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Abstract

Numerical topology optimization based on the ersatz material model is very attractive in the
research community and industry. Large scale nonlinear problems can be solved efficiently
through the availability of appropriate optimizers, oftenresulting in non-intuitive solutions.
However, topology optimization has not yet been established in the design of practical sensors
and actuators. To this end we perform a thorough analysis anddiscussion of two exemplary
piezoelectric devices, a single-frequency loudspeaker and a cantilevered energy harvester.

With respect to the loudspeaker a broad range of objective functions is compared and dis-
cussed, culminating in a fully coupled piezoelectric-mechanical-acoustic near field topology
optimization problem. Piezoelectric strain cancellationand acoustic short circuits need to be
balanced with structural resonance in order to obtain closeto resonance performance for al-
most arbitrary target frequencies. Providing appropriateinitial designs proved to be essential
for robust optimization.

Cantilevered piezoelectric energy harvesters have been subject to various optimization ap-
proaches. However these have generally been based on reduced model assumptions. We
present topology optimization of a realistic cantileveredenergy harvester model. It proved to
be necessary to use advanced topology optimization techniques, stress constraints to enforce
practically feasible designs and Heaviside filtering for void features size control and for ob-
taining a black and white design pattern. To the best of our knowledge, this is the first time
that dynamic piezoelectric stress constraints have been formulated for topology optimization.
The obtained result is mechanism-based and interpretable to manufacture. This appears to be
a novel finding in the field of cantilevered piezoelectric energy harvesting design.

Performing numerical experiments, we were surprised to observe pronounced piezoelectric
self-penalization, which means optimal black and white solutions without penalizing design
interpolation and additional constraints beside box constraints on the design variable. This
phenomenon is only rarely and briefly described in the literature. Within this thesis we perform
initial heuristic steps in the analysis of the self-penalization phenomenon, which indeed ap-
pears in many different topology optimization problems. Once self-penalization is rigorously
understood, our vision is to find methods supporting the self-penalizing effect and to obtain
solutions potentially closer to the original problem than constrained and penalized ersatz prob-
lems. To this end we present oscillation constraints, a feature size control with independent
solid and void feature size without enforcing intermediatepseudo material.
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Zusammenfassung

Numerische Topologieoptimierung mittels des Ersatzmaterialmodells ist sowohl in der For-
schung als auch im industriellem Einsatz etabliert. Mittels passender Optimierer können auch
umfangreiche nichtlineare Probleme effizient gelöst werden, wobei oft überraschende und
nicht-intuitive Lösungen entstehen. In der Entwicklung von Wandlern für den realen Einsatz
konnte sich die Topologieoptimierung jedoch noch nicht etablieren und soll aus diesem Grund
innerhalb dieser Arbeit an zwei exemplarischen piezoelektrischen Wandlern erprobt werden.
Es handelt sich um einen monofrequenten piezoelektrischenLautsprechers und einen Balken-
Energy Harvesters. Die jeweiligen Probleme werden detailliert diskutiert und analysiert.

Die Lautsprecheroptimierung wird für verschiedene Zielfunktionen durchgeführt. Es stellt
sich heraus, dass für ein vollständig gekoppeltes Piezoelektrik-Mechanik-Akustik-Problem
eine akustische Nahfeldoptimierung notwendig ist. Piezoelektrische Dehnungsauslöschungen
und akustische Kurzschlüsse müssen mit strukturellen Resonanzmoden ausbalanciert werden.
Dann ist es jedoch für fast beliebige Frequenzen möglich,Schallleistungen vergleichbar zum
Resonanzfall zu erreichen. Hierzu sind jedoch zweckmäßigkonstruierte Startwerte notwendig.

Piezoelekrische Balken-Energy Harvester wurden bisher mit verschiedenen Ansätzen opti-
miert, jedoch in der Regel auf Basis reduzierter Modellannahmen. In dieser Arbeit stellen wie
die Topologieoptimierung eines realistischen Balken-Energy Harvesters vor. Es stellt sich her-
aus, dass der Einsatz von State of the Art Methoden der Topologieoptimierung notwendig ist.
Um baubare Ergebnisse zu erzielen, müssen die auftretenden Spannungen auf einen zulässigen
Wert beschränkt werden. Mittels eines Heaviside-Filterswird die Lochgröße gesteuert und ein
kontrastreiches Topologieergebnis erzielt. Dynamische piezoelektrische Spannungsbedingun-
gen werden somit zum ersten Mal im Rahmen der Topologieoptimierung angewandt. Das
Optimierungsergebnis basiert auf einem interpretierbaren Mechanismus und stellt somit eine
neues Designprinzip im Bereich piezoelektrischer Balken-Energy Harvester dar.

Bei den numerischen Berechnungen konnten wir überraschenderweise eine deutliche pie-
zoelektrische Selbstpenalisierung beobachten. Dies bezeichnet eine 0-1 Lösung, ohne dass
eine Penalisierung der Interpolationsfunktion des Designs bzw. zusätzliche Nebenbedingun-
gen angewendet werden. Designschranken sind natürlich notwendig. Es handelt sich um ein
nur selten beschriebenes Phänomen. Im Rahmen dieser Arbeit unternehmen wir erste heu-
ristische Schritte zur Analyse des Phänomens der Selbstpenalisierung. Das Phänomen tritt
bei einer Reine von Topologieoptimierungsproblemen auf. Die Vision ist, dass, wenn Selbst-
penalisierung rigoros verstanden ist, Methoden gefunden werden die die Selbstpenalisierung
unterstützen. Unter Umständen können so Lösungen gefunden werden, die näher am Origi-
nalproblem liegen als am penalisierten Ersatzproblem. Zu diesem Zweck wird auch eine neue
Nebenbedingung zur Beschränkung der Variation des Designs vorgestellt. Dies erlaubt die
getrennte Vorgabe für minimale Strukturgrößen im Material und für Löcher.
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1. Introduction

1.1. Motivation

Numerical topology optimization has been performed by a large number of researchers over
the last two decades. It is an interdisciplinary disciplinerooted in mathematics and engineer-
ing. Selected mathematical optimization techniques are used to solve the large scale nonlinear
optimization problems efficiently. Engineering disciplines contribute multiphysics applica-
tions and problem formulations, but a large proportion of the model problems in the literature
remain far away from real world devices.

Topology optimization methods have not yet been established in the design of practical
sensors and actuators. This thesis is motivated by two practical problems: a piezoelectric
loudspeaker and a cantilever type energy harvester. Havingappropriate finite element models
available, neither could be sufficiently improved by using only intuitive designs and parametric
studies.

The actuator and sensor problems are studied and successfully solved by means of topol-
ogy optimization on academic models close to practical relevance. Along the way, the phe-
nomenon of piezoelectric self-penalization, which has become a research interest in its own
right, has been observed.

The powerful academic multiphysics finite element softwareCFS++1 was used as a base
for the numerical implementation.

1.2. State of the Art

Topology optimization is a discipline within structural optimization. Compared to sizing and
shape optimization, the design space is richer, allowing more flexibility for the obtained so-
lutions. Topology optimization searches for the optimal distribution of holes within solid
material, or more specifically the optimal distribution of solid material.

This thesis applies numerical topology optimization basedon theersatz materialapproach,
founded in the pioneering works of Bendsøe and Kikuchi [1988] and Bendsøe [1989]. Orig-
inating in linear elasticity, the design variable modifies the local material properties contin-
uously. Thispseudo materialmodels solid and void material for the extreme values of the
design variable. TheSIMP2 model efficiently eliminates unphysical intermediate pseudo ma-
terial which is neither solid nor void. The fundamentals, history and selected advanced aspects
of numerical topology optimization are covered in detail inSec. 3.2 and App. A.3.

1see Kaltenbacher [2010]
2Solid Isotropic Material with Penalization
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1. Introduction

1.2.1. Piezoelectric Actuator

Piezoelectric material has the ability to generate electric energy out of mechanical load, specif-
ically shows mechanical deformation when excited electrically. As a result of this feature and
the rich field of applications it belongs to the class ofsmart materials. Piezoelectric material
is transversal isotropic along the axis of piezoelectric polarization and needs to be sandwiched
between electrodes for physical relevant applications. Section 2.2.1 contains a full introduc-
tion to piezoelectricity.

As with elastic topology optimization, the first publications of piezoelectric topology opti-
mization (Silva et al. [1997] and Sigmund et al. [1998]) are based on inverse homogenization -
material properties of a homogenized structure are optimized by finding the optimal topology
of the periodic microstructure.

The first explicit application of the SIMP model for non-periodic piezoelectric optimization
can be found in Kögl and Silva [2005]. There, and in several further publications of Silva
and co-workers, the piezoelectric mean transduction, a measure of piezoelectric coupling, is
maximized.

There is no specific previous work with respect to piezoelectric loudspeaker topology op-
timization. Our loudspeaker model consists of a piezoelectric design domain attached to an
elastic domain providing mechanical support which is not subject to optimization. This is
an important difference to commonly-used models, where often the whole domain is the de-
sign domain. Only a model like the loudspeaker model allows full flexibility within the de-
sign domain. Therefore the mean transduction maximizationin the literature is combined
with stiffness and material resource control. Applying the(static) mean transduction without
the additional limitations results in the optimum in vanishing piezoelectric material, which is
clearly not the desired solution, or the appropriate objective function.

The necessary electrodes for piezoelectric devices lead tomany (in particular dynamic)
applications to the phenomenon of strain cancellation, described in Erturk et al. [2009]. How-
ever, typically not discussed when performing piezoelectric topology optimization, with the
notable exception of Rupp et al. [2009] which appeared concurrently to our publication Wein
et al. [2009a].

The acoustic response of an elastic structure is optimized by a pure structural approximation
in Du and Olhoff [2007b] where sound power minimization is considered. However, with re-
spect to sound power maximization, the optimized structures on our model fail when evaluated
by a fully coupled piezoelectric-mechanical-acoustic simulation. In contrast to pure acoustic
topology optimization introduced in Dühring et al. [2008], it is for the present model essential
to perform near-field acoustic topology optimization.

1.2.2. Piezoelectric Energy Harvester

Vibrational piezoelectric energy harvesters convert mechanical energy, e.g. from heavy ma-
chines, into usable electric energy. In Anton and Sodano [2007] a review is given on this
relatively new research discipline.

The two principal types of piezoelectric energy harvestersare plate type harvesters and
cantilever type harvesters. Plate type harvesters are verysimilar to our loudspeaker model and

2



1.2. State of the Art

subject to structural topology optimization in Nakasone etal. [2008] and Rupp et al. [2009].
However, cantilever type energy harvesters are the dominating type in the literature. Here

an elastic beam is sandwiched by piezoelectric plates. One side of the cantilever is subject to
mechanical displacement. More sophisticated models applya tip mass on the other side.

Reduced models are commonly applied in the literature, allowing analytical and straight
forward numerical optimization. Renno et al. [2009] apply asingle degree of freedom model
with damping and inductive external load. Erturk and Inman [2008a] compare these mod-
els against the Euler-Bernoulli beam model. Liao and Sodano[2008] validate their Euler-
Bernoulli model with experiments. However, they do not apply a tip mass. An advanced
model based on the Kirchhoff plate assumption calculated bythe finite element analysis is
applied in De Marqui Junior et al. [2009]. We apply a fully featured finite element model with
the only assumptions being on linearity and the two-dimensional plane strain case.

The piezoelectric coupling is a function of the mechanical straining of the device, with
the stresses within the piezoelectric layers proportionalto the strain. Strain homogeneity is
therefore an important issue for cantilever type harvesters. For a static load a rectangular
beam shows a strong gradient of the strain over the length, which corresponds to suboptimal
energy yield as discussed in Albach et al. [2009], Goldschmidtboeing and Woias [2008] and
other publications. Piezoelectric coupling can be increased by strain homogenization or by
increasing the peak strain. Due to piezoceramic fragility the latter is impractical but might
be advantageous for the optimizer as our results show. Within this thesis we are able to solve
this issue by developing dynamic piezoelectric stress/strain constraints. In the literature, strain
homogenization is often used as an objective function as in Albach et al. [2009]. However this
approach neglects the electric circuit.

The principal optimization approaches in literature are tooptimize either for the width of the
beam, as in Goldschmidtboeing and Woias [2008] and Dietl andGarcia [2010] or to optimize
for the beam height as in Albach [2006]. In the latter, an analytical solution for homogeneous
strain is given but the design is very impractical to manufacture.

In contrast to plate energy harvesters, there exists to the best of our knowledge only a
single publication on topology optimization of a cantilever type energy harvester. However,
the model in Zheng et al. [2008] has some limitations. It onlyconsists of piezoelectric design
domain without elastic support. The energy efficiency as objective function lacks practical
relevance and only the static case is considered.

Even with topology optimization, the freedom of design is limited by the defined basic
structure. We have chosen to adopt the beam height optimization approach by searching for
the optimal design of a rectangular beam with topology optimization. The piezoelectric layers
are not subject to optimization but to stress/strain constraints. Therefore we do not and cannot
optimize for a generic optimal energy harvester, but only for the optimal beam topology of a
rectangular beam based energy harvester.

1.2.3. Self-Penalization

In performing topology optimization we want to answer the fundamental question of where to
put material and where to drill holes. Discretizing this problem by asking this question for ev-
ery finite element mesh cell of the design domain, we obtain a discrete problem - a high dimen-
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sional integer optimization problem. However, the complexity of such a non-differentiable
problem for any realistic two- and three-dimensional modelis simply astronomic, see Sig-
mund [2011].

By transforming the problem to a continuous problem with thedesign variable ranging from
void to solid, gradient-based optimization can be applied.Thus, topology optimization prob-
lems can often be solved with a very moderate number of iterations. The computational effort
to obtain an optimal design is then approximately in the order of solving the underlying finite
element problem. Unfortunately one might have to handle in general unphysical intermediate
designs.

Indeed, the classical benchmark problem in topology optimizer per se, linear elastic com-
pliant minimization3 together with a constraint on the available material, is well known for
an optimal solution consisting of intermediate design. If not interpreted by microstructures as
in Bendsøe and Kikuchi [1988], this mathematical optimal solution is unphysical and hence
undesired.

In Bendsøe [1989], intermediate pseudo material is effectively penalized against the mate-
rial resource constraint, resulting exclusively in void and solid optimal designs. The penal-
ization works by interpolating the design using a power law in the finite element simulation,
but not in the material constraint. However, this comes withthe cost of serious mathematical
issues, as the new problem now lacks existence of unique solutions and numerical difficulties
in the form of checkerboards and mesh-dependency appear. A review of these problems can
be found in Sigmund and Petersson [1998].

As a consequence, the penalized problems need to be regularized. The standard methods are
listed in Bendsøe and Sigmund [2003]. The common idea of all regularization techniques is
to bound the variation of the design, with design filtering/ averaging being the dominant tech-
nique at present. A review of different variants of design filters is given in Sigmund [2007].
With the exception of Heaviside type density filters and the MOLE feature size constraint, reg-
ularization again introduces some intermediate design by blurring the feature boundaries. The
Heaviside filter was introduced in Guest et al. [2004]. Heaviside filters are computationally
expensive due to the continuous approximation of the Heaviside function which needs to be
performed by a continuation approach. The rigorous MOLE constraint adds a large number
of nonlinear constraints in the order of design variables. Introduced in Poulsen [2003] it does
not appear to be applied in practice. We cover all mentioned regularization techniques within
this thesis.

It is important to note the difference of the solution of a penalized and regularized problem
against the solution of the original problem, especially when a constraint on the available
material is added. While a material resource constraint is natural in compliance minimization,
this may not necessarily be the case for compliant mechanismdesign, introduced in Sigmund
[1997]. In Jensen and Sigmund [2005], a penalization technique for dynamic problems called
pampingis introduced, which does not require a material resource constraint.

We were therefore surprised when it transpired that the majority of static and dynamic
objective functions for the piezoelectric actuator model resulted in distinct black and white
designs without additional constraints and any form of regularization. A finding which has to

3which is stiffness maximization
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our best knowledge only been independently and concurrently described in Rupp et al. [2009].
We defineself-penalizationas when topology optimization problems with a linear contin-

uous design variable with only box constraints on the designvariable result in sufficiently
distinctblack and whitedesign. We use the term, which has not appeared this context in the
literature before, on the suggestion of Ole Sigmund in private communication at WCSMO-08,
2009 in Lisbon.

The phenomenon itself has been reported first for dynamic elastic wave guiding in Sigmund
and Jensen [2003]. In conference talks it has been mentionedespecially for multiphysics
problems but it has apparently not been subject to thorough investigation, with the exception
of Rupp et al. [2009], which contains a short discussion.

There is no publication on self-penalisation beside our owncontribution on self-penalization
in piezoelectric topology optimization in Wein et al. [2011] and a proof of extremal piezoelec-
tric polarization (electrode design) in Donoso and Bellido[2008, 2009].

1.3. Contributions to Research

In the following we summarize the contributions of this thesis to the state of the art in topology
optimization within the three main chapters of this thesis.

1.3.1. Piezoelectric Actuator

In the field of piezoelectric optimization, not only topology optimization, the piezoelectric
coupling is often improved in place of an actual objective function. For piezoelectric topology
optimization this has mainly been done by employing the meantransduction objective function
in several publications of Emı́lo C.N. Silva and co-workers. We trace the method back to the
standard adjoint problem, resulting in a clearer interpretation of the approach.

A phenomenon within piezoelectricity is strain cancellation, which results in serious diffi-
culties for the optimizer in escaping local optima. We present a heuristic approach, generating
initial designs out of additionally calculated eigenmodes. This significantly improves optimal-
ity and computational cost.

Intending the piezoelectric actuator to serve as a single-frequency loudspeaker, we eval-
uate two purely structural approximations, which are maximal displacement and maximally
displaced volume, against their actual acoustic response.The finding is that above the first res-
onance mode, structural approximations are in general unfeasible - particularly due to acoustic
short circuits, destructive interferences not seen by the structural approximation.

Within a fully coupled piezoelectric-mechanical-acoustic multiphysics topology optimiza-
tion, we finally compare acoustic far field approximation against accurate acoustic near field
optimization. The latter comes with a significant reductionof computational costs, as the
acoustic domain may be safely reduced in size.

We found the most complex model to indeed be necessary to perform topology optimization
of an piezoelectric loudspeaker. The results are highly efficient structures handling strain
cancellations and acoustic short circuits beyond intuitive designs. By employing the presented
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method, it is possible to optimize for arbitrary directivity patterns to design advanced distance
sensors or medical ultrasonic devices.

1.3.2. Piezoelectric Energy Harvester

Cantilevered piezoelectric energy harvesters are a topic of active research. However, most
optimization approaches are based on simplified models, allowing analytical optimization.
Several design principles have been formulated, only to be replaced by the results of other
models. Recently the usage of more sophisticated models hasbecome more common.

One of the key features of numerical topology optimization is its transparent application for
sophisticated complex realistic models. This thesis provides, to the best of our knowledge, the
first topology optimization approach for a realistic model for a realistic objective function, the
electric power output.

To this end, dynamic piezoelectric stress constraints wereused. Both dynamic and piezo-
electric stress constraints are new contributions to the topology optimization community.
Through the application of a Heaviside filter to support the self-penalizing effect of the prob-
lem and to obtain a manufacturable design, state of the art techniques are applied.

The optimal design of the elastic beam is based on a mechanismusing hinges. Springs are
removed by the Heaviside filter. This is a novel finding in the field of energy harvester design.

1.3.3. Self-Penalization

Including our publication in Wein et al. [2011], the presentthesis starts a new field of research
within the field of topology optimization by analysing the self-penalization phenomenon.

Based on a large range of optimization problems in elasticity and piezoelectric topology
optimization, we found self-penalization to be very likelyto occur for many unconstrained
problems with a non-trivial solution.

With this is mind, we found two explanations based on selected examples: For static elas-
ticity problems, the optimality condition for grayness is almost limited to no or rigid body
displacement of the forward or adjoint solution, respectively. In static piezoelectric (coupled
multiphysics) problems, a change of the design variable acts in a concurrent constructive and
destructive manner on the objective function. Grayness canoccur only if the balance of the
counteracting effects is inside the design bounds.

The vision behind the analysis of the self-penalization phenomenon is to find methods sup-
porting the intrinsic black and white tendency of the problem and, as such, to achieve better
optimality in the result without loss due to external penalization.

Self-penalization benefits from feature size control allowing full black and white solutions.
To this end we developed the rigorous oscillation constraint, which turned out to be closely
related to the less flexible MOLE constraints presented in Poulsen [2003].

1.4. Structure

This thesis is structured as follows.
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The physical models used within this thesis are given in Chap. 2. Physical properties and
constitutive equations are given together with the strong and weak form to derive the discrete
finite element formulations. The notation and equations arelater used for optimization. Linear
elasticity is covered in Sec. 2.1, including the Rayleigh damping model and time-harmonic ex-
citation. In Sec. 2.2 we cover linear piezoelectricity, starting with a brief physical motivation.
Efficient modelling of electrodes is covered together with adiscussion of the different forms
of piezoelectric excitation. Finally, Sec. 2.3 contains linear acoustics.

In Chap. 3, a detailed introduction to optimization is given. While Sec. 3.1 contains only the
fundamental notations and terminology of general optimization in a very brief form, topology
optimization is introduced in a more detailed way in Sec. 3.2. The method itself is introduced
by its historical development. The generic derivation of static and dynamic sensitivity analysis
is reviewed together with issues within static compliance mechanism design and dynamic
topology optimization. The optimization algorithms used are briefly covered in App. A.2,
while selected regularization techniques are discussed with more detail in App. A.3. There
our new oscillation constraint, a rigorous feature size control, is also presented in App. A.3.6.
Stress constraints are presented in App. A.4 including a time-harmonic formulation.

The results of the topology optimization of a piezoelectricactuator are given in Chap. 4.
After introducing the model, the mean transduction objective function is analysed. Along the
way linear topology optimization is extended to piezoelectric topology optimization and the
generic multiphysics notation is introduced. Then the actuator model is optimized for a set of
objective functions, culminating in the fully coupled piezoelectric-mechanical-acoustic near
field optimization. All dynamic topology optimizations aresingle-frequency optimizations
for a large set of frequencies within the range of the first resonance frequencies. To improve
the robustness to reach always a possibly global optimum, a heuristic approach based on the
results of an eigenfrequency analysis is presented.

Chapter 5 covers the topology optimization of a piezoelectric energy harvester. To this
end various aspects are analysed. This includes the impact and modelling of the electrical
circuit; investigations on the strain distribution; formulation of dynamic piezoelectric stress
constraints and a careful design of the model to avoid stresssingularities within the piezoelec-
tric layers. The topology optimization itself needs to be repeated several times with additional
restrictions up to a final result which satisfies practical manufacturing constraints.

In the Chapter 6 the phenomenon of self-penalization is covered. This is done by using
three examples: static compliance mechanism design, elastic wave guiding and static piezo-
electric self-penalization. Part of elastic wave guiding are numerical experiments with respect
to the pamping approach. The piezoelectric considerationsbased on a numerical gedankenex-
periment are taken from Wein et al. [2011]. In the discussionour observations with respect to
self-penalization are summarized.

Conclusions for the three main topics are given in Chap. 7, together with notes on planned
future work.
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2. Physical Models and Finite Element

Formulation

Performing partial differential equation (PDE) based multiphysics topology optimization re-
quires an understanding of the subjected physical problem and its model (including the inher-
ited limitations). For numerical optimization methods (first discretize, then optimize) also the
setup and solution of the algebraic systems by an appropriate method, here the finite element
method (FEM), is essential.

All physical domains taken into account are considered as continuum. This means that
the microscopic properties on the atomic level are not considered. In fact, we deal with an
idealized view at the macroscopic level. The space shall be filled homogeneously by its spe-
cific material and physical laws and constitutive relationsallow the deviation of differential
equations.

We restrict ourselves to linear effects only. This section follows with respect to motivation
and formulation Kaltenbacher [2007].

2.1. Elasticity

In this section we just concentrate to the part of continuum mechanics which describes the
reversible deformation of bodies.

2.1.1. Physical Properties

Consider the initial configuration of a bodyΩ0 with material pointsP0 as displayed in Fig. 2.1.
XXX denotes the location of these points in Lagrangian coordinates (undeformed). In Eulerian
coordinates, the locationxxx of the material pointsP in the deformed configurationΩ depends
on the original locationXXX and the timet, hencexxx(XXX, t), by a unique mapΦΦΦ(XXX, t). Thedis-
placementfrom P0 to P is given as

uuu(XXX, t) = P(xxx(XXX, t))−P0(XXX, t). (2.1)

We consider only the 3D-case, hence

uuu= (uxuyuz)
T = (u1u2u3)

T .

Forces acting on the undeformed bodyΩ0 lead to the deformed bodyΩ. Any mechanical
volume force fff V or external surface force (traction)ttt is continuously distributed within the
body and the surface, respectively. At infinitesimal volumefractions stress acts on the surfaces
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P

P0 Ω

Ω0

x

y

z

XXX

xxx(XXX, t)

uuu(XXX, t)

Figure 2.1.: Definition of displacementuuu of material points from the initial to the deformed
configuration.

with the unit force per unit area N/m2. The set of normal and shear stresses with respect to the
Cartesian coordinate system are written as

[σσσ ] =




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


≡




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 , (2.2)

where[σσσ ] is called theCauchy stress tensorand is defined for the deformed Eulerian system.
As σxy = σyx, σxz= σzx andσyz= σzy, the tensor is symmetric and Voigt notation gives the
compact vector

σσσ =




σxx

σyy

σzz

σyz

σxz

σxy




=




σ1
σ2

σ3

σ4
σ5
σ6



. (2.3)

Deformation changes a line segment fromP0Q0 in Ω0 to PQ in Ω. The linear changes with
respect to the original configuration are given as

[SSS] =




∂ux
∂X

∂ux
∂Y

∂ux
∂Z

∂uy
∂X

∂uy
∂Y

∂uy
∂Z

∂uz
∂X

∂uz
∂Y

∂uz
∂Z


=




sxx sxy sxz

syx syy syz

szx szy szz


 (2.4)

with [SSS] the linear strain tensorat the Lagrangian system. Note that this represents just the
linear part for small deformations from the Green-Lagrangian strain tensor. As the shear
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strains within the tensor are symmetric, Voigt notation gives the vector

SSS=




sxx

syy

szz

2syz

2sxz

2sxy




=




s1
s2

s3
s4

s5
s6



. (2.5)

Using the differential operator

B =




∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0




T

, (2.6)

we can also write
SSS= Buuu. (2.7)

2.1.2. Constitutive Equation

Constitutive equations relate an external load to the material properties dependent system
response.

The Cauchy stress tensor and linear (Lagrangian) strain tensor presented in the previous
section are just a selection of kinematic properties, more are to be found in Altenbach and
Altenbach [1994], but they are sufficient to formulate Hooke’s law. It is given as stress-strain
relation

σσσ = [ccc]SSS, (2.8)

where[ccc] is the tensor of elastic moduli. In Voigt notation it is a 6 by 6matrix, in index
notation it is a tensor of fourth order.

The limitations of Hooke’s law arise from the fact thatσσσ is valid for the deformed Eulerian
configuration andSSSpresents only the linear strain tensor and is defined for the initial configu-
ration. Assuming only small deformations, the two configurations are close enough for a valid
physical model.

A general anisotropic tensor[ccc] is symmetric and therefore consists of 21 independent elas-
tic coefficients. In the isotropic case[ccc] is uniquely defined by the properties Young’s modulus
E and Poisson’s rationν. With respect to the use of the latter within piezoelectricity, we give
more details for an orthotropic material tensor, where it isnecessary to align material correctly
with a Cartesian coordinate system. While 9 parameters are necessary to describe a general
orthotropic material, 5 are sufficient for transversal isotropic material like the piezoceramic
PZT.

By the relationship of elasticity tensor[ccc] and compliance tensor[sss] = [ccc]−1 it is more
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convenient to give the orthotropic elasticity tensor as

[ccc]−1 =




1
E1

−ν21
E2

−ν31
E3

0 0 0
−ν12

E1

1
E2

−ν32
E3

0 0 0
−ν13

E1
−ν23

E2

1
E3

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G12




whereGi j expresses the shear modulus.E1 ν21= E2 ν12, E2 ν32 = E3 ν23 andE1 ν31 = E3 ν13.
Furthermore,[sss] and[ccc] share the same sparsity pattern.

2.1.3. Strong and Weak Formulation

For a body at rest all volume forcesfff V and stressesσσσ sum up to zero as

fff V +B
Tσσσ = 0, (2.9)

where the gradient operatorB arises from the divergence theorem when the surface integrals
of the stresses are written as volume integrals. In the dynamic case, the mechanical densityρm

with the unit kg/m3 is also required and the dynamic system is described by Navier’s equation
as

fff V +B
Tσσσ = ρm

∂ 2uuu
∂ t2 . (2.10)

Substituting (2.7) and (2.8) into (2.10) we obtain

B
T [ccc]Buuu+ fff V = ρm

∂ 2uuu
∂ t2 .

This allows us to write the linear elasticity problem in the strong formulation as:
Find

uuu(t) : Ω× [0,T]→ R
3

fulfilling

ρm
∂ 2uuu
∂ t2 −B

T [ccc]Buuu= fff V in Ω× [0,T], (2.11)

with boundary conditions

uuu= uuus onΓs× [0,T], (2.12)

nnnTσσσ = t onΓl × [0,T], (2.13)

nnnTσσσ = 0 on∂Ω\ (Γs∪Γl)× [0,T], (2.14)
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with initial conditions

uuu(xxx,0) = uuu0 ∀xxx∈ Ω,

∂uuu
∂ t

(xxx,0) =
∂uuu0

∂ t
∀xxx∈ Ω,

given

ρm : Ω → R,

fff V : Ω → R
3,

[ccc] : Ω → R
6×6.

With uuus = 000, the inhomogeneous Dirichlet boundary condition (2.12) becomes a homoge-
neous Dirichlet boundary condition. The normal vectornnn at the Neumann boundary conditions
(2.13) and (2.14) needs to be extended to

nnn= (nx ny nu 0 0 0)T

to match the dimensions of the stress vectorσσσ . In (2.13) the pressure from the tractionttt is
assumed to be normal to the surface and we writet. See also Fig. 2.2 for an illustration.

Ω

Γ = ∂Ω
ttt

Γs

Γl

fff V

Figure 2.2.: A mechanical load case: A bodyΩ subject to support atΓs, tractionttt at Γl and
volume forcesfff V.

In order to solve the strong problem, it is written in the weakformulation and then dis-
cretized using the finite element method. For the sake of simplicity we assume only homoge-
neous boundary conditions such that (2.12)-(2.14) become

uuu= 000 onΓs× (0,T)

nnnTσσσ = 0 on∂Ω\Γs× (0,T).
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The case with inhomogeneous boundary condition is covered in Sec. 2.2.3.
Defining test functions1 www= (wxwywz)

T ∈ (H1
0)

3, multiplying (2.11) withwww and integrating
overΩ results in

∫

Ω
ρmwwwT ∂ 2uuu

∂ t2 dΩ−
∫

Ω
wwwT(BT [ccc]Buuu)dΩ =

∫

Ω
wwwT fff V dΩ.

After integration by parts of the second term, the relation reads as

∫

Ω
ρmwwwT ∂ 2uuu

∂ t2 dΩ+

∫

Ω
(Bwww)T([ccc]Buuu)dΩ−

∫

Γ
σσσT [nnn]wwwdΓ =

∫

Ω
wwwT fff V dΩ.

Here we use the normal

[nnn] =




nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0




T

.

