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1 Kurzdarstellung

Die Erfindung des Rasterkraftmikroskops 1986 von Binnig, Quate und

Gerber gewährt Biowissenschaftlern Einblick in die molekulare Welt

mit einer Auflösung, die sonst nur mit der Elektronenmikroskopie er-

reichbar ist. Jedoch bietet das Rasterkraftmikroskop den entscheiden-

den Vorteil, Proben unter kontrollierten physiologischen Inkubations-

bedingungen in Echtzeit abbilden zu können; biologische Strukturen

können somit in situ untersucht werden.

Die vorliegende Dissertationsschrift besteht aus fünf am Institut

für Biophysik der Universität Hannover durchgeführten wissenschaft-

lichen Arbeiten zum Thema der Rasterkraftmikroskopie biologischer

Objekte. Vorrangiges Ziel der Arbeit ist die Darstellung der Struktur

biologischer Membranen mit molekularer Auflösung. Die Bandbreite

der untersuchten Systeme reicht von lebenden peritonealen Makro-

phagen über isolierte native Plasmamembranen und Tonoplasten, bis

hin zur Darstellung einzelner Antikörpermoleküle, die an rekonstitu-

ierten und dotierten künstlichen Membranen gebunden werden [1].

Da die laterale Auflösung der topographischen Darstellung lebender

Zellen aufgrund ihrer Weichheit begrenzt ist, ist die Untersuchung iso-

lierter und zytoskelettfreier, nativer Membranen, wie der vakuolären

Membran, notwendig. Eingehende Untersuchungen am Tonoplast der

Mesophyllzelle aus Hordeum vulgare L. illustrieren die Heterogenität

der Struktur nativer Membranen, die die eindeutige Identifikation ein-

zelner Membranmoleküle erschwert [2]. Am Beispiel der H+-ATPase

9



10 1 Kurzdarstellung

wird die Identifikation von Membranproteinen mit bildverarbeiten-

den Methoden unter Zuhilfenahme bekannter geometrischer Daten

gezeigt.

Da die Strukturaufklärung von Proteinen deren Kristallisation vor-

aussetzt, wird das Rasterkraftmikroskop eingesetzt, um das Wachs-

tum von Proteinkristallen zu analysieren [3]. Mittels aufeinanderfol-

genden Aufnahmen wird das Wachstum tetragonaler Lysozymkristal-

le zeitnah und mit molekularer Auflösung räumlich dargestellt und in

der Kinetik analysiert. Zur Analyse der Wachstumskinetik konnte die

Zeitauflösung mittels der linescan Methode weiter verbessert werden.

Die Ergebnisse liefern die Voraussetzung für eine mögliche rasterkraft-

mikroskopisch gesteuerte Induktion der Keime einzelner Proteinkris-

talle1.

Neben der Struktur vieler Membranproteine sind gegenwärtig Fra-

gen zu strukturellen Veränderungen der Lipiddoppelschicht unter

Berücksichtigung des Phasenverhaltens und dessen Auswirkung auf

die Funktion der Membranproteine noch weitgehend ungeklärt. Am

Beispiel von Glimmer-unterstützten, planaren Dimyristoylphospha-

tidylcholin-Lipiddoppelschichten wird der Übergang aus der flüssig-

kristallinen Lα- in die Gel- oder Pβ′ -Phase untersucht [4]. Hier-

zu war die Neuentwicklung einer Temperaturregelung für das Ras-

terkraftmikroskop erforderlich. Die Pβ′ -Phase bildet sich nach der

van’t Hoff’schen Temperaturabhängigkeit aus der flüssig-kristallinen

Lα-Phase und ist durch eine charakteristische Rippelstruktur gekenn-

zeichnet. Die Abhängigkeit der Phasenübergangstemperatur und der

Übergangsenthalpie der Lipiddoppelschichten von den Modulatoren

Heptanol und Ca2+ kann mittels Bildanalyse bestimmt werden. Es

1Wiechmann, Leisten, Enders, Kolb: in Vorbereitung
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ergibt sich eine lineare Abhängigkeit der Übergangsenthalpie von der

Phasenübergangstemperatur, die auf eine Differenz der Wärmekapazi-

tät zwischen den beiden Phasen zurückgeführt werden kann. Erstmalig

wird in dieser Arbeit die kooperative Einheit von Lipidmolekülen aus

strukturellen Daten ermittelt. Diese Einheit beschreibt das kollektive

Verhalten von Lipidmolekülen während des Phasenübergangs.

Einen wesentlichen Beitrag zur Vergrößerung der Auflösung in der

Abbildung von vergleichsweise weichen biologischen Proben liefert der

oszillatorische Messmodus, der so genannte Tapping-Modus. Eine wei-

tere Verbesserung besteht in der Entwicklung einer elektromagneti-

schen Methode zur direkten Schwingungsanregung der rasterkraft-

mikroskopischen Sonde [5]. Diese Methode nutzt die Wirkung der

Lorentzkraft auf einen stromdurchflossenen Kantilever in einem sta-

tischen Magnetfeld. Im Gegensatz zu der bisher gebräuchlichen Anre-

gung der Messsonde mittels einer piezomechanisch erzeugten Vibrati-

on der Messzelle kann mit der auf Lorentzkraft basierenden Methode

eine unerwünschte Schwingung des Probenträgers und der Probe weit-

gehend unterdrückt werden.

Mit der neu entwickelten Temperatursteuerung und der verbesser-

ten Auflösung durch die elektromagnetische Anregungsform kann auf

der Basis der identifizierten und charakterisierten Membrankompo-

nenten die Dynamik von Protein-Lipidwechselwirkungen in den so

genannten Lipid Rafts unter quasi Echtzeitbedingungen molekular

aufgeklärt werden. Diese Untersuchungen wurden bereits begonnen

und können einen wesentlichen Beitrag zum Verständnis der Struktur-

Funktionsbeziehung der Lipid Rafts leisten.
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2 Abstract

The invention of the atomic force microscope by Binnig, Quate and

Gerber in 1986 allows life-scientists the exploration of the molecular

world with a resolution, which can otherwise be achieved by electron

microscopic methods only. However, the atomic force microscope has

the major advantage to image samples in fluid environment and at

real time. Hence, biological structures can be analyzed in situ and at

physiological conditions.

The present dissertation is based on five publications on the re-

search which has been conducted at the Institute of Biophysics, Uni-

versity of Hannover in the field of atomic force microscopy of biologi-

cal samples. The presented experiments and results are focused to the

representation of the structure of biological membranes at molecular

resolution. The bandwidth of objects which are analyzed ranges from

living peritoneal macrophages, isolated native plasma membranes and

tonoplasts to single antibodies, which are bound to reconstituted and

appropriately doped artificial membranes [1].

The lateral resolution of topographies of living cells is limited, which

is caused by their softness. This motivated a detailed elucidation of

the native vacuolar membrane (tonoplast) of the mesophyll cell of

Hordeum vulgare L.. Tonoplasts are free of cytoskeleton and can be

imaged at high resolution [2]. The results illustrate the heterogeneity

in the surface structure of native membranes, which hinders the unique

identification of single membrane molecules. However, the specific

13



14 2 Abstract

identification of membrane proteins by image processing methods is

exemplary demonstrated in the case of H+-ATPase.

The atomic resolution of proteins requires the availability of pure

and sufficient large protein crystals. For extending the understand-

ing of the growth process of protein crystals, the capability of the

atomic force microscope to achieve molecular resolution imaging of

samples at controlled environment is exploited to monitor protein

crystal growth [3]. The growing of tetragonal protein crystals from

lysozyme is recorded in real time and the kinetics are analyzed. By

application of the linescan mode, the time resolution is further im-

proved in order to analyze the kinetics of crystal growth. The results

present the basis for a possible induction of nuclei for the growth of

single protein crystals by atomic force microscopy1.

Apart from the dynamics of the structure of membrane proteins,

questions concerning structural changes and the phase properties of

lipid bilayers and their effects on the function of membrane proteins

are still not fully understood. The phase transition of an artificial

membrane from fluid-crystalline (Lα-) to the gel- or Pβ′ -phase is elu-

cidated by the example of mica supported bilayers of dimyristoylphos-

phatidylcholine [4]. For this, the atomic force microscope is equipped

with a temperature control. The Pβ′ -phase emerges from the Lα-

phase following a van’t Hoff temperature like dependence, and is char-

acterized by a distinguishing ripple structure. The dependence of the

phase transition temperature and enthalpy on heptanol concentration

and the presence of Ca2+ is determined using image analysis. From

this a linear dependence of the transition enthalpy on the phase tran-

sition temperature is obtained and discussed in terms of a difference

1Wiechmann, Leisten, Enders, Kolb: in preparation
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in heat capacity of the Lα- and Pβ′ -phase. For the first time, the co-

operative unit describing the collective behavior of the lipid molecules

at phase transition is determined from structural data.

A substantial contribution to improve the resolution of soft biologi-

cal samples presents the oscillation mode, which is also called tapping

mode. A further improvement of this mode is represented by the im-

plementation of an electromagnetic method to excite the oscillation

of the atomic force sensor [5]. The method is based on the effect of

the Lorentz force on the cantilever, which is induced by an electrical

current in the reflection layer placed in a static magnetic field. Unlike

the conventional mechanical excitation of the atomic force sensor by a

piezomechanically induced vibration of the measurement chamber, a

resolution-limiting vibration of the sample-stage and the sample may

be significantly reduced by the Lorentz force based excitation.

By the newly developed temperature control and by the advanced

Lorentz force based excitation method, the dynamics of the interac-

tion between lipids and proteins in the so called lipid rafts may be

elucidated at molecular resolution and in real time. Atomic force

microscopic studies have been started and may provide a significant

contribution to the understanding of the structure/function relation-

ship of lipid rafts.

Key words: Scanning Force Microscopy, biological membranes,

lipids
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3 Introduction and content

One of the most important driving forces for the progress in life science

is the extension of the limits of the visible. This can be impressively

illustrated by the work of Hooke in 1665 who developed the concept of

the cell in biological tissue by the use of microscopes, which enabled

him to see and to identify structures which had never been observed

before.

Nowadays the advances in physics and technology allow to rou-

tinely resolve biological structures at molecular level. Occasionally,

even atomic details are revealed by the use of synchrotron radiation

supported x-ray diffraction analysis, if the creation of sufficiently large

and pure macromolecular crystals was successful.

tip

cantileverlaser beam

sensor chip

sample

segmented photo diode

Figure 3.1: Illustration of the working prin-

ciple of atomic force microscopy.

One exceptional method was

invented by Binnig, Quate and

Gerber, who developed the

atomic force microscope on the

basis of the noble prize1 hon-

ored method of scanning tun-

neling microscopy in 1986. The

principle of an atomic force mi-

croscope can be described by

an atomically sharp tip, which

is attached to a cantilever and

1Binnig and Rohrer, 1986
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18 3 Introduction and content

scanned line by line across a

sample by piezomechanical devices. A laser beam, which is focused to

the backside of the cantilever, helps to read out the deflection of the

cantilever by irradiating a segmented and therefore position sensitive

photo-diode. The vertical position of the tip can be measured with

sub-nanometer accuracy. Since the vertical deflection of the cantilever

is related to the force between tip and sample by the spring constant

of the cantilever, the force can be held constant by an electronic feed-

back circuit. In this way, the topology of the sample surface can be

recorded and the resolution may be sufficient to image even single

atoms.

Especially in life science, the atomic force microscope helps to ex-

plore the molecular world with a resolution which has otherwise only

been achieved by electron microscopic techniques. It is shown, that

atomic force microscopy provides the unique approach for the analysis

of biological samples at conditions conditions close to the physiological

situation. The resolution can be continuously tuned over a range of

four orders of magnitude. This allows to investigate objects ranging

from the level of living cells with dimensions of several tens of mi-

crometer to single proteins attached to reconstituted membranes with

dimensions of only a few nanometer [1]. Having these unique proper-

ties of atomic force microscopy in mind, the question arises whether it

is possible to observe the structure and dynamics of cell membranes as

well as the membrane proteins in their native environment at molec-

ular resolution.

To realize the concept of imaging living cells while retaining

physiological conditions, peritoneal macrophages were isolated from

mouse and imaged in physiological phosphate buffered solution [1].

Macrophages have the tendency to phagosize non-self objects like la-
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tex beads. It was thus possible to show that these cells stay alive

during the imaging process by monitoring the locomotion of the cells

and the process of phagocytosis. Additionally it could be demon-

strated, that the macrophages show an active response to the imag-

ing tip resulting in an induced elevation of the central region of the

cell as if the macrophage tries to phagosize the tip. However, on the

nanometer length scale, individual molecules were not resolved. The

limited resolution is most probable caused by the softness of living

cells. The intracellular cytoskeleton which supports the plasma mem-

brane is flexible and changeable, whereby the sample can be pushed

aside by the scanning tip. The force distance curves on living cells

revealed an extraordinary small Young modulus. The corresponding

effective spring constant is one to two orders of magnitude smaller then

the spring constant of the cantilever of the force sensor. As a conse-

quence the sample is strongly deformed by the scanning tip leading

to an increased contact area which reduces the achievable resolution

significantly.

On the other hand, a supported artificial membrane which was

made from a suspension of vesicles composed of a mixture of syn-

thetic phospholipids with a small amount of a lipid with Texasred-

phosphatidylamine head group could be imaged at nanometer reso-

lution on a muscovite mica support [1]. In this case, single antibody

molecules, which were bound to the Texasred labels could be clearly

resolved. The improved resolution is most probably caused by the low

thickness of the bilayer in the order of only 5 nm formed on a rigid

support. If the loading force of the tip is sufficient low, the mem-

brane is only indented insignificantly leading to a sufficient resolution

to display individual proteins. These promising initial measurements
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already pointed out, that the achievable lateral resolution depends on

the simplicity, purity and hardness of the analyzed sample.

For the further experiments a native biological membrane is chosen,

which has similar mechanical properties as artificial bilayers. There-

fore the membrane of the vacuole, the so called tonoplast was selected

for further experiments [2]. Vacuoles can be retained functionally in-

tact throughout the isolation procedure. They resemble unilamellar

giant liposomes, they do not contain any cytoskeleton and therefore

can be spread and firmly attached to the sample support in similar

way as artificial lipid bilayers. Vacuoles were isolated from mesophyll

cells of Hordeum vulgare L. and adsorbed to a support made of mus-

covite mica. The adsorption process induced a rupture of the vacuole

which allowed to image the cytoplasmatic as well as the intravacuolar

surface of flat patches of the tonoplast with a significantly improved

resolution compared to the system of living cells in physiological so-

lution. The tonoplast consists of a large variety of integral proteins

and lipids, where the H+-ATPase is the most abundant membrane

protein and was therefore the topic of further study. Its characteristic

cytoplasmatic head and stalk structure (V1) had been elucidated in

detail by electron microscopy and x-ray diffraction methods. From

these data and taking the tip geometry into account, a geometrical

model was derived, which allowed to simulate the topography of the

cytoplasmatic V1-part of the molecule. By newly developed image

processing methods the simulated topography was used as a template

to identify the H+-ATPase within the recorded topographies. The di-

mension of the cytoplasmatic region of the molecule was found to be

in suitable agreement with published data. It thus may be possible to

acquire real time structural data from individual active H+-ATPase
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molecules in situ providing a deeper understanding of the adenosint-

riphosphate hydrolyzing reaction cycle.

