editors helped

to categorize more than 5 million web sites into almost 600,000 hierarchical categories

describing web sites’ topics; however, these pages still make far less than 0.1 percent

of the publicly accessible web. While in ODP, the taxonomy is clearly split into 16

root categories, such as Business, Computers or Sports, “folksonomical” organized

platforms like del.icio.us10 allow users to annotate arbitrary tags to web pages rather

than using a fixed taxonomy [88, 50]. Since both approaches allow to classify pages to

more than just one facet (category or tag), faceted search could easily be implemented

for the pages annotated in these collections, but not for the whole web graph.

3.4.2 Web Page Classification using Personalized PageRank

Several aspects of a single page may be considered relevant for faceted search; they

can be ordered into facet dimensions like thematical coverage, language, age etc. To

automatically retrieve such facets, classification algorithms can be applied to receive

the set of relevant facets Mp for each page p in the web graph. If possible, a relevance

measure is assigned to each facet, resulting in a relevance vector �mp whereas each

9http://dmoz.org/
10http://del.icio.us/

38 CHAPTER 3. LINK STRUCTURE

dimension represents one of all available facets. In classical IR, to compute �mp text-

based models are used, such as Naive Bayes or Latent Semantic Analysis. For theWeb,

one can consider the hyperlink structure of the web as another source of classification

power. Several approaches exist which either combine link structure and textual

information or even attempt to derive a classification from the web graph only [39,

85, 121, 32, 40]. While they may perform very well, in all cases the only purpose of the

proposed algorithms is to generate a classification being not related to PageRank; the

imposed additional payload (computational and storage requirements) to the search

engine system may not be underestimated. In this section, I present an efficient

method which re-uses the rank vector of Personalized PageRank for classification,

avoiding such “overhead”.

The results shown in Section 3.3 support the assumption that Personalized Page-

Rank vectors themselves provide sufficient information for classifying pages towards

arbitrary facets. Because of the skewed jump in the PageRank computation, pages

within the corresponding biasing set tend to get higher scores than pages outside.

Via the link structure also pages being outside but nearby the biasing set (in terms of

link hops) gain high scores [92]. Assuming that pages mostly link to somehow related

pages, there consequently must be a direct relationship between a page’s facet-specific

PageRank score rf (p) and its membership mp(f) to that facet.

mp(f) ∝ rf (p) (3.12)

We can treat the values as qualifiable membership to the facet f (member of the set

of available facets F); values above the average score µ ≈ 1.0 are treated as “positive”

membership, values below as “negative” membership (i.e., non-relevant to the facet).

One may assume that the membership value is equal to the rank value, or that a high

rank score automatically means a high relevance to the facet (as suggested in [54]).

However, since there also is a fair amount of pages of general importance/interest

which may also have a high score [40], a direct-proportional relationship turns out to

be too imprecise. I therefore introduce the facet membership uncertainty αf (p) for the

page p: the more facets are possible the less reliable the membership statements are.

3.4. USING PAGERANK FOR FACETED SEARCH 39

Since facet dimensions are usually designed to be orthogonal, this uncertainty should

depend on the number of facets in the very same dimension dim as the considered

facet f . In case that no facets could be determined, the uncertainty is infinite:

Gf (p) = {g ∈ F | dim(g) = dim(f) ∧ rg(p) ≥ µ} (3.13)

αf (p) =

∞ iff Gf (p) = ∅

|Gf (p)| otherwise
(3.14)

To account for the exponential nature of the rank score, we relate the score’s

logarithm to αf (otherwise, rf would dominate in this function):

mp(f) =
log rf (p)

αf (p)
(3.15)

mp(f) now also quantitatively reflects positive or negative membership certainty11.

Having said that, a value around zero does not implicate that a page does not relate

to a specific facet – it is just unclear. This case applies to commonly linked pages

like the Acrobat Reader download page, the phpBB bulletin board system website and

others. On the other hand, specialty pages clearly benefit from this classification.

3.4.3 Identifying Facets from Web Search Results

When submitting a text query q on a PageRank-supported web search engine, the

top-k of the returned result list represents the k most relevant results for the query

terms with respect to general importance (for unbiased PageRank) or to specific facets

(for personalized PageRank). For a sufficiently large k, this list could be regarded

as a sample set Sq of the whole result set Dq; another approach to determining Sq,

taking care of strongly over-represented facets, is shown in [6]. Now, we can compute

the facet membership vector �mp for all pages p ∈ Sq. From this, we can derive the

facet membership vector �mS,q, which represents the facet memberships for the given

top-k subset Sq of results for the query q. In other words, this vector represents the

facets which are deemed to be contained in the full result set Dq.

11We shall avoid the term probability ; neither rf (p) nor αf (p) are bounded.

40 CHAPTER 3. LINK STRUCTURE

Figure 3.8: Screen-shot of the prototype

In order to compute �mS,q we use the following procedure: For each facet member-

ship value (in each vector �mp, for all pages p ∈ Sq) which exceeds a certain threshold

ϑ, we increment the corresponding value mS,q(f) by one; finally, �mS,q is normalized

to values between 0 and 1.0:

mS,q(f) =
|{p ∈ Sq|mp(f) ≥ ϑ}|

|Sq|
(3.16)

As an improvement to facet diversity, I suggest to compute the membership values

not only from one sample set but from multiple PageRank result sets. For example,

with the ODP taxonomy, we start with sampling the top-k results from unbiased

PageRank as well as all personalized PageRank vectors based on the taxonomy’s 16

top categories. If the user has already chosen an ODP-topic as a facet, we take the

corresponding child categories instead.

Another way to extend the set of facets, which can also be applied to non-

hierarchical facets, is to start from a custom seed of facets and then iteratively deter-

mine relevant facets using the formula above and extend this seed by newly detected

facets D (see algorithm 3.1).

3.4. USING PAGERANK FOR FACETED SEARCH 41

Algorithm 3.1 Iterative identification of facets
λ = Membership threshold for newly discovered facets
D ← ∅
D� ← Facet seed
imax← Maximum number of iterations
i ← 0
while i < imax ∧D� \ D �= ∅< do

i ← i+ 1
D ← D ∪ D�

D�← {g ∈ F | mq,D(g) ≥ λ} ;

mq,D(f) =

�
d∈D |{p ∈ Sd,q|mp(f) ≥ ϑ}|�

d∈D |Sd,q|

end while

The user can now select from the facets given in D for the refinement of his search.

If more than one facet is selected, personalized PageRank is used based on the linear

combination of the facets’ rank vectors, as described in Section 3.4.1. As opposed to

Topic-Sensitive PageRank, it is not necessary to derive the combination weights from

textual document statistics. Instead, we may propose predefined weights on the level

of facet dimensions (e.g., prefer topic over origin), which can be altered by the user;

facets of the same dimension may safely be equally balanced.

3.4.4 Implementation and Evaluation

Right now, the facet detection implementation only covers one dimension, the top-

ical membership of page, based on the ODP taxonomy; the system could easily be

extended to more dimensions, domain name features and type of information source

(academia, business, government, media, private etc.), though. A screen-shot of the

prototype is depicted in figure 3.8. The search engine prototype is based upon the

Lucene12 information retrieval software library, which I extended to hold multiple

PageRank scores per document. As a search basis the 9.2 million documents crawled

for the ODP experiment (Section 3.3) was used.

12http://lucene.apache.org/

42 CHAPTER 3. LINK STRUCTURE

Any keyword search is conveyed using unbiased PageRank by default; however the

user can manually choose any available biasing set. The search results are classified

on-line using equation 3.15; since the classification is fuzzy and the operation can

be performed quickly (no access to textual data is required), I decided not to store

this information statically in the index. For the top-k results (k = 100 per default),

we identify the contained facets having a membership certainty of at least ϑ (0.1 per

default). Both parameters can be adjusted by the expert user. The detected facets are

presented next to the document descriptions; facets based on ODP topics are shown

both as a tree as well as a sorted list, along with the facet membership value from

algorithm 3.1. The user can choose from these facets by clicking on the corresponding

facet name (facets with a membership of at least 25% are highlighted). The search is

then repeated using the corresponding personalized PageRank.

Unbiased PageRank is treated as a special facet. It may also receive a membership

value. Intuitively, this facet can be regarded as general importance. If no other facet

has been retrieved for the keyword query, I conclude that we lack the proper Per-

sonalized PageRank. From this perspective, the membership to “general importance”

can be interpreted as uncertainty as well.

I performed a preliminary evaluation of the facet detection algorithm. I deter-

mined a set of phrase queries which are relevant to specific ODP categories (33 in

the test set, 5 keywords each) and searched for these phrases with our system (imax

was 1). In order to avoid falsified results, I did not distill these queries from my own

data set, but utilized Google’s AdWords service13 (we randomly selected 5 suggested

queries; an excerpt is shown in Table 3.3). Then, with the help of two colleagues, I

compared the category recommendations from AdWords with the topical facet rec-

ommendations from the test system. Exact phrase search returned results in 155 out

of the 165 cases. Only in 13 cases, the algorithm did neither retrieve the desired

category nor any ancestor category (this makes a precision of 91.6%).

13https://adwords.google.com/

3.4. USING PAGERANK FOR FACETED SEARCH 43

Table 3.3: Sample keywords from Google AdWords

Business: information technology; market share; strategic planning; supply chain
management; swot analysis
Business/Textiles and Nonwovens/ Textiles/ Carpets: rugs; floor covering;
persian carpet; oriental weavers; hardwood floor
Computers: laptops; workstations; flat screen; second hand computers; midwest
micro
Computers/Internet/Searching: search the web; web browser; front crawl;
search engines; internet searching
Recreation: recreation jobs; parks and recreation; nude recreation; recreation and
leisure; lake mead recreation
Recreation/Travel/Travelogues: travelogue game; travel diary; travelogues;
travel adventures; travel phots
Sports: nfl; athletics; stadiums; formula one; basketball
Sports/Soccer/UEFA/England/Women: women soccer uk; football girls;
ladies soccer; girls fc; manchester ladies

3.4.5 Discussion

I presented an approach to drill-down from hierarchical faceted search and to sim-

ply re-order web search results according to a specific category within a facet using

Personalized PageRank. The current implementation covers output categories for the

“topic” facet, thus enabling users to on-the-fly switch to result rankings according to

PageRank biased on some Open Directory topic. I have also proposed a new simple

technique to infer the most relevant topics associated to a user query. Experimental

results have shown this approach to yield precise identification of facets.

Further work may explore different variations of the membership function to im-

prove precision and deeper inspection of the search results to improve recall. The

latter may strongly benefit from computing membership values at index time (offline)

instead of online at search time. Then, storing those categories with a sufficiently

high membership certainty directly in the index allows to quickly enumerate them at

runtime for the whole result set (just as in classic Faceted Search).

44 CHAPTER 3. LINK STRUCTURE

Of note, a strikingly similar approach (using “merit values” instead of membership

certainties) has been filed for U.S. patent by a third party, shortly after my initial

publication in 2006, and been granted in 2009.14 It remains to be seen what one may

conclude from the potentially subtle differences.

14United States Patent US7493330, http://www.freepatentsonline.com/7493330.pdf

Chapter 4

Text Structure

In this chapter, we deal with the second problem: How can we – at Web scale – model

and utilize the inherent textual structure of a Web page for improving search quality?

4.1 The Block-Level Nature of Web Text

Compared to the early times of the Web, where individual HTML documents more or

less represented one textual document [14], identifying and retrieving distinct informa-

tion elements has now increasingly become difficult. Besides the main content (e.g.,

an article) modern web pages also contain a bouquet of other textual elements such

as navigation menus, advertisements, user comments, text ads, snippet previews of

related documents, legal disclaimers etc. (see Figure 4.1) Separating (= segmenting)

these distinct elements and eventually classifying them into relevant and non-relevant

parts is essential for high-quality results. When examining a Web page, humans can

easily distinguish the main content from these other text portions, which are mainly

meant to augment the full-text [47]. These additional text segments provided seem

only be partially useful or probably even counterproductive for search and classifica-

tion; the common solution to the problem is simply erasing template content or at

least ignoring it.

A number of approaches have been introduced to automatize this distinction, using

a combination of heuristic segmentation and features. In this thesis, I approach the

45

46 CHAPTER 4. TEXT STRUCTURE

9

GoogleNews Dataset

Class # Blocks # Words # Tokens
Total 72662 520483 644021

Boilerplate 79% 35% 46%
Any Content 21% 65% 54%

Headline 1% 1% 1%
Article Full-text 12% 51% 42%
Supplemental 3% 3% 2%

User Comments 1% 1% 1%
Related Content 4% 9% 8%

• L3S-GN1
621 news articles from 408 web sites, randomly sampled from a
254,000 pages crawl of English Google News over 4 months,
manually assessed by L3S colleagues

Figure 4.1: A typical modern Web page with large navigation and related material
(content highlighted)

problem from a Quantitative Linguistic perspective. I consider three key application

areas for web page segmentation: (1) De-duplication. Identical content information

may be presented using different web page layouts. (2) Content Extraction. Besides

the obvious benefits for Web-based news clipping etc., removing template noise might

also increase classifier performance. (3) Keyword-based Web search. A page should

be regarded less relevant to the query if the matched term only occurs in a template

segment.

4.2 Web Page Segmentation

Until now, the segmentation problem has mainly been addressed by analyzing the

DOM (Document Object Model) structure of an HTML page, either by rendering

and visual analysis or by interpreting or learning the meaning and importance of

tag structures in some way, both using heuristic as well as formalized, principled ap-

proaches. However, the number of possible DOM layout patterns is virtually infinite,

which inescapably leads to errors when moving from training data to Web-scale. The

4.2. WEB PAGE SEGMENTATION 47

actual retrievable unit – namely text – has only partially been investigated for the

purpose of web page segmentation. Whereas it has been analyzed on the level of

semantics and on term-level, a low-level pattern analysis is still missing.

Attempts to Web page segmentation consider a variety of methods from different

aspects. Most commonly, the structure of the web page (i.e., the DOM tree) is ana-

lyzed, in order to mine block-specific patterns, for example to separate and remove

template elements from the actual main content. Bar-Yossef and Rajagopalan [11]

identify template blocks by finding common shingles, similar to Gibson et al. [47] who

also considers element frequencies for template detection. Debnath et al. compute an

inverse block frequency for classification [33]. In [24], Chakrabarti et al. determine

the “templateness” of DOM nodes by regularized isotonic regression. Yi et al. sim-

plify the DOM structure by deriving a so-called Site Style Tree which is then used for

classification [123]. Vieira et al. present an approach to template removal by identi-

fying common DOM subtrees from a sample set and removing these structures from

the whole collection [114]. Kao et al. separate blocks of DOM subtrees by comparing

the entropies of the contained terms [67]. Vision-based approaches add information

gained after rendering the DOM, such as Cai et al.’s VIPS algorithm [22], Chen et

al.’s approach to tag pattern recognition [28] as well as Baluja’s [10] method using

decision tree learning and entropy reduction. Chakrabarti et al. approached the web-

page segmentation problem from a graph-theoretic perspective [25]. As shown by Cai

et al. [23] and more recently by Fernandes et al. [43] the resulting segment structure

can also be used for improving keyword-based search. Finally, Fauzi et al. focus on

segmenting pages to extract images and their surrounding context [42].

In this section, I will

1. define an abstract block-level page segmentation model which focuses on the

low-level properties of text instead of DOM-structural information,

2. concretize this abstract model: the key observation is that the number of tokens

in a text fragment (or more precisely, its token density) is a valuable feature

for segmentation decisions. This allows us to reduce the page segmentation

problem to a 1D-partitioning problem,

48 CHAPTER 4. TEXT STRUCTURE

3. present the Block Fusion algorithm for identifying segments using the text den-

sity metric,

4. present an empirical analysis of my algorithm and the block structure of web

pages and evaluate the results, comparing with existing approaches.

4.2.1 Problem Discussion

Segmentation as a Visual Problem

It is surprising how different the visual representation and the corresponding HTML

document structure can be across different websites. Not only the use of different

layouts contributes to this situation, but also the fact that there are versatile ways

to model an identical layout, e.g. by varying between semantic and visual markup

(vs. <I>), misusing <TABLE> structures for positioning non-tabular elements as

well as completely neglecting HTML semantics for the layout. The latter has become

very popular due to the use of CSS across most Web 2.0 websites, where tags usually

are just <DIV> elements. This situation makes web page segmentation a non-trivial

task. On Web-scale, rule-based or trained algorithms working on DOM-level are, due

to the extreme heterogeneity of HTML style, susceptible to failure. On the other

hand, vision-based approaches naturally have a higher complexity since the layout

must be rendered (like in a browser) prior to analysis, which might be too slow to be

incorporated into the Web crawling and indexing cycle.

Although we are examining the problem of web page segmentation from a tex-

tual perspective, there is a clear relationship to image segmentation from the field

of Computer Vision: any DOM-level algorithm has to bear comparison with image

recognition approaches, which span from k-means pixel clustering over histogram

mode seeking and graph-partitioning to greedy region merging strategies [110]. In

fact, we can draw a parallel from Shi’s normalized cuts graph partitioning technique

[110] to the recent work of Chakrabarti et al. [25], for instance. An example of a

graph-independent approach is Haralick’s and Shapiro’s Region Growing [110]. Re-

gion Growing essentially is a greedy merging strategy; starting from one position in

the image (e.g., top left corner), the grower iteratively fuses neighbored regions to

4.2. WEB PAGE SEGMENTATION 49

larger ones (i.e., distinct pixels to sets of adjacent pixels). Under the assumption that

the pixels are independent and uniformly distributed, the similarity of a region to

another one is quantified by the deviation from the average intensity of that region –

regions are merged if the deviation is insignificant. An application for Region Grow-

ing is text-block extraction from scanned newspaper images, where the algorithm is

also known as Block Growing [26, 7].

Segmentation as a Linguistic Problem

In the field of Quantitative Linguistics, distributions of linguistic units such as words,

syllables and sentences have been widely used as statistical measures to identify struc-

tural patterns in plain text documents, in particular for identifying subtopics [56] as

well as for discovering changes of writing style [2] – both can be regarded as a special

form of segmentation. In this discipline, it is a generally accepted assumption that the

probability of a given class x in the corresponding unit’s distribution is univariately

dependent on the probability of the neighboring lower class x− 1 [52]:

Px = g(x)Px−1 (4.1)

For example, when a text is segmented into blocks of almost the same size, it

is believed that the class distribution of term frequencies (occurrence probabilities)

is negative hypergeometric (Frumkina’s law or law of text blocks), which has been

validated for various languages [16]:

Px =

−M

x

−K +M

n− x

−K

n

, x = 0, 1, 2, ..., n (4.2)

Taking this into account for segmentation, an obvious strategy is to examine the

statistical properties of subsequent blocks with respect to their quantitative properties.

50 CHAPTER 4. TEXT STRUCTURE

In [56], for example, Hearst presents an algorithm which discovers sequences of

adjacent paragraphs that belong to a topical unit within the document; which para-

graphs get assigned to a particular subtopic is decided by a neighbored-block com-

parison based on term-frequency and cosine similarity.

Besides such an analysis of documents on the term-level, there are further interest-

ing quantitative properties to consider. The distribution of document lengths follows

the well-known Zipf distribution [34]. It might be reasonable to consider this distri-

bution for segmenting intra-document text portions as well. Zipf’s law states that the

occurrence frequency of objects of a particular class is roughly inversely proportional

to the corresponding rank of the class:

y = C x−b (4.3)

Another efficient quantum is sentence length. According to Altmann [2, 15], the

creation of sentences is a stochastic process which follows a rhythm based on cer-

tain synergetic properties, i.e. the sentence lengths change along with the text flow.

For analyzing changes in writing style he thus recommends not to compare random

samples of a document but consecutive sentences instead. He concludes that also the

occurrence probability of a particular sentence length x is a function of x−1 (yielding

a hyperpascal distribution):

Dx =
Px − Px−1

Px
(4.4)

Segmentation as a Densitometric Problem

Coming back to the problem of web page segmentation, it is questionable whether the

particular use of one specific HTML formatting style yields better signals for finding

the “right” segmentation than another one. It is obvious that the absence of element

tag information is a strong indicator for the segmental unity of a text portion. I

consider such text portions atomic. Could then perhaps the sheer presence of any

element tag already be a sufficiently good signal for segmentation? While there are a

few tags which separate by high chance (heading tags such as <H1>) and some which

4.2. WEB PAGE SEGMENTATION 51

usually do not separate (the anchor text tag <A>), the majority of elements has unclear

effects to segmentation. Thus, we may simply model a web page as a series of text

portions (non-segmentable, atomic blocks) interleaved by a sequence of one or more

opening or closing element tags, regardless of their meaning. I call such a sequence

a gap. This simplifies the discussion to distinguishing the gaps which separate two

segments and gaps which do not. Non-separating gaps may be discarded, resulting in

larger text segments (compound blocks). While we can always a priori define certain

tag-based rules for this decision finding, I focus on analyzing the blocks’ inherent

textual properties for this purpose.

Most likely, a segment gap is caused by a change in the text flow, e.g. from a

list of short phrases (navigational text portions like “Home”, “What’s new”, “Contact

us”) over a sequence of full sentences (for the main content) back to short phrases

or one-sentence blocks for the page footer (e.g., “Copyright (c) 2008 by ... All rights

reserved”). This setting is similar to the analysis of writing style by comparing sen-

tence lengths (see Section 4.2.1). Due to the lack of proper sentences in template

elements, it is difficult to define “sentence” in the web page scenario. Instead, we

may substitute sentence length by text density, i.e. the number of words within a

particular 2-dimensional area. Text density has been defined by Spool et al. in the

field of Web Usability as the ratio between the total number of words in a block and

the height of the rendered and printed block in inches [108]; a similar notion is known

in Computer Vision, that is the intensity of an image region [110]. I transfer this

concept to HTML text. The counterpart of a pixel in HTML is character data (the

atomic text portion), an image region translates to a sequence of atomic text portions,

which I also call block here. To determine a text block’s “height”, we word-wrap its

text (not its rendered representation) at a constant line width wmax (in characters).

The resulting block bx’s density ρ(bx) could then be formulated as follows:

ρ(bx) =
Number of tokens in bx
Number of lines in bx

(4.5)

This definition of text density has the elegant property that – except tokenization

– no lexical or grammatical analysis needs to be performed. Given a proper wrapping

width, it is supposed to serve as a discriminator between sentential text (high density)

52 CHAPTER 4. TEXT STRUCTURE

and template text (low density). I propose wmax = 80. This is the traditional screen

width of monospaced terminals and seems to fit the definitions of an English sentence:

Assuming an average word length of 5.1 characters1, we can write a maximum of
80

5.1+1 = 13.1 separate words (tokens) per line, which roughly covers one medium-sized

sentence; obviously, the absolute maximum is 40 one-character tokens per line. It

makes sense to exclude the last line of a multi-line block for the computation, since it

would falsify the actual density when averaging if it is not completely filled to wmax.

