
EXPLOITING METADATA FOR CONTEXT CREATION AND

RANKING ON THE DESKTOP

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktorin der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation von

Dipl.-Ing. Stefania Costache

geboren am 27. Dezember 1980, in Buzau, Rumänien

2010

Referent: Prof. Dr. Wolfgang Nejdl
Ko-Referent: Prof. Dr. Heribert Vollmer
Tag der Promotion: 1. Dezember 2010

ABSTRACT

With the ever increasing size of the number of resources we store on our computers, there is
an obvious need for better tools for managing our personal information. First, there is a need
of keeping resources connected beyond the simple folder hierarchies, in order to reflect the
user working contexts and tasks. The main problem is that as soon as we store something
on our computers, for example a file, then the connection to the email that it was sent with
is immediately lost, and also the whole context around it. And second, while faced with
this vast amount of data, even if we are able to search and exploit these connections, an
ordering is very much needed. We need this not only for retrieving our own data from our
PCs, but we also need to be able to give more importance to some resources coming from
more trusted persons. In this thesis we propose several solutions not only for enhancing
the current data with semantic connections in order to create contexts, but also for ranking
resources both on the desktop, and in a collaborative environment where users exchange
resources and need to take trust and privacy into account. Several experiments support the
ideas proposed and also detail on various situations on which method is best to be applied.

We first focus on the enhancement of resources with context metadata, by recreating lost
connections among them. We propose several modules fully integrated within the Beagle++

system and also show via experiments that these metadata generators are useful in find-
ing resources. Also, time connections are exploited and we show that such connections are
valuable, since they simulate the normal user behaviour when working on a task - several
resources are accessed in a sequence rather frequently. Finally, we show how annotations
can be a step further for extending the desktop to the Web - we automatically extract per-
sonalized annotations from within the desktop documents and use them for the annotation
of visited web pages.

Then, we concentrate upon the benefits that a ranking mechanism can bring. We build
on top of the PageRank algorithm a semantic ranking mechanism applied to the desktop,
which fully exploits the time connections previously created. We also extend to the collabo-
rative environment and show how recommendations coming from within the user’s working
group can be ranked, by taking into account the trust that he has in the persons that sent
him those resources. Also, more trust and privacy issues are further explored on how we can
share our resources but not disclosing the structure of our resources. A world node solution
is proposed and we prove that it is a good trade-off between quality and privacy, given also
various amounts of data that are fully shared between users.

Keywords: Desktop Search, Ranking, Metadata Generation

ZUSAMMENFASSUNG

Mit der zunehmenden Größe und Anzahl der Ressourcen, die wir auf unseren Computern
speichern, gibt es eine offensichtliche Notwendigkeit für bessere Werkzeuge zur Verwaltung
von unseren persönlichen Informationen. Erstens besteht der Bedarf an Verknüpfungen
zwischen Ressourcen, über die einfachen Ordner-Hierarchien hinaus, den Arbeitskontext
und Zusammenhänge von Aufgaben wiederzugeben. Das Hauptproblem ist, dass, sobald
wir etwas auf unseren Rechnern speichern - zum Beispiel eine Datei aus dem Anhang einer
E-Mail - geht die Verbindung zum gesamten Kontext woher die Datei stammt - z.B. die
dazugehörige E-Mail - sofort verloren. Wir benötigen ein gutes Ranking, damit wir auch in
der Lage sind - bei der Konfrontation mit großen Datenmengen - vorhandene Verbindungen
bei der Suche zu nutzen. Wir brauchen dieses nicht nur für das Abrufen von Daten aus
unseren eigenen PCs, wir müssen auch in der Lage sein, mehr Wert auf Ressourcen von
vertrauenswürdigen Personen zu legen. In dieser Arbeit schlagen wir mehrere Lösungen
vor, nicht nur für die Erweiterung der aktuellen Daten um semantische Zusammenhänge,
sondern auch für das Ranking von Ressourcen auf dem Desktop sowie in einer kollaborativen
Umgebung, in der Benutzer Ressourcen auswechseln und wo Vertrauen und die Privatsphäre
berücksichtigt werden müssen. Mehrere Versuche unterstützen die vorgeschlagenen Ideen
und geben an, welche Methoden für welche Situationen am besten angewandt werden sollen.

Wir konzentrieren uns zunächst durch Wiederherstellung verlorener Verbindungen auf
die Erweiterung der Ressourcen um Kontext-Metadaten. Wir schlagen mehrere Module
vor - vollständig in Beagle++ integriert - und zeigen mittels Experimenten, dass diese
Metadaten-Generatoren nützlich bei der Suche nach Ressourcen sind. Außerdem werden
Zeit-Verbindungen genutzt und wir zeigen, dass solche Verbindungen wertvoll sind, da sie das
normale Nutzerverhalten bei der Arbeit an einer Aufgabe simulieren; mehrere Ressourcen
werden ziemlich häufig in einer Sequenz aufgerufen. Schließlich zeigen wir, wie Anmerkun-
gen die Erweiterung des Desktops auf das Web noch einen Schritt weiter bringen können;
wir extrahieren personalisierte Anmerkungen aus Desktop-Dokumenten automatisch und
nutzen diese für Annotationen von besuchten Webseiten.

Danach konzentrieren wir uns auf die Vorteile, die ein Ranking-Mechanismus brin-
gen kann. Wir bauen auf den PageRank-Algorithmus auf und wenden einen semantischen
Ranking-Mechanismus auf dem Desktop an, der die zuvor erstellten Verbindungen im vollen
Umfang nutzt. Wir erweitern auch die kollaborative Benutzerumgebung und zeigen unter
Berücksichtigung des Vertrauens in die Personen, die diese Ressourcen gesandt haben, wie
die Empfehlungen innerhalb der Benutzer-Arbeitsgruppe gerankt werden können. Weitere
Fragen zu Vertrauen und Privatsphäre werden erkundet, z.B. wie wir unsere Ressourcen
offenlegen, aber nicht die Struktur dieser Ressourcen. Unsere vorgeschlagene Lösung ist ein
guter Kompromiss zwischen Qualität und Privatsphäre, da verschiedenartige große Mengen
von Daten vollständig zwischen den Nutzern geteilt werden.

Schlagwörter: Desktop Search, Ranking, Metadata Generation

FOREWORD

The work presented in this thesis has been published at various conferences,
as follows.

In Chapter 2 we describe contributions included in:

• Leveraging Personal Metadata for Desktop Search: The Beagle++ Sys-
tem. Enrico Minack, Raluca Paiu, Stefania Costache, Gianluca Demar-
tini, Julien Gaugaz, Ekaterini Ioannou, Paul-Alexandru Chirita, Wolf-
gang Nejdl. In: Journal of Web Semantics, 2010. [MPC+10]

• Desktop Context Detection Using Implicit Feedback. Paul-Alexandru
Chirita, Stefania Costache, Julien Gaugaz, Wolfgang Nejdl. In: Pro-
ceedings of the Personal Information Management Workshop at the 29th
Annual ACM International Conference on Special Interest Group on In-
formation Retrieval. SIGIR’06, Seattle, WA, USA, August 6-11, 2006.
[CCGN06]

• Detecting Contexts on the Desktop Using Bayesian Networks. Stefania
Costache, Julien Gaugaz, Ekaterini Ioannou, Wolfgang Nejdl. In: Pro-
ceedings of the Desktop Search Workshop: Understanding, Supporting,
and Evaluating Personal Data Search at the 33rd Annual ACM Interna-
tional Conference on Special Interest Group on Information Retrieval.
SIGIR’10, Geneva, Switzerland, July 19-23, 2010. [CGIN10]

• P-TAG: Large Scale Automatic Generation of Personalized Annotation
TAGs for the Web. Paul-Alexandru Chirita, Stefania Costache, Siegfried
Handschuh, Wolfgang Nejdl. In: Proceedings of the 16th International
World Wide Web Conference. WWW’07, Banff, Alberta, Canada, May
8-12, 2007. [CCNH07]

Chapter 3 presenting methods for computing ranking on the desktop and
in a cooperative environment is built upon the work published in:

• Activity Based Links as a Ranking Factor in Semantic Desktop Search.
Julien Gaugaz, Stefania Costache, Paul-Alexandru Chirita, Claudiu S.
Firan, Wolfgang Nejdl. In: Proceedings of the 6th Latin American Web
Congress. LA-WEB ’08, October 28 - 30 2008, Vila Velha, Espirito
Santo, Brasil. [GCC+08]

vi

• Semantically Rich Recommendations in Social Networks for Sharing, Ex-
changing and Ranking Semantic Context. Stefania Ghita, Wolfgang Ne-
jdl, Raluca Paiu. In Proceedings of the 4th International Semantic Web
Conference. ISWC ’05, Galway, Ireland, 6-10 November 2005. [GNP05a]

• Personalizing PageRank-Based Ranking over Distributed Collections. Ste-
fania Costache, Wolfgang Nejdl, Raluca Paiu. In Proceedings of the 19th
International Conference on Advanced Information Systems Engineering.
CAiSE ’07, Trondheim, Norway, 11-15 June 2007. [CNP07]

During my Ph.D. studies I have also published a number of papers inves-
tigating the use of metadata for improving desktop search, but also on how
we can detect events from content generated by users, also known as social
media, and more specific from blogs. This aspect is not touched in this thesis
due to space limitation, but the complete list of publications follows:

• The Beagle++ Toolbox: Towards an Extendable Desktop Search Archi-
tecture. Ingo Brunkhorst, Paul A. Chirita, Stefania Costache, Julien
Gaugaz, Ekaterini Ioannou, Tereza Iofciu, Enrico Minack, Wolfgang Ne-
jdl, Raluca Paiu. In: Proceedings of the Semantic Desktop and Social
Semantic Collaboration Workshop at the International Semantic Web
Conference, ISWC ’06, November 2006, Athens, GA, USA. [BCC+06]

• Beagle++: Semantically Enhanced Searching and Ranking on the Desk-
top. Paul A. Chirita, Stefania Costache, Wolfgang Nejdl, Raluca Paiu.
In: Proceedings of the 3rd European Semantic Web Conference. ESWC
’06, June 2006, Budva, Montenegro. [CGNP06]

• Semantically Enhanced Searching and Ranking on the Desktop. Paul A.
Chirita, Stefania Costache, Wolfgang Nejdl, Raluca Paiu. In Proceed-
ings of the International Semantic Web Conference Workshop on the
Semantic Desktop - Next Generation Personal Information Management
and Collaboration Infrastructure. ISWC ’05, Galway, Ireland, November
2005. [CGNP05]

• Semantically Rich Recommendations in Social Networks for Sharing and
Exchanging Semantic Context. Stefania Costache, Wolfgang Nejdl, Ra-
luca Paiu. In: Proceedings of the 2nd European Semantic Web Confer-
ence Workshop on Ontologies in P2P Communities, ESWC ’05, Greece,
May 2005. [GNP05b]

• Using Your Desktop as Personal Digital Library. Stefania Ghita. In:
Proceedings of the Doctoral Consortium at the 9th European Conference
on Research and Advanced Technology for Digital Libraries, ECDL ’05,
Vienna, Austria, 18-23 September 2005. [Ghi05]

vii

• Task Specific Semantic Views: Extracting and Integrating Contextual
Metadata from the Web. Stefania Ghita, Nicola Henze, Wolfgang Nejdl,
Raluca Paiu. In: Proceedings of the Workshop on The Semantic Desk-
top - Next Generation Personal Information Management and Collabo-
ration Infrastructure at the 4th International Semantic Web Conference,
ISWC’05, Galway, Ireland, November 2005. [MGHN05]

• Application Independent Metadata Generation. Jürgen Belizki, Stefania
Costache, Wolfgang Nejdl. In: Proceedings of the International ACM
Workshop on Contextualized Attention Metadata: Collecting, Manag-
ing and Exploiting of Rich Usage Information at the 15th ACM CIKM
(Conference on Information and Knowledge Management), CAMA ’06,
Arlington, VA, USA, November 2006. [BCN06]

• Query Ranking in Information Integration. Rodolfo Stecher, Stefania
Costache, Claudia Niederée, Wolfgang Nejdl. In: Proceedings of the
22nd International Conference on Advanced Information Systems Engi-
neering, CAiSE’10, Hammamet, Tunisia, June 2010. [SCNN10]

Contents

Table of Contents ix

List of Figures xiii

1 Introduction 1

1.1 Personal Information Management 1

1.2 Open Challenges . 3

1.3 Structure of the Thesis . 4

2 Generation of Desktop Context 5

2.1 Introduction . 5

2.2 Related Work . 9

2.2.1 Metadata Generation . 10

2.2.2 Context Generation . 13

2.2.3 Generation of Annotations . 16

2.3 The Desktop Search Beagle++ System 18

2.3.1 Enhancing the Beagle Desktop Search Architecture to Support
Metadata — An Overview . 18

2.3.2 Metadata Generation and Storage 20

2.3.3 Metadata Enrichment . 23

2.3.4 Metadata Search . 26

2.3.5 Experiments . 31

2.3.6 Lessons Learned . 36

ix

x

2.3.7 Discussion . 37

2.4 Desktop Context Detection Using Implicit
Feedback . 37

2.4.1 Context Detection on the Desktop 37

2.4.2 Experiments . 39

2.4.3 Discussion . 40

2.5 Desktop Context Detection Using Bayesian
Networks . 41

2.5.1 Context Detection Evidences 41

2.5.2 The Context Bayesian Network 44

2.5.3 Experiments . 46

2.5.4 Discussion . 47

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation
TAGs for the Web . 48

2.6.1 Automatic Personalized Web Annotations 48

2.6.2 Experiments . 55

2.6.3 Applications . 62

2.6.4 Discussion . 64

3 Ranking on the Desktop and on the Personal Virtual
Information Space 67

3.1 Introduction . 67

3.2 Related Work . 69

3.3 Ranking Using Activity Based Links 73

3.3.1 Context Based Ranking . 73

3.3.2 Activity Based Ranking . 74

3.3.3 Experiments . 76

3.3.4 Discussion . 79

3.4 Sharing, Exchanging and Ranking Semantic Context Based on Recom-
mendations . 79

3.4.1 Motivating Scenario . 80

3.4.2 Representing Context and Importance 82

3.4.3 Sharing Context and Importance 85

3.4.4 Discussion . 92

3.5 Personalizing Ranking over Distributed Contexts 94

3.5.1 Which Information Should We Exchange? 94

3.5.2 Information Exchange and Rank Computation 98

xi

3.5.3 Experiments . 103

3.5.4 Discussion . 108

4 Contributions and Open Directions 109

A Curriculum Vitae 113

Bibliography 115

List of Figures

2.1 Beagle++ Architecture Overview . 19

2.2 An example metadata graph extracted from one data item (here a PDF
file representing a publication). 21

2.3 Desktop Ontology . 25

2.4 Detailed query processing in Beagle++. 27

2.5 Search results retrieved by Beagle 29

2.6 Search results retrieved by Beagle++ 30

2.7 An example of the generated Desktop metadata graphs. Note that
the image is fuzzy due to privacy concerns. Nevertheless, this excerpt
visualises the connectivity of a Semantic Desktop’s metadata. 35

2.8 Hierarchy example (circles are directories and squares files). 43

2.9 Small part of an example BN. 44

2.10 Precision at the first three output annotations for the best methods of
each category. 65

3.1 Average grades per algorithm with standard deviation. 78

3.2 Publications Context Example - Part 1 81

3.3 Publications Context Example - Part 2 82

3.4 Context ontology for our prototype 83

3.5 Authority transfer annotations, including external ranking sources . . 85

3.6 Authority transfer annotation ontology for a publication ontology . . 89

3.7 Data Graph . 89

3.8 Statistics propagation for results merging 96

xiii

xiv LIST OF FIGURES

3.9 Aggregated ObjectRank computation 97

3.10 Example of weighted data graphs - different setups 99

3.11 Example of world node creation . 100

3.12 Peers’ resource distribution . 104

1
Introduction

Nowadays, our personal information is mostly in electronic form, spanned over several
physical locations, as desktop computers, PDAs, mobile phones, digital cameras,
etc. The capacity of our hard drives today, combined with more and more powerful
computers and explosion of communications in electronic form – be they emails or
documents downloaded from the web – allows us to accumulate on our desktop an
overwhelming quantity of personal information coming from several locations. All
this information is useless unless we are able to find it at the time we need it.

1.1 Personal Information Management

The Personal Information Management (PIM) field is rather new, and aims at exactly
solving these problems of offering to the users solutions for managing this huge amount
of information. The ideal would be not to only have a tool that can give a nice
overview of the resources, but a good use of them towards our every-day goals, which
ultimately translate into a better use of our most precious resources - time, energy,
attention and why not money, which ultimately translate into a better quality of
life. Wikipedia1 defines the PIM: “Personal information management (PIM) refers to
both the practice and the study of the activities people perform in order to acquire,
organize, maintain, retrieve and use information items such as documents (paper-
based and digital), web pages and email messages for everyday use to complete tasks
(work-related or not) and fulfill a persons various roles (as parent, employee, friend,
member of community, etc.).”.

In the light of this definition, we can easily see that a simple desktop search tool
would offer the user only a partial solution. Whenever we work on our computers,
we make use of various resources on the desktop, so just finding them on our PCs
would not suffice, but a way to represent the context that we perform our taks into

1http://en.wikipedia.org/wiki/Personal information management

1

http://en.wikipedia.org/wiki/Personal_information_management

2 Chapter 1 Introduction

would be much more helpful. Imagine you want to find not only a document you
saved from an email, but also the email that it was sent with. The idea is to link
documents according to where they are used - to their working contexts. We are
not only interested in documents per se, and to group them together, but we focus
more on the very content of those documents and how some parts of them relate to
each other, called semantic links, since they are related by meaning, not only by their
physical appearance, as in the case of grouping files into folders. We propose various
techniques in order to keep these semantic links between resources which are able to
recreate working contexts on our desktops.

Most recent PIM projects focused on improving the management of desktop re-
sources (e.g., files, emails), going beyond the functionality of commercial desktop
search engines. Systems such as Haystack [QK04], Stuff I’ve Seen [DCC+03], and
NEPOMUK [NEP] proved that automatically extracting and maintaining rich infor-
mation describing desktop objects is feasible, but is not always used properly to easen
the search task. The obvious shortcoming of generation of all this extra data is that
they add up to the already huge size of the documents on our desktops, making it
even more difficult to distinguish between the useful and needed resources. This is
where Information Retrieval (IR) can play a role. In most existing cases, the way
the user queries his information is by typing some keywords in a simple search box.
The outcome is a long list of, hopefully, ranked results. Yet this also comes with a
challenge: To fastly locate the needed information within those results. So a ranking
is most needed here, but even so, just TFxIDF measures are not enough. We need to
make good use of the generated connections between our desktop files. A semantic
ranking, combining text properties with contextual properties seems more apropriate
in this scenario, the solution we also propose in this thesis.

With the boom of the Social Web and online communities (e.g. Del.icio.us2,
Facebook 3, YouTube4, etc.), we work more and more within communities. We com-
municate a lot daily, exchange ideas, pictures, documents, links, instant messages,
and so on. So we can say we have reached a different level on our current desktops,
the expanded desktop into a collaborative environment, represented by the desktops
of our friends and family from where the exchanged resources come from and go to.
Obviously, problems regarding privacy and trust arise immediately, since we have to
be aware about the identity and intentions of people that we exchange resources with.
We propose several solutions which try to cope with the trust and privacy problems -
even if we trust some people enough to exchange resources with, we only want to share
some of our resources and with certain restrictions. Also, when receiving resources,
again a ranking mechanism needs to be in place, and also needs to take into account
the trust that we have into the sender. Such ranking mechanisms for these collab-
orative environments are proposed in this thesis and supported with experiments in

2Delicious. http://delicious.com
3Facebook. http://www.facebook.com
4YouTube. http://www.youtube.com

http://delicious.com
http://www.facebook.com
http://www.youtube.com

1.2 Open Challenges 3

order to show their performance and capabilities.

1.2 Open Challenges

We first list the main challenges addressed in this thesis and then explain each of
them and show the proposed solutions within this thesis:

• Challenge 1: How to better exploit implicit linkage and semantic structures
on the desktop?

• Challenge 2: How to help the user in overcoming the continoulsy growing
amount of data available on the desktop?

• Challenge 3: How to support the user in sharing and protecting information?

• Challenge 4: How to interact with the Virtual Personal Information Space of
the user?

People are daily faced with a lot of data coming from various sources which we
need to manage. The solutions that we propose in this thesis recreates the links
between the desktop resources in order to keep track of their semantic meanings, in
order to make retrieval of these resources much easier. The solution of Challenge 1
is a semantic desktop which keeps track of the semantic links between resources.

Since the number of resources that we have to deal with every day is becoming
overwhelming, a sense of order needs to be in place, in order to be able to sort out
the most important resources we have on our computers. A solution is proposed
to Challenge 2 in the shape of a semantic ranking mechanism, which exploits the
created semantic links on the desktop.

The scenario of a single desktop proved to be insufficient into a world in which
people interact all the time within communities. For the collaborative tasks which
the user is faced with, we need some techniques in order to be able to filter out bad
recommendations coming from people which we do not trust too much. Challenge
3 is solved by proposing a collaborative ranking algorithm which is able to take into
account the trust we have into certain persons and provide an appropriate ranking.

In a distributed environment, where the user’s resources are not only located
on his personal desktop, but also within the Web, we introduce the notion of the
Virtual Personal Information Space of the user, which comprises all his resources, not
necessarily on his desktop. In this environment, a continous exchange of resources
takes place with other peers, where some of the resources are also shared in between
several users. In this scenario, privacy and trust problems always arise, which we
adress within Challenge 4. We propose a distributed ranking mechanism which is
able to take into account the level of trust we have into a person and translate it into
the rankings given to the resources coming from that person.

4 Chapter 1 Introduction

To sum up, in this thesis we envision and implement a desktop search tool capable
of recreating “lost” connections on the desktop among its resources. These connec-
tions recreate at their turn working contexts to help the user, and also facilitate a
ranking mechanism on top of the classic PageRank algorithm. Also, ranking solutions
for the collaborative scenarios are proposed, also focusing on the reccomendations ex-
changed between users and the trust and privacy issues which need to be taken care
of in such an collaborative environment.

1.3 Structure of the Thesis

The rest of this thesis is structured as follows:

In Chapter 2 (Challenges 1 and 2) we show our Beagle++ system, a fully de-
ployed system, in which we created some modules capable of generating semantic
information which is able to mantain the context connections for emails, web pages,
files within directories and publications (Section 2.3). We use these links and suggest
a ranking method for retrieved results and show our method performs better than the
original system without our enhancements. Additionally we propose two methods for
detecting contexts on the desktop. The first one (Section 2.4) exploits the temporal
access relationships between the accessed files and builds on the main idea that if two
files are accessed within a short time frame and rather often, then they are connected,
since they might be used within the same task. The second one (Section 2.5) tries
to directly detect contexts in a cluster fashion, by taking into account various evi-
dences (text, folder hierarchies, access times, access in a sequence) translated into a
Bayesian Network. The last proposed algorithm (Section 2.6) analyses the gain that
an expanded personal desktop on the Web can give to the user. We generate from
the desktop personalized annotations for visited Web pages, in this way transporting
our working contexts from the desktop to the Web.

In Chapter 3 (Challenges 3 and 4) we focus more on the ranking part, where we
first propose a ranking mechanism built on top of the semantic time links introduced
in the previous chapter (Section 3.3). Next we focus on the scenario of collabora-
tive desktops, where users exchange resources. We suggest a ranking algorithm for
reccomendations between users and show how this can be easily adopted due to its
good performance (Section 3.4). Also, when users exchange one or more resources,
the trust into the other user influences a lot what we are going to handle and how we
trust the resources coming from her. Therefore, we show how the level of trust into a
person can be incorporated into the ranking mechanism, thus giving more importance
to a resource coming from a more trusted person. In Section 3.5 we experiment with
different levels of trust and also with different ways in which a user is willing to share
his resources with others - totally or partially.

Chapter 4 summarizes the contributions of this thesis and discusses future ideas
and problems for future work.

2
Generation of Desktop Context

2.1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past decade,
and so has the number of files we usually store on our computer. With a few hundred
of gigabytes at hand, it is quite common to have over 100,000 indexable items on the
Desktop. It is no wonder that sometimes we cannot find a document anymore, even
when we know we saved it somewhere. Ironically, in some of these cases nowadays,
the document we are looking for can be found faster on the World Wide Web than
on our personal computer. In view of these trends, resource organisation in personal
repositories has received more and more attention during the past years. Thus, several
research and development projects have started to explore PIM, including Stuff I’ve
Seen [DCC+03], Haystack [QK04], or Gnowsis [SS04]. The PIM challenge is to make
all resources on one’s Desktop easily accessible and manageable. In this context,
Desktop search is the obvious solution for finding such stored information.

In order to offer better results, current Desktop search engines have to improve the
classic method of retrieval based on TFxIDF measures, and use additional information
about the searchable resources. Currently, only few of the commercial Desktop search
engines collect basic metadata, such as titles, authors, comments, etc., usually already
contained in the indexed files. However, since very few people spend time annotating
their documents, this functionality provides only a limited improvement over regular
text-based search. Studies have shown that people associate things with certain
contexts [TAAK04], or to be more specific, everything happens within a context and
a person will not think of a thing by its own, but within this very context. For
example, a person will not only consider a document, but also the email that it was
sent with and the person who sent it, i.e., the context of the document. For this
reason, this kind of information should be utilised during search. So far, however,
neither has this information been collected, nor have there been attempts to use it.

In this chapter we propose to exploit the implicit semantic information residing

5

6 Chapter 2 Generation of Desktop Context

at the Desktop level in order to enhance Desktop Search. We therefore propose
the automatic generation of metadata taking into account the context of Desktop
resources:

• Email context clearly generates useful information. For example, one email
might contain a question describing the object one is looking for, and another
email in the same thread might include the answer to that question in the form
of an attached document.

• Email attachments lose all contextual information as soon as they are stored on
the PC, even though emails usually include additional information about their
attachments, such as sender, subject or comments. It would be helpful to find
an attachment not only based on its content, but also based on its associated
context1 from within the email.

• Folder hierarchies may contain valuable context information, because we might
have spent considerable time to build sophisticated structuring hierarchies for
the documents we store.

• Browser caches include all information about the user’s browsing behaviour.
This is useful both for finding relevant results, and for providing additional
context for them.

• Downloaded publications also miss all their “links”, once stored on our machines.
Yet it would be very useful if a search application not only returns one specific
scientific paper, but all the referenced and referring papers which we downloaded
on that occasion as well.

The additional metadata generated would be useless without a proper mechanism
of querying and results ranking. Web search has become very efficient due to the
powerful link-based ranking solutions such as PageRank [PBMW98]. The recent
arrival of Desktop search applications, which index all data on the PC, promises to
increase search efficiency on the Desktop. However, Desktop search engines are now
comparable to first generation Web search engines, which provided full-text indexing,
but only relied on textual IR algorithms for searching and ranking. We propose a
centralised approach for querying, which combines the full-text and metadata search,
and adds a modified ObjectRank [BHP04] mechanism for improved ranking of the
retrieved results.

Through our extensions, we show that Beagle++ (the system we developed on
top of the Beagle system) is not simply a Semantic Desktop (as Haystack [QK04],
IRIS [CPG05], Gnowsis [SS04]), a PIM application (as SEMEX [DHN+04] or SIS
[DCC+03]), or a new data storage paradigm (as Lifestream [FF95] or TagFS [BGSV06,

1Desktop Search is in fact “a search into our past”, and it should therefore exploit the associative
functionality of the human memory.

2.1 Introduction 7

GSS06]). Instead, Beagle++ relies on a combination of all these aspects to provide a
Desktop search engine that works on the “classic” Desktop metaphor and exploits the
semantics contained in the Desktop data items. It is thus an example to illustrate the
Semantic Desktop paradigm, demonstrating its benefits and potentials to ordinary
users. Beagle++ is available for download2 as sources, binaries and virtual machine.

The components making up Beagle++ contribute to the NEPOMUK project3.
The goal of NEPOMUK is to create the Social Semantic Desktop which allows man-
agement of desktop resources as well as sharing and exchange of data between desk-
tops [DF04, GHM+07]. NEPOMUK provides an infrastructure for including various
components in the Social Semantic Desktop application. All our components were
also embedded in this framework, and thus also integrated with other components
such as Gnowsis [SS04].

Even with all these tools at hand, the focus on the user’s interests and working
contexts is sometimes not very explicitly used. People tend to remember information
in terms of associations and context [TAAK04]. Most research on context detection is
incorporated in the broader field of desktop search systems, but not focused on context
detection as a separate domain. In this work we argue that devising specialized
algorithms for context detection would allow for a more efficient retrieval. Imagine
that among the top-ranked documents of the results list of a search query, there is an
email the user knows having sent in correlation with the information she is searching,
but the email gives no clue of what or where the sought information is. Being able
to retrieve the other documents belonging to the same context as the email would
allow to find the searched information faster, thus saving time. This functionality
allows us also to no more search for a precise document, but for one or more contexts,
which reduces the search space, and allows us to save attention, since context is more
natural than content.

So, the next obvious step in PIM research is to provide better task support on
the desktop building upon the extracted information. Also, the borderline between
desktop and Web deserves additional attention, since the personal information is no
longer managed on the desktop only, but on the “Virtual Personal Desktop”, an
extension of the user’s desktop on the Web. Our innovative approach for detecting
(working) contexts serves this future PIM direction.

For the desktop, we define a context as the collection of resources that the user
uses to solve one task. By processing these resources we collect similarity evidences,
such as two files are considered to be related if they were accessed several times in a
sequence. Also, identifying file similarities using text similarity techniques was found
successful in many areas (e.g., [MdRA+08] build on them for document classification).
Our approach intelligently combines a variety of such evidences (textual and non-
textual) to determine the working context. The resulting, improved knowledge about
the user’s context can, for example, be used for facilitating the user with the desktop

2http://beagle.l3s.de/
3http://nepomuk.semanticdesktop.org/

http://beagle.l3s.de/
http://nepomuk.semanticdesktop.org/

8 Chapter 2 Generation of Desktop Context

resources she needs for the current task as well as for targeted refinement of user
profiles and, thus, for the personalization of Web search and recommendations.

More specifically, we focus on identifying evidences supporting possible file-to-
context assignments, based on the content of the files on the desktop, as well as the
time connections between them (e.g., files frequently accesed within a time frame,
frequently accessed in a sequence). A Bayesian Network (BN) is created to model the
evidences, the possible file-to-context assignments, and the interdependencies between
them. We then use the BN to infer which files belong to which contexts.

As we already argued, the WWW has had a tremendous impact on society and
business in recent years by making information instantly and ubiquitously available.
The Desktop is now extended to the WWW, a vision of a future Web of machine-
understandable documents and data. Annotation is seen as a means to enrich the
Web with metadata. The “traditional” paradigm of Semantic Web (SW) annotation
- annotating existing Web sites with the help of external tools - has been established
for a number of years now, e.g., in the form of tools such as OntoMat [HS02] or tools
based on Annotea [KKPS01], and the process continues to develop and improve.

However, this “traditional” paradigm is based on manual or semi-automatic anno-
tation, which is a laborious, time consuming task requiring a lot of expert know-how,
and thus only applicable to small-scale or Intranet collections. For the overall Web
though, the growth of a Semantic Web overlay is restricted due to the lack of anno-
tated Web pages. On the other hand, the tagging paradigm4, which has its roots in
social bookmarking and folksonomies, is becoming more and more popular. A tag is
a relevant keyword associated with or assigned to a piece of information (e.g., a Web
page), thus describing the item and enabling keyword-based classification of the in-
formation it is applied to. The successful application of the tagging paradigm can be
seen as evidence that a lowercase semantic Web5, comparable to the Web 2.0 ideas6

– could be easier to grasp for the millions of Web users and hence easier to introduce,
exploit and benefit from. One can then build upon this lowercase semantic web as a
basis for the introduction of more semantics.

We believe that a successful and easy achievable approach is to automatically gen-
erate annotation tags for Web pages in a scalable fashion. With respect to annotation,
we imply the use of a tag as a mechanism to indicate what a particular document is
about (cf. [BM06]) as opposed to the use of a tag, for example, to organize the reading
(e.g., “todo”). The possible drawback of automatically generated tags though, is that
they present only one generic view, which does not necessary reflect any personal in-
terests. For example, one user might categorize the home page of Anthony Jameson7

4http://en.wikipedia.org/wiki/Tag (metadata)
5Lowercase semantic web is a term that seems to be coined by Tantek Çelik and Kevin Marks. It

refers to an evolutionary approach for the Semantic Web by adding simple meaning gradually into
the Web and thus lowering the barriers for re-using information.

6http://en.wikipedia.org/wiki/Web 2
7http://www.dfki.de/∼jameson

http://en.wikipedia.org/wiki/Tag_(metadata)
http://en.wikipedia.org/wiki/Web_2
http://www.dfki.de/~jameson

2.2 Related Work 9

with the tags “human computer interaction” and “mobile computing” because this
reflects his research interests, while another user would annotate the homepage with
the project names “Halo 2” and “MeMo” because he is more interested in research
applications.

The crucial question is then how to automatically tag Web pages in a personalized
way. In many environments, defining a user’s viewpoint would rely on the definition of
an interest profile. However, these profiles are laborious to create and need constant
maintenance in order to reflect the changing interest of the user. Fortunately, we
do have a rich source of information about the user available: everything stored on
his computer. This personal Desktop usually contains a very rich document corpus
of personal information which can and should be exploited for user personalization!
There is no need to maintain a dedicated interest profile, since the Desktop as such
reflects all the trends and new interests of a user, while it also tracks his/her history.

