$\mathrm{NO}_X\text{-}\mathrm{Minimierung}$ durch Einsatz passiver $\mathrm{NO}_X\text{-}\mathrm{Adsorber}$

Dissertation

Alexander Mackensen

Fakultät für Energie- und Wirtschaftswissenschaften der Technischen Universität Clausthal

Institut für Energieverfahrenstechnik und Brennstofftechnik

ISBN 978-3-943917-22-2

NO_X-Minimierung durch Einsatz passiver NO_X-Adsorber

Dissertation

zur Erlangung des Doktorgrades der Ingenieurwissenschaften

vorgelegt von

Dipl.-Ing. Alexander Mackensen aus Seesen

genehmigt von der Fakultät für Energie- und Wirtschaftswissenschaften der Technischen Universität Clausthal

> Tag der mündlichen Prüfung 16. August 2012

Vorsitzender der Prüfungskommission Prof. Dr.-Ing. Daniel Goldmann

> Hauptberichterstatter Prof. Dr.-Ing. Roman Weber

Berichterstatter Prof. Dr.-Ing. Hubert Schwarze

Für meine Eltern

Leider läßt sich eine wahrhafte Dankbarkeit mit Worten nicht ausdrücken.

Johann Wolfgang von Goethe (*1749 - †1832)

Vorwort

Diese Arbeit entstand während meiner Tätigkeit als Doktorand im Zeitraum vom September 2008 bis September 2011 bei der Daimler AG. In diesem Zeitraum erarbeitete ich die gewonnenen Erkenntnisse in den Forschungs-, Vorentwicklungsund Serienentwicklungsabteilungen für Abgasnachbehandlung in Kooperation mit dem Institut für Energieverfahrenstechnik und Brennstofftechnik der Technischen Universität Clausthal.

In dieser Kooperation möchte ich mich bei Herrn Prof. Dr.-Ing. Roman Weber für die Betreuung und Übernahme der Promotion bedanken. Herrn Prof. Dr.-Ing. Hubert Schwarze danke ich für die Übernahme der Zweitberichterstattung. Ebenso danke ich Herrn Prof. Dr.-Ing. Daniel Goldmann für den Vorsitz der Prüfungskommission.

Mein besonderer Dank gilt an dieser Stelle den Herren Dipl.-Ing. Markus Paule und Dr. rer. nat. Berthold Keppeler. Deren Unterstützung, fachlicher Rat und persönlicher Beistand maßgeblich zum Erfolg dieser Arbeit beigetragen haben.

Des Weiteren möchte ich mich bei den Herren Dr.-Ing. Frank Duvinage, Dipl.-Ing. Ralf Binz und Dr. rer. nat. Bernd Krutzsch für die Möglichkeit bedanken, die Untersuchungen in Ihren Abteilungen durchführen zu können.

Den Herren Dr. rer. nat. Frank Hofmann, Dr.-Ing. René Linssen, Dipl.-Ing. Marc Lewanzik, B.Eng. Clemens Meier, Sascha Marquardt und Wolfgang Trepte möchte ich für die fachliche Unterstützung bei der Erstellung und Auswertung der Messungen sowie der Modellierung danken.

Zudem möchte ich den Herren Dipl.-Ing. Tillmann Braun, Dipl.-Ing. Bernd Christner, Dipl.-Ing. Alexander Kaiser, Dipl.-Ing. Cyrill Kammer, Dipl.-Ing. Holger Kissling und Dipl.-Ing. Andreas Roll für die angenehme Zusammenarbeit und Unterstützung im Team danken.

> Sindelfingen, August 2012 Alexander Mackensen

Extended Abstract

 CO_2 emission limits of passenger cars in Europe have continuously been tightened. Compared to electrical engines, diesel engines provide an attractive alternative in terms of CO_2 -emissions. Continuous improvements to vehicle components influencing fuel consumption will certainly reduce CO_2 -emissions of the future diesel engines. In particular, friction minimization and hybridization are likely to result in fuel efficient transportation systems utilizing internal-combustion.

The emission limits of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NO_X) and particulates (PM) have also been tightened so the pollutants reduction methods must be continuously improved to meet both the current and forthcoming regulations. The forthcoming EU6 regulation demands a further reduction in CO, HC, NO_X and PM emissions. Adhering to the EU6 regulation and simultaneously reducing CO_2 -emissions invokes special challenges since reducing CO_2 emissions typically results in a decreased exhaust gas temperature. If Selective Catalytic Reduction (SCR) is used to reduce NO_X emissions, its efficiency decreases significantly when the catalyst temperature is decreased. To optimize the performance of a SCR system, passive NO_X adsorbers have been used. They trap NO_X during the cold start and release the adsorbed NO_X back to the exhaust gas when the SCR system temperature is high enough so that the NO_X can be converted into molecular nitrogen.

The objective of the thesis is twofold: characterization and mathematical modeling of passive NO_X adsorbers. To this end both experiments and mathematical modeling work have been carried out. The goal is the development of a mathematical model describing the adsorption and desorption behavior of passive NO_X adsorbers. The mathematical model has to be simple since the calculations are to be performed in an engine control unit. Additionally, a low-cost method for model calibration has to be developed. The results of this work are summarized in the following four paragraphs.

Experimental determination of adsorption characteristics of four passive NO_X adsorbers

Four catalysts of different washcoat compositions have been investigated. The adsorption propensity have been determined under well controlled conditions using a purposely designed experimental rig. The catalysts have been characterized with respect to adsorption characteristics, durability and sulfur resistance.

Result: The catalysts show different adsorption characteristics due to both different washcoat compositions and washcoat loadings. The best catalyst stores about 2,03 g_{NO_X}/l_{Kat} under fresh conditions. At 175 °C temperature about half of the maximum amount of NO_X can be stored only. The maximum storage capacity is reduced by about 20% or 35% after aging for four and 16 hours, respectively. A 1 g_S/l_{Kat} sulfur loading leads to an additional 50% capacity reduction. The NO₂/NO_X ratio has no effect on the adsorbed NO_X amount under the investigated conditions.

Development of a mathematical model describing adsorption and desorption behavior

After performing a comprehensive literature review, a mathematical model for passive NO_X adsorbers has been developed.

Result: The adsorption and desorption behavior of passive NO_X adsorbers has been modeled using a differential equation which contains three terms concerning: adsorption, desorption and storage. The adsorption term has two operating-point-dependent parameters whilst the desorption term is calibrated using two fixed parameters. The temperature-dependent storage function is calibrated using three fixed parameters. The two operating-point-dependent calibration parameters are modeled using Design of Experiments (DoE) polynomials.

Bench-scale measurements for calibration of the mathematical model

DoE experiments for one fresh, two aged and one sulfured catalyst samples have been conducted using a bench-scale rig to determine the two operating-point-dependent calibration parameters. For the first calibration parameter the effects of the temperature, residence time, excess air and concentrations of NO_2 , NO, CO, C_3H_6 have been investigated and mapped into the DoE polynomial model.

Result: The temperature exerts the main impact on the amount of adsorbed NO_X and therefore on the first calibration parameter. Additionally, NO_X and HC inlet

concentrations affect the amount of adsorbed NO_X. Aging for 4 hours affects mainly the high temperature adsorption. However, aging for 16 hours shows a significant drop of the adsorbed NO_X amount in the entire temperature range. The sulfured catalyst shows a behavior which is similar to the behavior of 16-hour aged catalyst. The sulfurization shows less impact at low temperatures. The adsorbed NO_X amount drops by about 70 % after either aging for 16 hours or sulfurization by 1 g_S/l_{Kat} . The modeling by DoE polynomials show quite good results for fresh or softly aged catalysts. The DoE models of the fully aged and the sulfurized catalysts show weaknesses.

For the second calibration parameter the mathematical model is adjusted to the measured data. The parameter is modeled by an additional DoE polynomial model.

Result: The temperature exerts the main impact also on the second fitting parameter. The HC, CO and NO_X inlet concentrations as well as excess air, the NO_2/NO_X fraction and the space velocity affect the second parameter. The hydrothermal aging for 4 hours and the sulfurization have a moderate impact on the parameter. The 16-hour hydrothermal aging, affects significantly the dependencies of the second parameter on many variables. Modeling by DoE polynomials show quite good results for the fresh and 4-hour aged catalysts. The DoE polynomial models for the 16-hour aged catalysts and sulfurized catalysts show weaknesses.

Model validation against NO_x emission data of a diesel car

The mathematical model was transferred into a Simulink environment to facilitate a real-time comparison with the NO_X emission data of a passenger car equipped with a passive NO_X adsorber. The objective is to validate the steady-state mathematical model in dynamic conditions representing the New European Driving Cycle (NEDC).

Result: The comparison of the model calculations with the measured NO_X data has shown that the model predicts too large NO_X out concentrations due to underestimated NO_X storage. A new correction factor has been introduced into the model to account for the discrepancies. Optimization of this correction factor and adjustment of two other parameters governing desorption have resulted in improved model predictions. So adjusted model has then been tested following another driving cycle and good model predictions have been observed.

Conclusion

Passive NO_X adsorbers are basically suitable for diesel engine applications since fresh catalysts adsorb nitrogen oxides sufficiently. The NO_X desorption can be realized by controlling the catalyst temperature which may require a catalyst-specific heating strategy. Generally, the operating strategy for passive NO_X adsorbers has to be adapted to particular applications. The developed mathematical model can be easily tuned to a particular catalyst by following the developed DoE calibration procedure. This method provides sufficiently accurate calculations under fresh conditions. The foremost advantages of this approach are: a reduced memory footprint and a reduced computational effort so that the model calculations can be performed in an engine control unit. Furthermore, the calibration effort is relatively small if compared to calibration procedures needed for chemical physical models.

Nevertheless, the NO_X storage capacity of investigated NO_X adsorbers has significantly deteriorated with thermal aging and sulfurization. The current passive NO_X adsorbers cannot guarantee the required performance over the vehicle lifetime, or even over a longer operational period. The catalysts have to be improved, particularly with respect to aging and sulfur resistance, to be widely used in transportation.

Zusammenfassung

Die gesetzlichen Anforderungen an die CO_2 -Emissionen von PKW in Europa steigen stetig. Im Vergleich zu elektrischen Antrieben bietet der Dieselmotor heutzutage einen attraktiven und CO_2 -emissionsarmen Antrieb. Die konsequente Weiterentwicklung der verbrauchsbestimmenden Fahrzeugkomponenten zeigen auch weiterhin Potential, die CO_2 -Emissionen von dieselmotorisch betriebenen Fahrzeugen zu senken. Insbesondere Reibungsoptimierungen im gesamten Triebstrang und die Hybridisierung zeigen sich als Stellhebel zu verbrauchsoptimierten Antriebskonzepten mit Verbrennungsmotor.

Ebenso sinken die gesetzlichen Emissionsgrenzwerte für Kohlenmonoxid (CO), unverbrannte Kohlenwasserstoffe (HC), Stickstoffoxide (NO_X) und Partikel (PM) von PKW im europäischen Raum. Das hat zur Folge, dass heute bekannte Abgasnachbehandlungssysteme konsequent weiterentwickelt werden müssen, um diese Anforderungen zu erfüllen. Die Einhaltung der EU6-Grenzwerte in Verbindung mit der gleichzeitigen Reduzierung der CO_2 -Emissionen stellt beim Einsatz von SCR-Systemen eine besondere Herausforderung dar, da mit den CO_2 -Emissionen eine Absenkung der Abgastemperaturen einhergeht. Die Effizienz dieser SCR-Systeme sinkt in niedriglastigen Bereichen signifikant.

Um die Effizienz von kombinierten Abgasnachbehandlungssystemen zu steigern, können passive NO_X -Adsorber verwendet werden. Diese adsorbieren die NO_X -Emissionen während der Kaltstartphase und desorbieren NO_X bei betriebsbereitem SCR-System, so dass die desorbierte NO_X -Menge am SCR-Katalysator zu molekularem Stickstoff umgesetzt wird.

In dieser Arbeit werden zwei Ziele verfolgt: Charakterisierung und mathematische Modellierung von passiven NO_X -Adsorbern. Dazu wurden sowohl Experimente zur Charakterisierung als auch zur Modellbildung und Kalibrierung durchgeführt. Ziel ist es ein möglichst einfaches mathematisches Modell für die Abbildung des Adsorptions- und Desorptionsverhalten von passiven NO_X -Adsorbern zu entwickeln, um die Berechnung auf einem Motorsteuergerät zu ermöglichen. Ebenso soll eine Methode zur Kalibrierung des Modells entwickelt werden, die mit möglichst geringem Aufwand durchzuführen ist. Die Ergebnisse dieser Arbeit lassen sich in vier Abschnitte zusammenfassen.

Experimentelle Bestimmung der Adorptionseigenschaften von vier passiven NO_X-Adsorbern

Es wurden vier Katalysatortechnologien mit unterschiedlichen Washcoatzusammensetzungen untersucht. Hierbei wurden diese Technologien bzgl. Adsorptionscharakteristik, Alterungsbeständigkeit und Schwefelresistenz bewertet.

Ergebnis: Die Katalysatorproben weisen, je nach Washcoatzusammensetzung und -beladung, unterschiedliche Adsorptionscharakteristika auf. Die geeignetste Technologie speichert im Frischzustand eine Masse von ca. 2,03 g_{NO_X}/l_{Kat} , unter den untersuchten Randbedingungen. Ab einer Temperatur von ca. 175 °C kann die Hälfte der Maximalkapazität gespeichert werden. Nach einer Alterung für 4 h reduziert sich die maximale Kapazität um ca. 20 %, nach 16 h um ca. 35 %. Eine Verschwefelung mit 1 g_S/l_{Kat} führt zu einer Reduzierung der Speicherkapazität um ca. 50 %. Das NO₂/NO_X-Verhältnis hat, unter den untersuchten Randbedingungen, keinen signifikanten Einfluss auf die NO_x-Speicherkapazität.

Entwicklung eines mathematischen Modells zur Berechnung der Adsorption und Desorption

Nach einer umfassenden Literaturrecherche wurde ein Modell für passive NO_X -Adsorber entwickelt.

Ergebnis: Das Adsorptions- und Desorptionsverhalten von passiven NO_X-Adsorbern wird mit einer Differentialgleichung beschrieben. Es werden hierbei sowohl die Adsorption und die Desorption als auch eine temperaturabhängige Speicherfunktion beschrieben. Das Modell verfügt zur Kalibrierung des Adsorptionsterms über zwei betriebspunktabhängige Fitparameter. Der Desorptionsterm wird mit zwei festen Parametern kalibriert. Die Speicherfunktion wird mit drei festen Parametern kalibriert. Die beiden betriebspunktabhängigen Kalibrierparameter werden mittels DoE-Modellpolynomen abgebildet.

Messungen zur Kalibrierung des mathematischen Modells für passive NO_x-Adsorber am Synthesegasprüfstand

Zur Abbildung der beiden Kalibrierparameter wurden DoE-Versuche, für eine frische, zwei gealterte und eine verschwefelte Katalysatorprobe, auf dem Synthesegasprüfstand gefahren. Für den ersten Kalibrierparameter wurden die Auswirkungen der Temperatur, Raumgeschwindigkeit, Lambda und der Eingangskonzentrationen $\rm NO_2,$ NO, CO, $\rm C_3H_6$ auf die adsorbierte $\rm NO_X$ -Stoffmenge untersucht und in einem DoE-Modell abgebildet.

Ergebnis: Haupteinflussparameter auf die adsorbierte NO_X -Stoffmenge ist die Temperatur. Zusätzlich zeigen sowohl die HC-Eingangskonzentration als auch die NO_X -Eingangskonzentration Einfluss auf die adsorbierte NO_X -Stoffmenge. Eine Alterung für 4 h beeinflusst überwiegend den Hochtemperaturbereich. Eine Alterung für 16 h zeigt einen signifikanten Einbruch der adsorbierten NO_X -Stoffmenge im gesamten Temperaturbereich. Eine Verschwefelung zeigt, verglichen mit einer 16 stündigen Alterung, ein ähnliches Verhalten. Tendenziell wirkt sich die Verschwefelung geringer bei niedrigen Temperaturen aus. In weiten Teilen des Versuchsraums geht die Speicherkapazität mit einer Alterung für 16 h oder einer Verschwefelung um bis zu 70 % zurück. Die Abbildung mit DoE-Modellpolynomen zeigt für den frischen und 4 h gealterten Zustand eine gute Modellgüte. Die DoE-Modelle für den 16 h gealterten und den verschwefelten Zustand zeigen Schwächen.

Für den zweiten Kalibrierparameter wird das Modell an die DoE-Messdaten angepasst. Das Ergebnis dieser Anpassung wird in einem DoE-Modell abgebildet.

Ergebnis: Haupteinfluss auf den zweiten Fitparameter (α) ist ebenfalls die Temperatur. Zudem zeigen sich Abhängigkeiten von der HC-, CO- und NO_X-Eingangskonzentration sowie von λ , dem NO₂/NO_X-Verhältnis und der Raumgeschwindigkeit. Die hydrothermale Alterung für 4 h und die Verschwefelung haben nur moderaten Einfluss auf den Fitparameter. Die 16 stündige hydrothermale Alterung hingegen beeinflusst die Abhängigkeiten für den Fitparameter in Teilen des Versuchsraums signifikant. Die Abbildung mit DoE-Modellpolynomen zeigt auch hier für den frischen und 4 h gealterten Zustand eine gute Modellgüte. Die DoE-Modelle für den 16 h gealterten und den verschwefelten Zustand weisen auch hier Schwächen auf.

Modellvalidierung anhand von Realgasmessungen an einem Diesel-PKW

Das mathematische Modell wurde in eine Simulink-Umgebung übertragen, um einen Abgleich mit Messdaten an einem Fahrzeug mit Dieselmotor in Echtzeit durchzuführen. Zur Validierung des stationär kalibrierten Modells, wurde das Fahrzeug unter dynamischen Bedingungen im Neuen Europäischen Fahrzyklus (NEFZ) vermessen und diese Messdaten mit den Berechnungsergebnissen abgeglichen.

Ergebnis: Der Vergleich der Berechnungen mit den Messergebnissen zeigt, dass das Modell einen zu großen austretenden NO_X-Massenstrom, aufgrund unterschätzter Adsorption, berechnet. Um diese Abweichungen zu beheben, wurde ein weiterer Korrekturfaktor eingeführt. Durch Einführung dieses Faktors lässt sich eine gute

Genauigkeit in der Berechnung von adsorbierter und austretender NO_X -Stoffmenge erreichen. In einem weiteren Testzyklus ergibt sich ebenfalls eine gute Modellgenauigkeit.

Fazit

Passive NO_X-Adsorber eignen sich grundsätzlich für den Einsatz in dieselmotorischen Anwendungen. Von frischen Katalysatoren werden Stickstoffoxide in hinreichender Form adsorbiert. Die Desorption kann einerseits durch das fahrzeugspezifische Temperaturprofil selber andererseits über eine gezielte Heizstrategie, mit geringem Verbrauchsnachteil, erfolgen. Die Betriebsstrategie für diese passiven NO_X-Adsorber muss auf den jeweiligen Anwendungsfall angepasst werden. Das vereinfachte, mathematische Modell kann, mit Hilfe von DoE-Untersuchungen, auf die eingesetzte Katalysatortechnologie angepasst werden und ergibt im Frischzustand hinreichend genaue Berechnungsergebnisse. In erster Linie folgt daraus ein verminderter Speicherbedarf und ein verminderter Rechenaufwand. In zweiter Linie folgt ein stark verminderter Kalibrieraufwand, im Vergleich zu klassischen chemischphysikalischen Modellen.

Dennoch zeigen die untersuchten passiven NO_x-Adsorber eine starke Abhängigkeit der Speicherkapazität von der Alterung und Verschwefelung. Der derzeitige Entwicklungsstand kann daher die Emissionen nicht über die Fahrzeuglebensdauer sichern. Daher sind für den Serieneinsatz die Katalysatortechnologien insbesondere in Bezug auf Alterungsbeständigkeit und Schwefelresistenz weiterzuentwickeln.

Inhaltsverzeichnis

1.	Entv	intwicklung der automobilen Antriebe im Spannungsfeld der globa-			
	len '	Treibhausgasdiskussion	1		
2.	Stan	nd der Technik für die nachmotorische Schadstoffminimierung			
	aus	dieselmotorischem Abgas	9		
	2.1.	Schadstoffemissionen der dieselmotorischen Verbrennung	9		
	2.2.	Abgasgesetzgebung in Europa	12		
	2.3.	Katalysatoren für dieselmotorische Anwendungen in der Automo-			
		bilindustrie	12		
	2.4.	Grundlagen der heterogenen Katalyse	16		
	2.5.	Deaktivierung von edelmetallhaltigen Katalysatoren	18		
		2.5.1. Thermische Alterung	18		
		2.5.2. Einfluss von Katalysatorgiften	19		
	2.6.	Verfahren für die nachmotorische Minderung von Schadstoffen aus			
		dieselmotorischem Abgas	21		
		2.6.1. Katalytische Oxidation von Abgaskomponenten	22		
		2.6.2. Filtration und Oxidation von Partikeln	24		
		2.6.3. Nichtselektive katalytische Reduktion von Stickstoffoxiden			
		mit Kohlenstoffmonoxid und Kohlenwasserstoffen (NSCR) .	26		
		2.6.4. Zyklische NO_X -Speicherung und Reduktion mit Stickstoff-			
		oxid-Speicherkatalysatoren (NSR)	28		
		2.6.5. Selektive katalytische Reduktion von Stickstoffoxiden mit			
		Ammoniak (SCR)	33		
3.	Mot	ivation und Aufgabenstellung	41		
	3.1.	Motivation	41		
	3.2.	Aufgabenstellung	43		
4.	Gru	ndlagen zur Modellbildung	45		
	4.1.	Regressionsanalyse zur Approximation komplexer funktionaler Zu-			
		sammenhänge	46		
		4.1.1. Parameterfitting anhand einer Fehleranalyse	49		
		4.1.2. Analyse der Modellgenauigkeit	50		

		4.1.3. Vereinfachung von Regressionsmodellen	53
		4.1.4. Vertrauensbereich und Vorhersagebereich	54
	4.2.	Systematische Versuchsplanung im mehrdimensionalen Parame-	
		terraum	56
	4.3.	Statistischen Versuchsplanung zur Reduzierung des Versuchsum-	
		fangs im n-dimensionalen Parameterraum	57
5.	Exp	erimentelle Grundlagen	61
	5.1.	Modellgasanlage für Untersuchungen an Katalysatorproben	61
	5.2.	Abgasrollennprüfstand für Realgasmessungen im instationären Fahr-	
		betrieb	64
	5.3.	Verwendete Messtechnik zur Analyse von Abgaskomponenten	66
		5.3.1. Chemilumineszenzdetektor (CLD)	66
		5.3.2. Flammenionisationsdetektor (FID)	68
		5.3.3. Infrarotspektrometer im nichtdispersiven Verfahren (NDIR)	70
		5.3.4. Massenspektrometer mit chemischer Ionisation (CIMS)	71
		5.3.5. Paramagnetischer Detektor (PMD)	73
	5.4.	Fehlerbetrachtung für die DoE-Modellbildung	74
6.	Unte	ersuchungen zum Alterungs- und Verschwefelungsverhalten von	
	pass	siven NO _x -Adsorbern	77
	6.1.	Inhalt und Ziel der Untersuchungen	77
	6.2.	Verlauf und Auswertung der Versuchsprozeduren	78
	6.3.	Versuchsvorbereitung	82
		6.3.1. Hydrothermale Alterung der Katalysatorproben	82
		6.3.2. Verschwefelung der Katalysatorproben	82
	6.4.	Versuchsplanung und Durchführung	84
	6.5.	Ergebnisse und Diskussion	86
	6.6.	Zusammenfassung und Fazit	91
7.	Mat	hematische Modellbildung für passive NO _x -Adsorber	95
	7.1.	Herleitung der Modellgrundgleichung	96
		7.1.1. Betrachtung der Stoffmengen im Bilanzraum	96
		7.1.2. Mathematische Beschreibung des Speichers	98
		7.1.3. Modellbilanzierung mittels Differentialgleichung	99
		7.1.4. Mathematische Beschreibung des Adsorptionsverhaltens .	100
		7.1.5. Mathematische Beschreibung des Desorptionsverhaltens.	102
		7.1.6. Mathematische Beschreibung des Reduktionsverhaltens	103
	7.2.	7.1.6. Mathematische Beschreibung des Reduktionsverhaltens Kalibrierung des mathematischen Modells	103 104

		7.2.2. Kalibrierung des Desorptionsterms	
		7.2.3. Fehlerfunktion und Modellfit	
8.	Unte	ersuchungen zur Kalibrierung des mathematischen Modells für	
	pass	sive NO _X -Adsorber	
	8.1.	Systematische Variation von NO _X -Eingangskonzentration, Raumge-	
		schwindigkeit und der Temperaturänderungsrate der TPD	
		8.1.1. Versuchsplanung und Durchführung	
		8.1.2. Ergebnisse und Diskussion	
		8.1.3. Zusammenfassung und Fazit	
	8.2.	Statistische Untersuchungen zur Berechnung der adsorbierten NO _X -	
		Stoffmenge	
		8.2.1. Versuchsplanung und Durchführung	
		8.2.2. Ergebnisse und Diskussion	
		8.2.3. Zusammenfassung und Fazit	
	8.3.	Einfluss von thermischer Alterung und Verschwefelung auf das	
		DoE-Modell zur Berechnung der adsorbierten NO_X -Stoffmenge	
		8.3.1. Ergebnisse und Diskussion	
		8.3.2. Zusammenfassung und Fazit	
	8.4.	Validierung der DoE-Modelle zur Berechnung der adsorbierten NO _X -	
		Stoffmenge mit realen Messdaten	
		8.4.1. Ergebnisse und Diskussion	
		8.4.2. Zusammenfassung und Fazit	
	8.5.	Statistische Untersuchungen zur Berechnung des Fitparameters α	
		8.5.1. Ergebnisse und Diskussion	
		8.5.2. Zusammenfassung und Fazit	
	8.6.	Einfluss von thermischer Alterung und Verschwefelung auf das	
		DoE-Modell des Fitparameters α	
		8.6.1. Ergebnisse und Diskussion	
		8.6.2. Zusammenfassung und Fazit	
	8.7.	Validierung der DoE-Modelle zur Berechnung des Fitparameters α	
		mit realen Messdaten	
		8.7.1. Ergebnisse und Diskussion	
		8.7.2. Zusammenfassung und Fazit	
9.	Übe	rtragung des mathematischen Modells in Simulink	
	9.1.	Aufbau des Simulink-Modells	
		9.1.1. Funktionsblock: Polynomberechnung	
		9.1.2. Funktionsblock: Modellberechnung	

10	.Vali	dierung des mathematischen Modells anhand von Fahrzeugmes-	
	sung	gen	169
	10.1	Inhalte und Ziel der Untersuchungen	169
	10.2	Ergebnisse und Diskussion	169
	10.3	Zusammenfassung und Fazit	174
11	.Aus	blick	179
A.	Verz	zeichnisse	III
	A.1.	Literaturverzeichnis	III
	A.2.	Abbildungsverzeichnis	XV
	A.3.	Tabellenverzeichnis	XXV
	A.4.	Nomenklatur	XXIX
B.	Anh	ang	XXXIX
	B.1.	Neuer Europäischer Fahrzyklus (NEFZ)	XXXIX
		B.1.1. Energetische Betrachtung im NEFZ	XL
	B.2.	Daten und Ergebnisse des DoE-Programmes	XLIII
		B.2.1. D-optimaler Versuchsplan mit sieben Eingangsgrößen	XLIII
		B.2.2. D-optimaler Versuchsplan mit sieben Eingangsgrößen nach	
		Transformation	XLV
		B.2.3. Ergebnisse DoE frisch	XLVII
		B.2.4. Ergebnisse DoE nach 4 h hydrothermaler Alterung	LI
		B.2.5. Ergebnisse DoE nach 16 h hydrothermaler Alterung	LV
		B.2.6. Ergebnisse DoE nach 4 h hydrothermaler Alterung und Ver-	
		schwefelung auf 1 g_S/l_{Kat}	LIX
	B.3.	Zusammenfassung der Elementargleichungen für die chemisch-phy-	
		sikalische Modellbildung eines NO_X -Speicherkatalysators	LXIII

1. Entwicklung der automobilen Antriebe im Spannungsfeld der globalen Treibhausgasdiskussion

Die weltweite Nachfrage nach Kraftfahrzeugen wird eine Million nicht überschreiten - allein schon aus Mangel an verfügbaren Chauffeuren. Gottlieb Daimler (* 1834 - †1900)

Dass sich Daimler irrte, wissen wir heute. Wie in Abb. 1.1 dargestellt, wurden im Jahre 2008 weltweit mehr als 70 Millionen Kraftfahrzeuge produziert und abgesetzt. Die Nachfrage an Kraftfahrzeugen und damit der Wunsch nach individueller Mobilität hat sich somit in den letzten 50 Jahren um den Faktor 10 erhöht. Auch wenn der weltweite Absatz in 2009 leicht rückläufig war, ist davon auszugehen, dass auch für das kommende Jahrzehnt der Trend steigend ist.

Abb. 1.1.: Entwicklung der weltweiten Produktionszahlen von Kraftfahrzeugen pro Jahr in den Jahren 1948-2008 [65].

Ebenso ist man sich heute bewusst, dass die Entwicklung der individuellen Mobilität zu den anthropogenen Treibhausgas-Emissionen ihren Beitrag leistet. Gemessen an dem weltweiten CO_2 -Ausstoß aus fossilen Brennstoffen von 29 Gt/Jahr lässt sich ein Anteil von ca. 23 % auf den allgemeinen Straßen-, Schienen- und Luftverkehr

zurückführen (vgl. Abb.1.2). Dem Straßenverkehr alleine ist, mit ca. 4,6 Gt/Jahr, ein Anteil von ca. 16 % anzurechnen [65, 138].

Abb. 1.2.: Anteil des Transportsektors an den anthropogenen verursachten, aus fossilen Brennstoffen entstandenen, CO₂ Emissionen weltweit. Stand 2007 [138].

Die anthropogenen Treibhausgase umfassen nach der Definition des Kyoto-Protokolls [139] neben Kohlenstoffdioxid weitere chemische Verbindungen wie Methan (CH₄), Distickstoffoxid (N₂O), Fluorkohlenwasserstoffverbindungen, Schwefelhexafluorid und perfluorierte Fluorkohlenstoffverbindungen. Dichloridfluormethan ist als FCKW bekannt und fand, bis zum Verbot im Jahr 1987, überwiegend als Treibgas Anwendung. Die Verbindungen Hexafluorethan und Schwefelhexafluorid werden überwiegend in industriellen Anwendungen eingesetzt. Die Treibhausgase Kohlenstoffdioxid, Methan und Lachgas können, als Emissionen der motorischen Verbrennung, direkt dem Fahrzeugsektor zugeordnet werden. Ebenso wird Tetrafluorethan als Kältemittel in Klimaanlagen von Fahrzeugen eingesetzt. Forster et al. [42] beschreiben explizit die Einflüsse, der im Kyoto-Protokoll definierten Treibhausgase, anhand der CO₂-Äquivalenz, einem Maß für die Vergleichbarkeit des Erwärmungspotentials der jeweiligen chemischen Verbindung mit dem von Kohlenstoffdioxid. Bezogen auf eine Verweilzeit von 100 Jahren in der Atmosphäre ergeben sich damit CO₂-äquivalente GWP-Werte (Global Warming Potential) von 1 für Kohlenstoffdioxid bis 22.800 für Schwefelhexafluorid (vgl. Tab. 1.1).

Es ist ersichtlich, dass der Fahrzeugsektor mit den Treibhausgasen Methan und Lachgas, ebenso einen signifikanten Einfluss auf die Erderwärmung hat. Infolge dieses steigenden Bewusstseins über den Klimawandel, haben es sich die Industrieländer zur Aufgabe gemacht, die Treibhausgasemissionen von Kraftfahrzeugen zu reduzieren. Hierzu gibt es aktuell keinen globalen Ansatz. Vielmehr werden länder-

Bezeichnung	chemisches Formelzeichen	GPW-Wert
		$[mg_{CO_2}/mg_i]$
Kohlenstoffdioxid	CO_2	1
Methan	CH_4	25
Distickstoffoxid (Lachgas)	N_2O	298
Tetrafluorethan (R 134a)	$C_2H_2F_4$	1.430
Dichlordifluormethan	CCL_2F_2	10.900
Hexafluorethan	C_2F_5	12.200
Schwefelhexafluorid	SF_6	22.800

Tab. 1.1.: CO₂ äquivalente GWP-Werte für Treibhausgase in verbreiteter technischer Anwendung

bzw. kontinentspezifische Anforderungen an den CO_2 -, CH_4 - und N_2O -Ausstoß von Kraftfahrzeugen formuliert.

Speziell für den europäischen Kraftfahrzeugverkehr gelten strengste Grenzwerte für die Emissionen von CO_2 im Neuen Europäischen Fahrzyklus (NEFZ) (vgl. Anhang B.1). Für das Jahr 2012 wird von der Europäischen Kommission ein Flottengrenzwert für CO_2 von 130 g/km im NEFZ-Testzyklus festgelegt, die für die Fahrzeugflotte eines Herstellers bindend ist. In den Jahren 2012 bis 2015 werden stufenweise 65 % bis 100 % der Neufahrzeugzulassungen für die Berechnung des Flottenmittelwertes herangezogen. Im Jahre 2020 wird dieser CO_2 -Flottengrenzwert auf 95 g/km weiter abgesenkt. Für die Zulassungsvoraussetzungen, die aus diesem Gesetz hervorgehen, wird die Masse des Kraftfahrzeuges berücksichtigt. Das ermöglicht einen flottenspezifischen CO_2 -Grenzwert in Abhängigkeit vom durchschnittlichen Fahrzeuggewicht des Herstellers. [36]

Ausgehend von der Reduzierung der durchschnittlichen CO_2 -Emissionen in den Jahren von 1995 bis 2008 (1,6 % pro Jahr) wird der CO_2 -Flottengrenzwert von 130 g/km voraussichtlich im Jahre 2018 und von 95 g/km im Jahre 2038 erreicht. Um den CO_2 -Flottengrenzwert von 95 g/km im Jahre 2020 einzuhalten, ist eine Reduktion von ca. 4 % CO_2 pro Jahr notwendig. Abb. 1.3 zeigt die Entwicklung der durchschnittlichen CO_2 -Emissionen von PKW in Europa im Zeitraum von 1995 bis 2008 sowie die prognostizierten Entwicklungen bei einer Reduktion von 1,6 % und 4 %.

Es ist davon auszugehen, dass neben den CO_2 -Emissionen, in Zukunft auch die Treibhausgase Methan und Lachgas als Emissionen von Fahrzeugen limitiert werden.

Abb. 1.3.: Entwicklung der durchschnittlichen CO_2 -Emissionen von PKW (NEFZ) in Europa von 1995-2008 [37]. Notwendige Entwicklung zur Zielerreichung des CO_2 -Flottengrenzwertes von 95 g/km im Jahr 2020.

Die nachhaltige CO₂-Strategie der internationalen Gesetzgeber veranlasst die Automobilindustrie CO₂-arme Antriebstechnologien zu entwickeln. Zu den zukunftsweisenden Technologien gehören die vollständig elektrifizierten Antriebskonzepte. Hierbei werden die Fahrzeuge ausschließlich mit einem Elektromotor angetrieben. Die benötigte Energie wird über eine Batterie zur Verfügung gestellt, die zyklisch an einer externen Stromquelle geladen werden muss. Betrachtet man die Energieaufwendung in einem NEFZ-Fahrzyklus und extrapoliert diese auf eine Fahrstrecke von 100 km, so beträgt diese für eine Mittelklasselimousine ca. 13,44 kWh/100 km. Diese Energie muss zum Einen von einem externen Kraftwerk zur Verfügung gestellt, zum Anderen im Fahrzeug gespeichert, wieder abgerufen und in translatorische Energie umgesetzt werden. Hierzu sind die derzeit darstellbaren Wirkungsgrade moderner Kraftwerke, der Lade- und Entladezyklen von Akkumulatoren und vom elektrischen Antrieb zu berücksichtigen. Mit den derzeitigen spezifischen CO₂-Emissionen aus dem deutschen Strommix (ca. 575 g_{CO_2} /kWh) lassen sich, mit einem vollständig elektrifizierten Triebstrang, im Vergleich zu einem dieselmotorischen Triebstrang, die CO₂-Emissionen um ca. 10 % senken. Berücksichtigt man die vollständige Rekuperation der kinetischen Energie, ergibt sich ein Vorteil von ca. 37 %. (vgl. Berechnung im Anhang B.1.1) [43]. Entgegen der Annahme, dass der Einsatz von Elektrofahrzeugen der Schlüssel einer CO₂-armen Mobilität ist, ist das Reduktionspotential gering. Erst mit vollständiger Rekuperation der kinetischen Energie, ergeben sich signifikante Vorteile. Das Potential der Rekuperation ist durch hybridisierte Fahrzeugkonzepte ebenso nutzbar. Die breitflächige Einführung von Elektrofahrzeugen ist also nur dann ein deutlicher Stellhebel in der CO₂-Bilanz, wenn die Wirkungsgrade der elektrischen Komponenten optimal sind und die spezifischen CO_2 -Emissionen in der Stromgewinnung deutlich gesenkt werden. Zudem ist der begrenzende Faktor für die breitflächige Einführung von rein elektrischen Antrieben, in naher Zukunft, die Batterie. Aufgrund der derzeit darstellbaren Energiespeicherdichte wird der elektrische Speicher im Fahrzeug durch Bauraum und Gewicht begrenzt. Die Kapazität moderner Metallhydrid-Akkus reicht aus, um mit Fahrzeugen im Kleinst- und Kleinwagensegment eine Strecke von ca. 150 km zurückzulegen. Dieser eingeschränkte Aktionsradius sorgt momentan dafür, dass diese Fahrzeuge überwiegend im Stadt- und Kurzstreckenverkehr Anwendung finden. Mit Hilfe der Wasserstoff-Sauerstoff-Brennstoffzelle und sog. Range-Extendern kann der Aktionsradius von elektrifizierten Fahrzeugen erweitert werden. Speziell für die Brennstoffzelle ist in naher Zukunft, aufgrund der hohen Herstellungskosten, mit einem Großserieneinsatz nicht zu rechnen.

Ein weiteres Themenfeld umfasst die Entwicklung von Antrieben mit alternativen Treibstoffen. Hierzu gehören zum Einen Erdgas- und Wasserstoffantriebe sowie zum Anderen biogene Kraftstoffe. Konventionelle Verbrennungsmotoren, die mit Erdgas betrieben werden, sind in Automobilanwendungen weit verbreitet. Auch mit Wasserstoff betriebene Verbrennungsmotoren werden heute im Linienverkehr eingesetzt. Ebenso ist es heute Stand der Technik, mineralische Kraftstoffe vollständig oder teilweise durch biogene Kraftstoffe zu ersetzen. Diese Kraftstoffe werden als Biodiesel oder Bioethanol bezeichnet. Für ottomotorischen Kraftstoff wird, wie der Name bereits sagt, überwiegend Ethanol als biogener Anteil eingesetzt. Das Ethanol wird, ähnlich wie sonstige Alkohole, aus glucosehaltigen Pflanzen wie Zuckerrohr, Mais, Weizen und Zuckerrüben gewonnen. In Europa eingesetzte Biokraftstoffe enthalten aktuell maximal 10 % Ethanol und werden als E10-Kraftstoff an Tankstellen vertrieben. Für dieselmotorischen Kraftstoff werden die biogenen Anteile, Fettsäuremethylester (FAME), überwiegend aus Raps- bzw. Sojaöl gewonnen. In den USA werden bereits breitflächig B5 und B10 Dieselkraftstoffe mit 5 % bzw. 10 % biogenem Anteil in PKW eingesetzt. Der nach DIN EN 590 spezifizierte Dieselkraftstoff, der überwiegend in Europa eingesetzt wird, enthält bis zu 5 % FAME. Durch die, gegenüber mineralischen Kraftstoffen, unterschiedlichen chemischen und physikalischen Eigenschaften, führt der Einsatz von biogenen Kraftstoffkomponenten Risiken mit sich. Studien zeigen, dass sich durch die unterschiedlichen Verdampfungseigenschaften von Bioethanol und FAME, der Eintrag an Kraftstoff in das Motoröl steigt. Somit verändern sich die tribologischen Systeme durch Ölverdünnung und Veränderung der ölspezifischen Kennwerte, wie Viskosität. Am Ottomotor werden die tribologischen Einflüsse von hohen Ethanolanteilen im ottomotorischen Kraftstoff von Schwarze et al. im Rahmen eines FVV-Projektes diskutiert [130]. Studien an Dieselmotoren zeigen, dass durch erhöhte FAME-Anteile die Verkokungsneigung der Einspritzkomponenten und weiterer mechanischen Bauteilen im Brennraum zunimmt [24]. Weiterhin ist bekannt, dass der biogene Anteil in Dieselkraftstoffen sowohl Einfluss auf die Schadstoffemissionen als auch auf den Verbrauch hat. Mit zunehmendem FAME-Anteil im Kraftstoff steigen die NO_X-Rohemissionen und der Verbrauch an [102]. Die in Europa und den USA eingesetzten Dieselkraftstoffe sind schwefelarm. In Europa sind nach DIN EN 590 10 ppm Schwefel, in den USA nach EPA-Standard 15 ppm Schwefel im Kraftstoff zulässig. Diese geringen Mengen Schwefel bilden die Grundlage für geringste Sekundäremissionen von Schwefelverbindungen. Zudem sind schwefelarme Dieselkraftstoffe die Vorraussetzung für den Einsatz von Dieselpartikelfiltern. Betrachtet man die globalen Märkte ist der Einsatz von schwefelarmen Kraftstoffen keine Selbstverständlichkeit. In weiten Teilen Asiens beträgt der spezifizierte Schwefelgehalt im Dieselkraftstoff noch 500 ppm, in Südamerika 2000 ppm und in Südafrika >2000 ppm [64]. Tab. 1.2 gibt einen Überblick über die Spezifikation von Dieselkraftstoffen in Europa, USA und Indien.

Kennwert	Einheit	Europa DIN EN 590	USA EPA 2007-2010 1-D	USA ASTM D7467 B6-B20	Indien IS 1460:2010
Dichte	kg/m ³	820845	-	-	820860
Cetanzahl min.	-	51	54	52	-
Cetanindex min.	_	46	40	41	48
Viskositat	mm^2/s	2,04,5	1,62,0	1,94,1	2,05,0
Flammpunkt	°C	> 55	>50	>52	>35
Schwefel	ppm	< 10	< 15	< 15	< 350
Koksrück- stand	Gew%	< 0,3	< 0,35	< 0,35	< 0,3
Asche	Gew%	< 0,01	< 0,01	< 0,01	< 0,01
Wasser	Gew%	< 0,02	< 0,05	< 0,05	< 0,05
Polycyclische arom. HC	Gew%	< 11	< 8	-	-
Lubricity	μm	< 460	520	520	-
FAME	Vol%	< 5	< 5	6-20	-
Oxidations- stabilitat	h	> 20	-	6	-

Tab. 1.2.: Spezifikation von Dieselkraftstoffen in Europa, USA und Indien [4, 28]

Da der breite Serieneinsatz von alternativen Antriebskonzepten in naher Zukunft nicht sichergestellt ist und die Potentiale der vollständig elektrifizierten Antriebe derzeit noch nicht im Verhältnis zu Aufwand und Kosten stehen, ist es unabdingbar konventionelle Verbrennungsmotoren hinsichtlich Ökonomie und Ökologie konsequent weiterzuentwickeln. Hierbei muss ebenso die Weiterentwicklung von biogenen Kraftstoffen im Fokus stehen, die einerseits die CO_2 -Bilanz von Verbrennungsmotoren optimieren und andererseits die endlichen Rohölressourcen schonen.

Durch optimierte Aerodynamik und verringertes Fahrzeuggewicht lassen sich CO_2 -Emissionen senken. Die bedarfsorientierte Zuschaltung von Nebenaggregaten ergibt peripherieseitig weiteres CO_2 -Potential. Downsizing in Verbindung mit Hochdruckeinspritzsystemen und leistungsfähigen Aufladekonzepten erhöht den Wirkungsgrad im Teillastbereich zusätzlich. Um die Effizienz von Motoren darüber hinaus zu steigern, werden innermotorische Reibung und thermische Verluste sukzessive optimiert. Neben der motorischen und fahrzeugseitigen Optimierung bietet die Hybridisierung von Antrieben ein hohes CO_2 -Potential im transienten Betrieb. Im Vergleich zum Ottomotor weist der Dieselmotor, aufgrund des höheren Wirkungsgrades im Teillastbereich [134], zusätzlich einen Vorteil in der CO_2 -Bilanz auf. Bezogen auf CO_2 -Emissionen sind hybridisierte, hochaufgeladene Dieselmotoren heute Benchmark unter den Antriebskonzepten mit Verbrennungsmotor.

Die dieselmotorischen Antriebe zeigen durch den Ausstoß von Stickstoffoxidverbindungen und Ruß einen emissionsseitigen Nachteil. Diese Emissionen sind sowohl gesundheits- als auch umweltschädigend eingestuft. Stickstoffoxide entstehen überwiegend in sauerstoffreichen Gebieten des Brennraums, in Verbindung mit hoher Temperatur. Ruß entsteht bei der dieselmotorischen Verbrennung mit Direkteinspritzung in lokal fetten Bereichen ($\lambda < 0,6...0,7$) in Verbindung mit hohen Verbrennungstemperaturen (T > 1400 K) und wird in mageren Bereichen (λ > 1) nachoxidiert. Die Größe, der so entstehenden Rußpartikel, beträgt zwischen 10 und 500 nm [12]. Die lungengängigen Partikel sind in der Literatur als Ursache für Atemwegs- und Herz-Kreislauf-Erkrankungen ausgewiesen und stellen somit eine gesundheitliche Belastung der Bevölkerung, insbesondere in Ballungsgebieten mit hoher Verkehrsdichte, dar [60, 103]. In Summe sind u.a. die genannten Emissionen verantwortlich für den sog. Smog, einer extrem hohen Konzentration der Schadstoffe in Bodennähe durch eine Inversionswetterlage [88]. Zwar hat sich die Luftqualität in Deutschland in den letzten Jahrzehnten soweit verbessert, dass die Bundesländer die Smog-Verordnung abschaffen konnten, dennoch führt Smog in einigen internationalen Großstädten noch zu einer gesundheitlichen Belastung der Bevölkerung.

2. Stand der Technik für die nachmotorische Schadstoffminimierung aus dieselmotorischem Abgas

2.1. Schadstoffemissionen der dieselmotorischen Verbrennung

Dieselmotorisches Abgas setzt sich zum Großteil aus Stickstoff, Sauerstoff, Wasser und Kohlenstoffdioxid zusammen. Zusätzlich zu diesen unschädlichen Komponenten werden die Schadstoffe Stickstoffoxid, Schwefeldioxid, Kohlenwasserstoffe, Kohlenmonoxid und Ruß emittiert (vgl. Abb. 2.1 (a)). Die innermotorische Schadstoffbildung ist bei der dieselmotorischen Verbrennung unter anderem vom Verbrennungsluftverhältnis (λ) abhängig. Abb. 2.1 (b) zeigt diese Abhängigkeit für die Schadstoffe HC, CO, NO_X und Ruß.

(a) Abgaszusammensetzung ($\lambda \cong 1,75$) [90, 96] (b) Schadstoffemissionen als Funktion von Lambda (Verdünnung entspr. λ)) [115]

Abb. 2.1.: Zusammensetzung des dieselmotorischen Abgases (a) und Schadstoffemissionen der dieselmotorischen Verbrennung in Abhängigkeit vom Luftverhältnis λ (b)

Aufgrund der inhomogenen Gemischaufbereitung bei modernen direkteinspritzenden Dieselmotoren bilden sich im Brennraum Bereiche mit lokal stark unterschiedlichen Verbrennungsluftverhältnissen. Während der Einspritzung des Kraftstoffes stellt sich, bei betriebswarmem Motor, an den Brennraumwänden ein überstöchiometrisches ($\lambda > 1$) und an der Strahlfront ein unterstöchiometrisches ($\lambda < 1$) Gemisch ein. Die Bereiche mit lokal fetter Verbrennung bilden die Zentren, in denen überwiegend Kohlenwasserstoff-, Kohlenmonoxid- und Rußemissionen entstehen. Die teiloxidierten bzw. gecrackten Kohlenwasserstoffe und Kohlenstoffmonoxide werden, im weiteren Verlauf der Verbrennung, aufgrund des globalen Luftüberschusses hinreichend nachoxidiert. Die Partikelemissionen (PM) werden zum einem geringen Anteil oxidiert. Durch die Optimierung der Verbrennung besteht die Möglichkeit die Partikelemissionen zu minimieren, was sich wiederum negativ auf die Stickstoffoxidemissionen auswirkt. Man spricht hierbei von einem Partikel-NO_X-Trade-Off [89].

Den Großteil der emittierten Schadstoffe bei der dieselmotorischen Verbrennung bilden Stickstoffoxide (NO_X). Als NO_X wird die Summe aller gasförmigen Verbindungen bezeichnet, die aus Oxiden von Stickstoff bestehen. Die Verbindungen NO₂, NO und N₂O kommen in der Troposphäre am häufigsten vor. Zwar werden in Europa nur ca. 12 % der gesamten NO_X-Emissionen durch den PKW-Verkehr verursacht aber, durch den zunehmenden Verkehr in Innenstädten, treten diese Emissionen in direkter Nähe zum Menschen auf [56]. Als Primäremissionen wird von Dieselmotoren überwiegend NO als Stickstoffoxidverbindung emittiert. Dieses NO reagiert in der Troposphäre zu NO₂. Hierbei ist bei hohen NO-Konzentrationen (ca. 1000 ppm) die Reaktion mit Sauerstoff (O₂) dominant. Bei Konzentrationen deutlich unterhalb von 1000 ppm NO ist die Reaktion mit Ozon (O₃) dominant [67]. Das entstehende Stickstoffdioxid ein sehr reaktives Oxidationsmittel. Unter Einfluss von UV-Strahlung ist es sogar so reaktiv, dass es bimolekularen Sauerstoff wieder zu Ozon (O₃) oxidieren kann. Eine hohe NO₂-Konzentration in bodennähe kann somit zu einer Erhöhung der Ozonkonzentration führen. Dieser "aktive Sauerstoff" (O₃) ist nach der EU-Gefahrstoffkennzeichnung als giftig eingestuft und ist somit in bodennähe gesundheitsschädlich für den menschlichen Körper [63]. Des Weiteren wirkt NO₂ reizend und toxisch auf den menschlichen Körper und reagiert in Verbindung mit Wasser zu Salpetersäure (HNO₃). Dieser Stoff ist im Niederschlag als saurer Regen bekannt und führt zu einer Übersäuerung des Bodens, was insbesondere auf Wälder negativen Einfluss hat [120].

Grundsätzlich kann die Entstehung von Stickstoffoxiden, bei der motorischen Verbrennung von fossilen Brennstoffen, durch drei Mechanismen beschrieben werden [91].

Thermisches-NO entsteht in sauerstoffreicher Atmosphäre bei Temperaturen von größer 1800 K. Beschrieben wird der Mechanismus erstmals im Jahre 1946 von Y. B.

Zeldovich [146] durch drei Elementarreaktionen. Voraussetzung für die Entstehung von Thermischem-NO ist das Vorhandensein von Sauerstoffradikalen O^* . Diese Sauerstoffradikale entstehen direkt aus Reaktionsmechanismen der Verbrennung. Ein Beispiel zeigt die Entstehung mit Hilfe eines Stoßpartners M aus molekularem Sauerstoff (vgl. Reaktion R 2.1).

$$O_2 + M \Longrightarrow 2O^* + M$$
 (R 2.1)

Die so entstehenden Sauerstoffradikale bilden nach Reaktion R 2.2 Stickstoffmonoxid und Stickstoffradikale. In der Folgereaktion R 2.3 wird wiederum NO und O^{*} gebildet. Die beiden Reaktionen R 2.2 und R 2.3 bilden über das Produkt O^{*} der Reaktion R 2.2 eine Reaktionskette. Die Rate dieser Kettenreaktionen wird wesentlich durch die Geschwindigkeit der Reaktion R 2.2 bestimmt. Bei Vorhandensein von OH-Radikalen, kommt zusätzlich die Route nach Reaktion R 2.4 zum tragen [13]. Dieser Mechanismus ist als Erweiterung des Zeldovich-Mechanismus bekannt.

$$N_2 + O^* \Longrightarrow NO + N^* \tag{R 2.2}$$

$$N^* + O_2 \Longrightarrow NO + O^* \tag{R 2.3}$$

$$N^* + OH^* \Longrightarrow NO + H^* \tag{R 2.4}$$

Prompt-NO entsteht über einen komplexen Mechanismus in der Flammenfront, der erstmals von Fenimore [40] 1971 beschrieben wird. Die in R 2.5 zusammengefassten Reaktionen laufen aufgrund der relativ hohen Aktivierungsenergie erst ab einer Temperatur von ca. 2400 K ab. Über die Bildung von CH^{*} Radikalen entsteht mit molekularem Stickstoff Cyanwasserstoff, der wiederum über die Isocyanatradikalbildung (NCO^{*}) zu NO reagiert [89].

$$CH^* + N_2 \longrightarrow HCN + N \longrightarrow \dots \longrightarrow NO$$
 (R 2.5)

Brennstoff-NO entsteht durch die Oxidation von gebundenen Stickstoffverbindungen in organischen Brennstoffen wie Kohle, Schweröl oder Diesel. Im Verhältnis zum Anteil an Thermischem-NO von ca. 90 % und Prompt-NO von ca. 10 % spielt Brennstoff-NO bei der dieselmotorischen Verbrennung eine untergeordnete Rolle [122]. Grund dafür ist der geringe Anteil an Stickstoff (<0,015 %) im Dieselkraftstoff [44].

2.2. Abgasgesetzgebung in Europa

Der Absatz von Fahrzeugen auf dem westeuropäischen Markt steigt stetig. Infolge dessen ist die Europäische Union bestrebt die geltende Emissionsgesetzgebung für PKW ab 2014 weiterhin deutlich zu verschärfen. Neben der Absenkung der Partikelmassegrenzwerte werden mit der EURO 6 Abgasgesetzgebung die Anforderung an die NO_X-Emissionen deutlich erhöht. Einen Überblick der Entwicklung der Abgasgrenzwerte für PKW im NEFZ auf dem europäischen Markt gibt Tab. 2.1. Zu den derzeit festgelegten Restriktionen ist, infolge der Veröffentlichung der *Clean Air for Europe*-Richtline [35], eine Limitierung der Offcycle-Emissionen von NO_X für die innerstädtische Luftreinhaltung in Diskussion.

Emissionsstufe	Jahr	Grenzwert der Schadstoffe			
		СО	HC	NO _X	PM
		[mg/km]	[mg/km]	[mg/km]	[mg/km]
Euro 3	2000	640	60	500	50
Euro 4	2005	500	50	250	25
Euro 5	2009	500	50	180	5
Euro 6	2014	500	90	80	5

Tab. 2.1.: Entwicklung der europäischen Abgasgrenzwerte für PKW von 2000-2014 bei einer Dauerhaltbarkeit von 160.000 km [34, 37].

Speziell aus den NO_X-Emissionsgrenzwerten ergeben sich neue Herausforderungen für die Abgasnachbehandlung von dieselbetriebenen Fahrzeugen. Insbesondere die Kaltstartemissionen rücken hierbei immer mehr in den Fokus, da mit den heutigen Abgasnachbehandlungssystemen ca. 70-80 % der Gesamtabgasemissionen einer Abgaszertifizierung während der Kaltstartphase emittiert werden.

2.3. Katalysatoren für dieselmotorische Anwendungen in der Automobilindustrie

In Fahrzeuganwendungen hauptsächlich eingesetzte Katalysatoren bestehen aus einem wabenförmigen Träger (Monolith), auf dem ein oxidischer Washcoat mit einer dispergierten aktiven Komponente aufgebracht wird. Für die Herstellung von Monolithen werden, aus Gründen der thermischen Stabilität, Keramiken aus Cordierit oder Metallfolien verwendet. Der Washcoat besteht aus einer hochporösen Verbindung (ZrO₂, Al₂O₃, CeO₂), die eine möglichst große Oberfläche zur Verfügung stellt [10]. Abb. 2.2 (links) zeigt eine Aufnahme eines, mit Washcoat beschichteten, monolithischen Cordieritträgers mit einem Rasterelektronenmikroskop (REM), in einer Auflösung von 500 μ m. Die rechte Grafik zeigt eine REM-Aufnahme des porösen Trägeroxids $\gamma - Al_2O_3$, in einer Auflösung von 5 μ m.

Abb. 2.2.: REM Aufnahme eines katalytisch beschichteten Monolithen mit Kanalwänden, Washcoat und Kanalstruktur (links) [10]. REM Aufnahme des $\gamma - Al_2O_3$ Trägeroxids (rechts) [124].

Je nach Anforderung der katalytischen Reaktion werden verschiedenste Elemente als aktive Komponente eingesetzt. Für die Oxidation von HC, CO und NO werden Platinoide als katalytische Komponente eingesetzt. Die häufigsten Anwendungen enthalten Platin (Pt), Palladium (Pd) und Rhodium (Rh). Das Verhältnis der Komponenten zueinander bestimmt die katalytischen Eigenschaften und die Alterungsbeständigkeit.

Speziell bei Oxidationskatalysatoren wird das Tieftemperaturverhalten durch die Einspeicherung von Sauerstoff positiv beeinflussen. Hierzu werden Lanthanoide bzw. Erdalkalimetalle eingesetzt. Die häufigsten Anwendungen enthalten Barium (Ba) und Cer (Ce) [112]. Untersuchungen in der Vergangenheit zeigen, dass diverse Erdalkalimetalle, Alkalimetalle und Lanthanoide zudem mit Stickstoffoxid zu Nitratbildung neigen [61, 30, 92, 82]. Diese Eigenschaften werden bei NO_X -Speicherkatalysatoren genutzt. Der Einsatz und die Kombination der einzelnen Elemente bestimmt die charakterisierenden Eigenschaften des Katalysators [30]. Untersuchungen von Takeuchi et al. [137] zeigen, dass ein Zusammenhang zwischen Adsorptionsfähigkeit der Erdalkalikomponente und deren Elektronegativität besteht. Eine höhere Speicherfähigkeit der alkalischen Komponente führt zu einem Minderum-

satz der teiloxidierten Abgaskomponenten, wie HC und CO. Hieraus ergibt sich somit ein Zielkonflikt. Abb. 2.3 zeigt die Ergebnisse der Untersuchungen von Takeuchi et al. [137] für verschiedene alkalische Komponenten M auf einem $Pt/M/Al_2O_3$ -Katalysator.

Abb. 2.3.: Speicherfähigkeit der alkalischen Komponente in Abhängigkeit der Elektronegativität, gemessen bei 300 °C (links). HC-Umsatz im japanischen 10·15 Fahrzyklus (rechts) [137].

In NO_X-Speicherkatalysatoren für PKW-Anwendungen werden, aufgrund der hohen HC-Konversionsanforderungen, überwiegend Barium- und Ceriumoxid eingesetzt. Die chemischen Vorgänge auf Pt-/Ba-/Al₂O₃-Katalysatoren sind in der Literatur detailliert beschrieben und werden in Kap. 2.6.4 diskutiert.

Für die selektive katalytische Reduktion (SCR) von Stickstoffoxiden werden, als katalytische Komponenten, Übergangsmetalle wie Titan (Ti), Vanadium (V), Eisen (Fe) und Kupfer (Cu) eingesetzt. Titan- und vanadiumhaltige Katalysatoren werden als Vollextrudate mit Oxiden der Übergangsmetalle hergestellt. Moderne SCR-Katalysatoren bestehen, analog zu den Oxidationskatalysatoren, aus einem Cordieritträger und einem Washcoat. Die Washcoats von aktuellen SCR-Katalysatoren bestehen aus ionenausgetauschten Alumogerüstsilikaten nach einer Strukturformel, wie G 2.1 zeigt [133].

$$K_{\frac{2}{n}} \cdot Al_2 O_3 \cdot xSiO_2 \cdot yH_2O \tag{G 2.1}$$

Κ	= Kation	[mol]
п	= Wertigkeit des Kations	[-]
X	= Anteil SiO ₂ im Verhältnis zu Al_2O_3	[mol/mol]
\mathcal{Y}	= Anteil H ₂ O im Verhältnis zu Al ₂ O ₃	[mol/mol]

Hierbei bilden tetraedische SiO₄-Verbindungen über gemeinsame Sauerstoffatome sekundäre Baueinheiten, die letztendlich zu einem Gitter aus atomarem Silizium und Sauerstoff führen. In der SCR-Katalysatortechnik häufig verwendete Gerüstsilikate sind ZSM-5 (MFI), Chabasit (CHA) und Beta (*BEA) Zeolithe. Abb. 2.4 zeigt die Gitterstruktur der drei Zeolithtypen [84].

Abb. 2.4.: Si-O-Al-Gerüststruktur in der Katalysatortechnik häufig verwendeter Zeolithen: (a) ZSM-5 (MFI), (b) Chabasit (CHA) und (c) Beta (*BEA) [8]

Durch die Substitution von SiO_{4/2}-Tetraeder mit AlO_{4/2}-Anionen entstehen im Gitter formal negative Ladungen. Diese negativen Ladungen lassen sich durch Kationen ausgleichen. Für SCR-Katalysatoren werden hierzu Kationen von Übergangsmetallen wie Eisen oder Kupfer als katalytische Komponente verwendet. Diese werden beispielsweise über Chlorid- oder Sulfatsuspensionen in den Zeolithen eingebracht [117, 145, 141]. Die Anzahl der so eingebrachten Kationen beeinflusst die Aktivität des Katalysators bezüglich NO_X-Reduktion mit Ammoniak signifikant [95]. Man spricht bei diesen Zeolithen von Eisen- bzw. Kupfer-Ionenausgetauschten Zeolithen.

Eine elementare Eigenschaft von diesen Zeolithkatalysatoren zeigt sich in der Adsorption von Ammoniak [87]. Auroux et al. [5] erklären diese Adsorption durch die Säure-Base-Theorie von Brønsted, mit der Bildung von NH_4^+ -Ionen an den sauren Zentren des Zeolithen. Brändle und Sauer [17] bestätigen diese Erkenntnis und weisen in ihren Untersuchungen zusätzliches Adsorptionspotential für NH_3 an Hydroxylgruppen ohne Protonenübergang aus. Diese Ammoniakspeicherfähigkeit ist eine temperaturabhängige Funktion, die mit zunehmender Katalysatortemperatur abnimmt [54]. Die nach Auroux et al. [5] adsorbierten NH_4^+ -Ionen begünstigen, unter stickstoffdioxidhaltiger Atmosphäre, über die Bildung von NO_3^- -Ionen, die Reaktion zu Ammoniumnitrat (vgl. R 2.55) [54]. Das nach Brändle und Sauer adsorbierte NH_3 steht für die SCR-Reaktionen (vgl. R 2.51 bis R 2.54) zur Verfügung.