As a result of the inhomogeneous Neumann boundary conditionand the definition of the space
of test functions, the surface integral vanishes such that the weak formulation of our linear
elasticity problem reads as:
Finduuu∈ (H1

0)
3 such that

∫

Ω
ρmwwwT ∂ 2uuu

∂ t2 dΩ+

∫

Ω
(Bwww)T([ccc]Buuu)dΩ =

∫

Ω
wwwT fff V dΩ (2.15)

for all www∈ (H1
0)

3.

2.1.4. Discrete FEM Formulation

Discretizing the weak formulation (2.15) using the standard finite element method, one arrives
at the following linear system of ordinary differential equations in time (semi-discrete Galerkin
formulation)

MMMu üuu+KKKuuuu= fff . (2.16)

The vectoruuu is a solution for all degrees of freedom for all nodes within the finite element
discretization.
The sparse global mass matrixMMMu, global stiffness matrixKKKu and global right hand side (force)
vector fff are assembled byne local element matrices and vectors as

MMMu =
ne∧

e=1

MMMe
u; KKKu =

ne∧

e=1

KKKe
u; fff =

ne∧

e=1

fff e. (2.17)

These are dense matrices and a vector with the dimension of all degrees of freedom for the

1H1
0 is a Hilbert space with zero boundary values, a definition is given in Kaltenbacher [2007] and the references
given therein.
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finite element:
MMMe

u = [mpq]; KKKe
u = [kpq]; fff e= [ fq]. (2.18)

The entries for the local mass matrix compute from the following bilinear form

mpq =

∫

Ωe
ρmNNNT

pNNNq dΩ, (2.19)

whereNNN is a diagonal 3×3 matrix of the shape functionsNa andρm a physical property. The
local stiffness matrix is set up as

kpq =

∫

Ωe
B

u
p

T [ccc]Bu
q dΩ. (2.20)

The differential operatorB from (2.6) has been applied to the shape functionsNa as

B
u
a =




∂Na
∂x 0 0 0 ∂Na

∂z
∂Na
∂y

0 ∂Na
∂y 0 ∂Na

∂z 0 ∂Na
∂x

0 0 ∂Na
∂z

∂Na
∂y

∂Na
∂x 0




T

,

the physical property is[ccc]. The local element right-hand side vector are set up by the linear
form

fq =
∫

Ωe
NNNT

p fff V(xxxp) dΩ, (2.21)

where fff V(xxxp) is the volume force (excitation) at the location of the corresponding finite ele-
ment node.

Applying Boundary Conditions

Dirichlet boundary conditions (2.12) are realized numerically typically by one of two methods,
elimination or the penalty approach. For both cases we assume that the handling of Dirichlet
boundary conditions takes place after the assembly of the global system. For simplicity we
denote the completely assembled system withneqn unknowns as

AAAuuu= bbb; ai j ui = bi ∀ i, j = 1, . . .neqn.

Usingelimination, we remove the appropriate degrees of freedom from the global system
matrix, the solution and the right-hand side vector. Letgi be the contribution of such a Dirich-
let node. We first cancel the row from the system matrix and compute the contributions to
the right hand side byb j := b j −a jigi . Next, we cancel the columna∗i and the entriesui and
bi . In the case of homogeneous Dirichlet conditionsgi , the right-hand side will clearly stay
unchanged.

By thepenalty approachone can impose Dirichlet boundary conditions without altering the
rank of the global system. Thus, the Dirichlet nodes still represent degrees of freedom in the
linear system but the solver will compute them to the desiredvalue. For the mathematical
motivation consider the linear system as a constrained minimization problem with the penalty
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factor interpreted as Lagrange multiplier [Hughes, 2000].Ultimately, one handles a Dirichlet
boundary conditiongi by applying a penalty factor to the system matrixaii := k and the right-
hand sidebi := gik. The penalty termk can be set e.g. tok := 1 ·1012 max|ai j |.

2.1.5. Damping

Any dynamic physical model has some form of damping. This is not considered in the system
(2.16), which therefore overestimates the displacements for continuous excitation close to
eigenfrequencies.

The standard approach is to add a velocity proportional damping termCCCu as

MMMu üuu+CCCu u̇uu+KKKuuuu= fff . (2.22)

We use theRayleigh damping modelto computeCCCu by the weightsαM andαK as

CCCu = αMMMMu+αKKKKu. (2.23)

See e.g. Kaltenbacher [2007] for information on howαM andαK are determined from the loss
factor tanδ for a specified frequency.

2.1.6. Time-Harmonic excitation

For the optimization problems, we do not cover the transientcase but rather the time-harmonic
case through sinusoidal excitation. By exciting a system for a sufficiently long (infinite) time
period, the system will reach the so called steady state.

The Fourier transformation allows us to calculate the steady state using a single calculation
with the following ansatz.

Consider (2.22) as single-port system. For any dynamic excitation fff (t), one gets a response
uuu(t). When the input is assumed to be a sine

fff (t) = fff 0 sin(ω t),

with fff 0 the amplitude and angular frequencyω = 2π f , we get as response

uuu(t) = uuu0 sin(ω t +ϕ),

with amplitudeuuu0, phase shiftϕ but the same frequency. Substituting into (2.22) the following
Fourier transformation

fff (t) → fff 0ejωt

uuu(t) → uuu0ejωtejϕ
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2.2. Piezoelectricity

results in

−ω2MMMuuuu0ejωtejϕ + j ωCCCuuuu0ejωtejϕ +KKKuuuu0ejωtejϕ = fff 0ejωt

(−ω2MMMu+ j ωCCCu+KKKu)uuu0ejωtejϕ = fff 0ejωt

(−ω2MMMu+ j ωCCCu+KKKu)uuu0ej(ω+ϕ) = fff 0ejω

(−ω2MMMu+ j ωCCCu+KKKu)uuu = fff (2.24)(
(j ω αM −ω2)MMMu+(1+ j ω αK)KKKu

)
uuu = fff (2.25)

SSSuuuu = fff , (2.26)

with the complex propertiesfff anduuu.

2.2. Piezoelectricity

The piezoelectric effect, wherepiezois Greek and means to squeeze or press, is covered only
to the extend where it is used by the following topology optimization. This means that we
concentrate on linear effects within piezoceramic material.

2.2.1. Physical Properties

The introduction in this section follows in parts closely the introductory chapter by J. Koch in
Ruschmeyer [1994].

Piezoceramic material consists of a large number of small crystallites/ grains and is there-
fore a polycrystalline material. It is able to transform mechanical energy into electric energy
and vice versa.

A mechanical load displays for certain crystals the appearance of proportional electric
charges resulting in an electric field within the crystal. The inverse piezoelectric effect leads
to a change of shape due to an applied electric field. Both effects are linear in the sense of
proportionality, as a change of force direction changes theorientation of the electric field and
vice versa.

Let us consider the base cell of a PZT crystallite (lead (Pb),zirconium (Zr) or titanium (Ti),
oxygen (O3)), as shown in Fig. 2.3. It consists of ions (Pb is twice positive, Zr four times
positive, O3 twice negative). If the temperature is above the Curie temperatureTc (≈ 250 °C -
350 °C) the unit cell is cubic due to energetic reasons. The electric barycenter of the Pb and O3
ions and the location of the Ti ion all coincide, hence no electric dipole moment occurs. For
lower temperatures (like room temperature) the optimal configuration of the unit cell becomes
tetragonal and the symmetry is lost. This results in the displacement of the ions’s barycenters
which creates an electric dipole moment.

In the following we assume temperatures belowTc, hence the PZT material consists of
dipoles. These influence each other and form regions of uniform dipole orientation, so called
Weiss domainsor domains. The spontaneouspolarization PPP of a domain is the electric dipole
moment divided by the volume of the domain in C/m2.
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−

+

Pb2+ O2−
3 Zr4+

a)T > Tc b) T < Tc

Figure 2.3.: A PZT crystallize unit cell is cubic and centrosymmetric above Curie temperature
Tc. Below it shows for energetic reasons spontaneous polarization due to a non-
vanishing electric dipole moment.

Figure 2.4.: Grains with oriented domains. Created by Gorchy under creative commons li-
cence on wikipedia.

A crystallite might consist of several domains. The polarizations of these domains within a
crystallite are aligned by 90 °or 180 °, see Fig. 2.4.
Due to the polycrystalline nature and the random orientation of domain groups among all
crystallites, no polarization occurs on a macroscopic level for original PZT material.
By the process ofpoling, which is the application of a very strong electric field (typically
2 kV/mm) at a temperature below but close toTc, all domains are aligned to the electric field.
This also leads to an elongation of the body with the same orientation.
After poling, the uniform domain orientation among the crystallites remains to a certain extent,
resulting in aremanent polarizationand remaining elongation. Poled piezoelectric material
becomes transversely isotropic due to this elongation.
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2.2. Piezoelectricity

Applying an electric or mechanical load to the piezoelectric material initializes a switching
of domains. Due to the alignment of domains, the orientationof the polarization of crystallites
is eventually switched. At a certain magnitude of excitation, all crystallites are aligned and
saturation is reached. This results in a strong hysteresis of theEEE ↔ PPP andEEE ↔ SSSrelationship.
As we have restricted ourselves to the linear piezoelectricmodel, hysteresis effects will be
neglected in the following.

2.2.2. Constitutive Equation

Linear pure mechanical behaviour is described by Hooke’s law (2.8) which relates the me-
chanical stressσσσ and linear mechanical strainSSSvia the tensor of elastic modulus[ccc]

σσσ = [ccc]SSS. (2.27)

The analog electric relationship for an isolating non-piezoelectric body is given by the consti-
tutive law

DDD = [εεε]EEE, (2.28)

with the vector ofelectric displacement DDD in C/m2, which corresponds to a charge density on
the surface or flux density within the body and the electric field intensityEEE in V/m.

The 3×3 tensor of dielectric constants, also calledpermittivity tensor, is set up byεi j =
ε0 εr i j with the permittivity in vacuumε0 ≈ 8.854· 10−12 F/m. Therelative permittivityεr

denotes the polarization of dielectric dipoles by the exciting DDD field counteracting the created
EEE field.
The term permittivity originates from the Latinpermitto; per for ’through’, ’along’, ’during’
andmittō for ’let go’, ’release’. The relation to the electric susceptibility χ (quantifying how
easily the dielectric material polarizes) isεr = 1+χ .
The material independent electric fieldEEE vector is given in V/m and describes the force acting
on an electric chargeq

FFFel = qEEE.

It is worth keeping in mind the approximation for a plate capacitor

EEE =
U
d

eeeE (2.29)

with electric voltageU and thickness of the plate capacitord (eeeE denotes the unit vector ofEEE).
The original constitutive laws (2.27) and (2.28) need to be extended due to the piezoelectric
coupling

σσσ = [cccE]SSS− [eee]TEEE, (2.30)

DDD = [eee]SSS+[εεεS]EEE. (2.31)

These piezoelectric constitutive laws add the reversible piezoelectric polarization[eee]SSS to the
electric displacement and additional stiffening (direct piezoelectric effect) by[eee]TEEE. The
superscriptsE andSindicate that the corresponding material parameters represent the material
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property at constant, e.g. zero, electric field intensityEEE and at constant or zero mechanical
strainSSS, respectively.

Another common formulation with the compliance tensor[sss] = [ccc]−1 and the tensor of
piezoelectric effect[ddd ] is

SSS = [sssE]σσσ − [ddd ]TEEE (2.32)

DDD = [ddd ]σσσ +[εεεσ ]EEE. (2.33)

The piezoelectric coefficients are

ei j =

(
∂Di

∂Sj

)E

=−
(

∂σi

∂E j

)S

di j =

(
∂Di

∂σ j

)E

=

(
∂Si

∂E j

)σ
.

Note that we use, following Kaltenbacher [2007], the symbolσσσ for the stress instead of the SI
standard notationTTT.

For the indexing of piezoelectric material parameters, oneassumes that the process of poling
has been applied in thez-direction. The resulting transversal isotropic elasticity tensor for PZT
has a specialxy shearing relationship

[cccE] =




cE
11 cE

12 cE
13 0 0 0

cE
12 cE

22 cE
23 0 0 0

cE
13 cE

13 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 (cE
11−cE

12)/2



. (2.34)

The first index denotes the strain, the second index the mechanical stress.

The piezoelectric coupling tensor is

[eee] =




0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0


 . (2.35)

Here the first index denotes the electric field and the second index the mechanical stress.

The dielectric tensor is

[εεεS] =




εS
11 0 0
0 εS

11 0
0 0 εS

33


 . (2.36)

The first index denotes the electric field intensity and the second index the mechanical strain.

The sparsity patterns are the same for[cccE] and[sssE] and[eee] and[ddd ]. Writing again the con-
stitutive laws (2.30) and (2.31) illustrates the coupling
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


σxx

σyy

σzz

σyz

σxz

σxy




=




σ1

σ2
σ3

σ4

σ5
σ6




=




cE
11 cE

12 cE
13 0 0 0

cE
12 cE

22 cE
23 0 0 0

cE
13 cE

13 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 cE
66







s1

s2
s3

s4

s5
s6




−




0 0 e31

0 0 e31
0 0 e33

0 e15 0
e15 0 0
0 0 0







E1

E2

E3







D1
D2

D3


 =




0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0







s1

s2

s3
s4

s5
s6




+




εS
11 0 0
0 εS

11 0
0 0 εS

33






E1
E2

E3


 .

2.2.3. Strong and Weak Formulation

For the strong formulation we want to consider a piezoelectric-mechanical coupled system
where a piezoelectric materialΩp is coupled viaΓiface to pure elastic materialΩm, see Fig. 2.5.
Due to the brittleness of piezoceramic this is also standardfor most practical applications.

~ 

Γs Γfree

Γgnd/iface Γhot

Ωm

Ωp

Figure 2.5.: The setup consists of an elastic plateΩm with simple sup-
port Γs and attached piezoelectric layerΩp. Electric exci-
tation by the electrodesΓgnd andΓhot leads to bending.

Reusing Navier’s equation (2.10) and inserting (2.30), we immediately obtain

ρm
∂ 2uuu
∂ t2 −B

T ([cccE]SSS− [eee]TEEE
)
= fff V. (2.37)

Due to the electrodesΓgnd andΓhot and free electric charges within them, the electric field is
determined by

∇ ·DDD = qe, (2.38)
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with the charge densityqe in C/m3. Note that in the interior ofΩp no free charges exist and
the insulating property holds

∇ ·DDD = 0.

Due to the piezoelectric coupling, (2.38) becomes

∇ ·
(
[eee]SSS+[εεεS]EEE

)
= qe, (2.39)

by using (2.31). As the electric field lines are not closed andhence rotation free,

∇×EEE = 000.

The electric field intensity can be expressed as the gradientof thescalar electric potentialfield

EEE =−∇φ , (2.40)

with φ the scalar potential in V. Furthermore we use the notation

B̃ = ∇ =




∂
∂x
∂
∂y
∂
∂z


 . (2.41)

We can now formulate the strong formulation of the piezoelectric-mechanical coupled prob-
lem, where we assume excitation by applying an electric potential at the electrodes.

Find

uuup,uuum : Ωp× [0,T]→ R
3, φ : Ωp× [0,T]→ R

fulfilling

ρp
∂ 2uuup

∂ t2 −B
T
(
[cccE]Buuup+[eee]TB̃ φ

)
= 0 in Ωp× [0,T], (2.42)

B̃
T
(
[eee]Buuup− [εεεS]B̃ φ

)
= 0 in Ωp× [0,T], (2.43)

ρm
∂ 2uuum

∂ t2 −B
T [cccm]Buuum = 0 in Ωm× [0,T], (2.44)

with coupling conditions

nnnp =−nnnm onΓiface× [0,T], (2.45)

uuup = uuum onΓiface× [0,T], (2.46)

nnnT
p σσσp =−nnnT

mσσσm onΓiface× [0,T], (2.47)
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with boundary conditions

uuum = 000 onΓs× [0,T],

nnnT
p σσσp = 0 on∂Ωp\Γiface× [0,T],

nnnT
mσσσm = 0 on∂Ωm\ (Γiface∪Γs)× [0,T],

φ = 0 onΓgnd× [0,T], (2.48)

φ = φl on Γhot× [0,T], (2.49)

nnnT
pDDD = 0 on∂Ωp\ (Γhot∪Γgnd)× [0,T], (2.50)

with initial conditions

uuu(xxx,0) = uuu0 ∀ xxx∈ Ωp∩Ωm,

∂uuu
∂ t

(xxx,0) =
∂uuu0

∂ t
∀ xxx∈ Ωp∩Ωm,

φ(xxx,0) = φ0 ∀ xxx∈ Ωp,

given

[cccE], [cccm] : Ω → R
6×6,

[eee] : Ω → R
3×6,

[εεεS] : Ω → R
3×3,

ρp,ρm : Ω → R,

φl : Ω → R.

The coupling/ transmisson conditions atΓiface= Ωp∩Ωm require continuity of the displace-
ments (2.46) and of the stresses

σσσp = [cccE]Buuup+[eee]TB̃ φ

and
σσσm = [cccm]Buuum.

The deviation of the weak formulation follows the pure elastic case in Sec. 2.1.3, where
details for the piezoelectric case can be found in Kaltenbacher et al. [2006]. For later use in
Sec. A.1 we define the following function spaces

H1
0,Γ :=

{
v∈ C ∞(Ωp) : v|Γgnd = 0

}H1

(2.51)
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and

H1
B :=

{
www∈

(
C ∞(Ωp∪Ωm)

)3
: www|Γs = 0

}H1
B

,

||www||H1
B

:= ||www||L2 + ||Bwww||L2 (2.52)

and express (2.49) as
φ0 := φ −φl χ ∈ H1

0,Γ (2.53)

with χ smooth inH1(Ωp) and constructed such that

χ =

{
0 onΓgnd
1 onΓhot

. (2.54)

Note that the test and ansatz space we use foruuu is defined over the whole domainΩ=Ωp∪Ωp.
The weak formulation with test functionswww= (wxwywz)

T andv reads as:

Finduuu∈ H1
B
(Ωp∪Ωm) andφ ∈ H1

0,Γ(Ωp) such that

∫

Ωp

ρpwwwT ∂ 2uuu
∂ t2 dΩ+

∫

Ωp

(Bwww)T [cccE]BuuudΩ+

∫

Ωp

(Bwww)T [eee]B̃φ dΩ = 0,

∫

Ωp

(
B̃v
)T

[eee]BuuudΩ−
∫

Ωp

(
B̃v
)T

[εεεS]B̃φ dΩ =−φl

∫

Ωp

(
B̃v
)T

[εεεS]B̃χ dΩ,

∫

Ωm

ρmwwwT ∂ 2uuu
∂ t2 dΩ+

∫

Ωm

(Bwww)T [ccc]BuuudΩ = 0,

for all www∈ H1
B
(Ωp∪Ωm) andv∈ H1

0,Γ(Ωp).

2.2.4. Discrete FEM Formulation

Discretizing the weak formulation of the piezoelectric part one arrives at the following alge-
braic system of equations

(
MMMuu 000

000 000

)(
üuu
φ̈φφ

)
+

(
CCCuu 000
000 000

)(
u̇uu
φ̇φφ

)
+

(
KKKuu KKKuφ

KKKuφ
T −KKKφφ

)(
uuu
φφφ

)
=

(
000
q̄qq

)
. (2.55)

In (2.55)q̄qq denotes the contribution due to (2.49).

We only need to give the definitions forKKKuφ andKKKφφ as the other parts are already known
from elasticity, Sec. 2.1.4.

The additional global matrices are called piezoelectric stiffness and dielectric stiffness ma-
trix respectively

KKKuφ =
ne∧

e=1

KKKe
uφ ; KKKφφ =

ne∧

e=1

KKKe
φφ .
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The local stiffness matrices

KKKe
uφ = [muφ

pq]; KKKe
φφ = [kφφ

pq ]

are set up using the following bilinear forms

kuφ
pq =

∫
Ωe

BT
p [eee]B̃qdΩ, (2.56)

kφφ
pq =

∫
Ωe

B̃
T
p [εεεS]B̃qdΩ. (2.57)

The right-hand side contribution̄qqq from the inhomogeneous Dirichlet boundary condition is
described in Sec. 2.1.4.

Piezoelectric-Mechanical Coupling

We switch again to the time-harmonic formulation with complex vectors, see Sec. 2.1.6, and
obtain the following linear system




SSSumum SSSumup 000
SSST

umup
SSSupup KKKupφ

000 KKKT
upφ −KKKφφ







uuum

uuup

φφφ


=




000
q̄qqu
q̄qqφ


 . (2.58)

with q̄qqu andq̄qqφ containing right-hand size contributions from Dirichlet excitations, as in (2.55).

2.2.5. Modeling of Electrodes

For the practical use of a piezoelectric device, electrodesare essential. These are usually
realized via vaporized metal layers with high conductivityleading to equipotential surfaces.
The mechanical properties (stiffness) of these physical electrodes can be neglected. In the
setup in Fig. 2.5 the electrodes are denoted byΓhot andΓgnd.

Note that these electrodes are not directly modeled within our problem formulation. Re-
stricted to the equipotential surface, the homogeneous Dirichlet boundary condition (2.48)
represents an equipotential surface forΓgnd. For the loaded electrodeΓhot, this holds if the
inhomogeneous Dirichlet condition (2.49) is applied. Otherwise, including all sensor applica-
tions, we have to apply the weak constraint (Q denotes the total charge on the loaded electrode)

∫

Γhot

DDD ·nnndΓ = Q on Γhot, (2.59)

which will finally reduce to a single degree of freedom onΓhot in the discrete system.

2.2.6. Forms of Excitation

Generally a PDE can be excited by inhomogeneous Dirichlet and Neumann boundary condi-
tions and volume loads. For a piezoelectric system this corresponds to the following forms of
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excitation, starting with the direct piezoelectric effect.
Volume forcesfff cannot be applied directly within the material. Homogeneous applied force

to a surface, e.g. toΓfree in Fig. 2.5, corresponds to a surface tractionttt and if the direction of
the force is normal to the surface it is a pressure. Pressure is modelled by an inhomogeneous
Neumann boundary condition (2.13). Piezoelectric (ultrasonic) microphones are exited by
pressure. Inhomogeneous Dirichlet boundary conditions (2.12) are common for piezoelectric
energy harvesters, Sec. 5.1, where the piezoelectric device is attached to a vibrating system.

With respect to the inverse piezoelectric effect, the actuator usage, electric chargesQ can
clearly not be applied within the material. On the free electrodeΓhot the application of free
charges would be identical to a homogeneous surface charge as Γhot is a equipotential layer.
Surface charges are homogeneous Neumann boundary conditions similar to (2.50) given in
C/m2 but are rarely used in practice. This leaves the applicationof an external voltageφ (2.49)
and (2.48) as dominating form of excitation. This is just a single scalar value per electrode.

Note that static sensor applications of piezoelectric devices have practically no relevance as
argued in Ruschmeyer [1994].

2.3. Acoustics

In this thesis, with respect to acoustics we are mainly interested in sound propagation within
medium air at frequencies audible to humans. Furthermore, we assume time-harmonic sound
waves.

2.3.1. Physical Properties

The physical properties within acoustics are as follows. Pressure is force per area and a scalar
value. The ambient oratmospheric pressure p0 can be approximated by the hydrostatic pres-
sure, which is due to the weight of the atmosphere. It dependson height and temperatureθ
and is given in Pa. Normal pressure is 1.013 bar, which is approximately 10 tons per square
meter.
Sound pressure pac is the deviation to the ambient pressurep0 due to sound waves. It is a
spatial and dynamic property

pac(xxx, t) in Pa.

We use the subscript ’ac’ to indicate the alternating part ofthe total pressure and avoid confu-
sion with mechanical pressure. Due to the enormous value of ambient pressure it is clear that
sound pressure is much smaller:

p= p0+ pac with pac≪ p0.

The effective sound pressure is the root mean square value, which is given for harmonic waves
as

p̄ac=
pac√

2
,

wherepac is the amplitude of the sound pressure.
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The human ear is not only very sensitive with an auditory threshold at 1 kHz of 2·10−5 Pa as
minimal effective sound pressure, but is is also able to withstand very high sound pressure.
This leads to the logarithmic scaledsound pressure level(SPL) or sound levelLp with respect
to the auditory threshold measured in decibels,

Lp = 20log10
p̄ac

pref
ac

dB. (2.60)

Normal conversation is in the range of 2·10−3...−2 Pa (Lp = 40. . .60 dB), the pain threshold
is at 63 Pa (Lp = 130 dB), which is 10 dB above hearing damage.
The acoustic density correlates with theacoustic pressure

ρac(xxx, t) in kg/m3,

which is the alternating part of the mean densityρf in air (f indicates that air is a fluid) such
that

ρ = ρf +ρac with ρac≪ ρf.

The acoustic particle velocity vvvac is the alternating velocity of a (imagined) particle in air
while the acoustic wave is transmitted. As the acoustic pressurepac and densityρac

vvvac(xxx, t) in m/s

is in most cases much smaller than the mean velocityvvv0

vvv= vvv0+vvvac with vvvac≪ vvv0.

It is also smaller than the transmission of the wave, the speed of soundccc0.
With the acoustic pressure and particle velocity, we can define another important property: the
average sound power. It gives the radiated acoustic power of all sound sources within Ωac

through the surfaceΓ as

Pac=
1
2

∫

Γ
Re{pacv∗acn}dΓ, (2.61)

wherev∗acn
= nnnTvvv∗ac is the normal component ofvvvac with respect toΓ (the star denotes the

complex conjugate, assuming the time harmonic case).
The specific acoustic impedance Zac connects the physical properties acoustic pressure and
particle velocity for a single frequency as

Zac=
pac

vacn

in Ns/m3 or rayl. (2.62)

In the case ofplane waves, where the acoustic wave is homogeneous, the acoustic impedance
also becomes homogeneous. It is then calledcharacteristic impedanceand is a material char-
acteristic property with

Z0 = ρ c0. (2.63)

One can approximate a plane waveacoustic far-fieldsituation when the sound source is suffi-
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ciently far away. For the plane wave case we can express the sound power (2.61) by eitherpac

or vvvac.
Theacoustic wave lengthλac is determined by the frequencyf of the acoustic sound and the
speed of soundc0 as

λac=
c0

f
in m. (2.64)

In air the speed of sound is 343 m/s, hence the wavelength for a1000 Hz sound is 0.343 m and
for 100 Hz 3.43 m.
Analog to the irrotational electric field intensity it also holds for the particle velocity that

∇×vvvac= 000,

hence we can expressvvvac by thescalar acoustic potentialfield

vvvac=−∇ψ, (2.65)

whereψ has the unit m2/s. The relationship with the acoustic pressure is

pac= ρf
∂ψ
∂ t

. (2.66)

2.3.2. Constitutive Equation

A continuity equation is given by the fact that the flux of density changes the enclosed mass.
Theconservation of massis given as

∇ · (ρvvv) =−∂ρ
∂ t

(2.67)

and for linear wave propagation as

∇ ·vvvac=− 1
ρf

∂ρac

∂ t
. (2.68)

The conservation of momentum, known asEuler’s equation, is given as

ρ
(

∂vvv
∂ t

+(vvv ·∇)vvv

)
=−∇p. (2.69)

Again for linear acoustics it reads as

∂vvvac

∂ t
=− 1

ρf
∇pac. (2.70)

From conservation of energy the linearized state equation (for adiabatic state) is given with
the adiabatic exponentκ as

pac

ρac
= c2

0 = κ
p0

ρf
.

28



2.3. Acoustics

Theacoustic wave equationis then given as

∆pac−
1

c2
0

∂ 2pac

∂ t2 = 0, (2.71)

or in terms of the acoustic potential in the identical form

∆ψ − 1

c2
0

∂ 2ψ
∂ t2 = 0. (2.72)

2.3.3. Strong and Weak Formulation

As for the piezoelectric case we want to introduce the strongformulation of linear acoustics
as a strongly coupled problem with linear elasticity. Figure 2.6 depicts the setup.
The structural domainΩm has the only homogeneous Dirichlet boundary condition within
the system. By some form of excitation, which might be given by an additional coupling to
a piezoelectric domain, the surface ofΩm is vibrating. At the coupling surfaceΓiface with
the acoustic domainΩair, acoustic sound waves are stimulated and propagate in the normal
directionnnniface of Γiface.

Ωm

Ωair

nnniface

nnnair

nnnPML

fff V

ΩPML

Γdmp

Γhard
Γs

Γiface

Figure 2.6.: A solid domainΩm is coupled by vibratingΓiface to the acoustic domainΩair
resulting in sound propagation. The sound waves are damped within ΩPML and
reflected atΓhard.

The boundary ofΩair consists of thee surfaces

∂Ωair = Γiface∪ΓhardΓdmp.

When the emitted acoustic waves reach the boundary, they arereflected. For homogeneous
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2. Physical Models and Finite Element Formulation

Dirichlet and Neumann boundary conditions, we have total reflection. Homogeneous Neu-
mann boundary conditions are also calledsound hard, homogeneous Dirichlet boundary con-
ditionssound soft. In the case ofΓhard the effect can be neglected due to direction of wave
propagation.

At the boundary to another acoustic fluid or solid medium, here Γdmp, a fraction of the
acoustic wave will propagate into the second medium but there will also be reflection. For
plane waves thereflection coefficient Rcomputes as

R=
ZPML

0 −Zair
0

ZPML
0 +Zair

0

,

whereZair
0 andZPML

0 are the characteristic impedances (2.63) of the media. One observes
that as a result of matching impedances reflection is suppressed. This is the principle idea of
the method ofperfectly matched layers, see Kaltenbacher [2007] and the references therein.
Within the regionΩPML the acoustic waves are quickly damped, such that there are nowaves
that can reflect at∂ΩPML \Γdmp.

Based on the system shown in Fig. 2.6, the strong formulationof the mechanical-acoustic
problem is given as:

Find

ψPML,ψair : ΩPML ∩Ωair× [0,T]→R

fulfilling

1

c2
0

∂ 2ψair

∂ t2 −∆ψair = 0 in Ωair× [0,T], (2.73)

1

c2
0

∂ 2ψPML

∂ t2 −A
2ψPML = 0 in ΩPML× [0,T], (2.74)

ρm
∂ 2uuu
∂ t2 −B

T [ccc]Buuu= fff V in Ωm× [0,T], (2.75)

with coupling conditions

nnnT
iface

∂uuu
∂ t

=− ∂ψair

∂nnniface
on Γiface× [0,T], (2.76)

σσσ =−nnnifaceρair
0

∂ψair

∂ t
on Γiface× [0,T], (2.77)

ψair = ψPML on Γdmp× [0,T],

∂ψair

∂nnnair
=−∂ψPML

∂nnnPML
on Γdmp× [0,T],
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2.3. Acoustics

with boundary conditions

uuu= 000 onΓs× [0,T],

nnnTσσσ = 0 on∂Ωm\ (Γs∩Γiface)× [0,T],

∂ψair

∂nnn
= 0 onΓhard× [0,T], (2.78)

with initial conditions

ψ(xxx,0) = 0 ∀ xxx∈ Ωair∩ΩPML,

∂ψ
∂ t

(xxx,0) = 0 ∀ xxx∈ Ωair∩ΩPML,

uuu(xxx,0) = 000 ∀ xxx∈ Ωm,

∂uuu
∂ t

(xxx,0) = 0 ∀ xxx∈ Ωm,

given

c0 : Ω → R,

ρm : Ω → R,

fff V : Ω → R
3,

[ccc] : Ω → R
6×6.

In the above problem formulation we have assumed zero initial conditions for simplicity. The
coupling condition (2.76) comes from a continuity requirement of the mechanical surface
velocity

vvvm =
∂uuu
∂ t

and the acoustic particle velocity
vvvac=−∇ψ.