Based on this observation, we propose a novel approach for a scalable automatic
generation of annotation tags for Web pages personalized on each user’s Desktop.
We achieve this by aligning keyword candidates for a given Web page with keywords
representing the personal Desktop documents and thus the user’s / author’s personal
interest, using appropriate algorithms. The resulting personalized annotations can
be added on the fly to any Web page browsed by the user.

The contribution of this chapter is manyfold. We first show in Section 2.3a com-
plete system - Beagle++, a desktop search engine which we enhanced with metadata
generators and a ranking scheme which exploits them. Then we show two methods
for context detection on the desktop in Sections 2.4 and 2.5, and finally we argue that
annotations are a good way to expand the desktop by annotating preferred web pages
automatically with words picked from the personal desktop, is Section 2.6. With all
these enhancements we try to model and expand the desktop in order to better reflect
our interests and ultimately become a more helpful tool in our daily work.

2.2 Related Work

Desktop search applications are not new to the industry, only the high interest in
this area is new: applications have been available since 1998 (e.g., Enfish Personal8),
usually under a commercial license. As the amount of searchable Desktop data has
reached very high volumes and will most probably continue to grow in the future, the
major search engines have recently given more focus to this area than the academia.
Thus, several free Desktop search distributions have been released (e.g., Google Desk-
top Search9, MSN Desktop Search10, etc.). Moreover, some providers have even in-

8http://www.enfish.com/
9http://desktop.google.com/

10http://toolbar.msn.com/

http://www.enfish.com/
http://desktop.google.com/
http://toolbar.msn.com/

10 Chapter 2 Generation of Desktop Context

tegrated their Desktop search tool into the operating system, such as Apple11. The
open source community has also manifested its interest in the area, the most promi-
nent approaches being Gnome Beagle12 (now also integrated into SuSE) and KDE
KAT13, developed within the Mandriva community. Other relevant commercial Desk-
top search applications exist, such as Copernic, Yahoo! Desktop Search, X1, Scope-
ware Vision, or PC Data Finder. Most of the above mentioned applications target
a very exhaustive list of indexed file types, including any metadata associated with
them. They also update their index on the fly, thus tracking changes on the Desktop.
However, they either inherently miss the contextual information often resulting or
inferable from explicit user actions or additional background knowledge, or they are
limited to a small hard-coded set of metadata [DCC+03].

We will further present previous work developed in various research areas related
to our tools and compare them to our present work.

2.2.1 Metadata Generation

Metadata Enrichment

Using Metadata to Enrich Search Results. One interesting semantic search tool
that uses metadata to enrich search results is the TAP project [GMM03]. TAP builds
upon the TAPache module, which provides a platform for publishing and consuming
data from the Semantic Web. Its knowledge base is updated with the aid of the
onTAP system, which includes web pages templates, being able to read and extract
knowledge from several web sites. The key idea in TAP is that for specific searches, a
lot of information is available in catalogues and backend databases, but not necessarily
on Web pages crawled exhaustively by Google. The semantic search based results
are independent of the results obtained via traditional IR technologies and aim to
augment them, as opposed to our approach, where the semantic results are merged
with the traditional ones.

In [NHCS07], the authors target to improve another domain, namely digital li-
braries. In this context, creating collections of metadata records from disparate and
very diverse sources is a very tedious task, often leading to inaccurate, incomplete
or even missing subject metadata. However, having proper subject metadata infor-
mation is highly desirable, as this information enables users to more easily discover
and browse documents by limiting the results based on their subjects matching the
queries. The approach proposed in the paper, thus aims at improving the subject
metadata quality by using statistical topic models, which can be also augmented
with human review and intervention for filtering out the low quality topic labels,
subject to be associated with the data’s subject records.

11http://www.apple.com/macosx/features/spotlight/
12http://www.gnome.org/projects/beagle/
13http://kat.mandriva.com/

http://www.apple.com/macosx/features/spotlight/
http://www.gnome.org/projects/beagle/
http://kat.mandriva.com/

2.2 Related Work 11

[LGZ08] adopts a totally different perspective regarding the use of metadata for
enriching the search results. Here, the authors consider only metadata in the form of
collaboratively created user tags and use this information for inferring users’ social
topic interests. The created user profiles can then be used to personalise search results,
or connect like-minded users inside online social networks, such as Del.icio.us.

[CHSS08] is also making use of tags, though for a different setting, where tags
are automatically attached to Web pages. Here the tags represent concepts extracted
from a known set of concepts without any need of labeled documents and for achieving
this, the authors propose a probabilistic modeling framework that combines both
human-defined concepts and data-driven topics.

Using Metadata to Connect Information. In “The Social Semantic Desk-
top” [DF04], the authors envision that the next step towards communication is a
Desktop application based on the Semantic Web, which could draw connections be-
tween all the types of data people interchange. For example, an entry in an agenda
would be correlated with the author of an article or to the context associated with
an email. Altogether, the entire information existing in a social network would be
connected to each Desktop. Such a structure would then help people organise and
find information, due to the enhancement brought by metadata into the system. We
tend to follow this direction and enhance the resources on the Desktop with a lot of
metadata, which finally translates into multiple connections between data items.

The Fenfire project [Fal04] proposes a solution to interlink any kind of information
on one’s Desktop. That might be the birthday with the person’s name and the articles
she wrote, or any other kind of information. The idea is to make the translation from
the current file structure to a structure that allows people organise their data closer
to the reality and to their needs, in which making comments and annotations would
be possible for any file.

Haystack [QK04] pursues similar goals as Fenfire. One important focus is on
working with the information itself, not with the program it is usually associated
with. For example, only one application should be enough to see both a document,
and the email address of the person who wrote it. Therefore, a user could build her
own links to Semantic Web objects (practically any data), which could then be viewed
as thumbnails, web pages, taxonomies, etc.

A third project building an information management environment for the Desktop
is Gnowsis [Sau03]. The main idea behind applications in this environment is the use
of a central information server which allows users to manage and directly access all
the information on their computer (for example the author of a file, her email address,
etc.). Gnowsis envisions the possibility to link any two resources on the Desktop with
a semantic connection.

In the context of another interesting prototype, the interface proposed by Yee
et al. [YSLH03] improves image search by providing and using faceted metadata.
Users can add flat or hierarchical categories of information to images, and then use

12 Chapter 2 Generation of Desktop Context

them for filtering search results. Again, the idea is to provide an enhanced access to
information, based on the different kinds of collected metadata.

As compared to all these previous approaches, we have the same aim of connecting
resources located on the Desktop, but we further utilise these links in order to build
a better search tool on the Desktop which combines the traditional IR methods with
the semantic search, also allowing the user to better visualise this metadata network
and browse it.

Metadata searching

Using Context Metadata to Find Information. Naaman et al. [NHW+04] de-
scribe an interesting approach for exploiting additional metadata for pictures retrieval.
The idea is to rely on automatically generated metadata (location, time and other dig-
ital photo metadata) and manual annotations (events, etc.), automatically enhance
these metadata by providing information about actual light status (night, day, dawn,
dusk), weather conditions, temperature or additional aspects on the events, and then
use these metadata to find stored images.

Another semantic search method using metadata is proposed by [RSdA04]. It first
does a classical text-based search on the metadata, whose output is then extended
using the RDF network induced by the relations between semantic concepts, and
finally reordered with techniques adapted from IR.

[WZ02] presents a new approach to content-based image retrieval. To improve the
retrieval performance, the authors use a self-adjustable metadata store, which records
the optimised relevance feedback information, representing the results obtained from
previous queries from users that give a feedback on the relevance of the retrieved
pictures. This kind of information partitions the images into classes denoting relevant
images for future queries. The features taken into account by the algorithm are only
low-level ones, such as HSV colour-histograms or directional histograms.

Our approach focuses on a very wide range of metadata, not only low-level ones,
which is generated fully automatically.

Querying. In the context of semantic querying, several languages which are used
to interact with the repository have been proposed. The two most common languages
to query RDF are SPARQL, a W3C recommendation, and SeRQL, which has been
created for the Sesame repository. SeRQL is a language similar to, and in some means
extending SPARQL. Their main characteristic is that it is possible to obtain an RDF
graph as a query result. Both query languages also support named graph querying.

The disadvantage of these languages is that the user has to learn a complex query
languages, therefore in Beagle++ we did not adopt any of these query languages
for the user interface. In our case, the user will need either to type keywords in
order to search for content, or to type queries in the format “property:value” (e.g.,
“author:john”). The system then translates the user query into a suitable format for

2.2 Related Work 13

the RDF repository.

Ranking. There are currently only limited (published) insights into the ques-
tion of how to rank Desktop search results, mostly based on very simple techniques.
Swoogle [DFJ+04] is a search and retrieval system for finding semantic web docu-
ments on the web. The ranking scheme used in Swoogle uses weights for the different
types of relations between Semantic Web Documents to model their probability to be
explored. However, this mainly serves for ranking between ontologies or instances of
ontologies. In our approach we have instances of a fixed ontology and the weights for
the links model the users’ preferences and practices. Our ranking algorithm resembles
the method presented in [BHP04], where the authors apply authority-based ranking
to keyword search in databases modeled as labeled graphs.

The importance of semantically capturing user interest is for example analysed
in [AMHAS03]. The purpose of their research is to develop a ranking technique for
the large number of possible semantic associations between the entities of interest
for a specific query. They define an ontology for describing user interests and use
this information to compute weights for the links among the semantic entities. In
our system, the user interest is a consequence of her activities. This information is
reflected in the properties of the entities defined. The weights for the links are defined
manually.

2.2.2 Context Generation

Even if the implicit feedback that we receive from various tools was proved to be
as accurate as other predicting methods about the importance that one resource
has for its user, there is almost no work at all dedicated to using these importance
measures to cluster the documents on one’s desktop, and use them as working contexts
(implicit feedback tools monitor user activities in an unobtrusive way, thus collecting
information about the user’s interests). We present previous work exploring text
based clustering, but also try to give a broader overview of the measures that can be
extracted about the activities of the user when benefiting of her personal resources.

Desktop Usage Analysis

Desktop usage behavior has been thoroughly analyzed in many studies. For example,
Malone [Mal83] used interviews to analyze the way professional and clerical office
workers organize information in their desks and offices. He identified two broad types
of persons, filers, who organize their data into directories and categories, and pilers,
who simply store all files in as few directories as possible. This work is orthogonal to
ours, as we also analyze desktop user activity, but we focus on file access distribution,
rather than storage behavior. Also, [BN95] suggested that the way information is used
on the desktop should also be the primary determinant of the way it will be organized,
stored and retrieved. We rely on the same idea: the user’s way of interacting with

14 Chapter 2 Generation of Desktop Context

information on the desktop should deliver good evidences for identifying the user’s
contexts. Finally, [JDB02] investigates methods for organizing Web information for
re-use, such as send email to self, print out the Web page.

Text Based Context Detection

[BHB01] uses text from productivity applications (like word processors, browsers,
etc.) to extract keywords representative of the task the user is performing – i.e.
the context. Those keywords are then used to pro-actively present the user with
documents in relation with her current task, as opposed to our approach which is
a static context detection, based on usage activity. Their type of clustering, based
on similarity of results’ titles and URLs, allows to group very similar documents,
such that the user is not overwhelmed with numerous poor distinct results. We also
perform text clustering but with standard algorithms, based on word vectors.

Scatter/Gather is a browsing method for results from a search, presented in
[HP96]. It uses the Fractionation algorithm to perform text clustering on search re-
sults and automatically organizes them into a given number of topic-coherent groups.
The user can then choose a cluster or a set of them to display only documents belong-
ing to those clusters. Even though [CPKT92] presents an innovative browsing tech-
nique, it relies on the traditional word vectors which are used as a base for clustering.
We could even think of using our new activity distance in a way for Scatter/Gather
to take into account the time dimension.

[RMO+93] builds upon the idea that if a user organizes her desktop as a ”filer”,
the type of organization can still be seen as a ”piler”, since the hierarchies built for
storing the files on a computer are too complex, so the user would no longer be able to
manually locate her data. They suggest using clustering based upon the term vectors
of documents to help in reorganizing the resources already stored on the desktop, but
also for giving hints where a newly created file can be classified. In our approach, we
aim at clustering desktop resources for the purpose of detecting the contexts in which
activities are performed on the computer, and use a different cluster identification
technique, based upon the access behavior of the user.

An interesting idea on how text clustering can be used on the desktop comes from
[Sta97]. They propose to exploit besides vector space models for lexical clustering,
the idea of lexical chains, that is the possibility to identify the part where a context
is active inside a text document. They also rely on the WordNet lexical reference
vocabulary to disambiguate senses of words in different contexts. One of the described
applications of their system, QUESCOT, tries to detect topic changes in documents
but also, more interesting to us, how is a document relevant to a query from the
topics perspective, by determining a context of occurrence for each query concept.

2.2 Related Work 15

User Activity and Implicit Feedback

Although implicit feedback was proved to be as accurate as other methods for pre-
dicting the importance of a resource for its user, there is almost no work dedicated
to using it to group the documents on one’s desktop, and use them as working con-
texts as we do in our approach. In [OK01], a broad discussion has been made about
the different types of behavioral patterns that can occur on the desktop. Their ex-
periments relied on implicit feedback given by various tools, and mainly based their
observations on analyzing the reading time durations, the time that the user spent on
one resource. Of course that a more accurate measure would be to monitor attention
focus only on specific units within documents, since for example, we would find the
relevant background of a paper interesting and not the whole. Most of the examples
given rely upon previous work performed in information filtering research, as they
have proved that in general there is a strong correlation between the reading time
and the importance of a document in the interests area of the user, since the recom-
mendations based on this measure, were very accurate [MS94, KMM+97, CLWB01]
(mostly done for browsing behavior on the web). This helps us in supporting our
opinions, since the reading time is the difference between close and open time and
we actually log and use these access times. Oard and Kim [OK01] conclude with the
idea that behavior evidence is hardly taken into account in present research, and even
less effort is put into combining this with content-based representation, the approach
that we envision in this work.

All these observations were reinforced once again by almost the same type of
studies performed in a non-laboratory environment and presented in [FKM+03]. They
also demonstrated by their web search experiments that the time that a user spends
on one document is the most relevant in order to predict a certain satisfaction, as in
our case it will be able to predict a stronger appertaining to a context or another. As
Fox et al. also mentioned, these observations can be further improved by logging the
rare but very meaningful facts that occur on one’s desktop, that the user also printed
out a copy of the present document as it might mean it is more important to the user,
as [KOR00] also suggested, and also that a certain link was added in the bookmarks.
A good summarization on implicit feedback measures, categorization and usage can
also be found in [KT03].

Implicit feedback is what [SG05] uses by analyzing file activities to deduce links
between them based on temporal locality – i.e. when they were accessed. These links
are then used to provide ranking using three different algorithms, namely Basic-BFS,
HITS, and PageRank. We also use implicit feedback but to detect context instead of
ranking.

16 Chapter 2 Generation of Desktop Context

2.2.3 Generation of Annotations

This work presents a novel approach, which makes use of document similarity and
keyword extraction algorithms in order to generate personalized annotation tags for
Web pages. Though blueprints for this approach exist, to our knowledge there has
been no prior explicit formulation of this approach, nor a concrete application or
empirical evaluation, as presented in this paper. Nevertheless, a substantial amount
of related work already exists concerning the general goal of creating annotations for
Web pages, as well as keyword extraction. The following sections will discuss some
of the most important works in the research areas of annotation, text mining for
keyword extraction, and keyword association.

Generating Annotations for the Web

Brooks and Montanez [BM06] analyze the effectiveness of tags for classifying blog
entries. They find that manual tags are less effective for indicating the particular
content of a document. We see this as a support for our work, because our evaluation
(see Section 2.6.2) proves that the tags we create result in high precision for content
description. They further show that cluster algorithms can be used to construct a
topical hierarchy amongst tags. These findings could be a useful extension to our
approach.

Cimiano et. al. [CHS04] propose PANKOW (Pattern-based Annotation through
Knowledge on the Web), a method which employs an unsupervised, pattern-based
approach to categorize an instance with respect to a given ontology. Like our approach
(denoted as P-TAG hereafter), it is rather simple, effortless and intuitive to use for
annotating Web pages. However, for this kind of annotation, PANKOW requires
an ontology and annotates a Web page with instances of the ontological concepts,
whereas we annotate Web pages with user specific tags. Also, PANKOW exploits the
Web by means of a statistical analysis, hence the annotation reflects more common
knowledge without considering context or personal preferences, while in our approach,
we create personalized tags. The main drawback of PANKOW is that the approach
does not scale, since it produces an extremely large number of queries against the
Google API.

The work in [CLS05] presents an enhanced version of PANKOW, namely C-
PANKOW. C-PANKOW downloads abstracts and processes them off-line and thus
overcomes several shortcomings of PANKOW. Furthermore, it introduces the nota-
tion of context, based on the similarity between the document to be annotated and
each of the downloaded abstracts. However, it is reported that annotating one page
can take up to 20 minutes with C-PANKOW. Our system annotates Web pages on
the fly in seconds. But the tasks are not entirely comparable, since our system doesn’t
produce ontology-based annotations, but personalized annotation tags. Further, our
notion of context is much stronger, since we consider documents from the personal

2.2 Related Work 17

Desktop, which leads to highly personalized annotations. Finally, C-PANKOW uses
the proper nouns of the Web page for annotation candidates, and thus annotation is
always directly rooted on the text of the Web page. On the other hand, the algorithms
we propose in this work generate keywords that not necessarily appear literally on
the Web page, but are in its context, as well as in the personal interest of the user.

Dill et. al. [DEG+03] present a platform for large-scale text analytics and auto-
matic semantic tagging. The system spots known terms in a Web page and relates it
to existing instances of a given ontology. The strength of the system is in the taxon-
omy based disambiguation algorithm. Our system does not rely on such a handcrafted
lexicon and extracts new keywords in a fully automatic fashion, while also supporting
personalized annotations.

Text Mining for Keywords Extraction

Text data mining is one of the main technologies for discovering new facts and trends
about the currently existing large text collections [Hea99]. There exist quite a di-
verse number of approaches for extracting keywords from textual documents. In this
section we review some of those techniques originating from the SW, IR and Natu-
ral Language Processing (NLP) environments, as they are closest to the algorithms
described in this work. In IR, most of these techniques were used for Relevance
Feedback [Roc71], a process in which the user query submitted to a search engine
is expanded with additional keywords extracted from a set of relevant documents
[XC96]. Some comprehensive comparisons and literature reviews of this area can be
found in [Eft95, VWMFC05]. Efthimiadis [Eft95] for example proposed several sim-
ple methods to extract keywords based on term frequency, document frequency, etc.
We used some of these as inspiration for our Desktop specific annotation process.
Chang and Hsu [CH98] first applied a clustering algorithm over the input collection
of documents, and then attempted to extract keywords as cluster digests. We moved
this one step further, by investigating the possibilities to acquire such keywords us-
ing Latent Semantic Analysis [DDL+90], which results in more qualitative clusterings
over textual collections. However, this turned out to require too many computational
resources for the already large Desktop data sets.

The more precise the extracted information is, the closer we move to applying
NLP algorithms. Lam and Jones [LAJ01] for example use summarization techniques
to extract informative sentences from documents. Within the Semantic Web / In-
formation Extraction area, we distinguish the advances achieved within the GATE
system [CMBT02, MBC03], which allows not only for NLP based entity recogni-
tion, but also for identifying relations between such entities. Its functionalities are
exploited by quite several semantic annotation systems, either generally focused on
extracting semantics from Web pages (as for example in KIM [KPO+03]), or more
guided by a specific purpose underlying ontology (as in Artequakt [AKM+03]).

18 Chapter 2 Generation of Desktop Context

Text Mining for Keywords Association

While not directly related to the actual generation of semantic entities, keyword
association is useful for enriching already discovered annotations, for example with
additional terms that describe them in more detail. Two generic techniques have
been found useful for this purpose. First, such terms could be identified utilizing
co-occurrence statistics over the entire document collection to annotate [KC99]. In
fact, as this approach has been shown to yield good results, many subsequent metrics
have been developed to best assess “term relationship” levels, either by narrowing the
analysis for only short windows of text [GWR99], or broadening it towards topical
clusters [WT06], etc. We have also investigated three of these techniques in order
to identify new keywords related to a set of terms that have been already extracted
from the Web page which requires annotation. Second, more limited, yet also much
more precise term relationships can be obtained from manually created ontologies
[CHBG01], or thesauri, such as WordNet [Mil95].

2.3 The Desktop Search Beagle++ System

2.3.1 Enhancing the Beagle Desktop Search Architecture to
Support Metadata — An Overview

As basis for our Beagle++ environment we use the open source Gnome Desktop search
engine Beagle14 for Linux, which we extend with semantic indexing, searching and
ranking capabilities. The reason for choosing Gnome Beagle to build upon was to
reuse existing work on developing and establishing a Desktop indexing and searching
platform, such that we could primarily focus on developing the semantic part of our
Semantic Desktop Search engine.

Figure 2.1 illustrates the overall Beagle++ architecture. For maintaining the gen-
erated information up-to-date even if the physical files on the Desktop change, we
rely on the inotify-enabled Linux Kernel, which catches all system events, i.e., files
being created, modified or deleted. All these kinds of Desktop events are sent to the
Beagle Server, which is in charge of dispatching, indexing and sending requests to the
appropriate module. Several modules ensure the execution of the following processes
supported by our architecture:

• The extraction of metadata is issued by the Metadata Extractor Backends, which
dispatch extraction tasks to the appropriate filter components, according to the
type of resource and content to be extracted. Information about the content of
resources is extracted using the Content Filters which act on specific file types
(e.g., PDF, XLS, DOC, EML, etc.15). The Metadata Filters extract specific

14http://beagle-project.org/
15http://beagle-project.org/Supported Filetypes

http://beagle-project.org/
http://beagle-project.org/Supported_Filetypes

2.3 The Desktop Search Beagle++ System 19

Figure 2.1 Beagle++ Architecture Overview

information (Publications, Emails, BibTeX, Web pages), according to the file’s
role in the user activities, for example, the authors, title and citations will be
extracted from a publication.

• The enrichment of these metadata is performed by three Metadata Enrichment
modules we developed: Entity Identification, ObjectRank and Attachment-File
Linker.

• The extracted content and metadata information are stored and indexed in the
central RDF repository .

• The search part of our Desktop search engine is provided by the Beagle Search
module. It is also responsible for routing the users’ search requests to the Beagle
Server, which further hands them over to the Metadata Extractor Backends.
These try to find relevant results matching the queries in the RDF repository.
The search results coming from the Metadata Extractor Backends are merged
by the Beagle Server into one list of result documents, which is presented to
the user by Beagle Search.

• For being able to exploit the added value of the generated metadata, the results
should be visualised in an adequate way to the user. We therefore created the
RDF Visualiser, which supports Beagle Search in presenting the search results
by visualising the RDF graph around matching documents.

Related projects like Haystack or Gnowsis similarly employ extractors, each one
specialised for one type of information source. The extracted semantic information
are represented in RDF and stored in a centralised and uniformly accessible point.
Therefore, such an architecture has proven to serve our needs to develop a high quality
semantic retrieval system.

20 Chapter 2 Generation of Desktop Context

In the following sections we detail some of the components present in our Beagle++

architecture, by showing the provided functionalities and techniques behind them. For
a complete description of all the modules, please refer to [MPC+10].

2.3.2 Metadata Generation and Storage

As already presented in Section 2.3.1, an important functionality of our Beagle++

Desktop tool is the creation and storage of metadata. Since these metadata are used
and processed by an extensible set of components, compliant with a common well-
defined ontology, such that every component which generates and consumes metadata
can rely on their format and semantics. In the following, we will describe our metadata
generation modules.

Metadata Extraction

With the help of the ontologies described in [MPC+10], we can represent metadata
extracted from Desktop data sources such as files, emails, contacts and calendar items,
instant messaging logs, notes, Web history, to name only a few. For each data source,
one of the Metadata Extractor Backends introduced in Section 2.3.1 is in charge of
indexing its data items. These backends are processing, for example, the file system,
an email client’s inbox or an instant messaging program’s log files, the corresponding
data items being files, emails and instant messages, respectively.

For each data item to be indexed, an appropriate Filter for processing the content
and the metadata is selected. The extracted information is stored in the RDF Repos-
itory. Each Filter processes one specific type of file, identified by filename extension
or MIME type (e.g., .pdf or application/pdf, respectively). Based on the type of ex-
tracted information, the Beagle++ Filters are classified into two categories: Content
Filters and Metadata Filters. The Metadata Filters are specific to Beagle++ and are
not present in the original Beagle architecture.

Our Metadata Filters improve existing Desktop search systems by extracting new
and enhanced metadata information from four specific sources. In the following, we
describe these sources in detail:

File Paths. Folder hierarchies are barely utilised by existing search algorithms, in
spite of the often sophisticated classification hierarchies users construct. For
example, pictures taken in Hannover could be stored in a directory entitled
“Germany”, so it would be useful to use this information for search. Normally,
a simple search for “Hannover” would be unable to retrieve the pictures in that
folder. The PathAnnotator component annotates files with every token appear-
ing in their file path, as well as additional semantic information provided by the
WordNet system16, such as direct synonyms, hyponyms, hypernyms, meronyms

16http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

2.3 The Desktop Search Beagle++ System 21

<uid:o2pGcq3ZvEeI6...>

"..."

"application/pdf"

<l3s:mimetype>

<l3s:text>

"p251.pdf"

<l3s:filename>

<l3s:parentdir>

<uid:44a4ZwunVEqYI4...>

"publications"

<l3s:filename>

<dblp:ChakrabatiPPO2>

"The structure of broad topics on the web"

<l3s:title>

<l3s:Publication>

<rdf:type>

<dblp:www>

<l3s:contains><l3s:stored_as>

Figure 2.2 An example metadata graph extracted from one data item (here
a PDF file representing a publication).

and holonyms [CGG+05], for each of these tokens, but naturally excluding the
trivial tokens as “/home/”. This kind of additional information is particularly
important since for specific types of files, which do not provide abundant tex-
tual information, the search process can rely upon the text generated for this
resource, based on the effort that the user invested to organise her files in a
hierarchy. For example, a picture stored in the folder “Germany” is annotated
with the term “Hannover”, because Hannover is a part of Germany. Then, this
pictures can easily be retrieved by searching for the term “Hannover”.

Email Metadata. Emails provide much structured information about people and
how people and emails relate to each other. For instance, an email can be sent
as a reply to another email, where each email is globally uniquely identified.
People that send or receive an email are also uniquely identified by their email
addresses. The inbox and the “sent” folder of an email client is a rich source for
such structured metadata. With our Metadata Filter for emails, all this infor-
mation becomes explicit in the RDF repository. Due to the unique identifiers
for emails and people, small graphs extracted from each email can be integrated
into a large network of metadata.

Web Cache. The linkage information between web pages is of high value on the Web
for various techniques such as ranking. To have the same degree of connection
on the Desktop, we broadened the notion of a “visited link” by defining it
as a web page that was previously visited by the user (i.e., the link’s target
page is present in the browser cache). The WebCache component transforms
the visited links into metadata which are created for every web page in the
cache, representing the links that have been visited from that page, as well as
the in-going links from which the user could have arrived to it (inverse of a
visited link). This information is also of high value in order to connect the
information on the desktop in a similar manner as on the Web, allowing for
additional techniques, e.g., ranking, but also the visited web pages become of a

22 Chapter 2 Generation of Desktop Context

high importance if we think of them as very useful in a given working context,
where the user of the desktop required browsing for solving a certain task. In
addition, these visited links are also highlighted in the Web browser, in order
to facilitate navigation for the user. When searching for a web page, the user
can reconstruct his previous navigational steps from another familiar web page.

Scientific Publications. In the research community, many papers are available in
PDF format, but although PDF allows basic metadata annotations like title
and authors, these are rarely used. We therefore developed a Metadata Filter
which extracts metadata from PDF scientific publications and provides it to
improve Desktop search. Since information extraction is a difficult and error
prone task, we decided to leverage the publicly available DBLP17 database.
The Metadata Filter first extracts the title (as the most selective element for
a publication) from the text of the PDF using different heuristics refined over
a set of experiments18. The obtained title is then used to search the DBLP
databases whose publication titles have been previously indexed using standard
IR techniques. If the first ranked publication has a matching score above a pre-
determined threshold, it is assumed to be the publication contained in the PDF
file, and publication metadata like authors, conference, year of publication, etc.,
are retrieved from the DBLP database.

Storing and Indexing Metadata

For each data item a metadata fragment is created, which itself corresponds to a
new data object, which needs to be stored and indexed for later search. Figure 2.2
presents an example of metadata extracted from a PDF file representing a publication.
Along with the explicit metadata associated with the file (e.g., file name, file size,
creation and modification time, MIME type), we also extract more complex metadata,
such as the folder where the file resides, title of the publication it contains, further
referring to the conference it was published at, etc. The more of these metadata
fragments become available in the RDF repository, the more Desktop resources get
interconnected. For instance, all PDF files that contain publications being published
at the same conference form a connected network around the respective conference.
Eventually, all these metadata fragments get integrated into a large network inside
the RDF repository.

For storing the produced metadata we employ the NEPOMUK RDF Repository
developed in the NEPOMUK project [GHM+07]. Being based on the open source
Java RDF storage, querying and reasoning framework Sesame [BKvH02], as well
as on Lucene, which is incorporated into the Sesame framework via the Lucene-
Sail [MSG+08], it benefits from the advantages of both: Sesame allows fast structural

17http://dblp.uni-trier.de/
18The heuristics include information like “the title is at the top of the first page, in bigger

charachters”.

http://dblp.uni-trier.de/

2.3 The Desktop Search Beagle++ System 23

(RDF) queries, and LuceneSail facilitates fast full-text queries over all literals, in-
cluding the actual content of the data item (see Section 2.3.4). Besides, by using the
capabilities of the Lucene inverted index, the RDF repository allows performing full
text search in the literals of the generated metadata fragments, whereas using the
Sesame store allows the system to perform structured search via the SPARQL19 and
SeRQL language20. Recent performance studies showed that the Sesame and Luce-
neSail infrastructure is very competitive compared to other available open source
solutions [MSN09].

2.3.3 Metadata Enrichment

As already mentioned in Section 2.3.1, once the metadata are stored in the RDF
repository, we propose to further apply several methods for enriching them. In this
section we describe in detail these methods and more precisely two different modules
encapsulating them: the Attachment-File Linker which preserves the links between
emails and their attachments stored on the Desktop, thereby improving the retrieval
effectiveness by creating more relations in the RDF repository, and, the ObjectRank
module which adds metadata for supporting ranking the Desktop entities based on
their link structure. In the following we will discuss in detail each of these modules.

Resource Linkage using Attachment-File Linker

To create new relations between Desktop resources we exploit users’ actions on the
Desktop objects. When performing a task, the user accesses various resources, which
can be considered related. Therefore, we semantically translate the user activities on
the Desktop into metadata. In this work, we translate such a user action: saving the
attached files from an email to a folder on the computer. We thus aim at preserving
the semantic connection between the attachment and the email it was sent with.

As soon as we save an email attachment on our disk, it becomes a simple file and
the original connection to the email is lost. Imagine searching for an institution, L3S
for example, and receiving as a result a document which apparently has no connection
to the research lab. But, while browsing its RDF metadata, the user could see that
it was an attachment to a file sent by a researcher in L3S, then, she could instantly
remember the whole context of the discussion in the email and why that document
was sent to her. An example of the generated metadata for such an email can be seen
in Table 2.1.

In order to serve this kind of situation, we created a new metadata enrichment tool,
the Attachment-File Linker, representing a linker between an email and its attachment
saved on the disk. This basically adds an additional link in the RDF graph between

19http://www.w3.org/TR/rdf-sparql-query/
20http://www.openrdf.org/doc/sesame/users/ch06.html

http://www.w3.org/TR/rdf-sparql-query/
http://www.openrdf.org/doc/sesame/users/ch06.html

24 Chapter 2 Generation of Desktop Context

Subject Predicate Object

file://mail1457.eml rdf:type Email
file://mail1457.eml ...from mailto:firan@l3s.de
file://mail1457.eml ...email attach file://mail1457.eml/;SEC=0
file://mail1457.eml/;SEC=0 ...file name WebLinks.pdf
file://mail1457.eml ...email text This is a good publication...

Table 2.1 Metadata generated for an email and its attachment.

a file and an email attachment, if the file was saved from the attachment of that
particular email.

The application searches over the whole RDF graph (reading from the RDF repos-
itory) for two resources, one of type File and one of type Attachment, with the same
size and extension, the date of creation of the file after the date of arrival of the email
(that the attachment belongs to), and with similar names (we used the SecondString
library21 and a threshold of at least 0.5). The logic behind this type of search is
strictly connected to the normal behaviour of a user who would save a file from an
email, and would not change the extension of the file, or modify the file by itself or
even drastically modify the name of the attachment.

In this way we can connect emails with the related attachments saved on the disk
creating more semantic relations in the RDF repository, which helps us to improve
the search effectiveness, as it better simulates the structure implicitly present on the
Desktop. An additional component which exploits the semantic relations created by
the previous resource linkage modules, will be presented in the next section.

Metadata Enrichment using ObjectRank

The main problem on the Desktop is that PageRank-like algorithms cannot be de-
ployed successfully as long as the Desktop resources are not linked to each other.
Therefore, what we need is a way to explicate the links among them and a way to use
this link information in ranking. In addition to the email attachment links, [BCC+06]
describes further services for creating explicit links between resources. A number of
relationship types or property types are used to describe the relationships among the
resources and thus influence the rankings.

