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Zusammenfassung IV

Zusammenfassung 

 
Die Riechsinneszellen des olfaktorischen Epithels werden lebenslang kontinuierlich erneuert. 

Jedes neu heranwachsende Neuron schickt dabei einen Dendrit zur Schleimhautoberfläche, 

um dort Zilien auszubilden, und sein Axon muss zu dem richtigen Glomerulus im 

olfaktorischen Bulbus finden, um Synapsen zu formen. Eine Expression des Enzyms 

Stickstoffmonoxid (NO) Synthase wurde während der Embryonalentwicklung und der 

Bulbektomie-induzierten Regeneration von Riechsinneszellen beobachtet, was auf eine Rolle 

von NO beim axonalen Auswachsen und der Synaptogenese hindeutet. Der 

Funktionsmechanismus von NO und die Frage, ob es auch im normalen reifen 

Riechsinnesepithel eine Rolle spielt, sind jedoch ungeklärt.  

In der vorliegenden Arbeit wurde dieses Thema mit histochemischen und 

elektrophysiologischen Methoden untersucht:  

Färbungen mit der NADPH Diaphorase Technik, einem histochemischen 

Nachweisverfahren für NO Synthase, ergaben positive Resultate im reifen Riechepithel und 

eine auffallend dynamische Entwicklung des Färbemusters während des ersten Lebensmonats. 

Immunhistochemische Doppelmarkierungen mit einem Antikörper gegen ein 

Riechsinneszellen-spezifisches Protein (Olfactory Marker Protein) zeigten, dass es sich bei 

den NADPH Diaphorase-markierten Zellen um ausgewachsene Riechsinneszellen handelt. 

Diese Ergebnisse deuten darauf hin, dass eine NO-Quelle auch nach der Geburt im 

olfaktorischen Epithel vorhanden bleibt, und an der späten Entwicklung des Riechepithels 

beteiligt ist.  

 Die elektrophysiologischen Experimente ergaben, dass NO in der Riechsinneszelle 

einen hyperpolarisierenden Kaliumstrom auslöst. Dieser Effekt liess sich durch die 

Ionenkanal-Blocker Tetraethylammonium, Charybdotoxin und Iberiotoxin reduzieren oder 

eliminieren, was auf die Aktivierung von Kalzium-abhängigen Kaliumkanälen hinweist.  



Zusammenfassung V

Mit Hilfe von Kalziumkanal-Blockern, Kalzium-Imaging und der direkten Messung von 

Kalziumströmen konnte gezeigt werden, dass NO einen Kalzium-Einstrom in die 

Riechsinneszelle auslöst, welcher dann die Kalzium-abhängigen Kaliumkanäle öffnet. 

Vergleichbare Ergebnisse aus Caudiverbera, Xenopus und der Ratte suggerieren eine 

generelle Eigenschaft von Wirbeltier Riechsinneszellen.  

 Schliesslich wurde demonstriert, dass NO auch die Riechtransduktionskanäle öffnen 

kann. Hohe NO-Konzentrationen aktivierten die Kanäle ohne die Hilfe von cAMP oder 

anderer Agonisten. cGMP war an dem Aktivierungsprozess nicht beteiligt, deshalb handelt es 

sich wahrscheinlich um eine direkte Modifikation des Kanalproteins durch NO. Da dieser 

Kanaltyp nicht nur in den Zilien, wo die Riechtransduktion stattfindet, sondern auch in den 

axonalen Wachstumskegeln der Rezeptorneurone vorhanden ist, könnte seine Stimulierung 

durch NO auf eine Funktion bei der Entwicklung der Riechsinneszellen hindeuten.  
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Abstract 
 

The sensory neurons of the olfactory epithelium are continuously replaced during life. Every 

newly generated neuron has to extend a dendrite to the apical surface of the epithelium, grow 

cilia there and, above all, send an axon to a correct glomerulus of the olfactory bulb and 

establish synaptic connections. 

It has been reported that nitric oxide (NO) synthase is transiently expressed during 

embryonic development and the bulbectomy-induced regeneration of olfactory receptor 

neurons, suggesting a function of NO within axonal outgrowth, pathfinding and 

synaptogenesis. The mechanism of action of NO and the question of whether it maintains a 

role in the normal mature olfactory epithelium remained, however, unresolved. In the present 

work, this issue has been addressed by histochemical and electrophysiological approaches:  

Labeling with the NADPH diaphorase method, a histochemical marker for NO 

synthase, gave positive results in the mature epithelium and showed a conspicuous 

development of the staining pattern during the first postnatal month. Immunohistochemical 

double-labeling with an antibody against olfactory marker protein confirmed the identity of 

the NADPH diaphorase-positive cells as mature olfactory receptor neurons. These results 

support the notion that a source of NO remains present in the olfactory epithelium after birth 

and is involved in the late development of the olfactory epithelium. 

The electrophysiological experiments showed that NO activates a potassium current in 

the cell membrane, which leads to hyperpolarization of the cell. The effect is sensitive to the 

ion channel blockers tetraethylammonium, charybdotoxin and iberiotoxin, suggesting that the 

observed current is produced by the opening of calcium-activated potassium channels. The 

use of calcium channel blockers, calcium imaging and the direct measurement of calcium 

currents indicated that NO causes a calcium influx into the olfactory receptor neuron, which 

in turn activates the calcium-dependent potassium channels.  



Abstract VII

Comparable results were observed in Caudiverbera, Xenopus and the rat, suggesting that they 

represent a general feature of vertebrate olfactory receptor neurons.  

Finally, NO was shown to activate the cyclic nucleotide-gated transduction 

conductance in whole-cell patch clamp experiments. High concentrations of NO opened the 

transduction conductance without the presence of cyclic AMP or other agonists. This effect 

was insensitive to the soluble guanylyl cyclase-inhibitor ODQ and hence independent from 

cyclic GMP, therefore it is most likely a direct action of NO on the channel protein. As these 

channels are not only present in the olfactory cilia, where transduction occurs, but also in 

axonal growth cones, the data are consistent with the idea that NO is involved in the 

development of olfactory receptor neurons.  
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1.    Introduction 
 

1.1. General properties of nitric oxide (NO) 

NO is a free radical gas. It is small, reactive and membrane-permeable. In biological systems, 

it is synthesized by the three isoforms of the enzyme NO-synthase (NOS), each of which 

performs very different functions in the animal organism: 1. Endothelial NOS produces NO as 

the formerly known endothelium-derived relaxation factor (EDRF) to regulate vascular 

smooth muscle tone and blood pressure. 2. Inducible NOS, which is found in cells of the 

immune system, synthesizes NO as a cytotoxic agent to fight bacteria and parasites, and 3. 

neuronal NOS generates the molecule as a neuronal messenger in the nervous system.  

 

                                   
Fig. 1. NO-chemisty 
NO, produced by NO-synthase from L-arginine, may 
convert to or be enzymatically transformed into NO+, NO- 
and ONOO- (peroxynitrite), all of which have biological 
functions as well. Interactions with proteins occur 
principally through S-nitrosylation of cysteine-residues or 
transition metals, yielding nitrosothiol (R-SNO) and metal 
nitrosyl (R-MNO) groups.  
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All NOS isoforms catalyze NO from L-arginine with molecular oxygen and NADPH as co-

factors; co-product is L-citrulline [Marletta, 1994; Fig. 1]. However, whereas inducible NOS 

produces NO continuously, both endothelial and neuronal NOS are regulated by intracellular 

calcium through the bound co-factor calmodulin. In neurons, liberation of NO responds to 

calcium entry caused by activity-dependent depolarization. As the use of a small gaseous 

molecule for signaling in biological systems is a fairly new and unusual concept, the theories 

developed to describe its actions still require some imagination: From its source, NO may 

reach nearby inter- or intracellular targets by free diffusion within a sphere around its 

synthase. In this model, specificity is achieved by the (sub)cellular localization of both NOS 

and its target protein, and the field of action is limited by the short half-life, high reactivity 

and rapid spatial dilution of NO [see Garthwaite & Boulton, 1995]. Alternatively, NO may be 

channeled by protein-guided transport, which requires a specialized machinery, but implies a 

longer lifetime and possibly higher local target concentrations [see Stamler et al., 1997].  

                        

Fig. 2. NO-signaling  
In neurons, NO-synthesis is regulated by intracellular calcium. Once 
liberated, NO diffuses to a neighboring cell and affects various ion 
channels or enzymes like soluble guanylyl cyclase (sGC), resulting 
in the elevation of cGMP-levels in the target cell. As an autocrine 
messenger, NO may also act on targets within its donor cell. 
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Among the variety of NO-targets that have been identified, the best-known and maybe most 

important one is the enzyme soluble guanylyl cyclase, which synthesizes the intracellular 

messenger cyclic GMP [cGMP; Bredt & Snyder, 1989]. NO binds reversibly to the prosthetic 

heme group of soluble guanylyl cyclase and activates the enzyme at nanomolar concentrations 

(Fig. 2). cGMP, in turn, acts on a large number of downstream targets including protein 

kinases, phosphodiesterases and ion channels.  