Given the set of tokens T contained in the set of wrapped lines L covered by a block

bx, we can reformulate Equation 4.5 as follows.

T �(bx) = {t | t ∈ T (l), lfirst(bx) ≤ l < llast(bx)}

ρ(bx) =

|T �(bx)|
|L(bx)|−1

��L(bx)
�� > 1

|T (bx) | otherwise
(4.6)

Now the density of a multi-line block is not influenced by the number of additional

tokens (i.e., doubling the number of tokens leads to almost double the number of lines,

which gets normalized again; see Equation 4.6). However, having only a few words

(like “Contact us”) still leads to a much lower density value, as expected.

While the text density measure does not consider lexical or grammatical properties

of sentences at all, its role as a surrogate for sentence length may be well justified.

Altmann [2] supports this by the rationale that language itself does actually not care

about the existence or clear boundaries of particular lexical or grammatical units and

that such units are rather an orthographical convention of the speech community.

What seems more important than a proper definition of “sentence” is the measure

of the units enclosed by the sentence (words, syllables, characters). The unit used

for text density is the token, which basically is a variant of the (also diffuse) notion

of “word”; in our case it is any contiguous sequence of non-whitespace characters,

simplified to the set of contained literals and digits.

1An overview of language-specific word lengths can be found at http://blogamundo.net/lab/
wordlengths/

4.2. WEB PAGE SEGMENTATION 53

0 50 100 150 200 250 300

Line Number

2

4

6

8

10

12

T
e

x
t

D
e

n
s
it
y

! "# $ % &'
ACM 17th Conference on Information and

Knowledge Management

Napa Valley Marriott Hotel & Spa: Napa Valley, California

October 26-30, 2008

Participants

Home

News

Themes

Important Dates

Registration

Student Travel

Program

Schedule

Keynote Speakers

Workshops

Industry Event

Publicity

Contributors

Call for Papers

Call for Tutorials

Call for Workshops

Call for Sponsorship

How to Submit

Location

Conference Site

Accomodation

Napa Valley

Travel

About Us

Organizers

History

Program Committee

Contact Us

 RSS 2.0 Feed

News Updates

2008-05-13 Industry Event at CIKM 2008

2008-05-13 Accepted Workshops Published

2008-04-25 Subscribe to our RSS feed

2008-04-22 Confirmed Keynote Speaker: Rakesh Agrawal

2008-04-04 Confirmed Keynote Speaker: Pedro Domingos

Submission dates for research and industry papers

Abstracts due: May 27, 2008

Papers due: June 3, 2008

How to Submit

CIKM 2008 will take place at the Napa Valley Marriott Hotel & Spa, 3425 Solano

Avenue, Napa, CA 94558. This is right in the center of beautiful wine country -

north of San Francisco and about 50 minutes by car/bus/limo.

Since 1992, the ACM Conference on Information and Knowledge Management

(CIKM) has successfully brought together leading researchers and developers

from the database, information retrieval, and knowledge management

communities. The purpose of the conference is to identify challenging problems

facing the development of future knowledge and information systems, and to

shape future research directions through the publication of high quality, applied

and theoretical research findings. In CIKM 2008, we will continue the tradition

of promoting collaboration among multiple areas. We encourage submissions of

high quality papers on all topics in the general areas of databases, information

retrieval, and knowledge management. Papers that bridge across these areas

are of special interest and will be considered for a "Best Interdisciplinary Paper"

award.

As CIKM 2008 will be held in Napa Valley, just one hour to the north of San

Francisco, one of the goals of the conference is to embrace the innovative spirit

of the Bay Area/Silicon Valley in bridging further the academic-commercial gap

in the database, information retrieval, and knowledge management

communities. To help achieve this goal, we will have a series of invited

speakers and an industry day (separate from the industry research track) where

luminaries, primarily from industry and from the VC (Venture Capital)

community, will provide insights on how DB/IR/KM technologies are/can be

leveraged to make a billion-dollar success.

Gold Supporters

Silver Supporters

Bronze Supporters

Local Organization

October 26-30, 2008: Napa Valley Marriott Hotel & Spa, 3425 Solano Avenue, Napa, CA 94558
© CIKM 2007 - 2008

!

' "
%

$

&

Figure 4.2: Visual vs. Densitometric Segmentation (expected results)

Segmentation as a 1-Dimensional Problem

The task of detecting block-separating gaps on a web page ultimately boils down to

finding neighbored text portions with a significant change in the slope of the block-by-

block text density. In Figure 4.2, we see the desired segmentation2 of the CIKM 2008

welcome page (http://cikm2008.org/), using both visual as well as densitometric

boundaries. In the diagram, the density of the atomic text blocks is depicted as grey

bars, HTML markup is indicated as white stripes and the expected segmentation

boundaries are indicated as red vertical lines. Apparently, apart from the expected

spikes, the distribution of text density appears to be a fairly good signal for textual

similarity as well as for identifying full-text segments (block #5).

4.2.2 The Block Fusion Algorithm

As it turns out by the preceding discussion of the segmentation problem, we can

essentially transfer parts from the perspective of Quantitative Linguistics as well as

of Computer Vision to our setting. Due to Altmann’s findings about the length de-

pendence of neighbored sentences within the text flow and my corresponding findings

2Indisputably, there is no such thing as the segmentation, since segments may be considered at
different granularities.

54 CHAPTER 4. TEXT STRUCTURE

on the text density, a greedy strategy seems a plausible algorithmic approach; be-

sides being deterministic, an at least near-optimal result is likely. If we now indeed

consider text density as being interrelated to the notion of pixel intensity, we may

consider adopting the Block Growing strategy from image processing to. To avoid

confusion with the pixel-based methods, I call this token-based method Block Fusion.

The decision when to combine (fuse) two adjacent blocks now is made by comparing

them with respect to their text densities instead of pixel intensities. We may define

this slope delta between two adjacent blocks x and y as:

∆ρ(x, y) =
|ρ(x)− ρ(y)|

max(ρ(x), ρ(y))
(4.7)

If the slope delta is below a certain threshold ϑmax, we assume that the blocks

belong to one segment and should therefore be fused. “To fuse” here means joining

the lines of the two blocks x and y to a new block z, such that z spans from the first

line of x to the last line of y. After this, x and y are replaced by z. As with the

Block Growing strategy, we can iteratively continue with this operation until no pair

of neighbored block exists which satisfies the threshold constraint.

In addition to that, we might also consider the following extension to this simple

fusion strategy. As we can see from the example density distribution of the CIKM

web page (Figure 4.2), there are some adjacent segments with alternating densities of

1.0/2.0/1.0, 1.0/5.0/1.0 etc. (this is the section about important dates – the dates are

enclosed by tags, which create gaps). This may lead to high slope deltas close

to 100% and therefore to less fusions than expected. I conclude that the surrounding

blocks dominate the enclosed one. My suggestion is to smooth these alternations by

adding the following condition to the Block Fusion algorithm: if the text densities

of the predecessor and successor of a block are identical and higher than its own

density, all three blocks are fused. Of course, we will validate this heuristic against

the plain strategy. See Algorithm 4.1 for a common representation of both strategies,

BF-plain and BF-smoothed.

The computational complexity of Block-Fusion is trivial. Assuming we have N

atomic blocks on a page, the cost per iteration is c · (N − 1) comparisons (c = 1 for

4.2. WEB PAGE SEGMENTATION 55

Algorithm 4.1 The Block Fusion algorithm (plain/smoothed)

Require: B ⇐ The set of (initially atomic) blocks which partition the lines L
1: repeat
2: loop ← false
3: for all bi ∈ B with i > 1 do
4: if ρ(bi−1) = ρ(bi+1) ∧ ρ(bi) < ρ(bi−1) then
5: � Only checked for BF-smoothed
6: bi+1 ← {l ∈ L| lfirst(bi−1) ≤ l ≤ llast(bi+1)}
7: remove bi−1

8: remove bi
9: i ← i+ 1 � Skip bi+1

10: loop ← true
11: else if ∆ρ(bi−1, bi) ≤ ϑmax then
12: bi ← {l ∈ L| lfirst(bi−1) ≤ l ≤ llast(bi)}
13: remove bi−1

14: loop ← true
15: end if
16: end for
17: until loop = false

BF-plain, c = 2 for BF-smoothed) and a maximum of N − 1 fusions per iteration

occur. Because the iteration stops as soon as zero fusions occurred, the worst case

that may occur is a single fusion per iteration (convergence is guaranteed). The total

number of operations for a maximum of k iterations until convergence therefore is:

(N − 1) + (N − 1− 1) + · · ·+ (N − k − 1) = O(N)

Two variables may influence the quality of the segmentation: the threshold ϑmax

and the input blocks B. Regarding ϑmax I believe that this threshold is not document-

specific but rather depends on the average style of the document class and its inherent

quantitative properties. In Section 4.2.4 we determine an appropriate threshold value

from a random sample of web documents. According to our definition of the simple

block-gap model (Section 4.2.1), B describes the sequence of textual portions of the

original HTML document. Whenever one or more opening or closing element tags are

encountered, a new block is created, consisting of the plain text that is surrounded by

56 CHAPTER 4. TEXT STRUCTURE

markup; each block’s text is initially word-wrapped by wmax characters (the wrapping

does not change in the course of fusion).

Apart from special HTML tags whose nested character elements do not contribute

to the text of the page (like <SCRIPT>, <OPTION> etc.) and the <A> tag, which I

regard as a core feature of hypertext markup and therefore do not consider a gap

before or after this tag, we do not respect the element tag’s semantic meaning or

expected visual effect – a <H1> tag produces the same type of gap as a tag, for

example. Intuitively, we could of course claim that <H1> does indeed have a stronger

impact on segmentation than a tag, but this would again lead to heuristic, rule-

based or DOM-structural approaches. For the evaluation, we will consider such a

rule-based extension of the BF-smoothed algorithm (which I call Bf-rulebased

for simplicity) that employs a set of specific gap-enforcing and gap-avoiding tags

(TForceGap and TNoGap). Given the set of tags T (x, y) between two segments x and y,

to support this extension we have to change the slope delta function from ∆ρ(x, y)

to ∆ρ�(x, y):

∆ρ�(x, y) =

+∞ T (x, y) ∩ TForceGap �= ∅

−∞ T (x, y) ⊆ TNoGap

∆ρ(x, y) otherwise

(4.8)

I consider the following gap-enforcing tags (TForceGap) as a good choice for the rule-

based approach: H1-H6, UL, DL, OL, HR, TABLE, ADDRESS, HR, IMG, SCRIPT3 (basically

a subset of HTML block-level elements tags). For TNoGap , I consider the following

tags: A, B, BR, EM, FONT, I, S, SPAN, STRONG, SUB, SUP, U, TT (a subset of HTML inline

element tags). When ϑmax = ∞, this approach simply segments the document after

every occurrence of a tag ∈ TForceGap regardless of ∆ρ� or TNoGap (Block Fusion has

no effect in this case; I call this special variant JustRules). Lower values of ϑmax

represent a trade-off between markup-based and density-based segmentation. The

examination of the effects of ϑmax are part of this evaluation.

3Occurrences of SCRIPT likely indicate a gap.

4.2. WEB PAGE SEGMENTATION 57

4.2.3 Experimental Evaluation

To demonstrate the stability and effectiveness of the density-based Block Fusion strat-

egy, I employed two standard test collections: Webspam UK-20074 and the Lyrics

dataset used in [25]. Despite its name the Webspam UK-2007 collection is a good

snapshot of the U.K. Web, roughly consisting of 106 million pages from 115,000 hosts.

Several hosts have already been classified as spam/non-spam.

From this non-spam fragment (356,437 pages) I randomly picked 111 web pages

coming from 102 different websites and manually assessed these documents to define

a comparable segmentation. These manual results were then compared against the

following different clustering strategies:

1. WordWrap. Simply take all text of a page and wrap it after wmax = 80

characters; every line is a segment.

2. TagGap. Every text portion between any tag (except A) is a segment.

3. BF-plain, BF-smoothed and BF-rulebased. As described in Section 4.2.2.

4. JustRules. As described in Section 4.2.2.

5. GCuts. As described in [25]. I did not implement this algorithm. Yet, a com-

parison of clustering performance scores is justified since both datasets comprise

randomly chosen web pages of various kind and are of the same size.

Statistical Properties of Web Page Text

First of all, we need to validate the assumptions on the actual quantitative linguistic

properties of textual web page content. One can assume that text density as defined

in Equation 4.6 is a surrogate for sentence length. It should therefore also yield the

same characteristic distribution (or at least one which satisfies Equation 4.1). To

derive distinct classes i from the text density quotient of neighbored blocks, I use the

following assignment in accordance with Eq. 4.4.

4http://www.yr-bcn.es/webspam/datasets/uk2007/

58 CHAPTER 4. TEXT STRUCTURE

Of note, adjacent blocks with the same density are regarded as one block, i.e. as

a contiguous “sentence” which has been mistakenly separated:

X[i] =

�
∆ρ(bx−1, bx)

ρ(bx)

�
∀∆ρ(bx−1, bx) �= 0 (4.9)

I used the manually created segmentation of the 111 web pages from the Webspam-

UK2007 test collection and computed the class frequencies. Then the Altmann-Fitter5

was applied to automatically determine one or more possible fits out of more than

200 supported discrete distributions for the given input data. The most significantly

fitting probability distribution was the negative hypergeometric (Equation 4.2 with

K = 2.30454, M = 0.10989, n = 17), having χ2 = 14.2394, P (χ2) = 0.3572, C =

χ2/
�

F (i) = 0.0061, d.f. = 13 and is rated by the Altmann Fitter as a “very good

fit”. See Figure 4.3 for a graphical comparison; raw results are shown in Figure 4.12.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Density Quotient

0

200

400

600

800

1000

1200

1400

1600

1800

F
re

q
u

e
n

c
y
 o

f
Q

u
o

ti
e

n
t

f[i]
NP[i] Negative-hypergeometric (K=2.30454, M=0.10989, n=17)

!" = 14.2394 P(!") = 0.3572 C = 0.0061 DF=13

Figure 4.3: Probability Distribution of the Text Density Quotient of Adjacent Blocks

5http://www.gabrielaltmann.de/

4.2. WEB PAGE SEGMENTATION 59

While this differs from the initially assumed hyperpascal distribution, the general

assumption (Equation 4.1) still holds and seems to abide by Frumkina’s law. In fact,

Vulanovic and Köhler assume [115] that Frumkina’s law can be applied not only on

term-level but to all types of linguistic units. It can now be shown that this is at

least the case for the distribution of text density quotients between adjacent blocks,

coming to the conclusion that text density may indeed function as a surrogate for

sentence length.

More, we also find that the distribution of the number of tokens in a segment

abides by Zipf’s law. This has already been shown on document-level [34], and it

is just consistent to also find these properties on intra-page level. I was able to

model the segment-level word lengths of our manually segmented documents by y =

1.086 · x−0.7028, with χ2 = 256.555 and a root mean square error (RMSE) of 0.013.

4.2.4 Segmentation Accuracy

Metrics. In order to quantify the accuracy of the segmentation computed by Block

Fusion, I employed the two cluster correlation metrics Adjusted Rand Index (Ad-

jRand) and Normalized Mutual Information (NMI) used in [25]. Both metrics deter-

mine the agreement between two clustering methods on a particular dataset, using a

value between 0 (no agreement) to 1 (perfect agreement). The corresponding label

vectors hold the information to which segment a particular token belongs to. AdjRand

is Hubert’s & Arabie’s normalized extension to the Rand measure, which basically

relates the number of agreements to the number of disagreements between the two

given clusterings [61]. NMI measures the mutual dependence of the two solutions by

relating their entropies (see Section 2.3). Knowing that segmentation should follow

Zipf’s law on token-level, we can also measure and depict the consistency of a partic-

ular segmentation solution with this law. A deviation from the expected distribution

is regarded a segmentation failure.

Results. Assume that for each variant of Block Fusion there is an optimal setting

for the threshold ϑmax that is pre-determined by the underlying linguistic regularities.

I probed Block Fusion using different settings for this threshold using our sample

60 CHAPTER 4. TEXT STRUCTURE

document set: for each candidate threshold, the average AdjRand and NMI scores

were computed, retrieved by a document-level comparison of the segmentations. The

results are shown in Figures 4.4 and 4.5; it also shows the average number of resulting

blocks for each setting as a reference. For BF-plain and BF-smoothed there seems

to be an optimal threshold at ϑmax ≈ 0.38 for our sample document set, whereas

any threshold between 0.3 and 0.4 seems reasonable. Starting with ϑmax = 0.4, the

accuracy decreases and finally drops dramatically with ϑmax � 0.6. See Figures 4.9,

4.10 and 4.11 for the corresponding visual and densitometric representation.6

I verified that the determined thresholds ϑmax are not particularly document-

specific – we get almost the same optimal threshold for two random halves of the

test set. For BF-rulebased the optimum is ϑmax ≈ 0.6. This means that the

heuristically determined gap-enforcing tags do indeed contribute to the quality of

segmentation, but the text densities do as well. The results for all applied clustering

strategies are depicted in Table 4.1. Block Fusion clearly improves over WordWrap

and TagGap. Interestingly, the scores of BF-plain and BF-smoothed are almost

identical to GCuts [25], which is a surprising achievement for a markup-agnostic

approach. At last, BF-rulebased in fact outperforms any other approach. While

it is close to the quality of JustRules (whose accuracy confirms the effectiveness

of the heuristic segmentation rules for the evaluated dataset), it also shows that our

heuristics were not perfect and Block Fusion was able to improve them. Finally, I

also examined the impact of wmax to the accuracy (see Figure 4.7). It appears that

this word-wrap boundary is stable for widths between 80 and 110. This confirms the

assumption on the relation between language-specific average sentence length and line

width. Theoretically, we could optimize it to wmax = 90, but this would only increase

accuracy by less than 0.01 on average. Finally, Figure 4.6 shows a log-log plot of

block-level tokens counts for all considered algorithms (except GCuts). All Block

Fusion-based approaches as well as JustRules and the manual segmentation expose

6The short segments seen in Figure 4.10 could not be fused by BF-Smoothed, because the
smoothening criterion ρ(bi−1) = ρ(bi+1) was not met. I heuristically found the improved criterion
ρ(bi−1) � 5 ∧ ρ(bi+1) � 5 which indeed fuses the segments correctly, while improving the accuracy
scores only by ca. 0.02. We may therefore consider this improvement as insignificant and omit it
from the proposed solution.

4.2. WEB PAGE SEGMENTATION 61

the typical straight line known from Zipf distributions. As expected, TagGap and

WordWrap obviously do not show this behavior. This means that Block Fusion

is indeed able to transform the tag-induced segmentation to a segmentation which

resembles the same statistical properties as the expected ones.

Performance

Since Block Fusion is designed as an iterative algorithm, we should consider the itera-

tion behavior in terms of average accuracy error (1−accuracy) – I expect this error to

monotonously decrease per iteration, just as the number of remaining blocks. Figure

4.8 reveals that most of the error gets removed already after the first iteration. Even

though on average more blocks are fused during the following iterations, these fusions

do not contribute to improving accuracy. Block Fusion achieves this performance be-

cause it can fuse an arbitrary number of preceding atomic or compound blocks with

similar density in one iteration (see Algorithm 4.1). Notably, for the used test data,

the total processing time per page was only 15ms on a standard laptop.

AdjRand NMI # Blocks
WordWrap 0.25 0.59 25.0

TagGap 0.43 0.65 69.43
Bf-plain 0.60 0.75 27.72

Bf-smoothed 0.62 0.76 19.77
Bf-rulebased 0.79 0.87 21.24

JustRules 0.78 0.84 17.64
(GCuts) (0.60) (0.76) -

Table 4.1: Achieved average Accuracies

C b χ2 Error

Bf-plain 1.04024 0.74899 98.15 0.00438
Bf-smoothed 1.03643 0.73334 87.38 0.00538
Bf-rulebased 1.47937 0.67028 649.36 0.02096

JustRules 1.08526 0.70280 256.56 0.01372

Table 4.2: Zipf Distribution Parameters

62 CHAPTER 4. TEXT STRUCTURE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fusion Threshold

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

0

10

20

30

40

50

60

70

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
B

lo
c
k
s

NMI (plain)

NMI (smoothed)

AdjRand (plain)

AdjRand (smoothed)

Blocks (plain)

Blocks (smoothed)

Figure 4.4: Optimizing ϑmax (BF-plain/smoothed)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fusion Threshold

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

0

10

20

30

40

50

60

70

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
B

lo
c
k
s

NMI

AdjRand

Blocks

Figure 4.5: Optimizing ϑmax (BF-rulebased)

1 10 100 1000 10000

Rank

1

10

100

1000

N
u

m
b

e
r

o
f
T
o

k
e

n
s
 p

e
r

B
lo

c
k

Human (N=1252)

BF-Plain (N=2901)

BF-Smoothed (N=2098)

BF-Rulebased (N=2189)

JustRules (N=1831)

TagGap (N=6932)

WordWrap (N=2772)

Figure 4.6: Validation of Zipf’s Law on Block Level

4.2. WEB PAGE SEGMENTATION 63

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of Iterations

0

0.2

0.4

0.6

0.8

1
A

v
e
ra

g
e
 E

rr
o
r

0

10

20

30

40

50

60

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
B

lo
c
k
s

#Blocks (plain)

#Blocks (smoothed)

#Blocks (rule-based)

1-AdjRand (plain)

1-AdjRand (smoothed)

1-AdjRand (rule-based)

1-NMI (plain)

1-NMI (smoothed)

1-NMI (rule-based)

Figure 4.8: Iteration Behavior

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Wrap Width [characters]

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
B

lo
c
k
s

NMI (rule-based)
AdjRand (rule-based)
NMI (smoothed)
NMI (plain)
AdjRand (smoothed)
AdjRand (plain)
Blocks (plain)
Blocks (rule-based)
Blocks (smoothed)

Figure 4.7: Impact of wmax on Average Accuracy

64 CHAPTER 4. TEXT STRUCTURE

0 50 100 150 200 250 300

Line Number

2

4

6

8

10

12
T
e

x
t

D
e

n
s
it
y

!
ACM 17th Conference on Information and

Knowledge Management

Napa Valley Marriott Hotel & Spa: Napa Valley, California

October 26-30, 2008

Participants

Home

News

Themes

Important Dates

Registration

Student Travel

Program

Schedule

Keynote Speakers

Workshops

Industry Event

Publicity

Contributors

Call for Papers

Call for Tutorials

Call for Workshops

Call for Sponsorship

How to Submit

Location

Conference Site

Accomodation

Napa Valley

Travel

About Us

Organizers

History

Program Committee

Contact Us

 RSS 2.0 Feed

News Updates

2008-05-13 Industry Event at CIKM 2008

2008-05-13 Accepted Workshops Published

2008-04-25 Subscribe to our RSS feed

2008-04-22 Confirmed Keynote Speaker: Rakesh Agrawal

2008-04-04 Confirmed Keynote Speaker: Pedro Domingos

Submission dates for research and industry papers

Abstracts due: May 27, 2008

Papers due: June 3, 2008

How to Submit

CIKM 2008 will take place at the Napa Valley Marriott Hotel & Spa, 3425 Solano

Avenue, Napa, CA 94558. This is right in the center of beautiful wine country -

north of San Francisco and about 50 minutes by car/bus/limo.

