
Experiments Towards

Optical Nuclear Spectroscopy

With Thorium-229

Von der Fakultät für Mathematik und Physik der
Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation

von

Dipl.-Phys. Kai Zimmermann
geboren am 25. Dezember 1976 in Berlin

2010



Referent: PD Dr. Ekkehard Peik
Korreferent: Prof. Dr. Ernst Rasel
Tag der Promotion: 10.06.2010



Abstract

The discovery of the low-lying isomeric nuclear state of 229Th at 7.6 ± 0.5 eV above
the ground state opened a new field of research as a bridge between nuclear and
atomic physics. Since indirect γ-spectroscopy techniques were applied for detection
of the isomeric state, the direct observation of the nuclear photon emission is still
pending. This thesis describes the steps towards the direct observation of 229mTh.

The first conducted experiments examine measurements of atoms in the isomeric
state 229mTh being produced in the α-decay of 233U. Recoil atoms were ejected from
a thin 233U source, accumulated in an absorber and analyzed for the emission of
UV and VUV photons. No evidence for the decay of the isomeric state was found.
The observed background signal has been identified as Cherenkov radiation.

The main part of this thesis describes the setup of a linear Paul trap with a high
storage capacity that has been built and loaded with more than 8 · 104 Th+ ions
using laser ablation loading. Laser ablation of thorium ions has been shown using
a pulsed nitrogen laser at a wavelength of 337 nm, a pulse energy of 170 µJ and a
pulse width of 4 ns in a time-of-flight mass spectrometer. The ratio of ablated Th+

to Th2+ ions was investigated in relation to the laser pulse power. Th+ ablation
from a dried 232Th(NO3)4 solution has been shown from multiple substrate surfaces
as a preparation for the loading of the more radioactive 229Th from a minimum
amount of substance.

The trapped ions were characterized by ion ejection and counting, electronic
detection and optical detection methods. We investigated the loading conditions,
trap potentials, the stored ion numbers, buffer gas cooling, the laser ablation veloc-
ity distribution, and the phase dependence of the radiofrequency field for the ion
loading. Gas discharges were observed between the electrodes in the plasma created
by laser ablation, increasing the amount of created ions by collision ionization.

Using an external cavity diode laser, the excitation of the strong resonance line
of Th+ at 401.9 nm has been executed as a first step of a two step excitation of the
isomeric state, establishing the means to perform high resolution laser spectroscopy
of Th+ ions. Helium buffer gas cooling to room temperature and depopulation of
metastable levels by buffer gas quenching has been shown, thus obtaining a cycling
excitation in the multilevel structure of Th+. The laser excitation was limited due
to formation of ThO+ ions with a time constant of about 45 s.

keywords: Th-229, ion trap, laser spectroscopy



Zusammenfassung

Die Entdeckung des tief liegenden isomeren Kernzustandes von 229Th bei einer
Energie von 7.6 ± 0.5 eV über dem Grundzustand eröffnete ein neues Forschungs-
gebiet als Brücke zwischen Kern- und Atomphysik. Da indirekte γ-Spektroskopie-
Techniken für den Nachweis des isomeren Zustandes angewandt wurden, steht der
direkte Nachweis der nuklearen Photonenemission noch immer aus. Diese Arbeit
beschreibt die Schritte auf dem Weg zum direkten Nachweis von 229mTh.

Die ersten ausgeführten Experimente behandeln Messungen von Atomen im iso-
meren Zustand 229mTh, die während des α-Zerfalls von 233U produziert werden.
Rückstoß-Atome wurden aus einer dünnen 233U-Quelle ausgestoßen, in einem Ab-
sorber gesammelt und auf die Emission von Photonen im UV und VUV untersucht.
Es konnte kein Nachweis für den Zerfall des isomeren Zustandes gefunden werden.
Das beobachtete Hintergrundsignal wurde als Cherenkov-Strahlung identifiziert.

Der Hauptteil dieser Arbeit beschreibt die Konstruktion einer linearen Paulfalle
mit einer hohen Speicherkapazität, die gebaut und mit mehr als 8 · 104 Th+ Ionen
mit Hilfe von Laserablation geladen wurde. Laserablation von Thorium-Ionen wur-
de mittels gepulstem Stickstoff-Laser bei einer Wellenlänge von 337 nm, Pulsenergie
von 170 µJ und 4 ns Pulsbreite in einem Flugzeit-Massenspektrometer nachgewie-
sen. Das Verhältnis von Th+- zu Th2+-Ionen wurde in Abhängigkeit der Laserpuls-
leistung untersucht. Ablation von Th+ aus einer getrockneten 232Th(NO3)4-Lösung
wurde unter Verwendung verschiedener Substratmaterialien als Vorbereitung des
Ladens des stärker radioaktiven 229Th aus einer minimalen Substanzmenge gezeigt.

Die gespeicherten Ionen wurden mittels Ionenausstoß und -zählen, elektronischen
und optischen Nachweismethoden charakterisiert. Wir untersuchten die Ladebedin-
gungen, Fallenpotentiale, Ionenspeichervermögen, Puffergaskühlung, Geschwindig-
keitsverteilung der ablatierten Ionen und die Abhängigkeit des Ionenladens von der
Phase des Fallenfeldes. Es wurden Gasentladungen, die die Anzahl der Ionen durch
Stoßionisation erhöhen, zwischen den Elektroden im erzeugten Plasma beobachtet.

Mit einem Diodenlaser wurde die Anregung der starken Th+-Resonanzlinie bei
401,9 nm als erster Schritt einer Zwei-Photonen-Anregung des isomeren Zustands
durchgeführt. Dies bildet die Basis für hochauflösende Laserspektroskopie an Th+

Ionen. Helium-Puffergaskühlung auf Raumtemperatur und die Entvölkerung me-
tastabiler Zustände durch Stöße mit dem Puffergas wurden gezeigt, wodurch eine
zyklische Anregung in dem Vielniveausystem Th+ ermöglicht wird. Die Laseranre-
gung wurde limitiert durch Bildung von ThO+ mit einer Zeitkonstante von 45 s.
Schlagworte: Th-229, Ionenfalle, Laser Spektroskopie
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1 Introduction

The dawn of nuclear physics was the discovery of radioactivity in 1896 by Henry
Becquerel [1]. The Rutherford scattering experiment in 1910 revealed the existence
of a very small, very dense positively charged nucleus containing most of the atom’s
mass that is surrounded by electrons, balancing out the charges to a neutral atom.
Atomic and nuclear physics were at the crossroads and started to separate into two
different branches of physics.

Atomic physics studied the interactions in the electron shell of the atom and
evolved with the development of the laser into a high-precision science. Power-
ful tools for manipulating atoms such as laser cooling [2] and spectroscopy with
optical frequency combs [3] were developed. Nowadays, spectroscopy on selected
transitions can reach uncertainties of 10−17 [4].

electron path

nucleusa) b) c)

Figure 1.1: a) Scheme of attosecond laser interferometry [5] for visualizing the
atomic shell. b) Experimental and Theoretical results of helium in
a quantum stroboscope based on a sequence of identical attosecond
pulses that are used to release electrons into a strong infrared laser
field exactly once per laser cycle [6]. c) The nucleus is still three
orders of magnitude smaller and invisible in the center of the electron
trajectory.

In contrast, nuclear physics investigated not the atomic shell but the nucleus of
the atom and examines the composition of matter itself. Nuclear fusion and fission
entered a complete new energy region and γ-spectroscopy helped understanding the
inner structure of nuclei. High-resolution methods were established such as nuclear
magnetic resonance spectroscopy [7], used to observe transitions between nuclear
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2 1 Introduction

spin energy levels in a magnetic field and Mössbauer spectroscopy [8], which in
solid samples allows to detect recoil-free absorption of γ-rays in nuclei.

Whilst atomic and nuclear physics made progress in their research fields, they dis-
tanced themselves from each other, most noticeable separated by energy. Typical
energy values in the atomic shell are on the order of a few electron volt whereas nu-
clear excitation levels and α-energies can be observed on the order of several MeV.
This energy difference requires completely different techniques for detection and
manipulation and to this date it was not possible to apply well understood and
developed atomic physics techniques to examine the nucleus.

Mössbauer spectroscopy is an important tool in nuclear physics but has the
disadvantage that it provides only relative measurements and has to deal with
big energies. The sensitivity and resolution of Mössbauer spectroscopy and the
interaction with the nuclear environment could be enhanced when working with
lower energies. The detection of the isomeric energy state of 235U at 76.5 eV above
the ground state [9] with a half-life of 27 minutes [10] was the first time that
the energies were low enough to observe interactions of the atomic shell with the
nucleus. The isomeric state 235mU decays entirely by internal conversion and the
subsequent emission of electrons [11].

Low-lying nuclear energy states open new ways of merging atomic and nuclear
physics and manipulating decay channels of nuclear isomeric states by laser interac-
tion with the atomic shell [12]. Laser-assisted internal conversion processes change
the atomic surroundings of the nucleus and can lead to a significant decrease of
the coefficient of internal conversion for example by removing one of the electrons
that significantly contribute to the internal conversion [13].

A more powerful way to use the electron shell as a mediator between a laser
beam and the nucleus for studying nuclear low-energy properties is provided by
the electronic bridge process [14]. In this process, the energy of the nucleus is
transferred to the atomic shell that is excited to an intermediate state and photons
are emitted during the decay of this intermediate to the final state. Usually dealing
with high energies and competing processes, the observation of nuclear deexcita-
tion via the electronic bridge process is difficult to detect due to low resolution and
small contributions to the decay channels [15]. The electronic bridge process is a
third-order process with respect to the electromagnetic interaction and is usually
accompanied by processes connected with internal conversion. These effects be-
ing second-order processes are more probable than electronic bridge processes and
produce strong background effects as for example bremsstrahlung associated with
the internal conversion of the nuclear level and the emission of fast electrons.

To study and manipulate electronic bridge processes, the suppression of internal
conversion effects is necessary. Using lasers to excite selected atomic levels, it
is then possible to enhance or avert decay channels for nuclear isomeric states.
Unfortunately, the elimination of the internal conversion channel is usually not
possible, because γ-ray energies generally exceed the ionization potential of the
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atomic shell. If a nucleus was found with an energy of the excited nuclear state
lower than the ionization potential, it would provide a completely new access to
the electronic bridge process and the manipulation of nuclei with lasers.

The detection of the low-lying isomeric state of 229Th [16] may provide this bridge
between atomic and nuclear physics. The 229Th nucleus has an excited state at
only 7.6 eV above the ground state [17], several orders of magnitude smaller than
usual nuclear excitation energies. Therefore, investigating 229mTh has the power
to provide a link between nuclear and atomic physics and examine the nuclear
structure with high-precision spectroscopy methods. Thorium has a ionization
energy of 6.08 eV and working with Th+ will prohibit the internal conversion
process due to the second ionization energy of 11.5 eV, opening an inimitable access
to the electronic bridge process. This makes 229Th a unique and outstanding system
in physics. The last major obstacle before entering this new world of opportunities
is the direct detection and confirmation of the isomeric state of 229Th.

The estimated lifetime of 1–4 hours of the isomeric state predicts a natural
linewidth of this nuclear transition on the order of 10 µHz and the quality factor
of the resonance can approach 1020. Additionally, the nuclear resonance shows an
extraordinary insensitivity to external perturbations. Broadening and resonance
shifts [18] can by effectively eliminated using ion trapping techniques [19]. This
makes the 229Th resonance a remarkable candidate for the reference of an optical
clock that will be highly immune to systematic frequency shifts [20].

No one succeeded to detect the isomeric state directly so far. All observations
of 229mTh are based on indirect γ-spectroscopy measurements [16,17] and are bur-
dened with high uncertainties [21]. Several difficulties meet the experimenter in
the task of the observation of 229mTh. The interaction with the electron shell is not
satisfactory known and presents an additional complication to the understanding
of the nuclear properties. The radius of the nucleus is on the order of a few fem-
tometer while a photon energy of 7.6 eV corresponds to a wavelength of 163 nm.
The difference of approximately eight orders of magnitude is sometimes denoted
as an antenna problem and is a challenge for direct excitation of the nucleus.

The missing piece for further experiments on 229mTh is the knowledge of the exact
value of the energy of the isomeric state. γ-spectroscopy measurements disclosed
the energy to 2 decimal places. Optical spectroscopy can measure up to 17 decimal
places. Closing this gap is the first main objective for experiments with 229Th.

This thesis describes several steps towards the detection of the isomeric state.
In the first conducted experiments for the detection of γ-rays, that is to say 7.6 eV
photons emitted from the nucleus, 229mTh atoms were accumulated after being
ejected from a thin uranium source during the α-decay of 233U using recoil energies.
This method allowed to collect thorium atoms in the isomeric state and implant
them on a substrate without background from the uranium. As it will be seen
in chapter 3, even a low background can disturb measurements significantly and
the setup of an ion trap is concluded as the best way to investigate 229Th in a



4 1 Introduction

controlled environment. Using 232Th to perform tests without the constraints to
work with highly radioactive samples, laser ablation loading is studied in chapter 4
as a new and easy way to produce ions and load them into an ion trap. A linear
Paul trap with a high storage capacity is described in chapter 5 and loaded with
up to 105 thorium ions using laser ablation. The characterization of the trap
with a channeltron and electronic detection allowed to study loading methods and
properties of Paul traps. To establish an excitation and fluorescence detection
scheme for thorium, the trapped ion cloud has been excited on the strong resonance
line at 401.9 nm. Buffer gas cooling and quenching was established and studied
using this resonance line as described in chapter 6, founding the base necessary for
the observation of the isomeric state of 229Th by laser excitation of Th+.



2 The Low-Lying State of 229Th

It is advisable to survey all facts known about thorium so far before starting the
search for the isomeric state 229mTh of 229Th. While section 2.1 will recapitulate
the most important properties of 229Th that are useful for the search for 229mTh,
the history of the quest for the isomeric state is outlined in section 2.2.

2.1 Nuclear Structure of 229Th

229Th seems to be a unique system in nuclear physics since it is the only known
nucleus possessing an isomeric state with an excitation energy in the range of
optical photon energies and outer-shell electronic transitions. The energy level of
7.6 eV above the ground state as shown in figure 2.1 is significantly lower than
the next known low-energy level at 76.5 eV of 235U [22] and therefore the 229mTh
nucleus stands out in its unrivaled capability of being excited by laser radiation.
Figure 2.1 summarizes the presently known spectroscopic properties of the low-
energy transition in 229Th.
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+

2
[631] µ µ= -0.08 N

µ µ= 0.45 N
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Q 5·10 e·m≅
-28 2

Figure 2.1: The lowest nuclear levels of 229Th [17] with their nuclear spin and Nils-
son state classifications [23], radiative lifetime for the magnetic dipole
transition [24], the magnetic moments in nuclear magnetons [25] and
the quadrupole moment Q of the ground state [26].
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6 2 The Low-Lying State of 229Th

The decay of the isomeric state is possible via processes of different order. The
direct emission of a γ-quantum is a first order process and will determine the
natural linewidth. The direct γ-emission is considered in section 2.1.3. Internal
conversion is a second order process since it involves a transfer of the energy to the
atomic shell and the subsequent emission of an electron. This second order process
is possible in neutral thorium atoms since the ionization energy of 6.08 eV is lower
than the energy of the isomeric state. The second and third ionization potential of
11.504 eV and 20.003 eV avert this process for thorium ions. Internal conversion is
highlighted in section 2.1.4. The electronic bridge process as a third order process
involves the transfer of the energy from the nucleus to an intermediate bound state
of the atomic shell and the following emission of a photon during the decay of this
atomic state. It will play an important role for thorium ions as pointed out in
section 2.1.5.

The radiative lifetime of 229mTh [24] is still under discussion but is assumed to
be at about 3500 s in an isolated nucleus. The lifetime as well as the influence of
different electronic environments is considered in sections 2.1.3 and 2.1.4. Different
magnetic moments [25,26] for the ground and the isomeric state offer a way for the
detection of the isomeric state via the atomic shell as noted in section 2.1.6. This
could help building a nuclear clock and searching for variations of fundamental
constants which is discussed in section 2.1.8.

2.1.1 Band Structure and Nilsson States

The nuclear band structure for 229Th is shown in figure 2.2. The transition from
the ground state to the isomeric state is a transition between the heads of the two
lowest rotational bands. The characterization of the nuclear levels is based on the
nuclear shell model with axially symmetric elliptical potential, a phenomenologi-
cal approach to the parametrization of the nuclear potential developed by S. G.
Nilsson [27].

The Nilsson state classification characterizes the shape of the nucleus in an ellipti-
cal deformed oscillator potential V (r) [28] where the z-axis is the symmetry axis of
the rotational ellipsoid so that ωxy = ω⊥. The solutions of the associated Hamilton
operator with a constant influence of the spin-orbit coupling Vls = const = C < 0
that is enhanced with an interpolation term with D = const < 0 to match the
Woods-Saxon-Potential [29] of the nucleus in the form

H = − ~
2

2m
∆ +

m

2

(
ω2
⊥

(
x2 + y2

)
+ ω2

zz
2
)

+ C(l · s) + Dl
2 (2.1)

= − ~
2

2m
∆ + V (r) + C(l · s) + Dl

2 (2.2)

= − ~
2

2m
∆ + VN(r) (2.3)
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Figure 2.2: Experimental levels in 229Th grouped into rotational bands [24].

lead to state energies of the nucleons as a function of a deformation parameter δ,
which is proportional to the difference between the big and the small axis of this
rotational ellipsoid. For δ < 0 the deformation is oblate (lens-shaped), δ > 0 is a
prolate (cigar-shaped) deformation and δ = 0 is a spherical shape of the nucleus.

The movement of the nucleons in the Nilsson potential VN(r) can be separated
in independent oscillators along and perpendicular to the nuclear symmetry axis z.
The eigenvalues of the energy are calculated to

E(nz, n⊥) = ~ωz(nz +
1

2
) + ~ω⊥(n⊥ + 1) , n⊥ = nx + ny (2.4)

with

ω2
⊥ = ω2

0

(

1 +
2

3
δ

)

, ω2
z = ω2

0

(

1 − 4

3
δ

)

, ω0(δ) = ω̂0

(

1 − 4

3
δ − 16

27
δ3

)− 1
6

(2.5)

where ω̂0 is the oscillator frequency of the undeformed nucleus and the total number
of oscillator quanta is

N = nz + n⊥ . (2.6)
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The term Dl
2 lifts the degeneracy with regard to l of the standard single particle

shell model [30] and the degenerated states with a fixed n⊥ can be described with
the projection of l on z to

Λ = ±n⊥,±(n⊥ − 2), . . . ,±1 or 0 . (2.7)

With the parity and the projection Ω of the nuclear total angular momentum I on
the symmetry axis z, the set of quantum numbers known as Nilsson classification
can be written as

Ωπ[N,nz, Λ] (2.8)

and is noted for 229Th in figure 2.1 and figure 2.2.

The Nilsson diagram in figure 2.3 is an example for a graphical representation of
the single-particle state dependence on the deformation parameter δ. This scheme
becomes more complicated for nuclei with higher quantum numbers but can nev-
ertheless be calculated.
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Figure 2.3: Example for single-particle states for an axially symmetric elliptical
Nilsson potential, shown for nuclei with 8 < Z < 28 [28].