Other important functions of NO make use of its capacity to readily attach covalently 

to protein-bound thiol residues and transition metals, resulting in local reactivity of these 

groups and conformational changes of the target protein. Notably the S-nitrosylation of 

cysteine residues has been established as a physiological action mechanism of endogenous 

NO [Jaffrey et al., 2001]. Examples of this generally termed “redox” signaling include the 

direct activation of certain potassium and calcium channels and the inhibition of the N-

methyl-D-aspartate (NMDA) receptor in the nervous system [reviewed by Stamler et al., 

1997; Barañano et al., 2001].  

 

1.2. The olfactory epithelium 

The olfactory epithelium is the smelling sense organ of vertebrates. Its functional units, the 

olfactory receptor neurons, localize with their cell bodies to the central zone of the epithelium. 

Their axons traverse the basal lamina and terminate in a glomerulus of the olfactory bulb of 

the brain, where they form synapses with mitral cell dendrites. From the soma of the olfactory 

receptor neuron, a single dendrite projects to the epithelial surface, where a bundle of cilia 

originates from its terminal, called olfactory knob (Fig. 3). The cilia are the organelles of 

olfactory transduction, containing the G-protein-coupled seven transmembrane odor 

receptors. Each olfactory receptor neuron is thought to express receptor proteins of just one 

type [Malnic et al., 1999]. Binding of an odor molecule to a receptor activates an enzymatic 

transduction cascade, which results in the elevation of cyclic AMP (cAMP) levels in the 
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cilium. cAMP directly opens the cyclic nucleotide-gated channels, through which sodium and 

calcium enter the cilia. Intracellular calcium in turn directly activates the ciliary calcium-

dependent chloride channels, thus amplifying the transduction current. The resulting 

depolarization of the neuron raises the frequency of action potentials that convey the signal to 

the olfactory bulb. Inhibitory odor responses are also observed, but are not yet completely 

understood [Sanhueza et al., 2000; see Schild & Restrepo, 1998].   

 

 

Fig. 3. Schematic view of the olfactory epithelium 
The olfactory epithelium consists of three principal cell groups: Sustentacular 
cells, olfactory receptor neurons and basal cells (the cells of the Bowman glands 
are not shown). According to the lineage system of the olfactory epithelium, 
which has recently been established [Huard et al., 1998], the multipotent globose 
basal cells are the neuronal progenitors, but may also produce the other cell types 
in the case of severe epithelial damage.   
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Although protected by the outer layer of sustentacular cells, the olfactory receptor neurons are 

exposed to noxious stimuli and frequent mucosal infections and must therefore be replaced 

continuously during the lifetime of the animal. Together with the hippocampus and the 

olfactory bulb, this represents one of the few known examples of regular neuronal 

replacement the nervous system and a great developmental challenge for the organism, 

because each new axon has to find its way to the correct one (or few) of many glomeruli in 

the olfactory bulb, where signals from all olfactory neurons with the same odor receptor 

molecule converge.  

 

1.3. NO in the olfactory epithelium 

In the olfactory epithelium, NO has been implicated in three different physiological 

complexes: 1. odor transduction, 2. perireceptor processes and 3. neuronal development.  

Regarding odor transduction, a stimulation of soluble guanylyl cyclase by NO has 

been reported for ciliary preparations of rat olfactory receptor neurons, where odorant-

induced rises of cGMP levels could be abolished by the NOS-inhibitor l-nitroarginine and the 

NO-scavenger hemoglobin [Breer et al., 1992], suggesting the odor-induced synthesis of NO 

and an alternative olfactory transduction pathway in these cells. 

Lischka & Schild [1993] found induction of inward currents by the NO-donor sodium 

nitroprusside (SNP) in voltage-clamped isolated Xenopus olfactory receptor neurons. As these 

currents were similar to those elicited by cGMP, the authors proposed a NO/cGMP-system in 

olfactory receptor neurons. More recently, comparable results have been obtained in the turtle 

[Inamura et al., 1998]. On the other hand, a direct, cGMP-independent activation of the 

olfactory cyclic nucleotide-gated channels by NO has been described for salamander olfactory 

receptor neurons and proposed for the rat [Broillet & Firestein, 1996ª; 1996b]. In this case, 

NO covalently attaches to a cysteine residue of the channel protein, leading to a 

conformational change that favors the open state [Broillet, 2000].  
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Whether NO actually participates in olfactory transduction remains nonetheless unclear, 

because effects of NO on olfaction have never been shown in vivo, and because the temporal 

expression pattern of NOS within the olfactory receptor neurons is still a matter of discussion. 

Although some biochemical assays suggest a constitutive expression of NOS in the olfactory 

epithelium [Breer & Shepherd, 1993; Dellacorte et al., 1995], several laboratories have 

unsuccessfully tried to show the presence of NOS in mature olfactory receptor neurons with 

immunohistochemical methods [Kishimoto et al., 1993; Bredt & Snyder, 1994]. Yet, this 

negative result might possibly be explained by the presence of a splicing variant of NOS 

[Eliasson et al., 1997] that is not recognized by common NOS antibodies.  

As opposed to the controversial NOS-expression in olfactory receptor neurons, it has 

been clearly established that neuronal NOS is present in the perivascular autonomous nerve 

terminals which innervate the blood vessels and submucosal glands of the olfactory 

epithelium [Hanazawa et al., 1994; Kulkarni et al., 1994; Lee et al., 1995]. By regulating local 

epithelial blood flow NO might indirectly influence olfactory processes, but a direct effect on 

olfactory receptor neurons appears unlikely due to the great distance of that NO source from 

the olfactory receptor neuron somata and dendrites.  

Finally, neuronal NOS has been shown to be transitorily expressed within olfactory 

receptor neurons during the embryonic and early postnatal development of the rat [Roskams 

et al., 1994; Bredt & Snyder, 1994]. These histological data led to the hypothesis of NO-

signaling during developmental processes like axonal and dendritic outgrowth and suggested 

a role for NO within the establishment of synaptic connections in the olfactory bulb. Similar 

results have been obtained from mouse embryos with a slightly different time course of NOS 

expression, and here, the inducible NOS isoform was detected instead of neuronal NOS 

[Arnhold et al., 1997].  

However, physiological data about this putative NO-signaling during embryonic 

development are missing, and the question whether NO continues to be involved in the 
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comparable processes of neuronal regeneration within the mature olfactory epithelium 

remains to be resolved.   

 

1.4. Hypothesis, methodological approach and objective 

The diverse studies regarding NO and olfaction that have been published during the last eight 

years leave an incoherent, puzzling image. Nonetheless, they altogether suggest that NO has 

important functions in the olfactory epithelium.  

This doctoral thesis is based on the hypothesis that NO is involved in the 

developmental processes of the olfactory epithelium. These comprise the embryonic and 

postnatal development and the continuous regeneration that occurs within the mature 

olfactory epithelium. The possibility that NO plays a role in the physiology of olfactory 

transduction and adaptation is also considered.  

 To investigate this theme, a combination of histological and electrophysiological 

approaches has been chosen to gather information concerning two basic issues of putative 

NO-signaling in the olfactory epithelium: 1. Where and when is NOS expressed? and 2. how 

does NO affect olfactory receptor neurons?  

Accordingly, the objective was to describe the temporo-spatial expression pattern of 

NOS in the olfactory epithelium with histological methods and to analyze the immediate 

physiological effects of NO on isolated olfactory receptor neurons with the patch clamp 

technique. 
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2. Materials and Methods 

  

2.1. Animals 

Wistar rats were either bred in the laboratory or bought from the animal facility of the 

Catholic University of Chile. The toad Caudiverbera caudiverbera was caught in the south of 

Chile and held in the animal house of the laboratory. Xenopus laevis was bred in the 

laboratory.  

Caudiverbera olfactory receptor neurons (ORNs) are especially suitable for patch clamp 

experiments due to their big size (soma diameter ≈ 15 µm) and the fact that healthy cells can 

be readily recognized by their beating cilia, therefore they were initially used as 

electrophysiological model system. On the other hand, the facts that the toads cannot be bred 

in the laboratory and that they are relatively unknown in the international scientific 

community represent certain disadvantages. For that reason, Caudiverbera was later replaced 

by Xenopus and the rat.  

 

2.2. Solutions  

Phosphate-buffered saline (PBS, g/l):  

8 NaCl, 0.2 KCl, 1.44 Na2HPO4, 0.24 KH2PO4, pH 7.4 

Fixer: 4% paraformaldehyde in PBS, pH 7.4 

Amphibian Ringer (mM): 110 NaCl, 2.5 KCl, 1 CaCl2, 1.5 MgCl2, 10 HEPES, 3 glucose, pH 

7.6. Low Ca2+-Ringer contained 0.1 mM CaCl2.  

Mammalian Ringer (mM):  

130 NaCl, 4 KCl, 1.5 CaCl2, 0.5 MgCl2, 0.5 MgSO4, 5 HEPES, 15 glucose, pH 7.4.  

Intracellular solution (mM): 120 KCl, 1 MgCl2, 1 CaCl2, 2 EGTA, 4 HEPES, 0.1 GTP, 1 

ATP, 13 sucrose, pCa 8.0, pH 7.6.  
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To measure Ca2+ currents, the intracellular solution contained (mM):  

110 Cs methanesulfonate, 10 CsFl, 15 CsCl, 5 Cs-Hepes, 4 Mg-ATP, 10 phosphocreatin, pH 

7.5, and the bath solution was supplemented with 10 mM TEA.  

