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Abstract 
A candidate gene approach was used to examine the effects of six genes on litter size in pigs. 

The selected candidate genes were cathepsin L (CTSL), epidermal growth factor (EGF), 

epidermal growth factor receptor (EGFR), inter-α trypsin inhibitor heavy chain 4 (ITIH4), 

leukemia inhibitory factor (LIF) and leukemia inhibitory factor receptor (LIFR). The aims of 

this dissertation were to map the genes, to partially or completely sequence them, to identify 

linked genetic markers by exploiting the sequences determined and to employ these markers 

in association studies to test for significant additive and dominant gene effects on the number 

of piglets born alive (NBA). 

Using radiation hybrid (RH) mapping and fluorescence in situ hybridization (FISH) the genes 

were assigned to pig chromosomes as follows: CTSL to SSC10q11-q12, EGF to SSC8q23-

q24, EGFR to SSC9q26, ITIH4 to SSC13q21-q22, LIF to SSC14q21-q22 and LIFR to 

SSC16q13-q14. 

The complete coding sequences were determined for LIF and CTSL, and their genomic 

organization was determined. The porcine LIF gene spans about 6.3 kb and consists of five 

exons including three alternative first exons (1D, 1M, 1T) spliced onto common second and 

third exons. The porcine CTSL gene spans about 5.6 kb and contains eight exons. ITIH4, 

EGF, EGFR and LIFR were sequenced partially. The sequences determined were screened for 

gene markers. In the case of the LIF gene a single nucleotide polymorphism (SNP) was found 

in exon 3. Microsatellite markers were identified for each of the other genes. All of the gene-

linked markers were shown to be highly polymorphic. Subsequently, they were used in an 

association study to detect putative effects on the number of piglets born alive (NBA) 

employing 273 sows of a German synthetic pig line. For the intragenic LIF marker there was 

a negative dominance effect of –0.72 ± 0.37 (p=0.047) observed for the first parity and –0.50 

± 0.29 (p=0.087) for the second to tenth parities. No further statistical significant associations 

between any of the other microsatellite markers and NBA were detected in this study. 



  

Zusammenfassung 

Im Rahmen einer Kandidatengenanalyse wurden sechs Gene mit molekulargenetischen 

Methoden analysiert und auf ihre Assoziation mit der Wurfgröße beim Schwein untersucht. 

Bei den ausgewählten Genen handelte es sich um Cathepsin L (CTSL), Epidermal Growth 

Factor (EGF), Epidermal Growth Factor Receptor (EGFR), Inter-α Trypsin Inhibitor Heavy 

Chain 4 (ITIH4), Leukemia Inhibitory Factor (LIF), Leukemia Inhibitory Factor Receptor 

(LIFR). Die im Hinblick auf diese Gene verfolgten Ziele der vorliegenden Dissertation waren 

ihre chromosomale Lokalisierung, die Ermittlung partieller bzw. vollständiger genomischer 

Sequenzen, welche zur Identifizierung intragenischer oder gekoppelter genetischer Marker 

herangezogen wurden und der abschließende Einsatz dieser neu entwickelten Marker in 

Assoziationsstudien zur Wurfgröße, um eventuelle signifikante additive und dominante 

Geneffekte auf die Anzahl der lebend geborenen Ferkel feststellen zu können. 

Die Gene wurden durch Radiation Hybrid (RH) Mapping und Fluorescence-in-situ-

Hybridization (FISH) auf folgenden Chromosomenabschnitten lokalisiert: CTSL auf 

SSC10q11-q12, EGF auf SSC8q23-q24, EGFR auf SSC9q26, ITIH4 auf SSC13q21-q22, LIF 

auf SSC14q21-q22 und LIFR auf SSC16q13-q14. 

Die kompletten kodierenden Sequenzen und die genomischen Strukturen wurden für LIF und 

CTSL ermittelt. Das porcine LIF-Gen erstreckt sich über 6.3 kb. Es enthält 5 Exons, wobei die 

ersten 3 alternative erste Exons sind (1D, 1M, 1T), welche an die gemeinsamen Exons 2 und 

3 gespleißt werden können. Das porcine CTSL-Gen ist ca. 5,6 kb lang und besitzt 8 Exons. 

ITIH4, EGF, EGFR und LIFR wurden partiell sequenziert. Auf der Suche nach genetischen 

Markern wurde für CTSL, ITIH4, EGF, EGFR und LIFR jeweils ein Mikrosatellit 

identifiziert. Im Fall des LIF-Gens wurde im 3. Exon ein SNP (Single Nucleotide 

Polymorphism) Marker entdeckt. Sämtliche Marker erwiesen sich in ersten Tests als 

hochpolymorph. In einer Assoziationsstudie zur Anzahl lebend geborener Ferkel wurde ein 

negativer Dominanzeffekt des LIF-Markers von -0,72 ± 0,370 (p=0,047) für den ersten Wurf 

und -0,50 ± 0,29 (p=0,087) für den 2. bis 10. Wurf beobachtet. Für die restlichen Marker 

wurden keine statistisch signifikanten Effekte auf die Anzahl lebend geborener Ferkel 

festgestellt. 
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Outline of the thesis 
Improvement of litter size is one of the major aims in pig breeding, and therefore much effort 

is made to improve this trait. The advent of molecular genetics has offered new opportunities 

in this field. Genetic information is used to develop genetic markers allowing selection with 

regard to economically important traits. Employed in combination with phenotypic 

information, traditionally used for animal selection, genetic information represents an 

effective tool for the improvement of litter size. 

This thesis contributes to this research area by focusing on six candidate genes for litter size 

which are involved in early conceptus development and implantation in pigs. These genes are 

LIF (leukemia inhibitory factor; Yelich et al., 1997), LIFR (leukemia inhibitory factor 

receptor; Modric et al., 2000), CTSL (cathepsin L; Geisert et al., 1997), ITIH4 (inter-α-trypsin 

inhibitor heavy chain 4; Geisert et al., 1998), EGF (epidermal growth factor; Kim et al., 2001) 

and EGFR (epidermal growth factor receptor; Wollenhaupt et al., 1999). Their involvement in 

the regulation of litter size was examined in this study. A more detailed presentation of the 

objectives of this thesis, a description of the experimental strategy and a brief survey of the 

contents of the chapters are given below. 

 

Aims of the thesis: 

1) The isolation of genomic DNA clones containing the six selected candidate genes. 

2) The determination of the complete or partial genomic sequences of the chosen 

candidate genes. 

3) The identification of DNA polymorphisms such as microsatellites and single 

nucleotide polymorphisms (SNPs) within the sequences determined. 

4) The utilization of identified polymorphic microsatellites and SNPs as genetic markers 

for association studies to show significant additive and dominant gene effects on the 

number of piglets born alive. 

5) The chromosomal assignment of the six genes by fluorescence in situ hybridization 

(FISH) and radiation hybrid (RH) mapping. 

 

Description of the experiments conducted and their interrelationships 
Genomic clones of five of the six chosen candidate genes (CTSL, LIF, LIFR, EGF, ITIH4) 

were isolated via PCR-based screening of a porcine PAC library (Al-Bayati et al., 1999). For 

ITIH4, LIFR and CTSL the PCR oligonucleotide primer pairs required for this purpose were 

derived from their cDNA sequences available in the EMBL nucleotide database under the 
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accessions S82800 (ITIH4), U91518 (LIFR) and D37917 (CTSL). Comparison with the 

corresponding human genomic sequences was undertaken to guarantee that the primers did 

not span two exons. Had this been the case they would not have been suitable for the 

amplification of specific PCR products on genomic DNA. For LIF and EGF known porcine 

primer pairs (Rettenberger et al., 1996; Mendez et al., 1999) were utilized for the isolation of 

PAC clones. 

A genomic clone containing the EGFR gene was isolated by screening of a porcine BAC 

library (Fahrenkrug et al., 2001) with a 32P-labeled cDNA probe. The cDNA clone required 

for this purpose was obtained from the Resource Center/Primary Database 

(http://www.rzpd.de/). 

Subsequent to cultivation of the clones on LB agar with the appropriate selective antibiotic, 

the PAC and BAC DNA were isolated and cleaved with different restriction enzymes. One 

enzyme at a time was used per digest. The restriction fragments were separated on 0.8 % 

agarose gels and transferred to nylon membranes via Southern-blotting. The appropriate PCR 

products served as hybridization probes for the identification of fragments which contained 

parts of the searched candidate genes. These PCR products were generated using the primers 

which were also used for the PCR-based screening of the PAC library mentioned above. A 

new primer pair for the EGFR BAC clone, isolated by radioactive hybridization, was derived 

from the porcine cDNA sequence (EMBL accession AY117054). 

The identified fragments were cloned into the polylinker of the vector pGEM-4Z. These 

constructs were transformed into E. coli and amplified together with the bacteria. Afterwards 

the recombinant plasmid DNA was isolated and sequenced with a LICOR 4200 automated 

sequencer. A collection of plasmid subclones were sequenced for the determination of the 

complete genomic sequence of a gene. Remaining gaps were closed by a primer walking 

strategy until both strands were completely sequenced. 

Microsatellites were detected either by scanning the candidate genes’ complete genomic 

sequences determined or - if complete sequencing was not the aim for a certain gene or if no 

intragenic microsatellite could be identified - by generating and sequencing a collection of 

plasmid subclones of the respective PAC or BAC clone. These determined partial DNA 

sequences of a clone were scanned for intergenic microsatellites in close linkage with the 

respective gene. 

The identification of SNPs in the exons of candidate genes was achieved by means of a 

mutation analysis. This approach is based on sequence comparison of orthologous exons of 

different animals. The sequence comparison of this work included seven animals of different 



Outline of the thesis   

   3 

pig breeds (Angeln Saddleback, Wild boar, Pietrain, Duroc, German Landrace, German Large 

White, a synthetic line from a German commercial company, and a second synthetic line with 

50% Meishan). 

Detected DNA polymorphisms (microsatellites and SNPs) were examined for their suitability 

as DNA markers by determining their number of alleles, their degree of heterozygosity and 

their PIC (Polymorphism Information Content) in a small sample of sows of a German 

synthetic pig line. Suitable markers were employed in association studies with 272 sows of a 

German synthetic pig line to test for significant additive and dominant gene effects on the 

number of piglets born alive. 

The chromosomal localizations of the candidate genes were physically determined by 

fluorescence in situ hybridization (FISH) employing the isolated genomic clones as 

hybridization probes. These results were confirmed by Radiation Hybrid (RH) mapping using 

intronic PCR primers derived from the candidate gene sequences determined. 

 

 

Survey of the contents 
The intention of Chapter I is to provide an overview of methods and approaches employed in 

the improvement of litter size in pigs. 

Chapters II and III deal with the LIF gene and the CTSL gene, respectively. These chapters 

describe the clone isolation, complete sequencing and mapping (aims 1, 2, 5) for the 

respective genes. Furthermore, the development of an intragenic SNP marker (aim 3) is 

reported in Chapter II. 

Clone isolation for and chromosomal localization of the genes encoding for EGF and ITIH4 

are addressed in Chapters IV and V, respectively. 

Chapter VI is concerned with clone isolation, microsatellite marker development and mapping 

for LIFR and EGFR. 

The development of microsatellite markers for CTSL, EGF and ITIH4 (aim 3) is described in 

Chapter VII. Additionally this chapter deals with the investigation of associations (aim 4) 

between the five developed microsatellite markers and litter size. The analogous association 

study for the SNP marker identified in the LIF gene is reported in Chapter VIII. 

Chapter IX provides a general conclusion refering to the chapters I-VIII. 
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Abstract 

One of the major determinants for litter size in pigs is prenatal mortality. It occurs most 

frequently during the first few weeks of gestation and can be attributed to abnormalities in 

developmental processes during embryogenesis including trophoblastic elongation and 

blastocyst implantation. Improvement of litter size has been attempted by means of 

phenotypic selection. However, another promising approach in pursuit of this aim has been 

the use of genotypic information for selection. Reproductive traits in general are well-suited 

for application of marker-assisted selection (MAS). This method combines the use of 

genotypic information of single genes and breeding values predicted from phenotypic 

information, resulting in an improvement of both, accuracy and intensity of selection. The 

possibility of exerting selection criteria at the molecular level shortens the generation interval 

because the selection decision can take place early in the life of an animal. Moreover, in 

consideration of the sex-limited nature of reproductive traits, genotypic information allows for 

selection in the gender in which the trait cannot be directly observed. Accordingly, there has 

been considerable interest in mapping and identifying genes involved in the regulation of 

reproductive traits. This review has attempted to provide a comprehensive, but not exhaustive, 

account of the efforts being made and approaches being used in this field. One approach has 

been to choose candidate genes a priori because of the physiological importance of the 

proteins they encode and to examine the association between a genetic polymorphism 

identified in the candidate gene locus and reproductive trait phenotype. In another approach 

pre-existing or designed families have been used in linkage analysis to map the location of 

quantitative trait loci (QTL) for the reproductive trait of interest. However, a better 

understanding of porcine reproduction requires that these functional genomics approaches be 

merged and integrated with detailed analysis of the proteome to establish linkages between 

predisposition and physiology. 

 

General background 

For the pig producer, the clear requirement is to produce quality lean pork at minimum cost 

and in a manner that is acceptable to the public (Webb, 1998). Reproductive traits, especially 

litter size and pre-weaning viability, are important components for reducing the costs of 

producing pork (Tess et al., 1983a, b; de Vries, 1989; Rothschild and Bidanel, 1998). 

Therefore, much effort is made to improve these traits. Increasing the number of pigs weaned 

per sow will increase economic returns for pig producers with minimal additional inputs 

(Rothschild, 1996). The focus of this paper will be mainly on approaches to the improvement 
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of litter size, but other traits that affect reproductive efficiency in sows such as pre-weaning 

viability and piglet birth weight will also be addressed briefly because these traits are 

correlated with litter size. These interrelationships have to be considered when aiming at the 

improvement of litter size. 

 

Meishan versus European breeds - Determinants of litter size 

In pig breeding the term litter size is used for the total number of piglets born (TNB) and the 

number of piglets born alive (NBA). TNB is the sum of NBA and the number of stillborn 

piglets (NSB). Litter size is determined by the interaction of numerous physiological 

components. Though the number of ovulated eggs (= ovulation rate, OR) determines the 

maximum number of possible offspring, litter size does not increase with ovulation rate. In 

fact the rate of prenatal survival decreases with increasing ovulation rate (Haley and Lee, 

1993). Besides ovulation and fertilization rates, the rate of prenatal loss strongly influences 

litter size (Ashworth, 1998). Several studies indicate that prenatal losses – which are classified 

as embryonic and fetal losses according to the developmental stage of the conceptuses – occur 

in every stage of pregnancy and thus have an essential impact on litter size (Pope, 1994). 

Losses up to the 30th day of pregnancy are referred to as embryonic losses. They range 

between 20 and 30%. Losses during the fetal development can reach 10-20%. It is clear that 

several external and internal factors are involved in embryonic and fetal losses (Pope, 1994; 

Ashworth, 1998). For an improvement of litter size in pigs by minimizing these losses, many 

conditions have to be optimized such as nutrition, husbandry and management of the sows, 

but in addition to these external factors, there are in particular the genetic factors which have a 

large influence on this trait (Pope, 1994). The Chinese Meishan pig is well known for its high 

prolificacy (Haley and Lee, 1993). In comparison with western pig breeds, the average litter 

size in the Meishan is 3.6 NBA (number of piglets born alive) higher (Bidanel, 1997). 

According to Haley et al. (1995) the superiority of the Meishan sows for the trait litter size is 

solely determined by the maternal genotype. Consequently the genotype of the piglets has no 

influence (Haley and Lee, 1993). Haley et al. (1995) found ovulation rates in Meishan sows 

higher by five egg cells than in Large White sows. However, other studies showed that 

ovulation- and conception rates in Meishan and Yorkshire sows were nearly identical (Bolet 

et al., 1986; Ford, 1997). Therefore, a lower rate of embryonic mortality seems to be the main 

reason for the increased prolificacy of the Meishan pig (Ashworth, 1998). 

The first, critical phase of porcine gestation up to day 30 is characterized by the expression of 

genes which affect alterations in conceptus, uterine and placental development in the way of 
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reciprocal signaling between the blastocyst and the uterus (Geisert and Yelich, 1997). Some 

of the most critical events for early pig embryonic survival occur from day 9 to day 13 of 

gestation, including equidistant spacing of embryos throughout the uterus (Dziuk, 1968, 

1985), rapid trophoblastic elongation (Anderson, 1978), the establishment of conceptus-

uterine attachment (Dantzer, 1985) and the inhibition of immune rejection by the maternal 

system (Geisert and Yelich 1997). Most conceptus mortality in pig breeds occurs between 

days 12 and 18 of pregnancy (Pope, 1994) which is mainly assumed to be due to variation in 

genes affecting the aforementioned critical events. 

From the 31th day of gestation, the onset of the second critical phase, fetal survival rate 

determines litter size. In this period the uterine capacity required by the growing fetuses may 

become limited and not all fetuses may survive (Ford, 1997). At a given litter size, the fetuses 

in sows with larger uterine capacities will have an advantage in terms of placental 

development (mass, vascularity and surface area) compared with fetuses in sows with more 

limiting uterine capacities (van der Lende et al., 2001). Reciprocal embryo transfer studies 

with Meishan and Yorkshire sows indicate that the maternal genotype determines the size of 

growing fetuses (Biensen et al., 1998). The placental size and thus the available space in the 

uterus is also maternally controlled up to day 90 of pregnancy (Ford, 1997; Wilson et al., 

1998). From around the day 91 on, fetal breed-specific mechanisms begin to determine 

placental size (Biensen et al., 1999). Faster growing Yorkshire fetuses need an increasingly 

expanding placental surface area to ensure their nutrition. At the same time of gestation more 

but smaller Meishan fetuses have equal nutritional requirements but because of a higher 

degree of placental vascularization there is no need for an enlargement of the placental 

surface area (Wilson et al., 1998). Therefore, the resulting higher placental efficiency of 

Meishan sows which, is measured as the ratio of fetal weight and placental weight, represents 

a selection advantage for the number of piglets born alive (Wilson et al., 1999). 

 

Litter size and correlated reproductive traits 

The existence of balanced mutual interrelations between the reproductive traits litter size, 

birth weight, and pre-weaning survival (piglet survival until weaning) limit their concomitant 

improvement. These interrelations have to be considered when aiming at the improvement of 

one or more of these traits. 

The genetic correlation of litter size with pre-weaning survival is negative in most pig breeds 

(Rothschild and Bidanel, 1998; Knol, 2001). However, Lee and Haley (1995) showed that 

piglets from Meishan litters survive almost as well as those from Large White litters, despite a 
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four-piglet higher litter size and a 450-g lower average birth weight in the Meishan pigs. This 

demonstrates that there is some room for concomitant improvement of litter size and survival, 

but at the expense of lower birth weight. A lower birth weight results in delayed growth 

performance before and after weaning (Quiniou et al., 2002). Thus, Quiniou et al. (2002) 

argue for the selection of heavier piglets. The importance of high birth weight for survival has 

been determined in several studies (e.g. Fireman and Siewerdt, 1997; Daza et al., 1999) this 

has led to the approach of increasing survival through a genetic increase in birth weight. 

However, contradictory results were found by Siewerdt and Cardellino (1996) and 

Grandinson et al. (2000), who reported a negative genetic correlation between birth weight 

and survival. These results were confirmed by Knol (2001) who evaluated different selection 

strategies for improved piglet survival and concluded that selection for increased individual 

birth weight will not significantly increase piglet survival. Direct selection for piglet survival 

is possible but will affect body composition rather than birth weight. Effects on birth weight 

will probably be negative rather than positive (Knol, 2001). These studies cast doubt on the 

strategy of replacing selection for increased survival by selection for increased birth weight. 

Knol et al. (2002) speculated that it is not the average birth weight, but within-litter variation 

in birth weight that causes the problems with small piglets. Undersized piglets have a higher 

probability of dying as a result of trauma, chilling or starvation than do their larger more 

competetive littermates (van der Lende et al., 2001). The existence of a negative correlation 

between birth weight and survival is corroborated by the findings of Leenhouwers et al. 

(2002). These authors found indications that selection for piglet survival will result in a 

decrease in mean birth weight, mean placental weight and placental variation and in an 

increase in carcass fat percentage and piglet maturity of piglets at birth. This increased 

maturity is thought to improve the piglets’ ability to cope with hazards during birth and within 

the first days of life, thus leading to a higher pre-weaning survival rate. The connection 

between birth weight, maturity and carcass fat percentage found by Leenhouwers et al. (2002) 

is in agreement with Herpin et al. (1993), who concluded that selection for lean tissue growth 

leads to heavier but less mature piglets at birth. Selection for litter size and survival may 

ultimately lead to piglets that closely resemble those from genetically obese lines, such as the 

Meishan (Knol et al., 2002; Leenhouwers et al., 2002). Compared to Western pig breeds the 

Meishan is not only superior in litter size, but also competetive in pre-weaning survival as 

reported by Lee and Haley (1995). This can be explained at least in part by the Meishan’s 

high percentage of body fat. Mersmann et al. (1984) suggest that an increase in body reserves 
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will help to increase survival, through improved thermoregulation and availability of directly 

usable energy. 

The conflicting results concerning selection for birth weight and the aforementioned room for 

concomitant improvement of litter size and survival qualify the two last-named traits as 

selection criteria for the improvement of weaned pigs. In this context, however, it is also 

necessary to keep the average birth weight within a breed specific optimal range (neither to 

light nor to heavy) and to develop approaches to decrease within-litter variation. 

Recent results, approaches and prospects in the improvement of litter size in pigs are 

addressed in the following chapters. 

 

Traditional selection versus molecular genetics – Tools for the improvement of litter size 

Traditionally, livestock improvement programs have utilized animal selection on the basis of 

observable phenotype which represents the collective effect of all genes and the environment. 

In France, litter size was improved by the hyperprolific approach (Legault and Gruand, 1976). 

The success of this approach depends on traditional methods such as strict selection of 

beneficial phenotypes and artificial insemination. Basically, this approach generates great 

superiority for litter size by returning the genes from a small proportion of prolific sows in 

multiplier herds to the nucleus herd (Webb, 1998). By the development of hyperprolific lines 

from the maternal breeds Large White and Landrace francais, the number of piglets born alive 

per litter and the number of piglets weaned per sow and year were increased from 10.3 and 

16.4, respectively, in the year 1970 to 11.3 and 23.8, respectively, in the year 1997 

(Steinheuer et al., 2003a). While litter size was substantially improved and growth rate 

remained unaffected, the drawbacks were that these dam lines had higher backfat and poorer 

feed conversion than contemporary lines. 

The steady progress in information technology over the last couple of decades makes possible 

the separation of genetic and environmental effects and the estimation of breeding values by 

calculation on multiplier animals rather than by relying on phenotypic data. Selection index 

theory is based on the combination of several traits or sources of information, such that the 

accuracy of the index as a predictor of the selection goal is maximized. In using selection 

index and best linear unbiased prediction (BLUP) procedures for genetic evaluation of litter 

size in their lines Lofgren et al. (1994) and Short et al. (1994) have improved litter size. Thus 

litter size can be improved by the use of BLUP applications (e.g., STAGES, Schinckel et al, 

1986; PEST, Groeneveld et al. 1990; PIGBLUP, Long et al., 1990) in a well-designed 

selection program. 
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Yet apart from the successes mentioned there has been no substantial breeding progress in 

litter size reported in recent years using traditional quantitative genetic methods, despite 

growing efforts. Litter size of German Landrace sows for example averaged 10.5 newborn 

piglets in 1935 and peaked between 1960 and 1970 with 10.9 piglets. Since then litter sizes 

declined to 10.3 piglets in 1999 (Steinheuer et al., 2003a). These difficulties in the 

improvement of litter size are ascribable to its low heritability which is estimated on average 

at 0.09 for the number of piglets born alive (Bösch et al., 1999; Hanenberg et al., 2001; 

Lamberson, 1990; Rothschild and Bidanel, 1998). Furthermore, the trait is sex-limited and is 

not measurable until sexual maturity, at one year at the earliest. 

These biological constraints can potentially be ameliorated by the application of molecular 

genetics methods, particularly the inclusion of genetic markers in selection strategies. The 

essence of using genetic markers in breeding programs is that they mark chromosomal regions 

(and sometimes individual genes), and so make it possible to follow the inheritance of these 

regions from parents to offspring. Thus, if we know which chromosomal segments contain 

alleles of value, markers may be used to help identify animals that have inherited these alleles 

and hence the best of genetic variation, whether or not we have phenotypic records or progeny 

information on the animals (Visscher et al., 1998). 

Advances in molecular technologies such as marker assisted selection (MAS, Soller, 1994) 

provide the possibility of selecting for litter size directly after birth based on genetic marker 

information. There are two advantages of such information in comparison to phenotypic 

information. The first is that their early availability contributes to a shortening of the 

generation interval. The second advantage is the possibility of enhancing the accuracy of 

selection and thus the selection response of a trait by direct selection of gene variants in both 

sexes, thus positively affecting its expression. Litter size is well suited for the application of 

genetic marker information in animal selection. Considering the sex-limited nature of the trait, 

the identification of genes which contribute to variation in litter size would lead to tools for 

selection in the gender in which the trait cannot be observed directly. 

