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Abstract

Bulk properties of Li2O, B2O3 and Li2B4O7 are investigated quantum-chemically. The

reliability of three density-functional theory (DFT) methods (PWGGA, PWGGA-

US and PWGGA-PAW), two DFT-Hartree Fock (HF) hybrid methods (PW1PW and

B3LYP) and the semiempirical method MSINDO is examined by comparison of calcu-

lated results to available experimental data. The results at DFT level are also com-

pared for different types of basis functions, either based on linear combinations of

atom-centered orbitals (LCAO), or on plane waves, as implemented in the crystalline

orbital program CRYSTAL and in VASP, respectively. The basis set dependence of the

calculated properties is investigated for the LCAO based methods. In the plane wave

based methods (PWGGA-US and PWGGA-PAW), ultrasoft pseudopotentials (US PP)

and projector-augmented wave (PAW) potentials are used to represent the core elec-

trons. The effect of energy cutoff (Ecut) on the calculated properties is investigated. A

comparative study is performed for the low and high space-group symmetry of trigonal

B2O3. The cation vacancy and F center of Li2O are investigated. Li+ ion diffusion in

Li2O is investigated by calculating the activation energy EA for the migration of Li+

ion via cation vacancy. The calculated values are compared with the experiment. The

ionic conductivity in the (001) direction of Li2B4O7 is investigated. The calculated

EA values are compared with experimental results from the literature. The structure

and stability of Li2O (111) and (110) surfaces and the B2O3 (001) surface are calcu-

lated. The interface of Li2O:B2O3 nanocomposite is modeled by the combination of

supercells of Li2O (111) and B2O3 (001) surface. The migration of Li+ ion via cation

vacancy is studied in the interface region. The calculated EA is compared with that

in the nanocrystalline Li2O, and it is shown that the conductivity is enhanced in the

Li2O:B2O3 nanocomposite compared to that in Li2O.

Keywords: density-functional theory, pseudopotential, nanocomposites, interface re-

gion



Kurzzusammenfassung

Festkörpereigenschaften von Li2O, B2O3 und Li2B4O7 wurden mit Hilfe quantenchemis-

cher Methoden untersucht. Die Rechnungen erfolgten auf der Basis von Dichtefunk-

tionaltheorie (PWGGA, PWGGA-US und PWGGA-PAW) und DFT-Hartree-Fock-

Hybridmethoden (PW1PW und B3LYP) sowie mit der semiempirischen Methode

MSINDO. Die erhaltenen Ergebnisse wurden mit experimentellen Daten verglichen.

Im Falle der DFT-Rechnungen wurden als Basissätze sowohl Linearkombinationen

von atomzentrierten Basisfunktionen (LCAO), wie sie in der Kristallorbitalmethode

CRYSTAL implementiert sind, als auch ebene Wellen, die im Programm VASP be-

nutzt werden, verwendet. Im Falle der LCAO-basierten Methoden sind die berech-

neten Eigenschaften auf eine Basissatzabhängigkeit überprüft worden. Zur Darstel-

lung der inneren Elektronen wurden bei den Methoden mit ebenen Wellen (PWGGA-

US und PWGGA-PAW) ultraweiche Pseudopotentiale (ultrasoft pseudopotential) und

”projector-augmented wave” Potentiale verwendet. Weiterhin ist der Effekt des En-

ergiegrenzwertes ebener Wellen (Ecut) auf die berechneten Eigenschaften untersucht

worden. In einer vergleichenden Studie wurden das niedrig- und hochsymmetrische

trigonale B2O3 untersucht. Am Li2O wurden Rechnungen für die Kationenfehlstelle

und das F-Zentrum durchgeführt. Für die Diffusion von Li+-Ionen im Li2O ist die Ak-

tivierungsenergie EA der Li+-Wanderung über Kationenfehlstellen berechnet und mit

experimentellen Daten verglichen worden. Die Ionenleitfähigkeit in (001)-Richtung im

Li2B4O7 wurde untersucht und die erhaltene EA mit dem Experiment verglichen. Die

Struktur und Stabilität der Li2O (111)- und (110)- sowie die B2O3 (001)- Oberflächen

wurden berechnet. Die Grenzfläche von Li2O:B2O3-Nanopartikeln ist durch eine Kom-

bination von Superzellen der Li2O (111)- und B2O3 (001)- Oberflächen modelliert wor-

den. Die Wanderung von Li+-Ionen über Kationenfehlstellen in der Grenzflächenregion

wurde untersucht. Ein Vergleich der berechneten Aktivierungsenergien zeigt, daß die

Leitfähigkeit im Li2O:B2O3 gegenüber dem reinen Li2O erhöht ist.

Schlagwörter: Dichtefunktionaltheorie, Pseudopotentiale, Nanopartikeln, Grenzflächenregion
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1 Introduction 1

1 Introduction

In recent years, ceramic oxides have attracted considerable attention due to their broad

potential applications as advanced materials with controlled chemical, mechanical, elec-

trical, magnetic, and optical properties. Many of these properties are attributed to the

mobility of metal ions. A metal ion can migrate from a regular site to an intersti-

tial site or to an adjacent defect position. An important criterion for the probability

of these processes is the corresponding activation energy. Sometimes, it is difficult

to obtain this quantity with experimental techniques. Quantum chemical approaches

can be utilized to determine the activation energy for the elementary steps. Recent

experimental investigations for the Li2O:B2O3 nanocomposite show that the ionic con-

ductivity increases with increasing B2O3 content although B2O3 is an insulator. A

possible explanation discussed in the literature is the formation of lattice defects at the

phase boundary between nano-crystalline Li2O and B2O3 which leads to an enhanced

mobility of Li+ ions. Due to this property, the Li2O:B2O3 nanocomposite has potential

applications in battery systems, fuel cells or gas sensors. In the present work, the en-

hanced mobility of Li+ ions in Li2O:B2O3 nanocomposite is investigated theoretically

using both semiempirical and density functional theory (DFT) methods.

The structural, energetic and electronic properties of Li2O, B2O3, and Li2B4O7 are

studied with periodic quantum chemical calculations using the CRYSTAL03 package,

the VASP package and the cyclic cluster model (CCM) implemented in the semiem-

pirical method MSINDO. As a test for the methods, calculated bulk properties for all

these systems are compared with available experimental data.

Li2O is a fast ionic conductor. Available experimental information on the ionic trans-

port in this system shows that the mobile species is the Li+ ion and the most likely

mechanism for its migration is via cation vacancies. Another prominant irradiation

defect is known as F center, an oxygen vacancy trapping two electrons. The forma-

tion energy of the cation vacancy and the F center in Li2O is calculated. The effect

of relaxation and the influence of defects on the electronic properties are investigated

for the both types of defect in Li2O. A possible mechanism of the Li+ migration is

investigated by calculating the energy barrier for the movement of Li+ from a regular

site to an adjacent cation vacancy defect position.
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Li2B4O7 (LTB) is a Li+ ion conductor along the (001) direction. In the present study,

LTB is considered as the first model system for the interface region of Li2O:B2O3

nanocomposite. The cation vacancy defect in LTB is investigated. The defect formation

energy is calculated and the effect of relaxation is investigated for the defective system.

The mechanism of Li+ ion migration is investigated by calculating the energy barrier for

the movement of Li+ ions from regular sites to adjacent cation vacancy defect positions

along the tetragonal axis.

A more realistic model system of the Li2O:B2O3 interface region is created by combining

surfaces of the two oxides. The surface energies of (110) and (111) surfaces of Li2O

and (001) surface of B2O3 are calculated. Using the most favorable surface structures,

such as, (111) for Li2O and (001) for B2O3, the mixed model structure of Li2O:B2O3

is prepared. The mixed structure is optimized with the relaxation of all atoms in the

interface region and the migration of a Li+ ion is studied.
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2 Quantum Chemical Background

The Schrödinger equation [1–3] contains the essence of all chemistry. To quote Dirac:

”The underlying physical laws necessary for the mathematical theory of a large part

of physics and the whole of chemistry are thus completely known” [4]. The time-

independent Schrödinger equation is

ĤΨ = EΨ (2.1)

where Ĥ is the Hamilton operator, Ψ is the wavefunction that contains all information

about the quantum system and E is the energy of the system. The nonrelativistic

Hamilton operator Ĥ is expressed (in atomic units) for a system of N nuclei and n

electrons as,

Ĥ = −
N

∑

I

1

2MI
∇2

I −
n

∑

i

1

2
∇2

i −
N

∑

I

n
∑

i

ZI

rIi
+

n
∑

j>i

1

rij
+

N
∑

J>I

ZIZJ

RIJ
(2.2)

The first two terms describe the kinetic energy of the nuclei and the electrons, respec-

tively. Here MI is the mass and ZI is the atomic number of a nucleus I. The remaining

three terms define the potential part of the Hamiltonian and represent the attractive

electrostatic interaction between the nuclei and the electrons and the repulsive poten-

tial due to the electron-electron and nucleus-nucleus interactions, respectively. rij is

the distance between the electrons i and j, rIi is the distance between nucleus I and

electron i, and RIJ is the distance between the nuclei I and J .

Since nuclei are much heavier than electrons, they move more slowly. Hence, to a

good approximation, the electrons in a molecule can be considered to be moving in

the field of fixed nuclei. Within this approximation, the first term of (2.2), the kinetic

energy of the nuclei, can be neglected and the last term of (2.2), the repulsion between

the nuclei, can be considered to be constant. The remaining terms in (2.2) are called

the electronic Hamiltonian (Ĥel). This separation of electronic and nuclear motions

is called the Born-Oppenheimer approximation [5]. The Schrödinger equation (2.1) is

reduced to the electronic Schrödinger equation,

ĤelΨel = EelΨel (2.3)

where Ĥel has the following simplified form,

Ĥel = −
n

∑

i

1

2
∇2

i −
N

∑

I

n
∑

i

ZI

rIi

+
n

∑

j>i

1

rij

(2.4)
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The solutions of this equation are the electronic wavefunction Ψel and the electronic

energy Eel. It is convenient to write the electronic Hamiltonian operator (Ĥel) as a

sum of one- and two-electron operators ĥ1 and ĥ12 as following (2.5),

Ĥel =
n

∑

i

ĥ1(i) +
n

∑

j>i

ĥ12(i, j) (2.5)

ĥ1(i) = −1

2
∇2

i −
N

∑

I

ZI

rIi

ĥ12(i, j) =
1

rij

The total energy Etot of the system is the sum of the electronic energy Eel and the

constant nuclear repulsion term.

Etot = Eel + Enuc (2.6)

where

Enuc =

N
∑

J>I

ZIZJ

RIJ
(2.7)

2.1 Hartree-Fock Method

The Schrödinger equation for systems with more than one electron cannot be solved

exactly, even for the helium atom. The helium atom has three particles (two elec-

trons and one nucleus) and is an example of a three-body problem. No exact solutions

have been found so far for systems that involve three or more interacting particles.

In such cases, the motion of each electron is coupled to the motion of all other elec-

trons. A further complication of multi-electron species is that the electron spin must

be accounted.

To study polyelectronic atoms or molecules, approximations to the exact solutions of

Schrödinger equation are necessary. One possibility is represented by the Hartree-Fock

method which is based on the assumption that every electron moves in a potential

created by the nuclei and the average potential of all the other electrons. In this

method the n-electron wavefunction is an antisymmetrized product of n one-electron

wavefunctions φi(qi). This product is referred to as a Slater determinant,Φ0 [1].

Ψel ≈ Φ0 =
1√
n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(q1) φ2(q1) · · · φn(q1)

φ1(q2) φ2(q2) · · · φn(q2)
...

...
. . .

...

φ1(qn) φ2(qn) · · · φn(qn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.8)
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The pre-factor 1/
√
n! is the normalization constant of the wavefunction. The one-

electron functions φi(qi) are called spin orbitals, and are composed of a spatial orbital

ψi(r) and one of the two spin functions, σ(+1/2) or σ(-1/2).

ψ(r)σ(
1

2
) = ψ(r)α (2.9)

ψ(r)σ(−1

2
) = ψ(r)β

Spatial orbitals are assumed to form an orthonormal set,

〈ψi | ψj〉 = δij (2.10)

Within the Hartree-Fock approximation the spatial orbitals {ψ} are varied, under the

orthonormality constraint (2.10), until a Slater determinant Φ0 is obtained, which

yields the lowest energy. After expansion of the determinant, the Hartree-Fock energy

for a closed-shell system can be expressed as

EHF
0 =

〈

Φ0 | Ĥel | Φ0

〉

= 2

n/2
∑

i

hii +

n/2
∑

i

n/2
∑

j

(2Jij −Kij) (2.11)

where

hii =

∫

ψ∗
i (1)ĥ1(1)ψi(1) dr1 =

〈

i
∣

∣

∣
ĥ1

∣

∣

∣
i
〉

(2.12)

Jij =

∫∫

ψ∗
i (1)ψ∗

j (2)ĥ12ψi(1)ψj(2) dr1dr2 = (ii | jj)

Kij =

∫∫

ψ∗
i (1)ψ∗

j (2)ĥ12ψj(1)ψi(2) dr1dr2 = (ij | ij)

Jij and Kij are called Coulomb and exchange integrals, respectively. The Hartree-Fock

equations, which determine the {ψ} for which EHF
0 attains its lowest value, are given

by

F̂ψi = εiψi (2.13)

εi are the eigenvalues of the Fock operator F̂ . According to Koopmans’ Theorem [6],

the negative values of the orbital energies (εi) are a first approximation to ionization

energies. The Fock operator F̂ is a one-electron operator defined as

F̂ (1) = ĥ1(1) +

n/2
∑

j

[

2Ĵj(1) − K̂j(1)
]

(2.14)

where Ĵj(1)ψi(1) =

∫

ψ∗
j (2)ĥ12ψj(2) dr2 ψi(1)

K̂j(1)ψi(1) =

∫

ψ∗
j (2)ĥ12ψi(2) dr2 ψj(1)
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A direct numerical solution of the Hartree-Fock equations for molecules is impossi-

ble. Roothaan [7] proposed to construct the molecular orbitals (MOs) ψi by a linear

combination of atom-centered basis functions {χµ} (LCAO) [1].

ψi =

m
∑

µ

cµiχµ (2.15)

Here cµi are the MO coefficients. In this way the differential equation (2.3) is converted

into a set of algebraic equations [2] which are then solved by standard matrix algebra

techniques.

In quantum-chemical calculations, two different kinds of atomic orbitals are used,

Slater-type and Gaussian-type orbitals [1]. Slater-type orbitals have the form

χSlater =
[2ζ]n+1/2

[(2n)!]1/2
rn−1 exp(−ζr)Y m

l (θ, ϕ) (2.16)

where ζ is the orbital exponent, Y m
l (θ, ϕ) is a spherical harmonic function, and n, l,

and m are quantum numbers. Gaussian-type orbitals are defined as

χGauss =

(

2α

π

)3/4 [

(8α)i+j+ki! j! k!

(2i)! (2j)! (2k)!

]1/2

xiyjzk exp(−αr2) (2.17)

Here i, j and k are integers, x, y, and z are Cartesian coordinates and α is the orbital

exponent of the Gaussian-type function (GTF). Instead of using the individual GTFs

(2.17) as basis functions, the current practice is to take each basis function as a linear

combination (contraction) of a small number of GTFs according to

χCGTF
r =

∑

µ

dµrχ
Gauss
µ (2.18)

where χCGTF
r is called a contracted Gaussian-type function (CGTF) and χGauss

µ ’s are

called primitive Gaussians. χGauss
µ ’s are centered on the same atom and have the same

i, j, k values but different α’s. The coefficients dµr are optimized for free atoms and held

fixed during molecular calculations. By using CGTF instead of primitive Gaussians as

the basis set, the number of variational coefficients to be determined is reduced, which

gives large savings in computational time with little loss in accuracy if the contraction

coefficients dµr are well chosen.

By substituting (2.15) in (2.13) a matrix equation for cµi is obtained which is called

the Roothaan-Hall equation (2.19).
m

∑

ν

Fµνcνi = εi

m
∑

ν

Sµνcνi ;µ = 1, 2, . . . , m and i = 1, 2, . . . , m (2.19)

FC = SCε
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The overlap matrix S has elements

Sµν =

∫

χ∗
µ(1)χν(1) dr1 (2.20)

The Fock matrix F has elements

Fµν =

∫

χ∗
µ(1)F̂ (1)χν(1) dr1

= Hµν +

m
∑

ρ

m
∑

σ

Pρσ

[

(µν | ρσ) − 1

2
(µσ | ρν)

]

(2.21)

where Hµν =

∫

χ∗
µ(1)ĥ1χν(1) dr1

(µν | ρσ) =

∫∫

χ∗
µ(1)χ∗

ρ(2) ĥ12 χν(1)χσ(2) dr1 dr2

Pµν = 2

n/2
∑

i

cµi cνi

The Hartree-Fock energy, EHF
0 , is obtained as

EHF
0 =

1

2

m
∑

µ

m
∑

ν

Pµν (Hµν + Fµν)

Hµν and Pµν are the elements of the core matrix H and the density matrix P, respec-

tively. An orthonormal set of basis functions is obtained as

λν =
m

∑

µ

aµνχµ (2.22)

Here the coefficients aµi are the elements of transformation matrix S−1/2. In this

orthonormal set the overlap matrix will be the unit matrix.

Sλ
µν = 〈λµ | λν〉 = δµν (2.23)

The Hartree-Fock-Roothaan equations (2.19) in the orthogonal λ-basis have a simpler

form as

FλCλ = Cλ
ε (2.24)

The elements of the matrix Cλ are the coefficients in the linear expansion of the molec-

ular orbitals {ψi} in terms of the orthonormal basis functions {λµ}.

ψi =
m

∑

µ

cλµi λµ (2.25)
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The Fλ and F matrices and Cλ and C matrices are related in the following way.

Fλ = S−1/2FS−1/2 and Cλ = S1/2C (2.26)

The Hartree-Fock-Roothaan equations are solved by an iterative procedure called self-

consistent field (SCF) procedure [2]. In this iterative method, an initial guess is made

for the coefficients C(0) and a first density matrix P(0) is obtained. The molecular

integrals are calculated for a given nuclear configuration {R}. The Fock matrix F(0)

is then evaluated. Then the matrix Fλ(0) is obtained using (2.26). Diagonalization

of Fλ(0) gives Cλ(1) and ε
(1). Using (2.26) a new coefficient matrix C(1) and thus the

density matrix P(1) can be obtained from Cλ(1). This procedure will be continued, with

the evaluation of the new F(n), Fλ(n), its eigenvalues and eigenvectors Cλ(n+1) until the

density matrix elements of the new step differ by a predefined convergence threshold

from the previous step.

For closed-shell systems, electrons of opposite spins occupy pairwise the same spatial

orbital. The corresponding Hartree-Fock wavefunction is called restricted Hartree-Fock

(RHF) wavefunction. There are two methods available for the treatment of open-shell

systems, the restricted open-shell Hartree-Fock (ROHF) method and the unrestricted

Hartree-Fock (UHF) method. In the ROHF approach the wavefunction is divided into

a closed-shell and an open-shell part. In the closed-shell part the electrons are given

pairwise the same spatial orbital function [8]. In a UHF wavefunction, the electrons

of α and β spin are allowed to have different spatial orbitals [9]. A problem connected

with the UHF method is that the resulting wavefunction generally does not correspond

to a pure spin state.

2.2 Semiempirical Methods

Semiempirical methods are simplified versions of the Hartree-Fock (HF) method. Ap-

proaches that are based on the HF SCF procedure without additional approximation

are called ab initio methods. Ab initio methods are very computer-time and -memory

consuming. The number of basis functions must be much larger than the number of

electrons. Furthermore, the evaluation of Fock matrix elements (2.21) requires com-

putation of multi-center integrals, whose number increases with m4, where m is the

number of basis functions. Limited basis sets do not have enough flexibility to repro-
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duce the physics of the system and can give inaccurate results. The computational

expense is reduced by making additional approximations in semiempirical methods.

The following features are common for semiempirical methods,

• In semiempirical methods, atomic inner and valence electrons are separated. Only

valence electrons are treated explicitly. For example, for C (1s22s22p2): 1s=core

electrons and 2s2p=valence electrons, only the four electrons in the 2s2p shell

are taken into account.

• They use minimal basis sets, usually of Slater-type s, p, and sometimes d orbitals.

Some recent semiempirical methods, such as, Semi-Ab-initio Model 1 (SAM1)

[10], use standard STO-3G Gaussian basis set to evaluate the electron repulsion

integrals.

• All the three- and four-center two-electron integrals are neglected, two-center

two-electron integrals are partly calculated, whereas, two-center one-electron in-

tegrals are replaced by empirical formulas. Most of the empirical formulas are

extensions of the Wolfsberg-Helmholtz formula [11], where the two-center one-

electron integrals Hµν are expressed as,

Hµν =
1

2
KSµν (hµµ + hνν) (2.27)

Here K is an adjustable parameter or empirical function with several parameters

which are optimized to reproduce experimental properties.