 

2.3. Preparation of frozen sections of the olfactory epithelium of the rat  

Rats were sacrificed by CO2-inhalation for 2-3 min, decapitated and the nasal cavity was 

opened by a transversal section of the skull. The olfactory epithelium, which covers the dorsal 

posterior part of the nasal septum and the adjacent bony structures called turbinates, was 

excised with fine scissors. As no difference could be observed between olfactory epithelium 

from the septum and the turbinates, it was later taken exclusively from the septum. The tissue 

was fixed in a freshly prepared solution of 4% paraformaldehyde (pH 7.4) at 4°C for 1 h or 

over night, and stored for 24 h in a solution of 30% sucrose in phosphate-buffered saline 

(PBS) at 4°C for cryoprotection. Hereafter, the epithelium was blotted dry, embedded in 

tissue freezing medium (TBS) and frozen at -20°C in a cryostat (American Optical). Coronal 

sections of 20 µm thickness were cut at -20°C, placed on microscope slides covered with 

Pegotin (BiosChile) for adherence, air-dried and stored at 4°C for up to 48 h.  

 

2.4. NADPH diaphorase (NADPHd) staining of cryosections 

The NADPHd staining solution was prepared by dissolving 1 mg/ml nitro blue tetrazolium in 

methanol, diluting this to 0.1 mg/ml in PBS and adding reduced β-nicotinamide adenine 

dinucleotide phospate (β-NADPH) to a final concentration of 0.1 mg/ml.  

After rehydration of the sections in PBS with 0.1% Triton X-100, the NADPHd 

reaction was started by the addition of the NADPHd staining solution. The reaction was 

continued at room temperature for 2 h or until the color saturation was satisfactory, and 

terminated by rinsing in PBS. As a control, the flavoprotein inhibitor 2,6-dichloroindophenol 
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(DPIP) was added at a concentration of 100 µM to some of the preparations. After the 

staining procedure, the cryosections were rinsed in distilled water and stored in glycerol at 

4°C. Microphotographs were taken with a cooled CCD camera (Spot Diagnostic Instruments) 

attached to an Olympus BX-60 microscope.  

 

2.5. NADPHd staining of dissociated olfactory receptor neurons 

ORNs from the rat were dissociated as described in section 2.8. After having settled on the 

Pegotin-covered microscope slides for 20 min, the cells were fixed in 4% paraformaldehyde 

solution over night at 4°C. Finally, they were stained according to the protocol of section 2.4. 

 

2.6. NADPHd – olfactory marker protein (OMP) double labeling 

For OMP – NADPHd double labeling, sections were first NADPHd-stained, then blocked in 

20% rabbit serum in PBS with 0.1% Triton X-100 for 30 min at room temperature and finally 

incubated at 4°C overnight in the primary OMP antiserum, a friendly gift from Dr. F.L. 

Margolis (University of Maryland), diluted 1:1000 in PBS with 0.1% Triton X-100. Sections 

were incubated in the secondary FITC-coupled rabbit anti-goat antibody diluted 1:200 in PBS 

for 2 h at room temperature, washed and stored in glycerol.  

 

2.7. Cell counts 

To count stained cells, photographs of the sections were contrast-enhanced with the computer 

program Adobe Photoshop 4.0. Cells were counted manually over defined lengths of olfactory 

epithelium, averaged (8 – 10 counts per preparation) and normalized to 1 mm of epithelial 

length.  

 

2.8. Preparation of dissociated olfactory receptor neurons  

ORNs were isolated from C. caudiverbera, X. laevis and the rat.  
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The amphibians were cooled down to 0°C for insensibilisation, sacrificed and pithed before 

opening the nose chamber. The olfactory epithelium was removed with fine scissors, cut into 

pieces of  ~1 mm2 and stored in amphibian Ringer supplemented with 1% bovine albumin at 

4°C for up to 48 h.  

The olfactory epithelium of the rat was excised as described in section 2.3. The 

epithelium was cut into small pieces of  ~1 mm2, stored in Leibovitz L-15 medium at 4°C and 

used only on the day of the preparation. Dissociation of the epithelia from all species was 

achieved by trituration through a fire-polished Pasteur pipette with an approximate tip 

diameter of 0.5 mm, without the use of enzymes. Cells were let settle for 20 min in the 

recording chamber coated with Pegotin (BiosChile) and washed with Ringer. A few control 

experiments without Pegotin produced identical results.  

 

2.9. Patch clamp recordings  

The patch clamp technique was used in its voltage clamp and current clamp modes [Hamill et 

al., 1981] to record the electrical activity of dissociated ORNs. Electrical recordings were 

obtained using a PC-501A amplifier (Warner Inst.) and pClamp 6.0 software (Axon 

Instruments). Recording pipettes were drawn from Blu Tip capillary tubes (Oxford Labware) 

in a horizontal Puller (Sutter P-97) to a tip resistance of 3 - 6 MΩ. Cells were observed with 

an inverted Olympus IX 70 microscope with attached video camera. Whole-cell mode was 

established by oral suction, capacity was compensated and signals were low pass filtered at 5 

kHz. Only experiments with seal resistances > 1 GΩ (typical ≥ 4 GΩ) were considered. 

Between experiments, Caudiverbera and Xenopus ORNs were held at a resting membrane 

potential of –70 mV; rat ORNs at –80 mV.  
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Fig. 4. Schematic view and photograph of the patch clamp technique applied. 
Stimulation was achieved with a triple-barreled stimulus pipette positioned 
towards the middle of the cell, the soma or the cilia, according to the 
experiment. The neuron on the right is from the rat (scale bar = 10 µm). 

 
 

 

2.10. Stimulation  

Pharmacological stimuli were generally applied focally to the patched cells by computer-

controlled pressure ejection. In this case, pulses of varying duration (0.5 s – 1 min) and 

pressures (0.3 – 1.0 bar) were produced using a picospritzer and double- or triple-barreled 

glass pipettes (Sutter, tip diameter ca. 1.5 µm), positioned at a distance of 15 - 40 µm from the 

cell. Pressure ejection was monitored visually to verify that the stimulus pipette was not 

blocked. The stimulus concentrations reaching the cells were lower than the concentrations in 

the stimulus pipette because of dilution in the recording bath and due to the unstirred layer 

around the cell membrane. The dilution factor was estimated to be in the range between ~ 1 

and 3. In a few cases, perfusion of the entire recording chamber was used to add a reactive or 

to change the ionic composition of the external solution. 

Nitric oxide (NO) was applied with the use of NO-releasing compounds (NO-donors, 

10 mM in Ringer), which liberate the gas in a time-dependent manner. Sodium nitroprusside 
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(SNP), used as standard NO-donor, was prepared freshly before the experiments and 

protected from light. Alternatively, NOC-12 and SNAP (Calbiochem) were used in some 

experiments. As additional controls, SNP was applied after its inactivation by ventilation 

under light for 48 h, and hemoglobin (Hb) was used as NO-scavenger at a concentration of 10 

mg/ml.  

In order to block potassium conductances, the ion channel blocker 

tetraethylammonium (TEA) was used at a concentration of 2 mM, charybdotoxin (ChTX) and 

iberiotoxin (IbTX; a gift from Dr. R. Latorre) at 200 nM and apamin (RBI) at 2 µM. To block 

calcium channels, cadmium chloride (CdCl2) was applied at 100 µM and nifedipine at 50 µM. 

LY83583 (RBI) was used to block the cyclic nucleotide-gated transduction channels 

[Leinders-Zufall & Zufall, 1995] at 20 and 40 µM in the stimulus pipette. In the experiments 

with TEA, CdCl2, nifedipine and low Ca2+, the cells were microsuperfused using one of the 

stimulus pipette barrels. The second barrel contained the respective solution with 10 mM SNP 

and the third barrel SNP in normal Ringer. In other cases, drugs were coejected with SNP and 

compared with SNP- and drug-effects alone. For some experiments, SNP (10 mM) or cAMP 

(100 µM) were added directly to the intracellular solution.  

 To inhibit the NO-target soluble guanylyl cyclase, ODQ was either added to the 

stimulus pipette (1 µM or 100 µM) or to the intracellular solution (2 and 5 µM).  

 

2.11. NO-measurements 

The time course of NO liberation by 10 mM SNP dissolved in Ringer was measured with a 

Sievers NOA 280 nitric oxide analyzer (courtesy of M. Bóric and X. Figueroa) under 

conditions similar to those of the electrophysiological experiments (22-24°C, indirect dim 

neon light). The measured NO concentrations represent an approximation of the levels in the 

stimulus pipette and are therefore higher than the actual NO concentration reaching the cell 

with pulsed stimulation, estimated to be in the sub-micromolar range.    
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2.12. Calcium-imaging 

Olfactory epithelium from Caudiverbera was loaded with 15 µM Fluo-3,AM (Molecular 

Probes) in 0.1% pluronic acid at 4°C for 30 min. After dissociation, cells were transferred to a 

Pegotin-coated coverslip. Images were obtained with a Zeiss Axiovert 135M confocal laser 

scanning microscope implemented with a 40x oil-immersion objective. SNP was applied with 

a picospritzer as in the electrophysiological experiments. 