Since 1992, the ACM Conference on Information and Knowledge Management

(CIKM) has successfully brought together leading researchers and developers

from the database, information retrieval, and knowledge management

communities. The purpose of the conference is to identify challenging problems

facing the development of future knowledge and information systems, and to

shape future research directions through the publication of high quality, applied

and theoretical research findings. In CIKM 2008, we will continue the tradition

of promoting collaboration among multiple areas. We encourage submissions of

high quality papers on all topics in the general areas of databases, information

retrieval, and knowledge management. Papers that bridge across these areas

are of special interest and will be considered for a "Best Interdisciplinary Paper"

award.

As CIKM 2008 will be held in Napa Valley, just one hour to the north of San

Francisco, one of the goals of the conference is to embrace the innovative spirit

of the Bay Area/Silicon Valley in bridging further the academic-commercial gap

in the database, information retrieval, and knowledge management

communities. To help achieve this goal, we will have a series of invited

speakers and an industry day (separate from the industry research track) where

luminaries, primarily from industry and from the VC (Venture Capital)

community, will provide insights on how DB/IR/KM technologies are/can be

leveraged to make a billion-dollar success.

Gold Supporters

Silver Supporters

Bronze Supporters

Local Organization

October 26-30, 2008: Napa Valley Marriott Hotel & Spa, 3425 Solano Avenue, Napa, CA 94558
© CIKM 2007 - 2008

!

"

#

20

30

32

33

34

35

" 20 30 32 33 34 35

Figure 4.9: Visual vs. Densitometric Segmentation (BF-plain)

0 50 100 150 200 250 300

Line Number

2

4

6

8

10

12

T
e

x
t

D
e

n
s
it
y

! " # $ %&'
ACM 17th Conference on Information and

Knowledge Management

Napa Valley Marriott Hotel & Spa: Napa Valley, California

October 26-30, 2008

Participants

Home

News

Themes

Important Dates

Registration

Student Travel

Program

Schedule

Keynote Speakers

Workshops

Industry Event

Publicity

Contributors

Call for Papers

Call for Tutorials

Call for Workshops

Call for Sponsorship

How to Submit

Location

Conference Site

Accomodation

Napa Valley

Travel

About Us

Organizers

History

Program Committee

Contact Us

 RSS 2.0 Feed

News Updates

2008-05-13 Industry Event at CIKM 2008

2008-05-13 Accepted Workshops Published

2008-04-25 Subscribe to our RSS feed

2008-04-22 Confirmed Keynote Speaker: Rakesh Agrawal

2008-04-04 Confirmed Keynote Speaker: Pedro Domingos

Submission dates for research and industry papers

Abstracts due: May 27, 2008

Papers due: June 3, 2008

How to Submit

CIKM 2008 will take place at the Napa Valley Marriott Hotel & Spa, 3425 Solano

Avenue, Napa, CA 94558. This is right in the center of beautiful wine country -

north of San Francisco and about 50 minutes by car/bus/limo.

Since 1992, the ACM Conference on Information and Knowledge Management

(CIKM) has successfully brought together leading researchers and developers

from the database, information retrieval, and knowledge management

communities. The purpose of the conference is to identify challenging problems

facing the development of future knowledge and information systems, and to

shape future research directions through the publication of high quality, applied

and theoretical research findings. In CIKM 2008, we will continue the tradition

of promoting collaboration among multiple areas. We encourage submissions of

high quality papers on all topics in the general areas of databases, information

retrieval, and knowledge management. Papers that bridge across these areas

are of special interest and will be considered for a "Best Interdisciplinary Paper"

award.

As CIKM 2008 will be held in Napa Valley, just one hour to the north of San

Francisco, one of the goals of the conference is to embrace the innovative spirit

of the Bay Area/Silicon Valley in bridging further the academic-commercial gap

in the database, information retrieval, and knowledge management

communities. To help achieve this goal, we will have a series of invited

speakers and an industry day (separate from the industry research track) where

luminaries, primarily from industry and from the VC (Venture Capital)

community, will provide insights on how DB/IR/KM technologies are/can be

leveraged to make a billion-dollar success.

Gold Supporters

Silver Supporters

Bronze Supporters

Local Organization

October 26-30, 2008: Napa Valley Marriott Hotel & Spa, 3425 Solano Avenue, Napa, CA 94558
© CIKM 2007 - 2008

!

%
&

'
"

#

$

See Footnote 6 for an explanation of the short segments between lines 131 and 147.

Figure 4.10: Visual vs. Densitometric Segmentation (BF-smoothed)

0 50 100 150 200 250 300

Line Number

2

4

6

8

10

12

T
e

x
t

D
e

n
s
it
y

! "#$%&' ()*11 12 13
ACM 17th Conference on Information and

Knowledge Management

Napa Valley Marriott Hotel & Spa: Napa Valley, California

October 26-30, 2008

Participants

Home

News

Themes

Important Dates

Registration

Student Travel

Program

Schedule

Keynote Speakers

Workshops

Industry Event

Publicity

Contributors

Call for Papers

Call for Tutorials

Call for Workshops

Call for Sponsorship

How to Submit

Location

Conference Site

Accomodation

Napa Valley

Travel

About Us

Organizers

History

Program Committee

Contact Us

 RSS 2.0 Feed

News Updates

2008-05-13 Industry Event at CIKM 2008

2008-05-13 Accepted Workshops Published

2008-04-25 Subscribe to our RSS feed

2008-04-22 Confirmed Keynote Speaker: Rakesh Agrawal

2008-04-04 Confirmed Keynote Speaker: Pedro Domingos

Submission dates for research and industry papers

Abstracts due: May 27, 2008

Papers due: June 3, 2008

How to Submit

CIKM 2008 will take place at the Napa Valley Marriott Hotel & Spa, 3425 Solano

Avenue, Napa, CA 94558. This is right in the center of beautiful wine country -

north of San Francisco and about 50 minutes by car/bus/limo.

Since 1992, the ACM Conference on Information and Knowledge Management

(CIKM) has successfully brought together leading researchers and developers

from the database, information retrieval, and knowledge management

communities. The purpose of the conference is to identify challenging problems

facing the development of future knowledge and information systems, and to

shape future research directions through the publication of high quality, applied

and theoretical research findings. In CIKM 2008, we will continue the tradition

of promoting collaboration among multiple areas. We encourage submissions of

high quality papers on all topics in the general areas of databases, information

retrieval, and knowledge management. Papers that bridge across these areas

are of special interest and will be considered for a "Best Interdisciplinary Paper"

award.

As CIKM 2008 will be held in Napa Valley, just one hour to the north of San

Francisco, one of the goals of the conference is to embrace the innovative spirit

of the Bay Area/Silicon Valley in bridging further the academic-commercial gap

in the database, information retrieval, and knowledge management

communities. To help achieve this goal, we will have a series of invited

speakers and an industry day (separate from the industry research track) where

luminaries, primarily from industry and from the VC (Venture Capital)

community, will provide insights on how DB/IR/KM technologies are/can be

leveraged to make a billion-dollar success.

Gold Supporters

Silver Supporters

Bronze Supporters

Local Organization

October 26-30, 2008: Napa Valley Marriott Hotel & Spa, 3425 Solano Avenue, Napa, CA 94558
© CIKM 2007 - 2008

!

'

"

#

$
%
&

)

*
11

12

13

(

Figure 4.11: Visual vs. Densitometric Segmentation (BF-rulebased)

4.2. WEB PAGE SEGMENTATION 65

4.2.5 Application to Near-Duplicate Detection

Setup. Finally we now quantify the usefulness of the segmentation for the purpose

of near-duplicate detection. Again we compare the results from Block Fusion against

[25], where the Lyrics dataset was used to evaluate the accuracy of detecting web

pages with the same content but different appearance. The dataset consisted of 2359

web pages song lyrics by six popular artists (ABBA, Beatles, BeeGees, Bon Jovi,

Rolling Stones and Madonna), taken from the three websites absolutelyrics.com,

seeklyrics.com and lyricsondemand.com. The six artists were deliberately chosen

to minimize the effect of false-positives on the evaluation caused by cover songs. As

I was unable to acquire the original dataset, I crawled the three websites again using

the same setup, resulting in 6982 web pages (which is likely to be a superset of the

initial crawl by Chakrabarti et al.). By matching artist and title, 1082 songs have been

determined that appear on all three websites (i.e., on 3246 web pages). In addition

to that, 3246 other web pages have been randomly chosen from the three websites

(1082 for each). This setup allows a relatively clean comparison between the true-

positive and true-negative rates of a de-duplication algorithm. To determine what a

near-duplicate is and what is not, the same heuristic was used as in [25]: For each

page of a pair of candidate pages, the tokens of the largest text segment are used to

create 8 shingle fingerprints using the min-hash algorithm, with a window of 6 tokens.

A pair of pages is regarded a near-duplicate if the pages share at least 50% of the

shingles. The largest text segment simply is determined by counting the number of

enclosed tokens; in our setup, segments containing at least 50% hyperlinked textual

content are discarded since they are likely not to contain the main content despite

their length.

Results. The resulting true positive/negative scores corresponding to each al-

gorithm (including a comparison to the text as a whole, FullText) are shown in

Table 4.3. JustRules is the narrow winner with respect to finding duplicates, but

all Block Fusion variants perform equally well for detecting non-duplicates and sig-

nificantly perform better than GCuts, even the simplest variant BF-plain.

66 CHAPTER 4. TEXT STRUCTURE

True
Duplicate
Pairs

True Non-
Duplicate
Pairs

Total 3246 3246

FullText 19.9% 96.3%
WordWrap (wmax = 80) 5.4% 76%

TagGap 16.9% 88.5%
Bf-plain (ϑmax = 0.38) 72.2% 100%

Bf-smoothed (ϑmax = 0.38) 73.1% 100%
Bf-rulebased (ϑmax = 0.6) 86.3% 100%

JustRules 89.4% 100%

(GCuts) (61.7%) (99.9%)

Table 4.3: Duplicate Detection Accuracy

4.2.6 Discussion

The problem of web page segmentation can be seen from a quantitative linguistic

point of view as a problem of identifying significant changes of particular statisti-

cal properties within the considered text. As demonstrated, an effective property is

token-level text density, which can be derived from vision-based measures. This text

density follows the same fundamental linguistic law (Frumkina’s Law) as many other

linguistic units. In addition to that, the distribution of the expected number of tokens

in a segment follows Zipf’s law. The proposed algorithm for web page segmentation,

built upon the region growing strategy known in Computer Vision, performs signifi-

cantly better than the state-of-the-art graph-theoretic algorithm, as the experimental

evaluation on large real-world data sets demonstrates.

The presented approach is orthogonal to existing work and considers new and

complementary aspects to solve the segmentation task. As shown by the rule-based

Block Fusion hybrid, a more sophisticated combination of other strategies and the

Block Fusion algorithm promises further improved segmentation quality. Since the

considered linguistic properties seem to be mostly language-independent, the next

logical step is to evaluate these findings on a multilingual corpus. In particular, we

need to discuss the influence of the wrapping parameter wmax and threshold ϑmax on

different languages. Further work should also find an explanation of the discovered

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 67

statistical behavior from a purely linguistic perspective. It would also be particularly

interesting to investigate the use of the presented techniques in other areas of Informa-

tion Retrieval, including block-level ranking, block-level link analysis and block-level

classification.

-- ALTMANN-FITTER 2.1 --

Result of fitting

Input data: hist-1.dat
Distribution: Negative hyper-
geometric (K,M,n)

Sample size: 2334
Moments:

M1 = 1.8106 M2 = 4.4963

M3 = 34.2793 M4 =356.4193

Best method is Method 1 of 2
Parameters:
K = 2.30453585151999
M = 0.109889153462268
n = 17, DF =13

χ2 = 14.2394

P(χ2) = 0.3572

C = 0.0061

X[i] F[i] NP[i]
1 1802 1800.9989
2 180 184.9156
3 92 95.4882
4 80 62.2025
5 34 44.5585
6 36 33.5436
7 24 25.9808
8 18 20.4556
9 14 16.2396
10 16 12.9186
11 12 10.2396
12 12 8.0391
13 4 6.2069
14 2 4.6669
15 4 3.3651
16 2 2.2639
17 0 1.3385

18 2 0.5779

Figure 4.12: Altmann-Fitter Results

4.3 A Densitometric Classification of

Web Templates

Utilizing the segment-level text density metric presented in the previous section, this

section covers an analysis of the structure of a large, representative Web corpus.

Through a densitometric classification, we find that Web content exposes two classes

of text, covering full-text and navigational information respectively. I show that

this structure corroborates recent findings from the field of Quantitative Linguistics.

Finally, the findings are applied to template removal.

68 CHAPTER 4. TEXT STRUCTURE

4.3.1 Theoretical Background

Quantitative Linguistic Text Theory

Several observations have been made which corroborate the theory that natural lan-

guage obeys the same principles as many other psychobiological and natural phenom-

ena, namely the class of power laws [90]. George K. Zipf pioneered this model by his

principle of least effort, which he said was inherent in human behavior [125]. Numer-

ous empirical observations confirm the hypothesis that the creation process of lan-

guage, in particular text (spoken or written language), follows particular probabilistic

regularities, which have been subsumed by statistical laws, in particular Zipf’s law (the

frequency of an object, e.g. a term, is inversely proportional to its rank), Frumkina’s

law (when dividing text into passages of words, the frequency of a particular linguistic

entity follows the negative hypergeometric distribution) and the Menzerath-Altmann

law (the longer a linguistic construct, the smaller its constituents). The organization

of text has been observed and successfully modeled statistical as urn trials at the level

of various linguistic units such as phoneme, word, sentence, text segment etc. and for

several features such as frequency, length, repeat rate, polysemy and polytextuality.

The levels of language seem to be strongly interdependent (cf. Menzerath-

Altmann law). Köhler modeled this system as the so-called synergetic language con-

trol circuit and showed that it seems applicable to any linguistic level or aspect [72].

He postulated so-called language system requirements, amongst others the require-

ments of secure/reliable information transfer, leading to redundancy, and the require-

ments of economy, incorporating the principle of least effort, with its aspects like mini-

mization of effort for encoding, decoding, memory capabilities/context-independence,

ambiguity and so on. Köhler found that the system requirements mutually influence

the variability of the system’s properties in cooperating and in competing ways; con-

sidering Zipf’s theories, these requirements may be called synergetic “forces” [71, 72].

Any attempt to corroborate the established laws and models (or possibly to reject

them) requires a quantitative, empirical analysis. Quantification is really not the aim,

but a means to understanding the structures and processes of text and language [51].

The required statistical analysis has to be performed using an appropriate text or

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 69

corpus, otherwise one would neglect/hide the language-immanent heterogeneity [3].

Once a representative baseline corpus is established, further analytical explorations

can be attempted such as stylometric approaches to assign (with a given probability) a

particular author to a specific document (or to exclude an author from consideration),

a genre (newspaper text, political statement, scientific work etc.) or a readability

score (e.g., boulevard news vs. legal articles) to a particular article, using scores like

type-token-ratio, verb-adjective-ratio, vocabulary richness and so on [112, 113, 95].

If one is able to closely fit a previously discovered distribution (e.g., negative hy-

pergeometric, hyperpascal, negative binomial etc.) to the data, this contributes to

corroborating the theory. Recently, Wimmer and Altmann presented a unified rep-

resentation of many existing linguistic hypotheses [118, 51], a logical extension of

Köhler’s synergetic approach. They derive a common representation of the afore-

mentioned distributions and relations by discussing the relation between a linguistic

variable Y and another independent variable X which shapes the behavior of Y (i.e.,

also its rate of change, dx, which in turn is controlled by the aforementioned syner-

getic forces). Relations between X and Y for example are: polytextuality/polysemy,

polysemy/length and also rank/frequency.

The relationship between X and Y can be seen as an infinite series of the form

dy

y
= (a0 +

a1
x

+
a2
x2

+
a3
x3

+ · · ·) dx (4.10)

(with a0, a1, a2, . . . being constant factors of the acting forces). The solution of

4.10 yields

y = C xa1e−a0xexp(−
∞�

i=1

ai+1

xi
) + d (4.11)

(with C and d being normalization parameters) which actually is a generalization

of the commonly used form of the Menzerath-Altmann law

y = C xa1 + d (4.12)

70 CHAPTER 4. TEXT STRUCTURE

This regularity was also discussed for discrete variables, in particular non-negative

probability distributions with probability mass functions {P0,P1, . . . } of the form Px =

g(x)Px−1. The discrete equivalent of the continuous model (Equation 4.10) is:

Px = (a0 +
a1
x

+
a2
x2

+
a3
x3

+ · · ·) Px−1 (4.13)

From this recurrence formula many well-known distributions observed in the field

of linguistics can be derived, including the Katz/Kemp-Dacey-hypergeometric families

of distributions [117], whose limiting cases are (amongst others) the geometric, the

Poisson, the hyperpascal and the negative-hypergeometric (including its limiting cases

binomial and negative-binomial) distributions; all of them have already been discussed

and empirically found for particular linguistic units.

Relation to the Web

It would be surprising if the findings made on “plain text” would not be valid for

text on the Web. I have shown in Section 4.2 that the discussed laws can be applied

successfully to segment web pages into blocks of text. For conducting the segmen-

tation, the block-level text density measure �(b) was introduced, derived from the

pixel-based text density of Computer Vision-based approaches and transformed to

token-level. Basically, it counts the number of tokens |T (b)| in a particular text block

b divided by the number of lines |L(b)| covered after word-wrapping the text at a

fixed column width wmax (the empirically estimated optimal value for English text is

between 80 and 90 characters). Due to the side-effect of having an incompletely filled

last line after wrapping, the latter is not taken into consideration unless it is the only

line in the segment:

T �(b) = {t | t ∈ T (l), lfirst(b) ≤ l < llast(b)}

�(b) =

|T �(b)|
|L(b)|−1 |L(b)| > 1

|T (b) | otherwise
(4.14)

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 71

The actual segmentation algorithm is based on the merge-only strategy Block

Fusion presented in Section 4.2.2. Adjacent text fragments of similar text density

(interpreted as “similar class”) are iteratively fused until the blocks’ densities (and

therefore the text classes) are distinctive enough. Using various settings, including a

rule-based approach, it was shown that the resulting block structure closely resembles

a manual segmentation.

Even though text density was derived from concepts of Computer-Vision, it ap-

pears that the exposed behavior of �(b) in text is similar to existing linguistic mea-

sures. In particular, the ratio between the text densities of neighbored blocks follows

the negative-hypergeometric distribution, corroborating Frumkina’s law (see Section

4.2). Further details about the density measure are discussed in Section 4.3.2.

4.3.2 Corpus-Level Pattern Analysis

Setup

We again conduct our analysis on the Webspam UK-2007 test collection7 (as for the

segmentation problem in Section 4.2). Since spam pages tend to be automatically

generated, may not necessarily obey the laws of natural language and could skew our

results, we also again focus on the non-spam part consisting of 356,437 pages, with

316,448 documents containing extractable text.

Since we are trying to understand the distinction between templates and main con-

tent, we perform a statistical classification on segment-level, under the assumption

that each segment is sufficiently homogeneous (i.e., either template or main content).

As a manual segmentation appears infeasible at corpus-scale, we employ the BlockFu-

sion segmentation algorithm, BF-RuleBased in particular, which was shown to have

a segmentation accuracy in terms of normalized mutual information (NMI) of 0.87

(Table 4.1); BF-RuleBased is the most effective variant of the BlockFusion family –

the segmentation boundaries are usually at the HTML block-level elements H1-H6,

UL, DL, OL, HR, TABLE, ADDRESS, HR, IMG, SCRIPT but they may also exist between two

neighbored segments which expose noticeably different text densities.

7http://www.yr-bcn.es/webspam/datasets/uk2007/

72 CHAPTER 4. TEXT STRUCTURE

Density vs. Token Length

Text density is a particularly useful measure when analyzing the Web’s quantitative

structure. It does not depend on the notion of“sentence”, which we could hardly define

for the Web’s content: many portions of text simply do not contain sentences, nor

anything meaningful which could be separable by full stop (this is especially true for

template text). As for the text density a relationship to existing linguistic measures

was already shown above, we may assume that �(b) indeed is an adequate linguistic

measure, too. Under the aspect that many linguistic measures obey the principles

expressed by the Menzerath-Altmann law, we verify whether this law also holds for

the text density. Actually, text density seems to follow this law per definitionem:

the higher a text density, the shorter contained tokens must be on average. Thus, a

strong relationship to average token length is likely.

First, we analyze the measures “average token length” and “text density” sepa-

rately. For both measures, we compute per-document averages, normalize the scores

to a maximum of 1.0 and sort them in decreasing order. Finally, we fit Equation

4.12 to them. We quantify the goodness of the fit by the correlation coefficient R2

(the square of the correlation between the response values and the predicted response

values) and the root-mean-square error RMSE.

Indeed, for both measures, average token length and text density, a high correlation

can be observed. For average token length, we achieve R2 = 0.9335; RMSE = 0.00002

with a1 = 0.51, c = 4.096 ·10−5, d = −1. For the text density, with a1 = 7.5 ·10−7, c =

2.79 · 104, d = −1 the goodness of fit is R2 = 0.9654; RMSE = 0.0154. Of note, in

order to fit the rank sequence for average token length, the top 100 documents which

had a very high average score had to be omitted; the skewness was caused by very

long tokens (the largest average token length encountered was 65.026). Second, we

analyze the ratio of text density to average token length. As above, we normalize

and sort the values; we then fit Equation 4.11 to them. With the parameters a0 =

0 , a1 = 0.024, a2 · · · a∞ = 0, c = 0.712, d = −0.98, the resulting goodness of fit is

R2 = 0.97,RMSE = 0.0029. The three rank sequences are depicted in Figure 4.13.