2.4. Grundlagen der heterogenen Katalyse

Bei der Abgasnachbehandlung in PKW-Anwendungen liegen die Reaktanden und die katalytisch aktiven Systeme in unterschiedlichen Phasen vor. Aus diesem Grund spricht man von heterogener Katalyse [11]. Mit Hilfe von diesen Katalysatoren lassen sich die Aktivierungsenergien der geforderten Reaktionen herabsetzten. Dies führt zum Einen dazu, dass diese Reaktionen bei deutlich geringeren Temperaturen ablaufen und zum Anderen, dass die Selektivität des Reaktionssystems zum gewünschten Edukt erhöht wird. Beschrieben werden die energetischen Zustände der katalysierten Reaktion (A \rightarrow B) von Svante Arrhenius durch die Abb. 2.5 (links).

Abb. 2.5.: Energetischer Übergang im Reaktionspfad (A→B) nach Arrhenius am Beispiel der endothermen Reaktion (links). Ablauf der heterogenen Katalyse in sieben Teilschritten nach Behr [10].

Charakterisierend für die heterogene Katalyse ist, dass mindestens ein Reaktand durch die Grenzschicht an der Katalysatoroberfläche adsorbiert wird. Dazu müssen die Edukte vorerst in den Washcoat diffundieren. Nach der katalytischen Reaktion
am aktiven Zentrum müssen die Produkte wieder aus dem Washcoat ausdiffundieren. In Abb. 2.5 (rechts) ist der Ablauf der heterogenen Katalyse auf und in dem porösen Washcoat, in den einzelnen Teilschritten, dargelegt.

Bei der Adsorption wird in physikalische und chemische Adsorption unterschieden. Bei der **Physisorption** werden die Adsorbate durch vergleichsweise geringe Vander-Waals Kräfte adsorbiert. Diese Wechselwirkungen reichen in der Regel sehr weit, sind aber nicht stark genug, um Molekülbindungen aufzubrechen. Deshalb gehen die physisorbierten Reaktanden meist unverändert aus diesem Reaktionsmechanismus hervor. Die **Chemisorption** zeichnet sich durch die Bildung von chemischen Bindungen aus. Die Adsorptionsenthalpie dieser Bindungen ist deutlich höher, als die der Physisorption und führt zu einem Abschwächen der chemischen Bindungen der Reaktanden. An diesen geschwächten Bindungen findet die katalysierte Reaktion statt.

Für die Beschreibung der katalysierten Reaktion an der Oberfläche werden zwei Mechanismen herangezogen. Der Langmuir-Hinshelwood-Mechanismus beschreibt die Reaktion von zwei oder mehreren adsorbierte Reaktanden. Als Produkt dieser Reaktion geht eine adsorbierte Spezies hervor. Reaktion R 2.6 beschreibt diesen Mechanismus in der einfachsten Form. Die Kennzeichnung * steht hierbei für eine adsorbierte Spezies.

$$A * + B * \longrightarrow P * \tag{R 2.6}$$

Die Kinetik dieses Mechanismus wird hauptsächlich vom Bedeckungsgrad bzw. der Oberflächenkonzentration der Edukte begrenzt. Infolge dessen ist die Chemisorption der Edukte der kinetisch begrenzende Schritt.

Der Eley-Rideal-Mechanismus beschreibt die Reaktion mit einem Reaktanden aus der Gas- bzw. Flüssigphase. Elementargleichung R 2.7 beschreibt diesen Mechanismus mit dem Edukt A in gasform.

$$A(g) + B * \longrightarrow P * \tag{R 2.7}$$

Bei geringen Partialdrücken des Eduktes A in der Gasphase wird die Geschwindigkeit dieses Mechanismus durch Kinetik der Reaktion an sich bestimmt. Ist der Partialdruck in der Gasphase hinreichend groß, erfolgt gemäß Langmuir-HinshelwoodMechanismus die Limitierung der Reaktionsgeschwindigkeit durch die Chemisorption des Eduktes B*.

Die **Desorption** der Edukte kann als Umkehrfunktion des Chemisorptionsmechanismus verstanden werden. Zur Bestimmung der Gesamtreaktionsrate ist der langsamste Teilschritt aller ablaufenden Schritte zu betrachten [10, 94].

2.5. Deaktivierung von edelmetallhaltigen Katalysatoren

Die Deaktivierung von katalytischen Oberflächen kann in PKW-Anwendungen durch den Einfluss thermischer Belastung und den Einfluss von Katalysatorgiften beschrieben werden. In den folgenden zwei Abschnitten werden die auftretenden Effekte dargelegt und erläutert.

2.5.1. Thermische Alterung

Die thermische Alterung von Katalysatoren ist auf die Sinterung des porösen Washcoats und die Agglomeration der aktiven Komponenten zurückzuführen. Untersuchungen an Pt/Rh-Katalysatoren [29, 41, 49] belegen die Sinterung des Washcoats mit der Abnahme der aktiven spezifischen Oberfläche anhand einer BET-Analyse. Fernandes et al. [41] erklären die Abnahme der aktiven Oberfläche mit einer Vergrößerung des Porendurchmessers und einer damit verbundenen Reduzierung des spezifischen Porenvolumens bei einer hydrothermalen Alterung von 12 bzw. 108 Stunden bei 900 °C. Untersuchungen von Gonzalez et al. [49] zeigen eine signifikante Veränderung dieser charakterisierenden Größen schon bei einer hydrothermalen Alterung für 5 Stunden bei selbiger Temperatur. Bei einer hydrothermalen Alterung für 12 Stunden bei 1200 °C weisen die Ergebnisse einen totalen Verlust der aktiven Oberfläche des γ -Al₂O₃-Washcoats nach. Untersuchungen von Lassi et al. [86] bestätigen diese Ergebnisse und zeigen für eine Alterung in oxidierender Atmosphäre eine nahezu linearen Verlust der Oberfläche bei steigender Alterungstemperatur. Eine reduzierende Atmosphäre wirkt sich moderater auf den Verlust der aktiven Oberfläche aus (vgl. Abb. 2.6 (a)).

Andersson et al. [2] und Winkler et al. [144] ziehen, für die Erklärung des Aktivitätsverlusts von katalytischen Oberflächen, zusätzlich die Sinterung der aktiven Komponente heran. Die Untersuchungen zeigen, dass der Durchmesser der Edelmetallpartikel im Washcoat mit der Alterung deutlich zunimmt (vgl. Abb. 2.6 (b)). Diese Agglomeration führt zu einer makroskopischen Anhäufung von aktiven Kom-

Abb. 2.6.: (a) Zusammenhang zwischen Verlust der aktiven Oberfläche (BET) eines edelmetallhaltigen Katalysators und Alterungstemperatur für Alterung in oxidierender (Luft) und reduzierender (5 % H_2/N_2) Atmosphäre [86]. (b) TEM-Aufnahme der Edelmetallpartikel vor (frisch) und nach Alterung von 4 Stunden bei 800 °C (4h @800 °C) [144].

ponenten. Dies beeinflusst die Verteilung der Dispersion von aktiven Komponenten negativ. Der Verlust der aktiven Oberfläche und die Agglomeration der aktiven Komponenten im Washcoat führen zu einer signifikanten Veränderung des Light-Off-Verhaltens für die Oxidation von CO, HC und NO der edelmetallhaltigen Katalysatoren. Dies führt zu einer Verschiebung der T50-Temperatur zu höheren Werten [41, 49, 62]. Zudem lässt sich eine Erhöhung der Raumgeschwindigkeitsabhängigkeit durch die Verringerung der katalytischen Aktivität erklären. Bei Adsorptionskatalysatoren führt die Sinterung zu einer deutlichen Abnahme der freien Speicherplätze im Washcoat. Somit geht neben der katalytischen Aktivität auch die Speicherkapazität von NO_X -Speicherkatalysatoren zurück.

2.5.2. Einfluss von Katalysatorgiften

Durch die Verbrennung von Additiven und zusätzlichen Bestandteilen aus dem Motorenöl treten reversible und irreversible Schädigungen der aktiven Oberfläche von Katalysatoren auf. Bezüglich der Deaktivierung von Oxidationskatalysatoren ist besonders Öl enthaltener Phosphor, Magnesium und Mangan ein Problem. Diese Elemente werden an den aktiven Zentren des Katalysators gebunden und hemmen somit die katalytische Funktion. Diese Vergiftung ist in Fahrzeuganwendungen irreversibel und führt so zu einer dauerhaften Beschädigung des Katalysators.

Ebenso sind im Dieselkraftstoff Substanzen enthalten, die zu einer Schädigung von Katalysatoren führen können. Hierbei führt insbesondere der Eintrag von Schwe-

fel aus dem Kraftstoff zu Vergiftungseffekten bei NO_X-Speicherkatalysatoren. Die Bestandteile an Schwefel in nach DIN590 zertifizierten Kraftstoffen sind zwar gering (< 10 ppm, vgl. Tab. 1.2), dennoch wirken sich kleinste Mengen negativ auf die Aktivität und die Speicherkapazität von Stickstoffoxidspeicherkatalysatoren aus. Dawody et al. [25] erklären dies durch die Bildung von Sulfaten an der Speicherkomponente nach vorheriger Oxidation des Schwefeldioxides am aktiven Platin (vgl. Reaktion R 2.8 und R 2.9).

$$2SO_2 + O_2 \longrightarrow 2SO_3 \tag{R 2.8}$$

$$BaO + SO_3 \longrightarrow BaSO_4$$
 (R 2.9)

Ein weiterer diskutierter Mechanismus stellt die Adsorption von Schwefeldioxid an Bariumoxid nach Reaktion R 2.10 mit anschließender Oxidation zu Bariumsulfat durch Stickstoffdioxid nach Reaktion R 2.11 dar.

$$BaO + SO_2 \longrightarrow BaO - SO_2$$
 (R 2.10)

$$BaO - SO_2 + NO_2 \longrightarrow BaSO_4 + NO$$
 (R 2.11)

Diese Belegung der Speicherzentren bewirkt eine deutliche Reduzierung der NO_X-Speicherkapazität. Man spricht hierbei auch von einer Konkurrenzbelegung der aktiven Speicherzentren durch Schwefeloxide. Die Bindungsenergie der Schwefeloxide an Barium ist deutlich größer, als die von Stickstoffoxid. Demzufolge findet keine hinreichende Desorption bei hohen Temperaturen statt. Die Vergiftung des Speicherkatalysators ist dennoch reversibel. Durch eine Kombination von hohen Abgastemperaturen, hohen HC-/CO-Konzentrationen und einem Lambda kleiner Eins kann eine Desorption des Schwefeloxides erwirkt werden. Hierzu erklären Strehlau et al. [136] die Reduktion der Sulfate mit Wasserstoff zu Schwefelwasserstoff (vgl. Reaktion R 2.12).

$$BaSO_4 + 4H_2 \longrightarrow BaO + H_2S + 3H_2O \tag{R 2.12}$$

Dieser Mechanismus kann in die Teilschritte der Schwefeldioxiddesorption nach Reaktion R 2.13 und Schwefeldioxidreduktion nach Reaktion R 2.14 zerlegt werden.

$$BaSO_4 + H_2 \longrightarrow BaO + SO_2 + H_2O \tag{R 2.13}$$

$$SO_2 + 3H_2 \longrightarrow H_2S + 2H_2O$$
 (R 2.14)

Zusätzlich wird die Reduktion der Schwefelverbindungen mit Kohlenstoffmonoxid nach Reaktion R 2.15 diskutiert.

$$BaSO_4 + 4CO \longrightarrow BaO + COS + 3CO_2$$
 (R 2.15)

Bei hohen Temperaturen können sich Bariumsulfate (BaS) bilden. Diese unvollständige Entschwefelung führt zu einer nachhaltigen Beeinträchtigung der Katalysatoraktivität [140].

2.6. Verfahren für die nachmotorische Minderung von Schadstoffen aus dieselmotorischem Abgas

Wie hinlänglich bekannt, nimmt die Reduzierung der Partikelemissionen unter der nachmotorischen Maßnahmen zur Emissionsminderung beim Dieselmotor einen signifikanten Stellenwert ein. Mit dem breitflächigen Einsatz von Dieselpartikelfiltern lassen sich die Partikelemissionen des Dieselmotors hinreichend absenken.

Im Vergleich zu klassischen 3-Wege-Katalysator-Konzepten (TWC) für Ottomotoranwendungen führt die überstöchiometrische Verbrennung des Dieselmotors dazu, dass die katalytische Umsetzung von HC und CO, unter herkömmlichen Randbedingungen, überwiegend mit Sauerstoff und nicht mit Stickstoffoxiden stattfindet. Mit effizienten Oxidationskatalysatoren werden die Schadstoffe Kohlenstoffmonoxid und Kohlenwasserstoff effizient umgesetzt. Eine gleichzeitige Reduktion der Stickstoffoxide kann nicht sichergestellt werden. Demzufolge ist es notwendig eine aktive Stickstoffoxidnachbehandlung einzusetzen, um die Anteile an NO_X im Abgas zu minimieren.

In der Vergangenheit wurden sowohl kontinuierliche als auch diskontinuierliche Verfahren zur Minderung von NO_X-Emissionen entwickelt und untersucht. Die nichtselektive katalytische Reduktion (NSCR) und selektiv katalytische Reduktion (SCR) bilden die Gruppe der kontinuierlichen Verfahren zur Reduktion von Stickstoffoxiden. Zu den diskontinuierlichen Verfahren zählt die Anwendung von einem NO_X-Speicherkatalysatoren (NSR), die Stickstoffoxide adsorbieren, um sie zu einem späteren Zeitpunkt wieder freizusetzen und zu reduzieren.

2.6.1. Katalytische Oxidation von Abgaskomponenten

Die chemisch-physikalischen Vorgänge zur Oxidation teiloxidierter Abgaskomponenten auf edelmetallhaltigen Katalysatoren durch Sauerstoff sind in der Literatur detailliert beschrieben. Die elementaren Oxidationsreaktionen für Kohlenstoffverbindungen in magerer, trockener Atmosphäre lassen sich durch die vollständige Oxidation von Kohlenstoffmonoxid (CO) und Kohlenwasserstoffen (C_xH_y) mit Sauerstoff gemäß Reaktionen R 2.16 und R 2.17 zusammenfassen [89].

$$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$
 (R 2.16)

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow x C O_2 + \frac{y}{2} H_2 O$$
 (R 2.17)

Neben der Oxidation von Kohlenstoffverbindungen werden Stickstoffoxidverbindungen oxidiert. Die Oxidation von Stickstoffmonoxid (NO) mit Sauerstoff (O_2) gemäß der vereinfachten Reaktion R 2.18 beschreibt, in magerem Abgas, den überwiegenden Anteil. Die Reaktion von Stickstoffmonoxid mit Sauerstoff auf platinhaltigen Katalysatoren ist bei niedrigen Temperaturen (bis ca. 200 °C) durch die Kinetik und bei hohen Temperaturen durch das thermodynamische Gleichgewicht begrenzt.

$$NO + \frac{1}{2}O_2 \xrightarrow[k_2]{k_1} NO_2 \tag{R 2.18}$$

Hauptmann et al. [59] beschreiben zudem einen Hystereseeffekt der NO-Oxidationsraten, in Abhängigkeit von positiven bzw. negativen Temperaturänderungsraten, anhand von Aktivitätsuntersuchungen. Dieses Verhalten ist auf die reversible Reduktion des Platins (vgl. R 2.19) durch NO, während der Aufheizphase (light-off), und der Oxidation des Platins (vgl. R 2.20) durch NO₂, während der Abkühlphase (light-down), zurückzuführen.

$$Pt-O+NO \longrightarrow Pt+NO_2$$
 (R 2.19)

$$Pt - NO_2 \longrightarrow Pt - O + NO$$
 (R 2.20)

Unter Berücksichtung der Gleichgewichtsbedingungen und der Veränderung der aktiven Oberfläche von Pt-Katalysatoren, ergibt sich eine Umsatzabhängigkeit der NO-Oxidation von der Temperatur gemäß Abb. 2.7.

Abb. 2.7.: NO-Konversion in Abhängigkeit von der Temperatur im light-off und light-down Experiment (a). Simulierter Platinoxidanteil im single-channel 1D-Modell in Abhängigkeit von der Temperatur im light-off und light-down Experiment (b). 450 vol.-ppm NO und 5 vol.-% O₂ [59]

Diese Effekte treten darüber hinaus auf, wenn der Washcoat mit Cer oder weiteren sauerstoffbindenden Elementen angereichert wird. Exemplarisch für die Adsorption von Sauerstoff steht der Mechanismus mit Cer nach Reaktion R 2.21.

$$Ce_2O_3 + \frac{1}{2}O_2 \longrightarrow Ce_2O_4$$
 (R 2.21)

Durch die Bildung von Ce_2O_4 , in sauerstoffreicher Umgebung (vgl. Reaktion R 2.21), kommen zusätzliche Reaktionen mit dem gebundenen Sauerstoff nach R 2.22 bis R 2.23 zum Tragen.

$$Ce_2O_4 + \frac{1}{9}C_3H_6 \longrightarrow Ce_2O_3 + \frac{1}{3}CO_2 + \frac{1}{3}H_2O$$
 (R 2.22)

$$Ce_2O_4 + CO \longrightarrow Ce_2O_3 + CO_2$$
 (R 2.23)

Für die Modellierung der chemisch-physikalischen Vorgänge auf Oxidationskatalysatoren wird eine Vielzahl von Reaktionen herangezogen. In diesem Kapitel sind nur die wichtigsten Elementargleichungen zusammengefasst.

2.6.2. Filtration und Oxidation von Partikeln

Dieselmotorisches Abgas beinhaltet, aufgrund der inhomogenen Gemischaufbereitung, eine relativ hohe Partikelkonzentration (vgl. Abb. 2.1). Diese Partikel setzen sich überwiegend aus Ruß der motorischen Verbrennung zusammen. Der emittierte Ruß entsteht bei hohen Temperaturen (T > 1400 K) in lokal fetten Bereichen ($\lambda < 0,6...0,7$) und hat eine Partikelgröße von ca. 10 bis 500 nm [12]. Um die Partikelemissionen aus dieselmotorischem Abgas zu minimieren, werden Dieselpartikelfilter (DPF) eingesetzt. Bei Dieselpartikelfiltern wird zwischen Nebenstromfiltern und Wandstromfiltern unterschieden. Nebenstromfilter sind sog. offene Systeme. Der Abscheidegrad von Nebenstromfiltern (30-70 %) ist deutlich geringer, als der von Wandstromfiltern (>95 %), so dass für die werkseitige Ausrüstung von dieselbetriebenen PKW heute überwiegend Wandstromfilter eingesetzt werden [96].

Monolithische Wandstromfilter bestehen überwiegend aus wabenförmigen Extrudaten hochporöser Keramiken, wie Siliziumcarbid oder Cordierit. Diese Keramiken zeichnen sich durch eine hohe Stabilität bei sehr hohen Temperaturen (bis zu 1200 °C) aus. Um eine Filtration zu erwirken, sind die Wabenkanäle der Monolithe wechselseitig an Ein- bzw. Ausgang verschlossen (vgl. Abb. 2.8). Das führt dazu, dass die Abgasströmung durch die Filterwand gezwungen wird. An und in der Filterwand findet die Abscheidung, beruhend auf strömungsmechanischen und physikalischen Mechanismen, statt. Partikel, die unterhalb der Grenzpartikelschicht durch die Filterwand strömen, werden durch den Kontakt mit der Filterwand abgeschieden. Diesen Vorgang nennt man Impaktion. Die Grenzpartikelschicht beschreibt dabei die Partikelflugbahn, bei der durch die Ablenkung der Strömung, gerade keine Impaktion mehr stattfindet. Kleinstpartikel (Nanopartikel), die durch den Impaktionsmechnismus nicht effektiv abgeschieden werden können, werden durch die Brown'sche Diffusion und damit verbundener Agglomeration am Durchströmen des Filters gehindert. Die Haftung der gefilterten Partikel am Extrudat kann durch Van-der-Waals-Kräfte erklärt werden [111].

Die Porosität der Filterwände ist bestimmend für den Abscheidegrad, beeinflusst aber auch den Druckverlust über den Partikelfilter. Der Druckverlust steigt in der frühen Beladungsphase (0-30 %) überproportional und in der späten Beladungsphase (30-100 %) proportional zur filtrierten Partikelmasse an. Um ein vollständiges

Abb. 2.8.: Schematischer Aufbau eines Wandstrom-Dieselpartikelfilterextrudats zur Minderung der Partikelemissionen in automobilen Abgasen mit wechselseitig verschlossenen Monolithkanälen [23].

Zusetzen der Filterwände zu vermeiden, müssen Dieselpartikelfilter zyklisch regeneriert werden. Die Regeneration beinhaltet eine Oxidation des, hauptsächlich aus Kohlenstoff bestehenden, Filterkuchens. Es werden in der technischen Anwendung zwei Verfahren für die Regeneration von Partikelfiltern genutzt. Die passive Regeneration (CRT) beschreibt die Oxidation des Kohlenstoffs mit Stickstoffdioxid nach Reaktion R 2.24.

$$C + 2NO_2 \longrightarrow CO_2 + 2NO$$
 (R 2.24)

Um diese Reaktion zu unterstützen werden sowohl der Dieseloxidationskatalysator als auch der Dieselpartikelfilter selber, mit einem edelmetallhaltigen Washcoat beschichtet (vgl. Kap. 2.6.1). Dennoch findet die CRT-Reaktion in hinreichender Form erst ab Temperaturen oberhalb von ca. 350 °C statt. Diese Temperaturen werden im dieselmotorischen Normalbetrieb nicht ausreichend erreicht, um eine vollständige Regeneration im Fahrbetrieb sicherzustellen. Aus diesem Grund ist eine zyklische, aktive Regeneration des Filters notwendig. Während die passive Regeneration ohne aktive Maßnahmen in der Betriebsstrategie des Dieselmotors abläuft, muss für die aktive Regeneration des Dieselpartikelfilters eine ausreichend hohe Abgastemperatur zur Verfügung gestellt werden. Hierzu wird die Abgastemperatur, durch motorische Maßnahmen, auf über 600 °C angehoben. Ab ca. 550 °C findet die Oxidation von elementarem Kohlenstoff mit Sauerstoff nach Reaktion R 2.25 und R 2.26 statt.

$$C + O_2 \longrightarrow CO_2$$
 (R 2.25)

$$2C + O_2 \longrightarrow 2CO \tag{R 2.26}$$

Die Sekundäremission von CO wird im weiteren Verlauf auf dem edelmetallhaltigen Washcoat nach Reaktion R 2.16 mit Sauerstoff oxidiert.

2.6.3. Nichtselektive katalytische Reduktion von Stickstoffoxiden mit Kohlenstoffmonoxid und Kohlenwasserstoffen (NSCR)

Bei der nichtselektiven katalytischen Reduktion werden analog zu 3-Wege-Ottokatalysatorkonzepten Kohlenwasserstoffe bzw. Kohlenstoffmonoxid als Reduktionsmittel für NO und NO₂ genutzt. Granger et al. [51] beschreiben die Reaktionen von Kohlenstoffmonoxid und Stickstoffmonoxid auf Rh/Al₂O₃ bzw. Pt/Rh/Al₂O₃ Katalysatoren. Nakao et al. [97] erläutern die Funktion des Verfahrens anhand der bimolekularen Reaktion R 2.28 auf Palladiumkatalysatoren (Pd111/Pd110).

$$NO_2 + CO \longrightarrow NO + CO_2$$
 (R 2.27)

$$NO + CO \longrightarrow CO_2 + \frac{1}{2}N_2$$
 (R 2.28)

Der Gesamtmechanismus der Reduktion von NO durch CO wird durch eine Radikalbildung mit anschließender Molekülbildung des Stickstoffes am Edelmetall (EM) und einer Oxidation des Kohlenstoffmonoxides mit dem Edelmetalloxid beschrieben (vgl. Reaktionen R 2.29 und R 2.31).

$$NO + EM \longrightarrow \frac{1}{2}N_2 + EM - O$$
 (R 2.29)

$$EM - O + CO \longrightarrow EM + CO_2$$
 (R 2.30)

Burch et al. [18] zeigen in Stickstoffuntersuchungen, dass sich Kohlenwasserstoffverbindungen ebenso zur Reduktion von Stickstoffoxiden eignen und, im Vergleich zur Reduktion mit CO an aktiven Platinzentren, einen höheren NO_X-Umsatz ermöglichen. Als globaler Reaktionsansatz ergeben sich die Reaktionen R 2.31 und R 2.32.

$$9NO_2 + C_3H_6 \longrightarrow 9NO + 3CO_2 + 3H_2O$$
 (R 2.31)

$$9NO + C_3H_6 \rightarrow \frac{9}{2}N_2 + 3CO_2 + 3H_2O$$
 (R 2.32)

Detailliert beschrieben wird der Reaktionsmechanismus mit C_3H_6 an Platin, in Abwesenheit von Sauerstoff von Burch et al. [18], durch die Reaktionen R 2.33 bis R 2.35. Verglichen mit den Reaktionen nach Nakao et al. [97] ergibt sich aus den Annahmen von Burch et al. [18] der gleiche Reaktionsmechanismus mit einem anderen Reduktanten.

$$NO + 2EM \longrightarrow EM - N + EM - O$$
 (R 2.33)

$$2EM - N \longrightarrow 2EM + N_2 \tag{R 2.34}$$

$$9EM - O + C_3H_6 \longrightarrow 9EM + 3CO_2 + 3H_2O \tag{R 2.35}$$

Ebenso zeigen die Untersuchungen, dass der NO_X -Umsatz elementar vom Sauerstoffanteil im Feedgas beeinflusst wird. Eine steigende Sauerstoffkonzentration im Gas verringert den NO_X -Umsatz signifikant. In einer weiteren Untersuchung zeigen Burch et al. [19] und Nakatsuji et al. [99], dass sowohl der Edelmetallgehalt des Katalysators als auch die katalytische Komponente selber den NO_X -Umsatz beeinflussen. Höhere Edelmetallbeladungen ermöglichen höhere NO_X -Umsätze bei niedrigen Temperaturen (<250 °C). Platin- und palladiumhaltige Katalysatoren zeigen einen signifikanten NO_X -Umsatz bereits ab ca. 250 °C, rhodium- und iridiumhaltige hingegen erst ab ca. 330 °C bzw. ca. 380 °C.

Aus Untersuchungen von Obuchi et al. [108], Oulad Haj et al. [58] und Lu et al. [93] geht hervor, dass die Selektivität der Reduktion von NO_X zu Stickstoff nicht ausnahmslos gegeben ist. Speziell Untersuchungen an reinen Pt-Katalysatoren zeigen im Niedertemperaturbereich (150-400 °C) eine hohe Lachgasselektivität. Veröffentlichungen von Botas et al. [15] bestätigen dies für Pt-Katalysatoren, die mit Ceroxid (CeO) angereichert sind. Diese Untersuchen zeigen weiterhin eine Abnahme der Selektivität zu Lachgas, ab Temperaturen von ca. 400 °C, mit einer gleichzeitigen Zunahme der Selektivität zu NO₂. Granger et al. [52] beschreiben den Mechanismus der Lachgasbildung durch die Reaktion von Stickstoffmonoxid mit Kohlenstoffmonoxid nach Reaktion R 2.36 bereits ab Temperaturen von ca. 150 °C.

$$CO + 2NO \longrightarrow N_2O + CO_2$$
 (R 2.36)

Die Untersuchungen weisen ebenso eine Lachgaskonversion von nahezu 100 % ab ca. 340 °C für Platinkatalysatoren und von ca. 360 °C für Rhodiumkatalysatoren gemäß Reaktion R 2.37 nach. Granger et al. [50] zeigen auch, dass die N₂O-Konversion durch Einbringung von Cer in den Washcoat bei Temperaturen ab ca. 250 °C deutlich gesteigert werden kann. Demzufolge ist die Selektivität für die Reaktion R 2.28 im Temperaturbereich von ca. 150 °C bis ca. 250 °C zu Stickstoff nur eingeschränkt gegeben.

$$CO + N_2O \longrightarrow N_2 + CO_2$$
 (R 2.37)

In der Anwendung für die Nachbehandlung von dieselmotorischem Abgas sind diese Systeme, im Hinblick auf zukünftige Abgasgrenzwerte, nur bedingt geeignet. Die dieselmotorische Normalverbrennung findet bei Luftüberschuss statt. Um hinreichende NO_X-Umsatzraten zu erreichen, ist es hingegen notwendig, ein sauerstofffreies Abgas für die Reduktion von NO und NO₂ zur Verfügung zu stellen. Eine Vertrimmung zu einer stöchiometrischen Verbrennung ist auch beim Dieselmotor grundsätzlich möglich, führt aber zum Einen zu erhöhten HC- und CO-Emissionen und zum Anderen zu erhöhtem Kraftstoffverbrauch. Die Sekundäremission von N₂O ist insbesondere in Hinblick auf die CO₂-Gesamtbilanz aufgrund des GWP-Wertes von 298 mg_{CO₂}/mg_{N₂O</sup> (vgl. Tab. 1.1) kritisch.}

Infolge der diskutierten Nachteile von NSCR-Systemen haben sich die selektiv katalytische Reduktion (SCR) und die NO_X -Speicherung und -Reduktion (NSR) in der Nachbehandlung von Stickstoffoxiden im Abgas von automobilen Dieselmotoren durchgesetzt.

2.6.4. Zyklische NO_X-Speicherung und Reduktion mit Stickstoffoxid-Speicherkatalysatoren (NSR)

Die Adsorption von Stickstoffoxiden findet überwiegend im mageren Betrieb ($\lambda > 1$) statt. Für die Regeneration muss ein HC-/CO-/H₂-reiches Abgas zur Verfügung gestellt werden. Man spricht hierbei von "Fettbetrieb", mit einem Verbrennungsluft-

verhältnis Lambda kleiner Eins. Abb. 2.9 zeigt den Mechanismus der Adsorption und Regeneration von NO_X -Speicherkatalysatoren nach Koltsakis et al. [78].

Abb. 2.9.: Mechanismus der Adsorption während der Magerphase (a) und Regeneration während der Fettphase (b) von Stickstoffoxidspeicherkatalysatoren nach Koltsakis et al. [78].

Adsorption von Stickstoffoxiden in der Magerphase ($\lambda > 1$)

Koltsakis et al. [78] und Larsson et al. [85] beschreiben den globalen Mechanismus der Speicherung von Stickstoffdioxid an Bariumoxid mit der Nitratbildung nach Reaktion R 2.38.

$$4NO_2 + 2BaO + O_2 \longrightarrow 2Ba(NO_3)_2 \tag{R 2.38}$$

Fridell et al. [45] beschreiben diesen globalen Ansatz detailliert durch die Theorie von Langmuir-Hinshelwood mit der Bildung von Oberflächennitraten an freien Speicherplätzen S* des Bariumoxids nach Reaktion R 2.39 und R 2.40.

$$NO_2(g) + S \ast \longrightarrow NO_2 - S \ast$$
 (R 2.39)

$$NO_2(g) + NO_2 - S \ast \longrightarrow NO_3 - S \ast + NO(g)$$
 (R 2.40)

Des Weiteren wird ein Mechanismus über die Bildung von Peroxiden an den Speicherplätzen des Bariumoxids nach Reaktion R 2.41 mit anschließender Bildung von Oberflächennitraten nach Reaktion R 2.42 diskutiert.

$$NO_2(g) + S_2 * \longrightarrow O - S_2 * + NO(g)$$
 (R 2.41)

$$NO_2(g) + O - S_2 * \longrightarrow NO_3 - S_2 *$$
 (R 2.42)

In kohlenstoffdioxidhaltiger Atmosphäre bilden sich in Konkurrenz zu den beschriebenen Nitraten zusätzlich Carbonate. Für die Adsorption von Stickstoffoxiden muss somit die Reaktion von Stickstoffdioxid und Stickstoffmonoxid mit Bariumcarbonat berücksichtigt werden (vgl. Reaktion R 2.43).

$$4NO_2 + 2BaCO_3 + O_2 \longrightarrow 2Ba(NO_3)_2 + 2CO_2 \tag{R 2.43}$$

Elementar für die Adsorption von NO_2 ist die vollständige Oxidation von Stickstoffmonoxid, sodass die Kinetik der Adsorption nach Reaktion R 2.43 ebenso durch die Reaktion R 2.18 (vgl. Kapitel 2.6.1) bestimmt wird. Die Einspeicherung von NO_2 erwirkt, dass die Bedingungen des thermodynamischen Gleichgewichts der Reaktion R 2.18 nicht erreicht werden. Dadurch ist diese Reaktion in Verbindung mit einer NO_X -Adsorption an Barium o.ä. nur kinetisch limitiert.

Zusätzlich weisen Friedell et al. [46] in ihren Untersuchungen eine Einspeicherung von NO nach. Dieser Reaktionsmechanismus wird durch Reaktion R 2.44 beschrieben.

$$4NO + 2BaCO_3 + O_2 \longrightarrow 2Ba(NO_2)_2 + 2CO_2 \tag{R 2.44}$$

Untersuchungen von Philipp et al. [113] und Scholz et al. [127] zeigen, dass im Niedertemperaturbereich primär eine Nitritbildung nach Reaktion R 2.44 und sekundär eine Bildung von Nitraten nach Reaktion R 2.45 für die Erklärung der NO-Speicherung herangezogen werden kann.

$$Ba(NO_2)_2 + O_2 \longrightarrow Ba(NO_3)_2 \tag{R 2.45}$$

Desorption und Konversion von Stickstoffoxiden in der Fettphase ($\lambda < 1$)

Die zyklische Regeneration von NO_X -Speicherkatalysatoren erfolgt an der Oberfläche des Washcoats nach den globalen Reaktionen R 2.46 durch Kohlenwasserstoffe, R 2.47 durch Kohlenstoffmonoxid und R 2.48 durch Wasserstoff. An dieser Stelle wird als repräsentative Kohlenwasserstoffverbindung Propylen (C_3H_6) verwendet.

$$9Ba(NO_3)_2 + 5C_3H_6 \longrightarrow 9N_2 + 15CO_2 + 15H_2O + 9BaO$$
 (R 2.46)

$$Ba(NO_3)_2 + 5CO \longrightarrow N_2 + 5CO_2 + BaO \tag{R 2.47}$$

$$Ba(NO_3)_2 + 5H_2 \longrightarrow N_2 + 5H_2O + BaO$$
 (R 2.48)

Diese globalkinetischen Mechanismen setzen sich aus der Desorption des gespeicherten Stickstoffoxides und der Konvertierung durch die Reduktionsmittel Kohlenwasserstoff, Kohlenstoffmonoxid und Wasserstoff zusammen. Die Elementarreaktionen der Konvertierung sind detailliert in Kapitel 2.6.3 erläutert.

Abb. 2.10.: Normierte NO_X -Konversion für die Reduktanten H_2 , CO und C_3H_6 währen einer Fettphase [135].

Abb. 2.10 zeigt die normierte NO_X -Konversion in Abhängigkeit von der Temperatur für die Reduktanten C_3H_6 , CO und H_2 . Es ist ersichtlich, dass bei Temperaturen unterhalb von 350 °C die Reduktion von Stickstoffoxiden durch C_3H_6 nach Reaktion R 2.46 nur unzureichend abläuft. Unterhalb von 250 °C wird die Reaktionsgeschwindigkeit der Reduktion von Stickstoffoxid mit CO nach Reaktion R 2.47 ebenfalls so gering, dass kein optimaler Umsatz erreicht werden kann. Die Reduktion mit H_2 nach Reaktion R 2.48 weist die höchste NO_X -Konversionrate bei ge-

ringen Temperaturen auf [73]. Wasserstoff tritt, während der Normalverbrennung bei $\lambda > 1$, nur in geringsten Mengen als Verbrennungsprodukt und als Produkt der Katalyse auf Edelmetallkatalysatoren auf. Entzieht man dem Abgas Sauerstoff ($\lambda < 1$), reagieren Kohlenwasserstoffe (Dampfreformierung) und Kohlenstoffmonoxid (Wassergas-Shift-Reaktion) auf Edelmetallkatalysatoren (Pt/Rh/CeO-Al₂O₃) mit Wasser zu Wasserstoff nach Reaktion R 2.49 und R 2.50 [142, 53].

$$C_3H_6 + 6H_2O \longrightarrow 3CO_2 + 9H_2 \tag{R 2.49}$$

$$CO + H_2O \Longrightarrow CO_2 + H_2$$
 (R 2.50)

Dieser Wasserstoff steht für die Regeneration des NO_X-Speicherkatalysators zur Verfügung, reagiert aber auch im weiteren Verlauf mit Stickstoffoxiden zu Ammoniak.

Technische Ausführung eines Systems zur Speicherung und zyklischen Reduktion von Stickstoffoxiden

In der technischen Umsetzung eines Systems zur Speicherung und zyklischen Regeneration von Stickstoffoxiden stellt sich die Anordnung nach Abb. 2.11 als zielführend heraus. Um nach dem Kaltstart ein schnelles Umsetzen von Kohlenwasserstoffen und Kohlenstoffmonoxid sicherzustellen, ist ein DOC möglichst motornah positioniert. Zusätzlich bietet die Anordnung eines motornahen DOCs die Möglichkeit den Anteil an NO₂ im Abgas zu erhöhen, so dass eine effiziente Einspeicherung des Stickstoffoxides nach dem Mechanismus R 2.38 im nachgeschalteten NO_X-Speicherkatalysator erfolgen kann. Moderate motorische Maßnahmen (HC/COreiches Abgas) ermöglichen, durch die exothermen Oxidation am DOC, ein effizientes und schnelles Aufheizen des NO_X-Speicherkatalysators im Kaltstart.

Abb. 2.11.: Anordnung der Komponenten für eine NSR-Anwendung mit Dieseloxidationskatalysator (DOC), NO_X-Speicherkatalysator (NSR) und beschichtetem Dieselpartikelfilter (cDPF)

Durch die motornahe Anordnung der Denoxierung stellt dieses Konzept, insbesondere für eine die Reduzierung der NO_x-Kaltstartemissionen, ein effizientes Verfahren dar. Dennoch ergeben sich verfahrens- und konzeptbedingt einige Nachteile. Durch die zyklische Regeneration entstehen erhöhte Lachgasemissionen. Dieses Lachgas lässt sich nicht effizient zu unschädlichen Edukten umsetzten. Damit ist es kritisch in Bezug auf den Treibhauseffekt (vgl. Tab. 1.1).

Aufgrund eines erhöhten Kraftstoffverbrauches während des Fettbetriebs, wirkt sich dieses Verfahren zudem negativ auf die CO_2 -Gesamtbilanz aus. Speziell bei der Betrachtung von Offcycle-Emissionen kommt, aufgrund der hohen NO_X -Regenerationsfrequenz, ein Kraftstoffmehrverbrauch zum Tragen. So entsteht auch bei diesem Abgasnachbehandlungskonzept ein Trade-Off zwischen NO_X -Emissionen und Kraftstoffverbrauch. Des Weiteren treten in transienten Phasen im Fettbetrieb HC-/CO-Durchbrüche auf. Infolge der hohen HC-/CO-Konzentrationen, in Verbindung mit Sauerstoffmangel und hohen Raumgeschwindigkeiten, reicht die katalytische Aktivität des DOC nicht aus, um die vollständige Oxidation sicherzustellen. Wie in Kapitel 2.6.3 beschrieben, sind Sekundäremissionen wie Lachgas und Ammoniak nicht auszuschließen.

Setzt man das NSR-System effizient ein, treten sehr geringe NO₂-Emissionen am DPF auf. Dies wirkt sich infolge des verminderten CRT-Effektes wiederum negativ auf das DPF-Regenerationsintervall aus. Außerdem ist bedingt durch die hohen Temperaturen am NSR, während einer DPF-Regeneration, keine Einspeicherung und Reduktion von Stickstoffoxid darstellbar. Das ist insbesondere deshalb kritisch, da bei der Zertifizierung von zyklisch regenerierenden Systemen sowohl Emissionen als auch Kraftstoffverbrauch während der DPF-Regeneration berücksichtigt werden.

Die Kapazität von NO_X -Speicherkatalysatoren nimmt mit zunehmender Verschwefelung des Katalysators signifikant ab. Bereits geringste Schwefeleinträge auf dem Washcoat führen zu einem nahezu vollständigen Verlust der Kapazität. Aus diesem Grund ist eine zyklische Schwefelregeneration des NO_X -Speicherkatalysators notwendig (vgl. Kap. 2.5.2).

2.6.5. Selektive katalytische Reduktion von Stickstoffoxiden mit Ammoniak (SCR)

Die selektive katalytische Reduktion von Stickstoffoxiden mit Ammoniak wird durch die Reaktion der Edukte zu molekularem Stickstoff charakterisiert. Dieses Verfahren ist bereits viele Jahre in der Kraftwerkstechnik etabliert. Der Reaktionsmechanismus wird erstmals im Jahre 1986 von Bosch et al. [14] an Vanadiumoxidkatalysatoren beschrieben. In der Literatur werden vier Hauptmechanismen zur Erklärung dieser Vorgänge herangezogen. Die **Standard-SCR-Reaktion** (R 2.51) beschreibt den Reaktionsmechanismus mit Ammoniak (NH₃), Stickstoffmonoxid (NO) und Sauerstoff (O₂). Bei dieser Reaktion werden NO und NH₃ im molaren Verhältnis von 1:1 umgesetzt [14, 106].

$$4NH_3 + 4NO + O_2 \longrightarrow 4N_2 + 6H_2O \tag{R 2.51}$$

In Abwesenheit von Sauerstoff läuft die Reaktion von NO und NH_3 nach Bosch et al. [14], Koebel et al. [75, 77] und Grossale et al. [55] verlangsamt ab. Dieser Mechanismus wird **Slow-SCR-Reaktion** (R 2.52) genannt.

$$4NH_3 + 6NO \longrightarrow 5N_2 + 6H_2O \tag{R 2.52}$$

Mit gleicher Menge NH_3 lassen sich in dieser Reaktion 50 % mehr NO umsetzen. Aufgrund des Sauerstoffüberschusses, bei der dieselmotorischen Verbrennung, ist dieser Mechanismus bei der Nachbehandlung von dieselmotorischem Abgas nicht umsatzbestimmend.

Die **Fast-SCR-Reaktion** (R 2.53) ist als die schnellste selektive Reaktion von Stickstoffoxiden und Ammoniak bekannt. Es werden in gleichem Maße NO und NO₂ mit NH₃ umgesetzt, was ein NO/NO₂-Verhältnis von 1:1 voraussetzt [105].

$$2NH_3 + NO + NO_2 \longrightarrow 2N_2 + 3H_2O \tag{R 2.53}$$

Unter Vorhandensein von NO_2 und NH_3 findet die NO_2 -SCR-Reaktion nach Reaktion R 2.54 statt. Für den Umsatz von NO_2 nach diesem Mechanismus wird 50 % mehr Ammoniak benötigt, als bei der Standard- bzw. Fast-SCR-Reaktion [116].

$$8NH_3 + 6NO_2 \longrightarrow 7N_2 + 12H_2O \tag{R 2.54}$$

Die Geschwindigkeit der beschriebenen SCR-Reaktionen R 2.51, R 2.52 und R 2.53 werden von Grossale et al. [55] auf Eisenzeolith-SCR-Katalysatoren (Fe-ZMS5) in Abhängigkeit von der Temperatur durch Abb. 2.12 beschrieben.

Es ist ersichtlich, dass die Slow-SCR-Reaktion (Abb. 2.12 (A)) erst oberhalb von 300 °C in signifikanter Geschwindigkeit abläuft. Bei der Standard-SCR-Reaktion (Ab-

Abb. 2.12.: NO_X-Konversion während der temperaturprogrammierten Reaktion auf Fe-ZSM5. (A) Slow-SCR-Reaktion R 2.52, (B) Standard-SCR-Reaktion R 2.51, (C) Fast-SCR-Reaktion R 2.53, (D) Ammoniumnitrat-Reaktion R 2.58 + R 2.52 [55].

bildung 2.12 (B)) ist ab ca. 100 °C ein NO-Umsatz nachweisbar. Die Geschwindigkeit dieser Reaktion ist stark von der Temperatur abhängig. Ebenso ist bei der Fast-SCR-Reaktion (Abbildung 2.12 (C)) ein signifikanter NO_X-Umsatz ab ca. 100 °C messbar. Das Gleichgewicht dieser Reaktion liegt ab ca. 220 °C nahezu vollständig auf der Seite der Produkte. Untersuchungen von Iwasaki et al. [66] bestätigen diese Erkenntnisse und ergänzen die Einordnung der Reaktionsgeschwindigkeit für die NO₂-SCR-Reaktion (R 2.54). Die Reaktionsgeschwindigkeiten der vier SCR-Reaktionen stehen im Temperaturbereich von 150 - 500 °C im Zusammenhang nach Gleichung G 2.2.

$$v_{R-2.53} > v_{R-2.51} > v_{R-2.54} > v_{R-2.52}$$
 (G 2.2)

Bei Temperaturen unterhalb von 200 °C tritt ist als Produkt der NO_2 - NH_3 -Reaktion Ammoniumnitrat (NH_4NO_3) auf. Dieses Ammoniumnitrat fällt unterhalb von 170 °C als Feststoff aus. Ab ca. 170 °C wird das Ammoniumnitrat in Ammoniak und Salpetersäure (HNO_3) zersetzt, sofern das Produkt der Partialdrücke die Gleichgewichtskonstante der Zersetzungsreaktion überschreitet. Der Mechanismus der Ammoniumnitratbildung wird von Koebel et al. [77] durch die Reaktion R 2.55 beschrieben. Es werden bei dieser Reaktion 50 % des Stickstoffdioxids zu N_2 umgesetzt.

$$2NH_3 + 2NO_2 \longrightarrow NH_4NO_3 + N_2 + H_2O \tag{R 2.55}$$

Oberhalb von 260 °C wird das Ammoniumnitrat nach den Reaktionen R2.56 und R2.57 zersetzt.

$$2NH_4NO_3 \longrightarrow 2N_2 + O_2 + 4H_2O \tag{R 2.56}$$

$$NH_4NO_3 \longrightarrow N_2O + 2H_2O$$
 (R 2.57)

Die Reaktion R 2.56 ist als stark exotherme Reaktion mit zusätzlicher Sauerstoffbildung (explosive Ammoniumnitratzersetzung) bekannt, setzt aber eine Initialzündung voraus. In Hinblick auf die Sekundäremission von Lachgas (N₂O), ist die Reaktion R 2.57 ein unerwünschter Effekt der katalytischen Reduktion. Unter stickstoffmonoxidhaltiger Atmosphäre wird von Grossale et al. [55] eine Zersetzung des Ammoniumnitrates nach Reaktion R 2.58 zu Stickstoffdioxid, Stickstoff und Wasser nachgewiesen.

$$NH_4NO_3 + NO \longrightarrow NO_2 + N_2 + 2H_2O$$
 (R 2.58)

Erkennbar ist dies in der temperaturprogrammierten Reaktion (vgl. Abb. 2.12 (D)), für einen mit Ammoniumnitrat beaufschlagten SCR-Katalysator, in Abwesenheit von Stickstoffdioxid. Das bei der Zersetzung des Ammoniumnitrates entstehende NO_2 befähigt die Fast-SCR-Reaktion im Temperaturbereich von 150-250 °C. Nachdem die Ammoniumnitratzersetzung abgeschlossen ist, folgt die NO-Umsetzung dem Mechanismus der Slow-SCR-Reaktion.

Einsatz und Aufbereitung von Ammoniakvorläufersubstanzen für die NH₃-SCR-Reaktion

Da Ammoniak in wasserfreier Form als Gefahrstoff gilt [1], wird das Reduktant in Vorläufersubstanzen bzw. chemisch gebunden im Fahrzeug mitgeführt. Als Vorläufersubstanzen sind zum Einen Harnstoff (vgl. Abb. 2.13 (a)) in fester und gelöster Form, zum Anderen Ammoniumsalze wie Ammoniumcarbamat (vgl. Abb. 2.13 (b)) und Ammoniumformiat (vgl. Abb. 2.13 (c)) bekannt [81].

Abb. 2.13.: Ammoniakvorläufersubstanzen für Fahrzeuganwendungen

Bei heute eingesetzten SCR-Anwendungen wird überwiegend in Wasser gelöster Harnstoff (AdBlue[®]) in einer Konzentration von 32,5 Gew.-% als Reduktionsmittel verwendet. Durch die chemische Zersetzung von Harnstoff wird Ammoniak für die SCR-Reaktionen zur Verfügung gestellt. Kröcher et al. [80] beschreiben den Mechanismus der Zersetzung von Harnstoff durch die Thermolyse- und Hydrolysereaktion. Die Thermolysereaktion (R 2.59, R 2.60) wird durch die Zersetzung von gelöstem Harnstoff ((NH₂)₂CO) in Isocyansäure (HNCO) und Ammoniak (NH₃), unter Ausdampfen von Wasser, bei Temperaturen ab ca. 150 °C, charakterisiert.

$$NH_2 - CO - NH_2(aq) \longrightarrow NH_2 - CO - NH_2(l) + xH_2O(g)$$
 (R 2.59)

$$NH_2 - CO - NH_2(l) \longrightarrow NH_3(g) + HNCO(g)$$
 (R 2.60)

Die Hydrolysereaktion (R 2.61) beschreibt die Zersetzung von Isocyansäure (HNCO) mit Wasser zu Ammoniak (NH₃) und Kohlenstoffdioxid (CO_2).

$$HNCO(g) + H_2O \longrightarrow NH_3(g) + CO_2(g)$$
 (R 2.61)

Koebel et al. [76] weisen in ihren Untersuchungen zusätzliche Nebenprodukte wie Biuret, Cyanursäure und weitere Triazine nach. Biuret entsteht aus Isocyansäure und Harnstoff bei Temperaturen oberhalb von ca. 150 °C. Cyanursäure entsteht bei Temperaturen oberhalb von ca. 300 °C aus Isocyansäure. Untersuchungen von Eichelbaum et al. [32] zeigen, dass sich die Hydrolysereaktion (R 2.61), durch den Einsatz eines eisenausgetauschten Zeolithkatalysators, beschleunigen lässt.

Piazzesi et al. [114] belegen die Hydrolyseeigenschaften von Fe-Zeolith-Katalysatoren. Weitere Untersuchungen zeigen, dass sich durch die Verwendung von V₂O₅/WO₃-TiO₂-Katalysatoren der hydrolytische Umsatz von Isocyansäure speziell bei Temperaturen zwischen 150 °C und 250 °C steigern lässt. In der technischen Anwendung ist die Emission von NH_3 , bedingt durch sog. Ammoniakschlupf, eine Herausforderung bei der Festlegung der Betriebsstrategie von SCR-Systemen. Insbesondere in Kraftwerksanwendungen ist dies, infolge der hohen Anforderungen bzgl. NO_X -Konversionsraten, ein Problem. In Fahrzeuganwendungen wird die Betriebsstrategie so ausgelegt, dass NH_3 -Schlupf vermieden wird. Das führt dazu, dass zur Vermeidung des NH_3 -Schlupfes der Wirkungsgrad des SCR-Systems nicht in allen Betriebsbereichen vollständig ausgereizt werden kann.

Technische Ausführung eines SCR-Systems zur Reduktion von Stickstoffoxiden mit Ammoniak

Aktuellste SCR-Abgasnachbehandlungskonzepte für Dieselmotoren in PKW-Anwendungen zeichnen sich durch die Anordnung gemäß Abb. 2.14 aus. Bei diesen Konzepten ist der Dieseloxidationskatalysator (DOC) möglichst motornah positioniert. Der nachgeschaltete Dieselpartikelfilter (cDPF) ist ebenfalls mit einem edelmetallhaltigen Washcoat beschichtet. Die motornahe Anordnung ermöglicht ein schnelles Light-Off von DOC und cDPF.

Abb. 2.14.: Anordnung der Komponenten für eine SCR-Anwendung mit Dieseloxidationskatalysator (DOC), beschichtetem Dieselpartikelfilter (cDPF) und SCR-Katalysator

Die Beschichtung des DOCs ist auf die Oxidation von Kohlenwasserstoffen und Kohlenstoffmonoxid optimiert. Für die Optimierungen von HC- und CO-Umsatz werden die Edelmetalle Platin und Palladium in ausgewogenem Verhältnis verwendet. Die Beschichtung des Dieselpartikelfilters ist auf eine Optimierung des NO_2/NO_X -Verhältnisses ausgelegt. Als Edelmetalle werden hier Platin, Palladium und Rhodium eingesetzt. Um den Umsatz von NO zu NO_2 speziell bei niedrigen Temperaturen zu erhöhen, werden die Platinanteile im Washcoat erhöht.

Hinter dem cDPF befindet sich die Dosiereinrichtung für die Harnstoffwasserlösung. Diese besteht aus einem luftgekühlten Injektor, der mit einem pulsweitenmoduliertem Taktsignal betätigt wird. Die Zuführung des Reduktionsmediums erfolgt aus einem Tank mit Überdruck. Um eine optimale Durchmischung von Ammoniak im Abgasstrom zu erreichen, wird eine Turbulenz mit einem Drallmischer im Abgasstrang erzeugt. Diese Mischeinrichtung ist hinter der Eindosierstelle positioniert, sodass das Reduktionsmittel auf den Mischer gespritzt wird. Durch eine Leitschaufelüberdeckung des Drallmischers wird ein direktes Durchdringen der Flüssigkeitströpfchen verhindert. Somit wird sichergestellt, dass die Trägerflüssigkeit bereits vor der Turbulenz im Abgasrohr verdampft. Im Unterboden ist der SCR-Katalysator positioniert. Die Rohrführung von der Eindosierstelle bis zum Eintritt in den darauf folgenden SCR-Katalysator wird als Mischstrecke bezeichnet. Durch die optimale Abstimmung von Drallmischer und Mischstrecke kann eine NH_3 -Gleichverteilung von 95-99 % erreicht werden.

3. Motivation und Aufgabenstellung

3.1. Motivation

Die effizienteste Möglichkeit NO_X-Emissionen von Dieselmotoren zu reduzieren stellt heute die SCR-Technologie dar. Durch die Entkopplung der NO_X-Emissionen von den Betriebsparametern des Motors lassen sich nicht nur die Stickstoffoxidemissionen effizient minimieren, sondern auch gleichzeitig die CO₂-Emissionen senken. Die Effizienz dieser Systeme ist, wie bei anderen Abgasnachbehandlungssystemen auch, stark von der Temperatur des Katalysators abhängig. Aufgrund von Platzproblemen wird in PKW-Anwendungen der SCR-Katalysator in der Regel im Fahrzeugunterboden positioniert. Das führt dazu, dass der SCR-Katalysator, infolge der thermischen Massen der vorgeschalteten Katalysatoren und den Temperaturverlusten an den Rohrwänden, einige Zeit benötigt, bis er die Light-Off-Temperatur von ca. 170 °C (vgl. Abb. 2.12) erreicht. Diese Zeit bis zum Katalysator-Light-Off ist der emissionsbestimmende Faktor bei der Betriebsstrategie von SCR-Systemen. Betrachtet man den Verlauf der Temperatur vor dem SCR-Katalysator in einem niedriglastigen Fahrzyklus, wie dem Neuen Europäischen Fahrzyklus (NEFZ), wird deutlich, dass die Light-Off-Temperatur erst relativ spät im Fahrzyklus erreicht wird. Abb. 3.1 zeigt den Verlauf der Temperatur vor dem SCR-Katalysator in diesem Fahrzyklus. Zudem ist in der Abbildung die relative Häufigkeit aufgetragen, in der das System im NEFZ unterhalb bzw. oberhalb der Light-Off-Temperatur von ca. 170 °C betrieben wird. Für eine aktuelle Fahrzeugvariante der Mittelklasse (Abb. 3.1: Referenz) ergibt sich ein Anteil von ca. 42 % im Fahrzyklus, in dem die SCR-Reaktion in hinreichender Form abläuft. Geht man davon aus, dass die CO₂-Emissionen sukzessiv gesenkt werden, sinkt die Temperatur im Abgassystem ebenfalls ab (vgl. Abb. 3.1: -10 % CO₂ und -20 % CO₂). Der Anteil, in dem das SCR-System oberhalb der Light-Off-Temperatur betrieben werden kann, geht damit deutlich zurück. Dies zeigt die Klassierung der Temperatur vor dem SCR-Katalysator für eine Variante mit 10 % und 20 % abgesenkten CO₂-Emissionen. Bei der Absenkung der CO₂-Emissionen um 20 %, ist noch ein Anteil von ca. 24 % im Fahrzyklus zu erwarten, in dem das SCR-System effizient genutzt werden kann.

Abb. 3.1.: Verlauf der Temperatur vor dem SCR-Katalysator und klassierte Temperatur vor dem SCR-Katalysator in den Klassen 0-170 °C und 170-340 °C im NEFZ-Fahrzyklus

Die mit der Absenkung der CO_2 -Emissionen einhergehenden Verluste in der Konversionsfähigkeit von SCR-Systemen lassen sich über Heizmaßnahmen kompensieren. Die heutigen Möglichkeiten zur aktiven Heizung von Abgaskomponenten sind bspw. Verschieben der Verbrennungslage, Nacheinspritzstrategie oder elektrische Beheizung. Alle Heizmaßnahmen haben aber wiederum einen negativen Einfluss auf die CO_2 -Bilanz. Somit lässt sich der NO_X -Verbrauchs-Trade-Off nur in Grenzen aufbrechen.

Eine Strategie, die Effizienz von SCR-Anwendungen auch im Kaltstart zu optimieren, ist der motornahe Einsatz von passiven NO_X -Adsorbern. Diese sollen zum Einen die Funktion des DOC übernehmen und zum Anderen die NO_X -Emissionen während der Kaltstartphase adsorbieren. Ziel ist es, dass die gespeicherten Stickstoffoxide bei betriebsbereitem SCR-System wieder desorbiert und am SCR-Katalysator mit Ammoniak umgesetzt werden. Diese Systemkomponente wird als "passiv" bezeichnet, da keine aktive Regeneration des NO_X -Adsorbers notwendig ist, um die Stickstoffoxide zu desorbieren und am Speicherkatalysator selber umzusetzen.

Die Betriebsstrategie aktueller SCR-Systeme beinhaltet eine Ammoniakzumengung für den SCR-Umsatz gemäß der NO_X -Rohemissionen des Motors. Durch das Adsorbieren und Desorbieren eines zwischengeschalteten NO_X -Adsorbers entsprechen die NO_X -Rohemissionen des Motors zum Zeitpunkt t nicht mehr den Emissionen, die zum selben Zeitpunkt am SCR-Katalysator umzusetzen sind. Demzufolge muss auch die dosierte Ammoniakmenge den veränderten NO_X -Emissionen angepasst werden. Dazu ist es notwendig das Adsorptions- und Desorptionsverhalten von passiven NO_X -Adsorbern im Motorsteuergerät berechnen zu können.

3.2. Aufgabenstellung

Die für die Dissertation zu Grunde gelegte Aufgabe ist in zwei Teile gegliedert. Erstens ist für den Einsatz von passiven NO_X -Adsorbern eine Bewertung von aktuellen Katalysatortechnologien vorzunehmen. Im Fokus stehen hierbei die generelle Adsorptionscharakteristik sowie die Alterungs- und Schwefelbeständigkeit der zu untersuchenden Katalysatoren. Im zweiten Teil ist ein mathematisches Modell für die Abbildung des Adsorptions- und Desorptionsverhaltens von einer Katalysatortechnologie in der Motorsteuergeräteumgebung zu entwickeln. Im Fokus stehen hierbei eine minimale Komplexität sowie eine ressourcenschonende Kalibrierstrategie.

Es werden folgende Ziele für die Arbeit definiert:

- Ausführliche Recherche des aktuellen Stand der Technik zur Abgasnachbehandlung von dieselmotorischen Antrieben.
- Charakterisierung und Bewertung von vier Katalysatortechnologien zur Eignung als passiver NO_X-Adsorber unter Berücksichtigung von Alterung und Verschwefelung unter synthetischen Rahmenbedingungen.
- Nachweis der Prinziptauglichkeit von passiven NO_X-Adsorbern unter Realbedingungen im Fahrzeug mit dem Fokus auf Weiterentwicklungsfelder.
- Entwicklung eines mathematischen Modells zur Beschreibung des Adsorptionsund Desorptionsverhaltens nach vorheriger Literaturrecherche.
- Kalibrierung des mathematischen Modells für eine ausgewählte Katalysatortechnologie mit dem Fokus auf einen einfachen Kalibrierprozess.
- Detaillierte Dokumentation der Kalibrierstrategie mit einzelnen Schritten.
- Erstellen eines onlinefähigen Modells in Simulink und Nachweis der Prinziptauglichkeit des Modellansatzes durch Validierung unter Realbedingungen im Fahrzeug.

4. Grundlagen zur Modellbildung

Für die mathematische Abbildung eines Systems ist es notwendig die Systemantwort, in Abhängigkeit von den Eingangsgrößen, zu bestimmen. Um das Verhalten solcher Systeme abbilden zu können, werden bei einfachen Systemen chemische, physikalische oder chemisch-physikalische Zusammenhänge bestimmt und mathematisch beschrieben. Für einfache Systeme ergeben sich so rechenbare Modelle. Bei komplexen Systemen führt die vollständige Abbildung der chemisch-physikalischen Zusammenhänge zu großen Modellen, die nur mit sehr leistungsfähigen Prozessoren rechenbar sind. Um diese komplexen Modelle auch für weniger leistungsfähige Prozessoren handhabbar zu gestalten, ist es notwendig diese Modelle zu vereinfachen. Hierbei entsteht in der Regel ein Konflikt aus Rechenzeit und Genauigkeit für die Modelle.

Eine Methode, die für die vereinfachte Abbildung komplexer Modelle eingesetzt wird, ist **Design of Experiments** (DoE). Bei diesem Verfahren werden sogenannte Black-Box-Modelle erstellt, die das Systemverhalten mit Hilfe von Approximationsmodellen abbilden. Diese Regressionsmodelle bilden den mathematischen Zusammenhang zwischen Eingangs- und Ausgangsgröße, in einfacher Form, mit Funktionen linearer, quadratischer oder kubischer Ordnung ab. Der chemisch-physikalische Zusammenhang wird hierbei vernachlässigt. Die Eingangsgrößen auf das Modell heißen Parameter. Diese Parameter beinhalten neben den gewünschten Modelleingangsgrößen (sog. Faktoren) auch Störgrößen. Die Störgrößen werden durch die Summe aller unerwünschten Einflüsse definiert und zum Einen durch die Schwankung der Faktoren, zum Anderen durch die Schwankung der weiteren Randbedingungen gebildet.