Although the resolution could be improved by the use of the tono-

plast, submolecular resolution was not achieved in the case of native

membranes. This may be explained by tip contamination and lateral

mobility of the membrane components to be imaged.

In order to improve the resolution further and to observe struc-

tural data of proteins in real time in controlled fluid environment,

the formation of tetragonal lysozyme crystals was analyzed [3]. It is

well known, that due to the possibility to apply averaging procedures

to topographies of proteins in crystalline arrangement yields a lateral

resolution significantly higher then for images of individual disordered

molecules of low density. Furthermore, the neighboring proteins form

a mechanical support of the imaged protein reducing lateral movement

and supporting the virtual rigidity of the protein which interacts with

the tip of the force sensor. In addition, there is no general method

known to identify the type and nature of single membrane proteins

within their native environment.

Lysozyme and its crystallization properties are well characterized

and the protein is available in large amounts at high purification.

Therefore is is often chosen as a model system to elucidate general as-

pects of protein crystallization. The (101) as well as (110) face of fully

hydrated crystals which were grown on mica could be resolved showing

the corresponding unit cells with molecular detail. Appropriate con-

trol of the imaging buffer allowed the crystals to grow during the imag-

ing process layer by layer. Growing crystal faces and 2D-nucleation

events could be observed by recording series of consecutive images in

real time. From these sequences the velocity of steps representing the

boundaries of growing protein layers were determined quantitatively.
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For the understanding of the dynamics of protein crystal growth it is

important to know whether protein crystals grow by attachment of

single molecules to the boundaries of crystal faces or if preaggregates

with a larger number of molecules are formed in solution which then

attach to the crystal surface in a single growth step. By using the

linescan method, the time resolution could be improved by about two

orders of magnitude corresponding to the time scale of single growth

steps. From structural data it was concluded that preaggregates of

about 10 tetramers are formed in solution, which then attach to the

crystal within a time scale of about 80 ms.

It is known that the function of membrane proteins can depend on

the specific lipid composition of the bilayer at the local environment

of the protein. Bilayers with physiological lipid composition generally

are in fluid phase, where the lipid molecules can individually diffuse

within the membrane plane. However more recently the existence of

phase separated lipid domains was proposed, which are characterized

by an increased content of sphingolipids which lead to a higher ordered

gel phase. This leads to reduced mobility of the lipids and proteins.

It is proposed that these lipid domains, which are called lipid rafts,

are responsible for a lipid mediated regulation of a number of mem-

brane proteins and are involved in infection processes. Agents like

alcohols or anesthetics have the potential to alter the thermodynamic

properties of the lipids by interacting with their hydrophobic acyl

chains. As example it is possible to inhibit gap-junctional coupling of

neighboring cells by extracellular application of the long chain alcohol

heptanol. The question arises, whether this regulation can be caused

by a change of thermodynamic properties of lipid rafts, which embed

the cell-to-cell channels of the gap junction. This heptanol induced

gating of cell-to-cell channels is proposed to be correlated to a change
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in the surface structure and fluidity of the bilayer. In order to study

the influence of heptanol on the structure and the thermodynamic pa-

rameters of the main phase transition - phase transition temperature

and transition enthalpy -, mica supported bilayers of dimyristoylphos-

phatidylcholine were chosen as a model system. This specific lipid has

the advantage of a main transition temperature between fluid- (Lα-)

and gel- (Pβ′ -) phase close to room temperature. It can be imaged at

a resolution in the order of 0.1 nm in z- and 1 to 10 nm in lateral direc-

tion [4]. For these experiments a temperature controlled atomic force

microscope was developed with an accuracy in the order of 0.1 K. The

temperature in the fluid cell had to be stabilized to reduce thermal

drifts of the cantilever by bending. In addition, vibrations induced by

the cooling devices had to be minimized to retain a height resolution

in the sub-nanometer range. From image sequences of the surface

of the supported bilayer in dependence of the sample temperature,

thermodynamic characteristics could be extracted by image process-

ing, which are usually determined by differential scanning calorimetry.

Simultaneous recording of detailed structural data provided new in-

sights to the formation of the Pβ′ -phase, which is characterized by

distinguishing surface undulations of the membranes, called ripples.

For the first time, evidence was obtained for the existence of coop-

erative units from structural data, which as yet had been postulated

to explain the discrepancy of calorimetric and van’t Hoff transition

enthalpies determined by differential scanning calorimetry. The co-

operative unit was found to be organized as small interconnected do-

mains of lipid molecules, which change their phase state in a collective

process. Analyzing the effect of the gap junction regulating agents

heptanol and Ca2+, it was found that the temperature of the main

phase transition is decreased by heptanol and increased by Ca2+. It
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turned out, that the transition enthalpy depends linearly on the tem-

perature of the main phase transition in the observed temperature

range. It is concluded that this effect is probably caused by a differ-

ence in heat capacity between the two phases. The observed results

show, that temperature controlled atomic force microscopy comple-

ments the classical calorimetric experiments with the advantage of

providing structural information on the nanometer scale. Thermo-

dynamic data can be obtained by simple image processing methods

from topographies at different temperature. The observed significant

decrease of the main transition temperature by heptanol supports the

assumption, that heptanol can regulate gap junctional coupling by

fluidization of the lipid core adjacent to the cell-to-cell channels of

gap junctions.

From the studies described so far, it becomes obvious that imaging

of biological samples requires advances in technique and methodology

to achieve routinely sub-molecular resolution of native or even living

biological objects. One imaging mode, the so called tapping modeTM,

is frequently applied to analyze soft biological samples and accounts

for a reduction of lateral dragging forces. It is based on the oscillation

of the force sensor’s cantilever, which is excited by vibrating the mea-

surement chamber near the cantilever’s eigenfrequency. However, this

method may also lead to unwanted and resolution limiting oscillation

of the sample support and other peripheral parts of the set up. This

may be improved by implementation of a new excitation scheme for

the tapping mode [5]. It employs a commercial force sensor, whose

metallic coating was selectively removed by a femtosecond-laser based

high resolution micro structuring system. By this preparation, an os-

cillating current can be directed through the cantilever leading to a

direct excitation by Lorentz force if the cantilever is placed in a static
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magnetic field. By means of the measured response function of the

microscope, it may be expected that an oscillation of the sample sup-

port and the sample can be significantly reduced by this technique in

fluid as well as in air. The response function resembles that of a driven

damped harmonic oscillator, except for a second peak at half of the

eigenfrequency of the cantilever at fluid environment. This peak was

identified to be caused by a temperature oscillation of the cantilever,

which is induced by the alternating electrical current in the metallic

coating. It can be concluded that this method has the potential to be

implemented in future atomic force microscopes in order to achieve

high resolution non-contact measurements in fluid environment.

In summary, the work presents the results of elucidation of the

structure of biological membranes and proteins at fluid environment

by atomic force microscopy. Starting at the topographical mapping of

living intact cells the conclusion was drawn, that imaging at molecular

resolution of whole cells under in situ conditions is difficult to achieve.

The mica supported tonoplast was selected as a model system repre-

senting a native membrane which provided improved imaging condi-

tions. The most abundant protein of the vacuolar membrane, the

cytoplasmatic V1-part of the H+-ATPase was indirectly identified by

a correlation algorithm and characterized by the spatial dimensions.

But the resolution was still limited. However if proteins are avail-

able as crystalline array, even dynamic measurements are possible at

molecular resolution providing new insights into the physicochemistry

of protein crystallization. Temperature controlled atomic force mi-

croscopy of a supported bilayer made from a pure phospholipid allowed

to determine important thermodynamic properties of the fluid to gel

phase transition by image processing of structural data. For the first

time, the cooperative unit of lipid phase transition was obtained from
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structural data. The effect of the alcohol heptanol on bilayer struc-

ture and phase transition temperature was monitored which strongly

support the assumption, that the physiological effects of heptanol on

gap junctional cell-cell communication are mediated by modification

of lipid rafts. In order to improve high resolution imaging of soft bi-

ological samples a Lorentz force based excitation method for tapping

mode imaging was implemented. The force sensors were preprocessed

by a laser based microstructuring unit allowing a batch production for

daily routine. Although imaging of single membrane proteins in mem-

branes of living cells still remains a challenge, the results obtained so

far provide the perspective to elucidate the interaction of membrane

proteins and the surrounding lipid bilayer with special consideration

of lipid rafts. Submolecular resolution of the gating mechanisms of

proteins might be achieved, if the protein is assembled as a regular

two or three dimensional array which is the case for e.g. cell-to-cell

channels of gap junctions. For this purpose a temperature control of

the biological sample is of particular importance. At present, effects

of signal molecules like cd95 or acidic sphingomyelinase on native or

reconstituted lipid rafts are studied with molecular detail, from which

the molecular mechanism of lipid raft signaling may be deduced in

the future.
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Abstract

The atomic force microscope can image the threedimensional surface

structure of soft biological membranes and their components in a phys-

iological environment. Living macrophages prior to and after parti-

cle phagocytosis allowed lowresolution images by AFM. An active

change of cell shape by mechanical stimulation is observed. Inden-

tation depths of 1-30 nm were derived as function of cell prepara-

tion. Highresolution images were achieved for TexasRed IgG antibod-

ies specifically bound to a micasupported planar phospholipid bilayer

doped with phospholipids containing headgroups of TexasRed. The

cloned nicotinic acetylcholine receptor (nAChR) expressed in Xeno-

pus oocytes were imaged at molecular resolution. An unambiguous

identification of individual single nAChR proteins is hindered by the

presence of endogenous membrane proteins. For the first time we

introduce a favorable membrane system: the vacuolar membrane of

plant cells, which allows the molecular identification of integral en-

dogenous membrane proteins and a structural analysis of the lipid

matrix.

4.1 Introduction

In 1986 the high-resolution imaging techniques were supplemented by

the atomic force microscope (AFM) [6, 59], which is also called scan-

ning force microscope (SFM). This technique offers the capability not

only to investigate dried or fixed samples in vacuum, but allows us

to examine the topography of samples in aqueous solutions contain-

ing physiological concentrations of salts at room temperature [12, 42].

Under most favorable conditions atomic resolution can be achieved on
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hard samples [41, 43, 49, 65]. On soft biological samples submolec-

ular resolution of some or even less than nm was achieved on 2D

crystalline structures of proteins [48]. Large single molecules such as

DNA fragments or enzymes can be quite easily distinguished [5] and

even be watched at work [54]. The progress in high-resolution atomic

force microscopy in biology was reviewed in [22, 35, 62]. But not only

high-resolution imaging results in new insights into the structure of

biological molecules. Also membrane surfaces and cytoskeletal com-

ponents of whole and living cells could be imaged [10, 21, 24, 25] as

well as biological processes on a cellular level such as the infection

of MDCK cells by pox viruses [20, 50]. Some other biological cells

and organelles should be mentioned: human platelets [56], glial cells

[26, 61], MDCK cells [1, 30], magnetotactic bacteria [16], atrial my-

ocytes [63], embryonic carcinoma cells [19], and cholinergic synaptic

vesicles [40].

The atomic force microscope can be used in different ways. The

most common one is the measurement of the topography of the sam-

ples. The determination of mechanical properties such as the local

elasticity is also possible for appropriate sample systems [7, 55, 57, 66].

Biochemistry profits from the measurements of the binding force be-

tween specific interacting molecules such as biotin and avidin [15, 45]

and within molecules such as titin [58].

Our studies were focused on imaging biological membranes during

cellular activities such as phagocytosis by AFM. In addition, we are

interested in revealing the topography of membrane lipids and pro-

teins at low and high resolution as well as their specific identification

in their native environment. The use of membranes has the advantage

of limiting the sample movement, since the intermolecular interactions

by preferential van der Waals forces and Coulomb force help to keep



32 4 Native and reconstituted biomembranes analysed by AFM

the individual molecules in large ordered aggregates. The fixation

of the sample is necessary for high image resolution, since it should

not be able to move even a few Å. This approach was applied to

reconstituted supported phospholipid bilayers with adsorbed specific

antibodies as well as plasma membranes of Xenopus laevis oocytes

expressing the nicotinic acetylcholine receptor channel complex. For

the identification of endogenous integral membrane proteins at molec-

ular resolution a new promising membrane system is introduced, the

vacuolar membrane of plant cells.

4.2 Results and discussion

4.2.1 AFM images of living murine peritoneal macrophage

Atomic force microscopy in contact mode, that is the socalled re-

pulsiveforce regime between tip and sample, has been used to pro-

file the topography of the cell surface of living murine peritoneal

macrophages. After isolation of macrophages from the peritoneum of

mice, the cells were suspended on glass coverslips. The macrophages

become spontaneously adherent.

Fig. 4.1 shows a time series of AFM images typical for a living

macrophage adherent to a glass coverslip. The series shows the lo-

comotion of the macrophage on the glass surface which accounts to

several µm within an hour. Surprisingly, the figure indicates that the

scanning tip perturbs the membrane surface initiating a specific cellu-

lar process, which results in a dramatic change in cell shape. Within

the recorded time scale the center of the macrophage becomes sig-

nificantly elevated. This is a remarkable phenomenon and resembles

the stimulation of a nonspecific recognition mechanism in phagocytes
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Figure 4.1: Series of AFM images in contact mode of an untreated,
isolated living murine peritoneal macrophage adherent to a glass cov-
erslip in physiological phosphate buffer solution. The recording times
are indicated. The bar denotes 1 µm, the total scan size is 7 µm × 7
µm. The isolation procedure has been described recently [2]. The
flat area on the top of the cell is an artefact due to the maximum
height out of range of the cantilever and of the z-piezo. The images
were recorded using a commercial TMX 2010 (TopoMetrix, Santa
Barbara, CA). The commercial software was used for leveling and
shading the image with simulated light from the left. Imaging param-
eters: scan speed: 23 µm/s, V-shaped cantilever with spring constant
of 0.064 N/m; loading force ≈ 1 nN.
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[70] that is transduced by a putative mechanical sensor in the mem-

brane [72]. Compared to particle phagocytosis [38] the interaction

of the antibodylike tip with the cell surface is transient. It appears

to be obvious that the indenting tip perturbs the architecture of the

cytoskeleton, which initiates the observed cellular response. To elu-

cidate the mechanism of particle phagocytosis we analysed particle

phagocytosis by AFM. As particles we used latex beads with a diam-

eter of about 0.45 µm. It is known that macrophages phagocytose the

antibodylike beads [2], which are related to changes of ion transport

activities in the membrane [37] and the shape of the macrophage [72].

After addition of the beads to the bath phagocytosis occurs within

minutes. Fig. 4.2a shows an image of a rim area of the macrophage

after the beads had been washed off from the bath. Pseudopodia and

incorporated beads can be seen as protrusions, but the actual endo-

cytotic process could not be resolved. This is probably caused by the

limited time and spatial resolution. Time resolution is in the range

of 70-100 s. Lateral resolution is limited by the indentation of the tip

into the soft, deformable cell body which amounts to several nm.