Genetic markers suited for MAS can lie within a gene (intragenic marker) or in its 

neighborhood (intergenic marker). When preferable intragenic markers are not available, 

flanking - or linked - markers within a distance of 5 cM from the gene can be utilized 

(Moreau et al., 1998). The disadvantages of flanking markers are the possible loss of a gene 

with a desired effect on a phenotypic trait due to recombination and the existence of different 

linkage phases between the alleles of the marker and the gene with the causative mutation. 

For these reasons the existence of linkage disequilibrium between a marker allele and a trait 
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locus within a family or population is a precondition for the utilization of linked markers. 

Linkage disequilibrium is defined as the condition in which the frequency of a particular 

haplotype for two loci is significantly different from that expected under random mating. The 

expected frequency is the product of observed allelic frequencies at each locus (Dekkers and 

Hospital, 2002). For this approach in the population-wide improvement of traits using genetic 

marker information evidence of linkage disequilibrium can only be detected if the founder 

animal of a family is heterozygous for the linked marker which is a limiting factor. A close 

linkage between genetic marker and trait locus is preferred to avoid recombination as far as 

possible and to favor a population-wide linkage disequilibrium. This makes intragenic 

markers better suited for application in MAS in comparison to trait locus-linked markers. For 

the latter, it is too risky to carry out selection solely on the basis of marker effects, without 

confirming the estimated effects by phenotypic evaluation. This is true in particular if marker 

effects on a trait were initially detected in a different population or genetic background 

(Dekkers and Hospital, 2002). 

The most widely used markers for the genotyping of animals and subsequent linkage studies 

are single nucleotide polymorphisms (SNPs) and microsatellites. SNPs are naturally occurring 

variants in the DNA sequence that differ in a single basepair. The identification of a SNP 

within a gene includes the possibility that it is a causative mutation with a functional 

difference in the respective gene affecting the investigated trait. However, causal mutations 

for traits are hard to find, and difficult to prove, and few examples are available (Andersson, 

2001). SNPs are diallelic and consequently yield three genotypes AA, AB and BB. 

Microsatellites are highly polymorphic but never have an effect on gene function. They are 

always non-functional and can be found in introns or in close proximity of trait loci. 

Microsatellites consist of 2 to 10 basepair repeats which are variable in the number of repeats 

and thus vary in length. The number of length polymorphisms of a microsatellite is equivalent 

to the number of its alleles. Most microsatellites are multiallelic. 

Experimental techniques for the identification of trait-associated intragenic or closely linked 

gene markers can be derived from two approaches which are addressed in more detail in the 

next two chapters. One approach is the investigation of candidate genes; the other method is 

the implementation of linkage studies for the identification of quantitative trait loci (QTL). 

Genotyping of an identified marker is followed by statistical verification of possible 

significant trait variants between bearers of different marker alleles (Milan, 2000). Suitable 

for selection are most notably population-wide verifiable, marker-associated additive gene 

effects. However, due to epistatic and pleiotropic effects a trait-affecting gene (trait locus) can 
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have a minor effect in one population but a major effect in another (Linville et al., 2001). A 

verified additive effect can help to facilitate animal selection and mating decisions to enhance 

the favorable genotype in the population. Previous simulation studies showed that the highest 

breeding progress is achieved by using genotypic and phenotypic information 

contemporaneously. An overly strong emphasis on genotypic information diminishes 

breeding progress in traits not included in those data. On the other hand selection based solely 

on phenotypic information is less efficient for traits that can be recorded early in life by 

genotyping (Dekkers and Hospital, 2002). Breeding strategies using genomic and phenotypic 

data are reviewed in detail by Visscher et al. (1998) and Dekkers and Hospital (2002). Two of 

these strategies are recurrent selection and introgression programs. Recurrent selection is the 

main vehicle for genetic improvement in livestock and aims at the improvement of a breed or 

line as a source of superior germplasm for commercial production through within-breed or 

within-line selection (Dekkers and Hospital, 2002). The aim of an introgression program is to 

introduce particular alleles for trait loci from one breed or line (the donor) into another (the 

recipient), with the aid of genetic markers, by repeated backcrosses to the superior line. At 

some point crosses within the backcross line would be used to fix the introgressed allele, and 

then selection would continue within the line. If the two lines are of similar genetic merit, the 

best alleles from both lines might be selected directly from an F2 intercross with the aid of 

genetic markers. Between these two extremes, there is a continuum of possibilities with 

varying numbers of rounds of backcrossing prior to intercrossing the animals and selecting 

within the intercross (Visscher et al., 1998). 

 

Candidate genes for litter size 

One way of gathering genomic information is the candidate gene approach which was 

proposed as procedure to identify genes with significant phenotypic performance effects and 

possible use in genetic improvement programmes. A gene will be suggested as a potential 

candidate gene for litter size because of the important physiological role it plays in 

reproduction (physiological candidate genes) (Rothschild, 1998). Moreover, candidate genes 

can be chosen by regarding genes in regions associated with possible QTL (positional 

candidate genes), by utilizing information about orthologous genes in syntenic chromosomal 

regions of other species (positional comparative candidate genes) (Haley, 1999), and by 

considering differentially expressed genes in the tissue under investigation (Wilson et al., 

2000; Liang and Pardee, 1992). Clearly, several of these criteria should apply in the choice of 

a candidate gene. Polymorphisms in selected genes (e.g. microsatellites or SNPs) are usually 
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identified on the basis of DNA sequence analysis. The detection of a significant phenotypic 

effect on litter size for an identified candidate gene polymorphism in association studies 

serves as evidence for concluding that the gene is a major one for litter size (or a marker for a 

closely-linked major gene). 

Especially well suited for such studies are reciprocal F2 and R1 generations bred from extreme 

populations for the trait in question, such as Wild Boar x Landrace or Meishan x Landrace 

(Geldermann et al. 1999), for example. Approaches to develop experimental populations for 

the use in candidate gene analyses are described by Linville et al. (2001) and van Rens et al. 

(2002). These populations are also well-suited for QTL studies, a topic addressed in the next 

chapter. The population of pigs used in the experiment of Linville et al. (2001) originated 

from Index (I) and Control (C) lines described by Johnson et al. (1999). These had a common 

base of Landrace/Large White composite population. Pigs were randomly assigned, within 

litter, to either line I or line C at Generation 0 and then selected for increased values of an 

index of ovulation rate and embryonic survival (line I) or randomly (line C). At Generation 8 

of index selection, the lines IOL and COL were formed from line I and line C, respectively. 

Eight generations of two-stage selection in lines IOL and COL were practiced. Stage-one 

selection included all gilts from 50% of litters with the greatest number of fully formed pigs at 

birth. Stage-two selection included the 50% of these gilts with the greatest ovulation rate. At 

generation 0 of two stage selection, line I, and thus line IOL, differed from line C by 4.22 ova 

and 1.94 pigs. After eight generations of two stage selection, lines IOL and C differed in mean 

estimated breeding value by 6.1 ova and 4.7 fully formed pigs, whereas lines COL and C 

differed by 2.24 ova and 2.9 fully formed pigs. 

The aim of a study conducted by van Rens et al. (2002) was to investigate the effect of 

estrogen receptor (ESR) genotype on litter size and placental traits in pigs (results presented 

later). To design a population optimally suited for this purpose van Rens et al. (2002) used 

two half sibling Large White boars (ESR genotype AA) and 8 Meishan (2 BB and 6 AB) sows 

as parents. From the F1 offspring, 6 AB boars and 21 AB gilts were selected to produce the F2 

population. Females of the second to fifth litter of the F1 crossbred sows were used as the 

experimental animals in this research. 

Most candidate gene analyses for reproduction in pigs have focussed on litter size or its 

component traits, especially NBA. Associations between several candidate gene-linked 

polymorphisms and NBA have been reported by several authors for different pig breeds and 

lines (Table 1). 
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Table 1: Survey of candidate gene effects on the trait number of piglets born alive (NBA) 

 

Reference DNA 
marker 

No. of sows 
No. of litters Breed / line Additive (a) and dominance 

(d) effects 
Rothschild et al. 
(1996) 

ESR 
 

 
276 litters 

PIC lines with Meishan 
contribution 

a = 0.8 (p < 0.01) 
d = 0.6 (p < 0.01) 

Short et al. 
(1997a) 

ESR 4262 sows 
9015 litters 

Large White synthetic 
line 

a = 0.31 (p < 0.01) 
d = 0.14 (p < 0.05) 

Chen et al. 
(2000) 

ESR 262 sows 5 populations of chinese 
and western breeds 

a = 0.315 to 1.79 (p < 0.001) 
depending on the breed 

Linville et al. 
(2001) 

ESR 523 sows 3 PIC lines a = 0.474 (n.s.) 
d = 1.58 (n.s.) 

Van Rens et al. 
(2002) 

ESR 275 sows Large White x Meishan 
F2 crossbreed 

AB gilts had 1.22 NBA per litter 
more than AA gilts 
(p < 0.05) 

Vincent et al. 
(1998) 

PRLR 1077 sows 
2714 litters 

5 PIC lines a = -0.33 to 0.47 (p < 0.05) 
d = -0.33 to 0.63 (p < 0.01) 
depending on the line 

Southwood et 
al. (1999) 

PRLR  
2615 litters 

5 PIC lines a = 0.1 to 0.9  

Drögemüller et 
al. (2001) 

PRLR 2159 sows 
8336 litters 

German Landrace, 
Duroc and synthetic 
lines 

 a= 0.71 (p < 0.05) for Duroc 

Linville et al. 
(2001) 

PRLR 524 sows 3 PIC lines a = -0.007 (n.s.) 
d = -0.466 (n.s.) 

Ollivier et al. 
(1997) 

RBP4 129 sows Large White 
hyperprolifique line 

a = 0.08 (n.s.) 

Rothschild et al. 
(2000) 

RBP4 1300 sows 
2555 litters 

Large White, Landrace 
and synthetic lines 

a = 0.15 (n.s.) 
d = -0.01 (n.s.) 

Linville et al. 
(2001) 

RBP4 190 sows 3 PIC lines a = 0.526 (n.s.) 
d = 0.313 (n.s.) 

Steinheuer et al. 
(2003b) 

RBP4 51 boars German Landrace a = -0.472 (p < 0.001) 
d = 0.604 (p < 0.001) 

Short et al. 
(1997b) 

OPN n/a n/a one allele showed an asso-
ciation with NBA (p < 0.05) 

Hamann et al. 
(2000) 

OPN 2144 sows 
8300 litters 

German Landrace, Du-
roc and synthetic lines 

some genotypes showed a signi-
ficant association with NBA 

Li et al. 
(1998) 

FSHB n/a n/a a = 1.06 (first parity) 
a = 1.01 (second parity) 

Linville et al. 
(2001) 

FSHB 520 3 PIC lines a = 0.12 (n.s.) 
d = 0.759 (n.s.) 

Linville et al. 
(2001) 

EGF 189 3 PIC lines could not be estimated with 
contrasts because only two 
genotypes occurred 

Linville et al. 
(2001) 

PTGS2 523 3 PIC lines a = 0.403 (n.s.) 
d = 0.076 (n.s.) 

a = additive effect; d = dominance effect; n/a = not available; n.s. = not significant 

PIC (Pig Improvement Company, Franklin, USA) 

ESR (estrogen receptor), PRLR (prolactin receptor), RBP4 (retinol-binding protein 4), OPN 

(osteopontin), FSHB (follicle-stimulating hormone beta), EGF (epidermal growth factor), 

PTGS2 (prostaglandin-endoperoxide synthase 2) 
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The first successful verification of an association between a candidate gene and litter size was 

described by Rothschild et al. (1996) for a PvuII-restriction fragment length polymorphism 

(RFLP) of the estrogen receptor (ESR) gene on chromosome 1 in both a Meishan by Large 

White and a European breed synthetic population. Conceptus-derived estrogen plays a major 

role in the establishment of gestation by signaling to the uterus and maintenance of pregnancy 

by extending the life-span of corpora lutea. The results of Rothschild et al. (1996) were 

confirmed by Short et al. (1997a) in four synthetic lines of European breeds. Short et al. 

(1997a) ascribed their smaller effects in comparison to the results of Rothschild et al. (1996) 

to their considerably larger sample size which is a main parameter in determining the relative 

efficiency of MAS (Gimelfarb and Lande, 1994; Zhang and Smith, 1993). In contrast to the 

effects of the ESR PvuII-polymorphism reported by Rothschild et al. (1996), Short et al. 

(1997a), Chen et al. (2000), Van Rens et al. (2002), and Gibson et al. (2002) were not able to 

detect any significant association between the ESR polymorphism and litter size in a Meishan 

x Large White F2 population. In agreement with this result Drögemüller et al. (1999), Linville 

et al. (2001) and Isler et al. (2002) found no confirmation of the effect of the ESR 

polymorphism on litter size, previously reported by Rothschild et al. (1996) and Short et al. 

(1997a). 

Another candidate gene for litter size, the prolactin receptor (PRLR) gene on porcine 

chromosome 16, plays a role in the maintenance of gravidity. An interaction of estrogen and 

prolactin is responsible for the redirection of luteolytic prostaglandin F (PGF2α) secretion 

from an endocrine pathway, toward the endometrial stroma and vasculature, to an exocrine 

one, toward the uterine lumen (Gross et al., 1990). Consequently, PGF2α is sequestered in the 

uterine lumen and does not become available, via the utero-ovarian vasculature, to exert its 

luteolytic effect. A diallelic polymorphism in the PRLR gene has been reported to be 

associated with differences in litter size (Vincent et al., 1998). This result is in agreement with 

other reports (Southwood et al., 1999; Drögemüller et al., 2001), whereas Linville et al. 

(2001) found no association. 

The retinol-binding protein 4 (RBP4) gene on chromosome 14 has been suggested as a 

candidate gene for litter size based on its role in providing the conceptus with appropriate 

amounts of retinoic acid in the early critical phase of pregnancy around day 12 and in 

buffering retinoic acid oversupply (Harney et al. 1993; Rothschild et al., 2000). Retinoic acid 

is implicated in the regulation of gene transcription (Yelich et al., 1997a). At the time of 

implantation and trophoblastic elongation RBP4 is sequestered in the uterine lumen (Harney 

et al., 1993). Examinations of the RBP4 gene as candidate gene affecting litter size showed 
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non significant effects of a diallelic RFLP marker within an intron of the gene (Ollivier et al,. 

1997; Rothschild et al., 2000; Linville et al. 2001). Steinheuer et al. (2003b), however, 

observed a significant effect on NBA in German Landrace. No association of the RBP4 

polymorphism with litter size was found by Drögemüller et al. (2001). 

The osteopontin (OPN) gene has been implicated in transport and buffering of Ca2+ from the 

maternal circulation to the conceptus; this is supported by evidence of expression of the gene 

in cells of mouse placenta and decidua (Waterhouse et al., 1992). The existence of binding 

sites for estrogen and glucocorticoids within the promoter of the OPN gene in mice (Craig 

and Denhardt, 1991) argues for a regulation of its transcription by steroid hormones known to 

be involved in reproduction. For the aforementioned reasons and due to the fact that there is a 

corresponding location with a QTL for litter size on chromosome 8 (Short et al., 1997b), OPN 

was considered a candidate gene for litter size. A highly polymorphic microsatellite marker 

linked with OPN was examined for its association with litter size. Significant effects of some 

of its 13 alleles were detected in studies of Short et al. (1997b) and Hamann et al. (2000). 

Follicle-stimulating hormone beta (FSHB) was chosen as a candidate gene because it 

functions in the maturation of small and medium follicles into large follicles that ovulate 

(Wang and Greenwald, 1993; Mannaertz et al., 1994). In a candidate gene analysis, Li et al. 

(1998) found additive effects on litter size associated with a marker within FSHB. However, 

these effects were not confirmed by a study of Linville et al. (2001). 

In a candidate gene analysis for loci affecting litter size, Linville et al. (2001) also examined 

in addition to the mutations of the genes mentioned (ESR, PRLR, FSHB and RBP4), 

polymorphisms of the genes epidermal growth factor (EGF) and prostaglandin-

endoperoxidase synthase 2 (PTGS2), and found that no estimates of allele substitution effect 

were significant for any of these genes. 

The variability of results between studies and populations employing the same polymorphism 

show the difficulties in confirming previously published candidate gene effects in different 

populations. However, even a lack of association between a gene-associated polymorphism 

and a phenotype does not necessarily mean that the gene product is not important in 

regulating the trait. Rather it shows the necessity of investigating different pig breeds and 

larger sample sizes to evaluate the usefulness of markers for MAS-based improvement of 

litter size. The inconsistent results could be due to different sample sizes employed in the 

studies (Table 1) and / or to different breed- or population-specific allele distributions. 

Another reason for the conflicting results might be the occurrence of different population-

specific linkage phases between candidate gene marker and causative mutation caused by 
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recombination. Moreover, as a result of epistatic and pleiotropic effects, a trait locus might 

have a minor effect in one population but a major effect in another. 

In the near future further analyses of new candidate genes are to be expected. Jiang et al. 

(2002) reported the development of new SNP markers for genes that were found to be 

involved in reproduction such as amphiregulin (AREG), fibrinogen gamma chain (FGG) and 

estrogen sulfotransferase (STE). These markers can now be used in association studies to 

estimate their effects on reproductive traits. 

The possibilities for the identification of new candidate genes are continuously being 

improved in several ways. First, knowledge about the physiological role of genes in 

reproduction is growing steadily. Second, QTL studies give indications of the chromosomal 

localization of putative new candidate genes, a point which is addressed in the following 

chapter. The third improvement is due to investigations concerning differential gene 

expression in tissues relevant for reproduction ( e.g. Vallée et al., 2002). All these efforts 

contribute to the establishment of a catalogue of genes involved in regulating litter size. In 

combining all the information available, these methods provide accumulating evidence that 

will facilitate the choice of new candidate genes. 

 

Quantitative trait loci for litter size and its component traits 

As with with other complex traits in animals, litter size is a quantitative or polygenic trait in 

which the influences of many genes combine to contribute to the phenotype. Unlike 

qualitative (i.e., Mendelian) traits which are generally mediated by a single gene, quantitative 

traits vary continuously across a population and derive from a constellation of both genetic 

and environmental influences. According to Geldermann et al. (1985) a quantitative trait locus 

(QTL) is a single gene locus, or a marked DNA region that contains the gene, with a 

measurable effect on the genetic variance of a trait. Such a QTL or so-called major gene 

should determine the phenotypic variance of a trait in a predominant manner and should 

therefore cause more than 10% of the phenotypic variance of the targeted trait. The mapping 

of QTL for reproductive traits is achieved by analysis of pre-existing or designed families 

with recorded performances in linkage studies with anonymous markers (e.g. microsatellites 

or SNPs) covering the whole genome, usually one marker every 20 cM. For detection of a 

QTL, a marker has to be identified in close proximity to the unknown trait-affecting gene. The 

closer the linkage, the higher the likelihood that they are inherited together. If such a marker 

is also highly polymorphic then the transmission of QTL alleles can be derived from the 

inheritance of the marker alleles on the progeny. When linkage between marker and QTL is 
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close then the likelihood is high that a certain marker allele cosegregates with a certain QTL 

allele in all offspring. This is a precondition for the estimation of a QTL effect on the targeted 

phenotypic trait by means of marker alleles or marker genotypes. For this reason the estimated 

effect depends on the likelihood of how often a certain QTL allele is inherited with a certain 

marker allele. This is determined by the rate of recombination and by the linkage phase 

between QTL and marker. Furthermore, the estimated QTL effect is dependent on additive 

and dominant effects of the unknown trait-affecting gene and the possible existence of 

epistasis. Statements about linkage between marker locus and QTL become increasingly less 

reliable if recombination frequencies exceed 10 to 20% (Knippers, 1997). A recombination 

occurring between marker locus and QTL changes the linkage phase between marker alleles 

and alleles of the trait-influencing QTL. This means that verification of a marker allele alone 

is not sufficient to make a statement about a QTL allele. Accordingly, the linkage phase 

between marker locus and QTL has to be determined in every population and family 

investigated. 

To maximize the probability of detecting QTL, breeds are used whose performance differs 

markedly, under the assumption that some key genes affecting the trait have different alleles 

in the two breeds. Approaches to develop experimental populations well-suited for QTL 

studies and candidate gene analyses (Linville et al., 2001; van Rens et al., 2002) are addressed 

in the previous chapter. Specifics of the statistical analyses vary in different published studies, 

but authors have commonly reported results relative to a genome-wise error rate which 

accounts for multiple hypothesis testing implicit in a genome-wide QTL search (Kirkpatrick, 

2002). Lander and Kruglyak (1995) proposed the terms suggestive linkage and significant 

linkage to characterize results expected by chance alone once per genome-wide search or 0.05 

times per genome-wide search, respectively. These terms are used here in an approximate 

sense to refer to results from several genome-wide QTL searches that have been reported. An 

equation used to convert point-wise (nominal) probabilities for QTL to genome-wide level of 

significance was presented by Lander and Kruglyak (1995): 

genome-wide significance = (C + 2 · G · ρ · f · dfn) · (1 – prob(f, dfn, dfd) 

where C = 19 (representing the 18 autosomes and the X chromosome), G = 25 (the length of 

the swine genome in morgans), ρ is the autocorrelation function (ρ = 1 for a backcross and 1.5 

for an F2 population), and f is the F- ratio, with dfn numerator degrees of freedom and dfd 

denominator degrees of freedom. This is the expected number of false positives per genome 

scan. 
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A survey on localized QTL for litter size or its component traits in pigs is given in Table 2 

and leads to interesting comparisons between results of these studies among each other but 

also with the candidate gene studies described in the previous chapter. 

 

Table 2: Chromosomal localizations of QTL for litter size and its component traits. 
 

QTL 

chromosome suggestive 

linkage 

significant 

linkage 

Position (cM) reference 

3 OR  36 Rohrer et al., 1999 

4 NSB  1 Wilkie et al., 1999 

7 TNB1  10 de Koning et al., 2001 

 OR 5 Rohrer et al., 1999 

ORa  110 Rathje et al., 1997 

OR  101 Wilkie et al., 1999 

 OR 99 Braunschweig et al., 2001 

8 

UC  71 Rohrer et al., 1999 

9 ORa  67 Rohrer et al., 1999 

10 OR  89 Rohrer et al., 1999 

12 TNB2  71 de Koning et al., 2001 

13 NSB  101 Cassady et al., 2001 

14 TNB2  62 de Koning et al., 2001 

15 ORa  79 Rohrer et al., 1999 

17 TNB2  43 de Koning et al., 2001 

 
OR: ovulation rate (measured as the number of corpora lutea present on each ovary after 

slaughter or measured by laporatomy), UC: uterine capacity, NSB: number of stillborn 

piglets, TNB: total number of born piglets 
1first parity 2second parity 
a suggestive linkage exceeded, statistical evidence would be expected to occur between 1 and 

1.76 times at random in a genome scan (further explanation in the text) 
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Some correspondence between QTL mapping results is expected since several studies have 

employed Meishan x Large White crosses, or crosses of selected and unselected Large White-

derived lines. In fact several studies found evidence for ovulation rate QTL on chromosome 8. 

However these QTL were mapped at opposite ends of the chromosome by Rohrer et al. 

(1999) and Rathje et al. (1997). In subsequent studies the location determined by Rathje et al. 

(1997) was confirmed by studies of Wilkie et al. (1999) and Braunschweig et al. (2001) but a 

report of Cassady et al. (2001) casts doubt on the report by Rathje et al. (1997) of a 

chromosome-8 QTL. The lines used in both studies were basically the same with the 

difference that the experiments of Cassady et al. (2001) included more animals. However, this 

subsequent analysis failed to provide additional support for the preliminary observations of 

Rathje et al. (1997). Furthermore, linkage for the QTL mapped by Rathje et al. (1997) and 

Wilkie et al. (1999) is just on the nominal and suggestive level, respectively, whereas Rohrer 

et al. (1999) and Braunschweig et al. (2001) found significant linkage on a genome-wide level 

but with conflicting results. So maybe there is more than one QTL for ovulation rate on 

chromosome 8. For a clarification further confirmation studies are necessary to address this 

subject. 

Overall, the QTL studies for litter size or its component traits reported to date, show relatively 

inconsistent results concerning QTL locations. This is maybe a consequence of the highly 

polygenic control of this trait, by loci with small effects that interact with each other and with 

the environment (Pomp et al., 2001). Realistically, differences are to be expected in light of 

the different lines used to create the populations under study and the genetic heterogeneity 

between and within lines. A third reason for these differences are the varying frequencies of 

the QTL in the populations and lines used for the association or linkage analyses. 

Furthermore, the sample sizes employed limit the power of the used methods to detect QTL of 

modest effect (Kirkpatrick, 2002). 

 

Merging of QTL- and candidate gene approach – Evidence for a ‘polygenic paradox’ 

After identification of a QTL, the ultimate goal is to identify the responsible gene itself and 

the causative mutation. The first steps toward this challenging aim are the fine mapping of the 

QTL and merging of the mapped QTL with putative physiological candidate genes in this 

chromosomal region. The possibility that a gene is really involved in a trait of interest is 

greatly enhanced by coincidence between the chromosomal localizations of a QTL and a 

newly mapped candidate gene when there is a congruency between the affected QTL-linked 

reproductive trait and the physiological role the candidate gene takes in reproduction. The 
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strategy of first mapping the trait locus and then looking for genes with a putative effect on 

this trait within that particular chromosomal region, has been termed ‘positional candidate 

cloning’. This approach has already proven to be very useful (see Copeland et al., 1993) and 

will be one of the major future strategies for identifying trait genes in humans (Collins, 1995) 

and in farm animals. 

