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Abstract

Numerical topology optimization based on the ersatz maiterodel is very attractive in the
research community and industry. Large scale nonlinedsl@nas can be solved efficiently
through the availability of appropriate optimizers, oft&sulting in non-intuitive solutions.
However, topology optimization has not yet been estabtishéhe design of practical sensors
and actuators. To this end we perform a thorough analysisleedssion of two exemplary
piezoelectric devices, a single-frequency loudspeakeéarantilevered energy harvester.

With respect to the loudspeaker a broad range of objectivetions is compared and dis-
cussed, culminating in a fully coupled piezoelectric-nathbal-acoustic near field topology
optimization problem. Piezoelectric strain cancellatamal acoustic short circuits need to be
balanced with structural resonance in order to obtain dosesonance performance for al-
most arbitrary target frequencies. Providing appropriiteal designs proved to be essential
for robust optimization.

Cantilevered piezoelectric energy harvesters have bagaduo various optimization ap-
proaches. However these have generally been based on dephomkel assumptions. We
present topology optimization of a realistic cantileveee@rgy harvester model. It proved to
be necessary to use advanced topology optimization tegésjgtress constraints to enforce
practically feasible designs and Heaviside filtering foidvieatures size control and for ob-
taining a black and white design pattern. To the best of comkedge, this is the first time
that dynamic piezoelectric stress constraints have beemufated for topology optimization.
The obtained result is mechanism-based and interpret@ihainufacture. This appears to be
a novel finding in the field of cantilevered piezoelectricrgyeharvesting design.

Performing numerical experiments, we were surprised temespronounced piezoelectric
self-penalization, which means optimal black and whiteisohs without penalizing design
interpolation and additional constraints beside box gandts on the design variable. This
phenomenon is only rarely and briefly described in the litesa Within this thesis we perform
initial heuristic steps in the analysis of the self-peratian phenomenon, which indeed ap-
pears in many different topology optimization problems c®self-penalization is rigorously
understood, our vision is to find methods supporting thegeffalizing effect and to obtain
solutions potentially closer to the original problem thanstrained and penalized ersatz prob-
lems. To this end we present oscillation constraints, aifeatize control with independent
solid and void feature size without enforcing intermedgeudo material.






Zusammenfassung

Numerische Topologieoptimierung mittels des Ersatznedtaodells ist sowohl in der For-
schung als auch im industriellem Einsatz etabliert. Mstfssender Optimierer kbnnen auch
umfangreiche nichtlineare Probleme effizient geldst wardvobei oft Uberraschende und
nicht-intuitive Losungen entstehen. In der EntwicklurmgnwWandlern fUr den realen Einsatz
konnte sich die Topologieoptimierung jedoch noch nichibktaen und soll aus diesem Grund
innerhalb dieser Arbeit an zwei exemplarischen piezogkstten Wandlern erprobt werden.
Es handelt sich um einen monofrequenten piezoelektrischetsprechers und einen Balken-
Energy Harvesters. Die jeweiligen Probleme werden degdililiskutiert und analysiert.

Die Lautsprecheroptimierung wird fur verschiedene Ziektionen durchgefuhrt. Es stellt
sich heraus, dass fur ein vollstandig gekoppeltes Pieko-Mechanik-Akustik-Problem
eine akustische Nahfeldoptimierung notwendig ist. Pieddasche Dehnungsausloschungen
und akustische Kurzschliisse missen mit strukturellsofRanzmoden ausbalanciert werden.
Dann ist es jedoch fur fast beliebige Frequenzen mog8challleistungen vergleichbar zum
Resonanzfall zu erreichen. Hierzu sind jedoch zweckmiéidigtruierte Startwerte notwendig.

Piezoelekrische Balken-Energy Harvester wurden bishevenschiedenen Ansatzen opti-
miert, jedoch in der Regel auf Basis reduzierter Modell&ainmen. In dieser Arbeit stellen wie
die Topologieoptimierung eines realistischen Balkenfgyélarvesters vor. Es stellt sich her-
aus, dass der Einsatz von State of the Art Methoden der Tgjgaptimierung notwendig ist.
Um baubare Ergebnisse zu erzielen, mussen die auftret@&pmnungen auf einen zulassigen
Wert beschrankt werden. Mittels eines Heaviside-Filérd die Lochgrofl3e gesteuert und ein
kontrastreiches Topologieergebnis erzielt. Dynamisébegelektrische Spannungsbedingun-
gen werden somit zum ersten Mal im Rahmen der Topologiedgrtimg angewandt. Das
Optimierungsergebnis basiert auf einem interpretierbMechanismus und stellt somit eine
neues Designprinzip im Bereich piezoelektrischer Balkeergy Harvester dar.

Bei den numerischen Berechnungen konnten wir Uberrasehnerise eine deutliche pie-
zoelektrische Selbstpenalisierung beobachten. Diesidiemd eine 0-1 Losung, ohne dass
eine Penalisierung der Interpolationsfunktion des Deslgaw. zusatzliche Nebenbedingun-
gen angewendet werden. Designschranken sind natirlieiendig. Es handelt sich um ein
nur selten beschriebenes Phanomen. Im Rahmen diesert Ariernehmen wir erste heu-
ristische Schritte zur Analyse des Phanomens der Sehlmdiperung. Das Phanomen tritt
bei einer Reine von Topologieoptimierungsproblemen aid.\Iksion ist, dass, wenn Selbst-
penalisierung rigoros verstanden ist, Methoden gefundenlen die die Selbstpenalisierung
unterstutzen. Unter Umstanden konnen so Losungemdefuwerden, die naher am Origi-
nalproblem liegen als am penalisierten Ersatzproblem.i@setn Zweck wird auch eine neue
Nebenbedingung zur Beschrankung der Variation des Dgsigrgestellt. Dies erlaubt die
getrennte Vorgabe fur minimale Strukturgrof3en im Matiewnd fur Locher.
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1. Introduction

1.1. Motivation

Numerical topology optimization has been performed by gdarumber of researchers over
the last two decades. It is an interdisciplinary disciplioeted in mathematics and engineer-
ing. Selected mathematical optimization techniques aed tssolve the large scale nonlinear
optimization problems efficiently. Engineering discigscontribute multiphysics applica-
tions and problem formulations, but a large proportion efitinodel problems in the literature
remain far away from real world devices.

Topology optimization methods have not yet been estaldishehe design of practical
sensors and actuators. This thesis is motivated by twoipahgiroblems: a piezoelectric
loudspeaker and a cantilever type energy harvester. Haygpgppriate finite element models
available, neither could be sufficiently improved by usingyantuitive designs and parametric
studies.

The actuator and sensor problems are studied and suctgssivied by means of topol-
ogy optimization on academic models close to practicaveglee. Along the way, the phe-
nomenon of piezoelectric self-penalization, which hasob®e a research interest in its own
right, has been observed.

The powerful academic multiphysics finite element softw@rs++ was used as a base
for the numerical implementation.

1.2. State of the Art

Topology optimization is a discipline within structuraltopization. Compared to sizing and
shape optimization, the design space is richer, allowingefiexibility for the obtained so-
lutions. Topology optimization searches for the optimaitiglbution of holes within solid
material, or more specifically the optimal distribution ofid material.

This thesis applies numerical topology optimization basetheersatz materiahpproach,
founded in the pioneering works of Bendsge and Kikuchi [1288] Bendsge [1989]. Orig-
inating in linear elasticity, the design variable modifiee tocal material properties contin-
uously. Thispseudo materiamodels solid and void material for the extreme values of the
design variable. Th8IMP? model efficiently eliminates unphysical intermediate pkema-
terial which is neither solid nor void. The fundamentalstbiy and selected advanced aspects
of numerical topology optimization are covered in detaibiec. 3.2 and App. A.3.

1see Kaltenbacher [2010]
2S0lid Isotropic Material with Penalization
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1.2.1. Piezoelectric Actuator

Piezoelectric material has the ability to generate eleetnergy out of mechanical load, specif-
ically shows mechanical deformation when excited elealisgcAs a result of this feature and
the rich field of applications it belongs to the classofart materials Piezoelectric material
is transversal isotropic along the axis of piezoelectriappation and needs to be sandwiched
between electrodes for physical relevant applicationsti@e2.2.1 contains a full introduc-
tion to piezoelectricity.

As with elastic topology optimization, the first publicat®of piezoelectric topology opti-
mization (Silva et al. [1997] and Sigmund et al. [1998]) aasdd on inverse homogenization -
material properties of a homogenized structure are opéidhiny finding the optimal topology
of the periodic microstructure.

The first explicit application of the SIMP model for non-petic piezoelectric optimization
can be found in Kogl and Silva [2005]. There, and in seveundhter publications of Silva
and co-workers, the piezoelectric mean transduction, asuneaf piezoelectric coupling, is
maximized.

There is no specific previous work with respect to piezodletiudspeaker topology op-
timization. Our loudspeaker model consists of a piezogtedesign domain attached to an
elastic domain providing mechanical support which is ndiject to optimization. This is
an important difference to commonly-used models, wherenafite whole domain is the de-
sign domain. Only a model like the loudspeaker model allawisfliexibility within the de-
sign domain. Therefore the mean transduction maximizatiaie literature is combined
with stiffness and material resource control. Applying tbiatic) mean transduction without
the additional limitations results in the optimum in vanighpiezoelectric material, which is
clearly not the desired solution, or the appropriate objedtinction.

The necessary electrodes for piezoelectric devices leadatny (in particular dynamic)
applications to the phenomenon of strain cancellatiorgrilesd in Erturk et al. [2009]. How-
ever, typically not discussed when performing piezoelet¢tpology optimization, with the
notable exception of Rupp et al. [2009] which appeared coratly to our publication Wein
et al. [2009a].

The acoustic response of an elastic structure is optimig@ddure structural approximation
in Du and Olhoff [2007b] where sound power minimization isislered. However, with re-
spect to sound power maximization, the optimized strustareour model fail when evaluated
by a fully coupled piezoelectric-mechanical-acousticidation. In contrast to pure acoustic
topology optimization introduced in Duhring et al. [200B]s for the present model essential
to perform near-field acoustic topology optimization.

1.2.2. Piezoelectric Energy Harvester

Vibrational piezoelectric energy harvesters convert raatal energy, e.g. from heavy ma-
chines, into usable electric energy. In Anton and Sodan©7R@ review is given on this
relatively new research discipline.

The two principal types of piezoelectric energy harvesteesplate type harvesters and
cantilever type harvesters. Plate type harvesters aresirarlar to our loudspeaker model and
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subject to structural topology optimization in Nakasonalef2008] and Rupp et al. [2009].

However, cantilever type energy harvesters are the dom@atpe in the literature. Here
an elastic beam is sandwiched by piezoelectric plates. @ereo§the cantilever is subject to
mechanical displacement. More sophisticated models apppymass on the other side.

Reduced models are commonly applied in the literaturewatip analytical and straight
forward numerical optimization. Renno et al. [2009] appbiragle degree of freedom model
with damping and inductive external load. Erturk and Inm2@0Ba] compare these mod-
els against the Euler-Bernoulli beam model. Liao and Sod26608] validate their Euler-
Bernoulli model with experiments. However, they do not gppltip mass. An advanced
model based on the Kirchhoff plate assumption calculatethbyfinite element analysis is
applied in De Marqui Junior et al. [2009]. We apply a fully ieeed finite element model with
the only assumptions being on linearity and the two-dinmmaiplane strain case.

The piezoelectric coupling is a function of the mechani¢edising of the device, with
the stresses within the piezoelectric layers proportibmahe strain. Strain homogeneity is
therefore an important issue for cantilever type harvestéior a static load a rectangular
beam shows a strong gradient of the strain over the lengtithvdorresponds to suboptimal
energy Yyield as discussed in Albach et al. [2009], Goldsdiimoieing and Woias [2008] and
other publications. Piezoelectric coupling can be inaddsy strain homogenization or by
increasing the peak strain. Due to piezoceramic fragihy tatter is impractical but might
be advantageous for the optimizer as our results show. R\itié thesis we are able to solve
this issue by developing dynamic piezoelectric stressrstronstraints. In the literature, strain
homogenization is often used as an objective function ashadh et al. [2009]. However this
approach neglects the electric circuit.

The principal optimization approaches in literature aregomize either for the width of the
beam, as in Goldschmidtboeing and Woias [2008] and Dietl@actia [2010] or to optimize
for the beam height as in Albach [2006]. In the latter, an ! solution for homogeneous
strain is given but the design is very impractical to mantufiec

In contrast to plate energy harvesters, there exists to ¢isé df our knowledge only a
single publication on topology optimization of a cantiletgpe energy harvester. However,
the model in Zheng et al. [2008] has some limitations. It ardysists of piezoelectric design
domain without elastic support. The energy efficiency agabje function lacks practical
relevance and only the static case is considered.

Even with topology optimization, the freedom of design mwited by the defined basic
structure. We have chosen to adopt the beam height optiorizapproach by searching for
the optimal design of a rectangular beam with topology ogtation. The piezoelectric layers
are not subject to optimization but to stress/strain cairgs. Therefore we do not and cannot
optimize for a generic optimal energy harvester, but onhtlie optimal beam topology of a
rectangular beam based energy harvester.

1.2.3. Self-Penalization

In performing topology optimization we want to answer thedamental question of where to
put material and where to drill holes. Discretizing thisldesn by asking this question for ev-
ery finite element mesh cell of the design domain, we obtais@ete problem - a high dimen-
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sional integer optimization problem. However, the comjegf such a non-differentiable
problem for any realistic two- and three-dimensional madedimply astronomic, see Sig-
mund [2011].

By transforming the problem to a continuous problem withdésign variable ranging from
void to solid, gradient-based optimization can be appligtus, topology optimization prob-
lems can often be solved with a very moderate number of iterat The computational effort
to obtain an optimal design is then approximately in the podesolving the underlying finite
element problem. Unfortunately one might have to handleeimegal unphysical intermediate
designs.

Indeed, the classical benchmark problem in topology ogmper se, linear elastic com-
pliant minimizatior? together with a constraint on the available material, isl Webwn for
an optimal solution consisting of intermediate design.df interpreted by microstructures as
in Bendsge and Kikuchi [1988], this mathematical optimdlison is unphysical and hence
undesired.

In Bendsge [1989], intermediate pseudo material is effelstipenalized against the mate-
rial resource constraint, resulting exclusively in voidiaolid optimal designs. The penal-
ization works by interpolating the design using a power Iawhie finite element simulation,
but not in the material constraint. However, this comes withcost of serious mathematical
issues, as the new problem now lacks existence of uniqué@miand numerical difficulties
in the form of checkerboards and mesh-dependency appea&viéw of these problems can
be found in Sigmund and Petersson [1998].

As a consequence, the penalized problems need to be regalafihe standard methods are
listed in Bendsge and Sigmund [2003]. The common idea okglllarization techniques is
to bound the variation of the design, with design filteringéraging being the dominant tech-
nique at present. A review of different variants of desigtefd is given in Sigmund [2007].
With the exception of Heaviside type density filters and tH@lME feature size constraint, reg-
ularization again introduces some intermediate desigrdnyibg the feature boundaries. The
Heaviside filter was introduced in Guest et al. [2004]. Hsia\ filters are computationally
expensive due to the continuous approximation of the Helevisinction which needs to be
performed by a continuation approach. The rigorous MOLEstamt adds a large number
of nonlinear constraints in the order of design variablarobduced in Poulsen [2003] it does
not appear to be applied in practice. We cover all mentioegdlarization techniques within
this thesis.

It is important to note the difference of the solution of a glered and regularized problem
against the solution of the original problem, especiallyewla constraint on the available
material is added. While a material resource constrairdtigral in compliance minimization,
this may not necessarily be the case for compliant mechaaésign, introduced in Sigmund
[1997]. In Jensen and Sigmund [2005], a penalization teglanfor dynamic problems called
pampingis introduced, which does not require a material resourostcaint.

We were therefore surprised when it transpired that the mtygjof static and dynamic
objective functions for the piezoelectric actuator modasluited in distinct black and white
designs without additional constraints and any form of t&gzation. A finding which has to

Swhich is stiffness maximization
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our best knowledge only been independently and concuyrdaticribed in Rupp et al. [2009].

We defineself-penalizatioras when topology optimization problems with a linear contin
uous design variable with only box constraints on the desarable result in sufficiently
distinctblack and whitedesign. We use the term, which has not appeared this contéx¢i
literature before, on the suggestion of Ole Sigmund in peic@mmunication at WCSMO-08,
2009 in Lisbon.

The phenomenon itself has been reported first for dynamstielaave guiding in Sigmund
and Jensen [2003]. In conference talks it has been mentiesgecially for multiphysics
problems but it has apparently not been subject to thorooggstigation, with the exception
of Rupp et al. [2009], which contains a short discussion.

There is no publication on self-penalisation beside our caniribution on self-penalization
in piezoelectric topology optimization in Wein et al. [2QEhd a proof of extremal piezoelec-
tric polarization (electrode design) in Donoso and Belli@a08, 2009].

1.3. Contributions to Research

In the following we summarize the contributions of this tisée the state of the art in topology
optimization within the three main chapters of this thesis.

1.3.1. Piezoelectric Actuator

In the field of piezoelectric optimization, not only topologptimization, the piezoelectric
coupling is often improved in place of an actual objectivediion. For piezoelectric topology
optimization this has mainly been done by employing the niearsduction objective function
in several publications of Emilo C.N. Silva and co-workéfg trace the method back to the
standard adjoint problem, resulting in a clearer integireh of the approach.

A phenomenon within piezoelectricity is strain cancetiafiwhich results in serious diffi-
culties for the optimizer in escaping local optima. We preseheuristic approach, generating
initial designs out of additionally calculated eigenmadBsis significantly improves optimal-
ity and computational cost.

Intending the piezoelectric actuator to serve as a singlgdency loudspeaker, we eval-
uate two purely structural approximations, which are matidisplacement and maximally
displaced volume, against their actual acoustic respdrsefinding is that above the first res-
onance mode, structural approximations are in generabsitfie - particularly due to acoustic
short circuits, destructive interferences not seen bytiuetsiral approximation.

Within a fully coupled piezoelectric-mechanical-acoastiultiphysics topology optimiza-
tion, we finally compare acoustic far field approximationiagaaccurate acoustic near field
optimization. The latter comes with a significant reductadncomputational costs, as the
acoustic domain may be safely reduced in size.

We found the most complex model to indeed be necessary torpetdbpology optimization
of an piezoelectric loudspeaker. The results are highlgiefit structures handling strain
cancellations and acoustic short circuits beyond inteitigsigns. By employing the presented
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method, it is possible to optimize for arbitrary directyviatterns to design advanced distance
sensors or medical ultrasonic devices.

1.3.2. Piezoelectric Energy Harvester

Cantilevered piezoelectric energy harvesters are a tdpactive research. However, most
optimization approaches are based on simplified modelswildy analytical optimization.
Several design principles have been formulated, only toepéaced by the results of other
models. Recently the usage of more sophisticated modelsdtasne more common.

One of the key features of numerical topology optimizat®itd transparent application for
sophisticated complex realistic models. This thesis plesj to the best of our knowledge, the
first topology optimization approach for a realistic mod®l 4 realistic objective function, the
electric power output.

To this end, dynamic piezoelectric stress constraints wseel. Both dynamic and piezo-
electric stress constraints are new contributions to tipelogy optimization community.
Through the application of a Heaviside filter to support tek-genalizing effect of the prob-
lem and to obtain a manufacturable design, state of the@rhigues are applied.

The optimal design of the elastic beam is based on a mechasisig hinges. Springs are
removed by the Heaviside filter. This is a novel finding in tleédfiof energy harvester design.

1.3.3. Self-Penalization

Including our publication in Wein et al. [2011], the pres#mdsis starts a new field of research
within the field of topology optimization by analysing théfggenalization phenomenon.

Based on a large range of optimization problems in elagtaniid piezoelectric topology
optimization, we found self-penalization to be very liked/occur for many unconstrained
problems with a non-trivial solution.

With this is mind, we found two explanations based on setket@mples: For static elas-
ticity problems, the optimality condition for grayness ismast limited to no or rigid body
displacement of the forward or adjoint solution, respetyivin static piezoelectric (coupled
multiphysics) problems, a change of the design variabkeiach concurrent constructive and
destructive manner on the objective function. Graynessocanr only if the balance of the
counteracting effects is inside the design bounds.

The vision behind the analysis of the self-penalizationnoimeenon is to find methods sup-
porting the intrinsic black and white tendency of the problend, as such, to achieve better
optimality in the result without loss due to external pezetion.

Self-penalization benefits from feature size control allayfull black and white solutions.
To this end we developed the rigorous oscillation constravhich turned out to be closely
related to the less flexible MOLE constraints presented ugem [2003].

1.4. Structure

This thesis is structured as follows.
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The physical models used within this thesis are given in CRagPhysical properties and
constitutive equations are given together with the strardyvaeak form to derive the discrete
finite element formulations. The notation and equationsades used for optimization. Linear
elasticity is covered in Sec. 2.1, including the Rayleiglmgang model and time-harmonic ex-
citation. In Sec. 2.2 we cover linear piezoelectricityrttg with a brief physical motivation.
Efficient modelling of electrodes is covered together wittiscussion of the different forms
of piezoelectric excitation. Finally, Sec. 2.3 contaimghr acoustics.

In Chap. 3, a detailed introduction to optimization is givévhile Sec. 3.1 contains only the
fundamental notations and terminology of general optitioran a very brief form, topology
optimization is introduced in a more detailed way in Sec. 3l#& method itself is introduced
by its historical development. The generic derivation afistand dynamic sensitivity analysis
is reviewed together with issues within static compliancechanism design and dynamic
topology optimization. The optimization algorithms used ariefly covered in App. A.2,
while selected regularization techniques are discussddmore detail in App. A.3. There
our new oscillation constraint, a rigorous feature sizetir@nis also presented in App. A.3.6.
Stress constraints are presented in App. A.4 including e-tiarmonic formulation.

The results of the topology optimization of a piezoelectituator are given in Chap. 4.
After introducing the model, the mean transduction obyectunction is analysed. Along the
way linear topology optimization is extended to piezoeledbpology optimization and the
generic multiphysics notation is introduced. Then the @ciumodel is optimized for a set of
objective functions, culminating in the fully coupled poegtectric-mechanical-acoustic near
field optimization. All dynamic topology optimizations asengle-frequency optimizations
for a large set of frequencies within the range of the firsbmesice frequencies. To improve
the robustness to reach always a possibly global optimurapédtic approach based on the
results of an eigenfrequency analysis is presented.

Chapter 5 covers the topology optimization of a piezoele@nergy harvester. To this
end various aspects are analysed. This includes the impdcamnadelling of the electrical
circuit; investigations on the strain distribution; forkation of dynamic piezoelectric stress
constraints and a careful design of the model to avoid ssiegsilarities within the piezoelec-
tric layers. The topology optimization itself needs to bee&ted several times with additional
restrictions up to a final result which satisfies practicahafacturing constraints.

In the Chapter 6 the phenomenon of self-penalization isrealeThis is done by using
three examples: static compliance mechanism designjceleate guiding and static piezo-
electric self-penalization. Part of elastic wave guiding mumerical experiments with respect
to the pamping approach. The piezoelectric considerabaasd on a numerical gedankenex-
periment are taken from Wein et al. [2011]. In the discussi@nobservations with respect to
self-penalization are summarized.

Conclusions for the three main topics are given in Chap.gktter with notes on planned
future work.






2. Physical Models and Finite Element
Formulation

Performing partial differential equation (PDE) based mphilysics topology optimization re-
quires an understanding of the subjected physical probrehita model (including the inher-
ited limitations). For numerical optimization methodsdfidiscretize, then optimize) also the
setup and solution of the algebraic systems by an apprepriathod, here the finite element
method (FEM), is essential.

All physical domains taken into account are considered asirmoum. This means that
the microscopic properties on the atomic level are not cmmed. In fact, we deal with an
idealized view at the macroscopic level. The space shalllled fiomogeneously by its spe-
cific material and physical laws and constitutive relatialiew the deviation of differential
equations.

We restrict ourselves to linear effects only. This sectimliofvs with respect to motivation
and formulation Kaltenbacher [2007].

2.1. Elasticity

In this section we just concentrate to the part of continuuetimanics which describes the
reversible deformation of bodies.

2.1.1. Physical Properties

Consider the initial configuration of a bo@p with material point$ as displayed in Fig. 2.1.
X denotes the location of these points in Lagrangian cootelin@ndeformed). In Eulerian
coordinates, the locatiaxof the material point® in the deformed configuratioQ depends
on the original locatiorX and the timed, hencex(X,t), by a unique magb(X,t). Thedis-
placemenfrom P, to P is given as

U(X,t) = P(X(X,t)) - P0<X7t) (21)
We consider only the 3D-case, hence
U= (UxUyly)" = (urtpuz)",

Forces acting on the undeformed bady lead to the deformed body. Any mechanical
volume forcef,, or external surface force (tractioh)s continuously distributed within the
body and the surface, respectively. At infinitesimal voldraetions stress acts on the surfaces
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X

Figure 2.1.: Definition of displacementof material points from the initial to the deformed
configuration.

with the unit force per unit area NAmThe set of normal and shear stresses with respect to the
Cartesian coordinate system are written as

Oxx Oxy Oxz 011 012 013
Ozx Ozy Ozz 031 032 033

where|g] is called theCauchy stress tensand is defined for the deformed Eulerian system.
As Oyy = Oyx, Oxz = Ozx @nd 0y, = 0y, the tensor is symmetric and Voigt notation gives the
compact vector

Oxx 01
(0} O:
o=|"#7|=|73]. (2.3)
Oyz Oy
Oxz Os5
axy 06

Deformation changes a line segment fréy®Qg in Qg to PQ in Q. The linear changes with
respect to the original configuration are given as

dux  Oux Juy
gx gY guz Sx Sy Sz
u
S=|% & 7|~ |5 % > (2.4)
Ju; Jdu; Jdu

A
X oY 9z 2x Szy 52z

with [§] the linear strain tensorat the Lagrangian system. Note that this represents just the
linear part for small deformations from the Green-Lagrangstrain tensor. As the shear
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strains within the tensor are symmetric, Voigt notatioregithe vector

Sxx St
Syy S
Szz S3
S— — 2.5
2| = | = (2.5)
2S¢ S
2Syy S6
Using the differential operator
3 d 9\ T
0 0 4 3y % 0
we can also write
S=%u. (2.7)

2.1.2. Constitutive Equation

Constitutive equations relate an external load to the nahtproperties dependent system
response.

The Cauchy stress tensor and linear (Lagrangian) strasotgiresented in the previous
section are just a selection of kinematic properties, moeet@be found in Altenbach and
Altenbach [1994], but they are sufficient to formulate HosKaw. It is given as stress-strain
relation

o =([c]|S (2.8)

where|c] is the tensor of elastic moduli. In Voigt notation it is a 6 byrtrix, in index
notation it is a tensor of fourth order.

The limitations of Hooke’s law arise from the fact tfais valid for the deformed Eulerian
configuration and presents only the linear strain tensor and is defined fomitialiconfigu-
ration. Assuming only small deformations, the two configiorss are close enough for a valid
physical model.

A general anisotropic tenspe| is symmetric and therefore consists of 21 independent elas-
tic coefficients. In the isotropic case] is uniquely defined by the properties Young’s modulus
E and Poisson’s ration. With respect to the use of the latter within piezoeledlyjave give
more details for an orthotropic material tensor, wherernisessary to align material correctly
with a Cartesian coordinate system. While 9 parameterseressary to describe a general
orthotropic material, 5 are sufficient for transversal rigpic material like the piezoceramic
PZT.

By the relationship of elasticity tensgc] and compliance tensds] = [¢] ™! it is more

11
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convenient to give the orthotropic elasticity tensor as

1 V: V-
5, B & 0 00
5 & B O 0 0O
Vi3 Vo3 1

e - = T
0 0 0 g 0 O

0 0 O 0 2L o

Gi3
0 0 0O 0 0 X
G12

whereG;; expresses the shear modulBgvo1 = Eo vio, Ex V3o = Ezvoz andE; v3p = Ezvsa.
Furthermore[s] and[c] share the same sparsity pattern.

2.1.3. Strong and Weak Formulation

For a body at rest all volume forcds, and stresse@ sum up to zero as
fy+%'0=0, (2.9)

where the gradient operat&# arises from the divergence theorem when the surface insegra
of the stresses are written as volume integrals. In the dimease, the mechanical densty
with the unit kg/n? is also required and the dynamic system is described by Neweiguation

as

p - d°u
Substituting (2.7) and (2.8) into (2.10) we obtain
d°u
-
This allows us to write the linear elasticity problem in thieag formulation as:
Find
ut): Qx[0,T] - R3
fulfilling
o’u .
pmﬁ—% [C]%U: fV in Q x [O,T], (211)
with boundary conditions
u=us onlsx [0, T], (2.12)
n'o=t onl x [0,T], (2.13)
ng=0 ondQ\ (Fsum) x [0, T], (2.14)

12
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with initial conditions

u(x,0) = up VX e Q,
%(X,O):% VX e Q,
given
Pm:Q—R,
fy,:Q—R3

[c]: Q — RO*C.

With us = 0, the inhomogeneous Dirichlet boundary condition (2.123dmes a homoge-
neous Dirichlet boundary condition. The normal veetat the Neumann boundary conditions
(2.13) and (2.14) needs to be extended to

n=(nnyn, 000"

to match the dimensions of the stress veaorin (2.13) the pressure from the tractibims
assumed to be normal to the surface and we wrigee also Fig. 2.2 for an illustration.

I's

Figure 2.2.: A mechanical load case: A boQysubject to support dig, tractiont atl'} and
volume forcesf,.

In order to solve the strong problem, it is written in the wdakmulation and then dis-
cretized using the finite element method. For the sake oflgitypwe assume only homoge-
neous boundary conditions such that (2.12)-(2.14) become

u=0 onlsx (0,T)
n'g=0 ondQ\ s x (0,T).

13
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The case with inhomogeneous boundary condition is coverSec. 2.2.3.
Defining test functionsw = (wywyw,)T € (H3)3, multiplying (2.11) withw and integrating
overQ results in

2,
/pm Ta > dQ — /w (B'[c]%u)dQ = /wfde

After integration by parts of the second term, the relatesds as

pmw dQ+ (#wW)" ([c]zu)dQ— [ a"[njwdr = [ w'f,,dQ.
A JX | A

Here we use the normal

nXOOOnZnyT

0 0 nzny ne O

As a result of the inhomogeneous Neumann boundary conditidrthe definition of the space
of test functions, the surface integral vanishes such tiatmeak formulation of our linear
elasticity problem reads as:

Findu € (H3)3 such that

/pmw dQ+/ (Bw)"([c ]%u)dQ:/QwaVdQ (2.15)

forallw e (H3)3.

2.1.4. Discrete FEM Formulation

Discretizing the weak formulation (2.15) using the staddanite element method, one arrives
at the following linear system of ordinary differential eqons in time (semi-discrete Galerkin
formulation)

Myu+Kyu=f. (2.16)

The vectoru is a solution for all degrees of freedom for all nodes withie finite element
discretization.

The sparse global mass mathk;,, global stiffness matriK, and global right hand side (force)
vector f are assembled hy local element matrices and vectors as

Ne Ne Ne
My= AMS Ku= AKS f=Afe (2.17)
e=1 e=1 —

These are dense matrices and a vector with the dimensioh dégiees of freedom for the

1H is a Hilbert space with zero boundary values, a definitionvergin Kaltenbacher [2007] and the references
given therein.

14
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finite element;
Mg =[mp; K§=[kpg; f%=[fq. (2.18)

The entries for the local mass matrix compute from the falhgubilinear form

Mg = /erm NT N O, (2.19)

whereN is a diagonal X 3 matrix of the shape functiord;, andp, a physical property. The
local stiffness matrix is set up as

Kpg = Le@gT[c]@g do. (2.20)

The differential operata# from (2.6) has been applied to the shape functidgas

N ONg  INg\ T
ox 60 0 00 Jz 60y
u__ ONa Ny ONa
@a_ 0 0ya 0 (?za 0 (9xa )
0 0 0z ady ox 0

the physical property isc|. The local element right-hand side vector are set up by tieali
form

fq = QeN; fy(Xp) dQ, (2.21)
wherefy,(Xp) is the volume force (excitation) at the location of the cepending finite ele-
ment node.

Applying Boundary Conditions

Dirichlet boundary conditions (2.12) are realized nunadhjctypically by one of two methods,
elimination or the penalty approach. For both cases we assliat the handling of Dirichlet
boundary conditions takes place after the assembly of thigafjsystem. For simplicity we
denote the completely assembled system wifa unknowns as

Using elimination we remove the appropriate degrees of freedom from the bylséem
matrix, the solution and the right-hand side vector. ¢;&ie the contribution of such a Dirich-
let node. We first cancel the row from the system matrix andpdmthe contributions to
the right hand side blp; := b; — a;igi. Next, we cancel the columm,; and the entries; and
bi. In the case of homogeneous Dirichlet conditignsthe right-hand side will clearly stay
unchanged.