The indentation by the loading force is analysed in fig. 4.2b. The

figure shows a membrane area after the first (image at upper right)

and the fifth scan (image in the center). As can be read from the

corresponding height profiles on the left the relief-like structures of

membrane-covered latex beads become significantly pronounced. The

images indicate that repetitive scanning indented the membrane be-

tween the beads by a factor of about 13. For comparison in the lower

part of fig. 4.2b the image and height profile of pure latex beads are

given.
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Figure 4.2: AFM topography of membrane areas of a living murine
peritoneal macrophage after particle phagocytosis of latex beads with
a diameter of 0.45 µm in physiological phosphate buffer solution.
The macrophage is adherent to a plastic petri dish. For experimental
details see [2]. a, shaded three-dimensional presentation of a rim
area of 35 µm × 35 µm. Pseudopodia and membrane covered latex
beads are visible. b, the right-hand side shows in the top(middle)
image the topography of a central membrane area (5 µm × 5 µm)
after the first(fifth) scan process. For comparison the image at the
bottom shows the topography of the pure latex beads adsorbed to a
plastic petri dish. On the left-hand side height profiles are presented
along the drawn line of 1.5 µm, which are given in the corresponding
topography on the right side. For the imaging parameters see fig. 4.1.
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4.2.2 Force curves on peritoneal macrophages

Besides the topography some of the mechanical properties can be

determined by atomic force microscopy. The elasticity can be quite

easily determined by the use of an appropriate model such as the

Hertz model [27, 66]. To gather the information that is necessary for

the application of these models it is necessary to take so-called force

curves [53]. The tip is moved uniformly downward until it comes so

close to the sample that a repulsive force due to the orbital overlap

between the tip and sample atoms dominates all other forces. The tip

is mounted on a soft cantilever and will not penetrate the material

except for extraordinary soft materials but indent the sample and

will be deflected as the distance between the cantilever and sample

reduces. The deflection can be converted to a force by the spring

constant of the cantilever, which acts as a spring. The force is recorded

during the approach and retraction of the tip. Such force curves can

be seen in fig. 4.3.

Far away from the sample the tip is not deflected. This results in a

straight horizontal line. Due to the attractive van der Waals force the

tip is attracted to the sample if the medium does not reduce this inter-

action significantly. A sudden jump to contact, as shown in the inset,

appears when the force gradient exceeds the spring constant. Then

the tip gets in touch with the sample resulting in a infinite slope. De-

pending on the medium used different types of forces are more or less

pronounced. In the experiments, denoted as A, B, and C in fig. 4.3,

the solution was a physiological buffer containing a salt concentration

of about 100 mM that screens the electrostatic interaction between the

tip and the sample. The characteristic length scale for this screening,

the Debye length, is less than 1 nm. The range of the other important
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Figure 4.3: Force curves obtained at a randomly selected central ele-
vated membrane location of adherent murine peritoneal macrophages
as function of pretreatment and fixation. A, untreated macrophage
in physiological phosphate buffer solution. B, macrophage after par-
ticle phagocytosis of latex beads in physiological phosphate buffer
solution. C, macrophage after particle phagocytosis (see B) and fixa-
tion by addition of 1% glutaraldehyde to the physiological phosphate
buffer solution. D, the macrophage was treated as described for C,
but finally the adherent macrophage was air dried. The inset shows on
a magnified scale (30×) the so-called point of contact (in the absence
of tip deformation, z = 0) [32]. ∆a indicates the attractive pullout
or adhesion force. At aqueous condition (see traces marked as A, B
and C) the point of contact could not be measured (see text). The
uncertainty in z = 0 is quite small, a few nm, compared with the dis-
tance over which the data were taken. The loading force was derived
by the obtained cantilever deflection multiplied by its spring constant
of 0.032 N/m. The drawn curves trace the cantilever loading force as
the distance between sample and cantilever is reduced. The broken
curves trace the cantilever loading force as distance increases. The
time needed for a complete circle was about 1 s.
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contribution, the van der Waals force, typically decays within a dis-

tance of some tens of nm. Neither force is relevant here. The tip will

be in direct contact with the glycocalix of the macrophage surface.

The different slopes in fig. 4.3 result from the different stiffness of the

macrophages that were prepared by various methods as indicated in

the figure legend. The stiffer the material the higher is the absolute

value of the slope approaching a maximum for an infinetely hard ma-

terial that cannot be indented at all. During retraction the tip may

stay in contact with the sample. As the cantilever continues to move

upwards it will be bent downwards until the force exceeds a charac-

teristic value. This force is defined as adhesion force ∆a. It appears

clearly for the dried macrophage in fig. 4.3, D and can be attributed

to the meniscus forces [71]. The amount of the adhesion force depends

on many experimental conditions that may be very difficult to control

such as the cleanliness of the tip, the medium between tip and sample

(especially air or liquid), and others, but was typically about 10 nN

in these experiments. In liquid, capillary forces are no longer present

(see fig. 4.3, trace A,B,C). A hysteresis in the curves reflects the plas-

tic properties of the sample at low velocity of the tip movement [28].

In general it depends on the velocity with which the tip is moved.

For high velocities a hydrodynamic drag appears depending on the

viscosity of the medium [56]. The force curves of fig. 4.3 were taken

at central points of a macrophage where its height was about 1 µm.

The combined system of the cantilever and the macrophage can be

modeled as a combination of two springs. The spring constants for

differently prepared macrophage membrane were estimated for a given

cantilever spring constant of 0.036 N/m to about 2 mN/m for a living

untreated macrophage and 130 mN/m for an air-dried macrophage

with phagocytosed latex beads [3]. These values are similar to those
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found at the apical surface of a cultured MDCK cell monolayer [30].

The indentation depth for an applied force of 1 nN was about 30 nm

in the first and about 6 nm in the latter case.

4.2.3 Reconstituted mica-supported phospholipid bilayers

The results of these studies indicate that the morphology of the mem-

brane surface of living cells cannot be imaged at molecular resolution,

which is mainly caused by the loading force yielding a significant elas-

tic indentation of several nm as well as by the cell migration during

the recording time. To be able to resolve membrane components at

molecular resolution in aqueous solution it is necessary to use flat solid

supported membrane layers. The simplest system for topographical

images is the reconstituted planar lipid bilayer, especially of lipids in

the gel phase in which the lipid molecules are essentially laterally im-

mobile [8, 13, 14, 22, 29, 44, 60, 73, 74, 75]. Two methods are used

to reconstitute planar phospholipid bilayers, the Langmuir-Blodgett

method and the vesicle fusion technique. With respect to molecular

resolution by AFM, this approach has been successfully applied for

Langmuir-Blodgett films of phosphatidylethanolamine [64, 75], phos-

phatidylcholine [31], phosphatidylglycerol [13]. Recently the vesicle

fusion technique [9] was used for the formation of phospholipid bilay-

ers of diC15-PC1 [4].

For the data presented in figs. 4.4 and 4.5 we used the vesicle fu-

sion method. The vesicles contained a mixture of 80% diC15-PC,

20% diC15-PG2 and in addition 2% TexasRed-DHPE3 (see legend

of fig. 4.4 for experimental details). Since diC15-G is a negatively

11,2-pentadecanoyl-sn-glycero-3-phosphatidylcholine
21,2-dipentadecanoyl-sn-glycero-3-phosphatidylglycerol
3N-(TexasRed sulfonyl)-1,2-dihexadecanoyl-sn-glycero-phosphoethanolamine
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Figure 4.4: Effect of Ca2+ on the formation of mica-supported phospho-
lipid bilayers in aqueous solution explored by AFM images in contact
mode. The phospholipid bilayers were formed by the vesicle fusion
method adopted from [9] as described elsewhere [4]. Briefly, the
vesicle preparation contained a mixture of 80% diC15-PC and 20%
diC15-PG (Avanti Polar Lipids Inc., Alabaster, AL) and 2% Texas-
Red DHPE (Molecular Probes, Eugene, OR) suspended in the incu-
bation solution of 500 mM NaCl, 20 mM Tris-HCl at pH 7.4. The
vesicle suspension was placed on freshly cleaved mica and kept for 3h
at 45◦ C, i.e. above the phase transition temperature of 33◦ C. All
images were taken in the incubation solution at room temperature. a
Gathered in the absence of Ca2+ with a NanoScope IIIa, MultiMode
AFM (Digital Instruments, Santa Barbara, CA). Imaging parameters:
scan size: 3 µm × 3 µm, scan speed: 37 µm/s, spring constant of
cantilever: 0.01 N/m, imaging force about 0.2 nN. Adsorbed vesicles
with a diameter up to about 100 nm are clearly visible (a schematic
view of the vesicles is given in c). b, d Spread planar phospholipid
bilayers. 20 mM CaCl2 was added to the incubation solution to initi-
ate fusion of the negatively charged vesicles. b was recorded with a
commercial TMX 2010 (see legend of fig. 4.1). Imaging parameters:
scan size: 2 µm × 2 µm, scan speed: 40 µm/s, cantilever spring
constant: 0.032 N/m, loading force: ≈ 0.8 nN. d: was recorded
with a NanoScope IIIa (see above). Imaging parameters: scan size:
1.25 µm × 1.25 µm, scan speed: 10 µm/s, cantilever spring constant:
0.01 N/m, loading force: ≈ 0.2 nN. Non-ruby V-1 muscovite mica
was a gift from S&J Trading (New York, N.Y.). e, f Height profiles
along the lines in b, d respectively.
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Figure 4.5: AFM image of a mica-supported doped phospholipid bi-
layer in electrolyte solution (see legend of fig. 4.4). a AFM image ob-
tained in contact mode after addition of 50 µg AntiTexasRed rabbit
IgG per ml incubation solution. (antiTexasRed rabbit IgG was pur-
chased from Molecular Probes, Eugene, OR). The image was obtained
about 10 min after addition of the antibody to the incubation solution
(500 mM NaCl, 20 mM Tris-HCl at pH 7.4) using a NanoScope IIIa
(see fig. 4.4). Imaging parameters: scan size: 1.2 µm × 1.2 µm, scan
speed: 8 µm/s, cantilever spring constant: 0.01 N/m, loading force:
≈ 0.2 nN. b Height profile corresponding to the drawn line in a.
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charged phospholipid the effect of Ca2+ on the vesicle fusion process

could be studied. Fig. 4.4a shows that in the absence of Ca2+ vesi-

cles adsorb to the mica surface, but do not fuse during the incubation

period. Vesicles with diameters of up to 100 nm could be identified.

Addition of 20 mM Ca2+ to the incubation solution accelerates the

fusion process and areas of a spread planar phospholipid bilayer be-

come visible (fig. 4.4b,d). The step size between the mica surface

and the bilayer surface allows an estimation of the thickness of the

lipid bilayer. It turns out that the derived height of about 5 nm (see

fig. 4.4e,f), which includes the thickness of the thin hydration layer

between the hydrophilic mica surface and the lower bilayer surface of

about 1 nm [33, 36], underestimates the expected thickness of 5 nm

for this phospholipid bilayer [67]. An electrostatic interaction between

tip and sample should not contribute to this discrepancy [47], since

the used high ionic strength of the incubation solution screens elec-

trostatic forces. It seems to be more likely that even the applied low

loading force of about 0.2 nN induces this deviation. Occasionally,

multilayers were obtained by vesicle fusion in the presence of Ca2+

(see fig. 4.4d). Height profiles of the multilayers allowed a comparison

of the derived step sizes. As the corresponding height profile indi-

cates (fig. 4.4f) the mean step size slightly increases from 4.9 nm for

the step between mica and the first bilayer to a mean of 5.2 nm for the

second step between bilayer one and two. Further investigations are

necessary to elucidate whether this increase in step size is caused by

hydration layers of different thickness between the different surfaces.

We added an antiTexasRed rabbit IgG antibody to the incubation

solution after a spread planar phospholipid bilayer had been formed by

vesicle fusion. Fig. 4.5a shows a typical topographical image in contact

mode about 10 min after the antibody had been added. The addition
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of the antibody causes the appearance of significantly elevated spots

on the bilayer surface that could not be observed in the absence of the

antibody. From the corresponding height profiles (fig. 4.5b) a height of

1.5 ± 2.5 nm was estimated. This height is significantly smaller than

observed for the TexasRed antibody adsorbed to freshly cleaved mica.

In the latter case a height of 3.5 nm to 4.0 nm was derived, which is

close to the expected value [23]. This variation could be caused by a

partial incorporation of the bound antibody into the bilayer interface.

The expected density of bound antibody should be larger by about

one order of magnitude. These findings will be discussed in more

detail by Schauer, Enders, and Kolb (in preparation).

The present results indicate that molecular resolution can be

achieved for proteins specifically adsorbed to planar bilayers. In addi-

tion we analysed integral membrane proteins in native cell membranes

at molecular resolution. A major problem arises from the identifica-

tion of the type of an individual membrane protein within the ensem-

ble of endogenous membrane proteins. To minimize the problem of

identification, the membrane protein under consideration was overex-

pressed in the plasma membrane of Xenopus laevis oocytes.

4.2.4 AFM images of nicotinic acetylcholine receptor complexes

expressed in Xenopus oocytes

The nicotinic acetylcholine receptor (nAChR) channel at the neu-

romuscular junction is the bestcharacterised member of a family of

neurotransmitter-gated ion channels [17]. It is composed of a ring of

five membrane-spanning subunits, which form a pentameric structure

with a central cation conducting pathway [68]. The Xenopus oocyte

expression system offers the possibility to identify the presence of func-
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Figure 4.6: AFM images of defolliculated and air-dried patches of a
Xenopus laevis oocyte membrane at lower and high resolution. The
oocyte was either untreated (control condition) or previously injected
with mRNA for expression of nicotinic acetylcholinereceptor (nAChR)
(see [3]). a Image series of control oocyte with true magnification
in contact mode. Imaging parameters: scan size was decreased by
a factor of two from 2 µm × 2 µm to 250 nm × 250 nm, scan
speed: 10 µm/s, cantilever spring constant: 0.032 N/m, loading
force: ≈ 1 nN. b High-resolution image of a control oocyte mem-
brane recorded in tapping mode as 3D-presentation. Imaging param-
eters: scan size: 30 nm × 30 nm, scan speed: 15 µm/s, resonance
frequency: 280 kHz.
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Figure 4.7: High-resolution images of nicotinic acetylcholinereceptor
(nAChR). a High-resolution images of oocyte membrane in contact
mode. c Image of an oocyte membrane at control condition. b, d
After expression of nAChR. Imaging parameters: scan speed: 10 µm,
cantilever spring constant: 0.032 N/m, loading force: ≈ 1 nN. For
comparison (a) shows the result of the Fourier-enhanced EM investi-
gations of nAChR by Unwin (1993) [68]. B Image given on the upper
right in a in 3D presentation. The typical pentameric pattern is en-
circled. C Height profile corresponding to the straight line drawn in
B. The error signal [51] is presented, respectively, using a TMX 2010
(see legend of fig. 4.1).
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tionally intact acetylcholine sensitive nAChR channels by measuring

the macroscopic conducting properties of the oocyte membrane by

voltage clamp [11] prior to imaging.

Fig. 4.6a shows an image series of the membrane surface of a control

oocyte with true magnification. Prior to imaging the membrane had

been cut off the animal pole of the Xenopus oocyte, spread on a glass

coverslip and air-dried. This preparation was necessary to achieve

molecular resolution, since it turned out that the applied load of about

1 nN caused an indentation of the tip into the membrane of about

100 nm in aqueous solution. The series shows a smooth surface which

becomes structured for scan sizes less then 100 nm × 100 nm (see

fig. 4.6b). It is striking that this high-resolution image of the oocyte

membrane, which was processed in tapping mode [5, 22, 51, 54], re-

sembles closely the corresponding image obtained on mica-supported

reconstituted phospholipid bilayers [4]. The characteristic diameter

of a single protrusion in fig. 4.6b is about 1 nm extruding 0.1 nm.

