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Zusammenfassung

Zusammengesetzte Poisson-Verteilungen spielen in der Versicherungsmathematik
und in der Warteschlangentheorie eine grofle Rolle. Ist (X;);en eine Folge von
unabhéngigen und identisch mit P verteilten Zufallsvariablen und 7 eine von
(X;)ien unabhéngige mit Parameter A > 0 Poisson-verteilte Zufallsvariable, so
heifit die Verteilung @ der zufélligen Summe Y = > ;| X} zusammengesetzten
Poisson-Verteilung mit Intensitat A > 0 und Basisverteilung P. @ laf3t sich als
Faltungsreihe in A und P schreiben, es gilt @ = > 7, e*)"\k—’;P*k.

Ausgehend von einem Datensatz aus unabhéngigen und je mit gleicher In-
tensitat und Basisverteilung zusammengesetzt Poisson-verteilten Zufallsvariablen
soll Intensitat und Basisverteilung nichtparametrisch geschéatzt werden.

Im Falle diskreter Beobachtungen 1afit sich die Massenfunktion der zusam-
mengesetzten Verteilung mit Hilfe der Panjer-Rekursion leicht aus der Intensitéat
und der Massenfunktion der Basisverteilung gewinnen. Diese Rekursion kann
umgekehrt werden und fiihrt auf eine Rekursionsformel fiir A und Massenfunk-
tion von P bei gegebener zusammengesetzter Verteilung (), der Panjer-Inversion.
Schatzt man die Massenfunktion der zusammengesetzten Verteilung durch die re-
lativen Haufigkeiten, so liefert die Panjer-Inversion angewendet auf die relativen
Haufigkeiten einen Schatzer fiir die Intensitat und die Massenfunktion. Fiir diesen
Schatzer wird starke Konsistenz und asymptotische Normalitat in der Banach-
Algebra ¢! der absolut summierbaren Folgen hergeleitet. Da die Folge der Panjer-
invertierten relativen Haufigkeiten stets negative Eintrage aufweist, ist eine Pro-
jektion unumganglich. Indem man alle negativen Eintrage auf Null setzt und
die Folge wieder normiert, erhalt man eine Wahrscheinlichkeitsmassenfunktion.
Eine Variante dieser Methode ist die Inversion nur bis zu einer datenabhéangi-
gen Oberschranke auszufithren und das so gewonnene Anfangssegment analog zu
behandeln. Beide Methoden fithren auf in ¢! stark konsistente Schéitzer, und
Verteilungskonvergenz in ' gegen einen u.U. nicht GauBischen Grenzwert wird
gezeigt. Fir die Variante werden Bedingungen an das statistische Verhalten der
zufélligen Oberschranke gegeben, die bei Wahl des Maximums der vorliegenden
Daten als Oberschranke erfiillt werden.

Abschneiden der Daten an einer festen Schranke fiithrt auf ein endlichdimen-
sionales parametrisches Modell unter Ordnungsrestriktionen. Es wird gezeigt
das sich der Maximumlikelihoodschéatzer in diesem Modell asymptotisch wie eine



Kegelprojektion verhélt. Dies motiviert eine Projektionsmethode mit daten-
abhéangiger Projektionsmatrix. Alle Methoden werden am Beispiel der Bortkie-
wicz-Daten illustriert. Als Nebenprodukt ergibt sich aulerdem der Verteilungs-
grenzwert des Likelihoodquotiententests fiir die Hypothese tiber das Vorliegen
von Poisson-verteilten Daten gegentiber der generelleren Annahme, dafl die Daten
zusammengesetzt Poisson-verteilt sind. Ohne Abschneiden der Daten kann ein
nichtparametrischer Maximumlikelihoodschétzer definiert werden. Es wird eine
hinreichende Bedingung an die Basisverteilung gestellt, die seine Konsistenz in
¢t gewahrleistet.

Besitzt P eine Dichte beziiglich des Lebesgue-Mafles, so kann die Dichte des
absolut stetigen Anteils von ) durch ein Histogramm geschatzt werden. Es wird
eine Panjer Inversionsformel fiir Histogramme gegeben und starke Konsistenz des
so gewonnenen Schitzers im Raum der Lebesgue-integrierbaren Funktionen L!
bewiesen.

Fiir den Fall, da3 P eine beliebige auf den positiven reellen Zahlen konzen-
trierte Verteilung ist, wird ein auf einer Faltungsreihe und der empirischen Ver-
teilungsfunktion basierender Einsetzschétzer konstruiert und seine starke Kon-
sistenz und asymptotische Normalitat in einem Funktionenraum mit gewichteter
Supremumsnorm hergeleitet.

Schlagworter: Zusammengesetzte Poisson-Verteilung, Nichtparametrische Schatzung,
Kegelprojektionen



Abstract

Given an iid-sample from a compound Poisson distribution (), we consider the es-
timation of the corresponding rate parameter A > 0 and base distribution P. This
has applications in insurance mathematics and queueing theory. The ingredients
A, P and @ are connected by a convolution power series, i.e. Q =Y, e"\’\k—TP*k.
If P is concentrated on the positive real numbers then the probability mass func-
tion of () can be calculated from A and the probability mass function of P using
the Panjer recursion formula. This formula can be inverted leading to a recursion
formula for A and the probability mass function of P based on the probability
mass function of @), the Panjer inversion. This suggests a simple plug-in estima-
tor for A and P based on the relative frequencies measured from the compound
Poisson sample. Strong consistency and asymptotic normality is shown in the
Banach algebra of absolutely summable sequences ¢!. Although the sequence,
which comes out of the Panjer inversion of the relative frequencies is an abso-
lutely summable sequence, for large enough sample sizes, it must have negative
entries. Therefore a projection procedure is necessary. Two methods are under
investigation. The first method is to put all negative entries to zero and then
norm to one. A variant is also discussed: Compute the Panjer inversion up to
some data driven end point, i.g. the sample maximum, then put the negative
entries of this finite segment to zero and norm to one. Strong consistency and
a distributional limit result is proved for both methods in ¢! under suitable con-
ditions on P and the statistical behaviour of the end point. A possible choice
for the end point is the maximum of the data. The limit turns out to be not
necessarily Gaussian. The second approach is based on the ideas of maximum
likelihood estimation. Truncation of the data leads to a finitely dimensional para-
metric model under cone restrictions. It is shown that the maximum likelihood
estimator behaves asymptotically like a cone projection. This motivates a second
data driven projection estimator. The methods are illustrated using the famous
Bortkiewicz data. Furthermore, we derive the limit law that rules the log likeli-
hood ratio test statistic for testing the hypothesis of Poissonity within the class
of compound Poisson distributions. Without truncation of the data, a nonpara-
metric maximum likelihood estimator can be defined and is consistent in ¢* under
suitable conditions on the underlying basis distribution.

If P is absolutely continuous with respect to the Lebesgue measure, then the



density of the absolutely continuous part of () can be estimated by a histogram.
An analogue Panjer inversion for histograms is given and strong consistency of
the estimator in the space of Lebesgue integrable functions is established.

If P is just some probability measure concentrated on the positive reals, then
we propose an estimator based on a convolution power series. Strong consis-
tency and asymptotic normality is proved for this estimator in a Banach space
of functions topologized with a weighted sup norm.

Keywords: Compound Poisson distributions, Nonparametric Estimation, Cone
Projections

kokok

All used notations in the thesis are standard writings in probability theory and
statistics or given during the text.



Introduction

The importance of compound Poisson distributions in both probability theory as
important subclass of infinitely divisible distributions and its applications is well
known. We just indicate two of them.

Consider the standard risk model in actuarial mathematics (see for example
[Bu70], p.35, [Pa92], p.165). Suppose that NV, is the number of damages or claims
that occur until time ¢ and X;, Xs,... are their amounts. Then S; = f\ﬁl X
with Sg = 0 is the total amount of damages accumulated in the time interval
[0,t]. Of course, everything is random. The general assumptions of the standard
risk model are the following: (INV;);>o is supposed to be a homogeneous Poisson
process with constant rate A. Furthermore, the single claims X;, ¢ € N, form a
sequence of independent and identically distributed random variables, themselves
independent from N; and each of them distributed according to a probability
measure P. If we observe the total damage process at times k71" with k €Ny and
T > 0 fixed, then the random variable Y, = Sir — S(x—1)r measures the total
claim accumulated in the time interval ((k—1)T, kT].

One can imagine the same situation in the context of queueing models. Cus-
tomers arrive at a service system in groups, e.g. touring busses at the zoo. Once
again, the number of groups arrived at the system until time ¢ is modelled by a
homogeneous Poisson process with rate A. The numbers of the single groups are
given by a sequence of independent and identically distributed random variables
with distribution P. The total number of customers is S;. The random variable
Y} represents the total number of costumers who arrived during the time interval
(k—1)T,kT).

Within these two models the Y-variables themselves form a sequence of in-
dependent and identically distributed random variables. The distribution ) of
Y; is given by a compound Poisson distribution with intensity parameter A7" and
claim distribution P that can be written as a convolution power series, i.e.

In the following, we assume 7' = 1.
This thesis investigates the problem of estimating A and P nonparametrically
from a given sample of independent random variables Y7, ..., Y, with distribution



. Equivalently, we do not directly observe the single claims, but want to con-
struct their distribution P from a sample of total claims. The methods developed
here can be used to restore information about lost data or compressed data.

We have to deal with a nonlinear deconvolution problem. It can be seen as
the inverse of the compounding mapping

00 )\k
-2 *k
k=0

Since the inverse procedure of convolution is called ,,deconvolution® in the lite-
rature, it was chosen the analogous term ,decompounding® as a name for the
inverse compounding and as title for this thesis.

The deconvolution problem, i.e. to estimate P from a sample Y7,... Y, with
Y, = X, + &;, is the linear variant. The random variables X; and ¢;, 1= 1...,n,
are supposed to be mutually independent. The distribution P of the X-variables
is unknown and has to be estimated, the distribution of the e-variables is known.
This problem has been widely studied in the literature from various aspects. The
literature can be grouped into two main classes. The assumption that both the
e-variables and the X-variables are absolutely continuously distributed leads to
a density estimator for the density of P, based on Fourier transforms. We refer
to Fan, who has discussed rates of convergence and other asymptotic proper-
ties (see [Fa9l|, [Fa97] and the references given there). Under the assumption
that ¢ is again absolutely continuously distributed with some continuous and
monotone decreasing density, nonparametric maximum likelihood estimation for
the distribution function of P can be performed. This is considered by Van Es,
Groeneboom and Jongbloed (see [Es91], [Jo95], [Gr92] and the references given
there).

If P = 41, 6; is the Dirac measure concentrated in 1, then we have the
important special case of Poissonity, i.e. Y; is Poisson distributed with parameter
A > 0. Testing the hypothesis of Poissonity within the class of compound Poisson
distributions has been investigated by Puri (see [Pu85], see also [Ne79] and the
references given there).

Some work is also available for parametric estimation (see [Hu90], [Pa92]).

The direct compounding, i.e. the nonparametric estimation of () from a given
sample of claims X7, ..., X, was considered by S.M. Pitts (see [Pi94]) using a
plug-in-estimation procedure.

The nonparametric decompounding has not been studied in literature yet, in
spite of its obvious usefulness.

This thesis starts with two simple ideas. Firstly, Panjer (see [Pa81]) has given
a simple recursion formula for the case of discrete data. Given the intensity A and
the counting density p, the compound counting density ¢ can easily be calculated.
This formula can be inverted, as has been remarked by [Hu90]. This inversion
will be called Panjer inversion in the sequel. In fact, the Panjer inversion can
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be used to generate an intensity A and a sequence of real numbers py, po, ... for
every (not necessarily compound Poisson) counting density ¢ with mass at zero.
Of course, p needs to be neither a probability density function nor a summable
sequence. In spite of this, it is a natural procedure to estimate ¢ by the relative
frequencies ¢" and then A and p by the Panjer inversion.

Another starting point (see Chapter 1) is to deal with the convolution series.
Up to an affine transformation the compounding with Poisson weights can be
viewed as the exponential function. Hence it is natural to estimate A(P — dy)
via a logarithm in an appropriate Banach algebra. The first chapter provides a
necessary and sufficient condition for the existence of a logarithm based on the
Gelfand transform in the setting of commutative Banach algebras. It is proved
with elementary methods at the cost of some density assumption on the space
of Gelfand transforms. The density assumption is fulfilled in both cases, dis-
crete and absolutely continuous distributed data. Chapter 2 discusses the Panjer
inversion based estimator. If the sample size is large enough this estimator coin-
cides with the real logarithm of the relative frequencies in the space of absolutely
summable sequences. We prove strong consistency in this space and give suffi-
cient and necessary conditions for asymptotic normality. The Panjer inversion
estimator has the big disadvantage that it is not a probability density; it has neg-
ative entries. We investigate the following naive method: Replace the negative
entries by zero and normalize the sequence to one. A variant of this method is
studied also: Calculate the Panjer inversion up to a data driven end point S,
and apply the naive normalization to it. Again, we proof strong consistency and
asymptotic normality under suitable conditions on S,,. The limit distributions of
both methods coincide and are not necessarily Gaussian.

Panjer inversion of relative frequencies does not result in a probability count-
ing measure. We have to perform a suitable projection onto the probability
simplex. Projections are driven by inner products. Under truncation of the data,
we analyse the maximum likelihood method that is known to have good statisti-
cal properties. In contrast to the standard parametric situation, we discuss the
asymptotic behaviour of the maximum likelihood estimator (MLE) at boundary
points of the parameter set. The MLE can locally be viewed as a cone projection
driven by the Fisher information matrix. This is quite similar to the situation in
the isotonic regression (see [Ro88], a small example is in the introduction of the
Chapter 3). However, we have to deal with the difficulties of both nonlinearity
and nonconvexity of the parameter space. In contrast to the isotonic regression
localizing reasoning is necessary. To avoid the problem of the direct calculation of
the MLE, we construct an analogue of a one-step-Newton-iteration that turns out
to be efficient. We apply the method to the famous Bortkiewicz data describing
the number of men kicked to death by horses in the Prussian army. As a sec-
ond application we derive the asymptotic distribution of the log likelihood ratio
tests for testing the Poissonity hypothesis within the class of compound Poisson
distributions. We can profit from both our localization and the analogue test
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situations in order restricted inference. Similar to the situation there the limit
distribution of the test statistics turns out to be a mixture of y2-distributions
(see again [Ro88|). The mixing coefficients depend on the unknown parameter,
but studentization is possible. Since the limit distribution cannot be calculated
for higher dimensions, we propose a Monte Carlo method for an approximation.

The next chapter, Chapter 4, returns to the estimation of untruncated data.
The existence of nonparametrical maximum likelihood estimation is under in-
vestigation. Also a consistency proof for more general estimators including the
nonparametric MLE is given.

If P is absolutely continuous with density p, then () can be written as gydg+q.
A Panjer inversion formula is proved to calculate p from a histogram estimating
q in Chapter 5. The general case of decompounding, i.e. to estimate the distri-
bution function of P, is discussed in the last chapter. We construct a plug-in-
estimator based on a convolution power series and show strong consistency and
asymptotic normality in a weighted Banach space.

Due to the limit laws in effect at the boundary points of the parameter set
of X there are two principal difficulties in the decompounding problem. If \ gets
smaller and smaller, or in terms of the insurance risk model, if less and less
damages will be observed, their amount cannot be measured anymore, of course.
There is a loss of information. In more mathematical terms, if P is fixed then
the compound Poisson distribution will tend in total variation norm to the Dirac
measure concentrated in zero for A converging to zero.

On the other side, increasing the intensity will produce a larger and larger
number of claims in a fixed interval. They will be lumped together in the sum Y;.
This also means a loss of information that can be formalized using a central limit
theorem for random sums (see [Fe66], p.265). If X; has finite second moment,
and Y) is compound Poisson distributed with intensity A and claim distribution
P, then it holds that

Y- AEX; »
BN

VAEX?

for a standard normally distributed random variable Z. Hence the only informa-
tion that remains available for the distribution P of the claims X, is contained
in its expectation value and its second moment.

For completeness, let us also note that we have to make some assumptions
on A and P. We will always assume that P has no mass in zero. Otherwise, the
true parameter (A, P) could not be specified anymore. This is easily seen by a
rescaling argument in the exponent of the exponential function:

1
MNP —dy)) = A(l—P({0 ——F—P(N(0 — 0 .
exp (AP = 0)) = exp (A1 = PUOD) (1= P60 0:06) — ) )
Hence we have two corresponding pairs A, P and A\(1 — P({0})), P(-|(0,00)) gen-
erating the same compound Poisson distribution.
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Finally, a technical remark: For the rest of the thesis Y; is an iid-sequence of
random variables on a common probability space (€2,.4,P). The distribution of
Y; is given by a compound Poisson distribution with intensity A > 0 and claim
distribution P. We will always use @, q,q",... for the compound distributions
and P, p,p?, ... for the claim distributions to simplify the notation.
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Chapter 1

Logarithms in Banach Algebras

1.1 Motivation

The true @ is in the range of the convolution series of the exponential function
i.e. Q= exp(A(P —6)). We will also use the notation e ~%) Natural domains
of convolution are special Banach algebras. One straightforward approach of
estimating () therefore is considering () as an element of a Banach algebra, then
to estimate it by an estimator Q with @ taken from the same algebra. Solving
Q = exp(A(P — &) provides an estimator P of P. Hence we need a criterion for
Q to be in the range of the exponential function. Obviously, the set of probability
measures is very complicated, so this is a very ambitious task. A criterion based
on the Fourier transform would be much more convenient. Roughly spoken, the
standard textbooks (see [Ru91]) provide the following basic logarithm theorem:
If the spectrum of () does not separate zero and infinity then there is a logarithm.

The first example illustrates that this theorem does not cover the whole situ-
tation. Consider the family (Pa)xso = (exp(A(d1 —dp)))x of Poisson distributions.
Obviously, every P, is in the range of the exponential function. If we consider
P, as an element of the Banach algebra of two-sided absolutely summable com-
plex sequences then the spectrum of P, turns out to be the same as the range
of the Fourier transform Py (0) = exp(A(e®? — 1)). For each A > 0 the latter is a
parametrization of a curve in the complex plane (see fig.1.1 on p.23). Indeed, for
A > m the Fourier transform separates zero and infinity. For the same reason the
approach to use a one dimensional functional calculus to define the logarithm via
a Cauchy formula

loga := i (ze —a) ! log z dz
i J.,

with some ~ surrounding the spectrum fails as well. An analytic version of a
logarithm demands some path in the complement of its domain connecting zero
and infinity!.

'Indeed this is the proof of the basic logarithm theorem.

15
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On the other hand, however complicated the Fourier transform Py winds
around zero, the picture shows that all curves can be contracted continuously to
point 1 without touching zero. They are null-homotopic in C* := C\{0}. The
next section will deal rigorously with this situation.

To see the practical limitation of our approach consider the space of com-
plex measures on the line R (a nice survey for the situation of measure algebras
is [Ta73]). That is the canonical domain for probability measures. Here the
situation is much more complicated. The range of the Fourier transform is a
subset of the spectrum. The Gelfand transforms needed to calculate the spec-
trum are not satisfactorly specified to use them for practical purposes. Note that
exp (A(P — dp)) is an invertible element in every commutative algebra with unit
element. The inverse is given by exp (—A(P — dy)). Hence a necessary condition
for () to be in the range of the exponential function is invertibility. As an extreme
example we should mention the existence of a probability measure on the real line
with the following properties: The range of its Fourier transform is contained in
the real numbers and its spectrum contains the whole unit circle. Furthermore,
there is a measure for which the Fourier transform is bounded away from zero,
but which is not invertible (this can be found in [Ta73]). These two facts indicate
that it is not enough to consider Fourier transforms on their own. We have to
deal with Gelfand transforms.

In the next section we will derive a criterion using elementary methods for
the existence of a logarithm under some additional assumption on the space of
Gelfand transforms. We show that this condition holds in some important exam-
ples. Example 1.5 and a much deeper result on logarithms based on multivariate
complex function theory can be used to remove this assumption.

1.1.1 A Logarithm Criterion

Our reference here is [Ru91] (chapter 10, chapter 11). First let us recall the basic
facts about commutative Banach algebras and Gelfand theory.
Let (A,|| - ||) be a commutative Banach algebra with identity e, i.e. A is
a Banach space over the field of complex numbers with an additional binary
operation #, a multiplication, that makes A into a commutative algebra with
identity e and
la bl < [laf/[I0]

holds for all a,b € A. We will see examples in the next chapter. We will restrict
ourselves to commutative Banach algebras with some identity e.

Entire functions can be defined in Banach algebras in a very natural way using
their power series representation, e.g. exp(a) := > ;o) 5a™, a** the k-th power
of a, a® = e. There is no need for a functional calculus. Recall the functional
equation exp(a + b) = exp(a) * exp(b), which is true in this setting too.

Let A be the maximal ideal space. This is defined to be the space of all
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nontrivial homomorphism h, i.e. all nontrivial linear functionals h that are
multiplicative (h(a * b) = h(a)h(b)). The name ,maximal ideal space® comes
from the canonical identification of kernels of homomorphism with maximal ide-
als of A. The Gelfand transform of an a € A is defined to be the mapping
A > h — a(h) := h(a). This is a mapping from A to the field of complex num-
bers C. The Gelfand topology is defined to be the weakest topology on A that
makes every a continuous. Equipped with this topology, A turns out to be a
compact Hausdorff space. Defining A to be the space of all Gelfand transforms,
we have the set theoretic inequality A ¢ C(A).

The spectrum of an a € A is defined to be the set o(a) of all A € C such that
a — e is not invertible. o(a) can be characterized using the Gelfand transform
of a in a very simple manner, i.e. o(a) = a(A). If a(h) # 0 holds for all h € A,
then a is invertible.

A Banach algebra is called semisimple iff the intersection of all maximal ideals
is trivial. Obviously, this is equivalent to the fact that an element of a semisimple
Banach algebra is determined uniquely by its Gelfand transform a, i.e.

a(h)=0forallh € A =a=0.

Define G(A) to be the group of invertible elements. Then G(A) is an open subset
of A. Therefore G(A) is the union of disjoint maximal connected open subsets
of A, the components of G(A). One of them, Gy, contains e. G is called the
principal component; it turns out to be the image of A under the exponential
function, i.e. G; = exp(A). This will be the key ingredient for our elementary
proof.

We now return to our purpose. Consider a b in A, then [0,1] 5 t — exp(tb)
is a continuous path connecting e and a = exp(b). This path lies entirely in
G1 = exp(A). Let us define

[0,1] x A — H{(t, h) := exp(th(h)),
then H defines a homotopy between a and 1, i.e. H is a continuous function on
[0,1] x A — C with H(0,h) =1, H(1,h) = a(h) for all h € A. Since t — exp(ta)
is a path contained in G; C G(A), the group of invertible elements, the range of

H will not contain zero, i.e. H([0,1] x A) C C*. The next theorem shows that
the other direction is also true. We define ||f||x := supyex f(k) for a complex

valued function on some compact set K. For a set B C C(K) let B denote
the usual topological closure of B in C'(K), if the topology is induced by the
norm || - ||g.

Theorem 1.1 Let a € A. Suppose that

(D) FReTINY

There exists some b € A with a = exp(b), iff a is null-homotopic in C*, i.e. there
is a continuous mapping H : [0,1] x A — C* with H(0,-) =1 and H(1,-) = a(-).
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Proof: Only the backward direction remains for a proof. We have already men-
tioned that exp(A) equals the component of G(A) containing e. Therefore for
proving a to have a logarithm, it is enough to construct a continuous path taking
values in the group of invertible elements and connecting a and e. We will take
H and replace it by an appropriate approximation.

Consider the two following subalgebras of C'(]0,1] x A)

A = {[0,1] x A> (t,h) — > felt)ax(h) :

NEeN, freC(0,1]), g€ A k=1,...,N},

Ac = {0,1] x A3 (t,h) — > fiult)gu(h) :
k=1

NeN, f€C([0,1]), g € C(A), k=1,...,N} .

Since A and [0, 1] are compact spaces, they are also regular. Therefore points in
[0,1] x A can be separated using functions f € C([0,1]) and g € C(A) (Urysohn’s
lemma). Furthermore, A¢ is closed under conjugation and contains the constant
functions. The Stone-Weierstrass’ approximation theorem (see [La93|, theorem
1.4.) implies
O([O, 1] X A) — A—C”'H[U,I]XA'
)

Consider some S°V ., fi(t)ar(h) € Aand some S n_, fr(t)gr(h) € Ac. The simple
inequality

N N
D fege =Y fult)
K1 i

and the assumption (D) forces A to be dense in A¢. Since we have already proved
that A¢ is dense in C([0,1] x A), we conclude that A is dense in C([0, 1] x A).

Let € := inf{|H(¢t,h)| : ¢t € [0,1],h € A}. The compactness of [0,1] x A
implies € > 0. We find some N € N, ay,...,axy € A, fi,..., fn, such that for
H = ngvzl frar € A

N
< felloallgs — alla
k=1

IxA

€

3

P:I([O, 1] x A) C C* is true: if not there would be some (t,h) € [0,1] x A with
H(t,h) = 0. This would imply |H(t,h)| < [H(t,h)| + [|[H — H|jp1jxa < §, a

3
contradiction.

||f~[ - HH[O,I]XA <

Furthermore,
{x(h) L heA, zeCA), |x— H0,)|a < %} c C,
{x(h) L heA, zeCA), |o— H1,)|a < %} c C,
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again, otherwise there would be some h € A and some x € C(A) with 2(h) =0
and ||z — H(1,)[|a < §. This would imply

2¢

[H (LR < ([H = Hpagxa + [H(L) = zla+lz(h)] < 5,

a contradiction.
We define the following two mappings

0,3]xA — C

i (1—a)ée(h) +aXy, fO)ap(h), if ae€l0,1),
"\ (a,h) = SN fla = Dag(h), if aell,2), ,
(3—a) S0, f(Mag(h) + (o —2)a, if ac[2,3].
0,3] — A
", (1—a)e+ azgﬂ f(0)ay , if a€]0,1),
B e — Z,]gvzl fla—1)ag if, a€ll,2),

B-a) XN f(MWap+ (a—2)a, if ac[2,3].

Obviously, H4 : [0,3] — (A,] - ||) is continuous. Furthermore, m(h) =
H (o, h) # 0. So Hj, is the desired continuous path in the group of invertible
elements connecting e and a.0

The following theorem provides the uniqueness of , real“-valued elements and
establishes a Banach space analogue for logarithmic sheets. We need the concept
of an involution (see [Ru91], p.287f). This is a mapping A 5 a — a* € A with

the following properties
(x+y) =" +y*, ()" =X\*, (zpy)" =y'2*, 2=z, VYA€CVrycA

Note that this definition is made for Banach algebras which are not necessarily
commutative. We have (zy)* = z*y* for commutative algebras.

An element a € A is called hermitianiff x* = x. Recall the two following facts:
If A is a Banach algebra with some involution then every a € A has the unique
representation a = u+ iv with some hermitian u,v € A. If A is commutative and
semisimple then every involution is continuous. Let us state the theorem that
holds for commutative Banach algebras with unit element e.

Theorem 1.2 i) If a = exp(b) with a,b € A then a = exp(b + 2wike) for all
ke Z.

i1) Assume A to be semisimple and A to be a connected set. Consider b,c € A
with exp(b) = exp(c). Then there is a unique k € Z with b = ¢ + 2mwike. If there
is an involution on A and if a = exp(b) holds for some hermitian a then there
exists a unique hermitian b with a = exp(D).
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Proof: i) This is an easy consequence of exp(2mike) = e for all k € Z.

ii) Assume A to be semisimple. Consider b, ¢ € A with exp(b) = exp(c). This
implies exp(b — ¢) = e. Then for all h € A the equality exp(h(b— c¢)) = 1 holds,
hence h(b—c) € 2miZ. Since A is connected and the Gelfand transform of b— ¢ is
a continuous function on A |, there can only exist one kg € Z with h(b—c) = 2mkqi
for all h € A. The semisimplicity implies b — ¢ = 2wikge.

Now let us assume A to have an involution. Consider a hermitian a € A and
b € A with exp(b) = a. b has an unique representation b = by + iby, with b; € A
hermitian, ¢ = 1,2. If A is commutative and semisimple then every involution is
continuous, therefore exp(by — iby) = a* = a = exp(b; + boi) holds. The above
reasoning shows that b; — ibs + 2mikge = by +iby for some kg € Z. The uniqueness
of the representation yields by = wkge and the statement follows with b= b,.0

Let us summarize the considerations made above. Let A be a commutative
semisimple Banach algebra with unit e and some involution. If we consider Ay
to be the set of hermitian elements, then A;, is a Banach algebra over the field of
real numbers. We have proved then that a = exp(b) for a,b € A, iff the a is null-
homotopic in C*. b is unique. If we define U = {a € Aj : a(h) null-homotopic
in C*} then we have a well defined mapping log : U — Aj, with exp(log(a)) = a.