By thepenalty approactone can impose Dirichlet boundary conditions without &liggthe
rank of the global system. Thus, the Dirichlet nodes stpresent degrees of freedom in the
linear system but the solver will compute them to the desuade. For the mathematical
motivation consider the linear system as a constrainedmnizaition problem with the penalty

15
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factor interpreted as Lagrange multiplier [Hughes, 20@{imately, one handles a Dirichlet
boundary conditiom; by applying a penalty factor to the system masjx= k and the right-
hand sideb; := gik. The penalty ternk can be set e.g. tio:= 1-10'2 max|a;j|.

2.1.5. Damping

Any dynamic physical model has some form of damping. Thi®iconsidered in the system
(2.16), which therefore overestimates the displacemantedntinuous excitation close to
eigenfrequencies.

The standard approach is to add a velocity proportional dagrtermC,, as
Myi+Cyu+Kyu=f. (2.22)
We use th&Rayleigh damping modéb computeC,, by the weightary andak as
Cu=auMy+ axKy. (2.23)

See e.g. Kaltenbacher [2007] for information on hmwandag are determined from the loss
factor tam for a specified frequency.

2.1.6. Time-Harmonic excitation

For the optimization problems, we do not cover the transiasé but rather the time-harmonic
case through sinusoidal excitation. By exciting a systenafsufficiently long (infinite) time
period, the system will reach the so called steady state.

The Fourier transformation allows us to calculate the stesidte using a single calculation
with the following ansatz.

Consider (2.22) as single-port system. For any dynamidatian f (t), one gets a response
u(t). When the input is assumed to be a sine

f(t) = fysin(wt),
with f, the amplitude and angular frequenoy= 271 f, we get as response
u(t) = upsin(wt+¢),

with amplitudeug, phase shifty but the same frequency. Substituting into (2.22) the faihaw
Fourier transformation

ft) — fod*
ut) — upe“e?
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results in
—wWMyup8“'e? +jwCyupe“'e? + K upge®ed? = fod*t
(—OJZMU—I—iju—I—Ku)er'wtel(p == foelwt

(—w’My+jwCy+K)u = f (2.24)
((wam — w*)My+ (1+jwak)Ky)u = f (2.25)
Su = f, (2.26)

with the complex propertief andu.

2.2. Piezoelectricity

The piezoelectric effect, whemezois Greek and means to squeeze or press, is covered only
to the extend where it is used by the following topology ojgtion. This means that we
concentrate on linear effects within piezoceramic malkteria

2.2.1. Physical Properties

The introduction in this section follows in parts closelg tihtroductory chapter by J. Koch in
Ruschmeyer [1994].

Piezoceramic material consists of a large number of smgdkallites/ grains and is there-
fore a polycrystalline material. It is able to transform maical energy into electric energy
and vice versa.

A mechanical load displays for certain crystals the appearaf proportional electric
charges resulting in an electric field within the crystal eTihverse piezoelectric effect leads
to a change of shape due to an applied electric field. Botlttsfigre linear in the sense of
proportionality, as a change of force direction change®tlentation of the electric field and
vice versa.

Let us consider the base cell of a PZT crystallite (lead (Bipnium (Zr) or titanium (Ti),
oxygen (Q)), as shown in Fig. 2.3. It consists of ions (Pb is twice pesjtZr four times
positive, G twice negative). If the temperature is above the Curie teatpeeT. (=~ 250 °C -
350 °C) the unit cell is cubic due to energetic reasons. Téwet barycenter of the Pb ang O
ions and the location of the Ti ion all coincide, hence no teieclipole moment occurs. For
lower temperatures (like room temperature) the optimafigaration of the unit cell becomes
tetragonal and the symmetry is lost. This results in theldegment of the ions’s barycenters
which creates an electric dipole moment.

In the following we assume temperatures bel@w hence the PZT material consists of
dipoles. These influence each other and form regions of umitbpole orientation, so called
Weiss domainer domains The spontaneoysolarizationfPof a domain is the electric dipole
moment divided by the volume of the domain in G/m
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Figure 2.3.: A PZT crystallize unit cell is cubic and cengnmsnetric above Curie temperature
T.. Below it shows for energetic reasons spontaneous poleanedue to a non-
vanishing electric dipole moment.

Figure 2.4.: Grains with oriented domains. Created by Goraider creative commons li-
cence on wikipedia.

A crystallite might consist of several domains. The polatians of these domains within a
crystallite are aligned by 90 °or 180 °, see Fig. 2.4.

Due to the polycrystalline nature and the random oriematibdomain groups among all
crystallites, no polarization occurs on a macroscopiclfareoriginal PZT material.

By the process opoling, which is the application of a very strong electric field (baily

2 kV/mm) at a temperature below but closeltoall domains are aligned to the electric field.
This also leads to an elongation of the body with the sametaiien.

After poling, the uniform domain orientation among the ¢ajlfes remains to a certain extent,
resulting in aremanent polarizatiomnd remaining elongation. Poled piezoelectric material
becomes transversely isotropic due to this elongation.

18
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Applying an electric or mechanical load to the piezoeleatraterial initializes a switching
of domains. Due to the alignment of domains, the orientatfdhe polarization of crystallites
is eventually switched. At a certain magnitude of excitatiall crystallites are aligned and
saturation is reached. This results in a strong hysteréte& <> P andE < Srelationship.
As we have restricted ourselves to the linear piezoelentodel, hysteresis effects will be
neglected in the following.

2.2.2. Constitutive Equation

Linear pure mechanical behaviour is described by Hookes(a8) which relates the me-
chanical stress and linear mechanical straffivia the tensor of elastic modul(ie]

o=[c]|S (2.27)

The analog electric relationship for an isolating non-paectric body is given by the consti-
tutive law
D =[€]E, (2.28)

with the vector ofelectric displacemeriDIn C/m?, which corresponds to a charge density on
the surface or flux density within the body and the electrildl fietensityE in V/m.

The 3x 3 tensor of dielectric constants, also calf@tmittivity tensoy is set up bygjj =
€0 &y; with the permittivity in vacuumep ~ 8.854- 10~ 12FE/m. Therelative permittivitye,
denotes the polarization of dielectric dipoles by the exgiD field counteracting the created
E field.
The term permittivity originates from the Latgermittg per for 'through’, 'along’, 'during’
andmitto for ’let go’, release’. The relation to the electric sustibpity x (quantifying how
easily the dielectric material polarizes)gs= 1+ x.
The material independent electric fiddvector is given in V/m and describes the force acting
on an electric charge

Fe=qE.

It is worth keeping in mind the approximation for a plate capma

E= %eE (2.29)

with electric voltage) and thickness of the plate capacitbfez denotes the unit vector &).
The original constitutive laws (2.27) and (2.28) need to xtereded due to the piezoelectric
coupling

o = [cF]S—[e]"E, (2.30)
D = [e]S+][€JE. (2.31)

These piezoelectric constitutive laws add the reversildeqelectric polarizatiohe] Sto the
electric displacement and additional stiffening (direzzpelectric effect) byje]'E. The
superscript& andSindicate that the corresponding material parameters septehe material
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property at constant, e.g. zero, electric field intenBitgnd at constant or zero mechanical
strain§, respectively.

Another common formulation with the compliance tengsf = [¢]~! and the tensor of
piezoelectric effectd] is

S = [sf]lo—[d]'E (2.32)
D = [d]o+][e]E. (2.33)

The piezoelectric coefficients are
S (90N (9ai)?
% = \os) = \og
o — (9D _(95)\°
" \ag;) " \9E) -

Note that we use, following Kaltenbacher [2007], the synddbr the stress instead of the Sl
standard notatioil .

For the indexing of piezoelectric material parameters,agseimes that the process of poling
has been applied in theedirection. The resulting transversal isotropic elasgitensor for PZT
has a speciaty shearing relationship

cgl CEZ 053 0
0%2 0%2 0%3 0
Ciz Ci3 C33 g
0 0O O c
o 0 0 0 S,
0 0 0 0 0 (cf-cf)/2

[cF] = (2.34)

The first index denotes the strain, the second index the meziastress.
The piezoelectric coupling tensor is
O 0O O 0 €500
[e]=10 0 0 es 0 Of. (2.35)
€31 €33 €3 0 O O
Here the first index denotes the electric field and the seamiekithe mechanical stress.
The dielectric tensor is

e 0 0
e9=10 & 0]. (2.36)
0 0 &

The first index denotes the electric field intensity and tleesd index the mechanical strain.

The sparsity patterns are the samelich] and[sF] and[e] and[d]. Writing again the con-
stitutive laws (2.30) and (2.31) illustrates the coupling
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Oxx o1 c;, ¢, 5 0 0 0\ /s 0 0 ey
Oyy o7} ¢, ¢ ¢ 0 0 O0f|s 0 0 en|
Oz|_|os| _ |cmcm e O 0 Offsf [0 0 esf(c
oz |a| ~ |0 0 0 0 0w 0 es 0|2
Oxz o 0 0 0 0¢cfy 0f]s es 0 O 3
Oyy O6 0 0 0 0 0 c&/ \s 0 0 O
s1
Dy 0 0 0 es 0\ |2 e 0 0\ (E
D] = [0 o0 es 0 0| [3[+[0 & 0]|E
Ds €31 €1 €3 0 0 0 2 0 0 & \E
S

2.2.3. Strong and Weak Formulation

For the strong formulation we want to consider a piezodleatechanical coupled system
where a piezoelectric materi@, is coupled vid itace to pure elastic materiddy,, see Fig. 2.5.
Due to the brittleness of piezoceramic this is also stanftardhost practical applications.

s [free Qm

]
M
e
o
T ]

Wi
5/;;” |
/]
.

I_gnd/iface rhot Qp

Figure 2.5.: The setup consists of an elastic pfatewith simple sup-
portl's and attached piezoelectric lay@p. Electric exci-
tation by the electroddSyng andl ot leads to bending.

Reusing Navier’s equation (2.10) and inserting (2.30), nvmediately obtain

9°u T (1 aE T
pmw—% ([cF]S—[e] E) = fy,. (2.37)

Due to the electrodelSyng andlMhot and free electric charges within them, the electric field is

determined by
0-D = e, (2.38)
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with the charge densitgle in C/m®. Note that in the interior o€, no free charges exist and
the insulating property holds
O-D=0.

Due to the piezoelectric coupling, (2.38) becomes
uf ([e] S+ (€S E) = Ge, (2.39)
by using (2.31). As the electric field lines are not closed lagace rotation free,
OxE=0.
The electric field intensity can be expressed as the gradi¢héscalar electric potentidiield
E= -0, (2.40)

with ¢ the scalar potential in V. Furthermore we use the notation

%=0= (2.41)

NIESES

We can now formulate the strong formulation of the piezaeieenechanical coupled prob-
lem, where we assume excitation by applying an electricrjiatieat the electrodes.

Find
Up, U : Qp x [0, T] — R3, @:Qpx[0,T] >R
fulfilling
Py g ([cE]%u +e]" % )—o in Qp x [0, T] (2.42)
pp ot2 p Q)= p s Dy .
B ([e]%’up—[ss@q)) ~0 inQp x [0, T), (2.43)
2
pmad:lzm — B [Cm]BUn=0 inQm x [0,T], (2.44)

with coupling conditions

Up = Um 0N [itace X [07 T]7 (246)
Ny Op=—Ny0nm ONTitace [0, T], (2.47)
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with boundary conditions

UmZO
n,op =0
nlom=0

¢=0

P=aq

o _
nD=0

2.2. Piezoelectricity

onlsx [0, T],

ondQp \ Fitace X [0, T],
ondQm\ (FitaceUT's) x [0, T],
onlgnax [0, T],

onTpet x [0,T],

ondQp \ (MhotUMgna) < [0, T],

(2.48)
(2.49)

(2.50)

with initial conditions

u(x,0) = ug VXxe QpnQm,
ou dUg

—(X,0) = —— Qy,NQ
dt(x’) ot vVxe QpNQm,
O(x,0) =@ vVxe Qp,

given

[¢F], [Cm] : Q — RO*6,
[e] : Q — R3*C,
[£5]:Q — RS,
Pp, Pm: Q — R,
Q:Q—R

The coupling/ transmisson conditionslagce = Qp M Qm require continuity of the displace-
ments (2.46) and of the stresses

ap=[cE1Bu,+[e]" B o

and
am - [Cm]@”m

The deviation of the weak formulation follows the pure atasase in Sec. 2.1.3, where
details for the piezoelectric case can be found in Kaltehbaet al. [2006]. For later use in
Sec. A.1 we define the following function spaces

H1
LI

Hip = {ve E2(Qp) © VIr g = o} (2.51)
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2. Physical Models and Finite Element Formulation

and

Hl
II(@

HL = {WE (Cﬁw(QpUQm))S : W|Fs:0} ;

| (2.52)
and express (2.49) as
®:=0—@x €Hgr (2.53)
with x smooth inH1(Qp) and constructed such that
X—{ 1 onlpg ° (2.54)

Note that the test and ansatz space we useifodefined over the whole domaih= Q,U Q.
The weak formulation with test functiomg = (wxwywz)T andv reads as:

Findu e HZ(QpUQm) andg € Hg - (Qp) such that
/pp dQ+/ ) [E],@udQ-l—/ (W) [e] BpdQ =0,
Q
~ " ~ N\ T ~
/ (%v) [e]AudQ — (%v) [E]%’gon:—qq/ %v) [£52xdQ,
Qp Qp
/ pmw 2 da+ (%W)T[c],@udQ:O,

for all w e H, (QpUQm) andv € Hg - (Qp).

2.2.4. Discrete FEM Formulation

Discretizing the weak formulation of the piezoelectrictpame arrives at the following alge-
braic system of equations

(6" o) (6)+ (5 ) (o) (kr o) (6)=(a) e

In (2.55)q denotes the contribution due to (2.49).

We only need to give the definitions fi,, andK, as the other parts are already known
from elasticity, Sec. 2.1.4.

The additional global matrices are called piezoelectiftingtss and dielectric stiffness ma-
trix respectively

Ne Ne
_ e . _ e
Kup= A\ Kipi Koop= AKGp
e=1 e=1
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2.2. Piezoelectricity

The local stiffness matrices

Kip = [Mpgl:  Kigp = [Kpd]

are set up using the following bilinear forms

Ki¢ = g{eﬁg[e]@qu, (2.56)
kg =/ By €5 %qdQ. (2.57)

The right-hand side contributiogp from the inhomogeneous Dirichlet boundary condition is
described in Sec. 2.1.4.

Piezoelectric-Mechanical Coupling

We switch again to the time-harmonic formulation with coexpVectors, see Sec. 2.1.6, and
obtain the following linear system

S:Irmum S,lmup 0 Umn 0
SJmUp S"_IF_’UP KUp(P Up — g_u . (258)
0 Kyyo Koo/ \ @ Ay

with q,, anda(p containing right-hand size contributions from Dirichlgtéations, as in (2.55).

2.2.5. Modeling of Electrodes

For the practical use of a piezoelectric device, electratesessential. These are usually
realized via vaporized metal layers with high conductiv@gding to equipotential surfaces.
The mechanical properties (stiffness) of these physieadteldes can be neglected. In the
setup in Fig. 2.5 the electrodes are denoted Ry andl gng.

Note that these electrodes are not directly modeled withimpooblem formulation. Re-
stricted to the equipotential surface, the homogeneoustbaét boundary condition (2.48)
represents an equipotential surface figrq. For the loaded electrodé,q, this holds if the
inhomogeneous Dirichlet condition (2.49) is applied. @iise, including all sensor applica-
tions, we have to apply the weak constraf@idenotes the total charge on the loaded electrode)

D-ndlr =Q onT hot, (2.59)

[Mhot

which will finally reduce to a single degree of freedomlag; in the discrete system.

2.2.6. Forms of Excitation

Generally a PDE can be excited by inhomogeneous DirichiétNeumann boundary condi-
tions and volume loads. For a piezoelectric system thisesponds to the following forms of
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2. Physical Models and Finite Element Formulation

excitation, starting with the direct piezoelectric eftect

Volume forcesf cannot be applied directly within the material. Homogerssaqplied force
to a surface, e.g. tbgee in Fig. 2.5, corresponds to a surface tracticand if the direction of
the force is normal to the surface it is a pressure. Pressumn@delled by an inhomogeneous
Neumann boundary condition (2.13). Piezoelectric (uttné) microphones are exited by
pressure. Inhomogeneous Dirichlet boundary conditiori®2j2are common for piezoelectric
energy harvesters, Sec. 5.1, where the piezoelectricele/attached to a vibrating system.

With respect to the inverse piezoelectric effect, the a@otuasage, electric charg€scan
clearly not be applied within the material. On the free el o the application of free
charges would be identical to a homogeneous surface chaiiggdas a equipotential layer.
Surface charges are homogeneous Neumann boundary casdstmailar to (2.50) given in
C/m? but are rarely used in practice. This leaves the applicatiam external voltage (2.49)
and (2.48) as dominating form of excitation. This is justrayk scalar value per electrode.

Note that static sensor applications of piezoelectricak=sshave practically no relevance as
argued in Ruschmeyer [1994].

2.3. Acoustics

In this thesis, with respect to acoustics we are mainly @gied in sound propagation within
medium air at frequencies audible to humans. Furthermaeeggsgume time-harmonic sound
waves.

2.3.1. Physical Properties

The physical properties within acoustics are as followssBure is force per area and a scalar
value. The ambient aatmospheric pressurepan be approximated by the hydrostatic pres-
sure, which is due to the weight of the atmosphere. It dependwight and temperatué
and is given in Pa. Normal pressure is 1.013 bar, which iscqumately 10 tons per square
meter.
Sound pressurep is the deviation to the ambient pressygdue to sound waves. Itis a
spatial and dynamic property

Pac(X,t) in Pa

We use the subscript ’'ac’ to indicate the alternating patheftotal pressure and avoid confu-
sion with mechanical pressure. Due to the enormous valumbfemt pressure it is clear that
sound pressure is much smaller:

P=Po+ Pac With pac< po.

The effective sound pressure is the root mean square vahieh vg given for harmonic waves

as
5. — Pac

paC \/z 9

wherepac is the amplitude of the sound pressure.
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2.3. Acoustics

The human ear is not only very sensitive with an auditoryshotd at 1 kHz of 2107° Pa as
minimal effective sound pressure, but is is also able to stahd very high sound pressure.
This leads to the logarithmic scaledund pressure lev€bPL) or sound level, with respect
to the auditory threshold measured in decibels,
Pac
oref
ac

Lp = 20log;g dB. (2.60)

Normal conversation is in the range of 2032 Pa L, = 40...60dB), the pain threshold
is at 63 Pal(, = 130 dB), which is 10 dB above hearing damage.
The acoustic density correlates with te&ustic pressure

Pac(X,t) in kg/m®,

which is the alternating part of the mean dengityn air (f indicates that air is a fluid) such
that

P=pPi+Pac With Pac< pr.

The acoustic particle velocitywy is the alternating velocity of a (imagined) particle in air
while the acoustic wave is transmitted. As the acousticguep,: and density,c

Vac(X,t) in m/s
is in most cases much smaller than the mean velagity
V=Vp+Vac With V< Vp.

It is also smaller than the transmission of the wave, thedpésoundcy.

With the acoustic pressure and particle velocity, we camdefnother important property: the
average sound powerlt gives the radiated acoustic power of all sound sourceinve ;¢
through the surfackE as

1
PaC: E/F\Re{pac\fg_cn}dr, (261)

wherevy, = n'v:. is the normal component of;c with respect td™ (the star denotes the
complex conjugate, assuming the time harmonic case).

The specific acoustic impedancggZLonnects the physical properties acoustic pressure and
particle velocity for a single frequency as

Zac= 22 in Ns/n? or rayl (2.62)

Vaon

In the case oplane waveswhere the acoustic wave is homogeneous, the acoustic anped
also becomes homogeneous. It is then catlemracteristic impedancand is a material char-
acteristic property with

Zy = pCo. (2.63)

One can approximate a plane waustic far-fieldsituation when the sound source is suffi-
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2. Physical Models and Finite Element Formulation

ciently far away. For the plane wave case we can express time gmwer (2.61) by eithgu,c

Or Vac.

The acoustic wave lengthyc is determined by the frequendyof the acoustic sound and the
speed of sound, as

Mac= % in m. (2.64)

In air the speed of sound is 343 m/s, hence the wavelengthlfdd@Hz sound is 0.343 m and
for 100Hz 3.43m.
Analog to the irrotational electric field intensity it alsolts for the particle velocity that

|:| X Vac - 0,
hence we can expre¥g. by thescalar acoustic potentidleld
VaC: —Dw, (265)

wherey has the unit r/s. The relationship with the acoustic pressure is
oy
= Pr——. 2.66
Pac = Pt ot ( )

2.3.2. Constitutive Equation

A continuity equation is given by the fact that the flux of dénshanges the enclosed mass.
Theconservation of mags given as

ap
- =__ 2.67
(pv) = —— (2.67)
and for linear wave propagation as
1 0pac
0-Vac= —— : 2.
Vac o ot (2.68)
The conservation of momentum, knownE&gler’s equationis given as
p (%’4— (v- D)v) = —0p. (2.69)
Again for linear acoustics it reads as
OVae 1
Frat _pf OpPac (2.70)

From conservation of energy the linearized state equat@mmafliabatic state) is given with
the adiabatic exponertas

Pac C(Z) . Po

— =Cj=K—.

Pac Pr
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2.3. Acoustics

Theacoustic wave equatias then given as

1 9%pac
ApPac— 5—5-=0 2.71
pac 02 atz ) ( )
or in terms of the acoustic potential in the identical form
AP — 1 —024’ =0 (2.72)
2o |

2.3.3. Strong and Weak Formulation

As for the piezoelectric case we want to introduce the stfongulation of linear acoustics
as a strongly coupled problem with linear elasticity. Fegaré depicts the setup.

The structural domaif2,, has the only homogeneous Dirichlet boundary condition iwith
the system. By some form of excitation, which might be givgrah additional coupling to
a piezoelectric domain, the surface @, is vibrating. At the coupling surfacEjtce With
the acoustic domaif,;,, acoustic sound waves are stimulated and propagate in theaho
directionnisace Of Fiface.

QpmL

Figure 2.6.: A solid domaif2, is coupled by vibrating jsace t0o the acoustic domaif;,
resulting in sound propagation. The sound waves are dampboh\@p\ and
reflected af harg

The boundary of,;; consists of thee surfaces

aQair = lifaceU I_harordmp-

When the emitted acoustic waves reach the boundary, theneteeted. For homogeneous
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2. Physical Models and Finite Element Formulation

Dirichlet and Neumann boundary conditions, we have toté¢cgon. Homogeneous Neu-
mann boundary conditions are also caldedind hardhomogeneous Dirichlet boundary con-
ditions sound soft In the case of h4¢ the effect can be neglected due to direction of wave
propagation.

At the boundary to another acoustic fluid or solid mediumehggmp, a fraction of the
acoustic wave will propagate into the second medium buetlhell also be reflection. For
plane waves theflection coefficient Romputes as

R St i
ZgML+Zglr’

whereZ8" andZiML are the characteristic impedances (2.63) of the media. ®serees
that as a result of matching impedances reflection is supgded his is the principle idea of
the method operfectly matched layersee Kaltenbacher [2007] and the references therein.
Within the regionQpy. the acoustic waves are quickly damped, such that there araves
that can reflect adQpmi \ I dmp-

Based on the system shown in Fig. 2.6, the strong formulaifothe mechanical-acoustic
problem is given as:

Find
WpmL, Wair : QpmL NQair x [0, T] = R
fulfilling
1 0%y .
?% — A =0 in Quir x [0, T1, (2.73)
0
192 .
2 gltF;ML — /Yo =0 in QpyL x [0, T], (2.74)
0
u :
pmw—% [C]%U: fV In QmX [O,T], (275)
with coupling conditions
Ju 0 s
Eaceﬁ — _anL.I:alr on rifacex [O,T], (276)
Iface
Wi
0= _nifacepglr Ldl’talr oNniface % [0, T], (2.77)
Wair = YpmL on rdmp x [0, T],
OYsi OPpmL
0":;: T onpwL on T gmp > (0,T],
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2.3. Acoustics

with boundary conditions

u:o OanX[O,T],
n"o=0 ondQm\ (FsNFitace) x [0, T],
O Yair _ 0 onrhargx [0, T], (2.78)

an

with initial conditions

Y(x,0)=0 VX € QairNQpmt,
0
—Lf(x,O) =0 VX € Qair N Qpm,
u(x,0)=0 VXe Qm,
a_'t’(x,o):o vVXe Qm,
given
Co:Q — R,
Pm:Q— R,
fy:Q —R3

[c]: Q — RS*®

In the above problem formulation we have assumed zeroliotiaditions for simplicity. The
coupling condition (2.76) comes from a continuity requiegthof the mechanical surface
velocity

=22
ot
and the acoustic particle velocity
Vac = — 0.

The normal components of the velocities must coincide, iwban be expressed as
Nitace(Vm — Vac) =0,

which directly leads to (2.76)

oy

ONiface

T
NitaceVm = _nifaceDw =

As the system is strongly coupled there is also a feedback fhee acoustic domain to
structure. This results in a mechanical surface stressaaedustic pressure and is given
(2.77) by

0 =—Npac= —npc?"ag’ta",
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2. Physical Models and Finite Element Formulation

wheren is of appropriate size to matat with zero shear components. This effect might
be negligible in many situation but it becomes of major int@nce with respect to topology
optimization.

Finally. weak formulation reads as:

Find ¢ € H} andu € (H})® such that

2 . .
me-ng+ (%W>T([C],@u) dQ + W'nifacepglrﬁwa'r a - w-f,d0.
fm a [iface 0t Qm
1 92 Ju
/Qalr CO a::.uzalr dQ + / %W (% waw) dQ ifaceWniface. E dr — 0,

1 92 ~ ~
/ _Zwa YPML o+ [ (Fw)T(Bgem)dQ = 0.
QpmL G ot QpmL

for allw € H3 andu € (H})3.

Details for the deviation are given in Kaltenbacher [20@%.in the piezoelectric-mechanical
coupling case, the continuity coupling conditions fr@yx, to Qpy. automatically fulfilled by
continuity of the ansatz functions.

2.3.4. Discrete FEM Formulation

Multiplying the second weak coupling term and the whole ¢éguavith —p{;‘” to gain

Ju
W nlfacepcfi1 I, ot

iface

dr,

it matches

]
w- nn‘acepcfi1 I g’talr

litace
This allows us to setup the following symmetric global systeesulting from a FEM dis-
cretization

(5 ) (8) (& %) () (5 ) (5)=(5) em

The mechanical mass matM, and stiffness matriX,, were already given in (2.17) and
the elastic Rayleigh damping matiG,, in (2.23). This leaves the acoustic mass and stiffness
matrix and the mechanical-acoustic coupling matrix

dr.

Ne Ne Ne

Myy = AMGy Kyp= AKgyi Cup= ACy.
e=1 e=1 e=1
The local matrices

MGy = [mBEl Ky = (KD Cly = [cpd]
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2.3. Acoustics

are set up using the following bilinear forms

mlgép - Jae %Nqu dQ, (2.80)
kW = Joe(ONp) T (ONg) dQ, (2.81)
Cpt = JroPE"™NpNgNitace dr. (2.82)

Note that it is not possible to set up a symmetric coupledesystith the acoustic pressure
formulation. The symmetry of the system will be used in toyl optimization for solving
the adjoint equation efficiently.

Non-matching Grids

The method ohon-matching gridsallows the coupling of meshes of different discretization
without the usual requirement of conforming, matching malsiments. Hence, the model can
consist of regular coarse and fine meshed domains withounetbe of unstructured coupling
domains.

The numerical expression of a non-matching mechanicalstmocoupling coincides with
the expression for conforming meshes (2.82), see Kaltér@ng@007] and the reference
therein.

Acoustic-acoustic coupling requires the additional citon of Lagrange multipliera yy,
which are calculated by additional coupling bilinear forfibe system matrix has zero diag-
onal entries for the Lagrange multipliers. For details, Isatenbacher [2007] and Trieben-
bacher et al. [2010].

Assuming an acoustic-acoustic coupling of a fine and a coaesh, we use the simplified
notation

wcoarse

P=| Ayy |, (2.83)
wfine

the assembled system matﬁggw shall include the non-matching acoustic-acoustic cogplin
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3. Optimization

There is a fundamental difference between finite elemenysisaand optimization: Perform-
ing the static or time harmonic finite element analysis, &®duced in the previous chapter,
results in a deterministic way of setting up a linear systemctvhas the beneficial property
of having a unique solution. State of the art solvers fordmgystems can be used as black
boxes to find this solution.

It is a different situation with the type of optimization pemmed within this work. Here
optimization is an iterative process, existence of sotuisonot generally guaranteed and the
optimization result may depend significantly on the chosesthads, parameters and start
values.

3.1. Fundamentals

Optimization, ormathematical programmings it is also called, is a wide and complex field.
Within this section we give a very brief introduction to siand optimization with the objec-
tive of clarifying the speciality of topology optimizatiantroduced in Sec. 3.2. To conform
with common notation, the set of design variables will bealed byx within this section.
Later, in the context of topology optimization, the notatwill be p andx denoting again the
spacial variable.

3.1.1. Notation

To introduce the basic concepts and notation of optiminatie quote (for this section only)
essentially literally the introductory section in Kelle}999] and sections from Geiger and
Kanzow [1999] and Geiger and Kanzow [2002].

Unconstrained Optimization

The unconstrained optimization problem is to minimizeal-valuedfunctionJ of N variables
being components of the vectorBy this we mean to find bocal minimizerthat is a poinix*
such that

J(x*) < J(x) for all x nearx”. (3.1)

It is standard to express this problem as

min J(x) (3.2)
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3. Optimization

or to say that we seek to solve the problem hiThe understanding is that (3.1) means that
we seek a local minimizer. We will refer th as theobjective functiorand toJ(x*) as the
minimumor minimum value If a local minimizerx* exists, we say alinimum is attainect
X", one can also writ&* = arg minJ(X).

We say that problem (3.2) isnconstrainedecause we impose no conditions on the inde-
pendent variablex and assume thdtis defined for alk.

The local minimization problem is different from (and mudseer than) thglobal mini-
mization problemn which aglobal minimizerhas to fulfill

J(x*) < J(x) for all x. (3.3)

Box Constraints

Theconstrainedptimization problem is to minimize a functidnover a set) ¢ RN. A local
minimizer, therefore, is ar* € U such that

J(x*) < J(x) for all x € U nearx*.

Similarly to (3.2), we express this as
min J(X) (3.4)

xeU

or say that we seek to solve the problem
n&in J.
A global minimizer is a poink* € U such that
J(X") <J(x) forallxeU.

WhenU restrictsx component wise with thiwer boundxgyer andupper bounk¥pper such
that
U={xe RN | Xiower < X < Xupper}

the optimization problem is calldabx constrained

Gradient

Performing optimization is always an iterative proceduree vectorx* denotes the solution,
x a potential solution anx¥ } .~ the sequence of iterates. Tindtial iterate Xo is also called
initial guessor in the context of structural optimizationitial design Forx € RN the partial
derivative1J(x) € RN denotes thgradientof J,

-
d0J d2J ) 7 (3.5)

0 = —=—...—
J(X) ((9X1 (9XN

when it exits.
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3.1. Fundamentals

lterates{x} are formed byx(**1 = x(k) - td with the decent directiordcandstep length
t. The gradient gives a (not necessarily optimal) decenttimed = —[1J(X) but it does not
give the step length.

Hessian

02J denotes thélessianof J,
02(x)
N 0Xi (9Xj ’

when it exists. Note thafl?J is the Jacobian dflJ. However,[J2] has more structure than a
Jacobian for a general nonlinear function.Jlis twice continuously differentiable, then the
Hessian is symmetric.

With J twice continuously differentiable in a neighborhood ofreelsegment between points
x* andx = x* +e € RN andt € R, thefundamental theorem of calculgs/es

(0%J)ij (X) (3.6)

J(x) = J(x) +/01 D0J(x* +te)Tedt
and L
0J(x) = 0J(x) +/0 02J(x* +te)edt.
For a sufficiently smalj|e|| this yieldsTaylor’s theorem
J(X* +€) =J(x*)+0J(x") Te+ e 023(x")e/2+O(||e||?).
By solving the linear systeniNewton methodjives
023(x)d = —0J(x),

the best decent direction whars close enough t&* including step lengtht(= 1).

Optimization with Constraint Functions

Common introductory literature about optimization covendy unconstrained optimization
(Kelley [1999], Geiger and Kanzow [1999], ...) whereas ¢meed optimization can be
found e.g. in Geiger and Kanzow [2002].

The general form of an optimization problem wibnstraintgs written as
min J(X)
st.gix) < 0, (3.7)
0

h(x) = 0.

g is the vector ofM inequality constraintgg RN — RM andh is the vector ofP equality
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3. Optimization

constraintstt RN — RP. g is to be understood component wise as
gi(x) <0 foralli=1,...,M.

The connection of the notations (3.4) and (3.7) is the falhmyg andh form the feasible set
U={xeRN|g(x) <0, h=0},

or we formulate the box constraints alil #inear inequality constraint functiorggx) = x:

XOWe_qi(x) < 0 foralli=1,...,N,
ONi(XN) — X PP < 0 foralli=1,...,N.