It is tempting to suggest that this pattern is formed by the head

groups of lipid molecules in the oocyte membrane. Fig. 4.7a shows

representative surface images of the oocyte membrane after expression

of the nAChR channel (see also [3]). At molecular resolution various

membrane structures could be identified on different oocytes. Images

which indicate a pentameric structure as well as those without any

symmetry were observed. The latter was obtained on an untreated

control oocyte. The upper left drawing in fig. 4.7a shows a section

crossing the extracellular part of nAChR in the closed configuration

obtained from Fourier-enhanced EM investigations of nAChR by Un-

win [68, 69]. In fig. 4.7b a 3D-presentation of the image in fig. 4.7a is

shown wherein a typical pentameric pattern was identified.
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From the corresponding height profile of this structure the diameter

of the putative nAChR channel protein (8.2 nm) as well as the size

of the central pore (2.4 nm) can be estimated. Both values closely

resemble the results found by Lal [39], but are systematically larger

then reported by Unwin [68]. The difference might be caused by the

convolution of the tip and the sample. It has to be emphasised that

an unambiguous identification of the presented pentameric structure

as nAChR channel is not possible. This identification is a general

problem for individual membrane molecules that are not ordered in

a lattice (cf. [46]). Labelled markers would support an identification,

but usually modify and trap the identified structure in high-resolution

images. Furthermore, the topography of endogenous membrane pro-

teins is not known.

For AFM studies of endogenous integral membrane proteins in na-

tive cell membranes in aqueous solution we selected a favorable sys-

tem, the vacuole membrane of plant cells.

4.2.5 AFM images of the two vacuolar membrane interfaces

Lateral resolution depends mainly on the contact area between tip and

sample. As shown above in the case of native living macrophages in-

dentation depths of several nm leads to a contact area of several nm2,

even if the tip radius is in the order of 10 nm and the imaging force

well below 1 nN. In addition membrane structures are moved later-

ally by friction forces between tip and sample, prohibiting molecular

resolution. To be able to image membrane proteins with molecular

resolution under in situ conditions the membrane has to be fixed to

a flat and rigid substrate to resist significant indentation of the scan-

ning tip at low imaging forces. Therefore it is necessary to spread
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Figure 4.8: AFM image in contact mode of vacuolar membrane of bar-
ley leaves spread on mica recorded in aqueous solution. Vacuoles of
barley leaves were isolated as described previously [34]. Briefly, the
vacuoles were isolated from barley mesophyll protoplasts by differen-
tial centrifugation and were added as suspension in an electrolyte so-
lution (0.4 mM betaine, 10 mM potassiumgluconate, 20 mM HEPES
at pH 7.2) to the mica surface. Imaging parameters: scan size:
50 µm × 50 µm, scan speed: 150 µm/s, cantilever spring constant:
0.032 N/m, loading force: ≈ 1 nN. The error signal [52] using a
TMX 2010 (see legend of fig. 4.1) is shown. The inset shows the
modeled rupture process of a vacuole.
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the cellular membrane patches on a solid support. But in general

the spreading process does not occur spontaneously, due to the pres-

ence of the cytoskeleton. For this reason vacuolar membranes were

chosen, which are free of cytoskeletal structures. Vacuoles belong to

the most important organelles of the plant cell. They are surrounded

by a membrane, the tonoplast, and contain an acidic vacuolar fluid

and no significant amount of solid substances. The vacuoles can be

isolated without secondary structures. The experiments show that iso-

lated vacuoles adsorb spontaneously to freshly cleaved mica surfaces

by electrostatic and van der Waals interaction. Due to the strong

attractive interaction between the vacuolar membrane and the mica

surface the attached spherical vacuoles rupture and the membrane

adsorbs completely to the mica surface. Two membrane areas corre-

sponding to the two membrane interfaces could be discriminated, a

central adsorption area which exposes the intravacuolar side of the

vacuolar membrane to the scanning tip, and a peripheral area near to

the rim of the adsorbed vacuole membrane exposing the extravacuo-

lar (cytoplasmic) side to the scanning tip (see inset in fig. 4.8). Both

areas can be discriminated by their different heights of about 5 nm

and 14 nm, respectively. This indicates that at the rim two membrane

layers are on top of each other as shown in the inset in fig. 4.8. Since

the thickness of the vacuolar membrane (tonoplast) is in the order of

only 5-10 nm, the sample withstands the local pressure applied by the

tip, and the contact area remains small, allowing similar resolutions

as achieved for reconstituted bilayers.

Fig. 4.8 reveals a typical image of the adsorbed and ruptured vac-

uole. The image was obtained under aqueous condition. The aqueous

solution was identical to that used for the isolation procedure and

attachment of the vacuoles to the mica surface. The specific composi-
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tion was chosen to conserve the functional activity of the vacuolar pro-

teins. The figure shows a variety of protrusions above the membrane

surface different in size, which we attributed to single and clustered

membrane proteins. The major population of elevated structures ex-

posing the cytoplasmic face of the membrane had a height of 12 nm

to 14.5 nm. This dimension would correspond to the cytoplasmic

orientated extramembraneous part of the major population of inte-

gral vacuolar membrane proteins, the VATPase [18]. In addition a

few small vesicular structures are visible. The vesicles may emerge

during the adsorption process, which could produce a local excess of

lipids. The latter could be compensated by vesicle formation which

are subsequently released from the membrane. These preliminary re-

sults present a native membrane system that allows high-resolution

imaging of single-membrane proteins.

Further application will probably extend the use of atomic force

microscopy to other potential biological and biotechnological appli-

cations, including functional and structural characterization and ma-

nipulation, real-time imaging of the kinetics of cellular processes and

conformational changes, as well as quality control of biological devices

such as biosensors and assays on the molecular level.

4.3 Conclusion

The presented AFM studies on wet native membranes reveal the dif-

ficulty in visualising the structure of individual lipids and proteins at

molecular level. In the case of lipid molecules the softness of wet na-

tive membranes as well as the incorporated glycoproteins may hinder

and screen the detection of single lipid head groups. Nevertheless,

reconstituted, supported bilayer membranes and fixed native mem-
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branes allow such resolution. Improvement of the used cantilever and

tip and the technique of spreading wet native membranes will be nec-

essary for true molecular resolution of membrane proteins simultane-

ously with membrane lipids. Yet, the identification and classification

of individual proteins and lipids within their native environment still

remains an unsolved challenge. Further application will probably ex-

tend the use of AFM to other potential biological and biotechnical

applications, including functional and structural characterization and

manipulation, real-time imaging of the kinetics of cellular processes

and conformational changes, as well as quality control of biological

devices such as biosensors and assays on the molecular level.
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Abstract

High-resolution AFM studies have been performed to analyze the

molecularity of growth steps of the (110) face of tetragonal lysozyme

crystals. Besides a major population of step heights of about 5.5 nm

also step heights of about half this size were observed. The latter

steps always appeared pairwise. Both surfaces the (110) face and the

(101) face could be imaged at molecular level. Comparison of the

height pattern of the corresponding surface structure indicates that

the (110) face is relatively smooth of less than 1 nm compared to the

(101) face of about 4.2 nm. AFM linescan images of the (101) face

indicate rather the insertion of lysozyme aggregates in solution to the

crystal surface than lysozyme monomers. This study suggests that

insertion of lysozyme aggregates from the solution yield to growth

steps of the (110) face of monomolecular as well as of bimolecular

unit height.
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6.1 Introduction

The tetragonal form of hen egg-white lysozyme [1, 2] continues to be

the most investigated protein crystal for growth studies. With the

invent of the atomic force microscopy (AFM) it became possible to

directly observe growth kinetics and the structure of protein crystals

under in situ conditions in aqueous environment. Processes as dislo-

cation growth and two dimensional nucleation growth, especially the

motion of growth steps have been studied [3, 4]. The growing of pro-

tein crystals could be followed by AFM up to molecular resolution

[7, 18]. The present work is focussed to the analysis of two conflicting

aspects of growth of tetragonal lysozyme crystals.

Concerning the molecularity of the growth steps of tetragonal

lysozyme crystals it has been reported, that the (110) face proceeds

always in bimolecular growth steps [3, 7]. In contrast Durbin & Fe-

her, 1990 [5] and Nadarajah & Pusey, 1996 [14] proposed a growth in

monomolecular layers. Such monomeric step have been reported for

the (101) face [3]. In both cases the specific growth steps could be

related to the maximum repeating unit in the specific direction [14],

respectively.

In this study we explored the molecularity of the growth steps of

the (110) face at supersaturation condition. In addition we addressed

one important question whether the analyzed crystals grow by incor-

poration of monomeric molecules from bulk solution into the crystal

lattice or whether multimeric units are built before they reach the in-

corporation site. For this purpose linescans across growth steps were

performed at the (101) face.
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6.2 Materials and methods

6.2.1 Sample preparation

Samples were placed on muscovite mica (2 x 2 mm2), which was at-

tached to a microscopic glass plate by an epoxy glue (Sylgard, Sylgard

Corp.). The glass plate was glued to a metallic disc to fix the sample

holder of the AFM scan unit.

Hen egg white lysozyme (Sigma-Aldrich, lot. no. L-6878) was two

times dialyzed against bidestilled water and equilibrated with 50 mM

sodium acetate (NaAc) buffer solution (pH 4.5). The final lysozyme

concentration was determined by photometric adsorption spectrome-

try (Uvikon 932, Bio-Tek Kontron Instruments, Neufahrn, Germany)

assuming an extinction coefficient of e280 = 379351 mol−1cm−1. Prior

to the experiments, the lysozyme stock solution was mixed with water

and the precipitation solution (10% NaCl (w/v), 50 mM NaAc, pH

4.5) to a final concentration between 3% and 4% (w/v) lysozyme and

3% (w/v) NaCl. A drop of this solution was placed on freshly cleaved

mica.

Nucleation and generation of small crystals on the mica surface was

initiated by storing the sample holder at 4◦ C for about 10 minutes.

Further crystal growth occurred for a duration of several hours at

room temperature. As soon as crystals could be identified of suitable

shape and orientation by an optical microscope, the sample holder

was mounted for imaging into the AFM.

6.2.2 Atomic force microscopy

A commercial atomic force microscope (Digital Instruments Multi-

Mode AFM, Nanoscope IIIa controller and 1227 J-z scanner, Santa
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Babara, CA, USA) equipped with a fluid cell was used for the experi-

ments. Soft cantilever tips of force constants 0.02 N/m and resonance

frequency 13 kHz were used (Olympus Optical, Tokyo, Japan). High-

resolution images were acquired in contact mode with an imaging force

below 500 pN, which was determined by force distance measurements.

Parameters of the feedback loop, which sets the cantilever deflection,

were adjusted to moderate values to yield a sufficient high contrast in

deflection signal images.

After transferring the sample to the AFM, the fluid cell was filled

with the crystallizing solution. The system was equilibrated for sev-

eral minutes to about half an hour. Crystallizing conditions were

maintained during all measurements.

Data post processing

The imaged crystal surfaces are tilted by angles of more than 20◦

against the xy-plane of the scanner. In order to detect and measure

small height differences in the image data, the “plane fit” algorithm

(supplemented with the commercial imaging software) was applied

to the topographical data. This algorithm subtracts a fitted two-

dimensional polynomial plane from the raw data, that the surface

appears to be in parallel with the xy-plane. This causes a geometri-

cal discrepancy between the measured and true height differences,

which cannot be neglected at great tilt angles. The factor f(α) which

accounts for the deviation can be derived from simple geometrical

considerations as function of the tilt angle α:

f(α) = 1
cos(α)

The measured height values of growing planes were corrected by

this factor.
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Data are given as mean ± s.e.m. and n denotes the number of

independent measurements.

Linescan mode

In order to enhance the time resolution to be able to track insertion

events of single proteins or protein clusters into the crystal, the lines-

can mode [8] was applied. In this mode, the tip senses one single line

128 to 512 times per image. The resulting images show the deflec-

tion or topographic signal of the linescan in x-direction and its time

evolution in y-direction. At scan rates of about 10 lines/s events of

growth could be observed at a time resolution below 0.1 s. A lateral

drift was analysed by recording a step within the surface of freshly

cleaved mica under wet conditions. The parameters of the linescan

image were set to the values used for the corresponding linescan of

tetragonal lysozyme crystal surface. A constant monotonic drift of

typically less than 0.25 nm/s was obtained.

6.3 Results

6.3.1 Size and kinetics of growth steps of the (110) crystal face

Lysozyme crystallization was initiated as described in Materials and

Methods. Macrocrystals were grown by incubating the sample sup-

port 18 h at room temperature (24◦ C). Crystals with dimensions of

the order of several 100 µm could be identified on the sample support

by a video microscope which is combined with the atomic force mi-

croscope. Thereafter, the cantilever of the AFM was adjusted above

a (110) surface of the tetragonal lysozyme crystal. The application
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Figure 6.1: (a) Image showing the deflection signal of a (110) surface
of a tetragonal lysozyme crystal at crystallization conditions. Step
heights were measured from corresponding topographical data. Aver-
age heights of 5.5 nm were measured for the majority of steps. Pairs
of steps with heights of about half this value were found (green/blue
arrows) occasionally (scan rate: 224 µm/s). The inset represents
deflection data showing macrosteps (green arrow) (scan rate: 224
µm/s). (b) Height profile along the straight line given in (a). A step
of 5.5 nm and of 2.8 nm are marked, respectively.
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7.5 µm7.5 µm7.5 µm

0 s 45 s 90 s

b. c.a.

Figure 6.2: Sequence of images showing the deflection signal of a
(110) surface of a tetragonal lysozyme crystal in crystallization condi-
tions recorded at the given times. Growth steps move from upper left
to lower right. The arrow marks a characteristic step pattern, which
helps to determine the lateral step velocity (scan rate: 224 µm/s).

4 µm 4 µm 4 µm

b. c.a.

0 s 45 s 90 s

Figure 6.3: Sequence of deflection images showing two-dimensional
nucleation on a (110)-surface (see arrows). The nuclei grow laterally
(a and b) and fuse with neighboring growing terraces (c) (scan rate:
224 µm/s).
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0.7 nm
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Figure 6.4: Topography showing a (110) face at high-resolution. (a),
The image shows the topography at scan rate 88 nm/s of 512 scan
lines. The measured height differences are less than 1 nm (color scale
bar). Inset of (a), power spectral density plot shows significant peaks
corresponding to periodicities of 3.74 and 11.5 nm. (b) Corresponding
band pass filtered data (frequency bands around peaks corresponding
to 3.74 and 11.5 nm and higher order were selected) reveals visibly a
more detailed surface structure.
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of a fluid cell allowed to run the experiments at conditions of crystal

growth.

An image of the deflection signal is shown in fig. 6.1 The image

shows a characteristic terrace like surface structure with diagonal

running steps. Heights of single steps were determined from the cor-

responding topographical data (not shown). The major population

of step heights on the (110) surface was found to be 5.5 ± 0.3 nm

(n=12), which is of the order of single unit cells [8]. But different

step heights can be clearly read from corresponding height profiles. A

typical height profile is given in fig. 6.1b along the corresponding line

given in fig. 6.1a Besides a major step height of about 5.5 nm also step

heights of about 2.8 nm could be detected (see also green and blue

arrow in fig. 6.1a) The corresponding step velocities differ not signif-

icantly. It is remarkable, that these small steps occurred pairwise,

only. In some images, bunches of steps (macrosteps) dominated the

total scan area (see arrow in inset of fig. 6.1), what is characteristic

for large lysozyme crystals and crystals growing at high supersatura-

tion [15]. The overall height of those macrosteps were measured to be

multiples of 5.5 nm.