Using the distribution of the excited states in the rotational bands [24, 31] and
comparing these positions with the Nilsson diagram, it is possible to calculate the
deformation parameter δ [32, 33]. The fits are based on the measured values of
the quadrupole moments and result in a small positive deformation parameter of
about δ ≈ 0.1 for 229Th. This leads to a prolate deformation of the nucleus in the
ground state as well as in the isomeric state.
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2.1.2 The Neptunium Series

The 229Th isotope is radioactive with a half-life of 7880 years. It is part of the
Neptunium series [28] shown in figure 2.4.
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Figure 2.4: The neptunium series. The main decay channel of 229Th is marked
in yellow. All noted energies of α- and β-decays are mean values of
all emitted particle energies.

The radioactive displacement laws [34] identify four different natural radioactive
decay chains since in nature only α- and β−-decays change a nuclide. Due to the
237Np half-life of 2.14 · 106 years, the Neptunium series is the only extinct series on
earth and elements in this series have to be produced by nuclear reactions.

Some elements in the Neptunium series have both, α- and β-decay channels.
While 221Fr and 217At have a 99.99% probability for an α-decay, 213Bi will decay
with a 97.8% chance in a β-decay. The main decay channel is colored in figure 2.4.
In all cases the final element is 209Bi that can be considered stable due to a half-life
of 1.9 · 1019 years.

The elements in the Neptunium series lighter than thorium have half-lives be-
tween a few µs and two weeks. The background signal produced by the decay
of these elements will increase with the age of the thorium sample and has to be
considered when conducting experiments with 229mTh and is further discussed in
section 3.2.1.
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2.1.3 Lifetime of the Isomeric State

The lifetime for the α-decay of 229Th depends on the state of the nucleus. By ana-
lyzing the excited states of the 225Ra nucleus following the 229Th and 229mTh decay,
it is estimated that the α-decay half-life of the isomeric state is about 2–4 times
smaller than the half-life of 7880 years of thorium in the ground state [35].

The estimations for the radiative lifetime of the isomeric state vary between a
few minutes [36] and several days [16]. The lifetime is determined by different
effects that have to be considered.

Because of the emission of dipole radiation, the lifetime for 229mTh has a cubic
dependency on the energy of the isomeric state by

T 1
2

=
10.95 h

E3
γ · B(M1)

(2.9)

with the reduced magnetic dipole transition probability B(M1) = 0.025 µ2
N ob-

tained from quasiparticle-plus-phonon model calculations, where Eγ is given in
eV [24]. With Eγ = 7.6± 0.5 eV, this leads to an estimated lifetime of 3500+900

−600 s.
The estimation for the lifetime depends on the applied nuclear model and is there-
fore burdened with a high uncertainty.

In addition, the lifetime depends on the availability of other decay channels that
can shorten the lifetime significantly. While the ionization energy of neutral 229Th
of 6.08 eV provides a radiationless internal conversion decay channel that will
shorten the lifetime, this decay channel is not available in 229mTh+ as the second
ionization potential is 11.504 eV. Depending on the precise value of the energy of
the isomeric state, the level structure of the electron shell may possess a resonant
level that provides a coupling between the nucleus and the electron shell and opens
an electronic bridge decay channel that can shorten the lifetime (see section 2.1.5).
If 229mTh is implanted in other elements as metals, semiconductors or crystals, the
electronic environment may provide an additional radiationless decay channel.

2.1.4 Electronic Environment

When a 229mTh nucleus is inserted into a metal, the predominantly decay channel of
the isomeric state will be via conduction electrons or via electrons from the valence
band if the energy of the isomer exceeds the Fermi energy [37]. This decay can be
interpreted as internal conversion with the initial state of the electron not being a
bound state of the atomic shell. In a simple free-electron approximation [38], the
lifetime of 229mTh in a metal will reduce to 10−4 s [39], making this radiationless
decay the dominant decay channel.

The situation is similar when 229mTh is injected into a semiconductor. Most
semiconductors will have a band gap that is smaller than 7.6 eV, allowing the
nucleus to transfer its energy to an electron and move it to the conduction band
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where the energy will be dissipated radiationless. Even if the band gap is bigger
than the energy of the isomer, the nucleus will occupy a position in the semicon-
ductor lattice and induce a perturbation in the initial band structure, leading to
additional levels in the forbidden band. These levels will assist the energy transfer
and may lead to a radiationless energy dissipation as well [40].

This leads to the conclusion that for experiments searching for the direct emis-
sion of γ-rays from the 229Th nucleus on a surface or in a crystal, only dielectric
materials can be chosen. Materials which are transparent in the spectral range of
interest, for example calciumfluoride, will generally fulfill this requirement. How-
ever, the lifetime may still be shortened in a dielectric environment, depending on
the refractive index of the dielectric material [41].

2.1.5 Electronic Bridge Process

Due to the low energy of the isomeric state, the influence of the electronic bridge
(EB) process [14, 42] as a third order process where the atomic shell is used as a
mediator for the depopulation of the isomeric will become more important than for
nuclei with higher excitation energies. This process had been proposed soon after
the detection of the isomeric state of 229Th [43,44] and opens a way to depopulate
and to excite the isomeric state [13].
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Figure 2.5: Feynman graphs of a) the electron bridge process and b) the inverse
electron bridge process. The interaction between the nucleus and
the atomic shell is marked with dashed lines. G denotes the nuclear
ground state, M denotes the nuclear isomeric metastable state. 1,m,2
are the atomic initial, metastable and final state. Scheme c) shows
the inverse electronic bridge process for 229Th. The energy mismatch
between isomeric and atomic states is balanced by a photon. State
|2〉 can be a real or a virtual level.
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The process strongly depends on the existence of resonant levels in the atomic
shell. As noted in figure 2.5a, the first step of the EB process involves the resonant
radiationless transfer of the energy to the atomic shell and will excite the atom to
an intermediate state. This metastable state will decay to a final state and emit a
photon with the energy corresponding to the difference between the intermediate
and the final state. The probability for this process can be enhanced significantly
by exciting the atomic shell with a laser to a state that matches the resonance
condition for the isomeric state and the initial and intermediate state of the atomic
shell [15]. In this scheme, the depopulation of the isomeric state can only be
detected by photons with a lower energy than the excited state of the nucleus [45].

This process can be used to excite the isomeric state with the inverse electronic
bridge process (IEB)1 [46]. The process shown in figure 2.5b excites the atom with
laser radiation to an intermediate state. The energy is transferred to the nucleus
and the atomic shell decays to the final state. In the 229Th nucleus, the probability
strongly depends on the existence of an intermediate state with the correct energy,
spin and parity to fulfill the resonance condition that can excite the isomeric state
229mTh with a magnetic dipole transition.

2.1.6 Hyperfine Structure and double-resonance Detection

The level structure of the atomic electron shell is modified by the hyperfine inter-
action between the electrons and the nuclear electric and magnetic moments. In
the nuclear transition from 229Th to 229mTh, the nuclear spin changes by ~ and the
magnetic moment by about 0.5 nuclear magnetons [25] as seen in figure 2.1. For
the 7s electronic state this will lead to a change of the hyperfine splitting of several
gigahertz [20].

This can be used for a double-resonance detection of the excitation of the isomeric
state as shown in figure 2.6 by performing laser spectroscopy of the electron shell.
When the nucleus is in the ground state, a laser that is tuned to a closed two-level
electric-dipole transition of the shell will constantly produce resonance fluorescence
photons scattered from the atom. When the nucleus is excited to the isomeric state,
the change of the nuclear spin and the nuclear magnetic moment induces a change
of the hyperfine splitting. The laser used for driving the closed two-level system
will be out of resonance and the fluorescence intensity will drop [20].

The involved electronic transition has to have a sufficiently lower energy than the
energy difference between the ground state and the isomeric state of the nucleus to
avoid inducing an electronic bridge process (see section 2.1.5) and decreasing the
lifetime of the isomeric state. This would be the case for the 401.9 nm laser for the
two-stage excitation in section 2.1.7.

1The IEB and EB processes are also known as nuclear excitation by electronic transition (NEET)
and transfer of energy by electrons from nuclei (TEEN)
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Figure 2.6: Scheme of the double-resonance detection of the excitation of the
isomeric state.

This method is similar to the electron shelving scheme for the detection of
metastable states in the shell of a single trapped ion [47] and similar schemes
are used in high-resolution laser spectroscopy of trapped ions [19]. The repeated
excitation and decay of the isomer will lead to a sequence of periods of high and
low fluorescence intensity. Additionally, a third laser could be used that is tuned in
resonance with a closed two-level system of the shell of the isomer. This would lead
to a constant scattering of photons from the atom with wavelengths corresponding
to the energy difference for the electronic two-level system of the nucleus in the
ground state or the isomeric state and thus indicating the state of the nucleus [20].

2.1.7 Two-Stage Excitation

The energy of 7.6 ± 0.5 eV corresponds to a wavelength of 163+11
−10 nm. Unfortu-

nately, no widely tunable lasers are available in this spectral region. Additionally,
this laser radiation has to be generated and transmitted in vacuum since photons
with a wavelength shorter than 180 nm are absorbed by oxygen.

To overcome the obstacle of generating laser radiation with an energy matching
the energy of the isomeric state, the atomic shell may be used as a mediator as
shown in figure 2.7. In this scheme, the energy will be provided by several photons
to the atomic shell before transferring the energy to the nucleus with the inverse
electronic bridge process as described in section 2.1.5.

The atomic level for the IEB process will be excited in two steps by two different
lasers. Since the ionization energy of neutral thorium exceeds the energy of the
isomeric state, ionized 229Th has to be used to excite the atomic shell. The first
excitation step involves a laser at a fixed wavelength tuned at the strong resonance
line of Th+ at 401.9 nm. Starting from this level at 24 874 cm−1, a tunable laser
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Figure 2.7: Schematic of the two-stage excitation in Th+.

will excite a state in the atomic shell with an energy comparable to the 229mTh
energy level. Th+ has a dense level scheme that can be used to match the IEB
conditions.

Due to the big uncertainty of the isomeric state energy, the second laser will
have to be tuned in a wide spectral range. The probability for the occurrence
of the inverse electronic bridge process depends strongly on the parameter of the
attained atomic state. Besides the energy matching of isomeric and atomic state,
the selection rules for magnetic dipole transitions have to be fulfilled for the atomic
states before and after the excitation of the nucleus. Since the energy of the
isomeric state is not known, the best matching state cannot be predicted but has
to be identified by double-resonance detection or direct detection of a γ-ray of the
decaying isomeric state.

2.1.8 Variation of Fundamental Constants

The unique system of 229Th with its low excitation energy accessible by laser ra-
diation and the very narrow linewidth of about 10−4 Hz makes thorium a possible
reference for an optical clock with very high accuracy. This clock would be highly
immune to systematic frequency shifts and broadening effects could be effectively
eliminated using techniques of trapping and cooling [20].

A nuclear frequency standard opens a new possibility for a laboratory search
for the variation of the fundamental constants [20]. The possibility of spatial and
temporal variation of physical “constants” in the Universe is suggested by theories
unifying gravity and other interactions [48]. A very sensitive method to study
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the variation for the fine structure constant α in a laboratory [49] consists of the
comparison of different optical atomic clocks [50,51].

Comparing the 229Th nuclear frequency to present atomic clocks will allow to
search for variations of the fine structure constant but with an additional important
advantage. The relative effects of the variation of α and mq

ΛQCD
with the quark

mass mq and the quantum chromodynamics mass scale ΛQCD are magnified by an
enhancement factor [52]. A rough estimate for the relative variation of the 229Th
transition frequency ω is

∂ω

ω
≈ 105

(

0.1
∂α

α
+

∂Xq

Xq

)

, (2.10)

where Xq = mq

ΛQCD
[53], giving thorium the potential of improving the sensitivity

to temporal variations of fundamental constants by many orders of magnitude.
Depending on the applied nuclear model, the sensitivity of a temporal drift of the
fine structure constant is estimated to be enhanced by 2–4 orders of magnitude [32,
33,54].

Current atomic clock limits on the variation of the fundamental constants are
approaching 10−17 per year. Using the nuclear thorium clock for comparisons with
atomic clocks, the sensitivity to the variation of the fundamental constants can be
enhanced to more than 10−20 per year.

2.2 Search for the Isomeric State Transition

Reich and Helmer were the first to suggest that 229Th had a uniquely low-lying
excited state close to the ground state in 1976 [23]. They measured differences
in intra- and interband γ-ray-radiation of states populated in the α-decay of 233U
based on measurements of the rotational–band structure [23, 55]. The isomeric

state had been identified as the band head of a Ωπ[NnzΛ] = 3
2

+
[631] band that

is populated from higher excited states as well as the ground state of 229Th in a
5
2

+
[633] band.

In order to identify the isomeric state in an indirect detection, they examined
the decay of excited 97.1 keV and 148.1 keV states [56]. These states have dif-
ferent channels to decay which end in the ground state and the isomeric state
respectively, emitting multiple γ-rays in the keV range in this process. Despite
the limited resolution of transitions five orders of magnitude higher than the
state of interest, they managed to derive the first value of the isomeric state:
E(229mTh)= -0.001 ± 0.004 keV. This interval still included zero.
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Figure 2.8: γ-rays taken into account to calculate the energy of the isomeric state
of 229Th [16,56]

Remeasuring the energy of a number of γ-rays in 1994 [16], enhancing the resolu-
tion by increasing the number of detectors, reference lines and measurement runs,
it was possible to improve this first measurement of the isomeric state. Using

E(229mTh) = (97.1 − 25.3 − 71.8) keV

= (97.1 − 67.9 − 29.1) keV

= (148.1 − 118.9 + 117.1 − 146.3) keV

= (148.1 − 76.4 + 74.6 − 146.3) keV,

as shown in figure 2.8, it was finally possible to identify the isomeric state and to
obtain a result that surely excluded zero:

E(229mTh) = 3.5 ± 1.0 eV. (2.11)

This energy corresponds to a wavelength of 350+150
−75 nm, the lifetime calculated

from the estimated transition probability [57] was about 45 hours. Taken the
uncertainty of ±1.0 eV into account this lifetime could vary between ∼20 and
∼120 hours. The authors admitted that this was almost certainly not the ac-
tual half-life of this level, which would instead be determined primarily by the
interaction of the electronic structure with the nucleus. First corrections of the
lifetime were made in 1998 by theoretical considerations [25], reducing this value
to 2–4 hours. Several experimental groups have performed further measurements
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of the lifetime of the isomeric state, yielding inconclusive results varying from a
few minutes [58] to several hours [59].

The task to observe the decay of the isomeric state was addressed by different
groups [21, 60–63] using spectrometry on solid and dissolved 233U samples: They
obtained negative results or identified observed ultraviolet photons as α-induced
fluorescence of nitrogen molecules [21, 64]. Several theoretical studies have been
motivated by the discovery of the low-lying isomeric state of 229Th and the new
prospects arising from this approach to a new borderland between atomic and nu-
clear physics [13], highlighting various topics ranging from production and detec-
tion methods [36,40], effects on the α-decay of 229Th [35], nuclear spin-mixing [65],
influence of different environments [37] to internal conversion [66] and electronic
bridge processes [67,68].

Although no experiment in search for direct observation succeeded, it took un-
til 2005 for the value of E(229mTh) = 3.5 ± 1.0 eV to be revised [69]. Based on
newly investigated branching ratios [31,70], differing from the assumption that the
excited 29.1 keV and 71.8 keV states decay directly to the isomeric state (see fig-
ure 2.8 [16]), the evaluation was extended by including more experimental data and
new values of standard γ-energies [71]. Adopting the statistically most acceptable
assumption regarding the decay pattern of 229Th, the energy value was shifted to
E(229mTh) = 5.5 ± 1.0 eV.

In 2007, a measurement by Beck et al. [72] used a novel NASA x–ray mi-
crocalorimeter spectrometer with an energy resolution of only 26 eV (FWHM)
to obtain the most accurate value for the isomeric state to date. The 71.82 keV
state populated in the α-decay of 233U decays with closely spaced γ-ray doublets
to the ground state and the isomeric state respectively (see figure 2.9) that could
be resolved with high accuracy.
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Starting from this 71.82 keV state, the isomeric state is populated via intraband
transition of γ-rays with an energy of 42.63 and 29.18 keV whereas the ground
state is fed via an interband γ-ray of 29.39 keV to the 42.43 keV state followed by
an intraband 42.43 keV transition. Using the relation

71.82 keV = 29.39 + 42.43 keV = 42.63 + 29.18 + E(229mTh) , (2.12)

the energy of the isomeric state is found to be

E(229mTh) = (29.39 − 29.18 keV) − (42.63 − 42.63 keV) . (2.13)

The energy differences of each doublet are about 200 eV. The Ge detectors used by
Helmer and Reich [16] could not resolve these doublets and had to rely on energy
differences at least one order of magnitude larger than 200 eV while the HgTe
spectrometer used in this experiment could resolve these lines.

(a) 5/2+
→ 3/2+

29185.6 eV

7/2+
→ 7/2+

29391.1 eV

205.48 eV

P03240-jab-u-002

42434.9 eV

42633.3 eV

7/2+
→ 5/2+

7/2+
→ 5/2+

198.44 eV

(b)

Figure 2.10: Spectra in the 29 and 42 keV regions [17] used to measure the γ-ray
doublets (2.13). Black lines represent the data, red lines represent
the least-square fitting results.

Finally, a correction had to be implemented in the measured difference in fig-
ure 2.10. The unobserved but expected interband branching of the 29.19 keV state
to the ground state had to be taken into account which could be estimated ac-
curately from the interband branching ratio of the 71.82 keV level. Using this
estimation to add a positive correction of 0.6 eV to the measurement, one obtains

E(229mTh) = 7.6 ± 0.5 eV. (2.14)

Even though this measurement was still an indirect observation of 229mTh and
the direct observation has still to be done, this value for E(229mTh) is widely
accepted due to the quality of the data. It also explains why all prior observations
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had been unsuccessful, since the detectors used in these searches had no sensitivity
at 7.6 eV, and clears the way for new methods and experiments in search for a
direct observation of the transition between the isomeric state and the ground
state of 229Th.

2.2.1 Thorium in a Hydrochloric Acid

First experiments with 229Th were conducted in PTB assuming that the energy of
the isomeric state is E(229mTh) = 3.5 ±1.0 eV. Since aqueous thorium solutions are
transparent in this spectral region, an experiment with 10 kBq of thorium chloride
in a 0.1 molar hydrochloric acid was set up. The excitation of the isomeric state
ought to be achieved with a high pressure mercury-xenon lamp with a strong light
emission in a spectral range around 350 nm.

Multiple aspects had to be taken into account when choosing the type of solution
for spectroscopy experiments. While water and hydrochloric acid are transparent
at 350 nm, nitric acid is opaque at this wavelength. The 229Th solution available
at PTB was a solution of Th(NO3)4 and would therefore not be transparent for the
spectral region of interest. Additionally, to prevent adsorption of thorium on the
windows of the cell, the solution needs to be acidic. To account for these conditions,
an ion exchange had been conducted to prepare a one molar hydrochloric thorium
solution.