Um ein Regressionsmodell zu definieren, wird die Antwort des zu beschreibenden Systems auf die Faktoren bestimmt. Die mittelbare Antwort auf die Messgröße durch die Variation eines Faktors wird als Haupteffekt oder auch Faktoreffekt bezeichnet. Wirkt sich die Antwort durch die Variation eines Faktors bei der Variation eines anderen Faktors unterschiedlich aus, spricht man zusätzlich von Wechselwirkungseffekten oder auch Kovarianzeffekten.

4.1. Regressionsanalyse zur Approximation komplexer funktionaler Zusammenhänge

Um den funktionalen Zusammenhang zwischen Faktor und Effekt im Modell zu erklären, wird die Regressionsanalyse genutzt. Voraussetzung dafür ist, dass der mathematische Zusammenhang (Regressionsmodell) bekannt ist. In der Anwendung wird auf Polynome zur Approximation zurückgegriffen, die sich aus dem **Satz von Taylor** herleiten lassen. Der Satz von Taylor besagt, dass eine stetige Funktion, die n + 1 mal stetig differenzierbar ist, durch die Gleichung G 4.1 approximiert werden kann. Da viele Phänomene in der Technik und Natur stetig sind, ist es zulässig die Approximation durch Taylorpolynome durchzuführen [107].

$$T(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_{n+1}(x, a)$$
(G 4.1)

$T(\mathbf{x})$	= Taylorfunktion in x	[-]
а	= Punkt der Approximation	[-]
f(a)	= Funktion von a, $n + 1 - mal$ differenzierbar	[-]
f'(a)	= erste Ableitung der Funktion von a	[-]
$f^{(n)}(a)$	= n-te Ableitung der Taylorfunktion in a	[-]
$R_{n+1}(x,a)$	= Restglied	[-]

In der einfachsten Form folgt aus diesem Satz eine lineare Approximation im Punkt a ohne Restglied R, die gerade die Tangente an der Funktion f im Punkt a wiedergibt.

$$T(x) = f(a) + f'(a)(x - a)$$
(G 4.2)

Wie schon erwähnt, werden zur Erstellung von Regressionsmodellen oft lineare, quadratische oder auch kubische Funktionen genutzt, die ebenso aus Taylorreihen entwickelt werden können. Die Vorgehensweise zur Bildung eines solchen Regressionsmodells soll anhand eines Beispiels erläutert werden. Zur Bestimmung des Schätzwertes \hat{y} mit Hilfe eines Regressionsmodells T(x) mit additivem stochastischen Fehler ϵ gilt im Allgemeinen folgende Form [39]:

$$\hat{y} = T(x) + \epsilon \tag{G 4.3}$$

$\hat{\mathcal{Y}}$	= Schätzwert	[-]
$T(\mathbf{x})$	= Regressionsfunktion (Taylorpolynom)	[-]
ε	= stochastischer Fehler	[-]

Geht man von der quadratischen Abhängigkeit der Zielfunktion auf einen Faktor aus, so ergibt sich die Regressionsfunktion nach Gleichung G 4.4 aus der Vereinfachung des Satzes von Taylor.

$$T(x) = \beta_{1,1} \cdot x^2 + \beta_1 \cdot x + \beta_0$$
 (G 4.4)

$T(\mathbf{x})$	= Regressionsfunktion (Taylorpolynom)	[-]
$eta_{1,1}$	= quadratischer Regressionskoeffizient	[-]
eta_1	= linearer Regressionskoeffizient	[-]
$oldsymbol{eta}_0$	= konstanter Regressionskoeffizient	[-]
X	= Regressor	[-]

Wirken die Einflüsse von mehr als einem Regressor auf die Schätzfunktion, spricht man von multipler Regression. Für die Bestimmung der Schätzfunktion wird der Ansatz aus Gleichung G 4.4 verallgemeinert. Es ergibt sich Gleichung G 4.5 mit zusätzlichen Wechselwirkungseinflüssen, sog. Zweifachwechselwirkungen.

$$T(x) = \underbrace{\sum_{i=1}^{K} \beta_{i,i} \cdot x_{i}^{2}}_{A} + \underbrace{\sum_{i=1}^{K} \beta_{i} \cdot x_{i}}_{B} + \underbrace{\sum_{i=1}^{K-1} \sum_{j=i+1}^{K} \beta_{i,j} \cdot x_{i} \cdot x_{j}}_{C} + \underbrace{\beta_{0}}_{D}$$
(G 4.5)

$$T(x) = \text{Regressionsfunktion (Taylorpolynom)}$$
[-]

$$\beta_{i,i}$$
 = quadratischer Regressionskoeffizient [-]

$$\beta_i$$
 = linearer Regressionskoeffizient [-]

$$\beta_{i,j}$$
 = Regressionskoeffizient der Zweifachwechselwirkungen [-]

$oldsymbol{eta}_0$	= konstanter Regressionskoeffizient	[-]
X	= Regressor	[-]
Κ	= Anzahl der Regressoren	[-]

Dabei bildet der Term A die quadratische, Term B die lineare, Term C die Wechselwirkung (Kovarianz) und Term D die konstante Abhängigkeit der Schätzung auf den Regressor ab.

Steht anfangs fest, dass die Beschreibung mittels dieser Funktionen zu einem systematischen Fehler führt, lassen sich nichtlineare Modellansätze auf eine lineare Form zurückführen. Ist in diesem Anwendungsfall bekannt, dass exponentielle Zusammenhänge beschrieben werden, so dass der exponentielle Ansatz linearisiert wird. Der exponentielle Zusammenhang zwischen Eingangs- und Ausgangsgröße wird als G 4.6 definiert.

$$T(x) = \beta_1 \cdot e^{\beta_2 \cdot x} + \epsilon \tag{G 4.6}$$

$T(\mathbf{x})$	= Regressionsfunktion (Taylorpolynom)	[-]
$oldsymbol{eta}_1$	= präexponentieller Regressionskoeffizient	[-]
$oldsymbol{eta}_2$	= exponentieller Regressionskoeffizient	[-]
x	= Regressor	[-]
ε	= stochastischer Fehler	[-]

Lässt man die Vereinfachung zu, dass der stochastische Fehler $\epsilon_i = 1$ ist, lässt sich die Gleichung G 4.6 durch Logarithmieren linearisieren. Über eine Regressionsgerade der Form $\gamma = b + m \cdot x$ ist die Funktion in dieser Form definierbar und lässt sich lösen.

$$ln(\hat{y}) = ln(T(x)) = ln(\beta_1) + \beta_2 \cdot x$$
 (G 4.7)

$\hat{\mathcal{Y}}$	= Schätzwert	[-]
$T(\mathbf{x})$	= Regressionsfunktion (Taylorpolynom)	[-]
eta_1	= exponentieller Regressionskoeffizient	[-]
$oldsymbol{eta}_2$	= exponentieller Regressionskoeffizient	[-]
x	= Regressor	[-]

Diese Vereinfachung ist speziell bei Exponentialfunktionen nicht generell umsetzbar. Für komplexe exponentielle Zusammenhänge werden deshalb komplexe numerische Verfahren zur Regressionsanalyse eingesetzt.

Mit den Regressionskoeffizienten β_1 und β_2 lässt sich für den Faktor x ein Schätzwert \hat{y} durch das Modell berechnen. Ziel der Regression ist es, diesen funktionalen Zusammenhang mit minimaler Fehlersumme an die Messdaten anzupassen. Hierzu werden die Parameter β_1 und β_2 berechnet bzw. gefittet.

4.1.1. Parameterfitting anhand einer Fehleranalyse

Neben dem stochastischen Fehler treten bei der Regressionsanalyse Modellierungsfehler auf. Diese Modellierungsfehler sind systematische Abweichungen durch eine mangelnde Modellgenauigkeit. Die Summe dieser systematischen Fehler für jedes Messwertpaar (x_i , y_i) gilt es zu minimieren. Der Fehler einer Regression im Messpunkt x_i wird über die Differenz von modelliertem Wert \hat{y}_i zu gemessenem Wert y_i bestimmt [39].

$$y_{\text{err},i} = y_i - \hat{y}_i = y_i - T(x) - \epsilon_i, \quad i = 1...N$$
(G 4.8)

$\mathcal{Y}_{\mathrm{err},i}$	= Abweichung des Schätzwertes vom Messwert in Messpunkt i	[-]
${\mathcal Y}_i$	= Messwert in Messpunkt i	[-]
$\hat{\mathcal{Y}}_i$	= Schätzwert in Messpunkt i	[-]
$T(\mathbf{x})$	= Regressionsfunktion (Taylorpolynom)	[-]
ϵ_i	= stochastischer Fehler in Messpunkt i	[-]
N	= Anzahl der Messungen	[-]

Je nach Abweichung des Messwertes y_i vom Schätzwert \hat{y}_i kann dieser Fehler positiv oder negativ sein. Das führt dazu, dass eine Fehlersumme auch dann Null sein kann, wenn große Fehler unterschiedlicher Vorzeichen auftreten. Um diesen Fall auszuschließen, wird die Summe der Fehlerquadrate gebildet (vgl. G 4.9). Diese Summe ist in jedem Fall größer Null, sobald ein Fehler $y_{err,i} \neq 0$ auftritt.

$$\sum_{i=1}^{N} y_{\text{err},i}^{2} = \sum_{i=1}^{N} (y_{i} - T(x) - \epsilon_{i})^{2}, \quad i = 1...N$$
 (G 4.9)

Diese Funktion gilt es zu minimieren. In der praktischen Anwendung wird die Funktion G 4.10 durch den Nelder-Mead-Simplex-Algorithmus (Polyedermethode) iterativ gelöst. Ergebnis aus der Berechnung sind die Regressionskoeffizienten als Fitparameter der Funktion T(x).

$$\min_{\alpha,\beta} \sum_{i=1}^{N} y_{\text{err},i}^{2} = \min_{\alpha,\beta} \sum_{i=1}^{N} (y_{i} - T(x) - \epsilon_{i})^{2}, \quad i = 1...N$$
(G 4.10)

4.1.2. Analyse der Modellgenauigkeit

Mit der Residuenanalyse kann überprüft werden, wie genau jeder einzelne Messpunkt von einem Modell berechnet werden kann. So kann die Güte des Modells für die einzelnen Messwerte bestimmt werden. Das Residuum im Messpunkt x_i entspricht gerade dem Fehler $y_{err,i}$ für i = 1...N.

Um die Gesamtgüte des Modells zu bewerten, wird eine Zerlegung der Messwertstreuung vorgenommen. Hierzu ist vorab der Mittelwert der Messwerte \bar{y} zu definieren:

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i, \quad i = 1...N$$
 (G 4.11)

$ar{\mathcal{Y}}$	= Mittelwert der Messwerte	[-]
N	= Anzahl der Messungen	[-]
${\mathcal Y}_i$	= Messwert in Messpunkt i	[-]

Die Messwertstreuung s_{tot} wird in einen Regressionsanteil s_{reg} und einen Residualteil (Restteil) s_{res} zerlegt. Diese Terme werden wiederum über die Summe der quadrierten Abweichung definiert. Die Messwertstreuung s_{tot} gibt dabei Aufschluss über die Abweichung der Messwerte vom Mittelwert, der Regresionsanteil s_{reg} über die Abweichung der Modellwerte vom Mittelwert und der Residualanteil s_{res} über den Fehler $y_{err,i}$.

$$\sum_{i=1}^{N} (y_i - \bar{y})^2 = \sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
(G 4.12)

${\mathcal Y}_i$	= Messwert in Messpunkt i	[-]
$ar{\mathcal{Y}}$	= Mittelwert der Messwerte	[-]
$\hat{\mathcal{Y}}_i$	= Modellwert in Messpunkt i	[-]
Stot	= Messwertstreuung	[-]
Sreg	= Modellwertstreuung	[-]
Sres	= Residualstreuung	[-]
N	= Anzahl der Messungen	[-]

Das Maß für die Gesamtgüte des Modells lässt sich nun über den Quotienten der Regressionsstreuung s_{reg} zur Gesamtstreuung s_{tot} bewerten. Dieses Maß heißt Bestimmtheitsmaß oder Determinationskoeffizient R^2 [39, 70].

$$R^{2} = \frac{s_{reg}}{s_{tot}} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}} = 1 - \frac{s_{res}}{s_{tot}} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$
(G 4.13)

R^2	= Determinationskoeffizient	[-]
Sreg	= Modellwertstreuung	[-]
Stot	= Messwertstreuung	[-]
$\hat{\mathcal{Y}}_i$	= Modellwert in Messpunkt i	[-]
$ar{\mathcal{Y}}$	= Mittelwert der Messwerte	[-]
${\mathcal Y}_i$	= Messwert in Messpunkt i	[-]
Sres	= Residualstreuung	[-]
N	= Anzahl der Messungen	[-]

Der Determinationskoeffizient nimmt Werte zwischen Null und Eins an. Ein Determinationskoeffizient von Null besagt, dass die gesamte Messwertstreuung residualbestimmt ist. Die Streuung der Messwerte kann durch das Modell nicht wiedergegeben werden. Ein Determinationskoeffizient von Eins besagt, dass die gesamte Messwertstreuung regressionsbestimmt ist. Die Streuung der Messwerte kann durch das Modell zu 100 % vorhergesagt werden.

Um die Anzahl der Freiheitsgrade in der Modellgleichung ebenfalls zu bewerten, werden zusätzlich die Anzahl der Messwerte und die Anzahl der unabhängigen Modell-Regressionskoeffizienten einbezogen. Es errechnet sich der angepasste Determinationskoeffizient nach Gleichung G 4.14 [6].

$$R_{adj}^{2} = 1 - \frac{\frac{s_{res}}{N-f}}{\frac{s_{tot}}{N-1}} = 1 - \frac{\frac{\sum\limits_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\frac{N-f}{\sum\limits_{i=1}^{N} (y_{i} - \bar{y})^{2}}}{\sum\limits_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$
(G 4.14)

R^2_{adj}	= angepasster Determinationskoeffizient	[-]
Sres	= Residualstreuung	[-]
N	= Anzahl der Messungen	[-]
f	= Anzahl der Freiheitsgrade	[-]
Stot	= Messwertstreuung	[-]
${\mathcal Y}_i$	= Messwert in Messpunkt i	[-]
$\hat{\mathcal{Y}}_i$	= Modellwert in Messpunkt i	[-]
$ar{\mathcal{Y}}$	= Mittelwert der Messwerte	[-]

Diese Betrachtung ist insbesondere notwendig, wenn nur eine geringe Anzahl an Messungen vorliegt. Der angepasste Determinationskoeffizient nimmt Werte zwischen $-\infty$ und Eins an. Auch hier definiert ein Wert von Eins eine verlässliche Modellqualität. Liegt im Verhältnis zu den Freiheitsgraden (*P*) eine große Anzahl an Messwerten (*N*) vor, so sind die beiden Determinationskoeffizienten R^2 und R^2_{adj} nahezu gleich. Weisen die beiden Determinationskoeffizienten stark unterschiedliche Werte auf, sollte die Anzahl der Freiheitsgrade im Modell verringert werden, um die Verlässlichkeit mit einer geringen Anzahl an Messwerten zu erhöhen.

Ein weiteres Bewertungskriterium für die Güte eines Modells ist der vorhersehbare Determinationskoeffizient R_{pred}^2 . Bei dem vorhersehbaren Determinationskoeffizient wird die Vorhersehbarkeit jedes einzelnen Modellwertes beurteilt. Die Berechnung erfolgt nach Gleichung G 4.15. Es wird betrachtet, welcher Modellwert $\hat{y}_{(i)}$ sich ergibt, wenn der Messwert y_i gerade nicht zur Berechnung des Modells herangezogen wird [6].

$$R_{pred}^{2} = 1 - \frac{PRESS}{s_{tot}} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{(i)})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$
(G 4.15)
R_{pred}^2	= vorhersehbarer Determinationskoeffizient	[-]
PRESS	= Predictive Residual Sum of Squares	[-]
Stot	= Messwertstreuung	[-]
${\cal Y}_i$	= Messwert in Messpunkt i	[-]
$\hat{\mathcal{Y}}^{(i)}$	= Modellwert in Messpunkt i, ohne Berücksichtigung von y_i	[-]
$ar{\mathcal{Y}}$	= Mittelwert der Messwerte	[-]
N	= Anzahl der Messungen	[-]

Zur Bestimmung der Modellgüte werden Schwellwerte für diese drei Bewertungskriterien definiert. Es ergibt sich die Bewertungsmatrix nach Tab. 4.1. Die Priorisierung der Bewertungskriterien erfolgt analog der Auflistung in der Tabelle.

Tab. 4.1.: Bewertungsmatrix zur Bestimmung der Modellgüte anhand der Bewertungskriterien [6].

Kriterium	sehr gut	gut	mittel	schwach
R^2	$\geqq 0,95$	≧ 0 , 80	$\geqq 0,50$	< 0,50
R^2_{adj}	$\geqq 0,95$	≧ 0 , 80	≧ 0, 50	< 0,50
R_{pred}^2	$\geqq 0,90$	≧ 0,60	$\geqq 0,40$	< 0,40

4.1.3. Vereinfachung von Regressionsmodellen

Bei Regressionnmodellen mit einer großen Anzahl an Faktoren lassen sich einige Modellterme streichen, ohne die Modellgüte signifikant zu verschlechtern. Hierzu wird der Einfluss jedes standardisierten Modellkoeffizienten auf das Gesamtmodell bewertet. Ist der Einfluss eines standardisierten Modellkoeffizienten im Verhältnis zur statistischen Sicherheit gering, kann angenommen werden, dass der Modellkoeffizient nicht zur Steigerung der Modellgüte beiträgt. Diese Modellkoeffizienten werden aus dem Modellpolynom gestrichen. Da das Streichen der Modellterme das Modell selber beeinflusst, ist es relevant, mit welchem Modellterm und mit welchem Initialmodell die Signifikanzanalyse begonnen wird. In den folgenden Fällen wird ausschließlich mit der **Backward-Methode** gearbeitet. Das bedeutet, dass im ersten Schritt das volle Modell initialisiert wird. Im zweiten Schritt werden die nichtsignifikanten Modellterme erfasst und der Modellterm mit der geringsten Signifikanz eliminiert. Danach erfolgt die Modellneuberechnung. Dieses Verfahren wird solange angewendet, bis das Stationärkriterium erreicht ist.

4.1.4. Vertrauensbereich und Vorhersagebereich

Der Vertrauensbereich sowie der Vorhersagebereich sind weitere Indikatoren für die Güte eines Modells. Werden die Zielgrößen y_i für die Einflussgröße x_i mehrmals gemessen, so streuen diese Zielgrößen um einen Mittelwert. Ist diese Streuung normalverteilt und weist keine Abhängigkeit von dem Eingangsparameter auf, kann eine Regressionsanalyse durchgeführt werden. Der Mittelwert dieser normalverteilten Zielgrößenstreuung ist \bar{y}_i .

Der Vertrauensbereich für den Mittelwert ist der Bereich um einen Modellwert \hat{y}_i in dem, mit einer vorgegebenen Wahrscheinlichkeit P und einer bestimmten Anzahl von Messungen N_i , der Mittelwert der normalverteilten Streuung \bar{y}_i für den Messpunkt x_i enthalten ist. Für die mathematische Betrachtung des Vertrauensbereiches wird die Varianz der Streuung der Residuen s_R^2 und die Summe der quadrierten Abweichungen der x-Werte $s_{x,tot}$ herangezogen. Die Varianz wird definiert durch die Streuung der Residuen und dem Freiheitsgrad f = N - 2 für die Versuchsanzahl N_i im Messpunkt x_i und die Anzahl der Parameter (β_1 , β_2) [70].

$$s_R^2 = \frac{s_{res}}{f} \tag{G 4.16}$$

S_R^2	= Varianz Residuenstreuung	[-]
Sres	= Residualstreuung	[-]
f	= Freiheitsgrad	[-]

Die Summe der quadrierten Abweichungen der x-Werte $s_{x,tot}$ ist definiert als:

$$S_{x,tot} = \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (G 4.17)

$$s_{x,tot}$$
 = Streuung der x-Werte [-]

= x-Wert in Messpunkt i [-] χ_i [-]

 $\bar{\chi}$ = Mittelwert x-Werte Es ergeben sich für den Vertrauensbereich für den Mittelwert, mit t als Faktor in Abhängigkeit der Wahrscheinlichkeit und des Freiheitsgrades, folgende Grenzen:

$$\hat{y}_{i} - t \cdot \sqrt{s_{R}^{2} \cdot \left(\frac{1}{N_{i}} + \frac{(x_{i} - \bar{x})^{2}}{s_{x,tot}}\right)} \le y_{i} \le \hat{y}_{i} + t \cdot \sqrt{s_{R}^{2} \cdot \left(\frac{1}{N_{i}} + \frac{(x_{i} - \bar{x})^{2}}{s_{x,tot}}\right)}$$
(G 4.18)

$\hat{\mathcal{Y}}_i$	= Modellwert in Messpunkt i	[-]
t	= Faktor studentschen t-Verteilung	[-]
S_R^2	= Varianz Residuenstreuung	[-]
N_i	= Messpunkt i	[-]
x_i	= x-Wert in Messpunkt i	[-]
$ar{\chi}$	= Mittelwert x-Werte	[-]
$S_{x,tot}$	= Streuung der x-Werte	[-]
${\mathcal{Y}}_i$	= Messwert in Messpunkt i	[-]

Der Vorhersagebereich für die Einzelwerte definiert den Bereich um den Modellwert \hat{y}_i in dem, mit einer vorgegebenen Wahrscheinlichkeit *P*, ein erneut gemessener Wert y_i im Messpunkt x_i liegt [70]. Es ergeben sich für den Vorhersagebereich für die Einzelwerte folgende Grenzen:

$$\hat{y}_{i} - t \cdot \sqrt{s_{R}^{2} \cdot \left(1 + \frac{1}{N_{i}} + \frac{(x_{i} - \bar{x})^{2}}{s_{x,tot}}\right)} \leq y_{i} \leq \hat{y}_{i} + t \cdot \sqrt{s_{R}^{2} \cdot \left(1 + \frac{1}{N_{i}} + \frac{(x_{i} - \bar{x})^{2}}{s_{x,tot}}\right)}$$
(G 4.19)

$\hat{\mathcal{Y}}_i$	= Modellwert in Messpunkt i	[-]
t	= Faktor studentschen t-Verteilung	[-]
S_R^2	= Varianz Residuenstreuung	[-]
N_i	= Messpunkt i	[-]
x_i	= x-Wert in Messpunkt i	[-]
$\bar{\chi}$	= Mittelwert x-Werte	[-]
$S_{x,tot}$	= Streuung der x-Werte	[-]
${\cal Y}_i$	= Messwert in Messpunkt i	[-]

Vertrauensbereich für den Mittelwert und Vorhersagebereich für die Einzelwerte werden in der Regel für eine Wahrscheinlichkeit P von 95 % berechnet. Definitionsgemäß ist das Intervall des Vorhersagebereiches für die Einzelwerte größer, als das des Vertrauensbereiches für den Mittelwert.

4.2. Systematische Versuchsplanung im mehrdimensionalen Parameterraum

Die Zusammenhänge in einem mathematischen Polynommodell, mit einer geringen Anzahl an Eingansgrößen *n*, lassen sich mit Hilfe eines systematischen Versuchsplans erfassen. Die Anzahl der Eingangsgrößen (Faktoren) *n* beschreibt hierbei die Dimension des Versuchsraums. So lässt sich für bspw. drei Eingangsgrößen ein dreidimensionaler Versuchsraum aufspannen. Die Anzahl der notwendigen Versuche errechnet sich beim vollfaktoriellen Versuchsplan nach Gleichung G 4.20. Die Anzahl der notwendigen Versuche für eine vollfaktorielle Erfassung der Abhängigkeiten steigt exponentiell mit der Anzahl der Faktoren.

$$N_{\text{Versuche}} = (o_M + 1)^n \tag{G 4.20}$$

N_{Versuche}	= Anzahl der Versuche	[-]
O_M	= geforderte Modellordnung	[-]
n	= Anzahl der Faktoren	[-]

Um alle Effekte linearisiert in diesem Versuchsraum erfassen zu können, sind zwei Faktorstufenvariationen von drei Faktoren notwendig. Es entsteht ein Versuchsumfang von 8 (2^n) Messungen. Ist es notwendig eine quadratische Abhängigkeit der Effekte von den Faktoren zu berücksichtigen, sind drei Faktorstufenvariationen notwendig. Es ergibt sich ein Versuchsumfang von 27 (3^n) Messungen. Abb. 4.1 zeigt links einen dreidimensionalen, vollfaktoriellen Versuchsplan zur Abbildung von quadratischen Effekten in einem Polynommodell. In rot sind die Messpunkte auf den Versuchsraumachsen dargestellt. Blau kennzeichnet die zusätzlichen Punkte, die zur Beschreibung des vollständigen Versuchsraums mit einem quadratischen Modellpolynom incl. Wechselwirkungen notwendig sind.

Aufgrund der exponentiellen Abhängigkeit von der Anzahl der Eingangsgrößen und dem Versuchsumfang, eignen sich systematische Versuche (vollfaktorielle Versuchs-

Abb. 4.1.: Vollfaktorieller 3^3 Versuchsplan (links) mit der Systemantwort (rechts) bei Variation jeweils eines Faktors x_1 , x_2 oder x_3 .

pläne) nicht zu einer vollumfänglichen Abbildung von Effekten bei Modellen mit vielen Eingangsgrößen. Dennoch lassen sich, anhand von systematischen Messungen entlang der Versuchsraumachsen (rote Punkte), Haupteffekte evaluieren. Die Erkenntnisse aus diesen Versuchen lassen ebenso Rückschlüsse auf den minimalen Grad des Modellpolynoms zu. Diese Methode wird auch später genutzt, um gerade diese Aussagen für das Polynommodell zu treffen. Die weitere Vorgehensweise wird in Kap. 8.1 erläutert [132, 38].

4.3. Statistischen Versuchsplanung zur Reduzierung des Versuchsumfangs im n-dimensionalen Parameterraum

Zur Erfassung der systematischen Abhängigkeiten von Eingangsgröße und Systemantwort im mehrdimensionalen Versuchsraum wird die statistische Versuchsplanung (Design of Experiments) eingesetzt. Dieses Verfahren beinhaltet die Optimierung des Versuchsplans aufgrund von vorhandenen Erkenntnissen und statistischen Betrachtungen. Neben dem Wissen über die Hauptabhängigkeiten eines Modells (Anzahl der relevanten Faktoren) hat bei der DoE-Methode ebenso das Wissen über den minimal notwendigen Grad des Modellpolynoms Einfluss auf den Umfang und die Struktur des statistischen Versuchsplans. Mit Hilfe dieser Versuchsmethode gelingt es den Versuchsumfang, bei geringstem Informationsverlust, zu minimieren. Dabei werden in der Regel "zusammengesetzte" oder "optimale" Versuchspläne verwendet. **Zusammengesetzte Versuchspläne** bestehen bspw. aus einem linearen vollfaktoriellen Versuchsplan und einem sog. Stern. Der vollfaktorielle Versuchsplan bildet die Abhängigkeiten linearisiert ab. Zur Bestimmung der Nichtlinearitäten zwischen Eingangs- und Ausgangsgröße, werden weitere Versuche, ausgehend vom Versuchsraumzentrum, in einem Sternmuster durchgeführt. **Optimale Versuchspläne** werden aus vollfaktoriellen Versuchsplänen erstellt. Es besteht der Vorteil, dass bereits bei der Planung der Versuche für jeden Einflussparameter, diejenigen Bereiche ausgeschlossen werden können, die wissentlich zu keinem sinnvollen Ergebnis führen. Zudem besteht die Möglichkeit, je nach benötigtem Grad des Modellpolynoms, die Anzahl der Faktorstufen für jeden Einflussfaktor separat zu definieren. [70] Die Anzahl der notwendigen Versuche berechnet sich nach Gleichung G 4.21.

$$N_{\text{Versuche}} = \frac{(o_M + n)!}{o_M! \cdot n!} \cdot S + WP \tag{G 4.21}$$

N_{Versuche}	= Anzahl der Versuche	[-]
O_M	= geforderte Modellordnung	[-]
n	= Anzahl der Faktoren	[-]
S	= statistischer Sicherheitsfaktor (1,251,5)	[-]
WP	= Wiederholpunkte (1020 %)	[-]

Am Beispiel des quadratischen Modells für alle Faktoren in einem dreidimensionalen Versuchsraum ergibt sich ein Versuchsumfang von ca. 14 bis 18 Messungen. Im Vergleich zu einem vollfaktoriellen Versuchsplan lässt sich somit eine Optimierung des Versuchsumfangs von ca. 33 - 49 % erreichen, je nach statistischem Sicherheitsfaktor und Anzahl der Wiederholpunkte. Wird die Anzahl der Einflussfaktoren für die Modellerstellung deutlich erhöht, unterscheiden sich die Versuchsumfänge von vollfaktoriellem und D-optimalem Versuchsplan signifikant. Dies soll anhand eines Beispiels mit der geforderten Modellordnung von $o_M=2$ und einer Anzahl von Faktoren n=7 verdeutlicht werden.

Anzahl Versuche vollfaktorieller Versuchsplan	$N_{\text{Versuche}} = 2187$
Anzahl Versuche D-optimaler Versuchsplan	$N_{\text{Versuche}} = 5065$

Zu erkennen ist, dass sich der Versuchsumfang bei der statistischen Versuchsplanung mit den geforderten Randbedingungen auf ca. 2 - 3 % reduziert.

Abb. 4.2 zeigt links einen D-optimalen Versuchsplan und rechts die notwendigen Faktorvariationen zur vollständigen Abbildung der Zusammenhänge von Ein- und Ausgangsgrößen in einem dreidimensionalen Versuchsraum mit drei Faktorstufen.

Abb. 4.2.: D-optimaler Versuchsplan mit drei Faktoren (links) und Tabelle der Stufenvariationen incl. Wiederholpunkt (rechts).

In dieser Grafik sind die Faktorvariationen farbig dargestellt. Der rot gekennzeichnete Punkt wird in der statistischen Versuchsplanung Wiederholpunkt genannt. Diese Faktoreinstellung wird in regelmäßigen Abständen während des Versuchsprogramms wiederholt. Durch die Reproduzierbarkeit der Wiederholungsmessungen werden Rückschlüsse auf die statistische Sicherheit der Versuchsergebnisse gezogen. Wie bereits beschrieben, können in D-optimalen Versuchsplänen einzelne Punkte verschoben bzw. ausgeschlossen werden. Dies ist insbesondere dann interessant, wenn bereits bei der Planung des Versuchsprogramms feststeht, dass einzelne Punkte zu keinem sinnvollen Ergebnis führen oder die Randbedingungen die Faktorstufenvariation nicht zulassen. In der Abb. 4.2 ist dies durch die Verschiebung des grünen Punktes dargestellt.

Elementar für die statistische Sicherheit von statistischen Versuchsplänen ist die Reihenfolge, in der die Versuche durchgeführt werden. Um eine stochastische Verteilung von Messfehlern und Drifteffekten zu erhalten, sollten die Faktorvariationen nicht in einem systematischen Ablauf erfolgen. In Einzelfällen können die Versuchspläne durch Blockbildung strukturiert werden. Um eine Verfälschung der Ergebnisse bzw. eine Abbildung von systematischen Fehlern und Drifts im Modell zu vermeiden, sollte von einer Strukturierung des Versuchsplans - sofern möglich - abgesehen werden [70].

5. Experimentelle Grundlagen

5.1. Modellgasanlage für Untersuchungen an Katalysatorproben

Die Untersuchungen zur Charakterisierung der Katalysatortechnologien und Modellierung des Adsorptions- bzw. Desorptionsverhaltens von passiven NO_X -Adsorbern werden an einem Synthesegasprüfstand durchgeführt. Dieser Modellgasprüfstand besteht aus einer Dosiereinrichtung, einem Reaktor und der Abgasanalytik. Abb. 5.1 zeigt den schematischen Aufbau des Synthesegasprüfstandes incl. der relevanten Komponenten für diese Untersuchungen.

Abb. 5.1.: Schematischer Aufbau des Synthesegasprüfstandes mit Eduktdosiereinrichtung,
Reaktor, Abgasanalytik, Druck-, λ - und Temperaturmessstellen.

Über die Dosiereinrichtung können Gasmixe (Feedgas) von nahezu beliebiger Zusammensetzung eingestellt werden. Hierzu werden Komponentengase gemischt, die entweder in reinform oder verdünnt, in einem Trägergas (N₂), vorliegen. Für eine exakte Dosierung der Komponentengase werden Mass Flow Controller (MFC) eingesetzt. Hinter den Mass Flow Controllern ist jeweils ein 2/2-Wege-Ventil positioniert. Mit einer Wasserdosiereinheit kann dem Feedgas zusätzlich Wasserdampf beigemischt werden. Die Wasserdosiereinheit besteht aus einem Behälter für hochreines Wasser, welches über eine thermische Einrichtung verdampft wird. Die Dosierung des Wassers erfolgt über einen Liquid Flow Controller (LFC). Der Wasserdampf wird mit einen magnetgesteuerten Ventil durch eine Düse in einen zusätzlichen Trägergasstrom (N₂) eindosiert. Nach dem Liquid Flow Controller ist ebenfalls ein 2/2-Wege-Ventil positioniert. Der zusammengestellte Feedgasstrom wird über Rohrleitungen dem Reaktor zugeführt. Diese Rohrleitungen werden elektrisch beheizt, um das Kondensieren von Wasser und Kohlenwasserstoffen zu vermeiden.

Bei dem eingesetzten Reaktor handelt es sich um einen Vorkammerreaktor (vgl. Abb. 5.2). Der Einsatz eines Vorkammerreaktors ermöglicht eine Homogenisierung und Aufheizung des Feedgasstromes in der Vorkammer. Mit einer elektrischen Mantelheizung lässt sich der Reaktor auf Temperaturen von bis zu 900°C beheizen. Die Katalysatorprobe wird in dem Reaktor mit einem Dichtungsmaterial eingeschoben und an beiden Enden zusätzlich mit Glaszylindern fixiert. Das Dichtungsmaterial besitzt die Eigenschaft bei hohen Temperaturen aufzuquellen. Somit wird ein Vorbeiströmen am Monolithen verhindert. Je ein Nickel-Chrom-Nickel Thermoelement an den Enden des Reaktors wird zur Bestimmung der Gaseintritts-, bzw. Austrittstemperatur genutzt. Abb. 5.2 zeigt den schematischen Aufbau des Reaktors mit einer Katalysatorprobe im eingebauten Zustand sowie den eingedichteten Glaszy-lindern zur Fixierung der Probe und den beiden Thermoelementen an Ein- und Auslasseite.

Parallel zum Reaktor ist im Prüfstandsaufbau ein Bypass angeordnet. Zum Einen wird dieser genutzt, um den Reaktor gezielt zu umgehen, zum Anderen wird dadurch die Messung der Komponenten im Feedgas mit eingebauter Katalysatorprobe ermöglicht. Die Umschaltung von Bypass- auf Reaktormessung erfolgt durch ein 3/2-Wege-Ventil, welches vor dem Reaktor angeordnet ist. Vor und nach dem Reaktor sind jeweils eine Druck- und eine Lambdamesstelle positioniert. Die Druckmessung erfolgt mittels Druckmessumformer. Der Messbereich des Druckmessumformers liegt innerhalb von p_{Abs} =0...2500 hPa in der geforderten Spezifikation. Die Bestimmung des Verbrennungsluftverhältnisses (λ) erfolgt mittels ZrO₂-Breitbandlambdasonden aus Fahrzeuganwendungen mit einem Messbereich von λ =0,65...∞.

Abb. 5.2.: Aufbau des Vorkammerreaktors mit Katalysatorprobe, Glaszylindern, Mantelheizung, Isolierung und Thermoelementen.

Nach dem Austritt aus dem Reaktor wird das Produkt- bzw. Eduktgas über beheizte Leitungen zur Abgasanalytik geleitet. Die Abgasanalytik besteht aus einem Chemilumineszenzdetektor, für die Bestimmung der Konzentration von NO und NO_2 im Messgasstrom. Die Konzentrationsbestimmung von Kohlenwasserstoffen wird mit einem Flammenionisationsdetektor vorgenommen. Mit einem Infrarotspektroskop werden die Konzentrationen von Kohlenstoffmonoxid, Kohlenstoffdioxid und Distickstoffoxid im Gasstrom gemessen. Der Sauerstoffgehalt im Gasstrom wird mit einem Paramagnetischen Detektor gemessen. Über ein Massenspektrometer können zusätzlich Ammoniak, Schwefelwasserstoff, Schwefeldioxid und Kohlenoxidsulfid gemessen werden. Tab. 5.1 zeigt eine Zusammenfassung der eingesetzten Analysatoren mit deren Gerätehersteller und Messbereich.

Die Grundlagen der Messverfahren und die Funktionsweise der Analysatoren werden im folgenden Kap. 5.3 detailliert erläutert.

Die Steuerung und Regelung des Synthesegasprüfstandes erfolgt durch eine Speicherprogrammierbare Steuerung (SPS) sowie einen Leitrechner. Mit Hilfe der SPS können Steuerbefehle des Leitrechners an den Aktuatoren der Synthesegasanlage umgesetzt sowie Messwerte der Sensorik und Gasanalytik zurück an den Leitrechner gesendet werden. Diese Messdaten werden auf dem Leitrechner aufgezeichnet und gespeichert.

Die Sollwertvorgaben für die SPS werden vom Leitrechner, mit einer macrobasierten Steuerungssoftware, generiert. In den Versuchsmacros werden die Aktuatorbefehle in chronologischer Abfolge hinterlegt. Diese enthalten alle für die Versuchsdurchführung nötigen Befehle, was einen autarken Prüfstandbetrieb ermöglicht. Die Tem-

Tab. 5.1.	Zusammenfassung	der	eingesetzten	Messverfahren	mit	Gerätehersteller	und
	Messbereich in ppm	1					

Analysator	Gaskomponente	Messbereich
Chemilumineszenz (CLD)	NO NO	0 1 000 ppm
Eco Physics CLD 700 EL ht	$100, 100_2$	01.000 ppiii
Flammenionisation (FID)	ис си	0, 10,000 nmm
Amluk FID 2120 μP	$\Pi C, C\Pi_4$	010.000 ppili
Infrarotspektroskopie (NDIR)		0, 10,000 nmm
Fisher Rosemount NGA 2000	CO, CO_2, N_2O	010.000 ppiii
Massenspektroskopie (CIMS)		0, 1,000 nmm
AIRSENSE Analytics Airsense 2000	$M1_3, 11_2, 50_2, C03$	01.000 ppiii
Paramagnetismus (PMD)	0	0, 10,000 nmm
Fisher Rosemount NGA 2000	O_2	010.000 ppm

peraturregelung für die Reaktorheizung wird von einem externen PID-Regler übernommen. Zusätzlich besteht die Möglichkeit über die Steuerungssoftware eine dynamische Temperatursollwertvorgabe zu realisieren, was speziell beim Abfahren von Temperaturrampen mit vorgegebenen Gradienten vorteilhaft ist.

5.2. Abgasrollennprüfstand für Realgasmessungen im instationären Fahrbetrieb

Die Validierungsuntersuchungen am Realabgas für das mathematische Modell für passive NO_X-Adsorber werden im Fahrzeug auf dem Abgasrollenprüfstand vorgenommen. Dabei wird das Fahrzeug mit der angetriebenen Achse auf Laufrollen fixiert. Die Laufrollen simulieren, über einen geschwindigkeitsabhängigen Widerstand, das reale Lastverhalten einer Fahrt auf der Straße. Die Messfahrt wird von einem Prüfstandsfahrer durchgeführt, der ein festgelegtes Geschwindigkeitsprofil nachfährt. Dieses Geschwindigkeitsprofil, sowie die eigene Geschwindigkeit werden dem Fahrer auf einem Display angezeigt.

Wie bei der Emissionszertifizierung vorgeschrieben, werden die Abgase über einen CVS-Verdünnungstunnel (engl.: Continous Volume Sample) in einen Emissionsbeutel gefahren. Beim CVS-Verfahren, wird über eine Drosselung der Volumenstrom konstant gehalten, sodass die Konzentrationsauswertung mit geringstmöglichem Fehler erfolgen kann. Für jede Phase im Fahrzyklus ist ein separater Emissionsbeutel vorgesehen, sodass die Phasen einzeln ausgewertet werden können. Der Inhalt der Messbeutel wird mittels CLD, FID und NDIR analysiert.

Als Versuchsfahrzeug dient eine Limousine mittleren Gewichts. Die Abgasanlage des Versuchsfahrzeugs ist mit einem passiven NO_X-Adsorber (PNA) direkt nach dem Turboladerausgang ausgerüstet. In dem selben Canning ist, ebenfalls in motornaher Position, der Dieselpartikelfilter (DPF) angeordnet. Nach dem Dieselpartikelfilter folgt stromabwärts erst eine Dosierstelle für AdBlue und nachfolgend ein zweiflutiger SCR-Katalysator.

Abb. 5.3 zeigt schematisch den Aufbau des Versuchsfahrzeuges mit dem motornahen Canning, in dem PNA und DPF untergebracht sind.

Abb. 5.3.: Schematischer Versuchsaufbau für die Messungen im Fahrzeug mit den unverdünnten Abgasmesslinien 1 bis 4.

Für die Ermittlung der Temperaturen wird auf die standardmäßig vorhandenen Temperatursensoren und Modelle zurückgegriffen. Die Temperaturmessstellen sind in der Reihenfolge im Abgassystem durchnummeriert. Die Temperatur vor dem PNA wird mit Temperatur (T1), die vor dem DPF mit Temperatur (T2) und vor dem SCR-Katalysator mit Temperatur (T3) bezeichnet. Lambda wird an der Position (1), über die standardmäßig vorhandene Breitbandlambdasonde, gemessen. Diese Messwerte der Standardmessstellen werden über einen Applikationsrechner aufgezeichnet. Das Fahrzeug ist, zur zeitaufgelösten Analyse der Emissionen, mit zusätzlichen Abgasmessstellen ausgerüstet, die eine unverdünnte Emissionsmessung erlauben. Diese werden ebenfalls gemäß der Temperaturmessstellen stromabwärts im Abgassystem nummeriert (vgl. Abb. 5.3). Zusätzlich werden die Emissionen nach dem SCR-Katalysator (A4) gemessen. Die Analyse der Emissionen erfolgt durch einen CLD, einen FID und einen NDIR pro Messlinie. Da mit einem CLD nur eine NO_X-Spezies simultan gemessen werden kann, werden zur Bestimmung des NO₂-Anteils im Rohabgas für einzelne Messungen zwei Abgaslinien an der Position (A1) angeschlossen. Die Raumgeschwindigkeit wird über den Abgasvolumenstrom und das Katalysatorvolumen bestimmt.

5.3. Verwendete Messtechnik zur Analyse von Abgaskomponenten

Für die Analyse der Abgaszusammensetzung werden fünf verschiedene Messverfahren genutzt. Die einzelnen Messgeräte mit deren Messverfahren werden im folgenden Abschnitt dargelegt und erläutert.

5.3.1. Chemilumineszenzdetektor (CLD)

Für die Messung der Stickstoffoxidkonzentration im Abgas wird ein Chemilumineszenzdetektor (CLD) der Firma Eco Physics GmbH bzw. Horiba Ltd. eingesetzt.

Chemilumineszenz ist ein Effekt, bei dem durch äußere Anregung Fluoreszenzphotonen emittiert werden, die als elektromagnetische Strahlung messbar sind. Ausgangspunkt für diesen physikalischen Effekt, am Beispiel der Stickstoffmonoxidmessung, ist die elektronisch angeregte Reaktion von Stickstoffmonoxid mit Ozon (vgl. R 5.1). Ein Teil des Stickstoffmonoxid (ca. 10%) reagiert kurzzeitig zu einem Stickstoffdioxid-Radikal (vgl. R 5.2) und fällt dann in den stabilen Zustand eines Stickstoffdioxid zurück (vgl. R 5.3). Dabei werden die genannten Fluoreszenzphotonen emittiert.

Für die Reaktion von Stickstoffmonoxid und Ozon gelten folgende Zusammenhänge [27]:

$$NO + O_3 \longrightarrow NO_2 + O_2$$
 (R 5.1)

$$NO + O_3 \longrightarrow NO_2^* + O_2$$
 (R 5.2)

$$NO_2^* \longrightarrow NO_2 + h \cdot v_{Fl}$$
 (R 5.3)

Gemäß des Bohr'schen Atommodells entspricht die Photonenenergie ΔE dem Produkt aus dem Plank'schen Wirkungsquantum *h* und der Frequenz des Fluoreszenzphoton v_{Fl} , wie G 5.1 zeigt [27].

$$\Delta E = E_{NO_2^*} - E_{NO_2} = h \cdot \nu_{Fl} \tag{G 5.1}$$

Die Intensität der ausgesandten Photonenenergie ist proportional zur Konzentration des Stickstoffmonoxides im Probengas, solange der Messvolumenstrom konstant ist. Diese Photonenenergie wird als elektromagnetische Strahlung mittels Photomultiplier messbar. Das Messsignal wird als Spannung ausgegeben und ist proportional zur elektromagnetischen Strahlung und somit auch zur Konzentration des Stickstoffmonoxides [118].

Abb. 5.4 zeigt den schematischen Aufbau des Chemilumineszenzdetektor CLD700 der Firma EcoPhysics GmbH.

Abb. 5.4.: Schematischer Aufbau eines Chemilumineszenzdetektor (CLD) [31].

Der Chemilumineszenzdetektor CLD700 der Firma Eco Physics GmbH besteht aus einer Probengasentnahme, einem Konverter, zwei Reaktionskammern mit Photomultipliern und einem Ozongenerator. Über die Probengasentnahme wird das zu untersuchende Messgas dem Chemilumineszenzdetektor zugeführt. Zudem dient die Probengasentnahme der Zuführung von Kalibrier- und Spülgas. Für die Herstellung des benötigten Reaktionspartners Ozon wird ein Ozongenerator verwendet, der aus trockener Luft ein Gemisch mit hoher Ozon-Konzentration zur Verfügung stellen kann [68]. In den Reaktionskammern finden die Oxidationsreaktionen des Stickstoffmonoxids statt [125]. Mit den Photomultipliern wird die elektromagnetische Strahlung in ein Messsignal umgewandelt. Mit Hilfe des Konverters kann das Stickstoffdioxid in einem zweiten Probengasstrom zu Stickstoffmonoxid konvertiert werden. Dieser Messgasstrom wird in einer zweiten Reaktionskammer analysiert. Dies ermöglicht eine zusätzliche Bestimmung der gesamten NO_X -Konzentration im Probengas. Durch Subtraktion der NO-Konzentration kann somit der NO_2 -Anteil im Probengas bestimmt werden [140, 68, 21]. Mit Hilfe eines Bypasses kann der Druck und der Volumenstrom in den Kapillaren konstant gehalten werden [9, 129, 98].

5.3.2. Flammenionisationsdetektor (FID)

Für die Bestimmung der Kohlenwasserstoffkonzentration (HC) im Messabgas werden Flammenionisationsdetektoren der Firmen Amluk GmbH, HORIBA Automotive Test Systems GmbH und Pierburg Instruments GmbH eingesetzt.

Das Messverfahren des Flammenionisationsdetektor beruht auf dem Prinzip der Ionisation von Kohlenwasserstoffverbindungen während der Verbrennung in einer Wasserstoffflamme (H_2). Unter gleichen Voraussetzungen ist die Ionisation von Kohlenstoffverbindungen wesentlich größer, als die Ionisation des Wasserstoffs der Trägerflamme. Während der Verbrennung von Kohlenwasserstoffen in der Trägerflamme lassen sich ca. 0,1-1 ppm nach folgenden Reaktionsschritten (vgl. R 5.4-R 5.7) ionisieren [101, 48].

$$CH_2^\circ + OH^* \longrightarrow CH_3O^+ + e^-$$
 (R 5.4)

$$CH^{\circ} + OH^{*} \longrightarrow CH_{2}O^{+} + e^{-}$$
 (R 5.5)

$$CH^{\circ} + O_2^* \longrightarrow CHO_2^+ + e^-$$
 (R 5.6)

$$C^{\circ} + OH^* \longrightarrow CHO^+ + e^-$$
 (R 5.7)

Legt man um die Flamme ein elektrisches Feld (ca. 150-200 V Gleichspannung) an, wird die Ionisation des Kohlenstoffs als Stromfluss messbar. Dieser Stromfluss ist proportional zur Konzentration der Kohlenwasserstoffe im Messgas. Findet die Kalibrierung des Flammenionisationsdetektors mit einem Kalibriergas der gleichen Kohlenwasserstoffverbindung (bspw. C_3H_6) statt, wie später gemessen werden soll, lassen sich direkt Konzentrationen im linearisierten Bereich ableiten [79].

Aufgebaut ist ein Flammenionisationsdetektor aus einem Brennraum, dem synthetische Luft bzw. Sauerstoff als Oxidationsmedium zugeführt wird. Zur Befeuerung der Trägerflamme wird hier ein Gemisch aus Wasserstoff und Helium zugeführt. Zudem wird das Probengas der Verbrennung beigemischt. Die Flamme entsteht am Ausgang der Zuführung der Verbrennungsgase, der gleichzeitig als Kathode dient. Die Anode ist an der Flammenspitze angeordnet, sodass ein Strom messbar wird, der durch die ionisierten Kohlenstoffverbindungen transportiert wird.

Abb. 5.5 zeigt links den schematischen Aufbau eines Flammenionisationsdetektors mit Brenngas-, Messgas- und Luftzufuhr sowie Messkammer, Anode und Kathode. Rechts zeigt Abb. 5.5 schematisch den Messaufbau zur Bestimmung der HC-Konzentration.

Abb. 5.5.: Schematischer Aufbau eines Flammenionisationsdetektors (FID) [96].

Wichtig für den korrekten Betrieb eines Flammenionisationsdetektors ist, dass die zugeführte synthetische Luft frei von Kohlenwasserstoffverbindungen ist. Außerdem muss, mittels beheizter Probengasleitungen, dafür Sorge getragen werden, dass keine Kohlenwasserstoffe in der Messgaszuführung auskondensieren können [96, 125, 140, 68, 118].

5.3.3. Infrarotspektrometer im nichtdispersiven Verfahren (NDIR)

Zur Bestimmung der Konzentrationen von Kohlenstoffmonoxid (CO), Kohlenstoffdioxid (CO_2) und Distickstoffoxid (N_2O) wird ein Infrarotspektroskop im nichtdispersiven Verfahren eingesetzt.

Dieses Messverfahren beruht auf der Messung von Strahlungsadsorption chemischer Moleküle. Prinzipiell wird eine Infrarotstrahlung breiten Spektrums erzeugt und durch den Messgasstrom geleitet. Bei dem nichtdispersiven Verfahren wird der Strahlungsverlust nicht photometrisch gemessen, sondern die Energiedifferenz der Strahlung durch den Messgasstrom anhand von Adsorption [131].

Hierzu wird eine Messeinrichtung verwendet, die von der Infrarotstrahlung durchflossen wird. Eine rotierende Lochscheibe (Chopper) sorgt für eine Unterbrechung der infraroten Strahlung. Die Messzelle wird vom Messgas durchströmt. Das führt dazu, dass die Intensität der Strahlung abnimmt, sobald strahlungsadsorbierende Moleküle wie CO, CO₂ und N₂O im Messgasstrom in die Messzelle eintreten. Die Intensität der Strahlung folgt, in Abhängigkeit der Konzentration des Adsorbens, dem Beer'schen Adsorptionsgesetz [27, 22]:

$$I(c) = I_0 \cdot e^{-\alpha_{Ads} \cdot c_{Ads} \cdot l_{MZ}}$$
(G 5.2)

Mit der Strahlungsintensität am Zelleneingang I_0 , dem Adsorptionskoeffizienten α_{Ads} und der Länge der Messzelle l.

Abb. 5.6 zeigt einen schematischen Aufbau eines NDIR mit Infrarotstrahler, Chopper, Messzelle, Referenzzelle und Gasdetektor.

Abb. 5.6.: Schematischer Aufbau eines Infrarotadsorptionsdetektors im nichtdispersiven Verfahren (NDIR) mit Strahler, Chopper, Messzelle, Referenzzelle und Detektor [96].

Neben dieser Messzelle wird eine Referenzzelle von einem nicht adsorbierenden Gas, beispielsweise Stickstoff (N_2), durchströmt. Die Intensität der Infrarotstrahlung der Referenzzelle bleibt damit konstant. Am Ende der Messeinrichtung ist ein Detektor angeordnet, der aus zwei Kammern besteht. Beide Kammern sind mit einer beweglichen Membran voneinander getrennt und mit dem zu detektierenden Gas befüllt. Durch die unterschiedliche Intensität der Strahlung in der Mess- und der Referenzzelle am Detektoreingang wird das Gas der beiden Detektorkammern unterschiedlich energetisch angeregt. Es entsteht in den beiden Kammern eine Druckdifferenz, die über die bewegliche Membran oder eine Strömung ausgeglichen wird. Die Auslenkung der Membran wird kapazitiv, bzw. die Ausgleichsströmung mittels Durchflussmessung, bestimmt.

Aufgrund der Nichtlinearität zwischen Messsignal und Konzentration (vgl. G 5.2) muss das Ausgangssignal des NDIR linearisiert werden. Zudem treten bei der Analyse von CO und CO₂ Querempfindlichkeiten zu Wasserdampf auf. Außerdem ist bei der Messung von N₂O zu beachten, dass eine Querempfindlichkeit zu CO₂ auftritt [96].

5.3.4. Massenspektrometer mit chemischer Ionisation (CIMS)

Um ein Massenspektrum zu erzeugen, werden die zu untersuchenden Bestandteile der gasförmigen Probe ionisiert. Diese positiv geladenen Teilchen werden beim CIMS mittels chemischer Ionisation erzeugt. Hierfür werden Reagenzionen (beispielsweise CH₅⁺-Ionen) [121] eingesetzt, die durch eine chemische Reaktion (vgl. R 5.8) gezielt die zu untersuchenden Moleküle ionisieren. Die chemische Ionisation zählt zu den "weichen Ionisationsverfahren" und ist durch eine sehr geringe Fragmentierung (Zerfall von Molekülen in kleinere Fragmente aufgrund von Ionisierung) gekennzeichnet [48].

$$M + CH_5^+ \longrightarrow MH^+ + CH_4 \tag{R 5.8}$$

Über ein Trennsystem werden nun die Moleküle verschiedener Massen getrennt, nachdem sie mittels Beschleunigungsfeld auf eine hohe Geschwindigkeit gebracht werden. Dies geschieht nach dem Masse-zu-Ladungsverhältnis ($\frac{m}{q}$). In der Praxis werden als Trennsystem häufig Magnetsektoranalysatoren (vgl. Abb. 5.7) oder Quadrupolmassenfilter eingesetzt.

Abb. 5.7 zeigt den schematischen Aufbau eines Massenspektrometers mit Einlasssystem, Ionisierungsquelle, Trennsystem und Detektor.

Abb. 5.7.: Schematischer Aufbau eines Massenspektrometers mit Einlasssystem, Ionisierungsquelle, Trennsystem (Permanentmagnet) und Detektor [48].

Beim Einsatz eines Magnetsektors werden die ionisierten Moleküle, infolge der Lorenzkraft im magnetischen Feld, abgelenkt. Diese Kraft und damit die Ablenkung ist abhängig von der Ladung des Moleküls. Dieser Kraft wirkt die Zentrifugalkraft entgegen. Die Zentrifugalkraft ist definitionsgemäß abhängig von der Masse des Moleküls. Somit werden Moleküle gleichen Masse-zu-Ladungsverhältnisses, infolge der vektoriellen Summe beider Kräfte, auf die gleiche Flugbahn gelenkt.

Ein Quadrupol besteht aus vier parallel im Quadrat angeordneten Metallstäben, die unter einer Gleichspannung und einer hochfrequenten Wechselspannung stehen. Die jeweils gegenüberliegenden Stabpaare werden um 180° phasenverschoben mit Wechselspannung beaufschlagt. Die longitudinal eintretenden ionisierten Moleküle werden in eine spiralförmige Flugbahn abgelenkt. Die Flugbahn der Moleküle, eines bestimmten Masse-zu-Ladungsverhältnisses, lässt sich durch das Verhältnis von Amplitude und Frequenz der Wechselspannung sowie der Stärke der Gleichspannung beeinflussen. So lässt sich über diese Parameter bestimmen, welche Molekülionen den Quadrupol passieren und welche Molekülionen an den Stäben anschlagen und entladen werden [48, 47].

5.3.5. Paramagnetischer Detektor (PMD)

Für die Bestimmung der Sauerstoffkonzentration im Messgas wird ein Paramagnetischer Detektor eingesetzt.

Sauerstoff ist in allen Aggregatzuständen paramagnetisch und besitzt eine positive Suszeptibilität χ_{mol} von 3,45·10⁻⁶ [26]. Damit unterscheidet sich Sauerstoff, bezüglich der magnetischen Eigenschaften, deutlich von anderen Komponenten, die im dieselmotorischen Abgas auftreten. Durch die positive Suszeptibilität wird Sauerstoff in einem inhomogenen Magnetfeld in Richtung der größten Feldstärke abgelenkt [11]. Bei einem Paramagnetischen Detektor macht man sich diese paramagnetischen Eigenschaften von Sauerstoff zunutze.

Abb. 5.8.: Schematischer Aufbau eines Paramagnetischen Detektors mit Hantel, Magneten und optischer Messeinrichtung [96].

In einer Messzelle wird ein magnetisches Feld erzeugt, an dem das Messgas vorbei geführt wird. Der molekulare Sauerstoff wird in das Zentrum des Magnetfeldes abgelenkt, da dort die größte magnetische Feldstärke vorherrscht. In diesem Zentrum befindet sich eine von zwei nicht magnetischen Quarzkugeln, die auf einer Hantel drehbar gelagert sind. Die durch das Magnetfeld auftretende Kraft wird über ein zweites Magnetfeld in der Referenzzelle, mit der zweiten Quarzkugel, kompensiert. Der Sauerstoff versucht die Quarzkugel in der Messzelle zu verdrängen, was zu einer Auslenkung der Hantel führt. Diese in der Messzelle entstehende Kraft ist proportional zur Konzentration des Sauerstoffs im Messgas, solange der Messgasstrom konstant ist. Die Kraft lässt sich durch die Auslenkung der Hantel optisch oder durch eine elektrische Kompensation des Momentes mittels Kompansationsmagnetfeld messen [96]. Abb. 5.8 zeigt den schematischen Aufbau eines Paramagnetischen Detektors mit Hantel, Magnetfeld und optischer Messeinrichtung. Die Auslenkung im optischen Messverfahren wird in diesem Messaufbau mit Hilfe einer Lichtquelle, eines Spiegels und eines Lichtdetektors bestimmt.

5.4. Fehlerbetrachtung für die DoE-Modellbildung

Die Untersuchungen zur Modellkalibrierung am Synthesegasprüfstand werden mit der in Kap. 5.1 und Kap. 5.3 beschriebenen Messtechnik durchgeführt. Grundsätzlich lassen sich mit dieser Messtechnik die Modelleingangsgrößen sehr genau bestimmen. Dennoch sind die durchgeführten Messungen mit systematischen und stochastischen Fehlern behaftet. Zu den systematischen Fehlern zählen bspw. die Messungenauigkeiten, die durch die verwendete Messtechnik verursacht werden. Tab. 5.2 zeigt einen Überblick über die spezifizierten maximalen Messungenauigkeiten der verwendeten Messtechnik. An dieser Stelle wird der Volumenstrom aus den Mass-Flow-Controllern aufgeführt, aus dem die Raumgeschwindigkeit bestimmt wird.

Fehler	Т	NO, NO ₂	НС	СО	λ	v
		[ppm]	[ppm]	[ppm]		[l/min]
Rauschen abs.	2)	0,05	0,5	2)	2)	2)
Linearitätsfehler	0,4 %	±1 %	±2 %	±1 %	2)	2)
Nullpunktdrift	±1,5 °C	0 %	± 1 % $^{1)}$	± 2 % ¹⁾	±2 %	±1,5 %
Querempfindlichkeit	2)	±0,5 %	±2 %	2)	2)	2)
Reproduzierbarkeit	2)	2)	±1 %	± 1 %	2)	±0,25 %

Tab. 5.2.: Maximale Messungenauigkeit der Analysegeräte zur Bestimmung der Modelleingangsgrößen.

¹⁾ pro Woche, ²⁾ keine Angabe

Einige der systematischen Messfehler, insbesondere Drifteffekte der Messtechnik, lassen sich mit einer Kalibrierung minimieren oder eliminieren. Alle Analysatoren (CLD, FID, NDIR, PMD und CIMS) werden nach 24 h bis 48 h Messzeit kalibriert. Zur Kalibrierung werden Kalibriergase eingesetzt, die ebenfalls einer Qualitätsstreuung unterliegen. Die Streuung dieser Kalibriergase beträgt ca. 5 %, kann aber durch Berücksichtigung der genauen Konzentration des Inhaltes bei der Kalibrierung minimiert werden. Die Thermoelemente, Mass-Flow-Controller und Lambdasonden können nicht kalibriert werden.

Zu den stationären Fehlern treten bei den Messungen systematische Fehler aufgrund von Gaslaufzeiten in der Anlage und Transientverhalten der Messtechnik auf. Da eine Messung über einen sehr langen Zeitraum (ca. 2000-3600 s) andauert, können diese Fehler vernachlässigt werden.

Neben diesen systematischen Fehlern treten stochastische Fehler auf, die sowohl das Messergebnis als auch das Modellergebnis verfälschen können. Der Einfluss der stochastischen Fehler auf die Messergebnisse kann nur abgeschätzt werden. Fehlerhafte Eingangsfaktoren für die Modellierung können berücksichtigt werden. Im DoE-Versuchsprogramm sind diese Fehler als Abweichung des Messwertes von der Messwertvorgabe messbar. Aus diesem Grund werden vor jeder Messung die Eingangskonzentrationen des Gasmixes im Bypass gemessen. Der relative Fehler in Messpunkt i errechnet sich nach Gleichung G 5.3.

$$\Delta y_{\text{rel},i} = \frac{y_{i,\text{set}} - y_i}{y_{i,\text{set}}}$$
(G 5.3)

$\Delta y_{\mathrm{rel},i}$	= relativer Fehler in Messpunkt i	[-]
${\mathcal Y}_{i,{ m set}}$	= Sollwert in Messpunkt i	[-]
${\mathcal Y}_i$	= Messwert in Messpunkt i	[-]

Die Aussagekraft des relativen Fehlers ist in einigen Fällen nicht gegeben, da dieser Fehler bspw. bei einem Nullpunktdrift groß wird. Aus diesem Grund wird der absolute normierte Fehler nach Gleichung G 5.4 berechnet. Dazu werden sowohl Schätzwert als auch Messwert nach Gleichung G 8.3 normiert. Dieser absolute normierte Fehler bezieht die Differenz von Messwert und Sollwert auf den Versuchsraum.

$$\Delta \mathcal{Y}_i = \mathcal{Y}_{i,\text{set},N} - \mathcal{Y}_{i,N} \tag{G 5.4}$$

Δy_i	= absoluter normierter Fehler in Messpunkt i	[-]
${\mathcal Y}_{i,{ m set},N}$	= normierter Sollwert in Messpunkt i	[-]
${\mathcal Y}_{i,N}$	= normierter Messwert in Messpunkt i	[-]

Abb. 5.9 zeigt den relativen Fehler aufgetragen über dem absoluten normierten Fehler der Faktoreinstellungen, sowie die Häufigkeitsverteilung des absoluten normierten Fehlers für das DoE-Messprogramm frisch.