A method to formulate an constrained optimization problegppraximately as an uncon-
strained optimization problem is tipenalty method

min ®;(x) = J(x) + o] imax(o, gi(x))*+ o] ihi (%)?,

where the penalty parametes§ and o" are generally to be found iteratively such that one
has to solve a sequence of problems miiix). The iterates during solving min®;(x) are
often not within the feasible sét.

Not all inequality constraints are necessarily active abiafx. Theactive seis given as

1(x) ={i | gi(x) = 0}.

We have restricted ourselves to minimization, meximizationcan be performed analo-
gously by the relationship
maxJ(X) = —min J(X).

3.1.2. Optimality Condition for Unconstrained Problems

Dealing with an iterative process, we have to define when ¢lgeence of iterate@((k)}kzo
has reached the optimudix*). This is done byoptimality conditions There arenecessary
andsufficientoptimality conditions.

The first optimality condition is a necessary conditionfioft order as it is based on the
gradient (3.5). For an unconstrained problem a continundgiéferentiable functiod has a
local minimizerx* if

0J(x*) =0. (3.8)

The condition is not sufficient as (3.8) does not indicatetivae](x) is a minimum or maxi-
mum.

A necessary condition afecond orderas it is based on the Hessian (3.6), states that for
a twice continuous differentiable functiahfor a local minimizerx*, 02J(x*) is positive
semidefinite
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3.1. Fundamentals

The sufficientoptimality condition for unconstrained minimization of wite continuous
differentiable functiord states that if

(&) OJ(x*)=0and
(b)  O2J(x*) is positive definite

thenx* is a strict local minimizer of. Note that this condition is sufficient but not necessary.

3.1.3. Optimality Condition for Constraint Problems
TheLagrange function [(x,A, i) : RN xRM xRP — R of (3.7)

M P
LA ) =30+ 3 A0+ 3 Hihy ()
i= =1

is the base for th&arush-Kuhn-Tuckeror KKT-condition
OxL(X,A, 1) = 0,
h(x)
A>0,gx)<0,ATgx) = 0

I
o

(3.9)

in an component wise sense and
M P
OxL(X, A, 1) = 0J(X) + Zl)\iDgi(x) - Z HjOhj(X).
i= =1

Any (x*, A", u*) fulfilling (3.9) is calledKKT-pointof the constrained optimization problem
(3.7), the vectord * andu*, or rather their components, are calleafjrange multipliers

The conditiorh(x) = 0 for the equality constraints is clear. The conditians 0, g(x) <0,
)\Tg(x) = 0 require the Lagrange multipliers for all inequality caasits which are not in the
active set to be zero. Thus, the conditidgL (x,A, i) = 0 coincides for the case = 0 and
I(x*) = 0 (no active inequality constraints) with the necessanydition for unconstrained
optimization (3.8).

A KKT-point of (3.7) is a minimizer under certain regularggnditions. The KKT-condition
is the standard optimality condition in many optimizatimdes. Particularly for large scale
systems, often no further second order conditions areexgbpli

3.1.4. Classification

Categories

We cite from Geiger and Kanzow [2002] the following propestused to categorize optimiza-
tion problems:
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* Linear optimization J(x), g(x) andh(x) are linear, as in
minc'x s.t.Ax=Db, x>0,
with Ac RPN ¢ c RN, b e RP.

* Quadratic optimizationJ(X) is quadraticg(x) andh(x) are linear, as in
min %XT Bx+c'x+y s.tAx=b, x>0,

withBe RN*N B=BT, yc R.

 Optimization with box constraintsl(X) is arbitrary linear or nonlineag(x) andh(x)
are linearXower < X < Xupper

* Linear constraint optimizationJ(x) is nonlinearg(x) andh(x) are linear.

» Convex optimizatianJ(x) is convex, all functions irh(x) are linear, all functions in
g(X) are convex.

* Nonlinear optimizationJ(x), g(x) andh(x) are arbitrary, as in

minb(x)Tu(x) s.t. A(X)u(x)=b(x), 1—x>0.

Properties

The following properties have an impact on the practicalaolity of the problem:

» Smoothnesdf all functionsJ(x), g(x) andh(x) are at least once continuously differen-
tiable, the problem is amooth optimization problem

* Numerical availability of gradientdn the end only such problems can be solved where
all gradients can be numerically obtained by the availabiést Common techniques
to overcome thisgerivative-free methodgke genetic algorithmsfinite-differenceap-
proximation orautomatic differentiationcannot be efficiently applied to structural op-
timization problems.

» Dimension of the problenis defined by the number of the design variables and equality
and inequality functions. Also theparsityof the derivatives matters.

3.2. Topology Optimization
Structural optimization comprisesizing shape optimizatiorand topology optimization
Topology optimization deals with the problem of where tocelanaterial and holes. An-

swering this for any spatial poistwithin a design domaif, no a priori information about
the result is needed and the shape and sizing problem argdsatylicitly .
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3.2. Topology Optimization

There is aranalyticaland anumericalapproach towards topology optimization. The first
follows the paradigniirst optimize, then discretizend deals with théopological gradient
The numerical approach follows tfiest discretize, then optimizearadigm.

There are also mixed approaches, such as numerical shap@zapibon combined with
analytical topology optimization.

Modelling linear elasticity asrussesinstead of the continuum formulation in Sec. 2.1.4,
topology optimization deals with connecting or disconimegtegions/ bars.

Within this thesis, we cover exclusively numerical topglagptimization of continuum
based on th&IMP approach.

The SIMP model has two very important features: it is based oglatively simple idea
and it is very efficient. As a result of the underlying prideipimplementation and integra-
tion into existing finite element simulation codes is sthgigrward, as demonstrated with a
completely self contained 99 lines of MATLAB code implemeiin in Sigmund [2001]. The
actual simplicity of the basic approach is expressed inéhm ISIMP, an acronym fagolid
Isotropic Material with Penalization The efficiency is reflected by its wide application and
extensions within the scientific community and the fact grasently all commercial topology
optimization tools are based on the SIMP model.

Within this section we restrict ourselves to linear elastic

3.2.1. History of SIMP

Important Contributors

The method goes mainly back to Martin P. Bendsge with thg eamtks Bendsge and Kikuchi
[1988] and Bendsge [1989]. Significant contributions tasacurrent usability have been
made by Ole Sigmund, starting with his PhD thesis Sigmun@4].9With the DTU, Danish
Technical University, both represent the currently domiacation worldwide for research in
the field. Further early researchers include Noboru Kikudi§iA, Nils Olhoff from Aalborg,
Denmark, a further key research location for research anfg@éfeg Achtziger, Erlangen, the
strongest topology optimization group in Germany. Georgevany, Hungary, is now chief
editor of the most important journal within the communityustural and Multidisciplinary
Optimization. Important contributions with respect to dymc topology optimization have
been made by Jacob S. Jensen, DTU.

The standard literature, especially for advanced readetbe very comprehensive book
Bendsge and Sigmund [2003]. In Christensen and Klarbri@§PRa more basic selection is
presented as a textbook targeting students.

Notes on the history of the SIMP model can be found in the mapgmund and Petersson
[1998] and Rozvany [2009].

The Variable Thickness Sheet Problem

Our model is a static linear elastic structure with suppod @ad as depicted in Fig. 3.1, also
known as cantilever problem.

41



3. Optimization

Figure 3.1.: The cantilever model problem for compliancéojzation, see also Fig. 2.2.
Nodal support and nodal force loading are not physical.

We introduce another notation for the bilinear and lineamfas the weak formulation (2.15)
with the solutionu and test functiom

/(%W)T([c]%u)dQ _ /wadQ
’ aluw) = L?w). (3.10)
The model problem is theechanical energy
J=a(u,u) =L(u). (3.11)

A geometrical interpretation df(u) = [q fTudQ is the displacement at the load point.
The idea of thevariable thickness shegtroblem is to introduce the heightx) as design
function to a flat domain. The height is normalized tec®(x) < 1. The height models an

isotropic material tensor as
[€](h(x)) = h(x) [c]

which leads to the bilinear forra(u,w). The continuous compliance minimization problem
is then written with the target volumé&* as

min L(u) (3.12)
st.aluw) = L(w), (3.13)
/h X)dx < V*, (3.14)

e [0,1].

The problem is also known aomplianceminimization problem which is equivalent to
maximizing the stiffness. The inequality constraint is wmoas thevolumeor resourcecon-
straint. Without volume constraint the trivial solution wd be the full material. The notation
for dependence of the location will be neglected from now on.

In a discretized version we assume the height fundtidéa be piecewise constant within
finite element cells. When the whole computational dongaiis the design domain, meshed
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3.2. Topology Optimization

by N finite element cells, the discretized design vebtter (hy,...,hy)" can be placed outside
the local finite element stiffness mati (2.18) as

Ke(h) = heKe,

which results from the assembly (2.17) in the global systeahriml?(h). Hence we can
formulate the discrete version of the compliance minimaraproblem as

min fTu
st.K(hu = f,

heVe < V7, (3.15)
e; eve
h(x)

€ (0,1],

with Ve the volume fraction of the element. A lower bound of zeroHaxould result in an
indefinite linear system and is therefore not feasible.

The solution of the problem is given in Fig. 3.2. With resptxtthe classification in
Sec. 3.1.4 it has the following propertieb= fTu = u'K(h)uis a convex function, but the
state problem, formulated as an equality constraint, idimear and the problem is a nonlinear
optimization problem. The design vector is box constraiaed continuous. All functions are
differentiable. The first derivatives are, as shown in Sez23numerically available. Both the
design vector and the state problem can be come rather [Bingeproblem has the beneficial
property that a unique solution exists.

TAPLT s o R U —
D i Y G Oy
L T T

L

iy a0 oy g Y
LA AT T ]
e e S
e Vi, e

J=g
N

(a) Color coded solution df(x) (b) lllustration for physical interpretation

Figure 3.2.: (a): The solution of the variable thicknessesipgoblem. (b): Physical interpre-
tation of the height function. The volume constraint forahtilever examples is

50%.

Topology Optimization by Homogenization

The solution of the variable thickness sheet problem, F@,. @oes not result in a topology,
which is the distribution of materiatY*) and holesQ \ Q*) in the desired form

X) — 1 ifxeQF,
XX =91 b if x€Q\ Q"
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Restricting the design domain koc {hmyin, 1} would result in a loss of differentiability. The
numerical effort in solving suchmixed integemproblems in topology optimization is several
magnitudes higher, see e.g. Stolpe and Svanberg [2003].

Martin P. Bendsge and Noboru Kikuchi presented in BendsdeKauchi [1988], often
referred to as a landmark paper, an approach to interpreetudt of the variable thickness
sheet problem as topology. The principle idea is to haveastoucture with a ratio of holes
and material that models the height information of the \meahickness sheet solution.

The idea is based on mathematibaimogenizationA base cell, also called a representa-
tive volume element (RVE), is assumed to be infinitesimadiyeated. This is expressed in
the mathematical model by periodic Dirichlet boundary agbads (Y-periodic), see Fig. 3.3
(b). From the solution of three test strains in 2D and six $&stins in 3D, a homogenized
tensor{c"] can be computed. On a macroscopic level one assumes honoogarwtinuum
material[c™] which represents the properties of an arbitrary structutieimthe base cell on
the microscopic level.

The ansatz of Bendsge and Kikuchi is now known within freeemalt optimization aso-
cal periodicoptimization. Using just a few parametatswithin an base cell, an orthotropic
homogenized tensdc™](de) is implicitly modelled, see Fig. 3.3 (a). Rotation is alsmsial-
ered. The state problem is solved based on the homogenizeat$tc™](d(x)) for x € Q in
the macroscopic domain.

In contrast to the variable thickness sheet problem, wheseatar value per design ele-
ment models a physical thickness, a small set of parametaiglsia periodic microstructure,
consisting of material and holes.

(a) Structure of periodic base cell (b) Nlustration of periodic boundary conditions

Figure 3.3.: (a): Parameteasandb for an orthotropic structure within a reference cell. (b):
Periodic boundary conditions on the displacement.
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3.2. Topology Optimization

Penalized Topology Optimization

In Bendsge [1989] the height functitix) is generalized agseudo densitp(X). In contrast
to the preceding homogenization approach, where the deargbles model a microstructure,
or the scalar value for the variable thickness sheet forimmavith the physical interpretation
as height, the pseudo density models an ersatz materiahwigiysical representation from
the start. The function values are to be interpreted as fatenmal withp(x) close to 1, void
for values close to a lower bourmhi, and no direct physical interpretation for intermediate
values, such that

O<pmn<p<1

To avoid unphysical pseudo density, intermediate valuepanalized by a simple power law
function

Upower(p) =pP, (3.16)

with p usually chosen as 3. As the penalized pseudo density isegpplthin the solution of
the state problem by modifying the material tensor as

[€](p) = u(p)[c] = pP[c], (3.17)

one callsu(p) thephysical pseudo densjtwhich coincides with the pseudo density only for
u(p) = p. Itis again efficient to definp to be piecewise constant within thEfinite elements
of the design domain, resulting in the design vector

p=(p1,...,on)"
This allows the easy determination (and derivation) of tdoal finite element matrices
IZe(pe) = U(pe)Ke = pEKo (3.18)

to assemble the global stiffness maﬂﬁl((p). For a regular mesh the compliance optimization
problem is given as

min flu (3.19)
st.Ku = f, (3.20)
N

pe < Ny/N, (3.21)
e; e

Pe € [Pmin,1]. (3.22)

Note the formulations of the volume constraint, continuou@.14), discretized for an arbi-
trary mesh in (3.15) and discretized for a regular mesh @1(3with N, /N being the desired
fraction of material.

To gain the penalizing effect, it is essential that therenisaetive volume constraint. As
depicted in Fig. 3.4, for alp not close to zero or one the physical effect (resulting et
ness) is much smaller than its 'cost’ with respect to the m@iconstraint. The interpolation
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functionu(p) has the desirable property of being strictly convex.

1.0

linear -
power law ——

0.8

0.6 1

04t

0.2

physical pseudo density

00 02 04 06 08 10
pseudo densitp

Figure 3.4.: For the variable thickness sheet problens, linear. Bendsge’s power lap”
(usuallyp = 3) provides efficient avoidance of intermediate materidle RAMP
. . . p . . . . . .
interpolation functlor}m is used for dynamic optimization as it has no zero
slope forp approaching zero.

Fig. 3.5 shows that the penalizing effect of the power lawnpblation function works in
comparison to the variable thickness sheet problem (se8 g The mesh dependency of the
solution results from the mathematical non-existence aflati®n in the continuous setting.
The problem without penalizatiop & 1) coincides with the variable thickness sheet problem,
where a solution exists. However, for the new penalized Iprolthis is not the case. The
reason is the non-closeness of the set of black and whitgrieesDn any finer discretization
there exists an arrangement of material and void elemetitsatietter objective value through
constant volume fraction.

The checkerboard structure had initially been interpretdn optimal microstructure, re-
lated to the microstructures generated with the homoggaizapproach. As revealed in Diaz
and Sigmund [1995], the checkerboard structure is meredytdia bad numerical approxi-
mation of the linear elasticity problem by finite elementshwiecewise linear test functions.
At a sufficiently high order, no checkerboards appear. Fromathematical/homogenization
point of view, a microstructure is indeed the best approxiomeof the original variable thick-
ness sheet solution. However, the microstructure must @oiunerically modelled by edge
connecting elements. Within the numerical domain, howeveican conclude from the series
in Fig. 3.5 that the penalized 0-1 solution does not conveiigie Ny — o to the continuous
(global) solution of the variable thickness sheet problEig, 3.2 (a), but merely to a numeri-
cally optimal solid/ checkerboard/ void solution.

In Bendsge [1989], a drawback of the penalized pseudo gemgjtroach is emphasized:
By using the homogenization approach, arbitrary rotatéldotropic ersatz material of opti-
mal stiffness relation and orientation can be generatethwdaves material compared to the
isotropic pseudo density approadfree material optimizationa further structural optimiza-
tion approach is based on this motivation, see e.g. Zowe Et997].
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Figure 3.5.: Penalizing the pseudo densitySyeffectively avoids intermediate material com-
pared to Fig. 3.2. However two effects appear without addéi regularization:
mesh dependency and checkerboards.

Sensitivity Filtering

While not an originator of the SIMP model, Ole Sigmund isl $tl be credited for several
essential contributions that significantly promoted thehilgy and acceptance of the method
significantly.

In his dissertation (Sigmund [1994]), a method is proposaitiwprevents checkerboards
and mesh dependency. Based on an heuristic approach redtivain theblur filter in graph-
ical image processing, the gradient informatibl{p)/dpe is replaced by

2J(p) ZieNeW(Xi)pi%;‘))

e PeYien,W(Xi)

(3.23)

wheredJ(p)/0dpe is the average or convolution within neighborhood elemdlatdefined by
radiusR and a linear weighting/(x;) = max0, R— |Xe — X;|). The filter is known asensitivity
filter or Sigmund filter In a mathematical sense the filter interferes with the nabgradi-
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ent information, hence it requires optimization algorighwhich are insensitive to disturbed
gradients (Sec. A.2) and the KKT optimality conditions (S&d.3) cannot be applied.

[ [ ]
(a) Nx = 30, pseudo density (b) Nk = 30, physical pseudo density

(©) Ng = 60 (d) Ny - 120

Figure 3.6.: Applying Sigmund’s sensitivity filter (3.23)ittv a radius of .15 (whole width
is 3). (a) pseudo density, (b) penalized physical pseudsigenThe physical
volume is 42% instead of 50%. (c) and (d) with the same radnasadso 42%
physical volume.

The results in Fig. 3.6 show no mesh dependency. With thepgéiweeof Fig. 3.6 (a) the
penalized pseudo density is shown. As the volume consi{&ia1) needs to be based on the
original pseudo density, the physical value

N
phys _ 1 p
Dol P)=3 D P (3.24)
vol N i; i

differs from the constraint value. Furthermore, the optaion result shows intermediate
pseudo density along the material boundaries, which is tilce pf most regularization tech-
niques, see Sec. A.3.

In the paper Sigmund [2001], a self contained MATLAB topglagptimization implemen-
tation based on the SIMP model is presented. The 99 linesd# owlude a simple finite
element solver, an optimizer (Optimality Criteria meth8&ec. A.2) and sensitivity filtering.
The paper contributes significantly to the success of thePS#yproach; many researchers
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base their implementations on the 99 lines code.

3.2.2. Sensitivity Analysis by the Adjoint Method
Problem Setting

We assume a design independent load, as this is a commonrahslkeeaappropriate refor-
mulation is straight forward. The static reference probtdrall be based on the compliance
function

Imecr(P,u(P)) = u(p) K (p)u(p) = Tu(p), (3.25)
with u depending implicitly on the design vectprby the state constraint
K(p)u(p) = f.

The formula for a general objective functidf,u(p)) is given later. The gradient of (3.25)
is then given as

e 91 108 _ (100
dPe dPe dpPe dpPe
However, the sensitivity of the solution with respect to tesign variabledu/dpe is not
known a priori.
Applying an approximative finite difference scheme woulguiee solving forN solutions,
varying anyps fore=1,...,N.
The derivative of the state equation

R, gou_ot
dPe dpe Ope

allows us, when rearrange as N

gou__ oK

dPe dPe

to solve for the exaadu/dpe. The global assembly (2.17) of the local finite element roagi
(3.18)

Y

Re = U(p) RE?
respectively for a regular grid and the standard power law

Re - pepK07
has fordl?/pe the contribution of a singlc?lze/ﬁpe only, with
Ko
dPe

= ppd'Ko.

But N equations still have to be solved for a single grad%jgt
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Static Adjoint Equation

Theadjoint approachreformulates the problem by adding a fixed ve&anultiplied with the
residual of the state equation. Hence one adds zero to gaioltbwing form

(p,u(p)) = I(p.u(p)) + A" (K(p)u(p) — ).

The derivative is B
o0 03 93 ou 7 (0K oou
dpe Ope JUudpe ’

which is rearranged as

u. (3.26)

Lo 9J T~> du 94l 19K
— =(Z=+A'K + A
0Pe (au Ope Ope 0pPe

The first term can be eliminated by setting

M ATR=o,
Jou
leading to the linear system
= 0J
ATK = =
oJu

- CANE
= —(5)

using the fact thak is symmetric. The generic gradient is given as

09 _ 91 70K

_ u, 3.27
Ope  Ipe dpe ( )

.

For the compliance functiodyechWwe have

a\]mech o dfTU o

.
du Jdu t,

hence (3.28) does not need to be solved as —u can be directly given from the state prob-
lem. AsJnechdoes not explicitly depend gm, the gradient is given as

0Jmech T 5R
=—-u —u 3.29
dPe dpe ( )
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Due to the previously mentioned sparsity—;%%, (3.29) can be efficiently implemented as

aJmech _ —UT dke
dpe ® dpe

Ue. (3.30)

A necessary condition for a single adjoint problem fogradients is the independence of
the right-hand side of (3.28) from the design variable. Ried a direct or iterative solver
based on a LU decomposition, the calculation of the addatiaght-hand side is cheap.

In linear algebra (3.28) is callesklf-adjointdue to the symmetry of the operatﬁr In
topology optimization one uses the term with respect to dianpe optimization to denote
that the adjoint equation does not need to be solved. Thewacts also called_agrange
multiplier.

A symmetric system matrix and a design independent rightlséde of the state problem
is assumed as the necessary extensions are trivial andiadsoiigthe standard literature, e.g.
in Bendsge and Sigmund [2003].

Hessian

We are interested in the second derivativelgf.» Deriving the first derivative (3.29), or
(3.30), again, we immediately see

dZJmech
api 9pj

=0 foralli#j, i,j=1,...,N.
Deriving Jmechtwice for the diagonal elemept, we again apply the adjoint approach and set

= —uT%ujL/\T(Ru— f).

dPe
Thereby, we obtain
o oK du  19%K oK  — du
= —ou' —u’ AT [ = urK— |,
dPe dPe Ipe 0p3 dpe dpe
where?X is only non-zero ifp is penalized. Rearranging gives

[

L 0K du  10%K T 0K
2u +ATK —-u u+A —u,
pe ( dpPe ) dpPe Jo%; dpPe

with the adjoint equation
K
KA=2-"u
dpPe
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As the right-hand side depends pyN adjoint equations have to be solved to compute a single
diagonal Hessian, which makes its use impractical.

Time Harmonic Adjoint Equation

We assume time harmonic excitation, see Sec. 3.2.4. Thests exgeneric formulation cover-
ing the sensitivity analysis of most dynamic objective fums. Its first use was in Sigmund
and Jensen [2003] and Jensen and Sigmund [2005]. The detaisnever published in a
journal in their entirety but the ansatz is sketched in Jefd@07b] and Duhring et al. [2008].
However, Jensen [2007a], a handout from DCAMM advancedd@@)7 at DTU, contains

all details including its application to several objectiuactions.

The general algebraic time harmonic system, see Sec. &BIlcémplex due to damping,
see Sec. 2.1.5, and is given as (2.26)

Sip)u(p)=f.

Note that the derivative with respect to a complex propetig §olutionu) is mathematically
given only as a limit formulation

im J(u+td) —J(u) .
t—0 t

The idea in Jensen [2007a] is to split the solutianto the real partir and the imaginary part
U, and also to use the complex conjugate system

~k

S(pu'(p) =t

Analog to the adjoint method in the static case, the genetgkctive function
J(p,ur(p),u(p)) is appended by two Lagrange multipliers for the two resicduia a

~x

®(p,ur(p),u(p)) = I(p.ur(p),u(p)) + A1 (S(P)u(p) — f)+A(S (p)u*(p) — 7).

The sensitivity with respect to the design is

0P _ 03 93 dur, 0)0u
dpPe Ope OJUurOpe Ju dpe
S  dur . IS . =du
+ Al R+ S+ S
1<dpe R dPe : pel : ape)
S  dugr .0S . =du
+ A R+ S SRy —jS |,
2<dpe R dPe Japel : ape)

52



3.2. Topology Optimization

which is again to be rearranged according to the solutiovatéres to be eliminated

90 _ <ﬂ+/\ S+A s)a"R

0pe 0 URr ape
) 1= 1= du
+ <0U| +JA1$ jAzs) 0pe

) .10S +0S

+ +A u+As 2>

ape  "apet T2 ap,

The first and second term can be eliminated when
2J

iATS-jAlE — _j_i. (3.32)

Two systems of equations and two unknown vectors are eadilgd. Next, (3.32) is multi-
plied by |

—A1S+ A58 = Jdu|' (3.33)
(3.31) minus (3.33) gives
Ta dJ 0J
2A1$ N 0UR J0l.l|
~T CARE VAN
(3.31) plus (3.33) gives
Ta 20 . dJ
ZAZS N dUR J dU| ’
T FARE AR
SA, = —= (auR—i—jﬁ—ul) . (3.35)

Comparing (3.34) and (3.35), we obtain
Ar=2A]
and denote
A=A 1-
Now, the sensitivity with respect to the design changes to
o0 4) . 1dS TS
= +A u+(A") —u’
Ope  Ipe dpPe A dPe
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which can be written as

FIIN T 0S
—=—+4+2Req{A —u,, 3.36
Ope  Ipe { dpPe } ( )
whereA is the solution of .
~T 1/ 0J 0J
A=—(—-]—) . 3.37
S 2 <0UR J 0U|) ( )
The static deviation is contained in the time-harmonic fakawith w = 0. ForJmech= fTu
we obtainf—lfR = f7, henced = —2u” which results inj—l;’e = —uTg—:)(e u.

3.2.3. Mechanism Synthesis
Generic Problem Formulation

The compliance problem (3.19)
min fTu
can be generalized to the form
max| " u, (3.38)

where theselection vectol Identifies regions and orientation of the discrete solufiigid u of
the state equation by selecting the degrees of freedomspameling to the output points and
otherwise setting zeros. The sensitivity analysis is thmeesas for the compliance problem
with gradient (3.27)

- .
dl'u T oK u
JPe dPe

whereA solves the generic adjoint problem (3.28) as

KA = —I.

Applying the problem formulation (3.38) to arbitrary stathultiphysics problems, we see,
that the possibility of arbitrarily maximizing and mininnig within the solution field is in-
deed of great importance. However, there has been no nawgisised for (3.38) within
the topology optimization community. Therefore we haveeled our implementation of the
multiphysics objective function within CFS++ as tbhetputfunction.

Compliant Mechanisms

Within elasticity optimization, (3.38) is the base of thephgation field synthesis of com-
pliant mechanismanitiated in Sigmund [1997]. See Bendsge and Sigmund [R8§3an
excellent overview. Mechanisms can be roughly groupediwitiio fields. Classical mech-
anisms consist of rigid body elements together with hingesyrings and sliders. They are
robust, effective but are to be assembled from differenispaompliant mechanisms, how-
ever, are based on the flexibility/ elasticity of the baseemals. Therefore, they are simpler
to construct but generally less efficient. A compliant mexsia can be simulated based on
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a continuum formulation, and therefore formulated as altgpooptimization problem in the
form (3.38).

To balance between output force and displacement maxiimizatdditional springs are
added at the input and output points, see Fig. 3.7. This lzegbas modification of the state
equation by increasing the nodal stiffness within the glglgatem matrix and is therefore not
explicitly modelled in the problem formulation.

in out £, Uout fin Fout
(a) Problem setting (b) max displacement (c) max force

Figure 3.7.: Motivation for the introduction of springs hetforce inverter benchmark Fig. 3.8.
(a): Assume we want to optimize a simple mechanism by plaaihinged sup-
port. There is no virtue in optimizing for either displacerh@) or force (c) alone
as the respective counterpart tends to zero.

A common benchmark is the force inverter in Fig. 3.8. Noteé thamost mechanism design
problems geometric non-linear optimization is essergiet, Pedersen et al. [2001].

)

\77: :\ )
L — f{Esuanes e
kin fin Uout | Kout =

(a) Problem setting (b) Solution

%

Figure 3.8.: Force- or displacement inverter. (a) showsaasotal compliance mechanism
synthesis benchmark to be solved by (3.38). For the res(l#) ia sensitivity filter
with a radius of 1.5 element sizes is applied, both springs bhavalue of 50 % of
the global nodal stiffness entry.

Hinges

From Fig. 3.8 (b) we see that two components from classicalhar@sms are reproduced:
rigid bars and hinges. The optimizer tries to achieve thadn@fficiency of classical mecha-
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nisms by 'simulatinghingeswithin a compliance setting, see Fig. 3.9 for a close-up.

(a) Undeformed (b) Deformed

Figure 3.9.: Close-up of the upper hinge in Fig. 3.8.

These hinges are, like checkerboards, exploited poor noaherodeling of linear elasticity.
To differentiate from hinges in a classical mechanism, greycalledinite element hingeis
Pedersen et al. [2001]. The extreme form of finite elemergdsrare one edge connections.

Preventing non-physical finite element hinges but obtagingalistic compliant mechanism
hinges is an open research topic. The performance of thenizatiion results is generally
closely connected to the realization of hinges. The earificient approaches perform shape
optimization with a feature size constraint as post-preicgsstep.

3.2.4. Dynamic Topology Optimization

Finite element analysis can be applied on static, transsgyenfrequency and harmonic prob-
lem formulations. Transient topology optimization is oméyely performed, mainly due to
computational cost, an example is given in Dahl et al. [2008pology optimization towards
eigenfrequencies is applied but suffers from the problemutiple eigenfrequencies, see Du
and Olhoff [2007a]. This leaves the optimization of probsewith time-harmonic excitation,
also calledorced vibrations

Modeling

In Sec. 2.1.4, the dynamic linear elasticity formulatior2@ is given, including the Rayleigh
damping model in Sec. 2.1.5 and the time-harmonic exciatdSec. 2.1.6. Analog to the
pseudo stiffness tensor (3.17)

[€](p) = Hsiirr(p) [C]
we can define a pseudo mass
Pm(P) = HUmasdP) Pm- (3.39)

Application of the finite element method results in the glaystem (2.25) as
((jwam—w)M(p) + (1+jwak)K(p)) u=f

with f andu being complex properties. The short form of the state eqnatads analog to
(2.26) as

Sp)u=f (3.40)
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3.2. Topology Optimization

with Sthe complex and symmetric global system matrix explicitgpendent on the design
vectorp.

Penalization

Usually the interpolation function for the maggassis the identity function

Umas{P) = p.

However, applying the power law interpolation functionl(@)

Hpower(P) = pP

as stiffness interpolation functiqrys, low density regions result in relatively 'heavy’ material
with almost no connection to material due to the zero sloptefpower law function, see
Fig. 3.4 and Fig. 3.10 (a) for an example. A remedy is to usdridgonal Approximation of
Material Properties - RAMRnterpolation function (see Fig. 3.4 and Fig. 3.10 (b))

1+9(1-p)

The first eigenfrequency of the configuration with the poveev Is artificially low at 4.8 Hz
compared to 336 Hz with the RAMP interpolation.

HrAMP(P) (3.41)

(a) Power law;p® (b) RAMP: %

Figure 3.10.: Time-harmonic excitation of the design of. B (a) at 500 Hz with two dif-
ferent interpolation functions, see Fig. 3.4. The mas®fastlinear withp and
therefore proportionally much higher than the stiffnedswdensity regions for
the power law (a). For better illustration tkeandy-amplitudes are mapped to
the z-direction in the visualization. The scaling for the RAMRarpolation is
four times higher.
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3. Optimization

Problem Formulations

Any objective function needs to be real valued
J:C—R

and there are several approaches to meet this requiremeshor review is given of the

examples for general sensitivity analysis in Jensen [Z0@Vea only quote them briefly, start-
ing with different, self adjoindynamic compliancéormulations. Note that the term is not
uniquely defined. The abs function is applied as

0J fTur . 4S
_ T £ T 2 T 2 _ T
J=|u f}_\/(f ur)2+ (f u)? pe Re{ 5 u —ape"}‘ (3.42)

Without damping and real value) the forced vibration formulation in Bendsge and Sigmund
[2003] is

2 _

3S

.
—Uu

JPe

J=(u"f)?= (U f)*— (uf )+ 2j(uk f)(ul f), ot

—2(fTu)u

The most common general dynamic problem formulations asedan

N oA S | =1 1/9) .dI\"
J=u"Ap)U*, —— =u" w4+ 2Re{ AT ul SA=-2 <——'—) 3.43
P) 0pe 0pe { 0pe J ( )

whereA = |, the identity matrix, is also known agobal dynamic complian¢evhich mini-
mizes the mean displacement as

J=u"u, 9 _oRrelATIS, . SA=—_u. (3.44)
dpPe dpe
The formulation
J=u"Lu, 9 _oRrel AT93, .S A=—-—Lu, (3.45)
dpPe dpe

with diagonal selection matrik is the dynamic variant of (3.38) and shares the practical
relevance and versatility, see Sec. 3.2.3.

Dynamic Compliance

The difference of the various formulations is not necegsahivious, but we can expect differ-
ent solutions due to the different gradient formulationshétier we deal with minimization
or maximization, the eigenfrequencies will be implicithned.

In Fig. 3.11, two compliance formulations are applied. Acdssion of dynamic compliance
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3.2. Topology Optimization

(@) minuTLu*, f =202Hz (b) minu"Lu*, f =206Hz (c) minuTLu*, f =232Hz

S

(d) minu"u*, f =202Hz (e) minuTu*, f =206 Hz () minuTu*, f =232Hz

Figure 3.11.: In figures (a)-(c) we apply (3.45) with a diagjoof L corresponding td. The
solution in (a) is close to the static solution, for highe&guencies the optimizer
tries to damp the exciting force. Note that there is gray nedtat the force node.
In Figures (d)-(f) (3.44) is applied. Here all lower freqogrsolutions have gray
material at the force node. A density filter is applied. Alllgmns satisfy the
KKT condition.

minimization is beyond the scope of this thesis. Nevergthere are two important general
observations which can be deduced from the results in Fig.. 3.