The material of the cell should fulfill different requirements and was hard to
determine. Demands for mechanical and chemical stability constrained the choice
of material to polymers. Additionally, the polymer has to be luminescence-free
to avoid background effects. Most of the tested materials showed long-lasting
luminescence effects [73] and only carbon fibre filled PEEK (polyether ether ketone)
proved to be insensible for luminescence induced by the mercury-xenon lamp.

Earlier experiments revealed a strong long-lasting luminescence from fused silica
windows after irradiation with the mercury-xenon lamp as shown in figure 2.12a.
To avoid background radiation from cell windows overlapping the expected signal
from the decay of 229mTh in the hydrochloric acid, a double-chambered cell was
designed as shown in figure 2.11. The irradiation and detection chambers were
equipped with fused silica windows2 and connected with a channel in the PEEK.

The thorium solution was irradiated in one half of the cell with a light power
of 1–2 Watts for about an hour. Afterwards, the solution was decanted from
the irradiation chamber to the detection chamber, thus being in a cell that was
not illuminated by the lamp. The cell was placed in darkness with an optical
setup that focussed the photons emitted from the cell on a photomultiplier. Fused
silica filter glasses with different transmission ranges were installed in front of the
photomultiplier.

2Schott Lithotec Q1-E248
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Figure 2.11: The double-chambered PEEK cell used to conduct experiments with
a hydrochloric thorium solution.

The results for these measurements are plotted in figure 2.12b. It can be seen
that the signal increases in the beginning of the measurement before settling on a
constant count rate after about 2–4 hours. The reason for this signal increase is
found in small particles of fibrous material forming in the cell a couple of months
after filling in the thorium solution. When the solution is decanted from one
chamber to the other side, these particle disperse uniformly in the solution and
block photons coming from the detection cell. These particles need 2–4 hours for
sedimentation and explain the signal rise during this time.

The high count rate of about 700 photons per second is not a result of the irradi-
ation with the mercury-xenon lamp. Measurements with the cell stored in darkness
for a week showed the same count rate as the measurements in figure 2.12b, re-
vealing the detected signal to be pure background from the cell.

The high background in the measurements is caused by Cherenkov radiation [74]
induced from β-particles in the hydrochloric acid. The path length of about 1 cm
of these β-particles lead to the production of multiple photons in the acid. Anyway,
after discovering the new value for the isomeric state of E(229mTh) = 7.6 ± 0.5 it
was clear that no signal could have been seen due to the absorption of occurring
photons by the water in the hydrochloric acid.

The recoil experiment described in chapter 3 was designed to overcome the re-
strictions of providing a resonant broadband light source and allowed to study
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Figure 2.12: a) Signal of a fused silica cell containing 100 kBq of 229Th in a neutral
ThCl solution irradiated by a high pressure mercury-xenon lamp.
The long-lasting luminescence of the fused silica windows decreases
with time to the Cherenkov-induced background of 6900 counts/s.
b) Measurements of a 10 kBq hydrochloric 229Th solution with and
without reducing the sensitive spectral range with filter glasses in
the double-chambered cell.

229mTh in different solid environments. This experiment was free from the absorp-
tion of photons in a liquid as well as the production of Cherenkov radiation caused
by embedding thorium nuclei in a bulk material or solution. However, Cherenkov
radiation has to be taken into account as seen in section 3.2.1 even when handling
small samples of 229mTh.
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One of the biggest obstacles of all efforts to observe the photon emitted directly
from the nucleus is the fact that prior to observation, the nucleus has to be in
the excited state. Since the cross-section of the photon-nucleus interaction as
well as the linewidth of the excited state are extremely small, it is very diffi-
cult to excite the isomeric state with a broadband illumination. The value of
E(229mTh) = 7.6 ± 0.5 eV additionally enforces an oxygen free atmosphere for the
transmission of the radiation.

The problem of exciting the isomeric state can be avoided if 229Th can already
be obtained in the isomeric state. Following the α-decay of 233U, about 2% of the
created nuclei are in the isomeric state [70] and will decay to the 229Th ground
state under the emission of a 7.6 eV photon if no competing radiationless processes
are available. The long sought 7.6 eV photons should be part of the γ-rays emitted
in the 233U decay chain, the experimental challenge, however lies in detecting them
in the presence of strong α- and β-induced background. Using the α-recoil en-
ergy, thorium nuclei can be emitted from a thin uranium source and subsequently
implanted into a thin absorber. If this absorber is transparent in the vacuum ul-
traviolet (VUV), it can be used to observe the photons emitted from the decay of
the isomeric state.

This approach evades the excitation of the isomeric state and produces a thorium
sample exempt from 233U background at the same time. While other experiments
obtaining a sample of freshly produced 229mTh from the 233U decay rely on chemical
separation methods [63, 75] to clear the uranium, which takes at least 30 min to
accomplish, our method allowed to measure 30 s after the absorber was removed
from the recoil chamber. The short time span between production and detection
of 229mTh may grant access to the observation of processes with lifetimes of a few
minutes.

3.1 Production and Detection of Recoil Nuclei

The experiment with “fresh” 229mTh from a uranium source is executed in two steps
as indicated in figure 3.1. The first step is to implant thorium in an absorber. The
second step is to remove the absorber from the uranium and place it in front of a
photomultiplier to detect the photons emitted from the nuclei. Since the lifetime
of the isomeric state depends on the electronic environment of the 229mTh nuclei

22
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(see 2.1.4), these two steps should be repeated with different absorber materials
such as fused silica and various polymers.

233
U absorber

photomultiplier

first step:
ejection of thorium atoms
in the isomeric state
and implantation in an absorber

second step:
detection
of photons

Figure 3.1: Scheme of recoil experiment procedure.

The α-decay of 233U creates α-particles in the range of 5 MeV where the most
prominent decay channel emits an α-particle with an energy of 4.91 MeV [76].
Using the law of conservation of linear momentum, the recoil energy is deduced
from

Er =
1

2
mrv

2
r =

1

2
mαv2

α · mr

mα

·
(

vr

vα

)2

= Eα · mr

mα

·
(

mα

mr

)2

= Eα · mα

mr

, (3.1)

where Er and Eα denote the energies of the recoil nucleus and the α-particle, mr,
mα are the masses and vr, vα the velocities, respectively. Thus one calculates the
recoil energy of the 229Th recoil particle to

4.91 MeV · 4 u

229 u
= 85.76 keV . (3.2)

If the thorium particles are supposed to be ejected from the uranium layer where
they are created, the layer has to be thinner than the range of thorium particles
in uranium. The range of the particles can be calculated from the stopping power,
which is the average energy loss of the particle per unit path length. In the process,
the ionization of the atoms or molecules which the particles encounter on their
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path through the material causes a subsequent loss of energy in many small steps.
Stopping powers are widely tabulated (e.g. [77]) or can be calculated for different
elements in a large number of environments with computer programs [78] and the
range RU(229Th) of thorium recoil particles in uranium is calculated [78] to

RU(229Th) ≈ 11 nm . (3.3)

When a thorium particle is created within a 11 nm thick surface layer, it may
be ejected from the uranium into the free space. Since the angular distribution
for the α-emission is random, the probability for ejecting a thorium recoil particle
increases the closer the point of origin is to the surface. The free path length for
a thorium particle in air at normal pressure with the energy according to (3.2) is
about Rair(

229Th) ≈ 69µm [78]. To extend this free path length and allow the
thorium to reach an absorber, the thorium transfer ought to be done in vacuum.
Since the free path scales reciprocal with pressure, evacuating the environmental
pressure to 100 Pa enhances the free path length to

Rair,100 Pa(
229Th) ≈ 69 mm . (3.4)

25 mm

233
U

Figure 3.2: Uranium source used to produce 229mTh recoil atoms.

To estimate the amount of thorium recoil particles implanted in the absorber, the
diameter of the active area is assumed to be 25 mm with respect to the conditions of
the experiment. Using (3.3), the volume that has the ability to eject thorium recoil
particles is 5.4 ·10−12 m3. With the uranium density of 18950 kg

m3 , a mass of 102.3 µg
is calculated and the 233U activity is deduced with the half-life of 1.592 · 105 years
to

AU = 36508 Bq ≈ 36 kBq . (3.5)
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The absorbers were placed ≈ 3 mm in front of the uranium to assure all ejected
ions reach the absorber (compare (3.4)). Since the direction of the ejected α-
particle and hence of the recoil particle is random, a maximum of 50% of the
produced thorium particles are ejected in the direction of the absorber, assuming
the uranium layer is negligible thin. Hence about 18000 thorium atoms per seconds
are supposed to be implanted in the absorber. Assuming 2% of these thorium atoms
are in the isomeric state, 360 229mTh atoms can be expected to be accumulated per
second.

The uranium used in the experiment was electroplated on a stainless steel disc1

with an active area of 25 mm diameter as seen in figure 3.2. The activity was
48 kBq and therefore higher than the necessary activity for the maximum ejection
efficiency in (3.5) for metallic uranium.
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Figure 3.3: α-spectrum of electrodeposited 233U used in the recoil experiments
and of a reference 233U source dried on a silicon disk, measured in a
grid ionization chamber.

Measurements of the α-particle energies from this uranium in a grid ionization
chamber from the radioactivity department of the PTB2 revealed the energy dis-
tribution in figure 3.3. The α-particles loose energy when travelling through solid
material, depending on the path length and the stopping power in this material.
The projected range of an α-particle in uranium with an energy of 4.9 MeV is

1purchased from Eckert & Ziegler Isotope Products Europe GmbH
2D. Arnold, M. Ehlers and H. Janßen, Physikalisch-Technische Bundesanstalt, Working group

Unit of Activity
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8 µm. If the 48 kBq 233U source was metallic uranium, it would have a thickness
of 14.5 nm and produced a sharp peak in figure 3.3 due to the projected range of
the α-particle being 3 orders of magnitude higher than the 233U thickness. How-
ever, according to our α-energy measurement, the lost energy corresponds to a
100 times longer path length through solid material. This leads to the conclusion
that the layer is not metallic uranium but heavily soiled with materials used in the
electroplating process.

Therefore, the 11 nm thick layer capable of emitting 229mTh nuclei (see eq. (3.3))
only emits 1% of the calculated 229Th flux of equation (3.5). Measurements of the
thorium activity of a stainless steel absorber accumulating nuclei for 40 hours
confirmed the result of a capture rate of only 1% of the produced thorium nuclei.
Therefore, the number of accumulated thorium nuclei in the isomeric state is only
3-4 per second.

The accumulation chamber in figure 3.4 was evacuated by a membrane vane
pump to a pressure of 100 Pa. The uranium was fixed in one half of the setup
and stored constantly under vacuum. Different absorbers were glued to steel rings
and magnetically fixed on the tip of a sliding vane. The vane was applied to the
second half of the chamber and this half was evacuated. After opening the valve
separating the uranium from the absorber, the absorber was moved towards the
uranium and stopped in front of the uranium at a distance of 3 mm.

membrane pump

233
U chamber

sliding vane

chamber separation valve

Figure 3.4: Uranium chamber for accumulating thorium recoil particles. The
sliding vane is slid in to place the absorber in front of the uranium.
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After accumulating thorium ions for several hours, the absorber is removed from
the uranium chamber and placed in front of a photomultiplier. The necessary
accumulating time depends on the lifetime of the isomeric state which is several
orders of magnitude shorter than the lifetime of 233U. This difference in lifetimes
soon leads to an equilibrium between the production of 229mTh from 233U and the
decay of the isomeric state to the ground state. Therefore it is not necessary to
accumulate thorium nuclei for times much longer than the lifetime of the isomeric
state [79]. Since the lifetime is not known but is assumed to be in the range of
2–4 h, accumulation times for thorium particles of at least 4 h are generally used.

photomultiplierpeltier coolingabsorber

brass slider mirror

Figure 3.5: Detection box for photons from thorium accumulated on an absorber.
Left: photo of the chamber, absorber placed in brass slider. Right:
Cut through the detection box, showing the positions of the photo-
multiplier and the parabolic mirror.

The first used photomultiplier3 was sensitive for photons in the range of 2–6 eV
(since the experiment was started under the assumption of detecting a 3.5 ± 1 eV
photon) and was later replaced by a photomultiplier4 sensitive for 4–10 eV photons.
They were mounted in a light-tight aluminum vessel facing a parabolic mirror
focussed on the active area (see figure 3.5) of the photomultiplier. The aluminum
chamber was cooled with Peltier elements to 13℃ to minimize the dark counts of
the photomultiplier to 1–2 counts per second. The absorber was placed in a brass

3Hamamatsu R4220P, sensitivity 185 nm to 710 nm, quantum efficiency 25% at 350 nm, active
area 8mm · 24mm, side-on version, selected for photon counting

4Hamamatsu R8486P, sensitivity 115 nm to 320 nm, quantum efficiency 35% at 220 nm, active
area 8mm · 12mm, side-on version, selected for photon counting
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slider that allowed insertion of the absorber in the vessel without illuminating the
photomultiplier with ambient light during this process. When pulling in the slider,
the absorber was positioned between the photomultiplier and the mirror with the
thorium accumulated side 2 mm in front of the active area .

To ensure an oxygen-free atmosphere for the measurements of photons with a
wavelength shorter than 180 nm where oxygen would absorb these photons, the
aluminum vessel was purged with nitrogen. Prior to the insertion of the 229mTh
absorber, a nitrogen flux of 5 l/s was maintained for several minutes, the nitrogen
inlet being at the bottom of the vessel and releasing the purged nitrogen through
the isolating material of the brass slider. When the vessel was completely filled
with nitrogen, the experiment was started and the nitrogen flux was lowered to
0.5 l/s to maintain the nitrogen concentration in the vessel.

The absorber material was glued on a steel ring with ultraviolet hardening glue
and the glue was selected with respect to low luminescence background effects. Due
to this fastening method, the setup allowed testing of different absorber materials.
Tested were borosilicate glass (thickness 0.5 mm), fused silica (thickness 1 mm),
CaF2 (calcium fluoride, thickness 2 mm), PVDF (polyvinylidene fluoride, thickness
50 µm) and PET (polyethylene terephthalate, thicknesses 6 µm and 0.7 µm). The
polymer absorbers were selected with respect to their small thickness to minimize
luminescence effects from α-particle induced luminescence.
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Figure 3.6: Long-lasting photoluminescence signal of a CaF2 absorber after irra-
diating the absorber with a 30 W deuterium lamp.
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It has been shown in previous experiments [73] that several polymers show long-
lasting photoluminescence effects after irradiation with ultraviolet light. In the
first test runs, this has been shown for fused silica and CaF2 and is depicted for
CaF2 in figure 3.6. Hence the absorber transfer from the uranium chamber to the
detection box was done in a room only lit with a photographic laboratory light
emitting in the red spectrum, reducing the background signals significantly.

3.2 Temporal Decay Curves

Despite the low photomultiplier dark count rate of 1–2 counts per second, back-
ground effects from the absorber are the biggest obstacle for the evaluation of the
measured luminescence signals. This has been partially accounted for by choosing
thin absorbers and avoiding exposure of the absorbers to ultraviolet light. Depend-
ing on the half-life of the isomeric state, a capture rate of 3–4 229mTh nuclei per
second from the uranium source could still be observed if the background is low
enough.
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Figure 3.7: Luminescence signal of PVDF (thickness 50 µm) and fused silica
(thickness 1 mm) absorbers accumulating thorium nuclei for 7.5
hours. The fitted curves correspond to a signal in the photomulti-
plier (sensitivity 185 nm to 710 nm) produced by 0.1% of the α- and
0.3% of the β-particles for PVDF and 0.8% of the α- and 0.9% of the
β-particles for fused silica, respectively.



30 3 Thorium Recoil Nuclei

Results from the early phase of the experiment with a photomultiplier sensitive
from 185 nm to 710 nm are shown in figure 3.7, where every data point represents
the average over 100 s. The background in the fused silica absorber is three times
higher than in the PVDF absorber, probably due to α- and β-induced luminescence.

Since the photomultiplier that was used in this experiment was not sensitive for
the 229mTh photon wavelength of 163+11

−10 nm, the decay curves need to be explained
in the next section.

3.2.1 Radioactive Decay Chain Background

All decay signals showed the same nearly exponential behavior right after exposure.
To examine the origin of this decay, the whole decay chain of 233U has to be taken
into account.

To deduce the amount of all decay products and their α- and β-particle emission,
a set of equations has to be solved. The decay of one single radioactive element is
described by an easily solved differential equation

dN

dt
= −λN(t) , N(t = 0) = N0 , N(t) = N0 e−λt , (3.6)

where N denotes the number atoms in the nuclear parent and λ is the time constant.
The activity A is the number of decaying atoms per time

A(t) = −dN

dt
= λN(t) = λN0 e−λt = A0 e−λt. (3.7)

While this is easily solved for a single element, it becomes computationally inten-
sive for more elements in this decay chain, because the produced daughter element
decays itself but is fed by the nuclear parent. In order to obtain the complete decay
chain from 233U to 209Bi (which has a half-life of 1019 years and can be considered
stable), a set of 10 coupled first-order linear differential equations has to be solved.
These equations are called Bateman equations [80] in the form

dNn

dt
= −λnNn(t) + λn−1Nn−1(t) , n = 1, 2, . . . , 10 (3.8)

and have the general solution

Nn(t) = c1e
−λ1t + c2e

−λ2t + . . . + cne
−λnt (3.9)
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with

c1 =
λ1λ2 · · ·λn−1

(λ2 − λ1)(λ3 − λ1) · · · (λn − λ1)
N10

c2 =
λ1λ2 · · ·λn−1

(λ1 − λ2)(λ3 − λ2) · · · (λn − λ2)
N20

...

cn =
λ1λ2 · · ·λn−1

(λ1 − λn)(λ2 − λn) · · · (λn−1 − λn)
Nn0 . (3.10)

This general solution can be adapted to the 233U recoil system. The activities of
all elements in the uranium is calculated from the age of the source, which was 3
years at the delivery date. Starting from this compound, not only thorium recoil
nuclei are captured by the absorber but all nuclei produced from α-emitters present
in the uranium source. Since 233U has the lowest α-energy in the neptunium chain
(see section 2.1.2) and all other elements existing in the uranium source are lighter
than uranium, the probability of their ejection is at least as high as the probability
of ejecting thorium nuclei.

Hence the absorber contains a mixture of α- and β-emitters with half-lifes be-
tween 4.2 ms (for 213Po) and 14.9 days (for 225Ra) which are at least five orders of
magnitude shorter than the lifetime of 229Th, creating a much higher α- and β-flux
than an absorber with thorium alone.

The amount of absorbed elements can be calculated with respect to their half-
lifes and time in front of the uranium, taking into account the decay of the already
absorbed nuclei. The calculated activities of the α- and β-emitters are plotted in
figure 3.8.
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Figure 3.8: Calculated α- and β-emitter activities for an absorber accumulating
recoil nuclei for 195 min.
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Using the results of the calculated α- and β-activities, a fit to the obtained data
can be applied. The fit makes use of the intensity distribution and lifetimes of the
calculated α- and β-emission and only adapts the percentage of emitted particles
creating a signal in the photomultiplier. The luminescence signal in figure 3.7 can
be explained with less than 1% of the α- and β-particles producing a signal in the
photomultiplier.
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Figure 3.9: Signal from a CaF2 absorber (thickness 2 mm) and fit with calculated
decay curve where 14% of the emitted β-particles produce a signal
count in the photomultiplier (sensitivity: 115 nm to 320). Every
point represents an average over 100 s.