The normal components of the velocities must coincide, which can be expressed as

nnnT
iface(vvvm−vvvac) = 0,

which directly leads to (2.76)

nnnT
ifacevvvm =−nnniface∇ψ =

∂ψ
∂nnniface

.

As the system is strongly coupled there is also a feedback from the acoustic domain to
structure. This results in a mechanical surface stress due to acoustic pressure and is given
(2.77) by

σσσ =−nnn pac=−nnnρair
0

∂ψair

∂ t
,
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2. Physical Models and Finite Element Formulation

wherennn is of appropriate size to matchσσσ with zero shear components. This effect might
be negligible in many situation but it becomes of major importance with respect to topology
optimization.
Finally. weak formulation reads as:
Findψ ∈ H1

0 anduuu∈ (H1
0)

3 such that

∫

Ωm

ρmwww· ∂ 2uuu
∂ t2 dΩ+

∫

Ωm

(Bwww)T([ccc]Buuu)dΩ+

∫

Γiface

www·nnnifaceρair
0

∂ψair

∂ t
dΓ =

∫

Ωm

www· fff V dΩ,

∫

Ωair

1

c2
0

w
∂ 2ψair

∂ t2 dΩ+
∫

Ωair

(B̃w)T(B̃ ψair)dΩ−
∫

Γiface

wnnniface·
∂uuu
∂ t

dΓ = 0,

∫

ΩPML

1

c2
0

w
∂ 2ψPML

∂ t2 dΩ+
∫

ΩPML

(B̃w)T(B̃ ψPML)dΩ = 0.

for all w∈ H1
0 anduuu∈ (H1

0)
3.

Details for the deviation are given in Kaltenbacher [2007].As in the piezoelectric-mechanical
coupling case, the continuity coupling conditions fromΩair to ΩPML automatically fulfilled by
continuity of the ansatz functions.

2.3.4. Discrete FEM Formulation

Multiplying the second weak coupling term and the whole equation with−ρair
0 to gain

∫

Γiface

wnnnifaceρair
0 · ∂uuu

∂ t
dΓ,

it matches ∫

Γiface

www·nnnifaceρair
0

∂ψair

∂ t
dΓ.

This allows us to setup the following symmetric global system resulting from a FEM dis-
cretization
(

MMMuu 000
000 −MMMψψ

)(
üuu
ψ̈ψψ

)
+

(
CCCuu CCCuψ
CCCT

uψ 000

)(
u̇uu
ψ̇ψψ

)
+

(
KKKuu 000
000 −KKKψψ

)(
uuu
ψψψ

)
=

(
fff V
000

)
. (2.79)

The mechanical mass matrixMMMuu and stiffness matrixKKKuu were already given in (2.17) and
the elastic Rayleigh damping matrixCCCuu in (2.23). This leaves the acoustic mass and stiffness
matrix and the mechanical-acoustic coupling matrix

MMMψψ =
ne∧

e=1

MMMe
ψψ ; KKKψψ =

ne∧

e=1

KKKe
ψψ ; CCCuψ =

ne∧

e=1

CCCe
uψ .

The local matrices

MMMe
ψψ = [mφφ

pq ]; KKKe
ψψ = [kψψ

pq ]; CCCe
uψ = [cuψ

pq ]
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2.3. Acoustics

are set up using the following bilinear forms

mψψ
pq =

∫
Ωe

1
c0

NpNq dΩ, (2.80)

kψψ
pq =

∫
Ωe(∇Np)

T(∇Nq) dΩ, (2.81)

cuψ
pq =

∫
Γe

ρair
0 NpNqnnniface dΓ. (2.82)

Note that it is not possible to set up a symmetric coupled system with the acoustic pressure
formulation. The symmetry of the system will be used in topology optimization for solving
the adjoint equation efficiently.

Non-matching Grids

The method ofnon-matching gridsallows the coupling of meshes of different discretization
without the usual requirement of conforming, matching meshelements. Hence, the model can
consist of regular coarse and fine meshed domains without theneed of unstructured coupling
domains.

The numerical expression of a non-matching mechanical-acoustic coupling coincides with
the expression for conforming meshes (2.82), see Kaltenbacher [2007] and the reference
therein.

Acoustic-acoustic coupling requires the additional calculation of Lagrange multipliersλψψ ,
which are calculated by additional coupling bilinear forms. The system matrix has zero diag-
onal entries for the Lagrange multipliers. For details, seeKaltenbacher [2007] and Trieben-
bacher et al. [2010].

Assuming an acoustic-acoustic coupling of a fine and a coarsemesh, we use the simplified
notation

ψψψ =




ψψψcoarse
λλλ ψψ
ψψψfine


 , (2.83)

the assembled system matrixSSSψψ shall include the non-matching acoustic-acoustic coupling.
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3. Optimization

There is a fundamental difference between finite element analysis and optimization: Perform-
ing the static or time harmonic finite element analysis, as introduced in the previous chapter,
results in a deterministic way of setting up a linear system which has the beneficial property
of having a unique solution. State of the art solvers for linear systems can be used as black
boxes to find this solution.

It is a different situation with the type of optimization performed within this work. Here
optimization is an iterative process, existence of solution is not generally guaranteed and the
optimization result may depend significantly on the chosen methods, parameters and start
values.

3.1. Fundamentals

Optimization, ormathematical programmingas it is also called, is a wide and complex field.
Within this section we give a very brief introduction to standard optimization with the objec-
tive of clarifying the speciality of topology optimizationintroduced in Sec. 3.2. To conform
with common notation, the set of design variables will be denoted byxxx within this section.
Later, in the context of topology optimization, the notation will be ρρρ andxxx denoting again the
spacial variable.

3.1.1. Notation

To introduce the basic concepts and notation of optimization we quote (for this section only)
essentially literally the introductory section in Kelley [1999] and sections from Geiger and
Kanzow [1999] and Geiger and Kanzow [2002].

Unconstrained Optimization

The unconstrained optimization problem is to minimize areal-valuedfunctionJ of N variables
being components of the vectorxxx. By this we mean to find alocal minimizerthat is a pointxxx∗

such that
J(xxx∗)≤ J(xxx) for all xxx nearxxx∗. (3.1)

It is standard to express this problem as

min
xxx

J(xxx) (3.2)
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3. Optimization

or to say that we seek to solve the problem minJ. The understanding is that (3.1) means that
we seek a local minimizer. We will refer toJ as theobjective functionand toJ(xxx∗) as the
minimumor minimum value. If a local minimizerxxx∗ exists, we say aminimum is attainedat
xxx∗, one can also writexxx∗ = argminJ(xxx).

We say that problem (3.2) isunconstrainedbecause we impose no conditions on the inde-
pendent variablesxxx and assume thatJ is defined for allxxx.

The local minimization problem is different from (and much easier than) theglobal mini-
mization problemin which aglobal minimizerhas to fulfill

J(xxx∗)≤ J(xxx) for all xxx. (3.3)

Box Constraints

Theconstrainedoptimization problem is to minimize a functionJ over a setU ⊂ RN. A local
minimizer, therefore, is anxxx∗ ∈U such that

J(xxx∗)≤ J(xxx) for all xxx∈U nearxxx∗.

Similarly to (3.2), we express this as
min
xxx∈U

J(xxx) (3.4)

or say that we seek to solve the problem

min
U

J.

A global minimizer is a pointxxx∗ ∈U such that

J(xxx∗)≤ J(xxx) for all xxx∈U.

WhenU restrictsxxx component wise with thelower bound xxxlower andupper bound xxxupper, such
that

U = {xxx∈ R
N | xxxlower ≤ xxx≤ xxxupper},

the optimization problem is calledbox constrained.

Gradient

Performing optimization is always an iterative procedure.The vectorxxx∗ denotes the solution,
xxx a potential solution and{xxx(k)}k≥0 the sequence of iterates. Theinitial iterate xxx0 is also called
initial guessor in the context of structural optimizationinitial design. Forxxx∈ RN the partial
derivative∇J(xxx) ∈ RN denotes thegradientof J,

∇J(xxx) =

(
∂J
∂x1

. . .
∂J

∂xN

)T

, (3.5)

when it exits.

36



3.1. Fundamentals

Iterates{xxx(k)} are formed byxxx(k+1) = xxx(k)+ t ddd with the decent direction ddd andstep length
t. The gradient gives a (not necessarily optimal) decent direction ddd = −∇J(xxx) but it does not
give the step length.

Hessian

∇2J denotes theHessianof J,

(∇2J)i j (xxx) =
∂ 2J(xxx)
∂xi∂x j

, (3.6)

when it exists. Note that∇2J is the Jacobian of∇J. However,∇2J has more structure than a
Jacobian for a general nonlinear function. IfJ is twice continuously differentiable, then the
Hessian is symmetric.

With J twice continuously differentiable in a neighborhood of a line segment between points
xxx∗ andxxx= xxx∗+eee∈ RN andt ∈ R, thefundamental theorem of calculusgives

J(xxx) = J(xxx∗)+
∫ 1

0
∇J(xxx∗+ teee)Teeedt

and

∇J(xxx) = ∇J(xxx∗)+
∫ 1

0
∇2J(xxx∗+ teee)eeedt.

For a sufficiently small‖eee‖ this yieldsTaylor’s theorem

J(xxx∗+eee) = J(xxx∗)+∇J(xxx∗)Teee+eeeT∇2J(xxx∗)eee/2+O(‖e‖2).

By solving the linear system,Newton methodgives

∇2J(xxx)ddd =−∇J(xxx),

the best decent direction whenxxx is close enough toxxx∗ including step length (t = 1).

Optimization with Constraint Functions

Common introductory literature about optimization coversonly unconstrained optimization
(Kelley [1999], Geiger and Kanzow [1999], . . . ) whereas constrained optimization can be
found e.g. in Geiger and Kanzow [2002].

The general form of an optimization problem withconstraintsis written as

min J(xxx)

s.t.ggg(xxx) ≤ 000, (3.7)

hhh(xxx) = 000.

ggg is the vector ofM inequality constraints ggg : RN → RM andhhh is the vector ofP equality
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constraints hhh : RN → RP. ggg is to be understood component wise as

gi(xxx)≤ 0 for all i = 1, . . . ,M.

The connection of the notations (3.4) and (3.7) is the following: ggg andhhh form the feasible set

U = {xxx∈ R
N | ggg(xxx)≤ 000, hhh= 000},

or we formulate the box constraints as 2N linear inequality constraint functionsggg(xxx) = xxx:

xlower
i −gi(xi) ≤ 0 for all i = 1, . . . ,N,

gN+i(xN+i)−xupper
i ≤ 0 for all i = 1, . . . ,N.

A method to formulate an constrained optimization problem approximately as an uncon-
strained optimization problem is thepenalty method

min Φ j(xxx) = J(xxx)+σg
j

M

∑
i=1

max(0,gi(xxx))
2+σh

j

P

∑
i=1

hi(xxx)
2,

where the penalty parametersσg andσh are generally to be found iteratively such that one
has to solve a sequence of problems minΦ j(xxx). The iteratesxxxi during solving minΦ j(xxx) are
often not within the feasible setU .

Not all inequality constraints are necessarily active at a point xxx. Theactive setis given as

I(xxx) = {i | gi(xxx) = 0}.

We have restricted ourselves to minimization, butmaximizationcan be performed analo-
gously by the relationship

maxJ(xxx) =−min J(xxx).

3.1.2. Optimality Condition for Unconstrained Problems

Dealing with an iterative process, we have to define when the sequence of iterates{xxx(k)}k≥0
has reached the optimumJ(xxx∗). This is done byoptimality conditions. There arenecessary
andsufficientoptimality conditions.

The first optimality condition is a necessary condition offirst order as it is based on the
gradient (3.5). For an unconstrained problem a continuous and differentiable functionJ has a
local minimizerxxx∗ if

∇J(xxx∗) = 0. (3.8)

The condition is not sufficient as (3.8) does not indicate whetherJ(xxx) is a minimum or maxi-
mum.

A necessary condition ofsecond order, as it is based on the Hessian (3.6), states that for
a twice continuous differentiable functionJ for a local minimizerxxx∗, ∇2J(xxx∗) is positive
semidefinite.
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3.1. Fundamentals

The sufficientoptimality condition for unconstrained minimization of a twice continuous
differentiable functionJ states that if

(a) ∇J(xxx∗) = 0 and

(b) ∇2J(xxx∗) is positive definite,

thenxxx∗ is a strict local minimizer ofJ. Note that this condition is sufficient but not necessary.

3.1.3. Optimality Condition for Constraint Problems

TheLagrange function L(xxx,λλλ ,µµµ) : R
N ×R

M ×R
P → R of (3.7)

L(xxx,λλλ ,µµµ) = J(xxx)+
M

∑
i=1

λigi(xxx)+
P

∑
j=1

µ jh j(xxx)

is the base for theKarush-Kuhn-Tucker- or KKT-condition

∇xL(xxx,λλλ ,µµµ) = 000,

hhh(xxx) = 000, (3.9)

λλλ ≥ 000, ggg(xxx)≤ 000, λλλ Tggg(xxx) = 000

in an component wise sense and

∇xL(xxx,λλλ ,µµµ) = ∇J(xxx)+
M

∑
i=1

λi∇gi(xxx)+
P

∑
j=1

µ j∇h j(xxx).

Any (xxx∗,λλλ ∗,µµµ∗) fulfilling (3.9) is calledKKT-pointof the constrained optimization problem
(3.7), the vectorsλλλ ∗ andµµµ∗, or rather their components, are calledLagrange multipliers.

The conditionhhh(xxx) = 000 for the equality constraints is clear. The conditionsλλλ ≥ 000,ggg(xxx)≤ 000,
λλλ Tggg(xxx) = 000 require the Lagrange multipliers for all inequality constraints which are not in the
active set to be zero. Thus, the condition∇xL(xxx,λλλ ,µµµ) = 000 coincides for the caseP = 0 and
I(xxx∗) = /0 (no active inequality constraints) with the necessary condition for unconstrained
optimization (3.8).

A KKT-point of (3.7) is a minimizer under certain regularityconditions. The KKT-condition
is the standard optimality condition in many optimization codes. Particularly for large scale
systems, often no further second order conditions are applied.

3.1.4. Classification

Categories

We cite from Geiger and Kanzow [2002] the following properties used to categorize optimiza-
tion problems:
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• Linear optimization: J(xxx), ggg(xxx) andhhh(xxx) are linear, as in

min cccTxxx s.t.AAAxxx= bbb, xxx≥ 000,

with AAA∈ RP×N, ccc∈ RN, bbb∈ RP.

• Quadratic optimization: J(xxx) is quadratic,ggg(xxx) andhhh(xxx) are linear, as in

min
1
2

xxxTBBBxxx+cccTxxx+ γ s.t.AAAxxx= bbb, xxx≥ 000,

with BBB∈ RN×N, BBB= BBBT , γ ∈ R.

• Optimization with box constraints: J(xxx) is arbitrary linear or nonlinear,ggg(xxx) andhhh(xxx)
are linear,xxxlower ≤ xxx≤ xxxupper.

• Linear constraint optimization: J(xxx) is nonlinear,ggg(xxx) andhhh(xxx) are linear.

• Convex optimization: J(xxx) is convex, all functions inhhh(xxx) are linear, all functions in
ggg(xxx) are convex.

• Nonlinear optimization: J(xxx), ggg(xxx) andhhh(xxx) are arbitrary, as in

min bbb(xxx)Tuuu(xxx) s.t.AAA(xxx)uuu(xxx) = bbb(xxx), 1−xxx≥ 000.

Properties

The following properties have an impact on the practical solvability of the problem:

• Smoothness: If all functionsJ(xxx), ggg(xxx) andhhh(xxx) are at least once continuously differen-
tiable, the problem is asmooth optimization problem.

• Numerical availability of gradients: In the end only such problems can be solved where
all gradients can be numerically obtained by the available tools. Common techniques
to overcome this,derivative-free methodslike genetic algorithms, finite-differenceap-
proximation orautomatic differentiation, cannot be efficiently applied to structural op-
timization problems.

• Dimension of the problem: Is defined by the number of the design variables and equality
and inequality functions. Also thesparsityof the derivatives matters.

3.2. Topology Optimization

Structural optimization comprisessizing, shape optimizationand topology optimization.
Topology optimization deals with the problem of where to place material and holes. An-
swering this for any spatial pointxxx within a design domainΩ, no a priori information about
the result is needed and the shape and sizing problem are solved implicitly .
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3.2. Topology Optimization

There is ananalyticaland anumericalapproach towards topology optimization. The first
follows the paradigmfirst optimize, then discretizeand deals with thetopological gradient.
The numerical approach follows thefirst discretize, then optimizeparadigm.

There are also mixed approaches, such as numerical shape optimization combined with
analytical topology optimization.

Modelling linear elasticity astrussesinstead of the continuum formulation in Sec. 2.1.4,
topology optimization deals with connecting or disconnecting regions/ bars.

Within this thesis, we cover exclusively numerical topology optimization of continuum
based on theSIMPapproach.

The SIMP model has two very important features: it is based ona relatively simple idea
and it is very efficient. As a result of the underlying principle, implementation and integra-
tion into existing finite element simulation codes is straightforward, as demonstrated with a
completely self contained 99 lines of MATLAB code implementation in Sigmund [2001]. The
actual simplicity of the basic approach is expressed in the term SIMP, an acronym forSolid
Isotropic Material with Penalization. The efficiency is reflected by its wide application and
extensions within the scientific community and the fact thatpresently all commercial topology
optimization tools are based on the SIMP model.

Within this section we restrict ourselves to linear elasticity.

3.2.1. History of SIMP

Important Contributors

The method goes mainly back to Martin P. Bendsøe with the early works Bendsøe and Kikuchi
[1988] and Bendsøe [1989]. Significant contributions towards current usability have been
made by Ole Sigmund, starting with his PhD thesis Sigmund [1994]. With the DTU, Danish
Technical University, both represent the currently dominant location worldwide for research in
the field. Further early researchers include Noboru Kikuchi, USA, Nils Olhoff from Aalborg,
Denmark, a further key research location for research and Wolfgang Achtziger, Erlangen, the
strongest topology optimization group in Germany. George Rozvany, Hungary, is now chief
editor of the most important journal within the community, Structural and Multidisciplinary
Optimization. Important contributions with respect to dynamic topology optimization have
been made by Jacob S. Jensen, DTU.

The standard literature, especially for advanced readers,is the very comprehensive book
Bendsøe and Sigmund [2003]. In Christensen and Klarbring [2008] a more basic selection is
presented as a textbook targeting students.

Notes on the history of the SIMP model can be found in the papers Sigmund and Petersson
[1998] and Rozvany [2009].

The Variable Thickness Sheet Problem

Our model is a static linear elastic structure with support and load as depicted in Fig. 3.1, also
known as cantilever problem.

41
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Figure 3.1.: The cantilever model problem for compliance optimization, see also Fig. 2.2.
Nodal support and nodal force loading are not physical.

We introduce another notation for the bilinear and linear form as the weak formulation (2.15)
with the solutionuuu and test functionwww

∫

Ω
(Bwww)T([ccc]Buuu)dΩ =

∫

Ω
wwwT fff dΩ

a(uuu,www) = L(www). (3.10)

The model problem is themechanical energy

J = a(uuu,uuu) = L(uuu). (3.11)

A geometrical interpretation ofL(uuu) =
∫

Ω fff TuuudΩ is the displacement at the load point.
The idea of thevariable thickness sheetproblem is to introduce the heighth(xxx) as design

function to a flat domain. The height is normalized to 0< h(xxx) ≤ 1. The height models an
isotropic material tensor as

[ c̃cc](h(xxx)) = h(xxx) [ccc]

which leads to the bilinear form̃a(uuu,www). The continuous compliance minimization problem
is then written with the target volumeV∗ as

min L(uuu) (3.12)

s.t. ã(uuu,www) = L(www), (3.13)∫

Ω
h(xxx)dxxx ≤ V∗, (3.14)

h(xxx) ∈ [0,1].

The problem is also known ascomplianceminimization problem which is equivalent to
maximizing the stiffness. The inequality constraint is known as thevolumeor resourcecon-
straint. Without volume constraint the trivial solution would be the full material. The notation
for dependence of the location will be neglected from now on.

In a discretized version we assume the height functionh to be piecewise constant within
finite element cells. When the whole computational domainΩ is the design domain, meshed
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by N finite element cells, the discretized design vectorhhh= (h1, . . . ,hN)
T can be placed outside

the local finite element stiffness matrixKKKe (2.18) as

K̃KKe(hhh) = heKKKe,

which results from the assembly (2.17) in the global system matrix K̃KK(hhh). Hence we can
formulate the discrete version of the compliance minimization problem as

min fff Tuuu

s.t. K̃KK(hhh)uuu = fff ,

∑
e∈N

heve ≤ V∗, (3.15)

hhh(xxx) ∈ (0,1],

with ve the volume fraction of the element. A lower bound of zero forh would result in an
indefinite linear system and is therefore not feasible.

The solution of the problem is given in Fig. 3.2. With respectto the classification in
Sec. 3.1.4 it has the following properties:J = fff Tuuu= uuuTK̃KK(hhh)uuu is a convex function, but the
state problem, formulated as an equality constraint, is nonlinear and the problem is a nonlinear
optimization problem. The design vector is box constrainedand continuous. All functions are
differentiable. The first derivatives are, as shown in Sec. 3.2.2, numerically available. Both the
design vector and the state problem can be come rather large.The problem has the beneficial
property that a unique solution exists.

(a) Color coded solution ofh(xxx) (b) Illustration for physical interpretation

Figure 3.2.: (a): The solution of the variable thickness sheet problem. (b): Physical interpre-
tation of the height function. The volume constraint for allcantilever examples is
50%.

Topology Optimization by Homogenization

The solution of the variable thickness sheet problem, Fig. 3.2, does not result in a topology,
which is the distribution of material (Ω∗) and holes (Ω\Ω∗) in the desired form

χ(xxx) =
{

1 if xxx∈ Ω∗,
hmin if xxx∈ Ω\Ω∗.
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Restricting the design domain toh∈ {hmin,1} would result in a loss of differentiability. The
numerical effort in solving suchmixed integerproblems in topology optimization is several
magnitudes higher, see e.g. Stolpe and Svanberg [2003].

Martin P. Bendsøe and Noboru Kikuchi presented in Bendsøe and Kikuchi [1988], often
referred to as a landmark paper, an approach to interpret theresult of the variable thickness
sheet problem as topology. The principle idea is to have microstructure with a ratio of holes
and material that models the height information of the variable thickness sheet solution.

The idea is based on mathematicalhomogenization. A base cell, also called a representa-
tive volume element (RVE), is assumed to be infinitesimally repeated. This is expressed in
the mathematical model by periodic Dirichlet boundary conditions (Y-periodic), see Fig. 3.3
(b). From the solution of three test strains in 2D and six teststrains in 3D, a homogenized
tensor[cccH ] can be computed. On a macroscopic level one assumes homogeneous continuum
material[cccH ] which represents the properties of an arbitrary structure within the base cell on
the microscopic level.

The ansatz of Bendsøe and Kikuchi is now known within free material optimization aslo-
cal periodicoptimization. Using just a few parametersddde within an base cell, an orthotropic
homogenized tensor[cccH ](ddde) is implicitly modelled, see Fig. 3.3 (a). Rotation is also consid-
ered. The state problem is solved based on the homogenized tensors[cccH ](ddd(xxx)) for xxx∈ Ω in
the macroscopic domain.

In contrast to the variable thickness sheet problem, where ascalar value per design ele-
ment models a physical thickness, a small set of parameters models a periodic microstructure,
consisting of material and holes.

1

a

b

(a) Structure of periodic base cell (b) Illustration of periodic boundary conditions

Figure 3.3.: (a): Parametersa andb for an orthotropic structure within a reference cell. (b):
Periodic boundary conditions on the displacement.
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Penalized Topology Optimization

In Bendsøe [1989] the height functionh(xxx) is generalized aspseudo densityρ(xxx). In contrast
to the preceding homogenization approach, where the designvariables model a microstructure,
or the scalar value for the variable thickness sheet formulation with the physical interpretation
as height, the pseudo density models an ersatz material withno physical representation from
the start. The function values are to be interpreted as full material withρ(xxx) close to 1, void
for values close to a lower boundρmin and no direct physical interpretation for intermediate
values, such that

0< ρmin ≤ ρ ≤ 1.

To avoid unphysical pseudo density, intermediate values are penalized by a simple power law
function

µpower(ρ) = ρ p, (3.16)

with p usually chosen as 3. As the penalized pseudo density is applied within the solution of
the state problem by modifying the material tensor as

[ c̃cc](ρ) = µ(ρ) [ccc] = ρ p[ccc], (3.17)

one callsµ(ρ) thephysical pseudo density, which coincides with the pseudo density only for
µ(ρ) = ρ . It is again efficient to defineρ to be piecewise constant within theN finite elements
of the design domain, resulting in the design vector

ρρρ = (ρ1, . . . ,ρN)
T .

This allows the easy determination (and derivation) of the local finite element matrices

K̃KKe(ρe) = µ(ρe)KKKe = ρ p
e KKK0 (3.18)

to assemble the global stiffness matrixK̃KK(ρ). For a regular mesh the compliance optimization
problem is given as

min fff Tuuu (3.19)

s.t. K̃KK uuu = fff , (3.20)
N

∑
e=1

ρe ≤ N∗
V/N, (3.21)

ρe ∈ [ρmin,1]. (3.22)

Note the formulations of the volume constraint, continuousin (3.14), discretized for an arbi-
trary mesh in (3.15) and discretized for a regular mesh in (3.21) with N∗

V/N being the desired
fraction of material.

To gain the penalizing effect, it is essential that there is an active volume constraint. As
depicted in Fig. 3.4, for allρ not close to zero or one the physical effect (resulting localstiff-
ness) is much smaller than its ’cost’ with respect to the volume constraint. The interpolation
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functionµ(ρ) has the desirable property of being strictly convex.
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Figure 3.4.: For the variable thickness sheet problem,h is linear. Bendsøe’s power lawρ p

(usuallyp= 3) provides efficient avoidance of intermediate material. The RAMP
interpolation function ρ

1+q(1−ρ) is used for dynamic optimization as it has no zero
slope forρ approaching zero.

Fig. 3.5 shows that the penalizing effect of the power law interpolation function works in
comparison to the variable thickness sheet problem (see Fig. 3.2). The mesh dependency of the
solution results from the mathematical non-existence of a solution in the continuous setting.
The problem without penalization (p= 1) coincides with the variable thickness sheet problem,
where a solution exists. However, for the new penalized problem this is not the case. The
reason is the non-closeness of the set of black and white designs. On any finer discretization
there exists an arrangement of material and void elements with a better objective value through
constant volume fraction.

The checkerboard structure had initially been interpretedas an optimal microstructure, re-
lated to the microstructures generated with the homogenization approach. As revealed in Diaz
and Sigmund [1995], the checkerboard structure is merely due to a bad numerical approxi-
mation of the linear elasticity problem by finite elements with piecewise linear test functions.
At a sufficiently high order, no checkerboards appear. From amathematical/homogenization
point of view, a microstructure is indeed the best approximation of the original variable thick-
ness sheet solution. However, the microstructure must not be numerically modelled by edge
connecting elements. Within the numerical domain, however, we can conclude from the series
in Fig. 3.5 that the penalized 0-1 solution does not convergewith Nx → ∞ to the continuous
(global) solution of the variable thickness sheet problem,Fig. 3.2 (a), but merely to a numeri-
cally optimal solid/ checkerboard/ void solution.

In Bendsøe [1989], a drawback of the penalized pseudo density approach is emphasized:
By using the homogenization approach, arbitrary rotated orthotropic ersatz material of opti-
mal stiffness relation and orientation can be generated, which saves material compared to the
isotropic pseudo density approach.Free material optimization, a further structural optimiza-
tion approach is based on this motivation, see e.g. Zowe et al. [1997].
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(a)Nx = 10 (b) Nx = 20 (c) Nx = 30

(d) Nx = 40 (e)Nx = 60 (f) Nx = 80

(g) Nx = 120 (h) Nx = 140 (i) Nx = 200

Figure 3.5.: Penalizing the pseudo density byρ3 effectively avoids intermediate material com-
pared to Fig. 3.2. However two effects appear without additional regularization:
mesh dependency and checkerboards.

Sensitivity Filtering

While not an originator of the SIMP model, Ole Sigmund is still to be credited for several
essential contributions that significantly promoted the usability and acceptance of the method
significantly.

In his dissertation (Sigmund [1994]), a method is proposed which prevents checkerboards
and mesh dependency. Based on an heuristic approach motivated from theblur filter in graph-
ical image processing, the gradient information∂J(ρρρ)/∂ρe is replaced by

∂J(ρρρ)
∂ρe

=
∑i∈Ne

w(xxxi)ρi
∂J(ρρρ)

∂ρi

ρe∑i∈Ne
w(xxxi)

, (3.23)

where∂J(ρρρ)/∂ρe is the average or convolution within neighborhood elementsNe defined by
radiusRand a linear weightingw(xxxi) = max(0,R−|xxxe−xxxi |). The filter is known assensitivity
filter or Sigmund filter. In a mathematical sense the filter interferes with the original gradi-
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ent information, hence it requires optimization algorithms which are insensitive to disturbed
gradients (Sec. A.2) and the KKT optimality conditions (Sec. 3.1.3) cannot be applied.

(a)Nx = 30, pseudo density (b) Nx = 30, physical pseudo density

(c) Nx = 60 (d) Nx = 120

Figure 3.6.: Applying Sigmund’s sensitivity filter (3.23) with a radius of .15 (whole width
is 3). (a) pseudo density, (b) penalized physical pseudo density. The physical
volume is 42% instead of 50%. (c) and (d) with the same radius and also 42%
physical volume.

The results in Fig. 3.6 show no mesh dependency. With the exception of Fig. 3.6 (a) the
penalized pseudo density is shown. As the volume constraint(3.21) needs to be based on the
original pseudo density, the physical value

gphys
vol (ρρρ) =

1
N

N

∑
i=1

ρ p
i (3.24)

differs from the constraint value. Furthermore, the optimization result shows intermediate
pseudo density along the material boundaries, which is the price of most regularization tech-
niques, see Sec. A.3.

In the paper Sigmund [2001], a self contained MATLAB topology optimization implemen-
tation based on the SIMP model is presented. The 99 lines of code include a simple finite
element solver, an optimizer (Optimality Criteria method,Sec. A.2) and sensitivity filtering.
The paper contributes significantly to the success of the SIMP approach; many researchers
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base their implementations on the 99 lines code.

3.2.2. Sensitivity Analysis by the Adjoint Method

Problem Setting

We assume a design independent load, as this is a common case and the appropriate refor-
mulation is straight forward. The static reference problemshall be based on the compliance
function

Jmech(ρρρ ,uuu(ρρρ)) = uuu(ρρρ)TK̃KK(ρρρ)uuu(ρρρ) = fff Tuuu(ρρρ), (3.25)

with uuu depending implicitly on the design vectorρρρ by the state constraint

K̃KK(ρρρ)uuu(ρρρ) = fff .

The formula for a general objective functionJ(ρρρ ,uuu(ρρρ)) is given later. The gradient of (3.25)
is then given as

∂Jmech

∂ρe
= uuuT ∂ fff

∂ρe
+ fff T ∂uuu

∂ρe
= fff T ∂uuu

∂ρe
.

However, the sensitivity of the solution with respect to thedesign variable∂uuu/∂ρe is not
known a priori.

Applying an approximative finite difference scheme would require solving forN solutions,
varying anyρe for e= 1, . . . ,N.