Semiempirical methods mainly differ in the way two-electron integrals are approxi-

mated. All existing methods are based on the zero-differential overlap (ZDO) approxi-

mation [3]. In this approximation, the overlap between pairs of different orbitals is set

to zero for all volume elements dτ :

φµφνdτ = 0 (2.28)

This directly leads to the following result for the overlap integrals,

Sµν = δµν (2.29)

According to this approximation, two-electron integrals (µν | ρσ) will vanish if µ 6= ν

or if ρ 6= σ, which can be expressed as,

(µν | ρσ) = (µµ | ρρ)δµνδρσ (2.30)
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On the basis of the ZDO approximation at different levels, there are several semiempir-

ical methods, such as, CNDO (Complete Neglect of Differential Overlap) [12], INDO

(Intermediate Neglect of Differential Overlap) [13], NDDO (Neglect of Diatomic Dif-

ferential Overlap) [12]. The CNDO method uses the ZDO approximation (2.28) for all

pairs of AOs. Thus, Sµν = δµν and (µν | ρσ) = (µµ | ρρ)δµνδρσ. In order to overcome

the problems of rotational invariance, the two-electron integrals (µµ | ρρ) are set equal

to parameter γAB where µ and ρ are on different atoms A and B, and to parameter

γAA where µ and ρ are on atom A. γAB is the average electrostatic repulsion between

an electron on atom A and an electron on atom B whereas γAA represents the average

electron-electron repulsion between two electrons on an atom A. The INDO method

is an improvement on CNDO. At the INDO level differential overlap between AOs on

the same atom is not neglected in one-center electron-repulsion integrals, but is still

neglected in two-center electron-repulsion integrals. Thus one-center integrals of the

form (µAµA|µAµA), (µAµA|νAνA) and (µAνA|µAνA) are retained. The ZDO approxima-

tion is also applied to potential terms of the one-electron integrals. The INDO method

gives an improvement over CNDO results, especially where electron spin distribution

is important. The NDDO method is an improvement on INDO in which differential

overlap is neglected only between AOs centered on different atoms. Thus, all of the

two-center two-electron integrals of the form (µAνA | ρBσB) are retained.

In many cases semiempirical methods are able to reproduce experimental data with

similar accuracy as ab initio methods at much lower computational cost. In the present

work large and complex systems are investigated. For this reason the semiempirical

method MSINDO was used for the calculations.

MSINDO (Modified Symmetrically orthogonalized Intermediate Neglect of Differential

Overlap) [14] is a modified version of the semiempirical SCF molecular orbital method

SINDO1 [15] based on the INDO formalism by Pople et al. [13].

In MSINDO, the ZDO approximation is justified by an approximate Löwdin transfor-

mation to the orthogonalized basis [16]. For the atoms in the second and the third

row with 3d orbitals, additional one-center hybrid integrals of the form (µAνA|ρAσA)

are taken into account in order to preserve rotational invariance [17]. MSINDO uses a

pseudominimal basis set of Slater-type valence atomic orbitals and takes into account

the core electrons by Zerner’s pseudopotential [18]. Thus {1s} orbitals for H, {2s, 2p}
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for first row elements, {3s, 3p} for Na and Mg, {3s, 3p, 3d} for Al-Cl, {4s, 4p} for K and

Ca, {3d, 4s, 4p} for Sc to Zn and {4s, 4p, 4d} for Ga to Br, are considered explicitly. In

order to describe hydrogen bonding, an additional set of 2p orbitals can be introduced

on hydrogen.

Using nonorthogonal basis functions, one-center elements of the core matrix H are

given by,

HµAµA
= UµA

+
∑

B 6=A

(

V B
µAµA

+ V B,corr
µAµA

)

−
∑

B 6=A

∑

ρB

S2
µAρB

ερB
(2.31)

HµAνA
=

∑

B 6=A

(

V B
µAνA

+ V B,corr
µAνA

)

−
∑

B 6=A

∑

ρB

SµAρB
SνAρB

ερB

where UµA
=

〈

µA

∣

∣

∣

∣

−1

2
∇2 − ZA

rA

∣

∣

∣

∣

µA

〉

V B
µAνA

=

〈

µA

∣

∣

∣

∣

−ZB

rB

∣

∣

∣

∣

νA

〉

V B,corr
µAµA

=
∑

νB

nνB

〈

µA

∣

∣

∣
ĴνB

− Ĵs
νB

∣

∣

∣
µA

〉

=
∑

νB

nνB
[(µAµA|νs

Bν
s
B) − (µs

Aµ
s
A|νs

Bν
s
B)]

Here UµA
are determined from average energies of atomic configurations. V B,corr is

a directional correction term which partially compensates the neglect of directional

effects in the two-center Coulomb integrals. νB is a valence orbital at center B and nνB

is its atomic occupation number. µs
A and νs

B are treated like s orbitals. ĴνB
and Ĵs

νB
are

Coulomb operators. Only the atomic orbital νB is taken as an s orbital in ĴνB
, while

all orbitals are taken as s orbitals for the evaluation of Ĵs
νB

. The last term in (2.31) is

Zerner’s pseudopotential which takes care of the inner orbitals ρB. ερB
is the energy

of the core orbital ρB, as obtained from experimental spectra. A modified Mulliken

approximation is used for calculating the two-center core integrals with a correction

term, LµAνB
[19].

HµAνB
=

1

2
SµAνB

(HµAµA
+HνBνB

) + LµAνB
(2.32)

The correction term LµAνB
has the form

LµAνB
= −1

2

(

ζ2
µA

+ ζ2
νB

) SµAνB
(1 − |SµAνB

|)
1 + ρ

(2.33)

where ρ =
1

2
(ζµA

+ ζνB
)RAB
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Here the ζ’s are the orbital exponents. Two-center two-electron integrals are evaluated

analytically over s-functions. The Fock-matrix elements are given by

FµAµA
= HµAµA

+
∑

ρA

∑

σA

PρAσA

[

(µAµA|ρAσA) − 1

2
(µAσA|ρAµA)

]

(2.34)

+
∑

B 6=A

∑

νB

PρBρB
(µAµA|νBνB)

FµAνA
= HµAνA

+
∑

ρA

∑

σA

PρAσA

[

(µAνA|ρAσA) − 1

2
(µAσA|ρAνA)

]

FµAνB
= HµAνB

− 1

2
PµAνB

(µAµA|νBνB)

The core matrix is transformed to the orthogonalized basis by an approximate Löwdin

procedure.

Hλ = S−1/2HS−1/2 (2.35)

S−1/2 is expanded in a Taylor series.

S−1/2 =
(

1 + S
)−1/2

= 1 − 1

2
S +

3

8
S

2 − 5

16
S

3
+ · · · (2.36)

Here S is the overlap matrix with zero diagonal elements. Hλ is approximated in the

overlap expansion, to second order in SINDO1, but only to first order in MSINDO.

The latter avoids problems connected with large overlap integrals. The core matrix

elements in orthogonal basis take the following form [14].

Hλ
µAµA

= HµAµA
− fB,orth

∑

B 6=A

∑

ρB

SµAρB
LµAρB

(2.37)

Hλ
µAνA

= HµAνA
− 1

2
fB,orth

∑

B 6=A

∑

ρB

(LµAρB
SρBνA

+ SµAρB
LρBνA

)

Hλ
µAνB

= LµAνB
+Hcorr

µAνB

Here fB,orth is a correction factor which compensates the different numbers of basis

functions used for the elements and partially the neglect of higher order terms in

(2.36). Hcorr
µAνB

is an empirical correction term given by

Hcorr
µAνB

=
1

4
(KA +KB)SµAνB

(fAhµAµA
+ fBhνBνB

) (2.38)

with fA = 1 − exp (−κPB
(A)RAB)

fB = 1 − exp (−κPA
(B)RAB)
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The K’s here in this equation are adjustable parameters depending only on the atomic

number and the orbital symmetry in a local diatomic coordinate system. The κ’s are

atomic parameters of interperiodic nature. MSINDO has been parametrized for the

elements H, Li-F, Na-Cl and K-Br [20–22].

Special techniques like an embedding procedure [23] and the cyclic cluster model [24]

for the description of solids and surfaces have been developed and incorporated in

MSINDO. The method has been successfully applied to various solid state problems

such as properties of crystalline solids [25], adsorption on surfaces [26] and surface

reactions [27].

2.3 Density Functional Theory

The basic idea of density functional theory (DFT) is that the ground-state energy of a

system is a functional of electron density ρ [1,28,29] which can be written as E0 = E[ρ].

Integration of ρ over all space gives the total number of electrons n, i.e.,

n =

∫

ρ (r) dr (2.39)

With the introduction of an external potential vext, the electronic Hamiltonian operator

(2.3) has the following form

Ĥel = −
n

∑

i

1

2
∇2

i + vext(r) +
n

∑

j>i

1

rij

(2.40)

where

vext(r) = −
n

∑

i

N
∑

I

ZI

riI
(2.41)

According to the first Hohenberg-Kohn theorem [28,30], the external potential vext can

be obtained from the electron density ρ. Since ρ determines n and vext, it follows that

ρ also determines the ground-state wave function Ψ[ρ] and hence all other electronic

properties of the system. The total energy E[ρ] can be expressed as

E[ρ] = FHK [ρ] +

∫

ρ (r) vext(r) dr (2.42)

with

FHK [ρ] = T [ρ] + Vee[ρ] (2.43)
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The functional FHK[ρ] is a universal functional of ρ; this means that FHK [ρ] is defined

independently from the external potential vext. T [ρ] is the kinetic energy functional of

the system, Vee[ρ] is the potential energy functional for the classical electron-electron

repulsion. Hohenberg and Kohn showed in a second theorem [30] that the electron

density obeys a variational principle. The energy expectation value can be obtained as

E[ρ] =
〈

Ψ[ρ] | Ĥ | Ψ[ρ]
〉

(2.44)

≥ E0

which, by the variational principle similar to MO theory, must be greater than or

equal to the true ground-state energy E0. However, Hohenberg-Kohn theorem does

not show how to find ρ without first finding Ψ and there is no simplification over MO

theory, since the final step is still the solution of the Schrödinger equation, and this is

prohibitively difficult in most instances. The difficulty arises from the electron-electron

interaction term in the Hamiltonian. In analogy to the universal functional FHK [ρ],

Kohn and Sham [31] introduced a corresponding noninteracting reference system. The

Kohn-Sham one-electron operator ĤKS is defined as,

ĤKS = −1

2
∇2 −

∑

I

ZI

rIi

+

∫

ρ(r2)

r12
dr2 + vxc[ρ] (2.45)

Here vxc[ρ] is called the exchange-correlation potential which is found as the functional

derivative of exchange-correlation energy Exc[ρ(r)], vxc[ρ] = δExc[ρ(r)]
δρ(r)

. Exc[ρ(r)] will be

discussed below.

A set of orbitals {ψi(r)} is introduced, which are called Kohn-Sham orbitals. This

leads to a set of eigenvalue equations,

ĤKSψi = εiψi with (i = 1, ..., n) (2.46)

The use of the Kohn-Sham orbitals {ψi(r)} enables to optimize the energy by solving

the set of one-electron equations (2.46) self-consistently similar to the Hartree Fock

equations.

Kohn and Sham also showed that the exact ground-state electron density ρ can be

obtained from {ψi}, acoording to,

ρ =
n

∑

i

|ψi|2 (2.47)



2 Quantum Chemical Background 15

If the kinetic energy of the reference system is defined as TKS[ρ], the energy functional

can be expressed as,

E[ρ] = TKS[ρ] +

∫

ρ (r) vext(r) dr + J [ρ] + Exc[ρ(r)] (2.48)

where J [ρ] denotes the classical electron-electron repulsion

J [ρ] =
1

2

∫∫

ρ(r1)ρ(r2)

r12
dr1 dr2 (2.49)

and the exchange-correlation energy, Exc[ρ(r)] includes not only the effects of quantum

mechanical exchange and correlation, but also the correction for the classical self-

interaction energy and for the difference in kinetic energy between the fictitious non-

interacting system and the real system.

The main task associated with the Kohn-Sham equations is to find the correct func-

tional Exc[ρ(r)]. Various approximate Exc[ρ(r)] have been used in molecular DF calcu-

lations. The simplest approximation is represented by the local density approximation

(LDA), where Exc[ρ(r)] is expressed as,

ELDA
xc [ρ(r)] =

∫

ρ (r) εxc[ρ(r)] dr (2.50)

The value of εxc at some position r is computed exclusively from the value of ρ at

that position. In practice, εxc[ρ(r)] describes the exchange and correlation energy per

particle of a uniform electron gas [32] of density ρ. The corresponding exchange-

correlation potential becomes,

vLDA
xc (r) = εxc[ρ(r)] + ρ(r)

δεxc[ρ(r)]

δρ
(2.51)

In a molecular system, the electron density is in general rather far from being spatially

uniform which limits the applicability of LDA. A further advancement was obtained by

the inclusion of a density gradient correction which is known as the generalized gradient

approximation (GGA). In the GGA, the functionals depend on both the density and the

gradient of the density, i.e., vGGA
xc = f(ρ,∇ρ). Popular examples of GGA functionals

are Perdew-Wang GGA or PWGGA (both exchange and correlation) [33] and Becke-

Lee-Yang-Parr or BLYP where B stands for the Becke GGA exchange functional [34]

and LYP stands for the Lee-Yang-Parr GGA correlation functional [35]. Functionals

having higher derivatives of density are called meta-GGA functionals.
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Still the GGA functionals have problems with self interaction. Hybrid DFT functionals

usually offer some improvement over corresponding pure DFT functionals. They con-

tain a certain percentage of the exact HF exchange. In several approaches, the amount

of HF contribution is determined empirically by error minimization with respect to

experimental data. Of all modern functionals, the B3LYP method [35, 36] is the most

popular to date. It works satisfactorily both for structural investigations and also for

the computation of electronic properties [29]. The name of the functional, B3LYP,

implies its use of Becke’s three-parameter functional [36] as GGA exchange functional

together with the GGA correlation functional LYP [35]. The functional contains 20 %

HF exchange as optimized for heats of formation of small molecules. In the more recent

hybrid functional PW1PW [37], the exchange functional is a linear combination of the

HF expression (20 %) and the PWGGA exchange functional (80 %) which is combined

with the PWGGA correlation functional [33]. This approach was parameterized to

reproduce structural, energetic and electronic properties of solids [37].

The molecular orbitals in DFT are usually a linear combination of atomic basis func-

tions which can be represented by Gaussian functions, Slater orbitals or as numerical

orbitals. Another possibility is the use of plane waves as basis set for periodic infinite

systems. They will be discussed in detail in the next chapter.
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3 Models of Solids and Surfaces

An ideal crystal is constructed by the infinite repetition of identical structural units

in space [38]. The structure of all crystals can be described in terms of a lattice, with

a group of atoms attached to every lattice point. The group of atoms is called the

basis; when repeated in space it forms the crystal structure. The lattice is defined by

three fundamental translation vectors a1, a2, and a3. A lattice translation operation

is defined as the displacement of a crystal by a translation vector T with integral

components ni of the fundamental vectors. The environment of a lattice point does

not change and the lattice is invariant under such a transformation.

T = n1a1 + n2a2 + n3a3 (3.52)

The coordinates of the atoms of the basis relative to a lattice point are indicated by

fractional coordinates concerning the lattice vectors.

ri = xia1 + yia2 + zia3 with 0 ≤ xi, yi, zi ≤ 1

The basic module of the solid body is the unit cell. Its choice is arbitrary in principle,

as long as it fills out the space by translation. The cell with smallest possible volume

Va,

Va = | (a1 × a2) · a3 | (3.53)

is called primitive unit cell (PUC). The basis associated with a primitive cell is called

a primitive basis. No basis contains fewer atoms than a primitive basis contains. A

special form of the PUC is the primitive Wigner-Seitz cell (WSZ). The Wigner-Seitz

cell around a lattice point is the region of space that is closer to that point than to any

other lattice point. WSZ will be as symmetrical as the Bravais lattice. An example of

a WSZ of a two-dimensional, hexagonal lattice is illustrated in Fig 3.1.

Figure 3.1: A two-dimensional Wigner-Seitz cell, hexagonal lattice
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In the context of this work two models are used for the description of solids and surfaces,

which are described briefly in the following. These are called the periodic models and

the cyclic cluster model (CCM).

3.1 Periodic Models

Periodic models are particularly suitable for the description of ideal crystalline solids.

They use the symmetry characteristics of crystals. The periodic models consist of

primitive unit cells or supercells which are then replicated periodically. Thus periodic

models are infinite models whose basic unit contains a finite number of atoms. The

translation vectors are the lattice parameters of the real system. The periodic models

or supercell models can be explained by the Bloch theorem [39].

Let T̂ be a translation operator, associated with the lattice vector T (3.52), that

satisfies the argument of any function as follows,

T̂ Ĥ(r)ψ(r) = Ĥ(r + T)ψ(r + T) = Ĥ(r)T̂ ψ(r) (3.54)

Due to the periodicity of the crystal the associated Hamiltonian operator Ĥ also follows

the periodic nature, i.e., the kinetic energy operator is invariant to any translation, the

potential operator, V̂ , is periodic by hypothesis. Ĥ commutes with T̂ , and thus, the

eigenfunctions of Ĥ are also the eigenfunctions of T̂ .

T̂ ψ(r) = exp(ik · T)ψ(r) (3.55)

The equation (3.55) is known as Bloch theorem. Here k = k1b1 + k2b2 + k3b3 is called

the reciprocal lattice vector (k1,k2 and k3 are integers) and bi are the primitive vectors

of reciprocal lattice bi which can be expressed as,

bi = 2π
aj × ak

ai · (aj × ak)
with (i, j, k ∈ 1, 2, 3) (3.56)

Each vector defined by Eq. (3.56) is orthogonal to two axis vectors of the crystal

lattice. Thus {ai} and {bi} are related by

ai · bj = 2πδij (3.57)

k and T are linked as,

k · T = 2π
3

∑

i=1

kini (3.58)
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The primitive WSZ in the reciprocal space is called the first Brillouin-Zone (BZ).

By imposing an appropriate boundary condition, the crystal system is considered as a

finite but macroscopic system containing N = N1 ×N2 ×N3 unit cells. The unit cell

repeats itself infinitely in all three translation directions a1, a2 and a3. Thus the usual

assumption is that the finite crystal is part of an infinite crystal, and it is delimited in

a purely formal way. These appropriate boundary conditions to the orbitals are called

Born-Von Karman or periodic boundary conditions [40]. According to these conditions,

the Bloch function obeys the following condition,

ψ(r +Njaj) = exp(iNjk · aj)ψ(r) = ψ(r) (3.59)

which implies:

exp(iNjk · aj) = 1

which is satisfied if,

kj =
lj
Nj

with lj, Nj ∈
�

and kj ∈ �

The above equation shows that, because of the periodic boundary conditions, vectors

k are real. The general κ vector inside the reciprocal unit cell (first BZ) is defined as,

κ =
n1b1

N1
+
n2b2

N2
+
n3b3

N3
with ni ∈

�
< Ni (3.60)

Different eigenfunctions can satisfy the Bloch theorem for the same κ value. Thus the

eigenvectors of Hamiltonian are also labelled with an n index as ψκ

n (r). The number of

κ points is N , i.e., the number of cells in the crystal. As the crystal size increases, the

κ points get closer and closer. At the limit of an infinite lattice, κ becomes continuous

and can take on all possible values within the BZ [40].

Similar to LCAO, the unknown single-particle crystalline wavefunction ψκ

n (r), is ex-

panded in a finite set of Bloch-functions (BFs) χκ

µ(r) as following,

ψκ

n (r) =
∑

µ

cκµnχ
κ

µ(r) (3.61)

The coefficients, cκµn are determined variationally by solving the set of coupled matrix

equations:

H
κ

C
κ = S

κ

C
κ

E
κ (3.62)

(Cκ)†
S

κ

C
κ = I
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where Hκ is the Hamiltonian matrix in the basis set of the χκ

µ(r) functions; Sκ is the

overlap matrix among these functions ( Sκ = I if the basis functions are orthogonal);

Cκ is the matrix of the coefficients, cκµn; and Eκ is the diagonal matrix of the single

particle eigenvalues, εκn . The above procedure should be carried on for the complete

set of κ points in the first BZ, so as to determine the complete set of crystalline wave

functions (ψκ

n (r)). For each n, the set of electronic levels specified by εκn is called an

energy band. Since each εκn is periodic in κ and continuous, it has an upper and lower

bound, so that all the levels εκn lie in the band of energies between these limits. In a

closed shell system, each energy band can allocate 2 ∗ N (N is the number of cells)

electrons. If there are n electrons in the unit cell, and the bands do not cross, the

lowest n/2 bands are occupied and are separated from the empty bands. However, if n

is odd, or if the valence bands cross, more than n/2 bands are partially occupied. At

each cycle of the SCF process, the Fermi energy εF must be determined, such that the

number of one electron levels with energy below εF is equal to the number of electrons.

The Fermi surface is the surface in the reciprocal space, which satisfies the condition

εκn = εF .

Two basic types of BFs are used for the expansion of (3.61), these are, localized basis

and plane wave basis.

3.1.1 Localized basis

One possibility to represent the Bloch functions χκ

µ(r) is to use local atom-centered

functions {χµ}.

χκ

µ(r) =
∑

T

exp(iκ · T)χµ(r − A − T) (3.63)

where µ labels the AOs in the unit cell, and A denotes the coordinate of the nucleus in

the zero reference cell on which the local function {χµ} is centered and the summation

is extended to the set of all lattice vectors T. The local functions {χµ} are expressed as

CGTFs (2.18). Substituting the AOs χκ

µ(r) in eq (3.61), the crystalline orbital ψκ

n (r)

has the following form,

ψκ

n (r) =
∑

µ

cκµnχ
κ

µ(r) (3.64)

The atomic orbital based Bloch functions can be applied to HF and DFT calculations.

This is realized e.g. in the crystalline orbital program CRYSTAL03 [41]. This program



3 Models of Solids and Surfaces 21

is used in this study.

The localized basis is characterized by the following advantages and disadvantages:

(+) The electronic distributions in both the valence and the core region are described

accurately by relatively small numbers of GTFs.

(+) Isolated atoms, molecules and defects are described easily.

(+) The Fourier transform of GTFs is another Gaussian, Fp{exp(−αr2)} ∝ exp(−p2/4α).

(−) A reasonable description of delocalized electrons (metallic systems) is very expen-

sive and, in some cases, difficult, due to problems related to the non-orthogonal

nature of the basis functions.

(−) It requires to take into account the basis set superposition error (BSSE) [42,43].

(−) It poses the risk of pseudo-linear-dependence catastrophes when too diffuse func-

tions are used.