Just above 202 Hz the results differ significantly, indegenaf problem formulation and
optimization frequency. The deciding factor is the res@eainequency of the initial design.
The optimizer is not able to move a higher resonance thanxtitagon frequency to a fre-
quency below the excitation frequency and vice versa asnapfteally) closer resonance in-
creases the objective function. A good explanation forpinablem is given in Duhring et al.
[2008] and it becomes also relevant in Sec. 4.5.

A second important observation is the fact that all highegfiency solutions for problem
(3.45) and all lower frequency solutions of problem (3.4aydgray material at critical regions
which is not removed by penalization. This is best seen imtban displacement minimiza-
tion in Fig. 3.11 (d): Most material is only weakly connectedhe excitation, resulting in a
low displacement, whereas the displacement of the exaitatode is still limited. Function
J = u"u* (3.44) represents a globalization of local displacemgmtgortional to the squared
2-norm Hqu. Removing local peaks within the vector by higher p-norms easily lead to
numerical difficulties. Such problems are common in the fadldtress constraints, see e.g.
Duysinx and Sigmund [1998].
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3. Optimization

Wave Guiding
Despite their universality, there is, as for the static otiye function (3.38)
J=1Tu,
no common name assigned for (3.45)
J=u"Lu".

(3.45) is often referred to by its first applicatiomave guiding Our multiphysics implemen-
tation is termedlynamicOutput

In Sigmund and Jensen [2003], wave guiding is introducedifite elastic structures to-
gether withband gapoptimization of periodic structures.

= Tex Q
e o Q
EE rop1/”
(a) Problem setting (b) Optimal topology (c) Displacement field

Figure 3.12.: The wave guiding problem setting (a) with éatdisplacement diex and ab-
sorbing boundary conditions @Q, the x-displacement is to be maximized at
MNopt- The solutions (b) obtained by (3.45) show high self-pezadion. In (c),
displacements are visualized by mapping the amplitudesea-tirection. No
constraints are applied. The problem is regularized by aitefilter.

In Fig. 3.12, the function (3.45) is applied to a wave guidexgmple similar to the original
setup in Sigmund and Jensen [2003]. The absorbing boundengitons are realized by
the method of Perfectly Matched Layers. Figure 3.12 (b) shtve phenomenon cfelf-
penalization as the solution is almost black and white without any fornpealization or
constraints. Self-penalization is covered in detail in.%ec
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4. Topology Optimization of a
Piezoelectric Actuator

Within this section we apply topology optimization to a mefectric plate actuator. Various
objective functions and physical aspects are discussed.

4.1. Model

Our reference model is a piezoceramic laggy (PZT-5A) 50 um thick, attached to an alu-
minum layerQ, 100 um thick. The edge length of the quadratic plates are 5@niy the
aluminum plate has support at its outer edges, see Fig. 4chwdrepeated for convenience
from Fig. 2.5. The material properties are given in App. A.5.

[s I_free/opt Is
——— L
hplate Qm
hpiezo / |
7 / I —
[ hot Qp rgnd/h‘ace rgnd/iface [ hot Qp
(a) Schema (b) Simulation

Figure 4.1.: The reference model with the piezoelectriel&, as design domain, the elastic
plateQn, provides support via the edgEs.

The connection of the two layers is assumed to be ideal. Aitiaddl glue layer, e.g.
based on epoxy, can be modelled as an elastic layer, which mimtechange the principal
mathematical model but could result in numerical difficestif the layer is too thin.

The linear continuum models described in Sec. 2.1.3 andZS2@& are applied. The thin
layers are discretized by one finite element of second ordéra thickness direction. Nu-
merical tests show validity against refined models comgistif multiple finite elements in
thickness direction. Plate theory and shells are not aghplibe discrete finite element system
of the piezoelectric-mechanical coupled system is givgR .i6b).
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4. Topology Optimization of a Piezoelectric Actuator

4.1.1. Ersatz Material Ansatz

We recall the piezoelectric constitutive laws (2.30) an@12

o = [cF|S—[e]'E,
D = [e|S+[£JE.
The ersatz material model is applied to the tensor of elastiduli [cF] in (3.17) and to the

masspnm in (3.39). Also applying this approach to the piezoeleatoapling tensofe] and
permittivity tensor €5, we obtain

[€5](p) = me(p)([cFl,
Pm(P) = Um(P)Pm,
[€](p) = Le(p)[€], (4.1)
[€7(p) = He(p)[€9, (4.2)

with the pseudo densijy as design variable. In a homogenization approach of a pieztoie-
mechanical coupling, the first application of the ersatzzmaltapproach is given in Silva et al.
[1997] for two dimensions and Silva et al. [1998] for thremdnsions. Without homogeniza-
tion but for finite domains, the first work is Silva and Kiku¢hP99] with objective functions
based on eigenmodes. In the works mentioned above, the@deudityp is applied linearly
to the material properties as

He(p) = Um(p) = He(P) = He(p) = p. (4.3)

Grayness is reduced by the constraint

aw(p) = /Qpde < Whin,

with p chosen as eight and a problem dependént.

Pseudo Polarization and Electrode Design

In Kogl and Silva [2005] the polarizatiofi is added as an additional design variable called
pseudo polarizatiomith
de[-1,1].

3 is applied to the piezoelectric coupling tensor only, chiagg4.1) to
[€](p,F) = ue(P) Up(F) [€]. (4.4)

Switching the polarization for a single element layer mdaed the same effect as switching
the applied potentials. The practical interpretation exéfiore not a local polarization of the
material, but structured electrodes with several equig@kesurfaces isolated against each
other.
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4.1. Model

It is worth mentioning that the described method does notcketor the optimal local
polarization in the sense of free material optimizationekhivould include the orientation of
the polarization. For piezoceramic plates with a presdripelarization orientation parallel
to the surface normal, the optimization for the pseudo [d#ion rather corresponds with
electrode designThrough such electrodes, the local polarization is alsbrieally possible,
see Sec. 2.2.1.

In Donoso and Bellido [2009], it is proven that the optimalusion contains only polar-
izations withd € {—1, 1}, which is also intuitive for a maximization problem. Notetlior
piezoelectric bulk material modelled by multiple layerscal variations of the polarization
within the body are probably not fabricable and interprkgdiy electrodes.

SIMP Model

The early research in piezoelectric topology optimizat®odominated by Emilo C.N. Silva.
Kogl and Silva [2005] is the first work, in which the SIMP appch with penalizing inter-

polation functions is explicitly applied. The objectivetsmaximize thanean transduction

which is formulated as multiple objective problem togetiwth a compliance minimization

part, see Sec. 4.2. Several combinations of power law iok&tipn functions are evaluated,
the suggested combination (for the static problem fornmidis

He(p) = P, He(p) = P, 1p(9) = 2, Ue(p) = p.

In this work, we consider the optimization for polarizationly for special cases and restrict
ourselves generally to the pseudo density.

4.1.2. Interpretation of Void Material

Within SIMP based topology optimization, it is no genergllyssible to interpret the inter-
mediate material physically. In particular this holds ewsore for multiphysics piezoelectric
material. However, the correlation on the change to theorsnsatters, as permutations of the
power laws result in different results in Kogl and Silva (&).

Void material has a numerical and physical interpretatiNiumerically, the diagonal co-
efficients from[€F] and [Ea must not be null. In this way the system is kept regular. The
off-diagonal piezoelectric coupling is allowed to beconeeaz note that the pseudo polariza-
tion, which can be zero, is only applied there.

Physically, a good void interpretation is given by air. Tledative permittivity of air is
g3 = 1.00059 compared to diagonal entries in the rangg’éf>* = 1700. The piezoelectric
coupling is zero. The mechanical stiffness is zero, but tonerical reasons a small value is
necessary, e.g.-1076[cF].

A bi-material formulation in the sense of

()] = HE)OTTZA] + (1= uP)I ()]

follows the physical interpretation directly and is apglie Duhring [2009]. Within this work,
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4. Topology Optimization of a Piezoelectric Actuator

we apply the standard approach
H(Pmin) =1- 10_67
due to more easily readable notation.

4.2. Mean Transduction

As an introduction to piezoelectric topology optimizatenmd to illustrate the properties of our
model in Fig. 4.1, we discuss tmeean transduction

4.2.1. Definition

Emilo C.N. Silva published several works with varying colers, starting with Silva et al.
[1999], which covers static and dynamic topology optimmabf piezoelectric actuators and
sensors with multi-objective problem formulations, irdihg mean transduction.

The mean transduction gives a measure for the coupling lkettye electrostatic and me-
chanical field, or as formulated in [Kogl and Silva, 2005].the conversion of electrical into
elastic energy and vice versa”.

The mean transduction is based on the reciprocal theoretasifaty. Applying as load a
tractiont, results in displacement; and applying another tractidg results inu,. Then it

holds
/tgubdrz/ tfugdr,
Mo My,

or as stated in [Silva et al., 2000]:

.. by knowing the body response for one load case, we caualatddhe displace-
ment at any point of the body caused by another load case.

In Silva et al. [1999], the corresponding piezoelectricipeacal theorem is deduced in
detail. It states

/tTubdr+/ dagpydr = /tTuadF+ dbgoadr
da

whered is the length of the surface normal electric displacemeatore
d=|n"D|.

Therewith, we can write
Jba = Jab
and obtain in FEM formulation

(o) (2)-() (&)
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4.2. Mean Transduction

36 -6 B
®) \Kup' —Kgp) \@a @) \Kug' —Kgp) \@,)°

Choosing the load caseas charg&), = 1 uC andf , = 0 we get

or

Kuula = —Ku(p (/88

and using for load cade f,, = 1N andQ, = 0 we obtain

This reduces
Joa = u-tl)—Kuu Uy + UE)-KU(p @, + ‘p-tI)—K(pu Ua — (o-tl)- Koo @,

and
Jab= u;_—KUU Up + U;KU(p (e q’gK(pu Up — (P; Koo @y

to the equivalent mean transduction formulations
Jba = @5 Kgulla — @5 Koo @, (4.5)

and
Jab = UI Ky Up + Ul Kyp . (4.6)

4.2.2. Notation for Multiphysics Problems

The SIMP optimization model as numerical optimization noetis tied closely to the linear
system representing the actual physics. Rewriting a gelmeear system originating from an
arbitrary strong coupled multiphysics system as

Ku=T, (4.7)

specifically

Su="f, (4.8)
generally all methods for standard topology optimizati@am e directly applied to mul-
tiphysics. In the present context (4.7) represents the fodupled system (2.58) with
U= (unu, @7 and f = (f, f,a)" equivalent to the reduced notatigh= (u )" and
f= (f q)7. Applying the ersatz material approach on the piezoeteptit, we write

~

Ku=T, (4.9)

specifically R
Su-=Tf. (4.10)
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4. Topology Optimization of a Piezoelectric Actuator
4.2.3. Sensitivity Analysis
With the ersatz material applied, the sensitivity of

Jpa = G-tln— /f\a

reads due to the constant excitations as

Ok _ 700> _ i 00y
dPe 4 dpe 4 0pe’
Using the derivative of (4.9),
Ky gou
Pe dPe
we get R
9Joa ﬁTﬁﬁb. (4.11)

Note that the standard adjoint based sensitivity analgsis,Sec. 3.2.2, has not been used.
Comparing (4.11) against the generic static gradient §3v&%an interpret-u, as the solution
of the adjoint equation (3.28)

= 0J
Ju
With load case as adjoint problem and
0Jba . /f\
ou ¥

the adjoint solutioA equals—U,. The same holds fal,, with

~

dJab o _GTa_KA
dPe b dpe

and load casb as adjoint equation. The interpretation of the mean tractgaluload cases by
adjoint method has, to the best knowledge of the author, @& ldescribed yet.

4.2.4. Application

With the given load cases ang realized as nodal forcé, with the property|f,,| = 1, one
obtains R
Jpa=Ug = |Ua,

where the displacement; at the contact point of the acting force is optimized. Note th
similarity to the elastic compliance problem. Analoguéehte maximization of the compliance
problem, which results in rigid body movement, Kogl and/&i]2005] states:

If [the whole domain is design domain], the maximum dispiaeat is obtained
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4.2. Mean Transduction

when the stiffness approaches zero. To avoid the strucegarhing overly flexi-
ble, it may be necessary to simultaneously minimize the ngceampliance of the
structure . ..

The objective function, applied in Kogl and Silva [2005] is

with a weighting coefficientv € [0,1]. Note that here the maximization of displacement is
combined with the minimization of displacement. A volumastaint accompanies the com-
pliance minimization. Checkerboards are prevented byitbathsfiltering.

Our model structure, Fig. 4.1, has mechanical suppdiz,abutside the optimization do-
mainQp. This gives the optimizer full freedom within the design dmas rigid body move-
ment cannot appear. Performing the optimization withollime constraint and compliance
functional, the optimization process forms a shrinkingular piezoelectric layer, centered on
the supporting plate.

To analyse the effect of (almost) vanishing piezoelectratenal, we perform a parameter
study of the two load cases. For a set of piezoelectric patohearying size, finite element
simulations are performed. The patches are geometricailyefted. Figure 4.2 shows the
results.

Applying the force, Fig. 4.2a shows least displacement feolad plateQ, and a higher
finite displacement whef, is almost vanished. The smallest piezoelectric patch rest le
stiffening and the system responds with the largest stréammKy,, inducing a high, yet finite
electric potential, see Fig. 4.2b.

Applying a constant charge, the charge density increasesfecreasing piezoelectric patch
in the limit to infinity. Hence, the electric potential tenigsto infinity Fig. 4.2b. The stress
induced by the high charge density results in large disptacd. No piezoelectric material has
no piezoelectric coupling, but to answer the question wdrettine displacement in the limit is
finite or infinite requires an analytical approach.

4.2.5. Discussion

The mean transduction is an interesting, yet complex alg@inction. It sounds promising
to maximize the piezoelectric coupling, but the mechaniaressubtle. The load cases are a
problem, neither an electric charge nor a nodal force isieggph engineering practice. The
more practical excitations by mechanic pressure and claagsity cannot be guaranteed to
be design independent and no design dependent mean trdoadbieory has been formulated
up to now according to communication with Emilo C.N. Silae2i009.

Interpreting the load cases as adjoint equation for a mhysjes formulation of (3.38), we
can conclude that the mean transduction optimizes for th@atement (as mentioned in the
original paper) but also for the electric potential. Theiegkence ofl,, andJy; shows that
the optimization for displacement and potential is eq@mélinder the assumption of design
independent loads. For the charge load this is not critioaltd the equipotential layers but
for the force load a nodal force is necessary. The equivalefdoth optimizations is also
shown in Fig. 4.2.
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4. Topology Optimization of a Piezoelectric Actuator
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Figure 4.2.: We study the mean transduction by varying tlea aovered by a squared and
centered piezoelectric layer and performing the load caseslb with constant
charge and mechanical force, respectively.

Compared with the piezoelectric actuator and sensor obgefiinctions presented in the
following sections, the mean transduction appears to be mebevant to study from an aca-
demic point of view piezoelectric optimization than for gtiaal design problems.

Applied in combination with mean compliance as performethaliterature, the results ef-
fectively depend on the choice of weighting fackoand volume constraint. As the weighting
factor balances opposed objectives, the choice isfcrucial.

4.3. Displacement Optimization

4.3.1. Static Displacement Optimization
Problem Setting

For the model problem in Fig. 4.1 the displacement of theepdatrface shall be maximized
normal to the surfackqpt in thez-direction. Due to the thin structure of the system, theasaf
to be associated withgpt is exchangeable. Using the formulation from mechanismregis
(3.38) we get

JBt=a"u (4.12)
1" selects fromt = (um Up @' theu, part of the nodes corresponding witlgpt within the
displacement part ai. This is emphasized by

Jt=u"l", (4.13)

equivalent to (4.12)I" is a subvector of", containing all non-zero entries. In the following,
we will use the overline to indicate the equivalent subsyste

In the case of positive displacements and selection coaifisione, the objective function is
equivalent to thé.1 norm of the displacement (under the assumption that-thisplacement is
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4.3. Displacement Optimization

dominating). If the mesh is regular, the function value igartional to the displaced volume.
The problem formulation for static displacement maxiniaais

maxJs,

with the implicit requirement that the coupled finite elemsystem (2.58) holds. We have
no volume constraint (3.21) and no form of regularizatiohe Bystem shall be excited by a
constant electric potentigl = 30 V. The sensitivity analysis follows exactly the standamdl-
ysis for mechanism synthesis in Sec. 3.2.3. The inhomogernewmichlet boundary condition
becomes a homogeneous Dirichlet boundary condition indfa@rd system, see Sec. A.1.

Optimizing by Pseudo Density

The mean transduction problem with its design independsd tases results in vanishing
piezoelectric material. However, the force due to an ekoiteby electric potential is design
dependent. Therefore vanishing material is not to be egpedtull material, as the second
trivial solution, produces a maximal force but also a maxistiéfening of the system and can
therefore not be taken a priori as optimal solution.

To study the maximization of (4.13), we vary the thicknéggch of the supporting alu-
minum layerQp, from 10 um to 200 um. The thicknebge,o Of the piezoelectric plat®, is
fixed with 50 um to keep the electric field intensity givenby-= ¢/hpie;oConstant. Moreover,
two different forms of mechanical support for the aluminuiat@ are applied. Simple support
at the edge$ s, which does not fix the rotation, and clamped support fixingredchanical
degrees of freedom on the thin side<x§.

5.0 ‘ | |
simple support ——

40 clamped support - |
Q 30¢
?,7%:

20

1.0 |

00 - : L L L | | |

0 25 50 75 100 125 150 175 200

Pplate IN UM

Figure 4.3.: Maximization of the vertical surface dispiaemt byJS' = u'lY (4.13) withp as
design variable. The aluminum plate thickness is varied.

The optimal topology for the model system witate 100 um is a circular piezoelectric
patch, see Fig. 4.4c. This solution is according to Rusclemgy994] in conformance with
industrial practice, where a circular actuator is the statdhape.

For largerhpiate than 100 um the results do not change significantly for sirapjgoort. For
a thinner supporting plate the displacement becomes ldigeto less stiffening, but also the
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4. Topology Optimization of a Piezoelectric Actuator

(f) Clamped support, 100 pm

Figure 4.4.: Selected results for static displacement mizsition viaJS' by pseudo density,
see Fig. 4.3 and Fig. 4.5a. The displacements are individsedled for visual-
ization.

topology changes. Note that for the thinnest plate the fele@enents have a ratio of 125:1 and
locking might occur despite the use of second order elements

In Fig. 4.5a we plot the optimal volume fractions and in Figpbithe resulting intermediate
pseudo density measured as grayness by

Jgray(P) = /Q 4(1-p) pdx (4.14)

A value close to zero corresponds to a purely black and wieisggth and a value close to one
corresponds to maximal grayness (an average of 0.5). Wedssngsults with a grayness
below 0.1 as sufficiently black and whitemin is assumed sufficiently small.

i simple support ——
0.7 ¢ 021 clamped support -
v 2 ‘
E o |
=2 06 | = .
Q e S 0.1t iXx
> x.. 5 /1
05 simple support . -
clamped support - 0.0 - e
0 50 100 150 200 0 50 100 150 200
Pplate in pm Nplate in HM
(a) Volume (b) Grayness

Figure 4.5.: Optimal volume fraction (a) and resulting grass (b) for the static displacement
maximization, see Fig. 4.3. The grayness is measured b¥)4.1
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4.3. Displacement Optimization

Most results are characterized by low grayness althouglenaljzation or any other exter-
nal measurement is applied. Sec. 6 studies the phenomerseif-pienalization in detail.

Strain Cancellation

We compare the results for standard aluminum thickness mdi@psimple and clamped sup-
port in Fig. 4.4c, respectively Fig. 4.4f. Concentratingtba axis parallel lines through the
plate center, the displacements can be visualized and genhpathe line graph Fig. 4.6.

250.0

200.0

150.0

100.0 |

50.0

displacementin um

simple support
00FL 47 ‘ clamped support - .\

0 10 20 30 40 50
X-position in mm

Figure 4.6.: Thez-displacement for the excited structures Fig. 4.4c and &if. The area
covered by piezoceramic material is indicated by symbols.

Simple support does not fix the rotations, therefore themoighange in the curvature.
Clamped support, however, leads to a change in the curvadareng opposite curvature leads
to strain cancellation Strain cancellation has a strong influence on piezoetetdpology
optimization results.

Recalling the material laws (2.30) and (2.31)

o = [¢cF|S-[e|'E
D = [€]S+[EE,

we see that by a constant electric field intendtyonly strain with uniform curvature can
be directly excited. Regions of opposite oriented strasulting from the overall structural
system behaviour, would induce local regions of opposiented electric displacement fields
D. As the electrodes represent equipotential surfaces xthirg electric field is weakened.

The optimizer avoids the effects of strain cancellation sgributing void material to the
corresponding regions. Strain cancellation will be reabgrgd in following sections with
various views.

Optimizing Pseudo Polarization

Optimization by pseudo polarizatigh corresponding with electrode design, was first applied
in Kogl and Silva [2005] but also in Rupp et al. [2009] andaattvorks.
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4. Topology Optimization of a Piezoelectric Actuator

25 T T T
simple support ——

20 F clamped support e |
o 15}
3o
™ 10+t

05

0 25 50 75 100 125 150 175 200

Nplate iN UM

Figure 4.7.: Static displacement maximization by electrddsign. The mechanical boundary
conditions are simple support (moments not fixed), respagtclamped.

Fig. 4.7 The objective function for the integral displacermaximization)St = uT 1Y (4.13)
by pseudo polarizatiof is given. The gain is smaller than for the pseudo densityli€su
Fig. 4.3.

Figure 4.8.: Selected results for static displacement miz&tion by pseudo polarization for
the reference geometry and different support. Black reprissstandard polariza-
tion, white opposite polarization.

Selected results are given for the standard 100 um aluminata thickness in Fig. 4.8a
and Fig. 4.8b. As expected from the discussion about steainadlation, regions of opposite
strains are supported by opposite polarization. In conteapseudo density optimization, a
square pattern is formed rather than a circular patterno Wigontrast to pseudo density op-
timization, the obtained geometry is the same over the wihid&ness range of the presented
structure, no finer details occur. For the simple suppor dae result approaches for thinner
plates uniform polarization, for clamped support the optitopology hardly changes over the
thickness.

Discussion

Methods from classical topology optimization in linearsieity can be adopted directly to
piezoelectric topology optimization without any additgmathematical work. The obtained
solutions consider piezoelectric strain cancellation sgltipenalization occurs.
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4.3. Displacement Optimization

The presented problems are easy to solve, since for all gmablhbove 40 um SNOPT
converged to KKT condition below 10 iterations. Due to mmgsconstraints and the black
and white designs it is even sufficient to update the desigablas by a move limit along the
sign of the gradient.

From a practical point of view, however, static displacetmeaximization of piezoelectric
plates is not of much interest.

4.3.2. Dynamic Displacement Optimization
Structural Eigenmodes

On any kind of dynamic (in the sense of time-harmonic) opation it is worth considering
the eigenfrequencies and eigenmodes of the system. Asgusimgle frequency optimiza-
tion at a given excitation frequency: independent of theaanaximization or minimization
problem, we can expect that maximization involves the tgmiha structural eigenfrequency
towards the excitation frequency while minimization pushiee eigenfrequencies away from
the excitation.

In linear algebra, eigenvectoxs+# 0 and their associated eigenvalugsatisfy

/S\X{ :)\ixi-

Physically, eigenvalues represent natural resonancedraies, also called eigenfrequencies.
The physical interpretation of eigenvectors, also callgdremodes, are the displacements and
electric potential at the corresponding resonance fretjaen

Eigenvalues and eigenvectors are effectively found usiR@ACK(Lehoucq et al. [1998]),
solving only for the lower eigenvalues in the frequency &g interest. The linear system
for the eigenvalue problem is real valued with a zero riginch side vector. The physical
interpretation is an undamped, freely vibrating systerhwapen electrodes. Due to the impact
of the electric excitation (2.49) the resonance frequesfoiethe excited system do not exactly
match the eigenvalues.

Strain Cancellation

For all modes in Fig. 4.9, except Fig. 4.9a and Fig. 4.9e, titagnsis symmetric. In contrast to
the strain cancellation for the static optimization, thepexctive eigenmodes show even perfect
strain cancellation.

In Fig. 4.10, the effect of strain cancellation is visuatize a numerical experiment, com-
paring the eigenvalue analysis of a system with electrool@stunphysical system without
electrodes. Displacements and electric potential cantbgpireted for both actuator and sensor
applications; in actuator mode this is interpreted as thaired electric excitation to achieve
the displacement pattern of the resonance mode and in saoslerthe to be measured electric
potential for the impressed displacement.

Fig. 4.10d shows that for strain cancelling resonance mtue®lectric potential at the
electrodes is zero. Therefore it is not possible to excéselresonance patterns electrically
through the electrodes.

73



4. Topology Optimization of a Piezoelectric Actuator

(a) 1. mode at 332 Hz

(e) 6. mode at 1299 Hz (f) 7./8. mode at 1616 Hgg) 9./10. mode at 1994 H¢h) 11. mode at 2219 Hz

Figure 4.9.: Eigenmodes for the freely vibrating system.mBetric modes with multiple
eigenfrequencies are shown only in one configuration. Ther scale indicates
the z-displacement. See also Fig. 4.27 for the displacenwdrihe piezoelectric
excited plate.

. A

(a) First mode without electrodes (b) First mode with electrodes

——

(c) Higher mode without electrodes (d) Higher mode with electrodes

Figure 4.10.: Visualization of the displacement and, bycakcale, the electric potential of
two eigenmodes from an eigenvalue analysis with and witbtadtrodes. A cut
of the piezoelectric layer is shown. The first mode coinciéh static case,
due to simple support there is no strain cancellation. Widlcteodes (b) the
potential between the electrodes is very small. (c) vigealthe proportionality
of electric potential and strain. In Fig. (d) the electri¢grdial on the electrodes
is averaged to zero.

All strain cancelling modes cannot be excited by a planesftv@amogeneously distributed
normal tol"opt. The modes Fig. 4.9b to Fig. 4.9d cannot be excited by a cahtevdal force.
Considering sufficiently many eigenmodes, one can expeatttiiere no nodal force point
exists by which all modes can be excited.

For the sensor mode, piezoelectric strain cancellationsisudsed in Erturk et al. [2009]
and with respect to topology optimization in Rupp et al. [2D0From the electric potential
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4.3. Displacement Optimization

in Fig. 4.10a and Fig. 4.10c it can be observed that the stoairach orientation is almost
homogeneous, which is optimal for energy harvesting appbos, see Sec. 5. The transition
zone of the strains in Fig. 4.10c is small.

Problem Setting

The dynamic formulation of the displacement maximizatiéri®) is written in the form of
(3.45) with complexi as
Ju = 20 LT, (4.15)

or L
Ju = w?u' LY. (4.16)

Therein,w = 2t f with f the excitation frequency in Hz. A motivation is given in Séct.3.
Note that the factor has no impact on the resulting designsifigle-frequency optimization
problems.I" from (4.12) corresponds with the diagonalldf. Alternative formulations are
by scalar product

Ju= w? <GTL”,u> ,

or for the assumption that tieedisplacement dominates,

NZ NZ
Ju~ @ ZiRe{lui\}z(X) +Im{Jui[}2(x) = o lelui(X)Hz- (4.17)
i= i=
For a regular mesh the correlation to the continuous form is

Jy ~ cw? (nzu,nzu) dr,
I opt

with ¢ = \NZ|/Aropt where|N;| is the number of nodes dnypt andAropt is the surface area.
Note thatJ, is generally not proportional to the displaced volume; fibserain cancelling
modes in Fig. 4.9, detects local maxima due to resonance but the effectivéadisg volume
IS zero.

Numerical Results

Several hundred maximization problems fgrare performed for excitation frequencies from
20 Hz to 2300 Hz. The optimizer is SCPIP, the maximum numbéeddtions 500, hence the

problems do not necessarily converge. The design varialieei pseudo density with start
designp = 1.

The objective values for the initial solid plate design amel optimized designs are shown
in Fig. 4.11. The solid plate response shows that straineamg eigenmodes can indeed not
be excited, furthermore the location of resonance freqaesmdiffers significantly from the
eigenvalues.

With a single exception at 1250 Hz the optimization reliatdgults in improved topologies
where the solid plate is not already optimal. The excepti@tty coincides with a resonance
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4. Topology Optimization of a Piezoelectric Actuator

X Op‘timized‘ _—
el solid plate - E
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excitation frequency in Hz

Figure 4.11.: Separate maximization of the dynamic disgteent function), (4.16). The
gray bars indicate the frequencies from the eigenvalueysisalsee Fig. 4.9.
The graph for the solid plate shows that the strain cangeliodes cannot be
excited. The actual resonance frequencies show the dedatdviation from the
eigenfrequencies.

frequency which clearly results in numerical difficultiesthe gradient value and will not be
considered in the following. Within ranges of excitatioeduency, the optimizer is able to
generate results close to resonance. Resonance can beeddnmi¢he vicinity of non strain
cancelling modes, with a broader vicinity for higher modé&sirthermore, the optimizer is
also able to generate resonance like performance withiaineregions of originally strain
cancelling modes. This effect is not reliable and in Sec.tdesimprovement of robustness
is discussed. However, for the present case we want to keeprtiiblem setting as pure as
possible. Scaling the eigenfrequencies to match the resenfaequencies of the model, it
appears that the eigenfrequencies associated to straialtag modes effect the optimization
results.

Fig. 4.12 shows and comments selected topologies. Thewioipprinciple vibrational
patterns of initial and optimized structures at their agged frequency can be observed:

» Eigenmodes which show no strain cancellation as in Fica 4rtd Fig. 4.9¢, Fig. 4.12a
and Fig. 4.12g.

« Vibrational patterns resulting as a combination of lowsat higher non strain cancelling
mode show no resonance performance, e.g. Fig. 4.12d andtHige and later in
Fig. 4.27.

* In some cases, the optimizer is able to generate topolagibsvibrational patterns
close to strain cancelling modes and a resonance like pesfoze. Figure 4.12f gives
an example, resembling Fig. 4.9d. Strain cancellation aéd®d by assigning material
only to regions with a common strain orientation. For theirager it is obviously
difficult to leave the vibrational pattern of the initial dgs, see Sec. 4.5.

» Furthermore, the optimizer is able to generate topologigsiting with a performance
close to resonance, where the vibrational patterns haveuoterparts in the modes
from the eigenfrequency analysis, an example is shown ind=igh.
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4.3. Displacement Optimization

(e) 900 Hz (f) 970 Hz (g) 1290 Hz (h) 1850 Hz

Figure 4.12.: Selected topology optimization results fer inaximizationJ,. The deforma-
tion visualizes the real part of the displacement (scal&uyetail: (a) circular
topology for quasistatic case; (b) closer to resonancgt(®sonance; (d) small
jump of the objective value due to sudden evolution of a sepidole; (d) and
(e): vibrational pattern resembles a combination of thenmatesonance modes
at 300 Hz and 1290 Hz; (f) and (h): additional resonance patigre created.

Theses results are published in Wein et al. [2009a] and Weih R009b].
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Figure 4.13.: Volume fraction and grayness for the optirtnizes in Fig. 4.11.

Similar to the static displacement optimization, the dymadisplacement optimization
shows strong self-penalization. In Fig. 4.13 the graynesasured by (4.14) is below 0.1
and for some regions even almost perfectly black and white.

Discussion

In the presented formulation, starting for each excitatiseguency from a solid plate,
resonance-like performance cannot be obtained relialdtys iEsue is discussed in Sec. 4.5.
The achievable performance is magnitudes higher than glaltd response.
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4. Topology Optimization of a Piezoelectric Actuator

500 maximal iterations were often not sufficient to reachveogence with SCPIP. The

problems are scaled in a way that
N
ap
130~
Iplle

4.4. Acoustic Optimization
We repeat the definition of the average sound power (2.61)

1
Pac= é/rRe{pac\éqq}dr, (4.18)

with acoustic pressumg,c andv;. the normal component of the acoustic particle veloeigy
with respect td". These properties are coupled for a given frequency by teeifspacoustic
impedance (2.62)
~ Pac(X)

Vag,(X)
In the case of plane waves, the acoustic impedance is horaogenthus the acoustic
impedance becomes homogeneous and is given as charactemstdance

Zac(X)

Zy = PacCo-

UsingZy, pac can be expressed lwy;, and vice versa.
The relation of scalar acoustic potential and the acousdimoity is given as

Vac= -0y (4.19)
and with the acoustic pressure as
oy
= Pac——. 4.20
Pac = Pac ot ( )

The fundamental difference of the following acoustic optiation approaches is the way the
objective function relates to the actual solution variaiflthe PDE.

4.4.1. Model
Fully Coupled Model

The mathematical and numerical mechanical-acoustic msdgen in Sec. 2.3.3. Here, the
structural part is the piezoelectric-mechanical modelig £.1.