The derivative of the state equation

∂ K̃KK
∂ρe

uuu+ K̃KK
∂uuu
∂ρe

=
∂ fff
∂ρe

allows us, when rearrange as

K̃KK
∂uuu
∂ρe

=− ∂ K̃KK
∂ρe

uuu,

to solve for the exact∂uuu/∂ρe. The global assembly (2.17) of the local finite element matrices
(3.18)

K̃KKe = µ(ρρρ)K̃KKe,

respectively for a regular grid and the standard power law

K̃KKe= ρ p
e KKK0,

has for∂ K̃KK/ρe the contribution of a single∂ K̃KKe/∂ρe only, with

∂ K̃KKe

∂ρe
= pρ p−1

e KKK0.

But N equations still have to be solved for a single gradient∂J
∂ρe

.
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Static Adjoint Equation

Theadjoint approachreformulates the problem by adding a fixed vectorλλλ multiplied with the
residual of the state equation. Hence one adds zero to gain the following form

Φ(ρ ,uuu(ρρρ)) = J(ρρρ ,uuu(ρρρ))+λλλ T
(

K̃KK(ρρρ)uuu(ρρρ)− fff
)
.

The derivative is
∂Φ
∂ρe

=
∂J
∂ρe

+
∂J
∂uuu

∂uuu
∂ρe

+λλλ T

(
∂ K̃KK
∂ρe

uuu+ K̃KK
∂uuu
∂ρe

)
,

which is rearranged as

∂Φ
∂ρe

=

(
∂J
∂uuu

+λλλ TK̃KK

)
∂uuu
∂ρe

+
∂J
∂ρe

+λλλ T ∂ K̃KK
∂ρe

uuu. (3.26)

The first term can be eliminated by setting

∂J
∂uuu

+λλλ TK̃KK = 0,

leading to the linear system

λλλ TK̃KK = −∂J
∂uuu

K̃KK λλλ = −
(

∂J
∂uuu

)T

,

using the fact that̃KKK is symmetric. The generic gradient is given as

∂Φ
∂ρe

=
∂J
∂ρe

+λλλ T ∂ K̃KK
∂ρe

uuu, (3.27)

with the adjoint equation

K̃KKλλλ =−∂J
∂uuu

T

. (3.28)

For the compliance functionJmechwe have

∂Jmech

∂uuu
=

∂ fff Tuuu
∂uuu

= fff T ,

hence (3.28) does not need to be solved asλλλ = −uuu can be directly given from the state prob-
lem. AsJmechdoes not explicitly depend onρ , the gradient is given as

∂Jmech

∂ρe
=−uuuT ∂ K̃KK

∂ρe
uuu. (3.29)
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Due to the previously mentioned sparsity of∂ K̃KK
∂ρe

, (3.29) can be efficiently implemented as

∂Jmech

∂ρe
=−uuuT

e
∂ K̃KKe

∂ρe
uuue. (3.30)

A necessary condition for a single adjoint problem forN gradients is the independence of
the right-hand side of (3.28) from the design variable. Provided a direct or iterative solver
based on a LU decomposition, the calculation of the additional right-hand side is cheap.

In linear algebra (3.28) is calledself-adjointdue to the symmetry of the operatorK̃KK. In
topology optimization one uses the term with respect to compliance optimization to denote
that the adjoint equation does not need to be solved. The vector λλλ is also calledLagrange
multiplier.

A symmetric system matrix and a design independent right-hand side of the state problem
is assumed as the necessary extensions are trivial and also given in the standard literature, e.g.
in Bendsøe and Sigmund [2003].

Hessian

We are interested in the second derivative ofJmech. Deriving the first derivative (3.29), or
(3.30), again, we immediately see

∂ 2Jmech

∂ρi ∂ρ j
= 0 for all i 6= j, i, j = 1, . . . ,N.

DerivingJmechtwice for the diagonal elementρe, we again apply the adjoint approach and set

Φ =−uuuT ∂ K̃KK
∂ρe

uuu+λλλ T(K̃KK uuu− fff ).

Thereby, we obtain

∂Φ
∂ρe

=−2uuuT ∂ K̃KK
∂ρe

∂uuu
∂ρe

−uuuT ∂ 2K̃KK
∂ρ2

e
uuu+λλλ T

(
∂ K̃KK
∂ρe

uuu+ K̃KK
∂uuu
∂ρe

)
,

where∂ 2K̃KK
∂ρ2

e
is only non-zero ifρ is penalized. Rearranging gives

∂Φ
∂ρe

=

(
−2uuuT ∂ K̃KK

∂ρe
+λλλ T K̃KK

)
∂uuu
∂ρe

−uuuT ∂ 2K̃KK
∂ρ2

e
uuu+λλλ T ∂ K̃KK

∂ρe
uuu,

with the adjoint equation

K̃KK λλλ = 2
∂ K̃KK
∂ρe

uuu.
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As the right-hand side depends onρ , N adjoint equations have to be solved to compute a single
diagonal Hessian, which makes its use impractical.

Time Harmonic Adjoint Equation

We assume time harmonic excitation, see Sec. 3.2.4. There exists a generic formulation cover-
ing the sensitivity analysis of most dynamic objective functions. Its first use was in Sigmund
and Jensen [2003] and Jensen and Sigmund [2005]. The detailswere never published in a
journal in their entirety but the ansatz is sketched in Jensen [2007b] and Dühring et al. [2008].
However, Jensen [2007a], a handout from DCAMM advanced school 2007 at DTU, contains
all details including its application to several objectivefunctions.

The general algebraic time harmonic system, see Sec. 2.1.6,is complex due to damping,
see Sec. 2.1.5, and is given as (2.26)

S̃SS(ρρρ)uuu(ρρρ) = fff .

Note that the derivative with respect to a complex property (the solutionuuu) is mathematically
given only as a limit formulation

lim
t→0

J(uuu+ tddd)−J(uuu)
t

.

The idea in Jensen [2007a] is to split the solutionuuu into the real partuuuR and the imaginary part
uuuI and also to use the complex conjugate system

S̃SS
∗
(ρρρ)uuu∗(ρρρ) = fff ∗.

Analog to the adjoint method in the static case, the general objective function
J(ρρρ ,uuuR(ρρρ),uuuI(ρρρ)) is appended by two Lagrange multipliers for the two residua as

Φ(ρρρ ,uuuR(ρρρ),uuuI(ρρρ)) = J(ρρρ ,uuuR(ρρρ),uuuI(ρρρ))+λλλ T
1 (S̃SS(ρρρ)uuu(ρρρ)− fff )+λλλ T

2 (S̃SS
∗
(ρρρ)uuu∗(ρρρ)− fff ∗).

The sensitivity with respect to the design is

∂Φ
∂ρe

=
∂J
∂ρe

+
∂J

∂uuuR

∂uuuR

∂ρe
+

∂J
∂uuuI

∂uuuI

∂ρe

+ λλλ T
1

(
∂ S̃SS
∂ρe

uuuR+ S̃SS
∂uuuR

∂ρe
+ j

∂ S̃SS
∂ρe

uuuI + j S̃SS
∂uuuI

∂ρe

)

+ λλλ T
2

(
∂ S̃SS

∗

∂ρe
uuuR+ S̃SS

∗∂uuuR

∂ρe
− j

∂ S̃SS
∗

∂ρe
uuuI − j S̃SS

∗ ∂uuuI

∂ρe

)
,
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which is again to be rearranged according to the solution derivatives to be eliminated

∂Φ
∂ρe

=

(
∂J

∂uuuR
+λλλ T

1 S̃SS+λλλ T
2 S̃SS

∗
)

∂uuuR

∂ρe

+

(
∂J
∂uuuI

+ j λλλ T
1 S̃SS− j λλλ T

2 S̃SS
∗
)

∂uuuI

∂ρe

+
∂J
∂ρe

+λλλ T
1

∂ S̃SS
∂ρe

uuu+λλλ T
2

∂ S̃SS
∗

∂ρe
uuu.

The first and second term can be eliminated when

λλλ T
1 S̃SS+λλλ T

2 S̃SS
∗

= − ∂J
∂uuuR

, (3.31)

j λλλT
1 S̃SS− j λλλ T

2 S̃SS
∗

= − ∂J
∂uuuI

. (3.32)

Two systems of equations and two unknown vectors are easily solved. Next, (3.32) is multi-
plied by j

−λλλ T
1 S̃SS+ λλλ T

2 S̃SS
∗
=−j

∂J
∂uuuI

. (3.33)

(3.31) minus (3.33) gives

2λλλ T
1 S̃SS = − ∂J

∂uuuR
+ j

∂J
∂uuuI

,

S̃SS
T

λλλ 1 = −1
2

(
∂J

∂uuuR
− j

∂J
∂uuuI

)T

. (3.34)

(3.31) plus (3.33) gives

2λλλ T
2 S̃SS = − ∂J

∂uuuR
− j

∂J
∂uuuI

,

S̃SS
T

λλλ 2 = −1
2

(
∂J

∂uuuR
+ j

∂J
∂uuuI

)T

. (3.35)

Comparing (3.34) and (3.35), we obtain

λλλ 2 = λλλ ∗
1

and denote
λλλ := λλλ 1.

Now, the sensitivity with respect to the design changes to

∂Φ
∂ρe

=
∂J
∂ρe

+λλλ T ∂ S̃SS
∂ρe

uuu+(λλλ ∗)T ∂ S̃SS
∗

∂ρe
uuu∗,
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which can be written as
∂Φ
∂ρe

=
∂J
∂ρe

+2 Re

{
λλλ T ∂ S̃SS

∂ρe
uuu

}
, (3.36)

whereλλλ is the solution of

S̃SS
T

λλλ =−1
2

(
∂J

∂uuuR
− j

∂J
∂uuuI

)T

. (3.37)

The static deviation is contained in the time-harmonic formula with ω = 0. ForJmech= fff Tuuu

we obtain ∂J
∂uuuR

= fff T , henceλλλ =−1
2uuuT which results in∂J

∂ρe
=−uuuT ∂ K̃KK

∂ρe
uuu.

3.2.3. Mechanism Synthesis

Generic Problem Formulation

The compliance problem (3.19)
min fff Tuuu

can be generalized to the form
maxlllTuuu, (3.38)

where theselection vector lll identifies regions and orientation of the discrete solutionfield uuu of
the state equation by selecting the degrees of freedom corresponding to the output points and
otherwise setting zeros. The sensitivity analysis is the same as for the compliance problem
with gradient (3.27)

∂ lllTuuu
∂ρe

= λλλ T ∂ K̃KK
∂ρe

uuu,

whereλλλ solves the generic adjoint problem (3.28) as

K̃KKλλλ =−lll .

Applying the problem formulation (3.38) to arbitrary static multiphysics problems, we see,
that the possibility of arbitrarily maximizing and minimizing within the solution field is in-
deed of great importance. However, there has been no name established for (3.38) within
the topology optimization community. Therefore we have labeled our implementation of the
multiphysics objective function within CFS++ as theoutputfunction.

Compliant Mechanisms

Within elasticity optimization, (3.38) is the base of the application field synthesis of com-
pliant mechanisms, initiated in Sigmund [1997]. See Bendsøe and Sigmund [2003] for an
excellent overview. Mechanisms can be roughly grouped within two fields. Classical mech-
anisms consist of rigid body elements together with hinges,bearings and sliders. They are
robust, effective but are to be assembled from different parts. Compliant mechanisms, how-
ever, are based on the flexibility/ elasticity of the base materials. Therefore, they are simpler
to construct but generally less efficient. A compliant mechanism can be simulated based on
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a continuum formulation, and therefore formulated as a topology optimization problem in the
form (3.38).

To balance between output force and displacement maximization, additional springs are
added at the input and output points, see Fig. 3.7. This is realized as modification of the state
equation by increasing the nodal stiffness within the global system matrix and is therefore not
explicitly modelled in the problem formulation.

?

in out

(a) Problem setting

fin uout

(b) max displacement

fin fout

(c) max force

Figure 3.7.: Motivation for the introduction of springs in the force inverter benchmark Fig. 3.8.
(a): Assume we want to optimize a simple mechanism by placinga hinged sup-
port. There is no virtue in optimizing for either displacement (b) or force (c) alone
as the respective counterpart tends to zero.

A common benchmark is the force inverter in Fig. 3.8. Note that for most mechanism design
problems geometric non-linear optimization is essential,see Pedersen et al. [2001].

uout koutkin fin

(a) Problem setting (b) Solution

Figure 3.8.: Force- or displacement inverter. (a) shows a classical compliance mechanism
synthesis benchmark to be solved by (3.38). For the result in(b) a sensitivity filter
with a radius of 1.5 element sizes is applied, both springs have a value of 50 % of
the global nodal stiffness entry.

Hinges

From Fig. 3.8 (b) we see that two components from classical mechanisms are reproduced:
rigid bars and hinges. The optimizer tries to achieve the higher efficiency of classical mecha-
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nisms by ’simulating’hingeswithin a compliance setting, see Fig. 3.9 for a close-up.

(a) Undeformed (b) Deformed

Figure 3.9.: Close-up of the upper hinge in Fig. 3.8.

These hinges are, like checkerboards, exploited poor numerical modeling of linear elasticity.
To differentiate from hinges in a classical mechanism, theyare calledfinite element hingesin
Pedersen et al. [2001]. The extreme form of finite element hinges are one edge connections.

Preventing non-physical finite element hinges but obtaining realistic compliant mechanism
hinges is an open research topic. The performance of the optimization results is generally
closely connected to the realization of hinges. The earliest efficient approaches perform shape
optimization with a feature size constraint as post-processing step.

3.2.4. Dynamic Topology Optimization

Finite element analysis can be applied on static, transient, eigenfrequency and harmonic prob-
lem formulations. Transient topology optimization is onlyrarely performed, mainly due to
computational cost, an example is given in Dahl et al. [2008]. Topology optimization towards
eigenfrequencies is applied but suffers from the problem ofmultiple eigenfrequencies, see Du
and Olhoff [2007a]. This leaves the optimization of problems with time-harmonic excitation,
also calledforced vibrations.

Modeling

In Sec. 2.1.4, the dynamic linear elasticity formulation (2.22) is given, including the Rayleigh
damping model in Sec. 2.1.5 and the time-harmonic excitation in Sec. 2.1.6. Analog to the
pseudo stiffness tensor (3.17)

[ c̃cc](ρ) = µstiff(ρ) [ccc]

we can define a pseudo mass
ρ̃m(ρ) = µmass(ρ)ρm. (3.39)

Application of the finite element method results in the global system (2.25) as
(
(j ω αM −ω2)M̃MM(ρρρ)+(1+ j ω αK)K̃KK(ρρρ)

)
uuu= fff

with fff anduuu being complex properties. The short form of the state equation reads analog to
(2.26) as

S̃SS(ρρρ)uuu= fff (3.40)
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with S̃SS the complex and symmetric global system matrix explicitly dependent on the design
vectorρρρ .

Penalization

Usually the interpolation function for the massµmassis the identity function

µmass(ρ) = ρ .

However, applying the power law interpolation function (3.16)

µpower(ρ) = ρ p

as stiffness interpolation functionµstiff , low density regions result in relatively ’heavy’ material
with almost no connection to material due to the zero slope ofthe power law function, see
Fig. 3.4 and Fig. 3.10 (a) for an example. A remedy is to use theRational Approximation of
Material Properties - RAMPinterpolation function (see Fig. 3.4 and Fig. 3.10 (b))

µRAMP(ρ) =
ρ

1+q(1−ρ)
. (3.41)

The first eigenfrequency of the configuration with the power law is artificially low at 4.8 Hz
compared to 336 Hz with the RAMP interpolation.

(a) Power law:ρ3 (b) RAMP: ρ
1+5(1−ρ)

Figure 3.10.: Time-harmonic excitation of the design of Fig. 3.6 (a) at 500 Hz with two dif-
ferent interpolation functions, see Fig. 3.4. The mass factor is linear withρ and
therefore proportionally much higher than the stiffness inlow density regions for
the power law (a). For better illustration thex- andy-amplitudes are mapped to
the z-direction in the visualization. The scaling for the RAMP interpolation is
four times higher.
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3. Optimization

Problem Formulations

Any objective function needs to be real valued

J : C 7→R

and there are several approaches to meet this requirement. Ashort review is given of the
examples for general sensitivity analysis in Jensen [2007a]. We only quote them briefly, start-
ing with different, self adjointdynamic complianceformulations. Note that the term is not
uniquely defined. The abs function is applied as

J =
∣∣uuuT fff

∣∣=
√
( fff TuuuR)2+( fff TuuuI)2,

∂J
∂ρe

= Re

{
fff Tuuu∗

J
uuuT ∂ S̃SS

∂ρe
uuu

}
. (3.42)

Without damping and real valued̃SSS, the forced vibration formulation in Bendsøe and Sigmund
[2003] is

J = (uuuT fff )2 = (uuuT
R fff )2− (uuuT

I fff )2+2j(uuuT
R fff )(uuuT

I fff ),
∂J
∂ρe

=−2( fff Tuuu)uuuT ∂ S̃SS
∂ρe

uuu.

The most common general dynamic problem formulations are based on

J = uuuTAAA(ρρρ)uuu∗,
∂J
∂ρe

= uuuT ∂AAA
∂ρe

uuu∗+2 Re

{
λλλ T ∂ S̃SS

∂ρe
uuu

}
, S̃SS

T
λλλ =−1

2

(
∂J

∂uuuR
− j

∂J
∂uuuI

)T

(3.43)

whereAAA = III , the identity matrix, is also known asglobal dynamic compliance, which mini-
mizes the mean displacement as

J = uuuTuuu∗,
∂J
∂ρe

= 2 Re

{
λλλ T ∂ S̃SS

∂ρe
uuu

}
, S̃SS

T
λλλ =−uuu∗. (3.44)

The formulation

J = uuuTLLLuuu∗,
∂J
∂ρe

= 2 Re

{
λλλ T ∂ S̃SS

∂ρe
uuu

}
, S̃SS

T
λλλ =−LLLuuu∗, (3.45)

with diagonal selection matrixLLL is the dynamic variant of (3.38) and shares the practical
relevance and versatility, see Sec. 3.2.3.

Dynamic Compliance

The difference of the various formulations is not necessarily obvious, but we can expect differ-
ent solutions due to the different gradient formulations. Whether we deal with minimization
or maximization, the eigenfrequencies will be implicitly tuned.

In Fig. 3.11, two compliance formulations are applied. A discussion of dynamic compliance
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3.2. Topology Optimization

(a) minuuuTLLLuuu∗, f = 202 Hz (b) minuuuTLLLuuu∗, f = 206 Hz (c) minuuuTLLLuuu∗, f = 232 Hz

(d) minuuuTuuu∗, f = 202 Hz (e) minuuuTuuu∗, f = 206 Hz (f) min uuuTuuu∗, f = 232 Hz

Figure 3.11.: In figures (a)-(c) we apply (3.45) with a diagonal of LLL corresponding tofff . The
solution in (a) is close to the static solution, for higher frequencies the optimizer
tries to damp the exciting force. Note that there is gray material at the force node.
In Figures (d)-(f) (3.44) is applied. Here all lower frequency solutions have gray
material at the force node. A density filter is applied. All solutions satisfy the
KKT condition.

minimization is beyond the scope of this thesis. Nevertheless there are two important general
observations which can be deduced from the results in Fig. 3.11.

Just above 202 Hz the results differ significantly, independent of problem formulation and
optimization frequency. The deciding factor is the resonance frequency of the initial design.
The optimizer is not able to move a higher resonance than the excitation frequency to a fre-
quency below the excitation frequency and vice versa as a (temporally) closer resonance in-
creases the objective function. A good explanation for thisproblem is given in Dühring et al.
[2008] and it becomes also relevant in Sec. 4.5.

A second important observation is the fact that all higher frequency solutions for problem
(3.45) and all lower frequency solutions of problem (3.44) have gray material at critical regions
which is not removed by penalization. This is best seen in themean displacement minimiza-
tion in Fig. 3.11 (d): Most material is only weakly connectedto the excitation, resulting in a
low displacement, whereas the displacement of the excitation node is still limited. Function
J = uuuTuuu∗ (3.44) represents a globalization of local displacements,proportional to the squared
2-norm‖uuu‖2

2. Removing local peaks within the vector by higher p-norms can easily lead to
numerical difficulties. Such problems are common in the fieldof stress constraints, see e.g.
Duysinx and Sigmund [1998].
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3. Optimization

Wave Guiding

Despite their universality, there is, as for the static objective function (3.38)

J = lllTuuu,

no common name assigned for (3.45)

J = uuuTLLLuuu∗.

(3.45) is often referred to by its first application,wave guiding. Our multiphysics implemen-
tation is termeddynamicOutput.

In Sigmund and Jensen [2003], wave guiding is introduced forfinite elastic structures to-
gether withband gapoptimization of periodic structures.

Ω

∂Ω

Γopt

Γex

(a) Problem setting (b) Optimal topology (c) Displacement field

Figure 3.12.: The wave guiding problem setting (a) with forced displacement atΓex and ab-
sorbing boundary conditions at∂Ω, the x-displacement is to be maximized at
Γopt. The solutions (b) obtained by (3.45) show high self-penalization. In (c),
displacements are visualized by mapping the amplitudes to thez-direction. No
constraints are applied. The problem is regularized by a density filter.

In Fig. 3.12, the function (3.45) is applied to a wave guidingexample similar to the original
setup in Sigmund and Jensen [2003]. The absorbing boundary conditions are realized by
the method of Perfectly Matched Layers. Figure 3.12 (b) shows the phenomenon ofself-
penalization, as the solution is almost black and white without any form ofpenalization or
constraints. Self-penalization is covered in detail in Sec. 6.
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4. Topology Optimization of a

Piezoelectric Actuator

Within this section we apply topology optimization to a piezoelectric plate actuator. Various
objective functions and physical aspects are discussed.

4.1. Model

Our reference model is a piezoceramic layerΩp (PZT-5A) 50 µm thick, attached to an alu-
minum layerΩm 100 µm thick. The edge length of the quadratic plates are 5 cm.Only the
aluminum plate has support at its outer edges, see Fig. 4.1 which is repeated for convenience
from Fig. 2.5. The material properties are given in App. A.5.

Γfree/opt ΓsΓs

Γgnd/ifaceΓhot

Ωm

Ωp

hplate
hpiezo

(a) Schema

~ 

Γs Γfree/opt

Γgnd/iface Γhot

Ωm

Ωp

(b) Simulation

Figure 4.1.: The reference model with the piezoelectric layerΩp as design domain, the elastic
plateΩm provides support via the edgesΓs.

The connection of the two layers is assumed to be ideal. An additional glue layer, e.g.
based on epoxy, can be modelled as an elastic layer, which does not change the principal
mathematical model but could result in numerical difficulties if the layer is too thin.

The linear continuum models described in Sec. 2.1.3 and Sec.2.2.3 are applied. The thin
layers are discretized by one finite element of second order in the thickness direction. Nu-
merical tests show validity against refined models consisting of multiple finite elements in
thickness direction. Plate theory and shells are not applied. The discrete finite element system
of the piezoelectric-mechanical coupled system is given in(2.55).
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4. Topology Optimization of a Piezoelectric Actuator

4.1.1. Ersatz Material Ansatz

We recall the piezoelectric constitutive laws (2.30) and (2.31)

σσσ = [cccE]SSS− [eee]TEEE,

DDD = [eee]SSS+[εεεS]EEE.

The ersatz material model is applied to the tensor of elasticmoduli [cccE] in (3.17) and to the
massρm in (3.39). Also applying this approach to the piezoelectriccoupling tensor[eee] and
permittivity tensor[εεεS], we obtain

[ c̃ccE](ρ) = µc(ρ) [cccE],

ρ̃m(ρ) = µm(ρ)ρm,

[ ẽee](ρ) = µe(ρ) [eee], (4.1)

[ ε̃εεS
](ρ) = µε(ρ) [εεεS], (4.2)

with the pseudo densityρ as design variable. In a homogenization approach of a piezoelectric-
mechanical coupling, the first application of the ersatz material approach is given in Silva et al.
[1997] for two dimensions and Silva et al. [1998] for three dimensions. Without homogeniza-
tion but for finite domains, the first work is Silva and Kikuchi[1999] with objective functions
based on eigenmodes. In the works mentioned above, the pseudo densityρ is applied linearly
to the material properties as

µc(ρ) = µm(ρ) = µe(ρ) = µε(ρ) = ρ . (4.3)

Grayness is reduced by the constraint

gW(ρ) =
∫

Ω
ρ pdΩ ≤Wmin,

with p chosen as eight and a problem dependentWmin.

Pseudo Polarization and Electrode Design

In Kögl and Silva [2005] the polarizationϑ is added as an additional design variable called
pseudo polarizationwith

ϑ ∈ [−1, 1].

ϑ is applied to the piezoelectric coupling tensor only, changing (4.1) to

[ ẽee](ρ ,ϑ) = µe(ρ)µp(ϑ) [eee]. (4.4)

Switching the polarization for a single element layer modelhas the same effect as switching
the applied potentials. The practical interpretation is therefore not a local polarization of the
material, but structured electrodes with several equipotential surfaces isolated against each
other.
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4.1. Model

It is worth mentioning that the described method does not search for the optimal local
polarization in the sense of free material optimization which would include the orientation of
the polarization. For piezoceramic plates with a prescribed polarization orientation parallel
to the surface normal, the optimization for the pseudo polarization rather corresponds with
electrode design. Through such electrodes, the local polarization is also technically possible,
see Sec. 2.2.1.

In Donoso and Bellido [2009], it is proven that the optimal solution contains only polar-
izations withϑ ∈ {−1, 1}, which is also intuitive for a maximization problem. Note that for
piezoelectric bulk material modelled by multiple layers, local variations of the polarization
within the body are probably not fabricable and interpretable by electrodes.

SIMP Model

The early research in piezoelectric topology optimizationis dominated by Emı́lo C.N. Silva.
Kögl and Silva [2005] is the first work, in which the SIMP approach with penalizing inter-
polation functions is explicitly applied. The objective isto maximize themean transduction
which is formulated as multiple objective problem togetherwith a compliance minimization
part, see Sec. 4.2. Several combinations of power law interpolation functions are evaluated,
the suggested combination (for the static problem formulation) is

µc(ρ) = ρ3, µe(ρ) = ρ3, µp(ϑ) = ϑ , µε(ρ) = ρ .

In this work, we consider the optimization for polarizationonly for special cases and restrict
ourselves generally to the pseudo density.

4.1.2. Interpretation of Void Material

Within SIMP based topology optimization, it is no generallypossible to interpret the inter-
mediate material physically. In particular this holds evenmore for multiphysics piezoelectric
material. However, the correlation on the change to the tensors matters, as permutations of the
power laws result in different results in Kögl and Silva [2005].

Void material has a numerical and physical interpretation.Numerically, the diagonal co-
efficients from[ c̃ccE] and [ ε̃εεS

e] must not be null. In this way the system is kept regular. The
off-diagonal piezoelectric coupling is allowed to become zero, note that the pseudo polariza-
tion, which can be zero, is only applied there.

Physically, a good void interpretation is given by air. The relative permittivity of air is
εair

r = 1.00059 compared to diagonal entries in the range ofεPZT-5A
r = 1700. The piezoelectric

coupling is zero. The mechanical stiffness is zero, but for numerical reasons a small value is
necessary, e.g. 1·10−6 [cccE].

A bi-material formulation in the sense of

[ (̃·) ] = µ(ρ)[ (·)PTZ-5A] + (1−µ(ρ))[ (·)air ]

follows the physical interpretation directly and is applied in Dühring [2009]. Within this work,
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4. Topology Optimization of a Piezoelectric Actuator

we apply the standard approach
µ(ρmin) = 1 ·10−6,

due to more easily readable notation.

4.2. Mean Transduction

As an introduction to piezoelectric topology optimizationand to illustrate the properties of our
model in Fig. 4.1, we discuss themean transduction.

4.2.1. Definition

Emı́lo C.N. Silva published several works with varying coworkers, starting with Silva et al.
[1999], which covers static and dynamic topology optimization of piezoelectric actuators and
sensors with multi-objective problem formulations, including mean transduction.

The mean transduction gives a measure for the coupling between the electrostatic and me-
chanical field, or as formulated in [Kögl and Silva, 2005] “.. . the conversion of electrical into
elastic energy and vice versa”.

The mean transduction is based on the reciprocal theorem of elasticity. Applying as load a
tractionttta results in displacementuuua and applying another tractiontttb results inuuub. Then it
holds ∫

Γta

tttT
a uuubdΓ =

∫

Γtb

tttT
b uuuadΓ,

or as stated in [Silva et al., 2000]:

. . . by knowing the body response for one load case, we can calculate the displace-
ment at any point of the body caused by another load case.

In Silva et al. [1999], the corresponding piezoelectric reciprocal theorem is deduced in
detail. It states

∫

Γta

tttT
a uuubdΓ+

∫

Γda

daφbdΓ =
∫

Γtb

tttT
b uuuadΓ+

∫

Γdb

dbφadΓ,

whered is the length of the surface normal electric displacement vector

d = |nnnTDDD|.

Therewith, we can write
Jba= Jab

and obtain in FEM formulation
(

uuub

φφφb

)T(
fff a
qqqa

)
=

(
uuua

φφφa

)T(
fff b
qqqb

)
,
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4.2. Mean Transduction

or (
uuub

φφφb

)T( KKKuu KKKuφ
KKKuφ

T −KKKφφ

)(
uuua

φφφa

)
=

(
uuua

φφφa

)T( KKKuu KKKuφ
KKKuφ

T −KKKφφ

)(
uuub

φφφb

)
.

Choosing the load casea as chargeQa = 1 µC andfff a = 000 we get

KKKuuuuua =−KKKuφ φφφ a,

and using for load caseb fff b = 1N andQb = 0 we obtain

KKKuφ
T uuub = KKKφφ φφφb.

This reduces
Jba= uuuT

b KKKuuuuua+uuuT
b KKKuφ φφφ a+φφφT

b KKKφuuuua−φφφT
b KKKφφ φφφa

and
Jab= uuuT

a KKKuuuuub+uuuT
a KKKuφ φφφ b+φφφT

a KKKφuuuub−φφφT
a KKKφφ φφφb

to the equivalent mean transduction formulations

Jba = φφφ T
b KKKφuuuua−φφφT

b KKKφφ φφφa (4.5)

and
Jab = uuuT

a KKKuuuuub+uuuT
a KKKuφ φφφb. (4.6)

4.2.2. Notation for Multiphysics Problems

The SIMP optimization model as numerical optimization method is tied closely to the linear
system representing the actual physics. Rewriting a general linear system originating from an
arbitrary strong coupled multiphysics system as

K̂KK ûuu= f̂ff , (4.7)

specifically
ŜSSûuu= f̂ff , (4.8)

generally all methods for standard topology optimization can be directly applied to mul-
tiphysics. In the present context (4.7) represents the fully coupled system (2.58) with
ûuu = (uuum uuup φφφ)T and f̂ff = ( fff m fff p qqq)T equivalent to the reduced notation̂uuu = (uuu φφφ)T and

f̂ff = ( fff qqq)T . Applying the ersatz material approach on the piezoelectric part, we write

̂̃
KKK ûuu= f̂ff , (4.9)

specifically
̂̃
SSSûuu= f̂ff . (4.10)
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4. Topology Optimization of a Piezoelectric Actuator

4.2.3. Sensitivity Analysis

With the ersatz material applied, the sensitivity of

Jba= ûuuT
b f̂ff a

reads due to the constant excitations as

∂Jba

∂ρe
= f̂ff

T
a

∂ ûuub

∂ρe
= uuuT

a
̂̃KKK ∂ ûuub

∂ρe
.