All chemicals were purchased from Sigma, unless otherwise indicated. 
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3. Results 

 

PART A. HISTOCHEMICAL EXPERIMENTS 

3.1. NADPHd is sensitive to the fixation conditions in the olfactory epithelium 

NADPHd was used to detect the expression of NOS in the olfactory epithelium. Since this 

histochemical staining method is known to be sensitive to the fixation conditions [Matsumoto 

et al., 1993], these conditions have been varied initially in order to be optimized.  

Fixation with 4% formaldehyde solution produced identical staining results as fixation 

in 4% paraformaldehyde solution (not shown), but the latter yielded better tissue preservation 

and was consequently used as general fixative. Fixation at room temperature diminished the 

staining intensity compared to fixation at 4°C, and was therefore discarded. The most 

important finding was, however, the strong dependence of the staining pattern on the fixation 

time. Fixation for 18 h in 4% paraformaldehyde at 4°C resulted in the purple labeling of a 

broad band of cells in the center of the olfactory epithelium of an adult rat (Fig. 5A). The 

outermost layer of the sustentacular cells and olfactory receptor neuron dendrites displayed a 

weaker staining, but no color reaction could be observed in the layer of the basal cells and in 

the area proximal to the basal lamina.  

In turn, fixation for only 1 h in otherwise identical conditions yielded an intense blue 

labeling of the sustentacular cells, the Bowman glands and the submucosal glands (Fig. 5C). 

The layer of the olfactory receptor neurons was marked in a fainter purple. With longer 

fixation, this staining pattern, which has been reported previously [Zhao et al., 1994] 

converted progressively into the one displayed in Fig. 5A. Since the specificity of NADPHd 

as a NOS marker is based on its resistance against formaldehyde fixation [Matsumoto et al., 

1993], only this persistent NADPHd reaction might possibly represent NOS.  

 As a control, the NADPHd reaction was performed in the presence of the flavoprotein 

inhibitor DPIP, which has been used to eliminate NOS-dependent NADPHd labeling in the 
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olfactory bulb, thereby differentiating it from the NOS-independent staining that is also 

observed in the glomeruli of this tissue [Spessert et al., 1994]. In the olfactory epithelium, 

DPIP prevented all staining under both fixation conditions (Figs. 5B, D), supporting the 

possibility that NADPHd corresponds to NOS.  

 

3.2. NADPHd marks olfactory receptor neurons  

Olfactory marker protein (OMP) is a cytosolic protein of unknown function that is principally 

and abundantly expressed in mature olfactory receptor neurons [Margolis, 1985], and 

therefore serves as a marker for this cell group. To characterize the population of NADPHd-

positive neurons, double labelings of olfactory epithelium with NADPHd and anti-OMP 

immunohistochemistry were prepared from neonatal and adult rats.  

At P1, both NADPHd and anti-OMP marked a fraction of cells from the upper middle 

zone of the epithelium (Fig. 6A). NADPHd stained essentially the somata, and only a few 

dendrites appear also colored. A blood vessel (bv) is stained due to the NOS-expressing 

extrinsic innervation mentioned in section 1.3. Anti-OMP histochemistry, in turn, marked 

somata, dendrites, olfactory knobs and axons, which form bundles proximal to the basal 

lamina. Although both markers stained neurons from the same cellular layer, co-localization 

within individual cells was rare, suggesting an independent expression of NADPHd and 

OMP.  
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Fig. 5. NADPHd stainings of coronal sections through rat olfactory epithelium. The epithelial 
surface is up.  A) NADPHd-staining of the olfactory epithelium of an adult rat after 18 hours 
of paraformaldehyde (PFA) fixation. Only cells in the layer of the olfactory receptor neurons 
(orn) are labeled. B) Addition of the flavoprotein inhibitor DPIP (100 µM) abolished all 
staining. C) A piece from the same epithelium, fixed for 1 hour only, yields a different 
staining pattern. Sustentacular cells (sc), Bowman glands (bg) and the submucosal glands (sg) 
proximal to the basal lamina (bl) display a dark-blue color as opposed to the light purple of 
the olfactory receptor neurons. To avoid color saturation, the NADPHd reaction had been 
stopped after 30 min. D) Addition of DPIP to the latter preparation prevented all staining. 
Scale bars = 50 µm. 
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Fig. 6. NADPHd-OMP 
double labeling of the 
olfactory epithelium. A) 
At P1, a single layer of 
neurons is marked by both 
NADPHd and OMP 
immunohistochemisty, but 
co-localization within 
individual olfactory 
receptor neurons, as 
determined by 
computerized 
superposition, is found in 
only four cells (lines). 
OMP-positive axon 
bundles (ab) display no 
NADPHd reaction. 
NADPHd-positive nerve 
endings around a blood 
vessel (bv) are OMP-
negative. B) At P75, both 
NADPHd and OMP are 
expressed in the broad 
central zone of the 
olfactory epithelium, 
where the cell bodies of 
the mature receptor 
neurons reside. The 
dendritic and ciliary layers 
are OMP-positive but 
NADPHd-negative. Scale 
bars = 50µm. 
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Fig. 7. (Anterior page). The NADPHd expression pattern changes during postnatal 
development. A) In newborn rats, only a few cell bodies in the olfactory receptor neuron (orn) 
layer are stained. No staining is seen among sustentacular cells (sc) and basal cells (bc). A 
blood vessel (bv) below the basal lamina (bl) is NADPHd-positive due to NOS-containing 
innervation. B) At P1, the NADPHd-positive cells have tripled. Dendrites, olfactory knobs 
and cilia remain unstained, but axon bundles (ab) are lightly stained. C) At P2, A densely 
packed row of NADPHd-positive somata (s) lines the outer third of the epithelium. Stained 
dendrites (d) project to the surface, where olfactory knobs and cilia (c) are labeled (see 
enlarged neuron in inset). D) At P5, three layers of stained somata form a 40 µm band in the 
external half of the epithelium. The outermost zone is densely packed with labeled dendrites, 
which display a reduced staining intensity. E,F) At later stages, the area of stained neurons 
broadens further, but many cells display a weaker staining, and the dendritic layer does not 
stain. P8 and P24 displayed no major changes and are not shown. Scale bars = 50 µm. 
 
 
 
In the adult rat, the same broad band of cell bodies in the center of the olfactory epithelium 

was labeled by both markers (Fig. 6B). The abundant staining suggests considerable co-

localization, but complicates a resolution at the single-cell level. Compared to the neonatal 

rat, the NADPHd labeling appears fainter. 

 

3.3. NADPHd activity changes during postnatal development 

To explore the developmental differences of NADPHd activity, preparations of olfactory 

epithelium from several developmental stages between P0 and P60 were stained and 

compared (Fig. 7). NADPHd was expressed in a small subset of olfactory receptor neurons as 

early as P0. After P0, the number of NADPHd-positive neurons increased rapidly, forming 

one almost continuous band of cells at P1, three bands at P5 and 5-6 at later stages. Whereas 

the NADPHd reaction generally predominated in the neuronal somata and especially in the 

nuclear and perinuclear region, a strong transitory NADPHd expression could be observed in 

the dendrites and olfactory knobs between P2 and P5. During this period, even the olfactory 

cilia were stained in some preparations (see inset in Fig. 7C). After P5, the staining in the 

dendritic layer diminished significantly, and the overall staining intensity also decreased with 

age.  
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The NADPHd-positive cells were further examined by applying the staining protocol to a 

preparation of dissociated olfactory epithelium from a rat at P3, which corresponds 

approximately to the peak of NADPHd intensity. A subset of isolated olfactory receptor 

neurons displayed strong staining of the soma, dendrite and olfactory knob (Fig. 8). Within 

the soma, the darkest color precipitate could be observed in the perinuclear region, suggesting 

that the NADPHd reactivity localizes to the nuclear membrane and the endoplasmic 

reticulum. No obvious differences in morphology were seen between stained and unstained 

neurons.    