Abb. 5.9.: Fehlerauswertung der Einstellparameter am Beispiel des DoE-Messprogramms frisch.

Aus der Darstellung wird ersichtlich, dass der relative Fehler der Faktoreinstellungen für einzelne Messpunkte des DoE-Messprogramms groß ist. Der absolute normierte Fehler der Faktoreinstellungen hingegen in den Grenzen -20 % bis +15 % des Versuchsraumes liegt.

Da die realen Messwerte der Bypassmessung als Modelleingangsgrößen genutzt werden, können für die DoE-Modellbildung vorerst alle Messungen herangezogen werden. In der DoE-Modellierung werden zu Beginn der Modelldefinition Ausreißer identifiziert. Diese Ausreißer werden plausibilisiert und gegebenfalls ausgeschlossen.

6. Untersuchungen zum Alterungs- und Verschwefelungsverhalten von passiven NO_X-Adsorbern

6.1. Inhalt und Ziel der Untersuchungen

Die Untersuchungen zum Alterungs- und Verschwefelungseinfluss auf passive NO_X -Adsorber werden am Synthesegasprüfstand (vgl. Kap. 5.1) durchgeführt. Für die Auswahl eines geeigneten passiven NO_X -Speicherkatalysators werden vier Katalysatorproben bzgl. deren Speichercharakteristik untersucht. Dabei werden Erkenntnisse über das temperaturabhängige Verhalten, die Alterungsbeständigkeit und die Schwefelbeständigkeit gewonnen. Die untersuchten Katalysatorproben werden aus Gründen des Datenschutzes mit KAT 1 bis KAT 4 benannt. Die Katalysatorproben haben einen Durchmesser von 18 mm und eine Länge von 37 mm. Alle Proben haben eine Zelldichte von 400 cpsi, eine Wandstärke von 4 mil und sind mit 120 g/ft³ Edelmetall beladen. Bei KAT 4 handelt es sich um einen sog. zonierten Katalysator. Die Beschichtung und Beladung der vorderen Hälfte des Katalysators unterscheidet sich von der hinteren Hälfte. Die Kenndaten für diesen Katalysator werden über beide Zonen gemittelt. Tab. 6.1 zeigt einen Überblick der Kenndaten der vier Katalysatorproben.

Merkmal	KAT 1	KAT 2	KAT 3	KAT 4
Platinbeladung ca.	68 g/ft^3	80 g/ft^3	85 g/ft ³	85 g/ft ³
Palladiumbeladung ca.	52 g/ft ³	40 g/ft^3	35 g/ft^3	35 g/ft^3
Rhodiumbeladung ca.	0 g/ft^3	0 g/ft^3	0 g/ft^3	0 g/ft^3

Tab. 6.1.: Edelmetallbeladung der Katalysatorproben

6.2. Verlauf und Auswertung der Versuchsprozeduren

Die Untersuchungen zum Adsorptions- und Desorptionsverhalten von NO_X-Speicherkatalysatoren werden, anhand eines festgelegten Versuchsablaufs, durchgeführt. Hierbei wird der Reaktor nach einem speziellen Temperaturprofil beheizt. Abb. 6.1 zeigt den Temperaturverlauf und die Ventilstellungen für das Bypassventil sowie den Komponentengasmix während der Adsorptions- bzw. Desorptionsmessungen am Synthesegasprüfstand.

Abb. 6.1.: Temperaturverlauf und Ventilschaltungen während der Adsorptions- und Desorptionsmessungen am Synthesegasprüfstand.

Um sicherzustellen, dass die Katalysatorproben zu Beginn jedes Versuchsdurchlaufes keine Stickstoffoxide gespeichert haben, wird die zu untersuchende Katalysatorprobe zu Beginn des Versuchsdurchlaufs bei 600 °C ausgeheizt. Der Reaktor wird auf die Zieltemperatur aufgeheizt und für 600 s bei dieser Temperatur gehalten (Phase 1). Danach wird der Reaktor auf die zu untersuchende Zieltemperatur abgekühlt (Phase 2). Während der Ausheiz- und Abkühlphase wird die Katalysatorprobe mit einem Volumenstrom von 10,2 l/min reinem Stickstoff durchflossen. Sobald die Zieltemperatur eingeregelt ist, wird der Bypass geöffnet und der Komponentengasmix aufgeschaltet. Der Komponentengasmix wird für 300 s über den Bypass gemessen (Phase 3). Diese Messung dient der genauen Bestimmung der Konzentrationen einzelner Spezies im Komponentengasmix. Mit diesen so bestimmten Eingangskonzentrationen können, in den späteren Auswertungen, die Einflüsse von Drifteffekten der Massflowcontroller und der Messgeräte minimiert werden. Nach 300 s wird der Bypass geschlossen. Der Komponentengasmix durchströmt den Reaktor mit der Katalysatorprobe (Phase 4). Um sicherzustellen, dass die Zustände im Katalysator stationär sind, wird eine Messzeit von 3.600 s in Phase 4 festgelegt. Anhand der Phase 4 werden die Adsorptionseigenschaften bei der späteren Auswertung bestimmt. Nach der Adsorptionsmessung wird die Katalysatorprobe

wiederum für 600 s mit reinem Stickstoff durchströmt (Phase 5). In der darauf folgenden Phase 6 wird die Temperatur mit einer festgelegten Temperaturänderungsrate auf 520 °C gesteigert. Während dieser temperaturprogrammierten Desorption (TPD) wird das Desorptionsverhalten der Katalysatorprobe, bei definierter Temperaturänderungsrate, bestimmt. Die Desorptionsmessung erfolgt in reinem Stickstoff.

Abb. 6.2.: Verlauf der Messung und Auswertung der NO_X-Speichermenge während der Adsorptions- und Desorptionsmessungen am Synthesegasprüfstand.

Der Komponentengasmix besteht aus N₂, O₂, CO₂, C₃H₆, CO, NO, NO₂ und H₂O. Um die gespeicherte NO_X-Stoffmenge auf dem Katalysator zu bestimmen, werden vorerst die ein- und austretenden NO_X-Stoffmengenströme berechnet. Der eintretende NO_X-Stoffmengenstrom berechnet sich aus der gemessenen NO_X-Konzentration während der Bypassmessung nach der Gleichung G 6.1.

$$\dot{n}_{NO_X}^{in} = \mathcal{Y}_{NO_X}^{in} \cdot \dot{n}_{gesamt}^{in} \cdot 10^{-6} \text{ ppm}$$
(G 6.1)

$\dot{n}_{NO_X}^{in}$	= eintretender NO_X -Stoffmengenstrom	[mol/s]
$\mathcal{Y}_{NO_X}^{in}$	= gemessene NO _X -Konzentration	[ppm]
\dot{n}_{gesamt}^{in}	= eintretender Gesamtstoffmengenstrom	[mol/s]

Der Gesamtstoffmengenstrom errechnet sich aus der Summe der einzelnen Stoffmengenströme, mit Hilfe der Zustandsgleichung für ideale Gase, nach Gleichung G 6.2 [11]. Die Volumenströme der einzelnen Spezies werden von den Massflowcontrollern aufgezeichnet. Da einige Spezies im Trägergas Stickstoff dosiert werden, muss hierbei die Konzentration des Komponentengases in der Zudosierung beachtet werden.

$$\dot{n}_{gesamt}^{in} = \sum_{i=1}^{K} \frac{\dot{v}_i \cdot y_i^0 \cdot p_{Abs}}{R_a \cdot T} \cdot 10^{-6} \text{ ppm}$$
(G 6.2)

\dot{n}_{gesamt}^{in}	= eintretender Gesamtstoffmengenstrom	[mol/s]
Κ	= Anzahl der Spezies	[-]
\dot{v}_i	= Gasvolumenstrom der Spezies i	[m ³ /s]
${\cal Y}_i^0$	= Konzentration der Spezies i im Trägergas	[ppm]
p_{Abs}	= Absolutdruck	[Pa]
R _a	= Allgemeine Gaskonstante	[J/mol · K]
Т	= Temperatur	[K]

Der während der Adsorptionsphase (Phase 4) durchbrechende NO_X -Stoffmengenstrom entspricht gerade dem gemessenen NO_X -Stoffmengenstrom während der Adsorptionsexperiments und berechnet sich gemäß Gleichung G 6.3.

$$\dot{n}_{NO_X}^{break} = \gamma_{NO_X}^{break} \cdot \dot{n}_{gesamt}^{in} \cdot 10^{-6} \text{ ppm}$$
(G 6.3)

$\dot{n}_{NO_X}^{break}$	= durchbrechender NO _X -Stoffmengenstrom	[mol/s]
$\mathcal{Y}_{NO_X}^{break}$	= gemessene NO _X -Konzentration	[ppm]
\dot{n}_{gesamt}^{in}	= eintretender Gesamtstoffmengenstrom	[mol/s]

Der adsorbierte NO_X -Stoffmengenstrom errechnet sich aus der Differenz von eintretendem und durchbrechendem NO_X -Stoffmengenstrom nach Gleichung G 6.4.

$$\dot{n}_{NO_X}^{ads} = \dot{n}_{NO_X}^{in} - \dot{n}_{NO_X}^{break} \tag{G 6.4}$$

$$\dot{n}_{NO_X}^{ads}$$
 = adsorbierter NO_X-Stoffmengenstrom [mol/s]
 $\dot{n}_{NO_X}^{in}$ = eintretender NO_X-Stoffmengenstrom [mol/s]
 $\dot{n}_{NO_X}^{break}$ = durchbrechender NO_X-Stoffmengenstrom [mol/s]

Die adsorbierte NO_X -Stoffmenge errechnet sich aus dem Integral des adsorbierten NO_X -Stoffmengenstroms nach Gleichung G 6.5. Die Grenzen des Integrals sind definiert als das Schließen des Bypassventils (t_1) und das Abschalten des Komponentengasmixes (t_2).

$$n_{NO_X}^{ads} = \int_{t_1}^{t_2} \dot{n}_{NO_X}^{ads} dt \tag{G 6.5}$$

$$n_{NO_X}^{ads}$$
 = adsorbierte NO_X-Stoffmenge [mol]
 $\dot{n}_{NO_X}^{ads}$ = adsorbierter NO_X-Stoffmengenstrom [mol/s]

Da die Messung während der temperaturprogrammierten Desorption (TPD) in reinem Stickstoff erfolgt, kann aus der gemessenen NO_X -Konzentration, während der TPD, der desorbierte NO_X -Stoffmengenstrom nach Gleichung G 6.6 errechnet werden.

$$\dot{n}_{NO_X}^{des} = \gamma_{NO_X}^{des} \cdot \dot{n}_{N_2}^{in} \cdot 10^{-6} \text{ ppm}$$
(G 6.6)

$\dot{n}_{NO_X}^{des}$	= desorbierter NO _X -Stoffmengenstrom	[mol/s]
$\mathcal{Y}_{NO_X}^{des}$	= gemessene NO _X -Konzentration	[ppm]
$\dot{n}_{N_2}^{in}$	= eintretender N ₂ -Stoffmengenstrom	[mol/s]

Die während der Desorptionsphase freigesetzte NO_X -Stoffmenge (G 6.7) errechnet sich analog zur Gleichung G 6.5. Die Integralgrenzen werden definiert als Beginn (t_3) und Ende (t_4) der Temperaturrampe (TPD).

$$n_{NO_X}^{des} = \int_{t_3}^{t_4} \dot{n}_{NO_X}^{des} dt$$
 (G 6.7)

$$n_{NO_X}^{des}$$
 = desorbierte NO_X-Stoffmenge [mol]
 $\dot{n}_{NO_X}^{des}$ = desorbierter NO_X-Stoffmengenstrom [mol/s]

Die adsorbierte NO_X -Stoffmenge wird anhand der desorbierten NO_X -Stoffmenge während der TPD ermittelt, da so ein minimaler Fehler sichergestellt werden kann.

Da die Änderung des Messsignals im Verhältnis zum Absolutwert in den Integralgrenzen gering ist, wird als Integrationsverfahren die kumulative Summenbildung eingesetzt. Durch die äquidistanten Datenreihen, im Zeitraster von exakt einer Sekunde, ist mit diesem Integrationsverfahren ein geringer Fehler zu erwarten.

6.3. Versuchsvorbereitung

Um verschiedene Alterungs- und Verschwefelungszustände der Katalysatorproben untersuchen zu können, werden die Katalysatorproben am Alterungsprüfstand hydrothermal gealtert bzw. verschwefelt.

6.3.1. Hydrothermale Alterung der Katalysatorproben

Die Katalysatorproben werden in einem Durchflussofen gealtert. Dazu werden die Katalysatorproben in ein Glasrohr eingesetzt und abgedichtet. Dieses Glasrohr wird in den Ofen eingespannt. Der Alterungsofen wird auf die Zieltemperatur (750 °C) aufgeheizt und dort für die vorgegebene Zeit gehalten. Während der Alterungsprozedur werden die Katalysatorproben mit einem Gasgemisch, bestehend aus 90 Vol.-% Stickstoff und 10 Vol.-% verdampftem Wasser, durchflossen. Es werden drei Alterungsstufen untersucht, die sich in der Alterungszeit unterscheiden.

- 1. frisch
- 2. 4 h hydrothermale Alterung bei 750 °C
- 3. 16 h hydrothermale Alterung bei 750 °C

6.3.2. Verschwefelung der Katalysatorproben

Die Katalysatorproben werden an dem Synthesegasprüfstand verschwefelt. Hierzu wird die Katalysatorprobe mit einem Gasgemisch aus Stickstoff und 50 ppm SO₂ beaufschlagt. Abb. 6.3 zeigt den Verlauf der Schwefeladsorptionsmessung am Synthesegasprüfstand.

Dieser Versuchsablauf ist in zwei Phasen aufgeteilt. Bevor die Adsorptionsphase beginnt, wird während einer Bypassmessung die Konzentration an SO₂ gemessen.

Abb. 6.3.: Verlauf der Verschwefelung mit SO₂ am Synthesegasprüfstand mit Integration der Schwefelbeladung auf der Katalysatorprobe.

In der Adsorptionsphase wird der Katalysator mit dem Schwefeldioxid/Stickstoff-Gasmix durchströmt. Die notwendige Adsorptionszeit zur Beladung des Katalysators wird nach Gleichung G 6.8 bestimmt. Der adsorbierte Schwefelstoffmengenstrom $\dot{n}_{SO_2}^{ads}$ wird analog der Gleichung G 6.4 errechnet.

$$t_{ads} = \frac{m_S \cdot V_{Kat}}{\dot{n}_{SO_2}^{ads} \cdot M_S} \tag{G 6.8}$$

t _{ads}	= Adsorptionszeit	[S]
m_S	= Zielbeladung Schwefel	[g/l]
V_{Kat}	= Katalysatorvolumen	[1]
$\dot{n}^{ads}_{SO_2}$	= adsorbierter S-Stoffmengenstrom	[mol/s]
M_S	= molare Masse Schwefel	[g/mol]

Zur Kontrolle wird die Schwefelbeladung aus dem Integral des adsorbierten Schwefelstoffmengenstroms berechnet. Nach der Adsorptionsphase wird das Feedgas in einer weiteren Bypassmessung kontrolliert. Dadurch wird sichergestellt, dass die Beladung mit minimalem Fehler bestimmt werden kann.

Nach der Adsorptionsphase folgt die Desorptionsphase. In dieser Phase wird der Reaktor, während einer temperaturprogrammierten Desorption (TPD), auf ca. 700 °C aufgeheizt. Diese TPD stellt sicher, dass der Schwefel auch bei hohen Temperaturen auf dem Katalysator gehalten werden kann und nicht während der Vorkonditionierung thermisch desorbiert wird. Die während der vier Verschwefelungszyklen (Versuchsreihe VS1-VS4) adsorbierten spezifischen Schwefelmassen (vgl. Kap. 6.3.2) der Katalysatorproben KAT 1 und KAT 2 sind in Tab. 6.2 dargestellt.

Tab. 6.2.: Adsorbierte spezifische Schwefelmassen für die vier Verschwefelungszyklen der Katalysatorproben KAT 1 und KAT 2.

Versuch	KAT 1	KAT 2
	$[g_S/l_{Kat}]$	$[\mathbf{g}_S/\mathbf{l}_{Kat}]$
VS.1	1,00	0,93
VS.2	1,00	1,00
VS.3	0,96	0,71
VS.4	0,96	0,93
Σ	3,93	3,57

6.4. Versuchsplanung und Durchführung

Für die Charakterisierung der Katalysatorproben werden Adsorptions- und Desorptionsmessungen am Synthesegasprüfstand gemäß Abb. 6.1 durchgeführt. Die Temperaturänderungsrate für die TPD wird mit 10 K/min festgelegt. Die Adsorptionstemperatur wird dabei, mit jedem Versuchsdurchlauf von ca. 100 °C bis 400 °C, in Schritten von 50 °C gesteigert.

Tab. 6.3.	usammensetzung des synthetischen Abgases für die Charakterisierung d	ler Ka-
	alysatorproben KAT 1 bis KAT 4.	

Merkmal	Abkürzung	Einstellung Gasmix	Einheit
Kohlenstoffmonoxid	Усо	400	[ppm]
Kohlenwasserstoff	${\mathcal Y}_{{\mathcal C}_3 H_6}$	50	[ppm]
Stickstoffmonoxid	\mathcal{Y}_{NO}	50	[ppm]
Wasserstoff	${\mathcal Y}_{H_2}$	133	[ppm]
Kohlenstoffdioxid	${\cal Y}_{CO_2}$	11,1	[Vol%]
Sauerstoff	$\mathcal{Y}O_2$	8,33	[Vol%]
Wasser (g)	\mathcal{Y}_{H_2O}	10	[Vol%]
Stickstoff	${\mathcal Y}_{N_2}$	balance	[-]
Lambda	λ	1,60	[-]

Während der Charakterisierung werden die Katalysatorproben von magerem synthetischem Abgas durchströmt. Dieses synthetische Abgas setzt sich, wie in Tab. 6.3 dargelegt, zusammen.

Zur Untersuchung des Alterungsverhaltens werden die Katalysatorproben im Frischzustand, nach 4 Stunden und nach 16 Stunden hydrothermaler Alterung charakterisiert. Um das Verschwefelungsverhalten zu untersuchen, werden die Katalysatorproben vorerst für 4 h hydrothermal gealtert und danach auf eine Schwefelbeladung von ca. 4 g_S/I_{Kat} , in Schritten von 1 g_S/I_{Kat} , aufgeschwefelt. Nach jeder Verschwefelung werden die Katalysatorproben erneut charakterisiert. Tab. 6.4 zeigt die Übersicht der Versuche für die Alterung und Verschwefelung. Die Bezeichnung der Versuchsreihen erfolgt mit der Abkürzung A für gealterte, der Abkürzung S für verschwefelte Katalysatorproben. Die Versuchsreihen, zur Untersuchungen des Einflusses des Eingangskonzentrationsverhältnisses von NO zu NO₂, werden mit R abgekürzt. Für diese Untersuchungen wird der Gasmix (vgl. Tab. 6.3) entsprechend des NO₂-Anteils angepasst. Diese Versuche werden für alle Katalysatorproben KAT 1 bis KAT 4 durchgeführt.

Versuchs- reihe	t _{age}	m_S	$arphi_{NO_2}$	Para- meter	Einheit	min.	max.
	[h]	$[g_S/l_{Kat}]$	[%]				
A1	0	0	0	T_{Ads}	[°C]	100	400
A2	4	0	0	T_{Ads}	[°C]	100	400
A3	16	0	0	T_{Ads}	[°C]	100	400
S1	4	1	0	T_{Ads}	[°C]	100	400
S2	4	2	0	T_{Ads}	[°C]	100	400
S3	4	3	0	T_{Ads}	[°C]	100	400
S4	4	4	0	T_{Ads}	[°C]	100	400
R1	0	0	25	T_{Ads}	[°C]	100	400
R2	0	0	50	T_{Ads}	[°C]	100	400
R3	4	0	25	T_{Ads}	[°C]	100	400
R4	4	0	50	T_{Ads}	[°C]	100	400
R5	4	1	25	T_{Ads}	[°C]	100	400
R6	4	1	50	T_{Ads}	[°C]	100	400

Tab. 6.4.: Versuchsmatrix für Alterungs- und Verschwefelungsuntersuchungen der Katalysatorproben KAT 1 bis KAT 4.

6.5. Ergebnisse und Diskussion

Abb. 6.4 zeigt die adsorbierte NO_X -Stoffmenge, für die Katalysatorproben KAT 1 bis KAT 4, in Abhängigkeit von der Adsorptionstemperatur, im Frischzustand (Versuchsreihe A1).

Abb. 6.4.: Ergebnisse KAT 1-KAT 4 Versuchsreihe A1: Adsorbierte NO_X-Stoffmenge, für die Katalysatorproben KAT 1 bis KAT 4, in Abhängigkeit von der Adsorptionstemperatur, im Frischzustand. Adsorptionszeit 2000 s.

Es ist ersichtlich, dass im Frischzustand die adsorbierten NO_X-Stoffmenge der Katalysatorproben KAT 1 und KAT 2 am größten sind. Demzufolge ist die Speicherkapazität dieser beiden Katalysatoren am höchsten. Das Maximum der Speicherkapazität für die Katalysatorproben KAT 1, KAT 3 und KAT 4 liegen bei ca. 250 °C. Dagegen weist KAT 2 ein Maximum bei 200 °C auf. Zudem zeigt sich, dass die Katalysatorproben KAT 1 und KAT 2 im Temperaturbereich von ca. 120 °C bis 200 °C deutlich höheres Adsorptionspotential bieten. Dies ist im Fahrzeugeinsatz gerade im Kaltstartverhalten entscheidend. Aufgrund der ungeeigneten Adsorptionscharakteristik von KAT 3 und KAT 4 werden in den weiteren Untersuchungen nur noch die Katalysatorproben KAT 1 und KAT 2 betrachtet.

Abb. 6.5 (a) zeigt den Einfluss der hydrothermalen Alterung auf die adsorbierte NO_X-Stoffmenge, für die Katalysatorprobe KAT 1, in Abhängigkeit von der Adsorptionstemperatur. Abb. 6.5 (b) zeigt die prozentuale Veränderung der Speicherkapazität der Katalysatorprobe KAT 1, in Abhängigkeit der Zeit der hydrothermalen Alterung, für die Adsorptionstemperaturen 150 °C, 250 °C und 350 °C (Versuchsreihe A1-A3).

Abb. 6.5.: Ergebnisse KAT 1 Versuchsreihe A1-A3: Einfluss der hydrothermalen Alterung auf die adsorbierte NO_X-Stoffmenge, für die Katalysatorprobe KAT 1, in Abhängigkeit von der Adsorptionstemperatur (a), und relative Veränderung der adsorbierten NO_X-Stoffmenge, für die Katalysatorproben KAT 1, in Abhängigkeit von der hydrothermalen Alterung (b). Adsorptionszeit 2000 s.

Es zeigt sich, dass sich das Maximum der Speicherkapazität der Katalysatorprobe KAT 1 für alle Alterungsstufen bei einer Temperatur von ca. 250 °C befindet (vgl. Abb. 6.5 (a)). Zudem wird erkennbar, dass durch die hydrothermale Alterung für 4 h die Speicherkapazität der Katalysatorprobe KAT 1, bei der Temperatur von 120 °C bis 200 °C, nicht mehr abnimmt. Im Temperaturbereich von 250 °C bis 350 °C nimmt die Speicherkapazität, durch fortschreitende Alterung, auch nach 4 h noch signifikant ab. Die minimale Speicherkapazitätssteigerung bei 200 °C nach 16 h ,im Vergleich zu 4 h hydrothermaler Alterung, ist als ein Messartefakt anzunehmen. Der Einfluss der hydrothermalen Alterung für 16 h auf die Speicherkapazität der Katalysatorprobe KAT 1 wird u.a. im Hochtemperaturbereich deutlich. Die Speicherkapazität bei geringen Adsorptionstemperaturen ist relativ stabil.

Abb. 6.6 (a) zeigt den Einfluss der hydrothermalen Alterung auf die adsorbierte NO_X -Stoffmenge, für die Katalysatorprobe KAT 2, in Abhängigkeit von der Adsorptionstemperatur. Abb. 6.6 (b) zeigt die prozentuale Veränderung der Speicherkapazität der Katalysatorprobe KAT 2, in Abhängigkeit der Zeit der hydrothermalen Alterung, für die Adsorptionstemperaturen 150 °C, 250 °C und 350 °C (Versuchsreihe A1-A3).

Für die Katalysatorprobe KAT 2 ergibt sich die maximale Speicherkapazität bei einer Temperatur von ca. 200 °C für alle Alterungsstufen. Der Einfluss der hydrothermalen Alterung auf KAT 2 zeigt sich für die Alterungsstufen von 4 h und 16 h deutlich, durch eine Abnahme der Speicherkapazität, im Temperaturbereich von 120 °C bis

Abb. 6.6.: Ergebnisse KAT 2 Versuchsreihe A1-A3: Einfluss der hydrothermalen Alterung auf die adsorbierte NO_X-Stoffmenge, für die Katalysatorprobe KAT 2, in Abhängigkeit von der Adsorptionstemperatur (a), und relative Veränderung der adsorbierten NO_X-Stoffmenge, für die Katalysatorproben KAT 2, in Abhängigkeit von der hydrothermalen Alterung (b). Adsorptionszeit 2000 s.

300 °C (vgl. Abb. 6.6 (a)). Der Einfluss der hydrothermalen Alterung, im Temperaturbereich von 300 °C bis 400 °C, auf die Speicherkapazität der Katalysatorprobe KAT 2 zeigt sich deutlich geringer, als im Temperaturbereich unterhalb von 300 °C. Infolge der geringen Absolutwerte ist die geringe relative Speicherkapazitätsabnahme nach 4 h hydrothermaler Alterung bei der Adsorptionstemperatur 350 °C nicht repräsentativ. Es wird dennoch ersichtlich, dass die hydrothermale Alterung die Speicherkapazität der Katalysatorprobe KAT 2 im Tieftemperaturbereich deutlich signifikanter beeinflusst, als im Hochtemperaturbereich (vgl. Abb. 6.6 (b)).

Abb. 6.7 (a) zeigt den Einfluss der zunehmenden Schwefelbeladung auf die adsorbierte NO_X-Stoffmenge, für die Katalysatorprobe KAT 1 durch die Verschwefelung, in Abhängigkeit von der Adsorptionstemperatur, im konditionierten Zustand (Alterung für 4 h bei 750 °C). Abb. 6.7 (b) zeigt die prozentuale Veränderung der Speicherkapazität der Katalysatorprobe KAT 1 in Abhängigkeit der Schwefelbeladung für die Adsorptionstemperaturen 150 °C, 250 °C und 350 °C (Versuchsreihe S1-S4).

Die Messergebnisse zeigen, dass die Speicherkapazität der Katalysatorprobe KAT 1 mit zunehmender Schwefelbeladung signifikant abnimmt. Bereits bei einer Schwefelbeladung von 1 g_S/l_{Kat} stehen, im Temperaturbereich von 120 °C bis 250 °C, nur noch 50 % der ursprünglichen Speicherkapazität zur Verfügung. Im Hochtemperaturbereich (350 °C) stehen bei einer spezifischen Schwefelbeladung von 1 g_S/l_{Kat} weniger als 30 % der Kapazität der unverschwefelten Katalysatorprobe (Versuchsreihe A2) zur Verfügung. Daraus lässt sich ableiten, dass mit zunehmender Schwe-

Abb. 6.7.: Ergebnisse KAT 1 Versuchsreihe S1-S4: Einfluss der Verschwefelung auf die adsorbierte NO_X-Stoffmenge, für die Katalysatorprobe KAT 1, in Abhängigkeit von der Adsorptionstemperatur (a), und relative Veränderung der adsorbierten NO_X-Stoffmenge, für die Katalysatorproben KAT 1, in Abhängigkeit von der Schwefelbeladung (b). Adsorptionszeit 2000 s.

felbeladung die Speicherkapazität im Hochtemperaturbereich stärker abnimmt, als im Tieftemperaturbereich (vgl. Abb. 6.7 (b)). Es folgt eine Verschiebung des Maximums der Speicherkapazität mit zunehmender Schwefelbeladung zu niedrigen Temperaturen. Bestätigt wird dies in den Versuchsreihen S3 und S4, ab einer spezifischen Schwefelbeladung von ca. 3 g_S/l_{Kat}, durch die Verschiebung der Temperatur der maximalen Speicherkapazität von ca. 250 °C (vgl. Abb. 6.7 (a) Versuchsreihen A1, A2, S1, S2) auf ca. 200 °C (vgl. Abb. 6.7 (a) Versuchsreihen S3, S4).

Abb. 6.8 (a) zeigt den Einfluss der Schwefelbeladung auf die adsorbierte NO_X -Stoffmenge, für die Katalysatorprobe KAT 2, durch die Verschwefelung, in Abhängigkeit von der Adsorptionstemperatur, im konditionierten Zustand (Alterung für 4 h bei 750 °C).

Abb. 6.8 (b) zeigt die prozentuale Veränderung der Speicherkapazität der Katalysatorprobe KAT 2 in Abhängigkeit der Schwefelbeladung für die Adsorptionstemperaturen 150 °C, 250 °C und 350 °C (Versuchsreihe S1-S4).

Die Messergebnisse zeigen, dass die Speicherkapazität der Katalysatorprobe KAT 2, analog zu den Ergebnissen der ersten Katalysatorprobe, mit zunehmender Schwefelbeladung signifikant abnimmt. Es ist ebenso eine deutliche Reduzierung der Speicherkapazität, bereits ab einer Schwefelbeladung von ca. 1 g_S/l_{Kat} , messbar. Die zunehmende Verschwefelung wirkt sich auch hier, im Hochtemperaturbereich, deutlicher durch die Reduzierung der Speicherkapazität aus. Auch der Verlauf der relativen Speicherkapazitätsveränderung über der Schwefelbeladung ist sehr ähn-

Abb. 6.8.: Ergebnisse KAT 2 Versuchsreihe S1-S4: Einfluss der Verschwefelung auf die adsorbierte NO_X-Stoffmenge, für die Katalysatorprobe KAT 2, in Abhängigkeit von der Adsorptionstemperatur (a), und relative Veränderung der adsorbierten NO_X-Stoffmenge, für die Katalysatorproben KAT 2, in Abhängigkeit von der Schwefelbeladung (b). Adsorptionszeit 2000 s.

lich. Dennoch ist der Einfluss der zunehmenden Schwefelbeladung, im Vergleich zur Katalysatorprobe KAT 1, im Niedrigtemperaturbereich (150 °C) geringer.

Abb. 6.9 zeigt den Einfluss des Eingangskonzentrationsverhältnisses von NO zu NO_2 auf die adsorbierte NO_X -Stoffmenge, für die Katalysatorproben KAT 1 im Frischzustand (a), nach einer hydrothermalen Alterung von 4 h bei 750 °C (b) und nach einer hydrothermalen Alterung von 4 h bei 750 °C mit einer zusätzlichen Verschwefelung von 1 g_S/l_{Kat} (c), in Abhängigkeit von der Adsorptionstemperatur (Versuchsreihe R1-R6).

Die Ergebnisse der Untersuchungen zeigen, dass das Verhältnis der Eingangskonzentrationen von NO zu NO₂, für die frische und die hydrothermal gealterte Katalysatorprobe KAT 1, einen geringen Einfluss, im Temperaturbereich von 150 °C bis 250 °C, hat. In diesem Temperaturbereich nimmt mit steigendem NO₂-Anteil (50 %) im Feedgas die Speicherkapazität, der frischen Katalysatorprobe KAT 1, geringfügig ab. Das gleiche Bild zeigt sich ebenso bei der hydrothermal gealterten Katalysatorproben KAT 1, für einen NO₂-Anteil von 25 % und 50 %. Für die verschwefelten Katalysatorproben KAT 1 ist kein Einfluss, des Verhältnisses der Eingangskonzentrationen von NO zu NO₂, messbar.

Für die Speicherkapazität der Katalysatorprobe KAT 2 ist, weder im Frischzustand, noch im gealterten bzw. im verschwefelten Zustand, ein Einfluss des Verhältnisses der Eingangskonzentrationen von NO zu NO₂ auf die Speicherkapazität messbar.

Abb. 6.9.: Ergebnisse KAT 1 und KAT 2 Versuchsreihe R1-R6: Einfluss des Eingangskonzentrationsverhältnisses von NO zu NO₂ (0 %, 25 %, 50 % NO₂) auf die adsorbierte NO_X-Stoffmenge, für die Katalysatorprobe KAT 1 und KAT 2, in Abhängigkeit von der Adsorptionstemperatur, im Frischzustand (a, d), nach einer hydrothermalen Alterung für 4 h bei 750 °C (b, e) und nach einer hydrothermalen Alterung für 4 h bei 750 °C mit einer zusätzlichen Verschwefelung von 1 g_S/l_{Kat} (c, f). Adsorptionszeit 2000 s.

6.6. Zusammenfassung und Fazit

Zusammenfassend kann festgestellt werden, dass im direkten Vergleich die Katalysatorproben KAT 1 und KAT 2, unter den gegebenen Randbedingungen, die höchsten Speicherkapazitäten im Frischzustand aufweisen. Die Speicherkapazität der Katalysatorprobe KAT 1 weist bei einer Adsorptionstemperatur von 250 °C, im Vergleich zur Katalysatorprobe KAT 2, eine 43 % höhere Speicherkapazität auf. Die temperaturabhängige Charakteristik der Katalysatorproben KAT 1 und KAT 2 unterscheiden sich signifikant von KAT 3 und KAT 4. Die Katalysatorproben KAT 1 und KAT 2 zeichnen sich durch eine höhere Speicherkapazität im Tieftemperaturbereich aus. Das lässt darauf schließen, dass zur Einspeicherung des Stickstoffoxids unterschiedliche Speichermaterialien (KAT 1 & KAT 2: BaO, La₂O₃ sowie KAT 3 & KAT 4: CeO₂) eingesetzt werden. Die Röntgenfluoreszenzanalyse bestätigt diese Hypothese, wie Abb. 6.10 zeigt.

Zudem geht aus den Untersuchungen hervor, dass die hydrothermale Alterung der Katalysatorproben die Speicherkapazität der Katalysatoren reduziert. Dabei haben

Abb. 6.10.: Ergebnisse KAT 1-KAT 4 Röntgenfluoreszenzanalyse: Washcoatzusammensetzung der Katalysatorproben KAT 1 bis KAT 4.

die ersten 4 h der hydrothermalen Alterung, von insgesamt 16 h, den größten Einfluss auf die Speicherkapazität. Generell wirkt sich die hydrothermale Alterung deutlicher auf den Tieftemperaturbereich (120 °C bis 300 °C), als auf den Hochtemperaturbereich (300 °C bis 400 °C), aus.

Mit zunehmender Verschwefelung sinkt die Speicherkapazität der Katalysatorproben signifikant. In den Ergebnissen der Messungen für Katalysatorproben KAT 1 und KAT 2 ist erkennbar, dass bereits eine Schwefelbeladung von 1 g_S/l_{Kat} zu einer Reduzierung der Speicherkapazität von ca. 50 % führt. Der Einfluss der zunehmenden Verschwefelung zeigt sich im Hochtemperaturbereich (300 °C bis 400 °C) deutlicher, als in Niedrigtemperaturbereich (120 °C bis 250 °C). Dies lässt die Hypothese zu, dass die zunehmende Schwefelbeladung überwiegend die Chemisorption beeinflusst.

Die Ergebnisse mit unterschiedlichen NO_2 -Anteilen im Feedgas zeigen, dass sich die adsorbierte NO_X -Stoffmenge, der frischen und hydrothermal gealterten Katalysatorprobe KAT 1, mit zunehmendem NO_2 -Anteil im Feedgas, bei einer Adsorptionstemperatur von 250 °C, geringfügig verringert. Dieses Verhalten ist unplausibel, da davon auszugehen ist, dass eine Erhöhung des NO_2 -Anteils im Feedgas, die Adsorption bei kinetischer Begrenzung der NO-Oxidation, begünstigt. Sollte die Adsorption während des Versuchs nicht kinetisch durch die NO-Oxidation begrenzt sein, müsste sich eine gleiche Speicherkapazität in diesen Betriebspunkt ergeben. Untersuchungen von Nova et al. [104] bestätigen diese Hypothese anhand von Adsorptionsmessungen mit NO_2 und NO an Ba/Al₂O₃- bzw. Pt-Ba/Al₂O₃-Katalysatoren.

Die Differenz in den Messungen mit variierendem NO₂-Anteil bei 200 °C wird daher als Messstreuung eingestuft. Für die Katalysatorprobe KAT 2 ergibt sich in allen untersuchten Alterungs- und Verschwefelungszuständen, analog dieser Theorie, kein Einfluss des NO₂-Anteils auf die Speicherkapazität. Da in der Modellbildung ein Einfluss des NO₂-Anteils im Feedgas, insbesondere in sauerstoffarmer Atmosphäre, nicht ausgeschlossen werden kann, wird das NO₂/NO_X-Verhältnis im Modell mit berücksichtigt.

7. Mathematische Modellbildung für passive NO_X-Adsorber

In den vergangenen Jahren wurden die chemisch-physikalischen Katalysatormodelle, für die heterogen Katalyse in PKW-Anwendungen, stetig weiterentwickelt. In der Literatur beschreiben Olssen et al. [109] und Koči et al. [71, 72, 74, 73], mit den Beiträgen von Güthenke et al. [57], solche chemisch-physikalischen Zusammenhänge für NO_X-Speicherkatalysatoren sehr detailliert. Diese Modelle weisen, aufgrund ihrer chemisch-physikalischen Relevanz, eine hohe Präzision bzgl. der Berechnung einzelner Reaktionen und Spezies auf. Grundlage für diese Modellqualität ist eine aufwändige Kalibrierung der komplexen Zusammenhänge. Charakterisierend für die Ausführung einer Berechnung mit diesen Modellen ist zum Einen die Rechenleistung und zum Anderen die Modellgröße. Eine Echtzeitberechnung mit diesen Modellen ist nur mit sehr leistungsfähigen Rechnern möglich.

Der Einsatz eines passiven NO_x-Speicherkatalysator in PKW-Anwendungen erfordert eine Vorhersage des Verhaltens der Speicherkomponente im relevanten Kennfeldbereich. Die Gründe hierfür liegen zum Einen in der Regelung der nachfolgenden Abgasnachbehandlungskomponenten (bspw. NH₃-Dosiermenge für SCR-Katalysator), zum Anderen in den Anforderungen der gesetzlichen On-Bord-Diagnose. Die Anforderungen an die Umsetzung eines Modells in Motorsteuergeräten unterscheiden sich deutlich von denen, an ein chemisch-physikalisches Modell. Begrenzend für die Berechnung von Modellen in Motorsteuergeräten sind zum Einen der Speicherplatz und zum Anderen die Rechenleistung. Um die Echtzeitfähigkeit auch mit weniger leistungsfähigeren Rechnern (bspw. Motorsteuergeräte) zu ermöglichen, ist es notwendig, die Modellgröße und -komplexität deutlich zu verringern. Hierzu werden die signifikanten Einflüsse der Eingangsgrößen auf das Modellierungsergebnis, mittels mathematischer Funktionen geringer Komplexität, abgebildet. Eine Möglichkeit, mit einem mathematischen Modell das Adsorptions-, Desorptions- und Konversionsverhalten von NO_X-Speicherkatalysatoren zu beschreiben, liefern Kim et al. [69] und in der Detaillierung Nauta [100]. Eine weitere Anforderung an die Umsetzung von Modellen in der Motorsteuerung ist der Kalibrieraufwand. Komplexe Modelle mit vielen Parametern benötigen einen hohen Material- und Ressourceneinsatz, um diese zu kalibrieren. Aufgrund dieser Tatsache wird der Fokus bei der Modellentwicklung auf ein einfach zu kalibrierendes Modell gelegt.

Da sich die bekannten Modelle nur bedingt zur Beschreibung des Adsorptions- und Desorptionsverhaltens von passiven NO_X -Adsorbern in einem Motorsteuergerät eignen, werden die Ansätze von Kim et al., in Hinblick auf die diskutierten Punkte Komplexität und Kalibrieraufwand, weiterentwickelt. Dies geschieht im ersten Schritt anhand stationärer Messungen am Synthesegasprüfstand. Zu einem späteren Zeitpunkt wird das so entstehende mathematische Modell an Realdaten im Fahrzeug validiert.

7.1. Herleitung der Modellgrundgleichung

7.1.1. Betrachtung der Stoffmengen im Bilanzraum

Für die Stoffmengenbilanz werden zwei Bilanzräume betrachtet. Die am Modellgasprüfstand messtechnisch erfassbaren NO_X -Stoffmengen bilden den Bilanzraum des Reaktors. Der Bilanzraum für den passiven NO_X -Adsorber beinhaltet die modellierten und berechneten Stoffmengen. Abb. 7.1 zeigt die beiden Bilanzräume mit den bilanzierten NO_X -Stoffmengen.

Abb. 7.1.: Reaktormodell und Speichermodell des passiven NO_X -Adsorbers mit betrachteten NO_X -Stoffmengen.

Aus der **Reaktorbilanz** ergeben sich die eintretende (G 7.1) und austretende (G 7.2) NO_X -Stoffmenge.

$$n_{NO_X}^{in} = n_{NO_X}^{ads,sim} + n_{NO_X}^{break} + n_{NO_X}^{red,sim}$$
(G 7.1)

$n_{NO_X}^{in}$	= eintretende NO _X -Stoffmenge	[mol]
$n_{NO_X}^{ads,sim}$	= berechnete adsorbierte NO _X -Stoffmenge	[mol]
$n_{NO_X}^{break}$	= durchbrechende NO _X -Stoffmenge	[mol]
$n_{NO_X}^{red,sim}$	= berechnete reduzierte NO _X -Stoffmenge	[mol]

$$n_{NO_X}^{out} = n_{NO_X}^{des,sim} + n_{NO_X}^{break}$$
(G 7.2)

$n_{NO_X}^{out}$	= austretende NO _X -Stoffmenge	[mol]
$n_{NO_X}^{des,sim}$	= berechnete desorbierte NO _X -Stoffmenge	[mol]
$n_{NO_X}^{break}$	= durchbrechende NO _X -Stoffmenge	[mol]

Aus der **Speicherbilanz** ergeben sich adsorbierte (G 7.3) und gespeicherte (G 7.5) NO_X -Stoffmenge.

$$n_{NO_X}^{ads,sim} = n_{NO_X}^{stored,sim} + n_{NO_X}^{des,sim}$$
(G 7.3)

$$n_{NO_X}^{ads,sim}$$
 = berechnete adsorbierte NO_X-Stoffmenge [mol]
 $n_{NO_X}^{stored,sim}$ = berechnete gespeicherte NO_X-Stoffmenge [mol]
 $n_{NO_X}^{des,sim}$ = berechnete desorbierte NO_X-Stoffmenge [mol]

$$n_{NO_X}^{stored,sim} = n_{NO_X}^{ads,sim} - n_{NO_X}^{des,sim}$$
(G 7.5)

$$n_{NO_X}^{stored,sim}$$
 = berechnete gespeicherte NO_X-Stoffmenge [mol]
 $n_{NO_X}^{ads,sim}$ = berechnete adsorbierte NO_X-Stoffmenge [mol]
 $n_{NO_X}^{des,sim}$ = berechnete desorbierte NO_X-Stoffmenge [mol]

7.1.2. Mathematische Beschreibung des Speichers

Die mathematische Beschreibung der gespeicherten NO_X-Menge erfolgt gemäß des Ansatzes von Kim et al. [69].

$$n_{NO_X}^{stored,sim} = \Theta(T) \cdot x \tag{G 7.6}$$

$n_{NO_X}^{stored,sim}$	= berechnete gespeicherte NO _X -Stoffmenge	[mol]
$\Theta(T)$	= temperaturabhängige Kapazität des NO _X -Speichers	[mol]
X	= Beladung des NO _X -Speichers	[-]

Die temperaturabhängige Kapazität wird in Annäherung durch eine Gauss'sche Glockenkurve beschrieben.

$$\Theta(T) = \hat{\Theta} \cdot e^{\left(\frac{T-T_m}{T_s}\right)^2}$$
(G 7.7)

$\Theta(T)$	= Kapazität des NO _X -Speichers	[mol]
$\hat{\Theta}$	= maximale Kapazität des NO _X -Speichers	[mol]
Т	= Temperatur	[°C]
T_m	= Temperatur bei maximaler Kapazität $\hat{\Theta}$	[°C]
T_s	= Temperaturabweichung bei Kapazität von 68 %	[°C]

Für die Berechnungen werden die Parameter T_m und T_s so angepasst, dass die Kapazitätskurve aus der Versuchsreihe A4 mit minimalem Fehler beschrieben wird. Dazu wird für T_m eine Temperatur von 180 °C und T_s eine Temperaturabweichung von 128 °C ermittelt. Abb. 7.2 zeigt die so angepasste mathematische Beschreibung der Kapazität, in Abhängigkeit der Temperatur.

Die zeitliche Ableitung des Speichers wird analytisch durch die Gleichung G 7.8 beschrieben.

$$\frac{\partial \Theta(T)}{\partial t} = -2 \cdot \Theta(T) \cdot \frac{\partial T}{\partial t} \cdot \frac{T - T_m}{T_s^2}$$
(G 7.8)

Abb. 7.2.: Berechnete adsorbierte NO_X-Stoffmenge für den Frischzustand in Abhängigkeit der Temperatur im Vergleich zum Ergebnis der Versuchsreihe A4 aus Kap. 8.1.

7.1.3. Modellbilanzierung mittels Differentialgleichung

Aus den Gleichungen G 7.5 und G 7.6 ergibt sich der Zusammenhang zwischen Speichermodell und den Stoffmengen im Bilanzraum des Speichers.

$$\Theta(T) \cdot x = n_{NO_X}^{ads,sim} - n_{NO_X}^{des,sim}$$
(G 7.9)

$\Theta(T)$	= Kapazität des NO _X -Speichers	[mol]
X	= Beladung des NO _X -Speichers	[-]
$n_{NO_X}^{ads,sim}$	= berechnete adsorbierte NO _X -Stoffmenge	[mol]
$n_{NO_X}^{des,sim}$	= berechnete desorbierte NO _X -Stoffmenge	[mol]

Für die Betrachtung der Stoffmengenströme wird die Gleichung G 7.9 einmal nach der Zeit differenziert und umgestellt, um die Differentialgleichung G 7.10 zu erhalten.

$$\frac{\partial x}{\partial t} = \frac{1}{\Theta(T)} \cdot \left(-x \cdot \frac{\partial \Theta(T)}{\partial t} + \dot{n}_{NO_X}^{ads,sim} - \dot{n}_{NO_X}^{des,sim} \right)$$
(G 7.10)

Mit der zeitlichen Ableitung der temperaturabhängigen Kapazitätsfunktion (vgl. G 7.8) ergibt sich die finale Berechnungsvorschrift zu Gleichung G 7.11.

$$\frac{\partial x}{\partial t} = x \cdot 2 \cdot \frac{\partial T}{\partial t} \cdot \frac{T - T_m}{T_s^2} + \frac{\dot{n}_{NO_X}^{ads,sim} - \dot{n}_{NO_X}^{des,sim}}{\Theta(T)}$$
(G 7.11)

Zur Lösung dieser Differentialgleichung werden die Terme $\dot{n}_{NO_X}^{ads,sim}$, $\dot{n}_{NO_X}^{des,sim}$ beschrieben.

7.1.4. Mathematische Beschreibung des Adsorptionsverhaltens

Das Adsorptionsverhalten wird mit Hilfe eines Wirkungsgradesansatzes von Kim et al. [69], gemäß Gleichung G 7.12, beschrieben.

$$\dot{n}_{NO_X}^{ads,sim} = \left(\dot{n}_{NO_X}^{in} - \dot{n}_{NO_X}^{red,sim}\right) \cdot \eta_{ads} \tag{G 7.12}$$

$\dot{n}_{NO_X}^{ads,sim}$	= berechneter adsorbierter NO _X -Stoffmengenstrom	[mol/s]
$\dot{n}_{NO_X}^{in}$	= eintretender NO_X -Stoffmengenstrom	[mol/s]
$\dot{n}_{NO_X}^{red,sim}$	= berechneter reduzierter NO _X -Stoffmengenstrom	[mol/s]
η_{ads}	= Wirkungsgrad der Adsorption	[-]

Der von Kim et al. beschriebene Wirkungsgrad wird modifiziert, um neben der reinen Temperaturabhängigkeit auch weitere Einflüsse in dem Adsorptionswirkungsgrad berücksichtigen zu können.

$$\eta_{ads} = \frac{e^{-\alpha \cdot x \cdot \zeta} - e^{-\alpha}}{1 - e^{-\alpha}} \tag{G 7.13}$$

$$\eta_{ads}$$
= berechneter Adsorptionswirkungsgrad[-] α = DoE-Fitparameter[-] x = Beladung des NO_X-Speichers[-] ζ = DoE-Korrekturfaktor[-]

In der Gleichung G 7.13 sind zwei Parameter für die Anpassung des Adsorptionsterms an die Messungen enthalten. Der Parameter α ist ein Fitparameter, der das berechnete Adsorptionsverhalten im Wirkungsgradbereich zwischen 0 und 1, bei einer normierten Beladung zwischen 0 und 1, beeinflusst. Bei hohem α sinkt der Adsorptionswirkungsgrad bei geringen Beladungen signifikant. Ein kleines bzw. negatives α sichert in der Berechnung einen hohen Adsorptionswirkungsgrad bei höheren Beladungen. Abb. 7.3 (a) zeigt den Einfluss des Fitparameters α , Abb. 7.3 (b) den Einfluss des DoE-Korrekturfaktors ζ auf den Wirkungsgrad, in Abhängigkeit von der Beladung des NO_X-Speichers. Dieser Parameter α wird später durch ein DoE-Modell berechnet.

Abb. 7.3.: Einfluss des Fitparameters α und des DoE-Korrekturfaktors ζ auf den Adsorptionswirkungsgrad.

Die Ergebnisse von Kim et al. zeigen ein ausgeprägtes Minimum bei ca. 350 °C in der Temperaturabhängigkeit von α . Abb. 7.4 zeigt den Einfluss der Temperatur auf den Fitparameter α aus der Veröffentlichung von Kim et al. [69].

Abb. 7.4.: Einfluss der Temperatur auf den Fitparameter α aus den Untersuchungen von Kim et al. [69].

Der DoE-Korrekturfaktor ζ wird zur Berücksichtigung der Einflüsse der variierenden Eingangsfaktoren auf die adsorbierte NO_X-Stoffmenge eingefügt. ζ wird gemäß Gleichung G 7.14 berechnet.

$$\zeta = \frac{\Theta(T)}{\Theta'} \tag{G 7.14}$$

ζ	= DoE-Korrekturfaktor	[-]
$\Theta(T)$	= temperaturabhängige Kapazität des NO _X -Speichers	[mol]
Θ'	= Kapazität aus DoE-Modell	[mol]

 $\Theta(T)$ wird aus Gleichung G 7.7 bestimmt. Θ' wird später durch ein DoE-Modell berechnet und entspricht gerade der adsorbierten NO_X-Stoffmenge des DoE-Modells. Θ' ist abhängig von den Eingangskonzentrationen HC, CO, NO_X, dem NO₂-Anteil, der Raumgeschwindigkeit und Lambda.

$$\Theta' = f(\gamma_{HC}, \gamma_{CO}, \gamma_{NO_X}, \gamma_{NO_2}, SV, \lambda)$$
(G 7.15)

7.1.5. Mathematische Beschreibung des Desorptionsverhaltens

Das Desorptionsverhalten wird ebenfalls mit einem modifizierten Ansatz von Kim et al. [69] beschrieben. Kim et al. hinterlegen in ihren Berechnungen ein Modell von Brandt et al. [16] zum Desorptionsverhalten, unter Betrachtung weiterer Abhängigkeiten in ihren Untersuchungen. Dieses Modell wird hier vernachlässigt. Stattdessen wird zur Berücksichtigung der thermischen Desorption eine Erweiterung, gemäß des reaktionskinetischen Ansatzes von Svante Arrhenius, vorgenommen.

$$\dot{n}_{NO_X}^{des,sim} = \Theta(T) \cdot \frac{1 - e^{\delta \cdot x}}{1 - e^{\delta}} \cdot k_{des} \cdot e^{-\frac{E_{des}}{R^* \cdot T}}$$
(G 7.16)

$\dot{n}_{NO_X}^{des,sim}$	= berechneter desorbierter NO _X -Stoffmengenstrom	[mol/s]
$\Theta(T)$	= temperaturabhängige Kapazität des NO _X -Speichers	[mol]
δ	= Fitparameter 2	[-]
X	= Beladung des NO _X -Speichers	[-]

k _{des}	= präexponentieller Faktor der Desorption	[1/s]
E _{des}	= exponentieller Faktor der Desorption	[-]
R^*	= Äquivalenz zur allgemeinen Gaskonstante	[1/K]
Т	= Temperatur	[K]

In der Gleichung G 7.16 ist, ausgehend von dem Ansatz von Kim et al., ein Fitparameter (δ) für die Anpassung des Desorptionsverhaltens an die Messdaten vorhanden. Geht man davon aus, dass die Temperatur der dominante Parameter für die Desorption von passiven NO_X-Adsorbern ist, kann dieser Fitparameter vernachlässigt werden. Da passive NO_X-Adsorber überwiegend im mageren Betriebsbereichen betrieben werden (keine Regeneration durch Fettsprung), ist diese Annahme zulässig.

7.1.6. Mathematische Beschreibung des Reduktionsverhaltens

Die NO_X-Stoffmengen $n_{NO_X}^{in}$ und $n_{NO_X}^{out}$ können zu jedem Zeitpunkt messtechnisch erfasst werden. Deutlich komplexer ist die Erfassung der reduzierten NO_X-Stoffmenge $n_{NO_X}^{red}$. Die Reduktion von Stickstoffoxiden führt im Produkt in vielen Fällen zu Stickstoff (vgl. Reaktionen R 2.28, R 2.32, R 2.37, R 2.46, R 2.47, R 2.61). Aufgrund der Tatsache, dass die Messungen in Stickstoff als Trägergas durchgeführt werden, ist eine Erfassung dieses Reaktionsproduktes nicht möglich. Ein Rückschluss auf die reduzierte NO_x-Stoffmenge kann damit nicht direkt, zu jedem Zeitpunkt der Messung, erfolgen. Es ist auch hier, aufgrund der überwiegend mageren Betriebsweise, anzunehmen, dass die Reduktion von Stickstoffoxid für passive NO_x-Adsorbern eine eher untergeordnete Rolle spielt. Für die korrekte Bilanzierung der adsorbierten und desorbierten NO_x-Stoffmenge, ist die reduzierte NO_x-Stoffmenge $\dot{n}_{NO_X}^{red}$ im Stationärzustand dennoch zu berücksichtigen. Zur Berechnung von $\dot{n}_{NO_X}^{red}$ wird zum Ende des Adsorptionsexperiments die Differenz zwischen eintretendem und austretendem NO_X-Stoffmengenstrom bestimmt. Diese Differenz entspricht gerade dem reduzierten NO_X-Stoffmengenstrom $\dot{n}_{NO_X}^{red}$. Um die reduzierte NO_X-Stoffmenge $\dot{n}_{NO_X}^{red}$ im Modell zu beschreiben, wird ein stark vereinfachter Ansatz gemäß Gleichung G 7.17 gewählt. Durch die Bestimmung dieser Größe, kann zwar die Bilanzierung der adsorbierte und desorbierte NO_X-Stoffmenge, jedoch keine exakte Berechnung der reduzierten NO_X-Stoffmenge im späteren Modell erfolgen. Um die reduzierte NO_x-Stoffmenge ebenfalls im Modell mit hinreichender Genauigkeit mathematisch abbilden zu können, müssen, aufgrund der komplexen Abhängigkeiten, deutlich detailliertere chemisch-physikalische Ansätze genutzt werden (vgl.

[110, 126, 74, 123, 73, 127, 20]). Einen Überblick, über die abzubildenden Reaktionen, gibt Anhang B.3 (R B.7 bis R B.12, R B.19 bis R B.27). Darauf wird aus diskutierten Gründen an dieser Stelle verzichtet.

$$\dot{n}_{NO_X}^{red,sim} = \kappa \cdot \dot{n}_{red}^{in} \cdot \dot{n}_{NO_X}^{in} \tag{G 7.17}$$

$\dot{n}_{NO_X}^{red,sim}$	= berechneter reduzierter NO _X -Stoffmengenstrom	[mol/s]
К	= DoE-Korrekturfaktor	[s/mol]
\dot{n}_{red}^{in}	= wirksamer Reduktionsmittelstoffmengenstrom	[mol/s]
$\dot{n}^{in}_{NO_X}$	= eintretender NO _X -Stoffmengenstrom	[mol/s]

Der wirksame Reduktionsmittelstoffmengenstrom setzt sich aus der Konzentration der Reduktionsmittel und deren stöchiometrischen Reduktionspotentialen aus Reaktion R 2.28 für CO und Reaktion R 2.32 für HC, gemäß Gleichung G 7.18, zusammen.

$$\dot{n}_{red} = 1 \cdot \dot{n}_{CO} + 9 \cdot \dot{n}_{HC} \tag{G 7.18}$$

\dot{n}_{red}^{in}	= wirksamer Reduktionsmittelstoffmengenstrom	[mol/s]
\dot{n}_{CO}^{in}	= eintretender CO-Stoffmengenstrom	[mol/s]
\dot{n}_{HC}^{in}	= eintretender HC-Stoffmengenstrom	[mol/s]

7.2. Kalibrierung des mathematischen Modells

Zur Kalibrierung des mathematischen Modells sind sechs Schritte notwendig. Im ersten Schritt wird ein DoE-Versuchsplan, analog der vorherigen DoE-Untersuchungen, erstellt (vgl. Kap. 8.2). Im zweiten Schritt werden die geplanten Versuche für die erforderlichen Alterungszustände am Synthesegasprüfstand gefahren und ausgewertet (vgl. Kap. 6.2). Der darauf folgende Schritt beinhaltet den Modellfit durch Anpassung der in Kap. 7.1 beschriebenen Parameter. Die Vorgehensweise wird in Kap. 7.2.3 detailliert beschrieben. Im vierten Schritt werden die Fitparameter, mit den in Kap. 8.2 definierten Abhängigkeiten, mit Hilfe eines DoE-Modells in Cameo abgebildet. Die Modellpolynome werden im fünften Schritt aus Cameo extrahiert und in das Simulink-Modell implementiert. Dieses Simulink-Modell wird in Kap. 9 detailliert beschrieben. Zum finalen Abgleich, wird eine Feinkalibrierung des Simulink-Modells auf die realen Fahrdaten vorgenommen.

Abb. 7.5 zeigt grafisch den Ablauf der Kalibrierung des mathematischen Modells in allen sechs Schritten.

Abb. 7.5.: Ablauf der Kalibrierung des mathematischen Modells zur Abbildung des Adsorptions- und Desorptionsverhaltens von passiven NO_X-Adsorbern.

7.2.1. Numerisches Lösen der Differentialgleichung

Zur Berechnung des Adsorptions- und Desorptionsverhaltens der untersuchten Katalysatorproben, muss die Differentialgleichung (vgl. Gleichung G 7.11) gelöst werden. Für die numerische Lösung der Differentialgleichung bietet sich das Runge-Kutta-Verfahren (Matlab: ode45-Solver) an, welches in der Vielzahl der Lösungen ein gutes Ergebnis liefert. In Einzelfällen führt dieses Verfahren zu einer oszillierenden Lösung (Instabilität). Da die Auswertung und Berechnung der Messergebnisse automatisiert vorgenommen werden soll, wird zur Vermeidung von oszillierenden Lösungen das Rosenbrock-Typ-Verfahren (Matlab: ode23s-Solver) für steife Differentialgleichungen gewählt. Zudem eignet sich dieses Verfahren gut für die Lösung differential-algebraischer Systeme [143], wie in diesem Fall.

7.2.2. Kalibrierung des Desorptionsterms

Um das thermische Desorptionsverhalten mittels Modellterm der Desorption abbilden zu können, müssen die enthaltenen Parameter kalibriert werden. Vorerst werden die Parameter k_{des} und E_{des} , im Bereich der TPD, über die Arrhenius-Gleichung abgeschätzt. Dazu wird ein Arrhenius-Plot der Desorptionsrate erstellt und linear angenähert. Die, an den Modellterm der Desorption (vgl. Gleichung G 7.16), angepasste Desorptionsrate errechnet sich nach Gleichung G 7.19.

$$r_{des} = \frac{\dot{n}_{NO_X}^{out}}{\Theta(T)} \cdot \frac{1 - e^{\delta}}{1 - e^{\delta \cdot x}}$$
(G 7.19)

r_{des}	= angepasste Desorptionsrate	[1/s]
$\dot{n}_{NO_X}^{out}$	= austretender NO _X -Stoffmengenstrom	[mol/s]
$\Theta(T)$	= temperaturabhängige Kapazität des NO _X -Speichers	[mol]
δ	= Fitparameter 2	[-]
X	= Beladung des NO _X -Speichers	[-]

Aus den Koeffizienten des linearen Polynoms lassen sich, durch Linearisierung des Arrhenius-Ansatzes, die Parameter k_{des} und E_{des} berechnen. Die Feinkalibrierung findet durch einen Fit der Parameter k_{des} und E_{des} an den realen Messdaten statt (vgl. Kap. 7.2.3).

$$ln(r_{des}) = -\frac{E_{des}}{R} \cdot \frac{1}{T} + ln(k_{des})$$
(G 7.20)

Abb. 7.6.: Arrhenius-Plot der, aus den Messdaten berechneten, Desorptionsrate mit linearem Polynom und Ergebnis der Kalibrierung sowie des Modellfit.

Abb. 7.6 zeigt den Arrhenius-Plot der, aus den Messdaten berechneten, Desorptionsrate mit der linearen Annäherung durch ein Polynom ersten Grades (a) und das Ergebnis der Kalibrierung mit dem Ergebnis aus Gleichung G 7.20 k_{des} =4,20e⁴ und E_{des} =8,57e⁴ sowie das Ergebnis der Feinkalibrierung (b) mit k_{des} =4,24e⁴ und E_{des} =8,60e⁴.