However, in addition to the inconsistent results between different QTL studies concerning 

litter size and its component traits, there has also been relatively little correspondence 

between these QTL and many of the most prominent candidate genes, selected on the basis of 

physiological evidence (see Table 1) which is illustrated by the Tables 2 and 3, respectively. 

Putative correspondence exists between the QTL for TNB on chromosome 14 and the gene 

RBP4 even though there are inconsistent mapping results for this gene. Other potential 

correspondences might exist between the genes AREG, EGF FGG and OPN and the QTL for 

ovulation rate and uterine capacity on chromosome 8. However, there are no further putative 

correspondences. To date no QTL for litter size or one of its component traits have been 

found on chromosome 1 in the region corresponding to the ESR locus, and investigation 

specifically of the ESR marker failed to show evidence of association. At first sight this is 

remarkable because the ESR marker has been found to be a promising gene marker for litter 

size as indicated in the previous chapter (Table 1) but the inability to detect a QTL in this case 

might be explained by the fact that the ESR effect mainly occurs in Meishan. The smaller 

effects of the ESR polymorphism in Western pig breeds might be also associated with the 

lower frequencies of the favorable allele B. Steinheuer (2001) found frequencies of 0.05 and 

0.02 in German Landrace (n = 28) and Pietrain (n = 256), respectively, for the favorable B 

allele. 

Likewise no QTL for litter size have been identified on the chromosomes 16 and 2, where two 

other well studied candidate genes have been mapped, namely the PRLR gene on 

chromosome 16 and the FSHB gene on chromosome 2. Kirkpatrick (2002) stated that this lack 

of correspondence could be for various reasons: some candidate genes may have modest 

effects which are undetectable with the sample sizes employed in the genome-wide QTL 

search; there may be a lack of segregation of the candidate gene alleles in some populations; 

the candidate gene marker may simply be a linked marker with heterogeneity of linkage phase 

eliminating association; or the originally observed candidate gene effects may in some cases 

have been due to chance (statistical thresholds employed in candidate gene studies have often 

been less stringent relative to genome-wide QTL searches). A further reason may be that the 

candidate gene polymorphisms and the flanking markers used in QTL studies are not at the 
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Table 3: Chromosomal localizations of candidate genes for litter size and its component traits 

 
position 

gene chromosome 
cytogenetic map linkage map (cM) 

reference 

p2.5-p2.4  Ellegren et al., 1994b 

 0.00 
Archibald et al., 1995 
Ellegren et al., 1994a 

 19.00 Rohrer et al., 1996 
ESR 1 

 22.30 
Ellegren et al., 1994b 
Marklund et al., 1996 

p1.6-p1.2  Mellink et al., 1995 
 28.00 Ellegren et al., 1994a 
 35.40 Marklund et al., 1996 
 37.00 Archibald et al., 1995 
 42.00 Zhang et al., 1995 

FSHB 2 

 55.50 Rohrer et al., 1994 
AREG 8  65.00 Rohrer et al., 1994 

q2.3-q2.4  Spötter et al., 2001b 
EGF 8 

 84.00 Rohrer et al., 1996 
q1.1-q1.2  Lahbib-Mansais et al., 2000 

FGG 8 
 20.00 Archibald et al., 1995 

OPN 8   Zhang et al., 1992 
  Gladney et al., 1999 

q2.4-q2.5 (S0114)  Lopez-Corrales et al., 1999 
 101.00 (S0114) Archibald et al., 1995 
 117.00 (S0114) Groenen et al., 1996 

PTGS21 9 

 118.90 (S0114) Rohrer et al., 1996 
  Messer et al., 1996 
 60.00 (S0007) Rohrer et al., 1996 
 75.00 (S0007) Archibald et al., 1995 
 82.50 (S0007) Marklund et al., 1996 

RBP41 14 

 107.70 (S0007) Kapke et al., 1996 
  Vincent et al., 1997 

 0.00 (S0006) 
Archibald et al., 1995 
Marklund et al., 1996 

PRLR1 16 

 22.10 (S0006) Rohrer et al., 1996 
STE - - - - 

1 PTGS2, RBP4 and PRLR were assigned to the chromosomes 9, 14 and 16, respectively. The 
given positions on cytogenetic and linkage maps for these genes refer to the closely linked 
(LOD scores > 10) microsatellite markers S0114, S0007 and S0006, respectively. 
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same time heterozygous in the sires of the founder generation and as a consequence thereof, 

cosegregation of the linked marker alleles and the alleles of the polymorphisms of the 

candidate genes does not occur. There were no studies in which linkage phases between 

candidate gene polymorphisms and linked marker alleles were proven. Therefore, direct 

comparisons between QTL for litter traits and candidate genes are not possible. 

However, Pomp et al. (2001) gave a further explanation for the low correspondence of QTL 

and genes chosen as candidate genes based on the physiological role they play in a trait 

(physiological genes). Pomp et al. proposed a ‘polygenic paradox’ whereby QTL and 

physiological genes appear to represent two distinct subsets of genes. This means that 

evidence for an important role of a protein in regulation of a phenotype does not necessarily 

implicate the underlying gene as a QTL. Pomp et al. (2001) hypothesized that QTL primarily 

represent regulatory elements or initiation factors in a cascade of events, culminating in 

expression of physiological genes. Fuller understanding of this ‘polygenic paradox’ will 

require broad evaluation at the DNA, mRNA, protein and detailed phenotypic levels using a 

wide variety of techniques including DNA sequencing, evaluation of gene expression, and 

even mutational and transgenic analysis all of which were united under the term ‘functional 

genomics’ by Pomp et al. (2001). The aim is to apply these techniques in genome-wide or 

system-wide experimentation, expanding the scope of biological investigation from studying 

single genes or proteins to studying all genes or proteins and their multiple interactions at 

once in a systematic manner. The merging of accumulating information of such studies will 

establish linkages between QTL and physiological genes, enhancing our understanding of 

how complex traits in domestic animals are controlled and regulated, and facilitating 

improvement of economically important traits. In particular, ‘functional genomics’ will be a 

very powerful tool for studying the quantitative polygenic control of reproduction, as well as 

for understanding the underlying biology and physiology (Pomp et al., 2001). Gene 

expression profiles between divergent breeds will allow for the dissection of selection 

response (or genetic variation) into two major categories: (I) loci that have been selected for 

(by definition, the QTL); and (II) genes expression of which (quantity or quality of mRNA) 

has changed as a result of direct or indirect interaction with QTL (Figure 1) (Pomp et al., 

2001). Key components underlying the biology of reproduction are most likely to be 

identified within the second category. This assumption supports the traditional hypothesis that 

quantitative traits are under polygenic control and that each of these genes has only a small or 

moderate effect. In other words there are many QTL operating in tandem and with potentially 

complex interactions to control reproduction at the genetic level. Although the heritable 
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genetic variation must, by definition, reside within the QTL, it is likely that these genes are 

regulatory and initiate critical changes in the transcription or translation of other genes, within  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram representing a simplified hypothesis of the genetic architecture 

of a complex polygenic trait such as litter size or ovulation rate in pigs as hypothesized by 

Pomp et al. (2001). In this hypothesis, some QTL may directly influence a reproductive 

phenotype (QTL1), but more often others (QTL2, 5, 6) will exert effects by interacting with 

and regulating expression of ‘physiological genes’. 

 

 

which heritable sequence variation does not occur (Figure 1). Pomp et al. (2001) illustrate 

their hypothesis with a putative control mechanism for the FSHB gene which is clearly a 

critical rate-limiting protein in the determination of ovulation rate in pigs, and has been 

implicated as an important correlated response to selection for increased ovulation rate and 

litter size. However, there is no evidence that the FSHB locus is a QTL for reproduction. 

Thus, QTL for reproduction must stimulate changes in FSHB mRNA profiles through direct 

interaction, or through a cascade of regulatory events which may also be manifested at the 

mRNA or protein levels. Although several chromosomal regions have been found to harbor 

genes with effects on FSH concentrations, the FSHB locus itself has not been implicated as a 

QTL. 

LITTER SIZE
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From genomics to proteomics – Narrowing the gap between sequence and function 

Apart from the identification and mapping of candidate genes for litter size there has also 

been considerable interest in the elucidation of their physiological roles and modes of action, 

and several reports shed light on these subjects (Geisert and Yelich, 1997; La Bonnardière, 

1993; Ying et al., 2000; Roberts et al., 1993; Green et al., 1998; Vallet et al., 2002; Simmen 

and Simmen, 1990). But the mammalian genome consists of approximately 30,000 genes and 

in many cases their respective proteins have more than one function depending on different 

possible interactions among each other. So this is at present an almost infinite research area. 

An important step in examining functions of genes is to determine their spatial and temporal 

expression patterns which implies the construction of - preferably comprehensive - cDNA 

libraries either of different tissues, or of the same tissue at various points in time, under 

different treatments, or from different genotypes, depending on the goal of the particular 

study. Such studies may also provide further evidence for candidate genes chosen based on 

their physiological role or their position in regions associated with possible QTL. This subject 

is addressed later in this chapter. In the first place, methods for the investigation of differential 

gene expression and some of their reported applications concerning reproduction in pigs are 

reviewed briefly. 

A useful strategy in the construction of a cDNA library is to sequence only 600 bases at both 

ends of the cDNA which is enough to allow the identification of the transcripts (Hatey and 

Milan, 2002). These sequences are called expressed sequence tags (ESTs) and their 

generation was demonstrated by Adams et al. (1991). However, methods used for the 

evaluation of differentially expressed genes in the early stages have been laborious and not 

suitable for large-scale analysis. They allowed only the simultaneous examination of limited 

sets of genes and comprised methods such as Northern blotting and reverse transcriptase (RT-

) PCR. Yelich et al. (1997b) used RT-PCR to investigate the ontology of elongation and gene 

expression in the early developing conceptus. Gene expression was detected for leukemia 

inhibitory factor (LIF) and integrin beta 1 (ITGB1) but not for estrogen, progesterone, 

oxytocin, and prostaglandin F2α receptors. Better approaches have been developed to enable 

investigations of changes in gene expression in whole tissue, such as differential screening of 

cDNA libraries (e.g. Tosser-Klopp et al., 1997) or Differential Display (DD-) PCR (Liang and 

Pardee, 1992), the latter of which was used to isolate differentially expressed transcripts in the 

peri-implantation (days 11-12) endometrium of unilaterally pregnant pigs (Green et al., 1996). 

Chang et al. (2000) used DD-PCR to isolate transcripts from oviductal epithelia of gilts 

carrying embryos at various stages of early development. A technique even more efficient in 
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detecting differentially expressed genes compared to DD-PCR is subtractive suppressive 

hybridization (SSH; Diatchenko et al, 1996). This method includes two steps, the first of 

which is a subtraction that sorts out sequences specific for one sample from those common to 

both samples that are being compared, followed by the second step, a suppression, i.e. a 

reduction in the amount of the most abundant sequences in order to also obtain the rare ones. 

In an effort to identify genes associated with the Meishans high survival rate, Vallée et al. 

(2002) used the SSH technique to compare Meishan x Landrace and Landrace breeds at day 

15 of gestation; they constructed two different cDNA libraries to identify differentially 

expressed genes in endometrial and embryonic tissues taken at the implantation period. They 

detected a total of 137 genes for the endometrial library and 166 genes for the embryo library 

which were differentially expressed between Meishan x Landrace and Landrace sows. Ross et 

al. (2003) used SSH to characterize differential gene expression during rapid trophoblastic 

elongation in the pig. Of the 384 transcripts screened, sequences were obtained for 142 that 

were confirmed to be differentially expressed. A comparison of the results of these studies 

and candidate genes for litter size in pigs (Tables 1 and 3) concerning possible 

correspondences is addressed later on in this chapter. 

The advent of cDNA microarray technology permits the analysis of the expression of 

thousands of genes simultaneously, making it perhaps the most valuable tool for studying 

biological events in domestic animals. These devices are based on the hybridization of known 

sequences with the mRNA population to be studied in such conditions that the hybridization 

level is proportional to the amount of the corresponding sequence in the mRNA population 

analyzed (Hatey and Milan, 2002). For this purpose, known sequences, either cDNAs or 

oligonucleotides representing expressed genes, are spotted at high density onto a solid support 

(nylon, plastic, glass) and hybridized under stringent conditions with fluorescent targets 

produced from mRNA of two distinct biological samples (for example two tissues at various 

points in time, or under different treatments, or from different genotypes). The intensity of 

each fluorescent dye at each spot is detected with a microarray laser scanner. The data is 

usually represented as the ratio of the expression detected between the two RNA samples used 

(Pomp et al., 2001). As a first approach human arrays can be used in heterologous conditions. 

However, for a more accurate estimation of gene expression, it is important to develop species 

specific arrays. Caetano et al. (2002) utilized a specific cDNA microarray with 4608 probes 

from a normalized ovarian follicle cDNA library to identify differentially expressed genes 

associated with ovulation rate in ovarian/follicular tissue of two different lines. The tissues 

were collected during the follicular phase of the estrous cycle. A total of 92 clones showed 
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significant expression differences. Such experiments produce large sets of data which require 

specialized computer software for their management and analysis (Ermolaeva et al., 1998; 

Basset et al., 1999). This makes bioinformatics one of the most important and challenging 

aspects of using microarrays in the dissection of complex traits, such as reproduction at the 

transcription level. 

The ability to examine the transcriptome on a system-wide basis permits not only a thorough 

comparison between treatments, developmental stages or genotypes, but also provides the 

opportunity to identify biological connections between genes and to uncover and link 

biochemical pathways that play critical roles in regulating important reproductive phenotypes 

(Pomp et al., 2001). However, the methods described here measure amounts of mRNA which 

are themselves phenotypes, under the potentially strong influence of environmental factors 

and interactions with other genetic components. Importantly, these amounts of mRNA may 

not be directly correlated with concentrations or activity of their respective translated proteins, 

or with the economically relevant end-point phenotypes such as litter size. Although 

‘functional genomics’ may yield a large amount of information, significant efforts will be 

required to confirm and corroborate the influences of changes in gene expression within the 

broader, complex genetic and physiological models that are currently used. This bridge 

between genetics and physiology will be critical for implementing a fully integrated research 

program combining quantitative genetics, genomics, proteomics, metabolics and phenomics. 

It is likely that such an approach will be required to fully clarify the complex and polygenic 

nature of reproductive traits in pigs, and lead to discoveries that will have a strong impact on 

improvement of reproduction in the pork industry (Pomp et al., 2001). 

Despite the mentioned flaws, the question arises whether expression studies could be useful in 

the confirmation of candidate genes, previously implicated in the regulation of litter size 

based on positional or physiological evidence. Some of the investigated candidate genes for 

litter size (Tables 1 and 3) were reported to be differentially expressed in the conceptus and / 

or tissues with reproductive function, including EGF (Kim et al., 2001), OPN (Garlow et al., 

2002), PTGS2 (Wilson et al. 2002), RBP4 (Harney et al., 1993; Yelich et al., 1997a), and STE 

(Kim et al., 2002). These findings support their implication in litter size. However, these 

investigations of differential expression of single genes by Northern and slot blot 

hybridization were not confirmed by one or more of the mentioned expression studies using 

more progressive methods facilitative of large-scale analysis (Green et al., 1996; Chang et al., 

2000; Vallée et al., 2002; Caetano et al., 2002; Ross et al., 2003) with one putative exception 

for RBP4. Vallée et al. (2002) identified a transcript with 98% homology to porcine retinol-
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binding protein but left open with which of the 4 RBPs. Methods like DD-PCR, SSH and 

cDNA microarray allow the identification of numerous but not all differentially expressed 

genes in a tissue and there are several possible reasons, the first of which is the 

incompleteness of the utilized cDNA libraries. Further reasons may be a differential 

expression of a gene to weak to detect, the occurrence of congruent alleles in cDNA libraries 

of different investigated animals or breeds, or the differential expression of a gene at another 

point in time than investigated. However, the identification of numerous previously unknown 

transcripts and a low level of consistency between expression studies is not so surprising. It 

rather demonstrates the highly polygenic control of litter size and its component traits. 

 

The mouse model – a source of candidate genes for fertility traits in pigs? 

There is a steadily growing body of knowledge about the physiological role of genes in 

reproduction, especially in mice. With the advent of transgenic and gene-targeting 

methodologies to determine the biological roles of genes during development, the mouse has 

become an increasingly important model. Traditional gene-targeting approaches lead to an 

annulment of gene expression in early gestation and affect the development of the fetus and / 

or placenta (Han and Carter, 2001). Albeit many genes have been shown to be essential for 

prenatal survival in this manner, several genes or groups of genes are more or less resistant to 

gene-targeting approaches. Recent studies using gene knockout as a tool have indicated that in 

many cases the lack of expression of a single growth factor gene has relatively little effect on 

growth and survival, in a few cases causing only some minor abnormalities (Wei et al., 2001). 

This has led to the theory that many functions of growth factor families are subject to 

redundancy, and that just because a gene is highly conserved and redundantly expressed this 

does not mean it is essential (Shastry, 1994). This functional compensation for the absence or 

defect in a gene or pathway is not restricted to the growth factor families. For example, the 

process of uterine implantation appears to be compatible with a number of different null 

mutations in genes coding for cell adhesion molecules and their ligands (Poirier and Kimber, 

1997), for cytokines (Lim et al., 2002) and for proteases (Sol-Church et al., 1999), all of 

which are also involved in early development. However, gene-targeting is a powerful tool 

which facilitates the investigation of gene functions in mice (e.g. Carlone and Skalnik, 2001; 

Allan et al., 2001) compared to other species. The resulting wealth of knowledge of mice has 

brought great advantages to this research field. Most of these reports concentrate on 

embryonic survival in the critical early period of gestation. Some deal with the 

preimplantation development of the embryo and its regulation by growth factors (e.g. Kaye 
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and Harvey, 1995; Stewart and Cullinan, 1997), but the majority of these reports are 

concerned with the periimplantation period and genes involved in its regulation. There are 

very comprehensive reports on this subject which propose a mouse model for the 

periimplantation period (e.g. Paria et al., 2001, 2002; Cross, 2001; Lim et al., 2002; 

Rinkenberger et al., 1997). Uterine and embryonic factors in implantation include steroid 

hormone signaling, adhesion molecules, histamine and prostaglandin signaling, growth factor 

signaling, cytokine signaling pathways, transcription factors and cannabinoid signaling 

pathways. Several of these genes are summarized in Table 4, and their putative 

interconnection in pathways is illustrated in a simplified manner in Figure 2. The question 

arises whether this wealth of knowledge about gene function is also applicable to other 

species such as the pig, based on the assumption of homologous physiological roles for 

orthologous genes in two different species. If so, this knowledge could be used for example as 

a source for the choice of new candidate genes for litter size in pigs. Opinions differ 

somewhat on the extrapolation of data obtained from a mouse model to other species. In any 

case, a comparison of pigs and mice is difficult since many parameters related to early 

pregnancy differ, one major point of which is the different type of placentation. Although the 

early stages of embryonic development, including establishment of cell lineages that make up 

the placenta, proceed similarly among all vertebrates, the form taken by the placenta is 

extremely variable (Amoroso, 1981). In primates and rodents, trophoblasts are invasive, 

breaching uterine vessels. As a result, maternal blood is in direct contact with trophoblasts 

(hemochorial placenta). In the pig, however, no invasion of the trophoblast into the maternal 

uterine tissue occurs. Trophoblasts fail to make direct contact with the maternal blood supply; 

rather they are apposed to uterine epithelium throughout the course of pregnancy 

(epitheliochorial placenta; Cross et al., 1994). Because of these differences Chen et al. (1999) 

and La Bonnardiere et al. (1993) deemed it unwise to extrapolate data from a mouse model to 

other species. Since the process of implantation is complex and varies across species, no 

unified theme has yet been formulated (Paria et al., 2001). However, there are also basic 

similarities among various species (see for example the Hox genes, McGinnis and Krumlauf, 

1992), especially during the preimplantation period before close physical association with the 

maternal physiology is established via the uterine endometrium (Kaye and Harvey, 1995). 

Moreover, the mouse model has already proved useful for an better understanding of 

mammalian implantation (Paria et al., 2002). Most reports about the periimplantation period 

and genes involved in its regulation try to draw parallels to other species (Paria et al., 2001, 
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Table 4: Uterine and embryonic factors in blastocyst implantation in mice. 

 

uterine factors in implantation 
steroid hormone signaling 

estrogen (E2), estrogen receptor (ESR), progesterone (P4), progesterone receptor (PGR) 
adhesion molecules 

selectins, galectins, heparan sulfate proteoglycans (HSPGs), Mucin 1 (Muc1), integrins, cadherins, 
trophinin complex 

histamine and prostaglandin signaling 
histamine, histidine decarboxylase (HDC), prostaglandins (e.g. PGI2, PGE2), prostaglandin 
receptors, peroxisome proliferator-activated receptors (e.g. PPARD), cyclooxygenases (COX1, 
COX2), retinoid X receptors (RXRs) 

growth factor signaling 
transforming growth factor betas (TGFBs), fibroblast growth factors (FGFs), insuline like growth 
factors (IGFs), platelet-derived growth factors (PDGFs), vascular endothelial growth factors 
(VEGFs), epidermal growth factor (EGF), transforming growth factor alpha (TGFA), heparin-
binding EGF (HB-EGF), amphiregulin, betacellulin, epiregulin, neuroregulins, receptors for EGF-
like growth factors ErbB1 (EGFR), ErbB2, ErbB3, ErbB4) 

cytokine signaling pathway 
tumor necrosis factor alpha (TNFA), interleukins (IL1, IL6, IL11), granulocyte/macrophage-
colony stimulating factor (GM-CSF) leukemia inhibitory factor (LIF) 

transcription factors 
Homeobox Gene (HOXA-10, HOXA-11), Homeobox (H6 family) 3 Gen (HMX3) 

cannabinoid signaling pathway 
anandamide, 2-arachidonoylglycerol (2-AG) 

embryonic factors in implantation 
steroid hormone signaling 

estrogen receptor (ESR) 
adhesion molecules 

integrins, E-cadherin, zonula occludens-1 (ZO-1), occludin 
growth factor signaling 

transforming growth factor alpha (TGFA), amphiregulin, cripto, ErbB1/EGFR, ErbB2, ErbB4 
cytokine signaling pathway 

LIF receptor (LIFR), gp130 
cannabinoid signaling 

cannabinoid receptors (CNR1, CNR2) 
 

 

2002; Lim et al., 2002; Cross, 2001; Rinkenberger et al., 1997; Cross et al., 1994) such as 

human, rabbit, hamster, guinea pig and farm animals including pigs, sheep and cattle. For the 

improvement of litter size in pigs the mouse model provides starting points for research and in 

the choice of new candidate genes, where it should be used as one criterion, preferably in 

combination with the additional selection criteria mentioned above. 
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Figure 2: Simplified illustration of a putative molecular cascade of events in blastocyst 

implantation in the mouse. For full names of the genes, see Table 4. 

 

 

Candidate gene analysis for litter size in pigs – a case study 

A candidate gene approach was used to examine the effects of six genes on litter size in pigs. 

The new candidate genes selected were cathepsin L (CTSL), epidermal growth factor (EGF), 

epidermal growth factor receptor (EGFR), inter-α trypsin inhibitor heavy chain 4 (ITIH4), 

leukemia inhibitory factor (LIF), leukemia inhibitory factor receptor (LIFR). In the following, 

the reasons for choosing these genes for examination are reviewed briefly. 

Cathepsins are lysosomal cysteine proteases that have been implicated as modulators of 

invasive implantation in cats (Li et al., 1992) and rats (Elangovan and Moulton, 1980). CTSL 

activity in the pig uterus is induced by progesterone and increases at the time of trophoblast 
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elongation with peak activity on day 15 of pregnancy (Geisert et al., 1997). Although the pig 

forms a diffuse epitheliochorial type of placental attachment, the high affinity of CTSL for 

collagen (Kirschke et al., 1982) and elastin (Mason et al., 1982) suggests that it may play a 

role in placental attachment on days 13-18 of gestation through limited proteolysis of the 

uterine epithelial glycocalyx (Geisert and Yelich, 1997). Uterine growth and expansion during 

early pregnancy involves elastase activity and collagen remodelling (Renegar, 1982) in which 

CTSL could play a role in both uterine and placental development. 

ITIH4 is a glycoprotein that belongs to the inter-α-trypsin inhibitor family of serine protease 

inhibitors which act as acute phase reactants after trauma (Buchmann et al., 1990). 