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 73

Figure 4.13: Text Density / Token Length Ranks

I conclude that the text density measure (in combination with a good segmentation

strategy) can be well integrated into the established theories. Moreover, it appears

to be less susceptible for noisy data than the average token length.

The Beta Distribution Model

To reduce the impact of errors caused by a too fine-grained segmentation, we examine

the amount of text (= number of tokens) contained in segments of a particular text

density �. We can model this histographically by rounding the density to the nearest

integer ��(b) = [�(b)] (according to [118] switching between a continuous and a discrete

representation as needs arise is valid under these circumstances, also see Equations

4.10 and 4.13).

Figure 4.14 depicts the retrieved token-level count/density distribution for the

whole corpus. Apparently, two modal scores are visible, at �� = 2 and �� = 12

respectively. This indicates at least two classes of text within the corpus. The super-

imposition of different classes (“strata”) of text is already known in linguistics, from

a theoretical perspective it may even be the normal case, even though empirically a

separation may not seem necessary [3]. To confirm the presence of multiple classes we

74 CHAPTER 4. TEXT STRUCTURE

need to find a corresponding distribution function. As we have to visible modal scores,

the distribution function which is to be retrieved is expected to be a combination of

two individual distributions, for which we may chose the Beta distribution:

fbeta(x, a, b) =
1

B(a, b)
xa−1(1− x)b−1 (4.15)

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

� 1

0

ta−1(1− t)b−1 dt

Γ(x) =

� ∞

0

tx−1e−tdt = x · Γ(x− 1) = (x− 1)!

The Beta has several advantageous features. First, the Beta distribution is very

generic in the sense that it allows a parameterization of the curve’s skewness both to

the left (a < b) and to the right (a > b), having the mode at (a−1)·(a+b−2)−1 ·xnorm.

These parameters seem necessary in our case (see the varying token counts for

�� = [1; 3] and �� = [10; 12] respectively). Second, the distribution is continu-

ous, which allows us to describe the probability of tokens covered by a particular

density �, not only the approximation ��. Third, it is already known in Quanti-

tative Linguistics. Generally, the Beta distribution seems to fit very well to lin-

guistic data. For example, we could fit it to the distribution of English sentence

lengths in the standard Brown Corpus8 with R2 = 0.996, RMSE = 8.87 · 10−4 having

a = 1.926, b = 6.356, c = 0.013, xnorm = 79. In particular, Altmann and Burdinski [5]

have derived the discrete negative hypergeometric (or: Beta-binomial) distribution

using it, which in turn abides by the Menzerath-Altmann Law. Of note, fbeta has also

been applied to histogram-based image segmentation [1], which is a remarkable fact

because the text density metric and the accompanied BlockFusion algorithm inherit

the notion of density as well as the block-merge strategy from Computer Vision, too

(Section 4.2.1).

Using two Beta distributions, we may now attempt a fit as follows:

c · [p1 · fbeta(x, a1, b1) + p2 · fbeta(x, a2, b2)] (4.16)

x ∈ [0; 1], x = � · 1
2
wmax

8http://people.scs.fsu.edu/∼burkardt/m_src/prob/english_sentence_length_pdf.m

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 75

Unfortunately the fit was unsatisfactory. I was able to fit a curve to Equation

4.16 (p1 = 0.65; p2 = 0.55) but no distribution (i.e., with p1+p2 = 1). A combination

of three Beta distribution yields a fairly good distribution fit (p1, p2, p3 = 1
3 ; a1 =

64.08, b1 = 147.9; a2 = 2.596, b2 = 32.33; a3 = 10.7, b3 = 30.45; c = 0.025 with

R2 = 0.944, RMSE = 0.0031):

f(x) = c · [p1 · fbeta(x, a1, b1) + p2 · fbeta(x, a2, b2) +p3 · fbeta(x, a3, b3)] (4.17)

However, we can (and therefore must) further simply the distribution to a combi-

nation of two beta distributions and the normal distribution, with which we achieve

an almost perfect fit (R2
. = 0.998, RMSE = 0.0021 for a1 = 68.03, b1 = 132.5; a2 =

4, 034,b2 = 54, 49; c = 0.015, d = 0.64; e = 78.87, f = 7.834, µ = 28.65, σ2 = 6.489;

x scores (densities) have been normalized by xnorm = 36 to [0 : 1] before fitting):

f(x) = c · (d · fbeta(x, a1, b1) + (1− d) · fbeta(x, a2, b2))

+ (1− c) · ϕµ,σ2(e · x+ f) (4.18)

The parameters a1, a2, b1, b2 define the skewness and the location of the mode of

the Beta distribution. c and d are weights, e and f are normalizing constants.

I conclude that the distribution of text densities can be divided into two fuzzy

classes C1 and C2; the transition from C1 to C2 follows the normal distribution,

which means that for blocks with particular densities it is rather undetermined to

which class the contained text belongs. Moreover, from the distribution parameter d

I conclude that C1 roughly covers one third of the tokens enclosed in the corpus and

C2 covers two thirds. Figure 4.14 depicts this fit as well as its three parts; we see that

for 5 ≤ �� ≤ 10 the normal distribution dominates. Notably, these classes are not

visible at token level (see Figure 4.15); the average token length appears to follow the

(unimodal) Beta distribution y = c · fbeta(x/xnorm, a, b) with a = 40.53, b = 2612, c =

0.002458, xnorm = 358 (R2 = 0.9876,RMSE = 0.003). This supports the assumption

that text density and average token length are measures at different linguistic levels.

76 CHAPTER 4. TEXT STRUCTURE

0 5 10 15 20 25

Segment-Level Text Density

0

5x106

1x107

1.5x107

2x107

N
u

m
b

e
r

o
f

W
o

rd
s
 i
n

 t
h

e
 C

o
rp

u
s

Measured

Class 1 (Beta d.)

Class 2 (Beta d.)

Normal Distribution

Complete Fit

Figure 4.14: Density Distribution Model

0 5 10 15 20 25

Average Token Length

0

1x107

2x107

3x107

4x107

5x107

N
u

m
b

e
r

o
f

w
o

rd
s

Measured

Beta-Distribution

Figure 4.15: Average Token Length

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 77

Term Typicality

To make a statement on the meaning of the determined two classes, the content of

these classes, that is the term vocabulary, needs to be analyzed. If the two classes

are different, then the contained token vocabulary should also expose noticeable dif-

ferences. To prove this, we first divide the corpus text into two partitions π1 and

π2; π1 only contains blocks with densities �� ≤ 8 and π2 with �� ≥ 9 (�� = 8 is the

boundary point of the two discrete beta distributions). Second, we analyze the token

distributions of the two partitions.

As we want to express the peculiarities of the two classes C1 and C2, which are

roughly represented by π1 and π2, we compare the partition-specific term document

frequencies. We expect that terms which are typical for C1 appear much more often

in π1 than in π2, and vice versa. We examine this relationship by computing the

corresponding document frequency ratio; the normalized ratio follows a power law

distribution of the form y = c (x/(1 − x))−a1 with a1 = 0.39 and c = 0.01 (R2 =

0.9468,RMSE = 0.0034, see Figure 4.16).

Figure 4.16: Document Frequency Ratio

78 CHAPTER 4. TEXT STRUCTURE

This type of power law distribution has recently been discussed by Lavalette [81]

and Popescu [94] as a generalization of Zipf’s law. In our case, we can interpret the

ratio x/(1−x) as the combination of two Zipfian subsets, a top-ranked and a bottom-

ranked one, which mutually influence the curve (i.e., since our document set is finite as

much smaller than the imaginary full set, the observed frequencies drop faster than in

the optimal case, again exponentially to be precise). In fact the document frequencies

of the considered terms apparently are Zipfian, too, and for both partitions enough

typical terms exist.

To avoid over-interpreting the impact of rarely occurring terms, we limit our anal-

ysis to terms with a collection-wide document frequency w1∪2 of at least 100. For

these terms, we compute the term typicality ε(t), which we define as the logarithmic

ratio of the corresponding document frequencies w1, w2 of the examined term t in the

two partitions. The ratio is normalized by the logarithm to base N +1 with N being

the number of documents in the corpus (i.e., the maximum document frequency):

ε(t) = logN+1

w2(t) + 1

w1(t) + 1
(4.19)

The resulting values are in the range of [−1;+1]. The absolute score is the degree

of typicality, the sign indicates the direction of typicality (−1 means the term clearly

belongs to class 1, +1 states that the term clearly belongs to class 2). In our setup, of

the 2938 terms with w1∪2 ≥ 100, 589 terms (20%) expose a term typicality ε ≤ −0.05

(i.e., C1) and 1255 terms (42.7%) a term typicality of ε ≥ +0.05 (i.e., C2). Table 4.4

shows the top-20 typical terms for C1 and C2 respectively. As one can see, C1 terms

are very likely to appear in template blocks, whereas C2 terms are more likely for

full-text.

The “Full Stop” Criterion

I argued that template text usually contained no full stop. This clearly is an ob-

servation which needs to be empirically analyzed for the whole corpus. A strong

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 79

Rank Term ε Term ε Rank Term ε Term ε

1 memberlist -0.37 option 0.32 11 videophone -0.30 pension 0.23

2 usergroups -0.34 van 0.31 12 stocked -0.30 creed 0.22

3 headcovers -0.33 liability 0.29 13 brvbar -0.30 their 0.22

4 accesskey -0.33 rd 0.29 14 landscaper -0.29 these 0.22

5 changelog -0.33 gloucester 0.28 15 prater -0.29 adverse 0.21

6 thimbles -0.31 income 0.28 16 upchurch -0.29 director 0.21

7 notifications -0.30 provider 0.27 17 sge -0.29 michael 0.21

8 tuskers -0.30 tea 0.26 18 barebone -0.29 sku 0.21

9 gnomes -0.30 settings 0.25 19 dr.who -0.29 double 0.21

10 qed -0.30 cheap 0.24 20 turntables -0.29 accident 0.20

Table 4.4: The top-20 typical terms in segments with �� ≤ 5 (comparison between
segment frequency ≥ 100 and < 100)

Rank Term ε Term ε Rank Term ε Term ε

1 sitemap -0.33 spelled 0.51 11 faq -0.26 helped 0.31

2 bookmark -0.29 thousands 0.36 12 miscellaneous -0.26 majority 0.30

3 accessibility -0.29 temporarily 0.35 13 jun -0.26 reached 0.30

4 misc -0.29 gave 0.34 14 basket -0.26 despite 0.30

5 skip -0.28 tried 0.33 15 gmt -0.26 incorrectly 0.30

6 shipping -0.28 aimed 0.33 16 wed -0.26 hundreds 0.30

7 polls -0.28 seem 0.32 17 faqs -0.25 themselves 0.30

8 affiliates -0.27 eventually 0.31 18 currency -0.25 although 0.30

9 username -0.27 unfortunately 0.31 19 homepage -0.24 whether 0.29

10 thu -0.27 obvious 0.31 20 checkout -0.24 we’ll 0.29

Table 4.5: The top-20 terms for π1 and π2

correlation between the feature “segment contains full stop” and the class relationship

would support this assumption.

Let us proceed as follows. We partition the corpus’ text into segments which

contain at least one full stop (πF) and those without (πN). I simply define “full stop”

as a dot character (.) which immediately follows a white-space terminated sequence

of at least two letters, except for a few known abbreviations (vs., DC., Inc., Ltd.,

No., VAT. and Jan. to Dec.). First, we analyze the histographical distribution of

tokens enclosed by segments of particular text densities (as in Section 4.3.2), for

both partitions πF and πN separately and compare to the overall distribution. The

80 CHAPTER 4. TEXT STRUCTURE

histograms are depicted in Figure 4.17. Even though segments with and without full

stop exist for all present text densities, the two strata are clearly visible. Again, I was

able to fit the Beta distribution y = c · fbeta(x, a, b) to each of the two partitions with

high correlation. For the non-full stop part, we get R2 = 0.91,RMSE = 0.015 with

a = 1, 394, b = 10, 75, c = 0.02749. For the full stop part, we get R2 = 0.94,RMSE =

0.014 with a = 30.15, b = 61.54, c = 0.024. The R2 values are not as good as for

the overall fit (see Figure 4.14) as we ignore the impact of the inter-class normal

distribution in this case. Of note, the modes of the two Beta distributions (1.4 and

11.7) are almost identical to the ones found for the classes C1 (1.99) and C2 (12.15).

Using Weka9, I computed the expected KL-Divergence provided by the “full-stop”

feature at segment-level. Indeed, text density has a fairly high information gain for

predicting the occurrence of a full stop (0.711), which is substantiated by a classifi-

cation accuracy of 91.4% using a simple linear classifier.

Finally, the amount of tokens enclosed in πN (4.18 · 107 or 69%) and in πF (9.50 ·
107 or 31%) is in line with the ratio between C1 and C2 determined by the Beta

distribution fit described in Section 4.3.2.

0 5 10 15 20 25

Text Density

0

5x106

1x107

1.5x107

2x107

N
u

m
b

e
r

o
f

w
o

rd
s

Measured

Segments with Full Stop

Segments without Full Stop

Class 1 (Beta distribution)

Class 2 (Beta distribution)

Figure 4.17: Full Stop as a simple partitioning criterion

9http://www.cs.waikato.ac.nz/ml/weka/

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 81

4.3.3 Template Removal

We now investigate the correlation of the discovered properties of Web text to a

baseline strategy for template detection.

Baseline

As shown in [47], the frequency of a segment hash in the collection is a good measure

for detecting templates, especially those which are regarded static “boilerplate” text;

hashing is not very effective for rarely occurring template segments and for those

which contain dynamic, context-sensitive (e.g., time and date) or random text.

For each text segment in our corpus, we normalize the text blocks and create a

hash fingerprint as follows: First, the text is converted into lowercase. We remove

the month and week day tokens (January-December, Jan-Dec, Monday-Sunday, Mon-

Sun) as well as AM and PM and any URL found in plaintext. Then any character

except Latin letters are replaced by whitespace, which we normalize to a single space

between any remaining token. If the original text contained at least one date token,

we add $DATE$ as a special indicator token. If the original text contained at least one

URL, we add URL; the two indicators are meant to help avoiding hash conflicts of

actually different strings. Finally, we compute the SHA1 digest for the remaining

text, whose hexadecimal representation is the text’s fingerprint.

Evaluation

The above process results in 1,717,039 distinct fingerprints. Interestingly, the se-

quence of segment frequencies seems to follow Lavalette’s extension to the Zipf law

(see Section 4.3.2) of slope a1 = 0.7408 with R2 = 0.9329, RMSE= 14.2665 (unnor-

malized). The curve is depicted in Figure 4.18. This may again be due to the fact

that basically two classes of text exist in the corpus, those which are very frequent

(boilerplate templates) and those which are not frequent (non-boilerplate content).

Next, we investigate the token-level distribution of frequent templates. We

consider segments which have a fingerprint frequency of at least 10. 38,634 of

such segments exist, representing 28% of the tokens in the corpus (3.8 · 107 out

82 CHAPTER 4. TEXT STRUCTURE

of 1.37 · 108), see Table 4.6 for the most frequent ones. The corresponding token

distribution again can be fitted to a combination of two Beta distributions and

the normal distribution (Equation 4.18) with R2
. = 0.9966, RMSE = 0.0026 hav-

ing a1 = 106.6, b1 = 162.6; a2 = 5.348, b2 = 64.35; c = 0.0204, d = 0.4821;

e = 81.69, f = 2.045, µ = 23.81, σ2 = 9.264; x scores (densities) have been nor-

malized by xnorm = 31 to [0 : 1] before fitting). From d we see that the two Beta-

distributed parts are almost equally important to the distribution (48.2% vs. 51.8%),

this also correlates with the ratio between templates with full-stop πF,T and without

πN,T (47% to 53%); see Figure 4.19.

As we can see, the relative amount of detected template content in class C1 is much

higher than in class C2. πN,T represents 63% of the tokens covered by segments with

��(b) ≤ 5, whereas πF,T only represents ca. 17% of the tokens for �(b) ≥ 6 and 20% for

�(b) ≥ 9. An analysis of the remaining segments with ��(b) ≤ 5 which are not covered

by πN,T using the term-typicality measure (Table 4.5) and a random-sample manual

inspection (Table 4.7) indicates that no significant structural difference exists between

the detected boilerplate templates and the remainder of text with a text density of 5

or less. Some segments appear to be part of a headline or closing words of a letter,

which may indicate a sub-optimal segmentation caused by the BlockFusion algorithm

(with a segmentation accuracy of 80% this was expectable). I conclude that the

part of C1 with ��(b) ≤ 5 represents template text with a high probability and could

simply be removed right after the segmentation without requiring a global (fingerprint

frequency-based) strategy. The removed content represents 23% of all tokens in the

corpus and 84% of the tokens detected by the baseline strategy.

4.3.4 Discussion

Stratification of Web text

Web text exposes two prominent classes (strata) of content; the stratification can be

seen best at segment-level when analyzing the ratio between text density and token

count. Each class can be modeled using the Beta distribution with a fuzzy transition

between them following the normal distribution. The proportions of the two classes

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 83

(in tokens) roughly is 1 : 2. This classification is found when inspecting the text’s

densities (or possibly sentence lengths), not when comparing lower levels of text (e.g.

token lengths).

As we have found, the textual contents of the two classes significantly differ from

each other, in notation (sentences vs. non-sentential text) as well as in terminology.

With regard to the linguistic model, we can interpret the class with a low text density

average (C1) as a class that is of navigational nature (i.e., allowing a quick, economic

perception of provided or related content), whereas the class with a high text density

average (C2) describes content of descriptive nature (i.e., supplying the reader with

the subject matter’s details at the cost of higher syntactic complexity).

Application to Template Removal

47% of the tokens which were classified as template content by the baseline strategy

are covered by segments with a text density of ��(b) ≤ 5. The partition represents

23% of the tokens in the corpus and 84% of tokens detected by the baseline. The

obvious strategy to obtain a cleaner text collection is to segment each document using

the BlockFusion algorithm and to remove all segments which have a maximum text

density of 5. As opposed to the fingerprint baseline strategy, no site-level or global

information is necessary for this pruning operation.

Next Steps

Having found a well-grounded model for template content, it would now be interesting

to see whether machine learning techniques could further improve the classification

task, especially by adding more features for this classification, for example the number

of links in a segment. Of course, we also need to measure the impact of our template

removal strategy to search (in terms of Precision and Recall). Finally, we should

investigate how well the model matches to machine-generated spam content.

I will discuss the first two directions in Section 4.4; the spam detection problem

is regarded future work.

84 CHAPTER 4. TEXT STRUCTURE

Frequency Segment Frequency Segment Frequency Segment

33,349 Home 4,231 What’s New? 2,943 site search

27,841 Search 4,204 Skip navigation 2,941 Quantity

14,897 Contact Us 4,190 Events 2,933 Introduction

10,101 Links 4,131 Features 2,903 Not Found

9,747 Back 4,073 Publications 2,892 Quick Search

8,517 News 4,045 The document has

moved here.

2,874 Sitemap

7,937 About Us 3,949 Tell A Friend 2,791 Services

6,800 Information 3,942 Main Menu 2,771 Accessories

6,696 Site Map 3,874 Products 2,760 You are not logged in.

6,573 Login 3,669 Price: 2,717 Shopping Cart

6,433 Categories 3,560 Terms & Conditions 2,713 About

5,400 Contact 3,517 FAQ 2,634 Print this page

4,814 Advanced Search 3,465 This object may be

found here.

2,590 profile

4,775 Help 3,417 Checkout 2,586 Jump to:

4,762 Object Moved 3,344 Newsletter 2,562 Accessibility

4,760 Log In 3,308 Privacy Policy 2,551 Description

4,736 Back to top 3,231 Skip to content 2,509 Please try the following:

4,366 top 3,190 home page 2,500 Technical Information

(for support person-

nel)

4,360 Register 3,132 Reviews 2,496 Quick Find

4,237 Latest News 3,041 Navigation 2,479 Contact Details

Table 4.6: The most frequent Segments

Frequency Segment Frequency Segment

2 in Abbeyview, Dunfermline. 1 Electricians in Tyne & Wear

1 What synthetic methods are used? 1 media assistance mapping

1 How do you read Braille? 3 Home > IPOD / MP3 > Other [...]

2 ’B’ Team photo 1 Ford Mustang 67

1 Carlisle The Border City Our Price : £ 2.99 more... 2 Summer Barbecues

1 Brian Stone 11 May 05 Wheatear Bakewell [...] 1 cheaptickets airline cheapticket

1 New Congregational Chapel Independent Chapel [...] 1 Cheers, Kevan.

Table 4.7: Rare Segments with ρ�(b) ≤ 5

4.3. A DENSITOMETRIC CLASSIFICATION OF WEB TEMPLATES 85

1 10 100 1000 10000 100000

Rank

1

10

100

1000

10000

F
re
q
u
e
n
c
y

Measured

y=(x/(1-x))^-a1

Figure 4.18: Segment Frequency

0 5 10 15 20 25

Text Density

0

5x106

1x107

1.5x107

2x107

N
u

m
b

e
r

o
f

w
o

rd
s

Overall Distribution

Detected Templates

Templates without Full Stop

Templates with Full Stop

Figure 4.19: Templates detected by Fingerprinting

86 CHAPTER 4. TEXT STRUCTURE

4.4 Boilerplate Detection using

Shallow Text Features

In this section, I report on an analysis of the most popular features used for boil-

erplate detection on two corpora. I show that a combination of just two features -

number of words and link density - leads to a simple classification model that achieves

competitive accuracy. The features have a strong correspondence to stochastic text

models introduced in the field of Quantitative Linguistics. Moreover, I show that

removing boilerplate content based on these features significantly improves precision

on the BLOGS06 benchmark, at almost no cost. Finally, I give a statistical linguistic

interpretation of the observations made.

4.4.1 Related Work

Boilerplate and template detection are strongly related to the more generic problem

of web page segmentation (see Section 4.2). Approaches to boilerplate detection typi-

cally exploit DOM-level features of segments by means of handcrafted rules or trained

classifiers, or they identify common, i.e., frequently used segments or patterns/shin-

gles on a website [10, 11, 24, 28, 33, 47, 114, 123]. Using a combination of approaches,

Gibson et al. quantify the amount of template content in the Web (40%-50%) [47].