When using the photomultiplier sensitive for the 229mTh decay as in the CaF2

absorber signal in figure 3.9, a photon detection probability of 14% for every emit-
ted β-particle is sufficient to fit the observed signal. The CaF2 was the thickest
absorber used in the experiments with a thickness of 2 mm and created a higher
background than other samples. Measurements with PVDF in figure 3.10 indicated
a much smaller background and signal count rate but had the same qualitative re-
sult; the signal can be fitted with β-induced fluorescence.

The difference in count rate between the PVDF and the CaF2 sample is linked to
the sample thickness, where CaF2 is 40 times thicker than PVDF. The background
as well as the signal of the measurements in figures 3.8 and 3.10 scale with this
thickness.
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Figure 3.10: Signal of a PVDF absorber (100 s average), fit with 0.1% of the emit-
ted β-particles producing a count in the photomultiplier (sensitivity:
115 nm to 320 nm)

This legitimates the assumption that the background is created in the absorber
material by β-particles. The explanation for β-induced fluorescence is without
much doubt Cherenkov radiation [74], since the energy of the electrons emitted
by 213Bi and 209Pb is high enough to produce significant amounts of Cherenkov
radiation in the absorber material.

The spectral energy density of Cherenkov radiation is proportional to 1
λ3 and

the number of emitted photons is therefore proportional to 1
λ2 . This explains the

higher conversion rate of β-particles detected with the photomultiplier sensitive in
the VUV region for CaF2. Because fast electrons produced by β-decay can create
more than 1 photon in a dense medium, the count rate is increased again with the
thickness of the material [81].

However, the fit does not explain the fast decay in the first minutes in figure 3.9
completely. This slightly higher count rate in the first minutes of the absorbers
placed in front of the photomultiplier sensitive in the VUV was the only difference
to the signals recorded with the photomultiplier not sensitive at this wavelength.
To reduce noise in the recorded signal, data point averaging over 100 seconds had
to be applied, excluding the possibility of observing fast processes in more detail.
Unfortunately, the quality of data does not allow to conclude the direct observation
of photons emitted from the isomeric state.
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The reason for the missing observation of 229mTh decay photons is not clear.
Multiple explanations are possible:

• Since the used uranium source was not a metallic uranium sample and there-
fore produced only a fraction of the possible thorium nuclei, it may lead to a
small signal-to-noise ratio and could have produced an undetectable signal.

• Less than 2% of thorium nuclei may be in the isomeric state (contrary to [82]).

• The wavelength of the photons emitted from the decay of the isomeric state
may be shorter than 130 nm and therefore the photomultiplier would not be
sensitive for the photons.

• The coupling to the electronic environment of the absorbers or the uranium
source may lead to a rapid nonradiative decay of the energy of the isomeric
state to the solid.

• The lifetime of the isomeric state may not be in the range of the assumed
2–4 hours but rather in the range of minutes or shorter. A lifetime shorter
than 30 seconds could not be detected due to the time needed to transfer the
absorber from the uranium chamber to the detection vessel.

3.3 Spectral Analysis

A simpler approach to search for photons emitted from the isomeric state populated
in the α-decay of 233U to 229mTh is to measure directly the photons emitted from a
uranium source. Due to background radiation effects, spectral selection is necessary
to distinguish the photons produced in the decay of the isomeric state. Earlier
experiments [21,60,62] could not succeed in this task due to the wrong assumption
of scanning for a 3.5 eV photon and thus using equipment not appropriate for the
detection of a 7.6 eV photon.

A cooperation with the x-ray metrology department of the PTB5 offered the
oportunity to use a VUV-monochromator equipped with a Peltier cooled CCD
camera with 1300 · 1340 pixels . Due to the permitted limit of 10 kBq for 233U in the
monochromator, a different uranium source than that in the recoil experiment had
to be used. The α-spectrum in figure 3.3 revealed an unusual high contamination of
the uranium layer with the solvent used in the electrodeposition process, therefore
the new 233U source was produced by drying a uranium solution onto a silicon disc
with an activity of 10 kBq.

The acceptance of monochromator setting was 1.5 · 10−3, the quantum efficiency
of the CCD at 160 nm was about 20%. Therefore, the expected signal can be

5A. Gottwald and G. Ulm, Physikalisch-Technische Bundesanstalt, Working group UV and VUV
Radiometry
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Figure 3.11: Complete average over all measurements, averaging for 500 hours.
The observed signal was averaged over 1300 pixels per wavelength.

estimated with an activity of 10 kBq, 2% of the atoms in the isomeric state and
emission into a half-space to

Signal = 10 kBq · 0.02 · 0.5 · 1.5 · 10−3 · 0.2 = 0.06
photons

s
. (3.11)

The slit in front of the monochromator had a width of 2 mm, mapping the photon
emission of the isomeric state on a width of 50 pixel of the CCD. The CCD height of
1300 pixel results in expected signal of 0.0033 photons/pixel/h. Long measurement
and averaging times are necessary.

We recorded a signal for 500 hours with two different settings for the monochro-
mator, both settings covering a range from 115 nm to 260 nm. Unfortunately,
the background noise from the CCD was two orders of magnitude higher than
expected, making it impossible to distinguish a signal. The slightly higher count
rate in figure 3.11 at 160 nm is well within the statistical uncertainty and does not
allow to reasonably conclude a verification of the photons emitted by the decay of
the isomeric state.
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Thorium has one of the highest known boiling points at 4788 ℃ [83] and atoms
can not be evaporated by standard techniques. Instead of using an atomic oven,
a commercially available pulsed nitrogen laser was used to vaporize and ionize
thorium in one step by photoablation [84]. The production of 232Th+ and 232Th2+

as well as of most metal ions currently used in optical frequency standards or
quantum logic clock experiments with ion traps is shown using a time-of-flight
mass spectrometer.

The time-of-flight mass spectroscopy is an early arrival in the mass spectrometry
family [85] and was prominent in the field during the 1960s. The method was soon
displaced by quadrupole instruments with higher sensitivity and mass resolving
power, but the most significant reason for the failure of time-of-flight mass spec-
troscopy was the lack of technologies to facilitate the recording and processing of
the mass spectrum in the microsecond time-frame. These instruments are easily
obtained and operated nowadays and were used in our experiments to measure the
mass-to-charge ratio of various samples.

The time-of-flight experiments described in this chapter were preliminary tests
for the 229Th preparation and ionization. The knowledge gained from these exper-
iments was used to produce thorium ions and load them to a radiofrequency trap
(see chapter 5).

4.1 Setup and Time-of-Flight Principle

4.1.1 Photoablation

Photoablation is the process of removing material from a solid surface by irradiation
with a laser beam. It implies the interaction of a pulsed laser with the sample
surface, a sudden rising of the target temperature, the generation of a plasma and
the subsequent mass ejection [86]. The laser pulse intensity has to have a higher
energy than the ablation threshold intensity [87], which depends on different factors
such as wavelength, pulse duration and ablation material. Below this critical value
for the laser pulse intensity the number of ions emitted during a laser pulse is zero
due to insufficient energy in a pulse to overcome the intermolecular forces within a
volume and the dissipative effects of heat conduction and electronic-vibronic energy
conversion that remove energy from the illuminated volume [88].

36



4.1 Setup and Time-of-Flight Principle 37

Photoablation is categorized by two different regimes which are distinguished by
comparing the laser pulse duration with the characteristic time of electron-phonon
interaction. When the laser pulse duration is shorter than this characteristic time
(in metal: τe−p ∼ several picoseconds [89, 90]), the intensities are high enough
to break molecular bonds. The ablation threshold is smaller than that of longer
pulses and the ablation rate is increased. In contrast, using longer laser pulses
in the nanosecond-regime will not break intermolecular bonds. Laser ablation in
this regime will transfer the energy of the laser pulse to the solid and first heat
the material to the melting point and then vaporize atoms from the surface [91].
During the interaction the main source of energy losses is the heat conduction into
the solid target. First experiments with laser ablation and subsequent time-of-
flight mass spectrometry [92] or loading of ion traps [93] have been conducted with
high-power nanosecond lasers.

The ablation threshold for thorium is not known but can be approximated by
comparison with the threshold of other metals that are usually in the range of a
few 108 W

cm2 [94, 95] for nanosecond pulses.

N laser2

2 mm 470 mm 80 mm 46 mm

f=-100 mm f=50 mm f=75 mm

sample

Figure 4.1: Setup of ablation laser system

With the aim to obtain a simple experimental system, we use a nitrogen laser1

at a wavelength of 337 nm, a pulse energy of 170 µJ, a pulse width of 4 ns and a
repetition rate of up to 20 Hz for our experiment. Since the pulse width is longer
than the time of electron-phonon interaction, we will ablate 229Th by “thermal”
ablation. To obtain intensities higher than the ablation threshold, the nitrogen
laser had to be focused from a beam size of 2 mm · 8 mm created by the laser to a
spot of 100µm · 150 µm, using a setup as indicated in figure 4.1. Thus we obtain
a pulse intensity of 280 MW

cm2 and a pulse energy density of ≈ 1.1 J
cm2 , respectively.

1SRS NL-100
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4.1.2 Time-of-Flight

The essential principle of time-of-flight mass spectrometry is that a population
of ions moving in the same direction with identical kinetic energies but different
masses m and charges q will have a distribution of velocities which is inversely
proportional to

√

m/q. The ions gain their kinetic energy under the stimulus of
an electric field and begin their acceleration from rest at the same time and in the
same spatial plane normal to the acceleration vector. In the case of nonrelativistic
velocities, a time-of-flight experiment can be described with newtonian physics as
shown by the following equations.

To achieve a situation where a packet of ions will have the same kinetic energy,
a time-of-flight experiment is divided into 4 regions. At first, ions are produced
in a production region. The ion cloud is then moved by a small electric field to
the acceleration region. There the ions are sped up in a strong electric field and
gain most of their kinetic energy. All having approximately the same energy, they
are injected in the field-free drift region. The mass-to-charge resolution is mainly
obtained in this field-free region due to the constant velocities and thereby different
flight times for ions with different mass-to-charge ratios. Finally, after traveling
through this region, different arrival times will be observed in the detection region.

2 kV 1.9 kV ground ground -2 kV

production acceleration drift detection

ion cloud

repeller
plate

1 grid
st

2 grid
nd

3 grid
rd detector

(channeltron)

strong focussing
electric field

weak
electric field

strong
electric field no electric field

Edet
Ep Ea

10 mm 10 mm 1.25 m 10 mm

Figure 4.2: Setup of a time-of-flight experiment with voltages used in our exper-
iment



4.1 Setup and Time-of-Flight Principle 39

First consider an ion created in the production region as indicated in figure 4.2.
In the next equations, the indices p, a, d, det correspond to the production region,
acceleration region, drift region and detection region while F,E, l, t, v correspond to
the force, electric field, length of the region, time and velocity in the region denoted
by its index. First, for simplicity, the position s0 where the ion was created and
the initial velocity vo are neglected and it is assumed that the whole force of the
electric field Fp acts on the ion. It is accelerated in a small electric field Ep with

Fp = qEp = map ⇔ ap =
qEp

m
. (4.1)

The time tp needed for the ion to reach the first grid is

lp =
1

2

qEp

m
t2p ⇔ tp =

√

2lpm

qEp

(4.2)

and can be used to calculate the ion velocity

vp =
qEp

m
tp =

qEp

m

√

2lpm

qEp

=

√

2qEplp
m

. (4.3)

The ion enters the acceleration region with the velocity vp and is sped up to va,
taking the time

ta = −mvp

qEa

+
m

qEa

√

v2
p +

2qEala
m

(4.4)

to cover the distance sa between the first and the second grid. The division between
a production region and an acceleration region ensures a nearly identical energy
transfer to every ion since the main energy transfer is executed in the acceleration
region. The ion enters the field-free drift region and is not accelerated anymore
but only drifts with a velocity vd = va it has picked up from the energy transfer
from the electric fields to the kinetic energy Ekin. Assuming the electric field to be
homogeneous and produced by the potential differences in the production and the
acceleration region, the time td the ion needs to cover this region is

q (Eplp + Eala) = Ekin =
1

2
mv2

d ⇒ td =
ld
vd

= ld

√
m

2q(Eplp + Eala)
(4.5)

and thus the mass-to-charge resolution scales directly with the length of the drift
region. In our experiment, the drift region had a length of 1.25 m while all other
regions had a length of 10 mm. Finally, the ion enters the detection region and is
accelerated due to the electric field created by the channeltron, taking the time

tdet = − mvd

qEdet‖

+
m

qEdet

√

v2
d +

2qEdet‖ldet

m
, (4.6)
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to reach the detector, where Edet‖ denotes the electric field not produced by the
detector but the field along the path of the ion. Thus, the complete time t the ion
takes to reach the detector is

t = tp + tp + td + tdet ∼
√

m

q
. (4.7)

For an initial ion cloud with a spatial extension which is small compared to the
grids and the repeller plate, the electric field can be considered homogeneous and
in a good approximation can be set to E = U

l
, where U denotes the potential

difference in each region. Since the ion velocity is high when reaching the detection
region (for thorium ≈ 40 km

s
), a good simplification in this region for the calculation

is a homogeneous approximation as well in the form Edet‖ = Edet = Udet

ldet
.

The general formula for the flight time [96] is

t =

time in ion source
︷ ︸︸ ︷√

2m

qE

(√

Einit + qEl0 ∓
√

Einit

)

+

time in drift region
︷ ︸︸ ︷

ld

√
m

2 (Einit + qEl)
, (4.8)

where l0 is the distribution of the initial position in the production region, Einit

corresponds to the initial kinetic energy distribution, E = Ep + Ea and l = lp +
la. The term ∓

√
Einit denotes the time to turn-around when Einit points in the

opposite direction of the electric field (+
√

Einit) or the shorter time in the electric
field when Einit points in the direction of the field (−

√
Einit). This formula points

out all the different effects accounting for the decrease of resolution.
The movement perpendicular to the electric field is not changed in a homoge-

neous field. This transverse momentum causes the ions to spread out in the plane
orthogonal to the flight tube. To prevent the ions from hitting the wall of the flight
tube, steering plates and einzel lenses are usually used [97]. In our experiment a
15 cm long tube was introduced in the beginning of the drift region where the ions
are exposed to a inhomogeneous field when entering and leaving the tube. This
creates a situation comparable to an einzel lens and can be used to focus the ions
on the channeltron.

The pulsed nitrogen laser used in the experiment ensures an accurate temporal
and spatial point source. The uncertainties of the temporal distribution caused by
long ion cloud creation times and of the initial spatial distribution arising from
spatial extended ion clouds at creation time can therefore be neglected.

In contrast, the energy distribution caused by the initial velocity vectors during
the ion production can not be disregarded. This effect is closely related to the
initial spatial distribution due to the widening of the ion cloud in the production
region when ejecting the ions from the surface in a half-sphere. Ablated ions can
have velocities up to 10 km

s
[98] and will be ejected in different directions from the

surface with a maximal ejected ion flow perpendicular to the sample surface. The
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initial velocity vector determines the time the ions stay in the production region
and the energy they gain in this region. The ions with different energies have a
primary focal point where the faster but later ejected ions catch up with earlier
ejected but slower ions. Adjusting the grid voltages and spacing to control the
location of this point is called energy focussing [99] and decreases the influence of
this effect if the primary focal point coincides with the detector. The focal point
depends on the accelerating voltages and the length of the drift region. Adjustments
have been done on the voltages during the experiment to minimize the arrival
time distribution. The estimated mass error ∆m for thorium with flight times
tthorium ≈ 37 µs in atomic mass units u is

∆m

m
∼= 2∆t

t
⇒ ∆m ≈ 5 − 10 u . (4.9)

The time-of-flight mass spectrometry relies on homogeneous fields in the produc-
tion and acceleration region. As it will be seen in section 4.1.3, the sample holder
for the ablation samples acts as well as the repeller plate for the production region.
This leads to an inhomogeneous field distribution at the tip of the wires and causes
an uncertainty in the mass spectrometer resolution.

The energy distribution and the inhomogeneous field distribution in the pro-
duction region account for a reduced sensitivity of our time-of-flight experiment.
However, the resolution is still satisfactory to distinguish different elements and
charge states.

4.1.3 Experiment Conduction

The ablation samples were rods of different materials with a length of 5 mm and
a diameter of 1 mm. They were placed in a holder with 4 mm vertical spacing
between the samples in a vacuum cube (see figure 4.3). Evacuating the cube
to a pressure of 10−6 Pa establishes the conditions necessary for a time-of-flight
experiment (see section 4.1.2). The ablation sample could be chosen by moving
the laser and all lenses up and down in parallel (see figure 4.3). Focussing on the
target and alignment along the sample was solely done with the f=75 mm lens.
This system was used for ablation tests of different metals and thorium samples
prepared after various procedures (see section 4.2).

The channeltron2 with a gain of 107 was operated at a voltage of −2000 kV.
The signal was converted to a voltage using a transimpedance amplifier and was
measured with a digital oscilloscope3. A small fraction of the ablation laser beam
was detected by a photo diode and triggered the start of the oscilloscope. This
photodiode was used as well to measure the relative laser intensities.

2Burle 5901 Magnum electron multiplier
3Tektronix TDS520A storage oscilloscope
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Figure 4.3: Zoom into the production region of our time-of-flight experiment with
installed tungsten, aluminum and gold samples

The sample rods were mounted in a stainless steel holder that could hold up
to 5 different samples. The sample holder had a diameter of 25 mm and was
simultaneously used as repeller plate. This way the samples itself had a potential
difference of ≈ 100 V to the first grid. The grids were made from copper with
an open aperture of 87% and brazed on copper rings with a diameter of 25 mm.
The sample holder and the first and the second grid were mounted in the center
of a vacuum cube with 70 cm edge length. Two windows were mounted in the
ablation laser axis, three openings were used for high voltage feedthrough while
the last opening was connected to the flight tube. The third grid, similar to the
grids in the flight tube, was placed in a small tube at the end of the flight tube. It
was recessed in this small tube and mounted 10 mm in front of the channeltron,
making the flight tube completely field free by grounding the grid. The distance
between the second and the third grid was 1.25 m in this construction.

4.2 Thorium Sample Preparation

The experiments conducted in the time-of-flight setup are supposed to answer two
questions. At first, the conditions for laser ablation with the N2-laser of differ-
ent materials in general have to be investigated. The yield of singly and doubly
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charged ions as well as the oxide formation probability and the effect of surface
contamination has to be determined. Thereafter, conditions for producing 229Th
ions from a solution with regard to ion trap loading need to be examined.

Nearly all tested elements were metals and available as 1 mm thick rods. These
rods were cut to a length of ≈ 10 mm to fit into the sample holder where ≈ 5 mm
of the rods were inside the sample holder to fix the wires. All materials were
cleaned with acetone to remove surface contaminations. The tested silicon samples
were wafers that were cut and clamped in a phosphorus bronze sheet that could
be mounted in the sample holder.