An alternative way to construct the Bloch functions is represented by plane wave (PW)

basis.

3.1.2 Plane Wave basis

Plane waves (PWs) for a periodic system can be expressed as [44],

χκ

Kn
(r) =

1√
NVa

exp(ir · (κ + Kn)) (3.65)

with N = N1N2N3

where Kn denotes a reciprocal lattice vector and Va denotes the volume of the primitive

unit cell (3.53). The crystalline orbital ψκ

i (r) is expressed as a linear combination of

PWs,

ψκ

i (r) =

m
∑

n

cκin(Kn)χκ

Kn
(r) (3.66)

where the number m is independent from the kind, position and number of atoms in

the PUC. Rather, it is determined by the kinetic energy cutoff, Ecut.

(κ + Kn)
2 ≤ Ecut (3.67)
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The larger the energy cutoff Ecut, the more accurate is the wavefunction representation.

A large number of PWs is required to represent accurately localized features of the wave

functions that arise from the low-energy core orbitals or from other orbitals undergoing

rapid oscillations close to the nucleus. One would need PW basis sets which are several

orders of magnitude larger than Gaussian basis sets to obtain the same accuracy [45].

The concept of pseudopotentials (PPs) provides an elegant solution to such limitations

of PW basis sets. The plane wave program VASP [46–48] uses three different types of

potentials, these are, norm-conserving (NC) PPs [49, 50], ultra-soft (US) PPs [51, 52]

and Projector Augmented Wave (PAW) [53, 55] potentials. In the present study the

VASP program is used for part of calculations, applying the US pseudopotentials and

PAW potentials for the core electron representation. The valence electrons are treated

with plane wave sets with different energy cutoffs.

The pseudopotential approaches are called frozen-core approximation (FCA) [45]. The

basic principle of PPs is the pseudization of the all-electron (AE) valence wave function.

According to this principle, the AE valence orbital |ψν〉 is represented as a linear

combination of a pseudo- (PS) wavefunction |φν〉 and the core electron orbitals |ψc〉:

|ψν〉 = |φν〉 +
∑

c

αcν |ψc〉 (3.68)

The coefficients αcν are determined by core-valence orthogonality (i.e., αcν = −〈ψc | φν〉).
By using the fact that |ψν〉 and |ψc〉 are solutions of the Schrödinger equation with

eigenvalues εν and εc, respectively, one obtains the equation for PS wavefunction (|φν〉)
as,

[

Ĥ +
∑

c

(εν − εc) |ψc〉 〈ψc|
]

|φν〉 = εν |φν〉 (3.69)

The US PP [51] approach is a modification of the NC PP [49, 50]. In the NC PP

approach [49], inside some core radius, the AE wave function is replaced by a soft

nodeless PS wave function. The crucial restriction is that the PS wave function must

have the same norm as the AE wave function within the chosen core radius. Outside

the core radius, the PS and AE wave functions are identical. However, it is now

well established that good transferability requires a core radius around the outer-most

maximum of the AE wave function, because only then the charge distribution and

moments of the AE wave functions are well reproduced by the PS wave functions.
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Therefore, for elements with strongly localized orbitals (like first-row, 3d, and rare-earth

elements), the NC PP approach has proven impossible to construct a PS wave function

which is much smoother than the AE one. One solution of this problem was proposed

by Vanderbilt [51]. In the US PP method the norm-conservation constraint is relaxed

and to make up for the resulting charge deficit, localized atom-centered augmentation

charges are introduced. These augmentation charges are defined as the charge difference

between the AE and PS wavefunctions, but for convenience, they are pseudized to allow

an efficient treatment of the augmentation charges on a regular grid. The core radius

of the pseudopotential can be chosen around the nearest distance - independent of

the position of the maximum of the AE wavefunction. Only for the augmentation

charges, a small cutoff radius must be used to restore the moments and the charge

distribution of the AE wavefunction accurately. With these modifications, the US PP

can be applicable for elements with strongly localized orbitals. The savings in the CPU

time and improvements in the accuracy can be significant compared to the NC PP [54].

But the success of this method is partly hampered by the difficult construction of the

PPs [53]. It requires many parameters (several cutoff radii) and therefore extensive

tests are necessary in order to obtain an accurate and highly transferable PP. These

disadvantages can be avoided in the PAW method [53, 55].

In the PAW [55] method, a linear transformation, T is defined that connects the

PS wavefunctions, Ψ̃, and AE wavefunctions, Ψ, as, Ψ = T Ψ̃. T mainly concerns

the regions of atomic cores and it can be seen as a sum of non-overlapping atom-

centered contributions TR, where R denotes the atomic site. Each of TR acts within

the corresponding augmentation region, such that T = 1 +
∑

R

TR. Introducing a

set of projector functions 〈p̃i|, the AE wave function can be obtained from the PS

wavefunction by,

|Ψ〉 =
∣

∣

∣
Ψ̃

〉

+
∑

i

(|φi〉 −
∣

∣

∣
φ̃i

〉

)
〈

p̃i | Ψ̃
〉

(3.70)

where
∣

∣

∣
Ψ̃

〉

=
∑

i

∣

∣

∣
φ̃i

〉

ci

and |Ψ〉 =
∑

i

|φi〉 ci

Here φi and φ̃i denote the true and pseudo partial wave functions, respectively. Thus

each augmentation region is associated to two sets of partial waves and a set of projector
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functions. The set of the all-electron partial waves, φi, can be generated from numerical

solutions of the radial Schrödinger equation, the pseudo partial waves, φ̃i, are taken

by the techniques used in the pseudopotential approach and the projector functions p̃i

are orthogonal to the pseudo partial wave function, i.e.,
〈

p̃i | φ̃j

〉

= δij.

The main difference between the PAW and US PP methods is that the PAW is an all

electron method whereas the US PP approach is a pseudopotential method [55]. The

comparisons between these two approaches are given as follows:

• The PAW method works directly with the full-wave functions and potentials and

includes the core states. Whereas, the full-wave functions can not be treated in

a reasonable way on a regular grid for the US PPs.

• In the PAW method, the non-norm-conserving PS wave functions enter naturally

whereas, in the US PPs, the overlap operator and the local charges have been

introduced to restore the scattering properties of the PPs.

• From the point of view of computational effort, the PAW method is more efficient.

The plane wave basis is characterized by the following advantages and disadvantages:

(+) The calculation of the electron-electron interaction integrals in a plane wave basis

is comparably simple.

(+) They have a uniform grid of nodal surfaces, which is useful for the calculation

and extrapolation of correlation energies.

(+) The convergence of the total energy and related properties, as a function of the

number of plane waves is very fast for metals.

(−) Basis set is to be limited to a manageable size. It requires PPs for the localized

inner electrons.

(−) PW basis sets are necessarily much larger than the atomic (Gaussian) ones.

(−) PWs are less appropriate to describe isolated atoms and molecules. They have

to use periodic arrangements with huge lattice vectors.

(−) Basis set convergence is very slow for ionic systems.
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Periodic models are best suited for ordered bulk and surface structures. There are no

boundary effects and moreover, long-range interactions are included in periodic models.

They are less suitable for the description of local defects and non-periodic structures.

The cyclic cluster model (CCM) is an alternative in such cases.

3.2 Cyclic Cluster Model

The cyclic cluster model (CCM) is obtained from the free cluster model (FCM) by

introducing periodic boundary conditions. The FCM has some advantages, such as,

it can be treated by all existing molecular orbital programs with high computational

efficieny and it gives good description of local (non-periodic) effects. Disadvantages

inherent in FCM are the loss of local symmetry for some sites, boundary effects due

to the presence of low-coordinated cluster atoms, and the neglect of long range inter-

actions, mainly of electrostatic nature. These deficiencies of the FCM are removed in

the CCM [24]. It is similar to the quasi-molecular large-unit cell (QLUC) model [56].

In the CCM, the local environment of each cluster atom is replaced by that of a fictitious

cyclic arrangement. In the following, a cyclic A3B3 cluster is used as a model for the

one-dimensional periodic system AB. Conceptually, the atoms of the A3B3 cluster are

treated as if they formed a ring (Fig. 3.2).
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Figure 3.2: Fictitious arrangement of cluster atoms on a ring for the simulation of a

linear crystal.
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This fictitious arrangement would be a torus in two dimensions, and a hypertorus in

three dimensions. In order to define the interaction region R for every atom of the

cyclic cluster, the cluster atoms are translated as follows,

Figure 3.3: Translation of the one-dimensional chain in CCM

Here a is the length of the translation vector. The single prime (′) denotes a translation

in a positive x direction, and double prime (′′) denotes the translation in negative x

direction. Only interactions within the distance r ≤ a/2 are taken into account. The

interaction region is the region around an atom in which all the multi-center integrals

containing the central atom are evaluated. It also defines the entries for interatomic

matrix elements.

In the CCM approach [24] implemented in MSINDO, the atoms at the border of the

interaction sphere are treated according to an idea of Evjen [57]. For a symmetric

bulk system, there are always several neighbors at the borders of the Wigner-Seitz

cell around the central atom I with the same distance. The MSINDO-CCM takes

into account all of those atoms J and the interaction integrals are weighted with their

reciprocal total number, ωIJ . Thus ωIJ will be 1/2 for the integrals involving the border

atoms in the present example (Fig. 3.2). The interaction matrix is given in Table 3.1.

Table 3.1: Weighted CCM interaction matrix for the linear chain ((AB)3). Here I is a

central atom and R(I) is its interaction region.

R(I) I R(I)

1
2
B′′

2 A′′
3 B′′

3 A1 B1 A2
1
2
B2

1
2
A′′

3 B′′
3 A1 B1 A2 B2

1
2
A3

1
2
B′′

3 A1 B1 A2 B2 A3
1
2
B3

1
2
A1 B1 A2 B2 A3 B3

1
2
A′

1

1
2
B1 A2 B2 A3 B3 A′

1
1
2
B′

1

1
2
A2 B2 A3 B3 A′

1 B′
1

1
2
A′

2
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Within the MSINDO-CCM, the one-center core Hamiltonian elements (2.31) are mod-

ified as

HµAµA
= UµA

+

R(A)
∑

B 6=A

ωAB

(

V B
µAµA

+ V B,corr
µAµA

)

−
R(A)
∑

B 6=A

∑

ρB

S2
µAρB

ερB
(3.71)

HµAνA
=

R(A)
∑

B 6=A

ωAB

(

V B
µAνA

+ V B,corr
µAνA

)

−
R(A)
∑

B 6=A

∑

ρB

SµAρB
SνAρB

ερB

where R(A) is the interaction region for an atom A of the cluster and ωAB is the

weighting factor. If ν belongs to an atom B which is not a border atom, the two-center

terms HµAνB
and Coulomb matrix elements GµAνB

consist of single terms [24]. If ν

is centered at atom B which is a border atom, HµAνB
and GµAνB

are calculated as

weighted average over all equivalent border atoms B ′, including the reference atom B

as,

HµAνB
=

equiv
∑

B′

ωAB′HµAνB′

GµAνB
=

equiv
∑

B′

ωAB′GµAνB′

CCM calculations are performed in real space which corresponds to the κ = 0 approx-

imation in the periodic models. Long-range electrostatic interactions can be approx-

imately taken into account in CCM calculations by embedding in finite point charge

arrays. But it is preferable to perform an infinite summation using the Ewald tech-

nique [58]. Analytical energy gradients for the atomic coordinates in the framework of

CCM are also implemented in MSINDO [24,58]. Numerical gradients are used for the

cell vectors during lattice parameter optimizations.

The CCM and the periodic model have both similarities and differences. In both

the models, the direct lattice translation vectors are transformed. A large unit cell

(supercell) is introduced in both the approaches for the perfect host crystal in such a

way that the point symmetry of the corresponding Bravais lattice is maintained. Both

the approaches converge into equivalent results for the calculations of non-defective

solids [59]. Although the CCM calculations correspond to the κ = 0 approximation,

they include not only the Γ-point but also consider other points in the BZ. The reason

is that by generating a large cyclic cluster of several PUCs, the BZ is transformed into

a reduced Brillouin zone (RBZ). Within this transformation special points of the BZ
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become equivalent to the Γ-point of the RBZ. They are therefore included in the CCM

calculation [59]. The difference between both approaches is the number of considered

integrals is considered in finite region in the CCM in contrast to the periodic models.

The advantage of the CCM compared to the supercell model in the description of the

ideal solid is that all techniques developed for molecular quantum chemistry, like the

improved virtual orbitals (IVO) [60], or configuration interaction (CI), can be applied.

In cases where defective crystals are considered, the CCM has the advantage that there

are no artificial defect-defect interactions. In periodic calculations such interactions

appear and can only be reduced by the enlargement of the supercell at the expense of

computer time, but they can not be omitted completely. Furthermore, the CCM allows

the calculation of charged systems without the use of an artificial counter charge, since

the defect is not repeated periodically.
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4 Experimental Background

Nanostructured materials represent a new generation of advanced materials. They

exhibit unique and technologically attractive mechanical, electrical, optical or mag-

netic properties [61, 62] which are different from those of conventional coarse-grained

polycrystals. Their outstanding properties are attributed to the size and interface ef-

fects [63]. This makes these solids interesting for applications as functional materials

with taylored properties.

Ion conducting nanocrystalline oxides, such as, Li2O with particle sizes in the nm range

are characterized by a heterogeneous structure consisting of nanosized crystalline grains

[62]. It was observed [64–66] that reducing the grain size of Li2O from some µm to about

20 nm does not affect the overall conductivity, and hence the Li+ diffusivity, at all.

In contrast, for the composite material Li2O:B2O3, measurements of dc conductivity

have shown that the micro- and the nanocrystalline materials behave totally different.

For microcrystalline samples, the conductivity decreases monotonically with the B2O3

content, while for the nanocrystalline samples, the conductivity shows a maximum

at about 50 % of B2O3 content, although B2O3 is an insulator. In both cases, the

conductivity decreases above a certain threshold (Fig. 4.4).

Figure 4.4: Plot of dc conductivities of the micro-(full circles) and nanocrystalline(open

circles) Li2O:B2O3 composites as a function of B2O3 volume fraction p at

two different temperatures, (a) T = 433 K and (b) T = 453 K [64].

• For the nanocrystalline (1-p)Li2O:pB2O3 composites (average grain size of about
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20 nm), the ionic conductivity σdc increases with increasing content of B2O3 upto

a maximum at p ≈ 0.7, above p ≈ 0.96, σdc decreases.

• For the microcrystalline (1-p)Li2O:pB2O3 composites (average grain size of about

10 µm), σdc decreases with p and vanishes above p ≈ 0.7.

This striking behavior is due to the different sizes of the grains and the enhanced

conductivity at the interface between conducting and the insulating components (Fig

4.5).

Figure 4.5: Sketch of Li2O:B2O3 composite material; light grey areas represent ionic

conductor grains (Li2O) and dark grey areas represent insulator grains

(B2O3). The network of interfaces consists of interfaces between ionic con-

ductor grains (green lines), interfaces between insulator grains (black lines)

and interfaces between ionic conductor and insulator grains (red lines) [66]

For the nanocrystalline samples, the width of the interfaces becomes close to the average

grain size. In this case, the highly conducting interface region can act as a bridge

between two Li2O grains not in direct contact to each other, opening up additional

paths for Li ions. Whereas, for microcrystalline samples, the interface region between

B2O3 and Li2O grains does not play a significant role since its width is negligible

compared to the grain sizes, and conducting paths can open up only when two Li2O

grains get in direct contact to each other.

In the present study, quantum chemical model calculations are performed to investigate

the mechanism of the observed enhanced conductivity in Li2O:B2O3 nanocomposites.
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5 Bulk Properties of Li2O

Li2O has anti-fluorite structure (space group Fm3m) with lattice constant a = 4.619

Å [67] at room temperature. The lattice consists of a primitive cubic array of Li+

ions, of spacing a/2, with the O2− ions occupying alternate cube centers Fig. 5.6.

Lithium oxide is of considerable interest because of its potential applications. It is

Figure 5.6: Lithium oxide bulk unit cell. Red spheres represent the oxygens and blue

spheres represent the lithium atoms

applied in deuterium-tritium fusion reactors as blanket breeding material [68] and in

solid state batteries [69]. It is one of the simplest oxides and hence, it serves as a

model system for the study of other ionic oxides. Both theoretical and experimental

investigations have been performed for Li2O to understand the energetic properties

[70–74], electronic properties [74–83], conduction mechanism [64–66,86], and properties

of defects [79, 81, 83–93].

In this study, bulk properties of Li2O such as, the lattice constant, the heat of atom-

ization, the electronic properties and the defect properties have been calculated with

the methods and models described in previous sections. The lattice parameter a has

recently been measured at nine temperature values in the range 293-1603 K, using the

technique of inelastic neutron scattering on single crystals and polycrystals [78]. The

a versus T curve shows a linear behavior in the 293-1300 K interval. An extrapolation

to T = 0 K gives a = 4.573 Å with a decrease of 0.05 Å with respect to room temper-

ature value of 4.619 Å [67]. The experimental value of the heat of atomization is 1154
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kJ/mol [94] and the band gap (Eg) is 7.99 eV [81]. The investigation of defects in Li2O

crystal is necessary to understand its conduction mechanism. The dominant intrinsic

defects in Li2O are point defects [84–86], either as cation vacancies or cation-Frenkel

type; i.e., vacancies and interstitials in the Li sublattice. Schottky disorder is also

observed, but it is not as predominant as the cation-Frenkel defect [86]. On the other

hand, the dominant irradiation defects in Li2O are known as F centers [82, 87, 88] and

F+ centers [79,82,83,89,92,93]. In the present study, only cation vacancy and F center

are investigated. The formation energies of these two types of defect are calculated

and the relaxation effects are investigated.

Finally, the diffusion of Li+ in Li2O is investigated. The mechanism of Li+ migration

in Li2O is studied by calculating the energy barrier for the movement of Li+ from

a regular site to an adjacent cation vacancy defect position. The calculated energy

barrier is compared with the experimental activation energy [65, 66].

5.1 Stoichiometric Li2O: MSINDO-CCM results

In this section, the calculated results for Li2O bulk structure, heat of atomization,

electronic properties as band gap and electronic density of states (DOS) are presented as

calculated by the cyclic cluster model (CCM) with the semiempirical SCF-MO method

MSINDO. It was found to be necessary to reoptimize the standard Li parameters [14,22]

for the crystalline Li2O.

5.1.1 Parameterization

First, the standard parameters [14, 22] were applied for the calculation of Li2O bulk

properties. The calculated values of the lattice parameter a, the binding energy per

Li2O unit Eu and the band gap (Eg) obtained with a Li64O32 cyclic cluster are compared

with experimental values in Table (5.2). Lattice parameter a is overestimated by 0.44 Å

compared to the experimental value 4.573 Å [78] obtained at 0 K and is overestimated

by 0.39 Å compared to the room temperature value of 4.619 Å [67]. The binding

energy per Li2O unit Eu is compared with the negative value of experimental heat

of atomization of Li2O (−1154 kJ/mol [94]). The calculated Eu value is reasonable,

underestimated by only 42 kJ/mol compared to the experiment. Whereas the Eg is

overestimated by 3.2 eV compared to the experimental value [81].
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Table 5.2: Bulk properties a (Å), Eu (kJ/mol) and Eg (eV) of Li2O obtained with the

standard parameterization of MSINDO

Properties Calculated Experiment

a 5.01 4.573 [78]a , 4.619 [67]b

Eu −1112 −1154 [94]

Eg 11.3 7.99 [81]

a extrapolated to T = 0 K

b value obtained at room temperature

In order to obtain better bulk properties of Li2O, the Li atomic parameters and Li-O

bond parameters were reoptimized with a Li64O32 cyclic cluster for the experimental

lattice parameter a, heat of atomization and band gap. The calculated values obtained

with new parameterization are compared with the experiment in Table (5.3). The

lattice parameter a is 4.69 Å, which is only 0.07 Å larger than the experimental value

obtained at room temperature [67] and 0.12 Å larger than that obtained at 0 K [78].

Calculated Eu is overestimated by 24 kJ/mol compared to the experiment [94] and Eg

is overestimated by 1 eV compared to the experimental Eg = 7.99 eV [81].

Table 5.3: Bulk properties a (Å), Eu (kJ/mol) and Eg (eV) of Li2O obtained with new

parameterization of MSINDO

Properties Calculated Experiment

a 4.69 4.573 [78]a , 4.619 [67]b

Eu −1178 −1154 [94]

Eg 9.0 7.99 [81]

a extrapolated to T = 0 K

b value obtained at room temperature

The optimized parameters for Li and O are compared with standard parameters [14,22]

in the following table (5.4).
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Table 5.4: Comparison of standard and optimized parameters (a.u) for Li atom and

Li-O bond

Standard Optimized (present work)

Li

ζs 0.7497 0.9072

ζp 0.7226 0.9072

ζU
s 0.6829 0.6016

ζU
p 0.6697 0.6016

τ1s 2.0365 2.2538

Is −0.1952 −0.2036

Ip −0.0586 −0.0136

Kσ 0.1510 −0.0737

Kpσ 0.1510 0.2269

Kpπ 0.1150 0.3366

κ1 0.5930 0.1267

κ2 1.2702 0.3823

κ3,(s,p) 1.2450 0.0309

O

κ2 0.2485 0.2263

In the next section, the convergence behavior for the optimized bulk properties with

increasing size of cyclic cluster is investigated.