The CleanEval competition [12] aims at establishing a representative corpus with

a gold standard in order to provide a transparent and comparable platform for boiler-

plate removal experiments. The evaluated algorithms mainly apply machine learning

techniques for the classification [12]. For instance, NCleaner [41] utilizes a trained

n-gram based language model, and Victor [109] employs a multi-feature sequence-

labeling approach based on Conditional Random Fields, similar to the approach of

Gibson et al. [48]. Another CleanEval contestant, BTE, determines the largest con-

tiguous text area with the least amount of HTML tags and marks it as “full text”

[45, 44]. The heuristic is based on the observations that the tag density within boil-

erplate text is higher than within fulltext content and that main content usually is

longer than boilerplate text. A similar approach, which uses an n-gram model plus

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 87

several HTML-based heuristics, mainly focusing on extracting the main content of

news articles, has recently been presented by Pasternack et al. [93] and also evalu-

ated against CleanEval, apparently with high accuracy. We analyze a representative

set of features used by these approaches for automatic boilerplate classification.

One driving motivation for boilerplate text detection is to improve web search and

mining, similar in spirit to simple stop-word removal. Viera et al. [114] introduce an

approach based on detecting common subtrees in a few sample pages similar to [123]

and observe that clustering and classification accuracy can be improved significantly

by removing such common subtrees. Fernandes et al. [43] measure the importance

of blocks by a combination of average inverse site frequency of terms in a block, as

a measure for block commonality, and the similarity of a block with other blocks

on the same page. By weighting terms by their block importance they significantly

improve accuracy over the baseline Okapi BM25. I show that densitometric features,

which can be computed efficiently online, without resorting to global frequencies, also

significantly improves retrieval accuracy.

4.4.2 Web Page Features

Feature Levels

Many features that can be used for the classification of Web page segments have

already been described [123, 60, 48, 109]. It is generally expected that the com-

bination of several features can be used to identify text fragments as headline, full

text, enumeration, navigation, disclaimer notice etc., which can then be separated

into content and boilerplate text. The number of potential dimensions for this task

is huge: text-based strategies like n-gram models can result in tens of thousands of

relevant features, which apparently makes the classifier susceptible to overfitting to

the contents and layouts of a particular subset. In search of a domain independent,

Web-scale solution, I will avoid these token-level features altogether.

Features may be extracted at four different levels: Individual text blocks (ele-

ments), the complete HTML document (a sequence of one or more text blocks plus

structural information), the rendered document image (the visual representation as

88 CHAPTER 4. TEXT STRUCTURE

in a Web browser) and the complete Web site (i.e., the collection of documents which

share a common layout and wording). While the former two levels can apparently

be examined for each document locally, the latter two require external information,

such as images and CSS definitions for the rendering process and, in order to statis-

tically determine site-level templates and boilerplate text, a sufficiently large number

of pages from the same website.

Using features from the two external levels may be highly beneficial to the classifi-

cation accuracy iff the corresponding data is available. However, there are two major

drawbacks. First, rendering pages for classification is a computational expensive op-

eration. Second, template statistics need to be learned separately for each site, they

usually cannot be re-used for another website layout. Moreover, it is questionable

whether such models are then domain independent (or trained for the news domain

only, for instance). I therefore disregard these levels except for one reference feature:

the frequency of the text in the whole corpus. Using this feature we can identify

phrases commonly used in boilerplate.

Structural Features

Many approaches for Web page segmentation and intra-document text classification

utilize structural features in Web pages, such as individual HTML tags (headline,

paragraph, anchor text link, image, etc.) or sequences/nested subtrees of HTML tags

as well as the presence of particular CSS classes and styles. Of note, the more CSS

is used, the less important the semantics of an HTML tag becomes – it is perfectly

legal to only use DIV tags and describe the “semantics” of a particular division using

style-sheet classes. Unfortunately, CSS classes and sequences of HTML tags are

inherently site- and document-specific. Moreover, to fully interpret these rules one

has to essentially render the page.

As we want to avoid site-specific signals (which may lead to over-fitting to a

particular data set or domain) as well as a costly rendering of pages, I will only

examine the following structural features: The presence of a particular headline tag

(H1, H2, H3, H4, H5, H6), a paragraph tag (P), a division tag (DIV) and the anchor text

tag (A) as an HTML element that encloses a particular text block.

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 89

Shallow Text Features

Because boilerplate detection does not inspect text at the topical level but rather

at the functional level, I do not consider the bag of words as classification features.

An evaluation at token-level may provide skewed results that describe a particular

domain only. Instead, we examine shallow text features at a higher, domain- and

language-independent level, which have been discussed in the field of Quantitative

Linguistics: Average word length (in our definition words are white-space delimited

character sequences which at least contain one letter or digit), average sentence length

(the sentence boundaries are identified by a simple pattern-based heuristic checking

for the presence of full stops, question or exclamation marks as well as semicolons)

and the absolute number of words.

Another important source for the classification task is the local context, i.e., the

absolute and relative position of a text block in the document. If the segmentation

granularity is high, it is likely that full-text is followed by full-text and template is

followed by template. Moreover, when there is a significant amount of boilerplate text,

the main content usually is surrounded by boilerplate (header, footer, left-navigation,

right-navigation etc.), not vice versa (i.e., even if the very last text block contains a

sentence, if it is a copyright or disclaimer notice, it is regarded boilerplate).

We will also examine a few heuristic features: the absolute number of words that

either start with an uppercase letter or are completely upper-case as well as the ratio

of these words compared to the total number of words and the ratio of full stops to the

overall number of words, the number of date/time-related tokens and the number of

vertical bars “|” (these characters can sometimes be found in navigational boilerplate

text). Moreover, we also compute the link density (called anchor percentage in [48]),

as the number of tokens within an A tag divided by the total number of tokens in the

block; for this computation we do not regard the A tag as a block separator.

Besides the link density measure, I will also evaluate the text density of each

particular block. The text density measure �(b) is used as defined in Equation 4.6

(see Section 4.2.1 for details).

90 CHAPTER 4. TEXT STRUCTURE

4.4.3 Classification Experiments

Goals and Approach

The goal of this section is to analyze the introduced features for boilerplate detection.

The overall approach is simple: Web pages are segmented into atomic text blocks,

which are then annotated with features and on this basis classified into content or

boilerplate. Atomic text blocks are sequences of character data which are separated

by one or more HTML tags, except for A tags – in order to compute the link density.

To train and test classifiers for various feature combinations we start from a known

text domain: news articles on the Web. The domain is large and diverse because nu-

merous independent sources contribute to it, is readily available for analysis (e.g. from

a news search engine) and the structure is well-understood: Usually one news article

(consisting of one or more headlines, the article body and supplemental information

like fact boxes, image captions etc.) is surrounded by the standard layout of the pub-

lisher’s web site (linked headlines and teasers to other news articles, related or not,

advertisements, copyright notices etc.). In some cases, the publishers also allow users

to comment on the article, comments then appear on the page nearby the article.

For our evaluation, a representative subset of news articles from different sites with

different layouts was labeled according to the observed text types (boilerplate/content

as well as other classes like headline, user comments etc.) The labeled set is then

split into a training and a test set (using a 10-fold cross validation) and fed into a

classifier (we will use decision trees and linear support vector machines) to measure

the accuracy of the approach. To analyze domain independence, we also evaluate the

classifiers against datasets from other domains.

Datasets and Gold Standard

The evaluation is performed on two datasets, a news collection for training and testing

and a cross-domain collection for validation.

News Collection. The news collection consists of 621 manually assessed news

articles from 408 different web sites. The news articles were sampled randomly from

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 91

a larger crawl of 254,000 articles from 7,854 web sites which we acquired by moni-

toring the Google News search engine during the first half of 2008. Using a custom-

built crawler, I monitored the news headlines of six different English-speaking Google

News portals (USA, Canada, UK, South Africa, India, Australia) and four categories

(World, Technology, Sports, Entertainment) and fetched the full text HTML of the

corresponding linked articles. The ranked distribution of articles per web site appar-

ently is power-law distributed (maximum number of articles per host: 3774, average:

32.38, median: 5). The top-5 hosts are ap.google.com, afp.google.com, reuters.com,

iht.com, news. bbc.co.uk ; at the break-even between rank and frequency (200) is

en.rian.ru whereas sites like financeasia.com and photonicsonline.com appear at the

bottom. In the examined subset, the maximum number of articles per host is 12

(news.com.au) whereas the average and median are 1.52 and 1 respectively. I will use

the term “GoogleNews” to describe that subset. In the following sections we focus on

this collection except for the frequency of text blocks, which is computed from the

complete crawl.

Using a Web browser based text annotator, for each HTML page in the Google-

News set seven human assessors labeled10 sequences of text as either headline, fulltext,

supplemental (text which belongs to the article but is not fulltext, such as image cap-

tions etc.), user comments, related content (links to other articles etc.). Unselected

text is regarded not content (boilerplate). The labels were then stored at the level

of individual text blocks (i.e., any character sequence that is not interrupted by an

HTML tag, except the A tag, as described in Section 4.4.2).

The labeling was performed visually in the web browser using a custom-built

annotation tool where the assessors only had to select a particular region of text by

point-and-click. In the dataset, these block-level labels are stored as nestable HTML

SPAN-tags with a specific CSS class at the DOM level just above the elements’ text.

As they can be easily removed again from the data, this guarantees that the original

HTML structure is preserved in its entirety, as opposed to the plain-text approach

favored elsewhere [12].

10Every page was assessed only once, as no significant inter-assessor disagreement is expected in
this context.

92 CHAPTER 4. TEXT STRUCTURE

Class # Blocks # Words # Tokens

Total 72662 520483 644021

Boilerplate 79% 35% 46%

Any Content 21% 65% 54%

Headline 1% 1% 1%

Article Full-text 12% 51% 42%

Supplemental 3% 3% 2%

User Comments 1% 1% 1%

Related Content 4% 9% 8%

Table 4.8: Class-Distribution in the GoogleNews set

The distribution of classes at three different levels is depicted in Table 4.8; we

count the number of text blocks, words and unfiltered tokens (including non-words)

separately. The raw data and the gold standard of the annotated subset of Google-

News are available online.11

Cross-Domain Collection. The CleanEval collection is a benchmark corpus

created particularly for the eponymous boilerplate removal competition of the ACL

Web-as-Corpus community [12]. The collection consists of 798 raw HTML pages ran-

domly sampled from Web search engines, from which 733 pages have already been

manually assessed and split into a training set of 58 documents and a test set of 675

documents. The assessment was performed as follows. After converting the HTML

document into plain text, all boilerplate text has manually been removed and remain-

ing text has been structurally labeled as paragraph, headline or list element. The raw

data and the gold standard are available online.12 Unfortunately, because the assessors

worked with plain text that has been derived from a Browser-rendered representation

of the documents, the gold standard cannot directly be used for an analysis at HTML

level. I will nevertheless evaluate my approach against this benchmark to allow a

comparison to other CleanEval contestants.

11L3S-GN1 collection http://www.L3S.de/∼kohlschuetter/boilerplate
12http://nlp.fi.muni.cz/∼xpomikal/cleaneval/

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 93

Evaluation

Training and Testing on GoogleNews. As we see from Table 4.8, the class

distribution is strongly dominated by Boilerplate and Article Full Text ; the other

four classes quantitatively play a minor role. The class User Comments was only

assessed to quantify the amount of comments text compared to the remaining full

text; for the purpose of boilerplate detection we treat comments as main content.

Because of the strongly skewed distribution of the initial six text classes, we evaluate

a two-class problem (boilerplate vs. content) and a four-class problem (boilerplate

vs. full-text/comments, headline, supplemental) separately. The four-class problem

generally is more difficult to solve, so we may expect lower accuracies here.

Using Weka, we examine the per-feature information gain and evaluate machine-

learning classifiers based on Decision Trees (1R and C4.8) as well as Support Vector

Machines (SMO in particular). We measure classification accuracy by Precision,

Recall, F1-Score, False Positive Rate and ROC Area under Curve (AuC); all scores

are normalized based on the number of words in a block, i.e., large blocks are weighted

higher than small blocks. Figure 4.20 shows the features in decreasing order of their

information gain.

Generally, very simple features like Relative Position, Average Word Length and

Number of Words of the current block appear to be strong indicators for class mem-

bership. For the sake of clarity, let us test the classification accuracy of these highly

ranked features separately. Interestingly, the text-flow capturing variants of these

features (Number of Words Quotient, Text Density Quotient (TDQ), Relative Posi-

tion), which relate the value of the current block to the previous one, provide the

highest information gain, indicating that the intra-document context plays an impor-

tant role; this is also substantiated by the classification results. Table 4.9 presents the

evaluated algorithms and the achieved accuracies along with the number of features

(dimensions) used and the number of leaves for all decision-tree-based algorithms.

The classification baseline is the ZeroR classifier, which in our case always predicts

Article Full-text (4-class problem) and Content (2-class problem). Due to the class

weights this results in an ROC area-under-curve of less than 50%.

94 CHAPTER 4. TEXT STRUCTURE

(C) = current block, (P) = previous block, (N) = next block

10 20 30 40 50 60
Feature

0

0.1

0.2

0.3

0.4

0.5

0.6

In
fo

rm
at

io
n

G
ai

n

Text Density Quotient (P/C) 0.508

Number of Words (C) Link Density (C) Text Density (C) Start-Uppercase Ratio (C)Avg. Word Length (C) Full-Stop Ratio (C)
(="F.S.R.") Text Density Delta (P/C)

Num. Words (N) Link Density (P) Text Density (N) Num.Words (P) Text Density (P)
Link Density (N) F.S.R. (P) F.S.R. (N) Avg. Word Len. (N) Avg. Word Len. (P)Start-Uppercase Ratio (P) Relative Position (C) Start-Uppercase Ratio (N)

Avg. Sentence Length (C)
<P> Tag (C) <P> Tag (N)

<P> Tag (P)
Avg. Sentence Length (P) Avg. Sentence Length (N)

Text Frequency (C)
Text Frequency (P) Num Start-Uppercase (C)Full-Uppercase Ratio (C)

Num Start-Uppercase (N) Num Start-Uppercase (P)Text Frequency (N)
Full-Uppercase Ratio (N) Full-Uppercase Ratio (P)Absolute Position (C)

Vertical Bars, Date Tokens, <H*>, <DIV>...

Number of Words Quotient (P/C) 0.585

(a) 2-class problem

10 20 30 40 50 60
Feature

0

0.2

0.4

0.6

0.8

In
fo

rm
at

io
n

G
ai

n

Text Density Quotient (P/C) 0.626

Relative Position (C) Avg. Word Length (C) Number of Words (C) Start-Uppercase Ratio (C)
Text Density(C) Fullstop Ratio (C)
Link Density (C)

Avg. Word Len. (N) Avg. Word Len. (P) Num.Words (N) Num.Words (P)
Link Density (P) Text Density (P) Text Density (N) F.S.R. (P) F.S.R. (N)Link Density (N) Start-Uppercase Ratio (N)

Avg. Sentence Length (C) <P> Tag (C) <P> Tag (N)
<P> Tag (P)

Avg. Sentence Length (P) Avg. Sentence Length (N)
All-Uppercase Ratio (C) Text Frequency (P)Text Freq. (C)Num UpperCase (C)

Num UpperCase (N) Num Uppercase (P)Text Frequency (N)Absolute Position (C)
All-Uppercase R. (P) All-Uppercase R. (N)

<H*> Tags, Vertical Bars, <DIV> Tags (P/C/N)

Text Density Delta (P/C)

Number of Words Quotient (P/C) 0.746

(b) 4-class problem

Figure 4.20: Per-Feature Information Gain for the GoogleNews collection

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 95

The 1R classifier determines the feature with the least error rate and partitions

the corresponding numeric values to derive simple classification rules (the number of

partitions equal the number of leaf nodes in a decision tree). 1R over all features

resulted in a simple rule with an acceptable accuracy: Any block with a text density

less than 10.5 is regarded boilerplate. I analyzed the 1R partitioning also for the

features Average Sentence Length, Average Word Length, Link Density and Number

of Words and got similar (slightly lower) accuracies. However, Average Word Length

is fairly unsuitable for classification, as 1R generates many partitions between average

word length 4 and 5 which alternate between Boilerplate and Article Content.

We get promising results from the C4.8-based decision-trees. In order to avoid

overfitting, the algorithm has been configured to only consider leaves matching at

least 1000 instances. By using all the 67 available features (including features from

the previous and next blocks) we get a remarkable ROC AuC of 98% for the 2-class

problem and 96.9% for the 4-class problem; we also achieve similar results using an

SMO support-vector machine with a linear kernel. Moreover, by applying reduced-

error pruning I was able to simplify the decision tree to only use 6 dimensions (2

features each for current, previous and next block) without a significant loss in accu-

racy (ROC AuC 96.9% for the 2-class problem), see Algorithms 4.2 and 4.3.

Application to CleanEval and Re-Validation. To test the domain-

independence of the determined classifiers, I applied the two simplified C4.8 classifiers

to the CleanEval collection. I evaluated the 2-class problem (boilerplate vs. content

of any kind, called TO in CleanEval) for the classifier that has been trained for the

GoogleNews collection and one that has been trained on the CleanEval training set.

In the latter case, the decision rule was even simpler: accept all blocks that have a

minimum text density of 7 and a maximum link density of 0.35.

Because the CleanEval collection only provides assessments and the algorithmic

output at text-level, we cannot directly reuse the setup we used for the GoogleNews

evaluation. The CleanEval initiative provides their own accuracy measure which is

96 CHAPTER 4. TEXT STRUCTURE

A
lg
o
r
it
h
m

D
im

P
r
e
c
is
io
n

R
e
c
a
ll

F
1
-S
c
o
r
e

F
P

R
a
t
e

R
O
C

A
u
C

L
e
a
v
e
s

Z
eroR

(b
aselin

e;
pred

ict“C
on

ten
t”)

0
40.7

35.0
63.8

59.2
49.7

44.0
63.8

59.2
49.0

48.9
-

-
O
n
ly

A
vg.

S
en

ten
ce

L
en

gth
1

78.5
72.4

67.9
66.6

68.0
65.2

21.4
22.3

73.3
72.1

2
4

C
4.8

E
lem

en
t
F
req

u
en

cy
(P

/C
/N

)
3

77.7
70.9

76.2
73.2

73.8
69.8

38.3
34.7

70.9
69.8

9
4

O
n
ly

A
vg.

W
ord

L
en

gth
1

80.2
77.4

77.0
74.8

77.5
73.5

19.5
20.0

78.8
77.4

2
178

O
n
ly

N
u
m
b
er

of
W
ord

s
@
15

1
86.7

80.9
86.7

84.9
86.7

82.8
15.5

15.5
85.6

84.7
2

2

O
n
ly

L
in
k
D
en

sity
@
0.33

1
88.5

81.7
87.8

83.8
87.4

81.4
19.2

22.5
84.3

80.7
16

2

1R
:
T
ext

D
en

sity
@
10.5

1
87.8

81.4
87.9

85.4
87.9

83.4
14.3

15.3
86.8

85.0
2

2

C
4.8

L
in
k
D
en

sity
(P

/C
/N

)
3

91.1
83.7

91.1
87.4

91.0
85.4

12.1
14.3

94.2
90.8

37
32

C
4.8

N
u
m
b
er

of
W
ord

s
(P

/C
/N

)
3

91.1
87.6

90.8
89.3

90.9
87.6

8.9
1.0

94.7
94.6

40
48

C
4.8

A
ll
L
o
cal

F
eatu

res
(C

)
23

92.9
88.7

92.9
89.9

92.9
88.7

8.7
10.6

96.6
95.7

102
72

C
4
.8

N
u
m
W

o
r
d
s
+

L
in
k
D
e
n
s
it
y
,
s
im

p
lifi

e
d

6
9
2
.2

8
4
.8

9
2
.2

8
8
.9

9
2
.2

8
6
.8

1
0
.1

1
2
.1

9
5
.7

9
3
.3

8
7

C
4
.8

T
e
x
t
+

L
in
k
D
e
n
s
it
y
,
s
im

p
lifi

e
d

6
9
2
.4

8
4
.7

9
2
.4

8
8
.8

9
2
.4

8
6
.7

8
.5

1
1
.4

9
6
.9

9
3
.2

8
1
2

C
4.8

A
ll
L
o
cal

F
eatu

res
(C

)
+

T
D
Q

25
92.9

89.2
93.0

90.3
92.9

89.1
8.3

9.4
97.2

96.1
109

78

C
4
.8

T
e
x
t
+
L
in
k
D
e
n
s
it
y
(
P
/
C
/
N
)

6
9
3
.9

8
9
.3

9
3
.8

9
1
.0

9
3
.9

8
9
.5

6
.7

8
.4

9
7
.6

9
6
.1

5
1

4
5

C
4.8

A
ll
L
o
cal

F
eatu

res
(P

/C
/N

)
64

95.0
91.3

95.0
92.4

95.0
91.4

5.5
7.1

98.1
96.7

105
98

C
4
.8

A
ll
L
o
c
a
l
F
e
a
t
u
r
e
s
+

G
lo
b
a
l
F
r
e
q
.

6
7

9
5
.1

9
1
.5

9
5
.0

9
2
.5

9
5
.1

9
1
.6

5
.4

6
.8

9
8
.0

9
6
.9

9
9

1
2
5

S
M
O

A
ll
L
o
cal

F
eatu

res
+

G
lob

al
F
req

.
67

95.3
92.4

95.3
93.2

95.3
91.9

5.4
6.8

95.0
94.0

-
-

T
ab

le
4.9:

W
eka

C
lassifi

cation
A
ccu

racies
for

th
e
G
oogle

N
ew

s
C
ollection

(2-class/4-class
p
rob

lem
)

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 97

Algorithm 4.2 Densitometric Classifier
currLinkDensity <= 0.333333

| prevLinkDensity <= 0.555556

| | currTextDensity <= 9

| | | nextTextDensity <= 10

| | | | prevTextDensity <= 4: BOILERPLATE

| | | | prevTextDensity > 4: CONTENT

| | | nextTextDensity > 10: CONTENT

| | currTextDensity > 9

| | | nextTextDensity = 0: BOILERPLATE

| | | nextTextDensity > 0: CONTENT

| prevLinkDensity > 0.555556

| | nextTextDensity <= 11: BOILERPLATE

| | nextTextDensity > 11: CONTENT

currLinkDensity > 0.333333: BOILERPLATE

Algorithm 4.3 NumWords Classifier
currLinkDensity <= 0.333333

| prevLinkDensity <= 0.555556

| | curr_numWords <= 16

| | | next_numWords <= 15

| | | | prev_numWords <= 4: BOILERPLATE

| | | | prev_numWords > 4: CONTENT

| | | next_numWords > 15: CONTENT

| | curr_numWords > 16: CONTENT

| prevLinkDensity > 0.555556

| | curr_numWords <= 40

| | | next_numWords <= 17: BOILERPLATE

| | | next_numWords > 17: CONTENT

| | curr_numWords > 40: CONTENT

currLinkDensity > 0.333333: BOILERPLATE

based upon a weighted Levenshtein Edit Distance at token-level [12]. The computa-

tion is expensive and also not essential for this task. I confirmed that the scores can

be approximated well with the much simpler bag-of-words token-level F1 score (like

in the GoogleNews setup, except that class weights are not taken into account).