Some remarks on the smoothness: in later applications we are interested in
the continuity and differentiability properties of log. Consider the exponential
mapping exp. This is an analytic mapping on Ay, its Fréchet derivative at a € A is
given by the bounded linear operator b — exp(a)*b. This operator is invertible.
The inverse mapping (see [La93|, p.361) is given by b — exp(—a) *b. Hence the
inverse mapping theorem ([La93], p.361), provides a local inversion of exp that is
at least C'°°. The local inversion of exp defines a real valued logarithm in an open
neighbourhood of exp(a) with respect to A,. The uniqueness of the logarithm
implies by one stroke that log must be at least C*° and U is an open subset of
Ap.

1.1.2 Examples

Details can again be found in [Ru91]. We give only a short survey and show how
to apply the results of the last sections, especially how to refine them from the
two-sided case to the one-sided one.

Example 1.3 Consider the space of two-sided absolutely summable sequences
L= {(zk) CC: > ul< oo}
l=—00

with the usual ¢! norm. Equipped with the convolution

(a * b)k = Z apby—i,

leZ
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(¢ turns out to be a commutative Banach algebra with unit §y = (do;); (05 is the
Kronecker symbol). The Gelfand space A can be identified with the unit circle
S1 = {|z| = 1}. The Gelfand transforms are the usual Fourier transforms, i.e.
a(h) = 3",z axh®. Note that (D) is satisfied here. ({(Z) is semisimple. If we
consider the mapping a —— a = (ax) then this defines an involution. We can
use the results for the algebra of hermitian elements that is in fact the space of
two-sided real valued sequences (}(Z). A subspace useful for applications is the
space of one sided real valued sequences ¢! := (}(Ny). Suppose that we have an
element a € ¢! lying in the set U described in the last section. Then there is a
unique b € (4(Z) with exp(b) = a. Is this b also an element of ¢!? This is true.
Obviously, (4(Z) = ((—N) @ ¢'. Hence there exists b; € (*(=N), by € (! with
b = by+by. Therefore a = exp(by) * exp(by) and hence

exp(—by) x a = exp(by) = e + Z b*l
—_———

et
€l (—N)

This shows that exp(—by) * a = e. Hence a has a logarithm in ¢*. From the
uniqueness it follows that b; = 0. We will show that this logarithm is given by
the Panjer inversion. Assume that a € ¢! with exp(b) = a. Write b = \(z — dp)
for some A > 0 and x € ¢! with 2y = 0. The Fourier transforms are leading to the
equation a(z) = exp(A\(Z(z)—1)) for all |z| = 1. Since a and x are one-sided we can
also consider the power series or generating functions, i.e. a(z) = exp(A(2(z)—1))
holds for all |z| < 1. The usual calculations can be made (see [Pa92], p 171). We
state them here for completeness. Differentiating both sides yields

Z (k+1) akHz = Aexp(A )—1)) Zkajkz -1
k=0

[eS) k+1

A f: CLka f: k + 1 Ik+12 =A Z Z l:zclakH 1.
k=0 k=0

Comparing the coefficients we derive

k+1

Ayl = E lxjap41-y.

This is the Panjer recursion formula. Furthermore, we have
ap = a(0) = exp(—A)

Hence A = —log(ayp).
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Example 1.4 Consider the space of complex valued functions L{(R) on the real
line that are integrable with respect to the Lebesgue measure. Adjungate the
Dirac measure dy to it. Again equipped with the usual norm

Jado + £ = lal + [ If] do
and the convolution
(abs + f) % (B + g) = aido + ag + B + / F(@)g(- - 2) da,

we have a commutative Banach algebra with unit element dp. The maximal ideal
space can be identified with the one point compactification R = R U {oo}. The
Gelfand transforms are given by

hi(ado + f) = a + /exp(itx)f(x) dx VteR, hoo(ady + f) = a.

Note that again A is connected and that the space of Gelfand transforms is
dense in C(A) as can be shown using the Stone-Weierstrass Theorem. The same
considerations are true when going from the two-sided case to the one sided one.
We show in a later chapter that recursion formulas analogue to Panjer’s in the
counting density case can also be found for histograms.

Example 1.5 Consider a compact Hausdorff space K and the space of continu-
ous functions C(K). C'(K) with the usual pointwise operations is a commutative
Banach algebra with unit K > kK —— 1. A can be identified with K. The Gelfand
transforms are the pointwise evaluations ¢ — f(¢). Hence (D) is trivial here.
Hence a continuous function f has a continuous logarithm g, i.e. f = exp(g), iff
f is null-homotopic in C*.

We cite here a theorem that is taken from [Ga69] (theorem and corollary, p
86f). Its proof is based on multivariate complex function theory. Again, A is a
commutative Banach algebra with an identity. It can be viewed as an implicit
mapping theorem.

Theorem 1.6 Letay,...,a, € A. Let g € C(A) ando(g, ag, ..., ay,) be the set of
(n+2)-tuples (g(h),ao(h),...,an(h)), h € A. Let F(w,2p,...,2,) be a function
analytic in a neighbourhood of o(g,aq,...,a,), such that F(g,aq,...,a,) = 0,
while OF /0w does not vanish on o(g,ag,...,a,). Then there exists a unique
element b € A such that g = b and F(b,ag,...,a,)=0.

We consider the mapping (w, z) — F(w,z) := exp(w) — z. Obviously, F is
analytic on C? and 0F /0w = exp(w) # 0 for all w € C. Assume now that
a € A has a null-homotopic Gelfand transform in C*. Example 1.5 provides a
continuous function g € C(A) with @ = exp(g), i.e. F(g(h),a(h)) = 0 for all
h € A. The theorem then yields an unique b € A with b = g and F(b,a) = 0, i.e.
a = exp(b). This reasoning shows that the asumption (D) can be removed and
theorem 1.1 holds in full generality.
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Figure 1.1: The Fourier transforms of the Poisson distributions with parameter
A =4,6. The fourth root was applied to their moduli.



Chapter 2

Panjer Inversion based
Estimators

2.1 Introduction

Let us assume that the claim distribution is concentrated on N. We want to
estimate A and P.

We identify P and ) with their counting density p and ¢, respectively. Recall
that p, A and ¢ are connected via the Panjer recursion formula

k
_ A
Qo =re", =7 E Ip1qr—1-
=1

This recursion can be inverted, leading to an inverse Panjer recursion

A= - log(q[)),

Ao = g —

| >

k—1
Z Ipigr—1-
=1

This leads to a simple plug-in estimator: Estimate g using the relative frequencies
g == 37 1yi—k, k € Np. Then calculate an estimator A\ and an estimator
p" for A and p using the inverse Panjer recursion formula with ¢} instead of gy.
We have seen in the last chapter, example 1.3, that if the Fourier transform of
q" is null-homotopic, then p™ is an absolut summable sequence. The Fourier

transform is the empirical characteristic function ¢"(6) = £ 377" | e®**. Section

2.2 discusses the Panjer inversion again. It is shown that the glug—in estimator will
be in the range of the exponential function with probability one if the sample
size n is large enough. Some notation will be given. A large deviation upper
bound will be given for the non-null-homotopy of the empirical characteristic

function. Section 2.3 gives some calculations of the derivatives of the underlying

24
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mappings concerning the plug-in estimator and shows that they have a very
simple structure and can easily be computed. Note the analogue in the univariate
case exp(x) = exp(z) and log(z)" = 1/x. Section 2.4 shows strong consistency
and asymptotic normality of the estimator in ¢!. Section 2.5 investigates the
naive projection estimator if only a finite segment of p” is calculated. The end
point is data driven.

2.2 A Plug-In Estimator

We want to apply the results of the last chapter. Consider (), p) and g as elements
of the space ¢! := (L (Ny). Then with exp denoting the exponential function in ¢!
we have the equation

q = exp(A(p — o))

We have shown the existence of an open subset U of /! consisting of those elements
whose Fourier transforms are null-homotopic in C* and a mapping, the unique
real logarithm log, such that

a = exp(log(a)) Va e U.

Obviously, A(p — &) is real valued, hence logq = A\(p — &y). Let Ty : ¢* — R
be the projection on the kth coordinate Ty(z) := xy, k € Ny and Ty : £1 — (1,
Ti-(x) == (0,21, 22...) € 1. Then we have the following equalities

A = —Tylog(q)

1
p = T5logg=— Ty logq.

A Ty log(q)

Again note that this is only a compact way to write down the inverse Panjer
recursion.

We want to give ¢! a measurable structure. ¢! is a separable Banach space.
Let B be the Borel o-algebra, i.e. the o-algebra generated by the open balls
in /. Since ¢! is separable, a mapping f from a measurable space into (¢!, B)
is measurable iff T}, o f is measurable (see [Va87|, p 17). Hence the sequence
q" = (q¢") of relative frequencies is a random variable taking values in ¢,

Let us define an estimator 6" = (A", p") taking values in ¢'. Define

0" = —Tylog(q")do — T5 logq, if ¢" € UN{Ty # 1},

1
Ty log(g™)
and 6" := §y + 6y, otherwise. This is a measurable mapping taking values in /1.

Note that the first component returns an estimator for A and the sequence
(T10™, 150", ... ) an estimator for p.
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First we have a look at the Fourier transform ¢" of ¢™. It is the empirical
characteristic function, i.e.

=1

The law of large numbers implies that ¢"(6) tends to ¢(#) a.s.. The pointwise
convergence of characteristic functions can be strengthened to local uniform con-
vergence (see [Lu70], p.50). Especially, ¢" tends uniformly to ¢ on the compact
interval [0, 27] a.s.. The next lemma shows how uniform convergence is connected
to null-homotopy.

Lemma 2.1 Consider C(K) for a compact set K.
i) Consider some f € C(K) that is null-homotopic in C*. Let g € C(K). If

1f = gl < inf|f]

then g is null-homotopic in C*.
ii) Let x € U and y € 4,. If

et
i = ll0n < inf I3

then y € U.
iii) Consider f,, f € C(K), n € N, with ||f, — fllx — 0. Suppose f to be null-

homotopic in C*. Then there exists some ngy, such that f, is null-homotopic in
C* for n > ng.

Proof: Obviously, € := inf;c i | f| > 0, since K is a compact set.
i) Let H; be a homotopy between f and 1 in C*. Define

H(a,t) := (1 —a)g(t) + af(t).

Then H is a continuous mapping taking values in C. We show that H € C([0, 1] x
K,C*). If there is some «g € [0,1],tp € K with H(ag,ty) = 0, then we would
have the following contradiction
tlg}z [f| < 1f(to) = H(aw, to)| = (1 — )| f (to) — g(to)] < ggyf‘ :

H is a homotopy between g and f in C*. We therefore can define a homotopy
between g and 1 in C* using the homotopy H with H(a,t) := H(2a,t), o €
0,1/2), H(a,t) := Hi(2a — 1,1), a € [1/2,1], t € K.

ii) is obvious.

iii) Since € > 0 there is an ng such that || f,, — f|| < € for all n > ny. Applying
the first part of the lemma we conclude that all f,,, n > ng, are null-homotopic
in C*.0O
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This lemma shows that the empirical characteristic function ¢” is null-homotopic
for n large enough with probability one and 8™ will be given by the Panjer inver-
sion formula. Especially, the unbounded oscillations noted by [Hu90] will vanish
for n large enough, since our estimator is ¢!-valued.

We use the lemma to bound the probability that ¢" ¢ U, i.e. the empirical
characteristic function ¢" is not null-homotopic. We will show that this event
is a rare event in the sense of the theory of large deviations (see [De93]). The
probability of the event ¢" ¢ U decreases exponentially fast. fz denotes the real
part of a complex number z.

Theorem 2.2

1 1
liirisogp - log P(¢" € U) < —g &xXP (2)\ (gzﬁ Rp(t) — 1)) :
Proof: We have the inequality [|¢" — ¢|[jo,2x] < |l¢" — ¢||1. Hence the following set
theoretic inclusion holds:

{1g" = dllo2m = €} C{ll¢" —alls Z €} = B.

We want to apply the upper bound of Sanov’s theorem (see [De93], corollary
6.2.3). We state it here in a simplified form:

1
li —logP(¢" € A) < —inf H
imsup —~log P(¢" € A) < — inf H(z|q)
for all A, closed in the weak topology on the space of probability measures on
No. H(z|q) denotes the Kullback-Leibler divergence, defined by

> x
H(z|q) = Zﬂfk log =,
—o qk

if the support of = is a subset of the support of ¢ (i.e. the Radon-Nikodym
derivative dx/dq exists), and H(z|q) = oo, otherwise.

Obviously, the weak topology equals the topology of pointwise convergence of
the probability densities. In view of Scheffé’s theorem the topology of pointwise
convergence of probability densities is the same as the || - ||;-norm topology re-
stricted to the set of probabilty densities. Hence the large deviation upper bound
can be used with B as defined above.

We now want to estimate the upper bound — inf,cp H(x|q). The | - ||;-norm
is a lower bound for the Kullback-Leibler distance. It holds that

1
<l = al} < H(sla).
Hence we have the inequalities

1 1
—inf H < —=j —q|? < ==&
inf H(zlg) < —ginflle—qfy < —ge
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If we choose € := inf[ o5 |¢| then lemma 2.1 ii) provides the upper bound

1 1 1
limsup —log P(¢" ¢ U) < limsup ~log P(ll¢" — qll 2 €) < —2 dnf, jaf*.
Since |G]? = exp(2A(Rp—1)), the assertion of the theorem follows by the monotony
of the exponential function.O

The upper bound is of course a function of X\. As p is not the Dirac measure
concentrated in zero, we have inf p < 1. The upper bound tends to 0 exponen-
tially fast with increasing A. This again is a hint that our methods are not well
suited for large .
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2.3 The mappings ¥V and L

The linear function Tj : £ — R can be regarded as an element of the dual of ¢},
so we write (Tp, ) instead of Tyz. Define the function

L
(Tp,log(z))

and L(z) := 8401, else. For shortness, let us denote U’ = UN{z € (' : (Ty,z) <
1}. This is obviously an open subset of £!. Then L maps ¢ to ¢*. We also have
by definition 0" = L(¢") and L(q) = Ao+ p. Let us also define the compounding

mapping

L(z) == — (T, log(x))dy — T log x, iteel, z9<1,

05z — U(z) = TN T e=d) ¢ g1,

Of course, these mappings are inverse to each other. To be more specific, for
each u € U" we have ¥ o L(u) = u and for every v € V := U~1(U’) we have
LoW¥(v) =wv. Obviously, ¥ is continuous, therefore V' is an open subset of ¢*. ¥
is even a C°(¢', (') mapping. We will see in the next lemma that its derivative
A= W5 ., is bijective, hence W is a local C*°-diffeomorphism. Its local inverse
U~ ie. L, is therefore a C*-mapping, too. The derivative of L in ¥(\Jy + p)
is the inverse of A. The next two lemmas will be devoted to the calculation of A
and A71L,

Lemma 2.3 i) VU'’s derivative at \og + p is given by
Ah =W\ h=(To,h)(g*p— (14 N)g) + Ag * h.

A is an isomorphism mapping {* onto (*.

i1) Let Ly be the restriction of L to the set U'. Then Ly is continuous and
Fréchet-differentiable. If ¢ = exp(A(p — o)), then the derivative is given by the

operator
1

1 1
A -1
i) A = (L;)_l.
Proof: ¥ is a composition of two C*-mappings, * — g(z) := (Ty, z)(Ty-z — &)
and the exponential function. Both are Fréchet-differentiable. The derivative of
U at Adg + p can be calculated from the chain rule. We have

Grogapht = (Lo, h)(T5-(Ao + p) — o) + (To, Ao + p)Ty h
eXP (s P = MNP0 b =g % h,
Ah = lI///\504—ph - eXp//\(p—éo) gi\éo+ph
= (To,h)qg*(p—dp) + A q*TOLh
——
=q*(h—(To,h)do)
= (To,h)(g*p— (1+N)g) + Ag * h.
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ii) Note that Ly = g o log;, with

g:{Ty #0} — (%, g(x) = —(Ty, x)do — <T01, >TL

Since both ¢ and log;;, are differentiable, we can use the chain rule again. As
seen before (see the remark at the end of section 1.1.1)

(log),h = q~ " * h.

The derivative of g is

1

1
! h = —(Tp,h)é To, WT5Mp — &) — T h
I\(p—50) < 05 > o+ <T0,)\(p—50)>2< 05 > 0 (p 0) <T0,/\<p 50>
1 1
= —(Tp, h)bo + X(TO, h)p + XTOJ‘}L
Note that
<T07 q71> = <TU7 6)\(607}7)) = 6)\
and
05 - - ; o =€ 05 .
(To, gL % h) = (Tpy, 2P« b)Y = MTy, h)
Therefore
Lih = ghpspn(a ' xh)
1 1
= —(To,q " *h)do+ X<T0’ g ' xh)p+ XTOL(q_l * h)
et 1
= —6)\<T0, h>50 + X(Tg, h)p + (qil x h — <T0, qil * h>(50)

A
) + %ql x h.

_ o 1 _ 1
= 6<T0,h> ()\p 1"—)\ 50

iii) It is straightforward to prove that
L/ \Ij/>\50+p \I]/Aéo_,’_p[/q 1d€1 El

U
For later applications we derive the partial derivatives for ¥ and L too. For
0 <l < k we have for example

T Vs, p00 = 04+ XThq % 6 = Aqe—i,

TiVispiplo = Tigxp— (14 Nge + Agy = ZPZQk 1~ k-
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The components of the directional derivatives of W), , d; define an infinite trian-
gular matrix of the following simple form:

—q0 0 . 0
Pi1go — ¢1 Ao '
P11 + P2go — G2 Aq1
(TeWhsyp0)0skco = | Prg2+ D2 +Pstdo — s A
: : Ado
S Pil—t — 4 AQk—1 AGr—2

If p = §; (equivalently ¢ € P) then we have an even simpler form

—e 0 0
e A\ (% — 1) e 0
DEEoY e o
3 3
(Tk\:[]g\do_i_dl(sz)%é]lc:gz = e_/\% (% 1 %6_)\ O
: : " ) .0
XS (8 A —x ASTL -2
€ sr (X - 1) s—11¢ 5—2)1¢ Ae
Analogously, the matrix associated with L can be computed as follows
1 1 1 _
Tp Lo, = eN(To, 0y) (X<Tk,p> - (1 + X) <Tk,5o>) + X<Tk>q gy
The matrix has the following form:
—e 0 0 0
e)\ _ 6)‘
Sptiat % 0 0 0
A _ _ EA
Sptie' a5 000
(Telid)ozrze = | Spst3a’ 3 ja' 5§ 0
oY _ _ _ Y
TPt 3G G o a5
If g € P then ¢! = M09 = o (_k);)ke)‘ék. Therefore the components of ¢!

are

_ Ak
qy, b= (_1)%)\@-
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The matrix then has the form

—e 0 0 o0d
eA 6>\
S(1-2) < 0 0 0
(ThLyd)osrso = e 00

2.4 Consistency and Asymptotic Normality

We will use the continuity and differentiability properties of L to establish con-
sistency and asymptotic normality.
Let us first prove strong consistency.

Theorem 2.4 The following is true:

@) " —qli o0,
@) 0" = p)l L3 0.

Proof: i) This is a direct corollary from Scheffé’s theorem and the a.s. pointwise
convergence of the densities k — ¢}’ to the density k& — gj.
ii) Fix an w such that ¢"(w) — ¢ in ¢*. Since ¢ € U" and U’ is open in ¢!, we
have ¢"(w) € U’ for n large enough. The continuity of Ly guarantees that
lim L(¢"(w)) = lim Ly/(¢"(w)) = Ly (q) = L(q) = Ado + p.

n—oo n—oo

O

To obtain the asymptotic normality of ™ we establish asymptotic normality
for ¢" and apply the delta method. The next theorems will establish asymptotic
normality for the relative frequencies.

First we want to give a heuristic argument that there must be some condition
on the decay of the sequence (gx). Let us consider the empirical distribution
function F™(t) := 137" 1j04(Y;). Let F be the distribution function of Y. In

T on

particular, we have weak convergence of the family

(VR(E"(t) — F(t))ier = (Br@w)ter = Wrwy — F(O)W1)ier

for a finite subset T' of [0, 1], W denoting the Wiener process and B denoting a
Brownian bridge process.

The relative frequencies can be calculated from F™ via ¢ = F™(k)—F"(k—1),
k € Ng, F"(—1) := 0. The same is true for ¢: ¢, = F(k) — F(k — 1), k € Ny,
F(-1):=0.
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Applying the continuous mapping theorem we derive weak convergence of the
following finite dimensional families

n D
(Vn(qy — ar)rer = (Brgky — Brk-1))ker-

Hence (Bpx) — Brk—1))ken, is the only candidate as a limit with respect to weak
convergence of v/n(q" — q).

However, there must be made some assumptions on the decay of ¢ for £k — oo
if we do not want to have a ,mass defect”. Consider the sequence

(Bray — Brae-1)keny = Wregwy — Weg—1) — 6W1)keno,
WF(fl) == 0

We need (Z},) to be an element of ¢! a.s.. The term g, W; behaves nicely, because
(W1qk)ken, is an element of ¢'. The first one can be estimated: The path of W
is locally Holder continuous of order v < 1/2 at 1 with probability one. Assume
that W is realized over some underlying probability space (£, A’,P"). Fix an
w € ', such that ¢ — Wi(w) is locally Holder continuous of order v < 1/2.
Then for € > 0 there is some constant C, such that for all |1 — s|,[1 — ] < €
|[Ws(w) — Wi(w)| < CJt — s|7. Therefore

> W (W) = Wrg—n) (W)
k=0

< C Z |F'(k) — F(k—1)|" + some large, but finite number
=0

k=
1—F(k—1)<e

(o)
= C Z ¢, + some large, but finite number.
lfFI(Ck'zfol)<e

Hence if " q] < oo for some v < 1/2, then (Zj) is an element of (' a.s..

The next theorem provides an elegant tool to prove weak convergence in
Banach spaces. It is a combination of two corollaries quoted from [Va87] (p.29,
p. 229).

Theorem 2.5 Let B be a separable Banach space and A be a separating subspace
of B*. Let (By) be an ascending sequence of finite dimensional subspaces of B
with \J, Br, = B. Let P, Py, k € N, be probability measures defined on the Borel
o-algebra of B. If

(i) lim [ MNP, (z) = / N AP (1) VA € A,

(11) lim sup P(z € X : inf ||z —y|| >¢)=0Ve >0
M—00 LN yEBm,

then P, = P.
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From this we derive the theorem for the relative frequencies. For the notation of
centered Gaussian random variables and covariance operator see [Li95] (p 76f).

Theorem 2.6 Let (W;)icjo,1 be the Wiener process. Let F(x) 1= 3, q be the
distribution function associated with q. Let Zy, := Wpgy—Wrg—1)—aWi, k € No.
i) Then the following equivalence holds:

(Zi)reno € 01(Ny)  a.s & Z qr < 0.

keZ

it) Suppose one of the conditions of the equivalence in i) to be fulfilled. Then Z
s a centered Gaussian random variable with covariance operator

K : 0> — 0 KX = M- (\q)q.
M, : (> — (' denotes the multiplication operator, i.e. TyM\ := \ig;.

iii) If one of the conditions in i) is fulfilled, then in {*(Ny)

V) —a) 2 Z = (Zy)rews-

Proof: i) As mentioned above,

(Zk)ren, a8 A Z Weay — Weg—-1)| < 00 a.s.,
keNy

since Wiq € (*(Z). Hence we can restrict ourselves to the analysis of the sum

2 keno Wry = W]
First suppose that ), ., \/qx < oo holds. We use the elementary inequality

E|Y| < VEY? for a random variable Y. With Fubini’s theorem we obtain

EY  Wrw = Wrg-—nl = Y E[Wrg) — Weg—)|
keNy keNy

<> \/E(WF(k) — Wrg—n)? = > _ @k < .

keNp k€N

This shows that (W —Wr@-1))kez € ¢* with probability 1. Therefore (Z)ken, €
0.

Suppose now that we have >, |Wpu) — Wrr-1)] < oo with probability 1.
Without loss of generality we may assume that ¢, > 0 for all k£ € Z. The random
variables (|Wru) — Wek-1)|)ren, are independent. We can apply Kolmogorov’s
three-series-theorem (see [Fe66], p.317): In particular,

Z E|WF(k) — WF(kfl)‘1\WF(k)*WF(k_1)\§C < 00 for all ¢ > 0.
keNg
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Fix some ¢, say ¢ = 1. We have

1
1 Vk _a?
ZE|WF(k)_WF(’C*U|1|WF(k)*WF(k71)\§1 = Z\/ﬁ\/?/ ) |5L‘|6 7 dx
keNy keNy m T VR
2 _1
= X g (1)
keNp 2m
2 1
> 1—e"2).
> kZNm— = )

This shows that ZkeNO V/@x < oo. Hence the first part of the assertion is estab-
lished.
For the proof of ii) and iii) let

N
A:={) oxTi: NeN, ap,...,ay €R}.

k=0

ii) Let Y e, /@& < 0. Assume that W is defined on some probability space
(Q, A" IP"). As we have proved above, the distribution of Z defines a probability
measure on ¢! (with the usual Borel o-algebra). We want to prove that Z is a
Gaussian random variable on ¢!. By definition this is equivalent to the statement
that (A, Z) is Gaussian for every A € £*. As is well known the finite dimensional
distributions of Z are those of a multidimensional Gaussian random variable.
Moreover, (A, Z) is Gaussian for all A € A by definition. Now consider an arbi-
trary A = (\,) € £, Define AN := SN A\, Ti. Then we have (AN, ) — (), z) for
every z € ('. In particular, (AN, Z) — (X, Z) as.. Therefore (AN, Z) 2 (X, Z).
Since the class of one-dimensional Gaussian distributions is closed with respect to
weak convergence (of probability measures), (A, Z) is Gaussian too. This shows
that Z is Gaussian.
The barycenter a of Z is zero: let A = (A\p)ren, € £*°. Note that

>INl Zkl < Mool Z]l < 00 PP —as. and > MZe| <IN Zl.
k=0 k=0

k=0

Hence by dominated convergence

E(\ Z) = EZ MNe(Wegwy = Weg-1) — acWh)
k=0
= Z )\kE(WF(k) - WF(k—l) - QkWI) =0= <>\7 0>-
k=0

Since A € (*° was arbitrarily chosen, the barycenter of Z is zero by definition.
This shows that Z is centered.
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Let us calculate the covariance operator of Z. This is an operator K : £>*° — (!
fulfilling the equation
(1, KX) = E{p, Z)(X, Z).

for all A, € €. Such a K exists (see [Li95], p. 77) and is continuous, if we
topologize 1, (> with the weak topologies, i.e. the topology on ¢* is the one
induced by the seminorms ¢ 3 X\ — q¢(A\) := |[(\, f)|, f € ¢*, and the topology
on ¢! is the one induced by the seminorms ¢' 3 f —— q\(f) = [(\, )|, A € £
(see [Li95], p. 70). Suppose M, to be the multiplication operator as defined in
the assertion of the theorem. It holds

(T, MJTy — (11, 9)q) = quidx — a1 = EZx 2y = E{Ty, Z)(11, Z) = (T}, KTy,).
for all k,1 € Ny. Therefore by linearity
(A Moy — (, @)q) = (A, Kp) VA € A

The set A is dense in £*° equipped with the weak topology. Since both mappings
p— (A, Myp — (i, q)q) and p — (A, Kp) are continuous with respect to this
topology, we have

(A Myp— (p, q)q) = (N, Kp) for all A € A,y € £

Since A is seperating, we can conclude Ky = My — (u, q)q for all u € £°°, hence
K= Mq ’ _<'7Q>Q‘

iii) Now we want to apply theorem 2.5. The multidimensional central limit
theorem provides weak convergence of /n(qy — qx)o<k<n to a centered N + 1-
dimensional Gaussian random variable with covariance ¥ = (qx0k — @ik )o<ik<N-
Therefore:

Eei<2i\;0aka,\/ﬁ(Q"*Q)> — EeiZ{Ll ouv/nlay —ar) _, e*%(ao ~~~~~ an)T(ag,, an).
It is easy to show that
COV(WF(k) - WF(k—l) - qWh, WF(Z) - WF(l—l) - QZW1> = kOl — Q-

Hence
67%(010 ..... CVN)TZ(&Q ,,,,, an) — E€i<22]=0 aka,WF(A)7WF(A_1)+qW1> )

Therefore PV(@" =0 (\) — PWro=Wre-n=aBi(}) for all X € A.
Let us construct a sequence of of ascending subspaces

By = A{(og)rez : ap =0,k >m}.
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Obviously, (By) satisfies the condition of theorem 2.5. We have the following
inequality, using Beppo Levi’s theorem

PSS Wil a0l =< | < 2B S W - a)l

|k[>m |k|>m
1
= C > EWVnlgy — )l
|k|>m
1
< =S VE WG - w)
|k|>m
1 - 1
= - > Va-@¢<=> Va
k[>m k|>m

Since ), \/qx < 00, we have

lim sup P Z|\/ﬁ(qg—qk)|>5 =0 foralle>0.

m—0o0
" k| >m

Hence both conditions of theorem 2.5 are established. This shows the second
part of the assertion. O

Note that M, — (-, ¢)q is a bounded operator, hence continuous in the stronger
norm-topology. Furthermore, it is a compact operator. Indeed, the multiplication
operator can be approximated by finite rank operators with respect to the norm
topology, e.g. define M}'\ with (T}, M \) = qu\y, for 0 < k < n and (T}, M7A) =
0, else. Therefore M, is a compact operator (see [La93], p. 416). Since the
covariance operator is the sum of a compact operator and a finite rank operator,
it is compact as well.