5.1.2 Convergence Test

Li2O bulk is modeled with four clusters of increasing size, Li32O16, Li64O32, Li216O108

and Li512O256, using the cyclic cluster model (CCM) with Madelung contributions

[24,58]. The results obtained for the lattice parameter a, the binding energy per Li2O

unit Eu, the band gap (Eg) and band width (W) are compared to each other and to

experimental results from the literature (Table 5.5). For the calculation of the band

gap, the energies of the virtual orbitals are corrected according to a scheme proposed

by Huzinaga (improved virtual orbitals, IVO) [60]. The cluster size and shape is

quantified by the average relative coordination number k [95, 96]. Here k is defined as

the average ratio of all coordination numbers Ki of the N atoms in the cluster and the
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ideal coordination number Kib in the bulk

k =
1

N

N
∑

i=1

Ki

Kib
(5.72)

It can be seen that there is a rapid convergence of bulk properties with increasing

cluster size. Lattice parameter a is converged with the Li64O32 cluster. The converged

value, 4.68 Å, agrees with the experimental value at room temperature [67]. The

Table 5.5: Dependence of calculated a (Å), Eu (kJ/mol), Eg (eV) and W (eV) on cyclic

cluster size

System k a Eu Eg W

Li32O16 0.578 4.60 −1271 9.40 6.9

Li64O32 0.672 4.69 −1178 9.00 5.5

Li216O108 0.770 4.68 −1184 9.00 5.5

Li512O256 0.824 4.68 −1184 9.20 5.6

Exp. 4.573 [78]a , 4.619 [67]b −1154 [94] 7.99 [81] 5 [76]

a extrapolated to T = 0 K

b value obtained at room temperature

deviation is +0.06 Å or 1.3 %. However, if it is compared with the experimental value

at T = 0 K (4.573 Å) [78], the calculated value 4.68 Å is too large by 0.11 Å. A

similar rapid convergence of the bulk properties was observed for the binding energy

per Li2O unit and the band gap. The converged value of Eu is −1184 kJ/mol. Thus

Eu is overestimated by only 30 kJ/mol compared to the experimental value, −1154

kJ/mol [94]. The converged value of band gap (Eg) is 9.0-9.2 eV which is about 1

eV higher than the experimental value of 7.99 eV [81]. The slight increase of Eg from

cluster Li216O108 to Li512O256 (by 0.2 eV) is due to the deficiency of the IVO correction

which corresponds to a minimal CI expansion of an excited state including the highest

occupied molecular orbital (HOMO) and the corresponding unoccupied orbital. For

larger systems, inclusion of more orbitals is necessary to account for more delocalized

character of the excitation. The density of states (DOS) curve for the Li216O108 cluster

is given in Fig. 5.7. It is observed that the valence band (VB) is mainly formed by

the oxygen 2p orbitals with only small contributions from Li, whereas the conduction

band (CB) is dominated by Li states. The lowest unoccupied crystal orbital (LUCO)
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is delocalized over all Li atoms of the cluster. The position of this virtual orbital is

fairly independent of the model used. The converged value of valence band width (W)

is 5.5-5.6 eV which is in good agreement with the experimental value of 5 eV [76].

Figure 5.7: Density of states (DOS) for bulk Li2O as obtained for Li216O108 cluster

(MSINDO)

5.2 Stoichiometric Li2O: DFT results

In this section the bulk properties of Li2O as obtained from five different DFT methods

namely, PW1PW [37], B3LYP [35, 36], PWGGA, PWGGA-US and PWGGA-PAW,

are presented. The first three DFT methods are implemented in the crystalline orbital

program CRYSTAL03 [41]. In order to investigate the effect of basis set changes on

the structural, energetic and electronic properties, five basis sets of increasing quality

are used for Li and O atoms.

For the first set, a 6-1G basis [97] is used for Li. In the second set, a 6-11G [98] basis

is used which is an extension of the 6-1G basis where the outer exponent has been

optimized in Li(OH)H2O. The third Li basis set is 7-11G∗ [99]. The 7-11G∗ basis for

Li is further extended to 7-11G(2d) in the present study. The inner 1s and 2sp shells

remained unchanged while the orbital exponents of the 3sp and d shells were optimized

at PW1PW level for Li2O (Table 5.6). For O, first a 8-411G basis is used as optimized

for Li2O by Dovesi et al. [70]. The second O basis set is 8-411G∗ [100]. The 8-411G∗

basis set is further extended to 8-411G(2d) by adding one more d polarization function

in this study. Five combinations of these atomic basis sets (BS) have been applied, BS

A (Li:6-1G, O: 8-411G), BS B (Li: 6-11G, O: 8-411G∗), BS C (Li: 7-11G∗, O: 8-411G∗),
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BS D (Li: 7-11G(2d), O: 8-411G∗), and BS E (Li: 7-11G(2d), O: 8-411G(2d)).

Table 5.6: Optimized orbital exponents of the uncontracted Gaussian functions

Lithiuma Oxygenb

Shell 7-11G∗ 7-11G(2d) 8-411G∗ 8-411G(2d)

sp 0.922 0.922 0.470 0.470

sp 0.193 0.154 0.200 0.200

d 0.179 0.489 0.570 0.570

d 0.245 0.285

aInner 7G core taken from Ref. [99]

bInner 8-4G core taken from Ref. [100]

The DFT methods, denoted as PWGGA-US and PWGGA-PAW, are implemented in

the VASP code [46–48]. For PWGGA-US method, sets of plane waves with three dif-

ferent energy cutoffs (Ecut), E1=396 eV, E2=515 eV, and E3=594 eV, are used to

describe the valence electrons, while the core electrons are represented by ultra soft

pseudopotentials (US PP) [51, 52]. In the PWGGA-PAW method, sets of plane waves

with three different energy cutoffs, E1=400 eV, E2=520 eV, and E3=600 eV, describe

the valence electrons, while the core electrons are represented by Projector Augmented

Wave (PAW) potentials [53, 55]. In both cases, E1 represents the Ecut corresponding

to the standard value which is obtained from the VASP guide [101].

Structural, Energetic and Electronic properties

Calculated values of optimized lattice parameter a, binding energy per Li2O unit Eu

and band gap Eg are given in Tables 5.7 and 5.8. The deviation is less than 2.5 %

for the lattice parameter with all methods. The two hybrid DFT methods, PW1PW

and B3LYP, give close values to each other and to the experimental value 4.573 Å [78].

Among the three pure Perdew-Wang implementations (PWGGA, PWGGA-PAW and

PWGGA-US) (Table 5.8), PWGGA-US gives the worst value of a. The deviation is

0.11 Å from the experimental value. This discrepancy can be due to an inaccurate

description of the Li core electrons by the US PP. The deficiency is removed by PAW
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potential. PWGGA-PAW and PWGGA methods give close values of lattice parameter

a to each other and to the experimental value. The calculated lattice parameter is

converged with energy cutoff Ecut = E2 for the plane wave based methods. For the

CRYSTAL calculations, it is found that the choice of the atomic basis set has nearly

no effect on the structural properties. a is already converged with the BS B.

Table 5.7: Basis set dependence of calculated a (Å), Eu (kJ/mol), and Eg (eV) obtained

with PW1PW and B3LYP

PW1PW B3LYP Exp.

BS A B C D E A B C D E

a 4.56 4.57 4.59 4.58 4.58 4.58 4.59 4.59 4.59 4.59 4.573 [78], 4.619 [67]

Eu −1107 −1116 −1130 −1134 −1134 −1106 −1110 −1122 −1123 −1123 − 1154 [94]

Eg 10.19 8.37 8.66 7.95 7.96 10.23 8.49 8.82 8.11 8.12 7.99 [81]

Table 5.8: Optimized a (Å), Eu (kJ/mol), and Eg (eV) calculated with three different

Perdew-Wang implementations

PWGGAa PWGGA-USb PWGGA-PAWb Exp.

BS/Ecut A B C D E E1 E2 E3 E1 E2 E3

a 4.59 4.61 4.63 4.63 4.62 4.45 4.46 4.46 4.58 4.64 4.63 4.573 [78], 4.619 [67]

Eu −1131 −1143 −1160 −1164 −1164 −1192 −1189 −1189 −1169 −1176 −1165 − 1154 [94]

Eg 8.00 6.24 6.53 5.82 5.83 5.00 5.18 5.18 5.02 5.00 5.00 7.99 [81]

a Obtained with CRYSTAL03

b Obtained with VASP

The binding energy per Li2O unit (Eu) was calculated for the optimized value of lattice

parameter a. For the calculation of the atomic reference energies with CRYSTAL03,

the basis sets of the free atoms were optimized by augmenting the basis sets of the

periodic calculations by diffuse sp and d shells until convergence was achieved for the

total energy. For both the PWGGA-US and PWGGA-PAW implementations in VASP,

atomic reference energies were calculated with US PP and PAW potential by using

pseudo lattice constants of 13 Å for Li atom and 8 Å for O atom. The VOSKOWN

keyword [102] was used for a better convergence of the ground state energy of atoms

as it is important particularly for open-shell GGA based calculation [101] . All the

methods give binding energies within ±35 kJ/mol (Tables 5.7 and 5.8) of the negative

experimental heat of atomization, −1154 kJ/mol [94]. The two hybrid methods, B3LYP
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and PW1PW, (Table 5.7) underestimate Eu by 31 kJ/mol and 20 kJ/mol calculated

with the BS D. The basis set convergence for Eu is slower than for structural properties.

With the three LCAO based DFT implementations, Eu is converged with BS D. In the

case of PWGGA-US, Eu is converged with Ecut = E2 as for the lattice parameter a.

Whereas, PWGGA-PAW shows different behavior of Eu convergence with Ecut (Table

5.8). The reason can be attributed to the difference between the USPP and PAW

potential.

In a recent experimental investigation [81], the value of the band gap (Eg) was ob-

tained as 7.99 eV. This value is much higher than the results of photoemission and

loss electron energy spectroscopy (LEES) 7-7.5 eV [76], the absorption spectroscopy at

low temperature 7.02 eV [82], and optical absorption spectroscopy, 6.6 eV [80]. Sev-

eral theoretical studies on the electronic properties of Li2O have already appeared in

the literature. Band gaps and bandwidths are generally overestimated by the ab initio

Hartree-Fock method [74,75] and underestimated by the DFT local density approxima-

tion (LDA) [75, 77]. DFT methods based on the generalized gradient approximation

(GGA) give closer agreement [75] with the experiment, and a hybrid DFT method

incorporating exact HF exchange [75] further improves electronic properties.

The calculated values of band gap (Eg) are given in Tables 5.7 and 5.8. The best agree-

ment for the experimental value of Eg is obtained with the PW1PW method using BS

D (Table 5.7). The calculated value of Eg is 7.95 eV which is very close to the experi-

mental value of 7.99 eV [81]. The second best agreement is obtained with the B3LYP

method, 8.11 eV (BS D). The three pure Perdew-Wang implementations, LCAO based

PWGGA and plane wave based PWGGA-US and PWGGA-PAW, underestimate the

band gap (Table 5.8). For PWGGA-US and PWGGA-PAW, the Eg values are very

close, 5.18 eV and 5.00 eV, respectively. This is considerably smaller than the 5.82 eV

obtained with CRYSTAL PWGGA using BS D. The difference in Eg is not due to the

LCAO basis set incompleteness as it has already converged with BS D. For PWGGA-

US and PWGGA-PAW methods, Eg is converged with energy cutoff E2. The atomic

basis set has a pronounced effect on the electronic structure. The PW1PW Eg value is

10.19 eV with BS A, which is 1.82 eV, 1.55 eV, 2.24 eV, and 2.23 eV larger than that

with BS B, C, D, and E, respectively. The difference is mainly due to the inclusion of

diffuse and polarization functions in the Li basis set. These orbitals are dominating at
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the lower part of the conduction band (CB). The basis set effect is almost independent

from the method, as can be seen (Tables 5.7 and 5.8) by the difference obtained with

BS A, B, C, D, and E for B3LYP and PWGGA methods. In all cases, Eg is converged

with BS D.

The total (TDOS) and projected density of states (PDOS) were calculated using the

Fourier-Legendre technique [104] with a Monkhorst net [105] using shrinking factors

s=8. The calculated TDOS of Li2O is compared with X-ray photoelectron spectrum

[76] as shown in Fig. 5.8. The overview of the calculated DOS by PW1PW method

with BS D is shown. This method is chosen since it gives the best agreement with

experiment for Eg. The experimental XPS spectrum was shifted to the calculated

Fermi level which corresponds to the VB top in the present case. A good agreement

with experiment was obtained for the band widths and the main peak positions within

the VB. The calculated valence band width is about 5 eV which is in good agreement

with the experimental value [76]. The Li PDOS (Fig. 5.8) shows that Li atoms are

involved in all bands. The CBs are created mainly by Li states.

Figure 5.8: Density of states of Li2O obtained with the PW1PW method using basis

set D. For comparison the X-ray photoelectron spectrum [76] is also shown.

The experimental XP spectrum was shifted to the top of the valence band.

The bonding picture of crystalline Li2O is illustrated by the electron charge density

distribution along the Li-O bond. Here, the PW1PW method is taken as an example.

All the other methods give qualitatively similar behavior. The charge density distri-

bution map is shown in Fig. 5.9. The contour lines range from 0.0 to 0.3 e/Å3 with

steps of 0.02 e/Å3. It can be seen that the charge distribution around both Li and O
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atoms is almost spherical.

Figure 5.9: Electronic charge density distribution for Li2O.

The charge density magnitude between these two atoms is small which indicates that

the interaction is mainly ionic.

Thus the hybrid PW1PW method gives the best reproduction of bulk properties for

Li2O. The other hybrid method B3LYP gives a similar trend. The three Perdew-

Wang implementations (PWGGA, PWGGA-PAW and PWGGA-US) show dissimilar-

ity. PWGGA-US gives smaller lattice parameter and larger Eu compared to other two

methods. Both the PWGGA-PAW and PWGGA-US give smaller value of Eg than

CRYSTAL-PWGGA, but all three methods underestimate the band gap. Extension of

localized basis set has a relatively small effect on structural and energetic properties,

but a pronounced effect on electronic properties. The structural and energetic prop-

erties are converged with BS B and BS C, respectively, and electronic properties are

converged with BS D. For the plane wave based DFT methods, all the properties are

converged with an energy cutoff E2. The reparameterized version of MSINDO gives

comparable results to the DFT methods, lattice parameter a and Eu are reasonable,

Eg is overestimated by 1 eV compared to the experiment.

In the next section, the defect properties of Li2O are presented.

5.3 Defect properties of Li2O

In this section, the defect properties of Li2O are discussed. Only two types of defect are

considered here, the cation vacancy defect and the F center. Based on the optimized
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structural parameters for the perfect crystals, supercells were constructed for defect

calculations. Three different cyclic clusters, Li64O32, Li216O108 and Li512O108 are used

for the simulation of defects with the MSINDO-CCM. DFT calculations are performed

using the supercell model (SCM). A Li64O32 supercell is used for the simulation of

defects. Among the five DFT methods discussed in the previous section, only four

methods are considered here. These are PW1PW and B3LYP methods using the

CRYSTAL03, and PWGGA-US and PWGGA-PAW methods using the VASP code.

The LCAO based PWGGA method showed SCF convergence problems for the defective

system, therefore this method is not considered here.

In the CCM, the cyclic clusters for the defective systems are embedded in the Madelung

field of the perfect Li2O crystal. The charges for this embedding are the Löwdin charges

calculated from the simulation of the corresponding perfect cyclic cluster. In the SCM

approach, the defective systems are considered as a new crystal with an artificially

introduced point defect periodicity. The calculation is done in the same way as for a

perfect crystal using the k sampling of the BZ.

5.3.1 Cation vacancy

Li2O is a fast ion conductor [65]. It is applied in solid-state batteries [69]. An exper-

imental investigation [86] shows that the mobile species is the Li+ ion and the most

likely mechanism for its migration is via cation vacancies. Although there have been

several experimental [65,86] and theoretical [84–86] studies of ionic transport in Li2O,

the defect formation energy of cation vacancy and relaxation effect for defective systems

are still not known. In the present section, the formation energy of a cation vacancy

in Li2O, the effect of relaxation for this type of defect and the influence of defect on

the electronic properties are studied.

In Table 5.9, calculated cation vacancy formation energy, Ede(V ) and relaxation energy,

ER using MSINDO-CCM are presented. The vacancy is created by removing one Li

from the cluster keeping the system neutral. This leads to multiplicity 2 per cell. The

calculations were performed by UHF method.

The formation energy of cation vacancy Ede(V ) is calculated as:

Ede(V ) = E(Li2n−1On) + E(Li) − E(Li2nOn) (5.73)
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Here E(Li2n−1On) and E(Li2nOn) denote the total energy of the cyclic cluster or the

supercell with and without vacancy, respectively, and E(Li) is the energy of free Li

atom. The relaxation energy, ER is calculated by subtracting the energy of relaxed

system from that of the unrelaxed system. First, the relaxation is performed for the

four nearest O atoms close to the Li vacancy. This relaxed area is indicated as 1-NN.

Then the relaxed area is increased systematically up to the twelfth nearest-neighbors

for the Li512O256 cyclic cluster until convergence is achieved. In the CCM approach, the

relaxation area is chosen in such a way that the defect is in the center. For the smallest

cluster, Li64O32, relaxation is possible only up to the third-nearest neighbors. Whereas,

relaxation area can be increased up to the seventh-nearest neighbors for Li216O108. It

can be seen from Table 5.9 that the defect formation energy is already converged within

1 kJ/mol for the system with relaxation of the tenth-nearest neighbors.

Table 5.9: Formation energy (kJ/mol) of cation vacancy, Ede(V ) and relaxation energy,

ER of Li64O32, Li216O108 and Li512O108 with MSINDO-CCM.

Neighbor Li64O32 Li216O108 Li512O256

Relaxation Ede(V ) ER Ede(V ) ER Ede(V ) ER

unrelaxed 767 0 776 0 778 0

1-NN 731 36 749 27 743 35

2-NN 639 128 657 119 631 147

3-NN 569 198 587 189 577 200

4-NN 581 195 570 208

5-NN 567 209 555 223

6-NN 550 226 536 242

7-NN 546 230 533 245

8-NN 520 258

9-NN 517 261

10-NN 515 263

11-NN 515 263

12-NN 514 264

Thus the defect formation energy of a cation vacancy in Li2O according to the MSINDO-

CCM is 514 kJ/mol . To the best of my knowledge, there is no experimental or theo-

retical value of cation vacany defect formation energy of Li2O. This value is, therefore,

compared with the DFT results in this study. In Fig. 5.10 the convergence behavior
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Figure 5.10: Convergence of relaxation energy, ER (kJ/mol) for the Li defect with

increasing relaxation distance (Å) (MSINDO-CCM)

of ER with increasing relaxation distances is shown.

In Table 5.10, calculated cation vacancy formation energies, Ede(V ) as obtained from

the DFT methods are presented. Ede(V ) is calculated with Eq. (5.73) for unrelaxed

and fully relaxed systems. The converged values of Ede(V ) with PW1PW and B3LYP

are 576 kJ/mol and 566 kJ/mol, respectively.

Table 5.10: Formation energy of cation vacancy, Ede(V ) (kJ/mol) in Li2O for unrelaxed

and relaxed structure using the DFT methods (Li64O32 Supercell)

Method PW1PW B3LYP PWGGA-US PWGGA-PAW

BS/Ecut A B A B E1 E2 E3 E1 E2 E3

unrelaxed 682 642 671 629 661 579 579 593 558 555

relaxed 577 576 567 566 583 500 500 517 480 477

The relaxation energy, ER is ≈ 65 kJ/mol in both cases. Since the PW1PW method

gives the best agreement for the bulk properties of Li2O, it is considered as refer-

ence. For the two plane wave based DFT methods, PWGGA-US and PWGGA-PAW,

Ede(V ) is converged with energy cutoff E2. Compared to the results of the PW1PW

method, the PWGGA-US and PWGGA-PAW methods give smaller values of Ede(V )

by 76 kJ/mol and 96 kJ/mol, respectively. The difference can be due to the different

functionals, or to the effect of two different types of basis sets. Further test calcula-

tions applying larger basis set than BS B for PW1PW and B3LYP methods showed

SCF convergence problems. So it can not be confirmed whether this discrepancy arises

from the incompleteness of BS B. Although there is a little difference in Ede(V ) ob-
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tained with PWGGA-US and PWGGA-PAW approaches, the ER is nearly same (≈ 80

kJ/mol). The MSINDO-CCM Ede(V ) value is smaller than the PW1PW result by 61

kJ/mol. The structural relaxation effects are investigated by measuring the changes

of distances of the relaxed atoms with respect to the defect position. MSINDO-CCM

and PW1PW results for the relaxation effects are shown in Tables 5.11 and 5.12, re-

spectively. Only PW1PW results are presented here, since all other DFT methods give

the same trend. Four O atoms in the first coordination shell (1-NN) give an outward

relaxation from the vacancy, namely by 3.4 % with the MSINDO-CCM and by 6.6 %

with the PW1PW method. This is reasonable, since the electrostatic attraction by the

Li+ cation is missing. The removal of one neutral Li atom creates a hole in the va-

lence band. One of the surrounding four O atoms (formally O2−) in 1-NN becomes O−

and spin density is localized on this O atom. Six Li atoms in the second coordination

shell (2-NN) show a strong inward relaxation of −18.8 % with the MSINDO-CCM and

−10.0 % with the PW1PW approach. Due to the reduced electrostatic repulsion, the

2-NN Li atoms tend to move towards the vacancy.