Endometrial gene expression of ITIH4 in pig was detected during estrus cycle (days 0–18) 

and early pregnancy (days 10–18). Gene expression of ITIH4 is enhanced during the 

midluteal phase (days 12 and 15) of the estrus cycle and the period of trophoblast attachment 

(days 12–18). It was not detected in day-10 or day-12 pig conceptus tissues (Geisert et al., 

1998). Synthesis of the glycoprotein by the uterine epithelium is stimulated by progesterone 

(Geisert et al., 1995). Regulation of cleavage for release of the polypeptide during pregnancy 

and early conceptus development suggests that it may play a role in conceptus-uterine 

interactions for the establishment of pregnancy in pigs, probably as an acute phase protein for 

protection of the uterus from the inflammatory response induced by conceptus attachment to 

the uterine epithelium (Geisert et al., 1998; Gonzales-Ramon et al., 1995). In addition to this 

possible role, the multipolypeptide chain of porcine ITIH4 could also serve to stabilize the 

epithelial glycocalyx (Chen et al., 1994) and inhibit conceptus endometrial invasion. 

Alteration in ITIH4 may not be the only factor involved with trophoblast attachment; 

however, cleavage of ITIH4 could induce local alterations in receptivity to the conceptus that 

permits the conceptus to contact integrins for firm attachment to the uterine epithelium 

(Bowen et al., 1997). 

Leukemia inhibitory factor (LIF) is a member of the IL-6 family of pleiotropic cytokines and 

was initially identified by its capacity to induce macrophage differentiation of the myeloid 

leukaemic cell line M1 (Tomida et al., 1984; Hilton et al., 1988a, 1988b). The effects of LIF 

in many physiological systems include proliferation, differentiation, and cell survival (for 

reviews see Hilton, 1992; Metcalf, 1992). These biological effects of LIF are mediated by 

binding to a specific LIF receptor subunit (LIFR) (Gearing et al., 1991) that is, being a 

member of the cytokine-binding family of receptor subunits. Formation of a high-affinity 

signaling complex requires the association of the LIF-LIFR complex with another 

transmembrane signal-transducing molecule gp130 (Gearing et al., 1992a, 1992b) which itself 
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exhibits features of the cytokine family of receptors (Hibi et al., 1990). The essential role of 

endometrial synthesized LIF in blastocyst growth and implantation in mice (Stewart et al., 

1992; Stewart, 1994; Savatier et al., 1996) implies that the LIF/LIFR system may also serve a 

vital function in conceptus development and implantation in pigs (Geisert and Yelich, 1997). 

This implication is supported by the detection of LIF gene expression in porcine endometrium 

at the time of blastocyst attachment (Anegon et al., 1994; Modric et al., 2000), and the 

presence of LIFR mRNA in porcine periimplantation conceptuses (Yelich et al., 1997b; 

Modric et al., 2000). 

The cellular effects of epidermal growth factor (EGF) and EGF-like proteins, including 

transforming growth factor α (TGFα), heparin-binding EGF, and amphiregulin are mediated 

through binding to the membrane-bound EGF receptor (EGFR) (Prigent and Lemoine, 1992). 

All of these ligands are expressed by the pig endometrium during early pregnancy (Brigstock 

et al., 1990, 1996a, 1996b; Kennedy et al., 1994; Kim et al., 1995). A quantitative trait locus 

(QTL) for uterine capacity was identified on the long arm of chromosome 8 near 71 cM 

(Rohrer et al., 1999). This region is near the known location of the EGF gene (Mendez et al., 

1999; Spötter et al., 2001b). Thus, the chromosomal location of EGF, its specific biochemical 

actions including cell proliferation (Haining et al., 1991) and initiation of DNA synthesis 

(Tomooka et al., 1986), its ability to improve the embryonic development in vitro (Wood and 

Kaye, 1989; Paria and Dey, 1990), and its increased luminal content on day 12 of pregnancy 

followed by a decline to day 16 (Diehl et al., 1994) indicate that the EGF/EGFR system may 

play a significant role in embryonic and maternal interactions (Wollenhaupt et al., 1999). This 

is further supported by the finding that endometrial and conceptus tissues express EGFR 

(Zhang et al., 1992a, 1992b; Kennedy et al., 1994). 

After the isolation of genomic PAC and BAC clones for the six selected candidate genes they 

were localized by radiation hybrid (RH) mapping and fluorescence in situ hybridization 

(FISH; Spötter et al., 2001a, 2001b, 2001c, 2003; Kuiper et al., 2001). These mapping results 

are displayed in Table 5 and help to refine the existing porcine gene maps. 

The complete coding sequences were determined for LIF (Spötter et al., 2001c) and CTSL 

(Spötter et al., 2001a) and their genomic organization is illustrated in Figure 3. The porcine 

LIF gene spans about 6.3 kb and consists of five exons including three alternative first exons 

(1D, 1M, 1T) spliced onto common second and third exons. The most frequent transcript, the 

LIF-D mRNA, measures 3.9 kb, and the resulting primary peptide consists of 202 amino 

acids. The porcine CTSL gene spans about 5.6 kb and contains eight exons. The mRNA 
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Table 5: Mapping results of six candidate genes for litter size in pigs. 

 

Gene Localization (SSC) Reference 

LIF 14q21-q22 Spötter et al., 2001c 

LIFR 16q13-q14 Spötter et al., 2003 

EGF 8q23-q24 Spötter et al., 2001b 

EGFR 9q26 Spötter et al., 2003 

ITIH4 13q21-q22 Kuiper et al., 2001 

CTSL 10q11-q12 Spötter et al., 2001a 
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Figure 3: Chromosomal organization of the porcine genes encoding for LIF (A) and CTSL 

(B) 
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measures 1.4 kb and the primary peptide is composed of 334 amino acids. These sequences 

are publicly available in the EMBL nucleotide database under the accessions AJ315771 

(CTSL) and AJ296176 (LIF). ITIH4, EGF, EGFR and LIFR were sequenced partially. The 

sequence information determined here was used to identify gene markers for all six genes. In 

case of the LIF gene a SNP (C/T transition) was found in exon 3 which can easily be 

genotyped by DraIII RFLP (Spötter et al., 2001c). For each of the other genes microsatellite 

markers were developed (Spötter et al., 2003). The six newly developed gene-linked markers 

were shown to be highly polymorphic and heterozygous in 273 sows of a German synthetic 

pig line (see Table 6). They have been physically anchored by FISH and RH mapping and 

should prove useful for future QTL fine mapping studies. 

A negative dominance effect for the LIF marker was observed in an association study 

employing the six newly developed markers and 273 sows of a German synthetic pig line. 

This effect was –0.72 ± 0.370 (p=0.047) for the first parity and –0.50 ± 0.29 (p=0.087) for the 

second to tenth parities. No further statistical significant associations between any of the other 

microsatellite markers and NBA were observed in this study. It is important to stress that the  

 

 

Table 6: Characterization of six newly developed gene markers. 

 

Gene Marker type 
Number of 

alleles 
Allele size (min-max) 

Expected 
heterozygosity 

PIC1 

EGF microsatellite 7 141-155 0.78 0.75 

ITIH4 microsatellite 4 148-162 0.47 0.44 

CTSL microsatellite 9 180-208 0.78 0.75 

LIFR microsatellite 7 133-149 0.80 0.77 

EGFR microsatellite 9 110-136 0.80 0.77 

LIF SNP 2 144, 266 0.40 0.40 
1Polymorphism Information Content 

 

lack of association between a gene-associated polymorphism and a phenotype does not mean 

that the gene product is not important in regulating the trait. Rather it is necessary to evaluate 

the developed markers in larger populations and in different pig breeds because associations 
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between the marker and trait may vary between populations, lines, or families. This was 

shown in several studies with DNA markers, such as ESR and PRLR. 

The selection of new candidate genes for litter size is facilitated by expression studies, QTL 

studies and knowledge about the role of homologous genes in other species, such as the 

mouse. An enlargement of the marker set characterized above and the chromosomal 

localization of more genes implicated in reproduction and their sequencing is desirable in the 

context of basic research and especially in regard to the elucidation of gene function. All this 

contributes to solving the puzzle of the regulation of reproduction and will possibly help 

improve litter size in pigs. 

 

Conclusions 

Continued development of molecular tools and databases insure that many steps of the 

process of developing markers for selection will continue to occur at an increasingly rapid 

pace. However, the bottleneck in many cases will be at the initial step of obtaining the 

requisite phenotypic information. While technological developments steadily reduce 

genotyping and marker development costs, costs of collecting relevant phenotypic 

information or developing resource populations are unlikely to decline. This represents one of 

the most significant limitations to the application of genetic markers in selection for 

reproductive traits (Kirkpatrick, 2002). 

The key risk of genetic improvement with steadily increasing accuracy of selection is the 

continous accumulation of homozygosity for genetic variation. This conflict between using 

markers for selecting the best animals (which are likely to be related) and selecting the least 

related to minimise inbreeding needs to be addressed (Visscher et al., 1998). However, many 

recent studies on the improvement of long-term response to selection using index and BLUP 

selection have shown that there is room for substantially decreasing levels of inbreeding 

without sacrificing response to selection (Brisbane and Gibson, 1995; Wray and Goddard, 

1994; Villanueva et al., 1994). Methods already being developed to balance inbreeding and 

selection optimally may need to be extended to generate new heterozygosity through 

composite lines (Webb, 1998). Furthermore, theoretical work is needed to accommodate 

multilocus Mendelian inheritance and phenomena such as epistasis, genetic background 

effects and interactions between the environment and genetics. Unless genetic markers 

capture most of the genetic variation for the trait, which is far from the case at present, 

selection must be based on a combination of marker and conventional phenotypic data. 

Although several useful genes (primarily gene-linked markers) have been identified in pigs, 
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their application has been limited and their success inconsistent because the genes were not 

identified in breeding populations, or because they interact with other genes or the 

environment (Dekkers and Hospital, 2002). Most applications of molecular genetics to 

breeding programmes have attempted to incorporate molecular data into existing breeding 

programs. The effective use of molecular data might, however, require a substantial redesign 

of such programs so as to take better advantage of the unique features of molecular data 

(Dekkers and Hospital, 2002). Benefits from MAS are highest when selection takes place in 

stages or in groups of animals where previously no selection was possible (Visscher et al., 

1998). This is the case for traits that are age-linked (measurable only in animals of a certain 

age), sex-limited (measurable only in one sex), and / or of low heritability, such as litter size, 

but also for traits such as disease resistance that are difficult to improve through conventional 

means because of the difficulty and expense of recording phenotype. However, until the 

complete analysis of complex traits has been achieved, observable genotype will remain an 

irreplaceable tool in genetic improvement programs, since it takes into account the collective 

effect of all genes (Dekkers and Hospital, 2002). 
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ABSTRACT 

 

Leukemia inhibitory factor (LIF) is a pleiotrophic cytokine involved in early conceptus 

development in pig. We isolated a PAC clone containing the porcine LIF gene and determined 

the complete DNA sequence of the gene, which spans about 6.3 kb and consists of 5 exons 

including three alternative first exons (1D, 1M, 1T) spliced onto common second and third 

exons. The LIF-D transcript encodes a protein of 202 amino acids sharing 87%, 84%, and 

78% identity with respectively human, ovine, and murine leukemia inhibitory factors. The 

LIF-M and LIF-T transcripts both encode a truncated protein of 158 amino acids. Two SNP 

markers within untranslated regions of the LIF cDNA were identified. One SNP is located in 

the 5’-UTR of the alternative exon 1T while the other SNP is located in the 3’-UTR of exon 3. 

Based on fluorescence in situ hybridization and radiation hybrid mapping, the porcine LIF 

gene was assigned to chromosome 14q2.1→q2.2. 

             

 

The cytokine LIF was initially identified by its capacity to induce macrophage differentiation 

of the myeloid leukaemic cell line M1 (Tomida et al., 1984; Hilton et al., 1988 a, b). The 

pleiotrophic effects of LIF in many physiological systems include proliferation, differentiation 

and cell survival (for reviews see Hilton, 1992; Metcalf, 1992), all of which are associated 

with blastocyst development and implantation. Little is known about the regulation of these 

events, except that a complex interaction between peptide and steroid hormones synchronizes 

the preparation of the uterus for implantation with the development of the embryo (Stewart et 

al., 1992). Uterine expression of LIF and that of its receptors has been demonstrated in a 

number of mammalian species indicating that LIF may have widespread importance in the 

establishment of pregnancy, although the variations in the reaction of the uterus in preparation 

for and during implantation are considerable among species (Vogiagis and Salamonsen, 1999, 

Stewart et al., 1992, Yelich et al., 1997). 

The human and murine LIF genes have been cloned and completely sequenced (Stahl et al., 

1990). Partial sequence informations about other mammalian LIF genes have also been 

reported (Willson et al., 1992). Investigations about the gene structure of mammalian LIF 

genes revealed a complex organization with three alternative first exons, which can be spliced 

onto common second and third exons, yielding three independently regulated transcripts 

(Haines et al., 1999). 
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In this report we describe the cloning and sequencing of the complete porcine LIF gene 

followed by the search for new genetic markers (SNPs) within the gene. The fluorescence in 

situ hybridization method (FISH) was used to refine the map location of the porcine LIF gene 

which has previously been assigned to SSC 14 by somatic cell hybrid analysis (Rettenberger 

et al., 1996). 

 

 

MATERIALS AND METHODS 

 

Cloning and sequencing of the porcine LIF gene 

For the isolation of porcine PAC clones containing the LIF gene a porcine PAC library (Al-

Bayati et al., 1999) was initially screened with PCR primers LIFV (5’-GGG CAG TTC TTA 

GCT GTC TCC TCT C-3’) and LIFR (5’-TTT CAA AGT CTA CCT AAG GGG CAG C-3’) 

(Rettenberger et al., 1996). One LIF PAC clone designated IVMP 714A1245 was isolated. 

DNA was isolated using the Qiagen plasmid maxi kit (Qiagen, Hilden, Germany). PAC DNA 

was restricted with different enzymes, separated on 0.8% agarose gels, and transferred to 

nylon membranes. Hybridizations with the above mentioned PCR product using the ECL 

enhanced chemiluminescence system (AmershamPharmacia, Freiburg, Germany) identified 

genomic fragments that contained parts of the porcine LIF gene. Selected fragments were 

cloned into the polylinker of pGEM-4Z (Promega, Mannheim, Germany). Recombinant 

plasmid DNA was sequenced with the ThermoSequenase kit (AmershamPharmacia, Freiburg, 

Germany) and a LICOR 4200 automated sequencer. After sequencing a collection of plasmid 

subclones, remaining gaps were closed by a primer walking strategy until both strands were 

completely sequenced. Sequence data were analyzed with Sequencher 4.0.5 (GeneCodes, Ann 

Arbor, MI). 

 

Mutation analysis 

To identify variations within the porcine LIF sequence, exons with their flanking regions were 

PCR amplified with DNA isolated from seven different pig breeds (Angeln Saddleback, Wild 

boar, Pietrain, Duroc, German Landrace, German Large White, a synthetic line from a 

German commercial company, and a second synthetic line with 50% Meishan) and a wild 

boar. The following PCR primers were used: LIF_1D1 (5’-CTT GCC TAG TTT CAA GCC 

ACC T-3’) and LIF_1D2 (5’-AAG GCA GAG CGG GAA AAG TAG T-3’) for the PCR 

product containing exon 1D, LIF_1MT1 (5’-TTC TTT CTG TCT TTC CGC TTT C-3’) and 
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LIF_1MT2 (5’-ATC CCT CAA AAC TTC CTG TCC C-3’) for the PCR product containing 

exons 1M and 1T, LIF_21 (5’-CCC CTT GCT ACC AGA GGT AGA G-3’) and LIF_22 (5’-

CTC TGC CAA TAT GTA ACA GGG C-3’) for the PCR product containing exon 2, and 

LIF_31 (5’-ACT TCT GGT TCT CAG GAC GGT C-3’) and LIF_32 (5’-CAC TTG GGT 

CTG GTG ATG TTC T-3’) for the PCR product containing exon 3. The PCR products were 

sequenced using internal IRD700 labelled primers. 

 

Fluorescence in situ hybridization 

The PAC clone containing the porcine LIF gene was labeled with digoxigenin by nick 

translation using a Nick-Translation-Mix (Boehringer Mannheim Corp., Mannheim, 

Germany). FISH on GTG-banded pig chromosomes was performed using 750 ng of 

digoxigenin labeled PAC DNA. 1 µg sheared total porcine DNA and 10 µg salmon sperm 

DNA were used as competitors in this experiment. After hybridization over night, signal 

detection was performed using a Digoxigenin-FITC Detection Kit (Quantum Appligene, 

Heidelberg, Germany). The chromosomes were counterstained with DAPI and slides were 

mounted in propidium iodide/antifade. Metaphases that were previously photographed were 

reexamined after hybridization with a Zeiss Axioplan 2 microscope equipped for 

fluorescence. 

 

Probe name: IVMP 714A1245 

Probe type: PAC clone from porcine PAC library (Al Bayati et al., 1999) 

Insert size: 75 kb 

Vector: pCYPAC2 

Proof of authenticity: DNA sequencing 

Gene reference: Stahl et al. (1990) 

 

 

RESULTS AND DISCUSSION 

 

A porcine PAC clone containing a 75-kb insert was isolated from a genomic library using a 

PCR based screening procedure and primers for the porcine LIF gene. The DNA sequence of 

a 10281 bp SacI fragment harboring the complete LIF gene was determined and deposited in 

the EMBL nucleotide database under the accession AJ296176. 
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The genomic structure of the porcine LIF gene was determined by comparison to the human 

LIF gene. Similar to the human gene the porcine LIF gene consists of three alternative first 

exons, which can be spliced onto common second and third exons. Thus there are three 

different transcripts with different 5’-ends (Fig. 1). The gene spans approximately 6.3 kb of 

genomic sequence. All exon/intron boundaries conform to the GT/AG rule (Table 1). 

 

 

Fig. 1. (A) Genomic structure of the porcine LIF gene. Translated exons are shown as solid 

boxes. Untranslated exons, or untranslated regions of exons are shown as hatched boxes. The 

positions of the two identified SNPs are marked above the boxes with the alternative bases. 

(B) Three different splice forms of the porcine LIF mRNA are generated by alternative usage 

of three different first exons. The resulting two open reading frames are indicated by 

numbering. 

 

 

The 3.9 kb LIF-D mRNA harbors an open reading frame of 606 bp coding for a protein of 202 

amino acids. The porcine protein shares 87%, 84%, and 78% identity with respectively 

human, ovine, and murine leukemia inhibitory factors. The first exons of the LIF-M and 
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LIF-T transcripts contain no in-frame AUG, causing translation to initiate at an AUG encoded 

by exon 2, which is common to both transcripts (Fig. 1B). The translation product of LIF-M 

and LIF-T consists of 158 amino acids and lacks the secretory signal sequence of the LIF-D 

protein. 

 

Table 1: Exon-intron junctions of the porcine LIF gene 
 

Exon sequences are shown in uppercase letters, and intron sequences in lowercase letters. 

Untranslated regions are shown in italics. The conserved GT/AG exon/intron junctions are 

shown in boldface type. For the three alternative first exons the transcription start sites are 

shown instead of intron/exon junctions; for the last exon the polyadenylation signal is shown 

in bold italics instead of an exon/intron junction. 

 

 

The transcription start site of the LIF-D transcript could be assigned based on the homology 

between the human and porcine LIF genes. Similar to the human gene, a TATA box 

(TATATAA) is located 31 bp upstream of this transcription start site in the porcine gene. 

Downstream of exon 1D, homology with the human gene supports the existence of two more 

alternative transcription start sites delineating exons 1M and 1T. Again similar to the human 

gene, no TATA boxes could be found upstream of these transcription start sites. The 5’-UTRs 

of the LIF-D, LIF-M, and LIF-T transcripts consist of 64, 137, and 236 nucleotides 

respectively, while the 3’-UTR of all LIF transcripts contains approximately 3200 

nucleotides. 

A search for sequence variations within the LIF gene in different pigs revealed no 

polymorphism that would affect the amino acid sequence of porcine LIF. However, two SNPs 

in untranslated regions could be identified. A transversion polymorphism (C/G) was found at 

Exon 

Exon Size 

(bp) 5’ Intron/Exon…Exon/Intron 3’ Intron 

Intron Size 

(bp) Phase 

1D 83 ATGAAC…CGGCAGgtaaat 1D 1657 1 

1M 24 CTGGAA…TGCTAGgtgagc 1M 1175 5’-UTR 

1T 123 CCACCT…CACTTGgtacaa 1T 697 5’-UTR 

2 179 gcctgtttgcagCAGTTG…CTCTACgtaagt 2 718 0 

3 >3640 tctgcccctcagTACACA…ATTAATAAAGAACCTGA    
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position 4950 of EMBL Acc. AJ296176 within the alternative first exon 1T. A transition 

polymorphism (C/T) was found at position 6988, 24 bp downstream of the stop codon in exon 

3. The SNP in exon 3 can easily be genotyped by DraIII RFLP. In 17 unrelated Pietrain boars 

the allele distribution was 53:47 for the C/G polymorphism at position 4950 and for the C/T 

polymorphism at position 6988. Allele frequencies of the SNP in exon 3 in several different 

pig breeds are given in table 2. These two SNPs represent physically anchored genetic 

markers that might be useful in future QTL studies. 

 

Table 2: Allele distributions for the C/T polymorphism in exon 3 
 

 

 

In order to refine the established chromosomal localization of the porcine LIF gene on 

chromosome 14 (http://fabctr.umn.edu/RHMaps/chromosome/chromosome14.html) the 

isolated PAC clone was used as probe in a FISH experiment on porcine metaphase 

chromosomes. The porcine LIF gene could be assigned to SSC14q2.1→q2.2 (Fig. 2). This 

chromosomal assignment was confirmed by independent analysis of the IMpRH panel using 

newly designed PCR primers from the LIF gene. The orthologous human, murine, and bovine 

LIF genes map to HSA22q12, MMU11A1-A2, and BTA17 respectively. This is in agreement 

with established comparative maps of human, mouse, cattle and pig. (Bucan et al., 1993; 

Rettenberger et al., 1996; Band et al., 2000). 

Breed 

 

Sample Size 

(No. of genotyped boars) 

Allele Distribution (%) 

C                              T 

Pietrain 17 53 47 

Duroc 27 33 67 

German Landrace 70 56 44 

German Large White 18 25 75 

German synthetic line 41 33 67 
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Fig. 2. Chromosomal assignment of the porcine LIF gene by FISH analysis. The digoxigenin 

labeled PAC IVMP 714A1245 containing the porcine LIF gene was hybridized to GTG-

banded metaphase chromosomes of a normal pig. Double signals indicated by arrows are 

visible on both chromosomes 14q2.1→q2.2. The chromosomes were counterstained with 

propidium iodide and subsequently identified by DAPI staining. 

 

 

Mapping data 

Location: 14q2.1→q2.2 

Number of cells examined: 21 

Number of cells with specific signals: 0 (2), 1 (0), 2 (7), 3 (1), 4 (11) chromatids per cell 

Most precise assignment: 14q2.1→q2.2 

Location of background signals (site with >2 signals): none observed 
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ABSTRACT 

 

Cathepsin L (CTSL) is a lysosomal cysteine protease with potent elastase and collagenase 

activities. Its high activity in the uterine lumen during the period of placental attachment has 

led to speculation that CTSL may play an important role during embryonic implantation in the 

pig. Cathepsins have also been implicated in blastocyst implantation in other species like cat, 

rat and man. We isolated a PAC clone containing the porcine CTSL gene and determined the 

complete DNA sequence of the gene, which spans about 5.6 kb and consists of eight exons. 

The CTSL transcript encodes a primary peptide of 334 amino acids sharing 73%–78% 

identity with other mammalian cathepsin L precursor proteins. Based on fluorescence in situ 

hybridization and radiation hybrid mapping, the porcine CTSL gene was assigned to 

chromosome 10q11→q12. 

 

The proteolytic activity of cathepsin L as well as its high affinity for collagen (Kirschke et al., 

1982) and elastin (Mason et al., 1982) has led to the hypothesis that cathepsin L may be 

involved with the early stages of implantation in the endothelial-chorial placenta found in the 

cat (Verhage et al., 1989; Li et al., 1991). Although no direct evidence is available on the 

structural changes associated with implantation in the cat, two other species (rat and man) 

show remarkable changes in uterine elastin and collagen during pregnancy (Li et al., 1991). In 

the rat, uterine elastin content increases 300-fold over that of nonpregnant controls (Starcher 

et al., 1985). Aflin et al. (1988) have proposed that invasion of the human trophoblast into the 

decidua is associated with the breakdown of type IV collagen containing microfibrils. Thus it 

is tempting to speculate that cathepsin L may be important in the implantation process. 

Geisert et al. (1997) found that cathepsin L is also present in the pig, a species with 

noninvasive epitheliochorial placentation. The role of endometrial cathepsin L in the pig is 

obviously not for invasion through uterine surface epithelium. Rather it may possibly effect 

the alterations in uterine and placental development that are necessary for placental 

attachment and growth (Geisert et al., 1997). These events involve an increase in elastase 

activity and collagen remodelling in which cathepsin L could play a role. Uterine expression 

of cathepsin L has been demonstrated in a number of mammalian species indicating that this 

enzyme may have widespread importance in the early stages of blastocyst implantation and 

thus influencing embryo survival. 
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The complete coding sequences of the human and murine CTSL genes have been determined 

(Joseph et al., 1988). The cathepsin L genes of both species contain eight exons and seven 

introns. The human gene located on HSA9q21→q22 (Fan et al., 1989) spans approximately 

5.1 kb (Chauhan et al., 1993), whereas the murine gene on MMU13 (Pilz et al., 1995) spans 

approximately 7.4 kb (Chauhan et al., 1993). 