ObjectRank [BHP04] has introduced the notion of authority transfer schema
graphs, which extends ontologies, by adding weights and edges in order to express
how importance propagates along the relationships inside an ontology. In our desktop
search framework ObjectRank relies on ontologies (as the one presented in Figure 2.3)
for modeling the importance flow among desktop entities. For example, the authority
of an email is split among the sender of the email, its attachment, the date when it

21http://secondstring.sourceforge.net/

http://secondstring.sourceforge.net/

2.3 The Desktop Search Beagle++ System 25

Figure 2.3 Desktop Ontology

was sent and the email to which it replied to. So, if an email is important, the sender
might be an important person, the attachment an important one and/or the number
of times the email was accessed is very high. Additionally, the date when the email
was sent and the previous email in the thread hierarchy also become important. A
part of the Desktop ontology used for Beagle++ is depicted in Figure 2.3.

As suggested in [BHP04], in preparation of the computation, every edge from the
schema graph is split into two edges, one for each direction. This is motivated by
the observation that authority can potentially flow in both directions and not only in
the direction that appears in the schema, e.g., if we know that a particular person is
important, we also want to have all emails we receive from this person ranked higher.
With Desktop resources linked to each other, the final ObjectRank value for each
resource is calculated based on the PageRank formula:

r = d · A · r + (1 − d) · e

applying the random surfer model [PBMW98] and including all nodes in the base
set. The random jump to an arbitrary resource from the data graph is modeled by
the vector e. A is the adjacency matrix which connects all available instances of the
existing context ontology on one’s Desktop. Parameter d represents the dampening
factor and is usually considered 0.85.

The ranking approach in Beagle++ relies on the metadata generators which store
metadata information in the RDF repository. In order for ObjectRank to perform the

26 Chapter 2 Generation of Desktop Context

computation of the scores, all metadata that are stored in the repository have to be
represented as triples, in the form Subject-Predicate-Object, and be compliant with
the Desktop ontology. When instantiating the Beagle++ ontology for the resources
existing on the users’ Desktop, the corresponding matrix A will have elements which
can either be 0, if there is no edge between the corresponding entities in the data
graph, or have the value of the weight assigned to the edge in the authority transfer
schema graph divided by the number of outgoing links of the same type. The rank-
ing computation is performed offline, and the results are stored back into the RDF
repository. Afterwards, the ObjectRank recomputation is performed every N minutes
(configurable), and is triggered by specific scripts. All entries, which are present in
the RDF repository are used for building up the data graph on which the ranking
computation is performed.

2.3.4 Metadata Search

After populating and indexing the metadata store we provide the user with the search
functionality as well as with the possibility to visualise retrieved Desktop items to-
gether with their metadata. In this section we will describe how Beagle++ performs
the search, how the final ranking of the results is computed, and how it displays the
retrieved resources.

Querying

When the indexing process is finished, the information about processed Desktop items
is stored in the RDF repository (see Section 2.3.2) and it is possible for the user to
query it. Beagle++ allows two types of queries: 1) usual keyword queries that only
refer to the content of the indexed resources, and 2) combined text and metadata
queries where specific keywords match the content and others match specific metadata
values (e.g., “text:technical metadata:lucene”).

In contrast to other semantic search approaches like [TCRS07, WZL+08, ZWX+07],
where pure keyword queries are given by the user and thus semantic information are
implicit, in Beagle++ the user expresses semantic relations explicitly. This gener-
ally leads to the limitation that such semantics cannot be used for enhancing the
search process unless the user knows how the structure of the metadata graph (the
underlying ontology) looks like, that is, how the RDF properties are named. To cope
with this problem, we manually established mappings between RDF property names
appearing in the ontology, and values which the user may employ for those prop-
erties. For example, if the user would use the query “author:john” the system will
map the property name “author” with http://beagle2.kbs.uni-hannover.de/ontology/
publications#author, which appears in the underlying ontology.

We further describe in more details the querying process which takes as input the
user query and provides back a ranked list of results (see Figure 2.4).

http://beagle2.kbs.uni-hannover.de/ontology/publications#author
http://beagle2.kbs.uni-hannover.de/ontology/publications#author

2.3 The Desktop Search Beagle++ System 27

Figure 2.4 Detailed query processing in Beagle++.

The user issues a query (for example “Spain”) by typing it into the Beagle++

GUI, Beagle Search, which then sends it to the Beagle Server, and this one calls
the backends (see Section 2.3.1) for obtaining different types of results. The user
query is translated into a structured query and sent to the LuceneSail in order to be
answered using both the Lucene Index and the RDF repository (see Section 2.3.2).
LuceneSail uses the incoming queries to retrieve results (i.e., Lucene Documents) from
the Lucene Index and metadata results from the RDF repository via the NativeSail,
which is in charge of retrieving RDF triples. Finally, the retrieved triples are converted
to Documents in the standard Lucene format. In our example all information (both
full-text and metadata) about “Spain” will be retrieved, including even the ones that
are not explicitly about Spain, but describing for example Andalusia as a region of
Spain. This is possible due to metadata extraction (see Section 2.3.2), which enriches
resources with additional, related information.

28 Chapter 2 Generation of Desktop Context

LuceneSail merges the full text search in the RDF graph literals stored in the
Lucene index (these RDF graphs are indexed as full-text and stored together with
the content of resources) with the search for concepts and relations (for example,
Andalusia is a region of Spain) in the native RDF store, enabling a structured and
semantic search like we illustrated in our example.

At this point the search for items similar to the relevant ones is also performed.
The list of relevant resources is expanded by searching in the RDF graph for resources
linked via a property which indicates the similarity (see [MPC+10] for more details).
For example, a misspelled name is similar to the correct one which will be also added
to the results. The final list of documents is returned to be visualised by Beagle

Search as described further in this Section.

Ranking in Beagle++

The ranking schema we designed for Beagle++ uses a combination of the TF×IDF
score returned by the LuceneSail and an extension of PageRank: ObjectRank (see
Section 2.3.3). The motivation for such an approach is that users might want to find
a specific document not only based on its content, but also based on the contextual
information around it. Studies have shown that users tend to associate things to
different contexts [TAAK04], which means that all this additional information should
be utilised during search.

Let us now consider a scenario for validating our assumptions about the benefits
of a search engine enhanced with ranking. We assume that Alice is a team member
of a computer science research institute, and one of the topics she is interested in
is recommender systems. Alice is currently writing a report about new techniques
for recommending multimedia content and therefore needs to write a section sum-
marizing the state-of-the-art of recommender systems. She remembers that she has
stored on her Desktop a few good papers on collaborative filtering techniques, par-
tially papers found on the web, partially received by email from different colleagues,
and partially papers for which she attended the presentations at several conferences.
For finding those papers, Alice uses a Desktop search engine, where she issues the
query “collaborative filtering” and in response to her query she receives a long list of
results, which unfortunately does not contain in the top-5 results the papers she was
looking for. She would like to have instead a Desktop search engine which takes into
account her personal preferences and presents the search results ranked based on this
information.

The new ranking schema we developed benefits both from the advantages of
Lucene’s TF×IDF score and those of ObjectRank. The new scores are computed
as a combination of them using the following formula:

R′(a) = R(a) · TFxIDF(a), (2.1)

where a represents the resource, R(a) is the computed ObjectRank, TFxIDF(a) is the

2.3 The Desktop Search Beagle++ System 29

TF×IDF score for resource a and R′(a) is the resulting score. The formula guarantees
that the highest ranked resources have both a high TF×IDF and a high ObjectRank
score. The re-ranking is performed at query time.

Coming back to the presented search scenario presented, we can see in Figure 2.5
and 2.6 how the order of the search results differs when using Beagle and Beagle++,
respectively:

Figure 2.5 Search results retrieved by Beagle

When using the Beagle system (see Figure 2.5), Alice receives a list containing 45
results (also including duplicates) and the first ranked result represents a paper by
Goldberg et al. — “Using collaborative filtering to weave an information Tapestry” —
so, obviously a relevant paper. The second and third ranked results are papers on
recommendations, however not very relevant ones.

The list of results Alice receives when using the Beagle++ system (see Figure 2.6)
is shorter (duplicates are removed) and better ranked: as the first ranked result,
this list contains also Goldberg’s paper, but the next results are much more relevant
for Alice’s interests. The second best result is now a paper, which was accepted

30 Chapter 2 Generation of Desktop Context

Figure 2.6 Search results retrieved by Beagle++

at a WWW conference: “Item-based Collaborative Filtering Recommendation Algo-
rithms” by Badrul Sarwar, George Karypis, Joseph Kostan and John Riedl. This
conference is very important for Alice because she has stored on her Desktop several
papers which were accepted at different editions of the conference. The metadata
extraction phase could therefore find many links between all the papers published at
that conference, their authors, and other papers and their authors that are referenced
or also stored in Alice’s Desktop. Prominent conferences and people of a certain do-
main are therefore more likely to have many links to conferences, papers and authors
of their domain. This information is taken into account by the Beagle++ ranking so
that highly connected authors, conferences or papers are higher ranked. The next
hits in the list represent papers written by prominent people of the domain and at
the same time very often cited in the literature.

2.3 The Desktop Search Beagle++ System 31

Displaying Desktop Resources

After the data are indexed, queried and ranked, the results have to be presented to
the user in a suggestive way within a visualisation interface. Since our main goal is
improving Desktop search by exploiting networks of metadata, we did not focus on
coming up with a completely new user interface, but rather took the Beagle Search
interface and showed how to incorporate the browsing of a network of metadata into
its task of displaying the found Desktop resources. Since this is not the focus of this
thesis, we refer the reader to [MPC+10] for more details.

We have so far explained the modules composing the Beagle++ architecture and
their functionalities: metadata generation, metadata enhancement, indexing and stor-
age of data and metadata, search and visualisation of results. We further show how
our Semantic Desktop search solution improves the quality of Beagle within a set of
experiments.

2.3.5 Experiments

In order to evaluate the performance of our Beagle++ system, the natural baseline we
considered was Beagle, since Beagle++ is an extension of Beagle. The first category
of experiments aimed to prove the quality of the results provided by Beagle++. It
was done involving human judges who rated the results that our system provided to
personalised queries. The second type of experiments considered the performance in
terms of time to index collections of data, the amount of extra data (metadata) gen-
erated and the response time for queries. Both sets of experiments were conducted
on 12 data sets, which consisted of the data provided by our researcher colleagues
on a voluntary basis: emails, documents, publications, address books, calendar ap-
pointments and other resources found on the users’ Desktops (.txt, .doc, .ppt, .html,
etc.).

Data Set Description

For proving the quality and the performance of our Beagle++ system, we need a data
collection which accurately represents Desktop data characteristics for testing our
algorithms on. However, given the privacy concerns the users usually have when giving
away their Desktop data — most of the times highly personal —currently there are no
Desktop data collections publicly available. Moreover, testing algorithms on artificial
datasets can be misleading and hard to evaluate as well. To overcome these problems
and also to make our experiments repeatable, we compiled for experimental purposes
a new Desktop data collection. More explicitly, we gathered real Desktop items from
a number of 12 colleagues corresponding to emails (sent and received), publications
(saved from email attachments, saved from the Web, authored / co-authored), address
books and calendar appointments. The distribution of the Desktop items collected

32 Chapter 2 Generation of Desktop Context

from each user can be seen in Table 2.2.

User ID Emails Publications Address books Calendars

1 30,627 0 0 0
2 4,423 869 1 1
3 833 236 0 0
4 3,820 266 1 0
5 2,012 112 0 0
6 217 28 0 0
7 218 95 1 0
8 0 236 1 1
9 1,034 31 1 0
10 1,068 157 1 0
11 1,167 426 0 0
12 48 452 0 0

Total 45,467 2,908 7 2

Table 2.2 Desktop test data — Resource distribution over the users.

A total number of 56,484 Desktop items has been collected, representing 8.1GB
of data, on average each user providing 4,707 items. The users provided a dump of
their Desktop data, including all kinds of documents, not just emails, publications,
address books or calendars. We have only included these types of specific resources
in the above table, since they are the most important for our modules.

User Studies and System Quality

We first did an evaluation of our Desktop search engine by conducting a small scale
user study22. Our colleagues, who provided us a subset of their Desktop data, had to
define their own queries, related to their activities, and then performed searches over
the above mentioned reduced dumps of their Desktops. Each user had to specify 8
queries in total:

• 2 clear queries (single or multiple keywords, e.g., Markov chains),

• 2 ambiguous queries (single or multiple keywords, e.g., architecture),

• 2 metadata queries with the structure metadata:value (e.g., to:costache@L3S.de,
which translates to emails sent to “costache@L3S.de”)

22For the evaluation of PIM systems, as the Desktop search tools, we are always faced with the
problem of a very low number of testers —due to privacy concerns, people are not willing to provide
their private data and participate in such experiments. However, we consider that for this kind of
systems, the number of user who participated in the experiments (12) is quite reasonable.

2.3 The Desktop Search Beagle++ System 33

Query P@1 P@2 P@3 P@4 P@5
type B B++ B B++ B B++ B B++ B B++

clear 0.85 0.91 0.73 0.89 0.68 0.89 0.66 0.89 0.67 0.87
ambiguous 0.78 0.82 0.72 0.84 0.74 0.83 0.69 0.84 0.69 0.83

Table 2.3 P@1-5 for querying with Beagle and Beagle++

• 2 queries of type metadata and some additional keywords (e.g., recommender
to:costache@L3S.de, which translates to querying for emails sent to “costache@
L3S.de” about “recommender” systems).

For the top-5 results, the user was asked to rate a query result with 0 (not rele-
vant) or 1 (relevant). The user needed to consider a result only as relevant or not,
disregarding the extent of the relevance. For comparison purposes, we sent each of
these queries to three systems: (1) the original Beagle system (with output selected
and sorted using solely TFxIDF), (2) Beagle++ using the same TFxIDF measure for
ordering its output, but giving more importance to metadata results than to regular
Desktop items23, and (3) Beagle++ using enhancements for both metadata support
and Desktop ranking based on ObjectRank.

We measured the quality of the produced annotations using precision, a standard
IR evaluation measure. As the results had a confidence score, we computed precision
at different levels, namely P@5, P@4, P@3, P@2, P@1. The precision at level K
(P@K) is the precision score when only considering the Top-K output. It represents
the number of relevant query results within the Top-K results divided by K, the total
number of results considered. First, the P@K scores were computed for each user
and query, then we averaged these values over the 2 queries of each type (clear and
ambiguous), obtaining the user’s opinion on each type of query. We further averaged
over all subjects and excluded the outliers. We considered as outliers the results
which were considerably distant from the average of the results, namely, not included
within a range of 70% plus/minus from the average. This was done mainly because we
observed that some users rated the relevance of some results incorrectly. The resulting
values are listed in Tables 2.3 and 2.4, where B represents the results obtained using
Beagle, B++ using Beagle++, and B++OR using Beagle++ enhanced with the ranking
module.

Results and Analysis

In all cases, we observe that Beagle++ outperforms Beagle (see Table 2.3). This
is in fact explainable, since Beagle only uses TFxIDF to rank its results, thus miss-
ing any kind of contextual importance measure for the Desktop resources. Another

23The advantage here is given by the fact of having metadata results additionally to normal
Desktop items. Compared to the Beagle system, the ranking is enriched with additional metadata
results.

34 Chapter 2 Generation of Desktop Context

P@1 P@2 P@3 P@4 P@5
Query type B++ B++ B++ B++ B++

B++
OR B++

OR B++
OR B++

OR B++
OR

clear
0.86 0.84 0.84 0.84 0.82
0.72 0.77 0.79 0.79 0.78

ambiguous
0.82 0.84 0.82 0.82 0.79
0.82 0.86 0.88 0.86 0.83

metadata
0.92 0.85 0.83 0.83 0.83
0.92 0.88 0.89 0.88 0.87

metadata & keyword
0.68 0.73 0.74 0.72 0.67
0.77 0.73 0.70 0.65 0.63

Table 2.4 P@1-5 for querying with Beagle++ and Beagle++ with ObjectRank

observation is that, Beagle++ (Beagle enhanced with RDF metadata annotations),
already performs very well. An important reason for this high improvement is that
metadata are mostly generated for those resources with high importance to the user
(the ones she often uses), whereas the other automatically installed files (e.g., help
files, which she might never have used) are not associated with metadata, and thus
ranked lower. When we have metadata describing a Desktop item, more and typically
also very relevant text is available as part of the metadata to search for, and thus this
item is also easier to find.

When comparing Beagle++ results against Beagle++ with ObjectRank (see Ta-
ble 2.4), the second system proves to be weaker in the case of clear queries. This
is because ObjectRank is mainly used for disambiguating and for a clear query it
practically adds some noise in the results. The performance of the ObjectRank algo-
rithm improves and gets better than TFxIDF scores in the case of ambiguous queries,
since we are considering queries with at least two interpretations. In addition, it is
natural for the algorithm to push at the top of the results’ list the interpretation that
is more used by the user, because most of the resources related to that sense would
be interlinked and provide a better score.

In conclusion, the metadata enhancement solutions we proposed offer a visible
quality improvement for Desktop search with any type of user query. Moreover, the
Desktop ranking mechanism we introduced further enhances Desktop search output
quality for ambiguous queries.

Benchmarking and System Performance

The second set of experiments we conducted aimed to compare the performance of
the Beagle++ system against Beagle. All 12 data collections were indexed with both
Beagle and Beagle++ and for each of the systems we observed the indexing time for

2.3 The Desktop Search Beagle++ System 35

various dimensions of the data sets. On average, we had 4,707 resources per user,
with an average size of 250,140 bytes per resource, which resulted in approximatively
1.17 GB of indexes. The range of Desktop resources to be indexed per user varied
from as little as 213 to ca. 30,600. The average time of indexing with Beagle was
39.21 minutes, while with Beagle++ this increased to 149.24 minutes. This increase
is quite normal, since besides the Beagle processes, our modules are also executed in
Beagle++, which takes more time. Also, the indexing in Beagle++ is performed in a
completely different store than Beagle is using, the RDF repository which has a full-
text index and also a semantic relations one (the querying is also performed on this
store, and therefore the querying can also be slower). It is also important to note that
this indexing is done only once, when Beagle++ is first run on a machine, and thus it
does not impact the performance of our application. Afterwards, when a new action
occurs (creation, deletion, moving, renaming of a file), only the particular affected
file is handled, which is transparent to the user and makes use of very few resources.
The obvious gain with the Beagle++ indexing is the additional metadata generated
by the annotation tools — on average, Beagle++ generated about 1.8 million triples
per user, useful data which is used for a better retrieval. An example showing the
complexity of the generated Desktop metadata graphs is depicted in Figure 2.7.

Figure 2.7 An example of the generated Desktop metadata graphs. Note
that the image is fuzzy due to privacy concerns. Nevertheless, this excerpt
visualises the connectivity of a Semantic Desktop’s metadata.

For measuring the response time for a query, each user proposed a personal query
and a total of 12 queries were run against each of the data collections. Three of
the queries provided no result when Beagle was used as the search engine. For the
same queries, Beagle++ provided more results in almost all cases. In Table 2.5 we
show the number of results returned for one query in the case of all users. The

36 Chapter 2 Generation of Desktop Context

User 1 2 3 4 5 6 7 8 9 10 11 12

Beagle 0 0 2 2 1 2 8 1 5 8 14 4
Beagle++ 0 0 2 2 1 4 24 1 6 11 16 6

Table 2.5 Number of hits provided by Beagle and Beagle++ for one query

response time for these queries increased from an average of 0.348 seconds for Beagle,
to 2.192 seconds for Beagle++ — still quite a good response time. The almost two
seconds difference is due to Sesame and Lucene, both located at the NEPOMUK
side: this takes longer than the Lucene index located in the Beagle system because
of the overhead caused by the XML-RPC framework of NEPOMUK. Considering the
number of found resources, Beagle++ outperforms Beagle with a significant increase
from an average of 5.714 results per query, to 18.156 results, which means a bigger
range of possible positive responses for the user to choose from (usually also presented
in a better ranking order). Overall, the average response time for a query increased,
from 0.372 seconds to 2.200.

2.3.6 Lessons Learned

Developing, evaluating, and using Beagle++ allowed us to realise several issues one
needs to deal with in order to create an effective Semantic Desktop search engine. In
this section we present and discuss the most important issues.

Metadata Extraction. Extracting metadata that are not explicitly stored in
desktop resources requires non-trivial algorithms, or the usage of external information
sources (cf. Metadata Filter for Scientific Publication in Section 2.3.2). For the for-
mer, we had to balance between performance and metadata quality, while considering
their CPU and memory requirements. For the latter, a limited internet connectiv-
ity requires local copies of such information sources, which increases the application
footprint. Those practical considerations are necessary to keep the application usable
and accepted by users.

We further realised that when different filters use the same ontologies and URI
schemes, i.e., reusing unique identifiers from the resources being processed, data
integrate nicely in the RDF repository. In case of the email metadata filter that
reuses the message-id identifier, email and people will be connected to all relevant
emails once they are stored in the RDF repository.

Integrating Extracted Metadata. Metadata that are not uniquely identifiable
at filter-level need more sophisticated integration at the global-level in the RDF repos-
itory. The improvements we identified when using our approaches (see Section 2.3.3),
allowed us to clearly realise that metadata enrichment methodologies are both feasible
and necessary for providing effective search functionalities over metadata.

2.4 Desktop Context Detection Using Implicit
Feedback 37

Using Metadata to Enrich Search Results. By extending the metadata so
that users can search on and with structure, both the querying process as well as the
search results have to handle that structure. On the one hand we had to balance
between a simple query language and rich structured queries. On the other hand, the
search result need to be visualised together with their structured metadata, without
overwhelming the user with such information.

2.3.7 Discussion

In this section we presented the Beagle++ Desktop search tool and the underlying
architectural design details for implementing a semantically enhanced Desktop search
application. Our current implementation builds upon a snapshot of the standard
Beagle implementation and we provided details about some new components we added
to the system: the Metadata Filters and the Metadata Enrichment Components —
ObjectRank and Attachment-File Linker.

Improvements are planned for every module, to offer a better performance in terms
of efficiency in storage, indexing and querying. In order to improve the querying re-
sults, a task detection module is envisioned, which would be able to disambiguate the
meaning of the user’s query and push more valuable results to the user, as described
next.

2.4 Desktop Context Detection Using Implicit

Feedback

The personal information stored on the desktop usually reaches huge dimensions
nowadays. Even providing additional metadata for resources, can sometimes not be
sufficient to cope with the complex tasks that need to be fulfilled. Therefore, we
consider that an efficient method of identifying the present working context would
mean an easier management of the needed resources. Next we propose a new way
of identifying desktop usage contexts, based upon a distance between documents,
which also takes into account their access timestamps. We investigate and compare
our technique with traditional term vector clustering, our initial experiments showing
promising results with our proposed approach.

2.4.1 Context Detection on the Desktop

Looking at the previous work, text based clustering is a common method used for
context detection. In this work we propose to also exploit usage analysis (i.e., access
timestamps of documents) in the pursuit of this goal. This section will start with
a description of the textual clustering methods we considered for desktop context

38 Chapter 2 Generation of Desktop Context

detection, then it will introduce a new activity based document similarity metric,
and finally it will exploit this metric for grouping resources on the PC desktop.

Text Based Context Detection

Using term frequencies coordinates to construct a representational space leads to a
good measure of similarity between documents, and we thus considered them as an
appropriate input source for desktop context detection. We used the cosine distance
to compare the term vectors representing two documents, and then clustered them
using both K-means and an agglomerative algorithm with average-link and complete-
link distances for the similarity between clusters (three approaches). We chose only
these approaches (i.e. we rejected single-link), as they yield more dense clusters.

PC Desktops were defined as containing all data stored by a single user on a
personal machine. This includes personal files (HTML, DOC, PDF, PPT, XML, etc.),
web cache history, messenger history, emails, but also program generated indexable
files (i.e., containing some form of textual content). Upon their full text, a standard
text preprocessing technique was taken: tokenization, removal of stop words, and
then stemming. Finally, the obtained word list needed to be further pruned, since it
would have been computationally too expensive to apply clustering on a term vector
space with so many dimensions, the word list reaching almost 300,000 stems. This is
also partially due to the fact that the text extractors generated a lot of noisy words
(e.g., by sticking some words together). We thus followed the approach of Yang and
Pedersen [YP97], and pruned our word list by document frequencies, keeping only
the words with the highest number of occurrences, as they were proved to be better
for aggressive dimension reduction than those with low document frequencies. We
used 15 as the minimum DF for the pruning threshold, which reduced the list of
words to around 1,000 entries. The newly obtained list was used to compute the
TF vectors for each document, the input for the clustering algorithms. The YALE24

system provided us with the functionalities and algorithms implementations needed
to perform the clustering. The results of these methods will be presented in Section
2.4.2.

Activity Based Context Detection

In order to apply a standard clustering algorithm exploiting implicit feedback, we
first need to define a distance between documents which exploits this information.
The main idea of our activity-based distance is that if two files are often accessed in
a small window of time, the distance between them should be small. One obvious
parameter of the distance is then the time t(af , bg) = |t(af)− t(bg)|, elapsed between
two file accesses af and bg to files f and g respectively. We also consider an additional
parameter, namely the number of steps s(a, b) between accesses a and b. If we note sx

24http://yale.cs.uni-dortmund.de/

http://yale.cs.uni-dortmund.de/

2.4 Desktop Context Detection Using Implicit
Feedback 39

the position of access x in the file access sequence, then s(af , bg) = |s(af)−s(bg)|. For
example, if we consider the sequence of file accesses af → ch → bg, then s(af , bg) = 2.
We therefore propose an activity-based distance between file accesses, and define it
as following product:

d(af , bg) = t(af , bg)s(af , bg) (2.2)

Before exploiting this file access distance to measure distances between files, let
us first observe that if two files f and g are accessed one time, separated by a given
number of steps, they should have a distance lower than if they were accessed a larger
number of times separated by the same number of steps. Furthermore, a file can
obviously be accessed more than one time. For example, let us consider two distinct
accesses af and bf to the same file f . If we use Equation 2.2 as a distance between
files, then d(f, f) = d(af , bf) = t(af , bf)s(af , bf) > 0, which is therefore not a valid
distance. To avoid this, we introduce a new function d′i(f, g, σ), defined as follows:
Consider the log of all file accesses. Let us assume, without loss of generality, that
among f and g, f appears first in the log. Also, let us denote aif as the ith access to
file f if i ≤ nf , or aif = N if i > nf ; where nf is the total number of accesses to file
f , and N is the total number of access logged. We can now define:

d′i(f, g, σ) =

d(aif , ag) if ∃ ag|s(aif) ≤ s(ag) < s(ai+1

f)
∧ s(aif , ag) = σ

0 otherwise

(2.3)

After defining the function occ(f, g, σ) as the number of times file g is accessed σ
steps after f , we can finally derive our activity based distance, which is the sum of
the closest file access distances weighted by the inverse of their occurrences:

D(f, g) =
∑
σ

[
occ(f, g, σ)−1

∑
i

d′i(f, g, σ)

]
(2.4)

Having this distance in place, we applied an agglomerative clustering algorithm
with both complete- and average-link. We could then cut the tree at different heights
in order to obtain any number of non overlapping clusters representing contexts.

2.4.2 Experiments

We evaluated how the newly introduced activity based context detection methods
perform when compared to text based one. The experiments were performed only on
a small scale within the research environment of L3S. All file accesses (open, create,
etc.) on the desktop were logged during several months of normal activity, with an
installed activity logging tool25. In the end, the log files were used to cluster their
resources based on our new methods.

25We thank Leo Sauermann from DFKI for implementing this logger.

40 Chapter 2 Generation of Desktop Context

We experimented on several values of the number of clusters that were supposed
to exist on the desktop. In order to make sure the resulted contexts are humanly
apprehensible, we fixed the average size of a cluster at 20 documents, which yielded
a fixed number of clusters. As only a low percentage of the total number of files on
the desktop are actually touched by the user, the activity based methods yielded a
lot less clusters. Therefore, in order to increase the quality of our experiments, we
also experimented with limiting the text clustering only to the user accessed files. To
summarize, we used the following methods:

1. Text clustering over all documents

2. Text clustering over touched documents

3. Activity clustering over touched documents

We first analyze the text clustering performed on the whole set of documents on
user’s desktop, namely Method 1 as presented above. When manually inspecting the
obtained clusters, we could easily see that the agglomerative clustering output one or
two huge clusters and the rest were grouped in smaller ones (1-5 documents), which
would not be the expected outcome, a relatively uniform distribution of resources in
clusters. The K-means version, produced a slightly better repartition among clusters.
In the larger clusters however, we could observe that there were several clearly outlined
sub-clusters that were grouped together. We believe this to be the consequence of
imposing the number of clusters (to K), and thus better results might be obtained
after a better definition of K.

The activity clustering method performed almost the same as K-means applied
with Method 1, meaning that the documents in the test set were distributed more
equally among the clusters than text clustering, and the larger clusters also had one
or two sub-clusters inside. If we compare Methods 2 and 3, clustering on the set of
the touched documents, we could observe an encouraging behavior of both clustering
methods. They managed to cluster files that normally were not so easy to connect,
such as papers with the presentations about them, etc.

The activity clustering is very promising, as it does not receive any kind of in-
formation about the content of the files, as the text clustering. More, the activity
clustering brings several advantages, as it filters out uninteresting documents from the
user’s work space, while also reducing the dataset considerably. Finally, combinations
of these two sources of information will probably result in significant improvements
over each of them taken alone.

2.4.3 Discussion

In the previous sections we proposed to use usage analysis as an input source for
clustering desktop documents. We defined a distance between documents, taking into
account the number of steps between consecutive accesses of files and a time window
in which they occur, and applied to it agglomerative with complete and average link

2.5 Desktop Context Detection Using Bayesian
Networks 41

clustering methods. Our initial experiments showed promising results, our proposed
usage analysis based approach performing similarly to textual clustering, even though
it has no information about the textual content of documents.

As future work, we plan to derive time coordinates for the files based on their
activity distances, allowing us to apply clustering algorithms necessitating also coor-
dinates (e.g. K-means). We also intend to apply more complex clustering algorithms,
such as a fuzzy K-means approach, which would allow for one file to belong to dif-
ferent clusters in a certain proportion. Finally, combining text and activity based
clustering would also be an interesting idea to investigate, as well as performing a
more semantic-based clustering (e.g., based on the locations of these files on the PC
Desktop).

2.5 Desktop Context Detection Using Bayesian

Networks

As already argued before, we believe that a good understanding of a user’s (working)
contexts provides the basis for improved desktop information management as well
as for personalized desktop and Web search. We propose to combine a variety of
evidences found by analyzing desktop information for inferring the user’s working
contexts or more precisely file-to-context assignment using a Bayesian network. Our
preliminary experiments focus on identifying a good selection of evidences to use and
show that the choice of evidences is coherent with user assessments for desktop files,
as well as the contexts inferred by the Bayesian network.

2.5.1 Context Detection Evidences

As presented in Section 2.2, many approaches focus on identifying user desktop behav-
ior using evidences gathered from the desktop. Our evidences are mainly extracted
from user actions and summarized within behavioral patterns, which can then be
used to model user contexts. We now present the different desktop evidences we col-
lect and explain their transformation into similarity measures which we later use to
construct the BN.

Textual Properties (T). Many approaches consider grouping together files (e.g.,
clustering) based solely on their textual properties. We follow [RMO+93], which
focuses on desktop resources, and represent each text document as a vector of TFxIDF
coordinates. Cosine similarity (or angle distance) between such vectors is used to
model the similarity of desktop resources. When the vector similarity is small, we
consider the documents similar, as typically done in Information Retrieval.

Usage Analysis (UA). Usage analysis refers to information when a file is active
for a user, along with the file access times. The collected access times are used

42 Chapter 2 Generation of Desktop Context

to compute the distance between any two resources using the sequence and session
activity similarities described below. Our approach is based on [CCGN06, GCC+08],
which showed that grouping desktop resources and ranking based on usage analysis
is quite beneficial. We present hereafter a reworked version of the so-called activity
distance as a similarity.

We need to consider different factors when defining an activity similarity between
two desktop resources. More specifically, two resources are more similar: (i) if they
are mostly used in a small interval of time, (ii) if their access times are nearer in an
access sequence, and (iii) if they have many occurrences of close accesses in time or
sequence.

According to the above we represent accesses to a desktop resource as two signals:
(1) a continuous signal along time, and (2) a discrete signal along the sequence dimen-
sion. Let us denote the time signal of resource r as fr(t) and its sequence signal as
gr(s), where t is the time and s is the steps where r is accessed in the access sequence.
Each time r is accessed, we add to f a curve following a normal distribution centered
on the time ti at which the resource is accessed. Similarly, for the sequence signal,
we add a curve following a binomial distribution – which is the discrete equivalent to
a normal distribution – centered on the step si at which the resource is accessed. If
we note T the list of all times where r is accessed, and S the list of all sequence steps
where r is accessed, then the signals for r are:

fr(t) =
∑
ti∈T

Nti,σ(t) =
∑
ti∈T

1

σ
√

2π
e−

(t−ti)
2

2σ2 , and (2.5)

gr(s) =
∑
si∈S

Bp(s− si) =
∑
si∈S

(
N

s− si

)
ps−si(1− p)N−(s−si)

Thus, the more similar the signals of two resources are, the more similar the
resources themselves are to each other. We can therefore use the correlation coeffi-
cient of the signals of two resources to measure their similarity. The activity session
similarity between two resources a and b is then:

winCC(fa(t), fb(t)) =
cov(fa(t), fb(t))

std(fa(t)) · std(fb(t))
, (2.6)

and the sequence similarity is:

seqCC(ga(t), gb(t)) =
cov(ga(t), gb(t))

std(ga(t)) · std(gb(t))
, (2.7)

where cov is the covariance and std the standard deviation of the two signals. Since
the correlation coefficients are bounded in the interval [−1; 1], we define the usage
analysis similarity as:

2.5 Desktop Context Detection Using Bayesian
Networks 43

Figure 2.8 Hierarchy example (circles are directories and squares files).

ua(a, b) =
winCC(fa(t), fb(t)) + 1

2
· seqCC(ga(t), gb(t)) + 1

2
,

and it is bounded in the interval [0, 1].