During image acquisition the crystallization conditions were main-

tained. Therefore image sequences could be recorded from the crys-

tal surface which represent the time dependent change of the surface

topology during crystal growth. The sequence of images (fig. 6.2)

shows a characteristic double step moving from the upper left to the

lower right of the image. Every scan took about 22 s. This procedure

allowed to estimate step velocities with an average value of 24.4 ±

0.7 nm/s from 17 independently growing steps.

In order to calculate the rate of crystal growth in normal direction to

the surface, 75 terrace widths were measured. The values range from
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150 nm to over 1100 nm with an average of 473 ± 29 nm. A crude esti-

mate of the normal growth rate (step height / step width x step veloc-

ity) delivers a corresponding normal growth rate of 0.28 ± 0.03 nm/s.

In some image sequences events of two-dimensional nucleation could

be observed. The heights of these newly formed terraces were equal

to the growing terraces of 5.5 nm. Fig. 6.3 shows a newly formed two-

dimensional islands (fig. 6.3a) on the (110) surface, which grows in

lateral direction (fig. 6.3b) and fuses with growing neighboring terraces

(fig. 6.3c). This finding resembles previous observations [3, 11, 12].

High-resolutions scans revealed the molecular packing of the

(110) surface. To achieve molecular resolution, heights below 1 nm

had to be resolved in z-direction. Fig. 6.4a shows the topography of

the raw data with the corresponding spectral power density in the

inset. Significant peaks corresponding to periodicities of 3.74 nm and

11.5 nm could be identified from the plot of spectral power density.

These values agree with the results obtained by Li et al. [9] and repre-

sent the dimensions of the two dimensional unit cell of the (110) sur-

face. The noise of the original topography could be reduced by filtering

the data with a band pass. The results are given in fig. 6.4b which

reveals the surface structure at molecular level.

6.3.2 Linescan of (101) surface at molecular resolution

Images of molecular resolution were acquired for the analysis of grow-

ing (101) surfaces of tetragonal lysozyme crystals. The lysozyme con-

centration was adjusted to 3% (w/v) for these experiments.

Fig. 6.5 shows the topography of the (101) surface with molecu-

lar resolution. The periodic surface topography had an amplitude of

4.2 nm (see below). Therefore a height resolution of about 1 nm was
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7 nm

b.a.
330 nm 120 nm

19 nm

Figure 6.5: Topography of the (101) surface at different magnifica-
tion. (a), topography of a (101) surface of 330 x 330 nm2 (scan rate
133 nm/s). The height differences are larger than 5 nm (color scale
bar). Growing terraces can be identified easily. (b) High resolution
topography of 120 x 120 nm2 showing single defects (see arrow), indi-
cating that true resolution of the molecular lattice could be achieved.
The green line indicates a scan line which was chosen for following
images in linescan mode (see fig. 6.6b).
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Figure 6.6: Linescan images obtained by scanning across a growth step
on the (101) face. a, the image shows a linescan in three-dimensional
presentation. The y-direction gives the time evolution of a discrete
growth event on the (101) face of during scanning along the direction
marked in green in fig. 6.5b. (b) Deflection data of another linescan
image recorded as described in (a). Discrete growth events are marked
by arrows. The periodic pattern of vertical lines corresponds to the
feature of the molecular lattice of fig. 6.5b.
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sufficient to image single unit cells of the periodic structure. Occa-

sionally single defects of unit size could be observed in scans with high

resolution.

Based on these data, images in linescan mode (s. Materials and

Methods) were acquired, which allowed to monitor crystal growth in

one direction on a molecular scale. The selected scan line is tagged as

a green line in fig. 6.5. Fig. 6.6 shows the corresponding topographical

(fig. 6.6a) as well as deflection data (fig. 6.6b) of images in linescan

mode. In fig. 6.6b, periodic vertical lines are visible corresponding

to the topographic features along the linescan as marked in fig. 6.5b.

A significant influence of a lateral drift could be neglected for the

following reasons. It can be read from fig. 6.6b, that the derived

velocity of the step-like growth is at least one order of magnitude larger

than observed for the lateral drift of linescan images (see Material and

Methods) which occurs in a time independent monotonic fashion. It

is conspicuous, that the boundary moves from the right to the left

in a mercurial motion, as can be seen from the time evolution of

the linescan signal (fig. 6.6b). 75 step lengths were measured. The

average step length was 32.7 ± 2.7 nm. Between each step like motion

there were dead times up to 4 s, where no boundary motion could be

detected. The heights of the steps of the (101) face were measured to

be 4.2 ±1.2 nm.

6.4 Discussion

Bimolecular growth steps were observed on the (110) face of tetragonal

lysozyme crystals [3, 7] which has been confirmed by high resolution

studies by AFM [9]. From these studies it was suggested that the

minimum repeating unit in that direction [14] consists of tetramers of
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lysozyme with 43 axes parallel to the (110) crystal face (cf. [9]). For

the width of the growth steps and growth units 5.6 nm and multiples of

this value were reported. Our data confirm, as major height of growth

steps a value of 5.5 nm which closely resembles the reported value.

But in addition we occasionally observed growth steps of 2.8 nm which

always appeared pairwise. Therefore we propose two packing arrange-

ments for the (110) face, besides growth layer of at least bimolecular

height, also those of monomolecular height. In terms of the helical

tetramer growth unit [9] centered around the 43 crystallographic axis,

this result would suggest the occurrence of a tetramer unit as well

as an octamer unit for the (110) face. The formation of 21 helices

had been suggested by Durbin & Feher, 1990 [3] and Nadarajah &

Pusey, 1996 [14] while Li et al. [9] proposed the alternate arrange-

ment by only 43 helices. Our data would indicate that both packing

arrangements can occur in parallel for the (110) face. Due to the pro-

posed orientation of the lysozyme molecules one expects a relatively

smooth (110) face compared to that of the (101) face [10]. To add

evidence for this proposal especially for the surface structure of the

(101) face we analyzed the (110) face and the (101) face at molecular

resolution. Comparison of the corresponding figures 6.4b and 5b. in-

dicates heights for the unit cells of less than 1 nm at the (110) face

and of about 4.2 nm at the (101) face. These findings are in line with

the model of the proposed crystallographic structure [10]. Further-

more, we performed AFM linescan images to reveal the mechanism

of growth on the (101) surface. AFM linescans have already been

used as suitable procedure to obtain growth unit dimensions (cf. [8])

suggesting that the growth mechanism at the (110) surface occurs by

the addition of lysozyme clusters formed in solution. Other investi-

gators have proposed that lysozyme exists only in monomeric form
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in solution [6, 13] and that the growth of lysozyme crystals should

not be different to that of inorganic crystals [16, 17]. AFM linescan

images (see fig. 6.6) across a growth step of the (101) face indicate

discrete growth events of large two-dimensional size with diameters

up to 90 nm and a stable height of about 4.2 nm which corresponds

to the growth step height of the (101) face. The observed large di-

ameter would rather indicate the attachment of lysozyme clusters of

about ten tetramers in solution to the (101) face. If one considers

the limited velocity of the linescan of about 1600 nm/s, it appears

to be unlikely that within about 80 ms single lysozyme molecules in

solution forming about ten tetramers become sequentially attached

and aligned at the (101) face. Therefore we strongly suggest that the

growth of tetragonal lysozyme crystals is dominated by addition of

lysozyme clusters which were formed in solution or aggregated on the

surface before reaching the incorporation site. However, the data do

not strictly argue against the possibility that crystal growth occurs

by direct insertion of monomers from solution. Further investigations

are necessary to analyze the dimensions of inserted lysozyme clusters

by scanning at higher scan rates in line scan mode in order to achieve

time resolutions well below 10 ms.

6.5 Conclusion

In this study the molecularity of the growth step of the (110) face of

the tetragonal lysozyme crystal was investigated by AFM. Besides the

reported bimolecular step height [8] we also observed step heights of

half of this size. The latter finding could be attributed to the appear-

ance of monolayered-slices in addition to double-layered slices. The

monolayered slices appeared pairwise. The surface of the correspond-
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ing terraces should adopt the identical roughness, if the proposed crys-

tallographic structure of the (110) face is correct. Further studies at

the molecular level are necessary to give evidence for this suggestion.

On the basis of the proposed structure [8] the height of the unit cells of

the (110) face and (101) face should appear different in AFM images

at molecular level. Comparison of the corresponding topographical

images support the proposed crystallographic surface structure. Pro-

tein molecules have irregular geometries and lack strong ionic bonds

in the corresponding crystals. Therefore, it is likely that large crys-

tallization units occur randomly in the bulk solution. The growth of

lysozyme crystals requires the transfer and attachment of such units

from the bulk solution to the crystal surface. The derived large size

of a growth unit from the analysis of the corresponding linescan im-

age would support this mechanism of lysozyme crystal growth. But

it cannot be excluded that lysozyme monomers attach to the surface

and diffuse to the growth steps within a time scale far below the time

resolution of a linescan.
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Abstract

Atomic force microscopy (AFM) at high temperature resolution

(∆T . 0.1 K) provided a quantitative structural calorimetry of the

transition from the fluid (Lα)- to the gel (Pβ′)-phase of supported

dimyristoylphosphatidylcholine (DMPC) bilayers. Besides a determi-

nation of the main transition temperature (T0) and the van’t Hoff

transition enthalpy (∆HvH), the structural analysis in the nm-scale

at T close to T0 of the ripple phase allowed an experimental estimation

of the area of cooperative units from small lipid domains. Thereby, the

corresponding transition enthalpy (∆H) of single molecules could be

determined. The lipid organization and the corresponding parameters

T0 and ∆HvH (∆H) were modulated by heptanol or external Ca2+

and compared to physiological findings. The size of the cooperative

unit was not significantly affected by the presence of 1 mM heptanol.

The observed linear relationship of ∆HvH and T0 was discussed in

terms of a change in heat capacity.

7.1 Introduction

It is well accepted that the specific lipid composition and their corre-

sponding phase state In membranes play a crucial role for the activity

of embedded membrane proteins. A prominent example represents

the potassium channel KcsA [54, 57]. The question arises whether

regulatory functions of specific agents on membrane proteins can be

mediated by induced phase transitions of surrounding lipid domains

rather than by binding to specific epitopes [8]. Support of this con-

cept is given by the known dependence of protein kinase C on alcohol

[46] or the finding that long chain alcohols like heptanol or octanol re-
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versibly inhibit gap junctional coupling of neighboring cells [47, 51]. It

could be proposed that the addition of hydrophobic components alter

the phase state of lipid domains of the membrane which in turn could

effect the functional properties of the embedded integral membrane

proteins.

A large number of experimental and theoretical studies of thermally

induced fluid-gel transitions in phospholipid bilayers have been carried

out, using a variety of biophysical methods. A conceive compilation

of thermodynamic properties of lipid phases can be found in Koynova

and Caffrey [22] and the associated database LIPIDAT. As direct

method to reveal the thermodynamic properties of phase transition

scanning calorimetry is used, which allows the determination of phase

transition temperatures and enthalpies [16, 26, 27]. Preferentially the

main transition between gel phase and fluid phase has been elucidated.

The gel phase is often subdivided into the Lβ′ - and the Pβ′ -phase,

whereby the latter precedes the first, when the lipid system is cooled

down from the fluid Lα-phase. The Pβ′ -phase plays an emphasized

role due to the regular surface pattern, which at first was described

by Tardieu, Luzzati and Reman, 1973. This phase of the bilayer is

characterized by a quasi-periodic undulation in one dimension which

is called ripple phase. The phase was structurally investigated by

electron microscopy preferentially using the freeze fracture technique

[5, 33, 34, 55], x-ray diffraction using synchrotron radiation [6, 15, 20,

28, 29, 30, 31, 45, 48, 50, 52] or neutron scattering [35].

The Pβ′ -phase is subdivided into two sub-states which differ in their

wavelength and shape of ripples as well as in the dependence on the

cooling or heating history [6, 14, 19, 31, 33, 45]. The two sub-states

are denoted as Λ- and Λ/2-ripples, because the ripple wavelength of

both states differ by about a factor of two [42]. The structure of Λ/2-
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ripples was studied by x-ray diffraction techniques and scanning tun-

neling microscopy (STM) techniques. Electron density maps, which

were calculated from x-ray diffraction data, indicate for Λ/2-ripples

a sawtooth-like shape [20, 33, 50, 56, 58], while the Λ-ripples show a

symmetric profile [20]. More recently atomic force microscopy (AFM)

was used to reveal information on the morphology of the Pβ′ -phase of

bilayers made of phosphatidylcholines [7, 19, 24, 37]. This approach

allows to monitor structural changes of bilayers in buffered aqueous

solutions close to real-time [2, 9, 13, 19, 21, 53].

In this paper the phase transition from the Lα- to Pβ′ -phase of

dimyristoylphosphatidylcholine (DMPC) is studied at high tempera-

ture resolution (∆T . 0.1 K) by AFM. The analysis of the topogra-

phies is performed at a lateral resolution in the nm-scale which allows

a detailed study of the transition between Λ- and Λ/2-ripples. Be-

sides the main transition temperature (T0), the van’t Hoff transition

enthalpy (∆HvH) is determined. For the first time the size of lipid

molecules organized in cooperative units could be derived from a spe-

cific image analysis. With the knowledge of the cooperative unit the

enthalpy of transition of single molecules could be calculated from

the van’t Hoff enthalpy. The modulatory effect of heptanol and by

Ca2+ in the imaging buffer on the caloric parameters is analyzed and

compared with physiological findings. For the observed dependence

of ∆HvH (∆H) on T0 a non-vanishing change in heat capacity is in-

troduced and discussed.
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7.2 Material and Methods

7.2.1 Sample preparation

Supported bilayers were prepared by a vesicle fusion method as de-

scribed previously [21]. 1,2-dimyristoyl-rac-glycero-3-phosphocholine

was purchased from Sigma, Germany and dissolved in chloroform

(Roth, Karlsruhe, Germany). After removing the solvent by a rotary

evaporator, the lipid was resuspended in buffer (5 mM K-HEPES at

pH 7.2) at a concentration of 10 mg/ml. After dispersing the suspen-

sion by a vortex mixer VF2 (Janke & Kunkel, Staufen, Germany) and

ultrasonification in a bath sonificator (Branson Ultrasonics 1200E3,

Danbury, Connecticut, USA) for 30 min, the suspension was left at

4◦C overnight. For the experiments the suspension was diluted 10-

fold by an adsorption buffer (1 mM EDTA, 5 mM K-TRIS, pH 9).

Freshly cleaved ruby muscovite mica (Mica corp., New York. USA)

was glued to a sample holder and a drop of about 20 µl of the vesi-

cle suspension was placed on the mica surface. The sample holder

was placed in a sealed container together with a reservoir of water

and incubated at 37◦C for about 30 min. The sample was allowed

to cool down to room temperature before removing the excess vesicle

suspension. Without allowing the sample to dry the coated mica sur-

face was flushed 3 to 5 times with the imaging buffer (50 mM KCl,

5 mM MgCl2, 5 mM K-HEPES, pH 7.2) and mounted to the atomic

force microscope (Nanoscope IIIa, Multimode, Veeco Instruments,

Manheim, Germany).