In this report we describe the cloning and sequencing of the complete porcine cathepsin L 

gene. The location of the porcine CTSL gene on SSC 10 was determined by radiation hybrid 

mapping and fluorescence in situ hybridization (FISH). 

 

MATERIALS AND METHODS 

Cloning and sequencing of the porcine CTSL gene 

For the isolation of porcine PAC clones containing the CTSL gene a porcine PAC library (Al-

Bayati et al., 1999) was initially screened with PCR primers CTSL_5 (5’-CCT CAA GGC 

AAT CAG GGC TGC A-3’) and CTSL_6 (5’-CAC AGT TGC GAC TGC CTT-3’) which 

were derived from the porcine cDNA (Acc. D37917) sequence. One CTSL PAC clone 

designated IVMP 714I16_0039 was isolated. DNA was isolated using the Qiagen plasmid 

maxi kit (Qiagen, Hilden, Germany). PAC DNA was restricted with different enzymes, 

separated on 0.8% agarose gels, and transferred to nylon membranes. Hybridizations with the 

above mentioned PCR product using the ECL enhanced chemiluminescence system 

(AmershamPharmacia, Freiburg, Germany) identified genomic fragments that contained parts 

of the porcine CTSL gene. Selected fragments were cloned into the polylinker of pGEM-4Z 

(Promega, Mannheim, Germany). Recombinant plasmid DNA was sequenced with the 

ThermoSequenase kit (AmershamPharmacia, Freiburg, Germany) and a LICOR 4200 

automated sequencer. After sequencing a collection of plasmid subclones, remaining gaps 

were closed by a primer walking strategy until both strands were completely sequenced. 

Sequence data were analyzed with Sequencher 4.0.5 (GeneCodes, Ann Arbor MI). Further 

analyses were performed with the online tools of the European Bioinformatics Institute 

(http://www.ebi.ac.uk/) and the RepeatMasker searching tool for repetitive elements (Smit 

AFA and Green P; RepeatMasker at http://ftp.genome.washington.edu/RM/RepeatMasker 

.html). 

http://ftp.genome.washington.edu/RM/RepeatMasker
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RH-mapping 

The INRA-University of Minnesota porcine Radiation Hybrid panel (IMpRH; Yerle et al., 

1998) was obtained from INRA, Laboratoire de Genetique Cellulaire, BP 27, Castanet-

Tolosan, France. The 118 DNAs of the RH panel were subjected to PCR amplification. A 

512-bp fragment of a part of the CTSL intron 5 was amplified using specific primers 

CTSL_RH1 (5’-AAA TGG AGC TCC TTC TCT TG-3’) and CTSL_RH2 (5’-AGA TCC 

CTT AGG TCT ACT TGG-3’). Temperature and time profile were 35 cycles of 94°C for 30 

s, 56°C for 1 min, and 72°C for 30 s. The PCR products were analyzed by agarose gel 

electrophoresis and ethidium bromide staining. Positive signals were scored and the results 

were statistically analyzed using the IMpRH mapping tool (http://imprh.toulouse.inra.fr/). 

Fluorescence in situ hybridization 

The PAC clone containing the porcine CTSL gene was labeled with digoxigenin by nick 

translation using a Nick-Translation-Mix (Boehringer Mannheim Corp., Mannheim, 

Germany). FISH on GTG-banded pig chromosomes was performed using 750 ng of 

digoxigenin labeled PAC DNA. 1 µg sheared total porcine DNA and 10 µg salmon sperm 

DNA were used as competitors in this experiment. After hybridization over night, signal 

detection was performed using a Digoxigenin-FITC Detection Kit (Quantum Appligene, 

Heidelberg, Germany). The chromosomes were counterstained with DAPI and slides were 

mounted in propidium iodide/antifade. Metaphases that were previously photographed were 

reexamined after hybridization with a Zeiss Axioplan 2 microscope equipped for 

fluorescence. 

 

Probe name: IVMP 714I16_0039 

Probe type: PAC clone from porcine PAC library (Al Bayati et al., 1999) 

Insert size: 75 kb 

Vector: pCYPAC2 

Proof of authenticity: DNA sequencing 

Gene reference: Chauhan et al. (1993) 
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RESULTS AND DISCUSSION 

 
A porcine PAC clone containing a 75-kb insert was isolated from a genomic library using a 

PCR based screening procedure and primers for the porcine CTSL gene. The DNA sequence 

of two adjacent SacI fragments (5518 and 7203 bp) harboring the complete CTSL gene was 

determined and deposited in the EMBL nucleotide database under the accession AJ315771. 

The genomic structure of the porcine CTSL gene was determined by comparison to the 

porcine CTSL cDNA and to the human CTSL gene. Similar to the human orthologue the 

porcine CTSL gene consists of eight exons and seven introns. The gene spans approximately 

5.6 kb of genomic sequence. All exon/intron boundaries conform to the GT/AG rule (Table 

1). Among the introns within the coding region, introns 2–5 interrupt the open reading frame  

 

 

Table 1: Exon-intron junctions of the porcine CTSL gene 

 

Exon sequences are shown in uppercase letters, and intron sequences in lowercase letters. 

Untranslated regions are shown in italics. The conserved AG/GT dinucleotides at exon/intron 

junctions are shown in boldface type. For the last exon the polyadenylation signal is shown in 

bold italics instead of an exon/intron junction. 

Exon 
Exon Size 

(bp) 5’ Intron/Exon…Exon/Intron 3’ Intron 
Intron Size 

(bp) Phase 

1 >66 …….…CCGCAGgtcagc 1 1168 5’-UTR 

2 137 ttccttccctagGTTTTT…GGCATGgttggt 2 281 0 

3 123 cattgcctctagAATGAA…GACATGgtgagt 3 103 0 

4 147 ttgtccttaaagACCAAT…AATCAGgtatga 4 98 0 

5 225 ttttattttcagGGTCAG…GGAAGGgtaaat 5 698 0 

6 166 tgcctttaaaagGAAACA…AGTCAGgtaggt 6 720 1 

7 118 tcactctcccagGCATTT…GAACAGgtatga 7 1218 2 

8 >382 ttcttctttcagTTGGGG…TAAAATAAATTTGAATT    
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Fig. 1. (A) Genomic structure of the porcine CTSL gene. (B) Approximate sizes and positions 

of the identified repetitive elements. (C) GC-content of the porcine CTSL gene. The GC-

content was calculated using a 300-bp window. The shaded box highlights a CpG island 

around the first exon of the porcine CTSL gene. 

 

 

between codons (type 0 intron), intron 6 interrupts the codon after the first nucleotide (type 1 

intron), and intron 7 interrupts the codon after the second nucleotide (type 2 intron). This is in 

agreement with the human and murine cathepsin L genes. 

A search for known porcine repetitive elements within the determined DNA sequence 

revealed the existence of eight SINE elements, three LINE elements and one LTR element 

(Fig. 1B). Repetitive sequences make up 24.4% of the 12715 bp that were determined. The 

overall GC-content of the reported sequence was 43.2%. A CpG island spanning 1260 bp 

(bases 2482–3741) was detected around the first exon (Fig. 1C), indicating the presence of a 

functional promoter region. 

The 1.4-kb CTSL mRNA harbors an open reading frame of 1002 bp coding for a primary 

peptide of 334 amino acids. The porcine peptide shares 78% and 73% identity with human 

and murine cathepsin L precursor proteins, respectively (Fig. 2). The first exon of the CTSL 
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gene contains no in-frame ATG, causing translation to initiate at an ATG encoded by exon 2 

(Fig. 1A). 

 

 
porcine         MKPSLFLTALCLGIASAAPKLDQNLDADWYKWKATHGRLYGMNEEGWRRAVWEKNMKMIE 60 
human           -N-T-I-A-F-------TLTF-HS-E-Q-T----M------------------------- 60 
murine          -NLL-L-AV----TALAT--F--TFS-E-HQ--S—R-----T---E----I-----R--Q 60 
                *:  *:*:.:*** * *: .:*:.:.*:* :**: * **** *** ****:*****:**: 
 
porcine         LHNQEYSQGKHGFSMAMNAFGDMTNEEFRQVMNGFQNQKHKKGKVFHESLVLEVPKSVDW 120 
human           ------RE---S-T----------S------------R-PR-----Q-P-FY-A-R---- 120 
murine          ---G---N-Q-G---E---------------V--YRH------RL-Q-P-M-KI------ 120 
                *** ** :*:*.*:* ********.******:**::::* :**::*:*.*. : *:**** 
 
porcine         REKGYVTAVKNQGQCGSCWAFSATGALEGQMFRKTGKLVSLSEQNLVDCSRPQGNQGCNG 180 
human           -------P----------------------------R-I-----------G----E---- 180 
murine          ----C—P----------------S-C------L-----I-----------HA-------- 180 
                **** **.***************:*.****** ***:*:*********** .***:**** 
 
porcine         GLMDNAFQYVKDNGGLDTEESYPYLGRETNSCTYKPECSAANDTGFVDIPQREKALMKAV 240 
human           ----Y-----Q------S------EAT-E.--K-N-KY-V----------KQ-------- 239 
murine          ----F----I-E-----S------EAKDG.--K-RA-FAV-----------Q-------- 239 
                **** ****:::*****:****** . :  **.*..: :.**********::******** 
 
porcine         ATVGPISVAIDAGHSSFQFYKSGIYYDPDCSSKDLDHGVLVVGYGFEGTDSNSSKFWIVK 300 
human           --------------E--L---E---FE-----E-M------------S-E-DNN-Y-L-- 299 
murine          ---------M--S-P-L---S-----E-N----NL-----L----Y------KN-Y-L-- 299 
                *********:**.* *: **..***::*:***:::*****:****:*.*:*:..*:*:** 
 
porcine         NSWGPEWGWNGYVKMAKDQNNHCGISTAASYPTV. 334 
human           ----E---MG--------RR-----AS-------. 333 
murine          ----S---ME--I-I---RD----LA------V-N 334 
                **** ***  **:*:***: ****:::*****.* 

 

Fig. 2. Alignment of the primary CTSL amino acid sequences of pig, man and mouse. 

Identical amino acids are marked by asterisks, while conserved amino acid exchanges are 

marked by colons (strong conservation) or dots (weak conservation). 

 

 

In order to determine the chromosome location of the porcine CTSL gene the isolated PAC 

clone was used as probe in a FISH experiment on porcine metaphase chromosomes. The 

porcine CTSL gene could be assigned to SSC10q11→q12 (Fig. 3). This chromosome 

assignment was confirmed by the results of the IMpRH panel. The CTSL gene was placed by 

multipoint analyses between the microsatellite marker SW173 (Rohrer et al., 1996) and the 

EST SSC10G07 (Jørgensen et al., 1997) with lod scores of 2.78 and 3.22, respectively. This 

region has been mapped to porcine chromosome 10q11→q12. The human CTSL gene has 

been mapped to HSA9q21→q22 (Fan et al., 1989; Chauhan et al., 1993). According to the 

comparative map of pig and human (Goureau et al., 1996; http://www.toulouse.inra.fr 

/lgc/pig/compare/compare.htm) the SSC10q11→q12 region shares conserved synteny with 

HSA9p12→p13 which is confirmed by the location of the genes AP4A (Jørgensen et al., 

http://www.toulouse.inra.fr /lgc/pig/compare/compare
http://www.toulouse.inra.fr /lgc/pig/compare/compare
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1997) and ACO1 (synonymous with IREB1; Winterø et al., 1998). Our mapping results show 

that the established synteny between proximal HSA9p and proximal SSC10q is more complex 

than previously thought and that the comparative maps of pig and man in this region have to 

be refined. In particular it seems that the conservation of synteny extends beyond the 

centromere of HSA9 so that conserved sequences from HSA9q can also be found on 

SSC10q11→q12. Therefore, it would be helpful to have additional information on the 

mapping positions in pig of other orthologous genes situated between HSA9p13 and 

HSA9q21→q22 to delineate the extended borders of the previously established conserved 

segment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Chromosome assignment of the porcine CTSL gene by FISH analysis. The 

digoxigenin labeled PAC IVMP 714I16_0039 containing the porcine CTSL gene was 

hybridized to GTG-banded metaphase chromosomes from a normal pig. Double signals 

indicated by arrows are visible on both chromosomes 10q11→q12. The chromosomes were 

counterstained with propidium iodide and DAPI. 
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Mapping data 

Location: 10q11→q12 

Number of cells examined: 35 

Number of cells with specific signals: 0 (11), 1 (2), 2 (11), 3 (3), 4 (8) chromatids per cell 

Most precise assignment: 10q11→q12 

Location of background signals (site with >2 signals): none observed 
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Source/description 

Epidermal growth factor (EGF) is a polypeptide that has many different biological properties. 

In vitro, it is a potent mitogen for many cultured cells and in vivo, it stimulates the 

proliferation and differentiation of skin tissue and corneal, lung and tracheal epithelia1. EGF is 

also involved in early conceptus development in pig2. It is produced by the conceptus and in 

the uterus of the sow. In the fetus EGF stimulates growth and proliferation of skin epithelia3. 

In the uterus the mitogen may induce endometrial growth and differentiation to create an 

environment favourable for the developing conceptus. For the isolation of the porcine PAC 

clone containing the EGF gene a porcine PAC library4 was initially screened with PCR 

primers EGF_1 (5’-GAA ACA ATT CCC GTG TTC TCT-3’) and EGF_2 (5’-TCA CTT 

CCA CAC CTG TAA CAT CT-3’)5. PCR amplification (25 µl final volume) was performed 

using 25 ng of genomic porcine DNA, 1x PCR buffer (QIAGEN Hilden, Germany), 100 µM 

each dNTP, 10 pmol each primer, and 2.5 U Taq polymerase (QIAGEN Hilden, Germany). 

The thermocycler profile was 94°C for 4 min; 38 cycles of 94°C for 30 s, 60°C for 60 s, and 

72°C for 30 s; followed by a final cooling step at 4°C for 10 min. One EGF PAC clone 

designated TAIGP714I1851 was isolated. DNA from the clone was isolated using the Qiagen 

plasmid maxi kit (Qiagen, Hilden, Germany). 

 

Chromosome preparation 

Porcine metaphase spreads for FISH on GTG-banded chromosomes were prepared using 

phytohemagglutinin stimulated blood lymphozytes from a normal pig. Cells were harvested 

and slides prepared using standard cytogenetic techniques. Prior to fluorescence in situ 

hybridization the chromosomes were GTG-banded and well-banded spread metaphase 

chromosomes were photographed using a highly sensitive CCD camera and IPLab 2.2.3 

(Scanalytics, Inc.). 

 

Fluorescence in situ hybridization 

A 70 kb PAC clone containing the porcine EGF gene (TAIGP714I1851) was labeled with 

digoxigenin by nick translation using a Nick-Translation-Mix (Boehringer Mannheim Corp., 

Mannheim, Germany). FISH on GTG-banded pig chromosomes was performed using 750 ng 

of digoxigenin labeled PAC DNA. 1 µg sheared total porcine DNA and 10 µg salmon sperm 

DNA were used as competitors in this experiment. After hybridization overnight, signal 

detection was performed using a Digoxigenin-FITC Detection Kit (Quantum Appligene, 

Heidelberg, Germany). The chromosomes were counterstained with DAPI and slides were 
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mounted in propidium iodide/antifade. Metaphases that were previously photographed were 

re-examined after hybridization with a Zeiss Axioplan 2 microscope equipped for 

fluorescence. 

 

Radiation hybrid (RH) mapping 

The INRA-University of Minnesota porcine Radiation Hybrid panel6 (ImpRH) was obtained 

from INRA, Laboratoire de Genetique Cellulaire, BP 27, 31326 Castanet-Tolosan, France. 

The 118 DNAs of the RH panel were subjected to PCR amplification. A 550-bp fragment of 

the EGF gene was amplified using the above mentioned primers EGF_1 and EGF_25. The 

PCR products were analyzed by agarose gel electrophoresis and ethidium bromide staining. 

Positive signals were scored and the results were statistically analyzed using the IMpRH 

mapping tool (http://imprh.toulouse.inra.fr/) 

 

Chromosomal location 

The chromosomal location of the porcine EGF gene on SSC8q2.3-q2.4 was determined by 

FISH of the PAC clone TAIGP714I1851 to metaphase chromosomes (Fig. 1). This 

localization was confirmed by analyzing a porcine radiation hybrid panel. The retention 

frequency of the PCR primers EGF_1 and EGF_2 was 16 %. Two-point analysis revealed 

close linkage of EGF to microsatellite markers SW1497, SW1337 and SW21608 at distances of 

4.2, 3.9 and 5.9 cR, respectively. The corresponding LOD scores were 9.52, 9.9 and 6.47, 

respectively. This result is in concordance with the FISH assignment of the porcine EGF gene 

to SSC8q2.3-q2.4. 

 

Comment: In this report we mapped a porcine PAC clone containing the EGF gene to 

SSC8q2.3-q2.4 which is consistent with comparative mapping information in human9 

(http://www.toulouse.inra.fr/lgc/pig/compare/compare.htm). The human EGF gene was 

assigned to HSA4q25. This chromosome shares extensive conserved regions with SSC8. 
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Figure 1 Chromosomal assignment of the porcine EGF gene by FISH analysis. The 

digoxigenin labeled PAC clone TAIGP714I1851Q5 containing the porcine EGF gene was 

hybridized to GTG-banded metaphase chromosomes of a normal pig. Double signals 

indicated by arrows are visible on both chromosomes 8q2.3-q2.4. The chromosomes were 

counterstained with propidium iodide and subsequently identified by DAPI staining. 
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RATIONALE AND SIGNIFICANCE 

 

ITIH4 is a glycoprotein that belongs to the inter-α-trypsin inhibitor family of serine protease 

inhibitors which act as acute phase reactants after trauma (Buchmann et al., 1990). 

Endometrial gene expression of ITIH4 in pig was detected during oestrus cycle (days 0–18) 

and early pregnancy (days 10–18). Gene expression of ITIH4 is enhanced during the 

midluteal phase (days 12 and 15) of the oestrus cycle and the period of trophoblast attachment 

(days 12–18). It was not detected in day 10 or day 12 pig conceptus tissues (Geisert et al., 

1998). Synthesis of the glycoprotein by the uterine epithelium is stimulated by progesterone 

(Geisert et al., 1995). The role of ITIH4 in uterine function and in the conceptus has not been 

established. Regulation of cleavage for release of the polypeptide during pregnancy and early 

conceptus development suggests that it may play a role in conceptus-uterine interactions for 

the establishment of pregnancy in pigs, probably as an acute phase protein for protection of 

the uterus from the inflammatory response induced by conceptus attachment to the uterine 

epithelium (Geisert et al., 1998; Gonzales-Ramon et al., 1995). In this study, we assigned the 

ITIH4 gene to SSC13q2.1→q2.2. 

 

 

MATERIALS AND METHODS 

 

Isolation and characterization of the ITIH4 clone 

For the isolation of the porcine PAC clone containing the ITIH4 gene a porcine PAC library 

(Al-Bayati et al., 1999) was initially screened with PCR primers ITIH4_1 (5’-GTT CGG 

GAA GCC ATA GAC G-3’) and ITIH4_2 (5’-CGG AAG TTG TCC TGC GTG AC-3’) 

which were derived from the porcine cDNA sequence (Acc. S82800). One ITIH4 PAC clone 

designated IVMP 714I12_0006 was isolated. 

 

Chromosome preparation 

Porcine metaphase spreads were prepared using phytohemagglutinin stimulated blood 

lymphocytes from a normal pig. Cells were harvested and slides prepared using standard 

cytogenetic techniques. Prior to fluorescence in situ hybridization the chromosomes were 

GTG-banded and well-banded metaphase chromosome spreads were photographed using a 

highly sensitive CCD camera and IPLab 2.2.3 (Scanalytics, Inc.). 
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Fluorescence in situ hybridization 

A 180-kb PAC clone containing the porcine ITIH4 gene was labeled with digoxigenin by nick 

translation using a Nick-Translation-Mix (Boehringer Mannheim Corp., Mannheim, 

Germany). FISH on GTG-banded pig chromosomes was performed using 750 ng of 

digoxigenin labeled PAC DNA. 1 µg sheared total porcine DNA and 10 µg salmon sperm 

DNA were used as competitors in this experiment. After hybridization overnight, signal 

detection was performed using a Digoxigenin-FITC Detection Kit (Quantum Appligene, 

Heidelberg, Germany). The chromosomes were counterstained with DAPI and slides were 

mounted in propidium iodide, antifade. Metaphases that were previously photographed were 

reexamined after hybridization with a Zeiss Axioplan 2 microscope equipped for 

fluorescence.  

 

Probe name: IVMP 714I12_0006 

Probe type: PAC clone from porcine PAC library (Al Bayati et al., 1999) 

Insert size: 180 kb 

Vector: pCYPAC2 

Proof of authenticity: DNA sequencing 

Gene reference: Hashimoto et al. (1996) 

 

Radiation hybrid (RH) mapping 

DNA from the clone designated IVMP 714I12_0006 was isolated using the Qiagen plasmid 

maxi kit (Qiagen, Hilden, Germany). The INRA-University of Minnesota porcine Radiation 

Hybrid panel (ImpRH; Yerle et al., 1998) was obtained from INRA, Laboratoire de Genetique 

Cellulaire, BP 27, 31326 Castanet-Tolosan, France. The 118 DNAs of the RH panel were 

subjected to PCR amplification. A 350-bp fragment of the ITIH4 gene was amplified using 

the above-mentioned primers ITIH4_1 and ITIH4_2. Temperature and time profile were 35 

cycles of 94°C for 30 s, 60°C for 1 min, and 72°C for 30 s. The PCR products were analyzed 

by agarose gel electrophoresis and ethidium bromide staining. Positive signals were scored 

and the results were statistically analyzed using the IMpRH mapping tool 

(http://imprh.toulouse.inra.fr/). 



Porcine ITIH4 gene  Chapter V 

 85

RESULTS AND DISCUSSION 

 

The chromosome location of the porcine ITIH4 gene was determined by FISH using the PAC 

clone IVMP 714I12_0006 to probe metaphase chromosomes (Fig. 1). 

Mapping data: 

Location: SSC13q2.1→q2.2 

Number of cells examined: 45 

Number of cells with specific signals: 0 (2), 1 (7), 2 (10), 3 (12), 4 (14) chromatids per cell 

Most precise assignment: SSC13q2.1→q2.2 

Location of background signals (site with >2 signals): none observed 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Chromosomal assignment of the porcine ITIH4 gene by FISH analysis. The 

digoxigenin labeled PAC IVMP 714I12_0006 containing the porcine ITIH4 gene was 

hybridized to GTG-banded metaphase chromosomes of a normal pig. Double signals 

indicated by arrows are visible on both chromosomes 13q2.1→q2.2. The chromosomes were 

counterstained with propidium iodide and subsequently identified by DAPI staining. 
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In order to confirm the location of the porcine ITIH4 gene a porcine radiation hybrid panel 

was analyzed. The PCR primers derived from the PAC clone containing the gene showed a 

retention frequency of 22%. Two-point analysis revealed close linkage of ITIH4 to EST 

SSC24F05 (Jørgensen et al., 1997) at a distance of 5.1 cR (LOD score 7.35) and to 

microsatellite marker SW864 (Davies et al., 1995) at a distance of 7.3 cR (LOD score 5.02). 

On the porcine linkage map SW864 is closely linked to the microsatellites SW2458 and 

SW1400 (Rohrer et al., 1996) which have been physically assigned to SSC13q2.1→q2.2 

(Alexander et al., 1996) 

In this report we mapped a porcine PAC clone containing the ITIH4 gene to 

SSC13q2.1→q2.2. The human ITIH4 gene was assigned to HSA3p21.2→p14.1. This is 

consistent with the established comparative map of pig and human (Goureau et al., 1996; 

http://www.toulouse.inra.fr/lgc/pig/compare/compare.htm) indicating significant homology 

between SSC13 and HSA3. On both the human and the porcine chromosome ITIH4 was 

located close to CAMP (cathelicidin antimicrobial peptide, also known as FALL39) and 

DAG1 (dystroglycan1) and proximal from TF (transferrin), CP (ceruloplasmin) and SIAT1 

(sialyltransferase) which points to a largely conserved gene order in this genome region. Yet it 

must be stressed that until more orthologous genes have been mapped precisely there is still 

the possibility of small gene order rearrangements within this large homologous region. 
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ABSTRACT 

 

Leukemia inhibitory factor receptor (LIFR), epidermal growth factor receptor (EGFR), and 

their respective ligands have been implicated in regulating growth and development of the 

early pig conceptus. We isolated a PAC clone containing the porcine gene for LIFR and a 

BAC clone with the porcine EGFR gene, respectively. On each of these clones one 

microsatellite marker was identified by sequencing a collection of subclones. These gene-

associated markers were evaluated by genotyping of 202 unrelated boars of four different 

breeds. Based on fluorescence in situ hybridization and radiation hybrid mapping, the porcine 

LIFR gene was assigned to SSC16q13→q14. The EGFR gene mapped to SSC9q26. 