Files Opened Concurrently (FOC). According to related studies (Section 2.2),
when several resources are accessed in parallel at the same time they are (to some
extent) related. UA logs the switching between resources, and FOC just considers
the resources simultaneously accessed (resources displayed by a window at a given
time), information not necessarily captured by UA.

In this case we propose to provide the probability that two resources belong to the
same context. Let Oa be the number of times a is accessed alone, and Ob when b is
accessed alone. Let also Oab be the number of times a and b are accessed concurrently.
We define the FOC similarity between resources a and b as foc(a, b) = Oab

Oa+Oab+Ob
.

Folder Hierarchy (FH). Directories allow to classify files, thus enabling the
user to later retrieve them by browsing. It is therefore reasonable to consider files
residing within the same directory have a higher probability of being related. This
corresponds to an explicit user defined context.

Note that files sharing a common path prefix are also, in a restricted sense, in the
same folder, i.e. they have a common prefix. The fact that some files are in subdi-
rectories of the common directory indicates however a lower probability to belong to
the same context.

Intuitively, files A and B in Figure 2.8 have the highest probability to belong to
the same context. Files A and C are a bit less probable to belong to the same context,
since they don’t have exactly the same path: they are both under /p0 but C is also
under ./p1. And files C and D are less probable to belong to the same context since
they are in two different subcontexts (i.e., subdirectories) of /p0.

Considering the above we propose to use the shortest path between two files in
the file system, modeled as a tree with directories as branches and files as leaves.
In our example, files C and D would have a distance of 2. Since in our approach
we need a similarity and not a distance we define the FH similarity as fh(a, b) =
1/(1 + shortestPath(a, b)).

44 Chapter 2 Generation of Desktop Context

Figure 2.9 Small part of an example BN.

2.5.2 The Context Bayesian Network

We build a BN based on the evidences gathered from the user activities on the desktop,
but also on direct input from the user, concretized into an initial user assessment of
100 random files from the desktop which the user had to classify into several contexts.
The respective contexts will then be filled with other related files – as inferred by the
BN. In addition, related files outside the identified contexts will be detected, which
are a source for new contexts.

The BN is constructed from the following nodes:

- Evidence Nodes describe the type of evidences we have for each particular file.
They can be text, UA, FOC, or FOH, as described in Section 2.5.1. These particular
nodes will just describe that two files are related and with what evidence type.

- Directly Related Nodes describe the relationship between two files, based on
Evidence Nodes. It is practically an unification of evidences that can be gathered for
two files. Therefore, direct links between a Directly Related Node and the respective
Evidence Nodes exist (see node ”F1 related F5” in Figure 2.9).

- Inferred Related Nodes are similar as significance as the previous type of
nodes, since, they also express a possible relationship between files. However, this
type of nodes is suited for pairs of files for which we don’t have direct evidence (text,
UA, FOC, or FH), but their relationship can be transitively inferred from the Directly
Related Nodes. For example, if we have two Directly Related Nodes which express
the relationship between (F1, F2) and (F1, F5) (see Figure 2.9), we infer relationship
(F2, F5) in this type of node.

- Context Nodes are constructed from the direct feedback given by the user for
the randomly selected files. They simply show that a file belongs to a context.

- Inferred Context Nodes also rely on a transitive relationship inferred when

2.5 Desktop Context Detection Using Bayesian
Networks 45

we know there is a relationship (direct or inferred) between two files – (F1, F5), and
we also know that one file belongs to a context – (F5, C1). Then we can easily infer
that F1 should also belong to the same context – (F1, C1) (see Figure 2.9).

Construction of the BN. In order to construct the BN, we first collect the
evidences that we have for the similarity between files, computed by comparing each
two files on the desktop. Whenever an evidence similarity (text, UA, FOC, FH) is
above a given threshold, we construct an Evidence Node. Probability tables for these
nodes are deducted from user questionnaires. In these questionnaires, users had to
evaluate how much would such a single evidence influence the similarity of two files,
each evidence by itself.

At the same time, we also add the Directly Related Nodes, which will be connected
to the appropriate Evidence Nodes, as described above. For example, if we have
significant (i.e., higher than a threshold) text and FH evidences that F1 is related
to F2, we construct the two Evidence Nodes for text and FH evidences, but we also
construct a Directly Related Node, which means that F1 and F2 are related, and we
also link this node to the two Evidence Nodes for text and FH.

Once all these nodes are added, we construct the Inferred Related Nodes – if the
Direct Related Nodes referring to F1 related to F2, and F2 related to F3 exist, but
the Direct Related Node implying that F1 is related to F3 does not exist, we then
construct an Inferred Related Node expressing this relationship between F1 and F3,
which will link to the first two existing Direct Related Nodes.

Next, we construct new nodes based on the user evaluation on the randomly chosen
files from her desktop. The user had to name contexts and also assign files to them.
She could also express her distrust, like putting a 0 (in a table) if the respective file
is not in a specific context. But, we only took into account the positive evidences
and constructed Context Nodes. Also, these nodes needed to be linked to the nodes
that express there is a relationship between two files - the Directly Related Nodes and
also the Inferred Related Nodes, in order to be able to make new inferences: if F1 is
related (directly of inferred) to F2 and if F1 is in context C, then we should infer that
also F2 has to be in context C. Of course, some restrictions need to be applied: we
also check if there exists negative evidence from the user that F2 should not belong
to context C, or if the Context Node F2 in context C was not already generated from
the evidences from the user.

Inference & Context-Files Identification. Once the construction of the BN
is completed, we determine the probability of cause nodes (file to context assignment)
given the probability of the observed effect (evidences), and identify which files be-
long to each context. This task is performed using Pearl’s probabilistic inference
(PI) [Pea88]. This algorithm is interactive and in each step one node is activated for
calculating its belief. The activated node N recomputes its own belief using messages
collected from its parents (πN(Pi)) and its children (λN(Cj)). Once the node has its
belief, it sends messages to its parents (λN(Pi)) and its children (πCj(N)), which are
then used when these nodes are activated.

46 Chapter 2 Generation of Desktop Context

Consider the small BN example in Figure 2.9. Node I computes its belief using
messages from its parents and children, which include πI(R2) and πI(R5). Once the
belief is computed, node I sends new messages to its parents and children, including
messages λI(R2) and λI(R5). As such, node R2 is affected by the belief of node R5
despite the fact that they are not directly connected.

Once PI finishes, the Inferred Context Nodes provide probabilistic information
about each file belonging to a context. Also, some other type of information is being
offered to the user, the one generated by the Inferred Related Nodes for files about
which nothing could have been inferred relative to their belonging to a context. This
allows us to identify new contexts which the user did not specifically name in her
initial input.

2.5.3 Experiments

Experimental Setup. We define a user desktop as containing all data stored by a
user on a personal machine. This includes personal files (e.g., HTML, DOC, PDF,
PPT, XML, JPG), Web cache history, messenger history, emails. Upon their full text,
standard text preprocessing techniques were performed: tokenization, stop words
removal, stemming. We then computed the similarities for each pair of desktop
resources, as described in Section 2.5.1.

We evaluated how the newly introduced activity based context detection methods
perform. The experiments were performed only on a small scale (i.e., the authors of
this paper). All file accesses (open, create, etc.) on the desktop were logged during
several months of normal activity, with an installed activity logging tool. The log
files were used to provide the additional similarity measures used.

Experimental Results and Comments

realScore 0.33 0.5 0.66 0.75 1
from total
number of pairs 100% 92.08% 90.67% 89.89% 89.89%

Table 2.6 True positive evidences.

True positive evidences. For this type of evaluation we want to see if for two
files that the user assessed as being in the same context (i.e., related), the evidences
that we generate also support this fact – their values are higher than chosen thresholds,
and therefore considered positive evidences. For each two such files, we consider the
fraction of positive evidences from the total of evidences for a pair of files as the
realScore. Then, we count the percent of the pairs of files from all files for which
the realScore is higher or equal to 1, 0.75, 0.66, 0.5, 0.33 : 89.89%, 89.89%, 90.67%,
92.08%, 100%, as shown in Table 2.6. These first results show that the generated

2.5 Desktop Context Detection Using Bayesian
Networks 47

evidences are correct, since at least 33% of the generated evidences for related files
are shown to be positive, and 89.89% of the pairs of related files have all evidences
positive.

True negative evidences. This measure shows that the negative evidences
(lower than a threshold) about two files are in correlation with the fact that the user
specifically said that two files are not related – one file is in one context and the other
is not in the same context. We compute for all such pairs, the number of negative
evidences, and divide it to the total number of evidences for the same pair of files
and get again a realScore. Then, we compute the percentage of the pairs for which
the realScore is higher or equal to 1, 0.75, 0.66, 0.5, 0.33: 76.87%, 76.87%, 99.06%,
99.49%, 100%, as shown in Table 2.7. This again supports the type of evidences that
we generated, saying that at least 33% of the generated evidences for unrelated files
are negative, and 76.87% of the pairs of unrelated files have all evidences negative.

realScore 0.33 0.5 0.66 0.75 1
from total
number of pairs 100% 99.49% 99.06% 76.87% 76.87%

Table 2.7 True negative evidences.

BN Performance. The user assessment was split into three parts, and two thirds
were used for training the BN and one third used for evaluation. Then, the evaluation
set was varied from within the three chunks of the user’s assessment. For each of the
three iterations, precision and recall were computed for each of the user clusters, and
then averaged over all clusters. The preliminary results are supporting our ideas –
precision was of 77.78% and recall 73.97%. However, further experiments are required
to validate these results in a higher variety of settings: an increased number of users,
various threshold values for choosing the positive evidences, as well as different initial
probability table assignments in the BN, or an increased number of assessed files.

2.5.4 Discussion

In the previous sections we presented innovative similarity measures used for detecting
user contexts through a BN. Our preliminary experiments show promising results
regarding the choice of evidences with respect to user assessments (both positive and
negative), and also good results regarding the output of the BN and its capability
of inferring user contexts. In future work we plan to extend these experiments, by
varying different parameters which influence our results, in order to confirm them on
a wider scale.

48 Chapter 2 Generation of Desktop Context

2.6 P-TAG: Large Scale Automatic Generation of

Personalized Annotation TAGs for the Web

Free form metadata or tags , as used in social bookmarking and folksonomies based
systems, have become more and more popular and successful. Such tags are relevant
keywords associated with or assigned to a piece of information (e.g., a Web page),
thus describing the item and enabling keyword-based classification. In this work we
propose P-TAG, a method which automatically generates personalized tags for Web
pages. With current applications which tend to construct the personal desktop not
only from resources stored on the PC, but to expand it on the web, the personal
annotations can bring homogeneity within the personal resources. Keywords are
generated based on the content of the Web page but also based on the content of the
user’s Desktop, thus expressing a personalized viewpoint very relevant for personal
tags. We implemented and tested several algorithms for this approach and evaluated
the relevance of the resulting keywords. These evaluations showed very promising
results and we are therefore very confident that such a user oriented automatic tagging
approach can provide large scale personalized metadata annotation as an important
step towards expanding the personal Desktop on the Web.

2.6.1 Automatic Personalized Web Annotations

We distinguish three broad approaches to generate personalized Web page annota-
tions, based on the way user profiles (i.e., Desktops in our case) are exploited to
achieve personalization: (1) a document oriented approach, (2) a keyword oriented
approach, and (3) a hybrid approach.

Document Oriented Extraction

The general idea of the document oriented approach is as follows. For a given Web
page, the system retrieves similar documents from the personal Desktop. This set
of related personal documents reflects user’s viewpoint regarding the content of the
Web page. Hence, the set will be used to extract the relevant annotations tags for
the input Web page. The generic technique is also depicted in the algorithm below.

Algorithm 2.6.1. Document oriented Web annotations generation.

1: Given a browsed Web page p,
2: Find similar Desktop documents DSi, i ∈ {1, . . . , nd}
3: For each document DSi:
4: Extract its relevant keywords.
5: Select Top-K keywords using their confidence scores.

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 49

We will now detail the specific algorithms for accomplishing steps 2 and 4 in the
following two subsections.

Finding Similar Documents

We consider two approaches for this task, namely Cosine Similarity (i.e., nearest
neighbor based search), and Latent Semantic Analysis (i.e., clustering based search).
In both cases, we apply the algorithms only to those terms with a Desktop document
frequency above 10 and below 20% from all Desktop documents of the current user.
This is necessary in order to avoid noisy results (i.e., documents with many words
in common with an input page p, yet most of these being either very general terms,
or terms not describing the interests of the surfer). Moreover, such optimizations
significantly improve computation time.

Cosine Similarity. Nearest neighbor search, based on TFxIDF (Term Frequency
multiplied by Inverse Document Frequency), outputs a similarity score between two
documents utilizing the following simple formula:

Sim(Di, Dj) = v(Di) · v(Dj) =
∑

t∈Di∪Dj
wi,t · wj,t (2.8)

where v(Di), v(Dj) are the term vectors describing documents Di, Dj using TFxIDF,
as within the Vector Space Model [BYRN99], and wk,t represents the actual TFxIDF
weight associated to term t within document Dk.

Latent Semantic Analysis. Similar to clustering, LSA can compute document
to document similarity scores. However, we decided to abandon experimenting with
this algorithm, as it turned out to be too computationally expensive for regular Desk-
tops consisting of several dozens of thousands of indexable items. Nevertheless, since
the quality of its results might be high, we are currently investigating several tech-
niques to optimize it or to approximate its results in order to enable evaluating it in
a further work.

Extracting Keywords from Documents

Introduction. Keyword extraction algorithms usually take a text document as
input and then return a list of keywords, which have been identified by exploiting
various text mining approaches. To ease further processing, each keyword has as-
sociated a value representing the confidence with which it is thought to be relevant
for the input document. Once such keywords have been identified for the input set
of relevant Desktop documents (i.e., as determined using the previously described
techniques), we propose to generate annotations for the original input Web page by
sorting all these generated terms utilizing their confidence levels, and then taking the
Top-K of them.

We investigated three broad approaches to keyword extraction with increasing lev-
els of granularities, denoted as “Term and Document Frequency” (keyword oriented),
“Lexical Compounds” (expression oriented) and “Sentence Selection” (summary ori-
ented).

50 Chapter 2 Generation of Desktop Context

Term and Document Frequency. As the simplest possible measures, TF and
DF have the advantage of being very fast to compute. Moreover, previous experiments
showed them to yield very good keyword identification results [BH99, Eft95]. We thus
associate a score with each term, based on the two statistics (independently). The TF
based one is obtained by multiplying the actual frequency of a term with a position
score descending as the term first appears more towards the end of the document.
This is necessary especially for longer documents, because more informative terms
tend to appear towards their beginning [BH99]. The complete TF based keyword
extraction formula is as follows:

TermScore =

[
1

2
+

1

2
· nrWords− pos

nrWords

]
· TF (2.9)

where nrWords is the total number of terms in the document, pos is the position
of the first appearance of the term, and TF is the frequency of each term in the
considered Desktop document.

The identification of suitable expansion terms is even simpler when using DF: The
terms from the set of Top-K relevant Desktop documents is ordered according to their
DF scores. Any ties are resolved using the above mentioned TF scores [Eft95].

Note that a hybrid TFxIDF approach is not necessarily efficient, since one Desk-
top term might have a high DF on the Desktop, yet it may occur rarely on the
Web. For example, the term “RDF” could occur frequently accross the Desktop of a
Semantic Web scientist, thus achieving a low score with TFxIDF. However, as it is
encountered more rarely on the Web, it would make a better annotation than some
generic keyword.

Lexical Compounds. Anick and Tipirneni [AT99] defined the lexical dispersion
hypothesis, according to which an expression’s lexical dispersion (i.e., the number of
different compounds it appears in within a document or group of documents) can be
used to automatically identify key concepts over the input document set. Although
there exist quite several possible compound expressions, it has been shown that simple
approaches based on noun analysis produce results almost as good as highly complex
part-of-speech pattern identification algorithms. We thus inspect the selected Desktop
documents (i.e., at step 1 of the generic algorithm) for all their lexical compounds of
the following form:

{ adjective? noun+ }
We note that all such compounds could be easily generated off-line, at Desktop in-
dexing time, for all the documents in the local repository. Moreover, once identified,
they could be further sorted depending on their dispersion within each document in
order to facilitate fast retrieval of the most frequent compounds at run-time.

Sentence Selection. This technique builds upon sentence oriented document
summarization: Having as input the set of Desktop documents highly similar to the
input Web page, a summary containing their most important sentences is generated
as output. Thus, sentence selection is the most comprehensive of these approaches,

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 51

as it produces the most detailed annotations (i.e., sentences). Its downside is that,
unlike the first two algorithms, its output cannot be stored efficiently, and thus it
cannot be precomputed off-line. We generate sentence based summaries by ranking
the document sentences according to their salience score, as follows [LAJ01]:

SentenceScore =
SW 2

TW
+ PS [+

TQ2

NQ
]

The first term is the ratio between the square amount of significant words within the
sentence and the total number of words therein. A word is significant in a document
if its frequency is above a threshold as follows:

TF > ms =

7− 0.1 ∗ [25−NS] , if NS < 25
7 , if NS ∈ [25, 40]
7 + 0.1 ∗ [NS − 40] , if NS > 40

with NS being the total number of sentences in the document (see [LAJ01] for more
details). The second term is a position score. We set it to 1/NS for the first ten
sentences, and to 0 otherwise. This way, short documents such as emails are not
affected, which is correct, since they usually do not contain a summary in the very
beginning. However, it is known that longer documents usually do include overall
descriptive sentences in the beginning [Edm69], and these sentences are thus more
likely to be relevant. The final term is an optional parameter which is not used for this
method, but only for the hybrid extraction approaches (see Section 2.6.1). It biases
the summary towards some given set of terms, which in our case will correspond to
the terms extracted from the input Web page. More specifically, it represents the
ratio between the square number of set terms present in the sentence and the total
number of terms from the set. It is based on the belief that the more terms in the
set are contained in a sentence, the more likely will that sentence convey information
highly related to the set, and consequently to the Web page to annotate.

Keyword Oriented Extraction

In the keyword oriented approach we start from extracting some keywords from the
Web page to annotate. This set of keywords reflects a generic viewpoint on the
document. In order to personalize this viewpoint, we then align these keywords with
related terms from the personal Desktop, as in the algorithm presented below.

52 Chapter 2 Generation of Desktop Context

Algorithm 2.6.2. Keyword oriented Web annotations generation.

1: Given a browsed Web page p,
2: Extract relevant keywords from p
3: For each relevant keyword
4: Find related keywords on the local Desktop.
5: Select Top-K keywords using their confidence scores.

Step 1 can be accomplished using the algorithms from Section 2.6.1 - Extracting
Keywords from Documents. The next two subsections will introduce the techniques
we propose for the keyword alignment process, i.e., the finding of similar keywords
on the Desktop corpus, namely (1) term co-occurrence statistics and (2) thesaurus
based extraction.

Term Co-occurrence Statistics. For each term, one could easily compute off-
line those terms co-occurring with it most frequently in a collection, such as user’s
Desktop, and then exploit this information at run-time in order to infer keywords
highly correlated with the content of a given Web page. Our generic Desktop level
co-occurrence based keyword similarity search algorithm is as follows:

Algorithm 2.6.3. Co-occurrence based keyword similarity search.

Off-line computation:
1: Filter potential keywords k with DF ∈ [10, . . . , 20% ·N]
2: For each keyword ki
3: For each keyword kj
4: Compute SCki,kj , the similarity coefficient of (ki, kj)

On-line computation:
1: Let S be the set of terms potentially similar to E,

the set of keywords extracted from the input Web page.
2: For each keyword k of E:
3: S ← S ∪ TSC(k), where TSC(k) contains the Top-K terms most similar to k
4: For each term t of S:
5a: Let Score(t)← ∏

k∈E(0.01 + SCt,k)
5b: Let Score(t)← #Hits(E|t)
4: Select Top-K terms of S with the highest scores.

The off-line computation needs an initial trimming phase (step 1) for optimization
purposes. Also, once the co-occurrence levels are in place and the terms most cor-
related with the keywords extracted from the input Web page have been identified,

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 53

one more operation is necessary, namely calculating the correlation of each proposed
term with the entire set of extracted keywords (i.e., with E), rather than with each
keyword individually. Two approaches are possible: (1) using a product of the cor-
relation between the term and all keywords in E (step 5a), or (2) simply counting
the number of documents in which the proposed term co-occurs with the entire set
of extracted keywords (step 5b). Small scale tuning experiments performed before
the actual empirical analysis indicated the latter approach to yield a slightly better
outcome. Finally, we considered the following Similarity Coefficients [KC99]:

• Cosine Similarity, defined as:

CS =
DFx,y√
DFx ·DFy

(2.10)

• Mutual Information, defined as:

MI = log
N ·DFx,y
DFx ·DFy

(2.11)

• Likelihood Ratio, defined below.

DFx is the Document Frequency of term x, and DFx,y is the number of documents
containing both x and y.

Dunning’s Likelihood Ratio λ [Dun93] is a co-occurrence based metric similar to
χ2. It starts from attempting to reject the null hypothesis, according to which two
terms A and B would appear in text independently from each other. This means
that P (A|B) = P (A|¬B) = P (A), where P (A|¬B) is the probability that term A is
not followed by term B. Consequently, the test for independence of A and B can be
performed by looking if the distribution of A given that B is present is the same as
the distribution of A given that B is not present. Of course, in reality we know these
terms are not independent in text, and we only use the statistical metrics to highlight
terms which are frequently appearing together. We thus compare the two binomial
processes by using likelihood ratios of their associated hypotheses, as follows:

λ =
maxω∈Ω0 H(ω; k)

maxω∈Ω H(ω; k)
(2.12)

where ω is a point in the parameter space Ω, Ω0 is the particular hypothesis being
tested, and k is a point in the space of observations K. More details can be found in
[Dun93].

Thesaurus Based Extraction. Large scale thesauri encapsulate global knowl-
edge about term relationships. Thus, after having extracted the set of keywords
describing the input Web page (i.e., as with Step 1 of Algorithm 2.6.2), we generate
an additional set containing all their related terms, as identified using an external
thesauri. Then, to achieve personalization, we trim this latter set by keeping only
those terms that are frequently co-occurring over user’s Desktop with the initially
identified keywords. The algorithm is as follows:

54 Chapter 2 Generation of Desktop Context

Algorithm 2.6.4. Thesaurus based keyword similarity search.

1: For each keyword k of a set P , describing Web page p:
2: Select the following sets of related terms using WordNet:
2a: Syn: All Synonyms
2b: Sub: All sub-concepts residing one level below k
2c: Super: All super-concepts residing one level above k
3: For each set Si of the above mentioned sets:
4: For each term t of Si:
5: Search the Desktop with (P |t), i.e., the original set, as expanded with t
6: Let H be the number of hits of the above search (i.e., the co-occurrence

level of t with P)
7: Return Top-K terms as ordered by their H values.

We observe three types of term relationships (steps 2a-2c): (1) synonyms, (2) sub-
concepts, namely hyponymes (i.e., sub-classes) and meronymes (i.e., sub-parts), and
(3) super-concepts, namely hypernymes (i.e., super-classes) and holonymes (i.e., super-
parts). As they represent quite different types of association, we investigated them
separately. Furthermore, we limited the output expansion set (step 7) to contain only
terms appearing at least T times on the Desktop, in order to avoid any noisy annota-
tions, with T = min(N

DocsPerTopic ,MinDocs). We set DocsPerTopic = 2, 500, and

MinDocs = 5, the latter one coping with the case of having small Desktops.

Hybrid Extraction

The hybrid approach mixes the document oriented approach with the keyword ori-
ented one. Thus, the system first extracts some relevant keywords from an input Web
page. This set of keywords is the same as in Step 1 of Algorithm 2.6.2 and reflects a
generic viewpoint on the document. We personalize this viewpoint by retrieving the
Desktop documents most relevant to it (i.e., using Lucene Desktop search) and then
by extracting relevant keywords from them. The generic algorithm is as follows:

Algorithm 2.6.5. Hybrid generation of Web annotations.

1: Given a browsed Web page p,
2: Extract the relevant keywords Pi from p
3: For each keyword Pi:
4: Find the most relevant Desktop documents Di,j.
5: For each document Di,j:
6: Extract its relevant keywords.
7: Select Top-K keywords using their confidence levels.

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 55

Steps 2 and 6 utilize the keyword extraction techniques described in Section 2.6.1
- Extracting Keywords from Documents. Step 4 represents a regular Desktop search,
in which the results are ordered by their relevance to the query, i.e., to each keyword
Pi.

2.6.2 Experiments

Experimental Setup

System Setup. We have asked 16 users (PhD and Post-Doc students in various
areas of computer science and education) to support us with the experiments. Our
Lucene26 based system was running on each personal Desktop. Lucene suited our
interests best, given its rapid search algorithms, its flexibility and adaptivity, and
last but not least its cross-platform portability. Thus, each user’s corpus of personal
documents has been indexed for later faster retrieval. More specifically, we indexed
all Emails, Web Cache documents, and all Files within user selected paths. The Web
pages to be annotated have been selected randomly from each user’s cache. To ensure
that the user did not artificially collect a lot of data on the topic of the selected pages
after having browsed them, we only pick pages browsed within the last week. For the
annotation, we chose two input pages per each category: small (below 4 KB), medium
(between 4 KB and 32 KB), and large (more than 32 KB) [FMNW03]. 96 pages were
used as input over the entire experiment, and over 2,000 resulted annotations were
graded.

Algorithms. We applied our three approaches for keyword extraction and an-
notation to the input pages, i.e., Document oriented, Keyword oriented and Hybrid.
In all cases, in order to optimize the run-time computation speed, we chose to limit
the number of output keywords extracted per Desktop document to the maximum
number of annotations desired (i.e., four).

We applied the Document oriented approach with the following algorithms:

1. TF, DF: Term and Document Frequency;

2. LC: Lexical Compounds;

3. SS: Sentence Selection.

Second, we investigated the automatic annotation by applying the Keyword ori-
ented approach. For step one of our generic approach (see Algorithm 2.6.2) we used
the keyword extraction algorithms TF, DF, LC and SS. For step two we investigated
the following algorithms for finding similar keywords:

1. TC[CS], TC[MI], TC[LR]: Term Co-occurrence Statistics using respectively
Cosine Similarity, Mutual Information, and Likelihood Ratio as similarity coef-
ficients;

26http://lucene.apache.org

http://lucene.apache.org

56 Chapter 2 Generation of Desktop Context

2. WN[SYN], WN[SUB], WN[SUP]: WordNet based analysis with synonyms,
sub-concepts, and super-concepts.

All in all, this gives us 24 possible combinations, i.e., TF+TC[CS], TF+TC[MI], . . .,
SS+WN[Sub], and SS+WN[Sup].

Finally, we conducted the study with the Hybrid approach. We used the four
keyword extraction algorithms for both the input Web page and the identified Desktop
documents. These were 16 combinations, i.e., TF+TF (applying TF for the Web page
and TF for the Desktop documents), TF+DF, . . ., SS+LC and SS+SS.

Rating the Personal Annotations. For each input page, the annotations
produced by all algorithms were shuffled and blinded such that the user was not
aware of either the algorithm which produced them, or of their ranking within the
list of generated results. Each proposed keyword was rated 0 (not relevant) or 1
(relevant). It did not matter how much relevant each proposed annotation was, as
it would have been a valid result anyway (i.e., if it has at least a reasonable degree
of relevance to the input Web page, then it can be returned as annotation). It can
be easily shown that those annotations closer to the actual content of the input Web
document are generated more often.

We measured the quality of the produced annotations using Precision, a standard
Information Retrieval evaluation measure. As our algorithms also generated a con-
fidence score for each proposed annotation, we were able to order these suggestions
and calculate the precision at different levels, namely P@1, P@2, P@3 and P@4. The
precision at level K (P@K) is the precision score when only considering the Top-K
output27. It represents the amount of relevant annotations proposed within the Top-
K suggestions divided by K, i.e., the total number of annotations considered. Four
different levels of K were analyzed, as it was not clear which is the best amount of
annotations to generate using our approaches.

First, the P@K scores were computed for each user, algorithm, and Web page in
particular. We averaged these values over the Web pages of the same type, obtaining
user’s opinion on the tuple <algorithm, type of Web page>. We further averaged
over all subjects, and the resulting values are listed in the tables to come.

When doing the experiments, the users were specifically asked to rate the gener-
ated annotations taking into account both the target Web page and their personal
interests. The idea was to generate for each subject not only generic keywords ex-
tracted from the current Web page, but others that connect it to his Desktop, and
therefore his interests. Hence, the experiment is designed to evaluate our two main
research questions: First, how well can automatic and personal annotation of Web
pages be conducted with our approach? Second, which algorithm is producing the
best results?

27In order to produce only highly qualitative results, we set some minimal thresholds for the con-
fidence scores of each algorithm. Whenever they were not reached, the algorithm simply generated
K’ < K annotations for that input page.

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 57

Results

We will split our discussion of the experimental results in two parts, first analyzing
the output of each approach in particular, and then comparing them to find the
best method for generating personalized annotations. We compare our algorithms
according to their P@3 scores (i.e., the average value over the ratings given to the
Top-3 annotations, as ordered using their confidence levels), as most of them did
not always produce more than 3 annotations above the strict minimal confidence
thresholds we set.

Document Oriented Extraction. The investigation of our document based
approaches provided us with an interesting insight: The TF metric performs best
overall, thus generating better annotations than more informed techniques such as
Lexical Compounds or Sentence Selection. After looking at each result in particular,
we found that TF produces constantly good or very good output, whereas LC for
example was much more unstable, yielding for some Web pages excellent annotations,
but for some others rather poor ones. Nevertheless, both LC and SS had very good
ratings, even the best ones for those subjects with dense Desktops. Thus, for future
work one might consider designing an adaptive personalized annotation framework,
which automatically selects the best algorithm as a function of different parameters,
such as the amount of resources indexed within the personal collection. DF was only
mediocre (except for the case of small input Web pages), which is explainable, as its
extractions are based on generic entire Desktop statistics, thus diverging too much
from the context of the annotated Web page.

Averaging over all types of input files, the best precisions were 0.79 when consid-
ering only the first output annotation, 0.81 when the top two results were analyzed,
0.79 for the top three, and 0.77 for all four. As LC yielded the first value, and TF the
latter three ones, we conclude that LC is the method of choice if only one annotation
is desired. However, its quality degrades fast, and TF should be used when looking
for more results. All document oriented results are summarized in Tables 2.8, 2.9,
and 2.10, for the small, medium, and large pages respectively.

Algorithm P@1 P@2 P@3 P@4
TF 0.78 0.86 0.85 0.81
DF 0.83 0.76 0.76 0.74
LC 0.78 0.76 0.81 0.82
SS 0.67 0.75 0.75 0.73

Table 2.8 P@1-4 for document oriented extraction for small Web pages.

Keyword Oriented Extraction. We will first split the analysis of the keyword
based algorithms based on its two steps. For extracting keywords from the single
Web page used as input, all methods perform rather similarly for small pages, with
TF performing slightly better. Again, we notice that the small input is the easiest
one for our algorithms. More interesting, Document Frequency yields the best basis
for keyword similarity search when used with medium and large input pages. It thus

58 Chapter 2 Generation of Desktop Context

Algorithm P@1 P@2 P@3 P@4
TF 0.76 0.76 0.73 0.71
DF 0.59 0.51 0.55 0.53
LC 0.76 0.73 0.70 0.71
SS 0.76 0.67 0.68 0.67

Table 2.9 P@1-4 for document oriented extraction for medium Web pages.

Algorithm P@1 P@2 P@3 P@4
TF 0.76 0.80 0.80 0.80
DF 0.63 0.63 0.60 0.54
LC 0.83 0.74 0.72 0.75
SS 0.82 0.74 0.71 0.69

Table 2.10 P@1-4 for document oriented extraction for large Web pages.

selects best those terms from the input Web page which are most representative to
the user. This is in fact correct, as it is the only algorithm that relates the extraction
also to the Desktop content by using DF values from the user’s personal collection.

In the case of keyword similarity search, the results are very clear. WordNet based
techniques seem to perform rather poorly, indicating external thesauri are not a good
choice for annotations, as they cover too general a content. Note that one might
obtain a better outcome when targeting this scenario to application specific thesauri
and input Web pages. All co-occurrence based algorithms produce very good results,
with TC[CS] and TC[MI] being slightly better.

The best average ratings overall were 0.81 at the first annotation (DF+TC[CS] and
DF+TC[MI]), 0.82 at the second one (DF+TC[CS]) and finally 0.80, when considering
only the top third output (DF+TC[MI]). No method managed to generally produce
more than three highly qualitative annotations. All keyword oriented results are
summarized in Tables 2.11, 2.12, and 2.13, for the small, medium, and large pages
respectively. In order to ease the inspection of results, for each keyword extraction
algorithm (i.e., first step), the best method is in bold.

Hybrid Extraction. These algorithms are composed of two phases, first a sin-
gle page keyword extraction, and then another one, at the Desktop level and over
those documents matching the best formerly extracted keywords (i.e., as obtained
by searching the local Desktop with Lucene). All methods performed rather similar,
with small differences between each other. An inspection of the actual data showed
that again DF performed well at extraction in addition to extracting personalized
keywords from the input page. However, this single word output was not always dis-
criminative enough for a regular Desktop search, i.e., for finding Desktop documents
highly similar to the input Web page. In fact, this is true for all keyword extraction
techniques, and this is why the keyword oriented methods managed to surpass the
hybrid ones in the quality of their output. For the second step, TF performed vis-
ibly better with medium and large pages, and all methods were close to each other
for small input data. This is in accordance with the document oriented approaches,
which use a similar technique.