Tests for the thorium yield have been conducted with a 232Th wire4 as well as
with a thorium solution5. Due to the high activity of 229Th it is not possible to
obtain or handle a solid 229Th sample. While a 1 mm thick and 1 cm long rod
of 232Th has an activity of 750 Bq and can be handled without shielding, a wire
of 229Th with the same dimensions had an activity of 1.3 GBq and is therefore
highly dangerous. The usage of small amounts of 229Th is inescapable and will be
available at the PTB as a solution with about the same concentration6 as the 232Th
solution used in the experiments. The chemical properties of 229Th and 232Th are
the same and allow risk free tests of laser ablation of 232Th from a solution.

The dissolved 232Th samples should satisfy different demands. On the one hand,
the thorium solution should be easily applied and precisely placed to the substrate.
On the other hand, the substrate should either resist the laser ablation by the
N2-laser or the produced ions should not be stored in the linear Paul trap described
in chapter 5.

Tested substrates for 232Th that could not be ablated by the N2-laser due to
higher required laser powers than available for cracking internal bonds were PTFE
(polytetrafluoroethylene) and Macor glass-ceramics. Metal substrates were alu-
minum and titanium, that can be ablated but not be stored due to the trapping
conditions, and gold, that can be ablated and stored (see section 5.4, figure 5.11).
Additionally, silicon was tested as a substrate, being the only non-metal material
that could be ablated.

Two different methods for applying the 232Th solution on the substrates were
tested, galvanic coating and drying out the solution. Galvanic tests were unsuc-
cessful due to unknown factors as choosing the adequate anode material or the
dissolution composition. Tests for electroplating thorium on a gold cathode pro-
duced a black veil on the surface where only a very small amount of thorium ions
could be detected. Additionally, galvanic coating requires a higher amount of dis-
solution than drying out a drop on the surface and does not allow to specify the
position of the coating but produces a layer on the whole substrate.

4Thorium wire, 1.0 mm thickness, 99.5% 232Th, purchased from Goodfellow
5Th AAS standard solution, 232Th 1 mg/ml, Th(NO3)4 in 5% HNO3, purchased from Alfa

Aesar
6Th(NO3)4 in 0.1 mol/l HNO3, 384 kBq/g
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Drying out the solution worked for different materials. A single drip of solution,
that corresponds to approximately 10 µg of 232Th was applied with a thin pipette
to the tip of the material. For soft metals like aluminum the tip of the substrate
was flattened to support an evenly drying. Prior to the dripping of the solution,
all materials were cleaned with acetone. The aluminum substrates were treated
with a sodium hydroxide (NaOH) solution to remove the sapphire (Al2O3) layer
on the surface. No difference was detected in the time-of-flight experiments for Al
substrates treated and untreated with NaOH, most likely due to the fast reaction
rate of the aluminum with the oxygen in the air and the subsequent reforming of
a visible tarnished Al2O3 layer within a few seconds.

During the drying process, the samples were heated to ≈ 50℃ to accelerate
the vaporization of the water in the aqueous solution. When the solution was
completely dried out, the substrate was either used directly in the TOF experiment
or aftertreated by placing it on a heating plate at 400℃ for about 30–60 s or in
a Bunsen burner flame for 3 s. The heating in a bunsen burner is known as
flaming pyrolysis [100,101] and causes a chemical transformation from the nitrate
into an oxide. Both heating methods were conducted to achieve higher adhesion
forces between thorium and the substrate. While the flaming pyrolysis lead to
blackened surfaces with an unstable thorium yield, heating the substrate on the
plate produced a thin white veil and increased the thorium yield by one order of
magnitude as shown later in this chapter in table 4.1.

4.3 Ablation of Thorium Ions

A typical time-of-flight signal is shown in figure 4.4. Using (4.7), it is possible to
distinguish different masses and charge states. The amount of produced thorium
ions can be estimated by integrating the signal curve and is in the range of 104–105

ions. By applying a countervoltage in the production region and increasing this
voltage until no ions can be detected on the channeltron, a maximum energy of
90 eV of ablated thorium ions is derived.

The analysis of the TOF signal of an ablated thorium wire shows a signal of Th+

with the maximum of the peak in good agreement with the calculated predictions.
A Th2+ signal is clearly seen as well, but no evidence of Th3+ at ≈ 19 µs is found.
This is observed as well for other metals, where singly and doubly charged ions
could be observed but triply charged ions were never detected (see table 4.2).

The desorbed surface layers are visible at ≈ 10 µs and the picture is repeated
in ablation measurements of every tested material. The peaks for water, nitro-
gen and oxygen are clearly visible and distinguishable since the mass error (4.9)
scales with the mass and therefore sharper peaks for lighter molecular ions are
created. At about 4µs the peak for H+

2 is visible, which is exceptionally small in
the measurement in figure 4.4 and usually matches the height of the nitrogen peak.
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Figure 4.4: Characteristic time-of-flight measurement of an laser ablated Th wire.

Since the linear Paul trap presented in chapter 5 is not stable for oxygen and
lighter elements, the minimization of these contaminations was not necessary and
the focus of the measurements was on the optimization of the laser ablation and
production of heavy ions.

The used N2-laser is close to the ablation threshold as it was mentioned in
section 4.1.1. By lowering the laser power, it was possible to get closer to the
ablation threshold and eventually produce laser pulses than could not cause any
laser ablation at all. The results for the laser power dependence of thorium are
shown in figure 4.5.

The laser power dependence was tested for gold and thorium. The results of gold
are similar to the plotted graph for thorium, but the influence on the production of
doubly charged ions can only be observed for thorium since no Au2+ was observed
in the experiments. The laser power was measured with an attenuated fraction
of the laser beam from the photodiode signal used for triggering the time-of-flight
experiment. This way, only relative measurements of the laser power were possible.
The absolute numbers in figure 4.5 are calculated based on these relative measure-
ments and assume a loss of 10% of the laser power at the coated lenses and the
uncoated fused silica window. The number of detected ions were normalized to the
number of Th+ with full laser power.

The detected ablation threshold for Th+ was ≈ 85 MW
cm2 and for Th2+ ≈ 130 MW

cm2 ,
which were the lowest powers where ions could still be detected. The reduction of
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Figure 4.5: Normalized graph of ablation laser power dependence, yield of Th+

at maximum power was set to 1.

produced Th2+ is already 50% when decreasing the laser power from 250 MW
cm2 to

245 MW
cm2 while the diminution for Th+ is 10% for this laser power decrease. This

indicates as well that the necessary laser power for producing Th2+ is higher than
for Th+. The curves provide an indication that using higher laser powers will lead
to higher ion yields for both Th+ and Th2+. Since the capacity of the linear Paul
trap that is loaded by laser ablation is limited and the ion trap is supposed to be
loaded with singly charged ions, it is not clear if the increase production of Th2+

when using higher laser powers would interfere with the loading of Th+ ions.

The tests for ablation of thorium from a solution are summarized in table 4.1.
As mentioned in section 4.2, 232Th(NO3)4 was tested on different surfaces. The
yields for drying the solution without treatment and heating and flaming the dried
solutions are compared.

Different properties are important when producing 229Th ions from a nitrate
solution for the loading of a Paul trap; the amount of produced ions, the ratio
of 229Th+ to 229ThO+ and the number of shots on the same spot that produces
thorium ions before it is necessary to ablate from a different part of the substrate.
Note that for every metal substrate, metal ions from the substrate could be detected
as well.

Galvanic coating was only tested on gold and aluminum. Both elements were
immersed in 5% nitric acid and 1 mg/ml of 232Th with different cathode materials
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substrate drying (50℃) flaming heating (400℃) galvanic

aluminum 200 2000 1000 100
silicon 100 1000 800
titanium 5 1000
tantalum 1000 0
gold 500 0
Macor 0 5
PTFE 5
glass fiber 0
graphite 0
fused silica 0
stainless steel 0

Table 4.1: Number of shots on the same spot producing thorium for different
coating methods of Th(NO3)4 on different surfaces.

and the coating was done at 2 V and a current of 100 mA maintained for 5–10
minutes. The cathode material with the best chemical properties was gold, all other
materials (stainless steel, tantalum, copper) corroded in the acid. No thorium was
found on the galvanic treated gold anode. It was possible to detect thorium on the
aluminum anode, but the amount of thorium ablated per shot was very weak. Due
to the small amount of detected ions, the uncontrollable area of the coating and the
high amount of thorium solution necessary for galvanic coating, this method was
not followed and therefore not considered for further tests for different substrate
materials.

When drying the solution on different substrates, every substrate was cleaned
with acetone before treatment and heated to approximately 50℃ to decrease the
time necessary for evaporating the nitric acid. The amount of produced thorium
ions per laser pulse was similar for substrates with the highest yields and Al, Si, Ta,
Ti, Au would produce ≈ 10% of the amount of Th+ ablated from the thorium wire
with the first laser pulse. The amount of Th+ decreases with every shot and the
maximum number of pulses on the same spot where thorium could still be detected
is listed in table 4.1. Even if the flaming pyrolysis produced samples with a thicker
thorium layer where thorium could be ablated longer, the ratio of Th+ to ThO+ is
better for samples heated on a heating plate, where most of the detected ions are
Th+ ions and in the flaming pyrolysis most of the detected ions were ThO+ ions.
Additionally, even if the substrates were held in a clean flame for only 2–3 seconds,
the surface showed sooted regions.

As seen in table 4.1, heating the substrate on a heating plate or in a flame
increased the total thorium yield substantially, with tantalum being the only ex-
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ception where thorium could solely be detected when it was dried on the surface
at low temperature.

The material showing the best properties for laser ablation of a dried thorium
solution from a surface was aluminum that was heated to approximately 400℃

for one minute. It produces a big amount of aluminum ions as well but since
these ions have a weight of 27 u, they cannot be trapped in the linear Paul trap
and therefore will not disturb the trap. The light weight of aluminum is one of
the biggest advantages over gold and tantalum with a weight of 197 u and 181 u,
respectively. They will produce metal ions in the stable regime of the Paul trap
and can therefore be trapped. Aluminium will not possess this disadvantage.

4.3.1 Laser Ablation Ion Production of different Metals

The most important elements nowadays used in ion trap experiments were tested
and the results and yields for the different charge states as well as the oxides are
noted in table 4.2. PTFE and Macor are not included in the table since no ions
could be detected. When testing Macor with a dried Th(NO3)4 solution, it was
observed that the whole material could be lighted with the laser and the ceramics
was glowing blue. This points out the scattering of the laser light in the Macor
and indicates that the ablation was not successful due to the distribution of the
laser energy in a big volume and therefore not reaching the ablation threshold in
the Macor or the dried thorium on the surface.

at. no. element 1+ oxide 1+ 2+ oxide 2+

13 aluminum Al 0.51
14 silicon Si 0.80
20 calcium Ca 4.73 0.98
29 copper Cu 1.06
38 strontium Sr 1.44 2.98 0.20
42 molybdenum Mo 0.58 0.10
49 indium In 1.79
70 ytterbium Yb 0.80 5.45 0.32
73 tantalum Ta 0.74
74 tungsten W 0.37
79 gold Au 0.58
90 thorium Th 1.00 0.27

Table 4.2: Relative ablation strengths of different elements and ionization states,
normalized to the yield of Th+, J=250MW

cm2 .

Considering ablation in the nanosecond-regime a thermal process related to heat-
ing, neglecting differences in absorption, heat conductivity and surface roughness,
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it is appropriate to plot the dependence of the ablated material from the evapora-
tion heat. Figure 4.6 shows a possible way to subsume the results for all ablated
materials.
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Figure 4.6: Overview of the amount of all ablated ions including oxides and dou-
bly charged ions and their boiling temperatures.

For this graph, the amount of all detected ions including doubly charged ions and
ionized oxide molecules were summed to obtain a total number for the amount of
detected ions. It can be seen that metals with a lower evaporation heat (and thus
lower boiling temperature) have a higher yield of ablated ions. When comparing
figure 4.6 with table 4.2 it can be noticed that the tested metals with a lower heat
of evaporation, namely ytterbium, strontium and calcium, are the ones producing
a high amount of oxides and hence figure 4.6 is only correct direct after focussing
the ablation laser on a new spot. The total amount of these ions decreases when
cleaning the surface as seen in figure 4.8 and will adapt to the yields of all other
metals in this process. Furthermore, it can be seen that the laser ablation works
for metals in a wide range of evaporation energies and the method can therefore
be used to produce ions without the need for high temperatures in an atomic oven.
Silicon as the only tested semiconductor could be ablated as well while PTFE needs
higher laser intensities to break the molecular bonds.



50 4 Laser Ablation Ion Production

4.3.2 Oxidized Samples without prior Surface Treatment

The composition of the detected ions showed a high share of oxides for Sr and
Yb as shown for strontium in figure 4.7. The used metal samples were heavily
oxidized due to exposure to air and usually have to be handled in a protective gas
atmosphere to avert the formation of oxide layers. The black curve denotes the
detected signal right after focussing on a new spot of the Sr sample. The amount
of detected SrO+ ions is twice the amount of Sr+ ions. Doubly charged SrO2+ ions
are detected as well, but no evidence of non-oxide doubly charged Sr2+ is found.

Figure 4.7: Removal of strontium oxide with multiple shots on the same spot.

Repeated laser pulses on the same spot decrease the amount of detected SrO+

and SrO2+ ions significantly until no oxide ions are detected after approximately
1000 shots in the case of strontium. The amount of ablated Sr+ is nearly constant
in this process and corroborates the belief that the oxide ions are ablated directly
from the surface of the metal and are not produced during the ablation process in
the created plasma.

Figure 4.8 shows the number of oxide ions in the produced ion ensemble and
the dependence of the number of laser pulses on the same spot for strontium and
ytterbium. Both metals can be cleaned from the oxide layer effectively without
adjusting the focal point of the laser. The reason for the higher amount of pulses
necessary to clean the strontium surface completely than necessary for ytterbium
can very likely be found in the high reaction rate of strontium with oxygen. It
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Figure 4.8: Ion and oxide ion concentration of a) strontium and b) ytterbium.
Both metal surfaces can be cleaned by repeated laser pulses on the
same spot until the oxide layer is completely removed.

creates a clearly visible white film of SrO on the surfaces when stored in an oxygen
containing atmosphere. The higher reaction rate of Sr compared to Yb creates a
SrO layer that is thicker than the YbO layer and more laser pulses are necessary
for strontium to remove this layer than for ytterbium.

The approach of cleaning the surface with multiple laser ablation pulses prior
to an actual experiment is an effective method to investigate and load ion traps
with highly reactive elements. Usual experiments with strontium require careful
cleaning and handling procedures in an protective gas atmosphere to prevent the
material from forming an oxide layer when exposing it to air. When using laser
ablation for loading an ion trap with strontium, the setup can be prepared without
the precautions and Sr+ can be produced after removing the surface layer by laser
ablation.
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In 2007, the γ-spectroscopy measurements of Beck et al. determined the energy of
the isomeric state at 7.6 ± 0.5 eV (2.14) and thus shifted the range for expected
photons produced in the decay to the ground state from the near ultraviolet to the
vacuum ultraviolet (VUV) region. This value was higher than the ionization energy
for Th+ and as well higher than the band gap in all thorium compounds. Hence it
it necessary to develop a new scheme for excitation of 229mTh and detection of the
produced photons. Working with thorium ions in vacuum is a promising approach.

Storing 229Th in a ion trap avoids all the restrictions of earlier experiments.
Whilst a Penning trap [102] overlaps a static quadrupole field and a static homo-
geneous magnetic field, a Paul trap [103] relies exclusively on an alternating high
frequency electric quadrupole field to trap ions. Due to the expected small exci-
tation rate (see section 2.1.3) and the small resonance width of the isomeric state
(see section 2.1.8), it is beneficial to trap many ions for spectroscopy experiments.
Since a Penning trap requires a strong magnetic field inducing a Zeeman splitting
to the electron shell [104] and therefore forbids undisturbed measurements, a linear
Paul trap was set up for spectroscopy experiments with 229Th.

The production of Th+ ions by laser ablation necessary for operating a radiofre-
quency trap has been described in chapter 4. We designed a linear Paul trap,
loaded and stored up to 105 ions and performed laser spectroscopy on the strong
resonance line of Th+ at 401.91 nm.

5.1 The Linear Paul Trap

The operation principle of a radio frequency ion trap is explained in a wide range of
books (e.g. [105]) and articles (e.g. [106]). This chapter will focus on the essential
characteristics of a Paul trap and emphasize the attributes of a linear radiofre-
quency (RF) trap.

To confine ions in an electric field in vacuum with harmonic particle movements,
a quadrupole potential in the general form

φ(r) =
U

2r2
0

(α1x
2 + α2y

2 + α3z
2) (5.1)

is necessary, where U is the voltage, r0 is the distance from the center to the
electrodes and r

2 = x2+y2+z2 in cartesian coordinates. In a charge-free space, the

52
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Laplace equation ∆φ(r) = 0 enforces the condition Σiαi = 0. While the solution
α1 = α2 = 1, α3 = −2 results in a three-dimensional quadrupole potential, a
two-dimensional quadrupole potential as needed for a linear Paul trap is created
by choosing α1 = 1, α2 = −1, α3 = 0. The resulting shapes of the quadrupole
potential are compared in figure 5.1.

a) b)

z
y

x

Figure 5.1: Equipotential surfaces of a static a) three-dimensional and b) two-
dimensional quadrupole potential. Repulsive surfaces are marked in
red, attractive in green.

Even though this two-dimensional potential is attractive in one dimension, it is
repulsive in the second dimension and therefore excludes the possibility of obtaining
an ion trap by using only static electric fields. However, if the quadrupole potential
is periodic in the form

φxy(x, y, t) = (UDC + URF cos Ωt)
x2 − y2

2r2
0

(5.2)

with UDC and URF being the static DC voltage and the amplitude of the time-
dependent RF voltage respectively, a dynamic trapping in the x- and y-direction
can be achieved by alternating repulsive and attractive electric forces. This princi-
ple of a linear Paul trap is adapted from the electric quadrupole mass filter [107].
The electrode configuration creating this dynamic quadrupole entrapment is shown
in figure 5.2.

When choosing the correct parameters and initial conditions, the ion is trapped
inside the x-y-plane but not along the z-axis. In order to achieve trapping along
this still field-free axis, further changes are inevitable. This can be done with
different configurations, for example adding electrodes to this third axis or closing
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opposing quadrupole electrodes at the end. Because this would block the optical
access along this axis, we have chosen a configuration known as a segmented linear
Paul trap as shown in figure 5.2. The radiofrequency is applied to all segments but
is superimposed with an additional electric field produced by a voltage UEC in the
end segments, reducing the trapping region to the middle section.

2z0

2r0

x
y

z

U cos tRF Ω

middle
section

end
section

end
section

Figure 5.2: Sketch of a segmented linear Paul trap. r0 and z0 are the lengths
from the Trap center to the end of the electrodes.