 

 

          

 
Fig. 8. NADPHd staining of dissociated olfactory receptor neurons from a P3 
rat. The image shows three representative NADPHd-positive cells which display 
intense labeling of soma, dendrite and olfactory knob. Within the soma, the 
darkest staining is seen in the nuclear and perinuclear region. An unstained cell 
from the same plate is shown as control. Scale bar = 10 µm. 
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In order to quantify the relative number of NADPHd-positive neurons during postnatal 

development, these were counted over a defined length of olfactory epithelium from all 

analyzed stages (Fig. 9). The resulting graph shows a steep, more than tenfold increase of 

stained cells during the first month after birth. Hereafter, the number of NADPHd-positive 

neurons remains constant within the margins of error. 
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Fig. 9. The number of NADPHd-positive olfactory receptor 
neurons (ORNs) per unit length of 1 mm epithelium, 
plotted against the age. A tenfold increase of marked 
neurons is observed during the first two weeks, leading to a 
plateau after one month. Data represent the mean ± SD of 
10 counts. The solid line is a third-order regression. 
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PART B. ELECTROPHYSIOLOGICAL EXPERIMENTS 

3.4. Stimulation with NO 

NO was applied to the patch clamped olfactory receptor neurons using pressure ejection of 

NO-donors. To find out if the applied doses were in a physiological range, the NO 

concentration produced by 10 mM SNP was measured with a nitric oxide analyzer. After 

dissolving SNP in Ringer, the NO concentration quickly rose to ~1 µM and remained 

relatively constant for at least 45 min (Fig. 10), which corresponds to the typical usage time of 

a stimulus pipette. 1 µM is considered a peak value at an endogenous NO source and is 1,000 

times higher than an estimated biologically relevant threshold value [see Garthwaite & 

Boulton,  1995]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Time course of NO-liberation by 10 
mM SNP. The NO-donor was dissolved in 
Ringer at t = 0 min. The curve represents a 4th 
order regression. 

 
 

3.5. NO induces a hyperpolarizing potassium current in Caudiverbera olfactory neurons 

Upon stimulation with pulses of NO-donors, current-clamped olfactory receptor neurons from 

C. caudiverbera (Fig. 11A) displayed a transient hyperpolarization of the membrane potential. 
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If the cells were discharging action potentials spontaneously, as is frequently the case, NO 

reduced the spiking frequency or abolished the activity transitorily (Fig. 11B).  

In order to analyze the currents underlying this hyperpolarization, the experimental 

mode was changed to voltage clamp. Here, large outward currents were observed at 

depolarized membrane potentials upon NO-stimulation (Fig. 11C).  A total of 98 out of 125 

(78%) olfactory receptor neurons from Caudiverbera displayed this effect. The outward 

current developed with a short delay of ≥ 30 ms after the stimulus onset and returned to 

control levels 2 – 5 s after its end. In voltage ramp experiments, NO induced an outward 

current over the whole voltage range tested (Fig. 11D). The current becomes evident at –40 

mV, peaks at +40 mV and generally declines towards +60 mV. 

To assure that the effect was actually caused by NO and not by the NO donor 

molecule, the NO-scavenger hemoglobin was added to the stimulus solution. As shown in 

Fig. 12A, hemoglobin largely abolished the outward current. Further evidence for NO as 

inductor of the observed effect was obtained by the use of inactivated SNP, that did not 

produce any currents (Fig. 11C), and with NOC-12, an alternative but equally effective NO-

donor with a molecular structure completely different from SNP (Fig. 15, n = 4).  

As one of the principal functions of NO is the activation of the enzyme soluble 

guanylyl cyclase (sGC), the above experiments were repeated in different cells in the presence 

of the sGC-inhibitor ODQ and without the cGMP precursor guanosine triphosphate (GTP) in 

the intracellular solution (Fig. 12B). However, the NO-induced current was observed 

unchanged under these conditions, discarding the possibility that NO was acting via an 

elevation of cGMP levels.  
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Fig. 11.  NO causes a hyperpolarizing potassium current in Caudiverbera olfactory receptor 
neurons. A) The Chilean toad C. caudiverbera was initially chosen as model system to obtain 
dissociated olfactory receptor neurons. B) The NO-donor SNP (10 mM in the stimulus 
pipette) induced a transient hyperpolarization of the membrane potential in the neurons under 
current-clamp (n = 4). Resting membrane potential –55 mV (*). C) A pulse of SNP, applied 
during a voltage step from –70 to –30 mV, caused a rapid transient outward current under 
voltage-clamp (n = 98). In the control experiment, the cell was stimulated with inactivated 
SNP (n = 5). The control current results from the activation of voltage-gated channels by the 
depolarization to –30 mV. D) The current-voltage relationship of the SNP-effect from (C), 
obtained with a voltage ramp (-70 to +70 mV, 250 ms duration) applied at the peak of the 
current. A control current (induced by a ramp during a Ringer pulse) was subtracted to display 
the net effect. The blue line represents data regression performed with a 5th order 
polynomium. 
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Fig. 12. NO induces a potassium current independent from cGMP. 
A) The NO-scavenger hemoglobin (Hb; 10 mg/ml) diminished the outward current triggered 
by SNP in Caudiverbera olfactory receptor neurons (n = 7). B) The guanylyl cyclase-inhibitor 
ODQ did not affect the SNP response (n = 4). The control displays only the voltage-gated 
current without stimulus pulse. C) The NO-induced current as measured in normal and low-
potassium Ringer at –30 mV (n = 4). The voltage-gated currents were subtracted. D) The 
potassium channel blocker charybdotoxin (ChTX; 200 nM) reduced the effect of SNP on 
olfactory receptor neurons (n = 7). The displayed traces stem from experiments like the one in 
Fig. 11C, but only the currents during the depolarizing voltage step are shown. 
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Given the ionic distribution between the intra- and extracellular solution and the known 

voltage-dependent membrane conductances in olfactory receptor neurons [Schild, 1989; 

Delgado & Labarca, 1993], an outward current developing at negative membrane potentials is 

likely to be a potassium current. To test the hypothesis, the potassium concentration of the 

extracellular solution was transiently lowered to 0.25 mM, increasing the potassium gradient 

tenfold. Stimulation under this condition produced larger outward currents than in normal 

Ringer, confirming that the NO-induced current is principally carried by potassium (Fig. 

12C). Along this line of evidence, the current was sensitive to the specific potassium channel 

blocker charybdotoxin (Fig. 12D), suggesting the activation of potassium channels by NO.  

 The dose-response relationship of this effect was obtained by subsequent trials with 

increasing pressure on the stimulus pipette. As displayed by Fig. 13, the curve is nearly linear 

between 0 and 0.6 bar, approaching a maximum at higher pressures. 

 
 

3.6. NO activates a calcium-dependent potassium conductance 

To characterize the conductances underlying the NO-effect, several ion channel blockers were 

applied together with the NO-donor SNP. 2 mM tetraethylammonium (TEA) reversibly 

abolished the NO-induced current and reduced the voltage-dependent currents (Fig. 14A). 

TEA blocks large-conductance calcium-dependent potassium (KCa) channels in submillimolar 

concentrations [Kd ≈ 0.14-0.29 mM; see Latorre, 1994], but not small-conductance KCa-

channels, which are insensitive to TEA. Iberiotoxin (IbTX), a specific blocker of large-

conductance KCa-channels significantly reduced the NO-induced current at 100 nM (Fig. 

14B). The fact that IbTX did not cause a total block at this concentration in spite of a reported 

Kd of ~ 1 nM in muscle cells [Candia et al., 1992] might be indicative of a lower IbTX 

sensitivity of the KCa-channels in this tissue, or of the participation of other potassium 

channels, possibly of intermediate conductance.  
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2 µM apamin, a potent specific blocker of small-conductance KCa-channels (Kd in the 

nanomolar range), did not reduce the NO-induced current significantly (Fig. 14C), arguing 

against a contribution of these channels to the observed effect. 
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Fig. 13. Dose-dependence of the NO-effect. Net NO-
induced currents of subsequent trials (intervals: 30 s) in a 
Caudiverbera olfactory receptor neuron are plotted against 
the ejection pressure of the picospritzer. Cells were 
stimulated by 1.5 s SNP-pulses during 3 s voltage steps to 
–30 mV. The solid line represents a second-order 
regression.  
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Fig. 14. The NO-effect is blocked by the potassium channel blockers TEA and IbTX, but not 
by apamin. A) Perfusion with 2 mM TEA. TEA abolished the NO-induced current and 
reduced the voltage-activated currents, as shown by the downward displacement of the lower 
trace (n = 7). B) Co-ejection of 100 nM IbTX with SNP (n = 8). C) Co-ejection of 2 µM 
apamin with SNP (n = 9). Recordings were obtained from voltage-clamped Caudiverbera 
olfactory receptor neurons during 3 s voltage-steps to –30 mV. Control traces were obtained 
by depolarizing steps in the absence of a stimulus. 
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Fig. 15. The NO-induced current is dependent on calcium influx. A) Perfusion with the 
calcium channel blocker cadmium chloride (CdCl2; 100 µM; n = 4). B) Perfusion with 50 µM 
nifedipine, a blocker of L-type calcium channels (n = 5). C) Exchange of 1 mM external 
calcium by 0.1 mM reduced the effect of an SNP-pulse applied in the same respective Ringer 
(n = 6). In all cases, the NO-induced current recovered. Controls (dotted lines) are in normal 
Ringer, without stimulus. 
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Fig. 16. Overview of the NO-responses of Caudiverbera olfactory receptor neurons under 
various experimental conditions. Bars (+ SEM) display the relative NO-induced net current 
amplitude at –30 mV under each tested condition, compared to SNP alone (black bar = 
100%). Only experiments with at least partial recovery were considered, with numbers 
representing the total of cells analyzed. Asterisks indicate significant differences to the SNP-
control according to the unpaired Student´s t-test (p <  0.05).  
    The graph summarizes that NO is the active component of the stimulus solution causing an 
outward current which is sensitive to certain potassium channel blockers and the external 
potassium concentration. ODQ did not diminish the NO-induced current, which was however 
affected by calcium channel blockers and external calcium. 
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3.7. The NO-induced potassium current is dependent on calcium influx 

Possible mechanisms by which NO might open KCa-channels include a direct, covalent 

activation of these channels and an increase of intracellular calcium. To test the latter 

possibility, the neurons were stimulated with NO during perfusion with the calcium channel 

blockers cadmium and nifedipine. As demonstrated by representative traces in Figs. 15A and 

B, both cadmium and nifedipine largely eliminated the NO-induced potassium current, which 

nonetheless recovered completely after the end of perfusion. Experiments with low-calcium 

perfusion provided further evidence for an influx of that ion, as a tenfold reduction of external 

calcium significantly reduced the outward current (Fig. 15C). An overview of the 

pharmacological and ionic conditions used to investigate the NO-effect is shown as bar graph 

(Fig. 16).  