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 59

Algorithm P@1 P@2 P@3 P@4
TF+TC[CS] 1.00 0.96 0.89 -
TF+TC[MI] 0.83 0.83 0.89 -
TF+TC[LR] 0.75 0.88 0.89 -

TF+WN[Syn] 0.50 0.50 0.67 -
TF+WN[Sub] 0.41 0.41 0.37 0.18
TF+WN[Sup] 0.38 0.40 0.35 -

DF+TC[CS] 0.92 0.88 0.83 -
DF+TC[MI] 0.92 0.88 0.86 -
DF+TC[LR] 0.67 0.67 0.67 -

DF+WN[Syn] - - - -
DF+WN[Sub] 0.39 0.42 0.46 0.08
DF+WN[Sup] 0.67 0.53 0.48 0.20

LC+TC[CS] 0.92 0.92 0.81 -
LC+TC[MI] 0.92 0.88 0.81 -
LC+TC[LR] 0.65 0.70 0.74 0.65

LC+WN[Syn] 0.55 0.38 0.35 -
LC+WN[Sub] 0.26 0.34 0.36 0.24
LC+WN[Sup] 0.66 0.48 0.49 -

SS+TC[CS] 1.00 1.00 0.87 -
SS+TC[MI] 0.83 0.83 0.89 -
SS+TC[LR] 0.66 0.77 0.76 -

SS+WN[Syn] 0.43 0.43 0.43 -
SS+WN[Sub] 0.54 0.27 0.33 0.17
SS+WN[Sup] 0.53 0.47 0.37 -

Table 2.11 P@1-4 for kewyord oriented extraction for small Web pages.

SS+TF is the best overall algorithm, with a precision of 0.80 at only the first
result, and of 0.74 at the top two ones. Then, TF+TF performs best, yielding a score
of 0.73 at the top three annotations, and 0.74 when all results are included in the
analysis. All results are also depicted in Tables 2.14, 2.15, and 2.16, for the small,
medium, and large pages respectively. For each keyword extraction algorithm (i.e.,
first step), the best method is in bold.

Comparison. We now turn our attention to finding global conclusions over all our
proposed algorithms. In order to better pursue this analysis, we depict the three best
performing algorithms of each category (i.e., document oriented, keyword oriented,
and hybrid) in Figure 2.10.

For small Web pages (the leftmost bar), the keyword oriented approaches are by far
the best ones, being placed on positions one, two and four. They are followed by the
document oriented ones, and finally by the hybrid methods, all global differences being
very clear. In the case of medium sized pages, the proposed algorithms are harder to
separate, performing similarly when analyzed over their best three representatives.
Interesting here is the strong drop of TF+TC[LR], indicating that term frequency is
good at single document keyword extraction only with small Web pages. Finally, we
observe that the document oriented approaches are the best with large pages, which
is reasonable, as they have the most amount of information available when searching
the local Desktop for documents similar to the input Web page. They are followed
by the keyword oriented techniques, and then by the hybrid ones.

60 Chapter 2 Generation of Desktop Context

Algorithm P@1 P@2 P@3 P@4
TF+TC[CS] 0.64 0.64 0.64 -
TF+TC[MI] 0.68 0.66 0.64 -
TF+TC[LR] 0.70 0.66 0.63 -

TF+WN[Syn] 0.33 0.30 0.27 -
TF+WN[Sub] 0.41 0.39 0.36 0.08
TF+WN[Sup] 0.40 0.33 0.26 0.09

DF+TC[CS] 0.71 0.79 0.69 -
DF+TC[MI] 0.71 0.75 0.75 -
DF+TC[LR] 0.54 0.51 0.48 -

DF+WN[Syn] 0.15 - - -
DF+WN[Sub] 0.27 0.29 0.32 0.14
DF+WN[Sup] 0.38 0.30 0.27 0.10

LC+TC[CS] 0.60 0.63 0.57 -
LC+TC[MI] 0.61 0.60 0.60 -
LC+TC[LR] 0.59 0.61 0.58 0.35

LC+WN[Syn] 0.40 0.22 0.07 -
LC+WN[Sub] 0.31 0.41 0.36 0.09
LC+WN[Sup] 0.53 0.53 0.48 -

SS+TC[CS] 0.58 0.56 0.59 -
SS+TC[MI] 0.62 0.60 0.60 -
SS+TC[LR] 0.54 0.61 0.58 -

SS+WN[Syn] 0.23 0.13 0.09 -
SS+WN[Sub] 0.38 0.39 0.34 0.09
SS+WN[Sup] 0.33 0.30 0.18 -

Table 2.12 P@1-4 for kewyord oriented extraction for medium Web pages.

Figure 2.10 shows the quality of the output as a function of the input page size. As
small Web pages contain few terms, they yield a clearer output, either when searching
for related documents (as with document oriented techniques), or when extracting
their keywords (as in the keyword oriented approaches), etc. As the content size
increases, more noise appears, and processing becomes more difficult. Yet when Web
pages have reached a reasonably large size, a number of informative terms tend to
stand out, thus easing their processing to some extent.

We also averaged the results of all algorithms over all evaluated pages (in the
rightmost column). We observed some obvious differences: (1) Keyword based al-
gorithms (especially DF+TC[MI]), (2) Document based approaches, and (3) Hybrid
ones. Though one would probably expect the latter ones to be the best, they suffered
from the fact that the extracted keywords were insufficient to enable the retrieval of
highly similar Desktop documents. On the contrary, the keyword based algorithms
offer the optimal balance between the content of the input Web page and the per-
sonal files, producing a good selection of keywords which are both contained, as well
as missing from the input page.

Finally, in Table 2.17 we give several examples for the output produced by the best
two algorithms per generic approach. Let us inspect the first one in more detail. While
some of the generated annotations can also be identified with previous work methods
(e.g., “search”, as it has a high term frequency in the input URL), many others would
have not been located by them either because they are not named entities and have

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 61

Algorithm P@1 P@2 P@3 P@4
TF+TC[CS] 0.62 0.66 0.62 -
TF+TC[MI] 0.66 0.67 0.61 -
TF+TC[LR] 0.65 0.68 0.64 -
TF+WN[Syn] 0.25 0.08 0.05 -
TF+WN[Sub] 0.44 0.36 0.32 0.15
TF+WN[Sup] 0.44 0.46 0.33 -

DF+TC[CS] 0.80 0.80 0.79 -
DF+TC[MI] 0.80 0.77 0.79 -
DF+TC[LR] 0.85 0.71 0.70 -

DF+WN[Syn] - - - -
DF+WN[Sub] 0.44 0.38 0.37 0.02
DF+WN[Sup] 0.46 0.30 0.28 0.08

LC+TC[CS] 0.57 0.61 0.58 -
LC+TC[MI] 0.61 0.59 0.56 -
LC+TC[LR] 0.63 0.64 0.52 0.35

LC+WN[Syn] 0.31 0.19 0.16 -
LC+WN[Sub] 0.33 0.37 0.32 0.10
LC+WN[Sup] 0.53 0.43 0.39 0.06

SS+TC[CS] 0.64 0.60 0.62 -
SS+TC[MI] 0.60 0.60 0.60 -
SS+TC[LR] 0.64 0.63 0.61 -

SS+WN[Syn] 0.27 0.14 0.09 -
SS+WN[Sub] 0.51 0.40 0.38 0.14
SS+WN[Sup] 0.34 0.38 0.25 -

Table 2.13 P@1-4 for kewyord oriented extraction for large Web pages.

a low frequency in the input page (e.g., “schema” or “proximity search”), or simply
because they are not contained in the starting URL (e.g., “retrieval” or “malleable”
– both major research interests of our subject, highly related to the annotated page;
or “Banks system” – a database search system very similar to the one presented in
the given Web page; or “probabilistic”, etc.).

Practical Issues. As we discussed earlier, the approach we propose is highly
scalable: Our annotation algorithms are highly efficient, and utilize client processing
power to annotate the Web pages. Users don’t need to produce annotations for all
pages they visit, but only for a sample of them (possibly randomly selected). The
server collecting the data is free to limit the amount of incoming connections in order
not to become overloaded.

From an implementation perspective, the algorithms proposed here can be easily
integrated into browser toolbars already distributed by the major search engines.
In fact, these toolbars already communicate with logging servers in order to send
statistical browsing information28, utilized for enhancing the search results ranking
function. Thus, only a small additional communication cost is necessary.

28Only with user’s consent.

62 Chapter 2 Generation of Desktop Context

Algorithm P@1 P@2 P@3 P@4
TF+TF 0.86 0.76 0.79 0.81
TF+DF 0.92 0.71 0.69 0.69
TF+LC 0.75 0.79 0.78 0.73
TF+SS 0.92 0.79 0.75 0.76

DF+TF 0.83 0.88 0.83 0.77
DF+DF 0.92 0.71 0.69 0.67
DF+LC 0.67 0.67 0.64 0.63
DF+SS 0.92 0.88 0.83 0.79

LC+TF 0.86 0.74 0.74 0.76
LC+DF 0.92 0.71 0.69 0.63
LC+LC 0.75 0.75 0.78 0.75
LC+SS 0.86 0.72 0.73 0.74

SS+TF 0.89 0.78 0.77 0.79
SS+DF 1.00 0.75 0.72 0.65
SS+LC 0.92 0.92 0.89 0.83
SS+SS 1.00 0.79 0.78 0.72

Table 2.14 P@1-4 for hybrid extraction for small Web pages.

2.6.3 Applications

The approach we presented here enables a range of applications, from the most ob-
vious, such as personalized Web search, Web recommendations to ontology learning
and Web advertising.

Personalized Web Search. An interesting application is Web search personal-
ization [CFN06a]. One could exploit such keyword extraction algorithms to generate
term based profiles from each user’s collection of personal documents. Upon searching
some external collection (e.g., the Web), the output results could be biased towards
those pages residing closer to the user profile in the terms hyperspace.

Web Recommendations for Desktop Tasks. It is quite common for people
to search the Web for currently existing content to assist their present work tasks. It
is possible to use the approaches we proposed in this paper in order to automatically
suggest such pages [CFN06b]. More specifically, upon editing a Desktop document,
relevant keywords would be extracted from the already written content and utilized
to search on the Web for additional, useful resources on the same topic. Then, these
automatically located pages could be displayed in a condensed format (e.g., title and
URL) using a small discreet window placed for example in the bottom-right corner
of the screen.

Ontology Learning. In the scenario of ontology-driven annotations, where an
underlying ontology (customizable for each user) provides the terminology for such
annotations, it might be necessary to enrich the ontology with user-specific concepts.
These can be provided from the user’s context, represented by keywords extracted
from his Desktop environment. For instance, the initial personal information man-
agement ontology might lack a concept relevant to a specific user, for instance the
class “Research Interests” as subclass of “Interests”.

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 63

Algorithm P@1 P@2 P@3 P@4
TF+TF 0.71 0.76 0.74 0.74
TF+DF 0.62 0.58 0.58 0.56
TF+LC 0.63 0.65 0.60 0.61
TF+SS 0.69 0.68 0.66 0.59

DF+TF 0.70 0.66 0.59 0.59
DF+DF 0.59 0.60 0.56 0.56
DF+LC 0.45 0.42 0.43 0.44
DF+SS 0.62 0.59 0.57 0.53

LC+TF 0.73 0.78 0.74 0.71
LC+DF 0.59 0.58 0.57 0.56
LC+LC 0.67 0.65 0.61 0.61
LC+SS 0.77 0.70 0.69 0.64

SS+TF 0.80 0.76 0.70 0.68
SS+DF 0.59 0.58 0.57 0.55
SS+LC 0.56 0.59 0.57 0.54
SS+SS 0.71 0.66 0.64 0.62

Table 2.15 P@1-4 for hybrid extraction for medium Web pages.

An analysis of keywords detected by the Lexical Compounds method is particu-
larly valuable for an Ontology Learning approach, which we will investigate further.
Based on the metrics described in this paper, the term “Research Interests” could be
suggested as a keyword, and adopted as a class in the user-specific layer of the ontol-
ogy. Relevant multiword expressions detected in such a way, sharing the same head
noun, may be proposed as classes and organized hierarchically, while a hypothesis
analysis for collocation over the Desktop corpus will enable us to distinguish between
a simple modified head noun and a multiword expression bearing more meaning than
the sum of its parts. Further knowledge may be extracted by considering sentences
containing the keywords from the set determined by the Sentence Selection algorithm,
which are often of descriptive nature. Considering the example above, it would be
straightforward to identify “information extraction”, “natural language processing”
and “knowledge representation” as instances of the concept “Research Interests”,
given the beginning of the sentence “His research interests include information ex-
traction[..]” and given the assumption that variations of this sentence will be found
in documents on the Desktop and on the Web. This strategy will enable us also to
extract instances, as well as relevant relations between the proposed classes.

Other Applications. If we move away from using personal Desktops, we can
identify quite a lot of other applications of the same algorithms, some of them even
already investigated. Due to space limitations we note here only one very impor-
tant example: Web advertising. Keywords, as extracted from Web pages with the
algorithms we presented, could be used to better match advertisements, as well as to
propose better bidding expressions for the owner of the input Web site.

64 Chapter 2 Generation of Desktop Context

Algorithm P@1 P@2 P@3 P@4
TF+TF 0.67 0.68 0.68 0.67
TF+DF 0.67 0.59 0.57 0.56
TF+LC 0.55 0.51 0.47 0.46
TF+SS 0.66 0.65 0.60 0.60

DF+TF 0.52 0.62 0.66 0.62
DF+DF 0.67 0.59 0.57 0.54
DF+LC 0.62 0.53 0.47 0.49
DF+SS 0.54 0.50 0.53 0.49

LC+TF 0.58 0.63 0.63 0.63
LC+DF 0.67 0.59 0.56 0.57
LC+LC 0.48 0.51 0.46 0.47
LC+SS 0.63 0.63 0.58 0.56

SS+TF 0.72 0.69 0.63 0.64
SS+DF 0.67 0.59 0.57 0.55
SS+LC 0.61 0.54 0.52 0.51
SS+SS 0.68 0.62 0.61 0.59

Table 2.16 P@1-4 for hybrid extraction for large Web pages.

2.6.4 Discussion

We have described a novel approach for scalable automatic personalized generation of
annotation tags for Web pages. To the best of our knowledge there is no approach that
does the same. Our approach overcomes the burden of manual tagging and it does
not require any manual definition of interest profiles. It uses the implicit background
knowledge on the users personal Desktop to propose personalized annotation tags
for Web pages. In contrast to keyword extraction algorithms that can only propose
terms that actually appear on the Web page, it proposes a more diverse range of tags
which are closer to the personal viewpoint of the user. The results produced provide
a high user satisfaction (usually above 70%). Thus, the greatest benefit of P-TAG is
the high relevance of the tags for the user, and therefore the capacity of the tag to
describe a Web page and to serve for a precise information retrieval.

We consider P-TAG as a valid step towards a lowercase semantic web, by the
provision of personalized annotation tags for Web pages. We also see it as a valuable
basis for the introduction of more semantics, i.e., for ontology learning approaches as
mentioned in the Application Section (Section 2.6.3).

The current implementation of P-TAG is Desktop based. However for the near
future we plan to implement a shared server approach that supports social tagging29,
i.e., the system would know about personal annotations from other users and would
provide the most popular annotations, e.g., the ones with the highest score. This
would enable the sharing of the automatic generated personal annotations in a col-
laborative environment, and would simply automatically create, apply and share tags
dynamically.

For such a server based approach we envision the following advantages:

29http://en.wikipedia.org/wiki/Folksonomy

http://en.wikipedia.org/wiki/Folksonomy

2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs
for the Web 65

S M L Average

0.60

0.70

0.80

0.90

DF+TC[MI]

TF

DF+TC[CS]

LC

TF+TF

TF+TC[LR]
SS

LC+TF

SS+TF

Web page size

P
@

3

Figure 2.10 Precision at the first three output annotations for the best
methods of each category.

1. Diversity : Keywords are generated from millions of sources, and thus cover
various user interests.

2. Scalability : The annotation server can choose from which machines to collect
the annotations, as well as from how many machines.

3. High Utility for Web Advertising : One can easily mine the dominating interests
of the persons browsing a given Web page or set of pages.

4. Instant Update: We do not have to worry about the high volatility of the Web;
newly created Web pages get annotated automatically, as they are visited by
users.

We believe that P-TAG provides rather intriguing possibilities which can lead to a
considerable high amount of annotated Web pages by automatic personalized tagging,
thus lowering the barrier for the application of more semantics on the Web.

66 Chapter 2 Generation of Desktop Context

Algorithm 1st Annot. 2nd Annot. 3rd Annot. 4th Annot.
http://citeseer.ist.psu.edu/542246.html

TF Search Information User System
LC Proximity Search Relational Databases Banks System Foreign Key

DF+TC[MI] Schema Search Web -
DF+TC[CS] Schema Search Retrieval -

TF+TF Search Query Malleable Schema
LC+TF Database Query Probabilistic Networks

http://en.wikipedia.org/wiki/PageRank
TF Web Search Information Pages
LC Search Engine Web Pages Authority Transfer Link Structure

DF+TC[MI] Web Information Conference -
DF+TC[CS] Web System Conference -

TF+TF Web Page Links Semantic
LC+TF Web Search Semantic Information

http://www.l3s.de/ chirita/resume.htm
TF Bucharest University Search Computer
LC Computer Science Information Retrieval Personalized Web Search Technical Report

DF+TC[MI] Retrieval Search System -
DF+TC[CS] Retrieval Search Information -

TF+TF Search Retrieval Web Ranking
LC+TF Search Web Pages Semantic

Table 2.17 Examples of annotations produced by different types of algo-
rithms.

3
Ranking on the Desktop and on the Personal Virtual

Information Space

3.1 Introduction

The PC Desktop, a clear reflection of the user and her activities, is now able to store
hundreds of thousands of files that can be easily indexed. The complex human nature
makes the structure of the stored data even more complicated and this materializes in
the difficult task of finding one simple document on the hard-disk. Ironically, in quite
a few of these cases nowadays, the file we are looking for can be found faster on the
World Wide Web than on our personal computer. Existing desktop search systems,
developed as a reaction to the rapidly increasing storage capacities of our hard disks,
are an important step towards more efficient personal information management, yet
they offer an incomplete solution.

Web search has become more efficient than PC search due to powerful link based
ranking solutions like the PageRank algorithm [PBMW98] introduced by Google.
The recent arrival of desktop search applications, which index all data on a PC,
promises to increase search efficiency on the desktop. However, even with these
tools, searching through our (relatively small set of) personal documents is currently
inferior to searching the (rather vast set of) documents on the web. Indeed, desktop
search engines are now comparable to the first generation of web search engines, which
provided full-text indexing, but only relied on textual information retrieval algorithms
to rank their results.

In this work we propose to analyze all user’s activity patterns as an additional
input for generating semantic links between desktop resources. This is a generalization
over the methods we proposed in [CGNP06], in which only some special user actions
are employed to establish semantical relationships on the desktop. Here, we first
investigate and evaluate in detail the possibilities to translate this generic activity
information into a desktop linkage structure, and then we propose several algorithms

67

68
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

that exploit these newly created semantic connections in order to efficiently rank
desktop items. We also show that the ranking results based on the access links
surpass both TFxIDF ranking scores, as well as the ranking schemes we proposed in
our previous work, thus making them a valuable source of input to desktop search
ranking algorithms.

In addition to the personal data, collaborative work has become a key factor
on the way to success in every company - people do not work isolated, but rather
interact with each other by exchanging information, using tools like email clients,
IM, blogs, wikis or shared repositories. Every personal desktop thus becomes the
sum of all other desktops it interacts with - the Personal Virtual Information Space
(VIS). Accessing these connected information sources in such a collaborative work
environment becomes a crucial functionality, which so far has only been partially
tackled within the new area of PIM. This has become a subject of growing interest
[DH05, DHN+04], also to the database community, and (distributed and heteroge-
neous) dataspaces will extend databases beyond centralized and structured informa-
tion repositories [FHM05]. The Social Semantic Desktop paradigm integrates data
annotation, organization and search on the desktop, and promises to provide col-
laborative work environments through connecting all shared data resources in a work
group. The NEPOMUK1 project [NEP] aimed to create such an infrastructure, which
improves the state of the art in online collaboration and personal data management,
by providing seamless access to all information created by single or group efforts.

Peers in the NEPOMUK context share fulltext and semi-structured information,
referring to publications, reports and other desktop documents, emails, browsed web
pages, address books, etc. These metadata represent additional information about
these resources and connect them through semantic relations, such as authorship of
papers and reports, sender and recipient information for emails or email attachments.
Based on this infrastructure, advanced searching and ranking capabilities can utilize
both conventional IR-based information like term frequency in documents and collec-
tions, as well as link-related information, the basis of PageRank-like algorithms, e.g.,
ObjectRank [CGNP05, CGNP06].

Extending these ranking schemes to a distributed setup is not trivial, because it
involves (partial) sharing of possibly private information. Solutions for distributed
collections in federated libraries exist, but they provide just traditional IR-based
rankings based on TFxIDF metrics through the exchange of collection specific infor-
mation. We will next investigate which resources and information need to be shared
to enable personalized PageRank-based ranking among peers, and how algorithms
can take privacy constraints for these resources into account. Specifically, we propose
and evaluate new algorithms for consistently computing ObjectRank, a PageRank
variant appropriate for ranking these connected resources on the desktop.

Further, this work explores how we can use communication in social networks to

1This work was supported by the NEPOMUK project funded by the European Commission under
the 6th Framework Programme (IST Contract No. 027705).

3.2 Related Work 69

share and extend context information and how semantically rich recommendations
between members of interest groups in such settings can be realized. We build upon
FOAF networks, which describe personal and group information, based on the FOAF
vocabulary to describe friends, groups and interests. We focus on how to share context
in such a network, how to use these shared metadata to connect the information of
different peers in the social network and how to use it for social recommendations.

After showing in the previous chapter how we tried to enhance the present struc-
tures on the desktop with various types of metadata - activity metadata considering
time stamps, but also regarding the relationships between the resources used in vari-
ous activities, in this chapter, we show how we can make use of all this metadata in
order to enhance the search experience on the desktop. By trying to use the relation-
ships between desktop resources, a desktop search system is already more useful to
the user, but we try to move one step further, and offer a ranking mechanism other
than classic TFxIDF on top of that. Thus, we go another step forward and apply
additional ranking mechanisms, first using the additional time connections in Sec-
tion 3.3, then explore how rankings are computed when the user exchanges resources
within his community in Section 3.4, and also depending on the trust on his friends’
resources, how ranking in influenced on the VIS in Section 3.5.

3.2 Related Work

Though ranking plays an important role on the Web, there is almost no approach
specifically aiming at ranking desktop search results. Even if there exist quite a few
systems organizing personal information sources and improving information access in
these environments, few of them even discuss their search algorithms. In this section
we briefly present some of these systems, then we continue with discussing several
user activity studies for personal information, as they are useful for understanding
people’s behavior on the PC Desktops, and finally we describe some current ranking
algorithms designed for use on the Semantic Web. Then we try to frame our work
within the distributed environments’ work, where we show some recommender sys-
tems, but also systems which attempt to do distributed ranking and also try to show
how one community can influence the trust on a user’s resources.

Desktop Organization Systems. Several search and retrieval tools make ex-
tensive use of the semantical relationships that can be inferred on the desktop, yet
they do not employ any ranking scheme on top of this. Haystack [HKQ02, KBH+03]
for example emphasizes the relationship between a particular individual and her cor-
pus. It is quite similar to our approach in the sense that it automatically creates
connections between documents with similar content and it exploits usage analysis
to extend the desktop search results set. However, they do not investigate the pos-
sibilities to rank these results, once they have been obtained. Magnet [SK05] was
designed as an additional component of Haystack with the goal to support näıve user

70
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

navigation through structured information via a domain-independent search frame-
work and user interface. Gnowsis2 adds Semantic Web interfaces to common desktop
applications in order to link documents as within a personal semantic web. A number
of adapters read data from different sources and make this information available as
RDF. The created metadata is stored in a local RDF database and can be viewed,
modified and searched (using basic TFxIDF ranking) with the aid of a Browser.

Stuff I’ve Seen [DCC+03] provides a unified index of the data that a person has
seen on her computer, regardless of its type. Contextual cues such as time, author, or
thumbnails can be used to search for and present information, but no desktop specific
ranking scheme is investigated. Similarly, MyLifeBits [GBL+02] targets locally stor-
ing all digital media of each person, including documents, images, sounds and videos.
They organize these data into collections and, like us, connect related resources with
links. However, they do not investigate building desktop ranking algorithms that ex-
ploit these links, but rather use them to provide contextual information. Connections
[SG05] is a very recent system also targeted at enhancing desktop search quality.
Similar to us and to Haystack, they also connect related desktop items, yet they
exploit these links using rather complex measures combining BFS and link analysis
techniques, which results in rather large search response delays. Nevertheless, while
our algorithms are clearly faster, we intend to compare the two approaches in terms
of output quality in future work.

Finally, in prior work [CGG+05, CGNP06] we described our Beagle++3 personal
information system, a semantically enriched extension of the Beagle open source desk-
top search engine. There, we proposed various heuristics to generate ample activity
based metadata associated to each desktop item. In addition, we generated links
between resources in a similar manner to Haystack (e.g., between a file and an email,
if the former resource was stored from the attachment of the latter), and we applied a
Schema-Based PageRank [BHP04] to compute reputation scores. In this work we first
formalize the desktop ranking process, and then we explore simpler, yet richer sources
of linkage information between desktop items, such as global file access patterns.

Desktop Usage Analysis. Desktop usage behavior has been thoroughly ana-
lyzed in many studies. For example, Malone [Mal83] used interviews to analyze the
way professional and clerical office workers organize information in their desks and
offices. He identified two broad types of persons, filers, who organize their data into
directories and categories, and pilers, who simply store all files in as few directories
as possible. His work is orthogonal to ours, as we also analyze desktop user activity,
but we focus on file access distribution, rather than storage behavior. Later, Barreau
and Nardi [BN95] suggested that the way information is used on the PC Desktop
should also be the primary determinant of the way it will be organized, stored and
retrieved in the personal workspace. Finally, Jones et al. [JDB02] investigate the
methods people use in their workplace to organize web information for re-use (e.g.,

2http://www.gnowsis.org/
3http://beagle.l3s.de/

http://www.gnowsis.org/
http://beagle.l3s.de/

3.2 Related Work 71

send email to self, print out the web page, etc.).

Semantic Ranking. Aleman-Meza et al. [AMHAS03] analyzed the importance
of semantically capturing users’ interests in order to develop a ranking technique for
the large number of possible semantic associations between entities of interest for
a specific query. They define an ontology for describing the user interest and use
this information to compute weights for the links among the semantic entities. The
approach is orthogonal to ours, as we build links only by exploiting fast usage analysis
information, instead of using various complex algorithms to connect at run-time the
desktop entities relevant for every specific user query. Another similar technique for
ranking semantic query results is to analyze the inferencing processes that led to each
result [SSS03]. In this approach, the relevance of the returned results is computed
slightly faster than in the previous one, by exploiting the specificity of the relations
residing within the knowledge base. The calculation of the relevance is however a
problem-sensitive decision, and therefore task oriented strategies should be developed
for this computation.

Recommender Systems. [DK04] presents a class of model-based recommen-
dation algorithms for creating a top-N list of recommendations. In their approach,
they first determine the similarities between the various items and then use them to
identify the set of items to be recommended. [DK04] also addresses the key steps
of this class of algorithms: which are the methods used to compute the similarity
between items and which are the methods used to combine these similarities, in order
to compute the similarity between a basket of items and a candidate recommender
item. Opposed to this, in our approach the recommended items are based on user
preferences and explicit context information.

Tapestry [GNOT92] is a recommender system which, in a sense, is similar to our
approach. Tapestry is an e-mail filtering system, designed to filter e-mails received
from mailing lists and newsgroup postings. Each user can write a comment / anno-
tation about each email message and share these annotations with a group of users.
A user can then filter these email messages by writing queries on these annotations.
Though Tapestry allows individual users to benefit from annotations made by other
users, the system requires an individual user to write complicated queries. We extend
the idea in Tapestry by annotating not only emails but other resources on the user’s
desktop. In addition, exchange of annotations is handled (semi-) automatically.

The first system that generated automated recommendations was the GroupLens
system [RIS+94]. The system, like in our case, provides users with personalized
recommendations by identifying a neighbourhood of similar users and recommending
the articles that this group of users finds interesting.

The most interesting work for recommendation infrastructures, which does not
require a central recommender server is PocketLens [MKR04]. The paper discusses
on how to preserve privacy in such an infrastructure. In contrast to our work, they
do not exploit semantic connections between items, such as we have for citation
relationships.

72
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

Compared to the usual recommender systems, including the commercial ones such
as Amazon.com, which usually suggest single items, we have the potential to make
semantically rich suggestions that are represented as parts of a semantic network
which we exchange. Additionally we also provide to the user information about other
users’ rankings. While most recommender systems define groups by relying on the
overlap among preferred items, we rely on an explicit group membership denotation
based on FOAF metadata.

Distributed Ranking. In the last two years researchers have investigated how
to compute PageRank in a distributed manner. [WD04] proposes a distributed search
engine framework, in which every web server answers queries over its data, and results
from multiple web servers are merged into one ranked list. Each web server constructs
a web link graph based on its own pages to compute a Local PageRank vector, then
they exchange their inter-server link information and compute a ServerRank vector,
which is used to refine their Local PageRank vectors. Similarly, [WA04] computes
SiteRank, based on applying PageRank to the graph of Web sites, i.e., the Web graph
at the granularity of Web sites instead of Web pages. Aggregating the rankings from
multiple sites produces results similar to the true PageRank scores. Both approaches
aim to distribute the PageRank computation using several servers and iterations,
such that the computational load is reduced, but still the final scores are similar
enough with the ones obtained from a global computation. Our goal is to ensure a
personalized view over heterogeneous collections, distributed over several desktops,
using exchange of appropriate collection/link information before the computation.

[CDKS01] was the first paper to introduce the concept of “world node”, to incre-
mentally compute a good approximation of PageRank as links evolve. They identify
a small portion of the web graph in the vicinity of changes and model the rest of
the Web as a single node in this small graph, onto which they compute a version
of PageRank and suitably transfer back the results to the original graph. Building
on this work, [PDMW06] describes a P2P search engine architecture where peers are
autonomous, crawl Web fragments and index them locally, but collaborate for query
routing and execution. Each peer computes the PageRank scores for the pages it
has in its local index. Peers meet and exchange information, and then recompute
their PageRank scores. Their original local graph G is extended by adding a special
node W, world node, representing all pages in the network that do not belong to G.
Their algorithm assumes that URLs of pages in the world node are known, only their
content is not known (not yet crawled). In our scenario, peers do not know the URIs
of the external resources and therefore need to send at least part of their data graph
to the other peers so that these can create the world node for them. As our world
node is used to keep link and node information private, no inner structure is known.
Moreover, all other approaches perform ranking computation on graphs containing
only web pages and hyperlinks, while in our case we have different types of links
among the nodes, based on their type and on the desktop ontology.

The idea of how communities influence each other is investigated in [BGS05].

3.3 Ranking Using Activity Based Links 73

They introduce the interesting notion of “energy” of communities, which they define
for subsets of the global graph. A community can be viewed as a set of pages on a
given topic and the corresponding energy is a measure of the community’s authority.
The “energy” concept is also applicable in our case, since we are investigating how
peers influence each other through the data they are sharing. However, their formulas
assume all information about the graph at one location is known, which is not the
case in our scenario. It will be interesting to find suitable formulas for approximating
energy level and flow for our scenarios, where we have only partial information about
the whole graph.

3.3 Ranking Using Activity Based Links

3.3.1 Context Based Ranking

A measure of importance for desktop resources is necessary in order to enable ordering
these items within search. In this section we start with a description of the subset of
the desktop ontology we use for transferring authority values, and then we formalize
the structure of such a ranking mechanism based on the Google PageRank algorithm,
as implemented in our Beagle++ system [CGNP06].

Desktop Ontology Overview

Given the fact that PageRank is inherently built on top of a linkage structure, we
construct our algorithms on top of a subset of our desktop ontology which describes
the relationships among the resources influencing the ranking. This is in fact similar
to ObjectRank [BHP04], which introduced the notion of authority transfer schema
graphs in order to propagate importance values across different nodes / contexts
within all instances of the classes defined in some given ontology.

We explore three important semantical contexts in order to describe the impact of
our activities upon our desktop: email, publications and web cache. We describe the
semantics of these different contexts by appropriate ontologies (see [BCC+06] for the
complete ontology4). The links that describe these context specific connections are
“departedTo”, “cites”, “hasSubject” / “isSubjectTo” and “contains” / “appearsIn”.
On the one hand, the semantic links generated this way are relatively few, as these
particular events only occur a limited number of times. On the other hand, they
do reflect a “clean” relationship in the sense that when a link is created, there most
probably exists some semantic relationship between its components.

4http://www.kbs.uni-hannover.de/beagle++/ontology/

http://www.kbs.uni-hannover.de/beagle++/ontology/

74
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

Exploiting Context Relations for Ranking

Following the approach described above, each user has her own contextual metadata
graph, and for each node in this network the appropriate ranking can thus be calcu-
lated with the Schema-Based PageRank algorithm. This computation is based on the
RDF link structure inferred over user’s resources as specified in the desktop ontology
and it takes the following form:

r = dAr + (1− d)e (3.1)

The vector r contains a score for each desktop resource, A is the normalized
adjacency matrix which describes the graph connecting all available instances of the
existing context ontology on one’s desktop, and the e vector models a random jump
to an arbitrary resource in order to guarantee convergence [PBMW98].

As an extension to our work from [CGNP06], we here also investigate several
additional linkage heuristics, such as connecting two emails if they involve the same
“bag” of persons (have the same sender and recipients), or if they have the same
subject (threading of emails). Once all links have been generated, Schema-Based
PageRank is applied as described above.