The static potential produced by this additional voltage UEC can by approxi-
mated using a multipole expansion. The dipole term cancels out in this expansion
due to the symmetry of the electrodes and the quadrupole term is the dominant
one. When the length of the middle section is sufficiently long, the potential can
be treated as harmonic in the trap center and higher orders of the expansion can
be neglected [108]. This creates an axial potential φz(r) that is superimposed with
the radial potential φxy(x, y, t) and the complete linear trap quadrupole potential
φ(r, t) reads

φ(r, t) = φxy(x, y, t) + φz(r) = φxy(x, y, t) +
κUEC

z2
0

(

z2 − x2 + y2

2

)

, (5.3)

where κ (< 1) is a geometrical factor and z0 denotes the distance along the z-
axis from the trap center to the end electrodes. The parameter κ represents the
quadratic expansion coefficient of the multipole expansion and depends solely on
the geometry of the trap. The approximation for the axial potential is comparable
to the axial confinement created in a static three-dimensional quadrupole potential,
where the solution of the general form (5.1) leads to the parameters α1 = α2 = −1
and α3 = −(α1 + α2) = 2.
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The equations of motion for an ion with mass m and charge e in a potential
φ(r, t) are calculated easily from this potential using F (r, t) = −e∇φ(r, t):

m
d2

dt2
x+e

(
(UDC + URF cos Ωt)

r2
0

)

x−e
κUEC

z2
0

x = 0 (5.4a)

m
d2

dt2
y−e

(
(UDC + URF cos Ωt)

r2
0

)

y−e
κUEC

z2
0

y = 0 (5.4b)

m
d2

dt2
z +e

2κUEC

z2
0

z = 0 . (5.4c)

This set of equations can be a transformed in the form of a Mathieu equation,
that is well-known in mathematical physics [109]. Introducing dimensionless pa-
rameters one obtains for the equations of motion

d2

dτ 2
u + (au + 2qu cos 2τ) u = 0 , u = x, y, z (5.5)

with the stability parameters

ax =
4e

mΩ2

UDC

r2
0

− 4e

mΩ2

κUEC

z2
0

(5.6a)

ay = − 4e

mΩ2

UDC

r2
0

− 4e

mΩ2

κUEC

z2
0

(5.6b)

az =
8e

mΩ2

κUEC

z2
0

(5.6c)

qx = −qy =
2e

mΩ2

URF

r2
0

(5.6d)

qz = 0 (5.6e)

τ =
Ω

2
t . (5.6f)

In order to achieve stable ion trapping, it is necessary to find solutions of the
Mathieu equation with bounded amplitudes for ũ = x, y. The stability of this
solution is characterized by the parameters aũ and qũ and does not depend on
the initial conditions. Since the Mathieu equations are independent in x- and y-
direction, the (aũ, qũ)-plane is divided into stable and unstable regions for both
directions. To obtain overall stability we have to focus on the overlapping region of
x- and y-stability. The first stability region is plotted in figure 5.3 and has stable
solutions for |qũ| < 0.908 [110] at a = 0.

To deduce the frequencies of the ion motion inside the trap, the general solution
of the Mathieu equation

u(τ) =
∞∑

n=−∞

c2n,u

(
Au eı(βu+2n)τ + Bu e−ı(βu+2n)τ

)
(5.7)
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Figure 5.3: Overall stability diagram for the two-dimensional quadrupole field
(with UEC = 0) and zoom into the lowest region for simultaneous
stability in x- and y-direction.

is needed. While the βu and c2n,u are functions of au and qu, the Au and Bu depend
exclusively on the initial conditions. The stable solutions as shown in figure 5.3
are obtained when βu is a real number, hence from (5.7) the frequency spectrum

ωn,u = (βu + 2n)
Ω

2
, n = 0,±1,±2, . . . (5.8)

is determined.
A good approximation for the ion motion is known as the adiabatic solution,

where only the first order solutions (n ∈ {0,±1}) of the series expansion for ωn,u

are taken into account. Since the adiabatic solution disregards higher order terms,
it is only a good approximation for small values |au| < qu < 1. Equation (5.7)
can be simplified by combining (5.6f), (5.8), c−2,u = c2,u = −qu c0,u

4
[102] and ρu =

c0,u

√

A2
u + B2

u [105] to

u(t) = ρu cos ωps,ut
(

1 − qu

2
cos Ωt

)

(5.9a)

= ρu cos ωps,ut
︸ ︷︷ ︸

secular motion

− (ρu cos ωps,ut)
qu

2
cos Ωt

︸ ︷︷ ︸

micromotion

(5.9b)

= usec(t) + umicro(t) , (5.9c)
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Equation (5.9b) can be separated into a fast oscillation driven by the trap driving
frequency Ω, called micromotion, and a slow motion with the secular frequency

ωps,u =
Ω

2
βu (5.10)

around the trap center. The secular parameters βu are derived from equation (5.7)
by comparison of coefficients as a continuous fraction and can be approximated in
the adiabatic solution for small |au| and qu [104] to

βu
∼=

√

q2
u

2
+ au ⇒ ωps,u =

Ω

2

√

q2
u

2
+ au . (5.11)

The secular motion can be treated as a motion in a pseudopotential Ψ(r) created
by the time-averaged quadrupole potential. Thereby, the secular frequency ωps,u

can be interpreted as the frequency of a harmonic oscillator in a static effective
potential created by averaging over one period 2π

Ω
of the quadrupole potential

φ(r, t) [111]. The equations of motion then read

d2

dt2
u = −ω2

ps,uu = − e

m

d

du
Ψ(r) (5.12)

and lead to the well known solution of the potential of a harmonic oscillator. The
pseudopotential can be deduced from (5.12) to

Ψ(r) =
m

2e

(
ω2

ps,xx
2 + ω2

ps,yy
2 + ω2

ps,zz
2
)

. (5.13)

The depth of this pseudopotential can then be expressed as the work that is
needed to move an ion from the center of the trap to the end u0 of the electrode:

Du = −e

∫ u0

0

dΨ(r)

du
du = −

mω2
ps,uu

2
0

2
, u0 =

{
r0 u = x, y
z0 u = z

. (5.14)

It is possible to derive the values for the secular frequencies ωps,u using (5.11)
and the stability parameters au and qu in (5.6). While the movement of the ion
along the z-axis is solely caused by the potential produced by the voltage UEC in
the end segments, the secular frequencies along the x- and y-axis depend on URF ,
UDC and UEC . The radial secular frequencies will be degenerated for UDC = 0:

ωps,x =

√

e2 U2
RF

2m2 Ω2 r4
0

+
eUDC

mr2
0

− eκUEC

mz2
0

=

√

ω̃2
ps,x −

ω2
ps,z

2
(5.15a)

ωps,y =

√

e2 U2
RF

2m2 Ω2 r4
0

− eUDC

mr2
0

− eκUEC

mz2
0

=

√

ω̃2
ps,y −

ω2
ps,z

2
(5.15b)

ωps,z =

√

2eκUEC

mz2
0

, (5.15c)
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where ω̃ps,u denotes the secular frequency in a linear mass spectrometer [107],
that is to say a two-dimensional Paul trap without UEC offset in the trapping
region. The radial components of the end section potential have to be added
to the two-dimensional quadrupole potential and lead to a decrease of the radial
secular frequencies and a weakening of the radial pseudopotential.

The complete pseudopotential can be derived from (5.13) and (5.15) to

Ψ(r) =
e U2

RF

4m Ω2 r2
0

x2 + y2

r2
0

+
UDC

2

x2 − y2

r2
0

+
κUEC

2

2z2 − x2 − y2

z2
0

(5.16)

in a form closely related to (5.3) but is noted by the ion as a static potential.
The maximum density ρion of ions that can be stored inside the trap is reached

when the space charge potential created by the ion cloud and given by the Poisson
equation equals the pseudopotential depth [104]. Using (5.13) and the space charge
density ρ = −eρion for positive ions, the relation

∆Ψ(r) =
m

e

(
ω2

ps,x + ω2
ps,y + ω2

ps,z

)
= − ρ

ǫ0

= e
ρion

ǫ0

(5.17)

is obtained. Applying the secular frequencies (5.15) to equation (5.17), the ion
density

ρion =
ǫ0 · U2

RF

m · Ω2 · r4
0

(5.18)

is calculated. The influence of UDC and UEC cancels out since these values do not
change the overall potential depth but only deform the pseudopotential and the
resulting shape of the ion cloud.

It was originally common practice to shape the inside surfaces of the trap elec-
trodes to approximate, as far as possible, the hyperbolic equipotential surfaces
shown in figure 5.1. This was mainly done in order to simplify the theoretical
predictions of the field distribution. It was early recognized that any electrode
geometry which produces a saddle point in the equipotential surfaces would have
the quadratic potential in the neighborhood of that point in a good approximation
of the form derived in this chapter [112].

Strictly speaking, the derived equations apply only to a single ion. For multiple
trapped ions the Coulomb interaction has to be taken into account. When cooling
the ion cloud to a temperature where their kinetic energy is lower than the en-
ergy from the Coulomb interaction, a quasi-crystalline structure would be formed,
adding additional lattice vibrations to the equations of motion [113]. Since the
temperature in our experiment is decreased by buffer gas cooling (see section 5.2.1
and figure 6.5) to temperatures orders of magnitude higher than the temperature
for forming a quasi-crystalline structure, the influence of Coulomb crystals is neg-
ligible and the Coulomb interaction is only important in equation (5.18) for the
calculation of the maximum number of ions that can be stored inside the trap.
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5.2 Experimental Setup

The principle of ion traps developed in section 5.1 and the experiments for thorium
ion generation in chapter 4 needed to be adapted to a setup that allows to create,
store and detect thorium ions. To establish a stable and undisturbed storage of
an ion cloud and prevent the ions from chemical reactions with oxygen or other
compounds, working in ultra-high vacuum and designing the setup for a pressure
of at least 10−8 Pa is necessary. The properties of the thorium experiment are
described in the following subsections.

5.2.1 Ion Trap and Vacuum System

The segmented Paul trap is constructed to store as many ions as possible and
is therefore large compared with other linear Paul traps. The middle section for
storage of the ions is 20 mm with an overall length of the three segments of 160 mm
as shown in figure 5.4. The long end sections are necessary to provide an access for
the ablation laser as explained later in this section. The ratio between electrode

Macor
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CuBe-Holder
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connectors
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end
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10 mm
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Figure 5.4: Design of the linear Paul trap and the sample holder. All dimensions
in mm.
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radius re and trapping region radius r0 was chosen to

re

r0

= 1.147 (5.19)

to ensure the best approximation to a quadratic RF potential in the x-y-plane [114].
The trap electrodes are made of copper-beryllium1 (CuBe) and consist of three

parts as shown in figure 5.5. The inner part with a length of 180 mm forms
the middle section and provides the support for the loading and the end section
electrode sleeves. Insulating spacers are made from Macor and placed close to the
middle section and on the end of the middle part to fix the sleeves in their position.
The inner part of the sleeves has an edge that forms an inset to hold the Macor
and the sleeves in place. By applying a matched edge to the Macor spacer, the
distance between middle and outer sections could be controlled and was adjusted
to be 0.1 mm. This double-edge construction completely hides the Macor in the
outer sleeves and avoids exposure of any insulating material to the trap center.

MacorMacor Macor

Macor holder connection
high-voltage
connection

Figure 5.5: Design of an electrode.

The outer electrodes are held in place with titanium nuts screwed in threads
on the end of the inner part that presses against the outer Macor spacers. This
way, the middle part is completely insulated from the outer electrodes. A small
outfacing hole at the end of the outer electrodes allows evacuating the hollow space
in the sleeve. An extension on one side of the electrode provides the high-voltage
connection to the middle section. Therefore, no wire connections are necessary to
be mounted directly to the middle section, leaving the electric field in the middle
section undisturbed.

The electrodes are mounted on Macor holders at both ends of the trap. Different
curvatures of the Macor holder and the electrodes assure identical adjustment in the
corners of the Macor holder by adduction with a CuBe setscrew to the corners of the
Macor holder to support the electrodes on two lines. The high-voltage connectors
are mounted on the other side of this setscrew as indicated in figure 5.4. The
Macor holders are mounted on two copper-beryllium rods which are attached to
the vacuum chamber in the middle of the rods. Using the same CuBe material

1CuBe 2 Pb W.Nr. 2.1248. CW 102.C, purchased from Brush Wellmann Gmbh
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for the electrodes and the Macor holder connections assures the same coefficient of
thermal expansion during the heating and cooling process of the vacuum chamber
for all parts of the ion trap and protects the trap from thermal induced tensions
during this process.

The ablation targets are installed in a sample holder that can hold two different
1 mm wire samples. The sample holder is fixed with insulating Macor spacers
on the copper-beryllium holders and is connected to an external power supply
to have the opportunity of adding a DC offset. The ablation laser is focused
from the opposite side of the trap and the laser beam passes through the gap
between the upper electrodes. To increase the ablation surface, the samples are
bend 90 degrees to face each other (see figure 5.4), placing the ablation surface
on the centerline between the lower electrodes. The position of the sample holder
is chosen with respect to the viewports mounted in the vacuum chamber. The
flanges for the calcium fluoride and the fused silica windows on top required a
spacing that enforced the loading section length of 80 mm and the mounting of the
sample holder at the end of the loading section.

The high-voltage supply connections are 1.2 mm thick silver-coated copper wires
mounted sufficiently far away from the trap and the chamber surfaces to minimize
the stray capacitance. Near the connectors to the trap they are shielded with
ceramic isolators to protect the wires from short-circuits as seen in figure 5.6.

Figure 5.6: Linear Paul trap with connections.

The vacuum chamber is designed to provide six viewports for laser interaction
with the ion cloud. Additional six feedthroughs are necessary for the electrical
connection of all parts of the trap, the channeltron2 and the pressure gauge. The

2Burle 5901 MAGNUM electron multiplier for pulse counting
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height of the chamber is chosen with respect to the focussing length of the ab-
lation laser (see figure 4.1) and the need for small distances between the trap
center and the photomultiplier imaging setup (see section 6.1). The bottom of the
chamber additionally needs connections for the turbomolecular pump, the NEG
(Non-Evaporable Getter) pump3 and the buffer gas inlet. The chosen design has
an inner diameter of the vacuum chamber of 325 mm with a height of 46 mm as
shown in figure 5.7. The chamber is made from stainless steel4 with a very low
permeability to avoid magnetic field influences on the trap.
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ablation lens
holder
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linear ion trap
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photomultiplier
imaging setup
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Figure 5.7: Ultra-high-vacuum chamber for the linear Paul trap.

The two feedthroughs along the trap axis are equipped with Brewster angle
viewports5, the residual four viewports are made from fused silica6. Three electrical

3CapaciTorr D 400-2, CF35, ZrVFe alloy composition
4stainless steel, material 1.4429-ESU, vacuum tempered, residual permeability µr ≤ 1.004,

custom-made product purchased from Reuter Technologies
5quartz Brewster windows, purchased from Bomco, Inc.
6Vacom fused silica spectrosil 2000 viewport, uncoated, non-magnetic, metal-braced, aperture

38 mm
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feedthroughs are mounted next to each other on one side of the chamber and
provide the high-voltage driving frequency as well as the DC offset voltage for
segments of the linear trap (see figure 5.10). The remaining flanges are equipped
with an electric feedthrough for low voltages, a high-voltage feedthrough for the
channeltron power supply and a cold-cathode pressure gauge7, respectively. All
these flanges have CF35 connections. The top of the chamber, containing a CaF2

window and the fused silica window for the ablation laser beam, is closed with a
CF300 seal.

The fused silica (apertureÂ 33 mm) and the calcium fluoride (apertureÂ 23 mm)
windows on top and on the bottom of the chamber are mounted in especially
designed deepenings in the chamber to obtain the closest possible distance to the
trap. They are sealed with helicoflex8 seals that can be used in direct contact with
a glass surface.
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Figure 5.8: Vacuum system for the ultra-high vacuum chamber

The turbomolecular vacuum pump9 is connected to the bottom of the chamber
with a CF100 flange. To decouple the vibrations of the turbo pump from the
chamber, a membrane bellow is installed in between the chamber and the pump.
To maintain proper decoupling, the height of the turbo pump was adjusted to the
neutral position of the membrane bellow. The turbomolecular pump had to be
mounted on steel plates with a weight of 100 kg to prevent the turbo pump from
being drawn upwards and squeezing the membrane bellow. The pump is connected

7Varian Inverted Magnetron Gauge for UHV
8Helicoflex-HNV-100-30.00-34.88-2.44-Cuivre, delta-shaped, purchased from Garlock France
9Varian Turbo-V 551 Navigator, base pressure < 10−8 Pa
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to a roughing pump10 and a nitrogen supply for oxygen-free flooding of the chamber
prior to opening.

The NEG pump is a getter pump especially designed to remove impurities like
water and hydrogen from a vacuum chamber but does not bind any noble gas. It
is installed in a flange designed for this pump and works without power supply
after activation by heating to 450℃. The getter material does not interact with
the helium used as a buffer cooling gas and allows to improve the final pressure by
two orders of magnitude to a pressure of 10−8 Pa. The inlet for the buffer gas is
positioned at the bottom of the NEG pump flange to allow the helium to sweep
along the NEG pump during the inflow of the gas and being cleaned in this process.

The buffer gas system is build to provide a clean helium supply and a constant
pressure and flux of the buffer gas. To ensure this, a helium reservoir is built
that can be pumped with a turbomolecular pump to a pressure of 10−6 Pa. After
evacuating a 30 l tube working as the reservoir, it is filled with clean helium11. The
helium passes to a flow-through gas purifier12 that is connected with a swagelok
sealed stainless steel tube to a sapphire leak valve13 at the NEG flange as shown
in figure 5.8.

focussing lens

sample

10°

Figure 5.9: Laser ablation of a thorium sample at atmospheric pressure.

First adjustments of the ablation laser were done on the open vacuum chamber
where ablation could easily be observed as a violet spot on the sample as seen in
figure 5.9. Due to the longer optical path of the laser in the fused silica window
in the top of the chamber, the focal point of the lens had to be readjusted after

10Varian DS 302 rotary-vane pump, ultimate total pressure 2 · 10−1 Pa
11helium 6.0, purity > 99,9999%
12Pure Gas Products MC1-902FV
13Varian model 951-5100, controllable leak down to 2 · 10−8 Pa-liter/s
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the chamber had been closed. This luminescence was visible under vacuum as well
and was therefore used for adjusting the ablation laser.

The focusing lengths for the N2-laser were determined in chapter 4 and are
shown in figure 4.1. Since the ablation window was mounted on top of the vacuum
chamber, an adjustable ablation lens holder was mounted above this windows,
deflecting the N2-laser beam 90 degrees into the vacuum chamber as shown in
section 6.1 in figure 6.2.

5.2.2 Electronic Setup for Storage and Detection

According to (5.2) and (5.6d), the choice of radiofrequency depends on the maxi-
mum obtainable amplitude and the aimed q-factor. The optimum trapping condi-
tions for the highest density of trapped ions are faced with competing effects [115].
While the maximum number of trapped particles increases with the potential depth
(5.25), the amplitude of the micromotion (5.9b) increases at the same time and
leads to a higher loss of trapped ions. Hence, the maximum ion number is expected
in a region around the center of the stability diagram in figure 5.3 and ought to
stay at q ≈ 0.4. The high-voltage power supply was checked up to 1.2 kV but was
usually set to an RF amplitude of 900 V. Setting the working point to this q-factor
and RF amplitude, the frequency for the storage of 232Th corresponds to

f =
Ω

2π
=

1

2π

√

2e · URF

m · r2
0 · q

≈ 2 MHz . (5.20)

With these values the ion density ρion deduced in (5.18) can be calculated to

ρion =
ǫ0 · U2

RF

m · Ω2 · r4
0

≈ 5 · 1014 1

m3
, (5.21)

hence the expected storage capacity in the middle section is approximately 5 · 105–
1 · 106 ions.