 The previous results predict that an inward current should be associated with the 

activation of the NO-induced potassium current, but in the experiments presented here, 

stimulation with SNP under normal ionic conditions did not cause visible inward currents, 

irrespective of the holding potential (Fig. 17A). Yet, NO has been reported to induce inward 

currents in Xenopus [Lischka & Schild, 1993] and the turtle [Inamura et al., 1998]. In those 

experiments, olfactory receptor neurons were subjected to prolonged bath perfusion with 10 

mM SNP. To examine if continuous application of NO modified the cellular responses, 

olfactory receptor neurons from Caudiverbera were perfused with the NO-donor SNP during 

one minute (Fig. 17B). No inward currents could be discerned at –70 mV, a potential at which 

an activation of the cyclic nucleotide-gated channels is expected to produce a large current 

(equilibrium potential ∼  0 mV), but where potassium currents are very small due to their 

voltage-dependence and their equilibrium potential of ∼  –100 mV. At –40 mV, the NO-

induced outward current is clearly visible. 
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Fig. 17. NO-induced inward currents are generally not observed under standard 
experimental conditions. A) At –30, 0 and +30 mV, SNP induced outward 
currents. The absence of a tail current upon returning to the holding potential of –
70 mV indicates that the cyclic nucleotide-gated conductance was not activated 
(reversal potential ≈ 0 mV), because the respective current would be large at that 
potential, whereas the voltage-gated channels are closed, and potassium is near its 
equilibrium potential (n = 55). B) An olfactory receptor neuron was held at –70 
mV and microperfused with SNP during 1 min. No current was induced (n = 8). 
C) The same cell was stimulated at –40 mV, resulting in the activation of a 
sustained outward current. 
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Since the putative calcium current was not observable under normal conditions, the potassium 

of the internal solution was replaced with cesium, and 10 mM TEA was added to the bath, 

thus blocking all potassium conductances. Under these conditions, NO caused a small inward 

current at –30 mV in 9 out of 11 cells (average ≈ 0.5 pA; Fig. 18A). This inward current could 

also be seen after replacement of external sodium by N-methyl-d-glucamine (n = 2, not 

shown), indicating that calcium, and not sodium, was indeed the entering ion. 

To visualize the rise in intracellular calcium that should occur as a consequence of the 

NO-induced inward current, calcium-imaging of Caudiverbera olfactory receptor neurons 

loaded with Fluo-3,AM was performed during stimulation with NO (Fig. 18B). In 6 out of 24 

neurons, NO caused a transient fluorescence increase, indicative of an increment in 

intracellular calcium. The fact that a rise in intracellular calcium could only be observed in 

25% of the cells, as opposed to 78% displaying the NO-induced potassium current, might be 

explained by the small magnitude of the calcium current. Altogether, these results support the 

interpretation that NO activates KCa-channels by triggering a calcium influx. 

 

3.8. The NO-induced potassium current localizes to the soma 

The fluorescence increase caused by NO under calcium imaging seemed evenly distributed 

throughout the cell body and was also present in cells without cilia (fluorescence in the cilia 

was not resolved), in agreement with the electrophysiological observation of the NO-induced 

potassium current in deciliated cells (Fig. 19A, B). These cells have lost their cilia during the 

dissociation process and do not transduce odors, but behave otherwise normally.  

The localization of the activated conductance was further investigated by means of focal 

stimulation of intact isolated neurons (Fig. 19C). Puffs of SNP directed to the soma, where the 

voltage-gated channels reside [see Schild & Restrepo, 1998] generally yielded slightly larger 

currents than stimulation of the dendritic knob and the cilia, but the effect was present in all 

cases. Olfactory receptor neurons are thought to express a ciliary KCa-conductance which 
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participates in inhibitory odor responses [Morales et al., 1995], thus it cannot be excluded that 

this putative conductance is activated by NO as well and contributes to the overall NO-

induced current. Alternatively, puffs directed at the cilia might reach the rest of the cell by 

diffusion, opening potassium channels in the dendrite and soma. 

The cyclic nucleotide-gated (CNG) transduction channels are concentrated in the cilia, 

but can also be found in the soma at much lower densities [Kurahashi & Kaneko, 1991]. 

These channels are permeable to calcium and have been reported to be directly activated by 

NO [Broillet & Firestein, 1996a], suggesting their participation in the effect described here. 

Although the NO-induced potassium current is independent from the presence of cilia, it 

cannot be ruled out that it involves the somatic part of the CNG conductance. To test this 

hypothesis, LY83583, a blocker of CNG channels [Leinders-Zufall & Zufall, 1995], was 

added to the bath. Yet, the blocker did not impair prominent NO-effects (Fig. 19D), arguing 

against a significant involvement of the CNG conductance in the NO-induced response. 
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Fig. 18. NO causes calcium influx. A) Pulses of 10 mM SNP induced inward currents in 
Caudiverbera olfactory receptor neurons voltage-clamped at –30 mV after replacement of 
internal potassium by cesium and addition of 10 mM TEA to the external solution. Traces 
represent the average of eight experiments in one cell. Control puffs with Ringer had no 
effect. B) NO causes a rise in intracellular calcium. A 5 s pulse of SNP induced a fluorescence 
increase in a Fluo3,AM-loaded olfactory receptor neuron under confocal calcium-imaging (n 
= 6 out of 24). Mean pixel intensities integrated from the entire cell were recorded in 1 s-
intervals and normalized with a bleaching curve constructed from two non-responsive cells. 
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Fig. 19. The NO-induced potassium current is triggered in the soma. A) NO caused outward 
currents in olfactory receptor neurons without cilia. Control is with inactivated SNP (n = 18). 
B) The voltage-dependent currents of this neuron, induced by a series of voltage steps from –
80 to +90 mV, display the normal behavior of a mature olfactory receptor neuron [Delgado & 
Labarca, 1993]. C) The NO-induced current is independent from the cyclic nucleotide-gated 
conductance. A fine ejection pipette (tip diameter ca. 1 µm) was used to apply SNP-pulses to 
the cilia and to the soma. If the effect involved the cyclic nucleotide-gated channels, it should 
be larger upon ciliary stimulation, which was not the case. Inset: Average peak current 
amplitudes induced by SNP-ejection onto the soma and the cilia at –30 mV (n = 4). D) The 
cyclic nucleotide-gated channel blocker LY83583 (20 µM in the bath) did not block the NO-
induced current. In other experiments, co-ejection of LY83583 with SNP was equally 
ineffective (n = 5). 
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Fig. 20. Xenopus olfactory receptor neurons display a NO-induced potassium 
current comparable to Caudiverbera. A) A pulse of SNP caused a transient 
outward current compared to Ringer as control in a voltage-clamped Xenopus 
neuron. B) The NO-induced current was diminished by hemoglobin (10 mg/ml) in 
the stimulus solution. C) The NO-induced current was sensitive to the potassium 
channel blocker charybdotoxin.  
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3.9. In Xenopus and the rat, NO causes an effect comparable to Caudiverbera 

To investigate whether the NO-induced current described here is also present in olfactory 

receptor neurons from other species, some essential experiments were repeated in Xenopus 

and the rat. As shown in Fig. 20, a pulse of the NO-donor SNP elicited an outward current in 

isolated olfactory receptor neurons from Xenopus. This current, which was observed in 18 out 

of 27 (67%) cells, was sensitive to the NO-scavenger hemoglobin and to the potassium 

channel blocker charybdotoxin, indicating that NO induced a potassium current as in 

Caudiverbera.  

 In the rat, pulses of the NO-donor SNP induced outward currents in 42% of the 

analyzed neurons (30 out of 72 cells (42%) from 20 animals; Fig. 21). Although less frequent, 

the effect seemed similar to the one described for Caudiverbera. Currents elicited by NO were 

positive over the whole voltage range tested and their averaged current-voltage relationship 

reminds of KCa-conductances (Fig. 21A inset). The current could be blocked by IbTX (Fig. 