             

 

Leukemia inhibitory factor (LIF) is a member of the IL-6 family of pleiotropic cytokines and 

was initially identified by its capacity to induce macrophage differentiation of the myeloid 

leukaemic cell line M1 (Tomida et al., 1984; Hilton et al., 1988a, 1988b). The effects of LIF 

in many physiological systems include proliferation, differentiation, and cell survival (for 

reviews see Hilton, 1992; Metcalf, 1992). These biological effects of LIF are mediated by 

binding to a specific LIF receptor subunit (LIFR) (Gearing et al., 1991) that is, being a 

member of the cytokine-binding family of receptor subunits. Formation of a high-affinity 

signaling complex requires the association of the LIF-LIFR complex with another 

transmembrane signal transducing molecule gp130 (Gearing et al., 1992a, 1992b), which 

itself exhibits features of the cytokine family of receptors (Hibi et al., 1990). The essential 

role of endometrial synthesized LIF in blastocyst growth and implantation in mice (Stewart et 

al., 1992; Stewart, 1994; Savatier et al., 1996) implies that the LIF/LIFR system may also 

serve a vital function in conceptus development and implantation in pigs (Geisert and Yelich, 

1997). This implication is supported by the detection of LIF gene expression in porcine 

endometrium at the time of blastocyst attachment (Anegon et al., 1994; Modric et al., 2000), 

and the presence of LIFR mRNA in porcine peri-implantation conceptuses (Yelich et al., 

1997; Modric et al., 2000). 

The cellular effects of epidermal growth factor (EGF) and EGF-like proteins, including 

transforming growth factor α (TGFα), heparin-binding EGF, and amphiregulin are mediated 

through binding to the membrane bound EGF receptor (EGFR) (Prigent and Lemoine, 1992). 

All of these ligands are expressed by the pig endometrium during early pregnancy (Brigstock 

et al., 1990, 1996a, 1996b; Kennedy et al., 1994; Kim et al., 1995). A quantitative trait locus 
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(QTL) for uterine capacity was identified on the long arm of chromosome 8 near 71 cM 

(Rohrer et al., 1999). This region is near the known location of the EGF gene (Mendez et al., 

1999; Spötter et al., 2001). Thus, the chromosomal location of EGF, its specific biochemical 

actions including cell proliferation (Haining et al., 1991) and initiation of DNA synthesis 

(Tomooka et al., 1986), its ability to improve the embryonic development in vitro (Wood and 

Kaye, 1989; Paria and Dey, 1990), and its increased luminal content on day 12 of pregnancy 

followed by a decline to day 16 (Diehl et al., 1994) indicate that the EGF/EGFR system may 

play a significant role in embryonic and maternal interactions (Wollenhaupt et al., 1999). This 

is further supported by the finding that endometrial and conceptus tissues express EGFR 

(Zhang et al., 1992a, 1992b; Kennedy et al., 1994). 

In this study we describe the isolation of one PAC and one BAC clone containing the porcine 

genes for LIFR and EGFR, respectively. On each of these clones one microsatellite marker 

was identified by sequencing a collection of subclones. These new and highly polymorphic 

DNA markers will be used for upcoming association studies to test for significant additive 

and dominant gene effects on the embryonic survival and the number of piglets born alive 

We used the radiation hybrid mapping (RH) method and the fluorescence in situ hybridization 

(FISH) method to assign the LIFR gene to SSC16q13→q14 and the EGFR gene to SSC9q26.  

 

 

MATERIALS AND METHODS 

 

Isolation and subcloning of genomic clones for sequence analysis based identification of 

microsatellites 

For the isolation of porcine PAC clones containing the LIFR gene the porcine PAC library 

TAIGP714 (Al-Bayati et al., 1999) was initially screened with PCR primers LIFRpacA (5’-

CAG AGA AGA GCA TGT TTG TC-3’) and LIFRpacB (5’-GTC GAT GTA AAT GAC 

CTG TG-3’), which were derived from the porcine cDNA (Acc. U91518) sequence. One 

LIFR PAC clone designated TAIGP714F2198 was isolated. For the isolation of BAC clones 

containing the porcine EGFR gene, high-density clone filters of the porcine genomic BAC 

library RPCI-44, constructed in pTARBAC2 (Fahrenkrug et al., 2001), were screened with 
32P labeled cDNA probes according to the RPCI protocols (http://www.chori.org/bacpac/). 

The cDNA clones required for this purpose were obtained from the Resource Center/Primary 

Database (http://www.rzpd.de/). One EGFR BAC clone designated RPCI44-91P11 was 

isolated. PAC and BAC DNAs were isolated using the Qiagen plasmid maxi kit (Qiagen, 
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Hilden, Germany). This DNA was restricted with different enzymes and separated on 0.8% 

agarose gels. The resulting fragments were cloned into the polylinker of pGEM-4Z (Promega, 

Mannheim, Germany). Recombinant plasmid DNA was sequenced with the 

ThermoSequenase kit (AmershamPharmacia, Freiburg, Germany) and a LICOR 4200 

automated sequencer. Sequence data were analyzed with Sequencher 4.0.5 (GeneCodes, Ann 

Arbor, MI). A search for genetic markers in the determined DNA sequences of the two 

isolated clones resulted in the development of one microsatellite marker for each gene.  
 

 

Determination of microsatellite marker characteristics 

Genotyping for EGFR and LIFR was performed using the PCR primer pairs EGFR_MSc (5’-

CTT GTT GTA AAG GGT GCC TG-3’)/EGFR_MSd (5’-GGC GAA TGT TTT GTT CTC 

CT-3’) and LIFR_MSa (5’-GAA ATC ATG AGG AGG GTA C-3’)/LIFR_MSb (5’-GTT 

TTG ATA TAG GAG TGT GTG-3’) respectively. The PCR amplification (15 µl final 

volume) for both primer pairs was performed using 20 ng of genomic porcine DNA, 1× PCR 

buffer (GL BioTech, Bremen, Germany), 0.5 µl enhancer (GL BioTech) 100 µM each dNTP, 

4 pmol each primer, and 1 U Taq polymerase (GL BioTech). Conditions were 94°C 4 min, 

followed by 35 cycles of: 94°C, 30 s; 58°C, 60 s; 72°C, 30 s for both primer pairs. Marker 

characteristics (Tables 1 and 2) were determined by genotyping boars belonging to four 

different pig breeds (Duroc, German Landrace, German Large White, and a synthetic line 

from a German commercial pig breeding company). 

 

RH-Mapping 

The INRA-University of Minnesota porcine Radiation Hybrid panel (IMpRH; Yerle et al., 

1998) was obtained from INRA, Laboratoire de Genetique Cellulaire, BP 27, 31326 Castanet-

Tolosan, France. The 118 DNAs of the RH panel were subjected to PCR amplification. A 

448-bp fragment of the porcine LIFR gene was amplified using the above-mentioned primers 

LIFRpacA and LIFRpacB. A 180-bp fragment of the porcine EGFR gene was amplified using 

the primers EGFRpacA (5’-CAA GGT ACA AGT AAC AAG C-3’) and EGFRpacB (5’-

ATG TAG GTG ATC TCC AAG-3’). Temperature and time profile were 94°C for 4 min, 

followed by 35 cycles of 94°C for 30 s, 56°C (LIFR) and 52°C (EGFR) respectively for 1 

min, and 72°C for 30 s. The PCR products were analyzed by agarose gel electrophoresis and 

ethidium bromide staining. Positive signals were scored and the results were statistically 

analyzed using the IMpRH mapping tool (http://imprh.toulouse.inra.fr/).
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Fluorescence in situ hybridization 

The genomic clones containing the porcine genes for LIFR and EGFR, respectively, were 

labeled with digoxigenin by nick translation using a Nick-Translation-Mix (Boehringer 

Mannheim Corp., Mannheim, Germany). FISH on GTG-banded pig chromosomes was 

performed using 750 ng (50 ng/µl) of digoxigenin labeled PAC or BAC DNA respectively. 1 

µg sheared total porcine DNA and 10 µg salmon sperm DNA were used as competitors in this 

experiment. After hybridization overnight, signal detection was performed using a 

Digoxigenin-FITC Detection Kit (Quantum Appligene, Heidelberg, Germany). The 

chromosomes were counterstained with DAPI and slides were mounted in propidium 

iodide/antifade. Metaphases that were previously photographed were reexamined after 

hybridization with a Zeiss Axioplan 2 microscope equipped for fluorescence.  

 

 

RESULTS AND DISCUSSION 

 

The porcine PAC clone TAIGP714F2198 containing the LIFR gene was isolated from a 

genomic library using a PCR based screening procedure and primers for the porcine LIFR 

gene. The porcine BAC clone RPCI44-91P11 containing the EGFR gene was isolated by 

hybridization of high-density clone filters of a genomic library with 32P labeled cDNA probes 

of the porcine EGFR gene. 

A search for microsatellites within the genomic clones resulted in the development of two 

microsatellite markers, one on each clone. Both microsatellites are (CA)n dinucleotide repeats. 

Marker characteristics were determined by genotyping boars of four different pig breeds 

(Tables 1 and 2) using the above mentioned PCR primer pairs EGFR_MSc/EGFR_MSd and 

LIFR_Msa/LIFR_MSb respectively. 

Concerning the LIFR linked microsatellite the total number of different alleles observed over 

all four breeds was nine and their sizes ranged between 133 and 149 bp. The highest number 

of alleles (nine) was found in German Landrace (GL) and the lowest (five) in German Large 

White (GW). One reason for this finding might be the different sample sizes of genotyped 

boars, which were 89 in GL and 19 in GW. The rare alleles might also occur in a larger 

sample size of GW. Another reason for the different number of alleles between the breeds 

might be breed specific alleles. To a greater degree the latter seems also to be the reason for 

the allele distribution of the EGFR linked microsatellite in the different breeds. Here the 

highest number of alleles (nine) was found in the German synthetic line (CC) with 48
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Table 1: Characterization of the newly developed LIFR-linked microsatellite marker  

 

1Polymorphism Information Content 

 

 

Table 2: Characterization of the newly developed EGFR-linked microsatellite marker 
 

1Polymorphism Information Content 

 

 

genotyped boars and the lowest (five) again in GW. Six alleles were identified in the GL 

boars. So here the number of alleles is not positively correlated with the number of genotyped 

animals as is the case dealing with the LIFR linked microsatellite (Table 1). A total of ten 

different alleles was observed over all four breeds concerning the EGFR associated marker 

and their sizes ranged between 110 and 136 bp. For both markers the values for expected 

heterozygosity and PIC (Polymorphism Information Content) are distributed similarly 

between the different breeds. The highest values were found in the CC boars followed by GL 

breed 
 

sample size 
 

no. of alleles 
 

allele size 
min-max 

(bp) 

expected 
heterozygosity 

PIC1 

 

Duroc 43 7 133-149 0.72 0.67 

German Landrace 89 9 133-149 0.79 0.76 

German Large White 19 5 133-149 0.58 0.55 

German synthetic line 47 7 133-149 0.81 0.78 

breed 
 

sample size 
 

no. of alleles 
 

allele size 
min-max 

(bp) 

expected 
heterozygosity 

PIC1 

 

Duroc 45 6 110-136 0.65 0.59 

German Landrace 88 6 114-136 0.71 0.68 

German Large White 20 5 122-136 0.59 0.51 

German synthetic line 48 9 110-136 0.82 0.79 
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and Duroc. The lowest values for expected heterozygosity and PIC occurred in GW. The 

higher degree of heterozygosity of the CC animals compared to GW and Duroc is not 

surprising, taking into account that this line has a multibreed origin. In conclusion, the two 

newly developed microsatellite markers were shown to be highly polymorphic and  
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Fig. 1. Chromosomal assignment of the porcine genes for  LIFR (A) and EGFR (B) by FISH 

analysis. The digoxigenin labeled genomic clones containing the porcine genes for LIFR and 

EGFR, respectively, were hybridized to GTG-banded metaphase chromosomes of a normal 

pig. The chromosomes were counterstained with propidium iodide and subsequently 

identified by DAPI staining. Double signals indicated by arrows are visible on both 

chromosomes 16q13→q14 (A) and 9q26 (B). The respective GTG-banded metaphase 

chromosomes are displayed in the left bottom corners of (A) and (B). 

(C) Syntenic relationship between SSC9q and HSA7. Mapped genes are displayed as black 

bars. Syntenic relationship to other chromosomes is indicated by grey bars with exception of 

SSC3 because in this case chromosomal correspondences have not been confirmed by 

chromosomal painting. This indication system is in accordance with the conventions of the 

comparative map of pig and human (http://www.toulouse. inra.fr/lgc/pig/compare/compare 

.htm). 

 

 

heterozygous in a sample of four different pig breeds. They have been physically anchored by 

FISH and radiation hybrid mapping and should prove useful for future QTL fine mapping 

studies. The two gene associated microsatellites will also be used for upcoming association 

studies to test for significant additive and dominant gene effects on the embryonic survival 

and number of piglets born alive. 

The chromosome locations of the porcine genes for LIFR and EGFR were determined by 

FISH of the PAC clone TAIGP714F2198 and the BAC clone RPCI44-91P11, respectively, to 

metaphase chromosomes (Fig. 1). 

 

Mapping data: LIFR 

Location: 16q13→q14  

Number of cells examined: 30 

Number of cells with specific signals: 0 (3), 1 (4), 2 (8), 3 (4), 4 (11) chromatids per cell 

Most precise assignment: 16q13→q14 

Location of background signals (site with >2 signals): none observed 
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Mapping data: EGFR 

Location: 9q26 

Number of cells examined: 30 

Number of cells with specific signals: 0 (1), 1 (0), 2 (4), 3 (9), 4 (16) chromatids per cell 

Most precise assignment: 9q26 

Location of background signals (site with >2 signals): none observed 

 

In order to confirm these localizations, a porcine radiation hybrid panel was analyzed. The 

PCR primers derived from the PAC clone containing the LIFR gene, showed a retention 

frequency of 36%. Two-point analysis revealed close linkage of LIFR to the microsatellite 

markers SW1645 (Rohrer et al., 1996) at a distance of 0.9 cR (LOD score 23.68) and SW403 

(Rohrer et al., 1994) at a distance of 2.2 cR (LOD score 15.95). On the porcine linkage map 

the next physically assigned marker to SW1645 and SW403 is, with a distance of 5.6 cM, the 

microsatellite S0298 at SSC16q14 (Hoyheim et al., 1996). Therefore these findings are in 

agreement with the FISH result. 

The PCR primer pair derived from the BAC clone RPCI44-91P11 containing the EGFR gene, 

showed a retention frequency of 30%. Two-point analysis revealed close linkage of the EGFR 

gene to the microsatellites SW749 (Rohrer et al., 1996) at a distance of 6.7 cR (LOD score 

5.47) and SW1651 (Rohrer et al., 1996) at a distance of 8.2 cR (LOD score 4.00). SW1651 

has been physically assigned to SSC9q26 (Lopez-Corrales et al., 1999), which is in perfect 

accordance with the FISH result. 

In this report we mapped a porcine PAC clone containing the LIFR gene to 16q13→q14. The 

human LIFR gene has been assigned to HSA5p13→p12. This is consistent with the 

established comparative map of pig and human (Goureau et al., 1996; http://www.toulouse. 

inra.fr/lgc/pig/compare/compare.htm) indicating significant conserved synteny between 

SSC16 and HSA5. On both the human and the porcine chromosome LIFR was localized in 

the same chromosomal region as GHR (growth hormone receptor), NPR3 (natriuretic peptide 

receptor C/guanylate cyclase C), C9 (complement component 9) and PRLR (prolactin 

receptor), which points to a largely conserved gene order in these genome regions. 

We assigned a porcine BAC clone containing the EGFR gene to SSC9q26. In the current 

comparative map of pig and human, SSC9 shares conserved synteny with HSA1, HSA7 and 

HSA11. The human EGFR has been mapped to HSA7p12. Figure 1C illustrates the 
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relationship between SSC9q and HSA7. The current status of the comparative map is that the 

homology HSA7p12 region shares homology with SSC3 and SSC18 but not with SSC9. 

Hence our mapping result is not in agreement with the established homology between HSA7 

and SSC9. However, it must be stressed that until more orthologous genes have been mapped 

precisely within these large homologous regions there is still the possibility of gene order 

rearrangements and refinement of evolutionary chromosomal breakpoints. Thus, our mapping 

results show the need of refinement of the established homology between SSC3, SSC9, 

SSC18 and HSA7 which seems to be more complex than previously thought. 
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SUMMARY 

Five new microsatellite markers at candidate gene loci for litter size have been identified 

based on partial sequence analysis of porcine PAC and BAC clones containing the respective 

candidate genes encoding for epidermal growth factor (EGF), inter-α trypsin inhibitor heavy 

chain 4 (ITIH4), cathepsin L (CTSL), leukemia inhibitory factor receptor (LIFR), and 

epidermal growth factor receptor (EGFR). These gene associated markers were characterized 

and evaluated for their association with the number of piglets born alive (NBA) in a German 

synthetic pig line. Genotyping was performed on 273 sows. Information on 955 litter records 

from these 273 sows was used in the analyses with respect to litter size. In the genotyped 

sample the developed microsatellite markers were shown to be highly polymorphic. However, 

estimation of allele substitution effects revealed no significant associations between any of the 

examined markers and the studied phenotypes regarding litter size. 

Key Words: DNA Markers, Litter Size, Pigs 

 

 

INTRODUCTION 

The use of marker assisted selection (MAS) in combination with traditional selection methods 

can generate a substantial increase in genetic response. This selection strategy is particularly 

suited for traits that are age-limited (measurable only in animals of a certain age), sex-limited 

(measurable only in one sex), and/or of low heritability, such as litter size (Soller, 1994) 

where moderate increases can equal large gains in profit. In comparison to phenotypic 

information the use of genetic markers has two advantages. The first is that their early 

availability contributes to a shortening of the generation interval and the second is the 

possibility to enhance the accuracy of selection and thus the selection response of a trait by 

direct selection of gene variants in both sexes affecting its expression positively. 

The candidate gene approach was proposed as procedure to identify genes with significant 

phenotypic performance effects and possible use in genetic improvement programs. Candidate 

genes are considered for investigation based on physiological, immunological or endocrine 

evidence. Polymorphisms within such a gene or a closely linked genetic marker are used for 

genotyping performance-tested resource populations to estimate their effects. The decision to 

incorporate genetic markers into MAS schemes requires reliable information about additive 

and dominance effects of each marker in the population of interest (Soller, 1994). There is 

evidence that the genes for EGF, ITIH4, CTSL, LIFR, and EGFR are involved in early 

conceptus development and/or conceptus-uterine interactions for the establishment of 
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pregnancy in pigs and thus affecting litter size. In the following the reasons for their choice as 

candidate genes in the current study are briefly discussed. 

EGF, encoding for a polypeptide with many different biological properties, and EGFR, 

encoding for its membrane bound receptor, were investigated as potential candidate genes for 

litter size for several reasons. A quantitative trait locus (QTL) for uterine capacity was 

identified on the long arm of the porcine chromosome 8 near 71 cM (Rohrer et al., 1999). 

This region is near the known location of the EGF gene on SSC8q2.3-q2.4 (Spötter et al., 

2001a). Accordingly, indications for a significant role of the EGF/EGFR system in embryonic 

and maternal interactions (and thus litter size) are the chromosomal location of EGF, and 

furthermore, its specific biochemical actions including cell proliferation (Haining et al., 1991) 

and initiation of DNA synthesis (Tomooka et al., 1986), its ability to improve the embryonic 

development in vitro (Wood and Kaye, 1989; Paria and Dey, 1990), and its increased luminal 

content on day 12 of pregnancy followed by a decline to day 16 (Diehl et al., 1994), which is 

the time around embryo implantation. These indications are further supported by the finding 

that endometrial and conceptus tissues express EGFR (Kennedy et al., 1994). 

The plasma glycoprotein ITIH4 is associated with the time of conceptus attachment to the 

uterine surface and conceptus survival in pigs (Geisert et al., 1995, 1998). Geisert et al. (1997) 

proposed a model in which ITIH4 is no longer described as a part of the plasma but present on 

the uterine epithelial surface. Alteration in ITIH4 may not be the only factor involved with 

trophoblast attachment; however, cleavage of ITIH4 could induce local alterations in 

receptivity to the conceptus that permits the conceptus to contact integrins for firm attachment 

to the uterine epithelium (Bowen et al., 1997). Thus ITIH4 is a potential candidate gene for 

litter size. In addition to the possible role in trophoblast attachment, the multipolypeptide 

chain of the pig ITIH4 could also serve to stabilize the epithelial glycocalyx of the uterus and 

protect it from free radical damage (Geisert and Yelich, 1997). ITIH4 was assigned to 

SSC13q2.1-q2.2 (Kuiper et al., 2001). 

Cathepsin L (CTSL) is a lysosomal cysteine protease with potent elastase (Mason et al., 1982) 

and collagenase (Kirschke et al., 1982) activities. Its high activity in the uterine lumen during 

the period of placental attachment has led to speculation that CTSL may play an important 

role during embryonic implantation in the pig (Geisert et al., 1997). Cathepsins have also been 

implicated in blastocyst implantation in other species like rat (Starcher and Percival, 1985) 

and man (Aflin et al., 1988). In the pig, endometrial cathepsin L may possibly effect the 

alterations in uterine and placental development that are necessary for placental attachment 

and growth of the embryo (Geisert and Yelich, 1997). These events involve an increase in 
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elastase activity and collagen remodelling in which cathepsin L could play a role and thus 

influence the number of piglets born alive. CTSL was mapped to SSC10q1.1-q1.2 (Spötter et 

al., 2001b). 

The gene for LIFR, a receptor subunit that binds to LIF, a pleiotropic cytokine, was chosen as 

a candidate gene for litter size due to the essential role of the LIF/LIFR system in blastocyst 

growth and implantation in mice (Stewart et al., 1992; Stewart, 1994; Savatier et al., 1996). 

This implies that the LIF/LIFR system may also serve a vital function in conceptus 

development and implantation - and thus litter size - in pigs (Geisert and Yelich, 1997). This 

implication is supported by the detection of LIF gene expression in porcine endometrium at 

the time of blastocyst attachment (Anegon et al., 1994; Modric et al., 2000), and the presence 

of LIFR mRNA in porcine peri-implantation conceptuses (Yelich et al., 1997; Modric et al., 

2000). The LIFR gene was assigned to SSC16q1.3-q1.4 (Spötter et al., 2003). 

The objectives of the current study were to develop new highly polymorphic DNA markers 

for EGF, ITIH4, CTSL, LIFR, and EGFR, to characterize these markers, and to examine their 

effects on litter size in a sample of 273 sows of a German synthetic pig line. 

 

 

MATERIALS AND METHODS 

Animals and Methods 

All animals were reared on a single farm and were subjected to the same fertility 

management, e.g., estrous control, insemination regime. The employed population consisted 

of 273 sows belonging to a German synthetic line (CC) of Duroc and Large White origin. The 

number of piglets born alive (NBA) was recorded in 955 litters of sows farrowing up to 10 

times. In table 1, an overview is given on the number of animals genotyped, the available 

phenotypic records and the means for litter size. 

 

Table 1. Available phenotypic records, NBA means and ranges in a synthetic German pig line 

   NBA 

parity sows records means SD min-max 

1st 273 273 9.80 ±2.22 3-15 

2nd-10th 219 682 10.73 ±2.56 3-20 
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The Dneasy 96 Tissue Kit (QIAGEN, Hilden, Germany) was used to extract DNA from 

frozen ear tissue. 

The isolation and physical mapping of porcine PAC clones containing the ITIH4, EGF, CTSL, 

and LIFR genes respectively, and a porcine BAC clone containing the EGFR gene, was 

described by Kuiper et al. (2001) and Spötter et al. (2001a, 2001b, 2003). The isolated PAC 

and BAC DNAs were restricted with different enzymes and separated on 0.8% agarose gels. 

The resulting fragments were cloned into the polylinker of pGEM-4Z (Promega, Mannheim, 

Germany). Recombinant plasmid DNA was sequenced with the ThermoSequenase kit 

(AmershamPharmacia, Freiburg, Germany) and a LI-COR 4200 automated sequencer. 

Sequence data were analyzed using Sequencher 4.0.5 software (GeneCodes, Ann Arbor, MI). 

A search for genetic markers in the determined DNA sequences of the respective clones 

TAIGP714I1851Q5 (EGF), TAIGP714I126 (ITIH4), TAIGP714I1639 (CTSL), and 

TAIGP714F2198 (LIFR) all of which were derived from a porcine PAC library (Al-Bayati et 

al., 1999), and the porcine BAC clone RPCI44-91P11 (EGFR) isolated from a porcine BAC 

library (Fahrenkrug et al., 2001) resulted in the identification of one microsatellite marker for 

each gene. Flanking PCR primers were derived from the DNA fragments containing the 

microsatellites. For EMBL nucleotide database accessions of these DNA fragments, primer 

sequences, their respective annealing temperatures (AT) and repeat type of each microsatellite 

see table 2. Using this newly developed genetic markers the mentioned sows from a synthetic 

line were genotyped at the EGF-, ITIH4-, CTSL-, LIFR-, and EGFR locus. The PCR 

amplification (15 µl final volume) was performed using 20 ng of genomic porcine DNA, 1x 

PCR buffer (Promega, Mannheim, Germany), 100 µM each dNTP, 5-15 pmol each primer, 

and 1 U Taq polymerase (Promega, Mannheim, Germany). Temperature and time profile were 

35 cycles of 94°C for 30 s, AT for 1 min, and 72°C for 30 s. The forward primers were 5’ 

IRD700 labelled to enable fluorescent PCR fragment detection on a LI-COR 4200 automated 

sequencer. Raw data were genotyped using Gene Profiler 3.55 software (Scanalytics, Inc., 

Fairfax, USA). 