Using the derivative of (4.9),

∂ ̂̃KKK
∂ρe

ûuu=− ̂̃KKK ∂ ûuu
∂ρe

,

we get

∂Jba

∂ρe
=−ûuuT

a
∂ ̂̃KKK
∂ρe

ûuub. (4.11)

Note that the standard adjoint based sensitivity analysis,see Sec. 3.2.2, has not been used.
Comparing (4.11) against the generic static gradient (3.27) we can interpret−ûuua as the solution
of the adjoint equation (3.28)

̂̃KKKλλλ =−∂J
∂ ûuu

.

With load casea as adjoint problem and

∂Jba

∂uuu
= f̂ff a,

the adjoint solutionλλλ equals−ûuua. The same holds forJab with

∂Jab

∂ρe
=−ûuuT

b
∂ ̂̃KKK
∂ρe

ûuua

and load caseb as adjoint equation. The interpretation of the mean transduction load cases by
adjoint method has, to the best knowledge of the author, not been described yet.

4.2.4. Application

With the given load cases andtttb realized as nodal forcefff b with the property| fff b| = 1, one
obtains

Jba = ûuuT
a f̂ff b = |uuua|,

where the displacementuuua at the contact point of the acting force is optimized. Note the
similarity to the elastic compliance problem. Analogue to the maximization of the compliance
problem, which results in rigid body movement, Kögl and Silva [2005] states:

If [the whole domain is design domain], the maximum displacement is obtained
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4.2. Mean Transduction

when the stiffness approaches zero. To avoid the structure becoming overly flexi-
ble, it may be necessary to simultaneously minimize the meancompliance of the
structure . . .

The objective function, applied in Kögl and Silva [2005] is

Φ = w lnJab− (1−w) lnJmech

with a weighting coefficientw ∈ [0,1]. Note that here the maximization of displacement is
combined with the minimization of displacement. A volume constraint accompanies the com-
pliance minimization. Checkerboards are prevented by sensitivity filtering.

Our model structure, Fig. 4.1, has mechanical support atΩm outside the optimization do-
mainΩp. This gives the optimizer full freedom within the design domain as rigid body move-
ment cannot appear. Performing the optimization without volume constraint and compliance
functional, the optimization process forms a shrinking circular piezoelectric layer, centered on
the supporting plate.

To analyse the effect of (almost) vanishing piezoelectric material, we perform a parameter
study of the two load cases. For a set of piezoelectric patches of varying size, finite element
simulations are performed. The patches are geometrically modelled. Figure 4.2 shows the
results.

Applying the force, Fig. 4.2a shows least displacement for asolid plateΩp and a higher
finite displacement whenΩp is almost vanished. The smallest piezoelectric patch has least
stiffening and the system responds with the largest strain within Ωp, inducing a high, yet finite
electric potential, see Fig. 4.2b.

Applying a constant charge, the charge density increases for a decreasing piezoelectric patch
in the limit to infinity. Hence, the electric potential tendsin to infinity Fig. 4.2b. The stress
induced by the high charge density results in large displacement. No piezoelectric material has
no piezoelectric coupling, but to answer the question whether the displacement in the limit is
finite or infinite requires an analytical approach.

4.2.5. Discussion

The mean transduction is an interesting, yet complex objective function. It sounds promising
to maximize the piezoelectric coupling, but the mechanismsare subtle. The load cases are a
problem, neither an electric charge nor a nodal force is applied in engineering practice. The
more practical excitations by mechanic pressure and chargedensity cannot be guaranteed to
be design independent and no design dependent mean transduction theory has been formulated
up to now according to communication with Emı́lo C.N. Silva in 2009.

Interpreting the load cases as adjoint equation for a multiphysics formulation of (3.38), we
can conclude that the mean transduction optimizes for the displacement (as mentioned in the
original paper) but also for the electric potential. The equivalence ofJab andJba shows that
the optimization for displacement and potential is equivalent under the assumption of design
independent loads. For the charge load this is not critical due to the equipotential layers but
for the force load a nodal force is necessary. The equivalence of both optimizations is also
shown in Fig. 4.2.
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4. Topology Optimization of a Piezoelectric Actuator
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Figure 4.2.: We study the mean transduction by varying the area covered by a squared and
centered piezoelectric layer and performing the load casesa andb with constant
charge and mechanical force, respectively.

Compared with the piezoelectric actuator and sensor objective functions presented in the
following sections, the mean transduction appears to be more relevant to study from an aca-
demic point of view piezoelectric optimization than for practical design problems.

Applied in combination with mean compliance as performed inthe literature, the results ef-
fectively depend on the choice of weighting factorw and volume constraint. As the weighting
factor balances opposed objectives, the choice ofw is crucial.

4.3. Displacement Optimization

4.3.1. Static Displacement Optimization

Problem Setting

For the model problem in Fig. 4.1 the displacement of the plate surface shall be maximized
normal to the surfaceΓopt in thez-direction. Due to the thin structure of the system, the surface
to be associated withΓopt is exchangeable. Using the formulation from mechanism synthesis
(3.38) we get

Jst
u = ûuuT lllu. (4.12)

lllu selects from̂uuu = (uuum uuup φφφ)T the uz part of the nodes corresponding withΓopt within the
displacement part of̂uuu. This is emphasized by

Jst
u = uuuT lllu, (4.13)

equivalent to (4.12).lllu is a subvector oflllu, containing all non-zero entries. In the following,
we will use the overline to indicate the equivalent subsystems.

In the case of positive displacements and selection coefficients one, the objective function is
equivalent to theL1 norm of the displacement (under the assumption that thez-displacement is
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4.3. Displacement Optimization

dominating). If the mesh is regular, the function value is proportional to the displaced volume.
The problem formulation for static displacement maximization is

maxJst
u ,

with the implicit requirement that the coupled finite element system (2.58) holds. We have
no volume constraint (3.21) and no form of regularization. The system shall be excited by a
constant electric potentialφl = 30 V. The sensitivity analysis follows exactly the standardanal-
ysis for mechanism synthesis in Sec. 3.2.3. The inhomogeneous Dirichlet boundary condition
becomes a homogeneous Dirichlet boundary condition in the adjoint system, see Sec. A.1.

Optimizing by Pseudo Density

The mean transduction problem with its design independent load cases results in vanishing
piezoelectric material. However, the force due to an excitation by electric potential is design
dependent. Therefore vanishing material is not to be expected. Full material, as the second
trivial solution, produces a maximal force but also a maximal stiffening of the system and can
therefore not be taken a priori as optimal solution.

To study the maximization of (4.13), we vary the thicknesshmech of the supporting alu-
minum layerΩm from 10 µm to 200 µm. The thicknesshpiezo of the piezoelectric plateΩp is
fixed with 50 µm to keep the electric field intensity given byEEE = φ/hpiezoconstant. Moreover,
two different forms of mechanical support for the aluminum plate are applied. Simple support
at the edgesΓs, which does not fix the rotation, and clamped support fixing all mechanical
degrees of freedom on the thin sides ofΩm.

0.0

1.0

2.0

3.0

4.0

5.0

0 25 50 75 100 125 150 175 200

simple support
clamped support

Jst u
(ρρ ρ

)

hplate in µm

Figure 4.3.: Maximization of the vertical surface displacement byJst
u = uuuT lllu (4.13) withρ as

design variable. The aluminum plate thickness is varied.

The optimal topology for the model system withhplate 100 µm is a circular piezoelectric
patch, see Fig. 4.4c. This solution is according to Ruschmeyer [1994] in conformance with
industrial practice, where a circular actuator is the standard shape.

For largerhplate than 100 µm the results do not change significantly for simplesupport. For
a thinner supporting plate the displacement becomes largerdue to less stiffening, but also the
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4. Topology Optimization of a Piezoelectric Actuator

(a) Simple support, 15 µm (b) Simple support, 40 µm (c) Simple support, 100 µm

(d) Clamped support, 15 µm (e) Clamped support, 40 µm (f) Clamped support, 100 µm

Figure 4.4.: Selected results for static displacement maximization viaJst
u by pseudo density,

see Fig. 4.3 and Fig. 4.5a. The displacements are individually scaled for visual-
ization.

topology changes. Note that for the thinnest plate the finiteelements have a ratio of 125:1 and
locking might occur despite the use of second order elements.

In Fig. 4.5a we plot the optimal volume fractions and in Fig. 4.5b the resulting intermediate
pseudo density measured as grayness by

ggray(ρ) =
∫

Ω
4(1−ρ)ρdxxx. (4.14)

A value close to zero corresponds to a purely black and white design and a value close to one
corresponds to maximal grayness (an average of 0.5). We consider results with a grayness
below 0.1 as sufficiently black and white.ρmin is assumed sufficiently small.
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Figure 4.5.: Optimal volume fraction (a) and resulting grayness (b) for the static displacement
maximization, see Fig. 4.3. The grayness is measured by (4.14).
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4.3. Displacement Optimization

Most results are characterized by low grayness although no penalization or any other exter-
nal measurement is applied. Sec. 6 studies the phenomenon ofself-penalization in detail.

Strain Cancellation

We compare the results for standard aluminum thickness 100 µm for simple and clamped sup-
port in Fig. 4.4c, respectively Fig. 4.4f. Concentrating onthe axis parallel lines through the
plate center, the displacements can be visualized and compared in the line graph Fig. 4.6.
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Figure 4.6.: Thez-displacement for the excited structures Fig. 4.4c and Fig.4.4f. The area
covered by piezoceramic material is indicated by symbols.

Simple support does not fix the rotations, therefore there isno change in the curvature.
Clamped support, however, leads to a change in the curvature. Having opposite curvature leads
to strain cancellation. Strain cancellation has a strong influence on piezoelectric topology
optimization results.

Recalling the material laws (2.30) and (2.31)

σσσ = [ c̃ccE]SSS− [ ẽee]TEEE

DDD = [ ẽee]SSS+[ ε̃εεS
]EEE,

we see that by a constant electric field intensityEEE only strain with uniform curvature can
be directly excited. Regions of opposite oriented strain, resulting from the overall structural
system behaviour, would induce local regions of opposite oriented electric displacement fields
DDD. As the electrodes represent equipotential surfaces, the exciting electric field is weakened.

The optimizer avoids the effects of strain cancellation by distributing void material to the
corresponding regions. Strain cancellation will be reconsidered in following sections with
various views.

Optimizing Pseudo Polarization

Optimization by pseudo polarizationϑ , corresponding with electrode design, was first applied
in Kögl and Silva [2005] but also in Rupp et al. [2009] and other works.
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Figure 4.7.: Static displacement maximization by electrode design. The mechanical boundary
conditions are simple support (moments not fixed), respectively clamped.

Fig. 4.7 The objective function for the integral displacement maximizationJst
u = uuuT lllu (4.13)

by pseudo polarizationϑ is given. The gain is smaller than for the pseudo density results in
Fig. 4.3.

(a) simple support 100 µm (b) clamped support 100 µm

Figure 4.8.: Selected results for static displacement maximization by pseudo polarization for
the reference geometry and different support. Black represents standard polariza-
tion, white opposite polarization.

Selected results are given for the standard 100 µm aluminum plate thickness in Fig. 4.8a
and Fig. 4.8b. As expected from the discussion about strain cancellation, regions of opposite
strains are supported by opposite polarization. In contrast to pseudo density optimization, a
square pattern is formed rather than a circular pattern. Also in contrast to pseudo density op-
timization, the obtained geometry is the same over the wholethickness range of the presented
structure, no finer details occur. For the simple support case, the result approaches for thinner
plates uniform polarization, for clamped support the optimal topology hardly changes over the
thickness.

Discussion

Methods from classical topology optimization in linear elasticity can be adopted directly to
piezoelectric topology optimization without any additional mathematical work. The obtained
solutions consider piezoelectric strain cancellation andself-penalization occurs.

72



4.3. Displacement Optimization

The presented problems are easy to solve, since for all problems above 40 µm SNOPT
converged to KKT condition below 10 iterations. Due to missing constraints and the black
and white designs it is even sufficient to update the design variables by a move limit along the
sign of the gradient.

From a practical point of view, however, static displacement maximization of piezoelectric
plates is not of much interest.

4.3.2. Dynamic Displacement Optimization

Structural Eigenmodes

On any kind of dynamic (in the sense of time-harmonic) optimization it is worth considering
the eigenfrequencies and eigenmodes of the system. Assuming single frequency optimiza-
tion at a given excitation frequency: independent of the actual maximization or minimization
problem, we can expect that maximization involves the tuning of a structural eigenfrequency
towards the excitation frequency while minimization pushes the eigenfrequencies away from
the excitation.

In linear algebra, eigenvectorsxxxi 6= 000 and their associated eigenvaluesλi satisfy

ŜSSxxxi = λi xxxi .

Physically, eigenvalues represent natural resonance frequencies, also called eigenfrequencies.
The physical interpretation of eigenvectors, also called eigenmodes, are the displacements and
electric potential at the corresponding resonance frequencies.

Eigenvalues and eigenvectors are effectively found using ARPACK̃(Lehoucq et al. [1998]),
solving only for the lower eigenvalues in the frequency range of interest. The linear system
for the eigenvalue problem is real valued with a zero right-hand side vector. The physical
interpretation is an undamped, freely vibrating system with open electrodes. Due to the impact
of the electric excitation (2.49) the resonance frequencies for the excited system do not exactly
match the eigenvalues.

Strain Cancellation

For all modes in Fig. 4.9, except Fig. 4.9a and Fig. 4.9e, the strain is symmetric. In contrast to
the strain cancellation for the static optimization, the respective eigenmodes show even perfect
strain cancellation.

In Fig. 4.10, the effect of strain cancellation is visualized in a numerical experiment, com-
paring the eigenvalue analysis of a system with electrodes to an unphysical system without
electrodes. Displacements and electric potential can be interpreted for both actuator and sensor
applications; in actuator mode this is interpreted as the required electric excitation to achieve
the displacement pattern of the resonance mode and in sensormode the to be measured electric
potential for the impressed displacement.

Fig. 4.10d shows that for strain cancelling resonance modesthe electric potential at the
electrodes is zero. Therefore it is not possible to excite these resonance patterns electrically
through the electrodes.
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4. Topology Optimization of a Piezoelectric Actuator

(a) 1. mode at 332 Hz (b) 2./3. mode at 638 Hz (c) 4. mode at 1031Hz (d) 5. mode at 1207 Hz

(e) 6. mode at 1299 Hz (f) 7./8. mode at 1616 Hz(g) 9./10. mode at 1994 Hz(h) 11. mode at 2219Hz

Figure 4.9.: Eigenmodes for the freely vibrating system. Symmetric modes with multiple
eigenfrequencies are shown only in one configuration. The color scale indicates
the z-displacement. See also Fig. 4.27 for the displacements of the piezoelectric
excited plate.

(a) First mode without electrodes (b) First mode with electrodes

(c) Higher mode without electrodes (d) Higher mode with electrodes

Figure 4.10.: Visualization of the displacement and, by color scale, the electric potential of
two eigenmodes from an eigenvalue analysis with and withoutelectrodes. A cut
of the piezoelectric layer is shown. The first mode coincideswith static case,
due to simple support there is no strain cancellation. With electrodes (b) the
potential between the electrodes is very small. (c) visualizes the proportionality
of electric potential and strain. In Fig. (d) the electric potential on the electrodes
is averaged to zero.

All strain cancelling modes cannot be excited by a plane force homogeneously distributed
normal toΓopt. The modes Fig. 4.9b to Fig. 4.9d cannot be excited by a centered nodal force.
Considering sufficiently many eigenmodes, one can expect that there no nodal force point
exists by which all modes can be excited.

For the sensor mode, piezoelectric strain cancellation is discussed in Erturk et al. [2009]
and with respect to topology optimization in Rupp et al. [2009]. From the electric potential
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4.3. Displacement Optimization

in Fig. 4.10a and Fig. 4.10c it can be observed that the strainfor each orientation is almost
homogeneous, which is optimal for energy harvesting applications, see Sec. 5. The transition
zone of the strains in Fig. 4.10c is small.

Problem Setting

The dynamic formulation of the displacement maximization (4.12) is written in the form of
(3.45) with complex̂uuu as

Ju = ω2 ûuuTLLLu ûuu∗, (4.15)

or
Ju = ω2uuuTLLLuuuu∗. (4.16)

Therein,ω = 2π f with f the excitation frequency in Hz. A motivation is given in Sec.4.4.3.
Note that the factor has no impact on the resulting designs for single-frequency optimization
problems.lllu from (4.12) corresponds with the diagonal ofLLLu. Alternative formulations are
by scalar product

Ju = ω2
〈

ûuuTLLLu,uuu
〉
,

or for the assumption that thez-displacement dominates,

Ju ≈ ω2
Nz

∑
i=1

Re{|uuui |}2(xxx)+ Im{|uuui |}2(xxx) = ω2
Nz

∑
i=1

‖ui(xxx)‖2. (4.17)

For a regular mesh the correlation to the continuous form is

Ju ≈ cω2
∫

Γopt

〈nzuuu,nzuuu〉 dΓ,

with c = |Nz|/AΓopt where|Nz| is the number of nodes onΓopt andAΓopt is the surface area.
Note thatJu is generally not proportional to the displaced volume; for all strain cancelling
modes in Fig. 4.9Ju detects local maxima due to resonance but the effective displaced volume
is zero.

Numerical Results

Several hundred maximization problems forJu are performed for excitation frequencies from
20 Hz to 2300 Hz. The optimizer is SCPIP, the maximum number ofiterations 500, hence the
problems do not necessarily converge. The design variable is the pseudo density with start
designρ = 1.

The objective values for the initial solid plate design and the optimized designs are shown
in Fig. 4.11. The solid plate response shows that strain cancelling eigenmodes can indeed not
be excited, furthermore the location of resonance frequencies differs significantly from the
eigenvalues.

With a single exception at 1250 Hz the optimization reliablyresults in improved topologies
where the solid plate is not already optimal. The exception exactly coincides with a resonance
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Figure 4.11.: Separate maximization of the dynamic displacement functionJu (4.16). The
gray bars indicate the frequencies from the eigenvalue analysis, see Fig. 4.9.
The graph for the solid plate shows that the strain cancelling modes cannot be
excited. The actual resonance frequencies show the described deviation from the
eigenfrequencies.

frequency which clearly results in numerical difficulties in the gradient value and will not be
considered in the following. Within ranges of excitation frequency, the optimizer is able to
generate results close to resonance. Resonance can be achieved in the vicinity of non strain
cancelling modes, with a broader vicinity for higher modes.Furthermore, the optimizer is
also able to generate resonance like performance within certain regions of originally strain
cancelling modes. This effect is not reliable and in Sec. 4.5the improvement of robustness
is discussed. However, for the present case we want to keep the problem setting as pure as
possible. Scaling the eigenfrequencies to match the resonance frequencies of the model, it
appears that the eigenfrequencies associated to strain cancelling modes effect the optimization
results.

Fig. 4.12 shows and comments selected topologies. The following principle vibrational
patterns of initial and optimized structures at their associated frequency can be observed:

• Eigenmodes which show no strain cancellation as in Fig. 4.9a and Fig. 4.9e, Fig. 4.12a
and Fig. 4.12g.

• Vibrational patterns resulting as a combination of lower and higher non strain cancelling
mode show no resonance performance, e.g. Fig. 4.12d and Fig.4.12e and later in
Fig. 4.27.

• In some cases, the optimizer is able to generate topologieswith vibrational patterns
close to strain cancelling modes and a resonance like performance. Figure 4.12f gives
an example, resembling Fig. 4.9d. Strain cancellation is avoided by assigning material
only to regions with a common strain orientation. For the optimizer it is obviously
difficult to leave the vibrational pattern of the initial design, see Sec. 4.5.

• Furthermore, the optimizer is able to generate topologiesvibrating with a performance
close to resonance, where the vibrational patterns have no counterparts in the modes
from the eigenfrequency analysis, an example is shown in Fig. 4.12h.
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4.3. Displacement Optimization

(a) 190 Hz (b) 260 Hz (c) 300 Hz (d) 590 Hz

(e) 900 Hz (f) 970 Hz (g) 1290Hz (h) 1850 Hz

Figure 4.12.: Selected topology optimization results for the maximizationJu. The deforma-
tion visualizes the real part of the displacement (scaled).In detail: (a) circular
topology for quasistatic case; (b) closer to resonance; (c)at resonance; (d) small
jump of the objective value due to sudden evolution of a squared hole; (d) and
(e): vibrational pattern resembles a combination of the natural resonance modes
at 300 Hz and 1290 Hz; (f) and (h): additional resonance patterns are created.

Theses results are published in Wein et al. [2009a] and Wein et al. [2009b].
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Figure 4.13.: Volume fraction and grayness for the optimizations in Fig. 4.11.

Similar to the static displacement optimization, the dynamic displacement optimization
shows strong self-penalization. In Fig. 4.13 the grayness measured by (4.14) is below 0.1
and for some regions even almost perfectly black and white.

Discussion

In the presented formulation, starting for each excitationfrequency from a solid plate,
resonance-like performance cannot be obtained reliably. This issue is discussed in Sec. 4.5.
The achievable performance is magnitudes higher than solidplate response.
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4. Topology Optimization of a Piezoelectric Actuator

500 maximal iterations were often not sufficient to reach convergence with SCPIP. The
problems are scaled in a way that

∂J
∂ρ

‖ ∂J
∂ρ ‖∞

≤ 2.

4.4. Acoustic Optimization

We repeat the definition of the average sound power (2.61)

Pac=
1
2

∫

Γ
Re{pacv

∗
acn

}dΓ, (4.18)

with acoustic pressurepac andv∗acn
the normal component of the acoustic particle velocityvvvac

with respect toΓ. These properties are coupled for a given frequency by the specific acoustic
impedance (2.62)

Zac(xxx) =
pac(xxx)
vacn(xxx)

.

In the case of plane waves, the acoustic impedance is homogeneous, thus the acoustic
impedance becomes homogeneous and is given as characteristic impedance

Z0 = ρacc0.

UsingZ0, pac can be expressed byvacn and vice versa.

The relation of scalar acoustic potential and the acoustic velocity is given as

vvvac=−∇ψ (4.19)

and with the acoustic pressure as

pac= ρac
∂ψ
∂ t

. (4.20)

The fundamental difference of the following acoustic optimization approaches is the way the
objective function relates to the actual solution variableof the PDE.

4.4.1. Model

Fully Coupled Model

The mathematical and numerical mechanical-acoustic modelis given in Sec. 2.3.3. Here, the
structural part is the piezoelectric-mechanical model in Fig. 4.1.

The combined structural mechanical-acoustic system (2.79) and piezoelectric-mechanical sys-
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4.4. Acoustic Optimization

tem (2.58) reads as



−SSSψψ CCCψum 000 000
CCCT

ψum
SSSumum SSSumup 000

000 SSST
umup

SSSupup KKKupφ
000 000 KKKT

upφ −KKKφφ







ψψψ
uuum

uuup

φφφ


=




000
000
q̄qqu
q̄qqφ


 , (4.21)

assuming electric excitation. By the overline we denote theacoustic-acoustic coupling by
non-matching grids, see Sec. 2.3.4. Following the multiphysics notation, the short notation
including applied design variables to the piezoelectric domain reads again

̂̃
SSSûuu= f̂ff .

Domain Discretization

The structural plates are of size 5 cm× 5 cm with a discretization 30× 30, this results in a
mesh withhst=1.7 mm edge length .

The acoustic domain is determined by the acoustic wave length λac (2.64). The high-
est considered frequency is 2300 Hz which corresponds toλac = 15 cm. The second or-
der approximation of hexahedron finite elements requires anacoustic element edge length
hac ≤ λac/10= 15 mm. Performing structural-acoustic coupling by non-matching grids we
can expect poor coupling due to the mismatch ofhst andhac. As a remedy, the mechanical-
acoustic coupling is against a fine discretized acoustic domain Ωfine

air with hf ine
ac = 5 mm which

couples non-matching against the coarse acoustic domainΩcoarse
air with hcoarse

ac = 15 mm.
Ωfine

air is cubic with edge length 9 cm (ca. 6000 elements). The dimensions of Ωcoarse
air are

27.5 cm× 27.5 cm× 22.5 cm (ca. 9000 elements). The PML layer is 3 elements thick, corre-
sponding to ca. 8000 elements, see Fig. 4.14. Out of the roughly 130.000 degrees of freedom
of the system, ca. 25.000 are Lagrange multipliersλφφ from the non-matching acoustic-
acoustic coupling.

4.4.2. Acoustic Short Circuit

Acoustic waves can show interference when the exciting plate acts as multiple sound sources.
Destructive interference is known asacoustic short circuit. Note that the classical acoustic
short circuit in technical acoustics, the 180◦ out of phase radiation of the front- and backside
of the membrane, is not covered by model Fig. 4.14.

All structural resonance modes subject to piezoelectric strain cancellation (see Fig. 4.9)
would result in perfect acoustic short circuits. Additionally, certain vibrational patterns show
a strong decrease in acoustic performance although they arepiezoelectric excitable, see the
acoustic frequency response of a solid piezoelectric platein Fig. 4.16 compared to the struc-
tural response in Fig. 4.11. In Fig. 4.15a an acoustic resonance case and in Fig. 4.15b an
acoustic anti-resonance case due to acoustic short circuitis visualized.

79



4. Topology Optimization of a Piezoelectric Actuator

~

ΩPML Γopt Ωcoarse
air

Γsupport

Ωfine
air

ΩplateΓiface

Γn

Γn
Γgnd Γhot Ωpiezo

Figure 4.14.: Setup of the piezoelectric-mechanical-acoustic-acoustic coupled system.

(a) Resonance at 350 Hz (b) Antiresonance at 780 Hz

Figure 4.15.: The scaled plate deformation shows the real part of the displacement, the color
scaling of the deformation the displacement amplitude. In Fig. (b) the center of
the plate vibrates out of phase against the outer ’ring’, resulting in an acoustic
short circuit.

4.4.3. Structural Approximation

We present two approaches to optimize the acoustic properties of the piezoelectric-mechanical
system by a pure structural approximation. The first approach is mathematically motivated and
is based on Du and Olhoff [2007b], the second approach follows physical considerations.
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4.4. Acoustic Optimization

Optimization of sound radiation following Du and Olhoff

In Du and Olhoff [2007b] the sound radiation of a structural plate is minimized. The coupled
system is similar to the system in Sec. 2.3.3, however the structural component is modelled by
linear elasticity without damping as

(K̃KK −ω2M̃MM)uuu= fff ,

so that the solution has no phase shift when excited without phase shift. The approach is based
on two assumptions: the acoustic impedance is homogeneous and matches the characteristic
impedance, such that

pac= ρacc0vacn.

Furthermore, the coupling between the structural actuatorto the acoustic domain shall be
weakly coupled without feedback.

By the assumption of characteristic impedance at the interface, it is sufficient to couple
from the structural displacement to the acoustic velocity by (2.76) instead of two coupling
conditions with the additional acoustic pressure (2.77). Assuming the plate in thexy-plane,
the coupling is

vacn = nnnT ∂uuu
∂ t

= j ω uz

and Du and Olhoff reformulate the acoustic power as

PDO =
1
2

∫

Γ
ρacc0 ω2uzuzdΓ.

The discretized objective function is given as

JDO =
1
2

ρacc0ω2uuuTSSSnuuu,

with SSSn the symmetric surface normal matrix

SSSn = ∑
e

SSSne = ∑
e

(∫

Γe

NNNTnnnnnnTNNNdΓ
)
,

whereNNN are the shape functions. Being inRn, the sensitivity analysis is based on the general
static formulation (3.27).

Discussion of the Du and Olhoff Approach

There are two criticisms against the cited approach; in Du and Olhoff [2007b] it is stated
that the assumption of a homogeneous acoustic impedance at the structural-acoustic boundary
holds for sufficiently high frequencies but depends on the structural size and vibration mode.
Good results for tests are claimed also for lower frequencies up to a multiplying factor. In
Wein et al. [2009a] however, we state that we can expect good approximation only when the
structural dimensions are larger than the acoustic wave length (which is 34 cm at 1000 Hz in
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4. Topology Optimization of a Piezoelectric Actuator

air) and below the first resonance frequency.
In Wein et al. [2009a] we also criticize the problem formulation for the assumptions. As

topology optimization is invariant to the multiplication of a constant factor, the assumption of
homogeneous acoustic impedance at the boundary can be used to the more convenient setup

v∗acn
=

∂u∗z
∂ t

=−j ω uz

and

pac ∝
∂uz

∂ t
= j ω uz.

With the appropriate selection matrixLLLu, this immediately results in (4.16)

Ju = ω2uuuTLLLuuuu∗,

which discretizesPac under the assumptions of Du and Olhoff up to an constant factor also for
a complex valued damped systems. The implementation is far easier, asSSSn does not need to be
assembled. For an undamped system the results match as the problem formulations coincide
with different implementation.

Validation of Displacement Maximization

To validate the general idea of a pure structural topology optimization for an acoustic problem,
the acoustic performancePac of the structural results by (4.16), see Fig. 4.12, are evaluated on
the large acoustic model in Fig. 4.14 and compared against the frequency response for a solid
piezoelectric plate. Figure 4.16 contains the results.
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Figure 4.16.: Frequency response ofPac (4.18) for a solid piezoelectric plate evaluated on the
large acoustic model Fig. 4.14 atΓopt compared to the acoustic power of the
design obtained by pure structural optimization towardsJu (4.16).

Compared to the structural frequency response of a solid piezoelectric plate in Fig. 4.11,
three anti-resonances can be observed in Fig. 4.16 at excitation frequencies 600 Hz, 780 Hz
and 2100 Hz with the first two being most distinctive.
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4.4. Acoustic Optimization

The most striking observation with respect to the acoustic response of the structural opti-
mized topologies is that the first two anti-resonances persist as they don’t exist in the structural
model. As a consequence, pure structural topology optimization by Ju (4.16) is not a suitable
approximation for the maximization of acoustic power. Thisis not necessarily in contradiction
to Du and Olhoff [2007b] where a minimization problem is considered, although noise reduc-
tion by utilizing acoustic short circuits will clearly not be possible. The result is published in
Wein et al. [2009b] and Bänsch et al. [2010].

Optimization of the Displaced Volume

Ju is a mathematically justified objective function forPac under assumptions which prove to be
not physically valid for the present setup. The physical interpretation ofJu is the maximization
of the amplitudes of the displacement field (4.17). A physically motivated formulation for a
structural approximation of the sound radiation is the displaced volume which considers the
phase shifts.
A discrete formulation for the displaced volume is given as

Jdv = |ûuuT lllu|= |uuuT lllu|, (4.22)

wherelllu selects thez-displacements on the plate surface as in (4.12) and corresponds toLLLu in
(4.15). (4.22) is a generalization of (3.42)

|ûuuT lllu|= |〈ûuu, lllu〉|=
√

〈ûuuR, lll
u〉2+ 〈ûuuI, lll

u〉2,

the sensitivity is given by (3.36). Then, with

∂Jdv

∂ ûuuR
=

2〈ûuuR, lll
u〉√

〈ûuuR, lll
u〉2+ 〈ûuuI, lll

u〉2
llluT

we get
∂Jdv

∂ ûuuR
=

〈ûuuR, lll
u〉

Jdv
llluT and

∂Jdv

∂ ûuuI
=

〈ûuuI, lll
u〉

Jdv
llluT .

Inserted into (3.37) this results in the adjoint equation

SSST λλλ =−1
2
〈ûuu∗, lllu〉
|〈ûuu, lllu〉| lllu.