As our scores therefore slightly differ from the ones in [12], I re-evaluated the

available results of three CleanEval contestants (BTE, Victor, NCleaner) and also

added the heuristics by Pasternack et al. [93] (in two flavors, the unigram model

trained on CleanEval and the trigram model trained on a news corpus) to the set of

competitors, as well as a baseline (“Keep all text”) and a classifier solely based on

the feature with the highest information gain: number of words; we mark every block

with at least 10 words as content.

The average (µ) and median (m) as well as the ranked accuracy for each evaluated

strategy are depicted in Figure 4.21a. We see that the two flavors of the Pasternack

heuristic drastically differ in terms of accuracy. We assume that the algorithm needs

proper training to succeed for a particular corpus, and the trigram model from the

news domain was not generic enough for the CleanEval dataset.

98 CHAPTER 4. TEXT STRUCTURE

Additionally, to understand how far heuristic additions could further improve

the classification, I extended the two decision tree classifiers downstream with hand-

crafted rules. In one extension, we only take the content block with the highest

number of words (Largest Content Filter). In another extension, we add rules that

are specific for news (Main Content Filter): It extends Largest Content Filter by

removing any text that is below a clearly identifiable comments section (a block solely

containing one out of 11 indicator strings like “User comments:” etc.) and above a

clearly identifiable title (derived from the HTML document’s TITLE value). As we

can see from Figure 4.21a, for the CleanEval collection these modifications resulted

in much worse results than the baseline. On the other hand, the very simple strategy

to keep all blocks with at least 10 words (as well as our NumWords/LinkDensity

classifier) performed just as good as the Pasternack unigram and the NCleaner setups

that have specifically been trained for CleanEval.

Ultimately, we see (Figure 4.21a) that basically keeping all text – i.e., not removing

anything – would be a good strategy, being only marginally worse than the apparently

best solution (BTE)! This leads to the question whether there were failures in the

assessment process, whether the collection is comparable to the GoogleNews collection

or at all appropriate for the purpose of boilerplate detection.

I repeated this evaluation for the GoogleNews collection, computing accuracy

scores in the same way using the same algorithms (BTE as the alleged winner for

CleanEval, Pasternack Trigrams as a supposedly mediocre strategy and the algorithms

introduced here). For the Pasternack algorithm, I used the Web service provided by

the authors; unfortunately, there was no unigram implementation available. Figure

4.21b shows the corresponding results.

We see that the baseline for GoogleNews is much lower than for CleanEval; all

tested algorithms perform differently and are usually better than the baseline, ex-

cept for the Pasternack strategy, which under-performed in a few cases. Overall its

performance is lower than expected, given the fact that it has been trained on news

articles. I can only assume a bug in their implementation or high overfitting towards

a particular subset of news sites. The strategy to just keep everything with a mini-

mum of 10 words did not work very well either, although better than the Pasternack

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 99

0 100 200 300 400 500 600
Documents

0

0.2

0.4

0.6

0.8

1

To
ke

n-
Le

ve
l F

-M
ea

su
re

Optimum
µ=91,11%; m=97.41% BTE
µ=90.41%; m=97.03% Victor
µ=90.10%; m=96.23% Pasternack Unigrams (CleanEval)
µ=90.08%; m=95.52% Keep Blocks with >=10 Words
µ=89.86%; m=97.18% My NumWords/LinkDensity Classifier
µ=89.41%; m=95.66% NCleaner
µ=89.24%; m=95.11% Baseline (Keep everything)
µ=79.80%; m=94.91% NumWords/LinkDensity + Main Content Filter
µ=77.76%; m=93.34% Densitometric Classifier + Main Content Filter
µ=72.10%; m=93.94% Pasternack Trigrams, trained on News Corpus
µ=68.30%; m=79.81% Densitometric Classifier + Largest Content Filter
µ=67.81%; m=76.89% NumWords/LinkDensity + Largest Content Filter

(a
)
C
le
an

E
va
l
co
rp
u
s

0 100 200 300 400 500 600
Documents

0

0.2

0.4

0.6

0.8

1

To
ke

n-
Le

ve
l F

-M
ea

su
re

Optimum
µ=95.93%; m=98.66% NumWords/LinkDensity + Main Content Filter
µ=95.62%; m=98.49% Densitometric Classifier + Main Content Filter
µ=92.17%; m=97.65% NumWords/LinkDensity + Largest Content Filter
µ=92.08%; m=97.62% Densitometric Classifier + Largest Content Filter
µ=91.08%; m=95.87% NumWords/LinkDensity Classifier
µ=90.61%; m=95.56% Densitometric Classifier
µ=89.29%; m=96.28% BTE
µ=80.78%; m=85.10% Keep everything with >= 10 words
µ=78.65%; m=87.19% Pasternack Trigrams, trained on News Corpus
µ=68.30%; m=70.60% Baseline (Keep everything)

(b
)
G
oo

gl
eN

ew
s
co
rp
u
s

0 100 200 300 400 500 600
Documents

0

0.2

0.4

0.6

0.8

1

To
ke

n-
Le

ve
l F

-M
ea

su
re

Optimum
µ=95.93%; m=98.66% NumWords/LinkDensity + Main Content Filter
µ=92.08%; m=97.62% Densitometric Classifier + Largest Content Filter
µ=91.08%; m=95.87% NumWords/LinkDensity Classifier
µ=81.51%; m=92.86% Readability (June 9, 2010)
µ=80.78%; m=85.10% Keep everything with >= 10 words
µ=68.30%; m=70.60% Baseline (Keep everything)
µ=58.70%; m=93.75% Apple Safari 5.0 (6533.16)

(c
)
G
oo

gl
eN

ew
s
(c
td
.)

F
ig
u
re

4.
21

:
P
er
fo
rm

an
ce

of
B
oi
le
rp
la
te

D
et
ec
ti
on

S
tr
at
eg
ie
s

100 CHAPTER 4. TEXT STRUCTURE

trigrams and, on average, improves the baseline by 18.3%. BTE is on par with the

two simplified classifiers (using text density and number of words respectively); it is

a little bit better for the median but worse on average. The classifier based on the

number of words per block and its link density yields improve the baseline by 33.3%.

In the end, the use of the two heuristic filters (Largest/Main Content Filter) can

further improve the detection accuracy for the GoogleNews dataset to an almost

perfect average F1 score of 95.93% (this is a 40% relative improvement over the

baseline). Even though we see that these algorithms failed for CleanEval, we expect

them to work generically for the news domain. On the other hand, we see that both,

BTE and our two simplified classifiers work quite well for both collections.

Of note, our classifier is far more efficient than BTE. It runs in linear time, whereas

BTE has a quadratic upper bound. Furthermore, it can return more than a single

piece of text. BTE’s assumption that only one block (the largest having the least tag

density) completely covers the main content seems not to hold for all cases: compared

to the densitometric classifier, BTE only achieves a suboptimal accuracy in our news

experiment. This discrepancy may be due to the fact that the CleanEval collection

actually contains less boilerplate text than all other collections we examined (only

very little words are in blocks with a text density lower than 11, see Figure 4.22).

As a last remark, I also compared my approach against two heuristics that have

not been discussed in the academia yet but are recently becoming popular, the“Read-

ability” browser bookmarklet13 and Apple’s Safari Reader14 (which is based upon a

modified version of Readability). Both techniques indeed perform boilerplate removal,

particularly for re-rendering the Web page’s text to improving reading ease. As shown

in Figure 4.21c, these approaches are surprisingly subpar compared to all other algo-

rithms except Pasternack’s trigram algorithm. Of note, Safari Reader at all delivered

in only about two third of all documents results; in all other cases the functionality

was marked as “not available”. Obviously, there is much room for improvement.

13http://lab.arc90.com/
14http://apple.com/safari

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 101

5 10 15 20

Text Density

0

100000

200000

300000

400000
N

u
m

b
e

r
o

f
W

o
rd

s

Figure 4.22: CleanEval Text Density Distribution

4.4.4 Quantitative Linguistic Analysis

Text Density vs. Number of Words

In all cases but one, the classifier using Number of Words per Block performed slightly

better than the classifier using Text Density. Also it seems sufficient for a good

classification. To get a better understanding why this strategy performs so well, we

need to analyze the created decision tree rules (see Algorithms 4.2 and 4.3). We see

that the two classifiers do not differ for the link density-specific rules; if the text block

consists of more than 33% linked words, it is most likely boilerplate, unless the block

is surrounded by long/dense text blocks.

Actually it is likely that both measures, text density as well as number of words

describe the same fundamental principle of text, which however is more visible through

text density than through the plain number of words. As the absolute number of words

theoretically is unbounded (the longest block in the GoogleNews collection consisted

of 1122 words), yet dominated by boilerplate (79% of all blocks, see table 4.8), a

straight visual distinction between boilerplate and content is hard to spot (Figure

4.23; the “content” part is magnified for clarity). Also, the rules generated for the

number-of-words classifier are difficult to interpret. It is unclear, for instance, why

102 CHAPTER 4. TEXT STRUCTURE

10 20 30 40 50 60

Number of Words

0

5000

10000

15000

20000

N
u

m
b

e
r

o
f

B
lo

c
k
s

Not Content

Content

0 10 20 30 40 50 60

0

200

400

600

800

1000

Content

Figure 4.23: Number of Words Distribution (GoogleNews)

everything exactly above 40 words is regarded full text and not already at 30 etc.

However, if we look at the very same data using the text density metric (rounding the

density to the nearest integer [�(b)]), we can clearly identify three modes of a mixed

distribution (see Figure 4.24), which are represented in the classifier.

In Section 4.3 I showed for a representative Web corpus (Webspam-UK 2007,

ham-part) that the distribution of words in blocks with a particular text density

can effectively be modeled as a combination of two beta distributions and a normal

distribution. Each beta distribution is assumed to represent one class of text, “full-

text” content (complete sentences) and “template text” (incomplete sentences); the

normal distribution acts as a fuzzy transition between them. In fact, I was able to

apply the same model to the GoogleNews collection data, with a very high goodness

of fit (R2 = 0.997, RMSE = 0.0213). As opposed to my initial results on an unlabeled

corpus, we now have manually labeled annotations, so this hypothesis can finally be

examined at a higher level of confidence.

Indeed, the main article’s full text, as well as the user comments and, to some

degree, supplemental text, can basically be described as blocks with a text density

� 10 (in fact, the 1R algorithm suggested this split, achieving a ROC AuC of 86.8%).

The remaining blocks with a lower density almost completely describe boilerplate

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 103

0 5 10 15 20

Text Density

0

20000

40000

60000

80000

N
u

m
b

e
r

o
f

W
o

rd
s

Not Content (Plain Text)

Not Content (Anchor Text)

Related Content

Headlines

Supplemental Text

User Comments

Main Article

Complete Fit

Functional Text Class (Beta D.)

Descriptive Text Class (Beta D.)

Fuzzy Class Transition (Normal D.)

Linked Text

Figure 4.24: Text Density Distribution by class (GoogleNews)

text (headlines appear at text density 4 and higher; some “supplemental text” may

expose an even lower text density). Moreover, the fuzzy class seems to be strongly

dominated by linked text (hypertext), which might explain why the addition of the

link density feature significantly improves the classification accuracy.

Obviously, the text density measure helps us to visualize the mixed distribution

in a compact way (much better than the absolute number of words – compare Figure

4.23), even though it appears that for the actual purpose to separate and to classify

the two types of text (template and fulltext) the absolute number of words per block

are sufficient, and thus to be preferred (Occam’s Razor).

Actually we can approximate the density distribution for visualization purposes

solely using the number of words as follows. From the definition of text density

(Equation 4.6) we see that two cases are differentiated: wrapped text (i.e. covering

more than one line) and unwrapped text (i.e. only one line). If the line is wide enough

(we used 80 characters), all densities below a certain number of words λ describe one-

line blocks (except for the unusual case where blocks contain very long words), or

combinations thereof. In order to reach a line wrap boundary, a certain number of

words need to be written, and thus a large text density score indicates a larger number

of words. In fact, the difference of the number of words contained in blocks with at

104 CHAPTER 4. TEXT STRUCTURE

least λ = 11 words (345.175) to the number of words contained in blocks with a text

density of at least 11 (358.428) is insignificant (3.8%).

Stochastic Text Model

The fairly clear separation between short boilerplate and longer content blocks with

respect to text density suggests a simple generative process: First, let us find a

sufficiently good model for the overall process of generating words. We can see the

creation process of text blocks as a Shannon random writer [105].

Imagine the author decides with some probability to write a word or to finish the

current block and proceed to the next one. This essentially is a first-order Markov

process with two states, T (add another word to the text) and N (skip to the next

block); see Figure 4.25a. The probability of staying in the same state is always the

complementary probability of moving to the other state. As we can regard subsequent

newlines as a single operation, we have PN(N) = 0 and thus PN(T) = 1 (after skipping

to a new block, always at least one word is written).

The state transitions from T can be modeled as a simple Bernoulli trial. Consider

the transition to N as success (p) and the emission of another word as failure (1− p).

The probability that there are k failures (for k = 0, 1, 2, 3, ...) before the first success

is Pr(Y = k) = (1− p)kp.

Coming from state N means we already have emitted one word, so the actual

probability for emitting x words (k − 1 failures) in the simple scenario then is

Pr(Y = x) = (1− p)x−1 · p = PT (T)
x−1 · PT (N) (4.20)

which is the 1-displaced geometric distribution; it has extensively been discussed in

the field of Quantitative Linguistics [4]. While there are more sophisticated, better

matching models for describing this process, the geometric distribution is a good

starting point, particularly at corpus level where the individual variations of certain

authors become indistinct.

Applied to the GoogleNews corpus, for PT (N) = 0.3145 we achieve a goodness of

fit of R2
adj = 96.7% with a root mean square error (RMSE) of 0.0046.

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 105

Let us now add the two different types of text that we have discovered in our

evaluation, short and long text. We extend the simple random writer by transforming

the state T into two separate states S (print a word of short text) and L (print a

word of long text), see Figure 4.25b. As L and S replace T , the probabilities to arrive

at L or S coming from N must sum up to PN(T) = 1. Once in the state L or S,

we again have a Bernoulli trial: either continue producing words (all of long or short

text respectively, no intra-block mixtures) or terminate and go back to state N . As

we expect from short text to terminate quickly after a few words and from long text

to terminate after a higher number of words, we require that PS(N) � PL(N).

In this mixed scenario, the probability density distribution therefore is:

Pr(Y = x) = PN(S) ·
�
PS(S)

x−1 · PS(N)
�
+

+PN(L) ·
�
PL(L)

x−1 · PL(N)
�

(4.21)

Applying this model to the GoogleNews data results in a higher goodness of

fit of R2
adj = 98.81% with RMSE = 0.0027 for PN(S) = 1 − PN(L) = 0.7586,

PS(N) = 0.3968 and PL(N) = 0.04369, which supports our assumption of the mix-

ture, even if the geometric distribution only is a rough approximation. As the geo-

metric distribution’s expected value is defined as E(x) = p−1 (short text has its mean

at 0.3968−1 = 2.52, long text at 0.04369−1 = 22.89) and the determined probability

PN(S) = 76% is close to the assessed 79% (amount of blocks classified as boilerplate,

see Table 4.8), we may attribute a large extent of short text to the Boilerplate class

and most long text to the Content class (see Figure 4.23).

Linguistic Interpretation

The observed compound distribution can be regarded not of arbitrary nature but of

a stochastic, quantitative linguistic one, implying that actually two different classes

(strata) of text are embedded in the Web content. In the field of Quantitative Lin-

guistics it is generally assumed that text creation process can be modeled as urn trials

at the level of various linguistic units such as phoneme, word, sentence, text segment

etc. and for several shallow features such as frequency, length, repeat rate, polysemy

106 CHAPTER 4. TEXT STRUCTURE

and polytextuality [115]. Even though it is still unclear by which exact parameters

this process is driven, we can model it as a Bernoulli process. Through empirical

experiments and simple stochastic concepts, I have shown that this model can be

applied to describe the process of content creation on a Web page.

Nstart T

PN (T)

PT (T)

PT (N)

(a) Simple

Nstart

L

S

(b) Stratified

Figure 4.25: Random Writer Models

While we cannot explain the reasons for choosing short or long text at some

particular point in any given document, we can interpret the statistically observed

behavior at corpus level (which is the level of granularity we are interested in, see the

problem statement in Section 1.2): When composing a Web page, an author chooses

with some probability whether she wants to write a sequence of actual full sentences

or navigational elements. The choice surely depends on the context (hence we observe

an improvement when the features from the previous and next block are taken into

account, and this is why the geometric distribution does not fit perfectly). The use

of full sentences usually means the author wants to make a more or less complex

statement which needs grammatical constructs, long explanations etc. Extensive

coding (= many bits) is required because the author (sender) does not expect that

the audience (receivers) understand the information without explanation. This kind

of text (long text) therefore can be regarded of descriptive nature (i.e., supplying the

reader with the subject matter’s details at the cost of higher syntactic complexity, just

like the full text of this thesis). The second kind of text (short text), grammatically

incomplete or simple sentences, consisting of only a few words, is used whenever a

quick, economic coding is possible, i.e. when the audience is expected to perceive and

understand the encoded information without large effort (= few bits), e.g., “Contact

us”, “Read more”. Such text is often used for headlines and navigational text (one

kind of boilerplate). We can therefore regard the latter form of text of functional

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 107

nature. While there are noticeable exceptions, it appears that, at least for the Web,

there is a strong correlation between short text and boilerplate text as well as between

long text and content text, which explains why the simple classification works so well.

These two strata of text can be visualized in a compact form through the text

density measure because it is mostly irrelevant how many words an author spends

within an individual text. As soon as she writes complete, non-trivial sentences

(i.e., more than ca. 10 words in English) the produced text most likely falls into

the descriptive class. Text density exactly provides this value-limiting boundary.

By word-wrapping text at a predetermined line width (which is dependent upon

the average sentence length in characters) and dividing the number of words by the

number of lines, we literally “construct” this two-fold distribution and thus can better

visualize what was already present in the raw number of words. An incomplete

sentence will never wrap to more than one line (in this case text density equals to the

number of words), whereas text consisting of complete sentences will always wrap,

be averaged to the “typical” number of words in a sentence and encoded as a density

value of a rather limited range. This limited range can then be better visualized

histographically, as demonstrated.

To the best of my knowledge, the distinction between short and long text has not

been discussed in the context of Quantitative Linguistics so far. This is probably

because the amount of short text in the previously analyzed “offline works” is almost

negligible (this also holds15 for the present paper, see Figure 4.26a, or Project Guten-

berg’s online version of Goethe’s Faust16 4.26c). On the other hand, we may find

higher amounts of short text in brochures, tabloids etc, as for example in a travel cat-

alog17 (see Figure 4.26b). An in-depth analysis of such content needs to be conducted

as future work.

15The texts have been converted to HTML in order to compute text density as defined here.
16http://www.gutenberg.org/files/14591/14591-h/14591-h.htm
17Thomson Summer Collection 2011, http://www.thomson.co.uk/

108 CHAPTER 4. TEXT STRUCTURE

5 10 15 20
Text Density

0

5000

10000

15000

20000

N
um

be
r o

f W
or

ds

(a) This Thesis

5 10 15 20
Text Density

0

20000

40000

60000

80000

N
um

be
r o

f W
or

ds

(b) an English Travel Catalog (PDF)

5 10 15 20
Text Density

0

2000

4000

6000

8000

10000

12000

N
um

be
r o

f W
or

ds

FAUST

I've studied now Philosophy
And Jurisprudence, Medicine,—
And even, alas! Theology,—
From end to end, with labor keen;
And here, poor fool! with all my lore
I stand, no wiser than before:
I'm Magister—yea, Doctor—hight,
And straight or cross-wise, wrong or right,
These ten years long, with many woes,
I've led my scholars by the nose,—
And see, that nothing can be known!
That knowledge cuts me to the bone.
I'm cleverer, true, than those fops of teachers,
Doctors and Magisters, Scribes and Preachers;
Neither scruples nor doubts come now to smite me,
Nor Hell nor Devil can longer affright me.

For this, all pleasure am I foregoing;
I do not pretend to aught worth knowing,
I do not pretend I could be a teacher
To help or convert a fellow-creature.
Then, too, I've neither lands nor gold,
Nor the world's least pomp or honor hold—
No dog would endure such a curst existence!
Wherefore, from Magic I seek assistance,
That many a secret perchance I reach
Through spirit-power and spirit-speech,
And thus the bitter task forego
Of saying the things I do not know,—
That I may detect the inmost force
Which binds the world, and guides its course;
Its germs, productive powers explore,
And rummage in empty words no more!

O full and splendid Moon, whom I
Have, from this desk, seen climb the sky
So many a midnight,—would thy glow
For the last time beheld my woe!
Ever thine eye, most mournful friend,
O'er books and papers saw me bend;
But would that I, on mountains grand,
Amid thy blessed light could stand,
With spirits through mountain-caverns hover,
Float in thy twilight the meadows over,
And, freed from the fumes of lore that swathe me,
To health in thy dewy fountains bathe me!

(c) Goethe’s Faust (English translation by Bayard Taylor)

Figure 4.26: Text Density Distributions

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 109

4.4.5 Retrieval Experiments

Setup. In this section we quantify the impact of boilerplate detection to search. The

obvious assumption here is that boilerplate not only is another sort of text, it may

also deteriorate search precision, particularly in those cases where keywords match

“related articles” text or other keywords that are non-relevant to the actual main

content. To evaluate this hypothesis for a representative scenario, we examine yet

another domain of Web documents: Blogs.

Blogs are particularly relevant for this task because we may expect many links

from one blog page to other blog entries, being topically or temporally related, and

those links often include headlines and teaser texts of the referenced item. Moreover,

a TREC reference collection already exists, containing 3 million permalink documents

retrieved from 100.000 different feeds, along with test queries (consisting of one to

five words each) and document assessments at (TREC’06 Blog Track [91]) which were

mainly used for measuring opinion retrieval performance. They used graded relevance

scores (non-relevant, topically relevant and three levels indicating positive, negative

and mixed opinions).