Now we will return to the question whether there is asymptotic normality for
0™. This is proved by applying the delta method.

We want to use a generalisation of the Skohorod representation theorem, that
can easily be derived from [Po84] (see p. 71, Representation Theorem). We state
it here as a lemma:

Lemma 2.7 Consider random variables X,,, X, n € N, taking values in a sepa-
rable metric space D with X,, = X and distributions £(X,),L(X) n € N. Then
there is a probability space (', A", '), random variables X! X' : Q) — D, n € N
such that X' 2 X, X/ 2 X, and X! — X' as..

Remark: As usual, X, = X iff E(f(X,)) — Ef(X) for all bounded continuous
functions.
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Theorem 2.8 If )" \/qx < 00, then

V(0" — (Ao +p)) > G = AT'Z.

G is a centered Gaussian process with covariance operator A~ o(M,—(-,q)q)o AT
with A~ = L}, as in lemma 2.3.

Proof: The proof is standard. From theorem 2.6 we have v/n(¢" —q) 2, Z. Since
¢! is a separable metric space with respect to the norm topology, we can apply
lemma 2.7 above. Hence there are a probability space (€, A’, ') and ¢*-valued
random variables ¢, and Z’ defined on it with

vild,—q)— 2  P—as, ¢ 2¢.neN, 222z

Since we have Fréchet-differentiability of L in ¢, we have for every w’ € Q' in the
complement of a set of P’-probability zero

Vn(L(g,(w") — L(q))
= Liv/n(q,(w') — q) + o(v/n(q, (W) — q)) = L. Z'(w') + o(v/n(q,, (') — q)).

This shows that
Vvn(L(q,) — L(q)) = L,Z' P —as..

Hence

Va(L(g,) — L(g)) & LLZ".

Since ¢" 2 ¢,,neN, and Z 2 Z', we have

V(L(q") — L(g) 2 Vn(L(q,) — L(q)) = L,Z' 2 L, Z.

If we define G = L/ Z, then G turns out to be the distributional limit of \/n(L(¢"™)—
L(q)). The first assertion is proved.

Obviously, G is the image of an Gaussian random variable under a continuous
linear mapping. Hence it is a Gaussian random variable. The representations
of the covariance operator and the barycenter are calculated directly from the
definition of G. O

Of course it is of some interest how the decay condition of ¢ is connected
to an appropriate condition on the claim distribution p. This will be answered
by the next lemma. The main statement is more general than we need in the
moment, but it turns out to be useful later on, when we are looking for a proof
of consistency for the maximum likelihood estimator.

Lemma 2.9 The following holds for all A\ > 0. Let v € (0,1). Then

[oe) o0
> pl < oo & d gl <o
k=1 k=0
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Remark: at one stroke, we see that for all p concentrated on finite subsets of Ny
our decay condition is fulfilled.

Proof: ,<*: This is immediately clear. Since for k& € N fixed the event that
the total claim is k includes the event that the number of single claims is one and
the only claim is k, in probabilities: g, > e *Apy.

,=“: Now consider the space ¢3(Ny), including the sequences (z)ren, With
> wen, [Tkl < 00 [[(@)kenolly = 2p=g |z]” defines a socalled quasinorm on
(% (Np). In particular, || - ||, is continuous and subadditive and (¢%(No), | - ||
is a complete quasinormed space (see [Sw92|, Example 17, p.22). Obviously,
(%(Ng) C }(Ng). Therefore the convolution x *y of x,y € (}(Np) is well defined
and the sequence z * y is at least an element of /*. We show even more, namely
z=1xxy € (F(Np):

Z|Zk|7_Z|Z$myk m"y < ZZ’xmyk m"y Z:|xk|72:|ym|7
k=0 m=0

k=0 m=0 k=0 m=0

Hence ||z * y||, < ||z|l,||y]ly. We have proved the submultiplicity. If p € ¢§(Ny)
and ¢ = exp(A(p — dy)), we therefore have

- )\k ! A k
lal <3 (5) <ol

k=0

It can easily be seen that the right hand is finite. This proves ,,=“.0

2.5 Two Naive Projection Estimators

We have investigated the estimator §™ and have proved strong consistency and
asymptotic normality. These are beautiful properties for an estimator. We should
pay some attention to the question whether the range of our estimator is a subset
of our natural parameter space R™ @& M;(N), M;(N) denoting the set of counting
densities on N. By definition the estimator Tp0™ for A takes only positive values,
hence it is an element of the natural parameter space for A\. Furthermore, sum-
ming up the components, we have >,° 07 = 1. Indeed, for ¢" ¢ U’ this is trivial
by definition of " = 6y + ;. If ¢" € U’, then

—

1 =) g 0) = exp(log ¢"(0))

k=0

— exp({Ty, 07) (136" — 60)(0)) = exp((Tp, 0" Zek—l

Hence )2, 0p = 1.
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However, it turns out that T3-0" is never nonnegative, hence not a probability
measure. The reason for this is that ¢" has finite support, but nontrivial com-
pound distributions always have unbounded support: Consider some probability
measure p not concentrated on {0}, say pr > 0 for some k£ > 0. Then the event
that the total claim is [k, [ > 0, includes the event that all single claims take the
value k£ and the number of claims is [, in probabilities ¢ > pi;e_”l‘—!l > 0. The
support of ¢ includes all multiplies of k.

How can we turn " into a probability density? A simple method is to replace
all negative entries of T5-0™ by zero. This gives us a new sequence, say (). Since
the sequence does not sum up to one anymore, we normalize it by dividing every
entry by the total mass Y ;°, yx. Note that

1= (Te, T 0") <>y < || T90"]1 < oo.
=1

=1

This justifies our procedure.
To be more precise, define the mapping

A ((zg)) == ToL((mb)

This mapping is well defined. Let us abbreviate the summations in ¢;. Define
summation operators Y ;' x = » =, x; for © = (xy) € (', k < m < co. These
are bounded linear mappings, hence continuous.
Our new estimator can be described in a compact form as follows
W= D) = (T, 07 + o (07).
>o1 (o)
For consistency we look at the underlying mappings: From the simple inequality
|zt —yT| < |z —yl|, z,y € R, we conclude that 7 is a continuous mapping, even
more: ||7(z) — 7(y)|l; < ||z — y||; holds for all z,y € ¢*. Since we have already
proved strong consistency of 8" in /', we obtain

7(0") = 7Aoo +p)=p P—as.

The summation operator involved in the definition of n™ is continuous too. Hence
L*(x) is pointwise continuous for all x with Y [°7(z) # 0. As already seen we
have > 7" w(6™) > 1 with probability one. This shows strong consistency, i.e.

n" — X+ p P—as.

What is the impact of our normalization procedure on the distributional limit?
Before investigating this, let us define the following mapping. Of course, we could
try to apply the delta-method on the asymptotic normality of y/n(0" — (Ady + p))
and the mapping L?. However, this fails here since 7 is not differentiable anymore.
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This and some refinements on the estimation procedure considered later on forces
us to go a more direct way.
For 2° € ¢; define

gl(No) — El(No)
Tp0 :
(xk’) U TOL<xk’1x2>0 + ‘Il—l_lx%:O)'
Again, mo is well defined for all 2° € ¢*. Furthermore, it is continuous, indeed

a0 (2) = oo )y = D o — vl + D Jaf =yl < lle =yl Va,y el

$k>0 :ck—[)

Lemma 2.10 i) Consider ", g € £* with ||/n(E" — (Ao + p)) — g||1 — 0. Then
1

i) Consider p",g € L', A\, Gx, Yny Gy With

[vry" —p) —gllh = 0, [VaAa = X) =] =0, |Vn(ya—1)—g,| = 0.
Then

—

[V (7(€") = p) = mp(9)|l, — O,

— 0.
1

1
H\/ﬁ ((Anéo + 7p”) — (Ado + p)) — (9200 = gyp + 9)
Proof: i) Again note that |x* — y*| < |z — y|. Consider for S € N

Iy (VA(E" = (3 +) = V(r(€”) = Pl
S
< oI WRE) - Vi |+Z|f — ) = V(&) —p)

p;=0 =0 pl>0
o0
+2 Vi Y 1§ -l
I=S+1

J/

-~
g W —p) =i+ 32 g1 |91

< Z\f =) = V() =)l +20ValE" = Ao +p) —gli +2 ) gl

I=S+1
pl>0

Let € > 0. Then there is an S with 237 ., |g| < e. Since || - ||;-convergence

implies pointwise convergence, we have & > 0 for all £ =1,...,5 with p, > 0

for n big enough. Then

Z VA& — p) — V(&)™ —p)| = 0.

:Dl>0
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Therefore

limsup |7, (VA(E" — (Ao +p)) — Va(r(€") - p)| < e

n—oo

Since € was arbitrary, we have proved ||m,(v/n(£"—(Xoo+p))) —v/n(7(£")—p)|1 —

0. The assertion follows from

IVn(x(€") = p) = mp(9)llx
< Vn(€") = p) — mp(Vn(€" = (Ado + )l + Im(VR(€" = (Ao + 1)) — mp(9) 11
< [Vn(r(€") = p) = mp(Vr(€" — (Mo + )l + [VR(E" = (Ao + p)) — glhr-

The second assertion is proved by

V() (e - pr )| < IVn(x(€") = p) = mp(g)lls — 0.

721

ii) This is a consequence of the following inequality

1
((Anéo + S pn) — (Ao +p)) — (9200 — g1+ 9)

1

1
< Wi = A) =gl + H\/ﬁ (7—pn —p) +9,0—9g

1

1 1 1
< o<1>+—r|¢ﬁ<pn—p>—gu1+Hﬁ(——ugw)p_(1__)g
Tn Tn Tn 1
< of1) (1 1)+ Fllgll 1= 2
= 0 n\—-— g gl |1 ——
Tn K Yn
< 0(1)+Hp\|1 !\f = Vn) + Mgy |
=1
1
< o(1)+ ﬁ(lf(l—%) gy| + [ — 1]g4])
= o(1).0

The following theorem then is a consequence of the representation theorem (lemma
2.7), the lemma above and the limit \/n(6" — (Ady + p)) = G.

Theorem 2.11 If Y, \/qr < oo holds then in (!

V(" = (Ao +p)) > (To, G Z mp(G))p + mp(G).

We now derive a second estimation procedure. Recall that 8" is calculated via
an inverse Panjer recursion formula (at least for n big enough). First we state
the following lemma, that is of its own interest in investigations later on:
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Lemma 2.12 Consider ¢, > 0, k > 1, and 1 > q9 > 0. Suppose that X\, x4, . ..
are calculated using the inverse Panjer recursion formula with input qi, k € Ny.

Let S € N. Then
(r; <0Vi=1...,5) & (;=0Vi=0,...,5).
If one of the two statements above is true then it holds that
x; =0 Vi=1,...,5.

Proof: This is proved by induction: Note that A = —log gy € (0,00). If 1 <0
then ¢ = Az; < 0, hence ¢; = 0, and vice versa. Now consider the induction
step S—1—S. If z1,...,25 < 0, then our induction assumption yields ¢; =
-+ =qg_1 = 0. Therefore

S
A
qs = S le’lq}q# = qors < 0.

=1

Hence, g¢ = 0. The same is true for the other direction.

The conclusion that 1 = ...xg = 0 is then trivial. O

Now back to the new estimator: It is based on a Panjer inversion just con-
sidering a finite initial segment of ¢". Its end point is data driven. Let (S,) be
a sequence of N-valued random variables. If ¢ = 0 or qf = 1 or ¢' = 0 for
all i = 1,...,5, we put n™° := & + ;. If not we can calculate \", p? ... N
using the Panjer inversion. Then we define 75 := L2(A"8, + S0, pp'd)), i.e. put
negative entries to zero and norm to one. Because of the fact that at least for
onei € {1,...,5,} ¢; > 0, we can apply the lemma above to obtain

S Sn
dom ()\”50 +) pm> > 0.
1 =1

Hence, n™° is a well defined element of ¢!. It is easy to show that it is also a
measurable mapping from (2, 4, P) to ¢

The idea is that if S,, — oo fast enough then we can expect both strong
consistency of T,, and the same distributional limit for \/n(T,, — (Ady + p)) as in
the case of n™.

Theorem 2.13 i) If liminf, .o S, > sup{k : pr > 0} a.s. then n™° — \dy + p
a.s.

i1) Suppose that (u,,) is a sequence of natural numbers tending to infinity and that
the following conditions hold:

lim v/n Zpl =0, and P(S, < u, infinitely often ) = 0.
l=un
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If 32, V4, < oo then in (!
V(™ — (Ady +p)) = (To, G)dy — Z% )p + mp(G).

Proof: Define " to be g + 61, gt =0or gt =lor gt =0foralli=1,...,5,
and ™ to be the sequence generated by the Panjer inversion of ¢” up to S,. For
the entries with index greater than S,, put &, S = .

i) If we look at the definition of L? we see that it is again the composition of two
mappings

0 — (Tp,0)60 + m(0) — (To, 0)00 + =77 (1").
Zl m(0)
The second one is continuous in doA + p. We already know that &; S5\ as..
Therefore it is sufficient to show that ||7(¢™%) — p|li — 0 a.s.. Again, with

probability one and for n large enough f,?’s =0;, k=1,...,5,. Therefore

Sh ) 0
(€5 =l = D10 =l + D ol S NT5 ) —pli+ > il
=1 1=8,+1 I=Sp+1

Since we have already proved that ||T;-(n") — p|li — 0 a.s. the assertion follows
from the condition on liminf S,,.

ii) First we want to show that /16" —£™%||; — 0 in probability. Define the sets

An = {aqg € {0,1}}, By = {0 = -+ = ¢5, = 0}, C = {¢" € U'}. We again
have py > 0 for some k. Since S, tends to infinity we have {¢f = 0} D B, for n
large enough. This shows for arbitrary sequences (h%), i = 1,2, 3 that

Vvnla,hl —0, Vnlg, h? — 0, Vnleehl — 0.

Hence
Iva(e™ =0 = Lagnsgac, Valle*" = 0" + oas.(1)
Lagnpgnc, Vi Z 0] + oa.s.(1)

<
k=Sn+1
< lagnsgnc, vV Y 1071+ oas.(1)
k=un
< lacnpenc, (\/ﬁ Z 107 — pr| +vn Z pk> + o0a.s.(1)
k=un l=un

= lucnpenc, V1 Z 0 — pi| + 0as.(1).

k=un,
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Let (€', A", ') be the probability space in the Skorhorod representation theorem.

Let 0. 26", n e N, G’ 2 G with 6", G’ being the random variables with

Vn(0, — (Mo +p)) — G' P-a.s.. Then for e > 0

PO S 10—l > ) =PV S 0y — el > o

k=un k=un

<P(IVal,, —p) = Gl > ¢/2) + P(Y_ |G}l > ¢/2).

k=un

Since ||v/n(0,, ,—p)—G')[l1 — 0 P"-as., we have ||\/n(0,, ,—p)—G")||; — 0 in prob-
ability with respect to . Since )2 |G| < oo P-a.s., we have 37 |G}| — 0
P’-a.s., therefore in P’-probability. This implies that

P'(Vn(0h, —p) = Gl > €/2) + P (Z GRDII > 6/2> — 0.

k=un

Hence /n ) 2,

07 — pr| — 0 in probability. This shows

Vnllo" — €5 — 0

in probability with respect to P. Hence £5™ and 6" are asymptotically equivalent,
i.e. /n(€%" — (A + p)) — G. The assertion is established by applying lemma
2.10 on the Skohorod representation of the distributional limit for £%7.0

We now want to show that S, := Y{,) = max{Y},...,Y,} is a possible choice
for S,,. We recall the following theorem about almost sure convergence of the
n-th order statistic ([Ga87],p 252)

Theorem 2.14 Let (X;) be some iid-sequence of random variables with con-
tinuous distribution function F. Assume that (up)nen is a sequence such that
n(1 — F(uy,)) is nondecreasing and that u, < sup{x: F(z) <1} Vn. Then

P(lzrllax X <upio)=0 or 1

according as Y72 (1 — F(uy))e 71=FW)) < 00 or = co.

Let (U;) be some iid-sequence of random variables, uniformly distributed on (0, 1)
and independent of (Y;). Define Y; := Y; — U;. Then (171) is an iid-sequence
of random variables with a continuous distribution function F' that is strictly
monotone increasing on (—1,00). Suppose that gn ‘= max;—;_, Y;. Define v,
through the equation

Vil = F(v,)) =n~ Y4,

Then
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i) n(1 — F(v,)) is nondecreasing.
ii) Since

/ a3 dy = —46_11/4|Z° < 00,
we have Y22 (1 — F(v;))e 70 =F0)) do ~ [ a3e=" dr < 0.

Hence P(S’n < v, 1.0.) = 0. Let u, be the smallest integer greater than v,. Then
P(S, <w, io0.) = P(S, <u,io.). We also have

1— F(v,) = P(Yy >v,) = P(Yy > u,) = Z q.

l=un+1

Since

Vn Z q > e Mn Z D

l=un+1 l=un+1

and y/np,, — 0 for every sequence (uy,)neny With u,, — 0o as n — oo, we have

\/ﬁZpl—W)-

I=un

This shows that the n-th order statistic, i.e. the largest observation, is a possible
choice for S,,.



Chapter 3

Cones

3.1 Truncated Decompounding and
Order Restricted Inference

This chapter is devoted to the investigation of the maximum likelihood estimation
for discrete data. We truncate the data at a fixed threshold S+1. This leads to a
parametric estimation problem for multinomial distributions. We want to use the
maximum likelihood method. To do so, we have to maximize the log likelihood
function over the set of truncated compound Poisson distributions. If we con-
sider the closure of this set then we have to maximize an upper semicontinuous
or concave function over a compact set, hence there exists at least one maximum
likelihood estimator. Note that the set of truncated compound Poisson distribu-
tions is not convex for dimensions higher then 6'. We have to maximize over a
nonconvex set. However, the situation is not completely hopeless, as we will see.
The reason for is the smoothness of the compounding mapping. Furthermore, the
underlying parameter space for A\ and p is a simplex. The maximization can be
performed over the underlying parameter space or over the set of truncated com-
pound Poisson distributions. A simplex looks locally like a cone. Hence locally,
the maximization is performed over a convex set. This indicates that the set of
maximum likelihood estimators will become a singleton. Locally, the log likeli-
hood function can be approximated by a quadratic form. This quadratic form has
to be maximized, or up to a sign to be minimized. Minimizing a quadratic form
over a cone is a cone projection with respect to the inner product defined by this

'Tndeed take two claim distributions p; = Jd» and ps = 3 and fix some A > 0. The
asssociated compound Poisson distributions, say ¢; and ¢z, are concentrated on the sets 2Ny
and 3Ny respectively. There is a gap at 5 in the union of their supports. Now take some proper
convex combination of ¢; and ¢2. The support is then the union of the supports 2Ny and
3Ny. From the Panjer recursion formula we see that if the convex combination is a compound
Poisson distribution then the numbers 2,3 must be members of its support. On the other side,
the support of a compound Poisson distribution must be a semigroup. Hence 5 must be an
element of the support, a contradiction.

47
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quadratic form. This is the underlying idea of this chapter. Maximum likelihood
is known to have good statistical properties in regular parametric models. Hence
this is a motivation to use an approximation of it, its approximating quadratic
form, as the basis for projection estimators. This will be explained in section 3.4.

This chapter uses many ideas from the theory of order restricted inference,
that deals with special cones. To give an instructive example (see [Ro88], p.6,
for a similar example and details, for binomials see p.32), estimate the heights of
children grouped in different age classes

a < ---<ayg
from a given sample
Ykl; lzl,...,nk, kzl,,d

The numbers n; are the sample sizes for the different groups. If we assume
that the samples Y};; are mutually independent and normally distributed with
expectation p; and a common variance, a common sense assumption is

< e <,

i.e. i — p; is an isotonic function. Maximization of the likelihood function
under the assumption that the expected values p; should be an isotonic function
turns out to be equivalent to the minimization of the equation

d ng
_ 1
E (Vs — pe)*n, Y= — E Y
k=1 L

over the set
K= {(p, - pa)t €RT: iy <0 < gl

K is called the cone of isotonic functions. The more or less explicit solution
is to project the vector (Yi,...,Y3)T onto the cone K, i.e. find the closest
point g* on K with respect to the distance that is given by the weighted in-
ner product (z,y) = Zizl z;y;n;. The projected vector can be found using
the greatest convex minorant (see [Ro88], p.7): Plot the diagram with points
Pi= () iy ey Mk Ye)is i =0,...,d, with Py = 0. Connecting the points P
and Py, i=1,...,d—1, with line segments leads to a function G on [0, 3¢_, n,].
If G* is the greatest convex minorant (GCM) of G and [i; is the left hand deriva-
tive of G* at Y ;_,m;, ¢ = 1,...,d, then it holds that ¢* = (fi1,...,fiq). The
pool-adjacent-violator-algorithm gives a method to calculate the projection g* in
a finite number of steps (see [Ro88], p.9).

Our problem is similar to isotonic regression, since both problems lead to cone
projections. The main difference between the truncated decompounding and the
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isotonic regression is that the maximum likelihood estimator in the decompound-
ing problem cannot be identified explicitly with a cone projection. Hence some
slocalizing® step is necessary. We will do this in a slightly more general frame-
work in section 3.3. This is then easily applied to the decompounding case and
leads to a simple efficient estimation procedure. Section 3.5 shows how to de-
rive tests of Poissonity within the class of compound Poisson distributions. The
test requires a procedure to derive cone projections. Lemma 3.2 below indicates
that the simultaneous transformation from our ,,main cone“ to the isotonic cone
projection and our projection matrix to a diagonal matrix is not possible. We
therefore propose a new method. But first let us recall the basic facts about cone
projections in the next section.

3.2 Cone Projections

The facts listed here are either quoted or slightly generalized from [Ro88] except
where indicated. Consider the d-dimensional Fuclidean space V' with some inner
product (-, -).

A closed convex set C' C V is called a coneiff for all x € C and for all
a > 0 ax C C (cone property). Most authors define a cone to be a convex set
that fulfills the cone property. However, since we are mainly interested in closed
ones and some interesting properties hold only for closed ones, we have included
closedness in the definition of a cone.

If a convex set C fulfills only the weak cone property, i.e. aC' C C for all
a > 0, then we call C' a semicone. ( Semicones need not be closed.)

For a set M C C, write C(M) for the smallest cone containing M, i.e.

c(M) = () C

McCC
Ccone

It is easy to see that this really is a cone.

Our main interest is in finitely generated cones, i.e. cones that are generated
by a set {vi,...,vn}t C V. We use the short hand notation C(vq,...,v,) =
C({v1,...,vm}). Note that

CH{vy,...,un}) = {Zakyk: ALy gy > O.}.
k=1

Consider a convex closed set C' C V. We have the closest point property, i.e. for
every x € V there is a unique y € C' with

=yl = inf o 2]

with ||- || being the usual norm induced by the inner product. We use the notation
7(x|C) :=y. The mapping = (-|C) is called projection ontoC' with respect to (-, -).
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Recall that for a vector space W C V' m(-|W) is the usual orthogonal projection
with respect to (-, ).
If C'is a cone then the following conditions are necessary and sufficent for a

y € V to be n(z|C):
(NSC) yeC and (x—y,z—y) <0 Vz e C.

The geometric interpretation is that the angle between x —7(z|C) and z — 7 (x|C')
has to be obtuse for every z € C.

Every cone has a dual cone, denoted by C*, that consists of all vectors with
obtuse angle between themselves and all elements of C i.e.

C*:={zxeV: (x,c) <0Vece(C}.

We have
7(z|C) =z — w(x|C")

([Ro88] p. 17), which can be regarded as a generalization of a corresponding
property of orthogonal projections. Moreover, (7(z|C), m(z|C*)) = 0, i.e. 7(z|C)
and 7(z|C*) are perpendicular to each other. Note also that (C*)* = C holds for
closed cones (our cones are defined to be closed).

If C =C(vy,...,vn) is finitely generated then we can identify m(z|C*) locally
with an orthogonal projection onto a suitable subspace of V. Which subspace
to use depends on a decomposition of V' into semicones, as explained in the
next lemma. Note that W+ is defined to be the orthogonal complement of W
with respect to the inner product (-,-). lin{M} denotes the linear hull of M. If
M =0, we set lin{M} := {0}. If M C W and N C W+ we use the notation
Me&N={m+n: me M;ne N}. If Nis empty we define M & N := M,
analogously M @ N := N for M = ().

Lemma 3.1 Let vy, ..., v, € V be linearly independent vectors. Suppose C =
C(viy...,vm)*. Define {x € V : (v;,z) <0, i € 0} := V. Then the following is
true:

i) Let I C {1,...,m}. Then
Or:=Clryice®(lin{y,:icI}rn{zeV:(nx)<0,icI)
1S a semicone.

.....

(iii) If x € O then w(x|C) = m(z|lin{y; : i € I}1).

Proof: i) This is straightforward. For I = {1,...,m} we have

Or =C(vy,...,vp) @ lin{vy, ..., v, 1. This is even a proper cone. If I = ) we
have Oy = {x € V : (v, z) <0, ¥i = 1,...,m}. This is the relative interior of
C'. The third case dealing with a nonempty proper subset I of {1,...,m} leads
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to a semicone too.

ii) It is easy to see that

| Gin{u:ieFn{zeV:(na)<0,iel)

is a decomposition of V' into disjoint sets. Hence it is sufficient to show that
' (lin{y i e I n{z eV :(y,z)<0,iel)|C) =0

If y € ©ptheny = >, yvi+y with y; > 0,7 € I, and § € lin{y; : 7 €
IMn{z eV :{yaz) <0, i€ I From our criterion (NSC) we derive
7(y|C) = g. Indeed, § € C and for all k € C

=,k —=5) =Y wi | (k)= (v i) | <0.

iel s ~

This shows that y € 7' ((lin{y;:i € I} N{z €V : (y,z) <0, i € I°})|C).
Moreover, we can prove iii): obviously, § = m(y[lin{v; : i € I'}1). Therefore

m(yllin{y; : i € I}1) = n(y|C)

for y € Oy.

Suppose that y € 7 ((lin{y; :i € I} N{z €V : (y,z) <0, i € I“})|C).
We have y = w(y|C*) + 7(y|C). Recall that (w(y|C),n(y|C*)) = 0. In par-
ticular, 7(y|C) € (lin{y; : i € I})*. Hence 7(y|C*) € lin{w; : i € I}. Therefore
m(y|C*) = Y .c; vivi- Recall that C* = ((C(11,...,v))*)" =C(v1, ..., Vp). Since
the vy, ..., v, are linearly independent, we have y; > 0, 7« € I. To summarize,
Y= yivi + g with g =n(y|C) € (lin{y; ;i e I} N{z eV :(y,z)<0,ic
I€}, hence y € ©;. O

The following lemma shows how cone projections behave under linear trans-
formations. Before stating it, assume that we have another vector space V; that
is isomorphic to V' via a linear mapping A : V; — V. Define an inner product on
Vi via (z,y) 4 := (Ax, Ay). (V1,(:,-)4) is an finitely dimensional Euclidean space
too. If C'is a cone in Vj, then AC turns out to be a cone in V. The next lemma
discusses how the corresponding cone projections are related to each other. With

the obvious definitions for 7. .y and (., we have
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Lemma 3.2 Let (V,(-,-)) be a finite dimensional Euclidean space and A :V} —
V' an isomorphism from a vector space Vi to V. Let x € Vi and C' be some cone
mn Vi. Then

A7 3 (AZ|AC) = 7y, (2]C).

Proof: This is derived with our condition (NSC). Obviously, A, (Az]|AC) €
C. Let k € C. Therefore Ak € AC. Hence

(x — A7y (Az| AC), k — A7 'y (Az|AC)) 4
<Ax—7r ) (Az]|AC), Ak;—7r S (Az]AC)) <

(]

We usually work with inner products that are defined by some positive definite
symmetric matrix, say B. Positive definite always means strictly positive definite.
Then (z,y)p = z' By defines an inner product on RY. We use the notation
75(z|C), || - |3, C*P etc., if we want to stress the dependence on the matrix B.
For instance, we have from the lemma above

WATBA(JI|C) = A717TB(AZC|AC>.

We need the distribution of ||7(Z]|C) — x(Z|W)|]* and ||x(Z|C) — Z||* for the
analysis of the likelihood ratio tests later on. C' and W are then approximations
of some sets U(0) and ¥(lin{vy}) that are denoting alternative and hypothesis
in a decision problem. W is a vector space that is contained in C'. It turns out
that the distributions are mixtures of x?-distributions with different degrees of
freedom. The result is similar to [Ro88]| (see theorem 2.3.1).

Theorem 3.3 Let B be a positive definite symmetric matriz defining the inner
product (-,-) := (-,-)p. Suppose vy, ...,vym € R to be linearly independent, C' =
C(vi,...,um)*® and Oy to be as in the lemma 3.1 above. Assume that W C R?
1s a subspace contained in C and that Z is a d-dimensional normally distributed
centered random variable with covariance matriz B~1.