92 7 Structural calorimetry by afm

7.2.2 Temperature controlled atomic force microscope

The atomic force microscope was modified as follows to adjust and

to record on-line the temperature of the sample during image ac-

quisition. The head module of the microscope, which houses the

deflection detecting optics and electronics were equipped with low-

cost peltier modules (Conrad Elektronik, Hischau, Germany). The

peltier modules were controlled by a LabView System (National In-

struments, Austin, Texas, USA). To avoid thermal drifts, the driving

signal of the peltier devices was generated by a closed-loop continuous

software PI-controller whereby the error signal was delivered from a

surface temperature sensor glued to the head module. The hot side

of each peltier device was connected to an aluminum block with a

cylindrical cranial open chamber which was filled with water. In each

cooling chamber a bar from copper was immersed in a way that the

walls were not in contact with the bar. The two bars were fixed with

a tripod and connected to an aluminum block, which was placed in

an ice cooled container. In this way the temperature of the hot side

of the peltier devices was kept at sufficient low temperatures while

substantial mechanical noise was avoided.

The sample temperature was monitored by a digital thermometer

GMH 3230 (Greisinger, Regenstauf, Germany) equipped with a coated

miniature probe (physitemp IT23, Clifton, New Jersey). Because the

viton-seal of the commercial fluid cell was not used, the small tem-

perature probe could be placed directly into the fluid cell in close

proximity of the sample surface and in direct contact to the imaging

buffer.
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7.2.3 Image acquisition and processing

All images were acquired in contact mode using Silicon-Nitride Olym-

pus OMCL-PSA 400 tips with a spring constant of 0.02 N/m (Olym-

pus co., Tokyo, Japan) at a scan rate of about 6 lines/s at minimal

loading force. After adjusting the temperature to a new value the

setup was allowed to equilibrate for about 5 to 10 minutes until the

thermal drift was well below 0.1 K/min. The topographies were post

processed by a home made software and the filmgimp image processing

system (motion picture studios, Hollywood, California). After adding

the calibrated error signal images to the topographies, to produces

more accurate topographies [11], which are in first order independent

on the actual settings of the feedback circuit of the microscope and

the scanning speed, each scan line was flattened by subtracting the

result of a polynomial fit up to 3rd order. In general, only those sam-

ples were considered for this fit, which corresponded to non-elevated

domains in the topographies. To remove high frequency noise, the

topographies were processed by a Gaussian spatial filter (σ = 1.5 or

3 pixel, 21x21 matrix).

Height histograms were calculated using filmgimp. For further de-

scription of image analysis see Results.

To determine the size of the cooperative unit, a correlation differ-

ence image of two consecutive scans was needed (see Results). The

drift vector between the two images in the xy-plane was calculated

by determination of the global maximum of the correlation coefficient

function of the two topographical or deflection maps. The difference

image was produced by subtracting the second topography from the

first one, corrected by the drift vector. The correlation procedure is

necessary to compensate for lateral drifts of the scanner, which can be
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caused by time dependent temperature gradients. The derived image

is called correlation difference image.

3D-rendering of images was performed using the software package

dxopen (IBM). Data are given as mean ± SD.

7.3 Results

7.3.1 Topography of supported DMPC bilayers in the fluid-crystalline-

and gel-phase

The topography of mica supported DMPC bilayers is analyzed in

aqueous solution as function of temperature in contact mode. The

imaging is started at temperatures above the main phase transition of

DMPC. At these temperatures the bilayer exhibits a smooth surface

without defects within the height of a DMPC bilayer of about 4.8 nm.

A representative image is shown in fig. 7.1 a. In the figure, which

was recorded at 302.6 K, the membrane surface exhibits an irregu-

lar corrugated topography with height differences (peak to bottom)

below about 0.2 nm. At this temperature the DMPC bilayer can be

considered to be in the fluid-crystalline- or Lα-phase [22]. The defect-

free surface allows repeated scans of the same area without significant

contamination of the tip. Before a detailed analysis for the step-wise

change of topography during the transition from the fluid-crystalline-

to the gel-phase is presented and analyzed, the topography of DMPC

at low temperature (T = 295.5 K) is shown in fig. 7.1 b and at higher

magnification in fig. 7.1 c. The bilayer surface exhibits the typical rip-

ple structure. This characteristic structure can be attributed to the

gel- or Pβ′ -phase. The height difference (peak to bottom) is about

0.3 nm. The ripples run almost equidistant and form regular domains
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Figure 7.1: Topography of a supported DMPC bilayer in fluid- (Lα) and
gel-phase (Pβ′). a, topography in Lα-phase at 302.6 K well above the
main transition. b and c, DMPC bilayer surface recorded at 295.5 K
at different magnification. In a the surface appears smooth with an
undulating pattern of a height below 0.2 nm. Ripples in image b and
c are ordered and have a peak to bottom value of at least 0.3 nm.
The mean distance between neighboring ripples is about 12 nm. 256
lines per image were scanned with 512 samples per line.
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of 10 to 30 ripples in parallel to each other. From the corresponding

Fourier transform of such domains a periodicity of 12.3±0.3 nm is

obtained. If a change in direction of the ripples is observed, it occurs

predominantly at an angle of 118±9◦ .

7.3.2 Topography at temperatures of main transition

The image records are started at a temperature above the main transi-

tion from the Lα- to the Pβ′ -phase. The temperature is lowered step-

wise and the bilayer surface is imaged respectively. Fig. 7.2 shows four

representative images at temperatures of 297.0 K to 296.1 K, which

are within the temperature range of main transition. At the onset of

main transition at 297.0 K (fig. 7.2 a) the first ripples emerge out of

the smooth bilayer surface, which are characteristic for the gel phase

(compare fig. 7.1 b). At a lower temperature, 296.7 K (fig. 7.2 b), the

ripple density increases visibly, until the surface becomes almost com-

pletely covered by ripples at 296.3 K (fig. 7.2 c). Cooling the sample

further by 0.2 K to 296.1 K causes a sudden and significant change

of density and profile of ripples (fig. 7.2 d). The ripples are closer

to each other and the periodicity of the ripples reflects now those al-

ready shown in fig. 7.1 b. The profiles of the ripples are given in the

insets of fig. 7.2 c and 7.2 d. As can be read from the insets, the

corresponding wavelength is reduced by a factor of two which can be

attributed to a change from the Λ-ripples to the Λ/2-ripples [42]. Also

the height of the ripples appears to be significantly reduced. But for

the reliability of this change it should be considered that the access of

the tip to image the depressions in the nm-scale might be limited by

the finite radius of the scanning tip which is of about the same order

of magnitude.
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Figure 7.2: Topography of a DMPC bilayer at decreasing temperatures
as indicated in a, b, c , d and the corresponding frequency histograms
of height z (lower row). Comparison of c and d shows a transition
from Λ- to Λ/2-ripples which is reflected in the corresponding ripple
profiles (insets of c and d). The blue line in the frequency histograms
indicates the threshold which separates the heights of the Lα- and
Pβ′ -phases. For further explanation see text. Each image consists of
512 x 256 pixel.
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7.3.3 Structural calorimetry of main transition by image analysis

From the acquired images the fraction of the scanned area presenting

the Pβ′ -state of the bilayer (fP
β′

) can be estimated. The frequency

histogram of heights of the image is calculated, and a suitable thresh-

old of the lower height level is selected to separate the smooth bilayer

of the Lα-phase from the ripple structure of the Pβ′ -phase. Fig. 7.3

shows an example of this image analysis. The blue colored area repre-

sents the Lα-phase. The corresponding threshold is drawn as vertical

line in the height histogram (inset). The integral of histogram below

this threshold reflects the area of Lα-phase, while the integral of the

height histogram above the threshold corresponds to the area of bi-

layer in the Pβ′ -phase. The latter value divided by the total integral

yields the fraction fPβ′
. Because a high resolution is applied which al-

lows to identify individual ripples also the intermediate heights along

their profile contribute to the height histogram. Thereby, the height

distributions appear to be widened and in many cases two separate

Gaussian-like distributions cannot be easily discriminated especially

for temperatures below the main transition (compare height distribu-

tions in fig. 7.2). The derived relation fP
β′

as function of temperature

is given in fig. 7.4. The data points, especially in the range of main

transition, present the mean value of up to three analyzed images at

about the same temperature within a resolution of 0.1 K.

For a theoretical description of main transition the two phases are

assumed to be in thermodynamic equilibrium at the applied temper-

ature.

If K is the equilibrium constant of the phase transition between the

two phases:

Lα 
 Pβ′ (7.1)



7.3 Results 99

Lα Pβ′

co
un

ts

z
Figure 7.3: Post-processing of a topography of a supported DMPC bi-

layer. The image shows the bilayer at a temperature slightly below the
main transition. After selecting a suitable height threshold separating
the Lα- and Pβ′-phase, the area which corresponds to the Lα-phase,
is colored blue. The inset shows the corresponding frequency his-
togram of heights z. The blue part corresponds to the values below
the threshold. The values corresponding to the Pβ′ -phase are given
by golden colors.
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Figure 7.4: Fraction of Pβ′ -phase (fPβ′
) as function of temperature T .

The data were recorded consecutively at increasing concentrations of
heptanol and after washout, as indicated. In general, the data were
derived by changing T in cooling direction. For the data denoted as
0 mM hept. (heating) the temperature direction was reversed at the
lowest value of T . Thereafter 5 mM MgCl2 was replaced by 5 mM
CaCl2 in the imaging buffer. The drawn curves represent a fit of
eq. 7.4 to the data. The corresponding values of T0 and ∆HvH are
included in tab. 7.1. For further details see text.
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it can be described by the relation:

K =
fPβ′

1 − fP
β′

(7.2)

According to [27] K can be described as function of T by the integrated

form of the van’t Hoff equation:

lnK =
∆HvH

R

„

1

T0
−

1

T

«

(7.3)

∆HvH represents the van’t Hoff transition enthalpy, R the gas con-

stant and T0 the temperature at K = 1, where half of the bilayer is

in Pβ′ -phase. T0 is defined as the temperature of main transition. It

should be noticed that in Eq. 7.3 the influence of a change of heat

capacity at the transition is neglected (see Discussion). From Eq. 7.2

and 7.3 fPβ′
can be expressed as function of T :

fP
β′

=
1

1 + exp
“

∆HvH

R

“

1
T
− 1

T0

”” (7.4)

Eq. 7.4 was used to describe the experimental data of fig. 7.4, which

yields as result T0 and ∆HvH . The corresponding values are included

in table 7.1.

7.3.4 Phase transition of DMPC bilayer in the presence of heptanol or

Ca2+

The phase transition of a DMPC bilayer was analyzed after addition of

the long chain alcohol heptanol at different concentration to the imag-

ing buffer. For these experiments the heptanol-free imaging buffer was

subsequently replaced by solutions containing 1 mM, 2 mM and 3 mM
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heptanol. Without changing the tip or sample the phase transition

was monitored starting at temperatures above the main transition,

respectively. The corresponding relationship fPβ′
versus temperature

is included in fig. 7.4. From a description of fPβ′
versus T by Eq. 7.4

the values of T0 and ∆HvH could be determined (table 7.1). With

increasing heptanol concentration T0 decreases and ∆HvH increases.

It can be read from fig. 7.4, that the temperature width of phase

transition decreases with increasing heptanol concentration. There-

fore, within the limit of temperature resolution of about 0.1 K a com-

parison of fig. 7.5 a and d as well as of fig. 7.5 b and e shows that

a transition from the Λ- to the Λ/2-ripples can be discriminated at

lower heptanol concentration. The height of Λ-ripples decreased with

increasing heptanol concentration (0 mM heptanol: 0.30 ± 0.05 nm

(N=21), 1 mM heptanol: 0.27 ± 0.05 nm (N=9) and 2 mM heptanol:

0.18 ± 0.02 nm (N=15)). But at 3 mM heptanol the phase transition

is completed within a small temperature interval of about 0.4 K, which

did not allow a discrimination between Λ- and Λ/2-ripples. Fig. 7.5 c

is recorded at 3 mM heptanol and 291.6 K and shows the Lα-phase

and a few ripple-like structures. At 291.3 K the total area is already

covered by Λ/2-ripples (fig. 7.5 f). After washout of 3 mM heptanol

the recorded phase transition (fig. 7.4) closely resembles the behavior

of the heptanol-free DMPC bilayer which can be seen from the derived

values of T0 and ∆HvH (table 7.1). This finding indicates an almost

reversible effect of heptanol on the main transition.

Besides a modification of the bilayer by heptanol, the water-bilayer

interface was affected by replacing 5 mM MgCl2 in the imaging buffer

by 5 mM CaCl2, which yielded a free Ca2+-concentration of 4 mM.

The corresponding data are included in fig. 7.4 and table 7.1. The

analysis of phase transition shows that T0 increases by about 0.8 K
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Figure 7.5: Topographies of a DMPC bilayer at heptanol concentrations
of 1 mM (a and d), 2 mM (b and e) and 3 mM (c and f). The pairs
of images were consecutively scanned. The upper row of images
(a, b and c) shows the bilayer with Λ-ripples. d, e and f shows
the corresponding images which were recorded thereafter at lower
temperatures (∆T . 0.1 K). The pattern of the topography changed
to Λ/2-ripples. At 3 mM heptanol (c and f) the phase transition from
Lα- to Pβ′ -phase is completed within ∆T = 0.3 K.
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and ∆HvH decreases significantly as compared to the control. Because

the temperature width of phase transition increased by the presence

of Ca2+ (fig. 7.4), Λ- and Λ/2-ripples could be discriminated (data

not shown).

7.3.5 Cooperative unit nc

It is known that the derivation of ∆HvH strongly depends on the aver-

age number of interacting lipid molecules which simultaneously transit

from the Lα-phase to the Pβ′ -phase [16]. This number is noted as co-

operative unit nc. By correlation analysis nc could be determined

from pairs of consecutive images. The images (7.6 a, b) were obtained

at a time difference of about 3 min and a temperature decrease of

∆T . 0.2 K. Using a correlation algorithm to take into account a pos-

sible drift of the position of the scanned area in respect to the tip, the

two images could be subtracted from each other. Fig. 7.6 c shows as

result elevated domains of newly emerged ripples and deeper domains

corresponding to ripples which disappeared as well as unchanged lipid

areas of intermediate height. For clearer presentation fig. 7.6 d shows

the newly emerged ripples and domains wherein ripples disappeared

at different color. The two types of domains, those of emerged rip-

ples and of domains wherein ripples disappeared, had a mean area of

239 ± 103 nm2 and 117 ± 19 nm2, respectively. Assuming an average

interfacial area of 0.6 nm2 per lipid molecule of the bilayer [23, 40]

cooperative units of 398 ± 172 and 195 ± 32 molecules were obtained,

respectively. The two values are comparable within the experimen-

tal error. The mean area, number of molecules nc and the standard

deviations of the two domains were calculated using the result of six

difference images derived in the absence and presence of 1 mM hep-
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additives to imaging
buffer

T0 ∆HvH ∆H

K kJ mol−1 kJ mol−1

0 mM heptanol 296.5 -2928 -15.0
1 mM heptanol 295.8 -4487 -23.0
2 mM heptanol 294.1 -6087 -31.2
3 mM heptanol 291.3 -8570 -44.0
0 mM hept., washout 296.7 -2439 -12.5
5 mM CaCl2 297.5 -2004 -10.3

Table 7.1: Main transition temperature (T0) and enthalpy (∆H,
∆HvH). T0 and ∆HvH were derived from a fit of the data given
in fig. 7.4 by eq. 7.4 using a cooperative unit nc = 195 molecules
(see text). ∆H of single molecules was calculated by eq. 7.5.

b

800 nm

a c d

Figure 7.6: Determination of molecules (nc) in a cooperative unit. a
and b are two consecutively scanned images of the bilayer at two
temperatures below T0. a was recorded at |T − T0| = 0.3 K and b
was recorded at decreased temperature of ∆T . 0.2 K. After correc-
tion for a drift of the scanned area (see Materials and Methods) the
difference of image a and b was calculated. The result is shown in
c. The domains in d above suitably chosen height levels (threshold),
the emerged ripples, are colored red and domains which are below
the corresponding threshold are colored blue (domains wherein rip-
ples disappeared). For clearer presentation the colored domains are
superimposed with b and the result is shown in d. The topographies
consist of 256 scan lines at 512 samples per line.
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tanol. The size of the cooperative unit was not significantly affected

by the presence of heptanol. The average number of domains per

difference image was 164 for emerged domains and 119 for domains,

wherein ripples disappeared.