I will use this collection for the evaluation. I indexed the BLOGS06 collection

using the Lucene IR library. Separate parallel indexes were created for document

blocks with a particular number of words or a particular text density; this allows

a selection of permitted ranges at runtime without reindexing. If our assumption

holds, one can expect an improvement of the search precision when only words of the

descriptive (= long) text class are considered for search.

Evaluation. We perform 50 top-k searches (with k = 10) for the queries defined in

the TREC’06 Blog Track and evaluate Precision at rank 10 (P@10; binary relevance as

in the TREC’06 benchmark results) as well as NDCG at rank 10 (graded relevancies

as in the TREC’06 assessments). Using the standard Lucene ranking formula we

perform 50 searches from queries predefined in the TREC’06 Blog Track and count

the number of documents in the top-10 results that have been marked relevant by

the TREC assessors. We repeatedly issue the queries for a sliding minimum text

density between 1 and 20 and a sliding minimum number of words from 1 to 100

respectively (a minimum of 1 word equals to the baseline). As we only remove short

110 CHAPTER 4. TEXT STRUCTURE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Threshold

0

0.1

0.2

0.3

0.4

0.5

P
re

c
is

io
n

 @
1

0

Minimum Number of Words

BTE Classifier

Baseline (all words)

Minimum Text Density

Word-level densities (unscaled)

Figure 4.27: BLOGS06 Search Results

text, there is no need for a maximum bound. We benchmark the performance of the

BTE algorithm for this task and compare P@10 as well as NDCG10 to our solution.

Finally we compare the results to the P@10 scores reported from TREC’06.

Using the sliding minimum Text Density we can significantly improve precision

(the baseline results in P@10= 0.18; NDCG10 = 0.0985): At the minimum threshold

of 14 (with slightly lower values for the surrounding densities between 11 and 20)

we get P@10 = 0.32 and NDCG10 = 0.1823, which is almost equal to the scores

of the BTE algorithm (P@10 = 0.33 and NDCG10 = 0.1627). For the simple slid-

ing minimum Number of Words, we achieve a remarkable accuracy of P@10 = 0.44

and NDCG10 = 0.2476 for any minimum threshold between 11 and 100 words (an

improvement by 144%/151% over the baseline and 33%/52% over BTE). I did not

examine higher thresholds for practical reasons; at some point, of course, the precision

would drop again because of lacking input. Figure 4.27 depicts the results for P@10;

the NDCG10 curves expose identical behavior.

In a direct comparison with the BLOGS06 competition, our results are of course

somewhat lower since the strategy does not do opinion mining at all. However boil-

erplate removal seems to be strongly beneficial for this purpose: we can still compete

with the lower 4 of the 16 contestants. One can therefore expect that the addition of

our strategy to the opinion mining pipeline further increases accuracy.

4.4. BOILERPLATE DETECTION USING SHALLOW TEXT FEATURES 111

4.4.6 Discussion

In this section, I presented a simple, yet effective approach for boilerplate detection

using shallow text features, which is theoretically grounded by stochastic text gener-

ation processes from Quantitative Linguistics.

I have shown that textual content on the Web can apparently be grouped into

two classes, long text (most likely the actual content) and short text (most likely

navigational boilerplate text) respectively. Through a systematic analysis I found

that removing the words from the short text class alone already is a good strategy for

cleaning boilerplate and that using a combination of multiple shallow text features

achieves an almost perfect accuracy. To a large extent the detection of boilerplate text

does not require any inter-document knowledge (frequency of text blocks, common

page layout etc.) nor any training at token level.

I analyzed my boilerplate detection strategies on four representative multi-domain

corpora (news, blogs and cross-domain) and also evaluated the impact of boilerplate

removal for document retrieval. In all cases we achieve significant improvements

over the baseline and accuracies that withstand and even outperform more complex

competitive strategies, which incorporate inter-document information, n-grams or

other heuristics.

The costs for detecting boilerplate are negligible, as it comes down simply to

counting words.

112 CHAPTER 4. TEXT STRUCTURE

Chapter 5

Conclusions and Future Work

In this chapter, I summarize my findings about the Web’s links and text structure

and, as a conclusion, formulate a unified model describing the observed patterns of

human behavior.

5.1 Summary

In the present thesis, I have discussed the quantitative power of the Web’s inherent

structures for the purpose of improving search quality. In particular, I focus on link

structure and text structure, and on the possible stratification of these structures.

With respect to link structure, I have shown that the well-known PageRank al-

gorithm can efficiently be parallelized and distributed by separating internal and

external links (at host-level) and by aggregating cross-partition link importance, thus

reducing the inter-processor communication to only 0.6% of the original load in the

examined Web corpus; the algorithm can be regarded state of the art [84].

As a direct consequence of being able to quickly compute PageRank vectors for

large graphs, I examined the possibility of using topic-specific PageRank on deeper

levels of the ODP Web catalog. I could show that biasing works well until around

level 5, at deeper levels the PageRank vectors are not significantly different from each

other, thus indicating a real-word upper boundary and, at the same time, a good

indication that using biases deeper than just level 1 indeed makes sense. Consequently,

113

114 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

I evaluated the use of these Topic Sensitive PageRank vectors to identify topics in

search results, leading to a new type of Faceted Search: the membership of a page

to a particular topic dimension can be seen quantitatively as the ratio between the

logarithm of the page’s topic-specific PageRank and the overall number of topics the

page is regarded a member (membership is defined as possessing a PageRank score

above a given static threshold).

With this approach, I was able to predict a query’s topic in 91.6% of all cases just

using link structure, without ever inspecting the pages’ full-text.

With respect to text structure, I have shown that Web text is composed from

two different types of text and that these types can be very accurately separated

by observing lengths (number of words) and densities (text density – number of

words per limited area, as well as link density – number of linked words vs. overall

number of words). I introduced the notion of text density and the text-density-

based BlockFusion algorithm for Web page segmentation, which I have derived from

Computer Vision and ported from the level of bitmap images to the level of text.

My approach performs significantly better than the state-of-the-art graph-

theoretic algorithm, as the experimental evaluation on large real-world data sets

demonstrates. Moreover, I have performed a large-scale analysis on text density on

the Web and found that the corresponding distribution can be described very accu-

rately (99.8%) by a simple Beta-Gaussian mixture model; this structure corroborates

recent findings from the field of Quantitative Linguistics.

Finally, through an extensive evaluation using several different shallow text fea-

tures, I show that using a simple decision tree classifier with only two feature classes

(text density + link density or rather number of words + link density), we can achieve

a detection quality that is superior to state-of-the-art techniques. At last, I derive a

simple, plausible and well-fitting stochastic model for describing the boilerplate-aware

text creation process (98.8%), based upon a simple Random Writer model.

5.2. STRATIFIED RANDOM USER MODELS 115

5.2 Stratified Random User Models

The two problems, posed as questions in Section 1.2, can be approached from the

perspective of “random user”models, both for link structure as well as for text struc-

ture. The solutions that have been presented in this thesis are heavily influenced

by these models. The very high goodness of the presented models and the efficient

optimizations affirm this.

5.2.1 Random Surfer Model

Imagine a random surfer model that is simplified to a state machine with only two

states, whereas the states do not refer to individual pages but to the two different

types of user behavior, browsing (B) and jumping (J), as depicted in Figure 5.1.

Initially, the user jumps (J) into the graph onto a random web page and decides to

either jump directly to another page with some probability PJ(J) or decides to follow

any link on the page with PJ(B) = 1−PJ(J). She then picks a link on the page with

probability PB(B) and browses to that page. The user may now stay perpetually in

state B (browsing), but at some point she gets bored and again jumps to another

page; this occurs with probability PB(J).

Jstart B

PJ(B)

PB(B)

PB(J)

PJ(J)

Figure 5.1: Random Surfer Model (simplified)

In the model, jumping is independent of any previous state, such that PJ(J) =

PB(J) = 1 − α = P (J). Which page actually is jumped to is solely determined by

�τ = �1 (unbiased PageRank) or by �πB (biased/personalized PageRank) respectively.

Thus, also, the decision to actually browse PJ(B) = PB(B) = α = P (B) is constant,

which means it is only influenced by the global importance of a particular page (i.e.,

the inner, undepicted states of B) as defined by the graph’s overall link structure L.

116 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Since PageRank could then only be seen as an “over-complication” of in-degree

and out-degree [46], we may conclude that PageRank’s surfer model only is useful

when deviating from the simple case, i.e. when using biased jumps for personalized

PageRank. In Section 3.3 I have shown that we can indeed compute significantly

different page vectors using topic-specific PageRank even for deeply-nested sub-topics

(instead of only the top categories as in [54]), which then obviously differ from the

pure in-degrees, and that these differences can be used to identifying topics in a set

of pages (Section 3.4).

To reduce the time to compute these vectors, I used the approach presented in

Section 3.2. I have shown that the PageRank computation can efficiently be paral-

lelized when separating the computation of two different types of links, internal ones

(intra-host) and external ones (inter-host). Indeed, we may argue that the internal

links usually serve a completely different purpose than external ones. Assuming that

the user can easily differentiate between these two types of links by their appearance,

the decision to follow a specific type of link may in fact be made upstream to the

actual browsing process, and thus should be modeled as depicted in Figure 5.2.

Jstart

I

E

Figure 5.2: Stratified Random Surfer Model

After jumping to a page, the user decides either to browse locally (navigate in

the structure of the current website) with PJ(I) = PI(I) = α · β = P (I) or to

leave to another site with PJ(E) = PE(E) = α·γ = P (E); the probabilities to

switch from browsing locally to external links (and vice versa) or to randomly jump

thus are PE(I) = α · (1 − γ), PI(E) = α · (1 − β), PE(J) = (1 − α) · (1 − γ) and

PI(J) = (1−α) ·(1−β) respectively. Even though in PageRank we have β = γ = 0.5,

i.e., there is no actual difference in scoring these two types of behavior, we can still

utilize the disparate distribution of internal links versus external ones for reducing

the computation time by orders of magnitudes, as shown in Equation 3.10.

5.2. STRATIFIED RANDOM USER MODELS 117

5.2.2 Random Writer Model

In Section 4.4.4 we have observed that similar models can also be successfully applied

to text structure:

Nstart T

PN (T)

PT (T)

PT (N)

(a) Simple

Nstart

L

S

(b) Stratified

Figure 5.3: Random Writer Models

We all know that the creation of text is not conveyed in a random fashion like a

Bernoulli trial. But given the plethora of documents from innumerable authors, it is a

good approximation (see Equations 4.20 and 4.21). What I have shown that indeed is

more relevant to the search quality than finding a particular unimodal distribution, is

the fact that again a simple, stratified model can be utilized for classification purposes.

That is, for the purpose of improving search quality it is less relevant whether we can

model a 1-displaced Geometric or a Beta distribution, but rather whether and how

we can separate the different strata from each other.

I have shown that the membership of a particular textual unit (in my case: a text

block) to one or the other stratum can be used for Web page segmentation (Section

4.2) and that this fact is connected to fundamental laws of Quantitative Linguistics,

namely Frumkina’s Law, the Menzerath-Altmann Law and Zipf’s law (Section 4.3).

Through a carefully conveyed analysis of different shallow text features (Section

4.4) on representative datasets, I finally come to the conclusion that the reason why

simple classifiers that are just based on word counts perform so well for boilerplate

detection and improving top-k search is that again, just like for the Stratified Random

Surfer Model discussed above, the user makes decisions upstream to the actual writing

process, and this separation needs to be taken into account for any “representative”

model of text generation. We might thus call the stratified model a good candidate

for a new statistical text law:

118 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

When composing written text, the writer chooses, for each text block

(segment, paragraph), from two different types of text, short text and

long text. These types of text significantly differ in the average number of

words, intended perception and indirectly also in writing style.

Pr(Y = x) = P (short) · P (x|short)+

+ [P (long) = 1− P (short)] · P (x|long) (5.1)

E (P (x|short)) � E (P (x|long))

The choice depends to a large extent on the types of the surrounding

text blocks (short/long), and deviations from the expected choice indicate

a segmentation boundary. As a first approximation, the probability of

writing a particular number of words (in short or long text) can be modeled

as a 1-displaced Geometric distribution.

So far, there is nothing to be said against it.

5.3 Future Work

The presented results raise research issues in many different directions. Obviously,

for boilerplate detection we need to remove the “last 5%” of classification error. Even

though the generality of my approach might suggest that it is universally applicable,

we need to test that on other content domains and languages.1

As I have shown that for both, link and text structure specific stratified models can

be applied, we need to further analyze the relationship between the two types of links

(intra-/extra-site, presumably navigational/informational) and the two types of text

(short/long, presumably navigational/informational as well), for example: To what

extent does intra-site linking correlate with short/navigational text, and can we use

1Besides English and German, users of my algorithms reported good success with Dutch, Turkish
and Spanish websites, see comments at http://code.google.com/p/boilerpipe/wiki/FAQ and
http://lingpipe-blog.com/2010/01/06/blegging-for-help-web-scraping-for-content/.
Preliminary tests on Chinese texts are promising as well.

5.3. FUTURE WORK 119

the knowledge about short and long text to further improve topic-specific PageRank

by separating links contained in each of these types of text? Knowing the model

describing the underlying human behavior when compositing Web text, can we use

the approach to identify automatically generated spam pages? To what extent can

we classify a Web page without deeply inspecting the text (only using link structure

and the text’s densitometric fingerprint)?

Moreover, we need to deeper investigate and extend the textual model from a

linguistic perspective, e.g. is the differentiation between short and long text only

necessary for the Web? Where can we observe short/long text strata outside in the

“offline” world? How do semantics differ between blocks of short and long text? How

does vocabulary richness and growth differ between short and long text? Will higher-

level Markov models (i.e., not only inspecting the previous and next block) improve

the classifier? And, lastly, how much better will our classifiers be on a particular

language when taking word and segment frequencies into account?

To open up further possibilities, a re-implementation of the presented boilerplate

detection algorithms, called “Boilerpipe”, is available as Open Source from the Google

Code project website2; the corresponding annotated Web page collection (L3S-GN1)

is available from the author’s website.3

Since July 2010, Boilerpipe is also part of Apache Tika4, the Open Source con-

tent and metadata extraction framework, which certainly helps attracting users and

researchers and will lead to new problems and solutions.

2http://code.google.com/p/boilerpipe/
3http://www.L3S.de/∼kohlschuetter/boilerplate/
4http://tika.apache.org/

120 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Curriculum Vitae

Christian Kohlschütter, born October 26th 1979, in Hof (Bavaria), Germany, son of

Dr. iur. Hans Kohlschütter and Rita Kohlschütter. Married, two children.

2004-2010 Researcher at L3S Research Center

Leibniz Universität Hannover

2003-2004 Researcher at RRZN Computing Center

Leibniz Universität Hannover

1999-2003 Studies of Computer Science/Software Engineering

Diplom-Informatiker (FH), FH Hof

Since 2000 Member of the German National Merit Foundation

(Studienstiftung des deutschen Volkes) Scholarship 2000-2003

1999 General Qualification for University Entrance (Abitur)

Jean-Paul-Gymnasium Hof

Since 1997 Freelance Software Developer and Consultant

http://www.kohlschutter.com

121

122 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Asma Al-Saleh and Ali El-Zaart. Unsupervised Learning Technique for Skin Im-

ages Segmentation Using a Mixture of Beta Distributions. In IFMBE Proceed-

ings, 3rd Kuala Lumpur International Conference on Biomedical Engineering

2006 (Biomed 2006), pages 304–307, 2007.

[2] Gabriel Altmann. Verteilungen der Satzlängen (Distribution of Sentence

Lengths). In K.-P. Schulz, editor, Glottometrika 9. Brockmeyer, 1988.

[3] Gabriel Altmann. Das Problem der Datenhomogenität. In Glottometrika 13,

pages 287–298. Brockmeyer, Bochum, 1992.

[4] Gabriel Altmann. Quantitative Linguistics - An International Handbook, chap-

ter Diversification processes. de Gruyter, 2005.

[5] Gabriel Altmann and Violetta Burdinski. Towards a Law of Word Repetitions

in Text-Blocks. In U. Strauss W. Lehfeldt, editor, Glottometrika 4, volume 14

of Quantitative Linguistics, pages 147–167, Bochum, 1982. Brockmeyer.

[6] Aris Anagnostopoulos, Andrei Z. Broder, and David Carmel. Sampling search-

engine results. In WWW ’05: Proceedings of the 14th international conference

on World Wide Web, pages 245–256, New York, NY, USA, 2005. ACM. ISBN

1-59593-046-9. doi: http://doi.acm.org/10.1145/1060745.1060784.

[7] Apostolos Antonacopoulos, Basilios Gatos, and David Bridson. Page segmen-

tation competition. Document Analysis and Recognition, 2007. ICDAR 2007.

Ninth International Conference on, 2:1279–1283, 23-26 Sept. 2007. ISSN 1520-

5363. doi: 10.1109/ICDAR.2007.4377121.

123

124 BIBLIOGRAPHY

[8] Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin. PageRank

Computation and the Structure of the Web: Experiments and Algorithms, 2001.

[9] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-

trieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1999. ISBN 020139829X.

[10] Shumeet Baluja. Browsing on Small Screens: Recasting Web-Page Segmen-

tation into an Efficient Machine Learning Framework. In WWW ’06: Pro-

ceedings of the 15th international conference on World Wide Web, pages 33–

42, New York, NY, USA, 2006. ACM. ISBN 1-59593-323-9. doi: http:

//doi.acm.org/10.1145/1135777.1135788.

[11] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data mining

and its applications. In WWW ’02: Proceedings of the 11th international con-

ference on World Wide Web, pages 580–591, New York, NY, USA, 2002. ACM.

ISBN 1-58113-449-5. doi: http://doi.acm.org/10.1145/511446.511522.

[12] Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff. Cleaneval:

a competition for cleaning web pages. In Nicoletta Calzolari, Khalid Choukri,

Bente Maegaard, Joseph Mariani, Jan Odjik, Stelios Piperidis, and Daniel

Tapias, editors, Proceedings of the Sixth International Language Resources and

Evaluation (LREC’08), 2008. ISBN 2-9517408-4-0.

[13] Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny Lempel, Andreas

Neumann, Shila Ofek-Koifman, Dafna Sheinwald, Eugene Shekita, Benjamin

Sznajder, and Sivan Yogev. Beyond basic faceted search. In WSDM ’08: Pro-

ceedings of the international conference on Web search and web data mining,

pages 33–44, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-927-9. doi:

http://doi.acm.org/10.1145/1341531.1341539.

[14] Tim Berners-Lee and Dan Conolly. RFC 1866: Hypertext Markup Language -

2.0, November 1995.

BIBLIOGRAPHY 125

[15] Karl-Heinz Best. Quantitative Linguistics - An International Handbook, chapter

Satzlänge (Sentence length), pages 298–304. de Gruyter, 2005.

[16] Karl-Heinz Best. Sprachliche Einheiten in Textblöcken. In Glottometrics 9,

pages 1–12. RAM Verlag, Lüdenscheid, 2005.

[17] Krishna Bharat, Bay-Wei Chang, Monika Rauch Henzinger, and Matthias Ruhl.

Who links to whom: Mining linkage between web sites. In Proc. of the IEEE

Intl. Conf. on Data Mining, pages 51–58, 2001. ISBN 0-7695-1119-8.

[18] Sergey Brin, Rajeev Motwani, Lawrence Page, and Terry Winograd. What can

you do with a web in your pocket? Data Engineering Bulletin, 21(2):37–47,

1998. URL citeseer.ist.psu.edu/brin98what.html.

[19] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar

Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph struc-

ture in the web. In Proc. of the 9th international World Wide Web conference,

pages 309–320. North-Holland Publishing Co., 2000. doi: http://dx.doi.org/

10.1016/S1389-1286(00)00083-9. URL http://www9.org/w9cdrom/160/160.

html.

[20] Andrei Z. Broder, Ronny Lempel, Farzin Maghoul, and Jan Pedersen. Efficient

PageRank Approximation via Graph Aggregation. In Proc. of the 13th Interna-

tional World Wide Web Conference, pages 484–485, 2004. ISBN 1-58113-912-8.

[21] Michael K. Buckland. What is a “document”? Journal of the American Society

for Information Science, 48:804–809, September 1997.

[22] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting Content

Structure for Web Pages Based on Visual Representation. In X. Zhou, Y. Zhang,

and M. E. Orlowska, editors, APWeb, volume 2642 of LNCS, pages 406–417.

Springer, 2003. ISBN 3-540-02354-2.

[23] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Block-based web

search. In SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR

126 BIBLIOGRAPHY

conference on Research and development in information retrieval, pages 456–

463, New York, NY, USA, 2004. ACM. ISBN 1-58113-881-4. doi: http://doi.

acm.org/10.1145/1008992.1009070.

[24] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. Page-level Template

Detection via Isotonic Smoothing. In WWW ’07: Proc. of the 16th int. conf.

on World Wide Web, pages 61–70, New York, NY, USA, 2007. ACM. ISBN

978-1-59593-654-7. doi: http://doi.acm.org/10.1145/1242572.1242582.

[25] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic

approach to webpage segmentation. In WWW ’08: Proceeding of the 17th

international conference on World Wide Web, pages 377–386, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-085-2. doi: http://doi.acm.org/10.1145/

1367497.1367549.

[26] Ming Chen, Xiaoqing Ding, and Jian Liang. Analysis, understanding and

representation of chinese newspaper with complex layout. Image Processing,

2000. Proceedings. 2000 International Conference on, 2:590–593 vol.2, 2000.

doi: 10.1109/ICIP.2000.899500.

[27] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. I/O-efficient Techniques for

Computing PageRank. In CIKM ’02: Proceedings of the eleventh international

conference on Information and knowledge management, pages 549–557, New

York, NY, USA, 2002. ACM. ISBN 1-58113-492-4. doi: http://doi.acm.org/10.

1145/584792.584882.

[28] Yu Chen, Wei-Ying Ma, and Hong-Jiang Zhang. Detecting web page structure

for adaptive viewing on small form factor devices. In WWW ’03: Proceedings

of the 12th international conference on World Wide Web, pages 225–233, New

York, NY, USA, 2003. ACM. ISBN 1-58113-680-3. doi: http://doi.acm.org/10.

1145/775152.775184.

BIBLIOGRAPHY 127

[29] Paul Alexandru Chirita, Wolfgang Nejdl, Raluca Paiu, and Christian

Kohlschütter. Using ODP metadata to personalize search. In SIGIR ’05: Pro-

ceedings of the 28th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 178–185, New York, NY, USA,

2005. ACM. ISBN 1-59593-034-5. doi: http://doi.acm.org/10.1145/1076034.

1076067.