Then for all Borel sets A1, Ay € R,

P(lrp(Z|C) = Z| € Av, ||np(Z|C) — wp(Z|W)||5 € As)
= Z P(Z € 0y) Xi[(Al)Xflfdimwf#AA?)'

Remark: We write ;1= _,,_, P(Z € ©j) for the mixing coefficients.
Proof: Lemma 3.1 above yields

P(|r5(Z|C) = Z|[ € Av, |mp(Z1C) — np(ZIW)|[5 € As)
= Y P(Zeoy |mp(Z|0) = Z|}; € Ar, |7p(ZIC) = mp(ZIW)|% € As)
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Therefore it is sufficient to show

P(Z € Oy, ||np(Z|C) = Z||; € A1, |78(Z]C) — ma(Z|W)||}; € As)
= P(Z€0r) xur(A1) Xa-dimw—#1(A2).

There exists an invertible matrix L € R¥? with B = LTL (Cholesky decom-
position). We fix some I C {1,...,m}. It is easy to see that W C lin{y; :
i = 1,...,m}*?, indeed: if v € W then v € C, hence (v;,v)p < 0 for all
i =1,...,m. On the other hand, if v € W then —v € W, hence (v;, —v)p < 0

for all i = 1,...,m. Therefore (v;,v)p = 0, hence v € {v1,...,Vpy}15.
Since L(W8) = (LW)%d holds, there is an orthonormal basis (ONB)
wy, ..., wq of R with respect to the inner product (-, )., such that w, ... Wt

is an ONB of lin{Ly; : i € I}, and wy, ..., W4_qimw is an ONB of (LW)+id and
Wy—dimw41, - - -, Wq is an ONB of LW. Suppose @) to be the orthogonal matrix
with columns wq,...,wy. If Z € Oy, then

Im6(Z|C) = Z||5 = |l7p(Zin{v; :i € I}'?) - Z|}
= |lmprp(Zlin{y; i € I})HQB
= ||L ' ma(LZin{ Ly, : i € 1})|%
|moor (LZNin{ Ly; =i € I})|%
= |Q"ma(QTLZNin{ Q" Lv; - i € I})||%

#1
= ||Z(QTLZ)1‘61'|
i=1

2
id

#1
= Y (Q"L2);.
=1
lm5(21C) = ms(ZIW)ls = llms(ZNin{v; i € I}#) — mp(ZIW)[5
= ||7g(ZNlin{y; 1 i € I}) — wp(Z|W*B)||%
Ta(LZNin{Ly; 1 i € I}) — my(LZ|(LW)*1i4)

2
id

d—dim W

= ). QL2

k=#I+1

ma(QT LZNin{Q" Ly, i € I}) — mu(QT LZ|QT (LW ) )|

2
id
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Again note that LW1# = (LW)4id for a subspace W C R% Hence
Q'L (C(um cl)
& (linf{r; i € I} P N{z €R?: (1, 2)p <0, i € ]C})>
= Q7 (C(Lm’ el

& (lin{Ly; :i € I} N {Lx € R : (1, 2)5 <0, i € IC}))

= C(Q"Lylie 1)
@ ( lin{QT Ly, : i € I}

=lin{egri1,eadimw }SliN{eq aim wi1,-ea}
N{y e R*: (Q"Ly;)"y <0, i € I°})
= C(Q"Lyli e 1)
@ (in{Q Ly, :i € I} QT LW n{y e R (QT L)y <0, i € I})

hn{e#1+1 ,,,,, €d—dim W }

= C(Q"Lylie )

J

Chn{el ..... 6#1}
& (((lin{egrit, - eaamwt N{y € R (Q"Lyy) 'y <0, i € I°}) @ Q"LW) .
Note that Cov(QTLZ, Q¥ LZ) =id. Therefore the random variables Z; = (QTLZ);

are independent and standard normally distributed. We introduce polar coordi-
nates

Z1 = Risin#y,
Zg = Rjcosfsinbs,, ,...
Z, = Ricosfy-----cosb;_1sinb;, ...
Z#I = Rycost-----cosbOyur_i,

Zyr1 = Rysinfyry,

Z#HQ = RycosOuriisinfyrio, ...
Zi = RycosOurpq-----cosb_ysinb;, ...

Zd—dimW = Rjycos 9#I+1 oo oS Og—dimw—1 -
The random variables Ry, Ra, 01, ...,047-1,04141, .., 0i—dimw—1, Z i dim Wels -, Z4

are independent (see [Ro88|, p. 71, or apply a density transformation argument).
In particular,

#1 d—dim W
2 72 2 72
Ry = Z Zi ~ X#1 and  Rj ~ Z 2 Xd—dim W—#1-
i=1 i=#£1+1
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Define
i—1
M; = sin@iHcos@) e, 1=1,...#I—1,
=1
#I-1
Myr = H cos@l> €41,
I=1
M; = |sinb,; H COS(01)> e, 1=#I+1,...,d—dimW —1,
I=#1+1
d—dim W—1
Mg_gimw = H COS(@)) €d—dim W -
I=#1+1
Note that

11H{€#[+1, e ed_dimw+1} N {y S Rd : (QTLl/i)Ty <0, 1€ ]C}
is a semicone. Then the following holds

P(Z €0y, |15(2IC) = Z|; € Ay, ||7p(Z|C) — 7p(ZIW)|[5 € A2))

i=1
d—dim W
Z M; € lin{eurit, .. eqamwt N{y € R (QT L)'y <0, i € I9Y,
i=#I+1
d
Z Ziei c QTLVV, R% S Al, Rg c A2>>
i=d—dim W+1
#1
= P> _M;eC(Q"Lyli € I))
i=1
d—dim W
P(Y . Mielin{egria,. . eaamw} N {y €RY: (QT L)y <0, i € I9),)
i=#T+1

#1
= P (Z M; € C(QTLyli € 1),

d
P( Y Zie; € Q"LW) P(R} € A))P(R] € Ay)

d—dim W+1

-1
= P(Ze @I)Xil(Al)Xi—dimW—#l(AZ) .

This proves the assertion. O
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3.3 Maximum Likelihood and Local Cones

Consider the simplex M? := {p € R?: p; > 0; Z?lei = 1}. This set can be
regarded as the set of probability measures on the finite set {1,...,d}. We will
use the notation P({k}) = P(k) = P, for P € M and k € {1,...,d}.

Let K be some nonempty compact subset of M{. Suppose (Z;) to be an iid-
sequence of discrete random variables defined on some probability space (€2, A, P)
taking values in the set {1,...,d}. Assume that the distribution of Z is some
unknown P € K. We want to use the maximum likelihood method to estimate
P. The likelihood of P given iy, ...,i4 € {1,...,d} is

Pp(Z) = ir,..., 2y =iq) = P({ir}) - - - - P({ia}).

If we write down the vector of relative frequencies 7" with entries

1 n
o
= E 17—,
=1

then it is easy to see that the maximization of the likelihood is equivalent to the
maximization of the function

P L(P|f")

with L(z|y) := Zle yrlog . There is always a maximizing P € K, since
L(-|7™) is upper semicontinuous. This P might not be unique. We therefore
define a mapping M{ 3 r +— O(r) ;== {P € K : L(P|r) = maxgex L(Q|r)}. Note
that ©(r) = {L(:|r) > maxgex L(Q|r)} is closed, hence compact, because of
the upper semicontinuity of L(:|r). Then ©(r) is the set of maximum likelihood
estimators given the frequency vector r. If r € K, then it is well known that r
itself maximizes L(-|r) over K. Moreover, O(r) = {r} in this case.
Define also

(5(7’1,7“2) = sup{|P1 — P2| : P1 S @(Tl), P2 c @(TQ)}
Then we have the following continuity property:

Lemma 3.4 Let r € M{. Assume that r; > 0, i = 1,...,d. Assume that
O(r)={P}, Pe K, P(i)>0,i=1,...,d. Then lim v o(r",r) =0.
/€ M{

Remark: This is a continuity property of © holding in ,amenable“ points r. From
this property the strong consistency is derived in the following way: Assume that
the true distribution P € K of Z; has the property P(k) >0,k =1,...,d. Then
O(P) = {P} holds, as noted before. Choose N := {w € Q : lim,, ., 7™ (w) = P}.
It is clear from the law of large numbers that P(/N) = 0 and 6(7(w), P) — 0 for
all w € N¢ from the lemma.
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Proof: Assume that lim sup o~ d(r',r) > € > 0. Then there exists a sequence
r'eMy

r* € M@ with limsup §(r",r) > €. Since every ©(r") is compact we can choose a
sequence P" € K with P* € ©(r") and 6(r™,r) = |P" — P|. Since K is compact,
there is some subsequence n’ and a @ € K and lim,_. P* = Q. Furthermore,
we can assume that Q) # P.

Note that Q(k) > 0, k = 1,...,d. Otherwise we would have L(P™|r") —
—00, since v — 7 and r; >0, i = 1,...,d. Because of L(P|r™) > oo for all 7/,
we would have L(r|r™) > L(P™|r") for n’ big enough. This is a contradiction,
because P" maximizes L(-|[r") on K.

Since Q(k) > 0, we have L(P"|r") — L(Q|r). However:

L(QJr) = lim L(P™|r") > lim L(P|r™) = max L(R|r).

n/—o00 n/—o0 ReK

Hence @ € ©(r) = {P}, a contradiction. This proves the assertion. O

Lemma 3.5 Suppose that r*,r € M andr; >0,i=1,....d, r € K. Assume,
that lim,, ... /n(r™ —r) = g. Then for n big enough the set \/n(O(r™) —r) is
included in the set

2
d
{yeR > =0 ||y||2_1_10g(2)mgxm<1+||g/ru2>},

k

with || - |2 denoting the usual euclidean norm ||z||s := 27:1 z3. (z/r denotes
the vector with components xy/ry). Hence |, /n(O(r™) —r) is a bounded set.

Proof: Note that HMHQ < 14 |lg/r||2 for n big enough. Note also that
ri > ri/2 for n big enough. Define

A, ={x e M: L(z|r™) > L(r|r™), 0 < ap < 2rg, k=1,...,d}.

Let n be big enough such that 7 > 0,7 =1,...,d. Then every z € ©(r") fulfills
x>0, k=1,...,d. Note that ©(r) = {r}. Since lim, . 6(r",7) = 0 we have
xTp < 2rp, k=1,...,d, for n big enough. Hence O(r™) C A, for n big enough.
We now assume that n is big enough, such that all statements above hold.

Fix some = € A,,. Then 0 < x;, < 21, holds for k = 1,...,d. This implies

T — T
PR <.

Tk

Consider the function

o(h) = log(1 —;2}1) —h

for all h € (—1,1]\{0}, g(0) == —1/2.
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It is easy to check that g is continuous and nondecreasing. Hence g(h) < ¢(1) =
log(2) — 1 < 0. This gives us the inequality
log(1+ h) < h — (1 —log(2))h>.

Hence

— _ _ 2
log (I’“ oy 1) Th Tk (g _og(a)) =)
Tk Tk Tk

This yields

0<Zrklogr—<z
k

Now consider the sets B, := \/n(A,, —r). If y € B,, then there exists an = € A,
~1/2y 4+ r. Hence y satisfies

o<_z ny’“_ (1 — log(2 ))Zr,’;@’;)2.

k "k

(1 —log(2)) Z rzw

k Tk

with x = n

Equivalently,

o<fz PP (1 og(2)) 3 )

Note that ), y, must be zero, hence

0. S VAT ¥~ (1~ log) i

"k %

The Cauchy-Schwarz inequality implies

Vi )
S Alrk =% < e |22 < ot/ + 1)
2
We also have
W) 1 1 1
z};rk 2 Zizk: 52}; - §||y||2m1n1/rk

To summarize, we have proved for y € \/n(A, — r) the inequality

!
0 < llyll2(1 + llg/rll2) = 5( —10g(2))mkmﬁ|ly||3-

1
2
Hence

2
< — 1 .
9l < T oggy (1 + /vl
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This proves the assertion.
O

We will assume that K can be approximated in some neighbourhood of P € K
using some cone in the following sense:

Suppose that there is an open convex set O; C R*? containing 0 and an open
set Oy C P+ {z € R?: 327 2, = 0} containing P and a C2-diffeomorphism
D:0; — Oq,ie. ©=(Dy,...0,)7 is a C*mapping from O; — R? taking values
inr+{reR: 27:1 x; = 0} and the derivative @/, z € Oy, is an isomorphism

from R** onto {z € R : 32, 2; = 0}. Let C be a cone C' € R*1, If

®(0) = P
(I)(Cﬂ01> = KQOQ

holds then we say that K is approzimated by a cone in P with representation
tuple (01,04, ®,C).

Remarks: we assume P(i) > 0,7 = 1,...,d, since otherwise we could reduce
the dimension of the problem. At P the family of probability measures (P)pcg
is locally embedded in a regular parametric model {®(0) : § € O;}. The Fisher
infomation matrix I = —(L(®)|P)g is of some interest here. Compute the deriva-
tive of z — L(®(x)|s) for s € M{ and € O,. This is a linear mapping from
R - R, ie.

S1 Sd

L(®|s) h = o' h h e R,
@it = (g s Jaih, he

The second derivative is a symmetric bilinear form on R4t x R4,

S1 Sd " Tix/ \T 1: S
e O (u,v)+u (P,)" diag(—
B )+ (0 dling

1
L((I)|S))Z(U7U) = ( @7"'7 q)g
1 d

Note that ®(0) = P, hence

L(®|P))y(u,v) = (1,...,1)®f (u,v) + u” (®}) diag (—

1 1
— = | Do
Py Fa)
® takes only values in P+ {x € R?: ", z; = 0}, hence (1,...1)®(z) = 1 for all
x in O;. Therefore (1,...1)®! =0 and (1,...1)®” =0 for all x in O;. Hence we
have

L(@IP),0) = ~u" (@4 ding (s iy ) B =~

We should be aware of the special form of ®. The components are given by
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D= (By,..., 007 = (Py,...,Pqy, — S0 &))", Therefore

(V)
. . (V)0 "
: 1dd1xd- 1 x
‘Df) _ _ d-1xd-1 : _ d-1xd-1 A
(V®4q)o B P | —1---—1
d-1 (V(I)d—l)o
- Zl:1(v‘1)l)o

Note that the first matrix defines an isomorphism from R to {z € RY: . z; =
0}. Since @} is an isomorphism from R** to {z € R?: Y~ z; = 0} by definition,
the matrix A must be an isomorphism from R%' onto R*™. Let us have a look at
the inverse ®;' defining an isomorphism form {x € R?: }", 2, = 0} onto R4
It is now easy to calculate

—1 O
id .
Pyt =A" e = A7 [ idgixaa
1. —1
0
The Fisher information can be written as
-1
1 1 idg1xda
I = AT | idpgwes ¢ diag( ) A
P(1) P(d) 11
-1

= AT (diag (le),...,P(dl_D) + Pgd)llT)A

with 1= (1,...,1)T € R¥L. [ is the product of three invertible (d—1) x (d—1)-
matrices. The inverse of the matrix in the middle is given by

(diag (ﬁ . P(dl—l)) + P(ld)llT) 6P P)P()) 1z

The latter is the covariance matrix of /n(r™ — P) if we consider the first d—1
components of the vector only. The Fisher information depends on the underlying
choice of our regular model ®(0O;). Obviously, I is positive definite symmetric
matrix. We can therefore compute the Cholesky decomposition I = LTL with
L invertible. Defining ®(z) := ®(L")(z), O, := L'0; and C = L'C will

give us a another approximation tuple (Oy, O, é,é) The Fisher information

is then I = id,_1x,—1. Its form is much simpler at the cost of a perhaps more
complicated cone.
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Lemma 3.6 Assume that K is approximated by a cone in P with approximation
tuple (01,04, ®,C). Suppose that P(i) >0,i=1,...,d.

Then there exists an open set O C M containing P, such that ©(r') C ®(CNO;)
for all " € O and O(1r") is a singleton.

Proof: Consider the representation tuple (O1, Oy, @, C') for the approximation of
K in P € K. Note that L(®|P)j = —I is a strictly negative definite symmetric
bilinear form on R%?. Indeed, the bilinear form given by (u,v) — B(u,v) :=
S, 4 s strictly positive definite. Its restriction on {x € R? : Y, 2y = 0}? is

T

strictly positive definite too. Since @ is an isomorphism from R*! onto {x €
RY: > 2, =0}, B(®), @) is strictly positive definite.

The set of strictly negative bilinear forms on R4 is an open subset in the
set of symmetric bilinear forms. Note that L(®|s)” depends continuously on
s € {u e M :u >0} and z € Oy, provided that ®(z) > 0. Since P is
continuous there is an open set O3 C O with ®(03) C {u € M; : u; > 0} and
an open set Oy C {z € M, : x; > 0} containing P such that L(®|s)” is a stricty
negative definite symmetric bilinear form for all (x,s) € O3 x O4. Without loss
of generality we may assume that O3 is convex (choose a smaller O3 if necessary).
Then the mappings O3 > x — L(®(z)|s) are strictly concave for every s € Oy .

We have already proved that lim . _, 6(r',7) = 0. Hence there is an € > 0

reMg

such that O(r') € ®(0O3 N C) for all ¥ € M{ with |’ — P| < e. Choose this ¢
small enough such that B, = {r' € M{: |r' — P| <€} C Oy.

Now consider an " € B.. Then O(r') € ®(C N O3). Then for all z €
)

L(®(x)|r") = max L(:|r") > sup L(®(-)|r).
K CNO3

Note that the function L(®(-)|r’) is strictly concave on the convex set O3 N C.
Hence the argmax of L(®(-)|r’) taken over O3NC' is unique. Therefore ®~(0(r"))
is a singleton. The same is true for ©(r’), of course. This proves the assertion
setting O := B..O

This shows that © is a well defined mapping on O. We write O(s) = r iff
©(s) = {r}. The lemma 3.4 shows that © is continuous on O. If we define
0" = 1mecoO(r") for the relative frequencies 7™ then we have a measurable
mapping that coincides with the maximum likelihood estimator ©(7™) for n large
enough. Therefore it makes sense to discuss the distributional limit behaviour for
O©(7"). The next lemma shows that the maximum likelihood estimator behaves
locally like a cone projection with respect to some suitable inner product that is
given by the Fisher information. We will state the following theorem.

Theorem 3.7 Assume that K can be approximated by a cone in P with rep-
resentation triple by (O1, 0y, ®,C). Assume that Z is some d— 1-dimensional
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Gaussian random variable with expectation zero and covariance matriz I=' with
I~ denoting the inverse of the Fisher information

I = (@) diag(1/P(1),...,1/P(d))®}.
Assume that P is the distribution of Z;. Then
V@ H(O(") — m(Z]C).

Proof: Apply Skohorods representation theorem. Without loss of generality we

may assume that /n(/ — P) — W' a.s. with a Gaussian centered random

variable W' with covariance matrix (P(2)d;; — P(7)P(j)) 1<i<d. Note that W' e
1<

d

{y e R?: > y; = 0}. From the definition we have that ® can be inverted locally
at ®(0) as a mapping from O; to P+{y € R?: }".y; = 0}. Therefore applying
the delta method, we have /n(®~!(r")) = (@) 'W’ a.s.. Note that ®~1(r")
is well defined if n is large enough. Clearly, (®{) '’ is a centered Gaussian
random variable. Let us compute the covariance of (@) '’ i.e.

B(®)) W (@) W)

T
0 0
= A7 [idgaxaa | (P(0)dy —P(i)P(j))}g;gz idg1xat AT
0 N 0
= ATH(P(i)dy; — P@i)P(j)) iz AT

= I\
This shows that (®,)~'W’ 2 Z. Hence m;((®))"*W’|C) 2 7,(Z|C).

Fix some w € {w € Q : lim,_o v/n(™(w) — P) = W/'(w)} We have al-
ready proved that /n(©(r"(w)) — r) stays bounded (lemma 3.5). Since ®~!
is a C'-mapping, it is easy to show that also /n® ' (©(r"(w))) is bounded.
Hence there are subsequences n’ such that v/n/®(0(7 (w))) converges to a limit
h = h(n/,w). h must be an element of the cone C, indeed: ®~1(O(7" (w))) € C
for n’ large enough. Then v/n/®~1(O(7 (w))) € C from the cone property. Since
C'is closed, we have h = lim,y_.., Vn/® (O (w))) € C.

Let ¢ € C be arbitrary. We want to show that

(+) (@)W (w) = h,e = h)r 0.

This and the already shown fact that h € C will imply that h = m;((®[) W' (w))
by (NSC'). Note that the right-hand side of the latter equality, i.e 77 ((®}) "W’ (w)),
does not depend on the subsequence n’. The boundness of the sequence
(v/n® 1 (O(r"(w)))) implies that the limit lim,, ., v/n® *(O(7"(w))) exists and



CHAPTER 3. CONES 63

has to be equal to m;((®))'W'(w)|C). Hence n(®1(O())) > m(W|C),
showing our assertion.

Let us prove (x). Denote ¢, := n/~?c and &, = & 1(O(7 (w))). Then
Crry & € O3NC for n' big enough. The convexity forces &, +€(c,y — &) € O1NC
for e € [0,1]. Since &, maximizes L(®|7 (w)) on C N Oy, the derivative of
€ = L(®(&y + e(cw — &))|7 (w)) must be smaller then zero, hence

L(@I™ (@), (ew — &) < 0.

Note that 7 := ®~1(7'(w)) maximizes L(®(-)|7™ (w)) on the open set O, for n’
big enough, hence

L(®(-|7 (w)), = 0.

Min!

Since L(®(-|F" (w)) is twice continuously differentiable on Oy, we can find 6"
lying on the segment {a&, + (1—a)n : a € [0,1]} with

L(®|F" (w))e,, (ew—Ew) = \L(‘P('lf”' (@), (e = éanJr(é“nf—??nf)TL(‘P(')If”' (@), (cn—&w)-

-~

=0

Note that 6, — 0, since &, — 0 and 1,, — 0. Note also that L(®(-)|F" (w))y , —
—1, since ® is twice continuously differentiable. Blowing up with n’/, we have

0 < n/(&w — 1) TL(RC) ™ (@))f, (cwr — &)
= (V& = Vin)TL(() [ (W), (¢ = Vi'éw),

hence

0 < lim (V& — Vi) "L(®() ™ (@))f, (¢ = V')

n’—oo

= (b~ (@)W (W), — )y = ()W (@) — by — by,

This shows (x).
(]
As a corollary we note

Corollary 3.8 Let the same conditions hold as in theorem 3.7 above. If W is
some centered Gaussian random variable with covariance (P(i)0; j—P (i) P(j)) 1<i<a,

<j<d
then

V(O — P) B mp(W|®)C)

with D :diag<ﬁ, o %).

Proof: From the theorem above and the delta method we have

Vi (B (B71(O(™)) — B(0)) = v (® (271(O(™)) — P) 2 @4 (Z]0).
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We have seen in the proof of the last theorem that Z = (®p)'W. Therefore
applying lemma 3.2 yields

(71(Z]C) 2 B ((9)) " W|C)
W1®,0).

(|

Remark: The theorem and the corollary can be generalized in the following
direction dealing with local alternatives. Consider triangular arrays (Z};)lggn
with Z7, ..., Z independent and identically distributed according to P, = P+
n~2®)c + o(n~Y/?), ¢ € C. Consider the relative frequencies #* with entries

1 n

n __ * .

Tk—n E 1Zl:k'
=1

It is easy to see that /n(/" — P) 3 OLc + Z with Z as in the proof of the
theorem, i.e. Z is a centered Gaussian random variable with covariance (P(7)d;; —
P(i)P(j)) 1<i<a. Going through the proofs again we see that

155<d

Ve (O(7) 2 mi(c+ 2)

and
. D
Vn(©(7,) — P) = Tdiag(1,/Pa) 1/P(d))<q)60 + W|P,C).

.....

3.4 Application to the Decompounding Prob-
lem

We apply the results of the last section to the estimation of A and a finite initial
segment of p.

Fix some threshold S € N. Consider the random variables Z; := Y; A (S+1).
(Z;) is again an iid-sequence of integer valued random variables. Let ¢" be the
vector of the relative frequencies.

We should pay some attention to the distribution of Z;. Let us define U (z) :=
Ty¥(z), k=0,...,5, and Ug,(z) :==1— Zfzo TV (z). U9 is a mapping from
¢ to RS2, If R5*! is embedded canonically into ¢* then ¥® is a mapping from
R to R5*2. The components up to S of \Ilsg)\,p) are computed by the Panjer
recursion. Analogously, if x € {x € R 3"y = 1} and 2y > 0 then the
inverse mapping (¥°)~!(x) can be calculated using the Panjer inversion.

If Yy ~ U(Adp+p) for some A > 0 and p € M;(N) then Z; ~ US(\,py,...,ps).

The possible distributions of Z; are elements of U9 (Ag) with

S
Ag = {(A,pl...,pg)TeRS‘H: A >0, Zplgl, >0, lzl,...,S}.

=1
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Define the compactification of Ag, i.e.
S
Ki={(\pi....ps)" €R%: Xe 0,00, > p <1, p>0,1=1,... 5}
=1

If we define U7(0,p) := &y and ¥7(00,p) := 8541, [ = 0,...,S+1, then VU is
continuously extended to a mapping from K; to M7 "2 Hence K := U¥(K)) is
compact. This K is a candidate that allows approximations by cones. Note that
U9 as a mapping from R+ to R9+2 is O,

Lemma 3.9 Let (\,p)T € Ag.

i) If p1 > 0 then r = U3 (\,p) fulfillsr; >0,i=0,...,S+1.

ii) Let e; := (0;5); be the ith unit vector. There exists some open convex set O
containing zero such that for all B C O

BNC(As— (A p) =BnN(As—(Ap))

Furthermore,
C(As—(\p)={zcR%: vz <0V eV}
with
0,1,1,..., )T Uf{—ei: ie{j: py=0}}, if 3 pi=1,
v |t yud s p =01 i Ty

{—ei:ie{j: p;=0}}, else.

i) If pr > 0 and \ € (0,00) then W5 (K) is approzimated by an cone in W (X, p)
with approrimation tuple

(01, Oq, \I’S(' + ()‘aP)T>7 C(As — (A, p))).

Proof: i) This is a consequence of lemma 2.12 and the fact that the support of a
compound Poisson distribution is unbounded, hence there will be some mass at
a point greater than S+1.

ii) Let V' be the set of vectors given in the assertion. If I = {i : p; = 0} then

Ag—(Ap) = {(X = Neo+ D> pi+ ) (Wi—p): (N0 € As}-

el i€IC

It is easy to check that Ag — (A\,p) C {x € R®: vT2 < 0Vv e V} =: C. Note
that C is a cone too. Hence C(Ag — (\,p)T) C C.

Now assume x € C. First assume that ), p; < 1. Then there is some v > 0
with

s s
VX, > —p; Vielc, YT > —A, WZ%—FZ]%SL
i=1 i=1
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Obviously, (A\,p)” + vz € Ag, hence z € C(Ag — (\,p)") because of the cone
property. The case Y. p; < 1 works analogously. Let

{x € R |mg — AN < A\ |z — pi| < pi,i € IC}if Yopi=1,

(2 € RS s |og — N < A |2 — pi] < piyi € IC, |30 2 — 1| < 1} else.

O :=

O is an open and convex neighbourhood of zero. Furthermore, O NC = O N
(As — (\,p)T). The latter is true for every subset of O.

iii) If p; > 0 and A € (0,00) then W (A, p) >0,k =0,...,S, and Zfzo U2\, p) <
1. Since U¥ is continuous on R¥+2 we find an € > 0 such that B.(\, p) contains
(\,p)" and W5 > 0 and 37_, ®; < 1 holds on B.. Hence ¥S is a C°-mapping
from B, to US(\,p) + {x € R : lsj x; = 0}. The derivative of U9 is given by

(idspxsp, —1) (TR Vo) x

,,,,,

This is an isomorphism from RS onto {z € R5?2 : "™z, = 0}, because

(Tx Vo) k=o...,s is an triangular matrix with nonzero entries on the diagonal and
1=0 S

(idsyixsi1, —1)T is an isomorphism from RS to {z € RS2 . lsig x = 0}.
Obviously, we can find an € such that

BG(()) N ((AS - (Avp)T) = Be(O) nc (AS - (/\7p>T) :

The assertion is established.
(]
The results of the last chapter therefore can be applied here. For the rest of
the section assume that Z; ~ ¢ = U9(\,p) with some A > 0 and p € M?, p; > 0.
We use the notions of the last section, i.e. ® = U(- + (A,p)). Obviously,
o1 = (¥5)~1 — (\,p)T, hence we have

()71 O(7") — (\p)  as.
If A is the derivative at (), p)T of the mapping (¥3, ..., ¥2)T and
I := AT(diag(1/qo,...,1/qs) +1/Gs41117) A
with gg,1:=1— Zfzo q; then
Va((E%)7HO(@) = (A p)T) = m(ZIC(Os = (A1)

with Z ~ Ng1(0,171). If we want to stress the dependence of A\ and p we use
the notation I ,, 2y p.
If (A\,p) € Ag lies in the interior of Ag, i.e.