Using the value of nc = 195 molecules (see Discussion), the tran-

sition enthalpy of single lipid molecules ∆H could be calculated ac-

cording to [16]:

∆H =
∆HvH

nc

(7.5)

The corresponding values of ∆H are included in table 7.1.

7.4 Discussion

A temperature-controlled atomic force microscope allows to monitor

the different states of phase transition in lipid bilayers [19, 53]. We

developed a modified atomic force microscope with a temperature con-

trol of high accuracy (∆T . 0.1 K), which was applied at a lateral res-

olution in the nm-range for image analysis of mica supported DMPC

bilayers. Besides the transition temperature (T0), the van’t Hoff tran-

sition enthalpy (HvH) and the as yet theoretically introduced coop-

erative unit could be derived from structural data. In addition, the

analysis is applied to reveal the effect of the incorporation of the long

chain alcohol heptanol on the main transition. Heptanol was used

to elucidate the mechanism of electrical uncoupling of gap junctions

by long chain alcohols (c.f. [47]). The results are compared with the

effect of Ca2+ binding to the bilayer-water interface.
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7.4.1 Structural properties of ripple phase

To prepare defect free smooth DMPC-bilayer surfaces, the image anal-

ysis was started above T0 in the Lα-phase. Cooling to temperatures

below T0 (figs 7.2) exhibited the characteristic topography of ripples

as well as the transition from Λ- to Λ/2-ripples of Pβ′ -phase. Because

unilamellar supported bilayers do not exhibit a ripple like topogra-

phy [12, 24], we suppose that the applied vesicle fusion method yields

defect-free multilamellar bilayers. The observed Λ/2-ripple structure

is characterized by a wavelength of 12.3 nm which is in reasonable

agreement with the results of STM (10.7 nm) [58]), transmission elec-

tron microscopy (11 nm) [58], x-ray diffraction (12 nm) [17, 18] or

14.3 nm [56] and AFM (12.5 nm) [24]. The observed change of direc-

tion of ripple structures by about 118◦ is comparable to the results of

Mou et al. [37].

The observed ripple amplitude of about 0.3 nm is comparable with

a value of 0.2 nm as derived from electron density maps [44], but

application of STM yielded 2.4 nm [58].

7.4.2 Structure of the bilayer at main transition

An important structural feature of the transition from the Lα- to

Pβ′ -phase is the gradual appearance of ripples if the bilayer is cooled

down (fig. 7.2). The ripples are not as ordered as reported in Kaas-

gaard et al. [19], Leidy et al. [24]. However it has to be taken into

account, that the main transition is passed in cooling direction in our

experiments. Cooling the sample to a temperature of 296.2 K leads to

a sudden change of the morphology from Λ- to Λ/2-ripples (see also

fig. 7.1 b). The profiles of the two ripple morphologies (fig. 7.2) ex-

hibit that the width of Λ/2-ripples is about half the width of Λ-ripples
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and that the height of Λ/2-ripples is significantly reduced. This is in

accordance with the results of Kaasgaard et al. [19].

If the sample is heated again, the Λ/2-ripples melt directly into

Lα-phase without converting to Λ-ripples (data not shown) (compare

Cunningham et al. [6], Hatta et al. [14], Kaasgaard et al. [19], Matuoka

et al. [31], Meyer [33], Sengupta et al. [45]). The data indicate that

Λ-ripples are generated during the cooling process, only.

7.4.3 Structural calorimetry and estimation of the cooperative unit nc

For the performed structural calorimetry it can be assumed that the

sample in fluid is close to thermodynamic equilibrium, because the

integral temperature rate was well below 0.1 K/min [27].

The image analysis is based on the derivation of suitable frequency

histograms of heights as introduced by Tokumasu et al. [53]. Toku-

masu et al. analyzed supported unilamellar DMPC-patches by an

atomic force microscope at µm-scale, which was placed in a tempera-

ture controlled chamber. In the present experiments the upper surface

of multilamellar bilayer was analyzed at nm-resolution and the image

analysis was focused to T close to T0.

The obtained value of T0 = 296.5 K (fig. 7.4, tab. 7.1) for DMPC-

bilayers is in suitable agreement with values derived from differential

scanning calorimetry [22]. The van’t Hoff transition enthalpy ∆HvH

of about 2500 kJ/mol could be determined from fig. 7.5 as well. By

use of differential scanning calorimetry values of 35650 ± 2400 kJ/mol

[49], 7456 kJ/mol [27] and 5240 ± 1200 kJ/mol [16] were reported.

But differential scanning calorimetry is applied to vesicle suspensions

while for image analysis supported planar bilayers are used. It is

known that the vesicle diameter also influences the enthalpy of phase
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transition. Such an influence has been proposed from measurements

of the heat capacity [38]. Therefore it is appears to be likely that the

different values of ∆HvH could be related to the different geometry of

the lipid system under investigation. As reliable value of the transition

enthalpy those for single molecules (∆H) was determined which is

based on the knowledge of the cooperative unit nc.

The number of interacting molecules contributing to nc was esti-

mated from structural data at the temperature range of phase transi-

tion. The data were obtained from the differences of pairs of consec-

utive images (fig. 7.6), recorded at about the same temperature (see

below). The representative fig. 7.6 indicates, that the molecules of a

cooperative unit are organized in small lipid domains. For the two

types of domains, those of emerged ripples and of domains wherein

ripples disappeared, cooperative units of 398 ± 172 and 195 ± 32

molecules were obtained, respectively. The larger mean value of nc

for emerged ripples could be caused by the fact that the phase tran-

sition (eq. 7.1) of the bilayer is not analyzed at true equilibrium.

Probably, due to the ongoing cooling process of less than 0.1 K/min

the equilibrium is shifted to the Pβ′ -phase. Such a shift could cause

the observed higher density of domains appearing in the Pβ′ -phase

than disappearing from Lα-phase yielding virtually larger domains for

the Pβ′ -phase. According to this consideration, a value of nc = 195

molecules is assumed for the further. A possible dependence of nc

on temperature and/or the phase state cannot be excluded. nc is of

the same order of magnitude as theoretically derived (100±50; 330;

1720±120 [16, 27, 49]). Using eq. 7.5 a transition enthalpy for single

molecules of ∆H = 15.0 kJ/mol is obtained. This value is lower than

the average value ∆H = 25.1 ± 10.1 kJ/mol as mainly determined
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by differential scanning calorimetry [22], but comparable within the

standard deviation.

7.4.4 Effect of heptanol and Ca2+ on main transition

At increasing concentration heptanol shifts T0 to lower values

(tab. 7.1). This is in accordance with observations, that alcohols

and alcanes [32] of lower chain length, compared to the acyl chain

of lipid, reduces T0 [10, 25]. A heptanol mediated structural change

by interdigitation can be ruled out at these low concentrations [41].

Furthermore, interdigitation should lead to a significant reduction in

membrane thickness for the gel phase [36], which was not observed in

the experiments.

It is proposed that a decrease if T0 is responsible for the known reg-

ulatory influence of heptanol on the gating of gap junctional coupling.

This assumption is supported by the observation that gap junctional

coupling is blocked by heptanol or octanol concentrations as low as

1 mM [47, 51]. At this concentration T0 is reduced by approximately

0.7 K (table 7.1). Furthermore, the washout of heptanol leads to val-

ues of T0 and ∆HvH as observed in the absence of heptanol (table 7.1).

This reversibility is consistent with electro physiological results, which

show that heptanol or octanol induced gap junctional uncoupling is

reversible in the minute range [47, 51]. Therefore it is proposed, that

heptanol fluidizes the lipid bilayer adjacent to the head-to-head asso-

ciated cell-to-cell channels of neighboring cells forming the gap junc-

tional coupling. The observed fluidization of the lipid bilayers could

cause closure of the cell-to-cell channels of gap junctions.

After replacement of Mg2+ by Ca2+ in the imaging buffer an oppo-

site effect is observed on the shift of T0, which is in agreement with
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earlier results [3, 49]. It is has been reported that divalent cations

Ca2+-ions and Mg2+-ions bind to the membrane surface of negatively

charged and neutral lipids like DMPC, changing the surface poten-

tial [1], the head group orientation [43] and the dipole potential [4].

Thereby, Ca2+ modifies the hydration shell of the head group region of

the bilayer more effective according to the Hofmeister series [3]. This

might explain, why Ca2+-ions shift the phase transition temperature

compared to Mg2+-ions.

7.4.5 Dependence of ∆H on T0

The transition enthalpies ∆H and ∆HvH show a significant depen-

dence on the concentration of heptanol and on the presence of Ca2+-

ions. Ca2+ leads to a decrease of ∆H (increase of T0), while heptanol

increases ∆H (decrease of T0, fig. 7.7).

To explain the observed dependence of transition enthalpy on T0 a

possible change of heat capacity ∆Cp at the transition from Lα- to

Pβ′ -phase is considered. According to eq. 1 in Naghibi et al. [39] and

taking into account the number of molecules nc in a cooperative unit

as well as using eq. 7.5, eq. 7.3 can be expressed as

lnK =
nc(∆H0 − T0∆Cp)

R

„

1

T0
−

1

T

«

+
∆Cp

R
ln

T

T0
(7.6)

∆H0 represents the transition enthalpy at 0 K. At T close to T0

the last term can be neglected in a first approximation. Eq. 7.6

and eq. 7.5 indicate that ∆H depends linearly on T0 due to a non-

vanishing value of ∆Cp. If eq. 7.6 is applied to the data of fig. 7.7,

∆Cp = 5.6 ± 0.4 kJ/(mol K) is derived. It is proposed, that a change

of ∆HvH (∆H) by heptanol and Ca2+-ions is a consequence of a non-
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vanishing value of ∆Cp and a shift of T0. A similar relationship of

transition enthalpy and transition temperatures with slopes of the

same order can be derived from tab. 1 in Sturtevant [49] or the inset

of fig. 1 in Mabrey and Sturtevant [27]), but a contribution of ∆Cp

at the main transition was not considered.
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Figure 7.7: Transition enthalpy (∆H) and van’t Hoff transition en-
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Abstract

In the field of scanning probe microscopy, imaging modes with os-

cillating cantilevers are used to image soft samples with high resolu-

tion. The tapping mode is most frequently realized by a vibrating

chip-holder which is coupled to the cantilever-chip to excite the can-

tilever acoustically. A new promising approach is a direct excitation

of a V-shaped cantilever by a Lorentz force acting on a V-shaped

cantilever. The Lorentz force is generated by an alternating current

flowing through the cantilever while being placed in a static mag-

netic field. Here we show an appropriate method to micro-structure

the reflective coating of commercial cantilever-chips for a current flow

through the cantilever, which is based on a laser system. The laser

micro-structuring method allows to process the chips without chang-

ing the mechanical properties of the cantilever itself, leading to ex-

cellent dynamic properties of the vibrating cantilever. Since the can-

tilever is excited directly, no peripheral resonances except the eigen-

resonance of the cantilever were apparent in the frequency spectrum.

For a current of high amplitude at a static magnetic field of low inten-

sity it is observed that the bi-metal properties of the cantilever cause

an additional thermal excitation. The results show that commercial

cantilevers can be micro-structured to implement this new excitation

method for a frequency spectrum with a high quality factor of oscil-

lation.

8.1 Introduction

The atomic force microscope [1] has been used in many fields of ap-

plied and natural science to elucidate the topography and physical
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properties of surfaces and molecules with a resolution up to atomic

level [5]. An important improvement was the development of an oscil-

lating cantilever mode (AC-mode), which allows to image soft sample

surfaces with less shear distortion [12]. At first real non-contact modes

were performed, using piezo excited cantilevers. In this mode the can-

tilever and the tip oscillate at a distance of a few angstrom above the

sample surface. But in fluids non-contact measurements were not ap-

plicable, since this mode requires a high quality factor of oscillation,

which is reduced to values in the order of one by hydrodynamic damp-

ing [15]. The first AC-mode which was successfully applied to image

samples in fluids was the so called tapping mode [7, 13]. For this mode

the vibrating fluid cell excites the cantilever acoustically. The image

contrast is determined by the oscillation amplitude of the cantilever

which is damped by periodically contacting the sample. The tap-

ping mode was successfully applied to image soft biological samples

with high resolution. The broad spectrum of samples ranges from ad-

sorbed DNA-molecules [7] and membrane proteins [17] to the dynamic

analysis of growing protein crystals in their crystallizing solution [18].

However, for this mode the cantilever is not excited directly, but by

oscillations of the surrounding fluid cell, which couples to the adjacent

fluid, the sample and finally to the cantilever-chip. As a consequence

the frequency spectrum of the excited cantilever is superimposed by

peaks mainly caused by resonances of the fluid cell [7, 15]. The fre-

quency spectrum could be improved by invention of the magnetic AC

mode (m.a.c.-mode) [6]. In this mode the cantilever-chip is coated

with a ferromagnetic material and excited by an alternating magnetic

field. This mode could successfully be applied in molecular recogni-

tion force microscopy [16]. However, in the m.a.c.-mode not only the

cantilever is excited, but also the chip. Thus the resonance spectrum
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of the cantilever is still distorted by resonances, which are probably

caused by oscillations of the cantilever chip.

Recently a new excitation method was reported, which is based on

the Lorentz force acting on an alternating current flowing through

a V-shaped cantilever, which is placed into a static magnetic field,

at appropriate orientation and strength [2]. However this approach

requires a costly post processing step of the cantilever sensors, which

limits the general use of the method.

In this paper we present a simple and efficient implementation of

Lorentz force induced excitation of cantilevers. Commercial cantilever

can be used. The post processing step is performed by a laser based

micro-structuring unit. The excitation method can be easily installed

in commercial force microscopes, and requires only commercial can-

tilevers, which are supplied with a thin conducting reflection layer.

The magnetic excitation affects the cantilever only, which responds as

a driven damped harmonic oscillator in air as well as in fluid.

8.2 Material and methods

8.2.1 Basic setup

The excitation by Lorentz force depends on an alternating current

through a V-shaped cantilever (CSC 21, Anfatec, Dresden) interact-

ing with an external static magnetic field. Since most commercially

available cantilevers have a reflective Al- or Au- coating on their back-

side and an insulating substrate, this coating was used as conductor.