Numerical Results

The result ofJdv (4.22) maximized for several single-frequency optimizations is given in
Fig. 4.17. The solid plate response shows similarities to the acoustic solid plate response
in Fig. 4.16 as two out of three acoustic short circuits are resolved. The creation of additional
resonance is not reliable.
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Figure 4.17.: The displaced volume is maximized byJdv (4.22). The structural eigenfrequen-
cies are denoted by gray vertical bars, see Fig. 4.9. Using SCPIP the maximal
number of iterations has been limited to 500 and a heuristic convergence criteria
‖∆ρρρ‖∞ ≤ 0.002.

(a) 740 Hz (b) 970 Hz (c) 1250Hz (d) 2100 Hz

Figure 4.18.: Selected topologies for maximization of the displaced volume byJdv (4.22),
Fig. 4.17. In detail: 740 Hz: no acoustic short circuit; 970 Hz: poor performance,
similar to result for displacement maximization Fig. 4.12f; 1250 Hz: resonance
of almost the solid plate; 2100 Hz: well performing resonating structure which
appears at first glance to have cancelling volume.

Validation of Displaced Volume Maximization

The acoustic performance of the designs optimizes forJdv are calculated and compared with
the solid plate response in Fig. 4.19. ObviouslyJdv is not a valid approximation for the
structural-acoustic model of Fig. 4.14, performing significantly poorer than the displacement
maximization byJu in Fig. 4.16 where acoustic power could be improved for some frequency
ranges by magnitudes.

4.4.4. Acoustic Far-Field Optimization

Problem Setting

For optimization problems including the acoustic domain, see (4.21),Γopt is defined as the
interface betweenΩcoarse

air andΩPML. Assuming the acoustic impedance (2.62) homogeneous
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Figure 4.19.: Frequency response ofPac (4.18) of a solid piezoelectric plate evaluated on the
large acoustic model Fig. 4.14 atΓopt compared to the acoustic power of the
results obtained by pure structural optimization towardsJdv (4.22).

at Γopt, pac is proportional tovacn and we get for the acoustic sound power

Pac=
1
2

∫

Γopt

Re{pacv∗acn}dΓ

the optimization problem

max
ρ

∫

Γopt

|pac|2dΓ.

This has been done in a similar form for pure acoustic sound minimization in Dühring et al.
[2008]. The discrete objective function is given as

Jpac = pppT
acLLL

Pac ppp∗ac,

using (4.20) we obtain
Jψ = ω2ûuuTLLLψ ûuu∗ = ω2ψψψTLLLψ ψψψ∗, (4.23)

with LLLψ selecting the nodes onΓopt. The material dependence onρac is omitted assuming a
homogeneous acoustic domain. The assumption of a homogeneous acoustic impedance atΓopt

holds in theacoustic far-fieldonly. For a valid approximation,Γopt shall be sufficiently far
away from the sound source. This frequency dependent distance is calledfar-field distance.

Validation

First we validate the far-field assumption in (4.23) by comparing for a piezoelectric solid plate
the frequency response with respect toPac andJψ in Fig. 4.20.

Fig. 4.20 shows that the far-field approximation appears to be valid for frequencies above
1000 Hz. It is of note that only the second of the two lower frequency acoustic short circuits
is detected.

The approximate distance between the sound source andΓopt in wave length is 1.5 for
2300 Hz, 0.7 for 1000 Hz, 0.2 for 330 Hz and 0.009 for the lowestconsidered (quasistatic)
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Figure 4.20.: Frequency response of the acoustic far-field objective functionJψ (4.23) against
Pac for a solid piezoelectric plate on the large acoustic model (see Fig. 4.14).

frequency 20 Hz. A general first approximation of the far-field distance is two wave lengths.

Numerical Results

To limit the computational cost, the maximal number of iterations for each single-frequency
problem is limited to 150 compared to 500 for the structural problemJu. The obtained objec-
tive values are compared to the solid plate response in Fig. 4.21.
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Figure 4.21.: Acoustic far-field topology optimization.JΨ (4.23) is maximized independently
for several excitation frequencies on the model in Fig. 4.14. Each optimization
was limited to 150 iterations. Note that the far-field approximation is only valid
for frequencies above 1000 Hz, see Fig. 4.20.

The initial design (solid plate) could almost always be improved. The acoustic short circuits
are resolved by appropriate topologies, see Fig. 4.22. These results have been published in
Wein et al. [2009b].

Discussion

Comparing Fig. 4.21 against the structural formulation (see Fig. 4.11), it is noticeable that the
first resonance mode of a solid plate is obviously not optimal. However, these lower frequency
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(a) 565 Hz (b) 575 Hz (c) 875 Hz (d) 975 Hz

(e) 985 Hz (f) 1405 Hz (g) 1585Hz (h) 2160 Hz

Figure 4.22.: Selected topologies for the acoustic far-field optimization functionJΨ (4.23),
see Fig. 4.21. In detail: 565 Hz and 985 Hz: creation of additional resonance
patterns; 575 Hz and 975 Hz: the optimizer was not able to achieve resonance;
875 Hz: topology and vibrational pattern preventing acoustic short circuits;
1405 Hz: example for a too gray result; 1585 Hz and 2160 Hz: resonating pattern
that also resonates in the structural domain.

results shall not be considered, as the far-field assumptiondoes not hold.
The major drawback of the acoustic far-field optimization istherefore the uncertainty re-

garding the validity of the results, especially for lower frequencies. This is a consequence of
the mechanical-acoustic two scale difficulty of model Fig. 4.14.

4.4.5. Acoustic Near-Field Optimization

As a remedy for the problems of acoustic far-field optimization, it is possible to formulate
an objective function without any assumption on the homogeneity of the acoustic impedance.
This is advantageous fornear-fieldproblems and has been presented at ECCM 2010.

Problem Setting

RecallingPac (4.18)

Pac=
1
2

∫

Γ
Re{pacv∗acn}dΓ

and usingpac= j ωρacψ (4.20) andvacn =−∇n ψ (4.19) we can formulate the discrete objec-
tive function

Jnf = Re{j ωψψψTLLLψ∇nψψψ∗}
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4. Topology Optimization of a Piezoelectric Actuator

whereLLLψ selects the nodes onΓopt as in (4.23).Jnf is multiplied by−1 to account for the
outgoing sound radiation,ρac is omitted as a homogeneous acoustic domain is assumed. This
formulation allows the optimization of theenergy fluxand has been introduced for photonic
waveguide optimization in Jensen and Sigmund [2005].

Interpreting the discrete∇n operator within the finite element formulation on the local ele-
ment level as matrix of derivatives of the shape functions, it can be combined with the selection
matrixLLLψ as non-symmetric matrixQQQψ such that

Jnf = Re{j ωûuuTQQQψ ûuu∗}= Re{j ωψψψTQQQψψψψ∗}. (4.24)

The details of the sensitivity analysis are given in Jensen [2007a]. By

Re{j ω ψψψTQQQψψψψ∗} = Re{j ω(ûuuR+ j ûuuI)
TQQQψ(ûuuR− j ûuuI)}

= Re{j ω ûuuT
RQQQψ ûuuR+ω ûuuT

RQQQψ ûuuI −ω ûuuT
I QQQψ ûuuR+ j ω ûuuT

I QQQψ ûuuI}
= ω ûuuT

RQQQψ ûuuI −ω ûuuT
I QQQψ ûuuR

and
∂Jnf

∂ ûuuR
= ω ûuuT

I (QQQ
ψ T −QQQψ) and

∂Jnf

∂ ûuuI
= ω, ûuuT

R(QQQ
ψ −QQQψ T

)

inserted into (3.37), the sensitivity of (4.24) is given by (3.36) with the adjoint equation

SSSλλλ = −1
2

ω (ûuuT
I (QQQ

ψT −QQQψ)− jûuuT
R(QQQ

ψ −QQQψ T
))T

= −ω
2j

(QQQψ −QQQψT
)T ûuuR+ j (QQQψ T −QQQψ)T ûuuI)

= −ω
2j

(−(QQQψT −QQQψ)T ûuuR+ j (QQQψT −QQQψ)T ûuuI)

=
ω
2j

(QQQψ T −QQQψ)T ûuu∗

= −1
2

j ω (QQQψ T −QQQψ)T ûuu∗.

To set upQQQψ , ∇n needs to be evaluated at nodal points. In the continuous formwe know
by the solution spaces that the spacial gradient exists at least in the weak form. Using second
order Lagrange test functions (C1) for the FE discretization (as done here) the gradient exists
for interior node points also in the classical sense. The situation complicates at nodal points
shared by more than one local finite element. However, with the choice ofΓopt = Ωair∩ΩPML

we are not interested in any contribution from elements within ΩPML and evaluate∇n solely
by the shape functions withinΩair.

Model

Without the need to locateΓopt as far away as possible to improve the far-field approximation,
the acoustic model can be set up more simply than in Fig. 4.14,where an acoustic-acoustic
coupling by non-matching grids of two acoustic domainsΩfine

air andΩcoarse
air is used.
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~

ΩPML

Γopt

Ωair

Γsupport

ΩplateΓiface

Γn

Γn
Γgnd Γhot Ωpiezo

Figure 4.23.: Setup of the piezoelectric-mechanical-acoustic coupled system.

Fig. 4.23 shows the setup with a single cubic acoustic domainΩair of edge size 6 cm dis-
cretized by regular hexahedron elements of sizehac= 5 mm (ca. 2200 elements). The PML
layer is 3 elements thick, corresponding to ca. 3600 elements. Ωm andΩp are mechanical-
acoustic coupled by non-matching grids with the discretization as in Fig. 4.14. The resulting
system consists of> 60.000 degrees of freedom.

Numerical Results

With maximal 200 SCPIP iterations, we allow 25 % more iterations than for the far-field
topology optimization to take advantage of the reduced simulation model. The results in
Fig. 4.24 are promissing and more accurate than forJψ . Self-penalization is present as shown
in Fig. 4.25, but not pronounced. Note that for low frequencies the solid plate response from
80 Hz to 140 Hz is negative, apparently the wave lengths are too large for the model. However,
the values are several magnitudes smaller than resonance.

Fig. 4.26 shows selected resulting topologies.

Discussion

Whenever homogeneous acoustic impedance is not given, it isnecessary and possible to per-
form acoustic near-field topology optimization.Jnf is based on both relevant acoustic prop-
erties, velocityvvvac and pressurepac. SCPIP handlesJnf equally well asJψ and the structural
approximations.

With improved robustness in Sec. 4.5 and the use of non-matching grids realistic acoustic
actuator design can be performed byJnf.
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Figure 4.24.: Acoustic near-field sound power maximizationby Jnf (4.24) on the model
Fig. 4.23. From 80 to 140 Hz the solid plate response is negative and there-
fore not plotted in the logarithmic scale, note that the amplitudes are this region
several magnitudes below resonance. Each single-frequency optimization has
been limited to 200 SCPIP iterations.
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Figure 4.25.: Volume fraction and grayness for the acousticnear field topology optimizations,
see Fig. 4.17.

(a) 580 Hz (b) 740 Hz (c) 1250Hz (d) 2000 Hz

Figure 4.26.: Selected topologies for acoustic near field topology maximization, see Fig. 4.17.
580 Hz: performance increased by several magnitudes; 740 Hzno acoustic short
circuit; 1250 Hz slightly improved against solid plate; 2000 Hz: well performing
topology for high frequency.

4.5. Improving Robustness by Using Additional

Information for the Initial Design

Several dynamic problem formulations have been evaluated as single-frequency problems with
a fine stepping of the excitation frequencies. To handle the numerical effort and due to the un-
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reliable KKT-convergence detection of SCPIP, each single-frequency optimization problem is
limited by a maximum number of iterations. The obtained optimization results are therefore
not necessarily optimal solutions. Within the results fromthe structural problems in Fig. 4.11
and Fig. 4.17 and acoustic-mechanical problems in Fig. 4.21and Fig. 4.24, frequency regions
can be identified where the obtained objective values cannotbe connected by a smooth line
and the variance is of high magnitude - indicating non-optimal solutions or non-robust opti-
mization. Also for regions of smoothly connecting results,optimality might not be obtained.

4.5.1. Natural Frequency and Excitation Frequency

The correlation of natural resonance frequency of the initial design and excitation/target fre-
quency is described in Dühring et al. [2008] within the context of dynamic minimization:

. . . a natural frequency, which is originally at one side of the driving frequency,
can only be moved to a value on the same side during the optimization, else the
objective function would have to be increased during a part of the optimization.

With our maximization problems, the optimizer aims towardsmoving resonances closer
to the excitation frequency. Each resonance mode has a minimal and maximal frequency
with increasing range towards higher modes. Similarly to the explanation given in Dühring
et al. [2008], one can construct a scenario where a natural frequency is close to the excitation
frequency but cannot coincide. It might be advantageous to move another mode towards the
excitation frequency. However, this might not be possible for the optimizer when the objective
value needs to decrease temporarily during the optimization process while pushing the initial
close mode.

4.5.2. Strain Cancellation

Using a solid plate as initial design, strain cancelling structural modes cannot be excited.
However, numerical results show that good, presumably optimal, results are modifications
of strain cancelling vibrational patterns. Figure 4.27 shows that strain cancelling modes are
indeed completely ignored by solid plate displacement. Figure 4.28 illustrates the difficulties
for the optimizer with excitable modifications of strain cancelling patterns.

4.5.3. Starting from Previous Results

For computational efficiency the model for the numerical results within this section has a
coarser acoustic discretization than Fig. 4.23,Γopt is within this section defined as the upper
horizontal face betweenΩair adΩPML. The model problem is to maximizeJnf.

The standard approach for a set of optimizations with similar boundary conditions is to start
from previous results. Figure 4.29 gives the results for theleft sided and right sided approach.
The ranges of resonance modes become apparent and the approach apparently fails due to
the explanation in Sec. 4.5.1. Using previous results, the more ’flexible’ higher resonance
mode cannot be found. Starting from higher frequency results gives almost the same results
as starting from solid plates with the exception of the peak from 600 to 700 Hz.
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(a) 332 Hz (b) 638 Hz (c) 1031 Hz (d) 1207 Hz (e) 1299 Hz

Figure 4.27.: Solid plate deformation at the structural eigenfrequencies in Fig. 4.9. Due to
strain cancellation several eigenmodes cannot be excited but vibrate at a super-
position of the closest lower and upper excitable eigenmodes, see also Fig. 4.11.
Re{uz} is visualized by deformation and color scale.
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Figure 4.28.: Selected iteration history from the problem in Fig. 4.11
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Figure 4.29.: In contrast to the problem in Fig. 4.24 the single-frequency optimizations are not
started from solid plates but from the obtained topology of the next lower respec-
tively higher frequency optimization. The approach fails due to the explanation
given in Sec. 4.5.1.

4.5.4. Starting from Eigenfrequency Displacement

From the numerical results of structural and acoustic optimization we observe that additional
resonance structures are often variations of strain cancelling modes, where the structure re-
flects the vibrational pattern. By a heuristic approach thisobservation is used to construct
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start values for the optimization problems out of the displacements of the eigenmodes from
the eigenfrequency analysis in Fig. 4.9.

We determine element wise the lumpedz-displacementsd from theNe real valued nodal
displacements as

d(xxx,ω) =
1
Ne

Ne

∑
i=1

uz(xxxe,ω)

to form vectorsddd(ω) for the eigenfrequencies. For a frequencyω ≥ ω1, with ω1 the first
eigenfrequency, and the lower and upper eigenfrequenciesωl andωu, the associated weight-
ings are determined as

α = 1− ω −ωl

ωu−ωl
andβ =

ω −ωl

ωu−ωl
.

For multiple eigenfrequencies the actual mode is chosen by chance. The interpolated displace-
mentsd are

r(ω) = αd(ωl )+βd(ωu), (4.25)

forming the displacement fieldrrr with the minimal and maximal valuesrmin, respectivelyrmax.
The sign ofr is for higher nodes not interpretable.rmin is negative above the first mode
only, exact zero is only possible for a single frequency, unlikely to coincide with an excitation
frequency and therefore only considered in the implementation.

The initial designρρρ is calculated fromrrr by interpreting either the normalized positive or
negative displacement as pseudo density

ρ =

{
max{ r

rmax
,ρmin} rmax variant

min{max{ r
rmin

,ρmin},1} rmin variant.
(4.26)

Up to the first mode, the small positivermin results inr/rmin ≥ 1, thereforeρ is restricted by
min, resulting in a solid plate for thermin variant. Figure 4.30 gives an example for an initial
design located between the first and the following mode in thermax variant.

(a) Eigenmode at 353 Hz (b) Initial design at 525 Hz (c) Eigenmode at 698 Hz

Figure 4.30.: Example for the heuristic which obtains from the frequency interpolated positive
z-displacements of the eigenmodes (a) and (c) an initial design (b).
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Figure 4.31.: Optimizing forJnf starting from initial designs obtained by heuristic (4.26)in the
rmax andrmin variants.

Numerical Results

Figure 4.31 gives the results for both thermax andrmin variant. The feasible regions where
resonance modes can be moved when activated can be read from the graphs. For most excita-
tion frequencies both approaches perform display an almostidentical performance. However,
from 400 Hz to 470 Hz thermin variant and from 1340 Hz to 1500 Hz thermax variant per-
form significantly poorly, even below the solid plate performance. Thermin variant performs
from 830 Hz to 870 Hz also below the other variant. Figure 4.32shows the associated volume
fractions and grayness.
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(a) rmax variant
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(b) rmin variant

Figure 4.32.: Volume fraction and grayness for thermax andrmin variant for the initial design,
see Fig. 4.31.

The presented heuristic consists of two variants, hence a selection criteria is desirable. Fig-
ure 4.33 visualizesrmin andrmax, the frequencies from the eigenfrequency analysis are visu-
alized by graphs for the interpolation weights.rmin is flipped for better comparability against
rmax. For most frequencies|rmax| ≥ |rmin|, including the range from 1340 Hz to 1500 Hz where
thermin variant performs significantly better. A robust selection criteria is not known.
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Figure 4.33.:r(xxx,ω) (4.25) is the interpolated displacement of the modes from the structural
eigenfrequency analysis. The minimal and maximal values are denoted byrmin
andrmax. α andβ are the interpolation weights.

Discussion

The presented method takes the information from an additional problem, a cheap to solve
structural eigenfrequency analysis, and constructs frequency dependent start designs using a
heuristic approach. Comparing Fig. 4.31 with Fig. 4.24, thebenefit of the method becomes
clear with respect to resultant performance and robustness. Improper start values can lock
the optimizer within low performing local optima dealing with a heuristic. This effect also
appears in the present case. An eleqant approach to choose either thermax or rmin variant is
missing. Performing both variants, even global optimal solutions over all frequencies can be
assumed for the model problem. As all problems converged, significant computational time
can be saved compared to the solid plate problems where the maximal number of iterations
has often been met.

It is noteworthy that the presented heuristic only tackles the piezoelectric strain cancellation
problem. The acoustic short circuits can easily be solved bythe optimizer.

4.6. Discussion

The single-frequency piezoelectric loudspeaker could be successfully optimized. The choice
of the proper objective function is crucial and as discussedbelow no viable approximation for
the acoustic sound power could be found but the fully resolved near field problem needs to be
solved.

A special feature of maximizing the mechanical-piezoelectric-acoustic problem is the inter-
action of the physical effects structural resonance, piezoelectric strain cancellation and acous-
tic short circuits. From the structural point of view resonance gives maximal results exactly at
the excitation frequency, while for minimization close resonance frequencies just need to be
moved sufficiently far away. However, most structural resonance modes are subject to strain
cancellation and can therefore not be electrically excitedor rather are subject to acoustic strain
cancellation. The balance of these effects is generally non-intuitive but can be solved excel-
lently as optimization problem.
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4.6.1. Comparison

In Fig. 4.34 the response of the structures obtained for the different objective functions are
evaluated on the large acoustic model in Fig. 4.14. The objective functions are acoustic near
field Jnf (4.24) with the optimization performed on the smaller acoustic model in Fig. 4.23,
acoustic far field approximationJψ (4.23) performed on the large acoustic model, structural
displacementJu (4.17) which approximates the acoustic response just by thedisplacement and
structural displaced volumeJdv (4.22).
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Figure 4.34.: Evaluating the acoustic power on the large acoustic model for structures ob-
tained by acoustic near field optimizationJnf, acoustic far field approximation
Jψ , structural displacementJu and displaced structural volumeJdv. The solid
line represents the solid plate response.

Two observations are striking. Structural approximationstend to fail for frequencies above
the first resonance, particularly acoustic short circuits are not compensated. However, the
results for acoustic optimization are also questionable with respect to their missing robust-
ness. The optimizer is very likely to end in poor performing local optima due to the strain
cancellation problem.

The ability of the optimizer to find a solution for the strain cancellation problem depends
significantly on the initial design. Simply using the results of neighboring frequencies fails,
but incorporating the structural eigenmodes gives robust optimization, see Fig. 4.31.

4.6.2. Electrode Design

Multiple-Frequency Structural Optimization

All presented dynamic optimizations are single-frequencyoptimizations. The response of a
structure to any frequency other than the excitation frequency for the optimization can be
significantly lower. Examples are given in Wein et al. [2009a].

Multiple-frequency optimization is outside the scope of this thesis. The specific problems
for the present setup are outlined in Wein et al. [2009a]. In general loudspeaker design, a flat
response over a given frequency range is obtained by locating resonance frequencies outside
the range of interest. For the given piezoelectric model, however, resonance is necessary to
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obtain sufficient performance. Having almost no control on the Q-factor, an arbitrary design
will always have resonances and anti-resonances within a sufficiently wide frequency range.

Electrode Design

Optimization of the polarization can be interpreted as electrode design. Some authors perform
this together with structural optimization, e.g. in Kögl and Silva [2005] or Rupp et al. [2009],
or only for polarization in Donoso and Bellido [2008, 2009],. . . . The following presentation
goes beyond structural optimization in the focus of this thesis and shall serve as side remark.

The optimization results are shown in Fig. 4.35, the peaks at650 Hz and 2000 Hz are found
using SNOPT1. We observe less gain than for the structural optimization.
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Figure 4.35.: Finding the optimal polarizationϑ to maximizeJnf.

However, if the electrodes are partitioned pairwise into small areas corresponding to the
finite element surface and individually controllable (switching of the applied voltage to the
upper and lower electrode), then (4.35) gives the response of the device for any frequency
within the range.

1Strain based initial designs from the eigenvalue analysis,similar to (4.26), did not further improve the results.
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Piezoelectric Energy Harvester

Energy harvesters are devices which convert ambient energyinto electric energy. Here we
concentrate on the transformation of vibrational ambient energy by piezoelectric energy har-
vesters. Piezoelectric energy harvesters are a subject of intensive research and has good
prospects for future versatile mass application. Applications can be at large machines, railway
freight cars and many more. Piezoelectric energy harvesters represent a specialized applica-
tion of the piezoelectric sensor mode.

Practice-oriented objectives in the design of piezoelectric energy harvesters are electric
power by volume, electric power by weight, maximum output power, tolerable excitation am-
plitude and, of course reliability and cost.

Performing topology optimization on the elastic substrateof a cantilever type harvester
instead of the piezoelectric material is a novel approach. The obtained result is based on a
mechanism which differs significantly from the common designs reported in literature.

5.1. State of the Art

A general overview of piezoelectric energy harvesters is given in the review paper of Anton
and Sodano [2007]. Two general types subject to research areplate and cantilevered har-
vesters. A primary objective is the maximization of generated electric power, although not
necessarily in a direct formulation.

5.1.1. Plate Type Harvester

A circular plate sensor is discussed in Kim et al. [2005a,b].By parametric optimization axial
regions of optimal poling are identified and the piezoceramic plate is repoled accordingly.

Ersatz material topology optimization and electrode design of rectangular piezoceramic
plates is described in Nakasone et al. [2008] and is based on mean transduction. However,
only preliminary results are presented. We apply topology optimization with an electric energy
objective function to our loudspeaker model in Wein et al. [2009c].

Topology optimization with respect to density and polarization is also covered in the com-
prehensive work Rupp et al. [2009]. Piezoelectric self-penalization is reported and the electri-
cal circuit is included into the optimization process.

In Wein et al. [2011] we apply the objective function for electric power with reference to
Rupp et al. [2009] and the model in Fig. 4.1 in order to investigate self-penalization. It tran-
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spires that the obtained structure and self-penalization depend on the external electric circuit
(ohmic load).

5.1.2. Cantilever Type Harvester

The most common type of piezoelectric energy harvesters in the academic literature is the
cantilever or beam type harvester. In the following we concentrate solely on cantilevered
energy harvesters.

Homogeneous Straining

Consider a beam with attached piezoelectric plates in a static load scenario as depicted in
Fig. 5.1. The horizontal line of the cantilever at half height is called theneutral axisas the
horizontal and vertical strainssxx andsyy change sign. For reasons of strain cancellation the
neutral axis should not be located within a piezoelectric layer. The following example is
discussed in more detail in Sec. 5.2.2.

Figure 5.1.: An elastic cantilever sandwiched by piezoelectric plates. The system is fully sup-
ported on the left and subject to a nodal static vertical force on the right. For the
cantilever the dominating strain component,sxx, is visualized. For the piezoelec-
tric plates, the strain is visualized in the von Mises norm (5.7). Note the neutral
axis within the beam.

In beam theory the strain is proportional to the beam curvature. This is reflected by the
inhomogeneous strain distribution within the piezoelectric layers in Fig. 5.1. The common
structural design goal in cantilever type harvesters is therefore the homogenization of the
curvature to increase the electric output.

Modelling

Reduced models are commonly applied in piezoelectric energy harvester literature owing to
their ease in analytical and numerical optimization. Different assumptions on the models
complicate comparison of the results.
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Renno et al. [2009] apply the commonsingle degree of freedom (SDOF)model but in-
cludes damping and ohmic and inductive external electricalload. They perform analytical
optimization based on the KKT conditions and conclude that the maximization of the cou-
pling coefficient does not necessarily coincide with the maximization of electric power. They
emphasize the consideration of an inductive load in addition to the ohmic load.

Erturk and Inman [2008b,a] compare SDOF models against a dampedEuler-Bernoulli beam
model, emphasizing the improved accuracy of the latter.

In Erturk et al. [2009], mode shapes are expressed analytically with a consideration of the
tip mass. This allows the segmentation of electrodes to handle strain cancellation.

Liao and Sodano [2008] present a model based on the Euler-Bernoulli beam model and
validate it with experimental results. However no tip mass is applied.

Finite element modelling of a cantilevered beam harvester with tip mass based onKirch-
hoff plateassumptions is presented in De Marqui Junior et al. [2009], including parametric
optimization. The model is similar to the plate harvester modelling in Rupp et al. [2009].

Varying the Beam Height

In Albach [2006], Albach et al. [2009] the optimal height profile of the cantilever is determined
analytically. The optimal beam profile is reported as

h(x) =
hmax√

l

√
l −x.

The valueh(x = l) = 0 is unfeasible to support the tip mass. Moreover, the fabrication of
non-plane piezoelectric ceramic is complicated. Therefore a linear profile (see Fig. 5.2a) is
proposed as

h(x) = hmax−
hmax−hmin

l
x.

The tip mass has no impact on the design. The advantage of thisapproach is the use of standard
rectangular piezoelectric plates.

Varying the Beam Width

Width modelling gives more design freedom than the linearized height modelling, see
Fig. 5.2b. A parametric study is performed in Goldschmidtboeing and Woias [2008], sug-
gesting an equal-sided trapezoid. Such a trapezoid is used as a starting design for a shape
optimization in Dietl and Garcia [2010].

In Goldschmidtboeing and Woias [2008], the mass distribution within the beam is also
considered, with the barycenter being a function of the shape, shifted towards the support for
trapezoidal shapes. They state:

. . . [The] conversion of the excitation energy into mechanical energy is more ef-
ficient for a rectangular beam. This effect is opposed by the effect of curvature
homogenization, which leads to a trade-off for the optimum design.
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(a) Modelling of the height

(b) Modelling of the width

Figure 5.2.: General cantilever model of a piezoelectric energy harvester. A substrate is sand-
wiched between two piezoelectric plates. The left plane provides support and
vertical excitation. The tip mass on the right allows resonance adjustment. The
strain is homogenized by height modelling of the substrate in (a) and by width
modelling in (b).

Topology Optimization

To the authors best knowledge, there is at present only a single publication, Zheng et al. [2008],
which covers topology optimization of a cantilevered piezoelectric energy harvester. The work
has been discussed in Weller [2009], a diploma thesis supervised by the author of this thesis.
The problem formulation in Weller [2009] is similar to the present problem. However, the
problem could not be sufficiently solved.

The model used in Zheng et al. [2008] consists of two attachedrectangular piezoelectric
plates, similar to the model in Fig. 5.2a without the substrate layer and mass tip. A static force
is applied at the free end, a pressure load on the surface. Theobjective function is the energy
conversion factor

Jη =
Welec

Welec+Wmech
(5.1)

with the electric energyWelec=
1
2 ψψψTKKKψψψψψ and mechanical energyWmech=

1
2 uuuTKKKuuuuu. The

sum of both is the total energy stored in the system. We applyJη on the plate model of Fig. 4.1
in Wein et al. [2011].

The presented work in Zheng et al. [2008] has some limitations. A static energy harvester
has no physical relevance. Furthermore a piezoelectric cantilever without substrate is too
fragile for any practical application. For vibrational energy harvesting, the ambient energy
can be considered very large in comparison to the generated electric power which brings the
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energy conversion as objective function into question. It is shown in Weller [2009] thatJη can
be maximized by minimizingWmech. This explains the similarities of the obtained results with
pure elastic compliance minimization and the need for a volume constraint.

5.2. Problem Setting

5.2.1. Electrical Circuit

For practical use of a piezoelectric sensor, an electric circuit needs to be attached to the
mechanical device. By themaximum power transfer theoremthe applied complex load
impedanceZl needs to match the electric output/ source impedanceZs of the harvester as

Zl = Z∗
s .

Below the first electric resonance frequency of the piezoelectric plates, which is generally
much higher than the mechanical resonances, the electric source impedance can be assumed
purely capacitive

Zs =
1

j ω C
in Ω

with the capacitance

C=
ε A
d

in F,

permittivity ε, plate surfaceA and distance between the electrodesd. The optimal pure ohmic
load is then given as

Zl = R=
1

ω C
.

The load impedance acts back on the electric field within the harvester, modifying the me-
chanical properties like resonance frequencies by the piezoelectric coupling. With the piezo-
electric plates subject to optimization, the optimal load impedance also becomes a function of
the design. The resulting numerical properties and a solution approach is described in Rupp
et al. [2009].

Modeling of Impedance

Wang et al. [1999] summarizes the integration of external load impedances into the finite
element model.

An ohmic resistorR is integrated into the system matrix between the electrode nodesφgnd
andφhot as

− jω
1

ω2R

(
+1 −1
−1 +1

)(
φhot
φgnd

)
=

(
0
0

)
, (5.2)

an inductanceL as

− 1
ω2L

(
+1 −1
−1 +1

)(
φhot
φgnd

)
=

(
0
0

)
,
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and an capacitanceC as (
+C −C
−C +C

)(
φhot
φgnd

)
=

(
0
0

)
.

We denote the system matrices augmented by an ohmic externalload aŝSSSR.

Objective Function

The complex electric powerPelec in W effectively obtained from the energy harvester is given
by the product of the electric potential difference over load impedance and the current flowing
through it. Relevant in electrical engineering areapparent power|Pelec|, real power Pelec=
Re{Pelec} and reactive powerIm{Pelec}. The design of the electrical circuit of an energy
harvester is subject to research by itself, see Anton and Sodano [2007].

In the following, we restrict ourselves to an ohmic resistance R. Then the real power co-
incides with the apparent power. By a grounded electrodeΓgnd the electric power objective
function is given as

Jpower=
1

2R
φφφTLLLφ φφφ∗. (5.3)

Jpower is similar to the electric potential function

Jφ = φφφTLLLφ φφφ∗ (5.4)

based on (4.15). However,Jpower requires a system matrix̂SSSR including the load impedance
Zl = R. From (5.2) we see thatJpower cannot be static.