21B), but not by LY83583 (Fig. 21C). The presence of the soluble guanylyl cyclase inhibitor 

ODQ in the internal solution had no effect upon the NO-induced current (n = 3, not shown), 

indicating that cGMP was not involved. Under conditions where outward currents had been 

largely eliminated, a small inward current could be detected (≈ 0.5 pA), that was abolished by 

the calcium channel blocker cadmium (Fig. 21D).  
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Fig. 21. NO elicits a similar effect in the rat. A) A 2 s pulse of 10 mM SNP, applied during a 
depolarizing voltage step to –40 mV, triggered a transient outward current. Control is without 
pulse. Inset: Current-voltage relation of the NO-induced current, averaged from five cells. 
Values (medium ± SEM) were obtained by a series of depolarizing steps of 30 ms duration 
during a SNP-pulse. The voltage-gated currents were subtracted and the net currents were 
normalized to the peak values. B) Co-ejection of  the KCa-channel blocker IbTX (100 nM) 
with SNP. Recordings were obtained during 3 s voltage steps to –30 mV. Control (dotted line) 
is without pulse (n = 7). C) Co-ejection of 10 µM LY83583 with SNP (n = 4). D) With 
cesium instead of potassium in the internal solution and 10 mM TEA in the bath, SNP 
induced a small inward current at –30 mV, that could be blocked by co-ejection of 0.4 mM 
cadmium chloride. Traces are averaged from 3 experiments in one cell. 
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Fig. 22. NO-induced depolarizing inward currents were rarely observed in the rat. At low 
stimulus pressure, SNP caused no visible effect under voltage-clamp (A) and a small 
hyperpolarization under current-clamp (C) in this cell. B) With higher pressure, an inward 
current developed upon SNP-stimulation under voltage-clamp and a considerable membrane 
depolarization is observed under current-clamp (D). This depolarization is preceded by a short 
hyperpolarization that might correspond to the NO-induced potassium current of Fig. 21, 
suggesting that both effects may occur at the same time. Controls are without pulse.  
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3.10. High concentrations of NO induce inward currents  

While investigating the NO-induced potassium current in the rat, very few times inward 

currents were observed upon stimulation with NO (n = 3 out of 54 cells). In the example 

shown in Fig. 22,  the inward current is induced only at higher stimulus pressures. Under 

voltage clamp, NO triggered the current with a considerable latency of ∼  1 s. Under current 

clamp, the stimulus produced a significant membrane depolarization in the same cell.   

Whereas NO-induced inward currents were rather exceptional under normal 

conditions, they were regularly observed upon NO-stimulation if cyclic AMP (cAMP) was 

added to the intracellular solution at subthreshold concentrations (Fig. 23A). In that case, the 

voltage-clamped cells responded to a pulse of SNP with a large inward current that returned to 

normal only several seconds after the end of the pulse. In control experiments, inactivated 

SNP did not produce any current. These data suggest that NO and cAMP both activate the 

cyclic nucleotide-gated transduction channel in an accumulative manner.   

To check whether higher concentrations of NO could regularly induce an inward 

current by itself, even in the absence of cAMP, SNP was added to the intracellular solution. In 

this experimental mode, the NO-donor rapidly fills the entire neuron including the cilia after 

the establishment of the whole-cell mode. As shown in Fig. 23B, a large inward current was 

induced soon after the breaking of the patch seal. In subsequent experiments, GTP was 

replaced by ODQ in the internal solution, in order to eliminate the possibility of cGMP-

synthesis by soluble guanylyl cyclase. The fact that NO caused an inward current independent 

from GTP and ODQ demonstrates that this NO-effect is not mediated by cGMP. Comparable 

currents were observed in complementary experiments with normal intracellular solution (not 

shown).  

The NO-induced inward current frequently decreased after an initial peak, even with 

ongoing stimulation (Fig. 23A, C & D). This phasic-tonic shape of the current is probably due 
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to the inhibition of the cyclic nucleotide-gated conductance by intracellular calcium, which 

implies a negative feedback effect [Chen & Yau, 1994].  

In odor detection, calcium enters the olfactory receptor neuron through the ciliary 

cyclic nucleotide-gated transduction conductance, activating in turn ciliary calcium-dependent 

chloride channels [Lowe & Gold, 1993]. To investigate whether the same occurred under NO-

stimulation, and to discard the possibility that NO only activated the calcium-dependent 

chloride channels, the chloride channel blocker niflumic acid was added to the extracellular 

bath solution. Fig. 23D displays that NO still triggered an inward current, however with much 

more rapid recovering kinetics, suggesting that a slower chloride component of the current 

observed in Fig. 23C was eliminated by niflumic acid. This supports the hypothesis that NO 

opened the cyclic nucleotide-gated conductance and the entering calcium then activated the 

calcium-dependent chloride channels.  

The characteristics of the NO-induced inward current were further analyzed by voltage 

ramps, that were applied during the peak of the current triggered by an SNP pulse (Fig. 24A). 

The resulting net current displays a current-voltage relationship (Fig. 24B) that is 

indistinguishable from that of the excitatory odor transduction current [Kurahashi, 1989], 

indicating that NO activated the same transduction conductances in these experiments.  
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Fig. 23. High NO induced inward currents in rat olfactory receptor neurons. 
A) 100 µM cyclic AMP in the intracellular solution (IS) did not induce significant currents on 
its own in voltage clamped rat olfactory receptor neurons at –80 mV. Stimulated with an 
SNP-pulse, a very large transient inward current develops, suggesting that only the united 
action of cAMP and NO led to the opening of the cyclic nucleotide-gated conductance (n = 
5). B) 20 mM SNP in the intracellular solution triggered a large inward current without 
further stimulus. C) With 10 mM SNP and the guanylyl cyclase inhibitor ODQ (2 µM) in the 
internal solution, a large inward current is observed, indicating that NO did not act through 
cGMP (n = 3). D) In identical conditions as in (C), but with the chloride channel blocker 
niflumic acid in the extracellular solution (50 µM), this inactivation occurs more rapidly, 
suggesting that a slower chloride component has been blocked by niflumic acid. 
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Fig. 24. The current-voltage relation of the NO-induced inward current. 
A) To obtain the current-voltage relation of the NO-induced inward current, voltage ramps 
were applied during the peak of the current triggered by an SNP-pulse in a cell patch-clamped 
with 100 µM cyclic AMP in the intracellular solution. In a previous control experiment, the 
SNP-pulse was omitted. The control-ramp current was subtracted from the trial-ramp current 
and the suppression of the voltage-gated currents by SNP has been subtracted according to the 
methods described in Sanhueza & Bacigalupo [1999], to obtain the net current-voltage 
relation of the NO-induced current (B). This relation is linear at positive potentials, slightly 
outward rectifying and passes through zero, as does the excitatory odor transduction current. 
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4. Discussion 

 

The histochemical data presented here show that NADPHd, a marker for NOS, is expressed in 

the olfactory epithelium in a steeply rising number of receptor neurons during the first month 

after birth. Although the exact densities of neurons in the olfactory epithelium are not known, 

previous reports indicate an increase from ∼ 900 to ∼ 1300 neurons per mm of section length 

from P1 to P21 [Weiler & Farbman, 1997], or  a rise by ∼ 80% between P0 and P10 [Sakashita 

et al., 1995]. Therefore, the time dependence of the NADPHd staining pattern with its more 

than tenfold increase of labeled neurons does not merely reflect the overall development of 

the olfactory epithelium. This developmental pattern implies that the massive onset of 

NADPHd expression coincides with the onset of olfaction.  

NADPHd was used as a marker for NOS [Dawson et al., 1991; Hope et al., 1991]. The 

specificity of this histochemical method, although probably better than that of commercial 

NOS antibodies [Coers et al., 1998], has been questioned, among other reasons due to its 

cross-reaction with the enzyme P450, which shares strong sequence homology with NOS. 

P450 is indeed expressed in the olfactory epithelium, but histological investigations with 

specific antibodies recognized the enzyme predominantly in sustentacular cells and Bowman 

glands, although low levels of immunoreactivity were also found in the receptor neuron layer 

[Kishimoto et al., 1993; Chen et al., 1992].  

The finding that the strong NADPHd reaction of the sustentacular cells and Bowman 

glands vanished with prolonged fixation, while the neuronal staining remained, suggests that 

only the fixation-sensitive NADPHd reaction represents P450. In line with that argument, 

comparisons of NADPHd and P450 immunoreactivity in rat brain yielded, with few 

exceptions, no co-localization [Norris et al., 1994], suggesting that neuronal NADPHd 

staining is generally not due to P450. Finally, the sensitivity of our stainings to DPIP 

indicated that they are of a different nature than the NADPHd reaction observed in the 
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glomeruli of the olfactory bulb, which is insensitive to DPIP and probably not due to NOS 

[Kishimoto et al., 1993; Spessert et al., 1994]. Altogether, these data support the notion that 

the NADPHd reactivity of the rat olfactory receptor neurons corresponds to NOS, although 

they do not represent final proof and cannot completely exclude the possibility that NADPHd 

represents P450 or a different, hitherto unidentified protein. If NADPHd were P450, it could 

possibly serve such purposes as the elimination of xenobiotics or CO synthesis for neuronal 

signaling [Leinders-Zufall et al., 1995], although a role of CO as neural messenger has never 

been firmly established [reviewed by Barañano et al., 2001].  