S
pi>0foralli=1,...8 Y p<l,
i=1
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it turns out that C(As—(\, p)T) = R¥*L. Hence 7;(Z|C(As—(\,p)T)) = Z. Apply
the delta method to see that

V(07" = q) 2 Z' = (idspxal)AZ.

The calculations of the last section show that FZ'Z'T = (¢;6;; — qlqj)o<@<s+1

<j<SH
This is the same distributional limit as for the relative frequencies. Hence the

knowledge of having measured some truncated compound Poisson variables does
not have any impact on the estimation of ¢ if (A, p) lies in the interior of Ag.
The maximum likelihood estimator ©(g") is tedious to calculate, since we
have to maximize a nonconvex function over a set with constraints (see [Lu89],
p. 330). The next theorem shows that one projection is enough to have the same
efficiency as the maximum likelihood estimator, i.e. the same distributional limit
behaviour. It can be regarded as an analogon to the one-step Newton iteration
in the regular parametric situation. Define U=1((0,z))g := 6ro, € M ™, and

S
Ay = {(A,pl...,ps)TeRsﬂ: A>0, Zplgl, pZZO,lzl,...,S}.

=1

Note that Al is a closed convex set, hence me(x|AY) is well defined for every
positive definite symmetric matrix C' € R¥1*5H,

Theorem 3.10 Assume that ¢ is a mapping on M7 +" into the set of positive
definite symmetric matrices in RS Suppose that Z; ~ q = V3 (X, p) with
A\ p)T € Ag and p, > 0.
If ¢ is continuous in W9 (X, p) and (U5 (X, p)) = I, then
VI (o (%) (@) |A%) — (A p)) = 71, (Z3,1C(As— (A, p)T)).

Proof: Without loss of generality we may assume that

Vi (W)@ — (L)) = Za,

with probability one as an application of the Skohorod representation. Fix some

w € ) with
Vi ()77 (W) — (A p)") = Zap(w).
For shortness, write &% := (¥ 1(%”(@))), &= \p)T, 2 = Zy,(w), I, =

%)~
P(7"(w)), I := ¢(q) and C := C(As—(Ap)")
We want to show that

T, (§" = €C) + & = 7, (£ Ag)

for n large enough. First note that 7, (§" — £|C) — 0 for n — oo, indeed: Since
0 € C'is a worse approximation we have

1€ = & =7, (8" = €l 1, < (1€ = € = Ol[ .-
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Hence for n — oo

172, (6" = €l [, < NE™ = & = 7, (€7 = IO n, + 16" = €l < 2[1€" =€l — 0.

Since I, — I, we have |7, (" — £|C)|l2 — 0. Hence for n large enough
T (§" = €[C) € (As —§) N B C Ay =&

Note that

no__ ¢ _ < n__ ¢ _
eergz{ﬁHﬁ €= 0l1, < max||g" — €0,

Therefore

7, (" = ¢&|C) = argmaXeeA/S_gHE” &0
= argmaxgea, ||€" — 0] — & = m, (67| A%) — €.

It is easy to show that any, (x|C) = 7y, (ax|C) for all @ > 0 (use (NSC')). Hence

V(e (§AG) = &) =, (Vn(e" = §)|0).

We have to show that
71, (Vn(" = §)|C) — n(2|C).

First
72, (V(e" = IO, < V(€ = O, < (212 +1).
for n large enough. Again the limit result I,, — I forces /nmy, (§" — &|C) to

be bounded. Note that if lim,, . 77, (v/n(§" — §)|C) =: L exists then we have
L € C, since C is closed. Hence for every ¢ € C' we have

(Vi€ = &) = m, (V" = ©)I0)) L (¢ = m, (Vi(€" = €)|C)) <0
because of (NSC'). For n — oo we obtain
(z—L)'I(c— L) <0.

(NCS) impies that L = m;(2|C). An argument that uses boundedness and
subsequences yields the assertion (as in the proof of the last chapter’s theorem).O

This theorem motivates an estimation procedure. Calculate A, p from ¢" using
the Panjer inversion and project onto the parameter set using some positive
definite matrix that estimates the Fisher information. The projection can carried
out using the active set method in the appendix (see [Lu89], p. 423, a Maple
routine is given in the appendix).

We illustrate this method using the data given by Bortkiewicz. They describe
the number of soldiers that died by horse kicks in the Prussian army and have
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been observed from ten corps over twenty years (see [Qu87], [Cs89] for further
references). The data and the relative frequencies ¢ resulting from them are
collected in the next table

no. deaths | 0 1 2 3 4 >5
abs. freq. | 109 65 22 3 1 0
rel. freq. ¢ | 0.545 | 0.325 | 0.110 | 0.015 | 0.005 | O

In spite of the fact that the interpretation within the compound Poisson model
may appear to be a little bit odd, they are a(n) ,,(in)famous “example ([Cs89]) for
the law of small numbers. We therefore expect our projection estimators to give
a point at the boundary of Ay. We discuss two examples. Fix S = 3. Compute
the Panjer inversion 5\, p1,--.,p3. Then approximate the matrix A via a matrix
A. For that use a truncated version of the matrix given in section 2.3. Just plug
g, A and p into (Tk‘lf’&)%%gs. Then estimate

3

~ ~ 1 1 1 ~
[%[3 = AT dlag (_—7...,_—) +7311T A.
do qs 1— leo Qi

We have calculated
(A Bs)" = (A D)IAS),  (Aps) = miq (A, 9)[AY).
The naive estimators (;\,ﬁm), calculated for m = 3,4, 10, have the components

max (0, p;)
eril maX(07 ﬁl) 7

The corresponding A is A. Note that P4 is the consistent naive estimator with
end point driven by the maximum of the data (section 2.5).

How to get rid of gaps? Consider the choice S = 10. We then have to
use another approximation to I, since the relative frequencies with respect to
the number of deaths higher then 5 are zero. We therefore do not use the rel-
ative frequencies themselves. First compute the Panjer inversion up to 10, i.e.
5\,151, ..., P10, then compute the naive estimator p;o. We plug the naive esti-
mator into the compound Poisson functional, i.e. perform the Panjer recursion
formula for the naive estimator (5\, P1o) up to 10. This gives us a new sequence
Go, - - -, G10- In contrast to the relative frequencies this sequence has no gaps. We
estimate A &~ A again, but now plugging in g, A and P1o into the truncated matrix
(TxW'8;) 0<k<io. Then estimate I via

0<1<10

~ ~ 1 1 1 ~
[10 = AT dlag (~_7---;~—) +ﬁ11T A
do d10 1= 0

Dmi = fori=1,...,m, pn;=0, fori>m.
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Again we have computed

(5\10,]510) = Wflo((jvﬁ)m/m)a (5\1072510) = Wid((;\aﬁ)|A/10)~

The next table summarizes the computational results. The first row includes the
Poisson approximation P

Pl (Ap) | (M) | 7, Tia (A, )

0.61 | 0.6070 | 0.6070 | 0.6064 | 0.6070 | 0.6070 A 0.6070 A | 0.6070
1 0.9825 | 0.9406 | 0.9977 | 0.9682 | 0.9422 P 0.9825 p3 | 0.9613
0 0.0396 | 0.0379 | 0.0000 | 0.0253 | 0.0380 0.0396 0.0387
0 -0.0365 | 0 0.000 | 0.0000 | O -0.0365 0
0 0.0207 | 0.0198 | 0.0023 | 0.0064 | 0.0198

0 -0.0077 1 0 0.0000 | 0.0000 | O

0 0.0014 | 0.0014 | 0.0000 | 0.0000 5\3 0.5999 A3 | 0.6070
0 0.0002 | 0.0002 | 0.0000 | 0.0000 ps | 0.9971 p3 | 0.9714
0 -0.0003 | 0 0.0000 | 0.0000 0.0000 0.0286
0 0.0001 | 0.0001 | 0.0000 | 0.0000 0.0000 0
0 0.0000 | 0.0000 | 0.0000 | 0.0000

3.5 Likelihood Ratio Tests

In this chapter we apply our results to the analysis of a class of likelihood ratio
tests that can be used for testing the hypothesis that Y = (Y7 ...,Y,,) is a vector
of Poisson distributed variables within the general assumption that Y is a vector
compound Poisson distributed entries. This is done considering truncated data.
Fix some S. As in the last section, let (Z,) be an iid-sequence of {0,...,S+1}-
valued random variables with Z; ~ ¢q. Let

Z ~ Ngy2(0, (qidi5 — q:q;)
D := diag(1/qo,...1/qs)
C, = (\I/S)&,pC(AS—(Aup))ﬁ

if ¢ = U9(\,p). Denote P¥ = {U5(\,e;) : A > 0} C R¥*2 This is the set of
truncated Poisson distributions.

We want to use the results of the last section for the performance of the
likelihood ratio tests in the following decision problem:

H: qeP® versus K: qc U9(Ag)\PS.

0<i<S+1 ),
0<j<S+1
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Define

i = ArgMAaXeys (oo« {(10,.0)L(alq"),

gk = argmaxcy(x,)L(qlq"),

Remarks: i) Define K := ¥5([0,00] x {(1,0,...,0)}). If X > 0, then K is
0

approximated by a cone in W9(\, 1,0, ...,0) with representation tuple
(01,09, W5 (- 4 (A, 1,0,...,0)7), lin{eg})
with Op := {z € R5*! |z0] < A} and Oy := ¥5(0;). The approximating cone is
then a linear space. Hence, if ¢ = (), 1,0,...,0) then
n D .
Valag —a) = mp(Z|(¥¥)( 10, 0lin{eo}).

Write V = (qjs)/(A,LO,.--,O)Iin{e()})'

ii) Going through the proof of theorem 3.7 again we see that everything is based
on purely analytical considerations regarding the relative frequencies. The conse-

quence is that we have joint distributional limit laws, i.e. if ¢ = U9(\, 1,0,...,0)
then
q q Z
Valla |~ |a]||>] m@cy
Q5 q mp(Z|V)
If z1,..., 2, are the realisations of Z;, i = 1,...,n then the likelihood ratio test

for H versus K rejects H for large values of the statistic

MaX(\ p)Te Ky H?:l \Iji ()‘7 p)
maxyefoo] | Ly U5 (A, 1,0,...,0)

Note that the usual suprema over the nonclosed sets of hypothesis and alternative
are the same as the maxima over the closures regarding H and K because of the
continuity of ¥°. Furthermore, applying a monotone function to the statistic
does not change the test, hence the same test is performed if we reject H for
large values of

MaxX(\ p)Tek, H?:l ‘I’i (A, p) _
maxye(o,0) | [1-1 Y5 (A, 1,0,...,0)

T :=nlog

The further analysis is similar to [Ro88| (see p.61). Assume that we are on the
hypothesis, i.e. ¢ = ¥9()\,1,0,...,0). A Taylor expansion of L(-|g") about "
yields the representation

17" = —n(L(qx|q") — L(q"17") + L(q"17") — L(qk|q"))
=—n((¢}, — )" Crdly — T) — (g — TV Chlai — T*)),
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which is true for some matrices C}, C? at least if g@ > 0, indeed: since "
maximizes L(-|¢"), the directional derivative vanishes in every direction ¢ — ¢",
q € M2 provided that " + e(q — ") € M, for all ¢ with |e| small enough.
In this case VL(-|¢")gn(¢ — @) = 0. Since we are on the hypothesis, this is
true for g; for n large enough with probability one. The matrices are given by
Cl = D*L(-|7")g: for 0}, in the convex hull spanned by ¢" and ¢}, and 62 in the
convex hull spanned by ¢" and ¢%.

Since we are on the hypothesis, we have ¢}, — ¢, ¢ — ¢ and " — q as..
The log likelihood function is smooth enough near g to provide C!, — —D.

Because of remark ii) we have

Ty 5 \lmo(ZV) = Z|[b ~ Imn(Z1Cy) ~ 213
Since V = =V C C, we have for all v in V by (NSC)
(v—mp(Z|Cy), Z — 7p(Z|Cy))p <0,
replacing —v in the inequality gives us the equality
(v—mp(Z|Cy), Z —7p(Z|Cy))p =0
for all v € V. By Phythagoras’ law the following identity holds
1Z = 7p(ZIC)D + I7p(ZIV) — 7p(ZIC ) = I1Z — 7p(Z]V)I[D-

Hence

T, = l7p(ZIV) = mo(Z]C) -
This is quite similar to the expression in theorem 3.3. We make the usual linear
transformation from {y € RS*2: S5 1y — 0} to RS+ via the isomorphism given
by the matrix 7" := (idgy1xs11,0) (i.e. the projection onto the first S+1 coordi-
nates). Note again that the inverse mapping is given by 77 = (idgyxsi1, —1)7.
Lemma 3.2 then yields

I7p(ZIV) = 7p(ZICHIIp = T mp-rpr1(TZ|ITV) = T mp-rpr1 (TZ|TC,) |13
= |mp(ZIV) = mp(ZIO)E,

with A denoting the derivative of the first S+1 coordinates and D = T-TDT~! =
diag(1/qo, ..., 1/qs) + 1/ Gs+1117. Furthermore, we have used the abbreviations
V = Alin{eg} and C := AC(Ag—(A,1,0,...,0)")). We have Z ~ Ng1(0, (¢:0:; —
%%’)gg;gg) = Ns11(0,D71).

We have a closer look at the underlying cone. An application of lemma 3.9
yields

C(As — (A 1,0...,00") = {z e R¥™ : NTz < 0}
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with
0 0
1 0
N — 1 c R(SxS
diag(—1,...,—1)sxs
1

(x <0 is understood componentwise). Hence

C={yecR5*: NTA Yy <0}
= {yeR¥: NTA'D'Dy <0}
S+1. (=T A-T AT f~
[y e RS*1. (DT A"TN)T Dy < 0}.
—p1
If we denote the columns of N := D *A~TN by v4,...,vs then we have found

that . i
C=C(v,...,v5)*",

i.e. C is the dual cone of a finitely generated one. Hence we are in the situation
of theorem 3.3. Therefore

lmp(Z|V) = 7p(ZIC)IIB = Imp(ZIV) = 75(ZIC)II5, Zme i

The k; are given by

-y F (Z cCulie )@ (linfvi: ie Fon{e e RS : (ma)p <0 € JC})> .
HI=i

Obviously, we can replace the < by < in the formula above, since the covariance
of Z is nonsingular.

We want to make more explicit calculations for the cone probabilities which
will be shown to coincide with orthant probabilities of some appropriate centered
Gaussian random variable.

We need a matrix representation for the underlying orthogonal projections.
Assume that W is spanned by some linearly independent vectors wy, ..., w,,.
Write My, for the matrix with columns wy, ..., w,,. Then W = My R™. Then

m5(z|W) = My (ML DMy) ML Dz,
T5(z|WD) = 2 — My (ML DMy) *MEDz.

This is a well known fact from linear regression. Note that the coefficients of the
representations of w5 (z|W) = >, oyw; are given by

(a1, ..., am) " = (MEDMy) ' ME Dz,
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Fix some [ C {1,...,S} with I # @ and I° # (). Let E; be the R¥# _matrix
with columns e;, i € I, where again e; € R® denotes the i-th unit vector. Then
lin{y; : i € I} = NER#!. Therefore

Zellyliel)® (hn{ui cie Iyt ﬂC*D<Vi|i € IC}>

& m5(Zlin{v;,i € I}) € C(y]i € 1))
A 7p(Z)lin{v;, i € 1Vp) € CP(u]i € I€)

= ((NE[)TDNE]>_1(NE[)TDZ >0
A NE)'D(Z = NE((NE)TDNE;)"YWEN'DZ) <0

& (EXNTD'ATNE)'EYNTAYZ) > 0
A ELNTA™MZ - DA TNE(E'NTA'D'ATNE)'EFNTA™1Z) <0
< (EfQEN)'EfQZ>0 A EjcQ(Z—E(E[QE)"E[QZ) <0
with Q = NTA'D'ATN and Z = Q" 'NTA~1Z. Note that
Cov(Z,Z) = Q*NTA'Cov(Z, Z)ATNQ™' = QL.
For I = () we have

ZeCPwli=1,...,8) &

Qi
\N]]
VAN

o

and for I ={1,...,S}
Z € C(yli € I) @lin{y,|i € 1}40) & Z > 0.

A closer look at the formulas shows that we have reduced the dimension of the
problem of finding the semicone probabilities. They are the same as in the cor-
responding projection 75(Z|C(e;,i = 1,...,5)*?). We should note that the fol-
lowing pairs of Gaussian random variables are independent:

WQ(ZUH]{GZ,’Z € I}) = E[(E?QE[>_1E?QZ,
mo(Z\linfe; i € 1Y) = Z— E(ETQE;)'ETQZ,
Second pair: (ETQE;)'EfQZ, FEI.Q(Z - E/(ETQE;)'ETQZ).

First pair :

This is easy to see from the covariance structure of the first pair.

For S small (S < 3) we can give explicit formulas for the cone probabilities
using some geometric reasoning.

We have a look at three examples:
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Example 3.11 If S = 1 then we have C(e1) = [0,00) and C(e1)*? = (—o0, 0], of
course. Therefore k1 = kg = 1/2.

Example 3.12 If S = 2 we have three mixing coefficients with the following
corresponding cones

Ko C(eq,ea),
ki Cle) @ ({e}enNC*Q(er)), Clez) @ ({ea}r@NC*P(er)),
Ko C*Q(el, e2)

First look at ;. Here, the derivation of the cone probabilities is reduced again
to one dimensional problems using the independence of the underlying Gaussian
random variables:

P <Z €C(er) @ ({61}% N C*Q(€2)>>

= P(ro(Z|lin{e;}) € C(er))) x Ples Qmg(Z|lin{e;} @) < 0) =

N | —
N =
il

Analogously, P(Z € Cle1) ® ({ei}en{z e R?: elQz <0}) = 1.
Hence k1 = 3.

It is enough to derive the probability P(Z > 0) = P(Z € C(ey,e2)), since
P(efQZ <0,i=1,2)=1/2— P(Z > 0) holds.

If LLT = Q is the Cholesky decomposition then we have LTZ ~ N(0,id),
i.e. the components of L7Z are independent and N(0,1)-distributed. Then
P(Z > 0) = P(LTZ € C(L%e;, LTey)). The latter probability is given by the
angle between the vectors LTe; and LTe, if the angle is normed by dividing by
2m, i.e.

ke =P(Z>0) = P(L"Z e€C(L%y, L"ey))
1 (LTel)TLTeg
= —— arccos
2m \/(LT€1>TLT€1 \/(LTeQ)TLT€2

1 S{Qez
= —— arccos — —
2m Vel Qery/el Qe
1 ( <€1, 62)@ )
= —arccos\ ——m—mr—7--—1.
2 lellgllezllq

Hence the cone probability turns out to be the angle in the corresponding inner
product (-,-)g. Recall that

0 0 —e 0 0
-1 (i)‘ €>‘
N=110 [, A= 50-) £ 0
e
1 -1 seMA —e* =
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and
e—>\ 0 0 6—2)\ 6—2)\)\ % 6_2 A)\Q
D= 0 e* 0 —| e e Le2yd
0 0 % 67)‘)\2 % 672 A)\Q % 672 )\/\3 i 672 /\/\4

The next calculations have been made with Maple Version V/Release 5 using the
linalg package.
@ has the following entries

_ 14er —4e )\ — 4+ 222 + )\
Qu = 4 >

_ _ 1
Qip=Q21 = —1)\6)‘(2‘1')\)

~ 1 1
Q22 = Z)\2e’\+e’\/\+§e’\.

If
2(A) = —= XM (24N
1 1
2 _ 2334 | L 2343 2) 12
n (A) = T )\+46 )\+4e A
L o 1oy, 1e?
P2 -
T Ty
1 Le?r & 1¢et
- — e>‘ + ______ J—
4 2 )\ A 2N
then ry = 5= arccos(z(A)/n(A)). Hence the mixing coefficients depend on the

unknown parameter \. We therefore need a studentization procedure as explained
below.

Example 3.13 S = 3. The k; correspond to the following cones

k3 : C(ey,eq,e3),
er €) @ lin{eg, e }te NC9e,), {k,I,m} ={1,2,3}
er) ® (lin{ey}@ ﬂC*Q(el,em)) . {k,I,m} ={1,2,3}

Ko - C*Q(el, €2, 63)

Ko C(
C(

KRy -

In addition to the already derived formulas above we need P (mg(Z|lin{e1 } @) €
C*?(eq, e3)). We have

7o(Z|lin{e; }1e) € C*9eg,e3) & Y 1= E{T2,3}Q (e1(e] Qer) el QZ — Z) > 0.
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It is easy to calculate that the covariance matrix of Y is given by

_ 1 _ _
EYYT = E{Q,?,}QE{Q,LQ,} — WE{TQS}QQ&F{ QE23).
Q

We are in the two-dimensional case again. To derive the probability we have to
calculate the quotient in the formula of example 1. It is given by

e Qes — €2TQ€1H€1H52€{Q63
Qe — fQerllenl el Qeay fef Qes — ef Qenlen] g el Qe
(e2, 63>Q||€1||2Q — (e1, 62>Q<€17 €3>Q

VllealBlieall — {er, e2)y MllealiBlleall — er, ea)?

Hence

P(r5(Z|line, @) € C*(ey, e3))
1 (ea, 63>Q||€1||% — (e1, ea)gler, e3)g

= %arccos > 27_ > > T >
leallGlle2lly — (e, e2)gy/llenliglleslls, — {es es)

The orthant probability P(Z € C(e1, e, e3)) can be calculated with the Gauss-
Bonnet Theorem ([KI178], p.141, Gauss’ theorema elegantissimum). Assume that
Sy is the unit sphere in R® and A is a geodesic triangle on Sy. If §; are the
interior angles at the three corners of A then the volume V' (A) is given by

V(A) =By + o + B3 — .

Define C := C(vy, o, 13) for vy, 15,3 € R? linearly independent. Suppose that
P =CnNJY;. Then P is a geodesic triangle. To compute (3;, we have to project
the difference vectors vy — 14 and vy — 14 onto the tangential space at the corner
|lv1]| 7'y of the triangle. The projected vectors are tangential vectors of the
triangle at corner |lv;||'v;. Hence the inner angle is given by

Ty T (g
= = L A
ﬁl = arccos HV B B vl (va—11) . . B vl (v3—v1) )
2 ¢! Z/1TV1 VlHIdHV?) n l,%"l,l V1H1d
 recos I/2TI/3HV1Hi2d —vivl g

\/(Ilvlllfdllvlelfd — (W w2)) (Il llwslify — (1vs)?)

Hence the probability for a three dimensional standard normal random variable
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to be in a cone C(vy, 1o, v3) is given by

V2TV3||V1||iQd — vi v vg

arccos

VS gl — T Byl By — (75)?)
1 vi vsllvellfy — vivigvs
* V(Ss) areeos 2 2 T 2 2 T
2 (H’/?”id””l”id — (1 Vl)g)(||’/2||id||”3||id — (rz13)?)
1 V1TV2||I/3||i2d—V§I/1VgVQ
* V(S2) areeos 2 2 T 2 2 T
: sl lalzy = CF)2) (sl allZy — (Fv22)
.
V(S2)

For LLT = Q) we have again LTZ and with V(S,) = 4
P(Z € C(el, €9, 63))
= P(L"Z cC(L e, L"ey, L"e3))
1

(e, em)llenlly, — (ex: er)glen, em)g
Z arccos

N —

T2 a2 \/(||6k||%||€z||% — (ex em)g) (lexllBlledld, — (e, e)d)
1

1
For higher dimensions closed forms do not exist (see [Ro88], p.75, for an exhaus-
tive history of the derivation of orthant probabilities see [To90], p.188). More
recent papers are [Ni0O] or [No98|. Both papers discuss the orthant probabili-
ties P(Y > 0) for some multidimensional normally distributed random variable
with covariance . However, even at this stage of research the methods are
restricted to special . The first paper discusses the equicorrelated case, i.e.
¥ = (1 — 7)id + 7117, the second one is about tridiagonal 3. Neither of these
conditions is satisfied here. Moreover, the formulas for S = 3 are complicated
enough to convince us that it would be more useful to give another method to
derive the ;. We will propose a Monte Carlo method below.

We have seen that the mixing coefficients x; = k7(\) are depending on the

unknown parameter \. We will prove that studentization is possible.

Lemma 3.14 The mapping (0,00) > A +—— K;(S,A) is continuously differen-
tiable for every S > 1 and 0 <1 < S.

Proof: Recall the definition of Q = NTA'D1A-TN. The matrices A~' =
A7\, S) are given as the truncated versions of the derivative of L (section
2.3). They depend continuously differentiable on A (consider some matrix norm).
Moreover, D! is a continuous differentiable function of A. Therefore, Q and also
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Q="' are continuously differentiable functions. We can rewrite the cone probabil-
ities in the following integral forms

P(ZGC(el,...,eS)) = \/E/ **ZTQZ
>0

o S/2

P(Z €Cley,...,es)"™ ) = P(QZ <0)

(27r5/2) Vv detQ /zgo o

and
P (Z e Cleie ) @ <1in{ei|z’ € Vo N Cleli € [C)*Q))

vV detE}FQEI

(2r 5/2\/det ET.QEc — EL.QE(ETQE;) " ETQE;c)

X / e 2 (BIQED= g 5
21>0

X/ e_%Zg(EchEIC_E?CQEI(EIQEI)ilE?QEIC)ile dz,
22<0

The latter integral is calculated using the independence and the covariance struc-
ture of (ETQE;)'ETQZ and E;cQ(Z — Er(ETQE;)"'ETQZ). Therefore 2 is
#I-dimensional, and z, is (S —#1I)-dimensional. The corresponding covariance
matrices and their inverses are again continuously differentiable functions of .
Since the determinant is a continuously differentiable function and is not zero
in a neighbourhood of the true parameter, everything is proved by considering a
lemma discussing the continuously differentiability of parameter integrals in this
case. This is no problem here, since we can differentiate under the integral sign.0
Let &5 ,_, be the (1—a)-quantile of the distribution lezo ki(A)X%_;

Theorem 3.15 Suppose that A\g > 0. Assume that H is satisfied. Let Ao be a
consistent estimator for X. Let 1 —a > k2(N\g). Then

nlljrolo Pre(Tn 2 &5, 120) = -

Proof: Assume that F) is the distribution function corresponding to ZlS:O ki(A)X% ;-
Assume that )\ ist the true paramater, hence A\, — \g in probability.

We want to show that A — &;_,(\) is continuous. We therefore solve the
equation 1 — a = F) (&) with the implicite mapping theorem. Note that
L F\(z) > 0 for all # > 0. Furthermore, for all 1 — v > F)(0) = ko(\) there
exists a &;_,(A) such that

1 a=Fy(&aV).
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Applying the implicit mapping theorem we have that &;_,(\) as the unique so-
lution must be continuously differentiable mapping.

Hence f(l_a)(;\n) converges to £;_,(\g) in probability. The distributional limit
law is established

~ D — O
Ty = &n-a) () = [7(Z|C e, .. es))G = Exnia-a-

Under the condition that 1 —a > kg(A), 0 is a continuity point of this distribution.
Hence the the theorem has been proved. O

Some remarks about Monte Carlo approximations of the x;: We have seen
that the calculation of the k; gets more and more tedious increasing threshold S.
We have to calculate 2° cone probabilities.

Hence we propose the following Monte-Carlo algorithm. We assume that
(Z1,...,Zy,) is an iid sample of S-dimensional centered Gaussian random vari-
ables with covariance (). This is easy realized on a computer using a random gen-
erator that produces nS uniform independent (pseudo) random variables. They
can transformed via the Box-Muller method ([To90], p 12) to nS standard nor-
mally distributed ones. Put them in n vectors Y; of dimension S. If LLT = Q
is the Cholesky decomposition then Z; = L~"Y; is a simulation of an iid-sample
from the desired normal distribution.

We estimate the r; via the relative frequency of the event that Z; falls into
the corresponding union of semicones. Again, the problem is to determine the
semicone O; with z € O for a vector z € R. One way is to calculate its projection
onto the cone via the active set method described in the appendix. If I is the
active set of the solution then z € ©;. We should remark that the usual GCM-
algorithm fails here for the following reasons: The GCM-Algorithm is made for
the special cone of monotone functions, i.e. K = {z € RS : 2y < - < Ts}
and 7, (z|K) for some diagonal matrix. If we think of our basic cone C' :=
C(As — (X, 1,0,...,0)T) then we have the same geometric structure. Hence we
could make a linear transformation. But tranforming cones to cones will induce a
transformation of the underlying matrix (see lemma 3.2). The author’s conjecture
is that the right transformation C'— K and AT DA — some diagonal matrix is
possible for S = 3 and fails for higher dimensions. Hence at the moment there is
a need for another method.

We propose here another algorithm. Note that it is not of primary interest
to calculate the projection, but to determine the semicone. We again neglect the
boundaries of the semicones here, since the union of the boundaries forms a set
of Lebesgue measure 0.

Recall the matrix representation for the underlying cones, i.e.