7.2.3. Fehlerfunktion und Modellfit

Die Fehlerfunktion wird aus den gemessenen und dem berechneten Verlauf des Ausgangssignals gebildet. Hierzu wird vorerst das Ausgangssignal $\dot{n}_{NO_X}^{out,sim}$ durch das mathematische Modell berechnet.

$$\dot{n}_{NO_X}^{out,sim} = \dot{n}_{NO_X}^{in} - \dot{n}_{NO_X}^{red,sim} - \dot{n}_{NO_X}^{ads,sim} + \dot{n}_{NO_X}^{des,sim}$$
(G 7.21)

$\dot{n}_{NO_X}^{out,sim}$	= berechneter austretender NO _X -Stoffmengenstrom	[mol/s]
$\dot{n}_{NO_X}^{in}$	= eintretender NO _X -Stoffmengenstrom	[mol/s]
$\dot{n}_{NO_X}^{red,sim}$	= berechneter reduzierter NO _X -Stoffmengenstrom	[mol/s]
$\dot{n}_{NO_X}^{ads,sim}$	= berechneter adsorbierter NO _X -Stoffmengenstrom	[mol/s]
$\dot{n}_{NO_X}^{des,sim}$	= berechneter desorbierter NO _X -Stoffmengenstrom	[mol/s]

Aus diesem Signal und dem gemessenen austretenden NO_X -Stoffmengenstrom $\dot{n}_{NO_X}^{out}$ wird die normierte Fehlerquadratsumme, gemäß Gleichung G 7.22, im Zeitintervall t_1 bis t_4 , gebildet. Das Zeitintervall wird so gewählt, dass die Adsorptionsphase und Desorptionsphase zum Paramterfit herangezogen werden. Die Normierung wird an dieser Stelle vorgenommen, um die absoluten Fehler für die Auswertung vergleichen zu können.

$$\operatorname{error} = \sum_{t_1}^{t_4} \left(\frac{\dot{n}_{NO_X}^{out,sim} - \dot{n}_{NO_X}^{out}}{\max(\dot{n}_{NO_X}^{out})} \right)^2$$
(G 7.22)

error	= Fehlerfunktion	[-]
$\dot{n}_{NO_X}^{out,sim}$	= berechneter austretender NO _X -Stoffmengenstrom	[mol/s]
$\dot{n}_{NO_X}^{out}$	= austretender NO _X -Stoffmengenstrom	[mol/s]

Der eigentliche Parameterfit erfolgt über die Minimierung des Fehlers (error). In dem iterativen Verfahren werden die Fitparameter der Adsorption α und Reduktion κ freigegeben. Zur Lösung des Minimierungsproblems wird der Nelder-Mead-Simplex Algorithmus (Matlab: fminsearch) herangezogen [83]. Das Ergebnis ist der, an die Messkurve angepasste, berechnete NO_X-Molenstrom.

Abb. 7.7 zeigt den Fitprozess vom Ausgangszustand (a mit α =1, κ =0) über den Fit von κ (b mit α =1, κ =2,24e³) bis zum gefitteten Ergebnis (c mit α =1,05e⁻¹, κ =2,24e³).

Abb. 7.7.: Beispiel für den Verlauf des Parameterfit des mathematischen Modells an die Messdaten (DoE-Messpunkt 4 frisch).

An dieser Stelle wird bewusst eine Messung ausgewählt, bei der eine ausgeprägte NO_X -Reduktion auftritt (ca. 15 %), um den Einfluss von κ darzulegen. In der automatisierten Anwendung mit Matlab werden die beiden Fitparameter gleichzeitig optimiert.

8. Untersuchungen zur Kalibrierung des mathematischen Modells für passive NO_X-Adsorber

Die Untersuchungen zur Kalibrierung sind in zwei Abschnitte unterteilt. Im ersten Abschnitt werden einige Einflüsse von Eingangsparametern systematisch variiert und analysiert. Im zweiten Abschnitt wird der gesamte Versuchsraum, mit der Design of Experiments-Methode (DoE), statistisch erfasst.

8.1. Systematische Variation von NO_X-Eingangskonzentration, Raumgeschwindigkeit und der Temperaturänderungsrate der TPD

In diesem Abschnitt werden die Einflüsse der Eingangsparameter NO_X -Eingangskonzentration, Raumgeschwindigkeit und Temperaturänderungsrate der TPD separat betrachtet. Hierbei wird der generelle Einfluss der Eingangsparameter untersucht und eine systematische Datenbasis, für die spätere Bewertung und Validierung der DoE-Modelle, geschaffen. Zudem wird der Modellansatz für das Desorptionsverhalten anhand von variierenden Temperaturänderungsraten in der TPD validiert. Des Weiteren werden die notwendigen Polynomgrade für die spätere Abbildung in DoE-Modellpolynomen abgeschätzt.

8.1.1. Versuchsplanung und Durchführung

Diese Untersuchungen werden an reduktionsmittelfreien Feedgasen (ohne HC, CO und H₂) durchgeführt. Grund hierfür ist, dass die Adsorptions- und Desorptionseffekte separiert von weiteren Reaktionen mit NO_X betrachtet werden sollen. Aus Fahrzeugmessungen ist bekannt, dass in den relevanten Betriebszuständen ein λ von 1,4 bis 2,5 auftritt. Um zusätzlich ausschließen zu können, dass weitere Effekte aufgrund von Sauerstoffmangel zu einem systematischen Fehler führen, wird für diese Messungen ein λ von 2,5 eingestellt. Es wird ein weiterer Gasmix, nach Tab. 8.1, definiert. Für die Variation werden, ausgehend von diesem Standardgasmix, einzelne Parameter variiert.

Konzentration/Merkmal	Abkürzung	Einstellung	Einheit
Adsorptionstemperatur	T _{ads}	250	[°C]
Temperaturänderungsrate während TPD	dT/dt	10	[K/min]
Raumgeschwindigkeit	SV	65.000	[1/h]
Kohlenstoffdioxid	${\cal Y}_{CO_2}$	11,6	[Vol%]
Kohlenwasserstoff	$\mathcal{Y}_{C_3H_6}$	0	[ppm]
Kohlenstoffmonoxid	Усо	0	[ppm]
Stickstoffmonoxid	${\mathcal Y}_{NO}$	300	[ppm]
Stickstoffdioxid	\mathcal{Y}_{NO_2}	0	[ppm]
Wasser	\mathcal{Y}_{H_2O}	10	[Vol%]
Lambda	λ	2,5	[-]
Stickstoff	${\mathcal Y}_{N_2}$	balance	[-]

Tab. 8.1.: Definition der Standardeinstellungen für die systematischen Adsorptionsunter-
suchungen am Synthesegasprüfstand.

Zu Beginn der Untersuchungen wird die Katalysatorprobe KAT 1 mit dem angepassten Gasmix charakterisiert. Dazu werden die 4 h und 16 h hydrothermal gealterte sowie die zusätzlich verschwefelte Probe, gemäß der Versuchsprozedur Abb. 6.1, bei variierender Adsorptionstemperatur, vermessen. Tab. 8.2 zeigt die Übersicht der Alterungs- und Verschwefelungsuntersuchungen zur Charakterisierung mit angepasstem Gasmix, gemäß Tab. 8.1.

Tab. 8.2.: Versuchsmatrix für Alterungs- und Verschwefelungsuntersuchungen der Katalysatorproben KAT 1 für die Charakterisierung mit angepasstem Gasmix.

Versuchs- reihe	t_{age}	m_S	$arphi_{NO_2}$	Para- meter	Einheit	min.	max.
	[h]	$[\mathbf{g}_S/\mathbf{l}_{Kat}]$	[%]				
A4	0	0	0	T_{Ads}	[°C]	100	450
A5	4	0	0	T_{Ads}	[°C]	100	450
A6	16	0	0	T_{Ads}	[°C]	100	450
S5	4	1	0	T_{Ads}	[°C]	100	450

In den weiteren Versuchsreihen wird, ausgehend von den Standardeinstellungen gemäß Tab. 8.1, jeweils ein Faktor variiert. Diese Untersuchungen werden an der

Katalysatorprobe KAT 1 durchgeführt, die gemäß Kap. 6.3.1 für 4 h bei 750 °C hydrothermal gealtert ist. Tab. 8.3 zeigt die Variation der Parameter, ausgehend von den Standardeinstellungen.

Tab. 8.3.: Versuchsmatrix für die systematische Variation von NO_X-Eingangskonzentration, Raumgeschwindigkeit und Temperaturänderungsrate in der TPD

Versuchs- reihe	Merkmal	Abkürz- ung	min.	max.	Einheit
V1	Stickstoffoxid	\mathcal{Y}_{NO_X}	100	500	[ppm]
V2	Raumgeschwindigkeit	SV	25	90	[10 ³ /h]
V3	Temperaturänderungs- rate der TPD	dT/dt	5	20	[K/min]

8.1.2. Ergebnisse und Diskussion

Abb. 8.1 zeigt die adsorbierte NO_X -Stoffmenge für die Katalysatorprobe KAT 1, in Abhängigkeit von der Adsorptionstemperatur (Versuchsreihe A4-A6 und S5), im Vergleich zu den Ergebnissen der Versuchsreihen A1 bis A3 und S1 aus Kap. 6.

Abb. 8.1.: Ergebnisse KAT 1 Versuchsreihe A4-A6 und S5: Adsorbierte Stoffmenge NO_X für die Katalysatorprobe KAT 1, in Abhängigkeit von der Adsorptionstemperatur bei angepasstem Gasmix, im Vergleich zu den Ergebnissen aus Kap. 6.

Es ist ersichtlich, dass die adsorbierte NO_X -Stoffmenge im Temperaturbereich von 100 °C bis ca. 250 °C, im Vergleich zu den Versuchsreihen aus dem Kap. 6, für alle Alterungsstufen deutlich höher ist. Zurückführen lässt sich diese Differenz auf den HC-, CO- und H₂-freien Gasmix in dieser Versuchsreihe. Offensichtlich führt das Vorhandensein von HC, CO und H₂ in diesem Temperaturbereich zu einer starken Verringerung der adsorbierten NO_X -Stoffmenge. Das lässt darauf schließen, dass

die Adsorption durch Konkurrenzbelegung im HC-, CO- und H₂-haltigen Abgas begrenzt ist. Geht man von einer ausgeprägten Physisorption in diesem Temperaturbereich aus, ist dieses Verhalten durch die Adsorption dieser Spezies mittels Vander-Waals-Bindungen zurückzuführen. Diese Physisorption zeigt sich in den Messungen speziell bei HC in diesem Temperaturbereich. Im Temperaturbereich von 250 °C bis 350 °C zeigen die Ergebnisse der Untersuchungen aus Kap. 6 eine geringfügig höhere adsorbierte NO_X-Stoffmenge. Dies lässt sich auf die Platinoxidbelegung der Katalysatoroberfläche im Feedgas ohne HC, CO und H₂ in oberen Temperaturbereich zurückführen. Die als Platinoxid belegten, aktiven Zentren stehen nicht mehr in vollem Umfang für die NO-Oxidation zur Verfügung und verringern somit die Adsorption nach Reaktion R 2.38 durch Hemmung der Reaktion R 2.18. Im HC-, COund H₂-haltigen Abgas findet eine stetige Reduktion der oxidierten Platinoberfläche statt (vgl. Kap. 2.6.1).

Abb. 8.2 zeigt die adsorbierte NO_X -Stoffmenge für die Katalysatorprobe KAT 1, in Abhängigkeit von der NO_X -Eingangskonzentration (Versuchsreihe V1).

Abb. 8.2.: Ergebnisse KAT 1 Versuchsreihe V1: Adsorbierte NO_X-Stoffmenge für die Katalysatorprobe KAT 1, in Abhängigkeit von der NO_X-Eingangskonzentration, mit Polynomapproximation (a) und Vergleich der Messwerte mit den berechneten Werten durch die Polynomapproximation (b).

Aus den Ergebnissen der Versuchsreihe V1, zur Variation der NO_X -Eingangskonzentration, geht hervor, dass bei geringen Stickstoffoxidkonzentrationen (100 bis 300 ppm) ein Einfluss auf die adsorbierte NO_X -Stoffmenge der Katalysatorprobe KAT 1 besteht. Es ist eine stetige Verringerung der Speicherkapazität mit sinkender NO_X -Eingangskonzentration messbar. Bei NO_X -Eingangskonzentration größer 400 ppm ist kein signifikanter Einfluss auf die adsorbierte NO_X -Stoffmenge messbar. Diese Messergebnisse lassen sich durch ein Polynom 2. Ordnung approximieren. Es wird ein Determinationskoeffizient von $R^2 = 0,99$ erreicht (vgl. Berechnung nach G 4.13). Dies entspricht, nach den Bewertungskriterien in Tab. 4.1, einer sehr guten mathematischen Näherung. Das Polynom setzt sich, wie in Gleichung G 8.1 beschrieben, zusammen.

$$n_{NO_X}^{NO_X} = -7,72e^{-10} \cdot y_{NO_X}^2 + 5,90e^{-7} \cdot y_{NO_X} + 3,49e^{-4}$$
(G 8.1)

Abb. 8.3 zeigt die adsorbierte NO_X -Stoffmenge für die Katalysatorprobe KAT 1, in Abhängigkeit von der Raumgeschwindigkeit (Versuchsreihe V2).

Abb. 8.3.: Ergebnisse KAT 1 Versuchsreihe V2: Adsorbierte NO_X-Stoffmenge für die Katalysatorprobe KAT 1, in Abhängigkeit von der Raumgeschwindigkeit, mit Polynomapproximation (a) und Vergleich der Messwerte mit den berechneten Werten durch die Polynomapproximation (b).

Die Messergebnisse dieser Untersuchung zeigen einen geringen Einfluss der Raumgeschwindigkeit auf die adsorbierte NO_X -Stoffmenge. Hin zu niedrigen Raumgeschwindigkeiten nimmt die adsorbierte NO_X -Stoffmenge geringfügig ab. Die Ergebnisse zeigen eine verhältnismäßig große Streuung. Da die Messstreuung, relativ zu den Effekten, groß ist, kann eine mathematische Näherung nur ungenau erfolgen. Eine Approximation durch eine Polynom 1. Ordnung ergibt einen Determinationskoeffizienten $R^2 = 0,62$. Dies entspricht gemäß Tab. 4.1 einer mittelmäßigen mathematischen Näherung. Das Polynom setzt sich, wie in Gleichung G 8.2 beschrieben, zusammen.

$$n_{NO_X}^{SV} = 4,96e^{-10} \cdot SV + 4,41e^{-4} \tag{G 8.2}$$

Abb. 8.4 (a) zeigt den gemessenen desorbierten NO_X -Stoffmengenstrom und die desorbierte NO_X -Stoffmenge, durch Integration während der TPD mit einer Temperaturänderungsrate von 5, 10 und 20 K/min, für die Katalysatorprobe KAT 1 (Versuchsreihe V3). Abb. 8.4 (b) zeigt den gemessenen desorbierten NO_X -Stoffmengenstrom im Vergleich zum Ergebnis der Modellberechnung.

Abb. 8.4.: Ergebnisse KAT 1 Versuchsreihe V3: Desorbierter NO_X -Stoffmengenstrom und desorbierte NO_X -Stoffmenge (Integral), im zeitlichen Verlauf der TPD-Messung für die Temperaturänderungsraten 5, 10 und 20 K/min (a), und berechneter desorbierter NO_X -Stoffmengenstrom, im Vergleich zum Messsignal (b).

Es ist ersichtlich, dass die desorbierten NO_X -Stoffmengenströme stark von der Temperaturänderungsrate, während der TPD, abhängen. Die desorbierten NO_X -Stoffmengen zeigen, nach vollständiger TPD, keine Differenz im absoluten Wert (vgl. Abb. 8.4 (a)). Daraus folgt, dass die Temperaturänderungsrate der TPD einen Einfluss auf die Desorptionsrate, aber keinen Einfluss auf die desorbierte NO_X -Stoffmenge, hat. Zudem ist ersichtlich, dass sich mit dem Modellansatz des Desorptionsterms, im kalibrierten Zustand, ebenso andere Temperaturänderungsraten abbilden lassen (vgl. Abb. 8.4 (b)).

8.1.3. Zusammenfassung und Fazit

Zusammenfassend kann festgestellt werden, dass die adsorbierte NO_X -Stoffmenge im Temperaturbereich von 100 °C bis 300 °C stark von dem Vorhandensein von Kohlenwasserstoffen und Kohlenstoffmonoxid abhängt. Im Vergleich zu den Ergebnissen aus dem Kap. 6 zeigt sich der Einfluss der thermischen Alterung mit HC und CO ausgeprägter. Insbesondere ist eine deutliche Verringerung der adsorbierten NO_X -Stoffmenge nach 16 h hydrothermaler Alterung messbar. In den systematischen Untersuchungen ergibt sich eine Abhängigkeit der adsorbierten NO_X -Stoffmenge von der NO_X -Eingangskonzentration, die durch ein Polynom 2. Grades im Messbereich sehr gut approximiert werden kann. Eine Extrapolation außerhalb des untersuchten Bereiches von 100 ppm bis 500 ppm NO_X -Eingangskonzentration ist nicht zulässig, da zu hohen NO_X -Eingangskonzentrationen eine Sättigung eintritt, die durch ein Polynom 2. Grades nicht hinreichend beschrieben werden kann. Zusätzlich ergibt sich eine geringe Abhängigkeit der adsorbierten NO_X -Stoffmenge von der Raumgeschwindigkeit, die mit einem Polynom 1. Grades approximiert werden kann. Diese Approximation ist durch die hohe Streuung der Messergebnisse ungenau.

Bei den untersuchten Abhängigkeiten liefert eine Abbildung, mit einem Polynom 2. Ordnung, eine hinreichende Genauigkeit. Polynome höherer Ordnung tragen zu keinem besseren Ergebnis bei.

In den Experimenten mit variierender Temperaturänderungsrate in der TPD ist ein deutlicher Einfluss auf die NO_X -Stoffmengenströme messbar. Mit steigender Temperaturänderungsrate steigen, bei gleicher Beladung des passiven NO_X -Speicherkatalysators, die Maxima der NO_X -Stoffmengenströme stark an. Erwartungsgemäß hat die Änderung der Temperaturänderungsrate in der TPD keinen Einfluss auf die desorbierte NO_X -Stoffmenge. Das Desorptionsverhalten, auch mit variierenden Temperaturänderungsraten, kann mit dem mathematischen Modell in hinreichender Form abgebildet werden.

8.2. Statistische Untersuchungen zur Berechnung der adsorbierten NO_X-Stoffmenge

8.2.1. Versuchsplanung und Durchführung

Für die vollständige Abbildung der Abhängigkeiten im Versuchsraum wird die Methode Design of Experiments (DoE) genutzt. Hierzu wird vorerst ein D-optimaler Versuchsplan, mit Hilfe der statistischen Versuchsplanung, für sieben Eingangsgrößen erstellt (vgl. Kap. 4.3). In diesem Versuchsplan wird der Versuchsraum gemäß Tab. 8.4 abgebildet. Der Versuchsraum wird so gewählt, dass die relevanten Betriebszustände des Systems abgebildet werden. Dabei ist darauf zu achten, dass der Versuchsraum geringfügig über Grenzen des Betriebsbereichs hinaus geht. Damit soll verhindert werden, dass Modellierungsfehler, insbesondere an den Versuchsraumgrenzen in den relevanten Betriebszuständen zum Tragen kommen. Die Parametereinstellungen der einzelnen Messpunkte lassen sich dem Anhang B.2.1 entnehmen. Die weiteren Parameter werden gemäß Tab. 8.1 gewählt.

I				
Merkmal	Abkürzung	min	max	Einheit
Adsorptionstemperatur	T _{ads}	100	400	[°C]
Stickstoffoxid	\mathcal{Y}_{NO_X}	100	500	[ppm]
Stickstoffdioxidanteil	γ_{NO_2}	0	75	[%]
Kohlenwasserstoff	$\mathcal{Y}_{C_3H_6}$	0	500	[ppm]
Kohlenstoffmonoxid	Усо	0	1000	[ppm]
Raumgeschwindigkeit	SV	25	90	[10 ³ /h]
Lambda	λ	1.2	2.5	[-]

Tab. 8.4.: Versuchsraum für die Durchführung des DoE-Programms mit sieben Variationsparametern.

Da davon auszugehen ist, dass einige Bereiche des Versuchsplans aufschlussreicher sind als andere, wird der Versuchsplan bzgl. einiger Faktoren transformiert. Hierbei wird der Versuchsraum so verzerrt, dass die Bereiche mit hohem Informationsgehalt in einem feineren Raster abgefahren werden, als die mit geringem Informationsgehalt. Es werden zwei Transformationsfunktionen genutzt, mit denen der Versuchsraum, in Abhängigkeit der Eingangsgröße, verzerrt wird. In der DoE-Modellbildung wird diese Transformation der Eingangsgrößen rückgängig gemacht, da die DoE-Methode auf dem Ansatz eines äquidistanten Messrasters basiert. Damit stimmt die direkte Zuordnung der DoE-Modellergebnis auf das Eingangssignal nur noch, wenn das Messsignal über die inverse Transformationsfunktion umgerechnet wird. In der finalen Modellbildung werden die Messgrößen, zur Berechnung der Informationen aus den DoE-Polynomen, ebenfalls über die inverse Transformationsfunktion umgerechnet.

Transformation des Versuchsraumes für die Eingangsparameter Temperatur und Lambda

Wie aus den vorhergehenden Untersuchungen bekannt ist, ist die Speicherkapazität von passiven NO_X -Speicherkatalysatoren eine stark temperaturabhängige Funktion. Charakteristisch für diese Funktion ist, dass bei hohen Temperaturen (>350 °C) und bei niedrigen Temperaturen (<150 °C) die Speicherkapazität gering wird. Aus diesem Grund ist, bei der Durchführung von Messungen in einem DoE-Versuchsplan in diesen Temperaturbereichen, eine geringe Informationsdichte vorauszusehen. Effekte werden im Vergleich zu Messfehlern klein. Insbesondere bei der gleichzeitigen

Untersuchung von weiteren Einflussparametern im Randbereich, ist in diesen Temperaturbereichen damit zu rechnen, dass es in den Experimenten zu keinen messbaren Effekten kommt. Der Versuchsplan wird so modifiziert, dass der Schwerpunkt des Messprogramms aus diesen Randbereichen in die Mitte verlagert wird. Dazu wird die Versuchplantransformation mittels Transformationsfunktion am Beispiel der Temperatur, gemäß Gleichung G 8.3 bis G 8.6, durchgeführt.

Vorerst wird die Eingangsgröße normiert, um einen Wertebereich von Null bis Eins zu erhalten.

$$T_N = \frac{T - \min(T)}{\max(T) - \min(T)}$$
 (G 8.3)

$$T$$
= Temperatur[°C] T_N = normierte Temperatur[-]

Danach wird die normierte Temperatur mit einem Sicherheitsfaktor versehen, um Werte von exakt Null und exakt Eins auszuschließen. Dies hat einen rein numerischen Hintergrund, da die darauf folgende Operation für Null und Eins nicht definiert ist.

$$T'_N = T_N \cdot (1 - 2 \cdot S) + S$$
 (G 8.4)

T'_N	T'_N = normierte Temperatur mit Sicherheit		
T_N	= normierte Temperatur	[-]	
S	= Sicherheit	[-]	

Diese normierte Eingangsgröße, wird nun über die eigentliche Transformationsfunktion transformiert.

$$T_{N,Trans} = 0, 5 \cdot ln\left(\frac{1 + T'_N \cdot C + O}{1 - T'_N \cdot C + O}\right)$$
(G 8.5)

$T_{N,Trans}$	= transformierte, normierte Temperatur	[-]
T'_N	= normierte Temperatur mit Sicherheit	[-]
С	= Stauchung	[-]
0	= Offset	[-]

Diese transformierte Größe wird nun wieder auf den Wertebereich des Eingangssignals skaliert.

$$T_{Trans} = \frac{T_{N,Trans} - \min(T_{N,Trans})}{\max(T_{N,Trans}) - \min(T_{N,Trans})} \cdot (\max(T) - \min(T)) + \min(T)$$
(G.8.6)

$$T_{Trans}$$
= transformierte Temperatur[°C] $T_{N,Trans}$ = transformierte, normierte Temperatur[-]

Diese Transformation stellt sicher, dass das Messraster im DoE-Versuchsplan nicht mehr äquidistant ist. Es ergibt sich ein verzerrtes Eingangssignal T_{Trans} im DoE-Versuchsplan für äquidistantes T.

Ebenso wird der Eingangsparameter Lambda mit selbiger Funktion transformiert. Dies hat zum Einen den Grund, dass Lambda-Bereiche unterhalb von λ =1,4 im dieselmotorischen Betrieb sehr selten auftreten und zum Anderen, dass der Einfluss von Lambda oberhalb λ =2 als gering eingeschätzt wird.

Abb. 8.5 zeigt das Ergebnis der Umrechnung des Eingangssignals durch die Transformation im Versuchsraum und für die Umrechnung des Messsignals auf den transformierten Raum.

Abb. 8.5.: Transformation der Eingangsgrößen Temperatur (a) und Lambda (b) für das DoE-Modell gemäß Gleichungen G 8.3 bis G 8.6 und Umrechnung des Messsignals auf den transformierten Raum.

Transformation des Versuchsraumes für die Eingangsparameter y_{HC} und y_{CO}

Analog zu der Transformation der Temperatur und von Lambda, wird der Versuchsraum für die Eingangskonzentrationen der Kohlenwasserstoffe und der Kohlenstoffmonoxide transformiert. Ziel dieser Transformation ist es, eine optimierte Auflösung in den Versuchsraumbereichen zu erhalten, in denen Effekte messbar sind. Hintergrund ist die Annahme, dass es bei hohen Konzentrationen von Kohlenwasserstoffen und Kohlenstoffmonoxid, insbesondere bei geringen Konzentrationen von Stickstoffoxiden und geringem Lambda, zu keinen messbaren Effekten, aufgrund von Stickstoffoxidreduktion kommt. Da dieser Effekt dazu führen kann, dass gerade diese Bereiche keinen Informationsgehalt haben, soll der Fokus des DoE-Versuchsplans gezielt außerhalb dieser Bereiche liegen.

Auch hier wird vorerst die Eingangsgröße normiert, um einen Wertebereich zwischen Null und Eins zu erhalten.

$$y_N = \frac{y - \min(y)}{\max(y) - \min(y)}$$
(G 8.7)

$$y$$
= Eingangskonzentration[ppm] y_N = normierte Eingangskonzentration[-]

Diese normierte Eingangsgröße, wird nun auf über die eigentliche Transformationsfunktion transformiert.

$$\mathcal{Y}_{N,Trans} = \frac{e^{\mathcal{Y}_N \cdot C + O} - e^O}{e^S} \tag{G 8.8}$$

$\mathcal{Y}_{N,Trans}$	= transformierte, normierte Eingangskonzentration	[-]
С	= Stauchung	[-]
0	= Offset	[-]
S	= Sicherheit	[-]

Diese transformierte Größe wird nun wieder auf den Wertebereich des Eingangssignals skaliert.

$$y_{Trans} = \frac{y_{N,Trans} - \min(y_{N,Trans})}{\max(y_{N,Trans}) - \min(y_{N,Trans})} \cdot (\max(y) - \min(y)) + \min(y)$$
(G 8.9)

${\mathcal Y}_{Trans}$	= transformierte Eingangskonzentration	[ppm]
$\mathcal{Y}_{N,Trans}$	= transformierte, normierte Eingangskonzentration	[-]
\mathcal{Y}	= Eingangskonzentration	[ppm]

Mit dieser Transformation ergibt sich ein verzerrtes Eingangssignal der Eingangskonzentrationen von HC und CO für den DoE-Versuchsplan. In der DoE-Modellbildung wird diese Transformation der Eingangsgrößen vollständig berücksichtigt. Um ebenso die Messwerte dem transformierten Parameterraum anzupassen, müssen die Eingangsgrößen in den Rohdaten nach der inversen Funktion der Gleichungen G 8.7 bis G 8.9 umgerechnet werden.

Abb. 8.6 zeigt das Ergebnis der Umrechnung des Eingangssignals durch die Transformation im Versuchsraum und für die Umrechnung des Messsignals auf den transformierten Raum.

(b) Transformation Kohlenwasserstoff

Abb. 8.6.: Transformation der Eingangsgrößen Eingangskonzentration Kohlenstoffmonoxid (a) und Eingangskonzentration Kohlenwasserstoff (b) für das DoE-Modell gemäß Gleichungen G 8.3 bis G 8.6 und Umrechnung des Messsignals auf den transformierten Raum.

Durch die Transformation aller Eingangsgrößen entsteht der finale DoE-Versuchsplan, der in dieser Form am Synthesegasprüfstand abgefahren wird. Dieser DoE-Versuchsplan ist im Anhang B.2.2 einzusehen.

Um die Reproduzierbarkeit der Messungen bewerten zu können, wird im Ablauf der Versuchsdurchführung des DoE-Programms ein Wiederholpunkt mit den Einstellungen gemäß Tab. 8.5 wiederholt abgefahren.

Konzentration/Merkmal	Abkürzung	Einstellung	Einheit			
Adsorptionstemperatur	T _{ads}	250	[°C]			
Stickstoffoxid	\mathcal{Y}_{NO_X}	300	[ppm]			
Stickstoffdioxidanteil	γ_{NO_2}	37,5	[%]			
Kohlenwasserstoff	$\mathcal{Y}_{C_3H_6}$	60	[ppm]			
Kohlenstoffmonoxid	Усо	120	[ppm]			
Raumgeschwindigkeit	SV	57.500	[1/h]			
Lambda	λ	1,85	[-]			

Tab. 8.5.: Definition der Einstellungen für den Wiederholpunkt in den DoE-Untersuchungen im transformierten Versuchsraum

8.2.2. Ergebnisse und Diskussion

Das Modellpolynom zur Berechnung der adsorbierten NO_X -Stoffmenge wird mit Hilfe des Programms CAMEO der Firma AVL List GmbH gebildet. Hierzu werden vorerst alle Eingangsparameter auf Signifikanz, also den Einfluss auf die Genauigkeit der Modellberechnung, bewertet. Das Ergebnis dieser Bewertung ist in Tab. 8.6 zusammengefasst.

Tab. 8.6.: Signifikanzmatrix der DoE-Modellbildung für die Berechnung der adsorbierten
 NO_X -Stoffmenge der Katalysatorproben KAT 1 im Frischzustand.

	T _{ads}	${\mathcal Y}_{{\mathcal C}_3 H_6}$	Усо	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	1	1	×	\rightarrow	\rightarrow	\rightarrow	\rightarrow
T _{ads}	Î	1	×	\rightarrow	×	\rightarrow	\rightarrow
$\mathcal{Y}_{\mathcal{C}_3H_6}$		1	\rightarrow	×	×	×	\rightarrow
Усо			×	\rightarrow	1	\rightarrow	×
\mathcal{Y}_{NO_X}				1	×	\rightarrow	×
γ_{NO_2}					×	\rightarrow	×
λ						\rightarrow	×
SV							×

↑ - hohe Signifikanz, \checkmark - moderate Signifikanz, \rightarrow - geringe Signifikanz, \times - keine Signifikanz

Es ist ersichtlich, dass die quadratische Abhängigkeit der Adsorptionstemperatur (T_{ads}^2) die höchste Signifikanz aufweist. Neben diesem Einfluss zeigen die quadratischen Abhängigkeiten von der Eingangskonzentration Kohlenwasserstoff $(y_{C_3H_6}^2)$ und Stickstoffoxid $(y_{NO_X}^2)$ moderaten Einfluss. Die quadratische Abhängigkeit des NO₂-Anteils im Feedgas zeigt geringen Einfluss. Zu den moderat signifikanten Ko-

varianzeffekten gehören die Kombinationen aus Adsorptionstemperatur und Eingangskonzentration Kohlenwasserstoff ($T_{ads} \cdot y_{C_3H_6}$) sowie die Eingangskonzentration Kohlenstoffmonoxid und der NO₂-Anteil ($y_{CO} \cdot r_{NO_2}$). Für die linearen Anteile zeigen sowohl die Adsorptionstemperatur (T_{ads}) als auch die Eingangskonzentration Kohlenwasserstoff ($y_{C_3H_6}$) moderate Signifikanz. Alle weiteren Eingangsfaktoren zeigen eine geringe bzw. keine Signifikanz bezüglich der Modellgenauigkeit des DoE-Modells.

Für die Berechnung des DoE-Modells werden statistische Informationen, wie arithmetischer Mittelwert ($\bar{x_i}$) und Standardabweichung (σ_i) der jeweiligen Eingangsgröße i, benötigt. Für das DoE-Modell der frischen Katalysatorprobe KAT 1 sind die statistischen Daten in Tab. 8.7 zusammengefasst.

Tab. 8.7.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Eingangsgrößen für die Berechnung der adsorbierten NOX-Stoffmenge der Katalysatorproben KAT 1 im Frischzustand.

	T _{ads}	$\mathcal{Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	249,57	143,91	329,92	295,04	25,83	1,89	61175
σ_i	110,13	185,66	353,50	122,17	26,87	0,39	20545

Für die signifikanten Einflussfaktoren werden die Regressionskoeffizienten errechnet und in der Regressorenmatrix zusammengefasst. Das Ergebnis dieser Berechnung ist in Tab. 8.8 dargestellt.

Tab. 8.8.: Koeffizientenmatrix des DoE-Modellpolynoms für die Berechnung der adsorbierten NO_X-Stoffmenge der Katalysatorproben KAT 1 im Frischzustand.

	T_{ads}	${\mathcal Y}_{{\mathcal C}_3 H_6}$	${\mathcal Y}_{CO}$	${\mathcal Y}_{NO_X}$	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	$1,3e^{5}$	$1,1e^{5}$	×	-8,7e ³	$1,7e^{3}$	-7,7e ²	2,7e ³
T _{ads}	$2,2e^{5}$	-7,8e ⁴	×	7,2e ³	×	2,7e ⁴	$-7,1e^{3}$
$\mathcal{Y}_{\mathcal{C}_3H_6}$		-3,7e ⁴	$-2,1e^4$	×	×	×	$1,6e^{4}$
Усо			×	-1,9e ⁴	9,3e ³	$-1,1e^4$	×
\mathcal{Y}_{NO_X}				4,2e ⁴	×	4,5e ³	×
r_{NO_2}					×	-2,0e ⁴	×
λ						$1,3e^{4}$	×
SV							×

 \times - keine Signifikanz

Mit diesen Regressionskoeffizienten und dem Konstanterm kann nun der Modellwert in Abhängigkeit der Eingangsgrößen gemäß Kap. 4.1 berechnet werden. Dazu wird die Eingangsgröße vorerst nach Gleichung G 8.10, in Abhängigkeit des Mittelwerts der Messungen, normiert. Mit diesem normierten Eingangswerten wird gemäß Gleichung G 4.5 der modellierte Ausgangswert berechnet. Hierbei ist eine weitere Transformation des Modellpolynoms durch CAMEO zu berücksichtigen.

$$x_i' = \frac{x_i - \bar{x_i}}{\sigma_i} \tag{G 8.10}$$

x'_i	= normierter Eingangswert i	[-]
x_i	= Eingangswert i	[-]
σ_i	= Standardabweichung des Faktors i	[-]

Die Bewertung der Modellgüte erfolgt nach der Vorschrift aus Kap. 4.1.2. Hier werden die drei diskutierten Indikatoren für die Modellgüte herangezogen. Tab. 8.9 zeigt diese Bewertung. Alle drei Bewertungsindikatoren weisen eine gute Modellgüte aus.

Tab. 8.9.: Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierten
NOX-Stoffmenge der Katalysatorprobe KAT 1 im Frischzustand.

R^2	R^2_{adj}	R_{pred}^2
0,946	0,914	0,805

Für die folgenden Betrachtungen wird mit dem DoE-Modellpolynom die adsorbierte NO_X-Stoffmenge im gesamten Versuchsraum berechnet. Hierzu werden für die folgenden Darstellungen die Haupteinflussfaktoren des DoE-Modells, ausgehend von einer Grundeinstellung, in den untersuchten Grenzen variiert. Der Ausgangspunkt für diese Variation wird durch die Einstellungen des Wiederholpunktes (vgl. Tab. 8.5) gebildet. Zudem wird hierbei eine HC- und CO-Konzentration von 0 ppm festgesetzt.

Abb. 8.7 zeigt die 3D-Plots der Berechnung der adsorbierte NO_X-Stoffmenge in Abhängigkeit der Adsorptionstemperatur (T_{ads}), jeweils aufgetragen über den signifikanten Eingangsparametern (y_{HC} , y_{NO_X} , r_{NO_2} , λ) für das DoE-Modell der Katalysatorprobe KAT 1 im Frischzustand. Laut Tab. 8.6 weist der Eingangsparameter λ eine geringe Signifikanz auf das Modell auf, welcher sich in der Berechnung durch die Transformation dennoch auswirkt.

Abb. 8.7.: Ergebnisse KAT 1 DoE frisch: Adsorbierte NO_X-Stoffmenge in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur.

Aus den DoE-Modellierungsergebnissen geht hervor, dass die adsorbierte NO_X-Stoffmenge der Katalysatorprobe KAT 1 mit steigender HC-Konzentration abnimmt (vgl. Abb. 8.7 (a)). Bereits bei geringen HC-Konzentrationen (0 ppm bis 100 ppm) sinkt die adsorbierte NO_X-Stoffmenge signifikant. Zudem zeigt sich in dieser Darstellung der signifikante Kovarianzeffekt von $T_{ads} \cdot y_{HC}$, der sich aus Tab. 8.6 ergibt. Mit sinkenden HC-Eingangskonzentrationen verschiebt sich das Maximum der adsorbierten NO_X-Stoffmenge zu niederen Temperaturen.

Es ist erkennbar, dass mit steigender NO_X -Eingangskonzentration, im Bereich von 0 ppm bis 400 ppm NO_X im Feedgas, die adsorbierte NO_X -Stoffmenge ansteigt (vgl. Abb. 8.7 (b)). Bei einer NO_X -Eingangskonzentration größer 400 ppm sinkt die berechnete adsorbierte NO_X -Stoffmenge wieder geringfügig ab. Hier ist davon auszugehen, dass der Einfluss, insbesondere bei hohen NO_X -Konzentrationen, auf die Polynomabbildung mit quadratischen Abhängigkeiten zurückzuführen ist.

Die Berechnungsergebnisse zeigen ebenfalls einen Einfluss des NO_2 -Anteils im Feedgas auf die adsorbierte NO_X -Stoffmenge. Im Bereich von 25 bis 75 % NO_2 -Anteil im Feedgas ist eine Steigerung der adsorbierten NO_X -Stoffmenge mit steigendem NO_2 -
Anteil zu verzeichnen (vgl. Abb. 8.7 (c)). Unterhalb von 25 % NO_2 im Feedgas ist der Einfluss auf die berechnete adsorbierte NO_X -Stoffmenge gering.

Betrachtet man den Einfluss sinkender Sauerstoffkonzentration im Feedgas (vgl. Abb. 8.7 (d)), ergibt sich mit sinkender Sauerstoffkonzentration, eine Verringerung der berechneten adsorbierten NO_X -Stoffmenge. Dieses Verhalten lässt darauf schließen, dass die Stickstoffoxide unter sauerstoffarmer Atmosphäre zur Oxidation von Kohlenwasserstoffen und Kohlenstoffmonoxid herangezogen werden.

Abb. 8.8 zeigt die 3D-Plots der Berechnung der adsorbierten NO_X-Stoffmenge in Abhängigkeit der signifikanten linearen Kovarianzeffekte ($y_{HC} \cdot SV$, $y_{CO} \cdot r_{NO_2}$) für das DoE-Modell der Katalysatorprobe KAT 1 im Frischzustand.

Abb. 8.8.: Ergebnisse KAT 1 DoE frisch: Berechnete adsorbierte NO_X-Stoffmenge in Abhängigkeit der linearen Kovarianzeffekte $y_{HC} \cdot SV$ und $y_{CO} \cdot r_{NO_2}$ des DoE-Modells.

Ausgehend von einer HC-Konzentration von 0 ppm ist der Einfluss der Raumgeschwindigkeit auf die berechnete adsorbierte NO_X -Stoffmenge gering. Mit steigenden HC-Konzentrationen, insbesondere größer 300 ppm, wirkt sich eine Erhöhung der Raumgeschwindigkeit in einer sinkenden adsorbierten NO_X -Stoffmenge aus (vgl. Abb. 8.8 (a)).

Aus Abb. 8.8 (b) geht hervor, dass das DoE-Modell bei geringen CO-Konzentrationen in Verbindung mit hohen NO_2 -Anteilen im Feedgas erhöhte adsorbierte NO_X -Stoffmengen berechnet. Speziell bei CO-Konzentrationen geringer 200 ppm und NO_2 -Anteilen größer 50 %, wirkt sich dieser Effekt in einer Erhöhung der berechneten adsorbierte NO_X -Stoffmengen, um bis zu 25 % aus.

Weitere Darstellungen zur Abhängigkeit von y_{CO} und SV sind der Abb. B-2 im Anhang B.2.3 zu entnehmen.

8.2.3. Zusammenfassung und Fazit

In den Ergebnissen der vorangehenden Messungen aus Kap. 8.1 ist ersichtlich, dass die Adsorptionstemperatur einer der Haupteinflussparameter für die adsorbierte NO_X -Stoffmenge des untersuchten Katalysators ist. Das DoE-Modell für Berechnung der adsorbierten NO_X -Stoffmenge zeigt eine hohe Signifikanz für die Adsorptionstemperatur. Im Modell wird diese Abhängigkeit über eine quadratische Abhängigkeit berücksichtigt. Die Abhängigkeiten der Raumgeschwindigkeit und λ zeigen keine hohe Signifikanz. Dies ist insbesondere für Fahrzeuganwendungen der Modelle hilfreich, da diese beiden Parameter im Realbetrieb von Fahrzeugen sehr stark schwanken.

Aus den Ergebnissen der Untersuchungen in Kap. 8.1 geht ebenfalls hervor, dass sich die adsorbierte NO_X -Stoffmenge bereits bei geringen HC- und CO-Konzentrationen im Feedgas signifikant verringert (vgl. Abb. 8.1). Das DoE-Polynommodell bildet dieses Verhalten mit einer quadratischen, im Messbereich durch die Transformation asymptotischen, Abhängigkeit der HC-Konzentration ab (vgl. Abb. 8.7 (a)). Außerdem ist aus den Untersuchungen in Kap. 8.1 bekannt, dass sich die HC-/CO-Eingangskonzentration signifikant auf die adsorbierte NO_X -Stoffmenge im Temperaturbereich zwischen 100 und 300 °C auswirkt (vgl. Abb. 8.1). Dies wird durch einen Kovarianzeffekt von Temperatur und HC-Eingangskonzentration im DoE-Modell berücksichtigt (vgl. Abb. 8.7 (a)). Der Einfluss der CO-Konzentration ist, ausgehend von den DoE-Berechnungen, gering.

Aus den Ergebnissen der Untersuchungen in Kap. 8.1 geht ebenso hervor, dass sich die adsorbierte NO_X -Stoffmenge mit steigender NO_X -Eingangskonzentration asymptotisch einem Maximum nähert (vgl. Abb. 8.2). Dieses Verhalten wird vom DoE-Modell mittels einer quadratischen Abhängigkeit beschrieben (vgl. Abb. 8.7 (b)). Diese Polynomabbildung ist im untersuchten Messbereich annähernd asymptotisch.

Die Untersuchungen zum Alterungsverhalten in Kap. 6 zeigen, unter den untersuchten Randbedingungen, keinen signifikanten Einfluss des NO_2 -Anteils im Feedgas auf die adsorbierte NO_X -Stoffmenge der Katalysatorprobe KAT 1. Entgegen dieser Ergebnisse wird im DoE-Modell für die frische Katalysatorprobe KAT 1 ein deutlicher Einfluss des NO_2 -Anteils im Feedgas abgebildet (vgl. Abb. 8.7 (c)). Insbesondere bei CO-freiem Abgas wird eine deutlich erhöhte adsorbierte NO_X -Stoffmenge berechnet. Mit steigenden CO-Konzentrationen verringert sich der Einfluss deutlich (vgl. Abb. 8.8 (b)). Insbesondere unter den Untersuchten Randbedingungen in Kap. 6 mit einer CO-Eingangskonzentration von 400 ppm, ergibt die DoE-Modellierung ebenfalls keine Abhängigkeit der adsorbierten NO_X -Stoffmenge von dem NO_2 -Anteil im Feedgas. Die weiteren Abhängigkeiten des Berechnungsergebnisses von den Eingangsgrößen y_{CO} und SV sind in den Kovarianzeffekten nicht signifikant.

8.3. Einfluss von thermischer Alterung und Verschwefelung auf das DoE-Modell zur Berechnung der adsorbierten NO_X-Stoffmenge

Entsprechend der Untersuchungen aus Kap. 6 werden die Einflüsse von thermischer Alterung und Verschwefelung auf das DoE-Modell der adsorbierten NO_X -Stoffmenge bewertet. Hierzu wird der DoE-Versuchsplan (vgl. Tab. B.2.2) für die zwei gealterten (4 h und 16 h hydrothermale Alterung) und die verschwefelte (4 h hydrothermale Alterung und Verschwefelung mit 1 g_S/I_{Kat}) Katalysatorprobe gefahren.

Für die DoE-Modellbildung wird das Modell aus Kap. 8.2 mit den signifikanten Termen gemäß Tab. 8.6 genutzt und deren Koeffizienten entsprechend der Messdaten ermittelt. Die Ergebnisse der drei weiteren DoE-Modelle können, entsprechend Tab. 8.10, dem Anhang B.2 entnommen werden.

Ergebnis	4 h gealtert	16 h gealtert	4 h gealtert & verschwefelt
3D-Plots	Abb. B-4	Abb. B-6	Abb. B-8
Bewertungen Modellgüte	Tab. B-9	Tab. B-15	Tab. B-21
Statistische Daten	Tab. B-10	Tab. B-16	Tab. B-22
Koeffizientenmatrix	Tab. B-11	Tab. B-17	Tab. B-23

Tab. 8.10.: Verzeichnis der Modellergebnisse für die adsorbierte NO_X-Stoffmenge im Anhang B.2.

Für die Darstellung der Effekte werden, ausgehend von dem Wiederholpunkteinstellungen (vgl. Tab. 8.5) mit einer HC- und CO-Konzentration von 0 ppm, relative Differenzkennfelder erstellt, die prozentuale adsorbierte NO_X-Stoffmenge im Vergleich zur Basis zeigen. Als Basis wird für die beiden Alterungsstufen das DoE-Modell der frischen Katalysatorprobe herangezogen. Als Basis für die Ergebnisse der verschwefelten Katalysatorprobe wird das Modell der 4 h hydrothermal gealterten Katalysatorprobe KAT 1 genutzt. Damit lassen sich die Einflüsse der hydrothermalen Alterung und die der Verschwefelung separiert betrachten.

8.3.1. Ergebnisse und Diskussion

Abb. 8.9 zeigt den Einfluss der hydrothermalen Alterung von 4 h (a), 16 h (b) relativ zum Frischzustand und der Verschwefelung mit 1 g_S/l_{Kat} (c) relativ zur 4 h hydrothermal gealterten Katalysatorprobe KAT 1 in Abhängigkeit der HC-Eingangskonzentration.

Abb. 8.9.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X-Stoffmenge in Abhängigkeit von T_{ads} und y_{HC} für die hydrothermalen Alterungsstufen 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur adsorbierten NO_X-Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.

Aus der relativen Darstellung der DoE-Berechnung für die 4 h hydrothermal gealterte Katalysatorprobe (vgl. Abb. 8.9 (a)) wird ersichtlich, dass sich die vierstündige Alterung in der Berechnung überwiegend auf den Bereich hoher Temperaturen und hoher HC-Eingangskonzentrationen auswirkt. Zudem ist eine Verringerung der berechneten adsorbierten NO_X-Stoffmenge bei geringen HC-Eingangskonzentrationen (<100 ppm) nahezu über den gesamten Temperaturbereich erkennbar. Betrachtet man die Ergebnisse der Berechnungen aus dem DoE-Modell der 16 h hydrothermal gealterten Katalysatorprobe (vgl. Abb. 8.9 (b)), wird ersichtlich, dass die thermische Alterung sich im gesamten Kennfeldbereich signifikant auswirkt. Neben der deutlichen Verringerung der maximal adsorbierten NO_X -Stoffmenge zeichnet sich die thermische Alterung besonders bei niedrigen Temperaturen (<200 °C) und bei hohen Temperaturen (>350 °C), in Verbindung mit steigenden HC-Eingangskonzentrationen, aus. In diesem Kennfeldbereich kann nach den DoE-Berechnungen kein Stickstoffoxid adsorbiert werden. Demzufolge verkleinert sich das Temperaturfenster, in dem effizient Stickstoffoxide adsorbiert werden können, mit steigender HC-Eingangskonzentration durch die thermische Alterung. Ein ähnliches Bild zeigt sich mit steigender Schwefelbeladung (vgl. Abb. 8.9 (c)). Die Verschwefelung wirkt sich, verglichen mit der 16 stündigen hydrothermalen Alterung, etwas weniger im Bereich geringer Temperaturen und niedriger HC-Eingangskonzentrationen aus. Bei hohen HC-Eingangskonzentrationen (>250 ppm) kann, nach den Ergebnissen des DoE-Modells, kein Stickstoffoxid mehr adsorbiert werden.

Abb. 8.10 zeigt den Einfluss der hydrothermalen Alterung von 4 h (a), 16 h (b) relativ zum Frischzustand und der Verschwefelung mit 1 g_S/l_{Kat} (c) relativ zur 4 h hydrothermal gealterten Katalysatorprobe KAT 1 in Abhängigkeit der CO-Eingangskonzentration.

Die Ergebnisse der DoE-Berechnung für die 4 h hydrothermal gealterte Katalysatorprobe (vgl. Abb. 8.10 (a)) zeigen, unter Betrachtung der Abhängigkeit von der CO-Eingangskonzentration, keine Abhängigkeit der adsorbierte NO_x-Stoffmenge von der CO-Eingangskonzentration. Das DoE-Modell der 16 h hydrothermal gealterten Katalysatorprobe zeigt in der Berechnung eine verringerte adsorbierte NO_x-Stoffmenge im gesamten Kennfeldbereich (vgl. Abb. 8.10 (b)). Auch hier verkleinert sich das Temperaturfenster, in dem Stickstoffoxide adsorbiert werden können, im oberen Temperaturbereich mit steigenden CO-Eingangskonzentrationen. Im Tieftemperaturbereich ist bei steigenden CO-Eingangskonzentrationen, im Gegensatz zu der Betrachtung mit HC, keine vollständige Deaktivierung erkennbar. Mit sinkenden CO-Eingangskonzentrationen steigt die berechnete adsorbierte NO_x-Stoffmenge moderat an. Ein vergleichbares Bild zeigt sich für das DoE-Modell der verschwefelten Katalysatorprobe (vgl. Abb. 8.10 (c)). Auch hier ist nur eine geringe Abhängigkeit der adsorbierte NO_X-Stoffmenge von der CO-Eingangskonzentration bei geringen Konzentrationen (<50 ppm) erkennbar. Verglichen mit der 16 stündigen Alterung, ist auch hier der Einfluss im Tieftemperaturbereich geringer.

Abb. 8.11 zeigt den Einfluss der hydrothermalen Alterung von 4 h (a), 16 h (b) relativ zum Frischzustand und der Verschwefelung mit 1 g_S/I_{Kat} (c) relativ zur 4 h hydrothermal gealterten Katalysatorprobe KAT 1 in Abhängigkeit der NO_X-Eingangskonzentration.

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.10.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X-Stoffmenge in Abhängigkeit von T_{ads} und y_{CO} für die hydrothermalen Alterungsstufen 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur adsorbierten NO_X-Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.

Aus den Ergebnissen der DoE-Berechnung für variierende NO_X -Eingangskonzentration geht hervor, dass eine vierstündige hydrothermale Alterung die Adsorptionsfähigkeit im Temperaturbereich von 100 °C bis 300 °C bei NO_X -Eingangskonzentrationen von 100 ppm bis 400 ppm verringert (vgl. Abb. 8.11 (a)). In diesem Kennfeldbereich errechnet das DoE-Modell mit sinkender NO_X -Eingangskonzentration eine Verringerung der adsorbierten NO_X -Stoffmenge von bis zu 40 %. Zusätzlich zeigt sich im oberen Temperaturbereich (>300 °C) auch mit steigender NO_X -Eingangskonzentration eine signifikante Reduzierung der Adsorptionsfähigkeit. Die Berechnungen des DoE-Modells der hydrothermalen Alterung für 16 h zeigen ebenso über den gesamten Kennfeldbereich eine deutliche Verringerung der adsorbierten NO_X -Stoffmenge (vgl. Abb. 8.11 (b)). Bei hohen Temperaturen (>350 °C) in Verbindung mit hohen NO_X -Eingangskonzentrationen (>400 ppm) ergibt die Berechnung für die 16 stündige hydrothermale Alterung keine signifikante Minderung der adsorbierten NO_X -Stoffmenge. Aufgrund der sehr geringen Absolutwerte ist dieser Effekt unter-

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.11.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X-Stoffmenge in Abhängigkeit von T_{ads} und y_{NO_X} für die hydrothermalen Alterungsstufen 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur adsorbierten NO_X-Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.

geordnet und eher als numerisches Artefakt einzuordnen. Das DoE-Modell der verschwefelten Katalysatorprobe zeigt ein ähnliches Verhalten. Analog zu den obigen Ergebnissen zeichnet sich auch hier der, im Vergleich zu 16 stündigen hydrothermale Alterung, geringere Effekt im Niedrigtemperaturbereich ab (vgl. Abb. 8.11 (c)).

Abb. 8.12 zeigt den Einfluss der hydrothermalen Alterung von 4 h (a), 16 h (b) relativ zum Frischzustand und der Verschwefelung mit 1 g_S/l_{Kat} (c) relativ zur 4 h hydrothermal gealterten Katalysatorprobe KAT 1 in Abhängigkeit des NO₂-Anteils im Feedgas.

Die Berechnungsergebnisse des DoE-Modells der vierstündigen hydrothermalen Alterung zeigen, unter Betrachtung des Einflusses des NO₂-Anteils im Feedgas, eine deutliche Abnahme der adsorbierten NO_X-Stoffmenge mit steigenden Temperaturen im mittleren Kennfeldbereich bei einem NO₂-Anteil von ca. 37 % (vgl. Abb. 8.12 (a)). Das Berechnungsergebnis in diesem Bereich ist der Abbildung mit quadratischen

Abb. 8.12.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X-Stoffmenge in Abhängigkeit von T_{ads} und r_{NO_2} für die hydrothermalen Alterungsstufen 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur adsorbierten NO_X-Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.

Polynomen geschuldet. Zu erwarten ist eine Reduzierung der adsorbierten NO_X -Stoffmenge mit sinkenden NO_2 -Anteilen in Verbindung mit einer Verminderung mit steigenden Temperaturen. Die Berechnung deuten darauf hin, dass eine Erhöhung des NO_2 -Anteils auch bei niedrigen (<150 °C) und hohen Temperaturen (>350 °C) eine NO_X -Adsorption ermöglicht. Dies wird durch die Berechnungsergebnisse für die gealterte (vgl. Abb. 8.7 (b)) und verschwefelte (vgl. Abb. 8.7 (c)) Katalysatorprobe bestätigt. Insbesondere das DoE-Modell der verschwefelten Katalysatorprobe zeigt in diesen Temperaturbereichen eine starke Abhängigkeit der adsorbierten NO_X -Stoffmenge vom NO_2 -Anteil im Feedgas.

Abb. 8.13 zeigt den Einfluss der hydrothermalen Alterung von 4 h (a), 16 h (b) relativ zum Frischzustand und der Verschwefelung mit 1 g_S/l_{Kat} (c) relativ zur 4 h hydrothermal gealterten Katalysatorprobe KAT 1 in Abhängigkeit von λ .

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.13.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X-Stoffmenge in Abhängigkeit von T_{ads} und λ für die hydrothermalen Alterungsstufen 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur adsorbierten NO_X-Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.

Betrachtet man die Ergebnisse bei variierendem λ wird ersichtlich, dass im Hochtemperaturbereich nach vierstündiger hydrothermaler Alterung durch Erhöhung des λ ebenfalls eine Adsorption begünstigt wird (vgl. Abb. 8.13 (a)). Die Ergebnisse der DoE-Berechnungen für die hydrothermale Alterungsstufe von 16 h (vgl. Abb. 8.13 (b)) und für die Verschwefelung (vgl. Abb. 8.13 (c)) zeigen das gleiche Verhalten. Im Bereich von hohen Temperaturen und hohem λ zeigen die Berechnung für die 16 h hydrothermal gealterte Katalysatorprobe nahezu keine Verringerung der adsorbierten NO_X-Stoffmenge im Vergleich zum Frischzustand. Im Tieftemperaturbereich wirken sich sowohl die Alterung als auch die Verschwefelung bei niedrigem λ geringer aus, als bei hohem λ . Das führt dazu, dass die moderate Abhängigkeit der adsorbierten NO_X-Stoffmenge vom Verbrennungsluftverhältnis (vgl. Abb. 8.7 (d)) sowohl mit der Alterung als auch mit der Verschwefelung zurückgehen. Abb. 8.14 zeigt den Einfluss der hydrothermalen Alterung von 4 h (a), 16 h (b) relativ zum Frischzustand und der Verschwefelung mit 1 g_S/I_{Kat} (c) relativ zur 4 h hydrothermal gealterten Katalysatorprobe KAT 1 in Abhängigkeit der Raumgeschwindigkeit.

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.14.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X-Stoffmenge in Abhängigkeit von T_{ads} und SV für die hydrothermalen Alterungsstufen 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur adsorbierten NO_X-Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.

Aus den Berechnungsergebnissen mit variierender Raumgeschwindigkeit zeigt sich, nach einer vierstündigen hydrothermalen Alterung, eine signifikante Reduzierung der Adsorptionsfähigkeit bei sinkender Raumgeschwindigkeit, in Verbindung mit geringen Adsorptionstemperaturen (vgl. Abb. 8.14 (a)). Für die Darstellung des DoE-Modells der 16 stündigen Alterung ergibt sich ein ähnliches Ergebnis bei geringerem Absolutniveau (vgl. Abb. 8.14 (b)). Die Ergebnisse des DoE-Modells für die verschwefelte Katalysatorprobe zeigen keinen signifikanten Einfluss der Raumgeschwindigkeit auf die adsorbierten NO_X-Stoffmenge im gesamten Temperaturbereich. Wie schon die vorhergehenden Ergebnisse, zeigen auch hier die DoE-Berechnungsergebnisse der verschwefelten Katalysatorprobe einen geringeren Einfluss der Verschwe-

felung auf die adsorbierten NO_X-Stoffmenge bei niedrigen Adsorptionstemperaturen, im Vergleich zur 16 stündigen hydrothermalen Alterung.

8.3.2. Zusammenfassung und Fazit

Zusammenfassend kann festgehalten werden, dass sich die hydrothermale Alterung schon nach vier Stunden signifikant negativ auf das Adsorptionsverhalten im oberen Temperaturbereich (>250 °C) auswirkt. Eine Reduzierung der adsorbierten NO_x-Stoffmenge über den nahezu gesamten Temperaturbereich bei geringen HC-Eingangskonzentrationen im Feedgas zeigt das DoE-Modell für die vierstündige hydrothermale Alterung. Die in Abb. 8.7 (a) diskutierte Verringerung der adsorbierten NO_x-Stoffmenge bei geringen HC-Eingangskonzentration zeigt sich nach vierstündiger hydrothermaler Alterung weniger ausgeprägt. Dies lässt die Hypothese zu, dass die Konkurrenzbelegung der freien Adsorptionsplätze durch HC mit fortschreitender Alterung abnimmt. Die Erhöhung des NO₂-Anteils und des NO_x-Massenstromes über die NO_x-Eingangskonzentration und die Raumgeschwindigkeit wirken sich im Tieftemperaturbereich positiv auf das Adsorptionsverhalten, nach vierstündiger hydrothermaler Alterung, aus. Bei hohem NO_x-Stoffmengenstrom in Verbindung mit hohem NO₂-Anteil (>50 %) adsorbiert der Katalysator die gleiche NO_x-Stoffmenge, wie im Frischzustand. Das Adsorptionsverhalten im oberen Temperaturbereich wird lediglich durch Erhöhung des Sauerstoffanteils im Feedgas (λ) positiv beeinflusst. Bei weiter fortschreitender hydrothermaler Alterung von bis zu 16 h wird das Adsorptionsverhalten nahezu im gesamten Versuchsraum negativ beeinflusst. Hier zeigt sich eine deutliche Reduzierung der Adsorptionsfähigkeit im oberen Temperaturbereich durch zunehmende HC- und CO-Konzentrationen im Feedgas. Im unteren Temperaturbereich wird die Adsorptionsfähigkeit zusätzlich mit steigenden HC-Konzentrationen im Feedgas reduziert. Bei der Untersuchung der verschwefelten Katalysatorprobe lässt sich, nach dem Aufbringen von 1 g_S/l_{Kat} , eine signifikante Reduzierung der Adsorptionsfähigkeit nachweisen. Dieser Einfluss zeigt sich im oberen Temperaturbereich (>250 °C) durch die Verschwefelung deutlicher, als der Einfluss bei einer hydrothermalen Alterung für 16 h. Im unteren Temperaturbereich ist der Einfluss der Verschwefelung in weiten Kennfeldbereichen geringer, verglichen mit der hydrothermalen Alterung für 16 h. Diese Erkenntnis bestätigt ebenfalls die Ergebnisse der Untersuchungen zum Einfluss der Verschwefelung in Kap. 6.

8.4. Validierung der DoE-Modelle zur Berechnung der adsorbierten NO_X-Stoffmenge mit realen Messdaten

Um die Genauigkeit der DoE-Modelle zu bewerten, werden die Messdaten im Wiederholpunkt des DoE-Versuchsprogramms (vgl. Anh. B.2.2) und die aus den systematischen Untersuchungen in Kap. 8.1 zur Validierung herangezogen. Hierbei werden sowohl das DoE-Modell für die frische Katalysatorprobe als auch die der beiden gealterten und die der verschwefelten Katalysatorprobe untersucht.

Mit Hilfe des DoE-Polynommodells werden, ausgehend von den Einstellungen der Messpunkte, die jeweiligen Parameter variiert. Für die Darstellung werden sowohl der Vertrauensbereich des Modells nach Gleichung G 4.18 als auch der Vorhersagebereich der Einzelwerte nach Gleichung G 4.19 berechnet. Als Wahrscheinlichkeitsniveau wird jeweils 95 % festgesetzt. Daraus folgt, dass mit einer Wahrscheinlichkeit von 95 % der Mittelwert von Wiederholungsmessungen im Vertrauensbereich, und mit gleicher Wahrscheinlichkeit die Einzelwerte im Vorhersagebereich, liegen werden.