The driving frequency was generated with a function generator14 and pream-
plified with a high frequency amplifier15. With a ferrite16 toroid transformer, the
voltage of the preamplifier was increased by a factor of more than 40. The input of
the transformer was matched to the 50 Ω output of the preamplifier. The complete
electrical scheme is shown in figure 5.10. For computer control of all DC potentials,
a buffered USB-D/A-converter was used.

14Agilent 33210A arbituary function generator
15Kalmus Wide RF Amplifier, Modell 112 C, 1-120 MHz, 25 Watts, 45 dB gain
16NiZn ferrite, outside diameter 90 mm, inside diameter 50 mm, thickness 13 mm, purchased

from National Magnetics Group
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Figure 5.10: Complete electrical scheme for the trap drivers and the electronic
detection of the induced secular motion for the linear Paul trap.

For the electronic detection it is necessary to determine the expected pseudopo-
tential frequencies. The axial secular frequency ωps,z = ωz in (5.15c) calculates
with the given parameters and a maximal geometry factor κ = 1 to

fz =
ωz

2π
=

1

2π
·
√

2e · κ · UEC

m · z2
0

= 45.9 kHz , (5.22)

where UEC = 10 V. The secular frequency ω̃ps without static DC offset applied to
the electrodes (implying ω̃ps,x = ω̃ps,y = ω̃ps) and URF = 700 V is

f̃ps =
ω̃ps

2π
=

1

2π
·
√

e2U2
RF

2m2Ω2r4
0

= 212.5 kHz (5.23)
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and the radial secular frequency is according to (5.15a)

fps =
ωps

2π
=

1

2π
·
√

ω̃2
ps −

ω2
z

2
= 209.9 kHz . (5.24)

The excitation of the ion cloud was done on a secular frequency sideband with the
frequency Ω + ωps to obtain a better signal-to-noise ratio than with the excitation
directly with ωps [116]. The induced voltage from resonantly excited ions can be
detected at ωps as shown in figure 5.10.

With the frequency (5.24), the pseudopotential well in radial direction (5.14)
can be calculated to

dr =
m · ω2

ps · r2
0

2
= 26 eV (5.25)

and indicate the maximal DC voltage that can be applied to two opposing middle
electrodes before losing the ions.

5.3 Resonant Electronic Detection

Several different methods exist to characterize ion traps. The electronic detec-
tion [102,105,117] is a nondestructive method that can be used to study the trap-
ping of ions without emptying the trap by exiting the ions resonantly. The resonant
ejection of ions relies on the same principle but ejects the ions from the trap and
counts them in a channeltron. Since measuring the secular frequencies is the main
objective of the resonant ion ejection in this section, the complete channeltron de-
tection scheme will be demonstrated in section 5.4. The feasibility of counting ions
with a channeltron after they are released from the trap is sufficient to understand
the ideas presented in this section.

At a RF amplitude of URF = 900 V and a = 0, the trap can have stable solutions
for singly charged ions heavier than molybdenum with a mass of 96 u. The q-factor
of molybdenum would be qMo = 0.89 and be right at the border of the stable regime
at |q| < 0.908 [110]. For comparative measurements, a gold sample with the atomic
mass of 197 u was installed in parallel to a thorium sample in the sample holder.
Gold has a q-factor of qAu = 0.45 at URF = 900 V and is well within the stable
regime.

To verify the calculations for the secular frequency (5.24) and prepare the setup
for the electronic detection on a secular frequency sideband of the trap frequency,
a resonant excitation end ejection has been conducted with gold and thorium.

The ions oscillate with the frequency ωps in the trap. An energy transfer to
the ions can therefore be achieved by applying this secular frequency to the DC
electrodes. When the resonance conditions are fulfilled, the trapped ions will be
excited resonantly, thus increasing the amplitude of the micromotion until they
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Figure 5.11: Resonant extraction of Au and Th ions.

finally are lost for trapping, either by being ejected from the trap or hitting the
electrodes.

The measurements for Au and Th are shown in figure 5.11. After the trap was
filled with ions, a signal with a frequency in the range of the expected secular
frequency and an amplitude of 250 mV was applied to one electrode. The signal
had to be maintained for at least 105 cycles to enable the resonant transfer of the
energy to the ions. After 105 periods, the secular frequency signal was switched
off and the amount of ions stored in the trap was measured with the channeltron
detection, thus representing one data point in figure 5.11. The disadvantage of
the method is the fact that the trap has to be refilled with ablated ions for every
measurement point. However, the frequency of the resonant ejection by secular
frequency excitation could be measured with an uncertainty of 1 kHz.

According to (5.23), the secular frequency scales linearly with the driving volt-
age URF . Measurements of the secular frequency were conducted for thorium for
different RF amplitudes as shown in figure 5.12, where each data point represents
a complete measurement run similar to figure 5.11. The linear dependence of URF

is clearly observed. This measurement can be used to verify the calculated secular
frequencies of fps, Th = 209.9 kHz and fps, Au = 247.7 kHz at URF = 700 V.

In contrast to the resonant ejection, where the determination of the number of
stored ions was done with the channeltron by emptying the trap, detecting the
ions inside the trap with the electronic detection does not eject the ions from the
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Figure 5.12: secular frequency as a function of Trap Voltage

trap. The ions are excited resonantly with the secular frequency applied to one
electrode as shown in figure 5.10 and the signal is detected as a pickup signal in the
second DC electrode. Since the second DC electrode works as an antenna tuned
to ωps, a current will be induced from the ions oscillating at ωps as well as it would
be induced from the first electrode if it was stimulated with the secular frequency.
For an undisturbed measurement the frequency Ω+ωps is applied to the generator
electrode as a sideband of the RF driving frequency and excites the ions on this
secular frequency sideband. The detection at ωps is then free from the voltage
applied to excite the ions and the signal-to-noise-ratio is increased. The detection
circuit consists of a notch filter for removing interfering voltages of the RF and
a resonant filter that is tuned to ωps and takes the capacitance of the trap into
account. Behind these filters, the signal is amplified and detected with a spectrum
analyzer.

The detection was conducted at a fixed frequency and the fine adjustment to
the secular frequency was done by changing the a-parameter of the trap with an
additional DC voltage in the middle electrodes. This way, the adjustment to the
resonance frequency could be done more sensitivly than by changing the sideband
frequency and no changes in the resonant and notch filters for the ion detection
scheme were necessary. A typical signal for thorium is seen in figure 5.13.

An excitation with Ω + ωps = 2π · 1.991 MHz + 2π · 206 kHz with an amplitude
of 100 mV and URF = 685 V was applied to measure the signal in figure 5.13.
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Figure 5.13: Thorium signal with electronic detection at URF = 685V.

The DC offset was adjusted to 3.3 V where the signal could clearly be seen. The
buffer gas pressure was 0.1 Pa to ensure an efficient damping. The amplitude of
100 mV is close to the amplitude of 250 mV applied for the resonant extraction in
figure 5.11. The ions are not extracted from the trap because the energy is applied
to the sideband Ω + ωps and thus the energy used to excite the ions at ωps is much
smaller.

The signal from the electronic detection could be used to estimate the number
of ions N in the trap via the induced current I with

I =
N · e · ωps

2
. (5.26)

With formula (5.26) an ion number of 8·104 ions is calculated. Since this expression
is based on the maximum ion excursion, it will provide the minimum number of
ions and it can safely be assumed that at least 105 ions are stored inside the trap.

The difference to the destructive channeltron detection is obvious. While the
grid in front of the channeltron only applies a preferential direction for the ion
movement while the RF is decreased and therefore does not ensure that all ions
are detected by the channeltron, the electronic detection picks up a signal from
all ions without emptying the trap. A quantitative comparison of the ion numbers
detected by electronic detection and the channeltron detection used in 5.4 reveals
a five times lower detection efficiency for the ion detection with a channeltron.
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5.4 Ion Detection with a Channeltron

Several characterizations of the linear Paul trap were executed with the channeltron
to detect the ions after release from the trap. The disadvantage of the channeltron
detection is the loosing of ions inside the trap, because the ions have to be removed
from the trap and have to be accelerated towards the channeltron opening. After
every detection, it is necessary to reload the trap with ions. The advantage is the
simple setup and the reliability of the detection method which is independent from
the knowledge of the secular frequency as necessary for the electronic detection in
section 5.3 or the laser excitation of the ions with the exact transition wavelength
as done in section 6.2.

5.4.1 Channeltron Setup

The channeltron17 for the ion detection is mounted perpendicular to the trap axis
on a small breadboard and facing the middle section in about 30 mm distance from
the trap as seen in figure 5.14. Because the ions have to pass between two electrodes
to reach the channeltron, an attractive field is necessary to enable the ions to pass
this gap. The channeltron will produce a strong field due to the operating voltage
of 2.4 kV which could in principle serve for this purpose. To enable undisturbed
trapping, this field needs to be shielded and thus can not be used to extract ions.
The field of the channeltron is shielded by a grid18 in front of the channeltron and
combines these two objectives. During the trapping, this grid is grounded and
shields the linear trap from the influence of the channeltron. For detection, the
grid potential is switched on to 1 kV with a fast high-voltage commutator19. The
field of the grid is then used to accelerate ions in the direction of the grid. The
ions will pass the grid and are detected by the channeltron behind the grid.

Because the potential depths (5.25) and along the z-axis are in the order of
about 10–50 eV (depending on the trapped element and URF ), switching on the
grid potential is insufficient to extract the ions from the trap. For detection, the
potential depth has to be decreased until the field produced by the grid is strong
enough to accelerate the ions in the direction of the grid and the ions can overcome
the trapping potential. This is done by decreasing the driving voltage URF with a
linear ramp from storage conditions to 0 V within 100 ms. The grid potential is
switched on at the beginning of the ramp and triggers a multiscaler20 card for the
data acquisition. When the superposition of the potential produced by the grid
and the pseudopotential in the trap is dominated by the grid voltage, the ions are
accelerated towards the grid and detected in the channeltron.

17Burle 5901 MAGNUM electron multiplier for pulse counting, gain factor 107

18stainless steel, open aperture 88%
19Behlke HTS 41-06-GSM, push-pull transistor switch, rise time 10 ns
20Ortec MCS-Pci
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Figure 5.14: Channeltron detection setup.

In this configuration, the multiscaler card works as a miniature mass spectrom-
eter. The decrease of URF while maintaining the driving frequency decreases the
q-factor as well as the potential depth for the trap, which is different for particles
with different masses. Turning on the grid voltage at the beginning of the ramp,
a constant force is exerted to the ion cloud until they eventually get accelerated
towards the channeltron. Due to the nonzero a-factor (5.6a), the instability region
is reached at different voltages for particles with different masses and results in a
complete exhaustion of the trap. This procedure allows to separate particles with
different masses as well as detecting the amount of stored particles.

The channeltron pulses were intensified with a fast amplifier21. The computer in-
put and output was achieved with an digital/analog converter22 and was controlled
with a Labview23 programm that could control and detect the photon counting unit
(described in chapter 6), the RF amplitude, the trigger for the ablation laser, the
channeltron signal and the DC offsets.

21Ortec VT 120 fast preamp, bandwidth 1-300 MHz
22DataTranslations DT 9834-4-4-16-BNC
23National Instruments, Labview 7.6, Graphical user interface development system
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5.4.2 Ion Trap Characterization

The detection efficiency depends strongly on the grid voltage as seen in figure 5.15
for identical loading and storing conditions. The weaker the grid field, the more
thorium ions are leaving the trap in different directions, because the influence of
the grid is smaller at the side of the trapping region and less ions are focussed on
the channeltron.
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Figure 5.15: a) Detected ion counts for different grid voltages at P = 7 · 10−8 Pa.
b) Grid potential dependent detection efficiency.

The measurements in figure 5.15a can be used as well to determine the geometry
factor κ of the trap. While the detection of ions starts earlier (and thus at higher
URF ) for higher grid voltages due to the stronger force applied to the ions, the
last ions are always detected at approximately the same trap voltage URF . At this
point, the q-factor of the trap enters the instability region, causing a total loss
of all ions left in the trap. Solving (5.6a) for κ, the geometry factor κ ≈ 0.3 is
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calculated. Calculations and measurements for similar trap designs [108,118] lead
to geometry factors of κ = 0.325 and κ ≈ 0.31 and are within the uncertainty of
our measurement of κ ≈ 0.3 for our ion trap.
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Figure 5.16: Influence of buffer gas cooling after 3 s storage time.

The influence of the buffer gas cooling is shown in figure 5.16. Collisions between
the thorium ions and the helium atoms transfer the kinetic energy to the buffer gas
and decrease the temperature of the trapped ions. When the ion mass is larger than
that of the buffer gas, a damping term is introduced to the equations of motion
and the ions are cooled [119]. To ensure a good damping, helium is used due to its
small mass and its inert gas properties [120].

The buffer gas cooling works already efficiently at a pressure of 2 · 10−4 Pa. As
seen in figure 5.16, the maximum of the peak shifts to later detection times and
therefore lower energies. Integrating the measured counts shows a count rate for
buffer gas cooling of 11000 ions, which is approximately two times higher than the
amount of 6000 detected ions in the uncooled case. The narrowing of the detection
curve and the missing of earlier detected higher energetic ions prove a working
buffer gas cooling with helium. As a result, more atoms can be trapped due to less
collisions with the trap electrodes.

A dependency for the loading efficiency of the ion injection position is expected
and the efficiency is assumed to be higher for ions being created closer to the trap
center. Experiments with 3 different sample positions have been conducted, where
the samples were installed in the middle between the electrodes as seen in figure 5.4
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as well as 2 mm higher and 2 mm lower than this position. When installing the
samples closer to the center of the trap, a higher count rate is observed, likewise
a lower count rate is observed for samples installed further away from the trap
center. As a disadvantage, the higher sample position caused interferences with
the trap field and the ion capture rate was not stable. A stable ion trapping could
be achieved for samples installed in the middle position and thus the sample height
was maintained in the middle between the electrodes.

Determining the loading efficiency dependence of the potential depth was done
by measuring the total number of counts at different RF amplitudes. The curve in
figure 5.17 can be explained by taking the laser ablation velocity distribution into
account. As mentioned in section 4.1.2, the velocity distribution of the ablated
ions fits to a Maxwell-Boltzmann distribution on a particle beam [98].
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Figure 5.17: Ablation during increasing of trap voltage.

At small URF amplitudes, no ions are trapped and a capture threshold at around
URF = 200 V is observed. The initial energy of the ions created by laser ablation is
higher than the potential depth at small URF amplitudes and averts ion trapping
at small trap driving voltages. For thorium, the extrapolated threshold value of
URF,0 = 186 V corresponds to q = 0.08 and a potential depth of dr = 1.8 eV.

When reaching the capture threshold, the potential depth reaches the point
were slow ions in the velocity distribution can be trapped. When the trap voltage
is increased, more ions with higher velocities can be trapped due to the deeper
potential depth. As a result, the velocity distribution is divided into a part of slow
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ions that can be trapped and a part of ions that are still too fast for trapping.
The border between these two part shifts to higher velocities with increasing RF
voltages, thus trapping more ions as seen for 200 V < URF < 500 V in figure 5.17.

At URF ≈ 500, a q-factor of q ≈ 0.2 and a potential depth of dr = 13 eV is
calculated and the stored ion number does not increase with higher URF amplitudes.
With the capture threshold value of dr = 1.8 eV, the velocity boundaries for
trapped ions can be derived to

1200
m

s
< vablation < 3300

m

s
. (5.27)

This value is significantly lower than the initial energy of approximately 90 eV
detected in chapter 4 for ablated thorium ions. Therefore, the determination of
velocity boundaries for ion trapping is caused by the trap itself and does not
imply that no faster ions are produced. Two effects may be responsible for this
observation. On the one hand, ions having a high velocity may leave the trap in
a time shorter than a cycle of the driving frequency and thus cannot be stored in
the trap pseudopotential. On the other hand, the axial confinement for URF > 500
may be weaker than the radial confinement and therefore hinders trapping of faster
ions.

5.4.3 Phase Dependence

The theory for the stabilization of charge carriers in a quadrupole field predicts
a phase dependency of the trapping RF field and the loading efficiency [117, 121].
The ions that are supposed to be trapped must have a secular motion with an
amplitude smaller than the radius r0 of the field producing electrodes. The theory
calculates a minimal secular motion amplitude and therefore maximum trapping
efficiency for ions created at maximal field amplitudes.

Ion traps were generally loaded by processes much slower than the radiofre-
quency Ω, for example by ionizing atoms by electron bombardment. The long
timescales of these processes averted a phase dependent loading efficiency mea-
surement and did not allow a justification or refutation of the theory. In contrast,
laser ablation loading of a linear Paul trap loads ions on the nanosecond timescale
and is therefore capable of measuring the phase dependent loading efficiency.

The influence of the phase dependency is supposed to be prominent for high
q-factors [117] and a-parameters [121]. It is relatively small for the chosen set of
parameters of q = 0.4 and a = 0 in figure 5.20 but still ought to be observable.
However, no phase dependence has been detected as it can be seen in the red
curve. Measurements for q = 0.2, q = 0.3 and q = 0.4 have been conducted
and lead to similar results. The red measurement points represent the number of
counts detected with the channeltron under identical conditions. The timing of the
ablation laser had a jitter of about 3µs that made it impossible to trigger it on
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Figure 5.18: Averaged number of loaded ions versus phase of RF field during
ablation, averaged over 45 ° wide bins, URF maximum at 0 °.

the phase. Instead, the phase of the RF field has been measured for every ablation
shot and the count rate was averaged over 45 ° wide bins.

The green curve in figure 5.18 represents all measurements that were not con-
ducted under normal conditions. The difference in these measurement points is
the occurrence of a breakdown of the radiofrequency field. The loading efficiency
is about 20% higher than in the case without breakdowns. In these breakdown, it
was observed that the voltage in the electrodes decreases to small values during the
ablation pulse as seen in figure 5.19. The electrons and the ion cloud produced by
the laser ablation create a plasma with high conductivity between the electrodes.
This enables a gas discharge that leads to a breakdown of the electric field inside
the trap [122]. A typical URF breakdown is shown in figure 5.19 and shows the
synchronous ablation pulse and RF breakdown.

The gas discharge ceases with the expanding ion cloud and causes the RF am-
plitude to recover, thus reestablishing the electric field and the pseudopotential in
the trap. The timescale of this breakdown is about 5–10 cycles of the driving fre-
quency or about 3–5 µs, respectively. For laser ablation with higher laser powers
(28 mJ/pulse compared with 170 µJ/pulse for the N2-laser in this experiment),
breakdowns of the RF driving frequency to less than 1% of its maximum value
for more than 50 cycles have been reported [123]. The duration of the breakdown
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Figure 5.19: Breakdown of RF driving voltage during ablation pulse.

is three orders of magnitude longer than the ablation pulse length of 4 ns. This
behavior did not occur every time ions were ablated but was phase dependent.