3.3.2 Activity Based Ranking

The contexts exploited up to now for ranking could also be interpreted as three
different threads of activity: reading emails and their follow-ups, browsing through
the file system for the cited papers from a publication, and browsing over previously
visited web pages. However, they only address very specific user actions on the
desktop. In this section, we extend this approach with a more general one, in which
all accesses to desktop resources are considered for ranking.

Current personal information systems create links between desktop resources only
when a very specific desktop usage activity is encountered (e.g., the attachment of an
email is saved as a file, or a web page is stored locally, etc.). We argue that in fact in
almost all cases when two items are touched in a sequence several times, there will also
be a relation between them, irrespective of the underlying user activity (e.g., surfing
the web, etc.), as well as if they were touched in a small window of time. Our ultimate
goal is to infer links from desktop resources that have been accessed in a sequence or
within the same time window. Yet this is not a straightforward task. Several persons
might have quite different usage behavior patterns, thus making it very difficult to
distinguish usage sessions from each other. More, this problem could even occur
with the same person, at two different moments in time. We thus conducted a small
usage behavior study in order to analyze users’ file access patterns, more extensively
presented in [GCC+08]. This allowed us to observe behavioral patterns and also led
to several ideas we used here. Thus, we propose to add a link between two items a and
b whenever item b is touched after a for the T th time, with T being a threshold set by

3.3 Ranking Using Activity Based Links 75

the user. Higher values for T mean an increased accuracy of the ranking algorithm,
at the cost of having a score associated to fewer resources. Theoretically, there is only
a very low probability to have any two items a and b touched in a sequence even once.
However, since context switching occurs quite often nowadays, we also investigated
higher values for T , but experimental results showed them to perform worse than
T = 1. This is in fact correct, since two files are accessed consequently more often
because they are indeed related, than due to a switch of context.

To put this new heuristic into practice, we extend the ontology proposed in Section
3.3.1 with two additional links connecting two Desktop Documents: “Accessed in
Sequence”, if two items have been accessed in a direct sequence, and “Accessed in
Window”, which models the same heuristic in a more relaxed approach, namely two
items being accessed within a small window of time (rather than in an exact sequence).
When instantiated, these generated links amount to a much larger number than the
context specific links we defined in previous work. They also come with the drawback
of adding some additional noise, as their underlying heuristic is less strict against
context switchings, but as we will see from the experimental results, it does indeed
result in improved search quality, indicating that it adds more useful links than noisy
ones.

Inferring Semantic Relationships by Analyzing Access Sequences

Another aspect that needs to be analyzed is the type of links residing on the PC
desktop. In our approach we use directed links for each sequence a → b, because if
file b is relevant for file a, it does not necessarily mean that the reverse is true as well.

As it was not clear how many times two resources should be accessed in a sequence
in order to infer a semantic connection between them, we studied several values for
the T threshold, namely one, two and three. Additionally, we also explored the
possibilities to directly use the original matrix A with PageRank, thus implicitly
giving more weight to links that occurred more frequently (recall that in A each link
is repeated as many times as it occurred during regular desktop activity).

Inferring Semantic Relationships by Analyzing Activity Sessions

The second method we tested is based upon the observations made by Soules et al.
[SG05], stating that files accessed in a small time window (e.g., 30 seconds) are usually
related. Therefore, we connect them in a similar manner like above: If the difference
in access time stamps between files a and b is below a threshold, then we connect them,
no matter whether they are in a sequence or not. This is in fact another approach to
deal with context switches: Within a window, even though noisy context switching
links are added, we also add the correct ones, describing real semantic relationships,
the assumption being that there will be a lot more correct links than noisy ones.
Finally, we also take into account the number of occurrences of each generated link,

76
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

especially in order to avoid the appearance of such noisy links.

3.3.3 Experiments

Experimental Setup

We evaluated how the newly introduced activity-based ranking algorithms perform
when compared to TFxIDF, as well as to our previous work (formalized in Sec-
tion 3.3.1). The experiments were performed within the research environment of
L3S, on a total number of 10 persons, who installed an activity logging tool and
worked normally on their desktops for several months. At experimenting time, they
performed several desktop searches related to their regular activities, and graded each
top-5 result of each algorithm with a score ranging from 0 to 2, 0 defining an irrelevant
result, 1 defining a relevant one, and 2 a very relevant one. The grades were then
averaged for each query and each ranking algorithm, and then again per subject for
each algorithm over all queries. This gave us one grade per algorithm per subject.

The two global conventions we took for all ranking algorithms were as follows:
First, an activity session was over after one hour of break. This was necessary in
order to avoid linking documents accessed within different days, etc. In future work,
we also intend to investigate more complex definitions of usage sessions, which for
example relate to the average break time of a user, rather than to a fixed amount
of time. Second, we investigated how our algorithms perform using a real desktop
search scenario, i.e., with ranking scores combined with term frequency information.
We used the following formula:

Score(file) = NormalizedLinkageScore(file) ∗ NormalizedV SMScore(file, query)

The Linkage score is computed by each of our algorithms, and the VSM score is
computed using the Vector Space Model and is based on TFxIDF. Both scores are
normalized to fall within [0,1] for a given query5.

Each subject prepared 6 queries: One set of single-word queries, and a second
set of multiple-word queries. Each set contained three queries: a very precise one,
a semi-ambiguous one, and finally an ambiguous one. For each of them the results
were ranked with the seven algorithms summarized next, plus the standard TFxIDF
ranking method. For every query, we shuffled the top-5 URIs output results for each
algorithm, such that the users were neither aware of their actual place in the rank list,
nor of the algorithm(s) that produced them. On average, for every issued query, a
subject had to evaluate about 20 documents, for an average dimension of the desktop
data of about 7.500 documents. In total, 60 queries had been issued and around 1,000
documents were evaluated.

5In order to avoid obtaining many null scores when using access frequency or total access time
(recall that many items have never been touched by the user), in these scenarios we also added a
1/N score to all items before normalizing, with N being the total amount of desktop items.

3.3 Ranking Using Activity Based Links 77

Experimental Results & Comments

The base reference for comparing our ranking methods is TFxIDF, as it is the most
widely used approach in desktop search. Our rankings are all obtained by applying the
Schema-Based PageRank described in Section 3.3.1 on a matrix representing various
linkage heuristics between resources. This ranking procedure gives us a document
reputation score, which is stored as an additional RDF property for each resource.
Then, at run-time, this score is multiplied with the TFxIDF one, thus obtaining the
final score for each search result. All our tested algorithms are summarized below:

1. C - Context: As defined in Section 3.3.1, the link matrix representing the
contextual links defined in our previous work.

2. SA - Sequential Activity: As described in Section 3.3.2 (Access Sequences),
with an occurrence threshold T = 1.

3. WA1 - Window Activity 1: As described in Section 3.3.2 (Activity Sessions),
with a window size of 30 seconds and an occurrence threshold T = 1.

4. WA2 - Window Activity 2: Same as above, but with an occurrence threshold
T = 2.

5. CSA - Context & Sequential Activity: A combination of the links gener-
ated by the two approaches.

6. CWA1 - Context & Window Activity 1: Same as above, but for Context
and Window Activity 1.

7. CWA2 - Context & Window Activity 2: Same as above, but for Context
and Window Activity 2.

We present in Table 3.1 the averaged grades over all queries for each of the 10
subjects, as well as the average over all subjects and the standard deviation for each
ranking algorithm. As our group of testers was relatively small, we also employed
two methods to eliminate outliers. The first one is a threshold of 0.75 on the relative
error to the average, which designated subjects 3, 4 and 6 as outliers. The second
is a threshold of 3.5σ (with σ the empirical standard deviation) on the z-score of
each value, which removed subjects 1, 2, 5, 7, 8, 9 and 10. Note that if a subject’s
grade of one algorithm is detected as outlying, then all the grades for this subject are
ignored (to ensure uniformity of the results). As the z-scores method removed too
many observations, we will proceed our analysis only for the results obtained using
the relative error to the average as an outlier detection method.

The graphs of the average scores obtained without outliers are plotted in Figure
3.1. They show that all semantic ranking algorithms (context, activity, and combina-
tions) perform much better than the simple TFxIDF scoring, some of them even close

78
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

Subject TFx C SA WA1 WA2 CSA CWA1 CWA2
ID IDF

1 0.667 0.900 1.000 0.767 0.967 0.933 0.867 0.900
2 0.900 0.867 0.900 0.867 0.833 0.867 0.900 0.800
3 0.433 0.500 0.433 0.500 0.333 0.500 0.542 0.500
4 0.567 0.567 0.633 0.467 0.600 0.500 0.533 0.567
5 0.833 0.800 0.800 0.900 0.667 0.700 0.800 0.800
6 0.500 0.600 0.800 0.633 0.700 0.667 0.600 0.600
7 0.200 0.500 0.200 0.133 0.200 0.267 0.233 0.367
8 0.233 0.367 0.200 0.167 0.300 0.200 0.167 0.267
9 0.167 0.233 0.167 0.167 0.267 0.400 0.367 0.233
10 0.633 0.533 0.767 0.767 0.900 0.700 0.600 0.533

STD 0.0178 0.0427 0.0255 0.0260 0.0213 0.0263 0.0243 0.0101

Avg Err 0.504 0.563 0.600 0.546 0.592 0.575 0.559 0.550
T-Test Err N/A 0.077 0.054 0.113 0.090 0.104 0.100 0.116

Avg Z 0.500 0.556 0.622 0.533 0.544 0.556 0.558 0.556
T-Test Z N/A 0.100 0.156 0.339 0.330 0.249 0.166 0.100

Table 3.1 Algorithms’ normalized grades averaged over all queries. STD:
Standard deviation on all observations. Avg Err: Average over the inliers according to relative error
threshold. T-Test Err: T-Test relative to the TFxIDF grades for the inliers according to relative error
threshold. Avg Z: Average over the inliers according to z-scores threshold. T-Test Z: T-Test relative to
the TFxIDF grades for the inliers according to z-scores threshold.

Figure 3.1 Average grades per algorithm with standard deviation.

3.4 Sharing, Exchanging and Ranking Semantic Context Based on
Recommendations 79

to statistically significant levels (e.g., t-test score of 0.054 for Sequential Activity). All
in all, the Sequential Activity algorithm performs best, the second one being Window
Activity 2, very close to our previous work, Context. It was however surprising to
find out that the combinations of these algorithms do not improve the results. We
think this may have several reasons: First, the activity metrics, as they generate a
lot of links, may have already covered the “contextual” links, and thus no additional
useful information would be added by combining them; Second, the amount of links
generated by the activity based heuristic may be a lot bigger than the amount of
links generated by the contextual approach, thus neutralizing these additional links.
Further, more thorough investigations are necessary in order to identify the right
cause. However, we can safely conclude that the activity based heuristics do indeed
yield better results when used alone for ranking desktop items.

3.3.4 Discussion

In the previous sections we proposed to use activity based heuristics in order to rank
desktop search results. We first formalized our previous Schema-Based PageRank
approach to generate resource rankings based on several specific user activities. Then,
we proposed an additional extension to the underlying schema, according to which
two items are linked if they have either been accessed in a sequence, or within a
window of time. We investigated in detail several approaches to create this kind of
links, and compared them to our previously defined heuristics, as well as to TFxIDF
ranking. Our empirical results showed that usage analysis is indeed an improvement
over both the context based and the TFxIDF ranking, thus making it a valuable
source of input to desktop search ranking algorithms.

In future work we intend to explore content based heuristics to provide us with
further additional links between similar desktop documents. Also, we would like
to analyze the necessity and benefits of enabling desktop search restrictions to only
some specific sub-tree of the local file hierarchy. Finally, we intend to devise several
methods to detect activity contexts based on activity analysis, and then integrate
them into the ranking scheme itself.

3.4 Sharing, Exchanging and Ranking Semantic

Context Based on Recommendations

In the previous section, we showed how links between resources on the desktop can
be exploited for providing the user a ranking scheme. We now focus on a distributed
scenario, where a user shares his resources with the people in his social groups, and
his friends at their turn share theirs. The user also receives recommendations about
useful resources and provides his own to the others. In such scenario, computing a
rank for the received resources becomes complicated, especially because of the trust

80
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

the user has on the persons that recommend him resources, and which need to be
taken into account. We next provide such a solution for a ranking scheme in a
distributed scenario.

3.4.1 Motivating Scenario

As our motivating scenario, let us consider our L3S Research Group context and
within this group, Bob and Alice as two members who exchange information. One
important task in a research group is exchanging and sharing knowledge, which we
will focus upon in this section. Unfortunately, the most widely used infrastructure
for this purpose, email, is poorly suited to support this exchange. When we exchange
documents by email, no context is shared (for example which are the interesting
follow-up papers, or which are the interesting references for a paper) and any com-
ments about the documents that are included in the email are lost as soon as the
attached documents are stored in some directory.

The following example shows how such a sharing scenario can be supported in a
more efficient manner. We assume that Bob mails Alice a document which he sent
to the DELOS Workshop, with the title ”I know I stored it somewhere - Contextual
Information and Ranking on Our Desktop”. Bob is one of the authors and therefore
he already has all the important context for this paper including the cited papers
stored on his computer. In this first email, Alice will therefore not only receive
the paper but also its immediate context relevant for the research group, containing
information about all papers that are referenced in the DELOS paper, information
about important authors for this topic or which conferences are relevant. In other
words, whenever we send a paper, the metadata associated to that paper will also be
sent. From the five references included, Alice decides that ”ObjectRank: Authority-
Based Keyword Search in Databases” and ”Activity Based Metadata for Semantic
Desktop Search” are of particular interest for her and she sends back an email to
Bob requiring additional information about those. As an answer, she receives from
Bob the context information associated with these papers, containing the references
that Bob has already downloaded. So the context information will be exchanged
progressively, from the immediate context to the more distant one.

Figures 3.2 and 3.3 present the context created on Alice’s desktop as result of her
metadata exchange with Bob. Figure 3.2 contains only the cites relationship among
the various resources, while in figure 3.3 we represent additional relationships, like
presented at, downloaded from, author, or same session. Note that the context net-
works created on the users’ desktop are not separated, but just visualized separately
in these figures.

By examining the context graph in figure 3.3, we see that all the papers labelled
from G to Q were presented at different WWW Conferences, in different years, and
all were downloaded from the ACM Portal. Papers A, C and K all share the same
author, Bob, and have been downloaded from the L3S Publication page. Similarly,

3.4 Sharing, Exchanging and Ranking Semantic Context Based on
Recommendations 81

Figure 3.2 Publications Context Example - Part 1

the publication labelled B and the other two papers which were presented at the same
session at the VLDB conference were downloaded from the VLDB web site.

All this information is taken into account when computing the importance of the
resources on Alice’s desktop. For example, when computing the importance of the
conferences, the WWW Conference will be more important than other conferences,
since Alice already has a lot of important publications which have been presented
there. The number of papers from the same author Alice has already downloaded
also influences how important she considers that author. This means that certain
authors are more important than others, based on the publications used and cited
in the L3S Research Group, as well as on general citation information about these
authors. The fact that Alice knows Bob and Bob is one of the authors of three
publications Alice has on her desktop influences the importance of Bob’s publications
and of course, Bob’s importance as author. So he will be definitely more important
to Alice than other authors not known to her.

In order to be able to compute the rankings of their documents Alice and Bob
have to build a context around the resources they have stored on their desktops. The
next section presents in more detail how this context information is created and then
describes how this context can be used in computing rankings of search results on the
desktop [GNP05a].

82
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

Figure 3.3 Publications Context Example - Part 2

3.4.2 Representing Context and Importance

Representing Context

Generally speaking, context information describes all aspects important for a certain
situation: ideas, facts, persons, publications, and many more. Context information
includes all relevant relationships as well as interaction history. Current desktop
search prototypes fall short of utilizing any desktop specific information, especially
context information, and just use full text index search. In our scenario we clearly
need to use additional context information, and specifically want to exploit the fol-
lowing contexts:

CiteSeer context. The most important aspects we want to record from the Cite-
Seer context are the publications we are viewing or downloading and how these publi-
cations are connected to other publications. Important parts of the available context
information are the authors of these publications, the conferences in which they were
presented or the year when they were published and even more, the publications
which cite them or are cited by them. We want to keep track whether we saved a
certain publication on our own desktop in order to be able to find it later and we
want to receive suggestions about papers that might be interesting in the same or
overlapping contexts.

CiteSeer provides four additional types of links that can be followed after identi-
fying a paper. The most expressive in our case would be the ones that refer to the
related documents from co-citations and the papers that appear on the same web
site.

3.4 Sharing, Exchanging and Ranking Semantic Context Based on
Recommendations 83

Browsing and Desktop context. Browser caches include all information about
user’s browsing behaviour, which are useful both for finding relevant results, and
for providing additional context for results. In our scenario, when we search for
a document we downloaded from the CiteSeer repository, we do not only want to
retrieve the specific document, but also all the referenced and referring papers which
we downloaded on that occasion as well.

In general, we view documents stored from emails and from web sites as our per-
sonal digital library, which holds the papers we are interested in, plus all relevant
contextual information. When we store documents, we can then retrieve them effi-
ciently and restore the original context we built up when storing these documents.
Personalized search and ranking on the desktop takes this contextual information
into account as well as the preferences implicit in this information. [TAAK04] dis-
cusses how people tend to associate things to certain contexts. So far, however, search
infrastructures neither collect nor use this contextual information.

Scenario specific annotation ontologies. Figure 3.4 presents our current pro-
totype ontology, used for implementing our motivating scenario. It specifies context
metadata for the CiteSeer context, files and web pages, together with the relations
among them (described in more detail in [CGG+05]). Conceptually, the elements
in the rectangles represent classes, circles represent class attributes. We use classes
whenever we want to attach importance / rank on entities, attributes otherwise.

Figure 3.4 Context ontology for our prototype

For the browsing and desktop context, we annotate each page with additional
information about its basic properties (URL, access date, etc), as well as more complex
ones such as in- and out-going links browsed ([CGG+05]). The user’s behaviour as the

84
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

pages or publications he browsed or downloaded provide useful additional information.
Files, which are stored from web pages, reside in certain directories, which in turn
can include other directories. The creation or change date of a file together with
the number of accesses are some other important indicators which have to be taken
into account when describing the desktop context. An extended publication ontology
makes use of additional knowledge about how CiteSeer pages are connected and what
they represent. Publications are referenced by other publications and can cite others,
they can have a publication date / year associated with them, as well as a conference
or journal. Publications have authors and are stored as documents on the desktop.

Other ontologies describe contexts like conferences, including reviewers, papers,
meetings, authors, or private contexts like birthdays, including persons, locations,
etc.

Representing Importance

In addition to the information which resources are included in a specific context, we
also want to know how important or valuable these resources are. We therefore have
to develop a mechanism which allows us to express this information and use it for
ranking search results.

Authority transfer annotations. Annotation ontologies describe all aspects and
relationships among resources which influence the ranking. The identity of the au-
thors, for example, influences our opinion of documents so “author” should be repre-
sented explicitly as a class in our publication ontology. We then have to specify how
these aspects influence each other’s importance.

ObjectRank [BHP04] has introduced the notion of authority transfer schema
graphs, which extend schemas similar to the ontologies previously described, by
adding weights and edges in order to express how importance propagates among
the entities and resources inside the ontology. These weights and edges represent the
authority transfer annotations, which extend our context ontologies with the informa-
tion we need to compute ranks for all instances of the classes defined in the context
ontologies.6

Figure 3.5 depicts our context ontology plus its authority transfer annotations.
The ontology representing our browsing and desktop context says that a visited web
page is important if we arrived at the current one from an important page, if the
file under which it is stored is important, or if the date when the page was visited
is important. For the CiteSeer context, publications transfer part of their authority
to other papers they cite, to their authors, to the files under which they are stored,
and to the year when the paper was published. As we can see, citing important
papers doesn’t make a paper important. As suggested in [BHP04], every edge from

6In contrast to ObjectRank, we do not compute a keyword-specific ranking, but a global one.

3.4 Sharing, Exchanging and Ranking Semantic Context Based on
Recommendations 85

Figure 3.5 Authority transfer annotations, including external ranking
sources

the schema graph is split into two edges, one for each direction. This is motivated
by the observation that authority potentially flows in both directions and not only
in the direction that appears in the schema - if we know that a particular person is
important, we also want to have all emails we receive from this person ranked higher.
The final ObjectRank value for each resource is calculated based on the PageRank
formula.

Personalized Preferences and Ranking. Different authority transfer weights
express different preferences of the user, translating into personalized ranking. The
important requirement for doing this successfully is that we include in a user ontol-
ogy all concepts, which influence our ranking function. For example, if we view a
publication important because it was written by an author important to us, we have
to represent that in our context ontology.

3.4.3 Sharing Context and Importance

Interest Groups

Interest groups in our context are specialized social networks that have a stated
common interest which connects the members of the group. One important reason
for creating interest groups resides in increasing the efficiency of the information flow
inside that group. All members of the same interest group share the same domain of

86
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

interest and the social relationships are woven around this type of information sharing.
They are all possibly part of the same professional group, just as we described in
the motivating scenario, Alice and Bob being in the same research group, the L3S
Research Group.

We chose to represent interest groups based on an extension of FOAF in order to
describe the social network of participants and we will describe all contexts as RDF
metadata, as presented in [CGG+05]. Being based on RDF, FOAF inherits some of its
benefits, like the ease of aggregating and harvesting it, or combining it with other vo-
cabularies, thus allowing us to capture a rich set of metadata. The basic FOAF vocab-
ulary itself is pretty simple, pragmatic and designed to allow simultaneous deployment
and extension. It is identified by the namespace URI ’http://xmlns.com/foaf/0.1/’
and described in more detail at the FOAF project page [The].

FOAF terms represent information which can be grouped in the following five
broad categories: FOAF Basics, Personal Information, Online Accounts/ IM, Projects
and Groups, Documents and Images. The most important for us is the Projects
and Groups category, which allows us to talk about groups and group membership
among others. Groups are represented with the aid of the foaf:Group class, which
represents a collection of individual agents. The foaf:member property allows us
to explicitly express the membership of agents to a group. Since the foaf:Person
class is a sub-class of the foaf:Agent class, persons can also be members of a group.
One can specify the interests of the group members by using specific properties, like
foaf:interest, foaf:topic interest, or foaf:topic, even though it is not yet clear
how to use them correctly.

A notable omission in the basic FOAF vocabulary is the inability to express any-
thing related to information sharing in a group. Even though being in a group or
social network usually means that we want to share information within this social
network, there is no vocabulary to express this in FOAF. The assumption we make in
this paper is that people belonging to a common interest group will share a specific
set of metadata. In our scenario these are the contextual metadata defined by ap-
propriate annotation ontologies, as discussed in the previous section. When members
of an interest group express that they want to share a certain set of metadata, they
will agree on an appropriate ontology defining this set. We will therefore extend the
FOAF vocabulary with a new property foaf:shared context which takes as its value
the annotation ontology describing the metadata to be shared. Based on this, the
FOAF description of the L3S Research interest group and its members Bob and Alice
as presented in our motivating scenario looks as follows:

3.4 Sharing, Exchanging and Ranking Semantic Context Based on
Recommendations 87

<foaf : Group >
< foaf : name > L3SResearchGroup < /foaf : name >
<foaf : member >
< foaf : Person >

< foaf : name > Alice < /foaf : name >
< foaf : homepage rdf : resource = ”http : //www.l3s.de/ ∼ alice”/ >

< /foaf : Person >
< /foaf : member >
<foaf : member >
<foaf : Person >
< foaf : name > Bob < /foaf : name >
< foaf : homepage rdf : resource = ”http : //www.l3s.de/ ∼ bob”/ >

< /foaf : Person >
< /foaf : member >
< foaf : shared context
rdf : resource = http : //www.l3s.de/isearch/citeseerContext.rdf/ >
< foaf : shared context
rdf : resource = http : //www.l3s.de/isearch/browsingDesktopContext.rdf/ >

< /foaf : Group >

Exchanging Context within Interest Groups

Sharing context in an interest group is useful and necessary because not only do we
want to publish our own work but we also want to find out about additional new re-
sources related to our work and get suggestions about possible further developments
in that area. Recommendation then means suggesting additional related informa-
tion to given items. In our motivating scenario, we have as interest group a set
of researchers, and a set of ontologies defining which metadata are shared between
them. The contextual metadata corresponding to those ontologies as discussed in
section 3.4.2 represent the context information we have available on our desktop.

These context metadata are generated locally by a set of metadata generators
[CGG+05], which record user actions as well as interactions and information exchanges
between members of a group. These metadata generators create RDF annotation files
for each resource whose context they describe, so for each relevant resource on the
desktop (e.g. a specific publication) we will have this additional RDF information
available.

For the experiments described in this paper, we have implemented a metadata gen-
erator, which deals with publications, and crawls one’s desktop in order to identify and
annotate all papers saved as PDF files. For each identified paper, it extracts the title
and tries to match it with an entry into the CiteSeer publications database. If it finds
an entry, the application builds up an annotation file, containing information from
the database about the title of the paper, the authors, publication year, conference

88
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

and other CiteSeer references to publications. All annotation files corresponding to
papers are then merged in order to construct the RDF graph of publications existing
on one’s desktop.

In our scenario, whenever Bob sends a publication to Alice, who is member of
the same interest group, he wants to attach the appropriate context information, i.e.
the publication context we have discussed in the scenario. A second (email) helper
application therefore checks who is the recipient of the email, which group she belongs
to, and therefore which context information/ metadata to attach. On Alice’s side,
the helper application has to integrate the newly received annotation files into the
existing publication graph.

Sharing Importance

Ranking of Resources - General Algorithm

In our distributed scenario, each user has his own contextual network / context
metadata graph and for each node in this network the appropriate ranking as com-
puted by the algorithm described in section 3.4.2. The computation of rankings on
one’s desktop is based on the link structure of the resources as specified by the de-
fined ontologies and the corresponding metadata. When sharing information within
the group / network we exchange not only contexts but also rankings. So exchanging
context information has also an impact on the ranking of results of the desktop search.
These values are then recomputed according to the rankings received together with
the context from other persons.

Ranking of resources is calculated based on the PageRank formula:

r = dAr + (1− d)e (3.2)

applying the random surfer model and including all nodes in the base set. The random
jump to an arbitrary resource from the data graph is modelled by the vector e. A
is the adjacency matrix which connects all available instances of the existing context
ontology on one’s desktop. The weights of the links between the instances correspond
to the weights specified in the authority transfer annotation ontology. Thus, when
instantiating the authority transfer annotation ontology for the resources existing on
the users’ desktop, the corresponding matrix A will have elements which can be either
0, if there is no edge between the corresponding entities in the data graph, or they
have the value of the weight assigned to the edge determined by these entities, in the
authority transfer annotation ontology.

To make these details clear, let us look at the following example: we consider
the authority transfer annotation ontology for a publication ontology, as depicted in
Figure 3.6 and then instantiate it. A subset of this data graph is shown in Figure 3.7.

The instantiation of our the matrix A from Equation 3.2 is depicted in Table 3.2:

According to Figure 3.7, the authors transfer 0.5 units of importance to their own
publications (Wei-Ying Ma to publications P, Q, Kleinberg to H and J and Balmin to

3.4 Sharing, Exchanging and Ranking Semantic Context Based on
Recommendations 89

Figure 3.6 Authority transfer annotation ontology for a publication ontology

Figure 3.7 Data Graph

B). Publications transfer 0.7 units of importance to other papers they cite, 0.1 units
to the conferences where they were accepted and 0.2 units of importance to their
authors.

The values in the matrix are grouped in blocks, formed by considering the cartesian
products Author × Author, Author × Publication, etc. The elements from one block
can be either 0, if there is no edge between the corresponding entities in the data
graph, or they have the value of the weight assigned to the edge between the entities
which determine the block, from the authority transfer annotation ontology.

Ranking of Resources on Alice’s Desktop

We computed the ranking values for the resources existing on Alice’s desktop (see
Figure 3.2 for the labels of resources). The results are presented in Table 3.3. Note
that these values represent Alice’s personal rankings according to the context existing
around her resources and are not necessarily related to external sources of ranking
like CiteSeer or Google.

How Ranks Change When Bob Sends Something

After receiving via email the context existing on Bob’s desktop, as we described in
Section 3.4.1, Alice’s ranks change as presented in Table 3.4. By comparing the values
in the two tables, we can see that the rankings increase, because existing resources

90
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

A =

Y.Ma . . . V LDB
Y ingMa − − − 0.2 0.2 − − − − −
Kleinberg − − − − − 0.2 0.2 − − −
Balmin − − − − − − − 0.2 − −
P 0.5 − − − 0.7 − − − 0.4 −
Q 0.5 − − − − − − − 0.4 −
J − 0.5 − − 0.7 − − 0.7 0.4 −
H − 0.5 − − − − − − 0.4 −
B − − 0.5 − − − − − − 0.4
WWW − − − 0.1 0.1 0.1 0.1 − − −
V LDB − − − − − − − 0.1 − −

Table 3.2 The A matrix

are referenced by the newer ones. For example, the rank of the ”ObjectRank” paper,
labelled B, increases from 0.594175 to 1.124971 since it is now referenced by the
paper labelled A. As a consequence, all the rankings for the resources which have an
incoming link from B will increase. This process of rank propagation is an iterative
one, according to the links in the data graph, and continues until the rank difference
between two iterations is less than a certain threshold. Alice receives not only context
from Bob, but also resources, so that she will also have rank values for these new
resources.

The context which is received from other members of the interest group is used for
building the user’s own context, which means that it is also taken into account when
creating the adjacency matrix A. In order to include the rankings of other users into
the computation of the user’s own ranking, we work on the vector e, which models the
random jump. So, if a resource is highly ranked according to the received rankings
and the user wants to take this into account, she will have to assign a higher value
for the corresponding element in the vector which simulates the random jump.

Of course, even if two users exchange all of their context metadata, they still
will not have the same rankings, as local usage information such as number of ac-
cesses etc., which influences rankings, always stays local and is not exchanged. Note
that in our data graph, group members usually appear as instances of authors or as
senders of emails [CGG+05], so we can use their rank as one possible indicator of
their trustworthiness.

How Alice’s Trust in Bob Influences the Rankings

Even inside an interest group, we have to take into account different reputations.
If somebody, whom I trust and who is important for me, sends his recommendations, I
want his suggestions to be higher ranked than the ones received from a more untrusted
person. These different reputations can be represented by influencing the dampening
factor. The higher the trustworthiness of someone in my interest group, who sends
me her own context and rankings, the higher should be the probability to reach the
resources in that set.

3.4 Sharing, Exchanging and Ranking Semantic Context Based on
Recommendations 91

Resource Rank
W. Y. Ma 0.349624

Riedl 0.289991
Vogt 0.289991
Cai 0.260351

Balmin 0.251222
Kleinberg 0.345884

Brin 0.345884
P 0.719967
Q 0.450952
R 0.820831
S 0.820831
T 0.647477
B 0.594175
J 1.148130
G 1.148130

WWW 0.445696
SIGIR 0.345166
VLDB 0.200611

Table 3.3 Alice’s personal rank values

In our example, we considered only one user Alice exchanges context with. In the
previous table, Table 3.4, the rankings are computed as if Alice is fully trusting Bob,
and so does not make any difference between the resources she already has and the
ones she receives from him. This translates into a vector e having all elements 1. If
Alice doesn’t trust Bob 100%, she will have to bias the PageRank on her resources,
that is assign values less than 1 to the elements in the e vector corresponding to the
resources coming from Bob. This means that the probability of reaching the resources
she receives from Bob through a random jump is less than the probability of jumping
to one of her own resources. In our experiments we computed Alice’s rankings for
different levels of trust she has for Bob, and the results are presented in Table 3.5.

As we would expect, the rankings decrease, as trust decreases, but are still greater
than the original rankings for the resources existing on the desktop before receiving
input from other users. Even for a trust level of 1%, the rankings are still greater
than the ones computed for resources originally existing on one’s desktop. That is
because for these resources Alice already has her own ratings and they will increase
due to the fact that they are referenced by some of the received resources. On the
other hand, for the newly received resources, (Teevan, Dumais, etc.) for a trust level
of 1%, the rankings are not much greater than 0. The probability to jump to one of
these resources is 0.01, in contrast to the probability of executing a random jump to
the ones already existing.

92
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

Resource Rank Resource Rank
W.Y. Ma 0.524152 Teevan 0.245807

Riedl 0.369096 Rose 0.260636
Vogt 0.369096 Guha 0.260636
Cai 0.313851 Rocha 0.260636

Balmin 0.341437 Quan 0.260636
Kleinberg 0.951419 I 1.463327

Brin 0.639601 H 1.698574
P 1.351007 D 0.727691
Q 0.846576 E 0.563505
R 1.286748 F 0.622081
S 1.286748 K 0.733372
T 0.962533 L 0.650674
B 1.124971 M 0.650674
J 3.008105 N 0.650674
G 2.875325 O 0.650674

WWW 1.390752 C 0.655163
SIGIR 0.512907 A 0.406226
VLDB 0.245718 SIGCHI 0.197904
Widom 0.399090 INTERACT 0.202887
Nejdl 0.455166 ESWC 0.205699

Dumais 0.379546 DELOS 0.184534

Table 3.4 Alice’s personal ranking values after receiving context information
from Bob

3.4.4 Discussion

FOAF is a nice vocabulary to describe social networks, but most of the current appli-
cations are centered around describing social networks and not how to use them. The
previous sections explored how to build upon FOAF and rich semantic web metadata
to exchange and recommend context information and resources in a social network.
These contextual metadata are described by appropriate annotation ontologies, and
are exchanged within FOAF groups as specified by the group members. The ex-
change of metadata is done by means of additional attachments for each document
exchanged via email, extending email exchange from pure document exchange to an
exchange of both document and relevant context information. We presented how the
computation of ranking is accomplished and how this computation is influenced by
the context exchange as well as by the reputation of persons involved in the exchange
process.