To achieve a current flow through the V-shaped cantilever, the reflec-

tive layer is disrupted in a way, so that both ends of the V-shaped

cantilever become electrically insulated (see fig. 8.1). The voltage was
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I ~ 1 mA
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chip substrate

reflective layer

isolating groove

Bey

Figure 8.1: Schematic setup for Lorentz force excitation of the can-
tilever. The reflective layer of the chip was disrupted by a laser based
micro-structuring unit. The two remaining layers on the chip are elec-
trically connected by the reflective layer on the backside of the can-
tilever only. A sinusoidal current (I) is applied to the micro-structured
reflective layer of the chip. Assuming that the magnetic field strength
has a sufficient large component in direction of ~ey, and a sinusoidal
current is flowing through the cantilever, the cantilever is deflected

periodically in vertical direction. ~F denotes the Lorentz force; ~B,
the static magnetic field and I ~ex the effective current through the
cantilever.
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applied by an enameled winding wire of copper (Conrad Elektronik,

Germany), which was directly connected to the two separated parts of

the reflective and conductive layer on the chip surface. The wire was

fixed by an electrically conductive two component epoxy glue (Circuit

Works, Chemtronics Kennesaw, USA).

In order to generate an oscillating torque which drives the can-

tilever, a magnetic field is applied. The important requirement is a

sufficient large component of the magnetic field, which is oriented per-

pendicular to the magnetic moment of the cantilever as well as to its

bending axis. In contrast to other magnetic AC-modes, the required

magnetic field is static. For application of a static magnetic field cylin-

drical NdFeB-permanent magnets (Beloh, Hameln, Germany) were

used, which were magnetized along their cylindric axis.

In order to characterize the system for measurements in air a com-

mercial setup was used. The permanent magnets were properly placed

close to the cantilever. The set up consists of the basic components

of a modified scanning force microscope (Multimode, Nanoscope IIIa,

Veeco Instruments, Santa Barbara, USA). For the analysis of the fre-

quency spectrum of the cantilever the scanning unit was omitted. The

signal generation and acquisition was performed by a LabView system

equipped with a MIO E 16-4 data acquisition card (National Instru-

ments) at a sample rate of 400 kSamples/s. The dynamic properties

of the oscillation were evaluated by tuning the frequency of the sinu-

soidal current above and below the eigenfrequency of the cantilever.

For each frequency, the real time deflection data were acquired. These

data were band pass filtered to remove low frequency noise. After-

wards the signal-power was calculated and saved.

For fluid measurements in fluids, the set up was supplemented by

a fluid cell (Veeco Instruments, Santa Barbara, USA). The LabView-
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system described above, was connected between the microscope and

the controller. The permanent magnets were placed above the fluid

cell, which contained the micro-structured cantilever chip. The fluid

cell was filled with distilled water.

8.2.2 Micro-structuring the cantilever chip

The most critical step during the preparation of the Lorentz force

induced excitation concerned the micro-structuring of the cantilever

chip. We applied a laser-based ablation method [9], to cut a groove

into the reflective layer of the chip, as schematically shown in fig. 8.1.

For micro-structuring a femtosecond pulse laser combined with a 2D

galvo scanning head was used. The femtosecond laser pulses were

generated by a commercial Titan:Sapphire laser (Spitfire, Spectra

Physics, Inc.). The wavelength was 780 nm at a pulse duration of

130 fs. The laser beam was focused by an achromate of 100 mm fo-

cal length. A pulse energy of 10 µJ at a repetition rate of 1 kHz,

and a feed rate of 1 mm/s were used in order to adjust the groove

depth sufficiently to remove the reflective layer. After the chips were

mounted on a cover slip, the laser scanning unit was programmed to

cut the required line with µ-accuracy. The obtained groove width was

about 30 µm. With this method about ten cantilever chips could be

processed in less a minute. After processing, the debris was removed

by washing in distilled water. Since the width of the groove can be

reduced to the wavelength of the laser system, also chips, which carry

V-shaped cantilevers having a small separation between the two con-

nections to the chip, may be processed by this method.
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Figure 8.2: Power spectrum of a Lorentz force excited cantilever in air
(crosses). The bandwidth limited mean signal-power of the deflec-
tion is given in arbitrary units (a.u.) as function of the normalized
angular excitation frequency ω. The measured eigenfrequency of the
cantilever was about ω0

2π
= 14 kHz. The presented curve was mea-

sured using six strong permanent magnets (see 8.2.1) placed in close
proximity of the cantilever. The dashed curve represents the fit of
equation (8.1) for a damped harmonic oscillator. The peak-to-peak
amplitude of the AC-current through the V-shaped cantilever was
0.5 mA.
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Figure 8.3: Power spectrum of a Lorentz force excited cantilever placed
in a water containing fluid cell (crosses). The bandwidth limited mean
signal-power of the deflection is given in arbitrary units as function
of angular excitation frequency ω. The measured eigenfrequency of
the cantilever was about ω0

2π
= 25 kHz. Six permanent magnets are

placed about 5 mm above the cantilever. The excitation AC-current
was adjusted to about 1.5 mA (peak-to-peak). The power spectrum
was fitted by equation (8.1)
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8.3 Results

For the experiments, cantilevers with two different geometric and dy-

namic properties were prepared. For measurements in ambient air,

a soft cantilever with a nominal spring constant of 0.03 N/m and a

resonance frequency at nominal 14 kHz was used. This frequency

matches the limited bandwidth of the signal acquisition hardware.

For the measurements in fluids cantilevers with higher resonance fre-

quency of nominal 105 kHz and force constant of nominal 0.6 N/m

could be used. The micro-structured cantilever chips had an electri-

cal resistance in the range of 50 Ω to 150 Ω. The applied voltage was

adjusted by an appropriate resistor in series, to obtain a peak-to-peak

AC-current of about 0.5 mA through the cantilever. Assuming a two

dimensional conducting loop as model of the magnetic behavior of

the cantilever, a magnetic moment of about 5 × 10−12 Am2 for the

stiff cantilever and about 50 · 10−12 Am2 for the soft cantilever could

be calculated. In order to obtain a Lorentz force of about 0.1 nN a

magnetic field strength of about 2 mT or about 0.5 mT has to be

applied, respectively. These values can be easily achieved by use of

commercial permanent magnets, if they are placed sufficiently close

to the cantilever.

The power spectrum, which is shown in fig. 8.2, was acquired in

ambient air using the setup described in 8.2.1. The amplitude of the

power spectrum A2 was normalized and is given as function of the ratio

of angular frequency (ω) of the AC-current and the eigenfrequency of

the cantilever (ω0). Similar to the results of [6], the power spectrum

consists of only one resonance peak and shows a shape known for the
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driven damped harmonic oscillator. The latter can be described as

follows [14]

A2(ω) = a2 Q2

Q2
“

1 − ω2

ω0
2

”2

+ ω2

ω0
2

(8.1)

where ω0 is the resonant angular frequency, a·Q is the resonant ampli-

tude, ω is excitation angular frequency, Q is quality factor of the os-

cillator and A(ω)2 the power spectrum. The best fit of equation (8.1)

to the spectrum in fig. 8.2 revealed a Q value of about 50.

For the measurements at fluid conditions, a cantilever of smaller

spring constant (0.6 N/m) was mounted to a commercial scanning

force microscope which was equipped with a fluid cell (see 8.2.1). Al-

though the minimum distance of the cantilever to the permanent mag-

nets was about 5 mm the cantilever could be excited to oscillations.

To be sure that oscillation were not caused by thermal excitation, the

magnets were removed and a decline of the signal amplitude was ob-

served. This decline indicates, that the excitation is caused by Lorentz

force. The measured frequency spectrum is shown in fig. 8.3.

Similar to the results of [13], [15] and [3] a remarkable decrease

of the apparent eigenfrequency occurred. In the spectrum shown in

fig. 8.3 an apparent resonance frequency of 24.9 kHz was measured,

which is about 3 to 5 times smaller than the nominal eigenfrequency of

this type of cantilever. This effect cannot be simply explained by the

lower quality factor in fluids compared to the experiments in ambient

air. The decrease of resonance frequency can be interpreted by an

effective increase in mass [3, 4]. This increase can be modeled by an

hydrodynamic drag depending on acceleration [10].

In contrast to the m.a.c.-mode introduced by [6] no further periph-

eral resonance peaks are visible in the spectrum (fig. 8.3). The mea-
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sured power spectrum can be reasonably well described by a damped

harmonic oscillator. A non-significant deviation of the fitted curve to

the measured data can be seen at raising and falling edge of the res-

onance peak. The absence of further resonance frequencies indicates,

that the cantilever is excited directly. The oscillating force, which

acts on the chip, can be neglected in a first approximation. This

arises from the fact, that the force acting on the chip is of the same

order of magnitude compared to the force which excites the cantilever.

But in the conventional m.a.c.-mode, the force acting on the chip can

be expected to be several magnitudes larger than for the cantilever.

This finding could be caused by an increase of the magnetic force

with the amount of magnetic material [6]. For a chip the coated area

is several magnitudes larger than on the backside of the cantilever.

Therefore, it can be expected that the chip and the adjacent fluid is

excited stronger compared to Lorentz-excitation.

The quality factor, which can be derived from fig. 8.3 is about 20.

This value is in the upper range of quality factors generally observed

for cantilevers immersed in fluids. The fact, that the cantilever surface

is not significantly altered by the laser micro-structuring process of the

chip has the advantage, that the corresponding mechanical properties

like mass, force constant and eigenfrequency of the cantilever remain

about unchanged.

However, if the peak to peak current is increased to about 10 mA

while the external magnetic field is reduced by removing some of the

permanent magnets, a second peak appears in the amplitude spectrum

of the vibrating cantilever at an angular frequency two times the ex-

citation angular frequency (ω1, in fig. 8.4 a.). This behavior is only

observed if the cantilever is immersed into water. In contrast to exci-

tation of higher harmonics [2, 4], the cantilever does not only respond
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b.

a.

Figure 8.4: Amplitude spectrum and power spectrum of cantilever os-
cillation which is excited by Lorentz force superimposed by a thermal
induced oscillation at low magnetic field and high electrical current
(about 10 mA) in water. Image a. shows the Fourier transformed
deflection signal (color coded: light colors correspond to a high, dark
colors to a low amplitude) in dependence on the excitation frequency
ω1/2π (y-axis) and the independent variable ω/2π (x-axis). Light
spots correspond to high amplitude oscillations. The cantilever os-
cillates with the frequency of the excitation current and twice of it.
Image b. shows a power spectrum at similar conditions. The signal
power was recorded while the frequency of the excitation current was
shifted around the cantilever resonance frequency as well as around
half of this value (crosses). The dashed curve represents a fit of
equation (A8.12) to the experimental data, which was derived from
a model of cantilever oscillations, which includes thermal excitation
by power dissipation. The latter is caused by the alternating current
through the cantilever.
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to the excitation angular frequency ω1 but also to 2 ω1. This effect

can only arise if the excitation current leads to an additional force on

the cantilever which cannot be explained by Lorentz force. A possible

explanation for this additional force could be a periodic bending of the

cantilever, which is caused by a rapid heating by the electrical power

and subsequent fast dissipation by the adjacent fluid. Similar effects

were reported by [8]. This process occurs at two times the excitation

frequency, because the heating power is proportional to the squared

amplitude of the excitation current. Focusing on the spectrum of the

signal power in dependence on the excitation frequency (fig. 8.4 b.), it

can be expected that an additional apparent resonance peak emerges,

at a frequency 0.5 times the true resonance of the cantilever. As

shown in the appendix, a corresponding power spectrum can be mod-

eled analytically. In order to prove the model, the power spectrum

of the cantilever was recorded in a frequency range including the true

resonance and frequencies around round half of this value (fig. 8.4 b.).

A fit of the function P (ωN ) (equation (A8.12), appendix) could be

performed. Beside some small deviations which may be caused by

the filter properties of the electronics of the photo-diode stage of the

scanning force microscope, the function described by equation (A8.12)

agrees suitable with the experimental data.

In spite of the fact, that these thermal effects could disturb measure-

ments, they can be reduced to a negligible level by using a sufficient

strong magnetic field, which allows low excitation currents. However,

the thermal effect could be used as an additional excitation scheme,

if an appropriate static magnetic field cannot be established.
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8.4 Conclusion

In this paper we present an implementation of a new electromagnetic

excitation method for scanning probe microscopes operating with os-

cillating cantilevers. In contrast to a known implementation, com-

mercial cantilevers were micro-structured by a laser based method.

The measured power spectra can be suitably fitted by the model of

a single driven damped harmonic oscillator without peripheral reso-

nances in air and fluid. This indicates, that the cantilever is directly

excited without significant forces acting on peripheral parts like the

cantilever chip or the chip holder. However if the external magnetic

field is reduced and the excitation current significantly increased, the

cantilever can be excited by thermal oscillations of the bi-metal like

cantilever. This leads to an apparent resonance peak at half the fre-

quency of the excitation current in fluids. Since the cantilevers can

be processed with low expenses by the laser based micro-structuring,

the new excitation method can be easily implemented into scanning

force microscopes. Besides an implementation of this new excitation

mode in scanning probe microscopes a wider field of application is

conceivable. This may include sensor arrangements, which are based

on micro-mechanical oscillating cantilevers and tuning fork techniques

[11].
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Appendix

8.4.1 Thermal and Lorentz force induced excitation

The cantilever oscillation is described as damped harmonic oscillation

according to

(∂2
t +

ω0

Q
∂t + ω2

0)z(t) = f(t) (A8.2)

z(t) is the z-Position of the cantilever, Q is quality factor of the free

oscillation and ω0 is angular velocity at resonance. The driving force

is given by

f(t) = a · cos(ω1t) + b · cos2(ω1t) −
b

2
(A8.3)

The first term reflects the contribution due to the Lorentz force in-

duced by the oscillating current. The middle term reflects the bending

force due to periodic heating and cooling of the bi-metal like can-

tilever. This term is assumed to be proportional to the signal power

of the excitation current (I(t) = I0 · cos(ω1t)). The last term takes

into account that the mean of f(t) should be zero. A possible phase

difference between both contributions is neglected. Introducing the

dimension-free time x = ω0 · t and using the spring constant κ equa-

tions (A8.2) and (A8.3) can be written as

κ(∂2
x +

1

Q
∂x + 1)y(x) = r(x) (A8.4)

where

r(x) = a · cos(ωN · x) + b · cos2(ωN · x) −
b

2
(A8.5)
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and ωN = ω1

ω0
. Assuming that at t = −∞ the z-Position and veloc-

ity of the cantilever is zero, the corresponding Green-function of the

oscillator is:

g̃(k) =
Q

κ

1

Q − k2Q + ik
(A8.6)

and the Fourier transformed r̃(k) of r(x) becomes

r̃(k) =
π

2
(2a · (δ(k + ωN ) + δ(k − ωN ))+

+ b · (δ(k + 2ωN ) + δ(k − 2ωN )))
(A8.7)

The Fourier transformed of y(t) is

ỹ(k) = g̃(k) · r̃(k) (A8.8)

=
πQ

2κ

„

2a(δ(k + ωN ) + δ(k − ωN ))

Q − k2Q + ik
+ (A8.9)

+
b(δ(k + 2ωN ) + δ(k − 2ωN ))

Q − k2Q + ik

«

(A8.10)

The signal power can be written in the frequency domain as

P (ωN ) =
1

2π

Z

dk|ỹ(k)|2 (A8.11)

which is solved as

P (ωN ) =
πQ2

κ2

„

a2

ω4
NQ2 − 2 ω2

NQ2 + Q2 + ω2
N

+

+
b2

4 (16 ω4
NQ2 − 8 ω2

N − 8 ω2
NQ2 + Q2 + 4 ω2

N )

«
(A8.12)

Equation (A8.12) can be used to describe the observed signal-power

as function of excitation frequency.
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