(x) Z;jeCle:iel)® (lin{ei ie I}renCQeli e Ic)>
& (EfQENT'E[QZ; 20 N E1cQ(Z; — E/(EfQEr)E[QZ;) <0
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for 0 < #I < S. For such I we define matrices D; € R%*% via the conditions

e!D; = (EYQE;)'EfQforicl,

(2

e’D; = —el'(Q - QE(ETQE)'ETQ) for i € I°.

Then () can be written in a compact form as D;Z; > 0. Write I(Z;) for the
corresponding set I.

The matrices Dy, once calculated, can be used again and again for the deter-
mination of other I(Z,,) because the geometric situation of cone and @Q does not
change.

We propose the following heuristic rule to find I(Z;). It is very similar to the
one used in the active set method explained in the appendix:

(1) If Z; > 0 then I(Z;) = {1 <i < S}.

(2) If not, calculate —QZ;. If —QZ; > 0, then I(Z;) = 0.

(3) If not, then define 4,,;, to be the index with
(-QZ))i,.. = min{(=QY),, : m=1...,5}.

Define I := {imyin}-

(4) If Dy is not calculated yet, calculate it and save it.

(5) Calculate Dyy. If DIZj > ( then I(Zj) = [. Else define 7,,;, to be the
index with (D;Z;);,, = min{(D;Y),, : m =1...,5}. If i € I, then

define I := I\{imin}, else define I := I U {imin}. Go back to (4).

This algorithm seems to converge quite quickly in practical applications. How-
ever, we should mentioned that we have no convergence proof for it. Cyclic
behaviour might be possible, but it was not observed.



Chapter 4

Nonparametric Maximum
Likelihood Estimation

The last chapter was devoted to the analysis of maximum likelihood estimation
under truncation of the data. The upper truncation threshold S is somewhat
artificial. So there is an urgent need to consider the untruncated case. Again we
assume that the Y's are concentrated on the nonnegative real numbers. We give
some existence conditions for the nonparametric maximum likelihood estimator
(NPMLE). Also a consistency proof is given that holds for the two-sided case as
well, but it is not clear whether an NPMLE exist in this case.

The idea to prove the existence theorem is similar to that of Simar (see [Si76]).
In contrast to the title of his paper he considers the NPMLE in the case of
mixed Poisson and not compound Poisson distributions (in fact there is a big
confusion in the literature concerning the definitions of compound and mixed
Poisson distributions). A random variable Z has a mixed Poisson distribution if
there is some probability measure p on [0, 00) such that

/\k:
P.(Z=k)= /e’\y p(dX)  for all k € Ny

The generation of a mixed Poisson distributed random variable works as follows:
Take some random variable A with distribution . This random variable generates
some intensity A. Then sample a Poisson distributed random variable X with
parameter A\. X is mixed Poisson distributed according to the measure p.

Simar has used Helly’s theorem to prove the existence of some fi maximizing
the log likelihood function

> Zrk log P,(Z = k).
k

with r; denoting the relative frequencies based on the observations. He also
showed uniqueness and consistency of the NPMLE. Furthermore, he was able

82
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to specify the support of the NPMLE. The support is finite and given by an
algebraic (to be more precise, a transcendent) equation. To derive the support
of the NPMLE seems rather hopeless in the context of compound Poisson dis-
tributions, but if we restrict ourselves to the nonnegative integers then we can
compute the estimator as a finitely dimensional maximization problem under
linear constraints.

Roughly spoken we use the upper semicontinuity of the likelihood function
defined as a function on some compact space to prove the existence of a NPMLE.
Assume that y = (y,. .., y,) are observed, so that we have the likelihood function

(A, P)— I\, Ply) == [ [ 2 ({ud).
=1

First note the following lemma that discusses the semicontinuity of the likelihood
function. As usual we include the Dirac measure dy into our reasoning about
compound Poisson distributions according to the equation dy = exp(0(P — dy)).
A Poisson distribution with parameter A = 0 is also identified with the Dirac
measure dg.

Lemma 4.1 Let \, A\, >0, k € N, and Py, P € M;(R). Suppose that

kh:m A = A, P. 5P for k — oo,
then
lim sup (g, Pely) < U(A, Ply).

k—oo

Proof: We immediately see from the corresponding characteristic functions that
exp(Mi(Pe — o)) = exp(A(P — ). If Qr = Q for some Qx, Q@ € M;(R), then
QY — =5 Q%" for k — o0, as easily seen from the characteristic functions. This
shows that for all n € N

(M (P} 1 2, (AP=00)) &

Obviously the set {(v1,...,yn)} is closed. Therefore the assertion follows from
the Portmanteau theorem (see [Ba92], p.227).0

Since the observation y; = --- = y,, = 0 would make the estimation problem
trivial (estimate A by 0), we exclude this case in the next theorem. We restrict
ourselves to the case that the claim distribution is known to be concentrated
on some closed subsemigroup H of the nonnegative real numbers, e.g. H =
N, [2,0),....

Theorem 4.2 Let 0 < yy < -+ < gy, be giwen with y, > 0. Suppose that
y; € HU{0},i=1,...,n, for some closed subsemigroup H of [0, 00).
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i) Let S be a compact subset of the nonnegative real numbers with S\{0} # 0.
Then there ezists a A € S\{0}, P € My(H N[0, y,]) with

I(\, Ply) = I(\, Ply) .
(A, Ply) resyllax o (A, Ply)

i) If (0,0)° N H = H for some § > 0 then there exists a A > 0 and a P €
Mi(H N (0,y,]) such that
(A, Ply) = resnbte ) (A, Ply) -
>0

Proof: An application of the inequality already used in the proof of part i) of
lemma 2.9 yields

P (in = m) >P(r =1)P(X; =m).

We therefore see that the likelihood function takes positive values. Indeed

1 - - 1
sup (N, Ply) >l s,——— Oy |y | > e ™s" — >0,
(\,P)cO A Fly) #{y: > 0} 121: o H #{y: > 0}

y;>0 y; >0
for both © = S\{0} x H and © = (0,00) x M;(H N (0,00)) and s € S\{0}.

i) Let P € M;(H) and A > 0. Suppose (&;); to be some iid-sequence of random
variables with & ~ P, defined on some common probability space (€2, A, P).
Suppose 7 ~ P(A) to be defined on the same probability space and independent
from (&). Define n; := & A y,. Then (n;); is itself an iid-sequence of random
variables. Suppose P’ to be the distribution of 7;. Obviously, P'(K) = 1 with
K :=HnN|0,y,]. Furthermore we have

for all v, < vy, and

P (Z& ~ yn> = P (Z& < yn) - P (Zfl < y)
=1 =1 =1

J/

:P(ZlT:1 7ll<yn)

IN



CHAPTER 4. NPMLE 85

Hence for A > 0 fixed, the maximizing P is an element of M;(K), in symbols

sup (A Ply) < sup (X Ply).
PeM;(H) PeM;(K)

K is compact. Therefore M;(K) is a compact subset of M;([0,00)) if we equip
M; ([0, 00)) with the weak topology. The compactness of the set S x M;(K) and
the upper semicontinuity of [ imply the existence of some maximizing (5\, P) €
S x M;(K). Note that A must be greater zero. Otherwise I(\, Ply) = 0 would
hold. Since (A, P) maximizes I(-|y) even on the larger set S x M;(K), hence on
the smaller set S\{0} x M;(K), the assertion is proved.

ii) Define L := H N (0,y,]. L is not empty and compact, since H is closed
and zero can be dropped because of H N (0,9) = H for some § > 0.

With the same argument as in i) we can reduce the maximization of the
likelihood to the set (0, 00) x M7 (L). Hence there exists some sequence (A, P,,) €
(0, 00) x My(L) with

1
(A, Pn) > sup I(\, Ply) — —.

PeM; (HN(0,00))
A>0

We show that A, has a bounded subsequence. If not, then lim,, .. A, = oo.
Since M; (L) is compact, we find some subsequence P,,, and some P € M; (L) with
P, = P. Again consider independent random variables X1, T With X, ~ P,
and 7, ~ P(Ap) defined on some underlying probability space (£2,.4,P). Note
that E(X,Y,) exists for all N € N and that the following inequalities hold:

N < E(Xp) Sun

Hence Wald’s identity £ ™ X = ET, E Xy leads to

Tm
lim F E Xy = lim A, EX,, 1 = o0.
= >5

Note that Vary ™ X, = AnE(X7 ;). By Chebychev’s inequality and Wald’s
identity

P (Z Xm,l < yn> = P (Z Xm,l - )\mEXm,l < Yn — AmEXmJ)

=1 =1

A E(X7 1)
(yn - )\mEXm,1>2 '

The right-hand side tends to zero. This implies that (A, , Py, |y) — 0 for
k — oo, which is a contradiction, since the supremum of the likelihood must be
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greater than zero. Hence there exists a bounded subsequence of (A,,). Without
loss of generality we may assume that \,,, — A for some A\ > 0 and P, — P for
some P € M;(L). Note that A must be greater than zero, since otherwise

lim sup I(Am, , P [y) < 1(A, Ply) = 0.
k—o00
The choice of Ay, Py, shows that this is not possible. The assertion is established
setting A\:= X and P=P. O
Remarks: If there is no restriction on H or the parameter set of A then the
following pathologic situation can occur. Let K := [0,y,] N H as in the proof.

Now fix some i, A with 4 > A > 0. According to the first assertion of the theorem,
there exist Py, P, € M;(K) with

sup U(A, Ply) = (A, Py), sup U(p, Ply) = U(p, By).

PeM:(K) PeM;(K)
Then define P; to be the probability measure

A A
Pliz—P)\+<1——) (S[)‘
I I

We obtain exp(u(P; — dy)) = exp(A(P\ — &)), hence

L\, Paly) = (i, Prly) < 1(p, Puly).

Obviously there are two cases. The first is that there exists some A > 0 such that

I\, Paly) = (i, Puly)

holds for all © > A. Then there are uncountable many maximizers for I(-]y) on
(0,00) x My (H). The second is that for all A > 0 there is some p > A

LA, Py) < Up, Puly).

Then a maximizer does not exist.

Under the assumption that the claim distribution is concentrated on the pos-
itive integers we want to investigate the consistency of the NPMLE for the
case H = Ny. We return to speak of probability densities instead of mea-
sures. Again, suppose (Y;) to be an iid-sequence of random variables with
Yi ~ q = exp(A(p — do)) for some A > 0 and p € M;(N), defined on a common
probability space (€2,P,.A). As in Chapter 2 let ¢" be the sequence of relative
frequencies. Let L(z|y) := Y x;logy; be the log likelihood function. Instead of
a direct study of the NPMLEs we discuss the consistency of estimators 7" with
the following property

(x)  L(T"|q") = L(qlq") + op(1).
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If (A\",p") is a measurable selection of the NPMLE, then (%) holds for 77" :=
exp(j\"(ﬁ” — dp)). If T™ is consistent, i.e. T™ converges to ¢ in probability, then
the continuity of the logarithm implies the consistency of (;\", ).

First we state the theorem. It is based on two lemmas which are given after
the proof of the theorem. The main ingredient of the proof is the following simple
observation that uses the special feature of countability in the discrete case:

(%) q®IP’({(k,w):nli_)rgoq’?q(:)):1}) >
Q®]P’<Noxﬂ{w: nlgrolong(;”) :1}) 1.

k

Theorem 4.3 Suppose that Zq,i_w < oo for somey > 0. If (T,,), is a sequence

of 0*-valued estimators that satisfies () then ||T,, — q¢"||1 L. 0. Hence T, - q.

Remark: Recall that 3~ ¢, 7 < oo iff Y. p, " < oo because of lemma 2.9.

Proof: We have the following identity for the Kullback-Leibler divergence
H{(zxly) = L(x|x) — L(y|x).

According to lemma 4.5, ((k,w) — %(:) log %(:))n is uniformly g ® P-integrable.

From (%) it follows that

HCIRAC)

lim og =0 q@P—as.,
n—oo gk 4k
hence N .
lim " g B | % 10g %) =0,
nee 4k dk

With Chebychev’s inequality and Fubini we obtain

PTG 0) > 0 < ~El (o) =+ [

4k dk

This yields H(q"|q) . 0, hence the assertion is established by the following
inequality

T = < HT) = Dl ~ L)
< L(¢"lq") — L(qlq") + or(1) = H(q"|q) + 0p(1).

AN

U
The next two lemmas discuss the uniform integrability.
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Lemma 4.4 Suppose that ), q,}f” < 00 for some v > 0. Then the family

(o (50)")

is uniformly q @ P-integrable for every e € [0,7).

Remark: We have the simple inequality E(¢})'™¢ < Fq!' = q;. Therefore

n\ l+e€
> aFE (Z—Z) < g
k k

Fubini’s theorem implies the ¢ ® P-integrability of the family.
Proof: If ¢ = 0 then it holds that

- dk

This implies uniform ¢ ® P-integrability (see theorem 21.7 (ii) in [Ba92]).
Let € € (0,7). Choose some ¢ > 0 such that 1 —§(1 +¢)/2>1—~.

38

Define v;, := (1 + g, o/ 2)HE. The following inequality is true for every k € Ny

<1+ k5/2> < glte <1+ —5(1+e)/2>

Therefore

Z,quk S 21+E <1 + Zqi—5(1+€)/2) S 21+€ (1 + Zq;_"f) < 00
k k k

The random variable Z(k,w) := 74 is therefore ¢ ® P-integrable.
Applying Chebychev’s inequality we conclude that

3|

k

q : . : 1 1 1,
P(QZ>713+):P<Qk_Qk>qk<7kl+_1)>§ : 30 = —d}
q2<%i+‘—1)

1

Suppose 7 > 1 to be chosen large enough to assure 1 — € + (5 —2)>1—7

Recall E(qp)*1+9 < g,.. With s7! =1 — r~! Holder’s 1nequahty yields

n 1+e

q w —€ n €
/«mw) h ( | )> P(dk, dw) qu Bl o (ai)"
2 U

9k

. = 1 L—ct1
SR e >%§*)§W d SN
k
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This shows

W)\
lim [ .. ( k ) q @ P(dk,dw) = 0.
n—o0 (”@q—?) S Z(kw) \ Gk

Lebesgue’s dominated convergence theorem yields

n\ l+e€ n\ l+e
lim (q—k> dg @ P = lim 1<qn>1+€ (q—k) dgP=1.
<z

n— o0 qr n—oo i qk

This is equivalent to uniform integrability (see [Ba92], 21.7).0

Lemma 4.5 Suppose that q,?” < oo for some v > 0. Then the family

()= o) log%“’))m

4k dk
s uniformly q @ P-integrable.

Proof: Define € := 7/2. There is some S > 0 with |zlogx| < SV 2! for all

x > 0. Since .
- (52))

is uniformly integrable, we also have uniform integrability for

o= (2"

Hence our family is dominated by a uniformly integrable family, hence itself
uniformly integrable.Od

neN

neN



Chapter 5

An Inverse Panjer Formula for
Histograms

We have seen that the inverse Panjer formula turns up very naturally if we con-
sider the counting densities as elements of an appropriate Banach algebra. Up
to some affine transformation the Panjer inversion can be identified with the
logarithm in a Banach algebra. Our goal is to find an analogue for the Panjer
inversion in the case of claims with an absolutely continuous distribution. Very
popular density estimators are histograms (see [Si86], [De85]), so it seems natural
to look for a formula there.

We use the setting of the Banach algebra &y & L' with L; := Lk([0,00)).
Suppose that godp + ¢ = exp(A(p — dy)) for some ¢,p € L', go, A > 0.

For completeness we derive the Volterra integral equation for p and ¢ which
can be found in the book of [Pa92] (see p.222). It is stated there in a much
more general setting and has some remarkable similarity to the Panjer recursion
formula.

Writing down the Laplace transforms we obtain

Qo + /q(t)e_“t dt = exp (A (/p(t)e_”’tdt - 1)) for u > 0.

Both sides are differentiable for ¢ > 0 and can be differentiated under the integral
sign. Therefore

/ toxp(—ut)g(t)dt = exp ()\ ( / p(t)exp(—ut)dt—l)) A / 1p(t) exp(—put)dt
= (w0t [arestpnrar) 3 [ ) expl-pas
= o [t exppiat-+ A [ espl—t) [ spiohte — oyisas

For fixed pg define

90
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fuo(t) :=texp(—pot)q(t),9,,(t) := Nexp(—pot)(qotp(t) +tp(t fo sp(s)q(t — s)ds).
Then g,,, fu, € L' and their Laplace transforms coincide. Hence g,, = fu,

Lebesgue-a.e.. Multiplying both sides with e#°! yields the Volterra integral equa-
tion

(VI) tq(t) = Aqotp(t) + /\/O sp(s)q(t — s)ds, t > 0.

Now consider histograms: Let h > 0 and

a(t) = QQ50 + Z Oékl]k (t)

k=0
I, = [kh,(k+1)h), k>0
A = —log(q).

A function p can be calculated such that (V1) holds with a in place of ¢. It does
not matter whether a has a logarithm in &y @ LL(R). Otherwise p is just some
piecewise continuous function, not necessarily in L!. This is similar to the Panjer
inversion.

Theorem 5.1 Let oy > 0. Let vy := a/qo. Then
1
- E Z ¢k’<t)11k (t)
k>0
with
k
Gr(t) =1+ e PN Dy (t — kh)'.

1=0
The coefficients can be computed via the following recursion formulas:

DO,O = _17
kh(ag — ag_1) A
Dk,O = i Rl + G_WOhZDk_Lth Vk Z 1,
do e
1 o
Dy, = ]7 (OéoDk1,j1 + Z a(Dy—i1-1j-1 — Di—1j-1)
0 =1

- ozk,jHDj,Lj,l) VEk Z 1, 0 S j S k.

Proof: Define ¢(s) := Asp(s). Then p satisfies the integral equation

() ta(t) = ao(t) /¢ alt - 5)d
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Define ¢y, to be the restriction of ¢ onto the interval I;. It is sufficient to solve
(I). This is done by induction over the k’s. Assume k = 0, then (/) simplifies for
t e IO to

tag = qoop(t) + ao/ o(s)ds Vit e .
0

We solve the equivalent initial value problem

(0) ap = qo@'(t) + apod(t), ¢(0) = 0.
This is a linear differential equation that can be tackled by the method of sep-
aration of variables. The solution of the homogeneous equation is given by

PH(t) = et ie.
!
0= gody (t) + oy ().
Consider ¢y = ot with 1)y to determined. Plugging into (0) yields
a0 = o8 (1w (1)) + (@5 ()to(t)) = qoe "5 ().
Hence there is some constant C' such that 1y(t) = C' + 2" is satisfied. Since 0 =

®¥(0)1p0(0) = C'+ 1 holds, we obtain C' = —1. We have proved ¢o(t) = 1 —e 0%

Now assume k > 1. Again, we have a simplication for (1) for ¢t € I, i.e.

k t
agt = qoo(t) + Z oq/ o(s)1,(t — s)ds
1=0 0

k

= qo(t) + Z Oél/ o(s)ds
=0 J0.40(E—(+1)ht—1h]

t—kh ¢
= qoo(t) + a /0 o(s)ds + g /h o(s) ds

k—1

+ « / o(s)ds
IZ:; : (t—(141)h,t—1R] (5)
t—kh
= QD¢k(t)—|-Ozk/ Go(s)ds
0
kh t
+ g qﬁk,l(S) ds + (6] ¢k(8) ds
t—h
k—1
+ a/ 10) s)ds + a/ 10) S
lz:;l(t(lﬂ)(kl) kll Zl klhtlh]kl)
(*) = qor(t) + ao ¢k d8+2061/ Pr—i-1(s) ds
(1+1)h,(k—1)h]

+Zoéz/ Pr—i(s) ds

k—1)h,t—Ih]



CHAPTER 5. AN INVERSE PANJER FORMULA FOR HISTOGRAMS 93

Differentiating with respect to ¢ yields
ap = qod(t) + caogr(t)
k

k-1
+ Z Ozlqbk_l(t — lh) — Z al¢k—l—1(t — (l + 1)h) .
=1 =0

This is again solvable using separation of variables. ¢f(t) = e golves the
homogeneous equation 0 = gop!’’ 4 ae¢l. Consider again ¢y, = Yp¢ with some
Y, to determined. We have

k-1
ar = qooy (DY(t) + Zal¢k f(t=1h) = ougpia(t — (1 + 1)h),
1=0
hence

1 t
Ur(t) = C—i——(ak/ 0=k gg

qo

/ 670 S=RR) L\ 0(s—kh) =0 (s—th—(K=D)h) 5
kh =1
k—1
xS Dyiy(t = Uh — (k = )h) }
7=0
n / o {evo(s—kh) 4 ols—kR)—0(s—(HH A= (k-1-1)h)
kh

k—1-1

X Dklljt—(l—f‘l)h (k—l—l)h]]}>

J=0

k—1

k
1 .
aq —eM 4N D t —kh J+1}
-+ o < )
k—1 k—1-1
X adg e > Dt —kh)ﬁl})'
Yo




CHAPTER 5. AN INVERSE PANJER FORMULA FOR HISTOGRAMS 94

We therefore obtain

k k—1 k—1-1
I S D WD DS
Jj= Jj=
k—1 1 - — 1 k—j—1
= — ——(t — kh)’™! Dy —(t — kh)™! Dy 1
jZOj+1( ) Zal kl,]+2j+1< ) ;Oél k—l—1,j
k 1 k]+1
= —Z] t—kjh Z Olek lj— 1+Z t—]{?h Zale 1-1,5—-1

1
—(t — kh)’ ( — i1 D11

Il
Mpr

%

j=1
k—j

+ Z (Dy—1-1j-1 — Dr—1-1) + aoDk—lvﬂ'—l)
=1

Plugging the latter equation into the equation above yields

k k—1
1
Yp(t) = C'+— (ozk - Z o + Z al> e (t=kh)

doYo

N =1 =0 ,
N _ZO
=1
11
+ — Z —<t - kh)] (aoDk—l,j—l
o\ 557

k—j
+ ) " (Dyi—1jo1 — Di—rjr) — ak—j+1Dj—1,j—1)>
=1

k
= C' 40 LN "Dy (t — khY

=1
Hence

k
Pr(t) = 1+ e 0tk (C” + ) Dyylt— k:h)j> .
j=1
The constant C" = Dy o can be calculated plugging the initial value ¢ = kh into

():
(k=0)h
agkh = qo(1 + Dyyp) +Zal/ ¢kl1 s)ds
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hence

(k—D)h
Dio = — | axkh — Zal/ ¢kl1 s)ds | —1
k=1 k—l—1
= (Oékkh ZOJ[ Z Dk I— 1]

(k—1)h j
/ e~ m(s= =D (5 (o — [ — 1)h) ds | — 1
(

k—l—l)h

k-1 k—l-1 ~oh s\ ds
= — |arkh—h a; + « D / e”o“"(—) — 1 -1.
k Zz le k—1—1,j P

Y0

This proves the first representation of Dyo. The form stated in the assertion
of the theorem is derived under some additional reasoning. Note that ¢ ——
fo a(t — s)ds is continuous. Considering the integral equation at the jumps,
we derlve

kh(oy — ag_1) = kh(q(kh) — q(kh—)) =

k-1
qo(d(kh) — ¢(kh—)) = qo(1 + Do — (1 + exp(—70h) Z Dy,_1;/)).
=0
Hence -
Dyo = khlax = ap-) 4 70k Z Dk—l,jhj.
do Jay
O

If the first cell is empty, then we have the following simplification:

Theorem 5.2 Assume ag = 0.
Then

with
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Recursion formulas for the coefficients:

Dy

Dy

Dy ;

aq

Y

qo
oy,
qo

k—1

kh(ay, — o ,
(ak (077 1) + ZDk_17jhj,
o 1=0

o

———Dp 1 -1,
qQok ’

o =1

9 \'75

k-1
1
— (Oék + Z @ (Dk—i1-1,0 — Di—10)

)

k—j
1
— (Z (Dg—i—1,j-1 — D—i,j-1) — ak—j+1Dj—1,j—1> :

Proof: It is easy to calculate that ¢o = 0 and ¢:1(t) = 2H(t — h) + ¢th. We



CHAPTER 5. AN INVERSE PANJER FORMULA FOR HISTOGRAMS

consider () in the proof of the latter theorem. For t € I}, it holds

(k=Dh k -1 )
qo¢k(t) = akt — Zal / Dk—l—l,j (S — (k - — 1) h)]dS
(I+1)h §=0
k t—lh k-l
- Zal/ Dy_1;(s — (k= Dh) ds
=1 (k=0)h =0
k—1 k—1-1 1
= it — Zoq Z Dkflflj 1 (hJH ( kh)]H)
=1 7=0
k k—l1 1
— Zal k1,5~ (t — kh)7™
=1 j=0 I+ 1
k—1 k—1-1 1
= akt—Zal Z Dk,l,1] T h]—H
=1 7=0
k—2 1 k—j—1
j+1
+ i m(t - k‘h)J Z Oéleflfl,j
k—1 1 k—j
( - kh)j+1 Z alefl,j
7=0 j + 1 =1
k—1 k—1-1
Q Z Dy 1j hj“
=1 7=0
k—1 1 k—j
+ —(t—k'h ZOélel 1,j—1
=1/ =1
k—j+1

'M?v

.|

(t—kh ZO&[Dk lj—1-

1 =1

J

97

Comparing the coefficients yields the theorem. The representation for Dy, follows

once again by reasoning about the jumps.0]
Assume that (Y;) is an iid-sequence of random variables with

A(p—do)

Y, ~qodo+q=c¢ , for some p,q € L', \ > 0.

We estimate qp with the relative frequency ¢ = % > =1 1y,—0 and ¢ by a histogram

—n n n 1 .
q, = Zakﬁl[lh’ Ilh = [hl> h(l + 1))7 o "= % Z 1Yke]l'
1=0 k=1

We have the following consistency result. Note that A depends on n.
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Lemma 5.3 Assume lim,,_.. h — 0 and lim,,_,., nh — oo, then
@ +qd" —  qdo+q
indy® L' a.s..

. n &.S.
Proof: Obviously, ¢q§ — qo.

Consider an iid-sequence of random variables (Z;); with a distribution that
has a Lebesgue density g. Define the histograms

1 n
g"M(x) = nh PR NGEIRICI]) I PRETATIEIAY
= m=1

It is known that J, := [|g"" — g| tends to 0 a.s. iff h — 0 and nh — oo
(see theorem 2 in [De85] and the concluding remarks for histograms). Now
define Z; = Y;ly,~0 — U;ly,—¢ for some iid-sequence of random variables (U;),
uniformly distributed on (0,1) and independent from (Y;). Then (Z;) is an iid-
sequence of random variables. The distribution of Z; has the Lebesgue density
g =e 10 +q. Hence lim, .o ¢"" = g in L* a.s. if the conditions given on
h and n are satisfied. The assertion of the lemma is proved with the help of the
inequality [ |¢™" —q| < [|g™" — g].
O

This lemma shows that the estimator ¢dy + ¢™* is strongly consistent in
8o + L*. Once again note that the compounding mapping Ay + p — e*?=%) has
exactly the same properties as in the case ¢!. Therefore ¢3dy + g™ will be in the
codomain of C' for n big enough. We can apply the unique real valued logarithm
to it. This gives us a strongly consistent estimators for A and p which can be
calculated via A = —loggqy and the formulas given in the theorems above. The
empirical Fourier transform is null-homotopic in C* .
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0.4

| histogram, 10|00 samples, 15I cells
0.35 |- true density ¢ - - --

025 I B
0.2 F 3 B
0.15 | E B
0.1 _ —
0.05 R .
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| I |
Panjer inversion of the histogram ——

\ true density p(x)=exp(-x) - - -
0.8 | _

0.6 F

0.4 -
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Figure 5.1: At the top ¢ and a histogram with 15 cells is plotted based on 1000
samples from the distribution gydp + ¢ = exp(A(p — o)) with A = 1 and p(z) =
exp(—x)1jgo0) (@) is plotted. The figure at the bottom shows the corresponding p
and the Panjer inversion of the histogram.



Chapter 6

The General Case

6.1 Introduction

We have investigated the 'discrete decompounding’ in Chapter 2. The methods
developed there are tailored to discrete data which arise in queueing systems. In
the context of insurance risk models it is common to work within a continuous
model instead of a discrete one. Suppose that the intensity A > 0 is known.
Assume that only positive damages occur, i.e. P is some probability measure
concentrated on the positive real numbers.

Of course, a reasonable estimator for the total claim distribution @ is the
empirical Q" = %2?21 dy; based on the observations of the Y’s. The naive
method is to consider )" in the Banach algebra of signed measures and to take
the logarithm. This would be the same method that was quite fertile in the
discrete case. This approach fails here for general reasons. On the one hand,
the exponential function is locally invertible in the space of signed measures
near the true distribution ). On the other hand, note that Q" converges to
@ typically in norms connected to the sup norm or weighted variants (see for
example [Sh86]). However, if ) has an absolute continuous part with density
h(z), then ||Q™ — Q|l7v > [ h(x)dzx for all n. Hence there is no convergence in
total variation norm and a simple application of the inverse mapping theorem is
not possible.