 

Statistical Analysis 

An animal model with the additive genetic relationship matrix, including pedigree 

information on 488 animals up to 15 generations of the CC line, was employed for the 

association analyses between genotypes of marker loci and phenotypic traits. The approach 

was to analyze the effects of individual alleles and their allelic substitution effects by linear 

regression. Using this approach, the number of copies of each microsatellite allele (0, 1, or 2) 
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Table 2. Microsatellite primer sequences, annealing temperatures (AT), repeat types and 

EMBL accessions 

primer name sequence (5’-3’) AT (°C) Repeat 
type 

EMBL 
accessions 

EGF_MS_f ATGGGCTGTGTATGTATG 

EGF_MS_r GGGATGAGTGAAAGTGTG 
52 (CA)n AJ547861 

ITIH4_MSf CTCACACACCCATAATCCC 

ITIH4_MSr GCCAGCCTCTTCCTTCTC 
58 (CA)n AJ547862 

CTSL_MS_f GAGCTCTTGGCCTAGAAAAGG 

CTSL_MS_r TGCTAGGACAGTGGTTTCTTG 
60 (CA)n AJ547863 

LIFR_MSf GAAATCATGAGGAGGGTAC 

LIFR_MSr GTTTTGATATAGGAGTGTGTG 
58 (CA)n AJ547859 

EGFR_MSf CTTGTTGTAAAGGGTGCCTG 

EGFR_MSr GGCGAATGTTTTGTTCTCCT 
58 (CA)n AJ547860 

 

 

were fit as linear covariates for each animal. Data were analyzed separately for the three most 

frequent alleles of each marker. A separate analysis was performed for the records of the first 

parities and for the records of 2nd to 10th parities of the sows. The litter size trait, number of 

piglets born alive (NBA), was analyzed using PEST (Groeneveld, 1990) employing following 

linear animal models: 

First parity records: NBAijkm = µ + YSi + b*n_allelesj + am + eijk 

Records from all parities: NBAijklmn = µ + YSi + b*n_allelesj + PNk + pel + am + eijklmn 

Year-season-classes (YS) for farrowing were treated as fixed effect. Random effects included 

the additive genetic (a, m=1-488) effect of the sow and a residual effect. The number of 

alleles (b*n_alleles) for each of the analyzed gene associated microsatellite markers was 

included as a linear covariate. For the analyses of available records from parities 2-10 of a 

sow, the model was extended to include parity number (PN) as a fixed effect and the random 

permanent environmental effect of the sows (pe, l=1-273). 
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RESULTS AND DISCUSSION 

In the current study we report the identification of five new microsatellite markers associated 

with candidate genes for litter size in pigs. To our knowledge this is the first study that 

investigates an association between the trait litter size and the genes ITIH4, CTSL, LIFR, and 

EGFR. However, that does not apply for EGF. Linville et al. (2001) detected no effect of an 

EGF linked diallelic marker, first described by Mendez et al. (1999), on ovulation rate and 

number of fully formed, live (NBA), stillborn, and mummified piglets. 

A characterization of the five new microsatellite markers genotyped in this study is displayed 

in table 3. The number of alleles per marker ranges from 4 (ITIH4) to 9 (EGFR) and the 

values for expected heterozygosity are within a scope of 0.46 (ITIH4) and 0.80 (EGFR). The 

PIC is strongly correlated with the degree of heterozygosity and ranges from 0.43 (ITIH4) to 

0.77 (EGFR). The microsatellite markers were shown to be highly polymorphic and 

heterozygous in the tested population. They have been physically anchored by FISH and 

radiation hybrid mapping (Kuiper et al., 2001; Spötter et al., 2001a, 2001b, 2003) and should 

prove useful for future QTL fine mapping studies. 

 

Table 3. Allele frequencies, heterozygosity and PIC of the new microsatellite markers 

EGF ITIH4 CTSL LIFR EGFR Allele  
number Allele 

size 
(bp) 

Allele 
frequency 
(%) 

Allele 
size 
(bp) 

Allele 
frequency 
(%) 

Allele 
size 
(bp) 

Allele 
frequency 
(%) 

Allele 
size 
(bp) 

Allele 
frequency 
(%) 

Allele 
size 
(bp) 

Allele 
frequency 
(%) 

1 141 4.8 148 71.0 184 15.1 133 21.6 110 2.2 
2 143 19.4 154 14.7 188 8.3 139 8.3 112 2.6 
3 149 26.4 156 5.7 194 0.6 141 0.9 114 23.8 
4 151 4.9 162 8.6 196 10.7 143 23.8 116 1.3 
5 153 15.2   202 22.1 145 27.9 122 26.9 
6 155 29.3   204 7.8 147 4.4 124 6.2 
7     208 35.4 149 13.1 126 8.4 
8         128 24.2 
9         136 4.4 
Expected 
heterozygosity 

0.78  0.46  0.78  0.79  0.80  

PIC1 0.75  0.43  0.75  0.76  0.77  
1Polymorphism Information Content 
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The examination of possible marker effects on litter size in this study was carried out by 

genotyping a sample of 273 sows with 955 litter records from the CC line and estimating 

allelic substitution effects. Allele frequencies ranged from less than 1% to more than 70% (see 

table 3). For each marker the three most frequent alleles were analyzed for association with 

NBA. For the ITIH4 linked marker just the two most frequent alleles were analyzed because 

of the low frequency of the other alleles. Substitution effects from the linear regression model 

were small and did not exceed the range of –0.29 to 0.43 (table 4). However, no significant 

impact on NBA of any of the markers was observed. 

It is important to stress that the lack of association between a gene associated polymorphism 

and a phenotype does not mean implicitly that the gene product is not important in regulating 

the trait. Associations between a marker and a trait may vary between populations, breeds, or 

lines. This was shown in several studies with DNA markers of candidate genes for litter size 

in pigs. 

The effect of the B allele of a diallelic marker at the estrogen receptor (ESR) locus differed 

from 0.6 to 2 piglets more per litter (Short et al., 1997). Another study showed no significant 

effect of the ESR genotype on litter size in 59 sows from a hyperprolific Large White line and 

a control Large White line (Legault et al., 1996). This result was confirmed by Gibson et al. 

(2002), who found no association of the ESR PvuII mutation with sow productivity in a 

Meishan x Large White F2 population. 

The B allele of a diallelic marker at the prolactin receptor (PRLR) locus indicated an additive 

effect on NBA across all parities in a Duroc population (Drögemüller et al., 2001). Vincent et 

al. (1998) have shown the A allele of this marker to be significantly associated with increased 

litter size in three of five commercial lines involving Meishan, Large White, Landrace and 

Duroc. 

Different linkage phases between the investigated markers and a causal mutation due to 

recombination may explain the observed differences between the lines. Also, still unknown 

QTLs with effects on litter size could be linked to these gene associated markers. 

However, the above-mentioned studies refer to diallelic DNA markers which are more 

powerful in statistical applications than multiallelic microsatellites because effects associated 

with microsatellite alleles with a lower frequency are difficult to test. Consequently, these 

difficulties are increasing with decreasing sample size. This was the reason for analyzing only 

the most frequent alleles in the current study. 

The only reported implementation of a multiallelic microsatellite marker in an association 

study concerning litter size in pigs refers to the Osteopontin (OPN) gene. A highly 
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Table 4. Estimated allele substitution effects for NBA in first and later parities in a synthetic 

German pig line 

locus parity allele length (bp) allele substitution effect SE p 
EGF_MS 1. 143 0.21 0.28 0.46 
  149 -0.28 0.25 0.28 
  155 0.16 0.24 0.50 
 2.-10. 143 0.20 0.19 0.30 
  149 0.07 0.19 0.73 
  155 -0.14 0.18 0.43 
ITIH4_MS 1. 148 0.003 0.25 0.99 
  154 0.43 0.33 0.19 
 2.-10. 148 0.05 0.18 0.78 
  154 -0.07 0.25 0.78 
CTSL_MS 1. 184 0.32 0.32 0.31 
  202 -0.29 0.28 0.30 
  208 -0.09 0.25 0.70 
 2.-10. 184 0.26 0.21 0.23 
  202 -0.14 0.20 0.48 
  208 -0.01 0.18 0.94 
LIFR_MS 1. 133 0.14 0.23 0.56 
  143 -0.28 0.23 0.22 
  145 0.21 0.21 0.31 
 2.-10. 133 -0.02 0.16 0.91 
  143 0.01 0.16 0.97 
  145 -0.03 0.15 0.85 
EGFR_MS 1. 114 -0.12 0.26 0.64 
  122 -0.11 0.27 0.70 
  128 -0.01 0.27 0.99 
 2.-10. 114 0.01 0.18 0.96 
  122 0.23 0.18 0.20 
  128 -0.15 0.20 0.45 

 

 

polymorphic microsatellite marker linked with that gene showed significant effects of some of 

its 13 alleles on litter size in a commercial Large-White lines (Southwood et al. 1998) and in a 

study of Hamann et al. (2000) employing 1578 German Landrace sows, 212 Duroc sows, as 

well as 268 sows of a synthetic line. Steinheuer et al. (2002) reported a negative allelic 
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substitution effect of an osteopontin marker allele on NBA for German Landrace boars (-

0.177±0.111; p<0.01). 

All of the studies discussed above demonstrate the difficulties in confirming previously 

published candidate gene effects in different genetic groups and show the necessity for further 

investigation of different pig breeds and larger sample sizes to evaluate the usefulness of the 

five newly developed microsatellite markers for MAS based improvement of litter size. 

 

 

 

ACKNOWLEDGEMENTS 

The authors wish to express their appreciation to the H. Wilhelm Schaumann Stiftung, 

Hamburg, Germany, for supporting this work by a grant. We are also grateful to U. Presuhn 

from the Schaumann Research Center Huelsenberg, Wahlstedt, Germany for his useful 

contributions to this study. 

 

 

 

REFERENCES 

 

Aflin J.D., Charlton A.K. & Avad S. (1988) An immunohistochemical study of human 
endometrial extracellular matrix during the menstrual cycle and first trimester of pregnancy. 
Cell Tissue Research, 253, 231–40. 
 
Al-Bayati H.K., Duscher S., Kollers S., Rettenberger G., Fries R. & Brenig B. (1999) 
Construction and characterization of a porcine P1-derived artificial chromosome (PAC) 
library covering 3.2 genome equivalents and cytogenetical assignment of six type I and type II 
loci. Mammalian Genome, 10, 569-72. 
 
Anegon I., Cuturi M.C., Godard A., Moreau M., Terqui M., Martinat-Botte F. & Soulillou J.P. 
(1994) Presence of leukaemia inhibitory factor and interleukin 6 in porcine uterine secretions 
prior to conceptus attachment. Cytokine, 6, 493-9. 
 
Bowen J.A., Bazer F.W. & Burghardt R.C. (1997) Spatial and temporal analyses of integrin 
and muc-1 expression in porcine uterine epithelium and trophectoderm in vitro. Biology of 
Reproduction ,56, 409-15. 
 
Diehl J.R., Henricks D.M. & Gray S.L. (1994) EGF and IGF-1 in the uterine and oviductal 
fluids of pregnant and nonpregnant pigs from day 10 to day 18. Biology of Reproduction 50 
(Suppl. 1) 122. 
 
Drögemüller, C., Hamann H., & Distl O. (2001) Candidate gene markers for litter size in 
different German pig lines. Journal of Animal Science 79, 2565-70. 



New gene markers for litter size  Chapter VII 

 113

 
Fahrenkrug S.C., Rohrer G.A., Freking B.A., Smith T.P., Osoegawa K., Shu C.L., Catanese 
J.J. & de Jong P.J. (2001) A porcine BAC library with tenfold genome coverage: a resource 
for physical and genetic map integration. Mammalian Genome, 12, 472-4. 
 
Geisert R.D., Dixon M.J., Pratt T., Schmitt R.A.M., Lessley B.A. & McCann J.P. (1995) 
Isolation and characterization of a 30 kDa endometrial glycoprotein synthesized during the 
estrous cycle and early pregnancy in the pig. Biology of Reproduction, 53, 942-54. 
 
Geisert R.D., Blair R.M., Pratt T. & Zavy M.T. (1997) Characterization and proteolytic 
activity of a cathepsin L-like polypeptide in endometrium and uterine flushings of cycling, 
pregnant and steroid treated ovariectomized gilts. Reproduction, Fertility and Development, 9, 
395-402. 
 
Geisert R.D. & Yelich J.V. (1997) Regulation of conceptus development and attachment in 
pigs. Journal of Reproduction and Fertility Supplement, 52, 133-49. 
 
Geisert R.D., Yelich J.V., Pratt T. & Pomp D. (1998) Expression of an inter-α-trypsin 
inhibitor heavy chain-like protein in the pig endometrium during the oestrus cycle and early 
pregnancy. Journal of Reproduction and Fertility, 114, 35–43. 
 
Gibson J.P., Jiang Z.H., Robinson J.A., Archibald A.L., Haley C.S. (2002) No detectable 
association of the ESR PvuII mutation with sow productivity in a Meishan x Large White F2 
population. Animal Genetics, 33, 448-450. 
 
Groeneveld, E. (1990) PEST User Manual (Vers. 3.1) FAL, Germany. 
 
Haining R.E.B., Cameron I.T., van Papendorp C., Davenport A.P., Prentice A., Thomas E.J. 
& Smith S.K. (1991) Epidermal growth factor in human endometrium: proliferative effects in 
culture and immunocytochemical localization in normal and endometriotic tissues. Human 
Reproduction 6, 1200-5. 
 
Hamann H., Drögemüller C., Krieter J., Presuhn U., Wallenburg J., Distl O. (2000) Genetic 
markers for litter size in german pig breeds. Proceedings of the 51th Annual Meeting of the 
European Association of Animal Production, Den Haag, Netherlands, G1.24 
 
Kennedy T.G., Brown K.D. & Vaughan T.J. (1994) Expression of the genes for the epidermal 
growth factor receptor and its ligands in porcine oviduct and endometrium. Biology of 
Reproduction, 50, 751-6. 
 
Kirschke H., Kembhavi A.A., Bohely P. & Barrett A.J. (1982) Action of rat liver cathepsin L 
on collagen and other substrates. Biochemical Journal 201, 367–72. 
 
Kuiper H., Spötter A., Drögemüller C., Brenig B., Leeb T. & Distl, O. (2001) Assignment of 
the porcine inter- trypsin inhibitor heavy chain 4 (ITIH4) gene to SSC13q2.1q2.2 by 
fluorescence in situ hybridization and radiation hybrid mapping. Cytogenetics and Cell 
Genetics, 95, 110-111. 
 
Legault C., Gruand J., Lebost J., Garreau H., Ollivier L., Messer L. A., & Rothschild M. F. 
(1996) Frequency and effect on prolificacy of the ESR gene in two French Large White lines. 
Les Journées de la Recherche Porcine en France, 28, 9-14. 



New gene markers for litter size  Chapter VII 

 114

 
Linville R.C., Pomp D., Johnson R.K., & Rothschild M.F. (2001) Candidate gene analysis for 
loci affecting litter size and ovulation rate in swine. Journal of Animal Science, 79, 60-7. 
 
Mason R.W., Johnson D.A., Barrett A.J. & Chapman H. (1982) Elastinolytic activity of 
human cathepsin L. Biochemical Journal, 233, 925–7. 
 
Mendez E.A., Messer L.A., Larsen N.J., Robic A., Rothschild M.F. (1999) Epidermal growth 
factor maps to pig chromosome 8. Journal of Animal Science, 77, 494-495. 
 
Modric T., Kowalski A.A., Green M.L., Simmen R.C.M. & Simmen F.A. (2000) Pregnancy-
dependent expression of leukaemia inhibitory factor (LIF), LIF receptor-β and interleukin-6 
(IL-6) messenger ribonucleic acids in the porcine female reproductive tract. Placenta, 21, 
345-53. 
 
Paria B.C. & Dey S.K. (1990) Preimplantation embryo development in vitro: cooperative 
interactions among embryos and role of growth factors. Proceedings of the National Academy 
of Sciences of the USA, 87, 4756-60. 
 
Rohrer G.A., Ford J.J., Wise T.H., Vallet J.L. & Christenson R.K. (1999) Identification of 
quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White 
composite swine population. Journal of Animal Science, 77, 1385-91. 
 
Savatier P., Lapillonne H., van Grunsven L.A., Rudkin B.B. & Samarut J. (1996) Withdrawal 
of differentiation inhibitory activity/ leukemia inhibitory factor up-regulates D-type cyclins 
and cyclin dependent kinase inhibitors in mouse embryonic stem cells. Oncogene, 12, 309-22. 
 
Short T. H., Rothschild M. F., Southwood O. I., McLaren D. G., de Vries A., van der Steen 
H., Eckhardt G. R., Tuggle C. K., Helm J., Vaske D. A., Mileham A. J. & Plastow G. S. 
(1997) Effect of the estrogen receptor locus on reproduction and production traits in four 
commercial pig lines. Journal of Animal Science, 75, 3138-42. 
 
Soller M. (1994) Marker assisted selection - an overview. Animal Biotechnology, 5, 193-207. 
 
Southwood O.I., Short T.H., Plastow G.S. (1998) Genetic markers for litter size in 
commercial lines of pig. Proceedings of the 6th World Congress of Genetics Applied to 
Livestock Production Publications, Armidale, Australia, 26, 453-460 
 
Spötter A., Kuiper H., Drögemüller C., Brenig B., Leeb T. & Distl O. (2001a) Assignment of 
the porcine epidermal growth factor (EGF) gene to SSC8q2.3-q2.4 by fluorescence in situ 
hybridization and radiation hybrid mapping. Animal Genetics, 33, 166-7. 
 
Spötter A., Drögemüller C., Kuiper H., Brenig B., Leeb T. & Distl, O. (2001b) 
Characterization and comparative mapping of the porcine CTSL gene indicates a novel 
synteny between HSA9q21→q22 and SSC10q11→q12. Cytogenetics and Cell Genetics, 95, 
92-96. 
 
Spötter A., Drögemüller C., Kuiper H., Brenig B., Leeb T. & Distl, O. (in press 2003) 
Comparative mapping and microsatellite marker development for the porcine leukemia 
inhibitory factor receptor (LIFR) and epidermal growth factor receptor (EGFR) genes. 
Cytogenetics and Genome Research. 



New gene markers for litter size  Chapter VII 

 115

 
Starcher B. & Percival S. (1985) Elastin turnover in the rat uterus. Connective Tissue 
Research, 13, 207–215. 
 
Steinheuer R., Drögemüller C., Hamann H., Distl O. (in review 2002) Candidate gene 
analysis for male fertility traits in swine. Journal of Animal Science. 
 
Stewart C.L., Kaspar P., Brunet L.J., Bhatt H., Gadi I., Köntgen F. & Abbondanzo S.J. (1992) 
Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. 
Nature, 359,76-9. 
 
Stewart C.L. (1994) Leukaemia inhibitory factor and the regulation of pre-implantation 
development of the mammalian embryo. Molecular Reproduction and Development, 39, 233-
8. 
 
Tomooka Y., DiAugustine R.P. & McLachlan J.A. (1986) Proliferation of mouse uterine 
epithelial cells in vitro. Endocrinology, 118, 1011-8. 
 
Vincent A.L., Evans G., Short T. H., Southwood O. I., Plastow G. S., Tuggle C. K. & 
Rothschild M.F. (1998) The prolactin receptor gene is associated with increased litter size  
in pigs. In: Proceedings of the 6th World Congress of Genetics Applied to Livestock 
Production Publications, Armidale, Australia, 27, 15-8. 
 
Wood S.A. & Kaye P.L. (1998) Effects of epidermal growth factor on preimplantation mouse 
embryos. Journal of Reproduction and Fertility, 85, 575-82. 
 
Yelich J.V., Pomp D. & Geisert R.D. (1997) Ontogeny of elongation and gene expression in 
the early developing porcine conceptus. Biology of Reproduction 57, 1256-65. 



A new gene marker for litter size  Chapter VIII 

 116

Chapter VIII 

 

 

 

Evidence of a new LIF associated genetic Marker for Litter Size in a 

synthetic Pig Line 

A. Spötter, C. Drögemüller, H. Hamann and O. Distl 

 

 

 

 

 

 

 

 

 

 

 

Submitted to: Journal of Animal Science (2003) 



A new gene marker for litter size  Chapter VIII 

 117

Evidence of a new LIF associated genetic Marker for 

Litter Size in a synthetic Pig Line1 

 

A. Spötter2, C. Drögemüller, H. Hamann, and O. Distl 

 

Institute of Animal Breeding and Genetics, School of Veterinary Medicine Hannover, 

Bünteweg 17 p, 30559 Hannover, Germany 

 

 

 

 

 

 

 

 

 

1The authors wish to express their appreciation to the H. Wilhelm Schaumann Stiftung, 

Hamburg, Germany, for supporting this work by a grant. We are grateful to U. Presuhn from 

the Schaumann Research Center Huelsenberg, Wahlstedt, Germany for his useful 

contributions to this study. 

 

2Correspondence: phone: +49-511-9538877; fax: +49-511-9538582; E-mail: 

aspoett@zucht.tiho-hannover.de 



A new gene marker for litter size  Chapter VIII 

 118

Abstract 

The leukemia inhibitory factor (LIF) gene is a candidate gene for litter size in pigs. A diallelic 

RFLP marker based on a SNP, detected in the third exon of the porcine LIF was evaluated for 

its association with the number of piglets born alive in a German synthetic pig line. 

Information on 955 litter records from 272 genotyped sows was used in the analyses with 

respect to litter size. Additionally, the growth and carcass traits average daily weight gain and 

back fat thickness were tested for associations with the LIF marker in this population. At the 

LIF locus the allele frequencies were 0.27 for the A allele and 0.73 for the B allele. There was 

no indication of an additive effect on the number of piglets born alive but a small negative 

dominance effect was observed, which amounted to –0.72 ± 0.37 (p=0.047) for the 1st parity 

and –0.50 ± 0.29 (p=0.087) for the 2nd to 10th parity. No associations were detected between 

the marker alleles and the growth and carcass traits. 

Key Words: DNA Markers, Litter Size, Pigs, LIF 

 

 

INTRODUCTION 

Marker assisted selection (MAS) in conjunction with traditional selection methods is most 

effective for traits that are either expressed later in lifetime, that are sex dependent, or of low 

heritability, such as litter size where moderate increases can equal large gains in profit (Soller, 

1994). Genetic markers allow identification of both males and females carrying beneficial 

alleles early in life, thereby improving accuracy, reducing the generation interval, and 

accelerating the genetic improvement of the trait. 

The candidate gene approach identifies genes likely to cause variation in a trait based on 

physiological, immunological or endocrine evidence. Polymorphism within that gene or a 

closely linked genetic marker is typed in a performance-tested resource population to 

determine its effect. The decision to incorporate genetic markers into MAS schemes requires 

reliable information about additive and dominance effects of each marker in the population of 

interest (Rothschild, 1998). A successful application of the candidate gene approach in pig 

production was demonstrated by Rothschild et al. (1996). They have reported a specific allele 

of the estrogen receptor (ESR) locus to be associated with increased litter size in a divergent 

breed cross involving the Chinese Meishan pig. There is evidence that the LIF gene is 

involved in early conceptus development and conceptus-uterine interactions for the 

establishment of pregnancy in pigs and thus in the determination of litter size (Yelich et al., 

1997; Geisert and Yelich, 1997). 
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The objective of the current study was to examine the effect of a porcine RFLP marker in the 

LIF gene on litter size in a sample of 272 sows of a German synthetic pig line. In order to 

identify possible pleiotropic effects of the employed SNP marker (Spötter et al., 2001) on 

growth and carcass traits, average daily weight gain and backfat thickness were as well 

analyzed for an association with the RFLP marker in this population. 

 

 

MATERIALS AND METHODS 

 

Animals and Methods 

All animals were reared on a single farm and were subjected to the same fertility 

management, e.g., estrous control, insemination regime. The employed population consisted 

of 272 sows belonging to a German synthetic line (CC) of Duroc and Large White origin. 

Number of piglets born alive (NBA) was recorded in 955 litters of sows farrowing up to 10 

times. Back fat thickness (BF) was scored by ultrasonic measurement at d 168, and average 

daily gain (DG) was determined by dividing weight at day 168 through age in days. In Table 

1, an overview is given on the number of animals genotyped, the available phenotypic records 

and the means for NBA. Table 2 displays the mean values of BF and DG in the tested 

population. 