As seen in figure 5.20, gas discharges were correlated with the phase of the RF
driving voltage and occurred only near the maximum of the sinusoidal RF driving
signal. The graph denotes the measurement of the amplitude in the period after
the ablation pulse. It can be seen that the gas discharge did not appear with every
ablation pulse around 0°. The reason is the amount of electrons necessary for a
gas discharge which was not always reached by the ablation laser. The probability
for a discharge was highly increased by new focussing of the laser on the ablation
target after an observed absence of a discharge with the right phase conditions.
This increased the amount of produced ions and electrons and the RF breakdown
probability.

No gas discharge is seen at 180°, although the RF voltage is at its maximum as
well. This indicates that the discharge is caused by fast moving electrons, which
are repelled when the phase of URF corresponds to negatively charged electrodes.

Phase dependent loading efficiency measurements have been reported before [124]
without observation of RF breakdowns, explaining the increased loading efficiency
with the hindering of the ion movement from outside of the trap to the trap center
when the ions are created at phase conditions with counteracting forces from the
trap center. This is not the case in our measurements. Experiments have been
conducted, where the profile of the driving voltage in figure 5.19 was induced by
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Figure 5.20: Amplitude of RF field during ablation

using a fast switchable attenuator. No increased loading rate has been observed.
Hence, the reason for the higher ion number in figure 5.18 for measurements with
RF breakdowns is found in an increased ion production rate correlated with the
gas discharge. The discharge occurs between the RF electrodes and the sample
holder and supports the ion formation by electron collision ionization of neutral
thorium atoms in the laser ablated plasma.

Without these gas discharges and the subsequent higher ion production rate, a
phase dependence was not monitored.



6 Laser Excitation of Th+

For the detection of 229mTh the establishment of an efficient fluorescence detection
is essential. Additionally, the first step of the two-stage excitation (outlined in
section 2.1.7) requires a fixed level that can be excited and detected reliably. Both
objectives — fluorescence detection and intermediate level excitation — are realized
in this chapter with the 401.9 nm resonance line.

The problem for the excitation of Th+ is the complicated level structure. Several
low-lying metastable levels intercept the laser excitation. The level scheme for
the strongest resonance line at 401.9 nm is known [125] and shown in figure 6.1.
Several metastable levels between the ground state and the 24873 cm−1 level [126]
will disrupt the laser excitation, because the metastable levels do not couple to the
401.9 nm excitation laser due to the large detuning.
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Figure 6.1: Level scheme for the excitation of the 232Th+ resonance line at
401.9 nm.

One way to depopulate the metastable states and maintain a continuous exci-
tation of the 24873 cm−1 is the usage of repumping lasers. Since five additional

80
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laser were necessary, conducting experiments in this setup would be a complicated
and hopeless endeavor. A more promising way is the depopulation by collisional
quenching with a helium buffer gas [127,128].

Buffer gas quenching is the reduction of the lifetime of a level due to collisions
with helium atoms. The depopulation is usually radiationless because the energy
is directly transferred to the helium atoms. In the case of thorium, the buffer gas
will reduce the lifetimes of metastable states in figure 6.1 that are populated by
the decay of the 24873 cm−1 level. These dark states are otherwise lost for the
excitation of the ground state with the 401.9 nm line. The buffer gas depopulates
these states faster than their natural lifetime would predict and therefore increases
the amount of ions available for laser excitation. Experiments with buffer gas
quenching of populated metastable levels after the excitation of the 17122 cm−1

level of Th+ have been conducted [129] and proved an increased detection rate due
to collisional quenching.

Single mode diode lasers are available for the 401.9 nm line. The branching ratio
of the excited state with a 94% transition probability to the ground state is very
favorable for buffer gas quenching experiments. All experiments were conducted
with 232Th which has no nuclear spin and therefore shows no hyperfine structure
as 229Th. However, the fine structure is the same and thus 232Th can be used for
laser spectroscopy, excitation experiments and detection of lines necessary to excite
229Th.

6.1 Optical Setup

To excite the strong thorium resonance line, an external cavity diode laser1 (ECDL)
at 402 nm was used. The wavelength was measured by a Fizeau-interferometer-
based wavelength meter2 and adjusted to a resonance line by hollow-cathode lamp3

spectroscopy. The 401.9 nm transition in the thorium hollow-cathode lamp was ex-
cited with the chopper modulated blue laser radiation and the optogalvanic-signal
was detected with a lock-in amplifier. The strongest thorium line was observed at
401.912 9 nm air wavelength and a frequency of 745.699 36 THz, respectively and
is in good agreement with the literature value of 401.912 89 nm [130]. After con-
firming the ECDL to be tuned to the thorium line, the radiation was transferred to
the vacuum chamber and passed along the z-axis of the trap to excite the thorium
ions.

The setup for the two-photon excitation of the thorium ions necessitated a sec-
ond, tunable laser light source. A modelocked Ti:Sapphire laser4 with ps–operation

1Toptica DL 100, maximum output power 15 mW
2Ångstrom HighFinesse Wavelength meter WS-7
3Photron hollow cathode lamp P858, filled with thorium
4Coherent Mira 900
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and an output power of 1 W was used, pumped by a single-mode diode pumped
solid-state laser5 at 532 nm with 8 W output power. In this setup, the Ti:Sa laser
was tunable from 750–850 nm. The output was frequency doubled and tripled
using a second harmonic generation (SHG) and sum frequency generation (SFG)
crystals6, creating a tuneable 375–425 nm and 250–285 nm beam.
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Figure 6.2: Optical setup for the excitation of the 401.9 nm line and the two
photon excitation with the frequency doubled and tripled Ti:Sa laser
emission

The fluorescence detection was accomplished with head-on photomultipliers7

with different peak sensitivities. The setup allowed either mounting the photo-
multipliers directly in front of the CaF2 windows or using an imaging scheme in
front of the photomultipliers to focus on the middle section. In both mounting
options it was possible to mount optical filters in the optical path.

To obtain a possibility for the direct detection of photons emitted from the decay
of the isomeric state in the VUV range, the photomultiplier has to be installed
in a low pressure atmosphere because radiation with a wavelength shorter than

5Coherent Verdi V8
6Photop TP-2000B
7Hamamatsu R6836, sensitivity 115 to 320 nm, Hamamatsu R7459, sensitivity 160 to 650 nm
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180 nm is absorbed by oxygen. A pressure of 100 Pa ensures a residual oxygen
concentration low enough to transmit the photons to the photomultiplier. This can
be achieved with a roughing pump. The housing of the photomultiplier sensitive
from 115 nm to 320 nm is sealed with viton rings and has a connection for a
roughing pump. The housing is directly mounted on the CaF2 flange to obtain a
light tight and short connection.

The photomultiplier for the optical detection was operated in pulse counting
mode. A discriminator8 was used to convert the photomultiplier pulses to TTL
pulses that were recorded by a counting unit9. Additionally, the TTL pulses could
be detected in parallel with a multiscaler computer card10.

6.2 Fluorescence Detection

Using the setup shown in figure 6.2, it was possible to excite the thorium ions with
a blue ECDL on the strongest line. Figure 6.3 shows the fluorescence signal of the
401.9 nm line.
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Figure 6.3: Optical detection of the strongest Th+ line at 401.9 nm.

8Hamamatsu C9744 Photon Counting Unit
9Hamamatsu C8855 Photon Counting Unit

10Ortec MCS-Pci
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The observation of the resonance line is already a result of collisional quenching
and depopulation of the metastable levels. The pressure of 0.1 Pa ensures a suffi-
cient collision rate for collisions between the helium atoms and the thorium ions.
Without the presence of a buffer gas, no fluorescence could be detected.

The temperature dependent Doppler broadened line for different buffer gas pres-
sures is plotted in figure 6.4. To derive the temperature of the ions, the velocities v
of the ions have to be calculated according to the Maxwell-Boltzmann distribution

f(v)dv =
1

√

2π kBT
m

e
− mv2

2kBT dv (6.1)

=
1

√

2π kBT
m

e
−

mλ2
0(ν−ν0)2

2kBT λ0 dν = S(ν)λ0 dν , (6.2)

where kB is the Boltzmann constant, m is the ion mass, v = λ0 (ν − ν0) = λ0∆ν
with dv = λ0dν, T is the temperature, S(ν) is the spectrum, ν0 is the frequency
and λ0 the wavelength of the transition [131].
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Figure 6.4: Doppler width reduction for different buffer gas pressures.

The full width at half maximum (FWHM) can be calculated from equation (6.2)
with the condition 1

2
S(ν0) = S(ν0 ± △νFWHM

2
) [132] to

△νFWHM =

√

8kBT · ln 2

mλ2
0

=

√

8kBT · ln 2

mc2
ν0 . (6.3)
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It can be seen from equation (6.3) that the FWHM scales with
√

T . This can
be used to calculate the temperature of the ion cloud and plot the buffer gas
pressure dependence of the temperature shown in figure 6.5, using the formula for
the temperature derived from equation (6.3):

T =
mc2

8kB · ln 2
·
(

∆νFWHM

ν0

)2

. (6.4)

It is shown that T reaches approximately room temperature at a pressure of 0.1 Pa.
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Figure 6.5: Temperature of Th+ ions versus buffer gas pressure.

Formula (6.4) is correct if the lifetime τ fulfills the condition 1
2πτ

≪ ∆fFWHM ,
which means that for long-living excited states, the Lorentz profile of this state can
be neglected. The lifetime of the excited state is 23 ns [126] and thus the natural
linewidth is 1

2πτ
≈ 7 MHz. This is small compared to the linewidth of 400 MHz in

figure 6.3 and the condition can be considered as fulfilled. The natural linewidth
is comparable with the Doppler broadening at temperatures below 0.1 K and has
to be considered when applying laser cooling techniques.

The relative temperature difference can be calculated as well from the peak
height of the signal. At the transition frequency ν0, the maximum A of the peak is

A = S(ν0) =
1

√

2π kBT
m

. (6.5)
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The calculation of the temperature can therefore be achieved by either measuring
the height (6.5) or the FWHM (6.3) of the signal.
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Figure 6.6: Fluorescence count rate dependence of He buffer gas pressure.

The signal area is a quantity for the number of photons that are scattered from
each ion. If the buffer gas pressure would only cool the ions, the peak count rate
as a quantity for the temperature would increase but the area under the Doppler
curve would remain constant. As it can be seen in figure 6.6, the amount of
scattered photons increases for higher pressures. This is explained by a higher
collision rate between buffer gas atoms and thorium ions and a subsequent higher
depopulation rate of the metastable states. Hence, higher buffer gas pressures serve
two purposes at the same time — cooling the ions and increasing the quenching
rate. When increasing the buffer gas pressure by two orders of magnitude from
10−3 Pa to 10−1 Pa, the quenching rate increases by a factor of five. This increase
is in good agreement with previous measurement of the buffer gas quenching rate
in a three-dimensional Paul trap [129].

To calculate the lifetime reduction of the lowest metastable state due to colli-
sional quenching, the quenching rate Γ = 10−12 cm3

s
for helium [127] has to be taken

into account. Using the estimated natural lifetime τnat of the 1521 cm−1 state
according to the transition rate A [133]

A =
2π · e2 · h

9ǫ0 · m2
e · c2 · λ3

= 0.0628
1

s
⇒ τnat =

1

A
≈ 15 s , (6.6)
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the reduced lifetime τ of the state can be estimated to

1

τ
= n · Γ +

1

τnat

⇒ τ ≈ 50 ms (6.7)

with a particle density of n = 2.4·1013 1
cm3 at a pressure of 0.1 Pa. This reduction of

the lifetime is an important part of obtaining a cyclic excitation of the 24873 cm−1

state with a single diode laser.
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Figure 6.7: Fluorescence count rate for laser radiation with a fixed wavelength
tuned to the excitation wavelength and scanned laser radiation every
12 s.

It was observed that the fluorescence signal decreases with time. Since the
observed time constant was τ < 1 min and ions could still be observed by channel-
tron detection after 30 min of storage time, the interaction of the ion cloud with
the laser radiation is hindered by a different effect than ion loss. To observe the
timescale of this effect, the laser was tuned to the excitation wavelength and the
time-dependent changing of the signal was observed. This is marked as continuous
laser radiation in figure 6.7. The exponential fit results in a time constant τ ≈ 43 s.
The time constant prolonged up to 85 s with improvement of vacuum by pumping
for two months. For the experiments reported here, the vacuum system had not
been baked.

The explanation of the signal decrease is found in the formation of thorium oxide
ions. Th+ has a very high probability of forming oxide molecules and therefore
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thorium ions in the trap create more ThO+ molecules the longer they are stored in
the trap. The molecules have a different level scheme and cannot be excited with
the 401.9 nm laser.

The formation of thorium oxide is a big problem for every experiment with
trapped Th+ ions. The buffer gas system was built with multiple gas purifiers,
heated parts of the buffer gas system and usage of the purest available helium
to ensure a low oxygen impurity helium system. However, as it can be seen in
figure 6.7, oxide formation has to be strongly avoided (e.g. heating the vacuum
system will remove oxygen impurities [134]) before the observation of 229mTh can
succeed.

Laser excitation and buffer gas quenching works efficiently on the 401.9 nm line
in the given setup. While comparable trap designs achieve a number of about 0.05
detected photons per ion and second [129], it was possible to detect 3 photons/ion/s
in this thesis.
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The present thesis described several steps towards the direct observation of the
isomeric state of 229Th. The confirmation of the low-lying state 229mTh would
provide a link between nuclear physics and atomic physics and may open a new
field of research as well as providing a new approach to current investigations as
the search for variations of the fundamental constants.

Thorium recoil atoms ejected from a 233U source have been accumulated on
substrates transparent in the 160 nm region. Since the α-decay of 233U will produce
thorium atoms where about 2% of the produced nuclei are in the isomeric state,
this method served two purposes at once. It overcame the necessity to excite the
isomeric state and produced a layer of 229mTh on a substrate that was as free
from contaminations with other radioactive atoms as possible. Compared with
other methods for separation of radioactive nuclei, for instance chemical separation
methods with an execution time of about 30 minutes prior to the experiment, recoil
separation is a fast process and allows to start measuring approximately 30 seconds
after accumulation. The setback of the experiment was the quality of the uranium
source used in the experiment. It had an age of three years and therefore consisted
of multiple decay products of the neptunium series with short lifetimes. In addition,
it was not a metallic uranium layer but contaminated with other products used
in the electroplating process. Hence the obtained capture rate for 229mTh was
only about 3–4 per second. The results of the measurement showed no evidence of
photons produced in the decay of the isomeric state of thorium. The small detected
signal could be explained by Cherenkov radiation in the substrate produced by in
the decay of β-emitters implanted and produced on the surface. The negative
result led to a complete new scheme for the detection of the isomeric state and the
setup of a linear Paul trap.

To obtain the possibility to load an ion trap with thorium ions, laser ablation
ion production has been investigated. Laser ablation can remove atoms from a
solid surface and ionize the atoms in the created plasma. This overcomes the need
for photoionization lasers and creates thorium ions during the very short time
span of the 4 ns pulse duration. Thorium could be ablated and singly and doubly
charged ions were identified using a time-of-flight mass spectrometer. Other metals
generally used in ion trap experiments could be ablated and ionized as well. Highly
reactive surfaces such as strontium, that creates an oxide layer when handled in
a normal air atmosphere, could be cleaned with multiple laser shots until only
Sr+ was ablated. This offers a new and easy way to load ion traps. Multiple
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preparation methods and substrates for a thorium solution were tested and enabled
to load our ion trap either by ablation from a metallic 232Th wire or from 232Th
in a nitrate. Thereby, it is possible to load 229Th from a solution into the trap in
later experiments.

The linear Paul trap was loaded with 232Th and characterized by several different
methods. The buffer gas cooling and the influence of the laser ablation velocity
distribution were investigated by using a channeltron ion detector, where the trap
was completely emptied and the number of stored ions was counted. A voltage of
URF = 500 V was sufficient to capture all ions created during the laser ablation.
The measured number of stored ions was compared with measurements using the
resonant electronic detection of the secular motion, where the ions kept stored in
the trap. A number of 8 ·104 trapped ions was confirmed with these measurements.

The short laser pulse width opened a way to measure a possible phase depen-
dence of the ion capture probability with the RF field. The predicted phase depen-
dence [117] was not observed when comparing similar loading conditions. However,
the loading conditions changed during observed gas discharges. These discharges
were induced by electrons that short circuited the electrodes and led to a higher
ion production rate in the plasma during the laser ablation. The probability of
the occurrence of these gas discharges showed a high probability for phase angles
between -45° and 45° and is explained by phase angle dependent forces on the
electrons during the laser ablation.

The establishment of an optical detection method for ions stored in the linear
Paul trap was shown. Using buffer gas collision quenching, the metastable levels
were depopulated and a closed cycle for the excitation of the 24873 cm−1 level was
obtained. Higher buffer gas pressure increased the quenching rate and decreased
the temperature of the ions in the trap at the same time. The buffer gas allowed
to cool the ions to room temperature at a pressure of 0.1 Pa.

Even if the excitation of 229mTh became harder with the shift of the expected
energy of the isomeric state from 3.5 eV to 7.6 eV in 2007, interest in the isomeric
state of 229Th aroused as well in other working groups. Experiments with ionized
thorium in a linear Paul trap were conducted with buffer gas cooling and laser
ablation loading of Th3+. While experiments in 2008 with trapped 232Th3+ could
only observe a lifetime of about 1.2 s in the trap before decay via charge exchange
with vacuum or buffer gas contaminants [135], it was possible in 2009 to cool the
ions to room temperature by buffer gas quenching. Thus laser cooling of 232Th3+

was achieved, increasing the lifetime to about 650 s [134] and obtaining coulomb
crystals in a linear ion trap.

The approach of a solid state experiment in a thorium doped crystal [20] is newly
revisited [136] in parallel to ion trap experiments. The possibility of conducting
nuclear magnetic resonance spectroscopy and Mössbauer experiments with these
crystals is a promising alternative to ion trap experiments. The potential to directly
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excite the isomeric state of thorium with synchrotron radiation in thorium-doped
crystals is a striking reason to follow this approach.

It was not possible to detect the isomeric state in the framework of this thesis.
An experimenter is confronted with too many imponderabilia about thorium and
its isomeric state to hope for a fast success. This thesis is an intermediate and nec-
essary step towards the direct observation of the isomeric state of thorium. The
excitation of the 24873 cm−1 level is the first step of the two photon excitation of
the atomic shell and the subsequent transfer of the energy to the nucleus. Laser ab-
lation loading and the linear Paul trap are prepared for 229Th. Detection methods
are established. 229Th will be installed in the vacuum chamber, oxygen impurities
will be removed by baking out the whole system. Spectroscopical studies in the
range of 55000 cm−1 to 65000 cm−1 will reveal the accessible levels and complete
the two stage excitation scheme. The direct observation of the isomeric state is
pending. It’s time to detect the isomeric state.
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[1] H. Becquerel. Sur les radiations émises par phosphorescence. Comptes Ren-
dus, 122:420–421, 1896.

[2] W. D. Phillips. Nobel Lecture: Laser cooling and trapping of neutral atoms.
Reviews of Modern Physics, 70(3):721–741, 1998.
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Mein größtes Dankeschön gilt jedoch denjenigen, die mein Leben liebevoll begleiten
und jeden Tag zu einem besonderen Tag werden lassen: Meinen Freunden, meinen
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