Since we know that the existence of a logarithm depends on some topological
property of the Gelfand transform, the null-homotopy in C*, we could reduce
our claims to the weak convergence. It turns out that this is hopeless too. First
the maximal ideal space is not satisfactorily known ( for papers discussing the
maximal ideal space in the measure algebra see [Ro79], [Ta73]). Furthermore,
even the known part does not behave in the right way. To have null-homotopy
of the whole Gelfand transform of Q" for n large, we need to have uniform
convergence of the Gelfand transforms to the Gelfand transform of (). Consider
the empirical characteristic function 6 — %Z?:l et which represents a part

100
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of the Gelfand transform of Q™. It is well known that the characteristic function
of a distribution with an absolute continuous part does not converge uniformly
on the whole line (see [Fe77]). At best, it converges uniformly on some compact
sets whose end points spread out over the real line like o((n/loglogn)'/?) (see
[Cs81)).

Therefore the functional analytical and statistical aspects of our estimation
problem do not match. We will try a more direct approach. Let us be a little
bit informal. Decompose @ into two measures, i.e. Q = ey + NQ with
NQ(-) :=Q(- N (0,00)). We have the equalities

S0+ *NQ = exp(A)Q = exp(Adp) * exp(A(P — dy)) = exp(AP).

Take the logarithm on both sides. The right-hand side simplifies to AP. For the
left-hand side this is not clear, hence write down the usual power series expansion
about dg, the identity. This yields

Z k+1eXp (AKk) (NQ)™

k=1

We have found the following representation for P
1 ¢ k+1exp k)
H P=A@ =Y (-1 (NQ)*.
k=1

We can read this identity in terms of distribution functions too. If F™ is the
empirical distribution based on a sample Yi,...,Y,, then A(F ") defines a plug-in
estimator for the distribution function of P.

First note that A(u) is some well defined signed measure for all measures p
with ||g||7v < e~*. However, plugging in the probability distribution @, we need
INQ|l7v to be smaller than e=* to have convergence in total variation norm.
Since ||[NQ|7v = 1 — e, this is smaller than e iff A < log2. If A > log?2
is satisfied then the right hand side of (%) converges neither in total variation
norm nor in sup norm (again, identify ¢ with its distribution function). On the
other hand, if we restrict ourselves to uniform convergence on compact sets then
we should not be surprised to have convergence. Indeed: Since we are in the
one-sided case, increasing the power of convolution of N will transport more
and more mass to infinity, i.e. there is a loss of mass. We will come back to this
phenomenon in the next section.

The statistical behaviour of a convolution series can be investigated by the
methods of the functional approach, developed for the analysis of the empirical
renewal function (see [Gr93]) and the compounding problem (as mentioned in
the introduction, see [Pi94]). On the one hand our problem is easier, because
we discuss the one-sided case. This simplifies the proofs of the convolution in-
equalities a good deal. On the other hand we should be more careful dealing
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with signed measures because of the alternating sign in (x). However, the main
problem turns out to be the exponential growth of the factor exp(\k), k € N.
We will use the method of exponential tilting.

[He97] has used exponential tilting in the computational compounding prob-
lem. The idea is to thin out the tails of a measure by an operation T, that
commutes with convolutions, then work in whatever better settings and perform
a backtilting operation S;.

To be more precise, for a signed measure g on the nonnegative reals define
Tt to be the measure with p-density © — e~ ™. T, is the exponential tilting
operator, 7 is the tilting parameter. It is easy to see that

Tr(uxv)="TpuxTv

for signed measures p, v. Obviously, the larger the tilting parameter the thinner
the tails of the tilted measure. Moreover and of some importance for us, if the
singleton {0} has pg-measure 0, even the total variation norm of T can be made
arbitrarily small by choosing 7 large enough. We write p, = T’ p.

We define an inverse tilting procedure S;. The domain of S; is the space
of signed measures on the nonnegative real numbers. The codomain is some
function space. We further define

S;v(x) = / e v(dy).
(0,2]

It is easy to check that S, (T.v)(x) = v((0,z]). Therefore S, can be viewed
as inverse mapping with respect to T, if we restrict T, to the measures on the
positive real numbers. Note that the function x —— S;v(z) is locally of bounded
variation. Furthermore, we have

o Se(x —y)dS: () = S-(v * p)(x).

Hence the inversion of exponential tilting is commuting with convolutions as well.
We will see that the following diagram commutes in some sense:

T
F - v

AJ JA
G <

In summary the procedure of proving limit theorems is the following: Choose a
tilting parameter T large enough to make |7, NQ" ||y smaller then e=*. Hence
A(T,Q") defines a signed measure. Then apply the functional approach to the
convolution series. Finally, tilt back.
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6.2 Inequalities

This section provides some inequalities. Everything is based on integration by
parts. Let us introduce some notation. If F' is a distribution function with
F(0—) = 0 then define NF(z) := F(x) — F(0). NF is the distribution function
of some subprobability measure. This definition is consistent with the definition
already made for () in the previous section.

Consider the space D of cadlag functions on the nonnegative real numbers, i.e.
the space of bounded right-continuous functions having left-hand limits and being
left-continuous at co. Equipped with the usual sup norm || f|| := sup,q | f(2)],
this is a Banach space and the natural habitat of distribution functions. We
introduce a weighted variant of it. Fix some ¢ € R. We define a weighted sup
norm for functions f : [0,00) — R,

| flle == iggeeﬂf(x)l-

Define D, to be the space of right-continuous functions having left-hand limits
on the nonnegative real numbers with || f||c < co. (D, || - ||¢) is a Banach space.

The first inequality deals with exponential tilting. For a distribution function
F we write F, for the distribution function of the tilted measure induced by F'.

Lemma 6.1 Consider two distribution functions F' and F? and some
GeD,a>0. Assume T >0, e +7 > 0. Define

NG, (z) = —e "G(x) + 7'/ G(y)e ™dy.

(z,00)
i) Then there is some constant Cy(€,T) not depending on F', F* with
| HNFTIHOO - NFTI - HNFEHOO +NFT2||T+6 < 01(67T)||F2 - F1||e-
ii) Then with the same constant C (e, T) not depending on F*, F* G, «

HO[(HNF:”OO_NF:_||NF3||OO+NF3)_N—GT”T+€
< Ci(e,n)[a(F' = F?) =G



CHAPTER 6. THE GENERAL CASE 104

Proof: i) The proof is based on integration by parts:

/ e ™ NFY(dy) — / e ™V NF?*(dy)
(2,00)

(2,00)
= e VNF' (y)|°+ 7 ( )NFl(y)e’Ty dy
— e TUNF(y)| - 77 ( )NFQ(y)e‘Ty dy
= (=NF'(z)+ NF*(z)) e ™ +71 /( )e—W(NFl(y) — NF?(y)) dy
= (P RE@) T [ e ) Py
+ (F'(0) — F?(0)) e ™ + 7’/( )e_Ty(—Fl(O) + F2(0)) dy

= (—Fl(x) + F2(x)) e_Tz—i-T/( ) eV (F'(y) — F*(y)) dy.

( J/

—(1) S ~
=:(2)

J/

We have the inequalities

@ < 7 /( IR )~ P ) dy
S ||F1 _ F2||eT/ e—(T-i-E)y dy
(x,00)
S Le—(T—i-e)xHFl . FQH6

T+ €
and
(1)] < e THT P — 2.

T

Putting all together we get the desired inequality with Cr(e,7) =1+ .




CHAPTER 6. THE GENERAL CASE 105

ii) Again with integration by parts,

A(INE | = NE @) = NP2+ NF2(@) + ¢ Gla) =7 [ Glg)e ™dy

(z,00)
=« (/ e YNF (dy) — / eTyNFQ(dy))
(z,00) (z,00)

+e G (x) — 7'/ G(y)e ™dy

(z,00)

= (e_TyNFl(y)@O — e TINF?(y)|>

+ T/ e YN F(dy) — 7'/ e_TyNFz(dy)>
(z,00) (z,00)

+e T G(x) — 7'/ G(y) e ™dy.

(x,00)
Therefore we obtain

a([INFrlloo = NF(2) = [NF||oo + NF(2)) + € 7G(z) — 7 Gly)e ™dy

(z,00)
= —e " ((F'(z) — F*(2)) — G(x)) + T /( | e~y [a(Fl (y) — F*(y)) — G(y)} dy.

This yields the inequality

_ ‘—e”(a(Fl(:c) _Fa)) - Ga) + 7 /

(z,00)

< e*(T+6)xHa(F1 — FY) — G (1 + T ) )
T+ €

The desired inequality is now an easy consequence.l]
We now consider the back-tilting operation.

Lemma 6.2 Suppose p to be a signed measure on the nonnegative real numbers.
Suppose G € D. Let T > 7" > 0. Define

S,G(z) := —e™G(z) + G(0) + /(0 }T@TyG(y) dy.

Then there ezists a constant Cs(T, not depending on p and G with

)
150 O)llrer < Cslr) 00
1S-v(:) = S;Gll—r < Cs(r,7)|[v(,00) = Gl
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Proof: The first inequality follows from the second with G = 0.
If F' with F(00) := lim, . F'(x) is the distribution function of some positive
measure ;4 then an integration by parts yields

Sopu(x) = €7 (F(x) — F(00)) — e(F(0) — F(o0)) — /( )~ Fo<) dy.

Since an arbitrary signed measure v can be decomposed into v = vt — v~ with
nonnegative measures v+ and v, linearity yields

S,p1(x) = (1, 00)) — (0, 00)) — /( 7 (9,00))dy.
Hence
’STI/(.%) - STG|
< T u((00)) — Gl + e (-, 00)) — Gl

+ ||v((-, 00)) — G||T// TeVe Y dy

(0,2]
T
< {2+ ;) (-, 00)) = Gl
T—T
—_—
=:Cg(7,7")

This proves the assertion. O

Note that S, is a continuous operator that maps the signed measures, topol-
ogized with the total variation norm, to (D_., || - [|-,).

We need a definition for convolutions h * H if H is the distribution function
of some positive measure v on the nonnegative reals and G € D,, 7 € R. If G
is locally bounded and the function [0,z] 3 y —— G (2 — y)1j4(y) is measurable
and H-integrable then we define GxH (z) := Gxv(z) := [ G(z—y) 1. (y) H(dy).
Note that x — G x H(z) is cadlag as well, at least on [0, 00).

The next lemma provides a convolution inequality which bounds the expo-
nential decay of a convolution by that of its factors.

Lemma 6.3 Let H be the distribution function of a positive finite measure with
H(0) =0. Let h be a function such that h % H(z) is well defined for all x > 0.
Assume 11,7y > 0 with 7y # To. Then there is a constant C'(1y,T2) not depending
on H or h such that for all 7 < 74 A Ty

1hs Hllr < C' (70, ) [1all7, ([ H oo + [ 1 H lloo = Hl-) -

Proof: Without loss of generality we may assume the norms at the right-hand
side of the inequalities to be finite. We note

(x) Wz =yl < exp(=7i(z—y))|hl,
(k) —H(z) < exp(=m2)| [[Hllo = Hll7, = [|H]|o-
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Integration by parts yields

[ e =ty

—
IN*

T / exp(—1 (& — 9) 10 (1) H(dy)
il (H(x) —n1 [ explon - y))H(y)l[o,m]@)dy)

()
< (|2l (H(I) F 1 H oo = Hllrm exp(—ﬁx)/ exp((11 — 72)y)dy

[0,2]
— [[H|oeT1 exp(—ﬁx)/ exp(ﬁy)dy)
[0,2]
= ||hlln (H(z) — || H||s exp(—712) (exp(riz) — 1)

(exp((r1 — m2)x) — 1))

1
Hl| — H||- -
1 H s = Hll exp(—mi) ——

< Al (exp(=m2) [ H |
T
+ [ 1 Hloo — HIl,

p—— (exp(—Tox) — exp(—ﬁx)))

Consider some 7 < 7/ := 7 A 9. Then

exp(tx)|h x H|(z) < exp(7'z)|g * v|(x)

T1
< llgllm [ 1H oo + [ [[H oo — HIlr E(exp(—(n — 1) —exp(—(n — 7))

J/

~~
1

Str—mal

Hence the assertion holds with C'(7y,7) =1V O
Later on we need another useful bound:

Lemma 6.4 Let H be the distribution function of a positive measure. Then for
every 7 > 0

[ Hloe — H][» < / exp(Tx) dH (z).

[0,00)

Proof:

supexp(ra) ([l = F(2) = supexp(ra) /( an)

x>0

IN

z>0 [0,00)

sup /(LOO) exp(Ty)dH (y) g/ exp(Ty)dH (y).

]
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Remark: The operator S, is the inverse operator of G — NG, in some sense.
Indeed: G € D satisfies

S,NG.(z) = =8, 7G()(x)+ S, [/ Te T°G(s) ds} (x)
(-,00)
= — (—eme_mG(x) + G(0) + /(o,m] Te™e VG (y) dy)

_ ’TCI?/ TSG( )d8+/ TSG( )
+/ Te" / e T°G(s) ds dy
(0,7] (yOO)

= G(z) - G(0) / TG(s) ds — ™ /(m)m—”c;(s) ds

+/ Te T°G(s) ds + {ew/ Te T°G(s) ds}
(0,00) (y,00) (0,2]

+ ere MG (y) dy
0,z]

(
(
= G(z)— G(0) =: NG(z) .
There is also some compatibility with convolutions. It holds that
S, (G * F) (x) = (5,G) % (S, F)(x).

If G is some distribution function of a positive measure, this is again an inte-
gration by parts. For an arbitrary G € D this follows using the linearity and a
density argument.

6.3 Exponential Mass Loss and Exponential Tilt-
ing

For a probability distribution ) concentrated on the nonnegative real numbers
we define

Q) == 1inf{t > 0: NQ(t) < e},
with the Laplace transform NQ = [e ™ NQ(dx). Note that 7*(Q) is a well de-

fined nonnegative real number since Lebesgue’s theorem implies lim, ., ]@(7) =
0. Define 7*(F') analogously for a distribution function F' with F'(0—) = 0.

The next theorem investigates the connections between the different ingredi-
ents.

Theorem 6.5 Let F' be some distribution function.
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i) The series A(F) is absolutely converging in || - ||—r-norm for all T > 7*(F).
Hence A(F) € D_,.

ii) Assume that Q = e F=%) holds for a probability measure P concentrated
on the positive real numbers. Then for every T > 7*(Q) the Laplace transform

satisfies
k+1

- 455 2 )

iii) It holds that S, o A o T.(F) = A(F) for all distribution functions F and
T>7F).
) If F' and G are distribution functions with F(0—) =0 and G(0) = 0 then

[ee] _)\l .
F=> e AHGZ:»F:A(G).

v) Let G € D. If F is a distribution function then NpG = 5377, e*(NG) *
(NF)**=Y converges in D_, for every 7 > 7*(F). A% defines a bounded lin-
ear operator G +— NG with domain D and codomain D_.. Furthermore, the
decomposition

g | - —
X Z k—l—le)\k:NGT * NF:k:—l
k=1

is valid with F*° := L0,00)-

Proof: i) For £ € Ny and 7 > 0 we have the inequality

OVF)" (@) = [ 100N F)*
< exp(ra) ( / exp(—ﬂf)NF(dt))k = exp(rz) (NF(r))
For 7 > 7*(F') we have

I(NF)™ |-, < (TVF(T))’“ s

Hence A(F) is an absolutely convergent series with respect to the || - ||_,-norm.
Since D_, is a Banach space, A(F’) converges to some G € D_,.

ii) This is the same calculation as has been carried out for the derivation of (})
above. For 7 > 0 we obtain

—

LN = Q) = [ Quan =exp (3 [P - 1)) = exp0P(r)-1)
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Multiplying both sides of the equation with exp(\) yields
1+ e”\]@(T) = exp(AP(1)).

For all 7 > 7%(Q)) we again have eXp(A)]@(T) < 1. So we can take the logarithm
on both sides. Writing down the power series for the left hand side we see that
the assertion follows.

iii) Remember that T, and S; commute with convolutions. Furthermore, S;T, NF =
NF. Therefore for the finite sum:

1 1)k+t 1Y 1)k+1 .
— T NF)* — NF *.
LR SR
The right-hand side converges to A(F') in D_,. Hence in D_,
1 N k+1
Jim_ 8, < ; MT,NF)™* = A(F).
Obviously,
Ly~ EDM R e D ‘
lim — T.NF)™ = — T.NF)*
et} ; g INET =3 ; g ¢ (INE)

in total variation norm. Since S; is a continuous operator, mapping signed mea-
sures to elements of D_., we obtain

1
1 N (_1)k+1
=S, lim ~ > - ENT-NFY* =S 0 Ao T(F).

iv) Write G, F for the measures associated with G, F. Let F' =), e*)"\k—TG*k.

Part ii) of the theorem shows that ﬁ?(r’ ) = @(T’ ) for all 7 > 0 and
T > 7%(G). Hence the measures T,G and A(G,) coincide, since their Laplace
transforms do. Applying the backtilting operator, we have S, T.G = S;A(T, F') =
A(F).
v) Just note that G * NF**=D(z) < ||G||soNF**~1. Hence proving the conver-
gence of A’z in D_, follows with the same reasoning as in i). The rest follows like
as iii) using the convolution compatibility of the operators S..S,,G— NG,.O
Remarks: Part i) explains that A(F') can be understood as a member of the
weighted Banach space D_,. Convergence of A(F') on compact sets is included
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here. Part iii) justifies the diagram noted in the first section. Part iv) shows
that A is the logarithm of a distribution function up to an affine transformation,
hence the desired object.

The operator A=G defines the derivative of A at F in direction G. The
differentiability of the functional A is discussed in the next section. The additional
remark in v) shows that we also have a commuting diagram for the derivative of
A, ie.

¢ Yo NG,

A, j j Ay

MG S AL NG,

The series defining the operator A, G := 77, MG x N FrEY again converges
in a stronger norm than its opponent A’.

6.4 Consistency and Asymptotic Normality

We want to show continuity and differentiability properties for A. First note the
following approximation result.

Lemma 6.6 Let G € D, and 7" < 7 for some 7" > 0. For every ¢ > 0 there
1s a linear combination of indicator functions g = Zl]\il Qlig, p) with a; € R,
0<a;<b; <oo,i=1,...,N such that |G — g||» < € holds.

Proof: Suppose that D([0,5]) is the space of cadlag functions on [0,S]. Then
the set Ig := {Zl]il lgp):  €R, 0<a; <b; <oo,i=1,...,N}is adense
subset of D[0, S] with respect to the sup norm. Fix some e. For S > 0 we have

sup eT/”\G(x)| < |G|+ sup ez < HGHTe(T/’T)S.
>S5 >S5

Hence if S has been chosen large enough then sup,- g €™ *|G(z)| < €/2 holds. For
such an S there is a linear combination of indicator functions g € Ig with

sup_|g(z) — G(z)]| < e 5e/2.
0<z<S

Then

lg — Gll» < sup e %|g(x) — G(z)| +supe™?|G(x)| < €/2 + ¢/2.
0<z<S z>8

This proves our assertion.O)
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Lemma 6.7 Suppose that p is a signed measure on the nmonnegative reals and
that T > 0. Assume that g = Zf\il aplig, py with a; € R, 0 < a; < b < oo,
i=1,...,N. Then there exists a constant C(g,T) such that

lg * pll- < Clg, Dl (-, 00)) I+ -

Proof: First assume that g = 1j,3). Then

0, if r < a,
gene)= [ tuye-v)duty) ={ p(0a-a), i a<b
(0,2] pu((x — b,z —al), else.

We obtain

sup e"™|pu((0,z —al)] < sup e™(|u((0,00)) + |p((a, 0))])

a<lz<b a<lz<b

(™ +e™) (-, 00) I+

IN

and

supe™|u((z — b,z —al)] < supe™(lu((z —b, )| + |u((z — a,00))])

< (™ +e™) [lu((, 00))l-

Hence [|g|l, < (e™ + e™)||u((+,00))||-. The general case is treated using the
triangle inequality. O

Theorem 6.8 Let I, F, n € N, be distribution functions with F(0—) = F,(0—) =
0. Suppose that G € D. Then the following is true:

i) If |[F" — Fllooc — 0 for n — oo and € > 7*(F) then
IA(F") = A(F)[|-c = 0O

as n — oQ.

i) If [[/n(F™ — F) — Gl|oo — 0 for n — oo and € > 7*(F) then
IVR(A(F") = A(F)) = ApG-e — 0
as n — oo.

Proof: Remember the diagram in the first section.
i) Choose some 7, € with 7 > ¢ > 7%(F'). An integration by parts yields the
following inequality

‘/e“’deF"—/e_"deF' <OYF" — Fl.
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This shows that [e“YdNF" < e~ for n large enough and o > 7*(F). In
particular, A(F™) = S;v,(F") for n large enough. Define v, (F™) and v, (F) to
be the signed measures given by

= P n _lge .
;? —DE(NER™, u(F) = XZ?(—l)k(NFf) .

>/|>—‘

Let 7/ := 7 —e. We want to show that
(A1)l (F™)(( 00)) = v (F)((:, 00)) [l — 0,
We define H, ;. := Y1~ (NE")* % (NF,)**==) and use the simple trick
(NF™)* - (NF,)* = (NEF" — NF,) * H, .

Now consider the tails. Let p,,p be the measure associated with NF, NF,.
Then we obtain

[NEEY* oo = (NE) @) — (|(VQ2)H e — (VF)(2))
= 1 ((2,00)) — w3F (2, 0))
— /[0 ]Iul((x, 00) —y) — pa((x,00) — y)) Hy i(dy)

- /[ INFZ o = NE2 =)~ NPl N (& = 9) Huald).
0,z

First apply the convolution inequality, lemma 6.3, and then lemma 6.1:

HINED) oo = (NEZ)™ = (N )™ oo — (NF) ™)
C(T', ) [INF oo = NE = [INFr|loo + N Fr[|7 X
X ([ lloo + [ Hnklloo = Hngll-)
< (7, 7) Cu0,7) [F™ = Fllso (1 Hnklloo + [ Hnplloc = Huplle) -

IN

Note that ||F™ — F'||o converges to zero and that

[l (F*) (-, )—VT(F)(w 00) ||

n exp(Ak)
< D1 = Pl 3 3 (ol — Hl

k=1

with D = C'(7/,7)Cy(0, 7).
Hence to establish (A1) it is sufficient to show that

= exp(\k)
S5 (Ml + M ol = Hoale

k=1



CHAPTER 6. THE GENERAL CASE 114

remains bounded as n — oo. Use lemma 6.4 to obtain
H”anHoo - Hn,k“T’
< / exp(7'y) Hp ik (dy)

k—1

= X (fewiir- T>y>NF”<dy>)l ([ ot = rmray

=0

Then with the obvious inequality
k—
[ Hlloo < ZIINF"II INE5S
1=0

we have the upper bound

HHn,kHoo + HHHn,kHoo - Hn,kHT/
k—1
<Y INEPLINF 5
=0

+ Z ( / exp((+ — T)y)NF"(dy)>l ( / exp((r' — T)y)Nde)k

By definition of 7 and 7/,

—1-1

INF = [ Nmay - [emnEg) <o

/ exp(( — T)y) NF"(dy) = / exp(—ey) N (dy) — / CINQ(y) < e

Therefore as an easy consequence of Lebesgue’s dominated convergence theorem,

exp Ak
hmsup Z P (||an||oo+ ||||an||oo _Hmk“'r’)

n—oo k

< ;e’\k (( / eTyNF(y)>k + ( / eEyNF(y)>k> |

This proves (Al). The assertion i) is then a consequence of the back-tilting
inequality, i.e.

177 (F") = Sp(F)||-e < Cs(7,7) [lvr(F") — v (F) 7.

ii) Again choose ¢ > 7*(F) and 7 > €. Define 7/ := 7 —¢e. We then have
A(F™) = S;v.(F") for n large enough and A(F) = S;v-(F). Theorem 6.5 v)
provides the factorization S, ANy N NG, = AN.G.
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We show that

(A2) V(v (F")((-;00)) = v, (F)((+,00))) = A NG- + (NF)** V||, — 0.
We define

1
L(N,n) = mwmm—ch—w
k=N-+1
—INFlloo + NF(- —y) Hup(dy) ||
- _
I(N) zjiz:&HM@mNEWUW,
k= N+1
1 e? . .
LN, = 3 Z ; [ INE e = NF =)
k=
— INFlloo+ NFE:(z—y) H,(dy)
_NGT*Hn,k )
1 N el — -
I4(N,n) = Xz:?-N&*mM—MWLMNEW“”
k=1 -

With H,,\ as in the proof of i) we use the triangle inequality to obtain

[V (v (F")((,00)) = v (F)((-,00))) = Y NG,  (NF)**~
S_ Li(N,n) + Iy(N) + I3(N,n) + 14(N,n)

I1(n) once again can be estimated by

1 o0 Ak
L(N,n) < D\/EHF”—FH; > %(HanH + [ 1 Ho oo — H )
k= N+1
< D (|Gl + Z
k N+1

for n large enough, choosing some €; with [ e NF(dy) < ¢; < e *. Hence I (n)
can be made arbitrary small uniformly in n for n — oo, choosing N large enough.
Using the same inequalities as in the proof of assertion i) we have

oo

1
LN) £ DlGley 3

k=N+1

< DIGlt 3 (( [em NFT<dy>)k_1+( [eo NFT(dy))k_l)-

k=N+1

(INE oo + [ INEFED o = NEFE]|)
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I;(N) again can be made arbitrarily small by choosing N large enough.
We have

N
. 1 6)\k
I3(N,n) < DIIVn(F" = F) = Gllooy > — UHuglloo + 1 Hnklloo = Huell) -
k=1

Hence for fixed N we obtain lim,, . I3(N,n) = 0, since the sum stays bounded.
Now we have a closer look on I,(N,n). Note that NG, € D,.
Fix some 71 € (7/,7). Then NG, can be approximated by a linear combination
g of indicator funtions in || - ||, for 77 < 7 as proved in lemma 6.6, and we obtain

|NG: « Hyp — kNG « NFF |,

< H(NGT_Q)*Hn,k

’ + Hg*Hn,k kg% NF*!

,7—/

+ [ k(g « NFE! = NG+ NFE)

7-/

< C/(TlvT,) Hg - NGTHTI ( HHn,k”oo + HHHn,kHoo - Hn,kHT/)
+|lg * Hyp — kg * NEFY|

+C'(11,7) llg = NGl (IRNE* Voo + [[IANFF* Vg — ENFFED])

The first and the third term can be made arbitrarily small by choosing an ap-
propriate approximation g and by the boundedness of the corresponding second
factors as done before. Therefore to establish (A2) it is enough to discuss the
term in the middle.

Without loss of generality assume k > 1. If p,, ;, is the signed measure defined

by H, . — ENF*Y then we have by lemma 6.7
g% Hup = kg+ NFF7H 0 < Clg, ) [ 1l 00)) ||
Recall that i,z = S0 (NF )L s (NFP) — kNFF*™D. Then with
Upy = (NEM)* s NErE=20 (D)

we obtain on using the triangle inequality (v = 0)

| i ((-00)) Il < Clg, ™) D I wal(-500)) [l

Since

(NE) s NS0 = N0 = (NEP)™ = NE) s« NEFEEY
— (NF" = NF,)* Hy_y * NEk==1)
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we have once again the upper bound

| g% Hyp — kg* NEXED ||,
< C(9,7) D ||[F" = Fl|o x

k
Xy <|| Hyyoq % NESGED
=1

+ ||| Hpyoy * NESED)

— Hypg1 % NFT*(kll)HT')-

The sum of the terms of the right-hand side remains bounded with n — oc.
Hence ||g * H, 1 — kg * NE*71|| . tends to zero.

(A2) is established. Tilting back proves assertion ii). O

Now let (Y;) be an iid-sequence of random variables with distribution function
Q =372, e AP for some distribution function P with P(0) = 0.

Let 7 > 7*(Q). Suppose F™ to be the empirical distribution function associ-
ated with Yy,... Y, ie.

1 n
F"(t) = ﬁ Z 1[07t]<Y2), t>0.
=1

Fix some 7 > 7%(Q). Consider the space D_, equipped with the c-algebra
induced by the family of pointwise evaluations, i.e. m; : D_, — R, m(z) := z(t).

Define T,, := A(F"), if [e™™ NF"(dy) < e, and T, := 1} o), otherwise.
Then it is easy to check that T, is a mapping taking values in D, and is measurable
(use the same argument as in [Gr93| (p. 1433)). Moreover, since

1 n
/e_m NE"™(dy) = - ;6_73/1 ly;>0 — /e_”’ NQ(dy) < e a.s.,
we have T,, = A(F™) for n large enough a.s.. From theorem 6.8 and theorem 6.5 we
have the consistency ||7;, — P||-» — 0 a.s.. Note, that ||7;, — P||—, is measurable,
since the supremum can be calculated over a countable dense subset.

The asymptotic normality now follows as in [Pi94]. Consider the empirical

process E, = /n(F"—Q). It is well known that E,, — Bg with Bg denoting the
scaled Brownian bridge (see [Po84], p. 97). To be more specific, By is a centered
Gaussian process with covariance kernel EBgyBgis) = Q(rAs) —Q(r)Q(s). Bg
takes its values a.s. in C'(Q), the set of functions in D having all its jumps at the
jumps of F. This is a separable subspace of D.