Table 5.11: Distances of neighboring atoms (r) Å from the Li vacancy and changes

of the distances ∆r(%) for the unrelaxed and relaxed atoms in Li512O256

(MSINDO-CCM)

Atom r Unrelaxed Relaxed ∆r(%)

O(4) r1 2.03 2.10 +3.4 %

Li(6) r2 2.34 1.90 −18.8%

Li(12) r3 3.31 3.39 +2.4 %

O(12) r4 3.88 3.87 −0.3 %

Li(8) r5 4.06 4.09 +0.7 %

Li(6) r6 4.68 4.72 +0.9 %

O(12) r7 5.10 5.11 +0.2 %

Li(24) r8 5.24 5.25 +0.2 %

Li(24) r9 5.74 5.75 +0.2 %

O(16) r10 6.08 6.09 +0.2 %

Li(12) r11 6.62 6.63 +0.2 %

O(24) r12 6.93 6.93 +0.0 %

The 12 Li atoms in the third coordination shell (3-NN) show an outward relaxation,

whereas 12 4-NN O atoms move toward the vacancy by about −0.3 %. The Li atoms
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Table 5.12: Distances of neighboring atoms (r) Å from the Li vacancy and changes of

the distances ∆r(%) for the unrelaxed and relaxed atoms in Li64O32 with

PW1PW method (BS B)

Atom r Unrelaxed Relaxed ∆r(%)

O(4) r1 1.98 2.11 +6.6 %

Li(6) r2 2.29 2.06 −10.0 %

Li(12) r3 3.23 3.26 +0.9 %

O(12) r4 3.79 3.78 −0.3 %

Li(8) r5 3.98 4.00 +0.5 %

Li(6) r6 4.57 4.61 +0.9 %

in the fifth and sixth nearest neighbors show an outward relaxation in both MSINDO-

CCM and PW1PW approaches. For the investigation of further relaxation by PW1PW

method, one has to consider a supercell larger than Li64O32 which was not possible due

to limited computer resources. With the MSINDO-CCM, it is possible to investigate

the relaxation effect for more neighbors using a very large supercell Li512O256. From

Table 5.11, it can be seen that 7-NN O atoms, 8-NN Li atoms, 9-NN Li atoms, 10-NN O

atoms and 11-NN Li atoms have very slight outward relaxation, whereas the positions

of 12-NN O atoms are unchanged. Thus the results of MSINDO and PW1PW are in

qualitative agreement. Relaxation is mainly restricted to the nearest and the second-

nearest neighbor atoms.

The study of electronic properties is performed by calculating the density of states

(DOS) of the defective supercells. The DOS for a defective Li216O108 cyclic cluster

obtained with MSINDO is shown in Fig. 5.11. All the other methods show qualitatively

the same behavior. It can be seen that Li+ ion vacancy introduces an extra unoccupied

level roughly 3.4 eV below the bottom of the conduction band, which is marked by an

arrow. In the case of PW1PW method, the unoccupied defect level is situated at 2.1

eV below the bottom of the conduction band. There is no experimental or theoretical

value for the position of the unoccupied cation defect level in Li2O. Since the PW1PW

gives the best description of electronic properties of Li2O among all methods, this is

taken as reference. Thus MSINDO-CCM gives higher value (by 1.3 eV) compared to

the PW1PW. The B3LYP gives close value (2.0 eV) to the PW1PW. Both the values
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Figure 5.11: Density of states (DOS) for Li vacancy in Li216O108 (MSINDO-CCM)

are obtained with BS B. PWGGA-US and PWGGA-PAW methods give very small

value, 1.3 eV and 1.0 eV, respectively.

5.3.2 F center

Li2O is proposed as a blanket material in deuterium-tritium fusion reactors [68]. Stud-

ies are needed to understand its behavior under irradiation. One of the predominant

irradiation defects is known as F center, an oxygen vacancy trapping two electrons.

Very few theoretical and experimental investigations [82, 87, 88] have been performed

to understand the F center defect in Li2O. Tanigawa et al. [88] performed supercell

calculation at the HF level using the CRYSTAL95 code and at the GGA level using

the plane wave based CASTEP code. The effect of relaxation on F centers in Li2O was

investigated only for 8 1-NN Li atoms and 12 2-NN O atoms and relaxations were too

small to estimate the accuracy. The optical transition energy of F centers was calcu-

lated as 4.82 eV [87] with the embedded-molecular-cluster model using semiempirical

INDO-type calculation scheme. In a photoluminescence study of Li2O under excita-

tion with UV light in the fundamental absorption region at low temperature [82], the

optical transition energy of F centers was approximated as 3.70 eV. No experimental

or theoretical investigations were found in the literature that predict the defect for-

mation energy of F center, Ede(F ). In the present study, a systematic investigation is

performed for the calculation of F center formation energy, Ede(F ), the effect of relax-

ation on F center and the optical transition energy of F center with MSINDO-CCM

and DFT supercell calculations (PW1PW, B3LYP, PWGGA-US and PWGGA-PAW).

To create the F center, one neutral oxygen atom was removed from the supercell. The
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defect formation energy of F center, Ede(F ) is calculated as:

Ede(F ) = E(Li2nOn−1) + E(O) − E(Li2nOn) (5.74)

Here E(Li2nOn−1) and E(Li2nOn) denote the total energy of the cyclic cluster or the

supercell with and without defect, respectively, and E(O) is the energy of the free O

atom in its ground state. In Table 5.13, calculated F center formation energies, Ede(F )

and relaxation energies, ER from MSINDO-CCM calculation are presented. It was

found that Ede(F ) is 1467 kJ/mol for the triplet state of the defective cluster which is

248 kJ/mol larger than that of closed-shell singlet state. The triplet state was treated

by the UHF method. The convergence for the defect formation energy and relaxation

energy is much faster for the F center compared to the cation vacancy in Li2O. The

converged value of Ede(F ) is 1219 kJ/mol.

Table 5.13: Defect formation energy of F center, Ede(F ) and relaxation energy, ER,

kJ/mol of Li64O32 and Li216O108 cyclic clusters (MSINDO results)

Neighbor Li64O32 Li216O108

Relaxation Ede(F ) ER Ede(F ) ER

unrelaxed 1246 0 1231 0

1-NN 1239 7 1224 7

2-NN 1239 7 1224 7

3-NN 1237 9 1221 10

4-NN 1220 11

5-NN 1220 11

6-NN 1220 11

7-NN 1219 12

8-NN 1219 12

9-NN 1219 12
a9-NN 1467 185

a open shell triplet (UHF) calculation

In Fig. 5.12 the convergence behavior of ER against the relaxation distance is shown.

It can be seen that the convergence is achieved within 1 kJ/mol with the relaxation of

the seventh-nearest neighbors. Since the convergence is achieved with Li216O108, it is

not necessary to consider the Li512O256 cyclic cluster here.
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Figure 5.12: Convergence of relaxation energy, ER (kJ/mol) for F centers with in-

creasing relaxation distance (Å) (MSINDO-CCM)

In Table 5.14, calculated defect formation energies of F center, Ede(F ) obtained with

DFT methods are presented. The defect formation energy, Ede(F ) is calculated using

Eq. (5.74) for unrelaxed and fully relaxed systems. For the calculations with PW1PW

and B3LYP using the CRYSTAL03 program, the basis functions of the oxygen ion were

left at the defect position. Calculations were performed for the closed shell singlet state.

An open shell triplet state calculation was also performed with PW1PW method using

BS B. It was found that Ede(F ) value for the triplet state is 539 kJ/mol larger than

that for the closed shell singlet state. As for the cation vacancy, the PW1PW method

is taken as a reference. The converged value of Ede(F ) with PW1PW using BS C is

848 kJ/mol. The B3LYP method gives a higher value of Ede(F ), 890 kJ/mol.

Table 5.14: Defect formation energy of F center, Ede(F ) (kJ/mol) in Li2O for unrelaxed

and relaxed structures at DFT level

Method PW1PW B3LYP PWGGA-US PWGGA-PAW

BS/Ecut A B Ba C A B C E1 E2 E3 E1 E2 E3

unrelaxed 1003 878 1420 853 1010 893 894 1089 990 990 1016 975 966

relaxed 1001 873 1412 848 1009 888 890 1051 952 953 1001 957 948

a open shell triplet calculation

In both methods, the relaxation energy is very small (≈ 5 kJ/mol). For the two plane

wave based DFT methods, PWGGA-US and PWGGA-PAW, the converged value of
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Ede(F ) is 950 kJ/mol. Compared to the PW1PW method, this value is overestimated

by 100 kJ/mol. The relaxation energies, ER obtained with PWGGA-US and PWGGA-

PAW methods are 37 kJ/mol and 18 kJ/mol, respectively, which are larger than that

obtained with PW1PW. The difference can be due to the use of different functionals.

Further test calculations applying larger basis set than BS C for the PW1PW method

or B3LYP method showed SCF convergence problems. The MSINDO-CCM Ede(F )

value is 371 kJ/mol larger than the PW1PW result.

The relaxation effects for the F centers are investigated by measuring the changes of

distances of the relaxed atoms. MSINDO-CCM and PW1PW results for the relaxation

effects are shown in Tables 5.15 and 5.16, respectively. In the case of MSINDO-CCM,

results are presented for the Li216O108 cyclic cluster. Among the DFT methods, only

PW1PW results are presented here. All other DFT methods give qualitatively same

trend. The F center is surrounded by 8 Li atoms in the first coordination shell (1-NN).

Li atoms in 1-NN show an outward relaxation from the vacancy, namely by 2 % with

the MSINDO-CCM method and by 1.5 % with PW1PW method. This is reasonable,

since the 1-NN Li atoms are positively charged and should, therefore, repel each other

as the central oxygen ion is removed. But the effect is much smaller than for the

oxygens surrounding the Li defect.

Table 5.15: Distances of neighboring atoms (r) (Å) from the F center and changes of

the distances ∆r (%) for the unrelaxed and relaxed atoms in Li216O108

(MSINDO-CCM)

Atom r Unrelaxed Relaxed ∆r(%)

Li(8) r1 2.03 2.07 2.0 %

O(12) r2 3.31 3.32 0.3 %

Li(24) r3 3.88 3.89 0.3 %

O(6) r4 4.68 4.69 0.2 %

Li(24) r5 5.10 5.11 0.2 %

O(24) r6 5.74 5.74 0.0 %

Li(32) r7 6.08 6.09 0.2 %

O(12) r8 6.62 6.62 0.0 %

Li(48) r9 6.93 6.93 0.0 %

The 12 2-NN O atoms show an outward relaxation of 0.3 % with MSINDO-CCM and
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Table 5.16: Distances of neighboring atoms (r) (Å) from the F center and changes

of the distances ∆r (%) for the unrelaxed and relaxed atoms in Li64O32

obtained at the PW1PW level with BS B

Atom r Unrelaxed Relaxed ∆r (%)

Li(8) r1 1.98 2.01 1.5 %

O(12) r2 3.23 3.24 0.1 %

Li(24) r3 3.79 3.79 0.0 %

O(6) r4 4.57 4.57 0.0 %

Li(24) r5 4.98 4.98 0.0 %

O(24) r6 5.60 5.60 0.0 %

of 0.1 % with the PW1PW approach, indicating that the positions of the oxygen atoms

are almost unchanged. These agree well with the outward relaxation of 1-NN Li atoms

and 2-NN O atoms for the F centers in Li2O obtained by Tanigawa et al. [88]. But in

that study the displacements were very small, namely by 0.05 % for 1-NN Li atoms

and 0.01 % for 2-NN O atoms.

Further relaxation at the PW1PW level (Table 5.16) shows that 24 3-NN Li atoms,

6 4-NN O atoms, 24 5-NN Li atoms and 24 6-NN O atoms are unchanged. Similar

behavior is obtained with the MSINDO-CCM approach (Table 5.15).

The experimental value of optical transition energy for oxygen deficient Li2O is 3.7

eV [82], indicating a location of a doubly occupied defect level about 4.3 eV above the

valence-band-maximum (VBM). In the present study, the absorption band is measured

by calculating the density of states (DOS) of the defective supercells. The DOS curve

for a defective Li216O108 supercell using MSINDO-CCM approach is shown in Fig. 5.13.

Figure 5.13: Density of states (DOS) for F center in Li216O108 by MSINDO
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Other methods show similar behavior. The calculated value of the absorption band

using the MSINDO-CCM approach is 4.0 eV, which is in very good agreement with the

experimental value of 3.7 eV. The doubly occupied defect level is marked with an arrow

in Fig. 5.13. The optical absorption band is 4.0 eV at PW1PW level and 3.8 eV at

B3LYP level. Thus MSINDO reproduces the value of experimental optical absorption

band as it is obtained with the high level DFT hybrid methods PW1PW and B3LYP.

Two pure PWGGA approaches are giving too small values of the optical absorption

energy, namely 2.7 eV with both implementations.

Lithium oxide exhibits high ionic conductivity. This behavior is characterized by the

rapid diffusion of a significant fraction of Li ions, within an essentially rigid framework

formed by oxygen ions [64–66,84–86]. The diffusion of Li ions occurs through the cation

vacancies [66, 84–86].

In the following section, the diffusion of Li ions in lithium oxide is discussed.

5.4 Diffusion of Li+ ion in Li2O

Diffusion and ionic conduction in Li2O are matters of great interest in recent years due

to the superionic behavior of this material. Lithium oxide has a number of technolog-

ical applications ranging from miniature, lightweight high-power-density lithium-ion

batteries for heart pacemakers, mobile phones and laptop computers to high-capacity

energy storage devices for next-generation electric vehicles [106]. The common feature

of superionic materials is that these materials show markedly improved diffusivity and

in turn fast ionic conductivity in disordered state as compared to their coarse-grained

or single-crystalline modifications [66]. In a combined experimental and theoretical

study of the defects in Li2O, Chadwick et al. [86] showed that Li+ ions migrates via

cation vacancies. This study was performed in a combination of ac conductivity mea-

surements and non-linear least-squares computer simulation, where the diffusion of Li+

ions was investigated by measuring the activation energy. The experimental value of

activation energy (EA) is 0.49 eV as compared to their calculated value of 0.21 eV.

In DFT-LDA studies [84, 85], it was also observed that Li+ ions are diffusing in Li2O

through the cation vacancies, where an EA of 0.34 eV was calculated.

Recently, Heitjans et al. [66] presented two different types of experimental approaches

for the study of diffusion and ionic conduction in nanocrystalline ceramics. The first
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one is macroscopic method, such as tracer diffusion method, and the second method

is known as microscopic method such as, NMR relaxation. EA for Li ion diffusion in

Li2O derived from the NMR relaxation method is 0.31 eV whereas that obtained with

the tracer diffusion method is 0.95 eV. The NMR relaxation method gives smaller EA

value compared to the tracer diffusion method because it gives access to microscopic

diffusion parameters like hopping rates of atoms or ions, i.e. short-range motion of the

ion and barrier heights for a jump process, whereas, the tracer diffusion method probes

the long-range transport [66].

In the present study, diffusion of Li ions in Li2O is investigated. For the MSINDO-CCM

approach, Li64O32 and Li216O108 supercells are used whereas for the DFT methods

(PW1PW, B3LYP, PWGGA-US, and PWGGA-PAW), only the Li64O32 supercell is

used. First the migration of Li+ ion is investigated with non-relaxed defective supercells

by calculating the activation energy,EA. The effect of relaxation on EA is investgated

by relaxing the nearest neighboring atoms and then all atoms surrounding the defect

and the migrating Li+ ion. PW1PW and B3LYP calculations were performed using BS

A whereas PWGGA-US and PWGGA-PAW calculations were performed using energy

cutoff E1. Basis sets larger than BS A and energy cutoffs larger than E1 are not

considered, because of high expense of CPU time.

Unrelaxed system

The calculated results of activation energy EA for the Li+ ion migration in unrelaxed

systems are compared with the experimental value in Table 5.17. The investigation

is performed for a single Li+ ion hop through the cation vacancy. This process is

comparable to that studied with NMR relaxation by Heitjans et al. [66]. The activation

energy is calculated as the difference of energies for the system in which the migrating

ion is mid-way between the neighboring regular sites and the system in which the

vacancy is on a regular site. The experimental hopping distance for the migration of

Li+ ion from its original tetrahedral site to the vacancy is equal to the nearest Li-Li

distance in Li2O, namely, 2.29 Å. The calculated hopping distance differs for different

methods due to the different lattice constants. The hopping distances are 2.28 Å, 2.29

Å, 2.23 Å, 2.29 Å and 2.34 Å, for PW1PW, B3LYP, PWGGA-US, PWGGA-PAW, and

MSINDO-CCM, respectively. In Fig. 5.14, the relative energy as function of the Li
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Table 5.17: Comparison of calculated activation energy, EA (eV) for unrelaxed systems

with experimental value

Method Supercell EA

PW1PW Li64O32 0.45

B3LYP Li64O32 0.63

PWGGA-US Li64O32 0.47

PWGGA-PAW Li64O32 0.49

MSINDO-CCM Li64O32 0.17

MSINDO-CCM Li216O108 0.21

Exp. 0.31 [66]

hopping distance is shown. The migration path of the Li+ ion is divided into ten small

steps. It can be seen that the Li+ ion has to pass a barrier in the mid-way between

its original position and vacancy position. It can be seen from Table 5.17 that the EA

value differs from method to method. MSINDO-CCM approach is underestimating the

experimental EA value whereas the DFT methods are giving too large values.

Figure 5.14: Potential energy curves of Li+ ion migration for unrelaxed systems, (a)

PW1PW (b) B3LYP, (c) PWGGA-US, (d) PWGGA-PAW, (e) MSINDO-

CCM for Li64O32 and (f) MSINDO-CCM for Li216O108
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Relaxation of the first nearest neighbors

To investigate the relaxation effect on the diffusion of a Li+ ion, first the nearest

neighbors of the defect and the migrating ion were relaxed. Both are surrounded by

four oxygens in the first coordination shell. The migrating Li+ ion and the cation

vacany thus have six oxygens as nearest neighbors of which two oxygens are common

or bridging between the migrating Li+ ion and the cation vacancy (Fig. 5.15). In the

defective structure, one unpaired electron is localized on one of these oxygens, mainly

in the 2p orbitals. The same situation was observed in recent DFT investigations for

the Li+ ion diffusion in Li2O [84,85].

Figure 5.15: The first nearest neighbors of the migrating Li+ ion and cation vacancy

(V).

In Fig. 5.16, the energy curves of this level of relaxation are shown. In Table 5.18, the

calculated activation energies obtained with different methods are compared with the

experimental value.

Figure 5.16: Potential energy curves for the systems with relaxation of the first nearest

neighbors (a) PW1PW (b) B3LYP, (c) PWGGA-US, (d) PWGGA-PAW,

(e) MSINDO-CCM for Li64O32 and (f) MSINDO-CCM for Li216O108
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In all cases, the barrier is considerably reduced compared to the unrelaxed structures

(Table 5.17). The MSINDO EA value is much lower than the experimental value. The

DFT methods are also giving small values of EA.

Table 5.18: Comparison of calculated activation energy, EA (eV) for the systems with

relaxation of nearest neighbors

Method Supercell EA

PW1PW Li64O32 0.17

B3LYP Li64O32 0.16

PWGGA-US Li64O32 0.16

PWGGA-PAW Li64O32 0.17

MSINDO-CCM Li64O32 0.03

MSINDO-CCM Li216O108 0.04

Exp. 0.31 [66]

Relaxation of all atoms

94 atoms of the Li64O32 supercell surrounding the migrating Li+ ion and cation vacancy

were relaxed for the calculation of activation energy for the diffusion of Li+ ion. In

the MSINDO-CCM calculation, full relaxation of 94 atoms in the Li64O32 cluster and

of 322 atoms in the Li216O108 cluster leads to severe distortions of the lattice. This

must be considered as an artefact of the implemented model. In order to avoid this

problem, a limited relaxation of 28 atoms for the Li64O32 cluster and of 74 atoms for

the Li216O108 cluster was performed.

In Fig. 5.17, potential curves for Li movement are shown for all methods. The acti-

vation energy is calculated as before. In Table 5.19, the calculated values of EA with

different methods are presented and compared with the experimental value. It can be

seen that MSINDO does not reproduce the experimental EA for the Li+ ion diffusion

in Li2O. The minimum structure is found for a structure with the Li+ on an interstitial

position between the regular sites which is the transition structure for all other meth-

ods. Again this must be considered as an artefact of the present implementation of the

CCM in MSINDO.
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Figure 5.17: Potential curves for the Li migration for the fully relaxed systems (a)

PW1PW (b) B3LYP, (c) PWGGA-US, (d) PWGGA-PAW, (e) MSINDO-

CCM for Li64O32 and (f) MSINDO-CCM for Li216O108

On the other hand, all DFT methods give activation energies in agreement with the

experimental value at this relaxation level. The hybrid methods PW1PW and B3LYP

have the best agreement with the experimental value (Table 5.19). A similar activation

energy (0.34 eV) was obtained with the DFT-LDA approach [84, 85]. Thus all DFT

methods are giving a similar trend for the Li+ ion diffusion in Li2O, whereas MSINDO-

CCM approach fails to explain this behavior.

Table 5.19: Comparison of calculated activation energy, EA (eV) for fully relaxed sys-

tems with experimental value

Method Supercell EA

PW1PW Li64O32 0.33

B3LYP Li64O32 0.29

PWGGA-US Li64O32 0.25

PWGGA-PAW Li64O32 0.28

MSINDO-CCM Li64O32 0.02

MSINDO-CCM Li216O108 0.00

Exp. 0.31 [66]
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6 Bulk Properties of B2O3

B2O3 plays an important role in modern research of ceramic and glass technology

[64–66,107]. There are two polymorphs [108–110] in which boron atoms have different

coordination numbers. At normal pressure, B2O3 has a trigonal structure (B2O3-

I) characterized by a three-dimensional network of corner-linked BO3 triangles [108,

109]. At high pressure, there is an orthorhombic modification (B2O3-II) consisting of a

framework of linked BO4 tetrahedra [110]. Neither of these two crystalline forms occurs

naturally, since B2O3 does not crystallize readily from the highly dehydrated viscous

melts [111]. Furthermore, it is not even easy to prepare crystals under special conditions

and to measure their properties. For this reason inspite of the vast importance of borate

glasses, there exist very few investigations on crystalline B2O3.

In this study the theoretical investigation of the geometrical, energetic and electronic

properties of the low-pressure phase of B2O3 (B2O3-I) is presented. A new crystal

structure refinement [109] based on published X-ray data [108] shows that B2O3-I has

the correct space group (152) P3121 instead of (144) P31 as suggested earlier [108]. In

B2O3-I of space group P3121 [109], the BO3 triangles are almost planar, the sum of

the three O-B-O angles being 359.8(6)◦. The two crystallographically independent O

atoms are coordinated to two B atoms (Fig. 6.18).