The combined structural mechanical-acoustic system Y2r7@ piezoelectric-mechanical sys-
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4.4. Acoustic Optimization

tem (2.58) reads as

_§¢'¢’ Cwum 0 0 w 0
C S S, O u 0
Yum mUm mUp m
==, 4.21
0 SuTmUp S"_IEUP Kipg Up Qu ( )

assuming electric excitation. By the overline we denoteabeustic-acoustic coupling by
non-matching grids, see Sec. 2.3.4. Following the multgits/notation, the short notation
including applied design variables to the piezoelectrimdm reads again

~

Su="1.

Domain Discretization

The structural plates are of size 5cm5 cm with a discretization 3& 30, this results in a
mesh withhg=1.7 mm edge length .

The acoustic domain is determined by the acoustic wave hehgt (2.64). The high-
est considered frequency is 2300 Hz which corresponds,¢ée= 15cm. The second or-
der approximation of hexahedron finite elements requireacaustic element edge length
hac < Aac/10= 15mm. Performing structural-acoustic coupling by nonehatg grids we
can expect poor coupling due to the mismatchgfandh,.. As a remedy, the mechanical-
acoustic coupling is against a fine discretized acousticaiio@n® with hi"® — 5 mm which
couples non-matching against the coarse acoustic doffgirewith h322'5¢= 15 mm.

Qgi”re is cubic with edge length 9cm (ca. 6000 elements). The dimaasf Q5 >are
27.5cmx 27.5cmx 22.5cm (ca. 9000 elements). The PML layer is 3 elements thake-
sponding to ca. 8000 elements, see Fig. 4.14. Out of the hpd@0.000 degrees of freedom
of the system, ca. 25.000 are Lagrange multipliggg from the non-matching acoustic-

acoustic coupling.

4.4.2. Acoustic Short Circuit

Acoustic waves can show interference when the excitinge@ats as multiple sound sources.
Destructive interference is known asoustic short circuit Note that the classical acoustic
short circuit in technical acoustics, the X8t of phase radiation of the front- and backside
of the membrane, is not covered by model Fig. 4.14.

All structural resonance modes subject to piezoelectrairstcancellation (see Fig. 4.9)
would result in perfect acoustic short circuits. Additiipecertain vibrational patterns show
a strong decrease in acoustic performance although theyiezeelectric excitable, see the
acoustic frequency response of a solid piezoelectric jphakég. 4.16 compared to the struc-
tural response in Fig. 4.11. In Fig. 4.15a an acoustic resmnaase and in Fig. 4.15b an
acoustic anti-resonance case due to acoustic short ascagualized.
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Figure 4.14.: Setup of the piezoelectric-mechanical-atictacoustic coupled system.
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(a) Resonance at 350 Hz (b) Antiresonance at 780 Hz

Figure 4.15.: The scaled plate deformation shows the realbp#he displacement, the color
scaling of the deformation the displacement amplitude.i¢n &) the center of
the plate vibrates out of phase against the outer 'ringylte® in an acoustic
short circuit.

4.4.3. Structural Approximation
We present two approaches to optimize the acoustic pregartithe piezoelectric-mechanical

system by a pure structural approximation. The first appgraamathematically motivated and
is based on Du and Olhoff [2007b], the second approach feljohysical considerations.

80



4.4. Acoustic Optimization

Optimization of sound radiation following Du and Olhoff

In Du and Olhoff [2007b] the sound radiation of a structudak@is minimized. The coupled
system is similar to the system in Sec. 2.3.3, however thietsiral component is modelled by
linear elasticity without damping as

(K —a’M)u=f,

so that the solution has no phase shift when excited withoas@ shift. The approach is based
on two assumptions: the acoustic impedance is homogenedusatches the characteristic
impedance, such that

Pac = PacCoVag,-
Furthermore, the coupling between the structural actuatdhe acoustic domain shall be
weakly coupled without feedback.

By the assumption of characteristic impedance at the materfit is sufficient to couple
from the structural displacement to the acoustic velocityt76) instead of two coupling
conditions with the additional acoustic pressure (2.773suing the plate in they-plane,
the coupling is

Tou .
Vag, = N i jwuz
and Du and Olhoff reformulate the acoustic power as

1
Poo =1 /r PacCo WU U, dr .

The discretized objective function is given as

1
Joo = > PacCo wZUTSNa

with S, the symmetric surface normal matrix

S = Z&e: Z( reNTnnTNdr),

whereN are the shape functions. Beinglk¥, the sensitivity analysis is based on the general
static formulation (3.27).

Discussion of the Du and Olhoff Approach

There are two criticisms against the cited approach; in Dai @thoff [2007b] it is stated
that the assumption of a homogeneous acoustic impedartee stttictural-acoustic boundary
holds for sufficiently high frequencies but depends on thecsiiral size and vibration mode.
Good results for tests are claimed also for lower frequeng@to a multiplying factor. In
Wein et al. [2009a] however, we state that we can expect gppobaimation only when the
structural dimensions are larger than the acoustic wawghefvhich is 34 cm at 1000Hz in
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4. Topology Optimization of a Piezoelectric Actuator

air) and below the first resonance frequency.

In Wein et al. [2009a] we also criticize the problem formidatfor the assumptions. As
topology optimization is invariant to the multiplicatioh@ constant factor, the assumption of
homogeneous acoustic impedance at the boundary can beoubsedtore convenient setup

ou; :
at = ot R
and 3
u .
Pac U 6—tz =] WUz

With the appropriate selection matiiX, this immediately results in (4.16)
\Ju - 0)2 UTFU*,

which discretize®,c under the assumptions of Du and Olhoff up to an constantifat$o for
a complex valued damped systems. The implementation is§er asS, does not need to be
assembled. For an undamped system the results match astierprformulations coincide
with different implementation.

Validation of Displacement Maximization

To validate the general idea of a pure structural topolodyapation for an acoustic problem,
the acoustic performand® of the structural results by (4.16), see Fig. 4.12, are etatiion
the large acoustic model in Fig. 4.14 and compared agaiestekjuency response for a solid
piezoelectric plate. Figure 4.16 contains the results.

arg max J, e
solid plate

0 250 500 750 1000 1250 1500 1750 2000 2250
excitation frequency in Hz

Figure 4.16.: Frequency responseRaf (4.18) for a solid piezoelectric plate evaluated on the
large acoustic model Fig. 4.14 Bt compared to the acoustic power of the
design obtained by pure structural optimization towakdg!.16).

Compared to the structural frequency response of a solzbplectric plate in Fig. 4.11,
three anti-resonances can be observed in Fig. 4.16 at ganifeequencies 600 Hz, 780 Hz
and 2100 Hz with the first two being most distinctive.

82



4.4. Acoustic Optimization

The most striking observation with respect to the acoussponse of the structural opti-
mized topologies is that the first two anti-resonances giggisithey don’t exist in the structural
model. As a consequence, pure structural topology optimizéy J, (4.16) is not a suitable
approximation for the maximization of acoustic power. Tikisot necessarily in contradiction
to Du and Olhoff [2007b] where a minimization problem is doesed, although noise reduc-
tion by utilizing acoustic short circuits will clearly noelpossible. The result is published in
Wein et al. [2009b] and Bansch et al. [2010].

Optimization of the Displaced Volume

Ju is a mathematically justified objective function fy; under assumptions which prove to be
not physically valid for the present setup. The physicarptetation ofl, is the maximization
of the amplitudes of the displacement field (4.17). A physiaaotivated formulation for a
structural approximation of the sound radiation is the ldispd volume which considers the
phase shifts.

A discrete formulation for the displaced volume is given as
Jav = [@"1Y] = ™17, (4.22)

wherel" selects the-displacements on the plate surface as in (4.12) and camesgoL" in
(4.15). (4.22) is a generalization of (3.42)

A1 = @1 = /O 92 + (@, 192,

the sensitivity is given by (3.36). Then, with

0Jgv _ 2 (Ug, 1) uT
ouR \/(GR,I”)2+(G|,I”)2
we get
a‘i"’ — (Ur, 1Y) |ut andﬁJAd" = (@, 1% |ut,
aUR \Jdv aul JdV
Inserted into (3.37) this results in the adjoint equation
1 @1
STA _ _ = A? u
2 |(u,1%)]

Numerical Results

The result ofJyy (4.22) maximized for several single-frequency optimizas is given in
Fig. 4.17. The solid plate response shows similarities &éaboustic solid plate response
in Fig. 4.16 as two out of three acoustic short circuits aselked. The creation of additional
resonance is not reliable.
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Figure 4.17.: The displaced volume is maximizedlgy(4.22). The structural eigenfrequen-
cies are denoted by gray vertical bars, see Fig. 4.9. UsirigjiS@e maximal
number of iterations has been limited to 500 and a heurietiwergence criteria
|Ap||~ < 0.002.

-

(a) 740 Hz (b) 970 Hz (c) 1250 Hz (d) 2100 Hz

Figure 4.18.: Selected topologies for maximization of tligplhced volume byly, (4.22),
Fig.4.17. In detail: 740 Hz: no acoustic short circuit; 978 Hoor performance,
similar to result for displacement maximization Fig. 4,1P250 Hz: resonance
of almost the solid plate; 2100 Hz: well performing resomgtstructure which
appears at first glance to have cancelling volume.

Validation of Displaced Volume Maximization

The acoustic performance of the designs optimizesdpare calculated and compared with
the solid plate response in Fig. 4.19. Obvioudly is not a valid approximation for the
structural-acoustic model of Fig. 4.14, performing sigrafitly poorer than the displacement
maximization byJ, in Fig. 4.16 where acoustic power could be improved for samguency
ranges by magnitudes.

4.4.4. Acoustic Far-Field Optimization
Problem Setting

For optimization problems including the acoustic domagg $4.21),lopt is defined as the

interface betwee®£2"*®andQpmL. Assuming the acoustic impedance (2.62) homogeneous
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i arg max Jg, -+
107 L ‘ A ‘ ‘ ~ solid plate
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excitation frequency in Hz

Figure 4.19.: Frequency responseRaf (4.18) of a solid piezoelectric plate evaluated on the
large acoustic model Fig. 4.14 Bt compared to the acoustic power of the
results obtained by pure structural optimization towakgg4.22).

atlopt, PaciS proportional tovag, and we get for the acoustic sound power

1
Pac= 5/ Re{pac\fgq]}dr
I opt

the optimization problem
max/ | Pac/2dr.
p rop[

This has been done in a similar form for pure acoustic soumdnnization in Dilhring et al.
[2008]. The discrete objective function is given as

T P *
‘]pac = pacL % Pacs

using (4.20) we obtain
Jy = U LYT = PP LY g, (4.23)

with LY selecting the nodes diypt. The material dependence pg is omitted assuming a
homogeneous acoustic domain. The assumption of a homageaeoustic impedancelaspt
holds in theacoustic far-fieldonly. For a valid approximatiori; qpt Shall be sufficiently far
away from the sound source. This frequency dependent desiarcalledar-field distance

Validation

First we validate the far-field assumption in (4.23) by conmgafor a piezoelectric solid plate
the frequency response with respecP{gandJy in Fig. 4.20.

Fig. 4.20 shows that the far-field approximation appearsetodiid for frequencies above
1000 Hz. Itis of note that only the second of the two lower @rexacy acoustic short circuits
is detected.

The approximate distance between the sound sourcd gadn wave length is 1.5 for
2300Hz, 0.7 for 2000 Hz, 0.2 for 330 Hz and 0.009 for the loveestsidered (quasistatic)
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Figure 4.20.: Frequency response of the acoustic far-figielotive functiondy (4.23) against
Psc for a solid piezoelectric plate on the large acoustic mosiet (Fig. 4.14).

frequency 20 Hz. A general first approximation of the farefidistance is two wave lengths.

Numerical Results

To limit the computational cost, the maximal number of itenas for each single-frequency
problem is limited to 150 compared to 500 for the structurabpemJ,. The obtained objec-
tive values are compared to the solid plate response in Eid. 4

UF optimized ——
10 .
solid plate -

S 1 1 1 1 1 1
10
0 250 500 750 1000 1250 1500 1750 2000 2250

excitation frequency in Hz

Figure 4.21.: Acoustic far-field topology optimizatiaky (4.23) is maximized independently
for several excitation frequencies on the model in Fig. 4Hdch optimization
was limited to 150 iterations. Note that the far-field appmeation is only valid
for frequencies above 1000 Hz, see Fig. 4.20.

The initial design (solid plate) could almost always be ioyad. The acoustic short circuits
are resolved by appropriate topologies, see Fig. 4.22. €Ttesults have been published in
Wein et al. [2009b].

Discussion

Comparing Fig. 4.21 against the structural formulatior (Segy. 4.11), it is noticeable that the
first resonance mode of a solid plate is obviously not optitdalvever, these lower frequency
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(c) 875Hz

(b) 575 Hz

-

(e) 985 Hz (f) 1405 Hz (g) 1585 Hz (h) 2160 Hz

Figure 4.22.: Selected topologies for the acoustic fadfagbtimization functionly (4.23),
see Fig. 4.21. In detail: 565Hz and 985Hz: creation of add#l resonance
patterns; 575Hz and 975 Hz: the optimizer was not able toegeliesonance;
875Hz: topology and vibrational pattern preventing adgushort circuits;
1405 Hz: example for a too gray result; 1585 Hz and 2160 Hanang pattern
that also resonates in the structural domain.

results shall not be considered, as the far-field assumgten not hold.

The major drawback of the acoustic far-field optimizatioherefore the uncertainty re-
garding the validity of the results, especially for lowezduencies. This is a consequence of
the mechanical-acoustic two scale difficulty of model Fig.44

4.4.5. Acoustic Near-Field Optimization

As a remedy for the problems of acoustic far-field optimizatiit is possible to formulate
an objective function without any assumption on the homeggf the acoustic impedance.
This is advantageous forear-fieldproblems and has been presented at ECCM 2010.

Problem Setting

RecallingPsc (4.18)
1
Pac= E/rRe{pac\faquq}dr

and usingPac = j WPacy (4.20) andvag, = —n Y (4.19) we can formulate the discrete objec-
tive function

Jni = Re{j oy LY Oy}
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whereLY selects the nodes dnppt as in (4.23). Jys is multiplied by —1 to account for the
outgoing sound radiatiom,c is omitted as a homogeneous acoustic domain is assumed. This
formulation allows the optimization of thenergy fluxand has been introduced for photonic
waveguide optimization in Jensen and Sigmund [2005].

Interpreting the discreté,, operator within the finite element formulation on the lodate
ment level as matrix of derivatives of the shape functiaregm be combined with the selection
matrix LY as non-symmetric matriQ¥ such that

Jot = Refj ' Q¥U’} = Refj g TQ¥yr}. (4.24)
The details of the sensitivity analysis are given in Jen260T7a]. By

Re(jw Q¢Y*} = Re{jw(lr+j0) Q¥ Ur—jT)}
= Re{j wi5Q%lr + wULQYT — i Q¥R+ 0T QYT
wﬁEQ"’G. — Ol)ﬁ;r Q(’UGR

and

aJnf . aJnf . ~T ] wT
aﬁR = aﬁl - (J),UR(Q Q )

inserted into (3.37), the sensitivity of (4.24) is given By36) with the adjoint equation

ot (Q¥T —Q¥) and

SA = @ QT -Q¥) k@’ Q)
- ‘2% (QY-QY")Tlr+j(Q*" —Q¥)Tt)
_ _Zﬂj (—(Q'"—Q") Ttk +j (Q*T —Q¥) ")
- 5@
- ie@T QYT

To set upQ¥, O, needs to be evaluated at nodal points. In the continuous fegrknow
by the solution spaces that the spacial gradient existast ile the weak form. Using second
order Lagrange test function8Y) for the FE discretization (as done here) the gradient £xist
for interior node points also in the classical sense. Theasdn complicates at nodal points
shared by more than one local finite element. However, watttivice of gpt = Qair N QpmL
we are not interested in any contribution from elements iwifpy\. and evaluatél, solely
by the shape functions withi@;,.

Model

Without the need to locatleypt as far away as possible to improve the far-field approximatio
the acoustic model can be set up more simply than in Fig. 4vbhéye an acoustic-acoustic

coupling by non-matching grids of two acoustic domang”ﬁe andQ$Pa™%s used.
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Figure 4.23.: Setup of the piezoelectric-mechanical-atocoupled system.

Fig. 4.23 shows the setup with a single cubic acoustic dofigjnof edge size 6 cm dis-
cretized by regular hexahedron elements of size= 5mm (ca. 2200 elements). The PML
layer is 3 elements thick, corresponding to ca. 3600 elesnéht, and Q, are mechanical-
acoustic coupled by non-matching grids with the discrétraas in Fig. 4.14. The resulting
system consists of 60.000 degrees of freedom.

Numerical Results

With maximal 200 SCPIP iterations, we allow 25% more itenasgi than for the far-field
topology optimization to take advantage of the reduced kittmm model. The results in
Fig. 4.24 are promissing and more accurate thadfoiSelf-penalization is present as shown
in Fig. 4.25, but not pronounced. Note that for low frequesdhe solid plate response from
80 Hz to 140 Hz is negative, apparently the wave lengths arkatge for the model. However,
the values are several magnitudes smaller than resonance.

Fig. 4.26 shows selected resulting topologies.

Discussion

Whenever homogeneous acoustic impedance is not givemeétsssary and possible to per-
form acoustic near-field topology optimizatiodss is based on both relevant acoustic prop-
erties, velocity,c and pressur@,c. SCPIP handledqs equally well asly and the structural
approximations.

With improved robustness in Sec. 4.5 and the use of non-nmgigitids realistic acoustic
actuator design can be performedJay
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Figure 4.24.: Acoustic near-field sound power maximizatiypnJys (4.24) on the model
Fig. 4.23. From 80 to 140 Hz the solid plate response is negaind there-
fore not plotted in the logarithmic scale, note that the amgés are this region
several magnitudes below resonance. Each single-fregusgtonization has
been limited to 200 SCPIP iterations.
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Figure 4.25.: Volume fraction and grayness for the acoustar field topology optimizations,
see Fig. 4.17.

(a) 580 Hz

(b) 740 Hz (c) 1250 Hz (d) 2000 Hz

Figure 4.26.: Selected topologies for acoustic near figddlwgy maximization, see Fig. 4.17.
580 Hz: performance increased by several magnitudes; 74@tzoustic short
circuit; 1250 Hz slightly improved against solid plate; 208z: well performing
topology for high frequency.

4.5. Improving Robustness by Using Additional
Information for the Initial Design

Several dynamic problem formulations have been evaluatenhgle-frequency problems with
a fine stepping of the excitation frequencies. To handle timearical effort and due to the un-

90



4.5. Improving Robustness by Using Additional Informatfonthe Initial Design

reliable KKT-convergence detection of SCPIP, each sifigiguency optimization problem is
limited by a maximum number of iterations. The obtained mopation results are therefore
not necessarily optimal solutions. Within the results fritna structural problems in Fig. 4.11
and Fig. 4.17 and acoustic-mechanical problems in Fig. d2ilFig. 4.24, frequency regions
can be identified where the obtained objective values cammabnnected by a smooth line
and the variance is of high magnitude - indicating non-optisolutions or non-robust opti-
mization. Also for regions of smoothly connecting resudigtimality might not be obtained.

4.5.1. Natural Frequency and Excitation Frequency

The correlation of natural resonance frequency of theahitesign and excitation/target fre-
quency is described in Duhring et al. [2008] within the @xtitof dynamic minimization:

...a natural frequency, which is originally at one side @ thiving frequency,
can only be moved to a value on the same side during the oiiioig else the
objective function would have to be increased during a pthi@optimization.

With our maximization problems, the optimizer aims towanalgving resonances closer
to the excitation frequency. Each resonance mode has a alisind maximal frequency
with increasing range towards higher modes. Similarly ®sdkplanation given in Duhring
et al. [2008], one can construct a scenario where a nat@w@liéncy is close to the excitation
frequency but cannot coincide. It might be advantageousaeenanother mode towards the
excitation frequency. However, this might not be possibldlie optimizer when the objective
value needs to decrease temporarily during the optimizgirocess while pushing the initial
close mode.

4.5.2. Strain Cancellation

Using a solid plate as initial design, strain cancellingictiral modes cannot be excited.
However, numerical results show that good, presumablyradfiresults are modifications

of strain cancelling vibrational patterns. Figure 4.27vghohat strain cancelling modes are
indeed completely ignored by solid plate displacementuigigt.28 illustrates the difficulties

for the optimizer with excitable modifications of strain calling patterns.

4.5.3. Starting from Previous Results

For computational efficiency the model for the numericautsswithin this section has a
coarser acoustic discretization than Fig. 4 2gy is within this section defined as the upper
horizontal face betweef;; ad Qpyp . The model problem is to maximizg;.

The standard approach for a set of optimizations with simbiteindary conditions is to start
from previous results. Figure 4.29 gives the results foléftesided and right sided approach.
The ranges of resonance modes become apparent and thedpppgarently fails due to
the explanation in Sec. 4.5.1. Using previous results, theerflexible’ higher resonance
mode cannot be found. Starting from higher frequency regiltes almost the same results
as starting from solid plates with the exception of the peainf600 to 700 Hz.
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4. Topology Optimization of a Piezoelectric Actuator

(a) 332 Hz (b) 638 Hz (c) 1031 Hz (d) 1207 Hz (e) 1299 Hz

Figure 4.27.: Solid plate deformation at the structurakefgequencies in Fig. 4.9. Due to
strain cancellation several eigenmodes cannot be exditedtrate at a super-
position of the closest lower and upper excitable eigenmoske also Fig. 4.11.
Re{u,} is visualized by deformation and color scale.
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Figure 4.28.: Selected iteration history from the problerfig. 4.11
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Figure 4.29.: In contrast to the problem in Fig. 4.24 the lgiffigequency optimizations are not
started from solid plates but from the obtained topologyefriext lower respec-
tively higher frequency optimization. The approach faledo the explanation
givenin Sec. 4.5.1.

4.5.4. Starting from Eigenfrequency Displacement

From the numerical results of structural and acoustic agttion we observe that additional
resonance structures are often variations of strain clamgehodes, where the structure re-
flects the vibrational pattern. By a heuristic approach tuservation is used to construct
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start values for the optimization problems out of the disptaents of the eigenmodes from
the eigenfrequency analysis in Fig. 4.9.

We determine element wise the lumpedisplacementsl from the N real valued nodal
displacements as

to form vectorsd(w) for the eigenfrequencies. For a frequeroy> wj, with wy the first
eigenfrequency, and the lower and upper eigenfrequengiasd w,, the associated weight-
ings are determined as

a=1-2"9 gnap=2-9
W — W -
For multiple eigenfrequencies the actual mode is chosehéyae. The interpolated displace-
mentsd are

() = ad(c) + Bd(c), (4.25)

forming the displacement fieldwith the minimal and maximal valueg,in,, respectively max.
The sign ofr is for higher nodes not interpretablenmi, is negative above the first mode
only, exact zero is only possible for a single frequencyikety to coincide with an excitation
frequency and therefore only considered in the implemimtat

The initial designp is calculated fronr by interpreting either the normalized positive or
negative displacement as pseudo density
max{ ——, Pmin} Imax variant
p=1 _ e Prin} - Tmax var (4.26)
mln{max{ﬁ, Pmin},1}  rmin vVariant
Up to the first mode, the small positivgi, results inr /rmin > 1, thereforep is restricted by
min, resulting in a solid plate for the,, variant. Figure 4.30 gives an example for an initial
design located between the first and the following mode inmthagvariant.

(a) Eigenmode at 353 Hz (b) Initial design at 525 Hz (c) Eigenmode at 698 Hz

Figure 4.30.: Example for the heuristic which obtains fréwa frequency interpolated positive
z-displacements of the eigenmodes (a) and (c) an initiabdg$).
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Figure 4.31.: Optimizing fod,s starting from initial designs obtained by heuristic (4.26the
I'max andrmin variants.

Numerical Results

Figure 4.31 gives the results for both thg.x andrmin variant. The feasible regions where
resonance modes can be moved when activated can be reach&@raphs. For most excita-
tion frequencies both approaches perform display an alidestical performance. However,
from 400 Hz to 470 Hz then, variant and from 1340 Hz to 1500 Hz thgax variant per-
form significantly poorly, even below the solid plate permf@ance. The i, variant performs
from 830 Hz to 870 Hz also below the other variant. Figure 4I3@ws the associated volume
fractions and grayness.
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Figure 4.32.: Volume fraction and grayness for thgx andrmin variant for the initial design,
see Fig. 4.31.

The presented heuristic consists of two variants, henckeatsm criteria is desirable. Fig-
ure 4.33 visualizesnin andrmax, the frequencies from the eigenfrequency analysis are visu
alized by graphs for the interpolation weights,, is flipped for better comparability against
'max. FOr most frequenci€smay| > |rmin|, including the range from 1340 Hz to 1500 Hz where
thermin variant performs significantly better. A robust selectioitecia is not known.
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Figure 4.33.1(x, w) (4.25) is the interpolated displacement of the modes fragrsthuctural
eigenfrequency analysis. The minimal and maximal valuesianoted by in
andrmax. a andp are the interpolation weights.

Discussion

The presented method takes the information from an additiproblem, a cheap to solve
structural eigenfrequency analysis, and constructs &ecgu dependent start designs using a
heuristic approach. Comparing Fig. 4.31 with Fig. 4.24,libaefit of the method becomes
clear with respect to resultant performance and robustnesgroper start values can lock
the optimizer within low performing local optima dealingttvia heuristic. This effect also
appears in the present case. An eleqant approach to chdlsetBerax Or rmin Variant is
missing. Performing both variants, even global optimalisohs over all frequencies can be
assumed for the model problem. As all problems convergedjfgiant computational time
can be saved compared to the solid plate problems where tkienalanumber of iterations
has often been met.

It is noteworthy that the presented heuristic only tackhesdiezoelectric strain cancellation
problem. The acoustic short circuits can easily be solvetthéyptimizer.

4.6. Discussion

The single-frequency piezoelectric loudspeaker couldugeessfully optimized. The choice
of the proper objective function is crucial and as discuss#dw no viable approximation for
the acoustic sound power could be found but the fully resbhesar field problem needs to be
solved.

A special feature of maximizing the mechanical-piezoelecicoustic problem is the inter-
action of the physical effects structural resonance, @iledric strain cancellation and acous-
tic short circuits. From the structural point of view resnoa gives maximal results exactly at
the excitation frequency, while for minimization closearance frequencies just need to be
moved sufficiently far away. However, most structural resae modes are subject to strain
cancellation and can therefore not be electrically exatadther are subject to acoustic strain
cancellation. The balance of these effects is generallyimiitive but can be solved excel-
lently as optimization problem.
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4. Topology Optimization of a Piezoelectric Actuator

4.6.1. Comparison

In Fig. 4.34 the response of the structures obtained for iifereht objective functions are
evaluated on the large acoustic model in Fig. 4.14. The t@bgefunctions are acoustic near
field Jns (4.24) with the optimization performed on the smaller atcusodel in Fig. 4.23,
acoustic far field approximatiody (4.23) performed on the large acoustic model, structural
displacemeni, (4.17) which approximates the acoustic response just bgigpéacement and
structural displaced volumd, (4.22).

10'8 | | | | |
0 250 500 750 1000 1250 1500 1750 2000 2250

excitation frequency in Hz

Figure 4.34.: Evaluating the acoustic power on the largaistto model for structures ob-
tained by acoustic near field optimizatidg, acoustic far field approximation
Jy, structural displacemerd, and displaced structural volundg,. The solid
line represents the solid plate response.

Two observations are striking. Structural approximatitamsl to fail for frequencies above
the first resonance, particularly acoustic short circurts rrot compensated. However, the
results for acoustic optimization are also questionablé& waspect to their missing robust-
ness. The optimizer is very likely to end in poor performingdl optima due to the strain
cancellation problem.

The ability of the optimizer to find a solution for the straiancellation problem depends
significantly on the initial design. Simply using the resuf neighboring frequencies fails,
but incorporating the structural eigenmodes gives robpistozation, see Fig. 4.31.

4.6.2. Electrode Design
Multiple-Frequency Structural Optimization

All presented dynamic optimizations are single-frequeoptimizations. The response of a
structure to any frequency other than the excitation fraqueor the optimization can be
significantly lower. Examples are given in Wein et al. [2009a

Multiple-frequency optimization is outside the scope a$ftimesis. The specific problems
for the present setup are outlined in Wein et al. [2009a].dnegal loudspeaker design, a flat
response over a given frequency range is obtained by lgceggonance frequencies outside
the range of interest. For the given piezoelectric modeldwer, resonance is necessary to
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4.6. Discussion

obtain sufficient performance. Having almost no control loe @-factor, an arbitrary design
will always have resonances and anti-resonances withiffiaisatly wide frequency range.

Electrode Design

Optimization of the polarization can be interpreted astedele design. Some authors perform
this together with structural optimization, e.g. in KogidaSilva [2005] or Rupp et al. [2009],
or only for polarization in Donoso and Bellido [2008, 2009],. The following presentation
goes beyond structural optimization in the focus of thisthand shall serve as side remark.

The optimization results are shown in Fig. 4.35, the peak&@Hz and 2000 Hz are found
using SNOPT. We observe less gain than for the structural optimization.
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Figure 4.35.: Finding the optimal polarizatiohto maximizeJys.

However, if the electrodes are partitioned pairwise int@kbrareas corresponding to the
finite element surface and individually controllable (sskihg of the applied voltage to the
upper and lower electrode), then (4.35) gives the respohfigeadevice for any frequency
within the range.

1strain based initial designs from the eigenvalue analgsisijar to (4.26), did not further improve the results.
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5. Topology Optimization of a
Piezoelectric Energy Harvester

Energy harvesters are devices which convert ambient enetg\electric energy. Here we
concentrate on the transformation of vibrational ambiemtrgy by piezoelectric energy har-
vesters. Piezoelectric energy harvesters are a subjecitarisive research and has good
prospects for future versatile mass application. Applicet can be at large machines, railway
freight cars and many more. Piezoelectric energy hanest@resent a specialized applica-
tion of the piezoelectric sensor mode.

Practice-oriented objectives in the design of piezodle@&nergy harvesters are electric
power by volume, electric power by weight, maximum output/pn tolerable excitation am-
plitude and, of course reliability and cost.

Performing topology optimization on the elastic substi@fte cantilever type harvester
instead of the piezoelectric material is a novel approadhme dbtained result is based on a
mechanism which differs significantly from the common dasigeported in literature.

5.1. State of the Art

A general overview of piezoelectric energy harvestersvsmin the review paper of Anton
and Sodano [2007]. Two general types subject to researchlaie and cantilevered har-
vesters. A primary objective is the maximization of genedaglectric power, although not
necessarily in a direct formulation.

5.1.1. Plate Type Harvester

A circular plate sensor is discussed in Kim et al. [2005&By] parametric optimization axial
regions of optimal poling are identified and the piezocecaphate is repoled accordingly.

Ersatz material topology optimization and electrode desifrectangular piezoceramic
plates is described in Nakasone et al. [2008] and is basedeam itnansduction. However,
only preliminary results are presented. We apply topolqginaization with an electric energy
objective function to our loudspeaker model in Wein et add2c].

Topology optimization with respect to density and polaitais also covered in the com-
prehensive work Rupp et al. [2009]. Piezoelectric selfgheation is reported and the electri-
cal circuit is included into the optimization process.

In Wein et al. [2011] we apply the objective function for ehez power with reference to
Rupp et al. [2009] and the model in Fig. 4.1 in order to iyt self-penalization. It tran-
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spires that the obtained structure and self-penalizatspedd on the external electric circuit
(ohmic load).

5.1.2. Cantilever Type Harvester

The most common type of piezoelectric energy harvesteregratademic literature is the
cantilever or beam type harvester. In the following we comrage solely on cantilevered
energy harvesters.

Homogeneous Straining

Consider a beam with attached piezoelectric plates in & dtatd scenario as depicted in
Fig. 5.1. The horizontal line of the cantilever at half heighcalled theneutral axisas the
horizontal and vertical strairgy ands,y change sign. For reasons of strain cancellation the
neutral axis should not be located within a piezoelectryeia The following example is
discussed in more detail in Sec. 5.2.2.

von Mises Strain S,

Strain sy

0 ‘|D

-8.5e-06

Figure 5.1.: An elastic cantilever sandwiched by piezdeleplates. The system is fully sup-
ported on the left and subject to a nodal static verticaldac the right. For the
cantilever the dominating strain componesy, is visualized. For the piezoelec-
tric plates, the strain is visualized in the von Mises norn7)Y5Note the neutral
axis within the beam.

In beam theory the strain is proportional to the beam cureatThis is reflected by the
inhomogeneous strain distribution within the piezoeledayers in Fig. 5.1. The common
structural design goal in cantilever type harvesters isefloee the homogenization of the
curvature to increase the electric output.

Modelling

Reduced models are commonly applied in piezoelectric gnieagvester literature owing to
their ease in analytical and numerical optimization. D#fg assumptions on the models
complicate comparison of the results.
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Renno et al. [2009] apply the commamgle degree of freedom (SDORodel but in-
cludes damping and ohmic and inductive external electiaad. They perform analytical
optimization based on the KKT conditions and conclude thatrhaximization of the cou-
pling coefficient does not necessarily coincide with the imézation of electric power. They
emphasize the consideration of an inductive load in additiahe ohmic load.