5.2.2. Strain Considerations

We repeat the piezoelectric material laws (2.30) and (2.31)

σσσ = [cccE]SSS− [eee]TEEE,

DDD = [eee]SSS+[εεεS]EEE.

Written in terms of the physical variables bySSS=Buuu (2.7) andEEE =−∇φ (2.40), the material
laws are

σσσ = [cccE]Buuu+[eee]T∇φ , (5.5)

DDD = [eee]Buuu− [εεεS]∇φ . (5.6)

Von Mises Stress and von Mises Strain Norms

The piezoelectric coupling effect depends on the mechanical strain (2.5) which reads in two
dimensions as

SSS=




sxx

syy

2sxy


 .
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An appropriate norm is required for the visualization of thestrain and stress vectors. In the
case of mechanical stresses thevon Mises stressσv (A.13) represents a common norm in the
convenient form

σv =
√

〈σσσ ,MMM σσσ〉.
Analog we define a norm for the strain vector as

Sv =
√

〈SSS,MMM SSS〉. (5.7)

Strain Components

The simple model in Fig. 5.1 is of length 30 mm, the aluminum substrate is of thickness 4 mm
and the piezoelectric plates of PZT-5A have a thickness of 0.5 mm. The applied nodal force
to the plane strain simulation is 100 N. Figure 5.3 gives the strain for the upper piezoelectric
plate. The horizontal strainsxx is positive from the elongation. Due to a positive Poisson’s
ratio the verticalsyy is negative and of approximately half magnitude. The shear strain is
negligible. Away from the end points, the individual straincomponents appear as a linear
function with respect to the length, however the von Mises strain normSv shows a minimum
at length position 25 mm. In the simple model the piezoelectric plates also have mechanical
support. The resulting stress singularity explains the strong strain deviations close to the
support.
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Figure 5.3.: Plot of the von Mises strain and the individual strain components close to center
line of the upper piezoelectric plate in the simple model in Fig. 5.1.

Impact of Free Electrodes

There is no purely mechanical explanation for the location of the roots of the linear strain
components in Fig. 5.3. We repeat the numerical experiment with a configuration without the
upmost and lowermost electrodesΓhot but still grounding the inner electrodes at the substrate.
Note that a configuration withoutΓhot electrodes (modelled without mechanical impact, see
Sec. 2.2.5) is unphysical and serves here only in the sense ofan numerical experiment. Figure
5.4 shows that the local strain differs significantly in comparison to the variant without free

105



5. Topology Optimization of a Piezoelectric Energy Harvester

electrodes, although the integral strain does not change. The displacement of the upper right
corner of the model is -1.4 µm with electrodes and -1.32 µm without electrodes.
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Figure 5.4.: Strain within the upper piezoelectric plate ofthe model in Fig. 5.1 with and with-
out free electrodesΓhot. The electrodes have no mechanical stiffness.

Relationship between Strain and Electric Potential

The piezoelectric coupling tensor (2.35) reads in two dimensions as

[eee] =

(
0 0 e15

e31 e33 0

)
.

Note that by convention the piezoelectric material parameters are given with a polarization
in the z-direction. In two dimensions with a polarization in they-direction the piezoelectric
coupling coefficients denote the coupling with the strainsxx perpendicular to the polarization
by e13, along the polarization assyy by e33 and with the shear strain 2sxy by e15.

Assuming a vertical electric field and no external electric charges (D3 = 0), the material law
(2.31) can be written as

e31sxx+e33syy=−ε33E3.

Interpreting the piezoelectric structure as parallel plate capacitor with a grounded electrode
(2.29) and considering the direction of the electrical field(2.40), the local potential atΓhot is
given by the strain proportional function

φ =
d

ε33
(e31sxx+e33syy) (5.8)

with the piezoelectric plate thicknessd. The coupling properties for PZT-5A are given in
App. A.5 ase13 = −6.5 N/C ande33 = 23.3 N/C, see Fig. 5.5. The deviation at the left side
appears to be caused by the strong shear strain from the stress singularity at the support.
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Figure 5.5.: Without equipotential layer, the simplified model (5.8) closely matches the sim-
ulated local electric potential. The negative electric potential is drawn to confirm
with the direction of the electric field. This configuration without free electrode is
unphysical.

Strain Cancellation

Using the piezoelectric coupling coefficients as weightingfactors of the strain components in
(5.8), the strain from Fig. 5.3 is visualized again in Fig. 5.6. The weighted sum of the strain
is proportional to the local electric potential and demonstrates the electric effect of strain
cancellation by the averaging electrodes. The ratio of the piezoelectric couping coefficients
e31 ande33 reverse the mechanically dominatingsxx strain in Fig. 5.3. Note the non-linear
relationship ofsxx andsyy; The definition of Poisson’s ratio in pure linear elasticity

ν =− syy

sxx

cannot hold with the singularity at the root ofsxx due to piezoelectric coupling and the multi
material composite. The ratio ofsxx and syy needs to be non-constant as the roots do not
coincide.
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Figure 5.6.: Visualization of the induced electric field intensities of the strain components
weighted by coupling tensor coefficients based on the model in Fig. 5.1.
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5.2.3. Stress Constraints

Due to the correlation of electric power to mechanical strain the limitation of stresses within
fragile piezoceramic plates is a real world driven requirement. Goldschmidtboeing and Woias
[2008] interprets different designs by their maximal stresses (‘maximum tolerable excitation
amplitude’). However, rigorous stress constraint have notbeen applied at a piezoelectric har-
vester optimization problem in the literature.

Motivation

A typical stress limit criterion for general material is thevon Mises yield criterion given in the
von Mises stress norm, or more specifically a defined fractionof that limit. For piezoceramic
material a typical data sheet gives different limits for themaximal compressive strength, tensile
strength and depolarization pressure (5 % depolarization). The maximal compressive strength
is typically much higher than the tensile strength. Howeverthese stresses cannot be separated
for time-harmonic excitation. Having just a linear model and by the excitation dependence of
the actual stresses the maximal stress in the von Mises norm is generally chosen to match the
peak value of the initial design.

We derive the piezoelectric stress constraints from the stress constraint functionJσ (A.14)
in linear elasticity consideringσσσ = [cccE]Buuu+[eee]T∇φ (5.5). The stress function reads as

Jpiezo
σ =

〈
[cccE]Buuu+[eee]T∇φ ,MMM

(
[cccE]Buuu+[eee]T∇φ

)〉
. (5.9)

Elastic Design Domain

The energy harvester model has a pure elastic design domainΩbeam∪Ωmasswhich does not
intersect the domain for the piezoelectric stress constraint Ωpiezo. Thus the stress constraint
is proportional to the strain constraint and the problems ofstress constraints described in
App. A.4.3 at non-solid pseudo densities are omitted.

We restrict ourselves to the time-harmonic case withuuu andφ being complex values. In the
element wise formulation, (5.9) can be rewritten as

Jpiezo
σi = 〈[cccE]Bi uuui ,MMM [cccE]Bi uuui〉+ 〈[eee]TB̃i φφφ i ,MMM [eee]TB̃i φφφ i〉

+ 2 Re
{
〈[cccE]Bi uuui ,MMM [eee]TB̃i φφφ i〉

}
,

with discrete gradient operatorsB andB̃. The gradient is given by (3.36) as

∂Jpiezo
σi

∂ρe
= 2 Re

{〈
λλλ i

e,
∂ S̃SSe

∂ρe
uuue

〉}
.
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With

∂Jpiezo
σi

∂uuuR
= 2([cccE]Bi uuuiR)

TMMM [cccE]Bi +2([eee]TB̃i φφφ iR)
TMMM [cccE]Bi ,

∂Jpiezo
σi

∂uuuI
= 2([cccE]Bi uuuiI)

TMMM [cccE]Bi +2([eee]TB̃i φφφ iI)
TMMM[cccE]Bi ,

∂Jpiezo
σi

∂φφφR
= 2([eee]TB̃i φφφ iR)

TMMM [eee]TB̃i +2([cccE]Bi uuuiR)
TMMM[eee]TB̃i ,

∂Jpiezo
σi

∂φφφ I
= 2([eee]TB̃i φφφ iI)

TMMM [eee]TB̃i +2([cccE]Bi uuuiI)
TMMM[eee]TB̃i ,

the dynamic adjoint equation (3.37) reads as

̂̃
SSSRλλλ i =−

(
([cccE]Bi uuu∗i )

TMMM [cccE]Bi +([eee]TB̃i φφφ∗
i )

TMMM [cccE]Bi

([eee]TB̃i φφφ∗
i )

TMMM [eee]TB̃i +([cccE]Bi uuu∗i )
TMMM [eee]TB̃i

)
. (5.10)

With the given equations, the globalization in App. A.4.2 can be applied.

Piezoelectric Design Domain

For the sake of completeness we give the formulation of piezoelectric stress constraints applied
to a piezoelectric design domain. This is not the situation for the energy harvester model but
it is the case for the actuator model.

The notation of material tensors[ c̃ccE] and[ ẽee] expresses that the original tensors are subject
to the physical densityρ by an appropriate interpolation function. This interpolation function
needs to reflect the issues within stress constraints, see App. A.4.3. The dynamic formulation
adds no additional constraints to the interpolation function as it is necessary for the material
modelling, see Sec. 3.2.4.

The element wise stress function formulation is given as

Jpiezo
σi = 〈[ c̃ccE]i Bi uuui ,MMM [ c̃ccE]i Bi uuui〉+ 〈[ ẽee]Ti B̃i φφφ i ,MMM [ ẽee]Ti B̃i φφφ i〉

+ 2 Re
{
〈[ c̃ccE]i Bi uuui ,MMM [ ẽee]Ti B̃i φφφ i〉

}
.
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Using (3.36), the gradient reads as

∂Jpiezo
σi

∂ρe
= 2 Re





〈
λλλ i

e,
∂ ̂̃SSSe

∂ρe
ûuue

〉


+ 2

〈
[ c̃ccE]i Bi uuui ,MMM

∂ [ c̃ccE]i
∂ρe

Bi uuui

〉

+ 2

〈
[ ẽee]Ti B̃i φφφ i ,MMM

∂ [ ẽee]Ti
∂ρe

B̃i φφφ i

〉

+ 2 Re

{〈
[ c̃ccE]i Bi uuui ,MMM

∂ [ ẽee]Ti
∂ρe

B̃i φφφ i

〉}

+ 2 Re

{〈
[ ẽee]Ti B̃i φφφ i ,MMM

∂ [ c̃ccE]i
∂ρe

Bi uuui

〉}
.

The additional terms vanish fore 6= i. The adjoint equation coincides with (5.10) with the
material tensors replaced by[ c̃ccE]i, respectively[ ẽee]i.

5.2.4. Model

Support

A problem of the simple stump model in Fig. 5.1 is the stress singularity due to the mechanical
support of the piezoelectric plates. Figure 5.7a illustrates the stress distribution at the support
in more detail. The jump in the stress distribution from beamto plates with continuous strain
is due to the stiffer piezoelectric material.

Freeing the mechanical boundary condition of the piezoelectric plates and extending the
beam still gives high stress by a singularity in the corner, see Fig. 5.7b. Such a problem is in
fact a benchmark problem within elastic stress constrainedstructural optimization, known as
theL-shapeproblem.

A solution is to move the singularity due to the corner into the uncritical beam as shown
in Fig. 5.7c. The change of support at the support has no impact on the stress distribution.
The study has been performed on the static scenario of Fig. 5.1 but also holds for the dynamic
scenario in Fig. 5.8.

At dynamic excitation the singularity problem also occurs at the mass side.

Dimensions

The model of the piezoelectric energy harvester for dynamicexcitation is shown in Fig. 5.8.
Similarly to the models in Fig. 5.2, the model consists of piezoelectric plates, beamΩbeamand
a tip massΩmass.

The beam has a length of 3 cm and a height of 4 mm. The adapter hasa height of 2.8 mm.
The thickness of the piezoelectric plates is 500 µm. The masshas the dimensions 1 cm by
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(a) Plane support (b) Simple Adapter (c) Staged Adapter

Figure 5.7.: Evaluation of different kinds of mechanical support for a static excited can-
tilevered energy harvester, see Fig. 5.1 and the explanations in Sec. 5.2.4. The
stress singularity cannot be avoided but is located in Fig. (c) outside the critical
piezoelectric plates.

1.4 cm and is connected by a 0.5 mm wide adapter with the beam. The piezoelectric plates are
of PZT-5A. All other material is aluminum, see App. A.5.

Dynamic Excitation

To allow for the maximization of the electric powerJpower (5.3), the electrodes are connected
by ohmic resistors withRL = 100Ω, implemented by (5.2) and resulting in the global system
matrix ŜSSR.

ΓgndΓgnd

Γhot

Γhot

Ωbeam Ωmass

Ωpiezo(upper)

Ωpiezo(lower)

RL

RL

Figure 5.8.: Model of the cantilever type piezoelectric energy harvester. The design domain
for topology optimization isΩbeam∪Ωmass. The harvester is excited by a sinu-
soidal vertical displacement.

For the electrically excited actuator it is feasible to varythe excitation frequency while
keeping the amplitude constant. In the vibrational energy harvester scenario we assume a
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mass concentrated rigid body of constant kinetic energy

EK =
1
2

m
∂u
∂ t

2

to derive the exciting displacement of the energy harvester. The linear model allows the scaling
of the displacement to result in an appropriate order of magnitude of the gradients for the
resonance and off-resonance case concurrently. The amplitude of the frequency dependent
sinusoidal excitation is given by

u=

√
k
f 2 (5.11)

with the scaling constantk chosen as 0.013291m2/s2. Thus the subsequent values for the
obtained electric power and active stresses shall be used for a qualitative interpretation only.

Design Domains

In general the design domain is set up byΩbeam∪Ωmass. Concluding from the results pre-
sented in beam-model based literature,Ωmassis expected to allow the tuning of the resonance
frequency andΩbeamto homogenize the bending.

5.3. Numerical Results

5.3.1. Static Case

In several publications, the harvesting efficiency is improved by means of homogenizing the
strain distribution within the piezoelectric plates. Thisapproach holds equally for the first
vibrational mode and the static case.

For the static case we choose to optimize for the electric potential by

Jst
φ = φφφT lllφ , (5.12)

wherelllφ selects the nodes ofΓhot(upper) by -1 andΓhot(lower) by 1. The system is excited
by setting an inhomogeneous Dirichlet boundary condition (1 µm) to a center node ofΩmass.

Fig. 5.9 shows the obtained result (using SNOPT, KKT conditions satisfied). The induced
electric potential is increased from 1.0 V to 1.5 V. The stumpwith the support is not part of
the design domain. For the static case, the outside volumes of the mass have no relevance.
Therefore the initial designρ = 0.5 persists.

The piezoelectric strains are not homogenized but the peak strain is increased by 5.8 % while
the piezoelectric peak stress is increased by 37 %. The obtained result is clearly not feasible
from a manufacturing point of view, but also not appropriatefor dynamic use, as shown in
Fig. 5.10. The frequency response ofJpower is compared for the original and optimized design.
The second resonance mode is shifted but the peak performance of the optimized structure is
far below the original structure (note the logarithmic scaling).
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Figure 5.9.: The obtained topology of model Fig. 5.8 subjectto static maximization of electric
potential. The color scale within the piezoelectric platesshows the stress distribu-
tion in the von Mises norm. A density filter of 1.7 elements hasbeen applied.
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Figure 5.10.: Electric power frequency response of model Fig. 5.8 and the static optimized
design from Fig. 5.9.

5.3.2. Unconstrained Dynamic Case

In a first approach we maximize the model in Fig. 5.8 forJpower by an unconstrained topology
optimization problem individually for various excitationfrequencies. Again a density filter
with radius of 1.7 edge length is applied. The adapter, subject to the inhomogeneous Dirichlet
boundary conditions, is not part of the design domain. Note that the performance of different
frequencies is not comparable due to the frequency dependent excitation amplitude (5.11).

Variation of the Design Domain

The optimization is performed for the design domainsΩbeam, ΩmassandΩbeam∪Ωmass. Com-
pared to the thin model structure for the piezoelectric actuator optimization, we can only ex-
pect a significant lower modal density. ConsideringΩmassas design domain, Fig. 5.11 shows
a robust adjustment of the resonance frequency for wide frequency ranges. The same can be
observed forΩbeamas design domain, however the frequency regions with good performance
are roughly disjunct. Combining both design spaces toΩbeam∪Ωmasscomplicates the opti-
mization problem in such a way that the computational effortis significantly increased for
higher frequencies. The problems far away from the resonance frequencies result from the
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modal density and are therefore physical justified.
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Figure 5.11.: Dynamic optimization results forJpower of model Fig. 5.8. Design domains are
Ωbeam, ΩmassandΩbeam∪Ωmass. Results for the marked frequencies are dis-
cussed in the text.

In the following we concentrate on a lower frequency range (1200 . . . 3300 Hz) around the
first resonance frequency and a higher frequency range (8000. . . 9300 Hz) around the second
resonance. The principal dimensions of the model are apparently not suitable for intermediate
target frequencies. Optimizing within this intermediate region is highly unstable and almost
chaotic.

Lower Frequency Region

Figure 5.12 contains the obtained results for the excitation frequencies 1450 Hz and 3050 Hz.
1450 Hz is the first resonance frequency of the initial systemwith solid Ωbeam and Ωmass.
Jpower at 1450 Hz is increased by 16 % while the piezoelectric stressin the von Mises norm is
increased by 4.4 %.

As a second example, the solution for 3050 Hz is chosen. In Fig. 5.11b this frequency
appears to represent a maximum performance within the lowerfrequency range. However,
this conclusion is invalid due to the frequency dependent excitation (5.11). Nevertheless,
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decreasing performance and less robust optimization beyond this frequency within the lower
frequency range can be assumed. It is of note that the optimalsolution for design space
Ωbeam∪Ωmassand design spaceΩmasscoincides at 3050 Hz. Hence a solid beam represents a
(local) optimum.

(a) 1450 Hz

(b) 3050 Hz

Figure 5.12.: Obtained topologies for the frequencies 1450Hz and 3050 Hz with design space
Ωbeam∪Ωmass, see Fig. 5.11. The visualized displacement is the individually
scaled real part of the calculated displacement. For the piezoelectric layers the
stress distribution in the von Mises norm is visualized. Theoutline of the system
without excitation in the background serves as reference.

A common observation within the lower frequency range, alsofor the results not shown
here, is a strong self-penalization. The mass is shaped circularly around the support. Typical
for almost all solutions is the slit at the support, forming an almost hinge like connection with
the solid adapter. The optimizer obviously does not homogenize the piezoelectric strain within
the piezoelectric plate. While such a solution is propagated in the literature, it is for the given
model either not optimal or not found by SNOPT. The results differ significantly from the
static solution in Fig. 5.9 which proved to fail for the dynamic case.

Higher Frequency Region

The higher frequency region around the second resonance of the initial design shows in
Fig. 5.11b the potential of the concurrent optimization ofΩbeam andΩmass. Unfortunately,
the optimizations for varying excitation frequencies are rather instable, similar to the acoustic
actuator problem in Fig. 4.24. The robustness for the actuator problem could be significantly
improved by appropriate initial designs based on eigenfrequency analysis in Sec. 4.5. For
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the present case, however, a possible explanation lies in the different roles of the sub design
spaces. Assuming the structure is in resonance, any change within the beam would sacrifice
performance by moving the resonance point. Hence a concurrent mass tuning is necessary.

The selected frequencies are 8670 Hz, the resonance frequency of the solid structure and
9240 Hz, arbitrarily selected. Both obtained designs in Fig. 5.13 are in principle similar, and
in fact representative for all well-performing solutions within the higher frequency range.

(a) 8670 Hz

(b) 9240 Hz

Figure 5.13.: Obtained topologies for the frequencies 8670Hz and 9240 Hz with design space
Ωbeam∪Ωmass, see Fig. 5.11. See Fig. 5.12 for a description and Fig. 5.14 for
addition visualization of the displacement.

For 8670 Hz the electric power is increased by 64 % due to the high strain within the piezo-
electric plates where the optimizer removed the material from the beam.σv is increased by
69 %. The obtained structures are clearly not feasible from apractical point of view, allowing
solely the fragile piezoelectric plates to carry the load isprohibitive. Nevertheless, it is worth
studying the results before modifying the problem accordingly in the following section.

The designs show again the slit at the support, the hinge likeconnection is even more distinct
than in Fig. 5.12a. Self-penalization can be observed, although Fig. 5.13a shows intermediate
material within the beam.

The visualization of magnitude of the complex displacementin Fig. 5.14 is interesting. A
virtual simple support appears at the free side of the device. Obviously, the optimizer attempts
to move the virtual support towards both ends of the beam. However, the actual displacement
of the beam is far more complex (and effective) than the principal second mode shape.
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(a) 8670 Hz, initial (b) 8670 Hz, optimized

(c) 9240 Hz, initial (d) 9240 Hz, optimized

Figure 5.14.: Fig. 5.13 visualizes the real part of the displacement. Here the magnitude of the
complex displacement is visualized for the initial and optimized structure.

5.3.3. Realistic Designs

The necessary steps to comply withmanufacturing constraintsshow the limitation of the
coarse resolution. Therefore the following results are given at the second resonance frequency
of a finely scaled model. The qualitative observations and problems coincide. The optimal
solution without any constraints is given in Fig. 5.15. The gain in the objective function
(54 %) is close to the coarse solution. However the increase of 16% by the peak stress is
much smaller. Particularly the finely scaled unconstrainedproblem challenges the optimizer
(SNOPT spends 96 % of the total run time in internal functions). As a result of the lack of
robustness in optimization, the performance will even be improved by additional constraints.
Modification of the density filter size could not improve the optimization.

Figure 5.15.: The equivalent of the result in Fig. 5.13a; unconstrained optimization at the sec-
ond resonance frequency of the fine scaled model (8575 Hz). Compared to the
solid structure,Jpower is increased by 54 % with a peak stress inσv 16 % larger.

An combination of different methods will be necessary to finally reach a satisfactory design.

The Slit

The hinge like connection of the beam to the stump leads to locally very high mechanical
stresses. One option would of course be to apply a stress constraint to the elastic design
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5. Topology Optimization of a Piezoelectric Energy Harvester

domain and expect the hinges to vanish. However, to guarantee black and white designs for
such stress constraints is still an open problem, see Sec. A.4.3. Instead, we interpret the hinge
at the slit to be realized by an actual hinge - going beyond purely compliant mechanisms
described in Sec. 3.2.3.

Stress Constrained Piezoelectric Plates

The piezoelectric sensor effect is a function of the strain.Hence, the optimizer exploits the
linear model by constructing the extreme configurations in Fig. 5.13. Applying stress con-
straints to the piezoelectric plates tackles this problem directly. We apply 94 % of the initial
configuration stress function value with a rather relaxed boundεσ = 0.001 for the globalized
stress constraint (A.15) applied on the piezoelectric stress formulation.

Figure 5.16.: Adding stress constraints to the problem in Fig. 5.15. With respect to the solid
structure,Jpower is increased by 59 % while the peak stress is decreased by 2.7 %.
Intermediate material can be interpreted as network of springs.

The result obtained for the second resonance frequency is shown in Fig. 5.16. With 59 %,
the gain inJpower against the solid solution is even better than for the unconstrained solution
(54 %). σv is decreased by 2.7 % compared to an increase of 16 %. The bars of intermediate
material within the beam might be interpreted as springs, controlling the deflection and as
such the maximal strain.

Reinforcement

To ensure elastic support of the fragile piezoelectric plates, we limit the design domain within
the beam to a height of 2.8 mm which is the height of the supportcarrying adapter and the
adapter to the mass. Without stress constraints, the optimal design shown in Fig. 5.17 is with
62 % improvement in comparison to the inital design equivalent slightly better than the stress
constrained solution (59 %). However, the peak stress is 38 %above the inital design. Springs
as design element cannot be found, although the interperetation of the structure is not clear.

Reinforcement and Stress Constraints

Combining reinforcement and piezoelectric stress constraints still shows a strong gain inJpower

by 58 % with a good controll of the peak stress (-2.7 %) in Fig. 5.18. However, intermediate
design regions within the beam, possibliy to be interpretedas springs, are difficult to interpret
as manufacturable design.
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5.3. Numerical Results

Figure 5.17.: Limited design domain ensuring reinforcement of the piezoelectric plates by
solid 0.6 mm aluminum layers.Jpower is increased against the full solid struc-
ture by 62 % and the peak stress by 38 %.

Figure 5.18.: Applying stress constraints to the limited design space, ensuring reinforcement
for the piezoelectric plates. The gain ofJpower is 58 % with feasible peak stress
-2.7 %. The intermediate material might serve as springs.

Manually removing the springs reveals the dynamic sensitivity of the design with a signifi-
cant dislocated second resonance frequency. Albeit the performance is still good a frequency
tuned black and white design is necessary.

Additional Modified Heaviside Filter

In contrast to the actuator optimization, the self-penalization effect is not strong enough for
the till now best energy harvester design in Fig. 5.18. However, the problem is not areas of
intermediate density, as in the compliance problem, but rather too thin bars resulting in the
physical design as non-solid due to the density filter. A solution approach is explicit feature
size control, see App. A.3.

We choose the modified Heaviside filter (A.4) which actually serves as black and white
filter and void feature size control. The latter can serve as manufacturing constraint when it
corresponds with the (smallest) milling tool size.

(A.4) is applied in a continuation approach withβ being doubled, starting fromβ = 1 up to
β = 256. Each step is optimized to KKT condition.

Fig. 5.19 shows that the constrained void feature is fulfilled within the design domain but
the manufacturing constraint is not fulfilled due to the reinforcement. Particularly visible is
the fact that the optimizer uses the freedom to construct a single thin structure. However, due
to the black and white effect the structure is solid and not a spring.

The present result has, with 65 %, the strongest gain inJpower, presumably due to the loss
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5. Topology Optimization of a Piezoelectric Energy Harvester

of enforced grayness by the standard density filter. The stress constraints are fulfilled with
-2.5 %. Interestingly, the piezoelectric stress distribution within the upper and lower plate is
not symmetric any more.

Figure 5.19.: Applying the modified Heaviside filter (A.4) tothe stress constrained model with
reinforcement. The converged result for the Heaviside parameterβ = 256 is
shown. Jpower is improved by 64 % (the highest obtained value),σv is 2.5 %
below the stress of the solid resonance case.

For the sake of completeness we give for the filtered physicaldesign in Fig. 5.19 the plain
design variable in Fig. 5.20a. Also the Heaviside filters cannot guarantee black and white
designs, as with finiteβ for an arbitrary desired value at a specific point in the filtered design
density values exist that can realize it.

In Fig. 5.20b the location of the virtual support for the second resonance mode is located
symmetrically with respect to the beam against the actual support.

(a) ρ (b) |uuu|

Figure 5.20.: For the solution in Fig. 5.19: (a) the unfiltered design variable; (b) The magni-
tude of the complex displacement to be compared against Fig.5.14a.

5.4. Discussion

The energy harvester problem proves to be significantly morechallenging than the actuator
optimization. Having a more complex system we can provide only a limited design space
to the optimizer, in the present case the geometry of the parallel piezoelectric plates is fixed.
Furthermore, additional constraints in the form of piezoelectric stress constraints and rein-
forcement are necessary. Details of the model are important, e.g. the support as demonstrated
in Fig. 5.7.

The optimizer finds a compliant mechanism design, which is a novel observation in the
energy harvesting optimization literature. The mechanismincludes hinges and springs. The
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hinges are considered to be interpretable by rigid hinges from a manufacturing point of view.
The springs are successfully ’removed from the design space’ by the application of the (mod-
ified) Heaviside density filter. This results in a new and unsymmetric optimal design.

From a manufacturing point of view, the 2D plane strain modelis not a limitation. The
results of a coarse unconstrained 3D optimization (not shown here) are very close to the cor-
responding 2D case.

5.4.1. Possible Extensions

If a hard void features size control is desired as manufacturing constraint, the reinforced solid
domain should be added to the element neighborhood of the modified Heaviside filter.

In Fig. 5.6 the dominance of the piezoelectric thickness strain syy is shown. However, the
model Fig. 5.8 allows only an indirect effect bysxx andszy. An approach where (some) piezo-
electric plates are within the design domain and the optimizer can form appropriate mecha-
nisms therefore appears promising.

Additional electrode design as proposed by Erturk et al. [2009] and other authors might
further improve the obtained electric power, although one cannot expect too much for the first
two modes.
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6. Self-Penalization

6.1. Introduction

The optimal topology for compliance minimization by a linear continuous design variable
pseudo densityρ is full material. Changing the problem by adding a volume constraint we
gain the convex variable thickness sheet problem. However,the unique solution is known to
have intermediate pseudo density, see Fig. 3.2. The SIMP model, which avoids intermediate
pseudo density by an explicit penalization approach results in an ill-posed problem, generating
the need for regularization, see Fig. 3.5.

We now consider exemplary topology optimization problems with a linear continuous de-
sign variable without additional constraints beside box constraints on the design variable. We
define byself-penalizationwhen a sufficiently distinctblack and whitedesign is obtained for
such problems.

The phenomenon of self-penalization has first been mentioned in Sigmund and Jensen
[2003] for an elastic wave guide, see Fig. 3.12. Self-penalization is reported for several prob-
lems but in general it is not discussed in detail. Presently the only detailed discussion of
self-penalization is in Wein et al. [2011]. We adopted the term from a private communication
with Ole Sigmund at WCSMO-08.

Our aim is to describe and discuss self-penalization as a phenomenon. In contrast to a
method which can be improved, we do not aim to improve but to understand the more or less
pronounced observed effect of self-penalization.

6.2. Static Compliance Mechanism Design

6.2.1. Conditions for Gray Results

We consider the force inverter as model problem, see Sec. 3.2.3 with Fig. 3.8. The objective
function is

Jmd= lllTuuu

with the gradient
∂Jmd

∂ρe
= λλλ T

e
∂KKKe

∂ρe
uuue.

Intermediate results in the optimal design require

∂Jmd

∂ρe
= 0 ∧ ρe 6∈ {ρmin;ρmax}. (6.1)
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6. Self-Penalization

Due to the linear design variable, the necessary condition for gray materialρe 6∈ {ρmin;ρmax}
can also be written as

〈λλλ e,
∂KKKe

∂ρe
uuue〉 = 0

〈B λλλe, [ccc]Buuue〉 = 0

〈SSSλλλ e
, [ccc]SSSuuue〉 = 0

〈SSSλλλ e
,σσσuuue〉 = 0,

whereλλλ e anduuue are interchangeable. This is the case when one of the following conditions
holds

‖uuue‖ = 0, (6.2)

‖λλλ e‖ = 0, (6.3)

‖SSSuuue‖ = 0, (6.4)

‖SSSλλλ e
‖ = 0, (6.5)

SSSλλλ e
⊥ σσσuuue for ‖SSSλλλ e

‖> 0 and‖σσσuuue‖> 0. (6.6)

(6.2) and (6.3) clearly imply (6.4) and (6.5), whereas the strain can be zero also by a rigid
displacement. (6.6) shall express the configuration of nonzero strain orthogonal to a nonzero
stress. Note thatSSSλλλ e

⊥ σσσuuue is equivalent toSSSuuue ⊥ σσσ λλλ e
but notSSSλλλ e

⊥ SSSuuue, as[ccc] is no diagonal
matrix. (6.6) shall express the case for non-zero vectors.