Figure 6.18: B2O3 conventional unit cell for P3121 space group. Red spheres represent

the oxygens and green spheres represent the boron atoms

In the previously suggested P31 structure [108], the three B-O bond lengths within the

BO3 triangle are not equidistant. The B atoms can be separated into types B1 and B2

which give two slightly different BO3 units (Fig. 6.19). The three O atoms bonded to
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B1 (B2) are labeled as O1, O2, and O3 (O
′

1, O
′

2, and O
′

3). The B atom is at the center

of three nearest O with an average O-B-O angle of 119.97◦ and an average bridging

angle for B-O-B of 130.71◦. The coordination figures in the P3121 structure are more

regular than in the P31 structure. The experimental lattice parameters [108, 109] of

Figure 6.19: B2O3 conventional unit cell for P31 space group. Red spheres represent

the oxygens and green spheres represent the boron atoms

trigonal B2O3-I are a=4.3358 Å and c=8.3397 Å. The experimental value of the heat

of atomization is 3127 kJ/mol [94]. Several experimental [112, 113] and theoretical

investigations [114, 115] were performed for the electronic structure of B2O3-I. No ex-

perimental value for the band gap is availabe in the literature. Li et al. [114] suggested

that the band gap is 6.2 eV based on calculations at DFT LDA level.

In the present study, the investigation was done for both proposed structures (P3121

and P31) of crystalline B2O3-I. The calculations on the lattice parameters, bond lengths,

binding energy per B2O3 unit (Eu) and the band gap (Eg) are performed by applying

the methods and models which were discussed in the previous chapters. The optimiza-

tion of B2O3 structure was performed with the CRYSTAL03 package by exploiting

the new feature of analytical gradients. First a full optimization of atomic fractional

coordinates was performed keeping the lattice vectors fixed at the experimental values.

Starting from the then obtained internal coordinates, the lengths of the lattice vectors

were optimized. This procedure was repeated iteratively until the minimum of total

energy was obtained. For boron, a 6-21G∗ basis [116] is used which is a modification

of the original 6-21G [117] basis set, where the outer sp exponent is optimized for solid

BN. For O, a 8-411G∗ [100] basis is used. Similar optimization was performed with



6 Bulk Properties of B2O3 60

VASP using energy cutoff E2. For the MSINDO-CCM, the calculations were performed

with the standard empirical parameters [14, 22] for a B48O72 cluster.

6.1 B2O3 with P3121 space group

The calculated values for lattice parameters a and c, bond distances, Eu and Eg are

compared with experimental values in Table 6.20. The LCAO based PWGGA gives

the largest values for a and c among all methods, the deviations form the experimental

values are +0.05 Å and +0.10 Å respectively. MSINDO-CCM gives the smallest values,

∆a=−0.06 Å and ∆c=−0.3 Å. Both plane wave based methods, PWGGA-US and

PWGGA-PAW are giving similar agreement with the experimental values for a and c.

The best agreement with the experimental values is obtained with the hybrid PW1PW

approach which overestimates a and c by 0.01 Å and 0.05 Å, respectively. The hybrid

B3LYP gives larger a (∆a=+0.02 Å) and c (∆c=+0.09 Å) values.

The experimental average B-O bond distance, R(B-O) is 1.368 Å [109]. All the methods

give large values of B-O bond distances compared to the experiment. The deviation is

less than 0.014 Å (or 1.0%) for R(B-O). As for the lattice parameters, PWGGA gives

the largest value of R(B-O). PWGGA-US and PWGGA-PAW methods give similar

agreement to the experiment for the B-O bond distances. The best agreement was

obtained with PW1PW which deviates from the experimental distances of B-O1, B-

O2 and B-O3 by only +0.001 Å, +0.014 Å, and +0.001 Å, respectively. The second

best agreement was obtained with the MSINDO-CCM which deviates the experimental

R(B-O) by 0.007 Å. The other hybrid method B3LYP also gives close agreement to

the experiment, deviation is 0.008 Å.

The binding energy per B2O3 unit (Eu) was calculated for all methods in the same

way as it was done for Li2O (see sections 5.1.2 and 5.2). For both PWGGA-US and

PWGGA-PAW implementations in VASP, atomic reference energy of B atom was cal-

culated by using pseudo lattice constant of 15 Å . PW1PW approach gives the best

agreement to the experimental value for Eu. The devation is −35 kJ/mol (Table 6.20).

MSINDO gives the second best agreement to the experiment, deviating by −45 kJ/mol.

B3LYP underestimates the experimental Eu by 65 kJ/mol. The three Perdew-Wang

implementations, PWGGA, PWGGA-US and PWGGA-PAW give different Eu values.

Among them the best agreement to the experiment is obtained with the LCAO based
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PWGGA approach which gives a deviation of −103 kJ/mol. The deviations are large

for PWGGA-US and PWGGA-PAW, namely by −142 kJ/mol and −241 kJ/mol, re-

spectively. The reasons of this difference can be due to the incompleteness of the basis

set used for the CRYSTAL-PWGGA or due to the influence of the effective poten-

tials in the plane wave based PWGGA-US and PWGGA-PAW. The Eu obtained with

PWGGA-US and PWGGA-PAW differ by 99 kJ/mol. This difference is more signifi-

cant than in the case of Eu of Li2O (see Table 5.8). So it can be assumed that this is

due to the description of core electrons of B atom, which affects the binding energy.

Table 6.20: Comparison of calculated lattice vectors a and c (Å), bond distances (Å),

Eu (kJ/mol) and Eg (eV) with the experimental values for B2O3 of P3121

space group

Properties PWGGA PWGGA-US PWGGA-PAW PW1PW B3LYP MSINDO Exp.

a 4.39 4.36 4.36 4.35 4.36 4.28 4.34a

c 8.44 8.39 8.38 8.39 8.43 8.04 8.34a

bonds (Å)

B-O1 1.385 1.380 1.384 1.376 1.389 1.383 1.375a

B-O2 1.379 1.371 1.376 1.370 1.366 1.371 1.356a

B-O3 1.383 1.379 1.381 1.374 1.372 1.372 1.373a

R(B-O) 1.382 1.377 1.380 1.373 1.376 1.375 1.368a

Eu −3230.4 −3268.7 −3368.9 −3162.4 −3062.2 −3172.4 −3127b

Eg 6.5 6.2 6.1 9.1 8.8 10.5 (6.2)c

a Ref. [109]

b Ref. [94]

c LDA result [114]

The calculated values of band gap Eg with all the methods are presented in Table 6.20.

Eg is calculated from the total density of states (TDOS). There is no experimental value

of Eg to compare. So the calculated results are compared among themselves. Since

PW1PW appraoch gives the best agreement for Eg in the case of Li2O (see Table 5.7),

this method is chosen as reference here. The PW1PW Eg is 9.1 eV, which is higher

than the Eg=6.2 eV obtained at LDA level by Li et al. [114]. This is reasonable, since

generally the band gap is underestimated by the DFT local density approximation

(LDA) [75, 77]. The best agreement to the PW1PW result is obtained with B3LYP
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with a difference of −0.3 eV. PWGGA-US and PWGGA-PAW are giving similar values

to each other and to the previous LDA result [114]. The Eg value calculated with the

LCAO based PWGGA is 6.5 eV, which differs from PWGGA-US and PWGGA-PAW

approaches. This is in line with the previous investigation of Li2O (see Table 5.8). The

Eg value obtained with MSINDO-CCM is 10.5 eV, which is 1.4 eV larger than that

with PW1PW.

The TDOS and PDOS of B2O3 calculated at the PW1PW level are shown in Fig. 6.20

together with an experimental PE spectrum [113]. There is good agreement of the

band widths and the relative positions of the two main peaks between the theoretical

and the experimental spectra.

Figure 6.20: Density of states of B2O3 obtained with the PW1PW method. For com-

parison the experimental PES spectrum [113] is also shown.

The oxygen 2p states have the major contribution in the VB, similar to Li2O. The CB

consists of boron 2p states. The semi-core states at about −27 eV correspond to 2s

oxygen orbitals.

The electron charge density distribution was calculated along the B-O bond. As in

the case of Li2O, PW1PW method is taken as an example (Fig. 6.21). The charge

distribution
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Figure 6.21: Electronic charge density distribution for B2O3.

is deformed from the oxygen atom towards the boron atom. This shows that the B-O

bond has covalent character.

6.2 Comparison between P3121 and P31 space group

The bulk properties of B2O3-I with P31 space group were calculated with all the ap-

proaches discussed in the previous section. In Table 6.21, the calulated values are

compared with experimental values. As for P3121 space group, PW1PW gives the best

reproduction of bulk properties of P31 space group. All the other methods give the

similar deviations for lattice vectors a and c, bond distances, binding energy per unit

of B2O3 Eu and band gap Eg, as in the case of P3121 space group.
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Table 6.21: Comparison of calculated lattice vectors a and c (Å), bond distances (Å),

Eu (kJ/mol) and Eg (eV) with the experimental values for B2O3 of P31

space group

Properties PWGGA PWGGA-US PWGGA-PAW PW1PW B3LYP MSINDO Exp.

a 4.37 4.36 4.36 4.37 4.35 4.27 4.34a

c 8.52 8.38 8.38 8.40 8.44 8.10 8.34a

bonds (Å)

B1-O1 1.394 1.380 1.384 1.383 1.390 1.383 1.404a

B1-O2 1.389 1.379 1.381 1.380 1.389 1.373 1.366a

B1-O3 1.374 1.373 1.376 1.375 1.382 1.370 1.337a

B2-O
′

1 1.373 1.372 1.376 1.378 1.380 1.369 1.336a

B2-O
′

2 1.394 1.379 1.383 1.385 1.390 1.383 1.401a

B2-O
′

3 1.388 1.373 1.382 1.382 1.389 1.373 1.384a

Eu −3229.7 −3268.5 −3368.6 −3160.7 −3059.3 −3171.5 −3127b

Eg 6.4 6.5 6.3 8.8 8.8 10.5 (6.2)c

a Ref. [108]

b Ref. [94]

c LDA result [114]

Comparing the structural properties and the small difference of Eu between the P3121

and P31, it can be said that these two structures are practically the same. It can be

observed from Tables 6.20 and 6.21 that there is an energy minimum for the structure

with space group P3121. With all the methods, its Eu is lower by ≈ 1 kJ/mol. This

confirms that the stable structure is the recently proposed structure [109] with the

P3121 space group.
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7 Bulk Properties of Li2B4O7

The binary Li2O-B2O3 system is characterized by the formation of nine lithium bo-

rate compounds, namely Li3BO3, α-Li4B2O5, β-Li4B2O5, Li6B4O9, LiBO2, Li2B4O7,

Li3B7O12, LiB3O5 and Li2B8O13 [118–121]. Only Li3BO3 (lithium orthoborate), Li6B4O9,

LiBO2 (lithium metaborate), Li2B4O7 (lithium tetraborate) and LiB3O5 (lithium tri-

borate) are stable at room temperature. A common feature of all anhydrous lithium

borate crystalline structures is the boron-oxygen anion subystem. This subsystem

forms a covalent anionic framework with BO3-triangles and BO4-tetrahedra that have

a polycondensation susceptibility [122]. Lithium ions, in turn, are connected with the

anion subsystem electrostatically. The loose connectivity results in the appearence of

ionic conductivity and superionic properties.

Crystalline lithium tetraborate (LTB) Li2B4O7 is of considerable interest due to its

practical applications. LTB has important physical properties [123], such as high co-

efficient of electrochemical coupling, low velocity of propagation of surface acoustic

waves, zero thermal expansion coefficient, high mechanical strength, and low electrical

conductivity at room temperature. It is used for laser radiation converters [124], as sub-

strate for thermostable surface [125–127] and bulk [128] acoustic wave-based devices,

as piezoelectric nonlinear optical device for second harmonic generation [129–131], in

electroacoustic devices [132–134], as pyroelectric sensor [134, 135] and in thermolumi-

nescent dosimetry of X-ray, gamma and neutron radiation [136–138]. LTB was also

found to be a Li+ ion conductor along the (001) direction (polar axis) [139–147].

In this study, a theoretical investigation of the bulk properties is performed for the

single crystal of Li2B4O7 which can be regarded as a possible structure in the Li2O:B2O3

nanocomposite interface region. The accuracy of the various approaches is tested by

comparison to available experiments.

Li2B4O7 belongs to space group I41cd and has 104 atoms per unit cell [148] (Fig.

7.22(b)). The measured lattice parameters are a = 9.48 Å and c = 10.29 Å. The main

structural pattern is a [B4O9]
6− complex (Fig. 7.22(a)) which consists of two planar

trigonal (BO3) and two tetrahedral (BO4) units. The lithium atoms are located at

interstices [148].

The experimental value of the heat of atomization of crystalline Li2B4O7 is 7658 kJ/mol
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[149]. A limited number of experimental investigations on the electronic structure

[150–152] are available in the literature. The electronic structure, namely the valence

band, of LTB has been experimentally studied by X-ray photoelectron spectroscopy

(XPS) [151] in combination with a theoretical investigation based on local density

approximation (LDA) calculations of the free anion [B4O9]
6−. The LTB band structure

was calculated [152] by a modified LCAO method using symmetrized Bloch functions,

but only the results for the valence band were presented. To my best knowledge there

are no experimental and theoretical results in the literature about the value of the band

gap (Eg). It is only known that the fundamental absorption edge is 7.3 eV [150] which

is comparable to the value of ≈7.9 eV found by reflection spectroscopy [152]. Therefore

Eg of LTB is estimated based on the measured fundamental absorption (FA) energy,

7.3 eV [150], and experimental and calculated band gaps and FA energies which are

available for other alkali borate crystals. In a previous theoretical study of LiB3O5 [150]

an extrapolation scheme was suggested to obtain an estimation for the experimental

band gap from the experimental value of FA 7.8 eV [153]. In this way Eg(LiB3O5) ≈
9.5 eV was obtained. Taking into account the similarities between Li2B4O7 and LiB3O5

for luminescence properties and optical spectra, and that the FA energy (FAE) of LTB

is smaller than FAE of LiB3O5 by 0.5 eV, the Eg of LTB is assumed to be about 9.0 eV.

This approximate value is compared with the calculated values in the present study.

(a)
(b)

Figure 7.22: The main structural pattern [B4O9]
6− (a) and the unit cell (b) of LTB.

Red spheres represent oxygen atoms, green spheres represent boron atoms

and blue spheres represent lithium atoms
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7.1 Structure Optimization

The optimized lattice parameters, bond distances and angles as obtained with PW1PW,

PWGGA and B3LYP using CRYSTAL03, with PWGGA-US, PWGGA-PAW using

VASP, and with MSINDO, are given in Table 7.22 together with the corresponding

experimental values [148]. The numbering of the Li, B and O atoms is shown in Fig.

7.22(a). The optimization of atomic fractional coordinates and lattice vectors was per-

formed in the same way as it was done for B2O3 (see chapter 6). In the MSINDO

structure optimization the cyclic cluster Li16B32O56 was used which corresponds to the

conventional unit cell of LTB (Fig. 7.22(b)). The calculations were performed with the

standard empirical parameters [14,22]. For the DFT methods, the primitive LTB unit

cell was used. In the CRYSTAL-DFT calculations, the basis sets used here correspond

to BS B, BS C and BS D for Li2O (see chapter 5.2). For boron, a 6-21G∗ basis [116] is

used for BS B. In the extended sets (BS C and BS D), a 6-21G(2d) basis is used which

contains an additional polarization function in the 6-21G∗ basis.

The best agreement for a and c is obtained with the two hybrid methods PW1PW

(∆a = +0.02 Å, ∆c = +0.03 Å) and B3LYP (∆a = +0.04 Å, ∆c = +0.01 Å). The

results of the LCAO implementation (in CRYSTAL) and the plane wave implementa-

tions (PWGGA-US, PWGGA-PAW in VASP) of the PWGGA method are relatively

similar. This is particularly the case if ultrasoft pseudopotentials are used (PWGGA-

US). Here the differences between CRYSTAL and VASP results are smaller than 0.01

Å. The deviations from experiment are between 0.04 Å and 0.05 Å. The PWGGA-

PAW approach gives too large lattice parameters with respect to the experimental

values, namely a is overestimated by 0.08 Å and c is overestimated by 0.09 Å. It can

be observed from Table 7.22 that structural properties are already converged with the

energy cutoff E2 for the plane wave based approaches and with BS C for the LCAO

based approaches. With MSINDO, the lattice parameter a is underestimated by 0.04

Å and c is overestimated by 0.15 Å. The calculated bond lengths and angles for all

methods agree well with the experimental values (Table 7.22). The deviation of the

calculated boron-oxygen bond distances for three-fold coordinated boron atoms (B1,

see Fig. 7.22(a)) does not exceed 0.035 Å. The best agreement was found for PW1PW

where the deviation is less than 0.004 Å. For the plane wave based PWGGA imple-

mentations (PWGGA-PAW and PWGGA-US), this deviation is not more than 0.01 Å,
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whereas the LCAO-based PWGGA implementation overestimates B1-O bond lengths

by 0.02 Å. For B3LYP, the deviation of B1-O bond lengths is less than 0.015 Å. The

semiempirical method MSINDO performs similar as the hybrid methods. The same

trends were observed for the B2-O bond lengths, where the boron atom is four-fold co-

ordinated. The experimentally obtained distances B2-O2 and B2-O3 are larger than the

corresponding distances B2-O1 and B2-O4. The four lithium-oxygen distances range

from 1.94 to 2.18 Å [148]. The worst result for these bond lengths is obtained by

the semiempirical method, where the error for the Li-O1 bond (Table 7.22) is 0.22

Å. Among the DFT methods, PWGGA-US gives the worst values of lithium-oxygen

distances. The Li-O1 bond length is overestimated by 0.13 Å and R(Li-O3) is under-

estimated by 0.19 Å. A possible explanation is that the US pseudopotential gives an

insufficient description of the Li core electrons and this deficiency is partly removed by

the PAW potential where deviations of R(Li-O) are much smaller (Table 7.22).

All calculated bond angles show good agreement with experimental data. The errors are

smaller than 1.6 %. For briefness, the comparison is shown only with the experimental

angles of B1-O1-B2, B1-O2-B2, B1-O3-B2 and B2-O4-B2 (Table 7.22) The agreement for

the other angles is similar.
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Table 7.22: Structural properties of solid Li2B4O7. Comparison of calculated and experimental lattice vectors a and c, bond distances

(Å), and angles (degrees). For the numbering of the atoms see Figure 7.22(a)

Methods PWGGA PWGGA-PAW PWGGA-US PW1PW B3LYP MSINDO Exp.a

Basis Set/Energy Cutoff B C D E1 E2 E3 E1 E2 E3 B C D B C D

a 9.53 9.57 9.55 9.42 9.57 9.56 9.41 9.52 9.51 9.50 9.50 9.50 9.52 9.55 9.55 9.44 9.48

c 10.32 10.33 10.33 10.22 10.39 10.38 10.22 10.33 10.32 10.32 10.34 10.33 10.30 10.34 10.39 10.44 10.29

bonds

B1-O1 1.372 1.369 1.372 1.353 1.365 1.364 1.352 1.363 1.363 1.361 1.360 1.358 1.362 1.365 1.365 1.360 1.355

B1-O2 1.393 1.394 1.394 1.368 1.381 1.380 1.368 1.377 1.376 1.378 1.375 1.375 1.384 1.384 1.386 1.385 1.371

B1-O3 1.396 1.395 1.396 1.374 1.386 1.385 1.375 1.383 1.382 1.381 1.379 1.379 1.388 1.387 1.389 1.371 1.374

B2-O1 1.470 1.459 1.458 1.449 1.454 1.454 1.437 1.441 1.441 1.451 1.450 1.446 1.451 1.449 1.451 1.442 1.452

B2-O2 1.527 1.524 1.526 1.505 1.522 1.519 1.511 1.528 1.526 1.510 1.510 1.509 1.517 1.521 1.520 1.498 1.506

B2-O3 1.517 1.518 1.519 1.502 1.517 1.518 1.507 1.515 1.514 1.508 1.508 1.504 1.512 1.514 1.519 1.488 1.501

B2-O4 1.463 1.467 1.471 1.451 1.464 1.462 1.450 1.458 1.459 1.463 1.462 1.460 1.464 1.465 1.466 1.447 1.454

Li-O1 2.153 2.167 2.119 2.110 2.107 2.118 2.273 2.303 2.300 2.082 2.090 2.090 2.079 2.098 2.103 2.394 2.170

Li-O2 1.974 1.977 1.976 1.959 1.979 1.980 1.770 1.826 1.825 1.966 1.970 1.964 1.970 1.978 1.971 2.027 1.967

Li-O3 2.012/ 2.009/ 2.001/ 2.005/ 2.018/ 2.021/ 1.847/ 1.836/ 1.836/ 2.005/ 2.008/ 1.999/ 1.995/ 2.004/ 1.995/ 2.102/ 2.027/

2.082 2.092 2.087 2.067 2.102 2.098 2.065 2.051 2.045 2.086 2.088 2.069 2.085 2.097 2.070 2.103 2.080

angles

B1-O1-B2 124 125 124 125 126 126 124 125 125 125 125 126 125 125 125 126 126

B1-O2-B2 115 115 115 116 115 116 115 115 115 116 116 116 115 116 115 119 116

B1-O3-B2 119 119 119 120 119 120 119 119 119 119 120 119 119 119 119 121 120

B2-O4-B2 108 110 109 109 109 109 109 109 109 109 109 109 109 109 109 110 109

a Ref. [148]
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7.2 Binding Energy

In the table 7.23, the calculated values of binding energy per Li2B4O7 formula unit

(Eu) are compared with the negative value of experimental heat of atomization [149]

of crystalline Li2B4O7.