Erturk and Inman [2008b,a] compare SDOF models against pediuler-Bernoullibeam
mode] emphasizing the improved accuracy of the latter.

In Erturk et al. [2009], mode shapes are expressed andlytigih a consideration of the
tip mass. This allows the segmentation of electrodes tolkastichin cancellation.

Liao and Sodano [2008] present a model based on the EuleeBkrbeam model and
validate it with experimental results. However no tip masapplied.

Finite element modelling of a cantilevered beam harvest#r tjp mass based oHirch-
hoff plateassumptions is presented in De Marqui Junior et al. [200@]uding parametric
optimization. The model is similar to the plate harvestedsiing in Rupp et al. [2009].

Varying the Beam Height

In Albach [2006], Albach et al. [2009] the optimal height fi@of the cantilever is determined
analytically. The optimal beam profile is reported as

h(x) = h\n}?x VI—x

The valueh(x = 1) = 0 is unfeasible to support the tip mass. Moreover, the falido of
non-plane piezoelectric ceramic is complicated. Theeebotinear profile (see Fig. 5.2a) is
proposed as

PNmax— Nmi

The tip mass has no impact on the design. The advantage afhieach is the use of standard
rectangular piezoelectric plates.

Varying the Beam Width

Width modelling gives more design freedom than the lineatiheight modelling, see
Fig. 5.2b. A parametric study is performed in Goldschmiéibhg and Woias [2008], sug-
gesting an equal-sided trapezoid. Such a trapezoid is usedstarting design for a shape
optimization in Dietl and Garcia [2010].

In Goldschmidtboeing and Woias [2008], the mass distrdsutiithin the beam is also
considered, with the barycenter being a function of the shsipifted towards the support for
trapezoidal shapes. They state:

...[The] conversion of the excitation energy into mechahenergy is more ef-

ficient for a rectangular beam. This effect is opposed by ffexteof curvature
homogenization, which leads to a trade-off for the optimwesign.
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(a) Modelling of the height

e
e

(b) Modelling of the width

Figure 5.2.: General cantilever model of a piezoelectrergy harvester. A substrate is sand-
wiched between two piezoelectric plates. The left planesides support and
vertical excitation. The tip mass on the right allows resmeaadjustment. The
strain is homogenized by height modelling of the substnat@) and by width
modelling in (b).

Topology Optimization

To the authors best knowledge, there is at present only &gnglication, Zheng et al. [2008],
which covers topology optimization of a cantilevered piectric energy harvester. The work
has been discussed in Weller [2009], a diploma thesis sigaehby the author of this thesis.
The problem formulation in Weller [2009] is similar to theegent problem. However, the
problem could not be sufficiently solved.

The model used in Zheng et al. [2008] consists of two attachetangular piezoelectric
plates, similar to the model in Fig. 5.2a without the sulistlayer and mass tip. A static force
is applied at the free end, a pressure load on the surfaceoljjaetive function is the energy

conversion factor
Welec

m Welec"‘ Wmech

with the electric energWejec = %lﬂTKqﬂpl[J and mechanical enerd¥nech= %UTKUUU. The
sum of both is the total energy stored in the system. We apjpbn the plate model of Fig. 4.1
in Wein et al. [2011].

The presented work in Zheng et al. [2008] has some limitatidnstatic energy harvester
has no physical relevance. Furthermore a piezoelectritleasr without substrate is too
fragile for any practical application. For vibrational ege harvesting, the ambient energy
can be considered very large in comparison to the gener&ettie power which brings the

J (5.1)
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energy conversion as objective function into questiors $tiown in Weller [2009] thal, can
be maximized by minimizin®Vimech This explains the similarities of the obtained resultdwit
pure elastic compliance minimization and the need for amelgonstraint.

5.2. Problem Setting

5.2.1. Electrical Circuit

For practical use of a piezoelectric sensor, an electricutimeeds to be attached to the
mechanical device. By thenaximum power transfer theorethe applied complex load
impedance needs to match the electric output/ source impedagoé the harvester as

2 =1Z;.

Below the first electric resonance frequency of the piezdeteplates, which is generally
much higher than the mechanical resonances, the electricesanpedance can be assumed
purely capacitive

1
Zs=——=1InQ
*7 jwC
with the capacitance
eA.
C=—1InF
d b

permittivity €, plate surfacé and distance between the electrode3he optimal pure ohmic

load is then given as

1
Zl=R=—.
! wC

The load impedance acts back on the electric field within drgdster, modifying the me-
chanical properties like resonance frequencies by theplegtric coupling. With the piezo-
electric plates subject to optimization, the optimal loagbedance also becomes a function of
the design. The resulting numerical properties and a solw@pproach is described in Rupp
et al. [2009].

Modeling of Impedance

Wang et al. [1999] summarizes the integration of externatlloanpedances into the finite
element model.
An ohmic resistoR is integrated into the system matrix between the electrodiesyyng

and @hot @s
1 /(41 -1\ (ot (O
ogze (11 1) () = (0) 62

1 (41 -1\ (@het) _ (O
L \-1 +1) \@png) — \0)°

an inductancé as
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(' 35) () = (o):

We denote the system matrices augmented by an ohmic extaanlediséR.

and an capacitanceas

Objective Function

The complex electric powd.ecin W effectively obtained from the energy harvester is given
by the product of the electric potential difference ovedi@apedance and the current flowing
through it. Relevant in electrical engineering aggarent powettPsed, real power Riec =
Re{Psiec} andreactive powerlm{Psec}. The design of the electrical circuit of an energy
harvester is subject to research by itself, see Anton andr&o[2007].

In the following, we restrict ourselves to an ohmic resis&R. Then the real power co-
incides with the apparent power. By a grounded electiagig the electric power objective
function is given as

l ) >k
Jpower= ﬁ‘pT LY " (5.3)

Jooweris similar to the electric potential function
Jo=9'L°¢' (5.4)

based on (4.15). Howevelyower requires a system matrﬁq including the load impedance
Z, = R. From (5.2) we see thdhower caNNot be static.

5.2.2. Strain Considerations
We repeat the piezoelectric material laws (2.30) and (2.31)

o = [cF|S—e]'E,
D = [e]S+[eJE.

Written in terms of the physical variables By= %#u (2.7) andE = — ¢ (2.40), the material
laws are

o = [cF]Bu+[e] o, (5.5)
D = [e]%Bu—[eJ00. (5.6)

Von Mises Stress and von Mises Strain Norms

The piezoelectric coupling effect depends on the mechhbsiicn (2.5) which reads in two
dimensions as
Sxx

S={ sy
Zs(y
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5.2. Problem Setting

An appropriate norm is required for the visualization of #tgin and stress vectors. In the
case of mechanical stresses #om Mises stresg, (A.13) represents a common norm in the

convenient form
oy =+ (0,M0).

Analog we define a norm for the strain vector as
S =V(SMS). (5.7)

Strain Components

The simple model in Fig. 5.1 is of length 30 mm, the aluminutmsstate is of thickness 4 mm
and the piezoelectric plates of PZT-5A have a thickness®idn. The applied nodal force
to the plane strain simulation is 100 N. Figure 5.3 gives thars for the upper piezoelectric
plate. The horizontal straigy is positive from the elongation. Due to a positive Poisson’s
ratio the verticals,y is negative and of approximately half magnitude. The sheainsis
negligible. Away from the end points, the individual str@omponents appear as a linear
function with respect to the length, however the von MisegisthormS, shows a minimum

at length position 25 mm. In the simple model the piezoelegiiates also have mechanical
support. The resulting stress singularity explains thengfrstrain deviations close to the
support.

20
16
B 12
—
s 8
£ 4
2B
-4
_8 Il Il Il Il Il Il Il
0 5 10 15 20 25 30
length in mm

Figure 5.3.: Plot of the von Mises strain and the individuedis components close to center
line of the upper piezoelectric plate in the simple modeliogn B.1.

Impact of Free Electrodes

There is no purely mechanical explanation for the locatibthe roots of the linear strain
components in Fig. 5.3. We repeat the numerical experiméhtarconfiguration without the
upmost and lowermost electrodeg, but still grounding the inner electrodes at the substrate.
Note that a configuration withouit,o: electrodes (modelled without mechanical impact, see
Sec. 2.2.5) is unphysical and serves here only in the serssermimerical experiment. Figure
5.4 shows that the local strain differs significantly in camgon to the variant without free
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5. Topology Optimization of a Piezoelectric Energy Hareest

electrodes, although the integral strain does not chanpe.displacement of the upper right
corner of the model is -1.4 um with electrodes and -1.32 prhouit electrodes.

12 — :
: with electrode s,, ——
NI _ w/o electrode s, -----
o 8 e with electrode Syy - 7
c |\ TV w/o electrode s, -
— 4t - i
s r  TE=mmao
s T
g Oor e .
m = v;'::»;;._v,w-,«:.::,:::,.‘.:. .................................
B |
_8 | | | | | | |
0 5 10 15 20 25 30
length in mm

Figure 5.4.: Strain within the upper piezoelectric platéhef model in Fig. 5.1 with and with-
out free electrodeByot. The electrodes have no mechanical stiffness.

Relationship between Strain and Electric Potential

The piezoelectric coupling tensor (2.35) reads in two disi@ms as

0 0 es
el = .
e <631 es3 O )
Note that by convention the piezoelectric material paranseaire given with a polarization
in the z-direction. In two dimensions with a polarization in tizglirection the piezoelectric
coupling coefficients denote the coupling with the stiginperpendicular to the polarization
by e13, along the polarization &gy by esz and with the shear strainsg, by e;s.

Assuming a vertical electric field and no external electhiarges D3 = 0), the material law
(2.31) can be written as

€31 Sxx + €335y = —€33E3.
Interpreting the piezoelectric structure as parallelelzpacitor with a grounded electrode

(2.29) and considering the direction of the electrical fi@al0), the local potential &ty is
given by the strain proportional function

d
-2 63 5.8
@ £a3 (€315 3Syy) (5.8)

with the piezoelectric plate thicknesls The coupling properties for PZT-5A are given in
App. A.5 ase;3 = —6.5N/C andesz = 23.3N/C, see Fig. 5.5. The deviation at the left side
appears to be caused by the strong shear strain from the singgsilarity at the support.
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14 (é13 sx><+é33 Sy )/'8_3‘3 — 7 >
c 12 I -elec. potential - 16 <
S 107 12 8
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< 6r 13 %9
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length in mm

Figure 5.5.: Without equipotential layer, the simplified aeb(5.8) closely matches the sim-
ulated local electric potential. The negative electriogpial is drawn to confirm
with the direction of the electric field. This configuratioitmout free electrode is
unphysical.

Strain Cancellation

Using the piezoelectric coupling coefficients as weightajors of the strain components in
(5.8), the strain from Fig. 5.3 is visualized again in Figh.5The weighted sum of the strain
is proportional to the local electric potential and demuatsts the electric effect of strain
cancellation by the averaging electrodes. The ratio of taegelectric couping coefficients
€31 andess reverse the mechanically dominatisg strain in Fig. 5.3. Note the non-linear
relationship ofsx ands,y; The definition of Poisson’s ratio in pure linear elasticity

Syy

v=—X
Sxx

cannot hold with the singularity at the root § due to piezoelectric coupling and the multi
material composite. The ratio &fx andsyy needs to be non-constant as the roots do not
coincide.

20 | |
(€13 Sxx t €33 Syy)/-E33

il €13 Sxx)/-€33 - §
E - (B33 Syy)/-egg
E ol R -
o
H 5 T —— T |
S

5t -

0 5 10 "~ “ N ”
length in mm

Figure 5.6.: Visualization of the induced electric fieldensities of the strain components
weighted by coupling tensor coefficients based on the modely. 5.1.
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5.2.3. Stress Constraints

Due to the correlation of electric power to mechanical stthe limitation of stresses within

fragile piezoceramic plates is a real world driven requigatn Goldschmidtboeing and Woias
[2008] interprets different designs by their maximal stess(‘maximum tolerable excitation

amplitude’). However, rigorous stress constraint havebeein applied at a piezoelectric har-
vester optimization problem in the literature.

Motivation

A typical stress limit criterion for general material is th@n Mises yield criterion given in the
von Mises stress norm, or more specifically a defined fraaifdhat limit. For piezoceramic
material a typical data sheet gives different limits fortheximal compressive strength, tensile
strength and depolarization pressure (5 % depolarizatidm maximal compressive strength
is typically much higher than the tensile strength. Howeliese stresses cannot be separated
for time-harmonic excitation. Having just a linear modetidoy the excitation dependence of
the actual stresses the maximal stress in the von Mises rsogemierally chosen to match the
peak value of the initial design.

We derive the piezoelectric stress constraints from tresstconstraint functiody (A.14)
in linear elasticity considering = [cF] Zu+ [e]" D@ (5.5). The stress function reads as

I — ([cF|#u+e]"0p,M ([cF] Zu+e] 0¢)). (5.9)

Elastic Design Domain

The energy harvester model has a pure elastic design dddaiU Qmasswhich does not
intersect the domain for the piezoelectric stress comgtfie,o Thus the stress constraint
is proportional to the strain constraint and the problemstoéss constraints described in
App. A.4.3 at non-solid pseudo densities are omitted.

We restrict ourselves to the time-harmonic case witind ¢ being complex values. In the
element wise formulation, (5.9) can be rewritten as

B~ ([F|Buw,M[cF] B u) + (e % g, M[e]" % ¢)
+ 2Re{([cE]%ui,M[e]T,@icpi)},

with discrete gradient operatag and%. The gradient is given by (3.36) as

djgiezo i 0§e
00 =2Re Aed—peue .
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With
aﬁzo = 2([c] ZiuiR) "M [ B+ 2([e] % @) M [cF| #,
a}];;. = 2([c) Zu) (") %+ 2([e] % @,)TM[ "] 2,
033:620 = 2([e]"Z ¢,,)"M[e]" % +2([cF] Ziu) M[e]" 4,
Pr
03%11 = 2([e]"Zi@,)"M[e]" % +2([cF] Ziu,) " M[e]" %,
|

the dynamic adjoint equation (3.37) reads as

(5.10)

A= ([¢5] Ziu)TM[cF] % + (] % ¢) M [cF] %
— \(e"Zig) ™M [e]" % + (| Biu) M [e] %)

With the given equations, the globalization in App. A.4.2 &e applied.

Piezoelectric Design Domain

For the sake of completeness we give the formulation of gkemtric stress constraints applied
to a piezoelectric design domain. This is not the situatartlie energy harvester model but
it is the case for the actuator model.

The notation of material tensof&"] and[&] expresses that the original tensors are subject
to the physical densitp by an appropriate interpolation function. This interpimatfunction
needs to reflect the issues within stress constraints, speA.3. The dynamic formulation
adds no additional constraints to the interpolation fuorcas it is necessary for the material
modelling, see Sec. 3.2.4.

The element wise stress function formulation is given as
35 = ([ ZiuM[E)i Zu) + (8] % @ M[E]] Z )
+ 2Re{([Ei#u,M[EZi)}.
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5. Topology Optimization of a Piezoelectric Energy Hareest

Using (3.36), the gradient reads as

dJ(p;iiezo i 0“AS“eA
e 2 Re /\e,a—peue

+ 2 Re{<[EE]i% u,M 05]?«9?3 ¢i>}

+ 2Re{<[é]rzﬁ @M %% ui>}.

The additional terms vanish f&# i. The adjoint equation coincides with (5.10) with the
material tensors replaced B¢ ;, respectively &];.

5.2.4. Model

Support

A problem of the simple stump model in Fig. 5.1 is the stresgudarity due to the mechanical
support of the piezoelectric plates. Figure 5.7a illussdhe stress distribution at the support
in more detail. The jump in the stress distribution from beamlates with continuous strain
is due to the stiffer piezoelectric material.

Freeing the mechanical boundary condition of the pieztteplates and extending the
beam still gives high stress by a singularity in the cornee, Big. 5.7b. Such a problem is in
fact a benchmark problem within elastic stress constragtecttural optimization, known as
theL-shapeproblem.

A solution is to move the singularity due to the corner inte tincritical beam as shown
in Fig. 5.7c. The change of support at the support has no ingathe stress distribution.
The study has been performed on the static scenario of Higpub.also holds for the dynamic
scenario in Fig. 5.8.

At dynamic excitation the singularity problem also occurtha mass side.

Dimensions

The model of the piezoelectric energy harvester for dynarditation is shown in Fig. 5.8.
Similarly to the models in Fig. 5.2, the model consists okprdectric plates, bea@peamand
a tip masQmass

The beam has a length of 3cm and a height of 4 mm. The adapterheght of 2.8 mm.
The thickness of the piezoelectric plates is 500 um. The rhasghe dimensions 1cm by

110



5.2. Problem Setting

(a) Plane support (b) Simple Adapter (c) Staged Adapter

Figure 5.7.: Evaluation of different kinds of mechanicapgart for a static excited can-
tilevered energy harvester, see Fig. 5.1 and the explarsatioSec. 5.2.4. The
stress singularity cannot be avoided but is located in Ry o(tside the critical
piezoelectric plates.

1.4 cm and is connected by a 0.5 mm wide adapter with the bebepi€zoelectric plates are
of PZT-5A. All other material is aluminum, see App. A.5.

Dynamic Excitation

To allow for the maximization of the electric powdower (5.3), the electrodes are connected
by ohmic resistors witfR. = 100Q, implemented by (5.2) and resulting in the global system
matrix Sg.

R
Qpiezo(UppED
rhot
@ r r
g ond Qbeam ’jT_ Qmass
W
R

Figure 5.8.: Model of the cantilever type piezoelectricrggeharvester. The design domain
for topology optimization iQpeamU Qmass The harvester is excited by a sinu-
soidal vertical displacement.

For the electrically excited actuator it is feasible to véing excitation frequency while
keeping the amplitude constant. In the vibrational energiyvéster scenario we assume a
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5. Topology Optimization of a Piezoelectric Energy Hareest

mass concentrated rigid body of constant kinetic energy

_ 1 ou?
2 ot

to derive the exciting displacement of the energy harves$tes linear model allows the scaling
of the displacement to result in an appropriate order of ntade of the gradients for the

resonance and off-resonance case concurrently. The aodldf the frequency dependent
sinusoidal excitation is given by

Ex

K

u=1/7

(5.11)

with the scaling constark chosen as 013291 m/s’. Thus the subsequent values for the
obtained electric power and active stresses shall be useddjealitative interpretation only.

Design Domains

In general the design domain is set up Dyeam Qmass Concluding from the results pre-
sented in beam-model based literatg,assis expected to allow the tuning of the resonance
frequency and2peamto homogenize the bending.

5.3. Numerical Results

5.3.1. Static Case

In several publications, the harvesting efficiency is inveebby means of homogenizing the
strain distribution within the piezoelectric plates. Thigproach holds equally for the first
vibrational mode and the static case.

For the static case we choose to optimize for the electriem@ by

=0 (5.12)

wherel ? selects the nodes 6fo(Upped by -1 andlhqi(lower) by 1. The system is excited
by setting an inhomogeneous Dirichlet boundary conditiopng) to a center node 63mass

Fig. 5.9 shows the obtained result (using SNOPT, KKT coadgisatisfied). The induced
electric potential is increased from 1.0V to 1.5V. The stumih the support is not part of
the design domain. For the static case, the outside voluinég onass have no relevance.
Therefore the initial desigp = 0.5 persists.

The piezoelectric strains are not homogenized but the ek gs increased by 5.8 % while
the piezoelectric peak stress is increased by 37 %. Thenaataesult is clearly not feasible
from a manufacturing point of view, but also not appropritedynamic use, as shown in
Fig. 5.10. The frequency responselgdweris compared for the original and optimized design.
The second resonance mode is shifted but the peak perfoenoétice optimized structure is
far below the original structure (note the logarithmic sag.
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Figure 5.9.: The obtained topology of model Fig. 5.8 sulijestatic maximization of electric
potential. The color scale within the piezoelectric platiesws the stress distribu-
tion in the von Mises norm. A density filter of 1.7 elements haen applied.

static optimized .........

0 | |
10
0 2000 4000 6000 8000 10000

excitation frequency in Hz

Figure 5.10.: Electric power frequency response of modgl 5i8 and the static optimized
design from Fig. 5.9.

5.3.2. Unconstrained Dynamic Case

In a first approach we maximize the model in Fig. 5.83@fver by an unconstrained topology
optimization problem individually for various excitatidrequencies. Again a density filter
with radius of 1.7 edge length is applied. The adapter, stibjeghe inhomogeneous Dirichlet
boundary conditions, is not part of the design domain. Nad¢ the performance of different
frequencies is not comparable due to the frequency depeegeitation amplitude (5.11).

Variation of the Design Domain

The optimization is performed for the design domahgam QmassaNdQpeam Qmass Com-
pared to the thin model structure for the piezoelectric @actuoptimization, we can only ex-
pect a significant lower modal density. Considerihgassas design domain, Fig. 5.11 shows
a robust adjustment of the resonance frequency for wideiérecy ranges. The same can be
observed foQpeamas design domain, however the frequency regions with goddrpeance
are roughly disjunct. Combining both design space®gg.mU Qmasscomplicates the opti-
mization problem in such a way that the computational efforignificantly increased for
higher frequencies. The problems far away from the resanémecjuencies result from the
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modal density and are therefore physical justified.

105 F
104 L
can3 [
glo ;
5? beam+mass ©
1[ £ beam +
10 X{ mass  x
100 | | | \SOlId 77777777777 |
0 2000 4000 6000 8000 10000
excitation frequency in Hz
(a) logarithmic scaling
6.0 Fpeam+mass o
| beam
50 mass  x
% a0l  solid -
—
g 30
g Syt
= 20¢ A
10 i A
0.0 D Bl A S
0 2000 4000 6000 8000 10000

excitation frequency in Hz
(b) linear scaling

Figure 5.11.: Dynamic optimization results fayower of model Fig. 5.8. Design domains are
Qpeam Qmassand QpeamU Qmass Results for the marked frequencies are dis-
cussed in the text.

In the following we concentrate on a lower frequency ran@®qQL. .. 3300 Hz) around the
first resonance frequency and a higher frequency range (800800 Hz) around the second
resonance. The principal dimensions of the model are aphareot suitable for intermediate
target frequencies. Optimizing within this intermediaggion is highly unstable and almost
chaotic.

Lower Frequency Region

Figure 5.12 contains the obtained results for the excitdtiequencies 1450 Hz and 3050 Hz.
1450Hz is the first resonance frequency of the initial systgth solid Qpeam and Qmass
Joowerat 1450 Hz is increased by 16 % while the piezoelectric strege von Mises norm is
increased by 4.4 %.

As a second example, the solution for 3050 Hz is chosen. In3:ilb this frequency
appears to represent a maximum performance within the léwgquency range. However,
this conclusion is invalid due to the frequency dependesttatxon (5.11). Nevertheless,
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decreasing performance and less robust optimization letfos frequency within the lower
frequency range can be assumed. It is of note that the opsoiation for design space
Qpeam Qmassand design spad@®@masscoincides at 3050 Hz. Hence a solid beam represents a
(local) optimum.

(b) 3050 Hz

Figure 5.12.: Obtained topologies for the frequencies Hband 3050 Hz with design space
QpeamU Qmass See Fig. 5.11. The visualized displacement is the indaligiu
scaled real part of the calculated displacement. For theoplectric layers the
stress distribution in the von Mises norm is visualized. db#ine of the system
without excitation in the background serves as reference.

A common observation within the lower frequency range, &sahe results not shown
here, is a strong self-penalization. The mass is shapedailg around the support. Typical
for almost all solutions is the slit at the support, formimgedmost hinge like connection with
the solid adapter. The optimizer obviously does not homizgdghe piezoelectric strain within
the piezoelectric plate. While such a solution is propadjatehe literature, it is for the given
model either not optimal or not found by SNOPT. The resultiedsignificantly from the
static solution in Fig. 5.9 which proved to fail for the dyniaroase.

Higher Frequency Region

The higher frequency region around the second resonancleeoinitial design shows in
Fig. 5.11b the potential of the concurrent optimizationfamand Qmass Unfortunately,
the optimizations for varying excitation frequencies ater instable, similar to the acoustic
actuator problem in Fig. 4.24. The robustness for the astymabblem could be significantly
improved by appropriate initial designs based on eigenfaqy analysis in Sec. 4.5. For
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the present case, however, a possible explanation liegidifferent roles of the sub design
spaces. Assuming the structure is in resonance, any chaitiga the beam would sacrifice
performance by moving the resonance point. Hence a comtunass tuning is necessary.

The selected frequencies are 8670 Hz, the resonance fregoéthe solid structure and
9240 Hz, arbitrarily selected. Both obtained designs in 5i@3 are in principle similar, and
in fact representative for all well-performing solutionghin the higher frequency range.

(a) 8670Hz

(b) 9240 Hz

Figure 5.13.: Obtained topologies for the frequencies 8&7and 9240 Hz with design space
QpeamU Qmass see Fig. 5.11. See Fig. 5.12 for a description and Fig. oi4 f
addition visualization of the displacement.

For 8670 Hz the electric power is increased by 64 % due to tjie $train within the piezo-
electric plates where the optimizer removed the materahfthe beam.gy is increased by
69 %. The obtained structures are clearly not feasible framaatical point of view, allowing
solely the fragile piezoelectric plates to carry the loagrizhibitive. Nevertheless, it is worth
studying the results before modifying the problem accalyim the following section.

The designs show again the slit at the support, the hingedikaection is even more distinct
than in Fig. 5.12a. Self-penalization can be observedpagh Fig. 5.13a shows intermediate
material within the beam.

The visualization of magnitude of the complex displacemerfiig. 5.14 is interesting. A
virtual simple support appears at the free side of the de@bwiously, the optimizer attempts
to move the virtual support towards both ends of the beam.ddewthe actual displacement
of the beam is far more complex (and effective) than the graisecond mode shape.
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Figure 5.14.: Fig. 5.13 visualizes the real part of the @ispiment. Here the magnitude of the
complex displacement is visualized for the initial and opzied structure.

5.3.3. Realistic Designs

The necessary steps to comply witlanufacturing constraintshow the limitation of the
coarse resolution. Therefore the following results aregiat the second resonance frequency
of a finely scaled model. The qualitative observations amdlpms coincide. The optimal
solution without any constraints is given in Fig. 5.15. Thangin the objective function
(54 %) is close to the coarse solution. However the incre&sé & by the peak stress is
much smaller. Particularly the finely scaled unconstrajpedblem challenges the optimizer
(SNOPT spends 96 % of the total run time in internal functjoss a result of the lack of
robustness in optimization, the performance will even bprowed by additional constraints.
Modification of the density filter size could not improve thgimization.

Figure 5.15.: The equivalent of the result in Fig. 5.13a;amstrained optimization at the sec-
ond resonance frequency of the fine scaled model (8575 Hanp@red to the
solid structureJyoweris increased by 54 % with a peak stresginl6 % larger.

An combination of different methods will be necessary tolfyn@ach a satisfactory design.

The Slit

The hinge like connection of the beam to the stump leads tallijogery high mechanical
stresses. One option would of course be to apply a stressramtido the elastic design
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domain and expect the hinges to vanish. However, to guadniéek and white designs for
such stress constraints is still an open problem, see S&@&.Anstead, we interpret the hinge
at the slit to be realized by an actual hinge - going beyonelgurompliant mechanisms
described in Sec. 3.2.3.

Stress Constrained Piezoelectric Plates

The piezoelectric sensor effect is a function of the strédence, the optimizer exploits the
linear model by constructing the extreme configurationsign 5.13. Applying stress con-
straints to the piezoelectric plates tackles this probl@ectdy. We apply 94 % of the initial
configuration stress function value with a rather relaxednolz, = 0.001 for the globalized
stress constraint (A.15) applied on the piezoelectricsstfermulation.

Figure 5.16.: Adding stress constraints to the problem g1 5il5. With respect to the solid
structure JpoweriS increased by 59 % while the peak stress is decreased by.2.7 %
Intermediate material can be interpreted as network ohgpri

The result obtained for the second resonance frequencyversim Fig. 5.16. With 59 %,
the gain inJyower against the solid solution is even better than for the uricamed solution
(54 %). oy is decreased by 2.7 % compared to an increase of 16 %. Thefiateranediate
material within the beam might be interpreted as springafroting the deflection and as
such the maximal strain.

Reinforcement

To ensure elastic support of the fragile piezoelectricgdatve limit the design domain within
the beam to a height of 2.8 mm which is the height of the supgamying adapter and the
adapter to the mass. Without stress constraints, the opdiesagn shown in Fig. 5.17 is with

62 % improvement in comparison to the inital design equivadéightly better than the stress
constrained solution (59 %). However, the peak stress is 8B&%e the inital design. Springs
as design element cannot be found, although the interpieretz the structure is not clear.

Reinforcement and Stress Constraints

Combining reinforcement and piezoelectric stress comg$ratill shows a strong gain lyower
by 58 % with a good controll of the peak stress (-2.7 %) in Fig85 However, intermediate
design regions within the beam, possibliy to be interpretedprings, are difficult to interpret
as manufacturable design.
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Figure 5.17.: Limited design domain ensuring reinforcetr@nthe piezoelectric plates by
solid 0.6 mm aluminum layersJyower is increased against the full solid struc-
ture by 62 % and the peak stress by 38 %.

Figure 5.18.: Applying stress constraints to the limitedige space, ensuring reinforcement
for the piezoelectric plates. The gain®bweris 58 % with feasible peak stress
-2.7%. The intermediate material might serve as springs.

Manually removing the springs reveals the dynamic seritsitdf the design with a signifi-
cant dislocated second resonance frequency. Albeit tHerpgnce is still good a frequency
tuned black and white design is necessary.

Additional Modified Heaviside Filter

In contrast to the actuator optimization, the self-perdion effect is not strong enough for
the till now best energy harvester design in Fig. 5.18. Ha#xethe problem is not areas of
intermediate density, as in the compliance problem, bineratoo thin bars resulting in the
physical design as non-solid due to the density filter. Atsatuapproach is explicit feature
size control, see App. A.3.

We choose the modified Heaviside filter (A.4) which actualyves as black and white
filter and void feature size control. The latter can serve asufacturing constraint when it
corresponds with the (smallest) milling tool size.

(A.4) is applied in a continuation approach wttbeing doubled, starting frofi = 1 up to
B = 256. Each step is optimized to KKT condition.

Fig. 5.19 shows that the constrained void feature is futfillethin the design domain but
the manufacturing constraint is not fulfilled due to the feiocement. Particularly visible is
the fact that the optimizer uses the freedom to constructglesthin structure. However, due
to the black and white effect the structure is solid and nqirang.

The present result has, with 65 %, the strongest gailydier, presumably due to the loss
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of enforced grayness by the standard density filter. Thestrenstraints are fulfilled with
-2.5%. Interestingly, the piezoelectric stress distitrutvithin the upper and lower plate is
not symmetric any more.

Figure 5.19.: Applying the modified Heaviside filter (A.4)the stress constrained model with
reinforcement. The converged result for the Heavisiderpatar 3 = 256 is
shown. Jpower is improved by 64 % (the highest obtained valug),is 2.5 %
below the stress of the solid resonance case.

For the sake of completeness we give for the filtered phydiesign in Fig. 5.19 the plain
design variable in Fig. 5.20a. Also the Heaviside filtersnmdarguarantee black and white
designs, as with finit@ for an arbitrary desired value at a specific point in the ftedesign
density values exist that can realize it.

In Fig. 5.20b the location of the virtual support for the seteesonance mode is located
symmetrically with respect to the beam against the actygieu.

| -']

@p (b) |u]

Figure 5.20.: For the solution in Fig. 5.19: (a) the unfiltedesign variable; (b) The magni-
tude of the complex displacement to be compared againsbHiga.

5.4. Discussion

The energy harvester problem proves to be significantly mbeadlenging than the actuator
optimization. Having a more complex system we can providg animited design space
to the optimizer, in the present case the geometry of thdlpbpsezoelectric plates is fixed.
Furthermore, additional constraints in the form of pieeogic stress constraints and rein-
forcement are necessary. Details of the model are impogamntthe support as demonstrated
in Fig. 5.7.
The optimizer finds a compliant mechanism design, which i®w&ehobservation in the

energy harvesting optimization literature. The mechanisrtudes hinges and springs. The
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hinges are considered to be interpretable by rigid hinges &t manufacturing point of view.
The springs are successfully removed from the design spgdéde application of the (mod-
ified) Heaviside density filter. This results in a new and umsyetric optimal design.

From a manufacturing point of view, the 2D plane strain madeiot a limitation. The
results of a coarse unconstrained 3D optimization (not shiwsve) are very close to the cor-
responding 2D case.

5.4.1. Possible Extensions

If a hard void features size control is desired as manufaguonstraint, the reinforced solid
domain should be added to the element neighborhood of théiethtleaviside filter.

In Fig. 5.6 the dominance of the piezoelectric thicknesaissyy is shown. However, the
model Fig. 5.8 allows only an indirect effect by ands,,. An approach where (some) piezo-
electric plates are within the design domain and the opgmgan form appropriate mecha-
nisms therefore appears promising.