[30] Junghoo Cho and Hector Garcia-Molina. The evolution of the web and impli-

cations for an incremental crawler. In Proceedings of the 26th International

Conference on Very Large Databases, 2000. URL citeseer.ist.psu.edu/

cho00evolution.html.

[31] Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines: Informa-

tion Retrieval in Practice. Addison-Wesley Publishing Company, USA, 2009.

ISBN 0136072240, 9780136072249.

[32] Jeffrey Dean and Monika R. Henzinger. Finding related pages in the World

Wide Web. Computer Networks (Amsterdam, Netherlands), 31(11–16):1467–

1479, 1999. URL citeseer.ist.psu.edu/dean99finding.html.

[33] Sandip Debnath, Prasenjit Mitra, Nirmal Pal, and C. Lee Giles. Automatic

identification of informative sections of web pages. IEEE Trans. on Knowledge

and Data Engineering, 17(9):1233–1246, 2005. ISSN 1041-4347. doi: http:

//doi.ieeecomputersociety.org/10.1109/TKDE.2005.138.

[34] Lukasz Debowski. Zipf’s law against the text size: a half-rational model. In

Glottometrics 4, pages 49–60. RAM Verlag, Lüdenscheid, 2002.

[35] William Denton. How to make a faceted classification and put it on the

web. http://www.miskatonic.org/library/facet-web-howto.pdf, Novem-

ber 2003.

[36] William Denton. Putting facets on the web: An annotated bibliography. http:

//www.miskatonic.org/library/facet-biblio.html, October 2003.

128 BIBLIOGRAPHY

[37] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking the web fron-

tier. In WWW ’04: Proceedings of the 13th international conference on World

Wide Web, pages 309–318, New York, NY, USA, 2004. ACM. ISBN 1-58113-

844-X. doi: http://doi.acm.org/10.1145/988672.988714.

[38] Mehmet S. Aktas et al. Personalizing pagerank based on domain profiles. In

WEBKDD’04, Seattle, USA, pages 83–90, August 2004. URL citeseer.ist.

psu.edu/708503.html.

[39] Pavel Calado et al. Link-based similarity measures for the classification of web

documents. J. Am. Soc. Inf. Sci. Technol., 57(2):208–221, 2006. ISSN 1532-

2882. doi: http://dx.doi.org/10.1002/asi.v57:2.

[40] Soumen Chakrabarti et al. Enhanced hypertext categorization using hyperlinks.

In SIGMOD ’98, pages 307–318, New York, NY, US, 1998. ACM Press. ISBN

0-89791-995-5. doi: http://doi.acm.org/10.1145/276304.276332.

[41] Stefan Evert. A lightweight and efficient tool for cleaning web pages. In

Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan

Odjik, Stelios Piperidis, and Daniel Tapias, editors, Proceedings of the Sixth

International Language Resources and Evaluation (LREC’08), Marrakech, Mo-

rocco, may 2008. European Language Resources Association (ELRA). ISBN

2-9517408-4-0. http://www.lrec-conf.org/proceedings/lrec2008/.

[42] Fariza Fauzi, Jer-Lang Hong, and Mohammed Belkhatir. Webpage segmenta-

tion for extracting images and their surrounding contextual information. InMM

’09: Proceedings of the seventeen ACM international conference on Multimedia,

pages 649–652, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-608-3. doi:

http://doi.acm.org/10.1145/1631272.1631379.

[43] David Fernandes, Edleno S. de Moura, Berthier Ribeiro-Neto, Altigran S.

da Silva, and Marcos André Gonçalves. Computing block importance for search-

ing on web sites. In CIKM ’07, pages 165–174, 2007. ISBN 978-1-59593-803-9.

doi: http://doi.acm.org/10.1145/1321440.1321466.

BIBLIOGRAPHY 129

[44] Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and Silvia Bernardini. Intro-

ducing and evaluating ukWaC, a very large Web-derived corpus of English. In

Proceedings of the WAC4 Workshop at LREC 2008.

[45] Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Fact or fiction: Content

classification for digital libraries. Joint DELOS-NSF Workshop on Personalisa-

tion and Recommender Systems in Digital Libraries (Dublin), 2001.

[46] Santo Fortunato, Marián Bogu ná, Alessandro Flammini, and Filippo Menczer.

Approximating pagerank from in-degree. pages 59–71, 2008. doi: http://dx.

doi.org/10.1007/978-3-540-78808-9 6.

[47] David Gibson, Kunal Punera, and Andrew Tomkins. The volume and evolution

of web page templates. In WWW ’05: Special interest tracks and posters of the

14th international conference on World Wide Web, pages 830–839, New York,

NY, USA, 2005. ACM. ISBN 1-59593-051-5. doi: http://doi.acm.org/10.1145/

1062745.1062763.

[48] John Gibson, Ben Wellner, and Susan Lubar. Adaptive web-page content

identification. In WIDM ’07: Proceedings of the 9th annual ACM interna-

tional workshop on Web information and data management, pages 105–112,

New York, NY, USA, 2007. ACM. ISBN 978-1-59593-829-9. doi: http:

//doi.acm.org/10.1145/1316902.1316920.

[49] David Gleich, Leonid Zhukov, and Pavel Berkhin. Fast parallel PageRank: A

linear system approach. Technical report, Yahoo! Research Labs, 2004. URL

http://research.yahoo.com/publications/38.pdf.

[50] Scott Golder and Bernardo A. Huberman. The structure of collabo-

rative tagging systems. Technical report, Information Dynamics Lab,

HP Labs, 2005. URL http://www.isrl.uiuc.edu/∼amag/langev/paper/

golder05taggingSystems.html.

[51] Peter Grzybek, editor. Contributions to the Science of Text and Language.

Springer, 2006.

130 BIBLIOGRAPHY

[52] Peter Grzybek. On the systematic and system-based study of grapheme frequen-

cies - a re-analysis of german letter frequencies. In G. Altmann, K.-H. Best,

and P. Grzybek et al., editors, Glottometrics 15, pages 82–91. RAM Verlag,

Lüdenscheid, 2007.

[53] Taher H. Haveliwala. Efficient computation of PageRank. Technical Report

1999-31, Stanford Library Technologies Project, 1999. URL citeseer.ist.

psu.edu/haveliwala99efficient.html.

[54] Taher H. Haveliwala. Topic-sensitive PageRank. In Proc. of the eleventh In-

ternational Conference on World Wide Web, pages 517–526. ACM Press, 2002.

ISBN 1-58113-449-5. doi: http://doi.acm.org/10.1145/511446.511513.

[55] Taher H. Haveliwala et al. 2001 Crawl of the WebBase project, 2001. URL

http://dbpubs.stanford.edu:8091/∼testbed/doc2/WebBase/.

[56] Marti A. Hearst. Multi-paragraph segmentation of expository text. In Proceed-

ings of the 32nd annual meeting on Association for Computational Linguistics,

pages 9–16, Morristown, NJ, USA, 1994. Association for Computational Lin-

guistics. doi: http://dx.doi.org/10.3115/981732.981734.

[57] Marti A. Hearst. Clustering versus faceted categories for information explo-

ration. Commun. ACM, 49(4):59–61, 2006.

[58] Marti A. Hearst, Ame Elliott, Jennifer English, Rashmi R. Sinha, Kirsten

Swearingen, and Ka-Ping Yee. Finding the flow in web site search. Commun.

of the ACM, 45(9):42–49, 2002.

[59] James Hendler, Nigel Shadbolt, Wendy Hall, Tim Berners-Lee, and Daniel

Weitzner. Web science: an interdisciplinary approach to understanding the

web. Commun. ACM, 51(7):60–69, 2008. ISSN 0001-0782. doi: http://doi.acm.

org/10.1145/1364782.1364798.

[60] Katja Hofmann and Wouter Weerkamp. Web Corpus Cleaning using Content

and Structure. In Building and Exploring Web Corpora, pages 145–154. UCL

Presses Universitaires de Louvain, September 2007.

BIBLIOGRAPHY 131

[61] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Clas-

sification, 2(1):193–218, December 1985. URL http://ideas.repec.org/a/

spr/jclass/v2y1985i1p193-218.html.

[62] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW

’03, pages 271–279, New York, NY, USA, 2003. ISBN 1-58113-680-3. doi:

http://doi.acm.org/10.1145/775152.775191.

[63] Maryam Kamvar, Melanie Kellar, Rajan Patel, and Ya Xu. Computers and

iphones and mobile phones, oh my!: a logs-based comparison of search users on

different devices. InWWW ’09: Proceedings of the 18th international conference

on World wide web, pages 801–810, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-487-4. doi: http://doi.acm.org/10.1145/1526709.1526817.

[64] Sepandar Kamvar, Taher Haveliwala, Christopher Manning, and Gene Golub.

Exploiting the block structure of the web for computing PageRank. Techni-

cal report, Stanford University, 2003. URL citeseer.ist.psu.edu/article/

kamvar03exploiting.html.

[65] Sepandar D. Kamvar, Taher H. Haveliwala, and Gene H. Golub. Adaptive meth-

ods for the computation of PageRank. Technical report, Stanford University,

2003. URL citeseer.ist.psu.edu/kamvar03adaptive.html.

[66] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and

Gene H. Golub. Extrapolation methods for accelerating PageRank computa-

tions. In Proc. of the 12th Intl. Conf. on the World Wide Web, pages 261–270,

2003. ISBN 1-58113-680-3.

[67] Hung-Yu Kao, Jan-Ming Ho, and Ming-Syan Chen. Wisdom: Web intrapage

informative structure mining based on document object model. Knowledge

and Data Engineering, IEEE Transactions on, 17(5):614–627, May 2005. ISSN

1041-4347. doi: 10.1109/TKDE.2005.84.

[68] Maurice G. Kendall. Rank Correlation Methods. Hafner, New York, USA, 1955.

132 BIBLIOGRAPHY

[69] Sung Jin Kim and Sang Ho Lee. An improved computation of the PageRank al-

gorithm. In Proc. of the European Conference on Information Retrieval (ECIR),

pages 73–85, 2002. URL citeseer.ist.psu.edu/kim02improved.html.

[70] David P. Koester, Sanjay Ranka, and Geoffrey C. Fox. A parallel gauss-seidel

algorithm for sparse power system matrices. In Supercomputing ’94: Proceedings

of the 1994 ACM/IEEE conference on Supercomputing, pages 184–193, New

York, NY, USA, 1994. ACM. ISBN 0-8186-6605-6. doi: http://doi.acm.org/10.

1145/602770.602806.

[71] Reinhard Köhler. Elemente der synergetischen Linguistik. In Glottometrika 12,

pages 179–187. Brockmeyer, Bochum, 1990.

[72] Reinhard Köhler. Synergetic linguistics. In Quantitative Linguistics – An In-

ternational Handbook, pages 760–774. de Gruyter, 2005.

[73] Christian Kohlschütter. A Densitometric Classification of Web Template Con-

tent. In Emmerich Kelih, Viktor Levickij, and Gabriel Altmann, editors, Meth-

ods of Text Analysis: Omnibus volume, pages 133–155. Chernivtsi: CNU, 2009.

[74] Christian Kohlschütter. A Densitometric Analysis of Web Template Content. In

WWW ’09: Proceedings of the 18th International World Wide Web Conference,

pages 1165–1166, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-487-4.

doi: http://doi.acm.org/10.1145/1526709.1526909.

[75] Christian Kohlschütter and Wolfgang Nejdl. A Densitometric Approach to Web

Page Segmentation. In CIKM ’08: Proceedings of the 17th ACM conference on

Information and Knowledge Management, pages 1173–1182, New York, NY,

USA, 2008. ACM. ISBN 978-1-59593-991-3. doi: http://doi.acm.org/10.1145/

1458082.1458237.

[76] Christian Kohlschütter, Paul-Alexandru Chirita, and Wolfgang Nejdl. Using

Link Analysis to Identify Aspects in Faceted Web Search. In SIGIR’2006 Work-

shop on Faceted Search, Seattle, WA, USA, August 2006.

BIBLIOGRAPHY 133

[77] Christian Kohlschütter, Paul-Alexandru Chirita, and Wolfgang Nejdl. Efficient

parallel computation of pagerank. In ECIR 2006: Advances in Information

Retrieval 2006: 28th European Conference on IR Research, volume LNCS 3936,

London, UK, April 2006.

[78] Christian Kohlschütter, Paul-Alexandru Chirita, and Wolfgang Nejdl. Utility

analysis for topically biased PageRank. In WWW ’07: Proceedings of the 16th

international conference on World Wide Web, pages 1211–1212, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-654-7. doi: http://doi.acm.org/10.1145/

1242572.1242770.

[79] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate

detection using shallow text features. In WSDM ’10: Proceedings of the third

ACM International Conference on Web search and Data Mining, pages 441–

450, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-889-6. doi: http:

//doi.acm.org/10.1145/1718487.1718542.

[80] Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Internet Math-

ematics, 1(3):335–380, 2004.

[81] Daniel Lavalette. A general purpose ranking variable with applications to vari-

ous ranking laws. In Peter Grzybek and Reinhard Köhler, editors, Exact Meth-

ods in the Study of Language and Text, pages 371–382. de Gruyter, 2007.

[82] Chris P. Lee, Gene H. Golub, and Stefanos A. Zenios. A fast two-stage algorithm

for computing PageRank. Technical report, Stanford University, 2003.

[83] Sonya Liberman and Ronny Lempel. Approximately optimal facet selection.

In The 4th Workshop on the Future of Web Search, April 2009. URL http:

//research.yahoo.com/files/facets_ysite.pdf.

[84] Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, and Denis Turdakov. Accuracy

estimate and optimization techniques for simrank computation. The VLDB

Journal, 19(1):45–66, 2010. ISSN 1066-8888. doi: http://dx.doi.org/10.1007/

s00778-009-0168-8.

134 BIBLIOGRAPHY

[85] Qing Lu and Lise Getoor. Link-based text classification. Text-Mining & Link-

Analysis Workshop TextLink 2003, 2003.

[86] Bundit Manaskasemsak and Arnon Rungsawang. Parallel PageRank computa-

tion on a gigabit pc cluster. In Proc. of the 18th International Conference on

Advanced Information Networking and Application (AINA’04), 2004.

[87] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-

duction to Information Retrieval. Cambridge University Press, New York, NY,

USA, 2008. ISBN 0521865719, 9780521865715.

[88] Adam Mathes. Folksonomies - cooperative classification and communication

through shared metadata. Computer Mediated Communication - LIS590CMC,

Graduate School of Library and Information Science, University of Illinois

Urbana-Champagin, December 2004.

[89] Frank McSherry. A Uniform Approach to Accelerated PageRank Computation.

In Proceedings of the 14th international World Wide Web Conference, pages

575–582, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-046-9. doi:

http://doi.acm.org/10.1145/1060745.1060829.

[90] Sundaresan Naranan and Viddhachalam K. Balasubrahmanyan. Power laws

in statistical linguistics and related systems. In Quantitative Linguistics – An

International Handbook, pages 716–738. de Gruyter, 2005.

[91] Iadh Ounis, Craig Macdonald, Maarten de Rijke, Gilad Mishne, and Ian Sobo-

roff. Overview of the trec 2006 blog track. In Ellen M. Voorhees and Lori P.

Buckland, editors, TREC, volume Special Publication 500-272. National Insti-

tute of Standards and Technology (NIST), 2006.

[92] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

PageRank citation ranking: Bringing order to the web. Technical report, Stan-

ford Digital Library Technologies Project, 1998. URL citeseer.ist.psu.edu/

page98pagerank.html.

BIBLIOGRAPHY 135

[93] Jeff Pasternack and Dan Roth. Extracting article text from the web with

maximum subsequence segmentation. In WWW ’09: Proceedings of the 18th

international conference on World wide web, pages 971–980, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-487-4. doi: http://doi.acm.org/10.1145/

1526709.1526840.

[94] Ioan-Iovitz Popescu. On a Zipf’s Law Extension to Impact Factors. In Glotto-

metrics 6. RAM Verlag, Lüdenscheid, 2003.

[95] Ioan-Iovitz Popescu and Gabriel Altmann. Some aspects of word frequencies.

In Glottometrics 13, pages 23–46. RAM Verlag, Lüdenscheid, 2006.

[96] Feng Qiu and Junghoo Cho. Automatic identification of user interest for person-

alized search. In Proc. of the 15th international World Wide Web conference,

2006.

[97] Davood Rafiei, Krishna Bharat, and Anand Shukla. Diversifying web search

results. In WWW ’10: Proceedings of the 19th international conference on

World wide web, pages 781–790, New York, NY, USA, 2010. ACM. ISBN 978-

1-60558-799-8. doi: http://doi.acm.org/10.1145/1772690.1772770.

[98] Stephen Robertson. Understanding inverse document frequency: On theoretical

arguments for idf. Journal of Documentation, 60:2004, 2004.

[99] Stephen Robertson, Steve Walker, Susan Jones, Micheline M. Hancock-

Beaulieu, and Mike Gatford. Okapi at trec-3. pages 109–126, 1996.

[100] Gerard Salton and Michael J. McGill. Introduction to Modern Information

Retrieval. McGraw-Hill, Inc., 1986. ISBN 0070544840.

[101] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for

automatic indexing. Communications of the ACM, 18(11):613–620, 1975. ISSN

0001-0782. doi: http://doi.acm.org/10.1145/361219.361220.

136 BIBLIOGRAPHY

[102] Gerard Salton, Edward A. Fox, and Harry Wu. Extended boolean information

retrieval. Commun. ACM, 26(11):1022–1036, 1983. ISSN 0001-0782. doi: http:

//doi.acm.org/10.1145/182.358466.

[103] Karthikeyan Sankaralingam, Simha Sethumadhavan, and James C. Browne.

Distributed Pagerank for P2P Systems. In Proc. of the 12th IEEE Intl. Symp.

on High Performance Distributed Computing (HPDC), page 58, 2003. ISBN

0-7695-1965-2.

[104] Tamas Sarlos, Andras A. Benczur, Karoly Csalogany, Daniel Fogaras, and Bal-

azs Racz. To randomize or not to randomize: Space optimal summaries for

hyperlink analysis. In Proc. of the 15th international World Wide Web confer-

ence, 2006.

[105] Claude E. Shannon. A Mathematical Theory of Communication. The Bell

System Technical Journal, 27:379–423, 623–656, October 1948. URL http:

//cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

[106] Shu-Ming Shi, Jin Yu, Guang-Wen Yang, and Ding-Xing Wang. Distributed

Page Ranking in Structured P2P Networks. In Proc. of the 2003 International

Conference on Parallel Processing (ICPP’03), pages 179–186, 2003.

[107] Amit Singhal and Marcin Kaszkiel. A case study in web search using TREC

algorithms. In WWW ’01: Proceedings of the 10th international conference on

World Wide Web, pages 708–716, New York, NY, USA, 2001. ACM. ISBN

1-58113-348-0. doi: http://doi.acm.org/10.1145/371920.372186.

[108] Jared M. Spool, Tara Scanlon, Carolyn Snyder, Will Schroeder, and Terri DeAn-

gelo. Web site usability: a designer’s guide. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1999. ISBN 1-55860-569-X.

[109] Miroslav Spousta, Michael Marek, and Pavel Pecina. Victor: the web-page

cleaning tool. In WaC4, 2008.

BIBLIOGRAPHY 137

[110] George Stockman and Linda G. Shapiro. Computer Vision. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2001. ISBN 0130307963.

[111] Alexander Strehl and Joydeep Ghosh. Cluster ensembles — a knowledge reuse

framework for combining multiple partitions. J. Mach. Learn. Res., 3:583–617,

2003. ISSN 1533-7928.

[112] Juhan Tuldava. Stylistics, author identification. In Quantitative Linguistics –

An International Handbook, pages 368–387. de Gruyter, 2005.

[113] Fiona J. Tweedie. Statistical models in stylistics and forensic linguistics.

In Quantitative Linguistics – An International Handbook, pages 387–397. de

Gruyter, 2005.

[114] Karane Vieira, Altigran S. da Silva, Nick Pinto, Edleno S. de Moura, Joao

M. B. Cavalcanti, and Juliana Freire. A fast and robust method for web page

template detection and removal. In CIKM ’06: Proceedings of the 15th ACM

International Conference on Information and Knowledge Management, pages

258–267, 2006. ISBN 1-59593-433-2. doi: http://doi.acm.org/10.1145/1183614.

1183654.

[115] Relja Vulanovic and Reinhard Köhler. Quantitative Linguistics - An interna-

tional Handbook, chapter Syntactic units and structures, pages 274–291. de

Gruyter, 2005.

[116] Yuan Wang and David J. DeWitt. Computing PageRank in a distributed in-

ternet search system. In Proceedings of the 30th VLDB Conference, 2004.

[117] Gejza Wimmer and Gabriel Altmann. Thesaurus of univariate discrete proba-

bility distributions. Stamm Verlag, 1999.

[118] Gejza Wimmer and Gabriel Altmann. Unified derivation of some linguistic

laws. In Quantitative Linguistics – An International Handbook, pages 791–807.

de Gruyter, 2005.

138 BIBLIOGRAPHY

[119] Alex Wright. Ready for a web os? Commun. ACM, 52(12):16–17, 2009. ISSN

0001-0782. doi: http://doi.acm.org/10.1145/1610252.1610260.

[120] Jie Wu and Karl Aberer. Using SiteRank for P2P Web Retrieval, March 2004.

URL citeseer.ist.psu.edu/wu04using.html.

[121] Yiming Yang, Sean Slattery, and Rayid Ghani. A study of approaches to hy-

pertext categorization. Journal of Intelligent Information Systems, 18(2-3):

219–241, 2002. URL citeseer.ist.psu.edu/478602.html.

[122] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti A. Hearst. Faceted

metadata for image search and browsing. In Proc. of the SIGCHI Conf. on

Human Factors in Computing Systems, pages 401–408, 2003.

[123] Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web pages

for data mining. In KDD ’03: Proc. of the 9th ACM SIGKDD int. conf. on

Knowledge discovery and data mining, pages 296–305, 2003. ISBN 1-58113-737-

0. doi: http://doi.acm.org/10.1145/956750.956785.

[124] Yangbo Zhu, Shaozhi Ye, and Xing Li. Distributed pagerank computation based

on iterative aggregation-disaggregation methods. In Proc. of the 14th ACM

international conference on Information and knowledge management, 2005.

[125] George K. Zipf. Human Behavior and the Principle of Least Effort. Addison-

Wesley, Reading, 1949.