Table 7.23: Comparison of calculated binding energies per Li2B4O7 unit Eu (kJ/mol)

with the experimental value

Method BS/Ecut Eu

PWGGA B −7840

C −7829

D −7829

PWGGA-PAW E1 −8137

E2 −8127

E3 −8119

PWGGA-US E1 −7998

E2 −7932

E3 −7932

PW1PW B −7674

C −7674

D −7678

B3LYP B −7450

C −7453

D −7451

MSINDO −8128

Exp.a −7658

a Ref. [149]

The PW1PW approach gives the best agreement for Eu with the experimental value

with a deviation of only −20 kJ/mol (Table 7.23). As for B2O3, PWGGA, PWGGA-

US and PWGGA-PAW give different Eu values of LTB. Among them, the CRYSTAL

PWGGA implementation gives the best agreement for Eu, −7829 kJ/mol, deviating

from the experimental value by −171 kJ/mol. PWGGA-US and PWGGA-PAW give

more negative values, namely by −274 kJ/mol and −461 kJ/mol, respectively. The

reason of these differences between the LCAO and plane wave based cohesive ener-

gies could be attributed to the fact that the atomic reference energies obtained with

plane waves are too high. The difference between Eu obtained with PWGGA-PAW
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and PWGGA-US indicates the influence of the effective potentials in the plane wave

program VASP.

The convergence of atomic reference energies are tested with respect to the lattice

parameter and energy cutoff in the atomic plane wave calculations. The atomic energies

of 3O atom, 2Li atom, and 2B atom at UKS level change only by up to 5 kJ/mol with

PWGGA-PAW, and by less than 10 kJ/mol with PWGGA-US when the standard

energy cutoffs are increased. This effect cannot account for the observed differences

between Eu obtained with the three PWGGA implementations. Therefore, it can be

concluded that the differences between CRYSTAL and VASP results are mainly due to

the description of core electrons. This mainly affects binding energies, while geometry

parameters are less sensitive.

The B3LYP hybrid method gives 207 kJ/mol smaller absolute value of Eu than the

experimental value. This trend is in line with previous studies of MgO, NiO, and

CoO [37]. The MSINDO result for Eu is in the range of the first-principles methods.

7.3 Band Structure and Density of States

The band structure was calculated along the path that contains the highest number

of high-symmetry points of the Brillouin zone [103] (M → Γ → X → P → N).

The calculated results of the electronic structure for the PW1PW method with BS D

are shown in Fig. 7.23. This method was chosen since it gave best agreement with

experiment for the electronic structure of Li2O, B2O3 (see chapters 5.2 and 6). Other

methods give the same qualitative band structure, only the bands are shifted therefore

the value of the band gap changes, as will be shown below.

According to calculated results, LTB is a wide gap insulator. Both the valence band

(VB) and the conduction band (CB) have a small dispersion as found for similar crystals

α-B2O3, β-B2O3 [114] and LiB3O5 [154].

The total (TDOS) and projected density of states (PDOS) were calculated at PW1PW

level using the Fourier-Legendre technique [104] with a Monkhorst net [105] using

shrinking factors s=8.

The calculated TDOS of LTB compared with X-ray photoelectron spectrum [151] is

shown on Fig. 7.23(b). A good agreement with experiment was obtained for the band

widths and the interband distances within the VB. The valence band width is about 10
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(a) (b)

Figure 7.23: Electronic band structure and density of states of LTB obtained with the

PW1PW method using BS D. For comparison the X-ray photoelectron

spectrum [151] is also shown.

eV. The difference between the upper and lower valence band, which is mainly formed

by O 2s states, is about 8 eV.

The analysis of DOS shows that LTB has very sharp VB and CB edges. The states near

the VB top are mainly created by oxygen 2p states. The contributions from atomic

orbitals of other atoms (Li, B1 - boron in BO3, and B2 - boron in BO4) are ten times

smaller than the oxygen PDOS. The bottom of the CB is dominated by contributions

from B1 atoms.

Calculated values for vertical VB-CB transitions in Li2B4O7 and minimal transition

energies are presented in Table 7.24. All considered methods indicate that LTB has

an indirect (M − Γ) band gap. However, the direct Γ − Γ transition energy is only

slightly larger. The difference does not exceed 0.05 eV. The calculated values of Eg vary

from 6.17 eV (PWGGA-PAW) to 8.81 eV (PW1PW). The extrapolated experimental

Eg=9.0 eV agrees well with the PW1PW and B3LYP results, ≈8.8 eV (Table 7.24, BS

D), whereas the corresponding PWGGA, PWGGA-US and PWGGA-PAW results, 6.73

eV, 6.20 and 6.17 eV, are considerably too small. It should be noted that the MSINDO

band gap, 9.7 eV, is in better agreement with experiment than the corresponding

PWGGA, PWGGA-US and PWGGA-PAW results.

The three PWGGA implementations, CRYSTAL PWGGA, PWGGA-PAW and PWGGA-
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Table 7.24: The values of vertical electronic transitions and minimal transition (MT) energies (eV) for Li2B4O7 calculated with different

methods

Transition PWGGA PWGGA-PAW PWGGA-US PW1PW B3LYP MSINDO

B C D E1 E2 E3 E1 E2 E3 B C D B C D

Γ Γ 7.15 6.80 6.79 6.23 6.27 6.23 6.24 6.31 6.25 9.41 8.94 8.87 9.37 8.91 8.80

N N 7.24 7.15 7.19 7.04 7.08 7.03 7.05 7.10 7.05 9.55 9.43 9.42 9.54 9.42 9.35

P P 7.40 7.31 7.38 7.28 7.31 7.26 7.29 7.34 7.28 9.75 9.64 9.63 9.71 9.60 9.53

X X 7.35 7.27 7.35 7.18 7.22 7.17 7.18 7.24 7.18 9.72 9.61 9.60 9.67 9.56 9.50

M M 7.19 7.00 7.05 6.93 6.96 6.92 6.94 6.99 6.94 9.42 9.29 9.27 9.40 9.27 9.21

MT M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ M-Γ

7.11 6.76 6.73 6.18 6.22 6.17 6.19 6.26 6.20 9.31 8.88 8.81 9.32 8.85 8.73 9.70
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US give similar values of the transition energies except for the Γ− Γ transition (Table

7.24). For PWGGA-US and PWGGA-PAW, the Γ − Γ transition energies are very

close, 6.25 eV and 6.23 eV, respectively. This is considerably smaller than the 6.79

eV obtained with CRYSTAL PWGGA using the the largest basis set (BS D). The

difference is ≈ 0.5 eV, which is responsible for the difference in the value of band gap

(6.20 eV for PWGGA-US, 6.17 eV for PWGGA-PAW and 6.73 eV for PWGGA). The

difference in Γ − Γ transition energy is not due to the LCAO basis set incompleteness

as the values of the transition energies are already converged with BS C.

The atomic basis set has a pronounced effect on the electronic structure. The PWGGA

Γ−Γ transition energy is 7.15 eV with BS B which is 0.35 eV larger than that with BS

C and 0.34 eV larger than that with BS D. A similar difference is found for the band

gap. This change is mainly due to the inclusion of diffuse and polarization functions

in the Li and B basis sets. These orbitals are dominating at the lower part of the CB.

The main effect of basis set increase is a lowering of the CB bottom while the VB top

is essentially unchanged. The basis set effect is even larger for the hybrid methods, as

can be seen by the differences obtained with BS B, BS C and BS D for PW1PW and

B3LYP. In all cases the values are converged within 0.1 eV by the basis set C.

7.4 Electronic charge density

The electronic charge density distribution for the three main types of bonds (B1-O,

B2-O, Li-O bonds) was calculated. Here the B3LYP method is chosen as an example.

Test calculations showed that the other methods give a qualitatively similar behavior.

Three planes containing O-B1-O, O-B2-O and O-Li-O angles were considered. B1 and

B2 represent the boron atoms in BO3 and BO4 units, respectively. The charge density

distribution maps are shown in Fig. 7.24. The contour lines range from 0.0 to 0.3 e/Å3

with steps of 0.02 e/Å3.

As in the case of B2O3, the charge distribution is deformed from oxygen towards the

boron atoms B1 (Fig. 7.24(a)) and B2 (Fig. 7.24(b)). This shows that the bonds in

triangular BO3 and tetrahedral BO4 groups have covalent character and as a result the

B-O bonds are strong. As for Li2O, the charge distribution of both Li and O atoms is

almost spherical and decreases almost to zero between the atoms (Fig. 7.24(c)). The

Li atom is in the spacious location of the network, and gives up almost all its valence
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(a) (b) (c)

Figure 7.24: Electronic charge density distribution for LTB for plains containing O-B1-

O (a), O-B2-O (b) and O-Li-O (c) angles.

charge, yet it does not have a large semi-core-like orbital to participate in a partially

covalent type of bonding. The charge density magnitude between these two atoms is

small which indicates that the bond is mainly ionic. This is in qualitative agreement

with similar analysis of LiB3O5 [150].

As for Li2O and B2O3, PW1PW gives the best agreement with experiment for struc-

tural, energetic and electronic properties of Li2B4O7. B3LYP gives the similar agree-

ment for structural and electronic properties but smaller cohesive energy. Differences

for the same functional PWGGA exist between CRYSTAL03 and VASP. Structural

properties are similar. CRYSTAL-PWGGA gives close agreement for energetic proper-

ties with the experiment whereas VASP-PWGGA gives smaller values of Eu. Band gap

is ≈ 0.5 eV lower with VASP-PWGGA compared to CRYSTAL-PWGGA. MSINDO

gives overestimated lattice parameters and band gap. MSINDO cohesive energy is

comparable with the DFT methods. The atomic basis set and energy cutoff have less

effect on structural and energetic properties, whereas pronounced effect on electronic
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properties.

Thus the best method of choice is either PW1PW or B3LYP for this type of complex

system and for the study of ionic conductivity in ceramic oxides. But the hybrid

methods are CPU time consuming. PWGGA can be the second best choice as it is

comparatively less expensive.
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8 Migration of Li+ ion in Li2B4O7

Crystalline lithium tetraborate (LTB) Li2B4O7 is a Li+ ion conductor along the (001)

direction (polar axis) [139, 140]. There have been several experimental investigations

on the ionic conductivity of this system [141–147]. It was suggested [141–143] that the

conduction of Li+ ion occurs through a one-dimensional channel in the tetragonal axis.

The ionic conductivity in LTB is attributed to the cation vacancies [141, 142].

Several different values for the activation energy EA of the ion migration in LTB ap-

peared in the literature depending on the preparation method of the samples [143]. Kim

et al. [142] showed a comparison of EA for the LTB crystals prepared from Li2B4O7

powder (LTBp) and from Li2CO3-B2O3 mixed powder (LTBm). Their measured value

of activation energy for LTBp is 0.42 eV and that for LTBm is 0.46 eV.

In the present study, Li2B4O7 is considered as a possible structure of the interface

region of the Li2O:B2O3 nanocomposite. A theoretical investigation of the cation va-

cancy defect and the migration of Li+ ion in LTB is performed. The activation energy

is calculated for the Li+ ion movement from its original position to an adjacent cation

vacancy position along the (001) direction. The calculated activation energy is com-

pared with the experiment. The investigation was performed for a Li16B32O56 supercell

at the PW1PW level with BS B and the PWGGA-PAW method with energy cutoff

E1. Larger BS and energy cutoff than these were not used as these would be too CPU

time consuming.

8.1 Cation vacancy in lithium tetraborate

For the simulation of the cation vacany in LTB, first a supercell Li16B32O56 was created

by using the transformation matrix L (8.75).

L =







0 1 1

1 0 1

1 1 0






(8.75)

One Li was removed from the cell to create the vacancy keeping the system neutral.

The optimized geometry of the nondefective supercell was taken as starting structure

for the defective system. The formation energy of cation vacancy Ede(V ) is calculated

according to the Eq. (5.73) of cation vacancy defect in Li2O as follows:

Ede(V ) = ESCM(V ) + E(Li) − ESCM (8.76)
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Here ESCM(V ) and ESCM denote the total energy of the supercell with and without

vacancy, respectively, and E(Li) is the energy of the free Li atom. In Table 8.25

calculated Ede(V ) are presented. There is no experimental or previous theoretical

value of cation vacancy formation energy of LTB. So the calculated Ede(V ) values are

compared between each other in the following.

Table 8.25: Formation energy of cation vacancy, Ede(V ) (kJ/mol) in Li2B4O7 for un-

relaxed and relaxed structure.

System PW1PW PWGGA-PAW

unrelaxed 800 693

relaxed 728 658

Since PW1PW gives the best reproduction of the experimental bulk properties of LTB

and also the defect properties of Li2O, this method is taken as reference. The Ede(V )

obtained with PW1PW is 728 kJ/mol. As for cation vacancy defect in Li2O (see Table

5.10), PWGGA-PAW method gives smaller value of Ede(V ) compared to PW1PW. The

deviation is −70 kJ/mol. The relaxation energy, ER at PW1PW level is 72 kJ/mol.

The PWGGA-PAW ER is 37 kJ/mol smaller than PW1PW ER value. As for Li2O, the

ER values with both methods are high, which indicates that relaxation is important

for the defect properties and migration of defects.

The effect of relaxation is further investigated by measuring the changes of distances of

the nearest oxygen atoms, boron atoms and lithium atoms with respect to the defect

position. In nondefective LTB, the Li atom is surrounded by four close oxygen atoms

in an arrangement which may be regarded as a considerably distorted tetrahedron

[148,155]. The four lithium-oxygen distances lie in the range from 1.97 to 2.17 Å [148].

Thereupon follows a fifth lithium-oxygen distance of 2.611 Å, forming a oxygen five-

vertex polyhedron [143,148]. The next lithium-oxygen distances are 2.85 Å and more.

Hence the coordination around the lithium cannot be said truly fourfold. Here six

nearest oxygens are considered to observe the effect of relaxation (Fig. 8.25). In Table

8.26, the calculated distances of O atoms from the vacancy before and after relaxation

are shown. Here r1, r2, r3, r4, r5 and r6 denote the distance of O1, O2, O3, O4, O5

and O6, respectively, from the vacancy. The numbering follows the Fig. 8.25. It can

be seen that all the oxygens move away from the vacancy. Both methods give similar
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Figure 8.25: Six nearest oxygen atoms from the cation vacancy (V) in LTB crystal.

trend. This is due to the fact that the removal of a neutral Li atom creates a hole in

Table 8.26: Distances of the nearest oxygen atoms (r) Å from the Li vacancy and

changes of the distances ∆r(%) for the unrelaxed and relaxed atoms

Distance PW1PW PWGGA-PAW

Unrelaxed Relaxed ∆r(%) Unrelaxed Relaxed ∆r(%)

r1 1.96 2.04 +4.1 % 1.96 2.03 +3.0 %

r2 2.00 2.10 +5.0 % 2.00 2.08 +4.0 %

r3 2.08 2.13 +2.4 % 2.07 2.13 +2.9 %

r4 2.09 2.18 +4.3 % 2.11 2.15 +1.9 %

r5 2.73 2.85 +4.4 % 2.62 2.82 +7.6 %

r6 2.84 2.85 +0.2 % 2.63 2.84 +0.4 %

the valence band. One of the surrounding oxygen atoms which was formally O2− in

nondefective LTB becomes O−. One unpaired electron is localized on the 2p orbital of

one of those oxygen atoms.

It should be noted that the sixth oxygen atom shows a small relaxation, +0.2 %

(PW1PW) and +0.4 % (PWGGA-PAW), indicating that the position of this oxygen

atom is almost unchanged.

The calculated distances of three nearest boron atoms and two nearest lithium atoms

from the vacancy before and after relaxation are shown in Table 8.27. r1, r2 and r3

denote the distance of three boron atoms, respectively and r4 denotes the distance of

two lithium atoms from the vacancy. All the boron atoms move towards the vacancy.

The position of the third boron atoms is unchanged with both the methods, 0.0 %

(PW1PW) and −0.2 % (PWGGA-PAW). The reason could be that the boron atoms are
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positively charged and therefore feel reduced electrostatic repulsion and move towards

the vacancy. The two nearest lithium atoms show inward relaxation of −4.2 % with

Table 8.27: Distances of the nearest boron and lithium atoms (r) Å from the Li vacancy

and changes of the distances ∆r(%) for the unrelaxed and relaxed atoms

Distance PW1PW PWGGA-PAW

Unrelaxed Relaxed ∆r(%) Unrelaxed Relaxed ∆r(%)

r1 2.66 2.65 −0.4 % 2.66 2.64 −0.8 %

r2 2.69 2.69 −0.7 % 2.68 2.65 −1.1 %

r3 2.86 2.86 −0.0 % 2.838 2.831 −0.2 %

r4 3.06 2.93 −4.2 % 3.08 2.99 −2.9 %

the PW1PW and −2.9 % with the PWGGA-PAW approach. Due to the reduced

electrostatic repulsion, the Li atoms move towards the vacancy. This is in line with the

relaxation of nearest lithium atoms for the cation vacancy defect in Li2O (see Tables

5.11 and 5.12), where the nearest Li atoms show strong inward relaxation.

In the next section, the Li+ ion migration through cation vacancies is discussed.

8.2 Migration of Li+ ion

In LTB, Li+ ion migrates through a one-dimensional channel of ion conduction path in

the (001) direction [141–143]. In this channel, Li ions form five-vertex oxygen polyhedra

(LiO5). The high atomic packing density and the rigidity of triangular and tetrahedral

boron-oxygen polyhedra prevent direct jumps of Li ions along the tetragonal axis [143].

Rather it is assumed that the Li+ ion migrates through the large triangular faces of the

two nearest oxygen five-vertex polyhedra facing each other. Ionic transport along this

channel occurs through the cation vacancies [141, 142]. The distance of a Li+ ion hop

is less than 3.114 Å, which is the distance between the lithium positions in LTB [148].

In Fig. 8.26, two nearest oxygen five-vertex polyhedra, one of the Li ion and the

other of the adjacent cation vacancy (V), are shown. The arrow shows the direction

of migrating Li+ ion towards the vacancy. The migration path of Li+ ion along the

tetragonal axis can be illustrated as following.
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Figure 8.26: Two nearest oxygen five-vertex polyhedra of lithium along the tetragonal

axis of LTB crystal.

The top view and side view of the schematic diagram of Li+ ion migration in LTB are

shown in Fig. 8.27 and 8.28. The migrating Li+ ion and the vacancy are in their

Figure 8.27: The schematic diagram of Li+ ion migration in LTB (top view).

Figure 8.28: The schematic diagram of Li+ ion migration in LTB (side view).

original position in Fig. 8.27(a) or 8.28(a). The entire migration path is modeled in

four steps. In the first step, Step I (Fig. 8.27(b) or 8.28(b)) one Li+ ion migrates

to the adjacent vacancy. The migrating Li+ ion accesses to the position of vacancy

and the vacancy reaches to the original position of migrating ion. Similarly, in the
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following steps, (Fig. 8.27(c),8.27(d), and 8.27(e) or 8.28(c), 8.28(d), and 8.28(e)) Li+

ion migrates along the (001) direction.

In every step, there is an intermediate position that corresponds to the transition

structure. The activation energy was calculated for the unrelaxed and relaxed systems.

In Table 8.28, the calculated values EA are compared with experimental value [142].

EA for each of the four steps is calculated as the difference of the energy of the system

in which the migrating ion is mid-way between the neighboring regular sites and the

system in which the vacancy is on a regular site. The calculated values of hopping

distance are 3.064 Å and 3.077 Å, with PW1PW and PWGGA-PAW, respectively,

which are in good agreement with the experimental hopping distance of 3 Å [143]. In

Fig. 8.29, the potential energy curves for the Li+ ion migration in LTB for unrelaxed

systems are shown. In each step, the migration path is modeled in ten sub-steps.

Figure 8.29: Potential energy curves for Li+ ion migration in LTB for unrelaxed sys-

tems, (a) PWGGA-PAW and (b) PW1PW.

In every step, EA is equal as the local environment of the migrating Li+ ion and the

vacancy is identical. For the unrelaxed system, both PW1PW and PWGGA-PAW

methods give too large values for EA compared to the experiment (Table 8.28). This

is in line with the previous finding for the Li+ ion diffusion in Li2O (see Table 5.17).

Table 8.28: Comparison of calculated activation energy, EA (eV) for unrelaxed and

relaxed systems with experimental value

System PW1PW PWGGA-PAW Exp. [142]

unrelaxed 1.87 2.22

relaxed 0.37 0.27 0.42, 0.46
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The potential energy curves for Li+ ion migration for the relaxed systems are shown

in Fig. 8.30. All 102 atoms surrounding the migrating Li+ ion and the vacancy of the

supercell were relaxed. The activation energy was calculated for every step of migration.

The calculated values of EA are given in Table 8.28. It can be seen that relaxation has

a large effect on the EA. Both methods give good agreement with experiment. As for

Li2O, PW1PW approach gives the best agreement with the experimental value of EA,

deviating by only 0.05 eV.

Figure 8.30: Potential energy curves for Li+ ion migration in LTB for relaxed systems,

(a) PWGGA-PAW and (b) PW1PW.
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9 Model System for the Li2O:B2O3 nanocomposite

In the last decade, the diffusion in nanocrystalline ceramics have received consider-

able interest. The diffusion in ionic crystals is related to ion transport and thus to

electrical conductivity. The conductivity in ceramic oxides is observed in single-phase

systems as well as in composites of different components [64–66,156]. A good example

of single-phase nanocrystalline ceramic is Li2O as Li ion conductor [64]. Composite

materials show enhanced conductivity compared to the single-phase ceramic oxides.

It was observed that the conductivity is higher in Li2O:B2O3 nanocomposites than in

Li2O, although B2O3 is an insulator [64, 66]. This is due to the increased fraction of

structurally disordered interfacial regions or enhanced surface area [66].