8.4.1. Ergebnisse und Diskussion

Abb. 8.15 (a) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen im Wiederholpunkt des DoE-Versuchsplans in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den Frischzustand. Gegenübergestellt sind die gemessenen Werte im Wiederholpunkt. Abb. 8.15 (b) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen der Versuchsreihe A4 (Kap. 8.1) in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den Frischzustand. Gegenübergestellt sind die gemessenen Werte der Versuchsreihe A4.

In dem Betriebspunkt der Wiederholpunkteinstellungen zeigt sich das charakteristische Verhalten der berechneten adsorbierten NO_X -Stoffmenge über der Temperatur (vgl. Abb. 8.15 (a)). Das Maximum der berechneten adsorbierten NO_X -Stoffmenge liegt bei ca. 225 °C, was mit den Ergebnissen der Untersuchungen in Kap. 6, mit HC und CO im Feedgas, korreliert. Die Messpunkte liegen im Mittel auf dem vom DoE-Modell berechneten Wert und erwartungsgemäß innerhalb des Vertrauensbereiches des DoE-Modells. Aufgrund der geringen Streuung der Wiederholpunkte ist der Vertrauensbereich klein, was eine gute Vorhersagbarkeit des Mittelwerts der Messungen sicherstellt. Die Ergebnisse der Berechnung der adsorbierten NO_X -Stoffmenge

Abb. 8.15.: Ergebnisse KAT 1 DoE frisch: Berechnete adsorbierte NO_X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} im Frischzustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe A4.

unter den Randbedingungen der Untersuchungen der Versuchsreihe A4 (Kap. 8.1) zeigen einen höheren Maximalwert, der geringfügig zu niedrigeren Temperaturen (ca. 215 °C) verschoben ist (vgl. Abb. 8.15 (b)). Die Messpunkte liegen, mit Ausnahme des Messpunktes bei 150 °C, innerhalb des 95 %-Vorhersagebereiches der Einzelwerte. Mit Ausnahme des Messpunktes bei 250 °C liegen die Messpunkte ebenfalls innerhalb des 95 %-Vertrauensbereiches des DoE-Modells. Damit korrelieren diese Ergebnisse, sowohl in der Tendenz als auch in der Modellabbildung, mit den Erkenntnissen aus den Untersuchungen in Kap. 8.1, ohne HC und CO im Feedgas (vgl. Abb. 8.1).

Abb. 8.16 (a) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen im Wiederholpunkt des DoE-Versuchsplans in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte im Wiederholpunkt. Abb. 8.16 (b) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen der Versuchsreihe A5 (Kap. 8.1) in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte auch vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte der Versuchsreihe A5.

In diesen Ergebnissen zeigt sich ein geringfügig reduziertes Maximum der adsorbierten NO_X -Stoffmenge, bedingt durch die hydrothermale Alterung für 4 h (vgl. Abb. 8.16 (a)). Die Hälfte der Messergebnisse der Wiederholpunkte liegen innerhalb, die andere Hälfte geringfügig oberhalb, des Vertrauensbereiches des DoE-Modells.

Abb. 8.16.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Berechnete adsorbierte NO_X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} im 4 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe A5.

Der Mittelwert dieser Messpunkte liegt innerhalb des 95 %-Vertrauensbereiches. Die Ergebnisse der DoE-Berechnungen, unter den Randbedingungen der Untersuchungen der Versuchsreihe A5 (Kap. 8.1), zeigen ebenfalls ein höheres Maximum der adsorbierten NO_X-Stoffmenge, welches zu geringeren Temperaturen verschoben ist. Die dazugehörigen Messwerte liegen alle innerhalb des Vorhersagebereiches für die Einzelwerte und, mit Ausnahme des Messpunktes bei 250 °C, innerhalb des Vertrauensbereiches des DoE-Modells.

Abb. 8.17 (a) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen der Versuchsreihe V1 (Kap. 8.1) in Abhängigkeit der NO_X -Eingangskonzentration mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte der Versuchsreihe V1. Abb. 8.17 (b) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen der Versuchsreihe V2 (Kap. 8.1) in Abhängigkeit der Raumgeschwindigkeit mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte der Versuchsreihe V1. Abb. 8.17 (b) zeigt die DoE-Berechnung der adsorbierten NO_X-Stoffmenge für die Eingangsbedingungen der Versuchsreihe V2 (Kap. 8.1) in Abhängigkeit der Raumgeschwindigkeit mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte der Versuchsreihe V2.

Die Ergebnisse der DoE-Berechnungen zeigen ein Maximum der adsorbierten NO_X -Stoffmenge bei einer NO_X -Eingangskonzentration von ca. 300 ppm (vgl. Abb. 8.17 (a)). Die Messergebnisse liegen im Bereich von 200 ppm bis 350 ppm innerhalb des Vertrauensbereiches des DoE-Modells. Die Messwerte unterhalb von 200 ppm und oberhalb von 350 ppm liegen an der oberen Grenze des Vorhersagebereiches der

Abb. 8.17.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Berechnete adsorbierte NO_X-Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von y_{NO_X} und *SV* im 4 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten der Versuchsreihe V1 und V2.

Einzelwerte. Die DoE-Berechnung in Abhängigkeit von der Raumgeschwindigkeit (vgl. Abb. 8.17 (b)) zeigt eine zunehmende adsorbierte NO_X -Stoffmenge mit steigender Raumgeschwindigkeit. Dieses Ergebnis korreliert mit den Erkenntnissen aus Kap. 8.1. Die Messwerte aus der Versuchsreihe V2 (Kap. 8.1), liegen alle innerhalb des 95 %-Vorhersagebereiches für die Einzelwerte. Mit Ausnahme des Messpunktes bei 75.000 1/h liegen diese ebenfalls innerhalb des 95 %-Vertrauensbereiches des DoE-Modells.

Abb. 8.18 (a) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen im Wiederholpunkt des DoE-Versuchsplans in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 16 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte im Wiederholpunkt. Abb. 8.18 (b) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen der Versuchsreihe A6 (Kap. 8.1) in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 16 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte auch vorhersagebereich der Einzelwerte für den 16 h hydrothermal gealterten Zustand. Gegenübergestellt sind die gemessenen Werte der Versuchsreihe A6.

Entsprechend der Erkenntnisse aus den Untersuchungen in Kap. 8.1 zeigt sich in den DoE-Berechnungen mit dem Modell der 16 h hydrothermal gealterten Katalysatorprobe eine signifikante Reduzierung des Maximums der adsorbierten NO_X -Stoffmenge (vgl. Abb. 8.18 (a)). Die Messwerte im Wiederholpunkt des DoE-Versuchsprogramms weisen, im Verhältnis zum Absolutwert, eine relativ hohe Streuung auf.

Abb. 8.18.: Ergebnisse KAT 1 DoE 16 h hydrothermale Alterung: Berechnete adsorbierte NO_X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} im 16 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe A6.

Der Mittelwert der Messwerte liegt erwartungsgemäß im 95 %-Vertrauensbereich des DoE-Modells. Die hohe Streuung der Messwerte im Wiederholpunkt begründet einen breiten Vertrauensbereich des DoE-Modells und Vorhersagebereich für die Einzelwerte (± 20 % bzw. ca. ± 100 %) im Maximum der Berechnung. Absolut betrachtet ist diese Breite des Vorhersagebereiches vergleichbar mit den vorangehenden Modellbetrachtungen. Die Ergebnisse der Berechnungen unter den Randbedingungen der Versuchsreihe A6 (Kap. 8.1) zeigen, analog zu den Erkenntnissen der vorherigen Betrachtungen, eine höhere adsorbierte NO_X-Stoffmenge, verglichen mit den Ergebnissen im Wiederholpunkt. Die Messpunkte der Versuchsreihe A6 liegen im Vorhersagebereich der Einzelwerte. Im Temperaturbereich unterhalb von 200 °C und oberhalb von 300 °C liegen die Messpunkte ebenfalls im Vorhersagebereich des DoE-Modells.

Abb. 8.19 (a) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen im Wiederholpunkt des DoE-Versuchsplans in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten und verschwefelten Zustand. Gegenübergestellt sind die gemessenen Werte im Wiederholpunkt. Abb. 8.19 (b) zeigt die DoE-Berechnung der adsorbierten NO_X -Stoffmenge für die Eingangsbedingungen der Versuchsreihe S5 in Kap. 8.1 in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten und verschwefelten Zustand. Gegenübergestellt sind die gemessenen Werte S5 in Kap. 8.1 in Abhängigkeit der Adsorptionstemperatur mit Vertrauensbereich des DoE-Modells und Vorhersagebereich der Einzelwerte für den 4 h hydrothermal gealterten und verschwefelten Zustand. Gegenübergestellt sind die gemessenen Werte der Versuchsreihe S5.

Abb. 8.19.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung und Verschwefelung: Berechnete adsorbierte NO_X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} im 4 h hydrothermal gealterten und verschwefelten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe S5.

Die Ergebnisse der DoE-Berechnung für die 4 h hydrothermal gealterte und verschwefelte Katalysatorprobe zeigen, im Vergleich zum 4 h hydrothermal gealterten Zustand, ebenfalls eine deutliche Reduzierung der adsorbierten NO_X -Stoffmenge im gesamten Temperaturbereich (vgl. Abb. 8.19 (a)). Das Maximum der DoE-Modellkurve befindet sich bei ca. 190 °C. Zudem zeigt sich ein deutlicher Einfluss der Verschwefelung im oberen Temperaturbereich. Die berechnete adsorbierte NO_X -Stoffmenge oberhalb von 325 °C ist, unter den Randbedingungen des Wiederholpunktes, Null. Die Messwerte weisen auch hier eine relativ große Streuung auf. Der Mittelwert der Messpunkte liegt innerhalb des 95 %-Vertrauensbereiches des DoE-Modells. Die Ergebnisse der DoE-Berechnung, unter den Randbedingungen der Versuchsreihe S5, zeigen erwartungsgemäß ebenfalls eine höhere adsorbierte NO_X -Stoffmenge, verglichen mit den Ergebnissen im Wiederholpunkt. Die Messpunkte der Versuchsreihe S5 liegen alle im 95 %-Vorhersagebereich der Einzelwerte und mit Ausnahme des Messpunktes bei 200 °C im 95 %-Vertrauensbereich des Modells.

8.4.2. Zusammenfassung und Fazit

Zusammenfassend kann festgehalten werden, dass das DoE-Modell in den Berechnungen für die frische und 4 h gealterte Katalysatorprobe mit den Messwerten des DoE-Versuchsplans und der Versuchsreihen aus Kap. 8.1 korreliert. Das temperaturabhängige Verhalten des DoE-Modells gibt die Messwerte mit hinreichender Genauigkeit wieder (vgl. Abb. 8.15, Abb. 8.16). Einzig das Maximum der adsorbierten NO_X -Stoffmenge liegt, in den systematisch ermittelten Messkurven, bei geringeren Temperaturen. In der Abbildung der Abhängigkeit der adsorbierten NO_X -Stoffmenge von der NO_X -Eingangskonzentration zeigt das DoE-Modell der 4 h hydrothermal gealterten Katalysatorprobe eine formelle Zuverlässigkeit. Die Messwerte liegen innerhalb des 95 %-Vorhersagebereiches der Einzelwerte. Dennoch zeigt die DoE-Berechnung einen systematischen Fehler (vgl. Abb. 8.17 (a)). Es wird ersichtlich, dass die Abbildung mit einem quadratischen Modellpolynom an dieser Stelle eine schwache Modellgenauigkeit erzeugt. Für die Abbildung der adsorbierten NO_X -Stoffmenge von der Raumgeschwindigkeit zeigt das Modell der 4 h hydrothermal gealterten Katalysatorprobe eine verlässliche Genauigkeit (vgl. Abb. 8.17 (b)). Die geringe relative Streuung der Messwerte in den DoE-Versuchsprogrammen der frischen und 4 h hydrothermal gealterten Katalysatorprobe führt, relativ betrachtet, zu einem schmalen Vertrauens- und Vorhersageintervall.

Die DoE-Modelle für die 16 h hydrothermal gealterte sowie die 4 h hydrothermal gealterte und verschwefelte Katalysatorprobe zeigen ebenfalls, dass die Messwerte formell vom DoE-Modell abgebildet werden können. Diese beiden DoE-Modelle weisen im temperaturabhängigen Verhalten zwischen 200 °C und 350 °C systematische Schwächen auf (vgl. Abb. 8.18, Abb. 8.19). Dies ist darauf zurückzuführen, dass die Streuung der Residuen, im Verhältnis zum Absolutwert, groß werden. Durch die hohe relative Messstreuung kann bei der Modellierung zwischen Effekt und Fehler nicht mehr eindeutig differenziert werden. Die Folge ist ein gemitteltes Modell mit breitem Vertrauensbereich und Vorhersagebereich, wie in diesen Fällen. Um die Zuverlässigkeit dieser Modelle in der Temperaturabhängigkeit zu erhöhen, kann das DoE-Versuchsprogramm, speziell im mittleren Temperaturbereich und in den Randbereichen, um einige Messpunkte erweitert werden. Zusätzlich kann, mit Hilfe weiterer Messpunkte im gesamten Versuchsraum, die statistische Sicherheit der Modelle erhöht werden.

8.5. Statistische Untersuchungen zur Berechnung des Fitparameters α

Zur Ermittlung von α (vgl. Gleichung G 7.13) werden die Messkurven der DoE-Untersuchungen einzeln gefittet (vgl. Kap. 7.2.3). Für den Parameterfit werden die Ergebnisse aus Kap. 8.2 in dem DoE-Korrekturfaktor ζ berücksichtigt (vgl. Gleichung G 7.14). Das aus dem Modellfit berechnete α wird gemäß Kap. 8.2 mittels DoE-Polynommodell abgebildet.

8.5.1. Ergebnisse und Diskussion

Entsprechend der Vorgehensweise aus Kap. 8.2 wird eine Signifikanzanalyse, zur Bestimmung der Haupteinflussparameter des DoE-Modells von α , durchgeführt. Tab. 8.11 zeigt die Signifikanzmatrix als Ergebnis dieser Analyse.

	<u>Т</u> ,		2/22	2410	Vice	λ	сv
	I ads	$\mathcal{Y}C_{3}H_{6}$	УСО	$\mathcal{Y}NO_X$	INO2	Λ	JV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	1	1	1	×	1	×	1
T _{ads}	1	\rightarrow	\rightarrow	1	×	\rightarrow	×
$\mathcal{Y}_{C_3H_6}$		×	×	\rightarrow	1	\times	×
Усо			1	\rightarrow	×	1	×
\mathcal{Y}_{NO_X}				\rightarrow	\rightarrow	\rightarrow	\rightarrow
γ_{NO_2}					\rightarrow	×	\rightarrow
λ						\rightarrow	\rightarrow
SV							\rightarrow

Tab. 8.11.: Signifikanzmatrix der DoE-Modellbildung für den Fitparameter α der Katalysa-
torproben KAT 1 im Frischzustand.

 \uparrow - hohe Signifikanz, \checkmark - moderate Signifikanz, \rightarrow - geringe Signifikanz, \times - keine Signifikanz

Aus der Signifikanzanalyse geht hervor, dass alle Eingangsfaktoren, mit Ausnahme der NO_X-Eingangskonzentration und λ , in der linearen Abhängigkeit eine hohe bzw. moderate Signifikanz auf die Vorhersagegüte des DoE-Modells für α aufweisen. Neben den linearen Abhängigkeiten weisen die quadratischen Abhängigkeiten von der Temperatur (T_{ads}^2) und CO-Eingangskonzentration (γ_{CO}^2) ebenfalls eine moderate Signifikanz auf. Die NO_X-Eingangskonzentration weist in der Kovarianz mit der Adsorptionstemperatur zudem eine moderate Signifikanz auf. Zudem zeigt die Matrix, dass die Kovarianzen von γ_{HC} und γ_{NO_2} sowie γ_{CO} und λ moderate Signifikanz aufweisen.

Die Bewertung der Modellgüte erfolgt ebenfalls nach der Vorschrift aus Kap. 4.1.2. Tab. 8.12 zeigt diese Bewertung. Das DoE-Modell für die Berechnung von α im Frischzustand zeigt eine gute bis mittlere Modellgüte. Die Koeffizientenmatrix ist der Tab. B-8 des Anhangs B.2 zu entnehmen.

Tab. 8.12.: Bewertung der Modellgüte des DoE-Modells für den Fitparameter α im Frisch-
zustand.

R^2	R^2_{adj}	R_{pred}^2
0,911	0,856	0,551

Für die folgenden Betrachtungen wird der Fitparameter α , mit Hilfe des DoE-Modellpolynom, im gesamten Versuchsraum berechnet. Diese Abbildung findet unter den gleichen Randbedingungen statt, wie in Kap. 8.2.

Abb. 8.20 zeigt die 3D-Plots des Fitparameters α in Abhängigkeit der Adsorptionstemperatur (T_{ads}), jeweils aufgetragen über die Eingangsparametern y_{HC} , y_{CO} und y_{NO_x} für das DoE-Modell der Katalysatorprobe KAT 1 im Frischzustand.

Abb. 8.20.: Ergebnisse KAT 1 DoE frisch: α in Abhängigkeit der Eingangsgrößen des DoE-Modells jeweils aufgetragen über der Adsorptionstemperatur.

Die Ergebnisse der DoE-Berechnungen zeigen mit steigender Temperatur ein sinkendes α in allen Kennfeldbereichen. Ebenso zeigt sich mit steigender HC-Eingangskonzentration ein sinkenden α . Auffällig ist, dass bereits geringe CO-Eingangskonzentrationen zu einem deutlichen Anstieg von α im gesamten Temperaturbereich führen (vgl. Abb. 8.20 (b)). Im niedrigen Temperaturbereich (100 °C bis 250 °C) führt zudem eine zunehmende NO_X-Eingangskonzentration zu einem sinkenden α (vgl. Abb. 8.20 (c)).

Abb. 8.21 zeit die 3D-Plots des Fitparameters α in Abhängigkeit der Adsorptionstemperatur (T_{ads}), jeweils aufgetragen über die Eingangsparametern r_{NO_2} , λ und SV für das DoE-Modell der Katalysatorprobe KAT 1 im Frischzustand.

Abb. 8.21.: Ergebnisse KAT 1 DoE frisch: α in Abhängigkeit der Eingangsgrößen des DoE-Modells jeweils aufgetragen über der Adsorptionstemperatur.

Der Einfluss des NO₂-Anteils im Feedgas ist über den gesamten Temperaturbereich nahezu konstant. Mit steigendem NO₂-Anteil sinkt α ebenfalls (vgl. Abb. 8.21 (a)). Einen ähnlichen Einfluss zeigt λ . Mit steigendem λ ist im Bereich von λ =1,2 bis λ =2,0 eine Verringerung von α zu beobachten. Oberhalb von λ =2,0 ist kein Einfluss mehr erkennbar (vgl. Abb. 8.21 (b)). Die Raumgeschwindigkeit zeigt in den Berechnungsergebnissen, wie bereits in der Signifikanzanalyse festgestellt, einen deutlichen Einfluss auf α . Mit steigender Raumgeschwindigkeit steigt α deutlich an (vgl. Abb. 8.21 (c)).

8.5.2. Zusammenfassung und Fazit

Zusammenfassend kann festgestellt werden, dass die Haupteinflussparameter auf α die Raumgeschwindigkeit und die Temperatur sind. Durch die Verringerung von α mit steigenden Temperaturen wird die Adsorption, auch bei relativ hohem Füllstand, begünstigt. Dies ist insofern plausibel, dass die Temperatur generell die chemischen Reaktionen beschleunigt und somit zu einer optimierten Adsorptionsreak-

tion führt. Eine steigende Raumgeschwindigkeit wirkt sich, durch die Erhöhung von α , in einer Hemmung der Adsorption, bedingt durch die geringere Verweilzeit der Gase im Katalysator, aus. Aufgrund der langen Adsorptionsphase im Experiment (3600 s) wirkt sich die Raumgeschwindigkeit nicht signifikant in der adsorbierten NO_X-Stoffmenge aus, sehr wohl aber in dem kinetischen Parameter α . Ebenso zeigen geringe Mengen CO im Feedgas eine Hemmung der Adsorption, durch die Erhöhung von α . Das sinkende α mit steigender HC-, NO_X-Eingangskonzentration und steigendem λ deutet auf eine optimierte Physisorption im niedrigen Temperaturbereich hin.

8.6. Einfluss von thermischer Alterung und Verschwefelung auf das DoE-Modell des Fitparameters α

Entsprechend der vorhergehenden Untersuchungen, werden die Einflüsse von thermischer Alterung und Verschwefelung auf das DoE-Modell des Fitparameters α bewertet. Hierzu werden die DoE-Messdaten der beiden Alterungsstufen (4 h und 16 h hydrothermale Alterung) und der Verschwefelung (4 h hydrothermale Alterung und Verschwefelung mit 1 g_S/l_{Kat}) ebenfalls gefittet. Damit können ebenfalls die DoE-Modelle für α für diese Alterungsstufen bzw. Verschwefelung erstellt werden. Die Ergebnisse der drei weiteren DoE-Modelle können entsprechend Tab. 8.13 dem Anhang B.2 entnommen werden.

Ergebnis	4 h gealtert	16 h gealtert	4 h gealtert & verschwefelt
3D-Plots	Abb. B-5	Abb. B-7	Abb. B-9
Bewertungen Modellgüte	Tab. B-12	Tab. B-18	Tab. B-24
Koeffizientenmatrix	Tab. B-14	Tab. B-20	Tab. B-26

Tab. 8.13.: Verzeichnis der Modellergebnisse für den Fitparameter α im Anhang B.2.

Um den Einfluss der hydrothermalen Alterung und Verschwefelung auf α bewerten zu können, werden Differenzkennfelder des Fitparameters erstellt. Dazu werden die hydrothermalen Alterungsstufen von 4 h und von 16 h im Vergleich zum Frischzustand und die Verschwefelung im Vergleich zum 4 h hydrothermal gealterten Zustand bewertet.

8.6.1. Ergebnisse und Diskussion

Abb. 8.22 zeigt die absolute Veränderung des Fitparameters α durch den Einfluss einer hydrothermalen Alterung für 4 h (a) bzw. für 16 h (b) und den Einfluss der Verschwefelung mit 1 g_S/l_{Kat} (c) in Abhängigkeit der Temperatur und der HC-Eingangskonzentration.

Abb. 8.22.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und y_{HC} für die hydrothermalen Alterungsstufe 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysatorprobe KAT 1.

Die Ergebnisse der hydrothermalen Alterung für 4 h zeigen einen moderaten Anstieg des Fitparameters α mit steigender Temperatur. Zudem zeigt sich, in der Differenz zu Frischzustand, eine moderate Erhöhung von α mit steigenden HC-Eingangskonzentrationen (vgl. Abb. 8.22 (a)). Nach 16 stündiger hydrothermaler Alterung zeigen die Ergebnisse der DoE-Berechnung einen signifikanten Anstieg des Fitparameters α mit steigenden Temperaturen. Bei hohen Temperaturen (>300 °C) zeigt sich zudem eine ausgeprägte Erhöhung von α mit steigenden HC-Eingangskonzentrationen. Im Tieftemperaturbereich (<200 °C) zeigt sich eine Verringerung von α bei hohen HC-Eingangskonzentrationen (vgl. Abb. 8.22 (b)). Die Ergebnisse der Verschwefelung zeigen einen moderaten Einfluss auf die Temperaturabhängigkeit und einen geringen Einfluss auf die Abhängigkeit der HC-Eingangskonzentrationen von α (vgl. Abb. 8.22 (c)).

Abb. 8.23 zeigt die absolute Veränderung des Fitparameters α durch den Einfluss einer hydrothermalen Alterung für 4 h (a) bzw. für 16 h (b) und den Einfluss der Verschwefelung mit 1 g_S/l_{Kat} (c) in Abhängigkeit der Temperatur und der CO-Eingangskonzentration.

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.23.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und y_{CO} für die hydrothermalen Alterungsstufe 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysatorprobe KAT 1.

Die Ergebnisse der DoE-Berechnungen für α , in Abhängigkeit der CO-Eingangskonzentration, zeigen einen sehr geringen Einfluss durch die hydrothermale Alterung für 4 h. Bei niedrigen Temperaturen (<200 °C) und niedrigen CO-Eingangskonzentrationen verringert sich α durch die hydrothermale Alterung marginal (vgl. Abb. 8.23 (a)). Nach 16 stündiger hydrothermaler Alterung hingegen ist ein deutlicher Einfluss der thermischen Belastung auf α ersichtlich. Bei niedrigen bis mittleren Temperaturen (<300 °C) steigt α mit steigender CO-Eingangskonzentration signifikant an (vgl. Abb. 8.23 (b)). Die Ergebnisse der Verschwefelung der 4 h hydrothermal gealterten Katalysatorprobe zeigen einen sehr geringen Einfluss der Verschwefelung auf die Abhängigkeit des Fitparameters α von der CO-Eingangskonzentration (vgl. Abb. 8.23 (c)).

Abb. 8.24 zeigt die absolute Veränderung des Fitparameters α durch den Einfluss einer hydrothermalen Alterung für 4 h (a) bzw. für 16 h (b) und den Einfluss der Verschwefelung mit 1 g_S/l_{Kat} (c) in Abhängigkeit der Temperatur und der NO_X-Eingangskonzentration.

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.24.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und y_{NO_X} für die hydrothermalen Alterungsstufe 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysatorprobe KAT 1.

Die DoE-Berechnungsergebnisse für α , in Abhängigkeit der NO_X-Eingangskonzentration, zeigen eine moderate Reduzierung von α bei niedrigen Temperaturen und geringen NO_X-Eingangskonzentrationen, durch eine vierstündige hydrothermale Alterung (vgl. Abb. 8.24 (a)). Die 16 stündige hydrothermale Alterung zeigt in diesem Bereich eine deutlichere Reduzierung von α . Bei hohen Temperaturen (>250 °C), in Verbindung mit niedrigen NO_X -Eingangskonzentrationen, zeigt die Berechnung des DoE-Modells für die 16 h hydrothermal gealterte Katalysatorprobe eine deutliche Erhöhung von α (vgl. Abb. 8.24 (b)). Die Ergebnisse der verschwefelten Katalysatorprobe zeigen wiederum nur bei geringen Temperaturen und geringen NO_X -Eingangskonzentrationen einen Einfluss. In diesem Bereich berechnet das Modell entsprechend der beiden Alterungsstufen eine geringeres α infolge von Verschwefelung (vgl. Abb. 8.24 (c)).

Abb. 8.25 zeigt die absolute Veränderung des Fitparameters α durch den Einfluss einer hydrothermalen Alterung für 4 h (a) bzw. für 16 h (b) und den Einfluss der Verschwefelung mit 1 g_S/l_{Kat} (c) in Abhängigkeit der Temperatur und des NO₂-Anteils im Feedgas.

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.25.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und r_{NO_2} für die hydrothermalen Alterungsstufe 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysatorprobe KAT 1.

Auch bezüglich der NO₂-Abhängigkeit des Fitparameters α zeigt die vierstündige hydrothermale Alterung keinen signifikanten Einfluss (vgl. Abb. 8.25 (a)). Nach einer 16 stündigen hydrothermalen Alterung ist ebenfalls keine signifikante Änderung des Einflusses des NO₂-Anteils im Feedgas auf die DoE-Berechnung von α erkennbar (vgl. Abb. 8.25 (b)). Nach der Verschwefelung zeigt sich eine moderate Änderung der NO₂-Abhängigkeit von α (vgl. Abb. 8.25 (c)). Im gesamten Temperaturbereich ist eine Vergrößerung von α bei geringen NO₂-Anteilen im Feedgas erkennbar. Gleiches zeigt sich bei hohen NO₂-Anteilen. Betrachtet man die Absolutergebnisse (vgl. Abb. B-9 (d)) wird deutlich, dass sich mit dieser Änderung der NO₂-Abhängigkeit durch die Verschwefelung, insbesondere mit sinkendem NO₂-Anteil im Feedgas, ein höheres α berechnet wird.

Abb. 8.26 zeigt die absolute Veränderung des Fitparameters α durch den Einfluss einer hydrothermalen Alterung für 4 h (a) bzw. für 16 h (b) und den Einfluss der Verschwefelung mit 1 g_S/l_{Kat} (c) in Abhängigkeit der Temperatur und von Lambda.

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.26.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und λ für die hydrothermalen Alterungsstufe 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysatorprobe KAT 1.

Betrachtet man die DoE-Berechnungsergebnisse in Abhängigkeit von λ , ist erkennbar, dass ein vierstündige hydrothermale Alterung sich nicht signifikant auf die Abhängigkeit von λ auswirkt (vgl. Abb. 8.26 (a)). Es ist eine moderate Verringerung von α bei niedrigen Temperaturen und geringem λ erkennbar. Erst ab einer hydrothermalen Alterung für 16 h ist eine signifikante Erhöhung von α bei hohen Temperaturen und niedrigem λ erkennbar (vgl. Abb. 8.26 (b)). Während sich die hydrothermale Alterung für 16 h im oberen Temperaturbereich auswirkt, zeigt sich durch die Verschwefelung eine signifikante Verringerung von α bei niedrigen Temperaturen und hohem λ (vgl. Abb. 8.26 (c)).

Abb. 8.27 zeigt die absolute Veränderung des Fitparameters α durch den Einfluss einer hydrothermalen Alterung für 4 h (a) bzw. für 16 h (b) und den Einfluss der Verschwefelung mit 1 g_S/l_{Kat} (c) in Abhängigkeit der Temperatur und der Raumgeschwindigkeit.

(c) 4 h gealtert + 1 g_S/l_{Kat}

Abb. 8.27.: Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und SV für die hydrothermalen Alterungsstufe 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysatorprobe KAT 1.

Die Ergebnisse der hydrothermalen Alterung zeigen, dass sich die ausgeprägte Raumgeschwindigkeitsabhängigkeit im Frischzustand (vgl. Abb. 8.20 (f)), nach vierstündiger hydrothermaler Alterung, im gesamten Temperaturbereich verringert (vgl. Abb. 8.27 (a)). Nach 16 h hydrothermaler Alterung zeigt sich, dass insbesondere im oberen Temperaturbereich die Raumgeschwindigkeitsabhängigkeit wieder zunimmt (vgl. Abb. 8.27 (b)). Auch die Ergebnisse der Verschwefelung zeigen, dass die Raumgeschwindigkeitsabhängigkeit, mit zunehmender Schwefelbeladung, moderat zurück geht (vgl. Abb. 8.27 (c)).

8.6.2. Zusammenfassung und Fazit

Zusammenfassend kann festgestellt werden, dass sich die vierstündige hydrothermale Alterung in der Berechnung von α in der Abhängigkeit von der Temperatur und der HC-Eingangskonzentration am stärksten auswirkt. Die hydrothermale Alterung für 16 h hingegen beeinflusst zudem die Abhängigkeit von der CO- bzw. NO_x-Eingangskonzentrationen sowie von λ signifikant. Die Betrachtung der Bereiche bei sehr hohen HC- und CO-Eingangskonzentrationen ist aufgrund der fehlenden Adsorptionsfähigkeit in diesem Bereich nach 16 stündiger Alterung (vgl. Abb. B-6 (a) und (b)) nur bedingt aussagekräftig. Durch den Vergleich des DoE-Modells der verschwefelten mit dem der unverschwefelten Katalysatorprobe lässt sich kein signifikanter Einfluss der Verschwefelung auf die Abhängigkeiten des DoE-Modells für α von den Eingangsfaktoren ableiten. Einzig die Veränderung der Abhängigkeiten von der Adsorptionstemperatur, der NO_X-Eingangskonzentration, dem NO₂-Anteil und λ zeichnen sich durch die Verschwefelung als moderat ab. Grundsätzlich lässt sich somit erklären, dass nach einer 4 stündigen hydrothermalen Alterung die Adsorptionseffizienz in weiten Teilen des Versuchsraums geringfügig zurückgeht. Ebenso führt eine Verschwefelung zu einer geringfügigen Reduzierung der Adsorptionseffizienz im oberen Temperaturbereich. Dieser Einfluss korreliert mit den Erkenntnissen aus Kap. 8.2, dass sich die Verschwefelung eher im Hochtemperaturbereich auswirkt, als bei tiefen Temperaturen. Nach 16 stündiger hydrothermaler Alterung ist, durch eine signifikante Erhöhung von α , eine deutliche Reduzierung der Adsorptionseffizienz in Teilbereichen des Versuchsraumes, insbesondere bei hohen Temperaturen, erkennbar.

8.7. Validierung der DoE-Modelle zur Berechnung des Fitparameters α mit realen Messdaten

Wie bereits in Kap. 8.4, werden alle vier DoE-Modelle für den Fitparameter α anhand der Realmessdaten validiert. Es wird die gleiche Vorgehensweise, wie in Kap. 8.4, angewendet.

8.7.1. Ergebnisse und Diskussion

Abb. 8.28 zeigt die DoE-Berechnung von α , für die Eingangsbedingungen im Wiederholpunkt des DoE-Versuchsplans, in Abhängigkeit der Adsorptionstemperatur für die frische Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnisse im Wiederholpunkt. Zudem zeigt Abb. 8.28 die DoE-Berechnung von α , für die Eingangsbedingungen der Versuchsreihe A4 (Kap. 8.1), in Abhängigkeit der Adsorptionstemperatur für die frische Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnissen für die Versuchsreihe A4.

Abb. 8.28.: Ergebnisse KAT 1 DoE frisch: Berechnetes α des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} im Frischzustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe A4.

Die DoE-Berechnungsergebnisse für α im Frischzustand zeigen, für die Einstellungen der Wiederholpunktmessungen im DoE-Versuchsplan, ein Minimum für α bei ca. 275 °C. Die aus den Messungen direkt bestimmten Werte für α liegen im Mittel im 95 %-Vertrauensbereich des Modells. Im HC- und CO-freien Abgas (Versuchsreihe A4) zeigt sich eine Verringerung von α im oberen Temperaturbereich. Ein ausgeprägtes Minimum ist im untersuchten Bereich nicht erkennbar. Die aus den Messungen gefitteten Werte für α liegen, mit Ausnahme des Wertes bei 300 °C, im 95 %-Vorhersagebereich für die Einzelwerte.

Abb. 8.29 zeigt die DoE-Berechnung von α , für die Eingangsbedingungen im Wiederholpunkt des DoE-Versuchsplans, in Abhängigkeit der Adsorptionstemperatur für die 4 h hydrothermal gealterte Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnisse im Wiederholpunkt. Zudem zeigt Abb. 8.29 die DoE-Berechnung von α , für die Eingangsbedingungen der Versuchsreihe A5 (Kap. 8.1), in Abhängigkeit der Adsorptionstemperatur für die 4 h hydrothermal gealterte Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnissen für die Versuchsreihe A5.

Abb. 8.29.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Berechnetes α des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} 4 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe A5.

Nach vierstündiger hydrothermaler Alterung zeigen die DoE-Berechnungen, für die Einstellungen der Wiederholpunktmessungen, im unteren und oberen Temperaturbereich gegenüber des Frischzustandes eine Reduzierung von α . Die Messwerte im Wiederholpunkt liegen nur sehr geringfügig unterhalb der im Frischzustand. Der Mittelwert der Messungen liegt innerhalb des 95 %-Vertrauensbereich des Modells. Selbige Verringerung von α ist in den Berechnungsergebnissen, unter den Einstellungen der Versuchsreihe A5 im HC- und CO-freien Abgas, erkennbar. Die aus den Messungen der Versuchsreihe A5 ermittelten Werte, mit Ausnahme des Wertes bei 250 °C, liegen auch hier innerhalb des 95 %-Vorhersagebereich für die Einzelwerte.

Abb. 8.30 zeigt die DoE-Berechnung von α , für die Eingangsbedingungen der Versuchsreihe V1 (Kap. 8.1), in Abhängigkeit der NO_X-Eingangskonzentration für die 4 h hydrothermal gealterte Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnissen für die Versuchsreihe V1. Zudem zeigt Abb. 8.30 die DoE-Berechnung von α , für die Eingangsbedingungen der Versuchsreihe V2 (Kap. 8.1), in Abhängigkeit der Raumgeschwindigkeit für die 4 h hydrothermal gealterte Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnissen für die Versuchsreihe V2.

Abb. 8.30.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Berechnetes α des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von y_{NO_X} und *SV* im 4 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten der Versuchsreihe V1 und V2.

Die DoE-Berechnungsergebnisse für die Versuchsreihe V1 zeigen, mit zunehmender NO_X-Eingangskonzentration, ein sinkendes α . Die aus den Messungen gefitteten Werte für α liegen, oberhalb von 250 ppm NO_X im Feedgas, innerhalb des 95 %-Vorhersagebereich für die Einzelwerte. Unterhalb von 250 ppm NO_X-Eingangskonzentration liegen die gefitteten Werte der Messreihe V1 unterhalb des 95 %-Vorhersagebereich für die Einzelwerte. Die DoE-Berechnung für die Versuchsreihe V2 zeigen mit steigender Raumgeschwindigkeit eine Erhöhung von α , wie bereits durch die Kennfeldbetrachtungen zu erwarten ist (vgl. Abb. 8.20 (f)). Die gefitteten Werte für α aus der Versuchsreihe V2 zeigen den gleichen Trend und liegen innerhalb des 95 %-Vorhersagebereich für die Einzelwerte.

Abb. 8.31 zeigt die DoE-Berechnung von α , für die Eingangsbedingungen im Wiederholpunkt des DoE-Versuchsplans, in Abhängigkeit der Adsorptionstemperatur für die 16 h hydrothermal gealterte Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnisse im Wiederholpunkt. Zudem zeigt Abb. 8.31 die DoE-Berechnung von α , für die Eingangsbedingungen der Versuchsreihe A6 (Kap. 8.1), in Abhängigkeit der Adsorptionstemperatur für die 16 h hydrothermal gealterte Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnissen für die Versuchsreihe A6.

Abb. 8.31.: Ergebnisse KAT 1 DoE 16 h hydrothermale Alterung: Berechnetes α des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} 16 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe A6.

Nach hydrothermaler Alterung für 16 h zeigen die DoE-Berechnungen von α , verglichen mit den Berechnungen für die frische Katalysatorprobe, für die Einstellungen der Wiederholpunktmessungen signifikant höhere Werte. Die Streuung der Berechnungen im Wiederholpunkt ist relativ hoch, sodass die Hälfte der Wiederholpunkte, mit einem α größer als 12, im Diagramm nicht angezeigt werden können. Es ist ein sehr breiter Vertrauens- und Vorhersagebereich erkennbar. Selbiges zeigt sich für die DoE-Berechnungen der Versuchsreihe A6. Die Messwerte liegen aufgrund des breiten Vertrauen- und Vorhersageniveaus innerhalb der jeweiligen Bereiche. Im Mittel lassen sich die gefitteten Werte für α zwar berechnen, dennoch zeigen auch die Fitergebnisse eine sehr breite Streuung.

Abb. 8.32 zeigt die DoE-Berechnung von α , für die Eingangsbedingungen im Wiederholpunkt des DoE-Versuchsplans, in Abhängigkeit der Adsorptionstemperatur für die 4 h hydrothermal gealterte und verschwefelte Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnisse im Wiederholpunkt. Zudem zeigt Abb. 8.32 die DoE-Berechnung von α , für die Eingangsbedingungen der Versuchsreihe S5 (Kap. 8.1), in Abhängigkeit der Adsorptionstemperatur für die 4 h hydrothermal gealterte und verschwefelte Katalysatorprobe. Gegenübergestellt sind die berechneten Ergebnissen für die Versuchsreihe S5.

Auch die DoE-Berechnungen für α durch das Modell der verschwefelten Katalysatorprobe zeigt eine deutliche Erhöhung von α im oberen Temperaturbereich. Obwohl die Fitergebnisse für α im Wiederholpunkt deutlich streuen (es liegen 3 Punkte oberhalb von α =12) ist der 95 %-Vertrauensbereich des Modells und der

Abb. 8.32.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung und Verschwefelung: Berechnetes α des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} 4 h hydrothermal gealterten und verschwefelten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe S5.

95 %-Vorhersagebereich für die Einzelwerte, verglichen mit den Ergebnissen der Berechnung für die 16 h hydrothermal gealterte Katalysatorprobe, relativ schmal. Dies ist bedingt durch die geringere Streuung der gültigen Wiederholpunkte. Die DoE-Berechnung für die Versuchsreihe S5 zeigt eine geringe Abhängigkeit des Fitparameters α von der Adsorptionstemperatur. Die Fitwerte für α der Versuchsreihe S5 weisen eine relativ große Streuung auf. Dennoch liegen die Werte innerhalb des 95 %-Vorhersagebereich für die Einzelwerte.

8.7.2. Zusammenfassung und Fazit

Die DoE-Modelle zur Berechnung von α im frischen und 4 h hydrothermal gealterten Zustand zeigen, bezüglich der Temperaturabhängigkeit, ein gutes Ergebnis. Die Fitergebnisse der Wiederholpunkte sowie der Versuchsreihen A4 und A5 liegen zum größten Teil innerhalb des 95 %-Vorhersagebereiches für die Einzelwerte (vgl. Abb. 8.28 und Abb. 8.29). Die Ergebnisse zeigen ein Minimum für α im mittleren Temperaturbereich. Diese Tendenz ist vergleichbar mit den Ergebnissen von Kim et al. (vgl. Abb. 7.4), auch wenn sich die Absolutwerte unterscheiden. Der 95 %-Vertrauensbereich des Modells und der 95 %-Vorhersagebereich weisen eine rel. geringe Breite auf, sodass die Berechnung von α mittels DoE-Modellpolynomen zu einem zuverlässigen Ergebnis führt.

In der Abbildung der NO_X-Abhängigkeit zeigt das DoE-Modell einen systematischen Fehler. Die Fitergebnisse der Versuchsreihe V1 weisen keine Veränderung der Wer-

te für α bei Änderung der NO_X-Eingangskonzentration. Das DoE-Modell hingehen weist sowohl eine lineare als auch eine quadratische Abhängigkeit auf (vgl. Abb. 8.30 (a)). Generell besteht die Möglichkeit diesen systematischen Fehler, durch die Reduzierung der Modellabhängigkeiten um gerade diese Terme, zu beheben. Dies ist jedoch zum Einen einhergehend mit der Verminderung der Modellgüte des DoE-Modells und zum Anderen steht an dieser Stelle eine einfache automatisierte Kalibrierung im Vordergrund. Aus diesen Gründen wird diese Vorgehensweise nicht angewandt. Die Abbildung der Raumgeschwindigkeit über das DoE-Modell zeigt eine verlässliche Vorhersage der Werte für α (vgl. Abb. 8.30 (b)).

Das DoE-Modell für die Berechnung von α nach 16 h hydrothermaler Alterung zeigen, unter der gegebenen Vorhersagegenauigkeit, eine nur bedingt zuverlässige Berechnung. Analog zum Modell für die Berechnung der adsorbierten NO_X-Stoffmenge führt die relative Streuung der Residuen, im Verhältnis zum Absolutwert, an dieser Stelle zu sehr breiten Vertrauens- und Vorhersageintervallen. Zudem muss berücksichtigt werden, dass das DoE-Modell zur Berechnung der adsorbierten NO_X-Stoffmenge als Eingangsgröße für die Modellabbildung von α genutzt wird und somit die Eingangsgröße ζ schon mit einer großen Streuung behaftet ist.

Die Berechnungsergebnisse von α mit dem DoE-Modell für die verschwefelten Katalysatorprobe zeigen durch die Vertrauens- und Vorhersageintervalle eine moderate Zuverlässigkeit.

Um die Modellgenauigkeit, insbesondere der Modelle der 16 h hydrothermal gealterten und der verschwefelten Katalysatorprobe, zu optimieren gibt es zwei Stellhebel. Einerseits führt eine ungenaue DoE-Berechnung der adsorbierten NO_X -Stoffmenge bereits im Eingangsmodell zu einem systematischen Fehler, der durch die Optimierung dieser Modelle minimiert werden kann. Andererseits kann die statistische Sicherheit der Modelle durch die Erweiterung des DoE-Versuchsplans, insbesondere in den Randbereichen und dem mittleren Bereich, erhöht werden. Bei der Auswahl der zusätzliche DoE-Messpunkte sollte, gerade bei diesen Modellen, der Fokus weiterhin auf die Bereiche gelegt werden, in denen messbare Effekte auftreten.
9. Übertragung des mathematischen Modells in Simulink

Für weitere Berechnungen in der Fahrzeuganwendung wird ein Simulink-Modell erstellt. Anhand dieses Simulink-Modells erfolgt ebenso der Übertrag des mathematischen Modells in die Motorsteuerung, da die Modelle der Motorsteuerung aus diesen Modellen kompiliert werden können. Mit dem Simulink-Modell werden sowohl die Modellgleichung (vgl. Gleichung G 7.10) mit allen relevanten Modelltermen aus Kap. 7 als auch die beiden DoE-Modelle aus Kap. 8 abgebildet.

9.1. Aufbau des Simulink-Modells

Das Simulink-Modell ist in drei Funktionsblöcke aufgeteilt. Abb. 9.1 zeigt den Aufbau des Modells und die Einbindung in die Kommunikation über den CAN-Bus.

Abb. 9.1.: Grundstruktur des Simulink-Modells.

Im **Schnittstellenkoordinator** werden die benötigten Signale zur Berechnung des Modells von CAN-Bus abgegriffen und in nutzbare Modellgrößen umgerechnet. Diese Umrechnung beinhaltet zum Einen die Konvertierung von Einheiten und zum Anderen die Berechnung von fehlenden Messsignalen, wie bspw. der Raumgeschwindigkeit. Zudem findet in dem Schnittstellenkoordinator ebenfalls eine Umschaltung von Signalen statt. Dies ist insbesondere beim Signal der Lambdasonde notwendig, da dieses Signal erst nach Taupunktfreigabe der Sonde verfügbar ist. Solange diese Freigabe nicht erfolgt ist, wird ein modelliertes λ -Signal der Motorsteuerung genutzt. Eine weitere Aufgabe des Schnittstellenkoordinators ist die Umrechnung der Modellsignale in nutzbare Signale, für weitere Modelle, in der Motorsteuerung. Im Funktionsblock **Polynomberechnung** wird aus den extrahierten DoE-Modellpolynomen α und Θ' berechnet. Im Funktionsblock **Modellberechnung** werden die Modellgleichung berechnet und die NO_X-Stoffmengenströme bilanziert. In den folgenden Kapiteln werden die Funktionsblöcke **Polynomberechnung** und **Modellberechnung** weiter detailliert.

9.1.1. Funktionsblock: Polynomberechnung

Abb. 9.2 zeigt den Aufbau des Funktionsblocks der Polynomberechnung. Dieser Funktionsblock ist in wiederum drei Funktionen Transformation der Eingangssignale, Polynomberechnung α und Polynomberechnung Θ' aufgeteilt.

Abb. 9.2.: Funktionen im Funktionsblock Polynomberechnung.

Die notwendigen Eingangsgrößen sind, neben der Temperatur, die Eingangskonzentrationen HC, CO, NO_X sowie der NO₂-Anteil im Feedgas, Lambda und die Raumgeschwindigkeit. Als Temperatursignal muss zur Abbildung von Exothermie auf der Katalysatoroberfläche eine berechnete Oberflächentemperatur des PNA gewählt werden. Als Ausgangsgrößen werden sowohl α als auch Θ' berechnet.

Die Transformation der Eingangsgrößen ist notwendig, da das DoE-Modell mit Hilfe eines transformierten DoE-Versuchsplans erstellt ist (vgl. Kap. 8.2.1. Entsprechend werden die Eingangsgrößen, die zur Erstellung des DoE-Versuchsplans transformiert werden, über eine inverse Transformationsfunktion umgerechnet.

Die Berechnung der DoE-Modellpolynome ist mit Simulink sehr komplex und unübersichtlich. Als vereinfachte Darstellung werden an dieser Stelle die Matrizenund Vektoroperationen am Beispiel von α genutzt. Dabei werden die sieben Eingangsgrößen des DoE-Modellpolynoms zum Zeitpunkt t in einen Eingangsgrößenvektor $\vec{x}(t)$ übergeben. Die Werte des Eingangsgrößenvektors sind auf die maximalen Werte des DoE-Versuchsplans begrenzt (vgl. Tab. 8.4), um eine Extrapolation des DoE-Modells zu vermeiden. Dieser Eingangsvektor wird gemäß Gleichung G 9.1 normiert.

$$\vec{n}(t) = \frac{\vec{x}(t) - \vec{x}}{\vec{\sigma}} \tag{G 9.1}$$

$\vec{n}(t)$	= normierter Eingansgrößenvektor zum Zeitpunkt t (7 \times 1)	[-]
$\vec{x}(t)$	= Eingansgrößenvektor zum Zeitpunkt t (7×1)	[-]
$\vec{ar{\chi}}$	= Mittelwert der Eingansgrößen im Versuchsplan (7 \times 1)	[-]
$\vec{\sigma}$	= Standardabweichung der Eingansgrößen im Versuchsplan (7×1)	[-]

Der normierte Eingangsvektor wird mit der Exponentenmatrix potenziert. Die Exponentenmatrix enthält in 7 Spalten (Eingangsgrößen) und 36 Zeilen alle Exponenten der abzubildenden Abhängigkeiten. Durch Bildung des Zeilenproduktes erhält man den Regressorenvektor mit ebenfalls 36 Einträgen. Der Koeffizientenvektor enthält für die signifikanten Abhängigkeiten die normierten Regressionskoeffizienten. Für alle nicht signifikanten Abhängigkeiten wird der Koeffizientenvektor zu Null gesetzt.

$$\vec{r}(t) = \prod_{1}^{n} \vec{n}(t)^{E_{m,n}} \cdot \vec{k}$$
(G 9.2)

$\vec{r}(t)$	= Regressorenvektor zum Zeitpunkt t (36×1)	
n	= Anzahl der Spalten	[-]
$\vec{n}(t)$	= normierter Eingansgrößenvektor zum Zeitpunkt t (7×1)	[-]
$E_{m,n}$	= Exponentenmatrix (36×7)	[-]
т	= Anzahl der Zeilen	[-]
\vec{k}	= Koeffizientenvektor (36×1)	[-]

Durch Summierung der Komponenten des Regressorenvektors erhält man das Ergebnis für α als Skalar, welches mittels Transformation (interne CAMEO Modelltransformation) und Offset korrigiert wird.

$$\alpha(t) = \left(\sum_{1}^{n} \vec{r}(t)\right)^{\frac{1}{T_{C}}} - O \tag{G 9.3}$$

$\alpha(t)$	= Fitfaktor zum Zeitpunkt t	[-]
$\vec{r}(t)$	= Regressorenvektor zum Zeitpunkt t (36×1)	[-]
п	= Anzahl der Spalten	[-]
T_C	= Transformationsfaktor (CAMEO)	[-]
0	= Offset	[-]

Für die Berechnung von Θ' wird lediglich der Koeffizientenvektor, der Transformationsfaktor und das Offset variiert. $\zeta(t)$ errechnet sich nach Gleichung G 7.14.

9.1.2. Funktionsblock: Modellberechnung

Abb. 9.3 zeigt den Aufbau des Funktionsblocks der Modellberechnung. Der Funktionsblock Modellberechnung setzt sich wiederum aus vier Funktionen zusammen. Dazu gehören die Berechnung des Speichers, die Berechnung der Adsorption, die Berechnung der Desorption und die Lösung der Differentialgleichung.

Abb. 9.3.: Funktionen im Funktionsblock Modellberechnung.

Die notwendigen Eingangsgrößen sind neben den Ergebnissen der Polynomberechnung $\alpha(t)$ und $\zeta(t)$, die Temperatur an der Katalysatoroberfläche, die eingehenden Stoffmengenströme HC, CO und NO_X zum Zeitpunkt t sowie die Anfangsbeladung des PNA zum Zeitpunkt t₀. Diese NO_X-Beladung [mol] wird zum Ende des Fahrzyklus, in Form der gespeicherten NO_X-Stoffmenge, im Steuergerätespeicher (EEPROM) abgespeichert und steht somit für den Folgefahrzyklus als Anfangsbeladung zur Verfügung. Als Ausgangsgrößen werden der adsorbierte, der desorbierte, der gespeicherte und der austretende NO_X-Stoffmengenstrom sowie die Kapazität des Speichers und deren Beladung zum Zeitpunkt t berechnet.

Abb. 9.4 zeigt die Funktion zur Berechnung des NO_X-Speichers. Die Funktion beinhaltet die drei applizierbaren Eingangswerte $\hat{\Theta}$ (Theta max), T_m und T_s .

Abb. 9.4.: Funktion zur Berechnung des Speichers.

Mit diesen drei Applikationswerten wird das temperaturabhängige Verhalten des Speichers beschrieben (vgl. Kap. 7.1.2). Das Ergebnis der Berechnung ist sowohl $\Theta(t)$ als auch die Anfangsbedingung $x(t_0)$, zum Lösen der Differentialgleichung.

Abb. 9.5 zeigt die Funktion zur Berechnung der Adsorption (vgl. Kap. 7.1.4). In dieser Funktion wird sowohl der Adsorptionswirkungsgrad als auch der adsorbierte NO_X-Stoffmengenstrom zum Zeitpunkt t berechnet.

Abb. 9.6 zeigt die Funktion zur Berechnung der Desorption (vgl. Kap. 7.1.5). Diese Funktion beinhaltet die vier applizierbaren Werte δ , k_{des} , E_{des} und R.

Abb. 9.6.: Funktion zur Berechnung der Desorption.

Wie bereits in Kap. 7.1.5 diskutiert, wird der Parameter δ konstant gehalten und ist deshalb hier mit Eins zu applizieren. Die Werte für k_{des} , E_{des} und R sind in Kap. 7.2.2

diskutiert und ermittelt. In dieser Funktion wird der desorbierte NO_X -Stoffmengenstrom zum Zeitpunkt t berechnet.

Abb. 9.7 zeigt die Funktion zum Lösen der Differentialgleichung (vgl. Kap. 7.2.1). Diese Funktion beinhaltet die Berechnung der Zeitableitung des Füllstandes $(\frac{dx}{dt}(t))$ zum Zeitpunkt t, die durch Integration den Füllstand x(t) zum Zeitpunkt t ergibt. Als Anfangsbedingung für das Lösen der DGL wird der, in der Speicherfunktion, bestimmte Wert $x(t_0)$ verwendet. Als Ausgangssignal resultieren sowohl der Füllstand x(t) und dessen Zeitableitung $\frac{dx}{dt}(t)$ als auch die adsorbierte, desorbierte und gespeicherte NO_X-Stoffmenge. Zudem wird aus der Berechnung der gespeicherten NO_X-Stoffmenge der Wert ermittelt, der zum Ende des Fahrzyklus als Anfangsbedingung für den Folgezyklus in den EEPROM geschrieben wird.

Abb. 9.7.: Funktion zur Berechnung der Differentialgleichung.

10. Validierung des mathematischen Modells anhand von Fahrzeugmessungen

10.1. Inhalte und Ziel der Untersuchungen

Das erstellte Simulink-Modell wird im abschließenden Schritt, anhand von Messungen unter realen Bedingungen im Fahrzeug, validiert. Dazu wird ein Fahrzeug mit einem passiven NO_X-Adsorber ausgerüstet. Der eingesetzte Katalysator entspricht den Spezifikationen der frischen Katalysatorprobe KAT 1, anhand derer die Kalibrierung des mathematischen Modells vorgenommen ist. Die Abmaße des eingesetzten Katalysators entsprechen einem Durchmesser von 5,2" (13,21 cm), einer Länge von 4" (10,16 cm) und damit einem Volumen von ca. 1,4 l. Mit diesem Fahrzeug werden Abgastests im NEFZ (EU98) und entsprechendem Konditionierungstests (EU91) gefahren. Der Versuchsaufbau für die Messungen ist in Kap. 5.2 erläutert. Ziel ist es, das stationär kalibrierte Modell auf die dynamischen Bedingungen im Fahrzeug anzupassen und zu bewerten. Dazu werden die Kalibrierungen gemäß Kap. 7.2 und Kap. 8 in das Simulink-Modell übernommen.

10.2. Ergebnisse und Diskussion

Abb. 10.1 zeigt das berechnete Ausgangssignal für den NO_X -Stoffmengenstrom im Vergleich zum Messsignal der Unverdünntmessung, sowie den gemessenen eintretenden NO_X -Stoffmengenstrom auf dem Abgasrollenprüfstand im NEFZ. Zudem zeigt Abb. 10.1 die integrierten Ausgangssignale des Modells, für die austretende und gespeicherte NO_X -Stoffmengen, sowie die zugehörigen integrierten Messsignale. Die Anfangsbeladung des passiven NO_X -Adsorbers (PNA) beträgt in dieser Messung 0,02 mol. Der Determinationskoeffizient für die Berechnung des austretenden NO_X -Stoffmenge beträgt R^2 =0,773.

Bei der Betrachtung der berechneten austretenden NO_X -Stoffmenge wird deutlich, dass das Modell einen zu hohen, austretenden NO_X -Stoffmengenstrom berechnet. Ursächlich dafür ist eine zu geringe Einspeicherung in der Modellierung, wie aus

Abb. 10.1.: Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter austretender NO_X -Stoffmengenstrom im NEFZ im Vergleich zur Realabgasmessung sowie integrierter berechneter austretender und gespeicherter NO_X -Stoffmengen im Vergleich zur Realabgasmessung.

dem integrierten Modellsignal der gespeicherten NO_X -Stoffmenge, im Vergleich zum Messsignal, in Abb. 10.1 deutlich wird. Demnach ist die Berechnung des Adsorptionswirkungsgrades in dieser Kalibrierung nicht korrekt. Der Adsorptionswirkungsgrad wird signifikant durch die Beladung der NO_X -Speichers x und den DoE-Korrekturfaktor ζ beeinflusst. Da die Beladung des Speichers über den gesamten Fahrzyklus klein ist, ist der geringe Adsorptionswirkungsgrad durch einen hohes ζ zu begründen.

Abb. 10.2 zeigt den berechneten Adsorptionswirkungsgrad und das aus dem DoE-Modellpolynom ermittelte ζ im NEFZ-Fahrzyklus in der Ausgangskalibrierung.

Aus der Darstellung des Adsorptionswirkungsgrades ist ersichtlich, dass der dieser in weiten Teilen des Fahrzyklus sehr gering (<0,2) ist. Betrachtet man ζ in Abb. 10.2 wird die Annahme bestätigt, dass ein zu hohes ζ ursächlich für den geringen Adsorptionswirkungsgrad ist. Der DoE-Korrekturfaktor ζ nimmt über weite Teile des Fahrzyklus Werte größer 2,5 an. In den Beschleunigungsphasen sogar Werte größer

Abb. 10.2.: Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter Adsorptionswirkungsgrad und berechnetes ζ aus dem DoE-Modellpolynom.

10. Dies lässt den Schluss zu, dass im dynamischen Betrieb die stationär gemessenen Einflüsse nicht mit voller Gewichtung zutreffend sind. Augrund dessen wird ein zusätzlicher Applikationsparameter eingefügt, der ζ wichtet. Dieser Wichtungsfaktor wird zusammen mit des Parametern für die Desorption k_{des} und E_{des} ebenfalls über einen Fitprozess an die Messdaten angepasst. Tab. 10.1 zeigt den Ausgangszustand und das Ergebnis des Fitprozess durch die Anpassung der Kalibrierung des Modells an die Fahrzeugmessdaten.

Parameter	Ausgangszustand	Ergebnis	Einheit
Wichtungsfaktor ζ	1	0,35	[-]
k _{des}	$4,24e^{4}$	4,66 <i>e</i> ⁴	[-]
E _{des}	8,60 e^4	8,71 e^4	[-]

Tab. 10.1.: Anpassung der Fitparameter an Fahrzeugmessdaten.

Abb. 10.3 zeigt das Ergebnis der Berechnung mit gewichtetem ζ und angepassten Desorptionsfaktoren. Der Determinationskoeffizient für die Berechnung des austretenden NO_x-Stoffmenge beträgt R^2 =0,998.

Abb. 10.3.: Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter austretender NO_X -Stoffmengenstrom im NEFZ im Vergleich zur Realabgasmessung sowie integrierter berechneter austretender und gespeicherter NO_X -Stoffmengen im Vergleich zur Realabgasmessung nach Wichtung von ζ und Anpassung der Desorptionsparameter.

Durch die Wichtung von ζ lässt sich die Berechnung den Messdaten annähern. Die Anpassung der Desorptionsparameter hat einen sehr geringen Einfluss auf die Qualität des Modells bzgl. Genauigkeit, so dass sich der Determinationskoeffizient erst in der vierten Nachkommastelle ändert. Die berechnete gespeicherte NO_X-Stoffmenge unterscheidet sich in den Bereich von 150 bis 250 s, 650 bis 850 s und 1120 bis 1180 s nur geringfügig vom integrierten Messsignal.

Abb. 10.2 zeigt den berechneten Adsorptionswirkungsgrad und das aus dem DoE-Modellpolynom ermittelte ζ im NEFZ-Fahrzyklus nach der Wichtung von ζ und Anpassung der Desorptionsparameter.

Abb. 10.4.: Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter Adsorptionswirkungsgrad und berechnetes ζ aus dem DoE-Modellpolynom nach Wichtung von ζ und Anpassung der Desorptionsparameter.

Wie bereits in der vorherigen Abbildung gezeigt, ändert sich der Adsorptionswirkungsgrad durch die Wichtung von ζ signifikant. Es ist erkennbar, dass der Adsorptionswirkungsgrad durch die Wichtung in weiten Teilen des Fahrzyklus Werte größer 0,4 annimmt.

Das Modell wird anhand eines weiteren Fahrzyklus validiert. Dazu wird ein sog. EU91-Fahrzyklus im Anschluss, an die Messungen im NEFZ, gefahren. Die Anfangsbeladung in diesem Fahrzyklus entspricht, mit dem Wert von 0,04 mol, der Beladung zum Ende des NEFZ-Fahrzyklus. Die Temperatur im Abgasstrang in diesem Fahrzyklus liegt in weiten Teilen deutlich über derer im NEFZ.

Abb. 10.5 zeigt das berechnete Ausgangssignal für den NO_X -Stoffmengenstrom, im Vergleich zum Messsignal der Unverdünntmessung, sowie den gemessenen eintretenden NO_X -Stoffmengenstrom auf dem Abgasrollenprüfstand im EU91. Zudem zeigt Abb. 10.1 die integrierten Ausgangssignale des Modells, für die austretende und gespeicherte NO_X -Stoffmengen, sowie die zugehörigen integrierten Messsignale. In den Berechnungen sind sowohl der Wichtungsfaktor für ζ als auch die angepassten Desorptionsparameter berücksichtigt. Der Determinationskoeffizient für die Berechnung des austretenden NO_X -Stoffmenge beträgt R^2 =0,997.