There are quite a few interesting issues to be investigated in future work, including
privacy and security issues. This is especially important if we exploit peer-to-peer

3.4 Sharing, Exchanging and Ranking Semantic Context Based on
Recommendations 93

Resource PageRank
Label 90% Trust 50% Trust 30% Trust 10% Trust 1% Trust
Wei-Ying Ma 0.512070 0.465217 0.441329 0.417406 0.406896
Riedl 0.363519 0.342122 0.331131 0.320116 0.315321
Vogt 0.363519 0.342122 0.331131 0.320116 0.315321
Cai 0.310070 0.295519 0.288060 0.280584 0.277323
Balmin 0.333760 0.303559 0.288305 0.273040 0.266257
Kleinberg 0.920420 0.799795 0.738430 0.676985 0.649917
Brin 0.622799 0.557678 0.524464 0.491199 0.476592
P 1.307479 1.137762 1.051539 0.965213 0.927123
Q 0.819327 0.712840 0.658819 0.604739 0.580836
R 1.254108 1.127853 1.063365 0.998769 0.970455
S 1.254108 1.127853 1.063365 0.998769 0.970455
T 0.940389 0.854556 0.810777 0.766931 0.747677
B 1.079916 0.902077 0.812442 0.722759 0.682798
J 2.903632 2.496173 2.289197 2.081974 1.990525
G 2.776905 2.392989 2.197998 2.002777 1.916611
WWW 1.325955 1.070835 0.942042 0.813164 0.755852
SIGIR 0.500467 0.451987 0.427339 0.402658 0.391778
VLDB 0.241880 0.226780 0.219153 0.211520 0.208128
Widom 0.371165 0.260322 0.204639 0.148938 0.124017
Nejdl 0.409618 0.227602 0.136575 0.045555 0.004607
Dumais 0.344211 0.203102 0.132490 0.061876 0.030133
Teevan 0.221220 0.122908 0.073747 0.024589 0.002470

Table 3.5 Alice’s ranking values after receiving context information from
Bob for different trust levels

infrastructures instead of email attachments to implement a knowledge sharing in-
frastructure as described in this section. It is also worthy to note that the ranking
we compute for different resources can be compared to the ratings which are used
in recommender systems. We can therefore not only share resources which are se-
mantically connected to the ones we are exchanging, but also resources which are
ranked / rated highly by peers in our community. An additional interesting aspect is
to explore dynamic social networks, where groups are not statically defined from the
beginning but dynamically based on the exchange of context metadata. In this case
users can initially choose which pieces of metadata information they want to append
to a document for certain recipients, and common exchange patterns then determine
common interest groups and allow automatic exchange of metadata based on these
previous interactions.

94
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

3.5 Personalizing Ranking over Distributed Con-

texts

In distributed work environments, where users are sharing and searching resources,
ensuring an appropriate ranking at remote peers is a key problem. While this issue
has been investigated for federated libraries, where the exchange of collection specific
information suffices to enable homogeneous TFxIDF rankings across the participating
collections, no solutions are known for PageRank-based ranking schemes, important
for personalized retrieval on the desktop. Connected users share fulltext resources
and metadata expressing information about them and connecting them. Based on
which information is shared or private, in the next sections we provide a solution
about how ranking can be computed in a distributed scenario, and more precisely
how it can be personalized.

3.5.1 Which Information Should We Exchange?

A Motivating Scenario

Let’s imagine Alice, working in a team with five other students for a research project.
Alice’s team uses the NEPOMUK-enabled desktop to interact and share information.
The team members share papers, project documents and group emails, among others.
Papers are annotated with bibliographic information, and connected to the emails
they have been attached to. Alice participates in other teams as well, where she
shares some of the same documents as well as other information specific only to these
other projects. The NEPOMUK infrastructure allows her to search resources on her
own desktop as well as on the desktops of her team members, to which Alice’s queries
are propagated.

The importance of documents (important for the ranking of search results) is
influenced by the importance of their authors and conferences, or by the importance of
team members sending the document as attachment. These factors are not necessarily
the same on each desktop, but are rather based on the conferences relevant to each
team member, the number of documents authored by a given person stored on a
specific desktop, or the emails connected to these documents. Part of this information
(importance of conferences, papers stored on a desktop) can be exchanged easily.
Other information such as private emails, or reports from other projects referencing
specific papers, should not be exchanged among all participants.

In general, there will be resources that Alice can make public and thus share
with everyone, there will be other resources which she will make available only to
her trusted friends or to her work mates and there are of course some resources she
will never want to share with anybody. This is also true for her contextual metadata
generated and stored on her computer, which connects all her resources. Keeping
(parts of) her metadata graph private, however, also means that search result rankings

3.5 Personalizing Ranking over Distributed Contexts 95

at other peers will not be comparable to her own. This unfortunately collides with
Alice’s desire to get the best ranked matching resources from all her team members
connected in her NEPOMUK network (remember that best ranked in this case means
“according to Alice’s interests / set of resources”).

What do we need to exchange in order to provide an appropriate ranking over
all document collections Alice asks for results? Clearly, given that the metadata
graph determines Alice’s ObjectRank scores for all resources (details are described
in [CGNP05]), we have to exchange PageRank/ObjectRank-related information in
addition to the usual IR statistics. We will discuss in the next sections, what can and
should be exchanged, in order to rank results for Alice’s query on her team members
desktops in a way compatible with Alice’s ranking. We will take into account the
constraint that Alice and her team members do not want to exchange their complete
data graphs, which would provide information about all resources they have on their
machines.

Exchanging IR Related Information

Let us first look at a typical scenario in which a user is doing a full-text search
over several distributed collections, and wants to rank results according to the usual
TFxIDF measures ([CLC95, GIG01]). A query q will consist of several keywords, say
q1 and q2, and is posed to a broker, which forwards it to a set of m search engines
/ peers, P ′i , which will then send back to the broker their document rankings R′i. In
practice the user is only interested in the best “top-k” results, where k is usually
between 5 and 20. For this, all rankings R′i have to be merged into one ranked list
Rm and the top-k results are presented to the user. Our goal is to achieve the same
ranking in the distributed case as produced by the same search on a single collection
C containing all documents.

The ranking of the documents in a collection is based on TFxIDF weights, which
measure the significance of a word with respect to a document in a collection. The
significance of a term increases proportionally to the number of times the term appears
in the document, but decreases with the frequency of the term in the whole collection.
So, Term Frequency (TF) in the given document gives a measure of importance of the
term ti within that particular document, whereas the Inverted Document Frequency
(IDF) is a measure of the general importance of the term. A high weight in TFxIDF
is reached by a high TF (in the given document) and a low Document Frequency
(DF) of the term in the whole collection of documents.

For distributed retrieval, we want to make the distributed similarity score equal
to the similarity scores computed on a single collection C. Therefore, the collection
specific values, number of documents (N) and DF, need to be computed before query
time (see for example [CLC95]), and recomputed when changes in the collections occur
(such as document additions, deletions and updates). To exchange and aggregate
them over all collections, we need to send them to the query broker, which can

96
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

compute the overall Global Inverted Document Frequency (GIDF) value, which is
then sent back to all search engines. During query execution, all peers will rank results
with comparable scores, since they use the common GIDF, propagated together with
the query. A globally ranked list is achieved by merging the sub-result list entries in
descending order of global similarity score.

Figure 3.8 Statistics propagation for results merging

Figure 3.8 illustrates this process in detail.

1. A, B, C send to the Broker the total number of documents in the collections
(NA, NB, NC) and the DF values. 7

2. Peer A sends a query to the Broker and the Broker forwards it to B and C.

3. The Broker computes the GIDFi for each keyword qi and sends them back to
all peers.

4. A, B, C find the matching results for the query and send the top-k results to
the Broker sorted by the Global Document Scores.

5. The Broker merges the results from all peers and sends back to peer A the top-k
results.

Exchanging ObjectRank Related Information

Let us now look at PageRank / ObjectRank based ranking and which information
has to be exchanged to make such rankings on distributed peers compatible with each
other [CNP07]. Recall that the computation of PageRank is based on the random
surfer model, with the surfer traversing links through the graph of resources, and
sometimes jumping randomly to another resource. Then the PageRank value of a

7TF values need not be exchanged since they are document-dependent and therefore do not
influence the order of the aggregated result list entries.

3.5 Personalizing Ranking over Distributed Contexts 97

resource represents the probability that the random surfer stays on this resource at a
given time. If we represent the link structure between all resources through the adja-
cency matrix A and the random jump through the e vector and the dampening factor
d (usually 0.85), PageRank values R are computed through the following eigenvector
computation:

R = d · A ·R + (1− d) · e (3.3)

For ObjectRank computation, we do not assume the same weight for each link,
but rather define link weights based on the type of the connected nodes, through an
authority transfer schema [DNP05]. Such a schema specifies how much importance
(represented as a real number between 0 and 1) is transferred between connected
nodes. The weights of the links between the instances correspond to the weights
specified in the authority transfer schema divided by the number of links of the same
type. For example, 70% of the importance of a conference node is distributed evenly
to each of the publications which are presented at this conference (see [CGNP06] for
a more detailed description of the algorithm).

Figure 3.9 Aggregated ObjectRank computation

Let us assume, without loss of generality, that all peers use the same authority
transfer schema as basis for the ranking computation. Each peer computes Objec-
tRank scores for its collection. Since this ObjectRank computation is based on the
data graph, the adjacency matrix of each peer needs to be updated so that it reflects
the new structure created by the integration of the other peers’ resources into its
own data graph. Therefore, peers need to exchange the URIs of the resources they
are sharing, together with the links connecting them. External URIs are integrated
into each peer’s own data graph of resources. The more resources are shared among
peers, the more accurate the aggregated ranked results will be. Figure 3.9 presents
the necessary steps for computing the aggregated ObjectRank scores in the ideal case,
where peers share all resources they own:

98
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

1. Peer A sends a query to the Broker 8 and the Broker forwards it to B and C.

2. The data graph, DGi is sent to the Broker by each peer.

3. The Broker merges DGA+DGB+DGC and sends the results to the peers.

4. Peers compute ObjectRank on DGA+DGB+DGC and send top-k results to the
Broker.

5. The Broker merges the results from all peers and sends back to peer A the top-k
results.

3.5.2 Information Exchange and Rank Computation

Privacy vs. Information Exchange

The discussion in the previous section assumed the ideal case, where peers share
everything they have on their machines. This is usually not the case, instead peers
will decide to share only parts of their data graphs and protect the rest. Moreover,
peers usually do not want to involve third parties in the exchange process, because
this would imply additional privacy and security issues, so they do not want to send
data through a broker. We therefore need to develop strategies which do not involve
a broker and which allow sending only specific parts of the data graph to the other
peers.

As we have already seen, to be able to appropriately rank resources for their
neighbors, peers need to know their corresponding data graphs, or at least parts of
them. For exchanging this information, peers have the following alternatives:

1. send all nodes in the graph

2. send some of the nodes in the graph

3. send all nodes in the graph, part of them anonymized (the items they want to
keep private have hidden URIs, e.g. “hidden 41323”)

4. send all nodes in the graph, part of them hashed - which keeps the nodes secret
if the other peer does not have them and makes them identifiable if the other
peer has them too and uses the same hashing function

5. send all nodes summarized into a world node [CDKS01] (which appropriately
aggregates node and link information of the graph)

8We assume that the peers have already agreed on the authority transfer schema to be used for
the ObjectRank computation.

3.5 Personalizing Ranking over Distributed Contexts 99

Ranking computation can be based on: a) simple ObjectRank; or b) ObjectRank
with biasing [CGNP06] on the resources coming from the other peers. We will discuss
appropriate combinations of these alternatives in the following.

To describe the graphs used by the different algorithms, we will use the following
notations: let Gi = (Vi, Ei) be the data graph of peer i, where Vi and Ei are the
corresponding sets of nodes and weighted edges, respectively. In this context, the
nodes model the desktop resources (files, emails, visited web pages, etc.), while the
edges represent the semantic relationships between them [CGNP05]. G′i = (V ′i , E

′
i)

represents the data graph corresponding only to the shared resources, where G′i ⊂ Gi,
V ′i ⊂ Vi, E

′
i ⊂ Ei and E ′i = {ejk|j, k ∈ V ′i , j 6= k}. Ganon

i = (V anon
i , Eanon

i) denotes
the anonymized data graph of peer i, where Ganon

i = G′i ∪ anonymized(Gunshared
i),

V anon
i = V ′i ∪ anonymized(V unshared

i), Gunshared
i = Gi G

′
i and Eanon

i = Ei. With Gh
i =

(V h
i , E

h
i) we refer to the hashed data graph, where Gh

i = hash(Gi), V
h
i = hash(Vi)

and Eh
i = Ei. An example covering all these graphs is presented in figure 3.109.

Figure 3.10 Example of weighted data graphs - different setups

Aggregating Graphs into World Nodes

One especially interesting possibility of keeping a graph private, yet provide some
information about its connections to the graphs of other peers, is to aggregate all
nodes in the graph into a world node and aggregate his connections to the other
graphs as well. An example is presented in figure 3.11, where P2 creates a world node
out of its nodes and connects it to the data graph of P1. Using a similar notation
as in the previous section we define GWN

i = (V WN
i , EWN

i), where V WN
i = WN and

EWN
i is formed as follows:

1. All links from nodes in the other peers’ graphs pointing to the nodes in the
graph of the peer aggregated into the world node become inlinks of the world
node.

9a to f are real numbers, representing the weights of the edges.

100
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

2. All links from the nodes of the peer creating the world node pointing to nodes
of other peers become outlinks of the world node.

For a better approximation of the total authority score mass that is received
from nodes aggregated in the world node, we weigh every outlink from the world
node based on the sum of the weights aggregated into it (the links from the world
node to a node of other peers), divided by the number of nodes summarized
into the world node.

3. To represent internal links between nodes aggregated into the world node, we
create a self-loop link at the world node.

The weight of this self-loop link is given by the sum of all weights corresponding
to the internal links inside the world node, divided by the number of nodes in
the world node. The self-loop link represents the probability that a random
surfer remains inside the graph that was aggregated into the world node, when
following links.

Figure 3.11 Example of world node creation

In figure 3.11 we defined E12 as the edges between peers 1 and 2 and EWN
12 as the

edges between P1 and the world node representing P2. An important observation is
that for being able to consistently create the world node, a peer needs to know at least
a partial structure of the graph of the other peers, otherwise it cannot connect the
world node to the other peers’ graphs. This means for our setup in Figure 3.11 that
P1, who is sending the query, also needs to send its data graph (either the original
graph or a hashed version), or at least a part of its graph (original / hashed), such
that P2 can correctly put the corresponding inlinks/outlinks to/from its world node.

The big advantage of aggregating everything into a world node is that this protects
all internal information about resources and their connections from the receiving
peers, while still disclosing (most) information related to external connections and
overall weights / scores of the aggregated graph.

3.5 Personalizing Ranking over Distributed Contexts 101

Query Processing and Ranking

Using these notations, we can now distinguish between 8 different query processing
and ranking algorithms. These 8 algorithms result as appropriate combinations of the
5 possibilities of exchanging information with the 2 modalities of ranking computation
(section 3.5.2). We eliminated several cases as they proved to be equivalent to the
remaining 8 ones. We will describe our algorithms in the following, using 3 peers P1,
P2 and P3, with P1 always sending the query to P2 and P3. In each case P1 will
eventually have a ranked list of results from all peers, including himself.

Algorithm 1.
1: P1 sends G1 to P2 and P3

2: P2 sends G2 to P1 and P3

3: P3 sends G3 to P1 and P2

4: Peers aggregate Ga = G1 ∪G2 ∪G3

5: Peers compute ObjectRank on Ga

Algorithm 2.
1: P1 sends G1 to P2 and P3

2: P2 computes ObjectRank on G2 = G1 ∪G2

P3 computes ObjectRank on G3 = G1 ∪G3

3: P2 sends Ganon
2 to P1

P3 sends Ganon
3 to P1

4: P1 aggregates Ga = G1 ∪Ganon
2 ∪Ganon

3

5: P1 computes ObjectRank on Ga

Algorithm 3.
1: P1 sends Ganon

1 to P2 and P3

2: P2 computes ObjectRank on G2 = Ganon
1 ∪G2

P3 computes ObjectRank on G3 = Ganon
1 ∪G3

3: P2 sends Ganon
2 and R2 = rank(G2) to P1

P3 sends Ganon
3 and R3 = rank(G3) to P1

4: P1 aggregates Ga = G1 ∪Ganon
2 ∪Ganon

3

5: P1 computes ObjectRank on Ga, biasing on R2 and R3

Algorithm 4.
1: P1 sends G′1 to P2 and P3

2: P2 computes ObjectRank on G2 = G′1 ∪G2

P3 computes ObjectRank on G3 = G′1 ∪G3

3: P2 sends Ganon
2 and R2 = rank(G2) to P1

P3 sends Ganon
3 and R3 = rank(G3) to P1

4: P1 aggregates Ga = G1 ∪Ganon
2 ∪Ganon

3

5: P1 computes ObjectRank on Ga, biasing on R2 and R3

102
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

Algorithm 5.
1: P1 sends G′1 to P2 and P3

2: P2 computes ObjectRank on G2 = G′1 ∪G2

P3 computes ObjectRank on G3 = G′1 ∪G3

P2 and P3 bias on resources from P1

3: P2 sends Ganon
2 and R2 = rank(G2) to P1

P3 sends Ganon
3 and R3 = rank(G3) to P1

4: P1 aggregates Ga = G1 ∪Ganon
2 ∪Ganon

3

5: P1 computes ObjectRank on Ga, biasing on R2 and R3

Algorithm 6.
1: P1 sends G′1 to P2 and P3

2: P2 computes ObjectRank on G2 = G′1 ∪G2

P3 computes ObjectRank on G3 = G′1 ∪G3

P2 and P3 bias on resources from P1

3: P2 sends G′2 and R2 = rank(G2) to P1

P3 sends G′3 and R3 = rank(G3) to P1

4: P1 aggregates Ga = G1 ∪G′2 ∪G′3
5: P1 computes ObjectRank on Ga, biasing on R2 and R3

Algorithm 7.
1: P1 sends G1 to P2 and P3

2: P2 computes ObjectRank on G2 = G1 ∪G2

P3 computes ObjectRank on G3 = G1 ∪G3

3: P2 sends GWN
2 and EWN

12 to P1

P2 sends ranked results matching the query
P3 sends GWN

3 and EWN
13 to P1

P3 sends ranked results matching the query
4: P1 aggregates Ga = G1 ∪GWN

2 ∪GWN
3

5: P1 adds to Ga the edges from EWN
12 ∪ EWN

13

6: P1 computes ObjectRank on Ga

P1 merges P2 and P3 results into final list

Algorithm 8.
1: P1 sends G′1 to P2 and P3

2: P2 computes ObjectRank on G2 = G′1 ∪G2

P3 computes ObjectRank on G3 = G′1 ∪G3

3: P2 sends GWN
2 and EWN

12 to P1

P2 sends ranked results matching the query
P3 sends GWN

3 and EWN
13 to P1

P3 sends ranked results matching the query
4: P1 aggregates Ga = G1 ∪GWN

2 ∪GWN
3

5: P1 adds to Ga the edges from EWN
12 ∪ EWN

13

6: P1 computes ObjectRank on Ga

P1 merges P2 and P3 results into final list

3.5 Personalizing Ranking over Distributed Contexts 103

Algorithm 1 represents the ideal setup, where everything is shared among the
three peers, so that each of them can access the aggregated data graph (all peers’
graphs merged into one). Algorithm 2 describes the situation when P1 shares all
its resources, but P2 and P3 share only some parts of their data items and anonymize
the rest. So P2 and P3 will have complete information regarding P1’s graph, but P1
will not know the exact data structures of P2 and P3.

We can also bias ranking computation at P1 on the graphs sent by P2 and P3.
In Algorithm 3, P1, P2 and P3 share only parts of their resources and anonymize
their corresponding data graphs for the items they want to keep private. P2 and
P3 compute ObjectRank on the data graph resulting from merging the anonymized
data graph of P1 and their own data graph. Results are sent back to P1, which
computes ObjectRank on the graph including its own data graph and the anonymized
graphs of P2 and P3, biasing the computation on the results coming from P2 and P3.
Algorithm 4, with P1 sending a subgraph containing only the resources it wants to
share, is similar to Algorithm 3.

We can also bias ranking computation at P2 and P3 on the resources received from
P1, and then get Algorithm 5, based on Algorithm 3, and Algorithm 6, based on
Algorithm 4. Note that when peers send hashed data graphs, the results will not
differ from the case where they anonymize nodes in the private part of their graph.
This is because for hashed resources, the receiving peers can identify all resources
they share with the sending peers if they use the same hashing function. For the
resources they do not share, they will get all information about the link structure,
but with the node names unknown / anonymized.

Algorithms 7 and 8 represent the situations where P2 and P3 protect their
resources as much as possible, while still providing useful information to P1 using
world node aggregation. Algorithm 7 is a special case of Algorithm 2: P1 shares
all its resources but P2 and P3 aggregate their graphs into a world node, keeping
the connections to and from P1’s graph. Algorithm 8 is similar to Algorithm 7,
only that P1 sends only part of his graph to P2 and P3. In both algorithms, P1 will
have to merge results received from P2 and P3 with its own resources, and still keep
the relative importance of the items it received, which it can estimate through the
information transmitted from P2 and P3 in form of their world nodes, connected to
the graph of P1.

All the algorithms we presented can be obviously extended to the general case
where a peer is querying in a larger network with more than 2 neighbours.

3.5.3 Experiments

Experimental Setup

To evaluate our algorithms, we gathered metadata from 9 different users (a total
of 46500 RDF triples) and partitioned them into 3 sets, the 3 peers. Metadata

104
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

were produced by a number of metadata generators integrated in Beagle++ [Bea06],
and correspond to several types of resources: files, web pages, emails, attachments,
publications, persons and conferences. The data set from a single user did not get
partitioned into different peers, since we wanted to simulate real peers, with their own
profile, but metadata from some of the physical users was copied to more than one peer
to simulate different sizes of overlap between the peers. In all considered scenarios,
our peers have a common set of data, as we are dealing with peers collaborating with
each other. Figure 3.12 gives an overview: a) resources residing in X are common to
all peers; b) slice R contains resources appearing only at peer 1; c) slice O contains
resources only from peer 2 and d) slice T contains private resources of peer 3. Based on
the amount and type of resources the three peers are sharing, we have three different
setups:

Figure 3.12 Peers’ resource distribution

1. P1, P2 and P3 share everything, except of some items they want to protect
from the uncommon parts, T, O and R;

2. P1, P2, P3 protect resources which can be located both in the common part X,
as well as in the uncommon parts of the graph, T, O and R;

3. We experimented with different sizes of the common part X, i.e. the overlap
among the peers: a) small; b) medium; and c) large.

For SETUPs 1 and 2 we used Partitioning 1, having P1 with 40264 triples,
P2 with 7700, P3 with 1786 and a size of the overlap of 1624 triples. For SETUP
3 (Partitioning 2) we used a different partitioning: for the big overlap case we
divided the set into 45512, 45434, 45584 triples for P1, P2 and P3 respectively and
45015 triples the size of the overlap; for medium overlap 6815 (P1), 44715 (P2), 7120
(P3) and 6075 triples the overlap. The small overlap was simulated with a partitioning
of 1215 (P1), 6785 (P2), 38780 (P3) and 140 common triples.

In all our algorithms P1 initiates the query, thus we observe the rank evolution for
P1. For all three setups and each algorithm described in section 3.5.2, we investigated
how the scores of the resources evolve. We compared the ObjectRank scores using
2 similarity metrics between the ObjectRank scores obtained in different algorithms
and the ideal case for P1, defined as follows (see also [Hav02]):

3.5 Personalizing Ranking over Distributed Contexts 105

1. OSim indicates the degree of overlap between the top n elements of two ranked
lists τ1 and τ2. It is defined as

|Topn(τ1) ∩ Topn(τ2)|
n

(3.4)

2. KSim is a variant of Kendall’s τ distance measure. Unlike OSim, it measures
the degree of agreement between the two ranked lists. If U is the union of items
in τ1 and τ2 and δ1 is U \ τ1, then let τ ′1 be the extension of τ1 containing δ1

apearing after all items in τ1. Similarly, τ ′2 is defined as an extension of τ2.
Using these notations, KSim is defined as follows:

KSim(τ1, τ2) =
|(u, v) :

τ ′1 and τ ′2 agree on or-
der (u,v), and u 6= v

|

|U | · |U − 1|
(3.5)

Results and Analysis

For all three setups we computed KSim and OSim measures (Tables 3.6 - 3.10),
comparing the ObjectRank results we obtained for algorithms 2-6/2-8 (column 2)
against algorithm 1 (column 1), representing the ideal situation, where all peers share
everything they have. We analyzed the top 5, 10, 20, 50 and 10010 ranked results for
each algorithm.

Partitioning 1.

SETUP 1
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 1.0 1.0 0.9 0.927 1.0 0.926 1.0 0.977 1.0 0.991
1 3 0.4 0.607 0.6 0.582 0.9 0.670 1.0 0.909 0.96 0.936
1 4 0.4 0.607 0.6 0.582 0.9 0.670 1.0 0.909 0.96 0.936
1 5 0.4 0.607 0.4 0.5 0.55 0.586 0.98 0.805 0.94 0.897
1 6 0.2 0.472 0.3 0.448 0.55 0.534 0.98 0.755 0.91 0.871

Table 3.6 SETUP 1 - OSim, KSim

In SETUP 1 (Table 3.6), the peers protect resources located only in the non-shared
parts, R, O, or T. Given this restriction and the way the world node is constructed
we do not need to perform simulations for algorithms 7 and 8, since they yield the
same results as in setup 211. In terms of both KSim and OSim, the second algorithm

10ObjectRank is not query dependent, which means that the rankings for specific queries will be
a combination between the ObjectRank values and TFxIDF and therefore the matching results can
be located beyond top-20.

11In algorithm 7 P1 sends all his graph, so that no anonymization is involved which makes SETUP
1 and SETUP 2 exactly the same. For algorithm 8 in SETUP 2, the resources that P1 does not
share from X (common part) will still appear in the graphs of P2 and P3, therefore this setup is the
same as SETUP 1.

106
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

performs best: P1 integrates into its own data graph the anonymized data graphs of
P2 and P3, but since P1 is dominating from the point of the number of triples in the
graph, this does not have any significant impact on the final scores of P1. Algorithm
6, when every peer biases on the resources received from the others and when only
the subgraphs containing the shared resources are sent through the network, performs
worst. The reason is that P1 is dominant and the final result will be too much biased
on the shared resources of P1. Algorithms 3 and 4 perform the same, as P1 receives
the same data graphs in both algorithms.

SETUP 2
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 0.8 0.6 0.7 0.705 0.9 0.757 0.88 0.873 0.75 0.827
1 3 0.4 0.607 0.6 0.626 0.9 0.701 0.86 0.855 0.81 0.836
1 4 0.6 0.666 0.6 0.648 0.95 0.647 0.8 0.853 0.74 0.806
1 5 0.4 0.607 0.3 0.573 0.65 0.581 0.86 0.8 0.86 0.835
1 6 0.4 0.607 0.4 0.558 0.65 0.581 0.92 0.796 0.89 0.853
1 7 1.0 0.9 0.8 0.893 1.0 0.815 0.96 0.923 0.94 0.929
1 8 1.0 0.9 0.8 0.893 1.0 0.815 0.98 0.923 0.93 0.912

Table 3.7 SETUP 2 - OSim, KSim

SETUP 2 (Table 3.7) differs from SETUP 1 by the fact that the peers can keep
private resources from any parts of the graph, X, R, O, or T. When looking at
the top-5 ranked results, algorithm 2 still performs good, but as we increase top-
k, algorithm 6 gets considerably better. If we consider a small value for k, then for
P1 it is better to send part of its data graph containing only the shared resources
rather than anonymizing the graph, because anonymization introduces errors (peers
are not able to identify what the anonymized resources represent and therefore can
introduce duplicates - the resource itself and its anonymized copy). For algorithm 6
with increasing k, biasing on both P2/P3’s and P1’s side significantly improves the
results. Algorithms 7 and 8, using the world node-based approach, perform best,
both in terms of OSim and KSim. Evaluating these last two algorithms is done as
follows (remember that the list of results contains all nodes of P1 plus the world nodes
representing P2 and P3): We merged into the list of P1 (without the world nodes)
the lists that P2 and P3 computed after integrating the resources of P1. The way we
construct the world node and determine the weights of its outlinks and of the self-loop
link models with high fidelity the internal structure of the original graph. Even if the
receiving peers do not know the graph structure residing at the other peers - that
is the peer does not disclose any sensible information - the authority transfer among
the peers is captured within this model.

Partitioning 2.

In SETUP 3 (Tables 3.8 - 3.10) we experimented with 3 different sizes of the
overlap.

3.5 Personalizing Ranking over Distributed Contexts 107

SETUP 3 - Small Overlap
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 1.0 0.9 1.0 0.977 1.0 0.989 0.84 0.934 0.87 0.834
1 3 0.6 0.761 0.7 0.666 0.9 0.744 0.88 0.906 0.8 0.835
1 4 0.4 0.607 0.6 0.582 0.85 0.683 0.88 0.883 0.87 0.869
1 5 0.6 0.761 0.7 0.666 0.9 0.740 0.82 0.879 0.86 0.846
1 6 0.6 0.666 0.4 0.616 0.6 0.658 0.86 0.780 0.9 0.822
1 7 1.0 1.0 0.6 0.824 1.0 0.7 0.9 0.888 0.88 0.841
1 8 1.0 1.0 0.6 0.824 1.0 0.7 0.9 0.878 0.85 0.817

Table 3.8 SETUP 3 - Small Overlap

SETUP 3 - Medium Overlap
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 1.0 0.8 1.0 0.955 1.0 0.984 0.88 0.944 0.77 0.828
1 3 0.6 0.714 0.3 0.625 0.75 0.623 0.86 0.818 0.82 0.797
1 4 0.6 0.714 0.5 0.628 0.7 0.68 0.84 0.829 0.76 0.814
1 5 0.4 0.642 0.5 0.590 0.75 0.68 0.88 0.801 0.82 0.805
1 6 0.4 0.678 0.5 0.638 0.75 0.686 0.96 0.811 0.89 0.846
1 7 1.0 1.0 0.6 0.824 1.0 0.736 0.9 0.881 0.88 0.847
1 8 1.0 1.0 0.6 0.824 1.0 0.7 0.9 0.878 0.86 0.832

Table 3.9 SETUP 3 - Medium Overlap

SETUP 3 - Big Overlap
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 0.8 0.6 0.6 0.692 0.85 0.664 0.86 0.864 0.8 0.818
1 3 0.8 0.866 0.6 0.703 0.95 0.661 0.86 0.865 0.8 0.830
1 4 0.6 0.761 0.5 0.619 0.95 0.628 0.86 0.874 0.81 0.845
1 5 0.8 0.866 0.5 0.704 0.8 0.673 0.94 0.828 0.86 0.881
1 6 0.4 0.678 0.5 0.561 0.6 0.648 0.96 0.779 0.89 0.844
1 7 1.0 1.0 0.7 0.884 1.0 0.784 1.0 0.935 0.98 0.981
1 8 1.0 0.9 0.7 0.846 1.0 0.684 1.0 0.902 0.92 0.931

Table 3.10 SETUP 3 - Big Overlap

If the overlap is small or medium, algorithm 2 still performs best for the top-
10 and 20 results. If the overlap is big, algorithm 7 performs best for all top-k we
consider, followed by algorithm 8 with really small differences. In this case, world
nodes (algorithms 7, 8) are strongly connected to the rest of the graph and can
therefore very accurately model the influence of the hidden parts of the graph. When
looking at top-5 in all variants, algorithms 7 and 8 are the best ones. Algorithms
3 and 4 now perform differently, the biggest difference being for the top-5 ranked
results.

108
Chapter 3 Ranking on the Desktop and on the Personal Virtual

Information Space

3.5.4 Discussion

An important functionality in distributed work environments is to provide searching
and ranking capabilities over collections distributed over the desktops of a work group.
In the previous sections we introduced several algorithms for retrieving resources
over a network of such desktops, which rely on the exchange of collection specific
information between the participating peers in order to achieve appropriate ranking
using PageRank-based algorithms. All our algorithms take privacy into account, i.e.
peers want to exchange only certain parts of their desktop content, a constraint which
has been neglected so far in all previous work on distributed PageRank computation.

We analyzed in detail how our algorithms perform in several setups of resource
sharing. In particular, we experimented with different sizes of data sets residing on
the peers’ desktops and with different dimensions of the overlapping information. Our
experiments show that we can compute appropriate ObjectRank values even if the
peers do not share everything they have. Specifically, algorithms aggregating node
and link information into one ”world node“ proved to be the best tradeoff between
privacy and quality. They offer the best way of protecting resources, since peers
do not reveal any of their nodes or the way they are interconnected, approximate
ObjectRank values very well, and guarantee the smallest network load. In future
work we will extend these algorithms with methods to estimate the potential of peers
to influence results of other peers, and come up with incremental update schemes
when peer content changes.

4
Contributions and Open Directions

In our everyday life we are faced with high volumes of information, coming from
various sources: people, mass media, World Wide Web, and even from our personal
computers. It has become rather difficult to manage all this data daily. Given our
every day tasks, tools for managing and organizing our data are so much needed.
Present desktop search engines still rely on TFxIDF techniques, only a few keep track
of metadata of resources, and even fewer employ a ranking mechanism. Users today
need to organize their data according to their present tasks and working contexts,
so that they can easily find and explore their needed data. And if we think of
the vast amounts of data that come from the Web, the user might become againd
overwhelmed, so a collaborative tool that would offer again additional metadata and
a ranking mechanism would be much needed. In this thesis, we investigated first how
to enhance current desktop resources with metadata which help in recreating working
contexts to the user, then how to use them for providing a ranking mechanism on
the desktop, and then how to compute such a ranking in a distributed, collaborative
environment, where users recommend and exchange data in between their desktops.
This section first summarizes all the important contributions of our work and then
underlines some of the major future research directions which still remained open.