 Using immunohistochemistry, NOS has been found to be transiently expressed in 

rodent olfactory epithelium during embryonic development [Roskams et al., 1994; Arnhold et 

al., 1997]. However, NOS expression ceased shortly after birth. This contradiction with the 

staining patterns of the NOS marker NADPHd presented here might possibly be explained by 

a switch in the splicing variant or NOS isoform at some developmental stage, which would 

require a different antibody for its recognition. NOS has also been found in apical dendrites of 

bovine olfactory receptor neurons [Wenisch et al., 2000], and strong NADPHd expression co-

localized with the NOS immunoreactivity in these cellular compartments.  

These histological data concerning NOS in the olfactory epithelium support an 

involvement of NO within the physiology of olfactory receptor neurons. Therefore it was 

essential to investigate whether NO directly exerts a physiological effect upon these cells. The 

evidence presented here shows that NO may activate diverse olfactory receptor neuron 

membrane conductances, leading either to hyperpolarization or depolarization of the 

membrane potential.  

The somatic potassium conductance underlying the observed membrane 

hyperpolarization is opened by NO in a cGMP-independent mechanism that involves calcium 

influx. The calcium-dependence of this effect, its current-voltage relationship and partial 

block by nanomolar charybdotoxin indicate the activation of a KCa-conductance by NO.  
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This conductance is also sensitive to iberiotoxin and TEA, but not to apamin (Fig. 14), 

suggesting KCa-channels of large or intermediate, but not small conductance [Candia et al., 

1992; Cai et al., 1998]. Whole cell voltage-clamp studies have shown the presence of a KCa-

conductance in the soma of olfactory receptor neurons from Xenopus and Caudiverbera 

[Schild, 1989; Delgado & Labarca, 1993]. Furthermore, a somatic KCa-channel with a unitary 

conductance of 130 pS and strong calcium-dependence has been described in mouse olfactory 

receptor neurons [Maue & Dionne, 1987].  

 Calcium involved in the activation of the NO-induced potassium current may enter the 

cell through calcium-permeant channels, or it may be released from internal stores. The 

observed effects of cadmium, nifedipine and a low external calcium concentration are 

consistent with the notion that NO causes calcium influx, which in turn activates KCa-

channels. Direct measurements of NO-induced inward currents and calcium-imaging 

experiments supported that hypothesis. The question of how NO triggers calcium influx 

remains to be investigated, but the short latency between stimulus and onset of the NO-

induced current (≥ 30 ms) supports a direct covalent reaction rather than the involvement of 

an enzymatic pathway. Redox modulation of calcium currents by NO has already been 

reported for sympathetic neurons and heart muscle cells [Chen & Schofield, 1993; Campbell 

et al., 1996].  

Calcium entry is also a key step in olfactory transduction. This raises the question of 

why a NO-induced calcium influx does not activate calcium-dependent chloride channels, as 

occurs during odor responses [Lowe & Gold, 1993]. One possibility is the existence of a 

spatial separation between the two calcium-entry pathways. Indeed, the experiments with 

focal stimulation indicated that the potassium current is larger after NO-stimulation of the 

soma, where calcium-dependent chloride channels would not be expected. Two calcium 

conductances have been described in olfactory receptor neurons: A somatic, voltage-

dependent calcium conductance [Schild, 1989; Delgado & Labarca, 1993] and the cyclic 



Discussion 49

nucleotide-gated (CNG) conductance confined principally to the cilia. The results presented in 

this work support a calcium entry via the somatic channels (Fig. 19), because: 1) The effect is 

present in cells that have lost their cilia. 2) In cells with cilia somatic stimulation triggers 

larger currents than ciliary stimulation, although the density of the CNG channels is much 

lower in the soma. 3) High doses of the CNG channel blocker LY83583 did not block the 

NO-induced current.    

On the other hand, Broillet & Firestein [1996a, 1997] reported direct opening of native 

olfactory CNG channels from the tiger salamander and the rat as well as activation of 

recombinantly expressed rat α- and β-homomeric and α/β-heteromeric CNG channels by NO. 

The mechanism was shown to consist in the S-nitrosylation of a cysteine-residue in the 

carboxy-linker region involved in CNG channel gating [Broillet, 2000]. Intriguingly, a recent 

paper claimed exactly the opposite, namely inhibition of the CNG conductance by NO 

[Lynch, 1998]. In this work, macro-patches were excised from the olfactory knob of rat 

olfactory receptor neurons and stimulated with NO. Both studies present clean data with the 

necessary controls, and there is no obvious explanation for the different results.   

As the whole-cell consequences of NO-actions on the CNG conductance were not 

demonstrated in any of these publications (Fig. 7 in Broillet & Firestein, 1996ª is not 

convincing because of the unstable baseline, suggesting a leaky patch seal), experiments were 

designed to investigate the effect(s) of NO on the CNG conductance in the whole-cell patch 

clamp mode.  

To that end, rat olfactory receptor neurons were voltage-clamped at –80 mV, a 

potential where the KCa-channels remain closed due to their voltage-dependence, but where 

the opening of the CNG transduction conductance produces large inward currents [Kurahashi, 

1989]. cAMP was added to the intracellular solution to activate the transduction conductance, 

and NO was applied through pulses of NO-donors to investigate how it affected the resulting 

current.  
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If the used cAMP concentration was sufficient to induce an inward current, NO caused either 

no significant effect, or an additional activation (n = 5, not shown). However, if the cell did 

not respond to cAMP alone, which was frequently observed, an additional pulse of NO was 

able to trigger a large inward current (Figs 23A, 24A). These data, and the observation that 

high doses of NO in the intracellular solution caused inward currents even in the absence of 

cAMP, support the notion of a NO-activation of the CNG conductance, and they are in 

disagreement with the NO-inhibition reported by Lynch [1998].  

Interestingly, the two previous whole cell patch-clamp studies reporting NO-induced 

inward currents in olfactory receptor neurons also concluded an involvement of cGMP 

[Lischka & Schild, 1993; Inamura et al., 1998], proposing NO-activation of soluble guanylyl 

cyclase and discarding a direct NO-effect. However, the above studies lack a pharmacological 

characterization of the observed currents, and the hypothesis of a NO/cGMP-system is 

principally based on the comparison of SNP- with cGMP-effects. Therefore, their data do not 

appear sufficient to reject a direct NO-activation of the CNG conductance as demonstrated in 

this work. On the other hand, a small contribution of a hypothetical NO/cGMP-system cannot 

be excluded either. The outward potassium current described here was not observed in these 

recordings since they were done at a holding potential (–70 mV) too close to the potassium 

equilibrium potential. 

It is concluded that NO may open both the somatic KCa-conductance and the ciliary 

CNG channels in olfactory receptor neurons, and whether the membrane potential is hyper- or 

depolarized depends on the localization of the stimulus, on the intracellular calcium 

concentration and on the membrane potential itself. Accordingly, NO may produce both an 

increase and a decrease of the action potential frequency of the olfactory receptor neuron, 

depending on its momentary state of activity.  

 Assuming that the endogenous source of NO resides within the olfactory receptor neurons 

themselves, what might be the function of NO-signaling within the olfactory epithelium?  



Discussion 51

The existing data do not yet provide sufficient clues to answer this question. On the one hand, 

the absence of the NOS-marker NADPH diaphorase from the dendritic and ciliary 

compartments of olfactory receptor neurons from adult rats argues against the previously 

proposed hypothesis of an alternative transduction pathway mediated by NO [Breer & 

Shepherd, 1993]. On the other hand, the electrophysiological data presented here are 

suggestive of a participation of NO within transduction-related processes such as spike-

frequency adaptation, but such a putative function remains to be demonstrated.  

Recently, cGMP was reported to inhibit growth cone movements of olfactory receptor 

neurons through the opening of the CNG conductance and the resulting calcium influx [Kafitz 

et al., 2000]. Since NO has been implicated in filopodial steering [Van Wagenen & Reeder, 

1999; 2001], induces neuronal growth cone collapse in rat dorsal root ganglion neurons [Hess 

et al., 1993] and stops growth during neuronal differentiation in PC12 cells [Peunova & 

Enikolopov, 1995], it might also exert a similar function in olfactory receptor neurons, 

involving the opening of growth cone CNG channels. Whether the putative NO-activation of 

these channels occurs through cGMP or in a direct manner remains to be established, but even 

a two-way action would not be without precedents, since vascular smooth muscle cells are 

relaxed by NO in both a cGMP-dependent process and through direct sulphhydril 

modification of KCa-channels [Bolotina et al., 1994].   

In conclusion, the present data support an involvement of NO in the development of 

the olfactory epithelium and demonstrate direct effects of NO on olfactory receptor neuron 

membrane conductances. Future research will have to establish the precise functions of this 

gaseous messenger in olfaction. 
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