Abb. 10.5.: Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter austretender NO_X -Stoffmengenstrom im EU91 im Vergleich zur Realabgasmessung und integrierte berechnete Stoffmengen NO_X austretend, adsorbiert und desorbiert im Vergleich zur Realabgasmessung nach Wichtung von ζ und Anpassung der Desorptionsparameter.

Auch in diesem Fahrzyklus zeigt sich eine genaue Berechnung der integrierten Stoffmengenströme sowohl für die gespeicherte als auch für die austretende Menge NO_X . Die berechnete gespeicherte NO_X -Stoffmenge unterscheidet sich in den Bereich von 150 bis 1000 s geringfügig vom integrierten Messsignal.

10.3. Zusammenfassung und Fazit

Das durch die DoE-Messungen kalibrierte Modell zur Berechnung des passiven NO_X -Adsorbers beschreibt das reale Verhalten unter dynamischen Bedingungen nur unzureichend. Durch die Wichtung des DoE-Korrekturfaktors ζ lässt sich das Modell so kalibrieren, dass eine hinreichend genaue Bilanzierung von NO_X-Stoffmengen innerhalb eines Fahrzyklus vorgenommen werden kann. Die Kalibrierung der Desorptionsparameter, anhand einer TPD, liefert eine hinreichen genaue Abbildung des Desorptionsverhaltens. Durch einen Parameterfit an Realmessdaten lässt sich, mit einer geringen Änderung der Parameter, eine optimierte Modellgenauigkeit für dynamische Anwendungen erzielen.

Um den Fehler der gespeicherten NO_X -Stoffmenge bewerten zu können wird der relative Berechnungsfehler der gespeicherten und austretenden NO_X -Stoffmenge des Modells im Fahrzyklus dargestellt. Abb. 10.6 zeigt diesen relativen Berechnungsfehler der austretenden und gespeicherten NO_X -Stoffmenge im NEFZ nach finaler Kalibrierung des mathematischen Modells.

Abb. 10.6.: Ergebnisse KAT 1 frisch Fahrzeugmessung: Relativer Modellierungsfehler im NEFZ-Fahrzyklus, bezogen auf die austretenden und gespeicherte NO_X -Stoffmenge, nach Wichtung von ζ und Anpassung der Desorptionsparameter.

Der relative Fehler der Berechnung der austretenden NO_X -Stoffmenge im NEFZ ist, durch das geringe Absolutniveau zu Beginn der Messung, groß. Nach ca. 300 s nimmt der rel. Berechnungsfehler Werte zwischen ± 5 % an. Zum Ende des Fahrzyklus liegt die berechnete austretende NO_X -Stoffmenge von 0,05 mol ca. 0,01 % unter dem gemessenen Wert. Der relative Fehler der gespeicherten NO_X -Stoffmenge im gesamten NEFZ-Fahrzyklus liegt in den Grenzen von ±2 %. Die berechnete gespeicherte NO_X -Stoffmenge zum Ende des Fahrzyklus im NEFZ von 0,04 mol liegt ca. 0,01 % über der gemessenen gespeicherten NO_X -Stoffmenge.

Abb. 10.7 zeigt diesen relativen Berechnungsfehler der austretenden und gespeicherten NO_X -Stoffmenge im EU91 nach finaler Kalibrierung des mathematischen Modells.

Abb. 10.7.: Ergebnisse KAT 1 frisch Fahrzeugmessung: Relativer Modellierungsfehler im EU91-Fahrzyklus, bezogen auf die austretenden und gespeicherte NO_X -Stoffmenge, nach Wichtung von ζ und Anpassung der Desorptionsparameter.

Der relative Berechnungsfehler der austretenden NO_X-Stoffmenge nimmt zu Beginn des EU91-Fahrzyklus ebenfalls große Werte an. Nach ca. 400 s liegt dieser Fehler in dem Intervall von -7,5 % bis 0 %. Zum Ende dieses Fahrzyklus liegt die berechnete austretende NO_X-Stoffmenge von 0,17 mol ca. 0,25 % über dem gemessenen Wert. Im EU91-Fahrzyklus liegt der relative Fehler der gespeicherten NO_X-Stoffmenge in den Grenzen +5 bis -2,5 %. Die berechnete gespeicherte NO_X-Stoffmenge zum Ende des Fahrzyklus von 0,04 mol liegt ca. 0,46 % unter der gemessenen gespeicherten NO_X-Stoffmenge.

Aus diesen Ergebnissen geht hervor, dass das Modell bezüglich der integrierten Berechnung des gespeicherten NO_X -Stoffmengenstroms eine gute Genauigkeit unter den untersuchten Randbedingungen aufweist. Die Berechnung des austretenden NO_X -Stoffmengenstroms ist zu Beginn der Messung mit einem hohen relativen Fehler, aufgrund von geringen Absolutwerten, behaftet. Nach ca. 300 s entspricht auch diese Berechnung einer guten Genauigkeit.

11. Ausblick

Die durchgeführten Untersuchungen zeigen, dass sich passive NO_X -Adsorber eignen Stickstoffoxide unter Kaltstartbedingungen einzuspeichern und später wieder zu desorbieren. Dies bietet sich insbesondere dann an, wenn aufgrund von niedrigen Abgastemperaturen, ein SCR-System im Kaltstart nur geringe NO_X -Konversionsraten erzielen kann. Die temperaturabhängige Speichercharakteristik hat dabei einen signifikanten Einfluss auf das Gesamtsystem bei gleichzeitiger Verwendung eines nachgeschalteten SCR-Katalysators. Für diesen Anwendungsfall sind die Katalysatortechnologien entsprechend der Rahmenbedingungen, wie Abgastemperatur, an den jeweiligen Katalysatoren auszuwählen. Gegebenenfalls ist ebenso die Heizstrategie des Abgassystems an die Rahmenbedingungen anzupassen. Ein Beispiel für eine zielgerechte Einsatz eines passiven NO_X -Adsorbers zeigt Abb. 11.1.

Abb. 11.1.: Ergebnisse KAT 1 Fahrzeugmessung: Integrierte NO_X-Stoffmenge im NEFZ für ein System mit passivem NO_X-Adsorber und SCR im Vergleich zu einem System ohne passiven NO_X-Adsorber bei reduzierten CO₂-Emissionen.

Diese Abbildung zeigt die Emissionen nach dem SCR-Katalysator für ein konventionelles SCR-System, welches bei deutlich reduzierten CO₂-Emissionen betrieben wird (vgl. Kap. 2.6.5). Aufgrund der zunehmenden Effizienzsteigerung des Antriebsstranges ist eine sinkende Abgastemperatur einhergehend mit sinkenden CO₂-Emissionen. Folge ist, dass die erzielbaren NO_x-Konversionsraten am SCR-Katalysator deutlich zurückgehen und die NO_x-Emissionen nach dem SCR-Katalysator ansteigen. Die Grenzwerte können, wie diesem Fall EU6 mit 80 mg_{NOv}/km, nicht eingehalten werden. Gegenübergestellt ist ein System mit einem passiven NO_X-Adsorber. Mit dieser Kombination aus passiven NO_x-Adsorbers (PNA) und SCR lassen sich die NO_x-Emissionen nach dem SCR-Katalysator deutlich senken. Die Strategie, die Stickstoffoxide im Kaltstart in einem passiven NO_x-Adsorbers (PNA) zu adsorbieren und bei betriebsbereitem SCR-Katalysator wieder zu desorbieren, ist jedoch nur dann zulässig, wenn das Zwischenspeichern keine negativen Einflüsse auf die Emissionen anderen Fahrzyklen hat. Demzufolge muss sichergestellt werden, dass die Desorption der gespeicherten Stickoxide nur dann erfolgen kann, wenn das SCR-System betriebsbereit ist. Andernfalls muss eine Betriebsstrategie entwickelt werden, die dafür sorge trägt, dass sich das SCR-System vor einer Desorption in einem konversionsfähigen Zustand befindet. Möglichkeiten dieses umzusetzen sind bspw. eine gezielte Heizstrategie, die den SCR-Katalysator vor zu erwartender Desorption auf eine Temperatur bringt, in der es hinreichenden NO_X-Umsatz gewährleisten kann. Diese Heizstrategie kann sich deutlich von konventionellen Heizstrategien für SCR-Systeme unterscheiden. Insbesondere der Einsatz von Kraftstoff zur Beheizung des Abgassystems kann hier zielgerichtet und optimiert erfolgen. Damit lassen sich die CO₂-Emissionen gezielt optimieren.

Auch wenn die Ergebnisse mit frischen Katalysatoren im Fahrzeug eine Optimierung des CO_2/NO_X -Trade-Off zeigen, ist die beschriebene Funktionalität über ein gesamtes Fahrzeugleben nicht gesichert. Die heutigen Anforderungen erfordern einen Nachweis der Emissionen über eine Laufleistung von 120.000 km. Diese Laufleistung entspricht der in den Untersuchungen äquivalenten hydrothermalen Alterung von 16 h. Die Ergebnisse der Untersuchungen am gealterten Katalysator zeigen, dass die Speicherfähigkeit mit der Alterung signifikant zurückgeht. Dieses Verhalten ist auch in der realen Fahrzeugalterung zu erwarten. Demzufolge können mit den, in dieser Arbeit untersuchten, Katalysatoren die Emissionen über das Fahrzeugleben nicht sichergestellt werden. Die Entwicklung der Katalysatortechnologien für den Einsatz als passive NO_X -Adsorber muss demnach gezielt in Richtung Altersbeständigkeit getrieben werden. Neben der thermischen Alterung zeigt sich bei den untersuchten Katalysatoren ebenfalls ein signifikanter Rückgang der Adsorptionsfähigkeit mit zunehmender Verschwefelung. Erste Erkenntnisse zeigen, dass die Desulfatisierung durch gezielte eingesetzte Sonderbrennverfahren auch bei diesen Katalysatortechnologien erreicht werden kann. Diese Sonderbrennverfahren führen jedoch zu weiteren unerwünschten Primär- und Sekundäremissionen. Demnach sollte die Optimierung der Schwefelresistenz von passiven NO_X-Adsorbern ebenso im Fokus der Weiterentwicklung stehen.

Verzeichnisse und Nomenklatur

A. Verzeichnisse

A.1. Literaturverzeichnis

- [1] Air liquide. Sicherheitsdatenblatt gemäß RL 1907/2006/EG: Ammoniak. Technical report, 2010. http://www.airliquide.de.
- [2] J. Andersson, M. Antonsson, L. Eurenius, E. Olsson, and M. Skoglundh. Deactivation of diesel oxidation catalysts: Vehicle- and synthetic aging correlations. *Applied Catalysis B: Environmental*, 72(1-2):71 – 81, 2007.
- [3] W. Appel, H. Brähler, U. Dahlhaus, T. Esch, S. Kopp, B. Rhein, W. Appel, H. Brähler, U. Dahlhaus, T. Esch, S. Kopp, and B. Rhein. *Nutzfahrzeugtechnik*. Vieweg+Teubner, 2010.
- [4] Aral AG. http://www.aral.de. April 2011.
- [5] A. Auroux, J. Vedrine, and P. Gravelle. Characterization of small-pore zeolites by adsorption of ammonia. In J. Rouquerol and K. Sing, editors, Adsorption at the Gas-Solid and Liquid-Solid Interface, Proceedings of an International Symposium held in Aix-en-Provence, France, volume 10 of Studies in Surface Science and Catalysis, pages 305 – 322. 1982.
- [6] AVL List GmbH. Basics & beyond the basics: Avl cameo 2010. Technical report, AVL List GmbH, 2009.
- [7] L. Baden-Württemberg. Energiesparend fahren. 2008.
- [8] C. Baerlocher, W. Meier, and D. Olson, editors. *Atlas of Zeolite Framework*. Elesewier, 2001.
- [9] J.-D. Baronick, B. Heller, G. Lach, H. Schimpl, D. Gruber, and W. Fabinski. Evaluation of an uv analyzer for NO_X vehicle emission measurement. *SAE Technical Paper*, 2001-01-0213, 2001.
- [10] A. Behr, D. W. Agar, and J. Jörissen. *Einführung in die Technische Chemie*. Spektrum Akademischer Verlag Heidelberg, 2010.
- [11] G. Blumenthal, D. Linke, and S. Vieth. *Chemie: Grundwissen für Ingenieure*.
 B.G. Teubner Verlag / GWV Fachverlage GmbH Wiesbaden, 4. Aufl. edition,

2006.

- [12] H. Bockhorn. *Soot formation and combustion: Mechanisms and Models*. Springer Series in Chemical Physikal, 1994.
- [13] H. Bosch and F. Janssen. Formation and control of nitrogen oxides. *Catalysis Today*, 2(4):369 379, 1988.
- [14] H. Bosch, F. J. Janssen, F. M. van den Kerkhof, J. Oldenziel, J. G. van Ommen, and J. R. Ross. The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia. *Applied Catalysis*, 25(1-2):239 – 248, 1986.
- [15] J. A. Botas, M. A. Gutiérrez-Ortiz, M. P. González-Marcos, J. A. González-Marcos, and J. R. González-Velasco. Kinetic considerations of three-way catalysis in automobile exhaust converters. *Applied Catalysis B: Environmental*, 32(4):243 – 256, 2001.
- [16] E. P. Brandt, Y. Wang, and J. Grizzle. Dynamic modeling of a three-way catalyst for si engine exhaust emission control. *IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY*, 8:767 – 776, 2000.
- [17] M. Brändle and J. Sauer. Combining ab initio techniques with analytical potential functions. a study of zeolite-adsorbate interactions for NH₃ on Hfaujasite. *Journal of Molecular Catalysis A: Chemical*, 119(1-3):19 – 33, 1997.
- [18] R. Burch, P. Millington, and A. Walker. Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen. *Applied Catalysis B: Environmental*, 4(1):65 – 94, 1994.
- [19] R. Burch and P. J. Millington. Selective reduction of nitrogen oxides by hydrocarbons under lean-burn conditions using supported platinum group metal catalysts. *Catalysis Today*, 26(2):185 – 206, 1995.
- [20] M. Canova, S. Midlam-Mohler, P. Pisu, and A. Soliman. Model-based fault detection and isolation for a diesel lean NO_X trap aftertreatment system. *Control Engineering Practice*, In Press, Corrected Proof, 2009.
- [21] T. R. Collier, D. Gregory, M. Rushton, and T. Hands. Investigation into the performance of an ultrafast response NO analyser equipped with a NO₂ to NO converter for gasoline and diesel exhaust NO_X measurements. *SAE Technical Paper*, 2000-01-2954, 2000.
- [22] C. Czeslik, H. Seemann, and R. Winter. *Basiswissen Physikalische Chemie*. B.G. Teubner Verlag / GWV Fachverlage GmbH Wiesbaden, 2. Aufl. edition, 2007.

- [23] Daimler AG. Diesel partikulate filter. internal media.
- [24] Daimler AG. Interne Untersuchungen. Unveröffentlicht.
- [25] J. Dawody, M. Skoglundh, L. Olsson, and E. Fridell. Sulfur deactivation of Pt/SiO₂, Pt/BaO/Al₂O₃, and BaO/Al₂O₃ NO_X storage catalysts: Influence of SO₂ exposure conditions. *Journal of Catalysis*, 234(1):206 – 218, 2005.
- [26] W. Demtröder. *Experimentalphysik II: Elektrizität und Optik*. Springer-Verlag Berlin Heidelberg, 4. Aufl. edition, 2006.
- [27] W. Demtröder. *Experimentalphysik III: Atome, Moleküle und Festkörper.* Springer-Verlag Berlin Heidelberg, 3. Aufl. edition, 2005.
- [28] DieselNet. http://www.dieselnet.com. 2011.
- [29] I. Dodgson and D. Webster. The effect of thermal ageing on metal crystallite growth and catalytic activity of supported platinum group metal catalysts. In P. J. B. Delmon and G. Poncelet, editors, *Preparation of Catalysts I Scientific Bases for the Preparation of Heterogeneous Catalysts, Proceedings of the First International Symposium held at the Solvay Research Centre, Brussels (Belgium)*, volume 1 of *Studies in Surface Science and Catalysis*, pages 279 292. Elsevier, 1976.
- [30] D. Dou and J. Balland. Impact of alkali metals on the performance and mechanical properties of NO_X adsorber catalysts. *SAE Technical Paper*, 2002-01-0734, 2002.
- [31] Eco Physics GmbH. *Dokumentation CLD 700 EL ht*, Januar 2010. http://www.ecophysics.de.
- [32] M. Eichelbaum, R. J. Farrauto, and M. J. Castaldi. The impact of urea on the performance of metal exchanged zeolites for the selective catalytic reduction of NO_X: Part i. pyrolysis and hydrolysis of urea over zeolite catalysts. *Applied Catalysis B: Environmental*, 97(1-2):90 – 97, 2010.
- [33] H. Eichlseder and M. Klell. *Wasserstoff in der Fahrzeugtechnik: Erzeugung, Speicherung, Anwendung.* Vieweg+Teubner, 2010.
- [34] Europäische Kommission. RICHTLINIE 98/69/EG DES EUROPÄISCHEN PAR-LAMENTS UND DES RATES über Maßnahmen gegen die Verunreinigung der Luft durch Emissionen von Kraftfahrzeugen und zu Änderung der Richtlinie 70/220/EWG des Rates. 1998.
- [35] Europäische Kommission. RICHTLINIE 2008/50/EG DES EUROPÄISCHEN PAR-LAMENTS UND DES RATES über Luftqualität und saubere Luft für Europa.

2008.

- [36] Europäische Kommission. VERORDNUNG (EG) Nr. 443/2009 DES EUROPÄI-SCHEN PARLAMENTS UND DES RATES zur Festsetzung von Emissionsnormen für neue Personenkraftwagen im Rahmen des Gesamtkonzepts der Gemeinschaft zur Verringerung der CO₂-Emissionen von Personenkraftwagen und leichten Nutzfahrzeugen. 2009.
- [37] Europäische Kommission. Überwachung der CO_2 -Emissionen neuer Personenkraftwagen in der EU: Daten des Jahres 2008. http://ec.europa.eu, 2010.
- [38] L. Fahrmeir, T. Kneib, S. Lang, L. Fahrmeir, T. Kneib, and S. Lang. *Statistik und ihre Anwendungen*. Springer Berlin Heidelberg, 2009.
- [39] L. Fahrmeir, R. Künstler, I. Pigeot, and G. Tutz. *Statistik: Der Weg zur Datenanalyse*. Springer-Verlag Berlin Heidelberg New York, 6. Aufl. edition, 2007.
- [40] C. Fenimore. Formation of nitric oxide in premixed hydrocarbon flames. *Symposium (International) on Combustion*, 13:373–380, 1971.
- [41] D. M. Fernandes, C. F. Scofield, A. A. Neto, M. J. B. Cardoso, and F. M. Z. Zotin. Thermal deactivation of Pt/Rh commercial automotive catalysts. *Chemical Engineering Journal*, 160(1):85 – 92, 2010.
- [42] P. Forster and V. Ramaswamy. Changes in atmospheric constituents and in radiative forcing. *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*, 2007.
- [43] U. für Mensch und Umwelt. http://www.umweltbundesamt.de. April 2011.
- [44] J.-C. Fröhling, J. Ludzay, and G. Albers. Zusammensetzung von Dieselkraftstoffen aus deutschen Raffinerien. *DGMK-Forschungsbericht*, 583, 2002.
- [45] E. Fridell, H. Persson, L. Olsson, B. Westerberg, A. Amberntsson, and M. Skoglundh. Model studies of NO_X storage and sulphur deactivation of NO_X storage catalysts. *Topics in Catalysis*, 16-17:133, 2001.
- [46] E. Fridell, M. Skoglundh, S. Johansson, B. Westerberg, A. Törncrona, and G. Smedler. Investigations of NO_X storage catalysts. In A. F. N. Kruse and J.-M. Bastin, editors, *Catalysis and Automotive Pollution Control IV, Proceedings of the Fourth International Symposium (CAPoC4), Brussels (Belgium)*, volume 116 of *Studies in Surface Science and Catalysis*, pages 537 547. Elsevier, 1998.
- [47] M. Frischmuth. *Massenspektrometrie mit chemischer Ionisierung (CI-MS) zur dynamischen Erfassung limitierter und nicht-limitierter Komponenten im Au-*

tomobilabgas. PhD thesis, Universität Lüneburg, 2002.

- [48] M. H. Gey. *Instrumentelle Analytik und Bioanalytik*. Springer-Verlag Berlin Heidelberg, 2. Aufl. edition, 2008.
- [49] J. R. González-Velasco, J. A. Botas, R. Ferret, M. P. González-Marcos, J.-L. Marc, and M. A. Gutiérrez-Ortiz. Thermal aging of Pd/Pt/Rh automotive catalysts under a cycled oxidizing-reducing environment. *Catalysis Today*, 59(3-4):395 – 402, 2000.
- [50] P. Granger, C. Dujardin, J.-F. Paul, and G. Leclercq. An overview of kinetic and spectroscopic investigations on three-way catalysts: mechanistic aspects of the CO + NO and CO + N_2O reactions. *Journal of Molecular Catalysis A: Chemical*, 228(1-2):241 253, 2005.
- [51] P. Granger, J. Lecomte, L. Leclercq, and G. Leclercq. Modelling study of the temperature-programmed conversion curves of NO reduction by CO over supported Pt- and rh-based catalysts. *Topics in Catalysis*, 16-17, 2001.
- [52] P. Granger, P. Malfoy, and G. Leclercq. Kinetics of the CO+N₂O reaction over noble metals: Ii. Rh/Al₂O₃ and Pt-Rh/Al₂O₃. *Journal of Catalysis*, 223(1):142 151, 2004.
- [53] J. F. Griffiths. Reduced kinetic models and their application to practical combustion systems. *Progress in Energy and Combustion Science*, 21(1):25 – 107, 1995.
- [54] A. Grossale, I. Nova, and E. Tronconi. Study of a Fe-zeolite-based system as NH₃-scr catalyst for diesel exhaust aftertreatment. *Catalysis Today*, 136(1-2):18 27, 2008.
- [55] A. Grossale, I. Nova, E. Tronconi, D. Chatterjee, and M. Weibel. The chemistry of the NO/NO₂-NH₃ scr reaction over Fe-zsm5 investigated by transient reaction analysis. *Journal of Catalysis*, 256(2):312 – 322, 2008.
- [56] D. Gruden. *Umweltschutz in der Automobilindustrie Motor, Kraftstoffe, Recycling.* Vieweg+Teubner, 2008.
- [57] A. Güthenke, D. Chatterjee, M. Weibel, N. Waldbüsser, P. Koci, M. Marek, and M. Kubicek. Development and application of a model for a NO_X storage and reduction catalyst. *Chemical Engineering Science*, 62(18-20):5357 5363, 2007.
- [58] K. O. Haj, S. Ziyade, M. Ziyad, and F. Garin. DeNO_X reaction studies: Reactivity of carbonyl or nitro-compounds compared to C₃H₆: influence of adsorbed species in N₂ and N₂O formation. *Applied Catalysis B: Environmental*, 37(1):49

- 62, 2002.

- [59] W. Hauptmann, M. Votsmeier, J. Gieshoff, A. Drochner, and H. Vogel. Inverse hysteresis during the NO oxidation on Pt under lean conditions. *Applied Catalysis B: Environmental*, 93(1-2):22 – 29, 2009.
- [60] E. Helmers. Partikelmessungen, abgasgrenzwerte, stickoxide, toxikologie und umweltzonen. Umweltwissenschaften und Schadstoff-Forschung, 21:118–123, 2009. 10.1007/s12302-008-0026-0.
- [61] J. S. Hepburn, E. Thanasiu, D. A. Dobson, and W. L. Watkins. Experimental and modeling investigations of NO_X trap performance. *SAE Technical Paper*, 962051, 1999.
- [62] A. Iglesias-Juez, A. Martínez-Arias, and M. Fernández-García. Metal-promoter interface in Pd/(Ce,Zr)Ox/Al₂O₃ catalysts: effect of thermal aging. *Journal of Catalysis*, 221(1):148 – 161, 2004.
- [63] Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA). Gefahrstoffinformationssystem der deutschen gesetzlichen unfallversicherung. April 2011.
- [64] International Fuel Quality Center. International diesel rankings top100. http://www.ifqc.org.
- [65] International Organization of Motor Vehicle Manufacturers. Production statistics. http://oica.net, Februar 2010.
- [66] M. Iwasaki and H. Shinjoh. A comparative study of fast no2 scr reactions over Fe/zeolite catalyst. *Applied Catalysis A: General*, In Press, Corrected Proof:-, 2010.
- [67] M. E. Jenkin and K. C. Clemitshaw. Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. *Atmospheric Environment*, 34(16):2499 2527, 2000.
- [68] F. Joos. Technische Verbrennung. Springer-Verlag Berlin Heidelberg, 2006.
- [69] Y.-W. Kim, J. Sun, I. Kolmanovsky, and J. Koncsol. A phenomenological control oriented lean NO_X trap model. *SAE Technical Paper*, 2003-01-1164, 2003.
- [70] W. Kleppmann. *Taschenbuch Versuchsplanung*. Carl Hanser Verlag München Wien, 6. Aufl. edition, 2009.
- [71] P. Koci, M. Marek, M. Kubicek, T. Maunula, and M. Härkönen. Modelling of catalytic monolith converters with low- and high-temperature NO_X storage compounds and differentiated washcoat. *Chemical Engineering Journal*, 97(2-

3):131 - 139, 2004.

- [72] P. Koci, F. Plat, J. Stepanek, S. Bartova, M. Marek, M. Kubicek, V. Schmeißer, D. Chatterjee, and M. Weibel. Global kinetic model for the regeneration of NO_X storage catalyst with CO, H_2 and C_3H_6 in the presence of CO_2 and H_2O . *Catalysis Today*, 147:S257 S264, 2009.
- [73] P. Koci, F. Plat, J. Stepanek, M. Kubicek, and M. Marek. Dynamics and selectivity of NO_X reduction in NO_X storage catalytic monolith. *Catalysis Today*, 137(2-4):253 260, 2008.
- [74] P. Koci, M. Schejbal, J. Trdlicka, T. Gregor, M. Kubicek, and M. Marek. Transient behaviour of catalytic monolith with NO₂ storage capacity. *Catalysis Today*, 119(1-4):64 – 72, 2007.
- [75] M. Koebel, M. Elsener, and M. Kleemann. Urea-scr: a promising technique to reduce NO_X emissions from automotive diesel engines. *Catalysis Today*, 59(3-4):335 345, 2000.
- [76] M. Koebel, M. Elsener, and T. Marti. NO_X-reduction in diesel exhaust gas with urea and selective catalytic reduction. *Combustion Science and Technology*, 121:85–102, 1996.
- [77] M. Koebel, G. Madia, and M. Elsener. Selective catalytic reduction of NO and NO₂ at low temperatures. *Catalysis Today*, 73(3-4):239 247, 2002.
- [78] G. C. Koltsakis and A. M. Stamatelos. Catalytic automotive exhaust aftertreatment. *Progress in Energy and Combustion Science*, 23(1):1 – 39, 1997.
- [79] G. Krause. *Vorlesungsskript: Grundlagen der Motorenmesstechnik*. Universität Karlsruhe, 2009.
- [80] O. Kröcher. Chapter 9 aspects of catalyst development for mobile ureascr systems from vanadia-titania catalysts to metal-exchanged zeolites. In P. Granger and V. Pârvulescu, editors, *Past and Present in DeNO_X Catalysis From Molecular Modelling to Chemical Engineering*, volume 171 of *Studies in Surface Science and Catalysis*, pages 261 289. Elsevier, 2007.
- [81] O. Kröcher and M. Elsener. Neue Reduktionsmittel für die Low NO_X-SCR-Technik, 2008.
- [82] J. H. Kwak, D. Mei, C.-W. Yi, D. H. Kim, C. H. Peden, L. F. Allard, and J. Szanyi. Understanding the nature of surface nitrates in BaO/*gamma*-Al₂O₃ NO_X storage materials: A combined experimental and theoretical study. *Journal of Catalysis*, 261(1):17 – 22, 2009.

- [83] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence properties of the nelder-mead simplex method in low dimensions. *SIAM J. on Optimization*, 9(1):112–147, 1998.
- [84] Landolt-Börnstein. *Microporous and other Framework Materials with Zeolite-Type Structures*, chapter Zeolite-Type Crystal Structures and their Chemistry, pages 132–162. Springer Berlin, 2010.
- [85] M. Larsson, L. Andersson, O. Fast, M. Litorell, and R. Makuie. NO_X trap control by physically based model. *SAE Technical Paper*, 1999-01-3503, 1999.
- [86] U. Lassi, R. Polvinen, S. Suhonen, K. Kallinen, A. Savimäki, M. Härkönen, M. Valden, and R. L. Keiski. Effect of ageing atmosphere on the deactivation of Pd/Rh automotive exhaust gas catalysts: catalytic activity and xps studies. *Applied Catalysis A: General*, 263(2):241 – 248, 2004.
- [87] R. Leyva-Ramos, J. Monsivais-Rocha, A. Aragon-Piña, M. Berber-Mendoza, R. Guerrero-Coronado, P. Alonso-Davila, and J. Mendoza-Barron. Removal of ammonium from aqueous solution by ion exchange on natural and modified chabazite. *Journal of Environmental Management*, 91(12):2662 – 2668, 2010.
- [88] C.-Y. Lin, L.-W. Chen, and L.-T. Wang. Correlation of black smoke and nitrogen oxides emissions through field testing of in-use diesel vehicles. *Environmental Monitoring and Assessment*, 116:291–305, 2006. 10.1007/s10661-006-7402-2.
- [89] G. P. Merker and C. Schwarz. Grundlagen Verbrennungsmotoren: Simulation der Gemischbildung, Verbrennung, Schadstoffbildung und Aufladung. Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2009.
- [90] G. P. Merker and G. Stiesch. *Technische Verbrennung Motorische Verbrennung*. Vieweg+Teubner Verlag Wiesbaden, 1. Aufl. edition, 1999.
- [91] J. A. Miller and C. T. Bowman. Mechanism and modeling of nitrogen chemistry in combustion. *Progress in Energy and Combustion Science*, 15(4):287 – 338, 1989.
- [92] V. G. Milt, M. L. Pissarello, E. E. Miró, and C. A. Querini. Abatement of dieselexhaust pollutants: NO_X storage and soot combustion on K/La₂O₃ catalysts. *Applied Catalysis B: Environmental*, 41(4):397 – 414, 2003.
- [93] Z. min Lu and J. dong Lu. Influences of O_2 concentration on NO reduction and N_2O formation in thermal deNO_X process. *Combustion and Flame*, 156(6):1303 – 1315, 2009.
- [94] E. Möller-Erlwein. Chemische Reaktionstechnik. Teubner, 2007.

- [95] B. Moden, J. Donohue, W. Cormier, and H.-X. Li. Effect of Cu-loading and structure on the activity of Cu-exchanged zeolites for NH₃-scr. In P. M. Antoine Gédéon and F. Babonneau, editors, *Zeolites and related materials: Trends, targets and challenges, Proceedings of the 4th International FEZA Conference, Paris (France)*, volume 174, Part 2, pages 1219 – 1222. 2008.
- [96] K. Mollenhaupt and H. Tschöke. *Handbuch Dieselmotoren*. Springer-Verlag Berlin Heidelberg New York, 3. Aufl. edition, 2007.
- [97] K. Nakao, H. Hayashi, H. Uetsuka, S.-i. Ito, H. Onishi, K. Tomishige, and K. Kunimori. Elucidation of CO_2 formation mechanism in CO + NO reaction on pd(111) and pd(110) surfaces using ir chemiluminescence method. *Catalysis Letters*, 85:213–216, 2003.
- [98] S. Nakatani, T. Yoshimura, Y. Mori, N. Kihara, M. Adachi, Y. Goto, and H. Suzuki. Development of a real-time NH_3 gas analyzer utilizing chemiluminescence detection for vehicle emission measurement. *SAE Technical Paper*, 2004-01-2907, 2004.
- [99] T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, and M. Niwa. Catalytic reduction system of NO_X in exhaust gases from diesel engines with secondary fuel injection. *Applied Catalysis B: Environmental*, 17(4):333 – 345, 1998.
- [100] K. M. Nauta. *Model Reduction of a Lean NO_X Trap Catalyst Model*. PhD thesis, Technische Universität Eindhoven, 2008.
- [101] A. J. C. Nicholson and D. L. Swingler. Ion formation in the flame ionization detector. *Combustion and Flame 39*, 1980.
- [102] M. Nikanjam, J. Rutherford, and P. Morgan. Performance and emissions of diesel and alternative diesel fuels in modern light-duty diesel vehicles. *SAE Technical Paper*, 2011-24-0198, 2011.
- [103] N.N. Dieselmotor und gesundheit: Die partikelemission. *Umweltwissenschaften und Schadstoff-Forschung*, 13:283–283, 2001. 10.1007/BF03041516.
- [104] I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, and F. G. G. Prinetto. NO_X adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments. *Journal of Catalysis*, 222:377–388, 2004.
- [105] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, and B. Bandl-Konrad. NH₃-NO/NO₂ chemistry over V-based catalysts and its role in the mechanism of the fast scr reaction. *Catalysis Today*, 114(1):3 – 12, 2006.
- [106] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, and M. Weibel. NH₃-NO/NO₂ scr for diesel exhausts aftertreatment: mechanism and modelling of a cataly-

tic converter. Topics in Catalysis, 42-43:43-46, 2007.

- [107] M. Oberguggenberger and A. Ostermann. *Analysis für Informatiker: Grundlagen, Methoden, Algorithmen.* Springer Berlin Heidelberg, 2005.
- [108] A. Obuchi, I. Kaneko, J. Oi, A. Ohi, A. Ogata, G. R. Bamwenda, and S. Kushiyama. A practical scale evaluation of catalysts for the selective reduction of NO_X with organic substances using a diesel exhaust. *Applied Catalysis B: Environmental*, 15(1-2):37 – 47, 1998.
- [109] L. Olsson, E. Fridell, M. Skoglundh, and B. Andersson. Mean field modelling of NO_X storage on Pt/BaO/Al₂O₃. *Catalysis Today*, 73(3-4):263 270, 2002.
- [110] L. Olsson, D. Monroe, and R. J. Blint. Global kinetic modelling of a supplier barium- and potassium-containing lean NO_X trap. *Industrial & Engineering Chemistry Research*, 45(26):8883–8890, 2006.
- [111] R. S. Peck. *Experimentelle Untersuchung und dynamische Simulation von Oxidationskatalysatoren und Diesel-Partikelfiltern*. PhD thesis, Universität Stuttgart, 2006.
- [112] S. Philipp. Untersuchungen zur NO_X-Einspeicherung an Ceroxid mittels IR-Spektroskopie in diffuser Reflexion. PhD thesis, Technischen Universität Darmstadt, 2007.
- [113] S. Philipp, A. Drochner, J. Kunert, H. Vogel, J. Theis, and E. Lox. Investigation of NOadsorption and NO/O₂ co-adsorption on NO-storage-components by drift-spectroscopy. *Topics in Catalysis*, 30-31:235–238, 2004.
- [114] G. Piazzesi, M. Devadas, O. Kröcher, M. Elsener, and A. Wokaun. Isocyanic acid hydrolysis over Fe-ZSM₅ in urea-scr. *Catalysis Communications*, 7(8):600 603, 2006.
- [115] S. Pischinger. *Vorlesungsskript Verbrennungsmotoren*. Rheinisch-Westfälische Technische Hochschule Aachen, 2000.
- [116] V. I. Pârvulescu, P. Grange, and B. Delmon. Catalytic removal of NO. *Catalysis Today*, 46(4):233 316, 1998.
- [117] G. Qi and R. T. Yang. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. *Applied Catalysis B: Environmental*, 60(1-2):13 – 22, 2005.
- [118] C. D. Rakopoulos and E. G. Giakoumis. *Diesel Engine Transient Operation*. Springer-Verlag London, 2009.
- [119] K. Reif. Dieselmotor-Management im Überblick. Vieweg+Teubner, 2010.

- [120] K. Reif. Moderne Diesel-Einspritzsysteme. Vieweg+Teubner, 2010.
- [121] R. Repley and J. M. Walker. *Molecular Biomethods Handbook*. Human Press Totowa, New Jersey, 2. Aufl. edition, 2008.
- [122] S. Roy, M. Hegde, and G. Madras. Catalysis for NO_X abatement. *Applied Energy*, 86(11):2283 – 2297, 2009.
- [123] V. Schmeißer, J. de Riva Pérez, U. Tuttlies, and G. Eigenberger. Experimental results concerning the role of Pt, Rh, Ba, Ce and AL₂O₃ on NO_X-storage catalyst behaviour. *Topics in Catalysis*, 42-43:15–19, 2007.
- [124] D. Schmitt. Präparation, funktionelle und strukturelle Charakterisierung von Oxidationskatalysatoren zur Nachbehandlung von Abgasen dieselmotorbetriebener Fahrzeuge. PhD thesis, TU Darmstadt, Fachbereich Material- und Geowissenschaften, 1999.
- [125] H. Schön. *Handbuch der Reinsten Gase*. Springer-Verlag Berlin Heidelberg, 1. Auflage edition, 2005.
- [126] C. Scholz, V. Gangwal, M. de Croon, and J. Schouten. Model for NO_X storage/reduction in the presence of CO_2 on a Pt-Ba/ γ -Al₂O₃ catalyst. *Journal of Catalysis*, 245:215–227, 2006.
- [127] C. Scholz, K. Nauta, M. de Croon, and J. Schouten. Kinetic modeling of NO_X storage and reduction with different reducing agents (CO, H₂, and C₂H₄) on a Pt-Ba/ γ -Al₂O₃ catalyst in the presence of CO₂ and H₂O. *Chemical Engineering Science*, 63(11):2843 2855, 2008.
- [128] J. Schröder, D. Gross, W. Hauger, and W. Wall. *Technische Mechanik 3*. Springer-Verlag, 2008.
- [129] S. M. Schurov, T. Hands, N. Collings, M. S. Peckham, and J. D. Burrell. Fast response NO/HC measurements in the cylinder and exhaust port of a di diesel engine. *SAE Technical Paper*, 980788, 1998.
- [130] H. Schwarze, L. Brouwer, G. Knoll, C. Longo, M. Kopnarski, and S. Emrich. Auswirkung von Ethanol E85 auf Schmierstoffalterung und Verschleiß im Ottomotor. *MTZ*, 04:286 ff, 2010.
- [131] G. Schwedt. *Analytische Chemie: Grundlagen, Methoden und Praxis*. Wiley-VCH Verlag GmbH & Co. KGaA, 2. Auflage edition, 2008.
- [132] K. Siebertz, D. v. Bebber, T. Hochkirchen, K. Siebertz, D. Bebber, and T. Hochkirchen. *Statistische Versuchsplanung*. VDI-Buch. Springer Berlin Heidelberg, 2010.

- [133] J. V. Smith. Definition of a zeolite. *Zeolites*, 4(4):309 310, 1984.
- [134] C. Stan. *Alternative Antribe für Automobile*. Springer-Verlag Berlin Heidelberg New York, 1. Aufl. edition, 2005.
- [135] J. Stepánek, P. Kocí, F. Plát, M. Marek, and M. Kubícek. Investigation of combined doc and nsrc diesel car exhaust catalysts. *Computers & Chemical Engineering*, 34(5):744 – 752, 2010.
- [136] W. Strehlau, J. Leyrer, E. Lox, T. Kreuzer, M. Hori, and M. Hoffmann. New developments in lean NO_X catalysis for gasoline fueled passenger cars in Europe. *SAE Technical Paper*, 1996.
- [137] M. Takeuchi and S. Matsumoto. NO_X storage-reduction catalysts for gasoline engines. *Topics in Catalysis*, 28:151–156, 2004.
- [138] N. Tanaka. CO_2 emissions from fuel combustion. 2009. International Energy Agency.
- [139] United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1998.
- [140] N. Waldbüsser. *NO_X-Minderung am Pkw-Dieselmotor mit einem Kombinationssystem zur Abgasnachbehandlung*. PhD thesis, Universität Karlsruhe, 2005.
- [141] R. W. J. Wedd, B. V. Liengme, J. C. Scott, and J. R. Sams. Mössbauer investigation of iron species in a zeolite. *Solid State Communications*, 7(15):1091 – 1093, 1969.
- [142] M. Weibel, F. Garin, P. Bernhardt, G. Maire, and M. Prigent. Influence of water in the activity of catalytic converters. volume 71 of *Studies in Surface Science and Catalysis*, pages 195 – 205. Elsevier, 1991.
- [143] J. Wensch. *Habilitationsschrift; Beiträge zur geometrischen Integration und Anwendungen in der numerischen Simulation*. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, 2003.
- [144] A. Winkler, D. Ferri, and M. Aguirre. The influence of chemical and thermal aging on the catalytic activity of a monolithic diesel oxidation catalyst. *Applied Catalysis B: Environmental*, 93(1-2):177 184, 2009.
- [145] J. M. Zamaro, M. A. Ulla, and E. E. Miró. Characteristics of zeolite washcoats on cordierite monoliths for environmental applications. 2nd Mercosur Congress on Chemical Engineering, Rio de Janeiro (Brasil), 2005.
- [146] J. Zeldovich. The oxidation of nitrogen in combustion and explosions. *Acta Physicochimica U.R.S.S.*, 21:577–628, 1946.
A.2. Abbildungsverzeichnis

1.1.	Entwicklung der weltweiten Produktionszahlen von Kraftfahrzeugen pro Jahr in den Jahren 1948-2008 [65].	1
1.2.	Anteil des Transportsektors an den anthropogenen verursachten, aus fossilen Brennstoffen entstandenen, CO ₂ Emissionen weltweit. Stand 2007 [138]	2
1.3.	Entwicklung der durchschnittlichen CO_2 -Emissionen von PKW (NEFZ) in Europa von 1995-2008 [37]. Notwendige Entwicklung zur Zielerrei- chung des CO_2 -Flottengrenzwertes von 95 g/km im Jahr 2020	4
2.1.	Zusammensetzung des dieselmotorischen Abgases (a) und Schad- stoffemissionen der dieselmotorischen Verbrennung in Abhängig- keit vom Luftverhältnis λ (b)	9
2.2.	REM Aufnahme eines katalytisch beschichteten Monolithen mit Ka- nalwänden, Washcoat und Kanalstruktur (links) [10]. REM Aufnahme des $\gamma - Al_2O_3$ Trägeroxids (rechts) [124].	13
2.3.	Speicherfähigkeit der alkalischen Komponente in Abhängigkeit der Elektronegativität, gemessen bei 300 °C (links). HC-Umsatz im japa- nischen 10·15 Fahrzyklus (rechts) [137].	14
2.4.	Si-O-Al-Gerüststruktur in der Katalysatortechnik häufig verwendeter Zeolithen: (a) ZSM-5 (MFI), (b) Chabasit (CHA) und (c) Beta (*BEA) [8]	15
2.5.	Energetischer Übergang im Reaktionspfad ($A \rightarrow B$) nach Arrhenius am Beispiel der endothermen Reaktion (links). Ablauf der heterogenen Katalyse in sieben Teilschritten nach Behr [10]	16
2.6.	(a) Zusammenhang zwischen Verlust der aktiven Oberfläche (BET) eines edelmetallhaltigen Katalysators und Alterungstemperatur für Alterung in oxidierender (Luft) und reduzierender (5 % H_2/N_2) At- mosphäre [86]. (b) TEM-Aufnahme der Edelmetallpartikel vor (frisch) und nach Alterung von 4 Stunden bei 800 °C (4h @800 °C) [144].	19
2.7.	NO-Konversion in Abhängigkeit von der Temperatur im light-off und light-down Experiment (a). Simulierter Platinoxidanteil im single-chan- nel 1D-Modell in Abhängigkeit von der Temperatur im light-off und light-down Experiment (b). 450 volppm NO und 5 vol% O ₂ [59]	23
2.8.	Schematischer Aufbau eines Wandstrom-Dieselpartikelfilterextrudats zur Minderung der Partikelemissionen in automobilen Abgasen mit wechselseitig verschlossenen Monolithkanälen [23].	25

А.	Verzeichnisse

2.9.	Mechanismus der Adsorption während der Magerphase (a) und Re- generation während der Fettphase (b) von Stickstoffoxidspeicherka- talysatoren nach Koltsakis et al. [78].	29
2.10.	Normierte NO_X -Konversion für die Reduktanten H_2 , CO und C_3H_6 währen einer Fettphase [135].	31
2.11.	Anordnung der Komponenten für eine NSR-Anwendung mit Diese- loxidationskatalysator (DOC), NO _X -Speicherkatalysator (NSR) und be- schichtetem Dieselpartikelfilter (cDPF)	32
2.12.	NO _X -Konversion während der temperaturprogrammierten Reaktion auf Fe-ZSM5. (A) Slow-SCR-Reaktion R 2.52, (B) Standard-SCR-Reaktion R 2.51, (C) Fast-SCR-Reaktion R 2.53, (D) Ammoniumnitrat-Reaktion R 2.58 + R 2.52 [55]	35
2.13.	Ammoniakvorläufersubstanzen für Fahrzeuganwendungen	37
2.14.	Anordnung der Komponenten für eine SCR-Anwendung mit Diese- loxidationskatalysator (DOC), beschichtetem Dieselpartikelfilter (cD- PE) und SCR-Katalysator	38
3.1.	Verlauf der Temperatur vor dem SCR-Katalysator und klassierte Tem- peratur vor dem SCR-Katalysator in den Klassen 0-170 °C und 170- 340 °C im NEFZ-Fahrzyklus	42
4.1.	Vollfaktorieller 3^3 Versuchsplan (links) mit der Systemantwort (rechts) bei Variation jeweils eines Faktors x_1, x_2 oder x_3, \ldots, \ldots D-ontimaler Versuchsplan mit drei Faktoren (links) und Tabelle der	57
1.4.	Stufenvariationen incl. Wiederholpunkt (rechts).	59
5.1.	Schematischer Aufbau des Synthesegasprüfstandes mit Eduktdosier- einrichtung, Reaktor, Abgasanalytik, Druck-, λ - und Temperaturmess-	
5.2.	stellen	61 63
5.3.	Schematischer Versuchsaufbau für die Messungen im Fahrzeug mit	05
	den unverdünnten Abgasmesslinien 1 bis 4	65
5.4.	Schematischer Aufbau eines Chemilumineszenzdetektor (CLD) [31].	67
5.5.	Schematischer Aufbau eines Flammenionisationsdetektors (FID) [96].	69
5.6.	Schematischer Aufbau eines Infrarotadsorptionsdetektors im nicht- dispersiven Verfahren (NDIR) mit Strahler, Chopper, Messzelle, Refe-	
	renzzelle und Detektor [96]	70

5.7.	Schematischer Aufbau eines Massenspektrometers mit Einlasssys- tem, Ionisierungsquelle, Trennsystem (Permanentmagnet) und De- tektor [48]	72
5.8.	Schematischer Aufbau eines Paramagnetischen Detektors mit Hantel, Magneten und optischer Messeinrichtung [96].	73
5.9.	Fehlerauswertung der Einstellparameter am Beispiel des DoE-Mess- programms frisch	76
6.1.	Temperaturverlauf und Ventilschaltungen während der Adsorptions- und Desorptionsmessungen am Synthesegasprüfstand	78
6.2.	Verlauf der Messung und Auswertung der NO _X -Speichermenge wäh- rend der Adsorptions- und Desorptionsmessungen am Synthesegas- pröfstend	70
6.3.	Verlauf der Verschwefelung mit SO ₂ am Synthesegasprüfstand mit Integration der Schwefelbeladung auf der Katalysatorprobe	83
6.4.	Ergebnisse KAT 1-KAT 4 Versuchsreihe A1: Adsorbierte NO _X -Stoff- menge, für die Katalysatorproben KAT 1 bis KAT 4, in Abhängigkeit von der Adsorptionstemperatur, im Frischzustand. Adsorptionszeit	0.0
6.5.	Ergebnisse KAT 1 Versuchsreihe A1-A3: Einfluss der hydrotherma- len Alterung auf die adsorbierte NO_X -Stoffmenge, für die Katalysa- torprobe KAT 1, in Abhängigkeit von der Adsorptionstemperatur (a), und relative Veränderung der adsorbierten NO_X -Stoffmenge, für die Katalysatorproben KAT 1, in Abhängigkeit von der hydrothermalen Alterung (b). Adsorptionszeit 2000 s.	87
6.6.	Ergebnisse KAT 2 Versuchsreihe A1-A3: Einfluss der hydrotherma- len Alterung auf die adsorbierte NO_X -Stoffmenge, für die Katalysa- torprobe KAT 2, in Abhängigkeit von der Adsorptionstemperatur (a), und relative Veränderung der adsorbierten NO_X -Stoffmenge, für die Katalysatorproben KAT 2, in Abhängigkeit von der hydrothermalen Alterung (b). Adsorptionszeit 2000 s.	88
6.7.	Ergebnisse KAT 1 Versuchsreihe S1-S4: Einfluss der Verschwefelung auf die adsorbierte NO_X -Stoffmenge, für die Katalysatorprobe KAT 1, in Abhängigkeit von der Adsorptionstemperatur (a), und relative Ver- änderung der adsorbierten NO_X -Stoffmenge, für die Katalysatorpro- ben KAT 1, in Abhängigkeit von der Schwefelbeladung (b). Adsorpti- onszeit 2000 s.	89

6.8.	Ergebnisse KAT 2 Versuchsreihe S1-S4: Einfluss der Verschwefelung auf die adsorbierte NO_X -Stoffmenge, für die Katalysatorprobe KAT 2, in Abhängigkeit von der Adsorptionstemperatur (a), und relative Ver- änderung der adsorbierten NO_X -Stoffmenge, für die Katalysatorpro- ben KAT 2, in Abhängigkeit von der Schwefelbeladung (b). Adsorpti- onszeit 2000 s.	90
6.9.	Ergebnisse KAT 1 und KAT 2 Versuchsreihe R1-R6: Einfluss des Ein- gangskonzentrationsverhältnisses von NO zu NO ₂ (0 %, 25 %, 50 % NO ₂) auf die adsorbierte NO _X -Stoffmenge, für die Katalysatorprobe KAT 1 und KAT 2, in Abhängigkeit von der Adsorptionstemperatur, im Frischzustand (a, d), nach einer hydrothermalen Alterung für 4 h bei 750 °C (b, e) und nach einer hydrothermalen Alterung für 4 h bei 750 °C mit einer zusätzlichen Verschwefelung von 1 g _S /l _{Kat} (c, f).	
0.4.0	Adsorptionszeit 2000 s	91
6.10.	sammensetzung der Katalysatorproben KAT 1 bis KAT 4	92
7.1.	Reaktormodell und Speichermodell des passiven NO_X -Adsorbers mit betrachteten NO_X -Stoffmengen.	96
7.2.	Berechnete adsorbierte NO _X -Stoffmenge für den Frischzustand in Ab- hängigkeit der Temperatur im Vergleich zum Ergebnis der Versuchs-	
7.3.	reihe A4 aus Kap. 8.1	99
7.4.	Einfluss der Temperatur auf den Fitparameter α aus den Untersu- chungen von Kim et al. [69]	101
7.5.	Ablauf der Kalibrierung des mathematischen Modells zur Abbildung des Adsorptions- und Desorptionsverhaltens von passiven NO _X -Ad-	101
7.6.	Arrhenius-Plot der, aus den Messdaten berechneten, Desorptionsra- te mit linearem Polynom und Ergebnis der Kalibrierung sowie des	105
	Modellfit.	106
1.1.	dells an die Messdaten (DoE-Messpunkt 4 frisch)	108
8.1.	Ergebnisse KAT 1 Versuchsreihe A4-A6 und S5: Adsorbierte Stoff- menge NO_X für die Katalysatorprobe KAT 1, in Abhängigkeit von der Adsorptionstemperatur bei angepasstem Gasmix, im Vergleich	
	zu den Ergebnissen aus Kap. 6.	111

8.2.	Ergebnisse KAT 1 Versuchsreihe V1: Adsorbierte NO_X -Stoffmenge für die Katalysatorprobe KAT 1, in Abhängigkeit von der NO_X -Ein- gangskonzentration, mit Polynomapproximation (a) und Vergleich der Messwerte mit den berechneten Werten durch die Polynomap-	
8.3.	proximation (b)	112
8.4.	Ergebnisse KAT 1 Versuchsreihe V3: Desorbierter NO_X -Stoffmengen- strom und desorbierte NO_X -Stoffmenge (Integral), im zeitlichen Ver- lauf der TPD-Messung für die Temperaturänderungsraten 5, 10 und 20 K/min (a), und berechneter desorbierter NO_X -Stoffmengenstrom, im Vergleich zum Messeignel (b)	113
8.5.	Transformation der Eingangsgrößen Temperatur (a) und Lambda (b) für das DoE-Modell gemäß Gleichungen G 8.3 bis G 8.6 und Umrech-	114
8.6.	Transformation der Eingangsgrößen Eingangskonzentration Kohlen- stoffmonoxid (a) und Eingangskonzentration Kohlenwasserstoff (b) für das DoE-Modell gemäß Gleichungen G 8.3 bis G 8.6 und Umrech-	110
8.7.	nung des Messsignals auf den transformierten Raum Ergebnisse KAT 1 DoE frisch: Adsorbierte NO _X -Stoffmenge in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der	120
8.8.	Adsorptionstemperatur	124
8.9.	r_{NO_2} des DoE-Modells	125
8.10.	gealterten Katalysatorprobe KAT 1	128
	gealterten Katalysatorprobe KAT 1	130

8.11.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X -Stoffmenge in Abhängigkeit von T_{ads} und y_{NO_X} für die hydrothermalen Alterungsstufen 4 h und 16 h im Ver- gleich zum Frischzustand sowie für die Verschwefelung mit 1 g _S /l _{Kat} im Vergleich zur adsorbierten NO_X -Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.	131
8.12.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X -Stoffmenge in Abhängigkeit von T_{ads} und r_{NO_2} für die hydrothermalen Alterungsstufen 4 h und 16 h im Ver- gleich zum Frischzustand sowie für die Verschwefelung mit 1 g _S /l _{Kat} im Vergleich zur adsorbierten NO_X -Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.	132
8.13.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X -Stoffmenge in Abhängigkeit von T_{ads} und λ für die hydrothermalen Alterungsstufen 4 h und 16 h im Vergleich zum Frischzustand sowie für die Verschwefelung mit 1 g _S /l _{Kat} im Vergleich zur adsorbierten NO_X -Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.	133
8.14.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Relative adsorbierte NO_X -Stoffmenge in Abhängigkeit von T_{ads} und SV für die hydrothermalen Alterungsstufen 4 h und 16 h im Ver- gleich zum Frischzustand sowie für die Verschwefelung mit 1 g _S /l _{Kat} im Vergleich zur adsorbierten NO_X -Stoffmenge der 4 h hydrothermal gealterten Katalysatorprobe KAT 1.	134
8.15.	Ergebnisse KAT 1 DoE frisch: Berechnete adsorbierte NO_X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersage- bereich der Einzelwerte in Abhängigkeit von T_{ads} im Frischzustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Ver- suchsplans und zur Versuchsreihe A4.	137
8.16.	Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Berechnete ad- sorbierte NO _X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} im 4 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Ver- suchsreihe A5.	138

8.17.	Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Berechnete ad- sorbierte NO_X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von y_{NO_X} und SV im 4 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten der Versuchsreihe V1 und V2	139
8.18.	Ergebnisse KAT 1 DoE 16 h hydrothermale Alterung: Berechnete ad- sorbierte NO_X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} im 16 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Ver- suchsreihe A6.	140
8.19.	Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung und Verschwefe- lung: Berechnete adsorbierte NO_X -Stoffmenge des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzel- werte in Abhängigkeit von T_{ads} im 4 h hydrothermal gealterten und verschwefelten Zustand im Vergleich zu den Messwerten im Wieder- holpunkt des DoE-Versuchsplans und zur Versuchsreihe S5	141
8.20.	Ergebnisse KAT 1 DoE frisch: α in Abhängigkeit der Eingangsgrößen des DoE-Modells jeweils aufgetragen über der Adsorptionstemperatur.	144
8.21.	Ergebnisse KAT 1 DoE frisch: α in Abhängigkeit der Eingangsgrößen des DoE-Modells jeweils aufgetragen über der Adsorptionstemperatur.	145
8.22.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und y_{HC} für die hydrothermalen Alterungsstufe 4 h und 16 h im Ver- gleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysa- torprobe KAT 1	147
8.23.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und y_{CO} für die hydrothermalen Alterungsstufe 4 h und 16 h im Ver- gleich zum Frischzustand sowie für die Verschwefelung mit 1 g _S /l _{Kat} im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysa- torprobe KAT 1	148

8.24.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung: Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und	
	y_{NO_X} für die hydrothermalen Alterungsstufe 4 h und 16 h im Ver- gleich zum Frischzustand sowie für die Verschwefelung mit 1 ge/la	
	im Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysa-	
	torprobe KAT 1	149
8.25.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung:	
	Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und	
	r_{NO_2} für die hydrothermalen Alterungsstufe 4 h und 16 h im Ver-	
	gleich zum Frischzustand sowie für die Verschwefelung mit 1 g_S/I_{Kat}	
	Im vergleich zur 4 n nydrothermal gealterten Zustand der Katalysa- torprobe KAT 1	150
8 26	Frgehnisse KAT 1 DoF hydrothermale Altering und Verschwefelung.	130
0.20.	Absolute Änderung des Fitparameters α in Abhängigkeit T_{ads} und λ	
	für die hydrothermalen Alterungsstufe 4 h und 16 h im Vergleich	
	zum Frischzustand sowie für die Verschwefelung mit 1 g_S/l_{Kat} im	
	Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysator-	
	probe KAT 1	151
8.27.	Ergebnisse KAT 1 DoE hydrothermale Alterung und Verschwefelung:	
	Absolute Anderung des Filparameters α in Abhängigkeit I_{ads} und SV für die hydrothermalen Alterungsstufe 4 h und 16 h im Vergleich	
	zum Frischzustand sowie für die Verschwefelung mit 1 g_s/l_{Kat} im	
	Vergleich zur 4 h hydrothermal gealterten Zustand der Katalysator-	
	probe KAT 1	152
8.28.	Ergebnisse KAT 1 DoE frisch: Berechnetes α des DoE-Modells mit	
	Vertrauensbereich des Modells und Vorhersagebereich der Einzel-	
	werte in Abhängigkeit von T_{ads} im Frischzustand im Vergleich zu	
	den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur	1 - 4
8 20	Freebnicse KAT 1 DoE 4 h bydrothermale Alterung: Berechnetes a	154
0.29.	des DoF-Modells mit Vertrauensbereich des Modells und Vorhersage-	
	bereich der Einzelwerte in Abhängigkeit von T_{ads} 4 h hydrothermal	
	gealterten Zustand im Vergleich zu den Messwerten im Wiederhol-	
	punkt des DoE-Versuchsplans und zur Versuchsreihe A5	155
8.30.	Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Berechnetes α	
	des DoE-Modells mit Vertrauensbereich des Modells und Vorhersa-	
	genereich der Einzelwerte in Abhangigkeit von y_{NO_X} und SV im 4 h bydrothermal gealterten Zustand im Vergleich zu den Messwerten	
	der Versuchsreihe V1 und V2	156
		100

8.31.	Ergebnisse KAT 1 DoE 16 h hydrothermale Alterung: Berechnetes α des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} 16 h hydrothermal gealterten Zustand im Vergleich zu den Messwerten im Wiederhol-	
8.32.	punkt des DoE-Versuchsplans und zur Versuchsreihe A6 Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung und Verschwe- felung: Berechnetes α des DoE-Modells mit Vertrauensbereich des Modells und Vorhersagebereich der Einzelwerte in Abhängigkeit von T_{ads} 4 h hydrothermal gealterten und verschwefelten Zustand im Vergleich zu den Messwerten im Wiederholpunkt des DoE-Versuchsplans und zur Versuchsreihe S5	157 158
91	Grundstruktur des Simulink-Modells	161
9.2.	Funktionen im Funktionsblock Polynomberechnung.	162
9.3.	Funktionen im Funktionsblock Modellberechnung.	165
9.4.	Funktion zur Berechnung des Speichers.	165
9.5.	Funktion zur Berechnung der Adsorption.	166
9.6.	Funktion zur Berechnung der Desorption.	166
9.7.	Funktion zur Berechnung der Differentialgleichung.	167
10.1.	Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter austreten- der NO_X -Stoffmengenstrom im NEFZ im Vergleich zur Realabgasmes- sung sowie integrierter berechneter austretender und gespeicherter NO_X -Stoffmengen im Vergleich zur Realabgasmessung	170
10.2.	Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter Adsorpti-	171
10.3.	Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter austreten- der NO_X -Stoffmengenstrom im NEFZ im Vergleich zur Realabgasmes- sung sowie integrierter berechneter austretender und gespeicherter NO_X -Stoffmengen im Vergleich zur Realabgasmessung nach Wich-	171
10.4.	tung von ζ und Anpassung der Desorptionsparameter Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter Adsorpti-	172
10.5.	onswirkungsgrad und berechnetes ζ aus dem DoE-Modellpolynom nach Wichtung von ζ und Anpassung der Desorptionsparameter Ergebnisse KAT 1 frisch Fahrzeugmessung: Berechneter austreten- der NO _X -Stoffmengenstrom im EU91 im Vergleich zur Realabgasmes- sung und integrierte berechnete Stoffmengen NO _X austretend, adsor- biert und desorbiert im Vergleich zur Realabgasmessung nach Wich-	173

0.6. Ergebnisse KAT 1 frisch Fahrzeugmessung: Relativer Modellierungs- fehler im NEFZ-Fahrzyklus, bezogen auf die austretenden und ge- speicherte NO_X -Stoffmenge, nach Wichtung von ζ und Anpassung der Deservationen einer	175
.0.7. Ergebnisse KAT 1 frisch Fahrzeugmessung: Relativer Modellierungs- fehler im EU91-Fahrzyklus, bezogen auf die austretenden und ge- speicherte NO_X -Stoffmenge, nach Wichtung von ζ und Anpassung der Desorptionsparameter.	175
1.1. Ergebnisse KAT 1 Fahrzeugmessung: Integrierte NO_X -Stoffmenge im NEFZ für ein System mit passivem NO_X -Adsorber und SCR im Vergleich zu einem System ohne passiven NO_X -Adsorber bei reduzierten CO_2 -Emissionen.	179
 Geschwindigkeitsprofil des Neuen Europäischen Fahrzyklus [43] Ergebnisse KAT 1 DoE frisch: Adsorbierte NO_X-Stoffmenge in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der 	XXXIX
 Adsorptionstemperatur. B-3. Ergebnisse KAT 1 DoE frisch: <i>α</i> in Abhängigkeit der Eingangsgrößen des DoE-Modells jeweils aufgetragen über der Adsorptionstemperatur. 	XLVIII
 tur	LII
B-5. Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Fitparameter α in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über	
 der Adsorptionstemperatur. B-6. Ergebnisse KAT 1 DoE 16 h hydrothermale Alterung: Adsorbierte NO_X-Stoffmenge in Abhängigkeit von den DoE-Eingangsgrößen je- 	LIV
 weils aufgetragen über der Adsorptionstemperatur	LVI
 über der Adsorptionstemperatur. 8-8. Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung und Verschwefelung: Adsorbierte NO_X-Stoffmenge in Abhängigkeit von den DoE- Eingangsgrößen jeweils aufgetragen über der Adsorptionstempera- 	LVIII
 tur 8-9. Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung und Verschwefelung: Fitparameter <i>α</i> in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur 	LX LXII