Additional electrode design as proposed by Erturk et al0@G@nd other authors might
further improve the obtained electric power, although carenot expect too much for the first
two modes.
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6. Self-Penalization

6.1. Introduction

The optimal topology for compliance minimization by a line®ntinuous design variable
pseudo density is full material. Changing the problem by adding a volumestmaint we
gain the convex variable thickness sheet problem. Howéwveninique solution is known to
have intermediate pseudo density, see Fig. 3.2. The SIMRInatich avoids intermediate
pseudo density by an explicit penalization approach regutin ill-posed problem, generating
the need for regularization, see Fig. 3.5.

We now consider exemplary topology optimization problenith & linear continuous de-
sign variable without additional constraints beside baxstrints on the design variable. We
define byself-penalizatiowhen a sufficiently distindblack and whitedesign is obtained for
such problems.

The phenomenon of self-penalization has first been merdiomeSigmund and Jensen
[2003] for an elastic wave guide, see Fig. 3.12. Self-peatibn is reported for several prob-
lems but in general it is not discussed in detail. Preseihidydnly detailed discussion of
self-penalization is in Wein et al. [2011]. We adopted thentérom a private communication
with Ole Sigmund at WCSMO-08.

Our aim is to describe and discuss self-penalization as agvhenon. In contrast to a
method which can be improved, we do not aim to improve but ttewstand the more or less
pronounced observed effect of self-penalization.

6.2. Static Compliance Mechanism Design

6.2.1. Conditions for Gray Results

We consider the force inverter as model problem, see Se@® ®ith Fig. 3.8. The objective
function is
with the gradient
aJ oK
md — Ag eue.
dPe dpe
Intermediate results in the optimal design require

0JImd
JPe

=0 A Pe & {Pmin; Pmax} - (6.1)
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6. Self-Penalization

Due to the linear design variable, the necessary conditiogry materiaPpe & { Pmin; Pmax}
can also be written as

0Ke

(Ae, (9—peu6> =0
(BAe, [C]ABU) = O
<S)\e7 [C]SJe> =0
<SAe7 aUe> = 0

whereA ¢ andue are interchangeable. This is the case when one of the falpadnditions
holds

Jue| = 0O, (6.2)
[Ael =0, (6.3)
1Sull = 0, (6.4)
1Sy = 0, (6.5)
S\, L oy for[S§ || >0and|oyl > 0. (6.6)

(6.2) and (6.3) clearly imply (6.4) and (6.5), whereas thiaistcan be zero also by a rigid
displacement. (6.6) shall express the configuration of eangtrain orthogonal to a nonzero
stress. Note the8)_ L gy, is equivalenttd,, L 0, _butnotS, L S, as[c]is no diagonal
matrix. (6.6) shall express the case for non-zero vectors.

6.2.2. Numerical Experiments

The numerical experiment has #pforce and adjoint pseudo load are 1 N. The material has a
Young’s modulus of 1 Pa and Poisson’s ratio 0.3. The nodeth@&forward and adjoint load
have additional stiffening of 50%.

Strong Self-Penalization

By the careful selection gdmin we obtain strong self penalization minimizidgq. The result
is obtained fopmin = 0.001 and linear interpolation. It shows almost perfect pelfialization.
In Fig. 6.1a the areas with intermediate densities are ndarkiee largest area of intermediate
densities are at the right upper and lower free corner. @fkeronly single elements show
small density values. Almost all gray elements have no cctime to solid material, their
mechanical effect is therefore negligible.

Figure 6.2a shows the areas with significant negative dbgegradient. The areas have
the functions of support, forward and adjoint load pointd dars. Stronger material would
improve the objective function. Without volume restrictiall elements with strong negative
gradients are solid.

Figure 6.2b visualizes the elements with significant pesigradient. A smaller lower
bound would improve the mechanism due to the relative pigh. The peak of the positive
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(a) density (b) forward solution (c) adjoint solution

Figure 6.1.: Self-penalization of a force inverter: (a)ioyat design with marked gray areas;
(b) forward solutiorK u = f; (c) adjoint solutiorK A = —I.

gradient decreases drastically for smaller lower desigimtds. Again all elements with strong

positive gradient are void.
The set of design elements with objective gradient closeeto,zshown in Fig. 6.2c, is

relatively large. Only a small difference to numerical zerakes the difference to the areas of
intermediate density marked in Fig. 6.1a by circles anddsmiivoid material.

RERRRREREmzsse

N a4

(@) i;—y < —0.00001 (b) ‘;J—y > 0.00001 (©) |‘%ﬂ| < 0.00001

Figure 6.2.: Gradient rangf’glm—ed € {—0.0073: 00734} for the design in Fig. 6.1: (a) negative
gradient (more material); (b) positive gradient (less makg (c) almost zero

(optimal). The scaling for (a) is ten times the scaling of (b)

The visualization of the forward and adjoint solution in F&ylb, respectively Fig. 6.1c
shows (rigid) displacement within the design domain. (@29 (6.3) are not fulfilled and

therefore not responsible for the gray elements.
The straing|Sy|| and||S, || are visualized in Fig. 6.3a and Fig. 6.3b, respectively.yTdre

clearly closely related to the gradient visualization aadirieed explain the gray elements by
rigid body displacement, in the present case actually oftheint solution, hence (6.5) and

partially (6.4) holds.
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6. Self-Penalization

It is a difficult task to visualize condition (6.6) in the givénterpretation. To distinguish
from (6.5) and (6.4), we removed from the gradient all eletm@rhere the norm of the strain/
stress is not larger than 500 times the minimal element n@engain a subset of the gradient
which is visualized in absolute values for small numbery anFig. 6.3c. The smallest values
are within the two islands of void material, for the choserapzeters (6.6) is not responsible
for gray elements.

(a) strain|| Sy, || (b) strain||S, || (c) selecteds, , L 0y,

Figure 6.3.: The strains of the forward and adjoint solwionFig. 6.1 in the von Mises norm.
(c) visualizes small gradients (similar to Fig. 6.2c) exithg the regions of small
strains.

Too Small Lower Bound

Pmin for the linear interpolation must not be too small (at theviard and adjoint force nodes),
otherwise the optimizer converges to a local minimum wittozebjective value and zero gra-
dient due tau andA almost everywhere arbitrary small. Figure 6.4a shows hawtitimizer
removes the material at the force and adjoint point and séitenaterial at the support. The
element displacemetjue|| and adjoint solutiofiA ¢|| is very small for all non-void elements.
Figure 6.4a visualizes the forward solution. The adjoiritison is almost mirrored. Figure
6.4b indicates thatS,, || and||S,_ || are numerical zero for non-void element. Here the strain
of the adjoint solution is shown. The forward strain is agaimprinciple mirrored. Figure
6.4c shows the elements with a gradient value close to zenziding with the elements in
Fig. 6.4a where the designs stays at the initial depign0.5.

Nonlinear Interpolation

The above local minimum can be overcome by increapipg However, through a nonlinear
interpolation the physical lower bound can be decreaseds i$tsurprising as the nonlinear
interpolation has no physical effect. Numerically the geatibecomes smaller with respect
to the objective function, but this does not explain thectftd not being locked in the local
minimum.

We choose the standard power (3.16) law as nonlinear intgrpo function. In Fig. 6.5 we
study the objective value and grayness depending on thergmavemeteip and pmin chosen
implicitly such thatprf]in is comparable.
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6.2. Static Compliance Mechanism Design

Adjoint strain
6

=0.1

/}}E! - | —;o.m
i .

=0.001

0.0001

i e ! HE==
(a) design and solution (b) strain||Ag|| (© |"‘?J_gi| <1.10°10

Figure 6.4.: The force inverter problem fails with a too shglin = 1-10~%. SNOPT and
SCPIP converge to a local minimum. (a): design and forwaldtism; (b) visual-
ization of adjoint strain with logarithmic scaling; (c) etents with close to zero
gradient.

In principle the effects are similar for SCPIP and SNOPT. Ewer the results for SNOPT
with very tight conditions of 11012 for the optimality tolerance are more robust.

ForpP. not small enough, the performance of the optimized desigrealy weak but im-
proves reliably for smallqon‘,’“n. There is a rather sharp bound as functiorpahdprf“n where
we observe bifurcation. The same bifurcation can be obdearvéhe measured grayness in
Fig. 6.5b. Here we have approximately either very stronfgpsehalization or almost maximal
grayness.

10%  10° 102 108 10° 10% 10° 107
p p
lower boundp,;,, lower boundo,,;,,

(a) objectivelmng (b) graynessjgray

Figure 6.5.: The result of 2400 unconstrained force inverpimization problems with non-
linear design interpolation functign®, varying the exponenp and pnmin: (a) the
objective value is visualized, with smaller values beingdre (b) the obtained
grayness shows very strong self-penalization for suitpladad pmin.
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6. Self-Penalization

6.3. Elastic Wave Guiding

We consider dynamic elastic topology optimization, alsmwn as wave guiding, see
Sec. 3.2.4. The objective function is

Jy=u"Lu".

6.3.1. Pamping

Consider some of the rare reports of dynamic unconstramgaldgy optimization resulting
in black and white results, e.g. Sigmund and Jensen [2008]Sagmund [2007] for elas-
ticity, Jensen and Sigmund [2005] for electromagnetic ahidig et al. [2008] for acoustic
topology optimization. Strictly speaking, the afore men#d publications do not demon-
strate self-penalization as artificial mass proportiomahding has been added to the problem
formulations after the first reference. In Jensen and Sighf2@05] the appropriate method,
pamping is defined. It gives an artificial element damping part basedhe solid element
mass matrix

~art
Ce (Pe;d) = Pe(1—pe) Mo (6.7)

to be added to the local element matrix. By this formulatigray material is actually pe-
nalized by representing dissipative material. Where theddrd SIMP penalization becomes
active in liaison with an additional resource constraiat,gamping an appropriate objective
function is sufficient.

The pamping parameteris generally chosen to be constant. As the pamping vanishes f
final black and white designs, no discussion of the physiakdiity is necessary.

Partially in contrast to the references, we apply pampiragiaiition to the standard material
damping and based on the physical mass design.

6.3.2. Conditions for Gray Results

For simplicity of notation we assume an unfiltered linearigievariable, additionally the
element index is skipped in the following. The gradiendeis given by (3.36) as

aJ, +0S
M _92R — )
7p e{/\ 7p u}
This can also be written as

aJy Tﬁéq Tﬁé TdéR Tﬁé
oap <Ade tR Adeu' A op u—A dpuR>

With the complex Rayleigh damped system matrix (2.25)

S = K+jwC— M
(1+jwak)K+ (jway — w?)M
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6.3. Elastic Wave Guiding

and the addition of pamping (6.7) the system becomes

S = R+jw(aKIZ+aMIVI+(~3art>—w2M
= pKo+jw (ak oK+ (am +q(1-p)) pMg) — w? pM.

The necessary condition for intermediate material in thexgd design for the unconstrained
problem is the same as for the static case (6.1)

aJ
0—; =0 A Pe & {Pmin; Pmax}- (6.8)

Resolving the gradient gives

3—\2;] :<%}/\ R, [C] r%’LIR> - O)2<A R,MOUR>
—wak(#AR,[c]BuU) —wam(Ar, Mou) —wq(1—2p)(Ar,Mou) (6.9)
+(AA,[c]Bu) —OL)2<A|,M0U|>

—wWak(AA\,[C]BUR) —wam(A|,MoUr) — wq(1—2p)(A|,MoUR).

Assumptions

Mathematically (6.9) can approach zero for complex 0 andA = 0 (real and imaginary
parts are both zero). Zero straigdu and# A are not sufficient.

However, based on physical considerations we assume fasisafly high frequency # 0
andA # 0 for the element vectors.

Concentration on a Single Element

Next, we discuss some abstract mathematical considesat@sed on a single finite element.
w suitably fixed and sufficient damping is assumBtd.computes according (2.19) and there-
fore depends linearly on the physical material dengity From physics we can assurog,

awm, [€] and py to be bounded.p andq are bounded by definition, then alsoand A are
bounded, inducing the straimdu and. %4 A to be bounded, too. Without considering the state
and adjoint equations, there is a set

Gm(a; [€], pom, Ok, am, p,U,A, BU, BA)
for which
0Ju(Gm)
ap
We assumé&n, to be a closed and compact set. Hence, there are infinitepwsalble cases

such that (6.8) holds.
For given material parametefs|, pm, ak anday at a given geometry and boundary con-

=0.
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6. Self-Penalization

ditions and arbitraryg an optimal desigi is found as

p = argmaxiu(q),

definingu(p), A (p), Zu(p) and# A (p) by the forward and adjoint equation. Then, there is
a set

Gq (a,p(a),u(p(a)),A(p(a)), Zu(p(a)), ZA(pP(q))),

for which
04(Go)

ap
Assuming a unique solution of the optimization problem, we om (6.9) thaGy contains
at maximum a single combination within some feasible bodadg.

=0.

Global System

Gq contains a pamping parametpsuch that a specific local element has zero gradient. That
means for the global system that there exists a set

_ . 0du(@)
Qz_{qeR. JPe _O}

with all g where the local gradient is zero for at least one eleneen{6.9) is fulfilled by
Qq C€ Qz, hence for any

qeR\Qq
we have a black and white design.

Pamping

Pamping is physically motivated by dissipation. This effeclearly not seen in the algebraic
description (6.9). However the tuning property is reflected

6.3.3. Numerical Experiments
The Model

Our model is similar to the wave guiding benchmark in Sigmf2@d7] and the wave guiding
example in Fig. 3.12a. We have a squared re@eg_ of edge size 1.5m. The actual design
domainQu, of 1 m x 1 mis centered. The domains do not overlap. The left edgesalélsign
domain is subject to forced harmonic displacement irxtdéection, they-direction is fixed,
seelex in Fig. 3.12a. As in Sigmund [2007T,opt is the center node of the side opposite to
ex- Qm is discretized by 8& 80 2D finite elements in plain stress formulation.

The isotropic material properties afe= 1 Pa,v = 0.3 andpm, = 1 kg/n®. Instead of bi-
material optimization we sginin = 0.01. The excitation frequency is 1 Hz. See the examples
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6.3. Elastic Wave Guiding

for the specific damping parameters. A standard densityWté radius 2.5 times the element
edge length is applied.

Variation of Rayleigh Damping Parameters

In a first numerical experiment we omit pampirg=Q) and vary the stiffness proportional
damping parametemy and the mass proportional parametgf. The response for initial
configuration witho = 0.5 is shown in Fig. 6.6a.

For the given parameters and an assumed loss factértem05 ax computes as.04 and
ov as 1.6, see Kaltenbacher [2007]. However, to improve nuwalestability the damping
parameters within this study are chosen unphysical large.

For the given parameters, the dense positive definite elestifness matrix has coefficients
in the range 0of-0.01 < kj; < 0.5. The sparse positive definite mass matrix has coefficiants i
the range of M001< m;; < 0.001. This explains the different scaling in the effectsrefand
am .-

We start the discussion with the response of the homogen@ates Wheno is varied, a
minimum inJ, can be observed close tix = 0.4. Largerag lead to even higher objective
values of the homogeneous design. For lamgrthe objective value decreases, which is in
conformance with the motivation of pamping.

(a) initial (b) optimized (c) grayness

Figure 6.6.: Without pampingy(= 0) we perform for 1 Hz several wave guiding optimization
problems with varying Rayleigh damping parameters.

The obtained objective values for the set of various dampargmeters are shown Fig. 6.6b.
The same observations with respectifpanday as for the homogeneous plate can be made.
However for decreasing objective values, the graynessdatution can increase also, which
can be best seen in Fig. 6.7c and Fig. 6.9a wigrés increased from 0.5 to 28.8 for constant
ak = 4.9. This is in contradiction to the motivation of pamping.

Pamping

To study the effect of pamping we consider the resultsdipr= 4.9. For increasingyy the
optimized objective function decays, see Fig. 6.8a, whiéegrayness increases, see Fig. 6.8b.
The result foray = 28.8 is selected as a reference example, see Fig. 6.9a. Baséison t
result pamping is added. (6.7) shows that maximal pampiegrsdorp = 0.5 such that for

g = 4 the additional mass damping correspondsyio+ 1. The axis fogin Fig. 6.8 is scaled
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6. Self-Penalization

(& am =0.5, ax =0.0

Figure 6.7.: Optimized topologies as samples from the dpétions in Fig. 6.6b

accordingly. However, for a pure black and white design &itrary pampingy has no effect

=

on damping @k =4.9,ay = 28.8).

Jyin 10°

Figure 6.8.

For the selected example, the objective function in FigaGi8creases for increasimg
with the physical grayness quickly dropping in Fig. 6.8b.r o> 10 the grayness is rather
small. However it cannot reach zero due to the density filiée objective function decays
more slowly but does not become constant. Comparing thengatalesign with pamping in
Fig. 6.9b against the design without pamping in Fig. 6.9a&minding of a typical variable

pampingq
20 -15 -10 -5 0 5 10 15 20
2.0 ———————
16+ v
14t el
12 ¢}
1.0t
0.8 |
6 1 1 1 1 1 1 1 1 1 1
24 25 26 27 28 29 30 31 32 33
dampingom
(a) objective function

: From Fig. 6.6 data farx = 4.9 is extracted. Against the variation af; the
results for the optimization based oy = 28.8 with varying pamping is shown.

See Fig. 6.9

grayness

(b) aw =05 ax =04

0.3 r

0.3

0.2
0.2 t
0.2

0.1

pampingq
20 -15 -10 -5 0 5 10 15 20
0.4 —————————
e . R
MHW
éﬂsal‘l
-
24 25 26 27 28 29 30 31 32 33
dampingam
(b) grayness

thickness sheet solution against a SIMP design.

In Fig. 6.6c we see that for some damping parameters a gragi@ols optimal. For other
parameters a black and white design is optimal. Self-peaiadin only occurs in the latter case
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6.4. Piezoelectric Self-Penalization by Balancing Cotattng Material Effects

(a) no pamping (b) pamping withg =7

Figure 6.9.: The original problem and a selected pampingitré®m Fig. 6.8.ax = 4.9 and
ay = 28.38.

6.4. Piezoelectric Self-Penalization by Balancing
Counteracting Material Effects

For static piezoelectric problems we can find a specific agntation for self-penalization.
The following section has been published in Wein et al. [30W¥e restrict ourselves to the
maximization of the physical variables by (4.12),

B'=u"l"andJy = "1,

to measure the inverse piezoelectric effect (actuator modelirect piezoelectric effect (sen-
sor mode).

When we vary the pseudo density from void to full materialisitlear that the system
depicted in Fig. 4.1 becomes stiffer with higher pseudo tignklence counteracting an ac-
tuator application. For a sensor application the mateaial(2.31) tells us that high stiffness,
which means low bending/strain, results in low piezoelecioupling and thus in a small sen-
sor effect. On the other hand it is clear for the piezoeleaoupling contribution that there
is no actuator or sensor effect at all for void material. Herower or higher pseudo den-
sity have contrary effects and it is indeed the combinatibthese effects which results in
self-penalization as will be shown within this section.

6.4.1. Gedankenexperiment

We perform an unphysical gedankenexperiment. Considetwbelate system in Fig. 4.1
where each layer is discretized by finite elements. For teegalectric layer we reduce the
vector of pseudo densitigsto a scalar valup, effectively treating every element contribution
with the same factgoe = p. Furthermorep is applied separately to the piezoelectric material

properties, for examplées] = p[cE], [&] = [e] and [Ea = [£9 to examine the stiffness
contribution of €5] = [cE], [&] =p|e] and[Ea — €9 to examine the piezoelectric coupling.
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(b) Sensor mode with pressure excitation by 1 Rl/m

Figure 6.10.: In the sense of a gedankenexperiment, thgrddsimainQ, is modeled by a
single design variablp which is varied frompmin t0 Piarge > Pmax- P is applied
separately tocF], [, [e].

Actor

Fig. 6.10a visualizes the gedankenexperiment for thecstator. The displacement decreases
with increasing pseudo density contribution85], denoted bymechdue to higher stiffness.
The piezoelectric coupling effect, denoted dryuplingbehaves linearly and the electrostatic
contribution, denoted bgleg has no effect. Applying the pseudo density concurrentlglito
piezoelectric material properties, we get a superposiafdhe effects, which is clearly not a
mere superposition of the graphs. This is denotechbgh+coupling+elecNote that coupling
dominates stiffening in this example.

Sensor

For the sensor case, depicted in Fig. 6.10b, all materigdgat@s contribute nonlinearly. The
stiffness contribution is not even monotonous with a maxmulisplacement for pseudo den-
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6.4. Piezoelectric Self-Penalization by Balancing Cotattng Material Effects

sity around 0.4. The electrostatic contribution domin&ie®, especially at the lower limit of
the pseudo density, due to maximal bending.

6.4.2. Unphysical Design Bounds

Considering the range of feasible pseudo density betwmgnand 1 in Fig. 6.10a and
Fig. 6.10b the best response for the concurrent applicafitime design variable occurs at the
bounds of the pseudo density. Hence no grayness appearseaoiserve self-penalization.
Intermediate optimal density occurs when the balance dfuperposition of the counteracting
material effects does not result at the bounds of the pseedsits.
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Figure 6.11.: Sensor and actuator modes for different m@ftiplate and piezoelectric layer
thickness applying extrenye

For the actuator mode, there is no electrostatic contobutOnly a (strictly) monotonous
decreasing displacement for increasmand a linearly increasing displacement for the piezo-
electric coupling due to the induced strain. Hence, thegsiion of these effects is neces-
sarily monotonous or convex.

The standard system in Fig. 4.1 represents just one condniraftpossible geometries and
materials. This can be overcome when, again in the senseadangenexperiment, extreme
values for the pseudo density are allowed. This is depictédy. 6.11 for the concurrent appli-
cation ofp > 1 to all material properties. The response of the actuatalenmindeed convex
and a bounded optimal pseudo dengify, < p* < pPmax for a maximal displacement exists.
For the sensor mode, the numerical experiment in Fig. 6.@Wvska strictly monotonous de-
creasing electric potential. Hence, the maximal respoasesponds with a minimal pseudo
density which is unbounded.

6.4.3. Generalization

Generalizing from the setup of the gedankenexperimentawiingle design variable to multi-
ple design variables, we expect vanishing piezoelectrienz for the static electric potential
Jf;} as the optimum is unbounded. For the mechanical displadeifierayness might appear
as the optimum is bounded. Both effects are numerically ooefi.
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6. Self-Penalization

6.5. Discussion

The discussion of self-penalization is a completely newdfigith only very few interpreta-
tions in the literature. To this end we have examined onlgctell examples to investigate the
occurrence and possible reasoning for self-penalizafiarery important restriction is the ab-
sence of any constraint function beside box constraintsh\dependency was not considered
but the experiments suggest sufficient mesh-independencydny problems.

6.5.1. Feature Size Control in the Context of 0-1 Designs

Feature size control is beneficial or even crucial for maractical applications. The most
efficient regularization approaches, density filter anghsloonstraints, have only imprecise
feature size control, yet are sufficient for many appliaatioHowever, they enforce interme-
diate design at the feature boundaries.

A rigorous feature size control is the MOLE constraint in S&@&.5 and our similar, yet
more flexible oscillation constraint in Sec. A.3.6. Theywllperfect black and white solu-
tions. However they suffer from the numerical effort. Conttion and globalization requires
the careful selection of additional parameters. Both mishiesult only in black and white so-
lutions in the presence of penalization, either self-peatibn or classical penalization meth-
ods.

The Heaviside filters in Sec. A.3.4 is the only known appraashlting in black and white
designs without penalization. We have successfully agghe modified Heaviside filter in
Fig. 5.19. However, the Heaviside filter can also not guaeiat black and white design for
any numerical feasible continuation paramegdéer

Indeed there is no method known which guarantees the blatiwhite solution of a mixed
integer problem by the far cheaper continuation of the enseterial approach.

6.5.2. Interpolation

Surprising for an unconstrained problem is the dependendye linear, or nonlinear inter-

polation of the design in the force inverter example in Fig. 6Me cannot explain the effect
and it might be due the implementation of the optimizer. Tthegy dependency on the design
interpolation can be found using SNOPT and SCPIP but inraiffeform.

6.5.3. Kind of Grayness

For cases of grayness in the optimal solution, we can findath@ifing explanations

Negligible Relevance

For the static force inverter example, grayness occurserfrée corners, see Fig. 6.1a. As
these regions do not contribute to the mechanism in the fohaad adjoint solution, but
show rigid displacement, the design is actually arbitrang i the example close to the initial
design ofp = 0.5. Gray regions within void material are also negligible.
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6.5. Discussion

Such gray design elements can be removed by a threshold mgapygiere a high bound is
advantageous to avoid unconnected material resultingnmenigal difficulties.

Changing the optimization problem shall easily remove kimsl of grayness. This can be
done by adding a volume minimization via a small penaltydatb the optimization prob-
lem or taking the obtained objective value as constraintramimizing the volume. As no
topological change is expected, this can be done as a postgs optimization problem.

Beneficial Pseudo Material - Damping

The dynamic topology optimization results in Fig. 6.7b amgl B6.9a show gray optimal re-

sults. The numerical experiment varying the damping pataraén Fig. 6.6 reveals that the
grayness is a function of the material parameters. The palsifects interacting are stiffness,
mass and damping. Comparing with a pamping penalized probleere only the damping

is modified suggests the damping properties of intermediaterial to be crucial for optimal

gray results.

Beneficial Pseudo Material - Springs

In the dynamic energy harvester problem, gray material with interpretation of elastic
springs are found in Fig. 5.15 and are more prominent in thesstconstrained solutions
Fig. 5.16 and Fig. 5.18.

For these examples threshold filtering has a strong effetft@dynamic response. The ap-
plication of a (modified) Heaviside filter (A.4) removed thergs but a significantly different
topology was obtained.

6.5.4. Occurrence of Self-Penalization

The majority of numerical optimization examples withinglihesis are unconstrained prob-
lems with linear interpolation. For most problems we obseatvong self-penalization!

A general observation is that better performing optim@atresults come along with
stronger self-penalization. Better results are achiewechbdifying the model parameters.
Examples are better initial designs in the piezoelectud#peaker optimization, Fig. 4.32 in
comparison to Fig. 4.25, the improved objective value ferehergy harvester with black-and
white Heaviside filter, Fig. 5.19, in comparison to the dgnltered design in Fig. 5.18 and
the correlation of higher grayness and lower objectivee#aiu-ig. 6.6.

6.5.5. Explanation of Self-Penalization

In the following, we summarize explanation approaches fiiergnt kinds of optimization
problems. The arguments are essentially heuristic and dito&h element level. They are
based on the requirement of a zero element gradient to besagdor gray material.
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6. Self-Penalization

Static Elasticity

The arguments for the static force inverter might hold forstmadjoint based static elastic
problems. From a mathematical point of view, gray matenethee optimal design is unlikely

as the most likely condition is no or rigid element displaeaimof the forward or adjoint

solution.

Dynamic Elasticity

For dynamic elastic problems we cannot give an explanatortife observation of self-
penalization. The necessary mathematical condition feeratomplex. Depending on the
model parameters, especially the damping parametersmetiate material seems to be in-
deed optimal in some cases.

It might be worth differentiating the kinds of grayness aodsidering realizing the spring
type as real elastic spring.

For band gap problems, it is stated in Sigmund and JenseB]200

The reason for this [no need for penalization] is believeoriginate in the nature
of the band-gap phenomenon, where large contrasts bethveavolved material
phases is favoured.

Static Piezoelectricity

Piezoelectric topology optimization is a multiphysicsigie. The design variable acts con-
currently as stiffness, piezoelectric coupling and permitiy. The effects partially counteract
against each other which means there is an optimal balanben\tthis balance is outside or
close to the design bounds no grayness occurs.

It is likely that this argumentation holds for further mphiysics problems, too.

Dynamic Piezoelectricity

Typical for dynamic piezoelectric topology optimizatioroplems is the strain cancellation
issue. For a plate energy harvester in Rupp et al. [2009]alh@nfing explanation is given:

The clear spatial separation of the material distributian be explained by the
desire to have all regions of piezoelectric material predasmuch charge as pos-
sible. As the charge generation depends on the sign of tivatcue, the material
domains are clearly separated and the design variables #n@reextreme values
yielding the maximum piezoelectric coupling coefficients.

This holds figuratively also for the actuator mode.
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7. Conclusions and Future Work

7.1. Conclusions

The objective of this thesis was to use topology optimizatia the design of realistic piezo-
electric transducers, starting with a piezoelectric Iqadder.

7.1.1. Piezoelectric Loudspeaker

In a large part of the piezoelectric topology optimizatidgarhture, models consisting solely
of piezoelectric material identical with the design domara used. The small step of using
realistic models where the fragile piezoelectric matesiaktached to elastic material carrying
the mechanical support allows the optimizer full freedonthef piezoelectric design domain.

We explained the effect of vanishing piezoelectric matavizen using mean transduction
as an objective function by analysing mean transductionimtedpretation of the two inde-
pendent load cases as forward and adjoint problem.

The dynamic optimization of our model with respect to maxidiaplacement challenges
the optimizer by the phenomenon of piezoelectric straircelation. By using information
about the modes from an eigenfrequency analysis, we ard@pl®vide suitable initial de-
signs such that resonating structures can be generatelifostaarbitrary excitation frequen-
cies. In this way the optimizer is able to balance structtgsbnance and piezoelectric strain
cancellation, which are for most frequencies in contraainct

Through the use of a fully coupled piezoelectric-mechdracaustic model, we show that
a purely structural approximatiérby displacement maximization fails in the sound power
maximization of our model. The reason for this is the acausiort circuits which are crucial
to be resolved by the model, a finding which is supported byatiag of a second structural
approximation, the maximization of displaced volume.

Performing acoustic sound power maximization, the acouati field approximation is
surpassed by the accurate near field model. Thus arbitreggtidity patterns in the single-
frequency case can be optimized.

7.1.2. Piezoelectric Energy Harvester

The presented topology optimization of a piezoelectriditarer type energy harvester is the
first time topology optimization has been applied on a r&alimodel. In contrast to many
parametric optimization approaches based on simplifiedetspthe only assumption for our

Loriginally proposed for sound minimization in Du and OIh{g007b]
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model is linearity. However, the model needs to be designigd eare in order to prevent
stress singularities in the piezoelectric layers.

In contrast to the actuator model, the design domain cansatof the piezoelectric layers
but of the elastic beam and mass. This allows the applicafistiess constraints on the critical
piezoelectric material and easy manufacturability. Dyitastress constraints and piezoelec-
tric stress constraints have not been reported in topolpgynization literature before.

The optimal design obtained by the optimizer is a mechanissiga, representing a com-
pletely novel design of an cantilevered energy harvestdradest of our knowledge. Hinges
are to be realized by rigid mechanical hinges, the springgseanoved by the application of a
modified Heaviside filter which results in a significant desitpange.

The obtained gain in electric power compared to the soligciire at resonance is signifi-
cant, with lower peak stress within the piezoelectric layer

7.1.3. Self-Penalization

Performing the topology optimization problems within tltiesis we observed strong self-
penalization, which means optimal black and white desigttsout any form of penalization,
additional constraints and a linear design interpolat@nly very few and rather vague reports
and explanations can be found in the literature. Self-pesi#bdn is an important phenomenon
as it gives the very best optimal solution we can expect thbased on the original problem.

By the analysis of self-penalization we initiate a new fieldesearch within topology op-
timization, providing some initial non-rigorous steps &&®n examples in elastic and piezo-
electric topology optimization.

For many unconstrained problems we can indeed expectae#hgation. If the effect is not
sufficient Heaviside filters prove to be useful in obtainioffisient black and white solutions,
although a rigorous black and white solution cannot be quaedl.

Common regularization and feature size control introdgragness. This is not the case
for rigorous feature size control. We present a local asindh constraint where the feature
size of solids and voids can be adjusted independently.

7.2. Future Work

A clear but common limitation is the single-frequency opaation of the piezoelectric trans-
ducers. Very challenging and perhaps even impossible isadidvand acoustic loudspeaker
ranging over several resonance frequencies. In the case @niergy harvester, a small fre-
guency range maximization is desirable to increase robsstn

For the piezoelectric energy harvester a setup with aduitipiezoelectric layers could lead
to a mechanism which excites the stronger 33-directiorctlire Furthermore, piezoelectric
electrode design in addition to the elastic beam and magsiaation might further improve
the results.

Beyond scalar pseudo density, or scalar pseudo polanzaftmization, we plan to opti-
mize for the local piezoelectric polarization orientatiorhis includes the orientation of the
transversal isotropic elasticity tensor, the piezoeilectupling tensor and permittivity tensor.
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A. Appendix

A.1. Adjoint Formulation for Inhomogeneous Dirichlet
Boundary Conditions

We determine the boundary conditions of the adjoint systampiezoelectric problems when
the forward problem is excited by an inhomogeneous Dirichteuindary condition (2.49).
The calculations are based on the static displacement nation by (4.12)

J=0"1Y,

Using the ersatz material approach, the global system xnaftsystem (2.58) is written as

K(p). Having no explicit right hand size contribution in the foafwolume forces or charges,
the state equation is formally given as

~

K(p)u=0,

with U depending only implicitirp. Clearly there is an implicit design dependent contributio
to the right-hand side by the inhomogeneous Dirichlet bamyndonditiong (2.49). Note that
there are different ways to implement the boundary conuiticee Sec. 2.1.3. The adjoint
system is given by (3.28) as

K(p)A =—1Y.