In nanocrystalline Li2O, there are interfaces between similar crystallites. Whereas,

Li2O:B2O3 nanocomposites contain three types of interfaces, these are interfaces be-

tween the ionic conductor grains, between the insulator grains and between the ionic

conductor and the insulator grains (see Fig. 4.5). The latter can lead to surprising

effects in the conductivity of composite materials [66]. The conductivity enhancement

in the interfacial regions may have different origins, e.g. the formation of space charge

layers, an enhanced concentration of dislocations, or defects or the formation of new

phases [66, 157–159].

In the present study, a quantum chemical investigation is performed to understand

the mechanism of the enhanced conductivity in Li2O:B2O3 nanocomposite. First, an

interface of Li2O:B2O3 nanocomposite was modeled by the combination of two favorable

surfaces of Li2O and B2O3. The defect properties were investigated in the interface

region. The ionic conductivity was then investigated by the calculation of the activation

energy, EA for the Li ion movement. The calculations were performed at the PW1PW

approach with BS A.

9.1 Construction of the Li2O:B2O3 interface

The expression ’interface’ denotes the two-dimensional transition region between three-

dimensional regions that are homogeneous in the equilibrium case [160]. The internal

interfaces may include two different types of boundaries, such as, Type-1: the both

phase boundaries which mean the interfaces between grains of different stucture and
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Type-2: the proper grain boundaries which mean the interfaces between grains of the

same structure. Heitjans et al. [66] suggested that the conductivity enhancement in

Li2O:B2O3 nanocomposites is due to the increased fraction of interface between the

ionic conductor and the insulator grains, which corresponds to Type-1.

The aim is to construct an interface region between the ionic conductor grains (Li2O)

and the insulator grains (B2O3) by combining the stable surfaces of these two crystals.

It is assumed that their surfaces are the most stable lattice planes. Therefore, the

surface energies of Li2O and B2O3 are studied.

9.1.1 Surface energy of Li2O

In recent theoretical investigations [161, 162], it was shown that the (111) and (110)

surfaces of Li2O are most stable. Here these two stable surfaces are studied.

Slabs parallel to the (111) and (110) surfaces were studied for various numbers of layers

(n = 3, 6, 9, 12 and n = 5, 10, respectively). Top view and side view of slabs of the

(111) and the (110) surfaces are shown in Figs. 9.31 and 9.32, respectively.

The lattice parameters of the (111) surface are a = b = 3.229 Å, and γ=120 ◦ and

those of the (110) surface are a = 3.229 Å, b = 4.567 Å and γ=90 ◦.

Figure 9.31: Top view (a) and side view (b) of a slab parallel to the (111) surface

of Li2O. Red spheres represent oxygen atoms and blue spheres represent

lithium atoms
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Figure 9.32: Top view (a) and side view (b) of a slab parallel to the (110) surface

of Li2O. Red spheres represent oxygen atoms and blue spheres represent

lithium atoms

In Tables 9.29 and 9.30, the surface energies and their convergence with increasing

number of layers are presented for unrelaxed and relaxed slabs. The surface energy

(Es) was calculated according to the equation

Es =
Eslab − Ebulk

2A
(9.77)

where Eslab is the total energy of the two-dimensional slab, Ebulk is the total energy of

the three-dimensional bulk and A is the surface area of the slab. For the (111) surface,

Es has converged within 0.001 Jm−2 with a six-layer slab (Table 9.29). Thus there is

fast convergence with the number of layers for the (111) surface.

Table 9.29: Comparison of calculated surface formation energies Es (Jm−2) of (111)

surface before and after relaxation

n Es Es

(unrelaxed) (relaxed)

3 0.815 0.799

6 0.819 0.789

9 0.820 0.790

12 0.821 0.790

For the (110) surface, Es has converged with a five-layer slab (Table 9.30). There is a

larger relaxation effect for the (110) surface compared to that for the (111) surface.
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Table 9.30: Comparison of calculated surface formation energies Es (Jm−2) of (110)

surface before and after relaxation

n Es Es

(non-relaxed) (relaxed)

5 1.440 1.243

10 1.440 1.240

The converged Es value of the (111) surface is 0.79 Jm−2 and that of the (110) surface

is 1.24 Jm−2. Therefore the (111) surface is the most stable surface of Li2O. This agrees

well with the HF ab initio study of Li2O surfaces by Lichanot et al. [162].

9.1.2 Surface energy of B2O3

To the best of my knowledge, there is no experimental or theoretical investigation

on the stability of B2O3 surfaces. There are several possible stable low-index B2O3

surfaces, such as, (001) or (111) or (100). In the present study, only the (001) surface

of B2O3 is investigated. The aim is to construct a suitable model of a Li2O:B2O3

nanocomposite. For this purpose, the (001) surface of B2O3 is the best choice for the

following reasons.

In a recent investigation of Li ion transport and interface percolation in nano- and

microcrystalline composites [163], the Li2O:B2O3 composite was considered as brick-

layer type model. Three different possibilities were presented in that study, such as,

the two conducting grains immersed in an insulating material connected to each other

parallelly, or connected at the edge, or connected at the corner. Among them, the first

one shows the most enhanced conductivity. On the basis of this model, the interface

would be constructed by the combination of a supercell of the most stable Li2O (111)

surface with a supercell of a suitable B2O3 surface. In this case, the lattice vectors of

B2O3 surface should fit to those of the Li2O (111) surface. The lattice parameters of

the B2O3 (001) surface are a = b = 4.352 Å, and γ=120 ◦ which fit well with those

of the Li2O (111) surface. Whereas, the lattice vectors of B2O3 (111) and B2O3 (100)

surfaces are a = 7.538 Å, b = 9.456 Å, γ=113.49 ◦ and a = 4.352 Å, b = 8.395 Å, γ=90

◦, respectively. For this reason, only the B2O3 (001) surface is taken into account in

the present study. In the following, the convergence of surface energy Es of B2O3 (001)
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surface is discussed.

Slabs parallel to the (001) surface were studied with increasing number of layers (n =

5, 10, 15 and 30). Top view and side view of slab of B2O3 (001) surface are shown in

Fig. 9.33.

Figure 9.33: Top view (a) and side view (b) of the slab parallel to (001) surface of

B2O3. Red spheres represent oxygen atoms and green spheres represent

boron atoms

In Table 9.31, the surface energies and their convergence with slab thickness are pre-

sented for unrelaxed and relaxed slabs. Es is calculated according to equation (9.77).

Es is converged within 0.05 Jm−2 with the five-layer slab. There is a large effect of

relaxation compared to the Li2O surfaces which is an indication of the more covalent

nature of the B-O bond. The surface atoms compensate the loss of a bond by increasing

the interaction to atoms in the second layer.

Table 9.31: Comparison of calculated surface formation energies Es (Jm−2) of (001)

surface before and after relaxation

n Es Es

(non-relaxed) (relaxed)

5 4.246 2.115

10 4.307 2.167

15 4.313 2.188

30 4.336 2.206
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9.1.3 Interface of Li2O:B2O3 nanocomposite

The Li2O:B2O3 nanocomposite is constructed by the combination of supercells of Li2O

(111) surface and B2O3 (001) surface. First a 4*4 supercell of six-layer slab parallel

to the (111) surface for Li2O was created. The lattice parameters of this supercell are

a = b = 13.0 Å, and γ=120 ◦. Then a 3*3 supercell of a five-layer slab parallel to the

(001) surface for B2O3 was created. The lattice parameters of this supercell are also

a = b = 13.0 Å, and γ=120 ◦. Then these two supercells were combined to create a

two-dimensional model of the Li2O:B2O3 nanocomposite as shown in Fig. 9.34.

Figure 9.34: Mixture of supercells of (111) slab of Li2O (a) and (001) slab of B2O3 (b).

The distance (Z) between the two slabs is set to 10 Å initially.

Initially, the distance (Z) between the two slabs was set to 10 Å. Z was then optimized

with fixed a. Taking the optimized value of Z, the lattice parameter a was optimized.

In Fig. 9.35, the optimization of Z and a is presented. The optimized values of Z and

a are 5.0 Å and 12.4 Å, respectively. 75 atoms in the interface region of two slabs are

relaxed which is considered as the interface of Li2O:B2O3 nanocomposite.
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Figure 9.35: Optimization of interface distance (Z) and lattice parameter a Å.

The interface region is marked with a box in the Fig. 9.36(a). The remaining atoms

in the outermost layers are kept fixed at bulk-like positions.

Figure 9.36: The interface of Li2O:B2O3 nanocomposite before (a) and after (b) opti-

mization.

A full optimization of atomic fractional coordinates of the interface region was per-

formed taking the optimized values of Z and a. The optimized structure is shown in

Fig. 9.36(b). It is observed that all boron and oxygen atoms of B2O3 surface move from

the interface region towards the boundary atoms and thus form several rings of trigonal

BO3. One of the oxygen atoms of Li2O surface (marked by an arrow in Fig. 9.36(b))

also moves towards the boron atom and readily forms an additional bond. In the B2O3

(001) surface, the boron atoms are coordinated to two oxygen atoms at a distance of

1.31-1.33 Å. Whereas, in the interface of Li2O:B2O3 nanocomposite, the boron atoms

are three-fold coordinated to oxygen atoms as in the case of the three-dimensional bulk

trigonal B2O3 [109]. The average B-O bond distance of the BO3 group is 1.41 Å, which

is 0.04 Å larger than that in bulk B2O3. The BO3 triangle is very close to planar, the

sum of the three O-B-O angles being 359.2 ◦.
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Whereas, lithium atoms have two different types of coordination with oxygen atoms in

the interface region. In one type, the lithium atoms are coordinated to three oxygen

atoms (O1, O2 and O3) at an average distance of 1.9 Å. The fourth Li-O bond distance

is larger than 3.2 Å. This oxygen (O4) is bonded to a boron atom at distance of 1.35

Å (as shown in Fig. 9.37(a)).

Figure 9.37: The coordination of lithium atom with oxygen atoms. (a) One oxygen

atom (O4) has large bond distance with Li which is also bonded to boron

atom. (b) Slightly distorted terahedral coordination of lithium atom with

oxygen atoms.

In the other type, lithium atom is coordinated to four closer oxygen atoms at distances

of 1.87 Å, 1.90 Å, 1.98 Å and 2.10 Å, which can be considered as a distorted tetrahedron

as shown in Fig. 9.37(b). It can be noted that the lithium atoms are tetrahedrally

coordinated to oxygen atoms at a distance of 2.0 Å in bulk Li2O. Thus lithium has

reduced coordination number in the interface of Li2O:B2O3 nanocomposite. Nearly

all the lithium atoms move from their positions at the perfect (111) surface, some of

them come very close while some other move far from each other. The nearest Li-Li

distances vary from 2.15 Å to 2.30 Å compared to 2.23 Å before optimization.

It is well known for the grain boundaries in nanocrystalline metals that many atoms

have a reduced coordination number with respect to the grain interior and the local

density is smaller, which leads to an enhanced diffusivity of the atoms [164]. Such

an effect is expected to be found also in ceramic systems [66]. In the interface of

Li2O:B2O3, there is Li-O bond weakening and simultaneously B-O bond formation.

Li atom shows reduced coordination number in the grain boundary. This process

might reduce the bond strength of lithium to the oxygen atoms in the interface region.
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Consequently, the defect formation could be easier in the Li2O:B2O3 nanocomposite

compared to nanocrystalline Li2O which is assumed to be responsible for enhancing

the Li+ ion conductivity. In the next section, the defect properties in Li2O:B2O3

nanocomposite are discussed.

9.2 Defect properties in Li2O:B2O3 nanocomposite

The nanocrystalline materials are regarded as heterogeneously disordered with ordered

grains and disordered interfaces. The interface atoms occupy regular sites but have

reduced coordination number and the interface regions may be classified as highly

defective [66]. In addition to grain boundaries, further structural elements that occur

with high concentration are triple junctions, i.e. the borderlines where three adjacent

crystallites are brought into contact. These may form channels with vacancy-like sites

and thus fast diffusion pathways, as predicted by theory [165].

Nanocrystalline Li2O is a good Li+ ion conductor and Li+ ion migrates via cation va-

cancies [84–86] (see chapter 5.4). The overall conductivity increases if B2O3 is added

to Li2O, although B2O3 is an insulator [64–66]. This is explained by an enhanced

conductivity in the interfacial regions between the ionic conductor grains and the in-

sulator grains. The possible reason for the enhanced conductivity is the enhanced

concentration of dislocations, or defects or the formation of new phases [66, 157–159].

In the present section, cation vacany and Li+ ion migration in Li2O:B2O3 nanocom-

posite are discussed.

9.2.1 Cation vacancy

The vacancy is created by removing one Li from the interface region of Li2O:B2O3

nanocomposite, keeping the system neutral. The formation energy of cation vacancy

Ede(V ) is calculated as,

Ede(V ) = ENan(V ) + E(Li) − ENan (9.78)

Here ENan(V ) and ENan denote the total energy of the Li2O:B2O3 nanocomposite with

and without vacancy, and E(Li) is the energy of the free Li atom. In Table 9.32, the

calculated Ede(V ) of Li2O:B2O3 nanocomposite is presented and also compared with

that of nanocrystalline Li2O.
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Table 9.32: Formation energy of cation vacancy, Ede(V ) (kJ/mol) of Li2O:B2O3

nanocomposite and nanocrystalline Li2O (PW1PW results with BS A).

Li2O:B2O3 Li2O

Ede(V ) 533 577

The Ede(V ) of Li2O:B2O3 nanocomposite is 533 kJ/mol which is 44 kJ/mol smaller

than that of Li2O. Thus the defect formation is easier in the Li2O:B2O3 nanocompos-

ite compared to that in Li2O. This confirms that the interface region of Li2O:B2O3

nanocomposite contains more defects than the nanocrystalline Li2O. This may lead to

faster migation of Li+ ions in the interface region and in turn to enhanced conductivity

in the Li2O:B2O3 nanocomposite.

9.2.2 Migration of Li+ ion

The migration of Li+ ion in Li2O:B2O3 nanocomposite was investigated by the calcu-

lation of activation energy EA for the Li+ ion diffusion in the interface region. Li+ ion

migrates via cation vacancy in the interface region. It was observed that (see chapter

9.1.3) lithium atoms have two different types of coordination with oxygen atoms in the

interface region, one is three-fold (Fig. 9.37(a)), and the other one is four-fold (Fig.

9.37(b)). Thus there can be two possible mechanisms for the Li+ ion migration, such

as,

• Migration-I: a Li+ ion migrates from a tetrahedral site to the cation vacancy (V)

which is three-fold coordinated to oxygen atoms, or vice versa.

• Migration-II: a three-fold coordinated Li+ ion migrates to the cation vacancy (V)

which is also three-fold coordinated to oxygen atoms, or vice versa.

Both of these two mechanisms are illustrated in Fig. 9.38. In Migration-I (Fig. 9.38(a)),

two oxygen atoms are common or bridging between the migrating Li+ ion and the cation

vacancy. Whereas, in Migration-II (Fig. 9.38(b)), there is one bridging oxygen atom

between the migrating Li+ ion and the cation vacancy.
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Figure 9.38: Li+ ion migration in the interface of Li2O:B2O3 nanocomposite, (a) A

four-fold coordinated Li+ ion migrates to the trigonally coordinated cation

vacancy, (b) A three-fold coordinated Li+ ion migrates to the three-fold

coordinated cation vacancy.

In both cases, spin polarization plays an important role for the Li+ ion migration. It

was observed that the unpaired electron is localized on the 2p orbital of one of the

surrounding oxygen atoms. The same situation was observed for the Li+ ion diffusion

in crystalline Li2O (see chapter 5.4).

In Fig. 9.39, the potential energy curves for the Li+ ion migration in the interface of

Li2O:B2O3 nanocomposite are shown for both types of migration.

Figure 9.39: Potential energy curves of Li+ ion migration in the interface of Li2O:B2O3

nanocomposite, (a) Migration-I, (b) Migration-II.

The calculated values for the activation energy, EA are presented in Table 9.33. EA

was calculated as the difference of energies for the systems in which the migrating ion is

mid-way between the neighboring regular sites and the system in which the vacancy is

on a regular site. The hopping distance of Li+ ion migration in the case of Migration-I

is 2.23 Å, which is the distance of the nearest lithium atoms from the vacancy. Whereas
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hopping distance in the case of Migration-II is 3.05 Å, which is the distance of next

nearest lithium atoms from the vacancy. The experimental hopping distance for the

migration of Li+ ion in Li2O is equal to the nearest Li-Li distance in Li2O, namely,

2.29 Å.

Table 9.33: Comparison of calculated activation energies, EA (eV) for the Li+ ion mi-

gration in Li2O:B2O3 nanocomposite and nanocrystalline Li2O

Li2O:B2O3 Li2O

Migration-I Migration-II Calculateda Exp. [66]

EA 0.22 1.18 0.33 0.31

a Discussed in chapter 5.4

EA for Migration-I is 0.22 eV and that for Migration-II is 1.18 eV. Thus the Li+ ion

migrates faster in Migration-I than in Migration-II. Therefore, Li+ ion migration is

much more favorable at a distance of the nearest lithium atoms than that of the next

nearest lithium atoms. In Table 9.33, the calculated EA values are also compared

with that of Li2O. It can be seen that EA for the Li2O:B2O3 nanocomposite is 0.09 eV

smaller than the experimental EA of nanocrystalline Li2O. Thus it is confirmed that the

Li+ ion migration is faster in Li2O:B2O3 nanocomposite than in Li2O. Consequently,

the conductivity is enhanced in the Li2O:B2O3 nanocomposite.
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10 Summary

The structural, energetic and electronic properties of Li2O, B2O3 and Li2B4O7 were

investigated by means of periodic quantum-chemical calculations. The results of five

DFT-type methods and the semiempirical method MSINDO were compared among

each other and to available literature data. For MSINDO-CCM calculations, the stan-

dard Li parameters were reoptimized for crystalline Li2O. Whereas, the calculations

for B2O3 and Li2B4O7 were performed with standard empirical parameters.

The comparison of optimized structural parameters shows that the hybrid methods

PW1PW and B3LYP give the best results. Other DFT methods (PWGGA, PWGGA-

US and PWGGA-PAW) give larger deviations from the experimental data. The com-

parison of PWGGA results in a LCAO and two plane wave implementations revealed

that the basis set dependence on geometry parameters and the band structure is small,

but is more pronounced for energetic properties. As for structural parameters, PW1PW

gives the best agreement for the energetic and electronic properties with the experi-

ment for all the systems. B3LYP gives similar agreement for the electronic properties,

while too small values for the cohesive energy. MSINDO gives larger deviations for the

lattice parameters, whereas the energetic and electronic properties are comparable to

the DFT methods.

Bulk properties of B2O3 low-pressure phase (B2O3-I) were investigated for both P3121

and P31 space groups. Based on a comparison of their structural, energetic and elec-

tronic properties, it is concluded that the two structures are practically the same. By

comparing their cohesive energies, it is confirmed that the equilibrium structure is the

recently proposed structure with the P3121 space group.

A theoretical investigation was performed for the cation vacancy and F center in Li2O.

Formation energy of both types of defects was calculated. The convergence of defect

formation energy was checked by extending the atomic basis set and energy cutoff. The

structural relaxation effects for both types of defect were investigated. The study of

electronic properties was performed by calculating the density of states (DOS) of the

defective systems.

Li+ ion diffusion in Li2O was investigated. Li+ ion migrates in Li2O via cation va-

cancy. The activation energy, EA for the migration was calculated for both unrelaxed
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and relaxed systems. The calculated EA with PW1PW is 0.33 eV which is 0.02 eV

larger than the experimental value. The other DFT methods (B3LYP, PWGGA-US

and PWGGA-PAW) give similar deviations from the experiment. Whereas, the repa-

rameterized version of MSINDO does not give a barrier for migration, which must be

considered as an artefact of this method.

Li2B4O7 was considered as a first model system for the mixed interface of Li2O:B2O3

nanocomposite. The formation energy of cation vacancy and the effect of structural

relaxation around the cation vacancy were investigated with PW1PW and PWGGA-

PAW methods. The Li+ ion migration was investigated by measuring EA. It was

observed that Li+ ion migrates through a one-dimensional channel of five-vertex oxygen

polyhedra along the tetragonal axis of LTB crystal. The calculated EA in LTB with

PW1PW method is 0.37 eV which is 0.05 eV smaller than the experimental value.

PWGGA-PAW gives a deviation of +0.15 eV compared to the experiment.

Finally, the migration of Li+ ion was investigated in the Li2O:B2O3 nanocomposite.

Since PW1PW approach gives the best agreement with experiment for the bulk prop-

erties for all the systems, the defect properties and Li+ ion conductivity in Li2O and

Li2B4O7, this method was chosen for the investigation. A two-dimensional model sys-

tem of the Li2O:B2O3 interface region was created by the combination of supercells of

Li2O (111) surface and B2O3 (001) surface. The formation energy of cation vacancy

in the interface of Li2O:B2O3 nanocomposite is 533 kJ/mol, which is 44 kJ/mol lower

than that in Li2O. This shows that the interface region of Li2O:B2O3 nanocomposite

is more defective than the bulk, which facilitates the conductivity in this region. It

was observed that lithium atoms have reduced coordination number in the interface

region compared to Li2O bulk. This leads to an enhanced mobility of Li+ ion. Li+

ion migrates from its regular site to an adjacent vacancy. The migration of Li+ ion

was investigated by calculating the EA for this process. The calculated value of EA

is 0.22 eV. Compared to the experimental value of EA for the nanocrystalline Li2O

(0.31 eV), EA in the Li2O:B2O3 nanocomposite is 0.09 eV lower. This confirms that

the Li2O:B2O3 nanocomposite shows enhanced conductivity along the phase boundary

compared to that in the nanocrystalline Li2O.
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