We should mention that E, = By is defined to mean Ef(E,) 2 Ef(Bp) for

all bounded continuous mappings f from (D, || - ||«) to R that are measurable as
mappings from (D, o(m)) to (R, B(R)) (see [Po84], p. 65).
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Since the distribution of By is concentrated on the separable subset C'(Q)) of
D, we can apply the Skohorod representation theorem (again [Po84], p. 71) to
the processes £, and By to derive the asymptotic normality

VA(AF") = A(Q)) = Va(A(F") = P) 2 G = N, Br.

Since Af, is a linear bounded operator from D to D_., ApBg is a centered
Gaussian random variable on D_,. Note that Bg(0) = 0 a.s., hence NBgy = By,.
If 102)(N@Q) * k denotes the positive measure with density 1p ) with respect to
the measure (NQ)** then we have ||1,(NQ) * k||7v < e for k large enough,
hence v, := + 32 eM(=1)"1(,(NQ)**~) is well defined as a signed measure
on [0, z] for every fixed x. The covariance kernel is then easily calculated as

EG(r)G(s) = Bo)(r)(ABo)(s)
:t//“ (r = 21) A (s — 20))dup(21)dvs(21) — A (F) (r) Ay (F)(s) -
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Quadratic Programming

Suppose that @) is a symmetric and positive definite nxn-matrix and A € R"™*" is
a matrix with rank m. Let y € R” and b € R™. The calculation of the projection
mo(y|K) for some K = {zx € R?: Az < b} is equivalent to solving the following
general quadratic program (see [Lu89], p.427-423).

() minimize 27 Quz + 2¢
subject to Az < b.

with ¢ := —Qy. First we should solve the same problem with equality constraints,

ie.

minimize 27 Qz + 27¢

(EQC) subject to Az =b.

The Lagrange necessary conditions for this problem are

Q AT r\ ([ —c
(25)0)-(7)

The vector A is the vector of Lagrange mutlipliers.

Under the assumptions on () and A the matrix on the left-hand side is invert-
ible. The solution x of the system of linear equations is the solution of (EQC).

The quadratic program (x) can be solved by the active set method. For a set
W C {1,...,m} cancel every row of A with ¢ ¢ W. This matrix is denoted by
Aw, i.e.

AW = (A) 1<i<m, i€W

1<i<n

The analogue definition is made for by, i.e. if W = {iy,... i}, then by =
(biyy .. bi )T

The active set method works as follows: To start the algorithm choose zy with
Azy < b and a set Wy with A,z = by,. The set W, is called the current active
set.

119
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(S): Suppose that z; has been computed and that the current active set is

Wi, = {if,...,i¥ }. Now calculate a dj such that z = ), + dj, solves
T T : Ao 5 —
(%) minimize -z Qz+c z subject to A,z = by, .

The solution is given by the quadratic program subject to equality constraints.
Hence we have to solve

Q Aj, dp, \ _ [ —c— Quy
Aw,C 0 Ak o 0 ’

with A = ()\Z-zf, ey )\i%k). If W = (), then solve Qd;, = —c — Qx.. There are three
possibilities:

1. If dy = 0 and A\ > 0, then zy is the solution of (x).

2. If di, = 0, then xzy is the solution of (xx). If k is the index of the smallest
entry of A, then put Wy, := Wi\{k} and zj,1 := x; (method of steepest
descent). Go back to (S).

3. Else calculate

ar = min | 1,
€Wy

(Adg); '
ady is the greatest feasible vector that can be added to xy without violating
the constraints. If o = 1, then put i1 = xp + di. and Wiy, = Wy,
otherwise choose an ¥ with oy, = b"(_fgdA:)f)" and put Wiy := W, U {i} and
xy =}, + agdy. Go back to (S).

The Maple V/Release 5-procedure given below calculates the projection. It is
necessary to include the linalg package. For some odd reasons that are due to
Maple it works only if the matrix ) has been computed and defined in the work
sheet before. The subroutines have self explanatory names. A, b, d, z are treated
as matrices, e.g. b=matrix(m,1,[...]).

minialphaindex:=proc(W,A,b,d,x)
local alpha,i,k,bminAmalx,Amald,wert;
alpha:=1;;k:=0;Amald:=evalm(A&*d) ;bminAmalx:=evalm(b-A&*x) ;
for i from 1 to rowdim(A) do
if (Amald[i,1]>0) then
if not member(i,W) then
wert:=bminAmalx[i,1]/Amald[i,1];
if alpha>wert then
alpha:=wert:k:=i fi;fi;fi;od; [alpha,k]
end:
prolagnulll:=proc(Q,A,c,x,W)
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local dimQ,R,M,Qzerl,dimN,v;

if W={} then R:=QRdecomp(Q,Q=’Qzerl’);
[evalm(-inverse(R)&*transpose (Qzerl) &* (c+Q&*x)) ,0]

else

dimQ:=rowdim(Q) ;

R:=matrix(nops(W),dimQ, [seq(seq(A[i,j],j=1..dimQ),i=W)]);
dimN:=rowdim(R) ;

M:=blockmatrix (2,2,

[Q,transpose(R) ,R,matrix(dimN,dimN, (k,1)->0)]);
R:=QRdecomp(M,Q="Qzerl’);
v:=evalm(inverse(R)&*transpose (Qzerl) &*
blockmatrix (2,1, [-(c+Q&*x) ,matrix(dimN,1, (k,1)->0)]));
[matrix(dimQ,1, [seq(v[i,1],i=1..dimQ)]),

matrix(dimN,1, [seq(v[i,1],i=dimQ+1..dimQ+dimN)]1)];fi;
end:

#Projection of a vector x onto {Ax<=b }.
#Starting vector x0 Starting working set WO
projektion:=proc(Q: :matrix,x::matrix,A: :matrix,
b::matrix,x0::matrix,W0::set,epsl::float)
local k,j,m,c,y,d,alpha,Ende,W,;
Ende:=false;c:=evalm(-Q&*x) ;W:=WO0;y:=x0;
while not Ende do
d:=prolagnulli1(Q,A,c,y,W);
alpha:=evalm(transpose(d[1])&*Q&*d[1]) [1,1];
if (alpha<epsl)
then
k:=0;m:=0;
for j from 1 to nops(W) do
if (d[2][j,1]1<m) then
k:=W[jl;m:=d[2] [j,1];fi;od;
if k=0 then Ende:=true else
W:=W minus {k} fi;
else alpha:=minialphaindex(W,A,b,d[1],y);
if alpha[2]>0 then W:=W union {alpha[2]};y:=evalm(y+alphal[1]*d[1])
else y:=evalm(y+d[1]); fi;
fi;
od; matrix(rowdim(y),1, [seq(ylk,1],k=1..rowdim(y))]),W;
end:



Appendix B

Inverse Panjer Inversion for
Histograms

The following routines have been used to plot figure 5.1 in Chapter 5. The ran-
dom generator is a substract-with-borrow generator [Ma91l].

The simulation has been done for exponentially distributed claims with the den-
sity p(x) = exp(—x), x > 0. If godp + ¢ = exp(p — dp), then ¢ is given by the

formula
q(z) = exp(—1 — x) (1 + Z h) .

n=2

This is the C-code for computing q.

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define lambda 1.0
#define S 10.0

#define mopt 2100
#define unendlich 1000

main(){
int j,1i;
double x,sum,prod;

for(i=0;i<=mopt-1;i++)
{x=1lambda*i*S/mopt ; sum=1;prod=1;

122
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for(j=1;j<=unendlich; j++){prod=prod*x/(j*j) ; sum=sum+prod/(j+1);}
printf ("%1f %1f\n",i*S/mopt,sum*exp(-(lambda+i*S/mopt)));
}

This is the program for the histogram for q.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#define NSAMPLE 1000

#define mopt 15 /*optimal choices for S=10 and lambda=1: = 158

S=10 and lambda=2: =118

S=10 lambda=10: =48
S=10 lambda=10
NSAMPLE=4294967296: =739%/

#tdefine lambda 1.0
#tdefine S 10.0

double unif(void);
double compois(void);

main()
{unsigned long int i,m,j;
double q0,X;
double hatq[mopt];
q0=0;
for(i=0;i<=mopt-1;i++){hatq[i]=0;}
for(i=1;i<=NSAMPLE;i++)

{X=compois();

if (X==0){q0=q0+1;%}

else

{if (X<=8){j=ceil (X*mopt/S);

hatq[j-1]=hatq[j-1]+1;}3}
}

/*printf ("%1f\n",q0/NSAMPLE) ;*/
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/*for (i=0;i<=mopt-1;i++){

printf ("%1f %1f\n",i*S/mopt,0.0);

printf ("%1f %1lf\n",i*S/mopt,hatq[i]*mopt/(NSAMPLE*S));

printf ("%1f %1f\n", (i+1)*S/mopt,hatq[i]*mopt/(NSAMPLE*S)) ;}*/

for(i=0;i<=mopt-1;i++){
printf ("%1i %1f\n",i,hatql[i]*mopt/(NSAMPLE*S)) ;}

}/*end of main program+*/

double compois(void){
double sumN,sum;
sumN=-1log(unif ())/lambda;sum=0;
while (sumN<1) {sumN=sumN-log(unif ())/lambda;sum=sum-log(unif ());}
return(sum) ;

}

/* returns U(0,1)-variates, Marsaglia-Zaman algorithm */

double unif(void){

static unsigned long x[] =

{1276610355UL, 4193469394UL, 2057566612UL, 1886580328UL, 1694206606UL,
2633431637UL, 1265626433UL, 885029446UL, 3417643270UL, 3311627661UL,
2615330922UL, 2585171253UL, 2061319010UL, 76799462UL, 217610450UL,
1970157156UL, 3650280925UL, 3031778051UL, 3936002891UL, 1455404536UL,
3581605850UL, 978584193UL, 1392725752UL, 424558724UL, 718634923UL,
2602380921UL, 1073859225UL, 2260449986UL, 437368889UL, 111202475UL,
430748330UL, 860297108UL, 469595518UL, 2956147077UL, 2998566928UL,
3679001976UL, 1174826611UL, 3589929608UL, 2670654217UL, 999890898UL,
3874011621UL, 3680146780UL, 3569051095UL 7};

static int r = 0, s = 21, carry = 0;

if (r > 42) r -= 43;
if (x[s] >= x[r] + carry){

x[r] = x[s] - x[r] - carry;

carry = 0;

}

else{

x[r] = (4294967291UL - x[r] - carry) + x[s];
carry = 1;

b
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if (++s > 42) s -= 43;
return (((double) x[r++] + 0.5) / 4294967291.0);

The next program computes the Panjer inversion.

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define NSAMPLE 1000
#define Ngraph 10
#define mopt 15 /*optimal choices for S5=10 and lambda=1: = 158
S=10 and lambda=2: =118
S=10 lambda=10: =48
S=10 lambda=10
NSAMPLE=4294967296: =739%/

#define lambda 1.0
#tdefine S 10.0

double unif(void);
double compois(void);

main()

{unsigned long int N,i,m,j,k,1;

double q0,X,h,prodh,xx,yy,gamma0, sum, summinus, sumplus,fak,prod;
double hatq[mopt];

double alpha[2*mopt];

double D[2+*mopt] [2*mopt] ;

q0=0;
for(i=0;i<=mopt-1;i++){hatql[i]=0;}
for(i=1;i<=NSAMPLE;i++)

{X=compois();

if (X==0){q0=q0+1;}

else

{if (X<=S){j=ceil (X*mopt/S);

hatq[j-1]=hatq[j-1]1+1;}3}
}

q0=q0/NSAMPLE; h=S/mopt;

for(i=0;i<=mopt-1;i++){alphalil=hatq[i]/(h*NSAMPLE);}
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for (i=mopt;i<=2*mopt-1;i++){alphali]=0;}

gammaO=alpha[0]/q0;

D[0] [0]=-1;

for (k=1;k<=2*mopt-1;k=k++)
{

sum=D [k-1] [k-1];
for(1=1;1<=k-1;1++)
{sum=h*sum+D [k-1] [k-1-1];}

D[k] [0]=(alpha[k]-alpha[k-1])*k*h/qO+sum*exp (-gammaO*h) ;

for(j=1;j<=k; j=j++)
{sum=0;
for(1=1;1<=k-j;1++)
{sum=sum+alpha[1]*(D[k-1-1] [j-1]1-D[k-1][j-11);}

D[k] [jl=(alpha[0]*D[k-1] [j-1]+sum-alpha[k-j+1]1*D[j-1][j-11)/(q0*j);}
}

printf ("%1f %1f\n",0.0,gamma0) ;
for(i=1;i<=Ngraph;i++)
{xx=(h*1) /Ngraph;yy=1-exp (-gammaO*i*h/Ngraph) ;
printf ("%1f %1f\n",xx,yy/xx);
}

for (k=1;k<=2*mopt-1;k=k++)

{
for(i=0;i<=Ngraph;i++)

{sum=D [k] [k] ;

for(j=1;j<=k;j++)
{sum=sum*i*h/Ngraph+D [k] [k-j];}

xx=(h*1) /Ngraph;xx=xx+hxk;yy=1+exp (-gammaO*i*h/Ngraph) *sum;
printf ("%1f %1f\n",xx,yy/xx);

}
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}/*end of main*/

double compois(void){
double sumN,sum;
sumN=-1log(unif ())/lambda;sum=0;
while (sumN<1) {sumN=sumN-log(unif ())/lambda;sum=sum-log(unif());}
return(sum) ;

+

/* returns U(O,1)-variates, Marsaglia-Zaman algorithm */

double unif (void){

static unsigned long x[] =

{1276610355UL, 4193469394UL, 2057566612UL, 1886580328UL, 1694206606UL,
2633431637UL, 1265626433UL, 885029446UL, 3417643270UL, 3311627661UL,
2615330922UL, 2585171253UL, 2061319010UL,  76799462UL, 217610450UL,
1970157156UL, 3650280925UL, 3031778051UL, 3936002891UL, 1455404536UL,
3581605850UL, 978584193UL, 1392725752UL, 424558724UL, 718634923UL,
2602380921UL, 1073859225UL, 2260449986UL, 437368889UL, 111202475UL,
430748330UL, 860297108UL, 469595518UL, 2956147077UL, 2998566928UL,
3679001976UL, 1174826611UL, 3589929608UL, 2670654217UL, 999890898UL,
3874011621UL, 3680146780UL, 3569051095UL };

static int r = 0, s = 21, carry = 0;

if (r > 42) r -= 43;
if (x[s] >= x[r] + carry){

x[r] = x[s] - x[r] - carry;

carry = 0;

+

else{

x[r] = (4294967291UL - x[r] - carry) + x[s];
carry = 1;

}

if (++s > 42) s -= 43;
return (((double) x[r++] + 0.5) / 4294967291.0);
}
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A Semicone Probability
Generator

This program implements the semicone probabilities using the Monte-Carlo method
proposed at the end of Chapter ??7. We have used nearly the same notation within
the program. A set I C {1,...,S5} is encoded as Index(x), i.e. Index(D)=>", ;2.
The observed failure rate is encoded in 2°. The matrix f is equal to N from sec-
tion 3.5.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#define S 5

#define zweihochSminus2 32-2
#define NSAMPLE 10000

double lambda;

double Q[S+1][S+1],QIminus[S+1] [S+1],Lminus[S+1] [S+1],
DI[zweihochSminus2+1] [S+1] [S+1];

int Imenge[S+1],DIberechnet[zweihochSminus2+1];

void initQLDIber();

void newDecider(int index);
int IndexI();

double unif (void);

128
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double gauss(void);

main()

{int k,i,j,imin,samplei,algorfails;

double Y[S+1],Z[S+1] ,halbraum[zweihochSminus2+3];
double Min,summand,sumplus,summinus;

printf("This is a Monte-Carlo semicone calculator\n");
/*printf ("I is encoded by Index(I)=sum_{i in I} 2°{i-1}\n");*/
printf ("intensity lambda =");scanf("%1f",&lambda);

printf ("truncation parameter S=%i\n",S);

printf ("sample size S=%i\n",NSAMPLE);

initQLDIber();
for (k=0;k<=zweihochSminus2+2;k=k+1){halbraum[k]=0;}

for(samplei=1;samplei<=NSAMPLE;samplei=samplei+1)
{

for(i=1;i<=S;i=i+1){Z[i] =gauss(;}
/*calcukation of Y=L"{-T}Z\sim N(O,Q " {-1})*/
for(i=1;i<=S;i=i+1)
{sumplus=0; summinus=0;
for(j=i;j<=S;j=j+1)
{summand=Lminus[j] [11*Z[j];
if (summand>=0) {sumplus=sumplus+summand;}
else{summinus=summinus+summand; }}
Y[i]=sumplus+summinus;}

Min=Y[1];imin=1;
for(i=2;i<=S;i=i+1){if (Y[i1<=Y[imin]){Min=Y[i];imin=i;3}}
if (Min>=0){halbraum[zweihochSminus2+1]=halbraum[zweihochSminus2+1]+1;}
else
{imin=1;
for(i=1;i<=S;i=i+1){Imenge[i]=0;}
sumplus=0; summinus=0;
for(j=1;j<=S;j=j+1)
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{summand=-Q[1] [j1*Y[j];
if (summand>=0) {sumplus=sumplus+summand;}
else{summinus=summinus+summand;}}
Min=summinus+sumplus;
for(i=2;i<=S;i=i+1)
{sumplus=0; summinus=0;
for(j=1;j<=S;j=j+1)
{summand=-Q[i] [j1*Y[j];
if (summand>=0) {sumplus=sumplus+summand;}
else{summinus=summinus+summand; }}

if (sumplus+summinus<=Min) {Min=sumplus+summinus;imin=i;}}
if (Min>=0){halbraum[0]=halbraum[0]+1;}
else
{Imenge[imin]=1;algorfails=0;
do
{k=IndexI();algorfails=algorfails+1;
if (DIberechnet [k]==0){newDecider (k) ;DIberechnet [k]=1;}
imin=1;
sumplus=0; summinus=0;
for(j=1;j<=8;j=j+1)
{summand=DI [k] [1] [j1*Y[j];
if (summand>=0) {sumplus=sumplus+summand; }
else{summinus=summinus+summand; }}
Min=summinus+sumplus;
for(i=2;i<=S;i=i+1)
{sumplus=0; summinus=0;
for(j=1;j<=S;j=j+1)
{summand=DTI [k] [i] [j1*Y[j];
if (summand>=0) {sumplus=sumplus+summand;}
else{summinus=summinus+summand; }}
if (sumplus+summinus<=Min){Min=sumplus+summinus;imin=i;}}
if (Min<0)
{if (Imenge[imin]>0) {Imenge [imin]=0; }else{Imenge [imin]=1;}}}
while(Min<0 && algorfails<zweihochSminus2+1);
if (Min<0){halbraum[zweihochSminus2+2]=halbraum[zweihochSminus2+2]+1;}
else{halbraum[k]=halbraum[k]+1;}
}
3
printf("\n DI calculated: ");
for(i=1;i<=zweihochSminus2;i=i+1)
{printf ("%i" ,DIberechnet[i]) ; }printf ("\n\n");
printf("\n semicone probabilities:\n\n");
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for(i=0;i<=zweihochSminus2+2;i=i+1)
{printf ("%1f ",halbraum[i]/NSAMPLE);}
}/*Ende mainx/

void initQLDIber ()

{

double Delta[S+1] [S+1];

double q[S+1],gminus[S+1],Deltasum[S+1];
double normtildeq,sumplus,summinus,summand;
int 1i,j,k;

for(k=1;k<=zweihochSminus?2;k=k+1){DIberechnet [k]=0;}

q[0]=exp(-lambda) ;

for(i=1; i<=S; i=i+1){qli]l=ql[i-1]*lambda/i;}

gminus [0]=exp(lambda) ;

for(i=1; i<=S; i=i+1){qgminus[il=gminus[i-1]*(-lambda)/i;}

sumplus=0; summinus=0;

for (k=1;k<=S;k=k+2) {summinus=summinus+qminus [k] ;}
for (k=2;k<=S;k=k+2) {sumplus=sumplus+qgminus [k] ; }
normtildeq=sumplus+summinus;

/*calculation of Deltax/

for(i=0;i<=S;i=i+1)
{for(j=1;j<=1i;j=j+1)
{sumplus=0;summinus=0;
for (k=0;k<=j;k=k+1)
{summand=qminus [i-k] *qminus [j-k] *q[k] ;
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if (summand>=0)
{sumplus=sumplus+summand;}
else
{summinus=summinus+summand; }}
Deltali] [j]l=sumplus+summinus;
Deltalj] [i]=sumplus+summinus;

1}

for(i=1;i<=S;i=i+1)
{sumplus=0;summinus=0;
for (k=1;k<=S;k=k+1)
{summand=Deltal[i] [k];

if (summand>=0)
{sumplus=sumplus+summand;}

else
{summinus=summinus+summand;}}
Deltasum[i]=(sumplus+summinus) ;

}

/*calculation of Q=f"TA"{-1}(diag(q_0,\dots,q_S)-q\otimes q)A~{-T}fx*/

sumplus=0; summinus=0;
for (k=1;k<=S;k=k+1)
{summand=Deltasum[k] ;
if (summand>=0) {sumplus=sumplus+summand;}
else {summinus=summinus+summand;}}

Q[1] [1]=(sumplus+summinus+2*normtildeq+exp(lambda)-1)/(lambda*lambda) ;

for(i=2;i<=S;i=i+1)
{Q[1] [i]1=-(Deltasum[i]+gminus[i])/(lambda*lambda);Q[i] [11=Q[1] [i];
}

for(i=2;i<=S;i=i+1)
{for(j=1i;j<=S;j=j+1)
{Q[il [j1=Deltalil [j1/(1lambda*lambda);Q[j] [i1=Q[i] [j];}
}
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/*Cholesky-decomposition of Q=f"TA"{-1}(diag(q_0,\dots,q_S)-q\otimes q)A~{-T}fx*/

for(i=1;i<=S;i=i+1)
{sumplus=0;
for (k=1;k<=1i-1;k=k+1)
{sumplus=sumplus+Deltal[i] [k]*Deltali] [k];}
Deltal[i] [i]=sqrt(Q[i] [i]-sumplus);
for(j=i+1;j<= S;j=j+1)
{sumplus=0; summinus=0;
for (k=1;k<=1i-1;k=k+1)
{summand=Deltal[i] [k]*Deltalj] [k];
if (summand>=0)
{sumplus=sumplus+summand; }
else
{summinus=summinus+summand;}}
Deltalj] [i]=(Q[i] [j]-summinus-sumplus)/Deltali] [i];}
}

/*calculation of L°{-1} of the Cholesky decomposition of Q*/

for(i=1;i<=S;i=i+1){Lminus([i] [i]1=1/Deltalil] [i];}
for(i=2;i<=S;i=i+1)
{for(j=i-1;j>=1;j=j-1)
{sumplus=0; summinus=0;
for (k=j+1;k<=i;k=k+1)
{summand=Lminus [i] [k]*Deltalk] [j];
if (summand>=0)
{sumplus=sumplus+summand; }
else
{summinus=summinus+summand;}}
Lminus[i] [j]=-(sumplus+summinus)/Deltalj] [j];}}

}/*end of initQLx/

void newDecider(int index)

{

double sumplus,summinus,summand;
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double LI[S+1] [S+1],LIminus([S+1][S+1],QDI[S+1][S+1];
int cardImenge,k,k1,1,1i,];

/*calculation of E_I(E_I"T Q E_I)"{-1} E_I"T*/
/*calculation of Q_I=(E_I"T Q E_I)*/

i=0;cardImenge=0;
for(k=1;k<=S;k=k+1)
{if (Imenge [k]>0) {cardImenge=cardImenge+1;i=i+1; j=i-1;
for(kl=k;k1<=S;k1=k1+1)
{if (Imenge[k1]1>0){j=j+1;QIminus [i] [j1=Q[k] [k1];QIminus [j] [11=Q[k] [k1];}3}}
}

/*Cholesky decomposition of QIminusx*/

for(i=1;i<=cardImenge;i=i+1)
{sumplus=0;
for (k=1;k<=1i-1;k=k+1)
{sumplus=sumplus+LI[i] [k]*LI[i] [k];}
LI[i] [i]=sqrt(QIminus[i] [i]-sumplus);
for(j=i+1;j<= cardImenge; j=j+1)
{sumplus=0;summinus=0;
for(k=1;k<=i-1;k=k+1)
{summand=LI[i] [k]*LI[j] [k];
if (summand>=0)
{sumplus=sumplus+summand; }
else
{summinus=summinus+summand; }}
LI[j]1[i]1=(QIminus[i] [j]-summinus-sumplus)/LI[i] [i];}
}

/*inversion of QIminus*/

for(i=1;i<=cardImenge;i=i+1){LIminus[i] [i]=1/LI[i][i];}
for(i=2;i<=cardImenge;i=i+1)
{for(j=i-1;j>=1;j=j-1)
{sumplus=0;summinus=0;
for(k=j+1;k<=1i;k=k+1)
{summand=LIminus [i] [k]*LI[k] [j];
if (summand>=0)
{sumplus=sumplus+summand;}
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else
{summinus=summinus+summand;}}
LIminus[i] [j]=-(sumplus+summinus)/LI[j][j];}}

i=0;
for(k=1;k<=S;k=k+1)
{if (Imenge [k]>0){
i=i+1;j=i-1;
for(kl=k;k1<=S;k1=k1+1)
{if (Imenge [k1]>0)
{j=3+1;
sumplus=0; summinus=0;
for(1=j;1<=cardImenge;1=1+1)
{summand=LIminus [1] [i]*LIminus[1] [j];
if (summand>=0)
{sumplus=sumplus+summand; }
else {summinus=summinus+summand;}}
QIminus [k] [k1]=sumplus+summinus;
QIminus [k1] [k]1=QIminus [k] [k1];}
else{QIminus[k] [k1]=0;QIminus [k1] [k]=0;}
3
else{for(k1=1;k1<=S;k1=k1+1){QIminus [k] [k1]=0;QIminus [k1] [k]1=0;}}}

/*calculation of the decision matrix
DI=E_I(E_I"TQE_I)E_I"TQ+E_I"C(E_I"C"TQ-E_I"C"TE_I(E_I"TQE_I)QE_I"TQ)=*/

for(i=1;i<=S;i=i+1)
{for(j=1;j<=S;j=j+1)
{sumplus=0;summinus=0;
for (k=1;k<=S+1;k=k+1)
{summand=QIminus[i] [(k]1*Q[k] [j];
if (summand>=0) {sumplus=sumplus+summand; }
else{summinus=summinus+summand; }}
DI[index] [i] [j]=sumplus+summinus;}}

for(i=1;i<=S;i=i+1)
{for(j=1;j<=S;j=j+1)
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{sumplus=0;summinus=0;

for (k=1;k<=S+1;k=k+1)
{summand=Q[i] [k]*DI [index] [k] [j];
if (summand>=0) {sumplus=sumplus+summand; }
else{summinus=summinus+summand; }}

QDI[i] [j]=sumplus+summinus;}}

for(i=1;i<=S;i=i+1)
{if (Imenge[i]==0)
{for(j=1;j<=S;j=j+1){if (Imenge[j]1==0){DI[index] [i] [j1=-(Q[i] [j]1-QDI[i][j1);}}}}

}/*end of newDecider*/

int IndexI()
{int ergebnis,k,zweihochk;

zweihochk=1;ergebnis=0;

for(k=1;k<=S;k=k+1)
{ergebnis=ergebnis+zweihochk*Imenge [k] ;zweihochk=2*zweihochk;}
return(ergebnis) ;}

double gauss(void){
static int i = O; /* 1 if value in stock */
static double x1, x2, yl, y2;

if (4 == 0){
x1 = unif(Q);
x2 = unif () ;
yl = sqrt(-2 * log(x1));

y2 = 2 x M_PI * x2;
x1 = y1 x sin(y2);
x2 = y1 * cos(y2);
i=1;

return x1;

+
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else{

i=0;

return x2;

}

+

/* returns U(0,1)-variates, Marsaglia-Zaman algorithm */

double unif(void){

static unsigned long x[] =

{1276610355UL, 4193469394UL, 2057566612UL, 1886580328UL, 1694206606UL,
2633431637UL, 1265626433UL, 885029446UL, 3417643270UL, 3311627661UL,
2615330922UL, 2585171253UL, 2061319010UL, 76799462UL, 217610450UL,
1970157156UL, 3650280925UL, 3031778051UL, 3936002891UL, 1455404536UL,
3581605850UL, 978584193UL, 1392725752UL, 424558724UL, 718634923UL,
2602380921UL, 1073859225UL, 2260449986UL, 437368889UL, 111202475UL,
430748330UL, 860297108UL, 469595518UL, 2956147077UL, 2998566928UL,
3679001976UL, 1174826611UL, 3589929608UL, 2670654217UL, 999890898UL,
3874011621UL, 3680146780UL, 3569051095UL 7};

static int r = 0, s = 21, carry = O;

if (r > 42) r -= 43;
if (x[s] >= x[r] + carry){

x[r] = x[s] - x[r] - carry;

carry = 0;

}

else{

x[r] = (4294967291UL - x[r] - carry) + x[s];
carry = 1;

}

if (++s > 42) s -= 43;
return (((double) x[r++] + 0.5) / 4294967291.0);
}
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