A.3. Tabellenverzeichnis

1.1.	CO ₂ äquivalente GWP-Werte für Treibhausgase in verbreiteter tech- nischer Anwendung	3
1.2.	Spezifikation von Dieselkraftstoffen in Europa, USA und Indien [4, 28]	6
2.1.	Entwicklung der europäischen Abgasgrenzwerte für PKW von 2000-2014 bei einer Dauerhaltbarkeit von 160.000 km [34, 37]	12
4.1.	Bewertungsmatrix zur Bestimmung der Modellgüte anhand der Be- wertungskriterien [6]	53
5.1.	Zusammenfassung der eingesetzten Messverfahren mit Geräteher- steller und Messbereich in ppm	64
5.2.	Maximale Messungenauigkeit der Analysegeräte zur Bestimmung der Modelleingangsgrößen.	74
6.1.	Edelmetallbeladung der Katalysatorproben	77
6.2.	Adsorbierte spezifische Schwefelmassen für die vier Verschwefelungs- zyklen der Katalysatorproben KAT 1 und KAT 2	84
6.3.	rung der Katalysatorproben KAT 1 bis KAT 4	84
6.4.	Versuchsmatrix für Alterungs- und Verschwefelungsuntersuchungen der Katalysatorproben KAT 1 bis KAT 4.	85
8.1.	Definition der Standardeinstellungen für die systematischen Adsorp- tionsuntersuchungen am Synthesegasprüfstand, sons sons sons so	110
8.2.	Versuchsmatrix für Alterungs- und Verschwefelungsuntersuchungen der Katalysatorproben KAT 1 für die Charakterisierung mit ange-	110
8.3.	passtem Gasmix	110
84	te in der TPD	111
0.4.	Variationsparametern.	116
8.5.	Definition der Einstellungen für den Wiederholpunkt in den DoE-Un- tersuchungen im transformierten Versuchsraum	121
8.6.	Signifikanzmatrix der DoE-Modellbildung für die Berechnung der ad- sorbierten NO _x -Stoffmenge der Katalysatorproben KAT 1 im Frisch-	161
	zustand.	121

8.7.	Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Ein- gangsgrößen für die Berechnung der adsorbierten NO _X -Stoffmenge der Katalysatorproben KAT 1 im Frischzustand.	122
8.8.	Koeffizientenmatrix des DoE-Modellpolynoms für die Berechnung der adsorbierten NO _X -Stoffmenge der Katalysatorproben KAT 1 im Frisch-	122
8.9.	Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierten NO _X -Stoffmenge der Katalysatorprobe KAT 1 im Frisch-	100
8.10.	Verzeichnis der Modellergebnisse für die adsorbierte NO _X -Stoffmenge	123
8.11.	Im Annang B.2. Signifikanzmatrix der DoE-Modellbildung für den Fitparameter α der	127
8.12.	Katalysatorproben KAT 1 im Frischzustand	143
8.13.	im Frischzustand	143
	B.2	146
10.1.	Anpassung der Fitparameter an Fahrzeugmessdaten.	171
B-3.	Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierten NO _X -Stoffmenge der Katalysatorprobe KAT 1 im Frisch-	
B-4.	zustand	XLVII
B-5.	der Katalysatorproben KAT 1 im Frischzustand	XLVII
B-6.	zustand	XLVII
B-7.	im Frischzustand	XLIX
	im Frischzustand.	XLIX
в-8.	Koeffizientenmatrix des DoE-Modellpolynoms für den Fitparameter α der Katalysatorproben KAT 1 im Frischzustand	XLIX
B-9.	Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierte NO _v -Stoffmenge der Katalvsatorprobe KAT 1 nach 4 h	
	hydrothermaler Alterung.	LI

B-10.	Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Mes- sungen für das DoE-Modell für die Berechnung der adsorbierte NO _X - Stoffmenge der Katalysatorproben KAT 1 nach 4 h hydrothermaler	TT
B-11.	Koeffizientenmatrix des DoE-Modellpolynoms für die Berechnung der adsorbierte NO _X -Stoffmenge der Katalysatorproben KAT 1 nach 4 h hydrothermaler Alterung.	LI
B-12.	Bewertung der Modellgüte des DoE-Modells für den Fitparameter α der Katalysatorprobe KAT 1 nach 4 h hydrothermaler Alterung	LIII
B-13.	Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Mes- sungen für das DoE-Modell für die Berechnung von α der Katalysa- torproben KAT 1 nach 4 h hydrothermaler Alterung.	LIII
B-14.	Koeffizientenmatrix des DoE-Modellpolynoms für den Fitparameter α der Katalysatorproben KAT 1 nach 4 h hydrothermaler Alterung.	LIII
B-15.	Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierte NO_X -Stoffmenge der Katalysatorprobe KAT 1 nach 16 h	T T 7
B-16.	hydrothermaler Alterung. Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Messungen für das DoE-Modell für die Berechnung der adsorbierte NO _X -Stoffmenge der Katalysatorproben KAT 1 nach 16 h hydrothermaler	LV
B-17.	Alterung	LV LV
B-18.	Bewertung der Modellgüte des DoE-Modells für den Fitparameter α der Katalysatorprobe KAT 1 nach 16 h hydrothermaler Alterung	LVII
B-19.	Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Mes- sungen für das DoE-Modell für die Berechnung von α der Katalysa- torproben KAT 1 nach 16 h hydrothermaler Alterung	LVII
B-20.	Koeffizientenmatrix des DoE-Modellpolynoms für den Fitparameter α der Katalysatorproben KAT 1 nach 16 h hydrothermaler Alterung.	LVII
B-21.	Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierte NO _X -Stoffmenge der Katalysatorprobe KAT 1 nach 4 h hydrothermaler Alterung und Verschwefelung.	LIX
B-22.	Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Mes- sungen für das DoE-Modell für die Berechnung der adsorbierte NO _X - Stoffmenge der Katalvsatorproben KAT 1 nach 4 h hydrothermaler	
	Alterung und Verschwefelung.	LIX

B-23.	Koeffizientenmatrix des DoE-Modellpolynoms für die Berechnung der	
	adsorbierte NO _X -Stoffmenge der Katalysatorproben KAT 1 nach 4 h	
	hydrothermaler Alterung und Verschwefelung	LIX
B-24.	Bewertung der Modellgüte des DoE-Modells für den Fitparameter α	
	der Katalysatorprobe KAT 1 nach 4 h hydrothermaler Alterung und	
	Verschwefelung.	LXI
B-25.	Arithmetischer Mittelwert ($ar{x}$) und Standardabweichung (σ) der Mes-	
	sungen für das DoE-Modell für die Berechnung von $lpha$ der Katalysa-	
	torproben KAT 1 nach 4 h hydrothermaler Alterung und Verschwe-	
	felung	LXI
B-26.	Koeffizientenmatrix des DoE-Modellpolynoms für den Fitparameter	
	α der Katalysatorproben KAT 1 nach 4 h hydrothermaler Alterung	
	und Verschwefelung.	LXI

A.4. Nomenklatur

Abkürzungen

Abkürzunge	n
*Beta	Beta Zeolith
A*	Adsorbierter Reaktionspartner A
B*	Adsorbierter Reaktionspartner B
BET	Verfahren zur Oberflächenbestimmung (Brunauer/Emmett/Teller)
CAN	engl.: Controller Area Network
cDPF	engl.: coated diesel particulate filter
CHA	Chabasit
CIMS	Chemisches Ionisationsmassenspektrometer
CLD	Chemilumineszenzdetektor
cpsi	eng.: channels per square inch
CRT	engl.: continuous regeneration trap
CVS	engl.: continous volume sample
DOC	engl.: diesel oxidiation catalyst
DoE	engl.: design of experiments
DPF	Dieselpartikelfilter
DPF	engl.: diesel particulate filter
E_A	Aktivierungsenergie
EEPROM	engl.: Electrically Erasable Programmable Read-Only Memory
EM	Edelmetall
EUDC	Extra Urban Driving Cycle
FAME	Fettsäuremethylester
FID	Flammenionisationsdetektor
FVV	Forschungsvereinigung Verbrennungskraftmaschinen e.V.
Gt	Gigatonne (10 ¹² kg)
GWP	engl.: global warming potential
LFC	engl.: liquid flow controller
ln	Natürlicher Logarithmus (Basis: e)
Μ	Molekül
MFC	engl.: mass flow controller
MFI	Zeolite Socony Mobil Five
NDIR	Nichtdispersive Infrarotspektroskopie
NEFZ	Neuer Europäischer Fahrzyklus
NSCR	engl.: non selective catalytic reduction
NSR	engl.: nitrogen storage and reduction
P*	Adsorbierter Reaktionsprodukt
PKW	Personenkraftwagen
PM	engl.: particulate matter

PMD	Paramagnetischer Detektor
PNA	Passiver NO _X -Adsorber
ppm	engl.: parts per million
R 134a	Tetrafluorethan
REM	Rasterelektronenmikroskop
SCR	engl.: selective catalytic reduction
SPS	Speicherprogrammierbare Steuerung
T50	Temperatur bei der 50% Konversion erreicht ist
TEM	Transmissionselektronenmikroskop
TPD	Temperaturprogrammierte Desorption
TWC	engl.: three way catalyst
ZSM	engl.: Zeolite Socony Mobil

Chemische Formelzeichen

γ -Al ₂ O ₃	Gamma-Aluminiumoxid
Al_2O_3	Aluminiumoxid
Al	Aluminium
BaO	Bariumoxid
BaSO ₄	Bariumsulfat
Ba	Barium
C_2F_5	Hexafluorethan
$C_2H_2F_4$	Tetrafluorethan
C_3H_6	Propen
C _x H _y	Kohlenwasserstoff (x Anteile C, y Anteile H)
CCL_2F_2	Dichlordifluormethan
CeO ₂	Ceroxid
Ce	Cer
CH_4	Methan
CH^{*}	Kohlenwasserstoffradikal
CO ₂	Kohlenstoffdioxid
COS	Carbonylsulfid
CO	Kohlenstoffmonoxid
Cu	Kupfer
Fe	Eisen
H ₂ O	Wasser
H_2S	Schwefelwasserstoff
H_2	Molekularer Wasserstoff
HCN	Cyanwasserstoff
HC	Kohlenwasserstoff
Не	Helium
HNO ₃	Salpetersäure

М	Stoßpartner
N ₂ O	Distickstoffoxid
N ₂	Molekularer Stickstoff
N [*]	Stickstoffradikal
NCO [*]	Isocaynatradikal
NH ₃	Ammoniak
NH_4^+	Ammonium
NH_4NO_3	Ammoniumnitrat
NO_2 .	Stickstoffdioxidradikal
NO ₂	Stickstoffdioxid
NO _X	Stickstoffoxid
NO	Stickstoffmonoxid
NO	Stickstoffmonoxid
O ₂	Molekularer Sauerstoff
O ₂	Molekularer Sauerstoff
O ₃	Ozon
0*	Sauerstoffradikal
OH*	Hydroxylradikal
Pd	Palladium
Pt	Platin
Rh	Rhodium
SF ₆	Schwefelhexafluorid
SiO ₂	Siliziumoxid
SO ₂	Schwefeldioxid
SO ₃	Schwefeltrioxid
Ti	Titan
V	Vanadium
ZrO ₂	Zirconiumdioxid
ZrO_2	Zirkonoxid

Griechische Symbole

α	Fitparameter
α_{Ads}	Adsorptionskoeffizient
α_{ads}	Adsorptionskoeffizient
β	Regressionskoeffizient
Xmol	molare Suszeptibilität
ΔE	Energiedifferenz
Δh	Höhendifferenz
Δv^2	Quadratsumme pos. Beschleunigung
δ	Fitparameter
ΔH_R	Reaktionsenthalpie

ϵ	Stochastischer Fehler
ϵ_i	Stochastischer Fehler in Messpunkt i
η_{ads}	berechneter Adsorptionswirkungsgrad
$\hat{\Theta}$	Maximale Kapazität des NO _X -Speichers
К	Korrekturfaktor
λ	Verbrennungsluftverhältnis
$v_{ m Fl}$	Frequenz des Fluoreszenzphoton
$ ho_L$	Luftdichte
σ	Standardabweichung der Eingansgröße
Θ'	Kapazität des NO _X -Speichers aus DoE-Untersuchungen
$\Theta(T)$	Temperaturabhängige Kapazität des NO _X -Speichers
$\vec{\sigma}$	Standardabweichung der Eingansgrößen im DoE-Versuchsplan
ζ	Korrekturfaktor

Lateinische Symbole

$ar{\chi}$	Mittelwert x-Werte
$ar{\mathcal{Y}}$	Mittelwert der y-Werte y_i
$ar{\mathcal{Y}}_i$	Mittelwert der y-Werte in Messpunkt i
$ar{X}$	Mittelwert der Eingansgröße
\dot{n}_{CO}^{in}	eintretender CO-Stoffmengenstrom
\dot{n}_{HC}^{in}	eintretender HC-Stoffmengenstrom
$\dot{n}_{N_2}^{in}$	eintretender N ₂ -Stoffmengenstrom
$\dot{n}_{NO_{X}}^{ads,sim}$	berechneter adsorbierter NO _X -Stoffmengenstrom
$\dot{n}_{NO_{x}}^{ads}$	adsorbierter NO _X -Stoffmengenstrom
$\dot{n}_{NO_{x}}^{break}$	durchberechender NO _X -Stoffmengenstrom
$\dot{n}_{NO_{X}}^{des,sim}$	berechneter desorbierter NO _X -Stoffmengenstrom
$\dot{n}_{NO_{v}}^{des^{\Lambda}}$	desorbierter NO _X -Stoffmengenstrom
$\dot{n}_{NO_{X}}^{in^{\Lambda}}$	eintretender NO _X -Stoffmengenstrom
$\dot{n}_{NO_{x}}^{red,sim}$	berechneter reduzierter NO _x -Stoffmengenstrom
$\dot{n}_{SO_2}^{ads}$	adsorbierter Schwefelstoffmengenstrom
$\dot{n}_{gesamt}^{in^2}$	gesamter eintretender Stoffmengenstrom
\dot{n}_{red}^{in}	wirksamer Reduktionsstoffmittelstrom
\dot{v}_i	Gasvolumenstrom der Spezies i
$\hat{\mathcal{Y}}$	Schätzwert in Messpunkt i
PRESS	engl.: predictive residual sum of squares
$\vec{\bar{x}}$	Mittelwert der Eingansgrößen im DoE-Versuchsplan
\vec{k}	Koeffizientenvektor
$\vec{n}(t)$	Normierter Eingansgrößenvektor zum Zeitpunkt t
$\vec{r}(t)$	Regressorenvektor zum Zeitpunkt t
$\vec{x}(t)$	Eingansgrößenvektor zum Zeitpunkt t
A	Stirnfläche des Fahrzeugs

C Stauchung c_r Rollwiderstandsbeiwert c_w Luftwiderstandsbeiwert c_{ads} Konzentration des Adsorbens e Eulerzahl e^- Elektron E_{des} Exponentieller Faktor der Desorption $E_{f,Luft}$ Luftreibungsenergie $E_{f,Roll}$ Rollreibungsenergie E_{kin} Kinetische Energie $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO2} Energieniveau des Zustandes NO2 · E_{pot} Potentielle Energie
c_r Rollwiderstandsbeiwert c_w Luftwiderstandsbeiwert c_{ads} Konzentration des Adsorbens e Eulerzahl e^- Elektron E_{des} Exponentieller Faktor der Desorption $E_{f,Luft}$ Luftreibungsenergie $E_{f,Roll}$ Rollreibungsenergie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO_2} Energieniveau des Zustandes NO2 E_{pot} Potentielle Energie
c_w Luftwiderstandsbeiwert c_{ads} Konzentration des Adsorbens e Eulerzahl e^- Elektron E_{des} Exponentieller Faktor der Desorption $E_{f,Luft}$ Luftreibungsenergie $E_{f,Roll}$ Rollreibungsenergie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO2} Detentielle Energie E_{pot} Potentielle Energie
c_{ads} Konzentration des Adsorbens e Eulerzahl e^- Eulerzahl e^- Elektron E_{des} Exponentieller Faktor der Desorption $E_{f,Luft}$ Luftreibungsenergie $E_{f,Roll}$ Rollreibungsenergie E_{kin} Kinetische Energie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO2} Potentielle Energie E_{pot} Potentielle Energie
e Eulerzahl e^- Elektron E_{des} Exponentieller Faktor der Desorption $E_{f,Luft}$ Luftreibungsenergie $E_{f,Roll}$ Rollreibungsenergie E_{kin} Kinetische Energie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO2} Detentielle Energie
e^- Elektron E_{des} Exponentieller Faktor der Desorption $E_{f,Luft}$ Luftreibungsenergie $E_{f,Roll}$ Rollreibungsenergie E_{kin} Kinetische Energie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO2} Energieniveau des Zustandes NO2 · E_{pot} Potentielle Energie
E_{des} Exponentieller Faktor der Desorption E_{des} Exponentieller Faktor der Desorption $E_{f,Luft}$ Luftreibungsenergie $E_{f,Roll}$ Rollreibungsenergie E_{kin} Kinetische Energie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO_2} Energieniveau des Zustandes NO2 · E_{pot} Potentielle Energie
$E_{f,Luft}$ Luftreibungsenergie $E_{f,Roll}$ Rollreibungsenergie E_{kin} Kinetische Energie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO2} Energieniveau des Zustandes NO2 E_{pot} Potentielle Energie
$E_{f,Roll}$ Rollreibungsenergie E_{kin} Kinetische Energie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes NO2 · E_{NO_2} Energieniveau des Zustandes NO2 E_{pot} Potentielle Energie
E_{kin} Kinetische Energie $E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes $NO_2 \cdot$ E_{NO_2} Energieniveau des Zustandes NO_2 E_{pot} Potentielle Energie
$E_{m,n}$ Exponentenmatrix $E_{NO_2^*}$ Energieniveau des Zustandes $NO_2 \cdot$ E_{NO_2} Energieniveau des Zustandes NO_2 E_{pot} Potentielle Energie
$E_{NO_2^*}$ Energieniveau des Zustandes NO_2 . E_{NO_2} Energieniveau des Zustandes NO_2 E_{pot} Potentielle EnergieETranslataria des Derma
E_{NO_2} Energieniveau des Zustandes NO_2 E_{pot} Potentielle Energie E_{pot} Translaturia des Derma
<i>E_{pot}</i> Potentielle Energie
T Turnelataria al a Danna '
<i>E</i> _{trans} Iransiatorische Bewegungsenergie
f Freiheitsgrad
f'(a) Erste Ableitung der Funktion der Taylorreihenentwicklung
f(a) Funktion der Taylorreihenentwicklung
$f^n(a)$ n-te Ableitung der Funktion der Taylorreihenentwicklung
ft Fuß; 1 ft = 304,8 mm
g Gramm
g Gravitationsbeschleunigung
<i>g</i> _S Gramm Schwefel
<i>h</i> Plank'schen Wirkungsquantum
hPa Hektopascal
<i>I</i> (<i>c</i>) Strahlungsintensität
<i>I</i> ₀ Strahlungsintensität am Zelleneingang
K Kelvin
<i>k</i> _{des} Präexponentieller Faktor der Desorption
<i>km</i> Kilometer
<i>kWh</i> Kilowattstunde
<i>l_{Kat}</i> Liter Katvolumen
l_{MZ} Länge der Messzelle
m Anzahl der Zeilen
m Masse
$m_{CO_2,EKM}$ Spezifische mittierte CO ₂ -Masse im NEFZ E-Maschine
$m_{CO_2,VKM}$ Spezifische mittierte CO_2 -Masse im NEFZ Verbrennungsmote
<i>M_S</i> molare Schwefelmasse
<i>m_S</i> Schwefelmasse
N Anzahl der Versuche
IN AIIZAIII UEF VEISUCIIE

n	Anzahl der Spalten
N_i	Anzahl an Messungen i Messpunkt i
$n_{NO_{y}}^{ads,sim}$	berechnete adsorbierte NO _x -Stoffmenge
$n_{NO_{y}}^{ads}$	adsorbierte NO _x -Stoffmenge
n ^{break}	durchbrechende NO _x -Stoffmenge
$n_{NO}^{des,sim}$	berechnete desorbierte NO _x -Stoffmenge
$n_{NO_{x}}^{des}$	desorbierte NO _x -Stoffmenge
$n_{NO_{y}}^{in}$	eintretender NO _x -Stoffmenge
$n_{NO_{y}}^{out^{\lambda}}$	austretende NO _X -Stoffmenge
$n_{NO_X}^{red,sim}$	berechnete reduzierte NO _X -Stoffmenge
$n_{NO_X}^{stored,sim}$	berechnete gespeicherte NO _X -Stoffmenge
nm	Nanometer
0	Offset
0	Offset
<i>OM</i>	Modellordnung
Р	Wahrscheinlichkeit
p_{SV}^1	Polynom 1. Grades von SV
$p_{NO_X}^2$	Polynom 2. Grades von y_{NO_X}
p_{Abs}	Absolutdruck
9	Ladung
R	allgemeine Gaskonstante
R^2	Determinationskoeffizient
R^*	Äquivalenz zur allgemeine Gaskonstante
$R_{n+1}(x,a)$	Restglied der Taylorreihenentwicklung
S	Sicherheit
S	Strecke
Sreg	Regressionsteil der Messwertstreuung der y-Werte
Sres	Residualteil der Messwertstreuung der y-Werte
S_R^2	Varianz der Streuung der Residuen
S_R^2	arianz Residuenstreuung
Stot	Messwertstreuung der y-Werte
$S_{X,tot}$	Streuung der x-Werte
SV	Raumgeschwindigkeit
Т	Temperatur
t	Faktor für Wahrscheinlichkeit und Freiheitsgrad
t	Faktor studentschen t-Verteilung
t	Zeit
$T(\mathbf{x})$	Taylorpolynom
t_1	Integralgrenze 1: Beginn der Adsorptionsmessung
t_2	Integralgrenze 2: Ende der Adsorptionsmessung
t_3	Integralgrenze 3: Beginn der TPD
t_4	Integralgrenze 4: Ende der TPD

T_C	Transformationsfaktor (CAMEO)
T_m	Temperatur bei maximaler Kapazität $\hat{\Theta}$
T_s	Temperaturabweichung bei Kapazität von 68 %
T _{ads}	Adsorptionstemperatur
t _{ads}	Adsorptionszeit
t _{age}	Alterungszeit
$T_{N,Trans}$	Normierte transformierte Temperatur
T_N	Normierte Temperatur
T'_N	Normierte Temperatur mit Sicherheit
T_{Trans}	Transformierte Temperatur
v_{NO_2-SCR}	Reaktionsgeschwindigkeit NO ₂ -SCR-Reaktion
$v_{Fast-SCR}$	Reaktionsgeschwindigkeit Fast-SCR-Reaktion
V_{Kat}	Katalysatorvolumen
$v_{Slow-SCR}$	Reaktionsgeschwindigkeit Slow-SCR-Reaktion
v_{StdSCR}	Reaktionsgeschwindigkeit Standard-SCR-Reaktion
X	Beladung des NO _X -Speichers
x_i	x-Wert in Messpunkt i
${\mathcal Y}_i$	Messwert in Messpunkt i
$\mathcal{Y}_{C_3H_6}$	C ₃ H ₆ -Konzentration
\mathcal{Y}_{CO_2}	CO ₂ -Konzentration
Усо	CO-Konzentration
\mathcal{Y}_{H_2O}	H ₂ O-Konzentration
\mathcal{Y}_{H_2}	H ₂ -Konzentration
\mathcal{Y}_{N_2}	N ₂ -Konzentration
${\mathcal Y}_{NO_2}$	NO ₂ -Konzentration
$\mathcal{Y}^{des}_{NO_X}$	desorbierte NO _X -Konzentration
$\mathcal{Y}_{NO_X}^{in}$	eintretende NO _X -Konzentration
\mathcal{Y}_{NO}	NO-Konzentration
$\mathcal{Y}O_2$	O ₂ -Konzentration
$\mathcal{Y}err, i$	Modellabweichung in Messpunkt i
${\cal Y}_i^0$	Konzentration der Spezies i im Trägergas
$\mathcal{Y}_{N,Trans}$	Normierte transformierte Konzentration
${\mathcal Y}_{Trans}$	Transformierte Konzentration
$\Delta {\cal Y}_{{ m rel},i}$	relativer Fehler in Messpunkt i
Δy_i	absoluter normierter Fehler in Messpunkt i
R^2_{adj}	angepasster Determinationskoeffizient
R_{pred}^2	vorhersehbarer Determinationskoeffizient
${\mathcal Y}_i$	Messwert in Messpunkt i
${\mathcal Y}{i}$,set, N	normierter Sollwert in Messpunkt i
${\mathcal Y}_{i,{ m set}}$	Sollwert in Messpunkt i
${\mathcal Y}_{i,N}$	normierter Messwert in Messpunkt i
error	Fehler

Anhang

B. Anhang

B.1. Neuer Europäischer Fahrzyklus (NEFZ)

Für die Zertifizierung von Verbrauch und Emissionen von allen PKW wird in der Europäischen Union ein standardisierter Fahrzyklus eingesetzt. Der Neue Europäische Fahrzyklus (NEFZ) setzt sich aus zwei Phasen zusammen. Die erste Phase besteht aus vier ECE-Zyklen, die den städtischen Teil bilden. Die zweite Phase repräsentiert den außerstädtischen Teil und wird Extra Urban Driving Cycle (EUDC) genannt. Die Fahrstrecke beträgt ca. 10,7 km, wovon ca. 3,9 km in Phase 1 und ca. 6,8 km in Phase 2 gefahren werden. Die mittlere Geschwindigkeit im NEFZ beträgt ca. 33,6 km/h. Der Anteil an Leerlaufzeiten beträgt ca. 28,3 %. Die maximale Beschleunigung beträgt ca. 1,04 m/s².

Abb. B-1.: Geschwindigkeitsprofil des Neuen Europäischen Fahrzyklus [43].

B.1.1. Energetische Betrachtung im NEFZ

Für die Berechnung des Energiebedarfs, für die translatorische Bewegungsenergie eines Fahrzeuges der Mittelklasse im NEFZ, gelten folgende Annahmen:

Fahrzeugmasse	m	= 1600 kg
Quadratsumme pos. Beschleunigung	Δv^2	$= 2462,96 \text{ m}^2/\text{s}^2$
Gravitationsbeschleunigung	${\mathcal G}$	$= 9,81 \text{ m/s}^2$
Höhendifferenz	Δh	= 0 m
Luftwiderstandsbeiwert	c_w	= 0,29
Stirnfläche des Fahrzeugs	A	$= 2,20 \text{ m}^2$
Luftdichte	$ ho_L$	$= 1,29 \text{ kg/m}^3$
Rollwiderstandsbeiwert	Cr	= 0,10
Fahrstrecke [43]	S	= 10,7 km
Für die kinetische Energie gilt [128]:		

$$E_{kin} = \frac{m \cdot \Delta v^2}{2 \cdot s} = 183,91 \ kJ/km$$
 (G B.1)

E _{kin}	= kinetische Energie	[J]
т	= Fahrzeugmasse	[kg]
ν	= Fahrzeuggeschwindigkeit	[m/s]

Für die potentielle Energie gilt [3]:

 $E_{pot} = m \cdot g \cdot \Delta h = 0 \ kJ/km \tag{G B.2}$

 E_{pot} = potentielle Energie[J]m= Fahrzeugmasse[kg]g= Gravitationsbeschleunigung $[m/s^2]$

Für den Luftwiderstand gilt [3]:

$$E_{f,Luft} = c_w \cdot A \cdot \frac{\rho_L}{2} \cdot v^2 \cdot s = 142,97 \ kJ/km \tag{G B.3}$$

$E_{f,Luft}$	= Luftreibungsenergie	[J]
C_w	= Luftwiderstandsbeiwert	[-]
A	= Stirnfläche des Fahrzeugs	[m ²]
$ ho_L$	= Luftdichte	[m ²]
υ	= Fahrzeuggeschwindigkeit	[m/s]
S	= Strecke	[m]

Für den Rollwiderstand gilt [3]:

$$E_{f,Roll} = c_r \cdot m \cdot g \cdot s = 156,96 \ kJ/km \tag{G B.4}$$

$E_{f,Roll}$	= Rollreibungsenergie	[J]
Cr	= Rollwiderstandsbeiwert	[-]
т	= Fahrzeugmasse	[kg]
\mathcal{G}	= Gravitationsbeschleunigung	$[m/s^2]$
S	= Strecke	[m]

Aus der Energieerhaltung am Gesamtfahrzeug folgt, für die translatorische Bewegungsenergie im NEFZ [3].

$$E_{trans} = E_{kin} + E_{pot} + E_{f,Luft} + E_{f,Roll} = 483,84 \ kJ/km$$
(G B.5)

E _{trans}	= translatorische Bewegungsenergie im NEFZ	[J]
E _{kin}	= kinetische Energie	[J]
E _{pot}	= potentielle Energie	[J]
$E_{f,Luft}$	= Luftreibungsenergie	[J]
$E_{f,Roll}$	= Rollreibungsenergie	[J]

Daraus lassen sich die spezifischen CO_2 -Emissionen für einen dieselmotorischen Antrieb errechnen. Für die weitere Betrachtung werden folgende Daten zugrunde gelegt:

Wirkungsgrad Triebstrang	η_{PT}	=	0,90	[-]
Wirkungsgrad Dieselmotor [33]	η_{VKM}	=	0,31	[-]
Spezifische CO ₂ -Emission Diesel [119, 4, 7] n	$n_{CO_2,Diesel}$	=	0,0752	$[g_{CO_2}/kJ]$

$$m_{CO_2,VKM} = \frac{E_{trans}}{\eta_{PT} \cdot \eta_{VKM}} \cdot m_{CO_2,Diesel} = 130, 4 g_{CO_2}/km$$
(G B.6)

Ebenso lassen sich die spezifischen CO₂-Emissionen für einen elektrischen Antrieb errechnen. Für die weitere Betrachtung werden folgende Daten zugrunde gelegt:

Wirkungsgrad Triebstrang
$$\eta_{PT}$$
=0,90[-]Wirkungsgrad E-Motor η_{EKM} =0,90[-]Wirkungsgrad Generator η_{GEN} =0,90[-]Wirkungsgrad Beladung Akku η_{Ch^+} =0,90[-]Wirkungsgrad Entladung Akku η_{Ch^-} =0,90[-]Spezifische CO2-Emission Strommix [43] $m_{CO2,Strom}$ =0,1579 $[g_{CO2}/kJ]$

$$m_{CO_2,EKM} = \frac{E_{trans}}{\eta_{PT} \cdot \eta_{EKM} \cdot \eta_{Ch+} \cdot \eta_{Ch-}} \cdot m_{CO_2,Strom} = 117, 8 g_{CO_2}/km \qquad (G B.7)$$

Berücksichtigt man die Rekuperation, mit den Wirkungsgraden des Generators und der Batterie, ergibt sich folgendes Ergebnis.

$$m_{CO_2,EKM} = \left(\frac{E_{trans}}{\eta_{PT} \cdot \eta_{EKM} \cdot \eta_{Ch+} \cdot \eta_{Ch-}} - \frac{E_{kin}}{\eta_{GEN} \cdot \eta_{Ch^+}}\right) \cdot m_{CO_2,Strom}$$
$$= 81,5 \ g_{CO_2}/km \qquad (G B.8)$$

B.2. Daten und Ergebnisse des DoE-Programmes

B.2.1. D-optimaler Versuchsplan mit sieben Eingangsgrößen

D-optimaler Versuchsplan mit Faktorvariationen der sieben Eingangsgrößen gemäß definierten Anforderungen. 53 Messpunkte, davon 7 Wiederholpunkte (WP).

Nummer				Merkmal			
	Т	SV	λ	${\cal Y} {\cal C}_3 H_6$	Усо	\mathcal{Y}_{NO_X}	r_{NO_2}
	[°C]	[1/h]	[-]	[ppm]	[ppm]	[ppm]	[%]
01	100	90.000	1,2	450	900	500	0
02	100	90.000	1,2	200	300	100	37,5
03	280	51.000	2,5	100	200	500	75
04	280	90.000	2,37	450	1000	100	0
05	400	64.000	1,72	200	0	100	67,5
WP 06	250	57.500	1,85	250	500	300	37,5
07	400	31.500	2,5	300	0	100	0
08	250	90.000	1,72	0	0	460	7,5
09	400	25.000	2,24	0	1000	340	15
WP 10	250	57.500	1,85	250	500	300	37,5
11	100	77.000	1,85	0	0	300	75
12	100	25.000	2,5	0	0	460	0
13	250	57.500	1,72	300	500	300	30
14	190	25.000	1,2	350	1000	300	0
15	400	44.500	2,5	450	1000	140	75
16	100	83.500	2,5	500	0	500	45
17	400	25.000	1,98	500	0	500	45
18	250	25.000	1,2	0	0	140	52,5
WP 19	250	57.500	1,85	250	500	300	37,5
20	130	90.000	1,72	500	1000	100	60
21	280	90.000	1,72	150	1000	500	75
22	400	31.500	1,2	50	600	500	0
23	100	25.000	1,46	0	800	500	52,5
24	400	83.500	1,2	50	0	460	67,5
25	100	25.000	1,2	350	0	420	0

26	400	25.000	1,46	200	600	340	75
27	100	31.500	2,37	500	1000	420	75
28	310	90.000	2,24	0	700	100	75
WP 29	250	57.500	1,85	250	500	300	37,5
30	100	25.000	2,11	500	400	140	15
31	250	64.000	1,72	250	400	300	30
32	400	57.500	2,5	0	300	300	37,5
33	250	51.000	1,72	250	500	340	30
34	100	57.500	1,85	0	500	100	0
35	370	70.500	1,2	500	900	500	45
36	100	64.000	1,2	300	300	500	75
37	220	25.000	2,5	250	1000	100	30
38	310	31.500	2,5	500	600	500	0
39	400	90.000	2,5	0	0	100	30
40	250	64.000	1,85	250	400	300	37,5
41	340	90.000	1,2	0	1000	180	15
42	220	31.500	1,2	500	0	140	75
43	100	64.000	2,5	400	0	100	22,5
44	310	90.000	2,5	500	300	340	75
WP 45	250	57.500	1,85	250	500	300	37,5
46	310	83.500	1,2	500	0	260	0
WP 47	250	57.500	1,85	250	500	300	37,5
48	100	38.000	1,2	100	1000	140	75
49	400	25.000	1,2	450	700	100	22,5
50	100	90.000	2,5	0	1000	380	30
51	100	25.000	2,5	200	500	220	75
52	400	83.500	2,24	250	1000	500	0
WP 53	250	57.500	1,85	250	500	300	37,5

B.2.2. D-optimaler Versuchsplan mit sieben Eingangsgrößen nach Transformation

D-optimaler Versuchsplan mit Faktorvariationen der sieben Eingangsgrößen gemäß definierten Anforderungen incl. Transformation der Eingangsgrößen Temperatur, Lambda, Eingangskonzentration Kohlenstoffmonoxid und Eingangskonzentration Kohlenwasserstoff. 53 Messpunkte, davon 7 Wiederholpunkte (WP).

Nummer				Merkmal			
	Т	SV	λ	${\cal Y}_{C_3}H_6$	Усо	\mathcal{Y}_{NO_X}	r_{NO_2}
	[°C]	[1/h]	[-]	[ppm]	[ppm]	[ppm]	[%]
01	100	90.000	1,2	332	664	500	0
02	100	90.000	1,2	37	43	100	37,5
03	259	51.000	2,5	11	23	500	75
04	259	90.000	2,06	332	1000	100	0
05	400	64.000	1,81	37	0	100	68
WP 06	250	57.500	1,85	60	119	300	37,5
07	400	31.500	2,5	94	0	100	0
08	250	90.000	1,81	0	0	460	8
09	400	25.000	1,98	0	1000	340	15
WP 10	250	57.500	1,85	60	119	300	37,5
11	100	77.000	1,85	0	0	300	75
12	100	25.000	2,5	0	0	460	0
13	250	57.500	1,81	94	119	300	30
14	232	25.000	1,2	144	1000	300	0
15	400	44.500	2,5	332	1000	140	75
16	100	83.500	2,5	500	0	500	45
17	400	25.000	1,89	500	0	500	45
18	250	25.000	1,2	0	0	140	53
WP 19	250	57.500	1,85	60	119	300	37,5
20	202	90.000	1,81	500	1000	100	60
21	259	90.000	1,81	22	1000	500	75
22	400	31.500	1,2	5	187	500	0
23	100	25.000	1,72	0	439	500	53
24	400	83.500	1,2	5	0	460	68

25	100	25.000	1,2	144	0	420	0
26	400	25.000	1,72	37	187	340	75
27	100	31.500	2,06	500	1000	420	75
28	268	90.000	1,98	0	288	100	75
WP 29	250	57.500	1,85	60	119	300	37,5
30	100	25.000	1,93	500	74	140	15
31	250	64.000	1,81	60	74	300	30
32	400	57.500	2,5	0	43	300	37,5
33	250	51.000	1,81	60	119	340	30
34	100	57.500	1,85	0	119	100	0
35	298	70.500	1,2	500	664	500	45
36	100	64.000	1,2	94	43	500	75
37	241	25.000	2,5	60	1000	100	30
38	268	31.500	2,5	500	187	500	0
39	400	90.000	2,5	0	0	100	30
40	250	64.000	1,85	60	74	300	37,5
41	280	90.000	1,2	0	1000	180	15
42	241	31.500	1,2	500	0	140	75
43	100	64.000	2,5	220	0	100	23
44	268	90.000	2,5	500	43	340	75
WP 45	250	57.500	1,85	60	119	300	37,5
46	268	83.500	1,2	500	0	260	0
WP 47	250	57.500	1,85	60	119	300	37,5
48	100	38.000	1,2	11	1000	140	75
49	400	25.000	1,2	332	288	100	23
50	100	90.000	2,5	0	1000	380	30
51	100	25.000	2,5	37	119	220	75
52	400	83.500	1,98	60	1000	500	0
WP 53	250	57.500	1,85	60	119	300	37,5

B.2.3. Ergebnisse DoE frisch

Auswertung der adsorbierten NO_X-Stoffmenge

Tab. B-3.: Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierten
NO_X-Stoffmenge der Katalysatorprobe KAT 1 im Frischzustand.

R^2	R^2_{adj}	R_{pred}^2
0,946	0,914	0,805

Tab. B-4.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Eingangsgrößen für die Berechnung der adsorbierten NOX-Stoffmenge der Katalysatorproben KAT 1 im Frischzustand.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	$arphi_{NO_2}$	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	249,57	143,91	329,92	295,04	25,83	1,89	61175
σ_i	110,13	185,66	353,50	122,17	26,87	0,39	20545

Tab. B-5.: Koeffizientenmatrix des DoE-Modellpolynoms für die Berechnung der adsorbierten NO_X -Stoffmenge der Katalysatorproben KAT 1 im Frischzustand.

	T _{ads}	${\mathcal Y}_{{C_3}{H_6}}$	Усо	\mathcal{Y}_{NO_X}	$arphi_{NO_2}$	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	$1,3e^{5}$	$1,1e^{5}$	×	-8,7e ³	1,7e ³	-7,7e ²	2,7e ³
T_{ads}	$2,2e^{5}$	-7,8e ⁴	×	7,2e ³	×	$2,7e^4$	-7,1e ³
$\mathcal{Y}_{C_3H_6}$		-3,7e ⁴	-2,1e ⁴	×	×	×	$1,6e^{4}$
Усо			\times	-1,9e ⁴	9,3e ³	$-1,1e^4$	×
\mathcal{Y}_{NO_X}				$4,2e^{4}$	×	4,5e ³	×
γ_{NO_2}					×	-2,0e ⁴	×
λ						$1,3e^{4}$	×
SV							×

 \times - keine Signifikanz

Abb. B-2.: Ergebnisse KAT 1 DoE frisch: Adsorbierte NO_X -Stoffmenge in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur.

Auswertung des Fitparameters α

Tab. B-6.: Bewertung der Modellgüte des DoE-Modells für den Fitparameter α im Frischzustand.

R^2	R^2_{adj}	R_{pred}^2
0,911	0,856	0,551

Tab. B-7.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Eingangsgrößen
für die Berechnung von α der Katalysatorproben KAT 1 im Frischzustand.

	T _{ads}	${\mathcal Y}_{{C_3}H_6}$	Усо	\mathcal{Y}_{NO_X}	$arphi_{NO_2}$	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	230,69	168,94	374,78	293,99	29,11	1,85	61373
σ_i	100,67	196,83	377,61	128,96	28,99	0,42	22687

Tab. B-8.: Koeffizientenmatrix des DoE-Modellpolynoms für den Fitparameter α der Katalysatorproben KAT 1 im Frischzustand.

	T _{ads}	${\mathcal Y}_{{C_3}H_6}$	Усо	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	-2,4	-1,4	1,7	×	-1,2	×	2,2
T _{ads}	$9,5e^{-1}$	$5,4e^{-1}$	$-3,2e^{-1}$	1,0	×	$1,7e^{-1}$	×
$\mathcal{Y}_{C_3H_6}$		×	×	3,8e ⁻¹	$8,4e^{-1}$	×	×
Усо			-1,1	$6,1e^{-1}$	×	1,3	×
\mathcal{Y}_{NO_X}				$5,4e^{-2}$	$6,2e^{-3}$	$4,7e^{-1}$	$4,7e^{-2}$
γ_{NO_2}					$-4,7e^{-1}$	×	1,8e ⁻¹
λ						$6,1e^{-1}$	$1,8e^{-1}$
SV							$4,6e^{-2}$

 \times - keine Signifikanz

Abb. B-3.: Ergebnisse KAT 1 DoE frisch: α in Abhängigkeit der Eingangsgrößen des DoE-Modells jeweils aufgetragen über der Adsorptionstemperatur.
B.2.4. Ergebnisse DoE nach 4 h hydrothermaler Alterung

Auswertung der adsorbierten NO_X-Stoffmenge

Tab. B-9.: Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierte NO_X-Stoffmenge der Katalysatorprobe KAT 1 nach 4 h hydrothermaler Alterung.

R^2	R^2_{adj}	R_{pred}^2
0,965	0,943	0,913

Tab. B-10.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Messungen für
das DoE-Modell für die Berechnung der adsorbierte NO_X-Stoffmenge der Kata-
lysatorproben KAT 1 nach 4 h hydrothermaler Alterung.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	244,70	199,09	444,33	274,42	31,94	1,83	58339
σ_i	106,88	194,17	362,20	136,24	27,69	0,44	24415

Tab. B-11.: Koeffizientenmatrix des DoE-Modellpolynoms für die Berechnung der adsor-
bierte NO_X -Stoffmenge der Katalysatorproben KAT 1 nach 4 h hydrothermaler
Alterung.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	$1,0e^{5}$	$1,1e^{5}$	×	-4,1e ⁴	$1,7e^{4}$	-2,5e ⁴	$4,1e^{4}$
T _{ads}	3,0e ⁵	-7,8e ⁴	×	2,8e ⁴	×	3,1e ⁴	-2,3e ⁴
$\mathcal{Y}_{C_3H_6}$		-5,2e ⁴	-2,6e ⁴	×	×	×	3,1e ⁴
Усо			×	-2,4e ⁴	9,3e ³	-2,1e ⁴	×
\mathcal{Y}_{NO_X}				4,3e ⁴	×	1,6e ⁴	×
γ_{NO_2}					×	-2,2e ⁴	×
λ						1,3e ⁴	×
SV							×

imes - keine Signifikanz

Abb. B-4.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Adsorbierte NO_X-Stoffmenge in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur.

Auswertung des Fitparameters α

Tab. B-12.: Bewertung der Modellgüte des DoE-Modells für den Fitparameter α der Kataly-
satorprobe KAT 1 nach 4 h hydrothermaler Alterung.

R^2	R^2_{adj}	R_{pred}^2
0,975	0,957	0,932

Tab. B-13.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Messungen für das DoE-Modell für die Berechnung von α der Katalysatorproben KAT 1 nach 4 h hydrothermaler Alterung.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	238,41	205,13	417,57	286,86	32,86	1,83	58851
σ_i	105,87	195,63	366,74	134,47	27,77	0,45	24034

Tab. B-14.: Koeffizientenmatrix des DoE-Modellpolynoms für den Fitparameter α der Ka-
talysatorproben KAT 1 nach 4 h hydrothermaler Alterung.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	$arphi_{NO_2}$	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	-1,3	$-5,9^{-1}$	1,1	×	-1,3	×	1,2
T _{ads}	$8,0e^{-1}$	9,8e ⁻¹	$-2,9e^{-1}$	8, 2e ⁻¹	×	$-1,5e^{-1}$	×
$\mathcal{Y}_{C_3H_6}$		×	×	3,2e ⁻¹	$8,1e^{-1}$	×	×
Усо			$-3,0e^{-1}$	$4,1e^{-1}$	×	$8,4e^{-1}$	×
\mathcal{Y}_{NO_X}				$-3,8e^{-1}$	$6,0e^{-1}$	3,9e ⁻¹	3,0e ⁻¹
γ_{NO_2}					$-5,6e^{-1}$	×	$2,4e^{-1}$
λ						5,9e ⁻¹	$2,4e^{-1}$
SV							2,6e ⁻¹

 \times - keine Signifikanz

Abb. B-5.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung: Fitparameter α in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur.

B.2.5. Ergebnisse DoE nach 16 h hydrothermaler Alterung

Auswertung der adsorbierten NO_X-Stoffmenge

Tab. B-15.: Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierte NO_X-Stoffmenge der Katalysatorprobe KAT 1 nach 16 h hydrothermaler Alterung.

R^2	R^2_{adj}	R_{pred}^2
0,756	0,631	0,512

Tab. B-16.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Messungen für
das DoE-Modell für die Berechnung der adsorbierte NO_X-Stoffmenge der Kata-
lysatorproben KAT 1 nach 16 h hydrothermaler Alterung.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	$arphi_{NO_2}$	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	231,71	197,65	419,33	297,82	32,70	1,79	58708
σ_i	104,29	197,62	359,07	135,83	28,27	0,42	24605

Tab. B-17.: Koeffizientenmatrix des DoE-Modellpolynoms für die Berechnung der adsorbierte NO_X-Stoffmenge der Katalysatorproben KAT 1 nach 16 h hydrothermaler Alterung.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	$arphi_{NO_2}$	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	$1,3e^{5}$	2,2e ⁵	×	-6,4e ⁴	8,7 e ⁴	-2,5e ⁴	2,5e ⁴
T _{ads}	$3,1e^5$	-2,4e ⁵	×	4,2e ³	×	-2,8e ⁴	×
$\mathcal{Y}_{C_3H_6}$		-4,6e ⁴	-2,1e ⁵	×	×	×	5,7e ⁴
Усо			×	×	5,4e ⁴	×	×
\mathcal{Y}_{NO_X}				7,6e ⁴	×	$1,2e^{5}$	×
γ_{NO_2}					-1,1e ⁵	×	×
λ						×	×
SV							×

Abb. B-6.: Ergebnisse KAT 1 DoE 16 h hydrothermale Alterung: Adsorbierte NO_X-Stoffmenge in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur.

Auswertung des Fitparameters α

Tab. B-18.: Bewertung der Modellgüte des DoE-Modells für den Fitparameter α der Kataly-
satorprobe KAT 1 nach 16 h hydrothermaler Alterung.

R^2	R^2_{adj}	R_{pred}^2
0,821	0,657	-1,083

Tab. B-19.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Messungen für
das DoE-Modell für die Berechnung von α der Katalysatorproben KAT 1 nach
16 h hydrothermaler Alterung.

	T _{ads}	${\mathcal Y}_{{C_3}{H_6}}$	Усо	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	234,39	199,26	414,84	293,70	34,44	1,85	57001
σ_i	112,12	207,05	375,03	147,25	29,18	0,45	24180

Tab. B-20.: Koeffizientenmatrix des DoE-Modellpolynoms für den Fitparameter α der Ka-
talysatorproben KAT 1 nach 16 h hydrothermaler Alterung.

	T _{ads}	${\mathcal Y}_{{C_3}H_6}$	Усо	\mathcal{Y}_{NO_X}	$arphi_{NO_2}$	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	$5,4e^{-7}$	$6,6e^{-7}$	$-1,7e^{-6}$	×	$8,9e^{-7}$	×	-1,6e ⁻⁶
T _{ads}	$-4,9e^{-7}$	$-1,6e^{-6}$	$1,6e^{-6}$	$4,3e^{-7}$	×	$1,3e^{-6}$	×
$\mathcal{Y}_{C_3H_6}$		×	×	$-4,9e^{-7}$	$-6,8e^{-7}$	×	×
Усо			$2,6e^{-7}$	$-5,6e^{-7}$	×	$-2,0e^{-6}$	×
\mathcal{Y}_{NO_X}				$1,3e^{-6}$	$-2,0e^{-7}$	$-4,7e^{-7}$	$-4,5e^{-7}$
γ_{NO_2}					$1,0e^{-7}$	×	$-9,6e^{-7}$
λ						$-6,6e^{-7}$	$-9,6e^{-7}$
SV							$-4,9e^{-7}$

 \times - keine Signifikanz

Abb. B-7.: Ergebnisse KAT 1 DoE 16 h hydrothermale Alterung: Fitparameter α in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur.

B.2.6. Ergebnisse DoE nach 4 h hydrothermaler Alterung und Verschwefelung auf 1 g_S/l_{Kat}

Auswertung der adsorbierten NO_X-Stoffmenge

Tab. B-21.: Bewertung der Modellgüte des DoE-Modells für die Berechnung der adsorbierte NO_X-Stoffmenge der Katalysatorprobe KAT 1 nach 4 h hydrothermaler Alterung und Verschwefelung.

R^2	R^2_{adj}	R_{pred}^2
0,738	0,607	0,036

Tab. B-22.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Messungen für
das DoE-Modell für die Berechnung der adsorbierte NO_X-Stoffmenge der Kata-
lysatorproben KAT 1 nach 4 h hydrothermaler Alterung und Verschwefelung.

	T _{ads}	${\mathcal Y}_{{\mathcal C}_3 H_6}$	\mathcal{Y}_{CO}	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	232,88	167,68	402,50	291,52	31,86	1,85	60777
σ_i	101,69	184,45	369,28	126,39	28,15	0,43	22496

Tab. B-23.: Koeffizientenmatrix des DoE-Modellpolynoms für die Berechnung der adsor-
bierte NO_X -Stoffmenge der Katalysatorproben KAT 1 nach 4 h hydrothermaler
Alterung und Verschwefelung.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	$arphi_{NO_2}$	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	$4,0e^{4}$	5,4e ⁴	×	-6,7e ³	$1,1e^{4}$	-7,7e ³	3,8e ¹
T _{ads}	3,5e ⁴	-2,4e ⁴	×	2,3e ³	×	-2,0e ³	×
$\mathcal{Y}_{C_3H_6}$		-8,0e ³	-2,7e ⁴	×	×	×	4,8e ³
Усо			×	×	3,0e ⁴	×	×
\mathcal{Y}_{NO_X}				3,1e ⁴	×	$1,2e^{4}$	×
γ_{NO_2}					-4,9e ⁴	×	×
λ						×	×
SV							×
			imes - keine S	Signifikanz			

Abb. B-8.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung und Verschwefelung: Adsorbierte NO_X-Stoffmenge in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur.

Auswertung des Fitparameters α

Tab. B-24.: Bewertung der Modellgüte des DoE-Modells für den Fitparameter α der Kataly-
satorprobe KAT 1 nach 4 h hydrothermaler Alterung und Verschwefelung.

R^2	R^2_{adj}	R_{pred}^2
0,763	0,478	-0,893

Tab. B-25.: Arithmetischer Mittelwert (\bar{x}) und Standardabweichung (σ) der Messungen für das DoE-Modell für die Berechnung von α der Katalysatorproben KAT 1 nach 4 h hydrothermaler Alterung und Verschwefelung.

	T _{ads}	${\mathcal Y}_{{C_3}{H_6}}$	Усо	\mathcal{Y}_{NO_X}	γ_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
$\bar{x_i}$	244,21	182,69	375,26	274,62	30,64	1,84	57143
σ_i	111,76	192,51	385,16	141,92	30,09	0,45	24731

Tab. B-26.: Koeffizientenmatrix des DoE-Modellpolynoms für den Fitparameter α der Katalysatorproben KAT 1 nach 4 h hydrothermaler Alterung und Verschwefelung.

	T _{ads}	${\mathcal Y}_{C_3H_6}$	Усо	\mathcal{Y}_{NO_X}	r_{NO_2}	λ	SV
		[ppm]	[ppm]	[ppm]	[%]		[1/h]
1	-4,2e ⁻¹	$-5,2e^{-1}$	1,3	×	-2,1	×	$8,4e^{-1}$
T _{ads}	$5,2e^{-1}$	1,1	$-7,3e^{-1}$	$-5,5e^{-2}$	×	$3,1e^{-1}$	×
$\mathcal{Y}_{C_3H_6}$		×	×	$4,4e^{-1}$	$1,0e^{+0}$	×	×
Усо			$-8,5e^{-1}$	$-5,2e^{-3}$	×	1,1	×
\mathcal{Y}_{NO_X}				$-2,6e^{-1}$	$6,6e^{-2}$	$4,6e^{-1}$	$5,5e^{-1}$
γ_{NO_2}					1,2	×	$2,2e^{-1}$
λ						$-3,5e^{-1}$	$2,2e^{-1}$
SV							-1,8e ⁻¹

 \times - keine Signifikanz

Abb. B-9.: Ergebnisse KAT 1 DoE 4 h hydrothermale Alterung und Verschwefelung: Fitparameter α in Abhängigkeit von den DoE-Eingangsgrößen jeweils aufgetragen über der Adsorptionstemperatur.

B.3. Zusammenfassung der Elementargleichungen für die chemisch-physikalische Modellbildung eines NO_X-Speicherkatalysators

An dieser Stelle sind die Elementargleichungen zur chemisch-physikalischen Berechnung zusammengefasst. Diese Elementargleichungen werden u.a. bei der Berechnung mit einem internen Modell für NO_X -Speicherkatalysatoren berücksichtigt.

$$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$
 (R B.1)

$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O \tag{R B.2}$$

$$C_3H_6 + \frac{9}{2}O_2 \longrightarrow 3H_2O + 3CO_2 \tag{R B.3}$$

$$CH_4 + 2O_2 \longrightarrow 2H_2O + CO_2$$
 (R B.4)

$$H_2O + CO \Longrightarrow H_2 + CO_2 \tag{R B.5}$$

$$3H_2O + C_3H_6 \longrightarrow 6H_2 + 3CO \tag{R B.6}$$

$$NO + CO \longrightarrow CO_2 + \frac{1}{2}N_2$$
 (R B.7)

$$NO + \frac{5}{2}H_2 \longrightarrow H_2O + NH_3$$
 (R B.8)

$$9NO + C_3H_6 \longrightarrow 3CO_2 + \frac{1}{2}N_2 + 3H_2O$$
 (R B.9)

$$NO + \frac{1}{2}O_2 \Longrightarrow NO_2 \tag{R B.10}$$

$$NO_2 + CO \longrightarrow NO + CO_2$$
 (R B.11)

$$9NO_2 + C_3H_6 \longrightarrow 9NO + 3CO_2 + 3H_2O$$
 (R B.12)

$$Ce_2O_3 + \frac{1}{2}O_2 \longrightarrow Ce_2O_4$$
 (R B.13)

$$Ce_2O_4 + CO \longrightarrow CO_2 + Ce_2O_3$$
 (R B.14)

$$Ce_2O_4 + H_2 \longrightarrow H_2O + Ce_2O_3$$
 (R B.15)

$$Ce_2O_4 + \frac{1}{9}C_3H_6 \longrightarrow \frac{1}{3}CO_2 + Ce_2O_3 + \frac{1}{3}H_2O$$
 (R B.16)

$$BaO + 2NO_2 + \frac{1}{2}O_2 \longrightarrow Ba(NO_3)_2 \tag{R B.17}$$

$$BaO + 2NO + \frac{3}{2}O_2 \longrightarrow Ba(NO_3)_2$$
 (R B.18)

$$Ba(NO_3)_2 + 5CO \longrightarrow BaO + 5CO_2 + N_2 \tag{R B.19}$$

$$\begin{array}{ll} Ba(NO_3)_2 + 8\,CO + 3\,H_2O \longrightarrow BaO + 8\,CO_2 + 2\,NH_3 & (\mbox{R}\ B.20) \\ Ba(NO_3)_2 + 8\,H_2 \longrightarrow BaO + 5\,H_2O + 2\,NH_3 & (\mbox{R}\ B.21) \\ Ba(NO_3)_2 + \frac{5}{9}\,C_3H_6 \longrightarrow BaO + \frac{5}{3}\,CO_2 + \frac{5}{3}\,H_2O + N_2 & (\mbox{R}\ B.22) \\ Ba(NO_3)_2 + 3\,CO \longrightarrow BaO + 3\,CO_2 + 2\,NO & (\mbox{R}\ B.23) \\ Ba(NO_3)_2 + 3\,H_2 \longrightarrow BaO + 3\,H_2O + 2\,NO & (\mbox{R}\ B.24) \\ Ba(NO_3)_2 + \frac{1}{3}\,C_3H_6 \longrightarrow BaO + CO_2 + H_2O + 2\,NO & (\mbox{R}\ B.25) \end{array}$$

$$Ba(NO_3)_2 + \frac{10}{3}NH_3 \longrightarrow BaO + 5H_2O + \frac{8}{3}N_2$$
 (R B.26)

$$2NH_3 + 3NO \longrightarrow \frac{5}{2}N_2 + 3H_2O \tag{R B.27}$$

$$2NH_3 + \frac{3}{2}O_2 \longrightarrow N_2 + 3H_2O \tag{R B.28}$$

$$2NH_3 + 3Ce_2O_4 \longrightarrow N_2 + 3H_2O + 3Ce_2O_3$$
 (R B.29)

$$3NO_2 + BaO - bulk \longrightarrow Ba(NO_3)_2 - bulk + NO$$
 (R B.30)

$$Ba(NO_3)_2 - bulk \longrightarrow Ba(NO_3)_2 \tag{R B.31}$$

$$H_2O(g) + WS \longrightarrow H_2O(l) \cdot WS$$
 (R B.32)

$$H_2O(l) \cdot WS \longrightarrow H_2O(g) + WS$$
 (R B.33)

Curriculum Vitae

Persönliche Daten

Name:	Alexander Mackensen
Geburtsdatum:	08. September 1980
Geburtsort:	Seesen

Schulischer Werdegang

08.1986 - 07.1990	Grundschule Hörden am Harz
08.1990 - 07.1992	Orientierungsstufe Wulften
08.1992 - 07.2001	Gymnasium Herzberg am Harz
	Abschluss: Allgemeine Hochschulreife

Akademischer Werdegang

10.2002 - 09.2008	Technische Universität Clausthal
	Studium Maschinenbau
	Studienrichtung: Konstruktion, Fertigung und Betrieb
	Abschluss: Diplom-Ingenieur
10.2006 - 04.2007	Institut für Maschinenwesen der Technischen Universität Clausthal
	Leitung des Tutoriums: Festigkeitsanalyse mit Hilfe der Finiten Elemente Methode (ANSYS)
01.2007 - 03.2007	Institut für Tribologie und Energiewandlungsmaschinen der Technischen Universität Clausthal
	Studienarbeit: Entwicklung eines sensorintegrierten Prüflagergehäuses zur hochdynamischen Untersuchung schnell laufender Rotoren
06.2007 - 08.2007	Institut für Maschinenwesen der Technischen Universität Clausthal

	Studienarbeit: Konstruktion eines Prüfstandes zur Unter-
	suchung der Dauerfestigkeit von Evolventenverzahnun-
	gen
09.2007 - 02.2008	Daimler AG, Sindelfingen
	Fachpraktikum: Gesamtfahrzeugversuch Mercedes-Benz
	M-, R-, GL-Klasse BlueTEC
03.2008 - 09.2008	Daimler AG, Sindelfingen
	Diplomarbeit: Experimentelle Untersuchungen an einem BlueTEC Abgasnachbehandlungssystem für Diesel PKW Anwendungen
10.2008 - 09.2011	Institut für Energieverfahrens- und Brennstofftechnik der Technischen Universität Clausthal
	Daimler AG, Sindelfingen
	Promotion: NO_X -Minimierung durch Einsatz passiver NO_X -Adsorber

Veröffentlichungen

2425.03.2009	9. Internationales Stuttgarter Symposium 2009
	Mercedes-Benz BlueTEC - Clean-Diesel-Technologie für al- le Märkte (Mercedes-Benz BlueTEC - Clean Diesel for worldwide application)
	Christian Enderle, Ralf Binz, Markus Paule, Alexander Mackensen
2930.04.2010	31. Internationales Wiener Motorensymposium 2010
	Anforderungen und Weiterentwicklungen zur nächsten Generation der BlueTEC Antriebstechnologie
	Christian Enderle, Ralf Binz, Markus Paule, Alexander Mackensen
1214.04.2011	SAE 2011 World Congress, Detroit
	<i>Challenges for the Next Generation of BlueTEC Emissions</i> <i>Technology</i>
	Christian Enderle, Ralf Binz, Markus Paule, Alexander Mackensen

1011.05.2012	6th Emission Control, Dresden
	Herausforderungen an zukünftige Emissionsminderungs- technologien für Pkw Dieselmotoren im Spannungsfeld von Gesetzgebung und Kundennutzen
	Tillmann Braun, Frank Duvinage, Uwe Hofmann, Alexan- der Mackensen, Christoph Saalfeld
1213.06.2012	4th IAV Conference: MinNOx, Berlin
	Future diesel emission control technologies: The tension between legislation and customer benefits
	Alexander Mackensen, Tillmann Braun, Frank Duvinage

Alexander Mackensen

 $\mathrm{NO}_X\text{-}\mathrm{Minimierung}$ durch Einsatz passiver $\mathrm{NO}_X\text{-}\mathrm{Adsorber}$

Institut für Energieverfahrenstechnik und Brennstofftechnik

2012

ISBN 978-3-943917-22-2