 

Table 1. Available phenotypic records, NBA means and ranges in a synthetic German pig line 

   NBA 

parity sows records means SD min-max 

1st 272 272 9.80 2.22 3-15 

2nd-10th 219 682 10.73 2.56 3-20 

 

 

Table 2. Means and ranges for back fat thickness (BF) and average daily gain (DG) in a 

synthetic German pig line 

Trait N Mean SD min-max 

BF 272 15.42 (mm) 2.20 10-24 

DG 272 682 (g/day) 33.65 526-747 
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The Dneasy 96 Tissue Kit (QIAGEN, Hilden, Germany) was used to extract DNA from 

frozen ear tissue.  

For genotyping the LIF DraIII polymorphism – a C/T transition at position 6988 of the 

porcine LIF gene sequence (EMBL nucleotide database accession AJ296176; Spötter et al., 

2001) 24 bp downstream of the stop codon in exon 3 - the forward primer LIF3SNPa: 5´-ATG 

TGG ATG TGG CCT ACG G-3´ and the reverse primer LIF3SNPb: 5´-GGG AAC AAG 

GTG GTG ATG G-3´ (Spötter et al., 2001) were used to amplify a 407 bp fragment. The PCR 

amplification (20 µl final volume) was performed using 20 ng of genomic porcine DNA, 1x 

PCR buffer (Promega, Mannheim, Germany), 100 µM each dNTP, 4 pmol each primer, and 1 

U Taq polymerase (Promega). Conditions were 94°C 4 min, followed by 35 cycles of: 94°C, 

30 s; 58°C, 60 s; 72°C, 30 s. Three microliters of the PCR product were digested with 3 U 

DraIII (N.E.B., Frankfurt/Main, Germany) and separated on a 1% agarose gel. A 407 bp 

fragment was observed for the AA genotype and a 266 bp and a 144 bp fragment for the BB 

genotype. The sum of the two cleaving products is greater than the original 407 bp fragment 

because of the 5’ overhangs generated by DraIII digestion. 

 

Statistical Analysis 

Allele and genotype frequencies were calculated. Hardy-Weinberg equilibrium in the studied 

population was tested by comparing expected and observed genotype frequencies using a chi-

square test. 

An animal model with the additive genetic relationship matrix for the sows, including 

pedigree information on 488 animals up to 15 generations of the CC line, was employed for 

the association analysis between genotypes of the RFLP marker and the different phenotypic 

traits. Additionally, information on the mates of the 272 genotyped sows (88 boars) were 

considered. An analysis was performed for the records of the first parities and for the records 

of 2nd to 10th parities of the sows simultaneously. The litter size trait NBA, was analyzed 

using PEST (Groeneveld, 1990) using following linear animal model: 

First parity records:   NBAijmn= µ + YSi + GTj + pebm + an + eijmn 

Records from all parities:  NBAijklmno= µ + YSi + GTj + PNk + pesl + pebm + an + eijklmno 

Year-season-classes (YS) for farrowing and marker genotypes (GT) were treated as fixed 

effects. Random effects included the additive genetic (a, n=1-488) effect of the sow, a random 

permanent environmental effect of the boar (peb, m=1-88), and a random residual effect (e). 

For the analyses of all available records from different parities of the sows, the model was 

extended to include parity number (PN) as fixed effect and the random permanent 
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environmental effect of the sow (pes, l=1-272). For the analysis of BF and DG the following 

linear animal model was employed: 

BFijkl (DGijkl) = µ + YBi + GTj + Gk + al + eijkl 

Year of birth (YB), gender (G), and the marker genotypes (GT) were regarded as fixed effects 

and the additive genetic effect (a) of the sows as random. 

Additive genetic effects were estimated by pair-wise comparison of the least square means of 

the two homozygous genotypes, while the dominance effects were calculated as the deviation 

of the least square means of the heterozygotes from the average of the two homozygous 

genotypes. The estimated effects were tested for significance by using the t-test. 

 

 

RESULTS 

The C/T transition polymorphism identified in the 3rd exon of the LIF gene could easily be 

genotyped by DraIII RFLP (Spötter et al., 2001). PCR on genomic porcine DNA with the 

above mentioned primers LIF3SNPa and LIF3SNPb generated a 407 bp fragment. After a 

DraIII digest uncleaved fragments were designated allele A and cleaved fragments allele B. 

The frequency of the LIF allele A was 0.27 and that of the allele B 0.73. All three genotypes 

AA, AB, and BB occurred in the genotyped population which was found to be in Hardy-

Weinberg equilibrium for the genotyped locus (χ2=0.303, P=0.860). 

Additive and dominance effects of the genotypes are shown in Table 3. A significant negative 

dominance effect of –0.72 ± 0.37 (P=0.047) was detected in the first parity. For 2nd to 10th 

parity a negative dominance effect of –0.50 ± 0.29 (P=0.086) was estimated. There was no 

additive effect of LIF on litter size in these data. However, there is a trend for animals 

carrying the A allele to have increased number of piglets born alive across all parities (Table 

3). Table 4 displays the results of the statistical evaluation for BF and DG. This analysis was 

accomplished in order to identify possible pleiotropic effects of the employed marker. No 

significant effects on BF and DG were estimated in this population, even if the heterozygotes 

tended to lower BF and DG values than both of the homozygotes. 
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Table 3. Effect of the LIF genotypes on NBA in a synthetic German pig line 

 1st Parity  2nd to 10th Parity 

 N NBA SE P  N NBA SE P 

LIF Genotype          

AA 18 10.24 0.79 -  14 11.45 0.58 - 

AB 111 9.36 0.53 -  88 10.70 0.40 - 

BB 144 9.88 0.49 -  117 10.82 0.40 - 

Effect          

Additive  0.18 0.30 0.545   0.34 0.25 0.169 

Dominance  -0.72 0.37 0.047   -0.50 0.29 0.086 

 

 

 

Table 4. Effect of the LIF genotypes on BF and DG in a synthetic German pig line 

 BF  DG 

 N Mean (mm) SE P  N Mean (g/day) SE P 

LIF Genotype          

AA 18 16.18 0.65 -  18 630.54 11.10 - 

AB 111 15.52 0.43 -  111 624.30 6.88 - 

BB 144 15.82 0.42 -  144 630.41 6.65 - 

Effect          

Additive  0.18 0.30 0.548   0.06 5.08 0.990 

Dominance  -0.48 0.34 0.154   -6.18 6.01 0.304 

 

 

 

DISCUSSION 

Development of porcine genome maps offers the opportunity to identify individual genes 

controlling reproduction. Applications of MAS will increase as more associations between 

markers and traits are identified (Rothschild, 1998). This technology seems to be especially 

promising for fertility traits like litter size, due to the low heritability and the existence of 

appropriate genetic markers. To our knowledge this is the first study to investigate an 

association between the trait litter size and the porcine LIF gene. LIF, a pleiotropic cytokine, 

was chosen as a candidate gene for litter size due to its essential role in blastocyst growth and 
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implantation in mice (Stewart et al., 1992; Stewart, 1994; Savatier et al., 1996). The role of 

this gene in early conceptus development in mice implies that LIF may also serve a vital 

function in conceptus development and implantation - and thus litter size - in pigs (Geisert 

and Yelich, 1997). This implication is supported by the detection of LIF gene expression in 

porcine endometrium at the time of blastocyst attachment (Anegon et al., 1994; Modric et al., 

2000), and the presence of leukemia inhibitory factor receptor (LIFR) mRNA in porcine peri-

implantation conceptuses (Yelich et al., 1997; Modric et al., 2000). LIFR is a specific LIF 

receptor subunit (Gearing et al., 1991) and a member of the cytokine-binding family of 

receptor subunits. Formation of a high-affinity signaling complex requires the association of 

the LIF-LIFR complex with another transmembrane signal transducing molecule gp130 

(Gearing et al., 1992a; 1992b), which itself exhibits features of the cytokine family of 

receptors (Hibi et al., 1990). 

The LIF associated negative dominance effect of –0.72 ± 0.37 (P=0.047) for first parity NBA 

missed the significance level of P < 0.05 very closely. This tendency is confirmed by the 

estimated negative dominance effect for 2nd to 10th parity NBA. However, these results need 

to be verified by association studies with larger sample sizes. Verification is also necessary 

for the nonsignificant trend for animals with the A allele to have increased NBA across all 

parities (Table 3). There is evidence for the existence of both LIF-SNP alleles in different 

populations (Spötter et al., 2001). Associations between the marker and the trait may vary 

between populations, lines, or families. This was shown in several studies with diallelic DNA 

markers for reproductive traits. The effect of the B allele of a diallelic marker at the estrogen 

receptor (ESR) locus differed from 0.6 to 2 piglets more per litter (Short et al., 1997). Another 

study showed no significant effect of the ESR genotype on litter size in 59 sows from a 

hyperprolific Large White line and a control Large White line (Legault et al., 1996). Vincent 

et al. (1998) have shown that the A allele of a diallelic marker at the prolactin receptor 

(PRLR) locus is significantly associated with increased litter size in three of five commercial 

lines involving Meishan, Large White, Landrace and Duroc. Inconsistently, Drögemüller et al. 

(2001) reported an additive effect of the B allele of this marker on NBA, across all parities in 

a Duroc population. The above mentioned studies demonstrate the difficulties in confirming 

previously published candidate gene effects in different genetic groups and show the need for 

studies of marker effects in different lines because allele effects differ between lines or 

populations. The observed differences between the lines may be explained through variations 

in the genetic background or different linkage phases between the markers and a causal 
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mutation due to recombination. Also, still unknown QTL with effect on litter size could be 

linked to these gene associated markers. 

A correlation between the effect of the RFLP marker on NBA and both of the tested growth 

and carcass traits (DG and BF) was not ascertained in the genotyped population. The 

estimated effects clearly missed the significance level of P < 0.05 (Table 4). 

 

IMPLICATIONS 

This study is the first report on an investigation of the effect of a newly developed LIF 

associated RFLP marker on litter size in pigs. The estimated negative dominance effect and 

the nonsignificant trend for AA genotypes to have increased NBA, both across all parities, 

provide some evidence for a selection for the A allele. On the one hand the low frequency of 

this allele in the genotyped population renders it well suited for animal selection, on the other 

hand alleles of a low occurrence are all the more difficult to test significantly the smaller the 

employed sample size, which makes it hard to give reliable recommendations concerning 

selection. However, in this study the LIF marker definitely proved to be a strong candidate for 

confirmation studies, employing a larger sample size. Moreover, further investigation of 

different pig breeds is necessary to evaluate the usefulness of this RFLP as a marker for MAS 

based improvement of litter size in different genetic backgrounds. 
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General discussion 

A candidate gene analysis for litter size in pigs was carried out for the six genes LIF 

(leukemia inhibitory factor), LIFR (leukemia inhibitory factor receptor), CTSL (cathepsin L), 

ITIH4 (inter-α-trypsin inhibitor heavy chain 4), EGF (epidermal growth factor), and EGFR 

(epidermal growth factor receptor). These genes have been mapped physically by 

fluorescence in situ hybridization (FISH) and genetically by radiation hybrid (RH) mapping. 

Mapping results were in agreement with the established comparative map of pig and human 

(Goureau et al., 1996; http://www.toulouse. inra.fr/lgc/pig/compare/compare.htm) except for 

the CTSL gene. The inconsistency detected in this case demonstrates that the comparative 

maps of pig and man need further refinement. A high-resolution comparative map is a 

precondition for the fine mapping of QTL by MAS. This in turn is helpful in finding the genes 

that influence an investigated trait, for example by the positional candidate approach, which is 

based on the fine mapping of a QTL and a subsequent analysis of this confined region for 

putative candidate genes. Consequently the genomic region that has to be searched for 

candidate genes becomes smaller with increasing marker density of the map used. 

This work contributes to the development of a high-resolution comparative map of pig and 

human by the chromosomal assignment of six candidate genes for litter size and to the 

provision of resources needed for fine mapping of QTL by reporting six newly developed and 

physically anchored genetic markers. In the cases of LIFR, CTSL, ITIH4, EGF and EGFR 

these markers are microsatellites located on the same genomic clone as the respective genes. 

The size of these PAC and BAC clones ranged between 75 and 200 Kbp Consequently a close 

linkage of the candidate genes with the respective markers can be expected within a distance 

of 0.5 cM. For the LIF gene, two intragenic SNPs were identified in untranslated regions of 

the gene. One of them can easily be gentotyped using PCR-RFLP. 

The opportunity to exploit very comprehensive mapping information in humans and mice on 

the basis of comparative gene mapping can also be utilized for the choice of new positional 

candidate genes for litter size. Although it is a well established fact that intrachromosomal 

rearrangements may have occurred within regions of conserved synteny between species (e.g. 

Johansson et al., 1995), colinearity to the human map is expected for large parts of farm 

animal genomes at least for those species within the mammalian class (Andersson, 1998). The 

regions of conserved synteny to the human genome have been established by comparative 

chromosome painting (Zoo-FISH) for several species including the pig (Goureau et al., 1996). 

Comparative mapping of pig genes assigned solely genetically or by radiation hybrid mapping 

can be achieved by allocating their map positions (in centi Morgan (cM) and centi Ray (cR), 
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respectively) to the respective chromosome bands using a porcine comparative cytogenetic, 

genetic and radiation hybrid map (Milan et al., 2000). The introduced maps were used to scan 

human chromosome regions, corresponding to porcine QTL for litter size, for genes with 

putative physiological relevance in this trait (Table 1). Accordingly but the other way round, 

chromosomal locations of genes already implicated in early embryonic development of mice 

were examined for correspondence to porcine QTL for litter size (Table 2). A comparative 

map of pig and mouse was not necessary because in all cases the orthologous human genes 

have also been mapped. The first approach (see Table 1) yielded 10 putative candidate genes 

for litter size, 5 of which (DTR, STAT1, MMP1, GRB2, EN1) have never been implicated in 

the regulation of this trait in pigs and mice before. With the second approach 9 putative 

candidate genes for litter size were identified. To date, their association with this trait in pigs 

was not investigated. This search for new candidate genes concerning litter size in pigs 

provides a starting-point for the development of new gene markers and their investigation for 

litter size in pigs. An enlargement of the existing set of gene markers for litter size would 

enhance the chances for an improvement of the trait. A combined approach using 

polymorphisms of candidate genes and genome-wide equidistantly distributed microsatellites 

for linkage analysis would greatly enhance the unraveling of new QTL and mutations of 

genes involved in litter size traits. 

In this study the complete coding sequences of the genes for CTSL and LIF were determined 

and their genomic organization was ascertained. In the case of CTSL this provides a 

precondition and starting point for a mutation analysis to identify putative causative mutations 

with a potential influence on litter size or its component traits. A mutation analysis of the LIF 

gene was carried out. Screening of the genomic LIF sequence for polymorphisms revealed the 

existence of two SNPs in untranslated regions of the gene. One of these SNPs was genotyped 

in an association study for litter size employing 273 sows with 955 litters belonging to a 

German synthetic line. There was no indication of an additive effect on the number of piglets  

 

 

Table 1: From porcine QTL to murine genes – new putative comparative candidate genes for 

litter size identified by comparative mapping between pig and human. 

Porcine QTL 

Trait SSC (cM) 
Corresponding 

cytogenetic 
position 

Putative candidate genes for litter size in the corresponding 
regions of the human genome (GENE / HSA position / function) 

UC 8 (71) q12-q25 GNRHR: gonadotropin-releasing hormone receptor / HSA4q21 / 
Luteinizing (LH) and follicle-stimulating (FSH) hormones regulate 
gonadal function and gametogenesis, and are critical for normal 
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sexual maturation and reproductive function. LH and FSH are 
synthesized and secreted from pituitary gonadotropes under the 
regulation of hypothalamic GNRH (Kaiser, 1998). 
FGF2: fibroblast growth factor 2 (basic) / HSA4q26-q27 / FGF 
family members possess broad mitogenic and cell survival activities, 
and are involved in a variety of biological processes, including 
embryonic development, cell growth, morphogenesis, tissue repair, 
tumor growth and invasion (Lim et al., 2002). 

OR 9 (67) p21-p12 MMP1: matrix metalloproteinase 1 (interstitial collagenase) / HSA 
11q22 / Proteins of the matrix metalloproteinase (MMP) family are 
involved in the breakdown of extracellular matrix in normal 
physiological processes, such as embryonic development, 
reproduction, and tissue remodeling, as well as in disease processes, 
such as arthritis and metastasis (Hurst et al., 1999). 

TNB 12 (71) p11-q13 HOXB: homeo box B / HSA 17q21-q22 / homeobox genes encode a 
highly conserved family of transcriptionfactors that play an important 
role in morphogenesis in all multicellular organisms. Mammals 
possess four similar homeobox gene clusters, HOXA, HOXB, HOXC 
and HOXD, located on different chromosomes, consisting of 9 to 11 
genes arranged in tandem. This gene is one of several homeobox 
HOXB genes located in a cluster on chromosome 17. The exact role 
of this gene has yet to be determined. For the role of HOX genes in 
murine implantation refer to Lim et al. (2002) 
GRB2: growth factor receptor-bound protein 2 / HSA 17q24-q25 / 
signal transduction gene in the human and the mouse. GRB2 could be 
implicated in reciprocal signaling between the blastocyst and the 
uterus based on information about the role of GAB1 (GRB2-
associated binding protein 1) in these processes (Hemberger and 
Cross, 2001) 

TNB 14 (62) p25-p29 CYP17A1: cytochrome P450, family 17, subfamily A, polypeptide 1 
/ HSA 10q24 / This gene encodes a member of the cytochrome P450 
superfamily of enzymes. The cytochrome P450 proteins are 
monooxygenases which catalyze many reactions involved in drug 
metabolism and synthesis of cholesterol, steroids and other lipids. 
This is a key enzyme in the steroidogenic pathway that produces 
progestins, mineralocorticoids, glucocorticoids, androgens, and 
estrogens (Kado et al., 2002). 

OR 15 (79) p23-p24 EN1: engrailed homolog 1 / HSA 2q13-q21 / Homeobox-containing 
genes are thought to have a role in controlling development. In 
Drosophila, the 'engrailed' (en) gene plays an important role during 
development in segmentation, where it is required for the formation 
of posterior compartments. The human engrailed homologs 1 and 2 
encode homeodomain-containing proteins and have been implicated 
in the control of pattern formation during development of the central 
nervous system (Loomis et al., 1998). 
HOXD: homeo box D / HSA 2q31 / This gene is one of several 
homeobox HOXD genes located at 2q31-2q37 chromosome regions. 
Deletions that removed the entire HOXD gene cluster or 5' end of 
this cluster have been associated with severe limb and genital 
abnormalities. This gene is one of several homeobox HOXD genes 
located in a cluster. The exact role of this gene has yet to be 
determined. For the role of HOX genes in murine implantation refer 
to Lim et al. (2002). 
STAT1: signal transducer and activator of transcription / HSA 2q32 / 
member of the STAT protein family. In response to cytokines and 
growth factors, STAT family members are phosphorylated by the 
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receptor associated kinases, and then form homo- or heterodimers 
that translocate to the cell nucleus where they act as transcription 
activators. This protein can be activated by various ligands including 
interferon-alpha, interferon-gamma, EGF, PDGF and IL6 (Pan et al., 
2003). 

TNB 17 (43) p12-p22 DTR: diphtheria toxin receptor (heparin-binding epidermal growth 
factor-like growth factor) / HSA 5q23 / Heparin-binding epidermal 
growth factor is implicated in blastocyst implantation in mice (Lim et 
al., 2002). 

 
 

 

born alive (NBA) but a significant negative dominance effect of –0.72 ± 0.37 (p=0.047) was 

observed for the first parity and of –0.50 ± 0.29 (p=0.087) for the second to tenth parity. 

However, this effect needs to be confirmed by analysis of a larger sample size. Moreover, 

further investigation of different pig breeds is necessary to evaluate the usefulness of this SNP 

marker for MAS based improvement of litter size. Association studies for NBA with the same 

population as for the LIF gene failed to provide evidence for an effect of any of the five 

microsatellite markers, developed for the other investigated candidate genes. Yet, it cannot be 

excluded that these markers might show significant effects on litter size traits in more 

powerful study designs or other pig breeds or lines with a different genetic background. For 

this reason further evaluation of these markers is appropriate. Such studies should also 

consider additional litter size traits such as uterine capacity, number of corpora lutea, and total 

number of born piglets to find possible associations. 

When effects of any of the mentioned microsatellite markers on litter size are detected, a 

mutation analysis of the respective genes should be carried out in a manner analogous to that 

for the LIF gene. The identification of intragenic SNP markers includes the possibility of 

finding mutations that cause the phenotypic effects. However, evidence has to be provided 

that a certain mutation is in fact the causative, trait influencing mutation and not just another 

one in very close linkage to it. 

Several possible strategies for the identification of mutations are available. Northern blot 

analysis of mRNA from affected and non-affected individuals may reveal differences in the 

level, or in the tissue distribution, of gene expression, implying the presence of a regulatory 

mutation in the promoter or in another regulatory element. Moreover, a mRNA of aberrant 

size may be due to a deletion/insertion or a splice defect. Such investigations will be greatly 

facilitated in the near future by the development of cDNA microarrays. This technology 
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Table 2: From murine genes to porcine QTL – new putative comparative candidate genes for 

litter size identified by comparative mapping between pig and human. 

 

-Gene 
-Localization (HSA) 
-Corresponding SSC 
region 

Function of the orthologous 
murine gene 

Putative corresponding porcine 
QTL (localization) 

-Bystin-like (BYSL) 
-HSA6p21.1 
-SSC7p  

adhesion molecule, mediates embryo 
attachment (Aoki et al., 2000; 
Suzuki et al., 2000) 

TNB (SSC7p13-p12, 10 cM) 

-Kallikrein 9 (KLK9) 
-HSA19 
-SSC2, 6, 5,7 

implicated in embryo implantation 
(Geisert et al., 2001) 

TNB (SSC7p13-p12, 10 cM) 

-Peroxisome Proliferator 
Activator Receptor Delta 
(PPARD) 
-HSA6p21.2 
-SSC7p  

implicated in embryo implantation 
(Lim et al., 2002) 

TNB (SSC7p13-p12, 10 cM) 

-Neural Cell Adhesion 
Molecule 1 (NCAM1) 
-HSA11q23-q24 
-SSC9p24-p11 

adhesion molecule, mediates embryo 
attachment (Kallapur and Akeson, 
1992) 

OR (SSC9p21-p12, 67cM) 

-Integrin, Beta 1 (ITGB1) 
-HSA10p11.2 
-SSC10q12-q17 

adhesion molecule, mediates embryo 
attachment (Beauvais-Jouneau and 
Thiery, 1997) 

OR (SSC10q13-q17, 10cM) 

-Erythroblastic Leukemia 
Viral Oncogene Homolog 
2 (ERBB2) 
-HSA 17q11.2-q12 
-SSC12  

interaction with EGF-like growth 
factors shown to be of importance 
for implantation (Olayioye et al., 
2000) 

TNB (SSC12p11-q13, 71cM) 

-Cannabinoid Receptor 2 
(CNR2) 
-HSA1p 
-SSC4q, SSC6q, 
SSC14q26-q29 

role in defining the window of 
uterine receptivity for implantation 
(Schmid et al., 1997) 

TNB (SSC14q25-q29, 62cM) 

-Erythroblastic Leukemia 
Viral Oncogene Homolog 
4 (ERBB4) 
-HSA2q34 
-SSC15p22-p26  

interaction with EGF-like growth 
factors shown to be of importance 
for implantation (Olayioye et al., 
2000) 

OR (SSC15p22-p24, 79cM) 

-Fibronectin 1 (FN1) 
-HSA2q34-q36 
-SSC15p22-p26 

adhesion molecule, mediates embryo 
attachment (Wartiovaara et al., 
1979) 

OR (SSC15p22-p24, 79cM) 

 
 

 

permits the analysis of thousands of genes simultaneously. Normal mRNA expression in 

affected individuals suggests that the mutation is a structural one, and the next step is to 

screen for mutations using cDNA clones or RT-PCR products based on sequence analysis. If a 

regulatory mutation is expected because of aberrant mRNA expression or if the coding 
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sequence does not differ between affected and non-affected individuals it will be necessary to 

clone the gene and make a sequence comparison using genomic DNA. When a putative 

mutation has been identified it is necessary to provide evidence that the mutation causes the 

phenotypic effect. For a monogenic trait with complete penetrance there has to be a 

correlation between the mutation and the phenotype, depending on whether the trait shows a 

dominant or recessive inheritance. Moreover, individuals showing the phenotype but lacking 

the mutation may occur, but they should then exhibit other mutations in the same gene. 

Further indication for a causal relationship may also be provided if a missense mutation 

causes a substitution in a highly conserved and functionally important part of the protein or if 

a nonsense mutation is identified and the phenotype is obviously due to the lack of gene 

expression. Yet, even if there are striking indications of a causal relationship it is often 

difficult to exclude the possibility that the observed mutation is only very closely linked to the 

causative mutation. Conclusive evidence may be achieved by expressing the normal and 

variant forms of the gene product in vitro and comparing their functions. In many cases, 

however, it will be necessary to study the phenotypic effect in vivo by producing transgenic 

animals carrying the specific mutation (Andersson, 1998). 

Such bridges between genetics and physiology will be critical for implementing a fully 

integrated research programme combining quantitative genetics, genomics, proteomics, 

metabolics and phenomics to fully dissect the complex and polygenic nature of porcine 

reproductive traits (Pomp et al., 2001) in different environments and genetic backgrounds. 
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