To answer the question whether the inhomogeneous Diritidendary condition from the
state problem stays inhomogeneous, becomes a homogenieichtebDboundary condition or
free variables (homogeneous Neumann boundary conditieiepeat the steps of sensitivity
analysis in Sec. 3.2.2 with the weak formulation. This hasnb@one together with Barbara
Kaltenbacher based on Kaltenbacher et al. [2006].

For the analysis we combine the displacement®,pfandQ,, such thati= (u ®)". We can
write (4.12) with the given definition df in the continuous form as

J= / uT eqdr,
I opt
with ez the unit vector ire-direction. Considering the extended objective function

¢:ﬁT|”+AT(Ra—?)
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A. Appendix

and choosingd as vector of test functiond =(wv)" € HZ(QmU Qp) x Hg(Qp), u €
H%?(Qmu Qp) andp—@x € H&r(Qp>, we get

® = uTe30|r+/Q (2w)" ([cF|2u-+ (€] %) u(p) dO

I opt

+ [ (#w)[elzuda+ [ (AT (le]Bu+(6%50) u(p)da

We now perform the differentiation with respectgon directionp,. Note the vector notation
opposed to the scalak,

oM oD ol oK of At
- T AT g A T A TR =,
ap P~ ape ape " apet " ape " Fope

In weak formulation

a0 du’ Jdu
LA esdr + / (2w) [c]2Y 4o
ape ropt ape [ ] dpe
au(p)
E T
+ Qp(%’w) ([c |Bu+|e] %’(p) 3pe p.dQ
- =\ 9u(p)
T S
() ((e]#u+[e%%9) 25 5o, PO
Ju ¢
+ %wT< cE|B~— + €] B ) dQ
()T (125, e F 5 i)
~ Ju 5 500
Bv)T ( e|B—— + %’—> dQ
L (AT (e 5, (6955 ) Hip)
. a 2 d
with 2 € H(QmUQp) and =4 8% = 2¢ d‘gf 72 € Hgr(Qp).
In the algebraic form we ellmlnatgp—e (INT AT K) by solving the adjoint equation fo¥ in
KA =—IY Having symmetric material tensors, where the tensor afqakectric moduli is

symmetric byejx = €jik, we have symmetric bilinear forms. Therewith, we rearratigge
terms corresponding to the adjoint equation

du’ 0
= Megda+ [ (#X2
Q  9Pe

Fopt 0P )T ([CE]%’W-F [e]?@v) u(p)dQ

+/Qm(%§—:e)T[c]%wdQ+ Qp(@g—ﬁ‘)’;f ([e]%wﬂes@v) u(p)dQ

+ o (BwW)" ([cE]%’qu [e]ﬂ@go) ag—g:)pedfz

(V)T ([e]%uﬂeﬂé‘é@ amp)pedQ.

Qp 0Pe
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The weak formulation to find =(wv)T in KA —1Y =0 is

0:/ wed + | (Bw' ([cﬂ%’wﬂef@v)u(p)d()
I opt

Qp

+ [ (Bw)T[c]Bwda + / (#06)" ([e] 2w+ [94V) u(p) dQ
Qm Qp

for all test functiongw6)™ € H(QmUQp) x Hg - (Qp). In the strong formulation, this reads:
Findwy : Qp — R3, Wi : O — R3, v: Q, — R such that the PDEs

BT ([CE]@wp-i- [e]T@v) u(p) =0 in Qp,
B ([e]%wp— [es]év) u(p) =0 inQp,
B [€]PBWm =0 in Qp

and the boundary conditions

Wy =0 onls,
n,op=0 ondQp \ gna,
nNon=0 ondQm\ (MgnaUMopt),
ng Op= —n-,!,-]O'm onl gng,
nﬁ,am = —€3 onl opt,
v=0 onTl gndU T hot,
ngD =0 ondQp \ (MhotUT gnd)

are satisfied.

We can conclude that the inhomogeneous Dirichlet boundamgiton (2.49) of the state
equation becomes a homogeneous Dirichlet boundary conditithe adjoint equation.

A.2. Optimizers

A characteristic of topology optimization problems is ttiay are usually of large scale with
respect to the number of design variabMsind the size of the state problem. The compu-
tation of the Hessian would require solving fldrsystems, therefore first order optimization
algorithms are most commonly used for solving topologyrafation problems.

Another criteria arises when the sensitivity filter (3.28applied, which replaces the math-
ematical gradient by an average. This is one of the most cartynapplied regularization
methods within the SIMP community. Hence, the optimizerdse® be robust against the
disturbed gradient.
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A. Appendix

A.2.1. Optimality Criteria Method

The Optimality Criteria methodor OCM, is a heuristic which is applied especially for com-
pliance minimization problems. Sigmund [2001] contain©&M implementation within the
99 lines code.

With the compliance formulation N
Jmech=u"K u,

the mechanical energy is minimized, see (3.19) ... (3.2 gradient (3.30)

J K
gives the (negative) local mechanical energy per elempetifically the strain energy density.
With g—'lf)ee symmetric positive definite,
0Jmech
dpPe

This means more material is desired everywhere. Due to #wairee constraint (3.21)

<0 foralle=1,...,N.

N
Z pe S N\?/’“?

e=1

the idea is to take material where it has the least effect #akpt where it is most desired
such that the volume constraint is always fulfilled. In thkofiwing, we use the notation in
Bendsge and Sigmund [2003]. At iteratikifor

B(k)— 1 aJ
e = s s
AK) 0pék)

the Lagrange multiplieA¥) for the volume constraint is found such that the volume airst
is active (acts as equality constraint). The principal ipdaheme is

(k)
n d2J
plrt = pld (8l)" = Be

T AW 5ol

which lacks control of the feasible ranges for Adding box constraints, move limit and
damping (to improve convergence), the common explicit tppdaheme reads as

. n
max{(1- ) pt pmin} it p?(BEY)" < max{(1-n)pd, pmin},
k . . .
P = minf(1+¢)p%. 1y it min{(1+0)pd, 1} < pBY)"
n

(YY) else
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A.2. Optimizers

with step width{ (e.g. 0.2) and damping parametefe.g. 0.5). The max and min functions
ensure the box constraints (3.22)€ {pmin; 1}. Finding the Lagrange multipliek as a func-
tion of the smooth and strictly monotonous volume functea one dimensional optimization
problem, which can be solved by the bisection method.

The efficiency of OCM iseparability eachpe is updated independently with a global scaling
by A. In fact the convergence rate does not depend on the numbesan variables. Note
that no function values are evaluated and no line searchrisrpeed. The volume constraint
is fulfilled in each iteration exactly. It is advantageousstart with a feasible design. More
details including references are given in Bendsge and Sigrf2003].

A.2.2. The Method of Moving Asymptotes

The standard optimization method within topology optiniza is the Method of Moving
Asymptotes - MMApresented in Svanberg [1987]. Sequential Linear ProgiagiSLP),
Sequential Quadratic Programming (SQP), Convex Line@oiz¢CONLIN) and MMA share
the principle idea of constructing at any iteration a corsigxproblem based on first order gra-
dient information only. The subproblem is to be solved by @aitgonal optimization method.
In Christensen and Klarbring [2008] all mentioned methagsistroduced.

The MMA method uses lower and upper constants

Le<pe<Ue foralle=1,...,N

to construct convex subproblems. Liebe any of objective and constraint functions. Now,

at iteratek the design vectop® is known and the function valug(p®) and the gradients
k

%ﬁi)) can be computedL.(ak) andUe(k) shall be given. The subproblemk)(p) is given in

Svanberg [1987] as

(k)

(k) ©, < ( Pe G’ )
f (p) =TI + + 9
2\ o P

where the properties are to be computed as

( K (K
02 0feY) o af(p¥)
Ue ' — if >0,
ol (Ue™ —pe) dPe dpe
- (K
0 i TP o
\ JPe
( (K
0 CALGAOREY
o = O
(pék)_Lék))zdf(P(k)) A <0
\ dpe dPe ’
N (K (K
0 — (k) _ Pe Qe
R 7 i
Z\UF o P

145



A. Appendix

As eitherpd or g is zero, the derivative of ¥ is

ofM(p™) pe’ o’
ope (U —pe? (pe—L")?
and the second derivative is
92K (p(K)) 2 pfak) 2qg()
002 0 _ s GIvS
Pe (Ue” — pe) (Pe—Le”)

Hence, the Hessian is the diagonal matrix

(

50t (p%)

(K
2260 (p®y | M _ o dpe
P at(p®)
ve 255 af(p)
@, ® "0 <O
[ Pe —Le Pe

replacing pg() and qg(). In Fig. A.1 the principle of the convex subproblem is ilkadged.

subproblem

0

00 02 04 06 08 1.0
pseudo density

Figure A.1.: The convex subproblems of the MMA method areedasvertical asymptotes
ﬁ is plotted forU € {1.0,1.2,2.0}. The scalingp is arbitrary chosen.

For special asymptotes, MMA reformulates as a classicalesgégpl programming method.
Also the equivalence with OCM can be shown, which providedalter, actually a heuristic
method, with the mathematical background of MMA.

However, the efficiency of MMA implementations lies in th@per selection of asymptotes
Lék) and Uék) per iteration, thereforenovingasymptotes. Moving the asymptotes closer to
the current iteration point stabilizes the solutions of dloer problem (prevents oscillation).
Moving them further away relaxes the process to speed it hp.aCtual strategies are based
on heuristics which also consider the history of the asytegto
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A.3. Regularization in Topology Optimization

MMA shares with OCM the feature to be robust enough to hanehsisivity filtering and
the feasibility of every iteration (constraints are fuéfdl). Despite being considered as a state
of the art optimizer for structural optimization, it is noelvknown in other optimization
communities.

There are currently three known MMA implementations avddafree of charge to the
scientific community. A MATLAB and a FORTRAN code from Krist8vanberg and SCPIP
from Christian Zillober. SCPIP is a FORTRAN implementatiangeted towards very large
scaled problems. SCPIP has a globalized mode, based onelimehsand uses the Interior
Point method to solve the subproblems, see Zillober [2002Ur main numerical results
are obtained using SCPIP and we grateful acknowledge thertoppty to use the code. We
provide an object orientated C++ interface for the FORTRANe&which mimics the interface
of IPOPT, see Wachter and Biegler [2006], a popular operceamecond order optimizer. The
interface is called C++SCPIP and published in Wein [2007)@en source with more than
100 downloads.

A.2.3. SNOPT

A drawback of all mentioned MMA implementations is that thegrform well for a large
number of design variables but not for a large number of camts. SCPIP can handle some
hundred constraints only. In Sec. A.3 however, constraintse order of the design variables
are presented.

SNOPT - Sparse Nonlinear Optimizera commercial SQP solver targeted towards large
non-linear optimization problems with a high number of domsts, see Gill et al. [2002].
While only first order gradients from the original problene aequired, SNOPT works with a
limited-memory quasi-Newton approximation to the Hessiithe Lagrangian, adding addi-
tional information to the problem.

Linear constraints (with a constant derivative) are treatere efficiently than general non-
linear constraints but the real advantage is the robustmiéissespect to unfeasible subprob-
lems due to a rich set of implemented methods, triggered hyistees. The designs of inter-
mediate iterations are not necessarily feasible. On diffipoblems SNOPT often converges
to better local optima than SCPIP and shows less symmetheidésign.

A.3. Regularization in Topology Optimization

As introduced in Sec. 3.2.1, there exists a solution for th@amiance problem as variable
thickness sheet problem. The corresponding SIMP topolg@gynization problem, is how-
ever, unfeasible and thus requires regularization. Naté d@hy regularized problem is an
ersatz problem and it is worth comparing the solution agaiesoriginal solution.

The principle solution is to either directly or indirectlygvent too high oscillation of the
design to obtain checkerboard-free and mesh-independsigras of penalized topology op-
timization problem. See Sigmund and Petersson [1998] and$# and Sigmund [2003] for
an overview.
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One of the first regularization approaches asimeter contrgl see Ambrosio and But-
tazzo [1993] and Haber et al. [1996]. It controls the totalatéon as

Operim(P) = /Q Op| dx,

but it is difficult in practice, as the choice of a suitablegraeter is highly problem dependent.
Feature size contrglwhich is the elimination of too small material featureseafically
holes, is closely related to the general regularizatioa.idéence, some regularization meth-
ods show a form of implicit features size control, or the roehare indeed features size
control with the side effect of sufficient regularizationtbe underlying topology optimiza-
tion problem.
In the following a brief selection of important regularimat methods is given.

A.3.1. Slope constraints

Slope constraints, presented in Petersson and Sigmun@][18€ally control the design gra-
dient as

slopeP) = }dTDp(X)} < Cs

along directiond in x-, y- andz-direction. The discrete local constraint functions axegias

OslopePe, 1) = |Pe — pi| < C,

with p; being the next neighbor ixt, y- andz-direction. The abs function is best implemented
as two separate constraints

OslopePe;i,1) = Pe—pi—C<0,
gslope(pe, i,2) = pi—pe—C<O0.

The constant bounds the maximal variation of the density. Hence the mahidistance
between void and solid is/t elements. The slope constraint is a smoothing regulanizati
with boundaries having a rim with linear ascent/descenhefdesign variable, see Fig. A.2
(a). Due to penalization, the rim is smaller in the relevdntgical design, see Fig. A.2 (b).

Resolving the abs function as two inequality constrairits,tbtal number of (linear) con-
straints is N times the dimension of the problem. This prevents the use@¥@nd the
standard MMA implementations. This might be a reason whystbpe constraints found al-
most no appeal in the community. Using SNOPT as optimizexelver, even very difficult
optimization problems can be solved, independent on thi@lidiesign.

A general globalization strategy f@ local inequality constraints is

G
g% = 3 max(0, )" <, (A1)
i=

where(£9'°P)P is the sum of all tolerated local constraint violatiom§'°® = 0 coincides with
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[
(a) Pseudo density (b) Physical pseudo density

Figure A.2.: Applying the local slope constraint withe — pe+1| < 0.3 for the x- and y-
direction. The physical volume is 36%.

feasible local constraints. Further parameterspaeg. two, and the inequality bound for the
local constraint functiong;. Globalizing the slope constraints allows the use of MMA/so$
and it shows that even a strong local violation of the slopeegaly regularizes sufficiently.
Note that slope constraints are purely mathematicallyvatg#d. From the user point of view
a design with less blurring is favourable as long as the ex@altion is sufficient.

A.3.2. Filtering

Sensitivity filters have been introduced in Sec. 3.2.1. Theye the first practical regular-
ization and are easy to implement with a reference impleatient in the 99 lines code in
Sigmund [2001]. Hence, they are widely applied. Also, waoies exist which result in less
blurring, see Sigmund [2007], which contains an comprekiermsverview of filters. Never-
theless, we restrict ourselves to mathematically rigoregsilarization methods, which are
with respect to filtersgensity filtersintroduced in Bruns and Tortorelli [2001] and proven to
exhibit a unique solution in Bourdin [2001]. The density,ighis to be penalized and applied
to the state equation, is an averaged design variable witfhberhood elementlle defined
by radiusR, a linear weightingv(x;) = max0,R— |Xe — X;|) and given as

iNZQ1W(Xi)Pi .
> e W(X)

An interpolation functioru, e.g. power law or RAMP, is then applied to the averaged densi
asu(p) in the state problem

F(pe) =Pe= (A.2)

K(u(P))u(u(p)) = f.

Hence, the derivative of any design dependent objectivestcaint functionf (1 (p)) needs
to include the derivative of the filter as

ot _ % oi o
Ope 20D 0pe
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with

(a) Pseudo density (b) Physical pseudo density

Figure A.3.: Applying a density filter with a radius of 1.7 esithe element edge. The physical
design (b) includes filtering and penalization. The physioclume is 38%.

A.3.3. Post Processing of the Physical Design

The pure pseudo density in Fig. A.3 (a) is a very appealinggdeslt is almost perfectly
black and white. Also the penalized density matches thewelconstraint well. However, the
physical design with respect to the state problem and etrafuaf the cost function in Fig. A.3
(b) differs significantly due to filtering. Generally a blagkd white design is necessary as a
final result which contradicts with the 'smearing’ effectd#nsity filters, standard sensitivity
filters and slope constraints.

The simplest post-processing method to gain a black anagwblution is to apply a thresh-

old filter L .
TP = Pth
X(p)_{ Pmin If P < pth,
with threshold valugoy,. Applied on the density filter result Fig. A.3 (b), a desigmsar to
Fig. A.3 (a) can be obtained. Some objective functions hewexg. hinge based mechanisms
or dynamic problems, are very sensitive with respect to aification of the design.

The possibly most sophisticated post-processing appiliedolperform shape optimization
for the same objective function starting with the topologyimization result. However, the
complexity is significantly higher than the initial topokpgptimization.

Two remedies to avoid the post-processing problem are tly @ppon-smoothing regular-
ization method, such that the penalization of the SIMP moedsllts in a black and white
solution or to apply so called 'black and white filters’. Eifiot grayness constraints have not
been found yet.
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A.3.4. Black and White Density Filters

Heaviside Filter

The first black and white density filter was published in Guetstl. [2004]. The idea is to
set an element to void only if all elements in a neighborhaedvaid. If, however, a single
element in the neighborhood is a material element, the elemeset to full material. In the
neighborhood region a minimum material feature size is @sgmed, as no smaller region can
contain full material. The method regularizes the SIMP peot although no proof is given.

The realisation is based orHeavisidefunction as

— 1 if De > Pmin
Hoo = e
(Pe) { Pmin  if Pe = Pmin,

where a possible continuation form of the Heaviside fumciso
Hp(Pe) =1—e PPeypee P, (A.3)

see Fig. A.4 (a). The discrete Heaviside functidg is approached fof — o, the original
density filter is represented y = 0. The simple mapping within the ranggin,...,1 is
omitted for clarity.

Modified Heaviside Filter

In Sigmund [2007] the complementary function was formuatehe ternmodified Heaviside
function, used by Ole Sigmund, became common. The fornau asi

S 1 ifpe=1
H = e
= (Pe) { Pmin if Pe <1,
with the continuation _
Hg (pe) =€ PP — (1-pe)e P (A.4)

The approximation of the Heaviside functions requirestistgmith small values to pre-
vent oscillations and local optima. Successive optimaratuns with increasin@. Starting
from the obtained solutions is necessary up to graynesdfisisatly suppressed. The com-
putational cost is therefore magnitudes higher. A furthhebfem is the strong discrepancy of
constrained volume and obtained physical volume, alsea@abnvolume preserving

Post-processing of conventional obtained results witbkodéand white Heaviside filters does
not work, as the removal of too small features by the modifieduikide filter (A.4) may
completely destroy the structural principle of the origsalution, see Fig. A.5 (b). The effect
is similar for the Heaviside filter (A.3) when the volume ctvagt needs to be reduced to
achieve the desired physical volume.

Note that the feature size control relates only to mateoatmvoid. Corners are feasible.
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Figure A.4.: The approximated Heaviside filtég (A.3) in Fig. (a) returns full material if and
only if any element within the filter radius contains matkriehe approximated
'modified Heaviside’ filter returns full material only if a#lements within the
filter radius have full material.

L] L]
(a) Heaviside filter (b) Modified Heaviside filter

Figure A.5.: Post-processing the topology Fig. 3.6 (a) ey Heaviside filter (A.3), see (b),
and the modified Heaviside filter (A.4), see (c). The filteriwads 1.5 elements
in both cases, the physical volumes are 71 %, respectively With 3 = 25.

Volume Preserving Black and White Filter

In Xu et al. [2010], both Heaviside filters are combined in luvoe preserving way by param-
etern as

v Pmin ?fﬁ<'7
Ho(Pe)=q N ifpe=n
1 if pe > n.

n rescales the Heaviside filters (@ n|, and[n, 1] wheren needs to be determined in each it-
eration by a one dimensional optimization, similarly toabingA for the Optimality Criteria
method. Note that this filter has no feature size control.
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Discussion

For some optimization problems where no volume constraiapplied, the Heaviside filters
offer the unique feature of guaranteeing black and whitetswis even without penalization.
The Heaviside and modified Heaviside filter regularize ané fgature size control while the
missing volume preservation has no effect. The volume prasgblack and white filter lacks
the additional properties.

A.3.5. Length Scale Control by Rigorous Monotonicity Constraint

In Poulsen [2003], a local regularization approach is presk defining regions with mono-
tonic design. These monotonic regions directly define themum length scale for void and
material and T. Poulsen suggests the naf@LE - MOnotonicity based minimum LEngth
scale The local constraints for the interior of the design donsiem directly from the for-
mulation ofBounded Variatiorand are based on line segmeptg.,d) = X. +td aroundxe

in directiond of lengthd with —d/2 <t <d/2 as

avove(p) = | |d"Cp(x)|x ] [[dp0aq <o

In the discretized form every line segmayiie, d) is associated with a set dE(Xe, d) densi-
ties, respectivelyNs(d) densities for a regular grid, and the constraints are

Ne—1
OmoLE(Pe) = Z\ |Pi+1—pil — |PNe — P1| < €. (A.5)
1=

1.4
1.2 ¢ abs(-0.5)
0.8
0.6
g [—
0.2

0.0

N,
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.
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Figure A.6.: The abs approximation (A.&bps. with varying parametes... Note the property
abs.(Ap) = abs.(—Ap).
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Continuation of the abs Function

A continuation of the abs function withp = p; — p;j is

abs.(Ap) = \/Ap?+ €2 — &, (A.6)

see Fig. A.6. In contrast to the continuation of the Heawi$iters no successive optimizations
are required. However, the parametegsafid e..) have to be chosen with care. Figure A.7
shows a black and white result for the compliance problem.

Figure A.7.: Applying a local MOLE constraint (A.B\oLe < 0.001 with e = 0.0005 and
Ne = 3 for all y. The physical volume is 0.497.

Properties

The number of line segments for every inner elemantre in two dimensions 2 2 for
connecting 4 edges and 4 corners. In three dimensions 18dgments/ constraints per local
element are required for 6 faces, 12 edges and 8 corners.

The finest bar structure is defined by the features gimenus one element size. Corners,
holes and islands, however are larger as the shortest @isicre segment is also controlled by
d. This leads to an octagon as smallest bounded object withed&x(1+/2)d ~ 2.4d, see
Poulsen [2003] for details.

When globalizing the constraints, e.g. by (A.1), the logad global bounds shall not be
too strict. A simplification as checkerboard control hasrbpablished in Poulsen [2002].
However the results are not convincing as isolated void etgsare possible.

A.3.6. Length Scale Control by Rigorous Oscillation Constraint

Using theoscillation constrainive present an alternative rigorous length scale constraing
development has been inspired by the slope constraint andeveloped independently of the
MOLE constraint. However, as it turned out, the oscillatcmmstraint shares many features
with the MOLE constraint, including the proof of sufficiemgularization.
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A local oscillation constraint is a weaker constraint thia@ monotonicity constraint. From
a global point of view, however, the set of feasible soluti@nincide. An advantage is the
possibility of defining feature length scale of void and dahdependently, which doubles
the number of local constraints. A common feature with thelM@onstraint is the non-
smoothing; this allows pure black and white solutions bygheation or a black and white
filter.

Checkerboard Constraint

The oscillation control is best introduced as the speciahfoheckerboard controlvith two
elements as minimal feature size. All constraints are basdtie line segments in the, y-
andz-direction. For a given line, one constraint controls sgemmaterial as

Ostrongcc(Pe) = Pe — MaXPe—1,Pet1) <O, (A.7)

and weaker material as

Oweakcc(Pe) = MiN(Pe_1,Per1) — Pe < 0. (A.8)
1.0 ‘ ‘ ‘ 1.0 ‘ ‘ ‘ 1.0
0.0 AW 0.0 FAN N g o LN
-1 0 1 -1 0 1 -1 0 1
(a) Local hole (b) Local island (c) No checkerboard

Figure A.8.: One dimensional local model configurations tfug checkerboard constraints
(A.7) and (A.8). The pseudo densities are drawn for elenretasive to a center
elemenipe.

Based on the configurations in Fig. AQ&rongcc (A.7) does not detect the local hole Fig. A.8
(@) as 01— 0.9= —-0.8<0. The local island Fig. A.8 (b) is detected by6-0.1=0.8 >0
and the valid configuration Fig. A.8 (c) is passed bly-00.9=-04<0.

For gweakce (A.8) the local hole is detected by®- 0.1 = 0.8 > 0, the island passes by
0.1-0.9= —-0.8 < 0 as does the valid configuration byiG- 0.5= —0.4 < 0.

Fig. A.9 shows the application of the checkerboard con#s&o the compliance minimization
problem. It appears that in contrast to the MOLE constrdh#, development of structural
features is prevented by too small inequality bouadsee Fig. A.9 (a). SmalB values
allow more grayness, which is not suppressed by a SIMP zatiain parametep = 3. The
checkerboard constraint does not prevent sharp corners.
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(8)e=001,8=7 (b)e=0.05,=7

(c)e=01,=5 (d)e=01,B=7

Figure A.9.: Applying the local checkerboard constraiits) and (A.8) with the varying in-
equality boundg and varyingB of the maxs (A.11), respectively migs (A.12)
approximations. SIMP penalization paramepet 5, all problems converged to
KKT.

Length Scale Constraint

Mesh independent feature size control is achieved by min mespectively maxmin opera-
tions. Minimal material feature size is controlled by

Omatoc(Pe) = Pe— MaxX(MIiN(Pe_Ny; - - -, Pe—1), MIN(Per1, - -, PerN,)) <O, (A.9)

and minimal void feature size is controlled by

Ovoid.oc(Pe) = MIN(MaX Pe—Ny; - -, Pe—1), MaX Per1,---,PerNy)) — Pe < 0. (A.10)

We have the same number of line segmeyitg, d), where the distance corresponds with
2Nnh(Xe,d) + 1 elements.

Analogue to the model configurations of the checkerboardttamtgmatoc, (A.9) is applied
to the model configurations in Fig. A.8 with the results (at00.5= -0.4 <0, (b): 09—

0.1=08>0and(c): 05—09=-04<0.

For gvoid oc (A.10) the example gives (a).9—05=0.4> 0, (b): 01— 0.5=-0.4< 0 and
(c):01-05=-04<0.
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1.0 ‘ ‘ ‘ ‘ ‘ 1.0 — ‘ ‘ ‘ ‘ 1.0
0.0 _— 0.0 =Y 0.0 XY §
2 -1 0 1 2 2 -1 0 1 2 2 -1 0 1 2
(a) Local hole (b) Local island (c) Valid feature size

Figure A.10.: One dimensional local model configurationglie oscillation constraints (A.9)
and (A.10) as feature size extensions of the checkerboad#ihconfigurations
in Fig. A.8

Continuation of the min and max Functions

A continuation of the max function of the densities. . ., pn,, is the Kreisselmeier and Stein-
hauser function

1, 3l
MaXs(P1, - PNm, B) = 5 IN =7, (A.11)
B Nm
or for the min function
. 1 Nm gB(pi—1)
Minks(P1, - - -, PNy B) = 1— B In % (A.12)
m

A visualization for varyingB is given in Fig. A.11. Successive optimizations are, common
with the MOLE constraint, not necessary - in contrast to tlaelband white density filters.

1.0
08
2 06 f
5 |
£
0.2 max(0,1,1) e
max(0,1) ——
max(0,0,1) e
0.0 ‘ x(0,0,1) .
0.0 50 10.0 15.0 20.0
B

Figure A.11.: The differentiable Kreisselmeier and Stauser max approximation (A.11)
maxcs applied on some test data with varyifig
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A.4. Stress Constraints

A.4.1. Von Mises Stress

In the case of mechanical stresses\ha Mises stress, represents a common norm in the
convenient form

oy=+(o,M0) (A.13)
with M given in two and three dimensions as

2 -1 -1 000
1 =050 —i —21 21 8 8 8
Mop=1|-05 1 O}, respectivelM3p =
0 0 3 O 0O O 6 00
O 0O O 060
O 0O O 0O

A.4.2. Problem Formulation

Static Formulation

We start with the static problem formulation, the notatigndealar products supports the
subsequent dynamic formulation. It is numerically coneento uses? as function within an
optimization problem, hence

Jo=(0,M0O). (A.14)

Jo is a local function. Assuming design dependent ersatz mhta], the discrete finite
element wise formulation for a stress constraint at elemisngiven as

Jo = ([Cli Ziui,M[C| % u;).

The static gradient is given by (3.27) as

238 . oK _ o€,
L= (Mg 5 Ue) + 2([€]i Biui,M ——= % u)),
dPe Ae dPe e) +2([Cli Fu dpe Y

where the second term is only non-zerodet i. )\ie is the solution for elemergof the global
adjoint problem for the stress constralgt within elemeni. The adjoint problem is given by
(3.28) as

KA' = —2([€]i % u) "M [E]; %
Dynamic Formulation

The following time-harmonic formulation of stress consita can easily be derived using
the formulae given in Sec. 3.2.2. The notationJgfin (A.14) holds for static and complex
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properties. The gradient is given by (3.36) as

aJm ,033 < _ d[CJi >
- =2Re< A +2([Ci%u,——%u ),
0Pe edpe [Cli i 0pPe e

whereA' solves the general adjoint problem (3.37) as
SA' = —([€] Zu))TM[E]; Z.

To our best knowledge dynamic stress constraints are noégetted in the literature.

Globalization

The presented stress formulation is local, requiring tHatem of the adjoint equation for
every element the stress constraint is defined, see DuysthBandsge [1998]. Common is
thep-normapproach, first used in Duysinx and Sigmund [1998], in a napeth multi-region
approach in Le et al. [2010] and others.

Our approach, adopted from Kocvara and Stingl [2007], ghsly different. It defines a
tolerable stress limit; where only local stressdg. > ¢, are considered as

9o = zlmax(o,Jai —Co)* < &5. (A.15)
i=

Ng contains all element indices, the stress constraint is eléfon. &, is a small positive
number. Choosing, sufficiently small, no local stress will exceed the lirog within a
feasible design.

Let us write the globalization in (A.15) as

Jo = Z ¢(‘]0'i)7
|
with ¢ being smooth and convex. The gradienggfis given as
< 99(Ja) 93
nga—lz 0Jai 0Pi.
The scalar 26(3s)
0de =2max0,Js —Cy)

. Jst dyn
can be applied to each summand%%‘i and—

alized stress constraint (A.15) is given as

_ st (9Ke 299 o)
<Ae7 dpe > dJO'e

separately The gradient of the static glob-

o0y
JPe

([€le Bele, ——= PBelle) (A.16)

J[Cle
JPe
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with the single adjoint equation

R,\St:.Nzl—zﬁ‘gg‘l ) (€] )M (€] B,

The dynamic gradient is given as

gy ayndSs 09 (Jow) o[l
—2R Ay” U} +2 Cle BeUe, Aol A.17
0pe e{ p } aJae <[ ]e e e ape e e> ( )
with the adjoint equation
- g 99(Js)
SAM= § ([€]i & u)TM[€E]; % (A.18)
i; dJo, i %iu | 2.

Approximation Quality

In the presented form we assume the differential operatobe tevaluated at the barycenter
of element. This is only an approximation which can be improved by a Wwiid sum at the
integration points over the whole terms. To improve the abidy of the equations we keep
the simpler notation. For many applications the obtainpdlmgies are sufficiently similar.

A.4.3. Challenges

Stress constraint topology optimization faces serioublpras and is still subject to active re-
search, even for the standard problems in elasticity. Wésquithout references from Duysinx
and Sigmund [1998]

One major difficulty in the topology optimization with steesonstraints comes
from the so-callegingularity phenomenorit results in the impossibility for the
optimization algorithms to create or to remove holes in tfemal distribution
during the optimization process. The origin of the phenoomeim now under-
stood: Low density regions sometimes remain highly stchiv¥hen the density
decreases to zero in these regions, the limit of the strassistthe microstructure
tends to a non-zero value and remains even higher than #dss $imit. Therefore,
the optimization procedure cannot remove the materialamelyion. The paradox
is that if the material is totally removed, the stress caistiwould obviously not
be active.

A.5. Material Properties

The applied piezoelectric material is lead zirconate &tarPZT-5A with the following elastic
properties:
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Mass density is 7.75025 kgAndamping tad = 0.015 at 1000 Hz. The transversal isotropic
stiffness tensor (2.34) is given as

126 795 841 0 O O
795 126 841 0 O O
841 841 117 0O 0 0

E1__

=109 o o 220 o o |CP
O 0 O 0 23 0
O 0 0 0 0 23

This corresponds tB = 60 GPaE3; = 482 GPa,v = 0.29,v3 = 0.41 andG = G3 = 23 GPa.
The piezoelectric coupling matrix (2.35) and permittivigynsor (2.36) are

0 0O 0 0 17 151 0 0
[e]=| O O 0 17 0 O N/Cand[ef=| 0 151 O |108F/m
—65 —65 233 0 0 O 0 0 127

The supporting aluminum plate has the following isotropiogerties:
Poisson’s ratiav = 0.34, Young’s modulu€ = 70.7 GPa, mass density 2.7 kglndamping
tand = 0.03 at 1000 Hz.

For an accurate simulation model it might be necessary &righée the piezoelectric cou-
pling coefficients by inverse methods as in Rupitsch andhi_§2609].
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