Summary of Contributions

As we have already discussed, the overwhelming data on the desktop needs some
management tools which can make use of metadata capable of recreating working
contexts. We focused on such metadata generation in Chapter 2, where we first show
our fully implemented Beagle++ system, and mainly focus on the modules responsible
for metadata generation. The “File Paths” module enhances each word in the path
of a file with additional metadata from Wordnet - synonyms, hypernyms, hyponyms,
meronyms, holonyms. The visited web links are annotated with the incoming and
outgoing links in the “Web Cache” module, and the connections between an email
and its attachment are recreated in the “Email Metadata” part. Our system also

109

110 Chapter 4 Contributions and Open Directions

has a semantic ranking module which combines a semantic ranking with a traditional
TFxIDF mechanism, which we also proven to improve the search results we receive
from the tool. Also, we experimented to prove the added value that our metadata
generators bring, by comparing the Beagle system with our enhanced one.

Two methods for recreating contexts on the desktop were tested. The first one
uses time stamps in order to determine if two files were accessed in a sequence. The
main idea is that when we work for a task, we tend to access only some files and in a
certain order. Therefore we constructed some algorithms which state that if two files
were accessed in a sequence several times and within a small time frame, then they
are related and thus a connection should be kept to reflect this. The other method
builds a Bayesian Network from various evidences that it gathers for each pair of files
on the desktop: textual similarity, usage activity, files opened concurrently (last two
similar to the previous method) and folder hierarchy. Then the Bayesian Network is
capable of detecting working contexts based on these evidences and also on a small
input from the user in order to determine some contexts that the network can work
with.

The last contribution of this chapter already hints to the idea that normally users
don’t work only with their local resources, but with others located remotely, such
as web pages on the Web. The idea is that we use the personal desktop in order to
better contextualize our work by providing personalized annotations for the web pages
we visit. The used algorithms are grouped into three categories: document oriented
where we first find similar documents on the desktop to the web page, keyword
oriented where we first extract keywords from the web page and using those we find
relevant keywords on the desktop, and hybrid methods, which combine the first two,
by first extracting the keywords from a web page and then for each keyword we find the
relevant documents on the desktop and from them we extract keywords as candidates
for annotations. While measuring precision, we observed for the first method values as
high as 81% for the lexical compounds method, 82% for the second method and 80%
for the hybrid extraction. We also show several experiments regarding the influence
of the size of the web page on the generated annoations and also show some concrete
annotations for some web pages, which clearly demonstrate that our algorithms are
capable of generating good quality annotations which reflect the user’s interest as
depicted by his desktop.

Chapter 3 is entirely dedicated to ranking, since just providing more results to
a user due to the introduction of metadata is not enough. We need some ordering
for these results, so that the additional metadata doesn’t make it even more difficult
to the user to find his needed results. The first ranking technique makes use of the
metadata that we showed how to generate in the previous chapter - the time-related
metadata. Wherever we have such connections, we modify the adjancency matrix
and use it to compute rankings with it. Several methods were also used, depending
on the way we represent the time connections - by looking at the access sequences or

111

at the activity sessions.

After this, we moved to the collaborative environment, where a user recommends
and receives recommendations within his social group. Employing a similar seman-
tic ranking mechanism, we investigate how the rankings change when resources are
exchanged and also how the trust within the persons that send recommendations in-
fluences the way we receive these resources, in particular in the ranking values that
they will have. This is reflected in the values employed in the vector describing the
random jump. We experimented within a research scenario where people exchange pa-
pers and together with that their metadata: authors, conferences, years, tracks, etc.,
all reflected within the authority transfer schemas employed. Using these schemas,
we are able to model and observe the influence of the different level of trusts on the
persons with which we are sharing resources.

In a distributed environment, where different desktops conform to different rep-
resentational schema, we envisioned an algorithm for how people exchange resources.
In this algorithm, we also took into account privacy issues, since the user is not always
willing to share all his data, and not even the substructures he has on his computer.
The most efficient for keeping privacy proved to be the world node method, where we
comprise all the information into one single node in the resources graph, but keeping
all the incoming and outgoing links, in order not to alter the ranking values. In order
to fully show our cases, we also experimented with various sizes of the data exchanged,
and also different sizes of the overlapping resources. This way we were able to observe
that depending on these factors regarding data sizes, different algorithms were better
suited. For many cases, we were able to reach values of 100% for OSim, which shows
that the top resources are still all retrieved, and values of KSim also close to 100%,
which shows that also the ordering of the resources is very close to the ideal case
where users share everything. This is very encouraging, especially in the case of the
algorithm employing a world node, since this means that we are able to share a lot
of information, but not actually disclosing our internal structures and resources.

Open Directions

Since any research always opens new directions, we will next present the ones that
arose from all the work presented in this thesis. For our Beagle++ system, we envision
several improvements for each of the modules it comprises of, but in particular, for the
querying part, it is obviously needed a task/context detection as the one we envisioned
in the methods we presented in Sections 2.4 and 2.5. This would be needed, since
it would be able to disambiguate the meaning of the user’s query and push more
valuable results to the user, leading to a better performance of the search engine.

For the context detection algorithms using either time stamps or a Bayesian Net-
work, we feel the need of having more experiments which vary the influencing factors
like experimenting with other clustering methods which might overcome the need of
stating how many contexts the user has on his desktop. Or in the same direction for

112 Chapter 4 Contributions and Open Directions

the Bayesian Network, we would like to be able to exactly identify the contexts which
don’t have a special label given by the user, and apply some other technique, maybe
again clustering for doing so.

When generating annotations, an obvious step is to expand this towards the col-
laborative environment - we can envision implementing a shared server approach that
supports social tagging within folksonomies - the system would know about personal
annotations from other users and would provide the most popular annotations, e.g.,
the ones with the highest score. This would enable the sharing of the automatic
generated personal annotations in a collaborative environment, and would simply
automatically create, apply and share tags dynamically.

For the desktop ranking using time links we intend to explore content based heuris-
tics to provide us with further additional links between similar desktop documents.
Also, we would like to analyze the necessity and benefits of enabling desktop search
restrictions to only some specific sub-tree of the local file hierarchy. Finally, we intend
to devise several methods to detect activity contexts based on activity analysis, and
then integrate them into the ranking scheme itself.

There are quite a few interesting issues to be investigated as future work for the
recommendation mechanisms, including privacy and security issues. This is especially
important if we exploit peer-to-peer infrastructures instead of email attachments to
implement a knowledge sharing infrastructure as described in this thesis. It is also
worthy to note that the ranking we compute for different resources can be compared
to the ratings which are used in recommender systems. We can therefore not only
share resources which are semantically connected to the ones we are exchanging, but
also resources which are ranked / rated highly by peers in our community. An ad-
ditional interesting aspect is to explore dynamic social networks, where groups are
not statically defined from the beginning but dynamically based on the exchange of
context metadata. In this case users can initially choose which pieces of metadata
information they want to append to a document for certain recipients, and common
exchange patterns then determine common interest groups and allow automatic ex-
change of metadata based on these previous interactions. Also, for the distributed
enviroment, in future work we will extend these algorithms with methods to estimate
the potential of peers to influence results of other peers, and come up with incremental
update schemes when peer content changes.

A
Curriculum Vitae

Stefania Costache, born on December 27th 1980, in Buzau, Romania.

Oct. 2004 -
Junior researcher and Ph.D student at
Forschungszentrum L3S, Universität Hannover

Apr. - July. 2004
Master Studies in Computer Science,
Ecole Supérieure d’Electricité, SUPELEC, Paris, France
Title of the thesis: “Hypermédias Adaptatifs”

1999 - 2004
Bachelor Studies in Computer Science,
Politehnica University, Bucharest, Romania

Jun. 2001 - Feb. 2003
C++ Developer, Crystal Interactive Systems,
Bucharest, Romania www.crystalinter.com

Jul. - Aug. 2001
Practice at Policolor, Bucharest, Romania
www.policolor.ro

113

www.crystalinter.com
www.policolor.ro

114 Chapter A Curriculum Vitae

Bibliography

[AKM+03] Harith Alani, Sanghee Kim, David E. Millard, Mark J. Weal, Wendy
Hall, Paul H. Lewis, and Nigel R. Shadbolt. Automatic ontology-based
knowledge extraction from web documents. IEEE Intelligent Systems,
18(1):14–21, 2003.

[AMHAS03] Boanerges Aleman-Meza, Chris Halaschek, I. Budak Arpinar, and Amit
Sheth. Context-aware semantic association ranking. In Semantic Web
and Databases Workshop, 2003.

[AT99] Peter G. Anick and Suresh Tipirneni. The paraphrase search assistant:
Terminological feedback for iterative information seeking. In Proc. of
the 22nd Annual Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, 1999.

[BCC+06] I. Brunkhorst, P. A. Chirita, S. Costache, J. Gaugaz, E. Ioannou, T. Iof-
ciu, E. Minack, W. Nejdl, and R. Paiu. The Beagle++ Toolbox: To-
wards an Extendable Desktop Search Architecture. In Proceedings of
Semantic Desktop and Social Semantic Collaboration Workshop, ISWC,
2006.

[BCN06] Jürgen Belizki, Stefania Costache, and Wolfgang Nejdl. Application in-
dependent metadata generation. In CAMA ’06: Proceedings of the 1st
international workshop on Contextualized attention metadata: collect-
ing, managing and exploiting of rich usage information, pages 33–36,
New York, NY, USA, 2006. ACM.

[Bea06] Beagle++. http://beagle.kbs.uni-hannover.de/, 2006.

[BGS05] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside pagerank.
ACM Trans. Inter. Tech., 5(1):92–128, 2005.

115

116 BIBLIOGRAPHY

[BGSV06] Stephan Bloehdorn, Olaf Görlitz, Simon Schenk, and Max Völkel.
TagFS - Tag Semantics for Hierarchical File Systems. In I-KNOW,
2006.

[BH99] Jay Budzik and Kristian Hammond. Watson: Anticipating and contex-
tualizing information needs. In Proceedings of the Sixty-second Annual
Meeting of the American Society for Information Science, 1999.

[BHB01] Jay Budzik, Kristian J. Hammond, and Lawrence Birnbaum. Informa-
tion access in context. Knowl.-Based Syst., 14:37–53, 2001.

[BHP04] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank:
Authority-based keyword search in databases. In VLDB, Toronto,
September 2004.

[BKvH02] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema. In
ISWC, 2002.

[BM06] Christopher H. Brooks and Nancy Montanez. Improved annotation of
the blogosphere via autotagging and hierarchical clustering. In Proc. of
the 15th World Wide Web Conference, 2006.

[BN95] Deborah Barreau and Bonnie Nardi. Finding and reminding: File orga-
nization from the desktop. ACM SIGCHI Bulletin, 27(3):39–43, 1995.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[CCGN06] P.-A. Chirita, S. Costache, J. Gaugaz, and W. Nejdl. Desktop context
detection using implicit feedback. In PIM, 2006.

[CCNH07] Paul A. Chirita, Stefania Costache, Wolfgang Nejdl, and Siegfried
Handschuh. P-tag: large scale automatic generation of personalized
annotation tags for the web. In WWW ’07: Proceedings of the 16th in-
ternational conference on World Wide Web, pages 845–854, New York,
NY, USA, 2007. ACM.

[CDKS01] S. Chien, C. Dwork, S. Kumar, and D. Sivakumar. Towards exploiting
link evolution. In Unpublished manuscript., 2001.

[CFN06a] Paul Alexandru Chirita, Claudiu Firan, and Wolfgang Nejdl. Summa-
rizing local context to personalize global web search. In Proc. of the
15th Intl. CIKM Conf. on Information and Knowledge Management,
2006.

BIBLIOGRAPHY 117

[CFN06b] Paul Alexandru Chirita, Claudiu S. Firan, and Wolfgang Nejdl. Pushing
task relevant web links down to the desktop. In Proc. of the 8th ACM
Intl. Workshop on Web Information and Data Management held at
the 15th Intl. ACM CIKM Conference on Information and Knowledge
Management, 2006.

[CGG+05] Paul Alexandru Chirita, Rita Gavriloaie, Stefania Ghita, Wolfgang Ne-
jdl, and Raluca Paiu. Activity based metadata for semantic desktop
search. In Proc. of the 2nd European Semantic Web Conference, Her-
aklion, Greece, May 2005.

[CGIN10] S. Costache, J. Gaugaz, E. Ioannou, and W. Nejdl. Detecting contexts
on the desktop using bayesian networks. In Desktop Search Workshop,
2010.

[CGNP05] Paul Alexandru Chirita, Stefania Ghita, Wolfgang Nejdl, and Raluca
Paiu. Semantically enhanced searching and ranking on the desktop. In
Proc. of the Semantic Desktop Workshop held at the 4th International
Semantic Web Conference, 2005.

[CGNP06] Paul Alexandru Chirita, Stefania Ghita, Wolfgang Nejdl, and Raluca
Paiu. Beagle++: Semantically enhanced searching and ranking on the
desktop. In Proc. of the 3rd European Semantic Web Conf., 2006.

[CH98] Chia-Hui Chang and Ching-Chi Hsu. Integrating query expansion
and conceptual relevance feedback for personalized web information
retrieval. In Proc. of the 7th Intl. Conf. on World Wide Web, 1998.

[CHBG01] Leslie Carr, Wendy Hall, Sean Bechhofer, and Carole Goble. Concep-
tual linking: ontology-based open hypermedia. In Proc. of the 10th Intl.
Conf. on World Wide Web, 2001.

[CHS04] P. Cimiano, S. Handschuh, and S. Staab. Towards the self-annotating
web. In Proceedings of the 13th World Wide Web Conference, 2004.

[CHSS08] Chaitanya Chemudugunta, America Holloway, Padhraic Smyth, and
Mark Steyvers. Modeling Documents by Combining Semantic Concepts
with Unsupervised Statistical Learning. In ISWC, 2008.

[CLC95] J. P. Callan, Z. Lu, and W. Bruce Croft. Searching distributed collec-
tions with inference networks. In Proc. of the Intl. Conf. on Research
and Development in Information Retrieval (SIGIR), 1995.

[CLS05] Philipp Cimiano, Günter Ladwig, and Steffen Staab. Gimme’ the con-
text: context-driven automatic semantic annotation with c-pankow. In
Proc. of the 14th World Wide Web Conference, 2005.

118 BIBLIOGRAPHY

[CLWB01] Mark Claypool, Phong Le, Makoto Wased, and David Brown. Implicit
interest indicators. In Proc. of the 6th ACM IUI Intl. Conf. on Intelli-
gent User Interfaces, 2001.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: A
framework and graphical development environment for robust nlp tools
and applications. In Proceedings of the 40th Anniversary Meeting of
the Association for Computational Linguistics, 2002.

[CNP07] Stefania Costache, Wolfgang Nejdl, and Raluca Paiu. Personalizing
pagerank-based ranking over distributed collections. In CAiSE, pages
111–126, 2007.

[CPG05] Adam Cheyer, Jack Park, and Richard Giuli. IRIS: Integrate. Relate.
Infer. Share. In SemDeskWS, 2005.

[CPKT92] Douglas R. Cutting, Jan O. Pedersen, David R. Karger, and John W.
Tukey. Scatter/gather: A cluster-based approach to browsing large
document collections. In SIGIR, 1992.

[DCC+03] S. Dumais, E. Cutrell, JJ Cadiz, G. Jancke, R. Sarin, and Daniel C.
Robbins. Stuff i’ve seen: A system for personal information retrieval
and re-use. In SIGIR, 2003.

[DDL+90] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by latent se-
mantic analysis. Journal of the American Society of Information Sci-
ence, 41(6):391–407, 1990.

[DEG+03] S. Dill, N. Eiron, D. Gibson, D. Gruhl, and R. Guha. Semtag and seeker:
Bootstrapping the semantic web via automated semantic annotation.
In Proceedings of the 12th World Wide Web Conference, 2003.

[DF04] Stefan Decker and Martin Frank. The social semantic desktop. In DERI
Technical Report 2004-05-02, 2004.

[DFJ+04] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. C. Doshi, and J. Sachs. Swoogle: A search and metadata engine for
the semantic web. In Proc. of the 13th ACM Conference on Information
and Knowledge Management, 2004.

[DH05] X. Dong and A. Y. Halevy:. A platform for personal information man-
agement and integration. In Proc. of Conf. on Innovative Data Systems
Research (CIDR), 2005.

BIBLIOGRAPHY 119

[DHN+04] X. Dong, A. Y. Halevy, E. Nemes, S. B. Sigundsson, and P. Domin-
gos. SEMEX: Toward On-the-Fly Personal Information Integration. In
IIWeb, 2004.

[DK04] M. Deshpande and G. Karypis. Item-based top-n recommendation algo-
rithms. In ACM Transactions on Information Systems, January 2004.

[DNP05] Andrei Damian, Wolfgang Nejdl, and Raluca Paiu. Peer-sensitive ob-
jectrank: Valuing contextual information in social networks. In Proc. of
the International Conference on Web Information Systems Engineering,
November 2005.

[Dun93] Ted Dunning. Accurate methods for the statistics of surprise and coin-
cidence. Computational Linguistics, 19:61–74, 1993.

[Edm69] H. P. Edmundson. New methods in automatic extracting. Journal of
the ACM, 16(2):264–285, 1969.

[Eft95] Efthimis N. Efthimiadis. User choices: A new yardstick for the evalua-
tion of ranking algorithms for interactive query expansion. Information
Processing and Management, 31(4):605–620, 1995.

[Fal04] Benja Fallenstein. Fentwine: A navigational rdf browser and editor. In
Proceedings of 1st Workshop on Friend of a Friend, Social Networking
and the Semantic Web, 2004.

[FF95] E. Freeman and S. Fertig. Lifestreams: Organizing your electronic life.
In Proc. of the AAAI Symposium on AI Applications in Knowledge
Navigation and Retrieval, 1995.

[FHM05] M. Franklin, A. Y. Halevy, and D. Maier. From databases to datas-
paces: a new abstraction for information management. SIGMOD Rec.,
34(4):27–33, 2005.

[FKM+03] Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan Dumais, and
Thomas White. Evaluating implicit measures to improve the search
experience. In Workshop on Implicit Measures of User Interests and
Preferences, SIGIR 2003, 2003.

[FMNW03] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet Wiener. A
large-scale study of the evolution of web pages. In Proc. of the 12th
Intl. Conf. on World Wide Web, 2003.

[GBL+02] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. Mylifebits:
fulfilling the memex vision. In Proc. of the ACM Conference on Multi-
media, 2002.

120 BIBLIOGRAPHY

[GCC+08] Julien Gaugaz, Stefania Costache, Paul Alexandru Chirita, Claudiu
Firan, and Wolfgang Nejdl. Activity based links as a ranking factor in
semantic desktop search. In LA-WEB, 2008.

[Ghi05] Stefania Ghita. Using your desktop as personal digital library, 2005.

[GHM+07] Tudor Groza, Siegfried Handschuh, Knud Moeller, Gunnar Grimnes,
Leo Sauermann, Enrico Minack, Cedric Mesnage, Mehdi Jazayeri, Ger-
ald Reif, and Rosa Gudjonsdottir. The NEPOMUK Project – On the
way to the Social Semantic Desktop. In I-SEMANTICS, 2007.

[GIG01] Noah Green, Panagiotis G. Ipeirotis, and Luis Gravano. SDLIP +
STARTS = SDARTS a protocol and toolkit for metasearching. In
ACM/IEEE Joint Conference on Digital Libraries, pages 207–214,
2001.

[GMM03] R. Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings
of the twelfth international conference on World Wide Web, pages 700–
709. ACM Press, 2003.

[GNOT92] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collabarative
filtering to weave an information tapestry. In ACM Press, December
1992.

[GNP05a] S. Ghita, W. Nejdl, and R. Paiu. Semantically rich recommendations in
social networks for sharing, exchanging and ranking semantic context.
In Proc. of the 4th International Semantic Web Conference, 2005.

[GNP05b] Stefania Ghita, Wolfgang Nejdl, and Raluca Paiu. Semantically rich rec-
ommendations in social networks for sharing and exchanging semantic
context. In In ESWC Workshop on Ontologies in P2P Communities,
2005.

[GSS06] Olaf Görlitz, Simon Schenk, and Steffen Staab. TagFs - Bringing Se-
mantic Metadata to the Filesystem. Demo at ESWC, 2006.

[GWR99] Susan Gauch, Jianying Wang, and Satya Mahesh Rachakonda. A cor-
pus analysis approach for automatic query expansion and its extension
to multiple databases. ACM Transactions on Information Systems,
17(3):250–250, 1999.

[Hav02] T. Haveliwala. Topic-sensitive pagerank. In In Proceedings of the
Eleventh International World Wide Web Conference, Honolulu, Hawaii,
May 2002.

BIBLIOGRAPHY 121

[Hea99] Marti A. Hearst. Untangling text data mining. In Proc. of the 37th
Meeting of the Association for Computational Linguistics on Computa-
tional Linguistics, 1999.

[HKQ02] D. Huynh, D. Karger, and D. Quan. Haystack: A platform for creating,
organizing and visualizing information using rdf. In Proc. of the Sem.
Web Workshop held at 11th World Wide Web Conf., 2002.

[HP96] Marti A. Hearst and Jan O. Pedersen. Reexamining the cluster hypoth-
esis: Scatter/gather on retrieval results. In SIGIR, 1996.

[HS02] S. Handschuh and S. Staab. Authoring and annotation of web pages in
cream. In Proc. of the 11th Intl. World Wide Web Conf., 2002.

[JDB02] William Jones, Susan Dumais, and Harry Bruce. Once found, what
then?: A study of keeping behaviors in the personal use of web infor-
mation. In Proc. of ASIST, 2002.

[KBH+03] David R. Karger, Karum Bakshi, David Huynh, Dennis Quan, and
Vineet Sinha. Haystack: A customizable general-purpose information
management tool for end users of semistructured data. In Proc. of the
1st Intl. Conf. on Innovative Data Syst., 2003.

[KC99] M-C. Kim and K. Choi. A comparison of collocation based similarity
measures in query expansion. Information Processing and Management,
35:19–30, 1999.

[KKPS01] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea:
An Open RDF Infrastructure for Shared Web Annotations. In Proc. of
the 10th Intl. World Wide Web Conf., 2001.

[KMM+97] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Her-
locker, Lee R. Gordon, and John Riedl. Grouplens: applying collabo-
rative filtering to usenet news. Commun. ACM, 40:77–87, 1997.

[KOR00] J. Kim, D. Oard, and K. Romanik. User modeling for information
access based on implicit feedback. In Technical Report, 2000.

[KPO+03] Atanas Kiryakov, Borislav Popov, Damyan Ognyanoff, Dimitar Manov,
Angel Kirilov, and Miroslav Goranov. Semantic annotation, indexing,
and retrieval. In International Semantic Web Conference, 2003.

[KT03] Diane Kelly and Jaime Teevan. Implicit feedback for inferring user
preference: a bibliography. SIGIR Forum, 37:18–28, 2003.

122 BIBLIOGRAPHY

[LAJ01] Adenike M. Lam-Adesina and Gareth J. F. Jones. Applying summa-
rization techniques for term selection in relevance feedback. In Proc.
of the 24th Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval, 2001.

[LGZ08] Xin Li, Lei Guo, and Yihong Eric Zhao. Tag-based Social Interest
Discovery. In WWW, 2008.

[Mal83] T. Malone. How do people organize their desks? implications for the
design of office information systems. ACM Transactions on Office In-
formation Systems, 1(1):99–112, 1983.

[MBC03] D. Maynard, K. Bontcheva, and H. Cunningham. Towards a semantic
extraction of named entities. In Recent Advances in Natural Language
Processing, 2003.

[MdRA+08] Fernando Mourão, Leonardo C. da Rocha, Renata Braga Araújo, Thier-
son Couto, Marcos André Gonçalves, and Wagner Meira. Understand-
ing temporal aspects in document classification. In WSDM, 2008.

[MGHN05] Integrating Contextual Metadata, Stefania Ghita, Nicola Henze, and
Wolfgang Nejdl. Task specific semantic views: Extracting and. In In
Submitted for publication, L3S Technical Report, 2005.

[Mil95] G.A. Miller. Wordnet: An electronic lexical database. Communications
of the ACM, 38(11):39–41, 1995.

[MKR04] Bradley N. Miller, Joseph A. Konstan, and John Riedl. Pocketlens:
Toward a personal recommender system. ACM Trans. Inf. Syst.,
22(3):437–476, 2004.

[MPC+10] Enrico Minack, Raluca Paiu, Stefania Costache, Gianluca Demartini,
Julien Gaugaz, Ekaterini Ioannou, Paul-Alexandru Chirita, and Wolf-
gang Nejdl. Leveraging personal metadata for desktop search: The
beagle++ system. J. Web Sem., 8(1):37–54, 2010.

[MS94] Masahiro Morita and Yoichi Shinoda. Information filtering based on
user behavior analysis and best match text retrieval. In SIGIR ’94:
Proceedings of the 17th annual international ACM SIGIR conference
on Research and development in information retrieval, 1994.

[MSG+08] Enrico Minack, Leo Sauermann, Gunnar Grimnes, Christiaan Fluit,
and Jeen Broekstra. The Sesame LuceneSail: RDF Queries with Full-
text Search. Technical report, NEPOMUK 2008-1, 2008.

[MSN09] E. Minack, W. Siberski, and W. Nejdl. Benchmarking Fulltext Search
Performance of RDF Stores. In ESWC, 2009.

BIBLIOGRAPHY 123

[NEP] NEPOMUK. The social semantic desktop.
http://nepomuk.semanticdesktop.org/.

[NHCS07] David Newman, Kat Hagedorn, Chaitanya Chemudugunta, and
Padhraic Smyth. Subject Metadata Enrichment using Statistical Topic
Models. In JCDL, 2007.

[NHW+04] Mor Naaman, Susumu Harada, Qian Ying Wang, Hector Garcia-
Molina, and Andreas Paepcke. Context data in geo-referenced digital
photo collections. In Proceedings of the 12th annual ACM International
Conference on Multimedia, 2004.

[OK01] D. W. Oard and J. Kim. Modeling information content using observable
behavior. In Proceedings of the 64th Annual Meeting of the American
Society for Information Science and Technology, 2001.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The pagerank citation ranking: Bringing order to the web. Technical
report, Stanford University, 1998.

[PDMW06] J. X Parreira, D. Donato, S. Michel, and G. Weikum. Efficient and
decentralized pagerank approximation in a peer-to-peer web search net-
work. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB),
2006.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[QK04] Dennis Quan and David Karger. How to make a semantic web browser.
In Proceedings of the 13th International WWW Conference, 2004.

[RIS+94] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-
plens: an open architecture for collaborative filtering of netnews. In
CSCW ’94: Proceedings of the 1994 ACM conference on Computer
supported cooperative work, pages 175–186. ACM Press, 1994.

[RMO+93] Daniel Rose, Richard Mander, Tim Oren, Dulce Ponceleon, Gitta Sa-
lomon, and Yin Wong. Content awareness in a file system interface:
Implementing the ’pile’ metaphor for organizing information. In Proc.
of the 16th Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval, 1993.

[Roc71] J. Rocchio. Relevance feedback in information retrieval. The Smart Re-
trieval System: Experiments in Automatic Document Processing, pages
313–323, 1971.

124 BIBLIOGRAPHY

[RSdA04] Cristiano Rocha, Daniel Schwabe, and Marcus Poggi de Aragao. A
hybrid approach for searching in the semantic web. In Proceedings of
the 13th International World Wide Web Conference, 2004.

[Sau03] Leopold Sauermann. Using semantic web technologies to build a se-
mantic desktop. Master’s thesis, TU Vienna, 2003.

[SCDN10a] A. Stewart, S. Costache, K. Denecke, and W. Nejdl. Cross-corpora
analysis for epidemic intelligence in blogs. In Submitted to the 1st ACM
International Health Informatics Symposium, IHI, 2010.

[SCDN10b] A. Stewart, S. Costache, K. Denecke, and W. Nejdl. Exploiting the
language of moderated sources for cross-classification of user generated
content. In Submitted to the Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP, 2010.

[SCNN10] R. Stecher, S. Costache, C. Niederee, and W. Nejdl. Query ranking in
information integration. In Proc. of the 22nd Intl. Conf. on Advanced
Information Systems Engineering, CAiSE, 2010.

[SG05] Craig Soules and Gregory Ganger. Connections: using context to en-
hance file search. In SOSP, 2005.

[SK05] Vineet Sinha and David R. Karger. Magnet: supporting navigation in
semistructured data environments. In Proc. of the 2005 ACM SIGMOD
Intl. Conf. on Management of Data, 2005.

[SS04] Leo Sauermann and Sven Schwarz. Introducing the Gnowsis Semantic
Desktop. In Poster at ISWC, 2004.

[SSS03] N. Stojanovic, R. Studer, and L. Stojanovic. An approach for the
ranking of query results in the semantic web. In ISWC, 2003.

[Sta97] Mark A. Stairmand. Textual context analysis for information retrieval.
In SIGIR ’97: Proceedings of the 20th annual international ACM SIGIR
conference on Research and development in information retrieval, 1997.

[TAAK04] J. Teevan, C. Alvarado, M.S. Ackerman, and D. Karger. The Perfect
Search Engine Is Not Enough: A Study of Orienteering Behavior in
Directed Search. In Proc. of CHI, 2004.

[TCRS07] Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer.
Ontology-Based Interpretation of Keywords for Semantic Search. In
ISWC, 2007.

[The] The foaf project. http://www.foaf-project.org/.

BIBLIOGRAPHY 125

[VWMFC05] Vishwa Vinay, Ken Wood, Natasa Milic-Frayling, and Ingemar J. Cox.
Comparing relevance feedback algorithms for web search. In Proc. of
the 14th Intl. Conf. on World Wide Web, 2005.

[WA04] Jie Wu and Karl Aberer. Using SiteRank for P2P Web Retrieval, 2004.

[WD04] Yuan Wang and David J. DeWitt. Computing PageRank in a dis-
tributed internet search system. In Proceedings of the 30th VLDB Con-
ference, 2004.

[WT06] Shao-Chi Wang and Yuzuru Tanaka. Topic-oriented query expansion
for web search. In Proc. of the 15th Intl. Conf. on World Wide Web,
pages 1029–1030, 2006.

[WZ02] Yimin Wu and Aidong Zhang. Category-based search using meta-
database in image retrieval. In IEEE International Conference on Mul-
timedia and Expo, 2002.

[WZL+08] Haofen Wang, Kang Zhang, Qiaoling Liu, Thanh Tran, and Yong Yu.
Q2Semantic: A Lightweight Keyword Interface to Semantic Search. In
ESWC, pages 584–598, 2008.

[XC96] Jinxi Xu and W. Bruce Croft. Query expansion using local and global
document analysis. In Proc. of the 19th Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages 4–11, 1996.

[YP97] Yiming Yang and Jan O. Pedersen. A comparative study on feature
selection in text categorization. In ICML, 1997.

[YSLH03] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted
metadata for image search and browsing. In Proceedings of the confer-
ence on Human factors in computing systems, 2003.

[ZWX+07] Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong Yu.
SPARK: Adapting Keyword Query to Semantic Search. In ISWC, 2007.

126 BIBLIOGRAPHY

	Title Page
	Abstract
	Zusammenfassung
	Foreword
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Personal Information Management
	1.2 Open Challenges
	1.3 Structure of the Thesis

	2 Generation of Desktop Context
	2.1 Introduction
	2.2 Related Work
	2.2.1 Metadata Generation
	2.2.2 Context Generation
	2.2.3 Generation of Annotations

	2.3 The Desktop Search Beagle++ System
	2.3.1 Enhancing the Beagle Desktop Search Architecture to Support Metadata — An Overview
	2.3.2 Metadata Generation and Storage
	2.3.3 Metadata Enrichment
	2.3.4 Metadata Search
	2.3.5 Experiments
	2.3.6 Lessons Learned
	2.3.7 Discussion

	2.4 Desktop Context Detection Using ImplicitFeedback
	2.4.1 Context Detection on the Desktop
	2.4.2 Experiments
	2.4.3 Discussion

	2.5 Desktop Context Detection Using BayesianNetworks
	2.5.1 Context Detection Evidences
	2.5.2 The Context Bayesian Network
	2.5.3 Experiments
	2.5.4 Discussion

	2.6 P-TAG: Large Scale Automatic Generation of Personalized Annotation TAGs for the Web
	2.6.1 Automatic Personalized Web Annotations
	2.6.2 Experiments
	2.6.3 Applications
	2.6.4 Discussion

	3 Ranking on the Desktop and on the Personal Virtual Information Space
	3.1 Introduction
	3.2 Related Work
	3.3 Ranking Using Activity Based Links
	3.3.1 Context Based Ranking
	3.3.2 Activity Based Ranking
	3.3.3 Experiments
	3.3.4 Discussion

	3.4 Sharing, Exchanging and Ranking Semantic Context Based on Recommendations
	3.4.1 Motivating Scenario
	3.4.2 Representing Context and Importance
	3.4.3 Sharing Context and Importance
	3.4.4 Discussion

	3.5 Personalizing Ranking over Distributed Contexts
	3.5.1 Which Information Should We Exchange?
	3.5.2 Information Exchange and Rank Computation
	3.5.3 Experiments
	3.5.4 Discussion

	4 Contributions and Open Directions
	A Curriculum Vitae
	Bibliography