6.2.2. Numerical Experiments

The numerical experiment has 4 m2, force and adjoint pseudo load are 1 N. The material has a
Young’s modulus of 1 Pa and Poisson’s ratio 0.3. The nodes forthe forward and adjoint load
have additional stiffening of 50%.

Strong Self-Penalization

By the careful selection ofρmin we obtain strong self penalization minimizingJmd. The result
is obtained forρmin = 0.001 and linear interpolation. It shows almost perfect self-penalization.
In Fig. 6.1a the areas with intermediate densities are marked. The largest area of intermediate
densities are at the right upper and lower free corner. Otherwise only single elements show
small density values. Almost all gray elements have no connection to solid material, their
mechanical effect is therefore negligible.

Figure 6.2a shows the areas with significant negative objective gradient. The areas have
the functions of support, forward and adjoint load points and bars. Stronger material would
improve the objective function. Without volume restriction all elements with strong negative
gradients are solid.

Figure 6.2b visualizes the elements with significant positive gradient. A smaller lower
bound would improve the mechanism due to the relative highρmin. The peak of the positive
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6.2. Static Compliance Mechanism Design

(a) density (b) forward solution (c) adjoint solution

Figure 6.1.: Self-penalization of a force inverter: (a) optimal design with marked gray areas;
(b) forward solutionKKK uuu= fff ; (c) adjoint solutionKKK λλλ =−lll .

gradient decreases drastically for smaller lower design bounds. Again all elements with strong
positive gradient are void.

The set of design elements with objective gradient close to zero, shown in Fig. 6.2c, is
relatively large. Only a small difference to numerical zeromakes the difference to the areas of
intermediate density marked in Fig. 6.1a by circles and solid or void material.

(a) ∂Jmd
∂ρe

<−0.00001 (b) ∂Jmd
∂ρe

> 0.00001 (c) | ∂Jmd
∂ρe

| ≤ 0.00001

Figure 6.2.: Gradient range∂Jmd
∂ρe

∈ {−0.0073 : 0.0734} for the design in Fig. 6.1: (a) negative
gradient (more material); (b) positive gradient (less material); (c) almost zero
(optimal). The scaling for (a) is ten times the scaling of (b).

The visualization of the forward and adjoint solution in Fig. 6.1b, respectively Fig. 6.1c
shows (rigid) displacement within the design domain. (6.2)and (6.3) are not fulfilled and
therefore not responsible for the gray elements.

The strains‖SSSuuu‖ and‖SSSλλλ‖ are visualized in Fig. 6.3a and Fig. 6.3b, respectively. They are
clearly closely related to the gradient visualization and do indeed explain the gray elements by
rigid body displacement, in the present case actually of theadjoint solution, hence (6.5) and
partially (6.4) holds.
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6. Self-Penalization

It is a difficult task to visualize condition (6.6) in the given interpretation. To distinguish
from (6.5) and (6.4), we removed from the gradient all elements where the norm of the strain/
stress is not larger than 500 times the minimal element norm.We gain a subset of the gradient
which is visualized in absolute values for small numbers only in Fig. 6.3c. The smallest values
are within the two islands of void material, for the chosen parameters (6.6) is not responsible
for gray elements.

(a) strain‖SSSuuue‖ (b) strain‖SSSλλλe
‖ (c) selectedSSSλλλe

⊥ σσσuuue

Figure 6.3.: The strains of the forward and adjoint solutions in Fig. 6.1 in the von Mises norm.
(c) visualizes small gradients (similar to Fig. 6.2c) excluding the regions of small
strains.

Too Small Lower Bound

ρmin for the linear interpolation must not be too small (at the forward and adjoint force nodes),
otherwise the optimizer converges to a local minimum with zero objective value and zero gra-
dient due touuu andλλλ almost everywhere arbitrary small. Figure 6.4a shows how the optimizer
removes the material at the force and adjoint point and sets full material at the support. The
element displacement‖uuue‖ and adjoint solution‖λλλ e‖ is very small for all non-void elements.
Figure 6.4a visualizes the forward solution. The adjoint solution is almost mirrored. Figure
6.4b indicates that‖SSSuuue‖ and‖SSSλλλ e

‖ are numerical zero for non-void element. Here the strain
of the adjoint solution is shown. The forward strain is againin principle mirrored. Figure
6.4c shows the elements with a gradient value close to zero coinciding with the elements in
Fig. 6.4a where the designs stays at the initial designρ = 0.5.

Nonlinear Interpolation

The above local minimum can be overcome by increasingρmin. However, through a nonlinear
interpolation the physical lower bound can be decreased. This is surprising as the nonlinear
interpolation has no physical effect. Numerically the gradient becomes smaller with respect
to the objective function, but this does not explain the effect of not being locked in the local
minimum.

We choose the standard power (3.16) law as nonlinear interpolation function. In Fig. 6.5 we
study the objective value and grayness depending on the power parameterp andρmin chosen
implicitly such thatρ p

min is comparable.
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6.2. Static Compliance Mechanism Design

(a) design and solutionuuu (b) strain‖λλλe‖ (c) | ∂Jmd
∂ρe

| ≤ 1 ·10−10

Figure 6.4.: The force inverter problem fails with a too small ρmin = 1 · 10−4. SNOPT and
SCPIP converge to a local minimum. (a): design and forward solution; (b) visual-
ization of adjoint strain with logarithmic scaling; (c) elements with close to zero
gradient.

In principle the effects are similar for SCPIP and SNOPT. However the results for SNOPT
with very tight conditions of 1·10−12 for the optimality tolerance are more robust.

Forρ p
min not small enough, the performance of the optimized design isclearly weak but im-

proves reliably for smallerρ p
min. There is a rather sharp bound as function ofp andρ p

min where
we observe bifurcation. The same bifurcation can be observed in the measured grayness in
Fig. 6.5b. Here we have approximately either very strong self-penalization or almost maximal
grayness.
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Figure 6.5.: The result of 2400 unconstrained force inverter optimization problems with non-
linear design interpolation functionρ p, varying the exponentp andρmin: (a) the
objective value is visualized, with smaller values being better; (b) the obtained
grayness shows very strong self-penalization for suitablep andρmin.
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6. Self-Penalization

6.3. Elastic Wave Guiding

We consider dynamic elastic topology optimization, also known as wave guiding, see
Sec. 3.2.4. The objective function is

Ju = uuuTLLLuuu∗.

6.3.1. Pamping

Consider some of the rare reports of dynamic unconstrained topology optimization resulting
in black and white results, e.g. Sigmund and Jensen [2003] and Sigmund [2007] for elas-
ticity, Jensen and Sigmund [2005] for electromagnetic or D¨uhring et al. [2008] for acoustic
topology optimization. Strictly speaking, the afore mentioned publications do not demon-
strate self-penalization as artificial mass proportional damping has been added to the problem
formulations after the first reference. In Jensen and Sigmund [2005] the appropriate method,
pamping, is defined. It gives an artificial element damping part basedon the solid element
mass matrix

C̃CC
art
e (ρe,q) = q ρe(1−ρe) MMM0 (6.7)

to be added to the local element matrix. By this formulation,gray material is actually pe-
nalized by representing dissipative material. Where the standard SIMP penalization becomes
active in liaison with an additional resource constraint, for pamping an appropriate objective
function is sufficient.

The pamping parameterq is generally chosen to be constant. As the pamping vanishes for
final black and white designs, no discussion of the physical validity is necessary.

Partially in contrast to the references, we apply pamping inaddition to the standard material
damping and based on the physical mass design.

6.3.2. Conditions for Gray Results

For simplicity of notation we assume an unfiltered linear design variable, additionally the
element index is skipped in the following. The gradient ofJu is given by (3.36) as

∂Ju

∂ρ
= 2 Re

{
λλλ T ∂ S̃SS

∂ρ
uuu

}
.

This can also be written as

∂Ju

∂ρ
= 2

(
λλλ T

R
∂ S̃SSR

∂ρ
uuuR−λλλ T

R
∂ S̃SSI

∂ρ
uuuI −λλλ T

I
∂ S̃SSR

∂ρ
uuuI −λλλ T

I
∂ S̃SSI

∂ρ
uuuR

)
.

With the complex Rayleigh damped system matrix (2.25)

S̃SS = K̃KK + j ω C̃CC−ω2M̃MM

= (1+ j ω αK)K̃KK +(j ω αM −ω2)M̃MM
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6.3. Elastic Wave Guiding

and the addition of pamping (6.7) the system becomes

S̃SS = K̃KK + j ω
(

αK K̃KK+αM M̃MM+C̃CC
art)−ω2M̃MM

= ρKKK0+ j ω (αK ρ KKK +(αM +q(1−ρ))ρ MMM0)−ω2 ρMMM.

The necessary condition for intermediate material in the optimal design for the unconstrained
problem is the same as for the static case (6.1)

∂Ju

∂ρ
= 0 ∧ ρe 6∈ {ρmin;ρmax}. (6.8)

Resolving the gradient gives

∂Ju

∂ρ
=〈B λλλ R, [ccc]BuuuR〉−ω2〈λλλ R,MMM0uuuR〉

−ω αK〈B λλλ R, [ccc]BuuuI〉−ω αM〈λλλ R,MMM0uuuI〉−ω q(1−2ρ)〈λλλR,MMM0uuuI〉
+ 〈B λλλ I, [ccc]BuuuI〉−ω2〈λλλ I,MMM0uuuI〉
−ω αK〈B λλλ I, [ccc]BuuuR〉−ω αM〈λλλ I,MMM0uuuR〉−ω q(1−2ρ)〈λλλ I,MMM0uuuR〉.

(6.9)

Assumptions

Mathematically (6.9) can approach zero for complexuuu = 000 andλλλ = 000 (real and imaginary
parts are both zero). Zero strainsBuuu andB λλλ are not sufficient.

However, based on physical considerations we assume for sufficiently high frequencyuuu 6= 000
andλλλ 6= 000 for the element vectors.

Concentration on a Single Element

Next, we discuss some abstract mathematical considerations based on a single finite element.
ω suitably fixed and sufficient damping is assumed.MMM0 computes according (2.19) and there-
fore depends linearly on the physical material densityρm. From physics we can assumeαK,
αM , [ccc] andρm to be bounded.ρ andq are bounded by definition, then alsouuu andλλλ are
bounded, inducing the strainsBuuu andB λλλ to be bounded, too. Without considering the state
and adjoint equations, there is a set

Gm(q, [ccc],ρm,αK,αM,ρ ,uuu,λλλ ,Buuu,B λλλ )

for which
∂Ju(Gm)

∂ρ
= 0.

We assumeGm to be a closed and compact set. Hence, there are infinitesimalpossible cases
such that (6.8) holds.

For given material parameters[ccc], ρm, αK andαM at a given geometry and boundary con-
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6. Self-Penalization

ditions and arbitraryq an optimal designρρρ is found as

ρρρ = argmaxJu(q),

defininguuu(ρρρ), λλλ (ρρρ), Buuu(ρρρ) andB λλλ (ρρρ) by the forward and adjoint equation. Then, there is
a set

Gq(q,ρ(q),uuu(ρρρ(q)),λλλ(ρρρ(q)),Buuu(ρρρ(q)),B λλλ (ρρρ(q))) ,

for which
∂Ju(Gq)

∂ρ
= 0.

Assuming a unique solution of the optimization problem, we see from (6.9) thatGq contains
at maximum a single combination within some feasible boundsfor q.

Global System

Gq contains a pamping parameterq such that a specific local element has zero gradient. That
means for the global system that there exists a set

Qz =

{
q ∈ R :

∂Ju(q)
∂ρe

= 0

}

with all q where the local gradient is zero for at least one elemente. (6.9) is fulfilled by
Qq ⊆ Qz, hence for any

q∈ R\Qq

we have a black and white design.

Pamping

Pamping is physically motivated by dissipation. This effect is clearly not seen in the algebraic
description (6.9). However the tuning property is reflected.

6.3.3. Numerical Experiments

The Model

Our model is similar to the wave guiding benchmark in Sigmund[2007] and the wave guiding
example in Fig. 3.12a. We have a squared regionΩPML of edge size 1.5 m. The actual design
domainΩm of 1 m× 1 m is centered. The domains do not overlap. The left edge of the design
domain is subject to forced harmonic displacement in thex-direction, they-direction is fixed,
seeΓex in Fig. 3.12a. As in Sigmund [2007],Γopt is the center node of the side opposite to
Γex. Ωm is discretized by 80×80 2D finite elements in plain stress formulation.

The isotropic material properties areE = 1 Pa,ν = 0.3 andρm = 1 kg/m3. Instead of bi-
material optimization we setρmin = 0.01. The excitation frequency is 1 Hz. See the examples
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6.3. Elastic Wave Guiding

for the specific damping parameters. A standard density filter with radius 2.5 times the element
edge length is applied.

Variation of Rayleigh Damping Parameters

In a first numerical experiment we omit pamping (q=0) and vary the stiffness proportional
damping parameterαK and the mass proportional parameterαM. The response for initial
configuration withρ = 0.5 is shown in Fig. 6.6a.

For the given parameters and an assumed loss factor tanδ = 0.05αK computes as 0.04 and
αM as 1.6, see Kaltenbacher [2007]. However, to improve numerical stability the damping
parameters within this study are chosen unphysical large.

For the given parameters, the dense positive definite element stiffness matrix has coefficients
in the range of−0.01≤ ki j ≤ 0.5. The sparse positive definite mass matrix has coefficients in
the range of 0.0001≤ mi j ≤ 0.001. This explains the different scaling in the effects ofαK and
αM .

We start the discussion with the response of the homogeneousplate. WhenαK is varied, a
minimum inJu can be observed close toαK = 0.4. LargerαK lead to even higher objective
values of the homogeneous design. For largerαM the objective value decreases, which is in
conformance with the motivation of pamping.
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Figure 6.6.: Without pamping (q= 0) we perform for 1 Hz several wave guiding optimization
problems with varying Rayleigh damping parameters.

The obtained objective values for the set of various dampingparameters are shown Fig. 6.6b.
The same observations with respect toαK andαM as for the homogeneous plate can be made.
However for decreasing objective values, the grayness of the solution can increase also, which
can be best seen in Fig. 6.7c and Fig. 6.9a whereαM is increased from 0.5 to 28.8 for constant
αK = 4.9. This is in contradiction to the motivation of pamping.

Pamping

To study the effect of pamping we consider the results forαK = 4.9. For increasingαM the
optimized objective function decays, see Fig. 6.8a, while the grayness increases, see Fig. 6.8b.
The result forαM = 28.8 is selected as a reference example, see Fig. 6.9a. Based on this
result pamping is added. (6.7) shows that maximal pamping occurs forρ = 0.5 such that for
q= 4 the additional mass damping corresponds toαM + 1. The axis forq in Fig. 6.8 is scaled
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6. Self-Penalization

(a) αM = 0.5, αK = 0.0 (b) αM = 0.5, αK = 0.4 (c) αM = 0.5, αK = 4.9

Figure 6.7.: Optimized topologies as samples from the optimizations in Fig. 6.6b

accordingly. However, for a pure black and white design an arbitrary pampingq has no effect
on damping (αK = 4.9,αM = 28.8).
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Figure 6.8.: From Fig. 6.6 data forαK = 4.9 is extracted. Against the variation ofαM the
results for the optimization based onαM = 28.8 with varying pamping is shown.
See Fig. 6.9

For the selected example, the objective function in Fig. 6.8a decreases for increasingq
with the physical grayness quickly dropping in Fig. 6.8b. For q ≥ 10 the grayness is rather
small. However it cannot reach zero due to the density filter.The objective function decays
more slowly but does not become constant. Comparing the obtained design with pamping in
Fig. 6.9b against the design without pamping in Fig. 6.9a is reminding of a typical variable
thickness sheet solution against a SIMP design.

In Fig. 6.6c we see that for some damping parameters a gray solution is optimal. For other
parameters a black and white design is optimal. Self-penalization only occurs in the latter case
.
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(a) no pamping (b) pamping withq= 7

Figure 6.9.: The original problem and a selected pamping result from Fig. 6.8.αK = 4.9 and
αM = 28.8.

6.4. Piezoelectric Self-Penalization by Balancing

Counteracting Material Effects

For static piezoelectric problems we can find a specific argumentation for self-penalization.
The following section has been published in Wein et al. [2011]. We restrict ourselves to the
maximization of the physical variables by (4.12),

Jst
u = uuuT lllu andJst

φ = φφφT lll φ ,

to measure the inverse piezoelectric effect (actuator mode), or direct piezoelectric effect (sen-
sor mode).

When we vary the pseudo density from void to full material, itis clear that the system
depicted in Fig. 4.1 becomes stiffer with higher pseudo density. Hence counteracting an ac-
tuator application. For a sensor application the material law (2.31) tells us that high stiffness,
which means low bending/strain, results in low piezoelectric coupling and thus in a small sen-
sor effect. On the other hand it is clear for the piezoelectric coupling contribution that there
is no actuator or sensor effect at all for void material. Hence, lower or higher pseudo den-
sity have contrary effects and it is indeed the combination of these effects which results in
self-penalization as will be shown within this section.

6.4.1. Gedankenexperiment

We perform an unphysical gedankenexperiment. Consider thetwo plate system in Fig. 4.1
where each layer is discretized by finite elements. For the piezoelectric layer we reduce the
vector of pseudo densitiesρρρ to a scalar valueρ , effectively treating every element contribution
with the same factorρe= ρ . Furthermore,ρ is applied separately to the piezoelectric material
properties, for example[ c̃ccE

e ] = ρ [cccE], [ ẽeee] = [eee] and [ ε̃εεS
e] = [εεεS] to examine the stiffness

contribution or[ c̃ccE
e ] = [cccE], [ ẽeee] = ρ [eee] and[ ε̃εεS

e] = [εεεS] to examine the piezoelectric coupling.
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(a) Actuator mode with electric excitation by 30 V
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(b) Sensor mode with pressure excitation by 1 N/m2

Figure 6.10.: In the sense of a gedankenexperiment, the design domainΩp is modeled by a
single design variableρ which is varied fromρmin to ρlarge> ρmax. ρ is applied
separately to[cccE], [εεεS], [eee].

Actor

Fig. 6.10a visualizes the gedankenexperiment for the static actor. The displacement decreases
with increasing pseudo density contribution to[cccE], denoted bymechdue to higher stiffness.
The piezoelectric coupling effect, denoted bycouplingbehaves linearly and the electrostatic
contribution, denoted byelec, has no effect. Applying the pseudo density concurrently toall
piezoelectric material properties, we get a superpositionof the effects, which is clearly not a
mere superposition of the graphs. This is denoted bymech+coupling+elec. Note that coupling
dominates stiffening in this example.

Sensor

For the sensor case, depicted in Fig. 6.10b, all material properties contribute nonlinearly. The
stiffness contribution is not even monotonous with a maximum displacement for pseudo den-
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6.4. Piezoelectric Self-Penalization by Balancing Counteracting Material Effects

sity around 0.4. The electrostatic contribution dominateshere, especially at the lower limit of
the pseudo density, due to maximal bending.

6.4.2. Unphysical Design Bounds

Considering the range of feasible pseudo density betweenρmin and 1 in Fig. 6.10a and
Fig. 6.10b the best response for the concurrent applicationof the design variable occurs at the
bounds of the pseudo density. Hence no grayness appears and we observe self-penalization.
Intermediate optimal density occurs when the balance of thesuperposition of the counteracting
material effects does not result at the bounds of the pseudo density.
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Figure 6.11.: Sensor and actuator modes for different ratioof plate and piezoelectric layer
thickness applying extremeρ

For the actuator mode, there is no electrostatic contribution. Only a (strictly) monotonous
decreasing displacement for increasingρ and a linearly increasing displacement for the piezo-
electric coupling due to the induced strain. Hence, the superposition of these effects is neces-
sarily monotonous or convex.

The standard system in Fig. 4.1 represents just one combination of possible geometries and
materials. This can be overcome when, again in the sense of a gedankenexperiment, extreme
values for the pseudo density are allowed. This is depicted in Fig. 6.11 for the concurrent appli-
cation ofρ ≫ 1 to all material properties. The response of the actuator mode is indeed convex
and a bounded optimal pseudo densityρmin < ρ∗ < ρmax for a maximal displacement exists.
For the sensor mode, the numerical experiment in Fig. 6.11 shows a strictly monotonous de-
creasing electric potential. Hence, the maximal response corresponds with a minimal pseudo
density which is unbounded.

6.4.3. Generalization

Generalizing from the setup of the gedankenexperiment witha single design variable to multi-
ple design variables, we expect vanishing piezoelectric material for the static electric potential
Jst

φ as the optimum is unbounded. For the mechanical displacement Jst
u grayness might appear

as the optimum is bounded. Both effects are numerically confirmed.
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6. Self-Penalization

6.5. Discussion

The discussion of self-penalization is a completely new field with only very few interpreta-
tions in the literature. To this end we have examined only selected examples to investigate the
occurrence and possible reasoning for self-penalization.A very important restriction is the ab-
sence of any constraint function beside box constraints. Mesh dependency was not considered
but the experiments suggest sufficient mesh-independency for many problems.

6.5.1. Feature Size Control in the Context of 0-1 Designs

Feature size control is beneficial or even crucial for many practical applications. The most
efficient regularization approaches, density filter and slope constraints, have only imprecise
feature size control, yet are sufficient for many applications. However, they enforce interme-
diate design at the feature boundaries.

A rigorous feature size control is the MOLE constraint in Sec. A.3.5 and our similar, yet
more flexible oscillation constraint in Sec. A.3.6. They allow perfect black and white solu-
tions. However they suffer from the numerical effort. Continuation and globalization requires
the careful selection of additional parameters. Both methods result only in black and white so-
lutions in the presence of penalization, either self-penalization or classical penalization meth-
ods.

The Heaviside filters in Sec. A.3.4 is the only known approachresulting in black and white
designs without penalization. We have successfully applied the modified Heaviside filter in
Fig. 5.19. However, the Heaviside filter can also not guarantee a black and white design for
any numerical feasible continuation parameterβ !

Indeed there is no method known which guarantees the black and white solution of a mixed
integer problem by the far cheaper continuation of the ersatz material approach.

6.5.2. Interpolation

Surprising for an unconstrained problem is the dependency on the linear, or nonlinear inter-
polation of the design in the force inverter example in Fig. 6.5. We cannot explain the effect
and it might be due the implementation of the optimizer. The strong dependency on the design
interpolation can be found using SNOPT and SCPIP but in different form.

6.5.3. Kind of Grayness

For cases of grayness in the optimal solution, we can find the following explanations

Negligible Relevance

For the static force inverter example, grayness occurs in the free corners, see Fig. 6.1a. As
these regions do not contribute to the mechanism in the forward and adjoint solution, but
show rigid displacement, the design is actually arbitrary and in the example close to the initial
design ofρ = 0.5. Gray regions within void material are also negligible.
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Such gray design elements can be removed by a threshold mapping, where a high bound is
advantageous to avoid unconnected material resulting in numerical difficulties.

Changing the optimization problem shall easily remove thiskind of grayness. This can be
done by adding a volume minimization via a small penalty factor to the optimization prob-
lem or taking the obtained objective value as constraint andminimizing the volume. As no
topological change is expected, this can be done as a post-process optimization problem.

Beneficial Pseudo Material - Damping

The dynamic topology optimization results in Fig. 6.7b and Fig. 6.9a show gray optimal re-
sults. The numerical experiment varying the damping parameters in Fig. 6.6 reveals that the
grayness is a function of the material parameters. The physical effects interacting are stiffness,
mass and damping. Comparing with a pamping penalized problem where only the damping
is modified suggests the damping properties of intermediatematerial to be crucial for optimal
gray results.

Beneficial Pseudo Material - Springs

In the dynamic energy harvester problem, gray material withthe interpretation of elastic
springs are found in Fig. 5.15 and are more prominent in the stress constrained solutions
Fig. 5.16 and Fig. 5.18.

For these examples threshold filtering has a strong effect onthe dynamic response. The ap-
plication of a (modified) Heaviside filter (A.4) removed the strings but a significantly different
topology was obtained.

6.5.4. Occurrence of Self-Penalization

The majority of numerical optimization examples within this thesis are unconstrained prob-
lems with linear interpolation. For most problems we observe strong self-penalization!

A general observation is that better performing optimization results come along with
stronger self-penalization. Better results are achieved by modifying the model parameters.
Examples are better initial designs in the piezoelectric loudspeaker optimization, Fig. 4.32 in
comparison to Fig. 4.25, the improved objective value for the energy harvester with black-and
white Heaviside filter, Fig. 5.19, in comparison to the density filtered design in Fig. 5.18 and
the correlation of higher grayness and lower objective value in Fig. 6.6.

6.5.5. Explanation of Self-Penalization

In the following, we summarize explanation approaches for different kinds of optimization
problems. The arguments are essentially heuristic and holdat an element level. They are
based on the requirement of a zero element gradient to be necessary for gray material.
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6. Self-Penalization

Static Elasticity

The arguments for the static force inverter might hold for most adjoint based static elastic
problems. From a mathematical point of view, gray material on the optimal design is unlikely
as the most likely condition is no or rigid element displacement of the forward or adjoint
solution.

Dynamic Elasticity

For dynamic elastic problems we cannot give an explanation for the observation of self-
penalization. The necessary mathematical condition is rather complex. Depending on the
model parameters, especially the damping parameters, intermediate material seems to be in-
deed optimal in some cases.

It might be worth differentiating the kinds of grayness and considering realizing the spring
type as real elastic spring.

For band gap problems, it is stated in Sigmund and Jensen [2003]

The reason for this [no need for penalization] is believed tooriginate in the nature
of the band-gap phenomenon, where large contrasts between the involved material
phases is favoured.

Static Piezoelectricity

Piezoelectric topology optimization is a multiphysics problem. The design variable acts con-
currently as stiffness, piezoelectric coupling and permittivity. The effects partially counteract
against each other which means there is an optimal balance. When this balance is outside or
close to the design bounds no grayness occurs.

It is likely that this argumentation holds for further multiphysics problems, too.

Dynamic Piezoelectricity

Typical for dynamic piezoelectric topology optimization problems is the strain cancellation
issue. For a plate energy harvester in Rupp et al. [2009] the following explanation is given:

The clear spatial separation of the material distribution can be explained by the
desire to have all regions of piezoelectric material produce as much charge as pos-
sible. As the charge generation depends on the sign of the curvature, the material
domains are clearly separated and the design variables are at their extreme values
yielding the maximum piezoelectric coupling coefficients.

This holds figuratively also for the actuator mode.
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7.1. Conclusions

The objective of this thesis was to use topology optimization on the design of realistic piezo-
electric transducers, starting with a piezoelectric loudspeaker.

7.1.1. Piezoelectric Loudspeaker

In a large part of the piezoelectric topology optimization literature, models consisting solely
of piezoelectric material identical with the design domainare used. The small step of using
realistic models where the fragile piezoelectric materialis attached to elastic material carrying
the mechanical support allows the optimizer full freedom ofthe piezoelectric design domain.

We explained the effect of vanishing piezoelectric material when using mean transduction
as an objective function by analysing mean transduction andinterpretation of the two inde-
pendent load cases as forward and adjoint problem.

The dynamic optimization of our model with respect to maximal displacement challenges
the optimizer by the phenomenon of piezoelectric strain cancellation. By using information
about the modes from an eigenfrequency analysis, we are ableto provide suitable initial de-
signs such that resonating structures can be generated for almost arbitrary excitation frequen-
cies. In this way the optimizer is able to balance structuralresonance and piezoelectric strain
cancellation, which are for most frequencies in contradiction.

Through the use of a fully coupled piezoelectric-mechanical-acoustic model, we show that
a purely structural approximation1 by displacement maximization fails in the sound power
maximization of our model. The reason for this is the acoustic short circuits which are crucial
to be resolved by the model, a finding which is supported by thefailing of a second structural
approximation, the maximization of displaced volume.

Performing acoustic sound power maximization, the acoustic far field approximation is
surpassed by the accurate near field model. Thus arbitrary directivity patterns in the single-
frequency case can be optimized.

7.1.2. Piezoelectric Energy Harvester

The presented topology optimization of a piezoelectric cantilever type energy harvester is the
first time topology optimization has been applied on a realistic model. In contrast to many
parametric optimization approaches based on simplified models, the only assumption for our

1originally proposed for sound minimization in Du and Olhoff[2007b]
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model is linearity. However, the model needs to be designed with care in order to prevent
stress singularities in the piezoelectric layers.

In contrast to the actuator model, the design domain consists not of the piezoelectric layers
but of the elastic beam and mass. This allows the applicationof stress constraints on the critical
piezoelectric material and easy manufacturability. Dynamic stress constraints and piezoelec-
tric stress constraints have not been reported in topology optimization literature before.

The optimal design obtained by the optimizer is a mechanism design, representing a com-
pletely novel design of an cantilevered energy harvester tothe best of our knowledge. Hinges
are to be realized by rigid mechanical hinges, the springs are removed by the application of a
modified Heaviside filter which results in a significant design change.

The obtained gain in electric power compared to the solid structure at resonance is signifi-
cant, with lower peak stress within the piezoelectric layers.

7.1.3. Self-Penalization

Performing the topology optimization problems within thisthesis we observed strong self-
penalization, which means optimal black and white designs without any form of penalization,
additional constraints and a linear design interpolation.Only very few and rather vague reports
and explanations can be found in the literature. Self-penalization is an important phenomenon
as it gives the very best optimal solution we can expect that is based on the original problem.

By the analysis of self-penalization we initiate a new field of research within topology op-
timization, providing some initial non-rigorous steps based on examples in elastic and piezo-
electric topology optimization.

For many unconstrained problems we can indeed expect self-penalization. If the effect is not
sufficient Heaviside filters prove to be useful in obtaining sufficient black and white solutions,
although a rigorous black and white solution cannot be guaranteed.

Common regularization and feature size control introducesgrayness. This is not the case
for rigorous feature size control. We present a local oscillation constraint where the feature
size of solids and voids can be adjusted independently.

7.2. Future Work

A clear but common limitation is the single-frequency optimization of the piezoelectric trans-
ducers. Very challenging and perhaps even impossible is a broad band acoustic loudspeaker
ranging over several resonance frequencies. In the case of the energy harvester, a small fre-
quency range maximization is desirable to increase robustness.

For the piezoelectric energy harvester a setup with additional piezoelectric layers could lead
to a mechanism which excites the stronger 33-direction directly. Furthermore, piezoelectric
electrode design in addition to the elastic beam and mass optimization might further improve
the results.

Beyond scalar pseudo density, or scalar pseudo polarization optimization, we plan to opti-
mize for the local piezoelectric polarization orientation. This includes the orientation of the
transversal isotropic elasticity tensor, the piezoelectric coupling tensor and permittivity tensor.
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A. Appendix

A.1. Adjoint Formulation for Inhomogeneous Dirichlet

Boundary Conditions

We determine the boundary conditions of the adjoint system for piezoelectric problems when
the forward problem is excited by an inhomogeneous Dirichlet boundary condition (2.49).
The calculations are based on the static displacement maximization by (4.12)

J = ûuuT lllu.

Using the ersatz material approach, the global system matrix of system (2.58) is written as
̂̃KKK(ρρρ). Having no explicit right hand size contribution in the formof volume forces or charges,
the state equation is formally given as

̂̃KKK(ρρρ) ûuu= 000,

with ûuu depending only implicit inρρρ . Clearly there is an implicit design dependent contribution
to the right-hand side by the inhomogeneous Dirichlet boundary conditionφl (2.49). Note that
there are different ways to implement the boundary conditions, see Sec. 2.1.3. The adjoint
system is given by (3.28) as

̂̃KKK(ρρρ)λλλ =−lllu.

To answer the question whether the inhomogeneous Dirichletboundary condition from the
state problem stays inhomogeneous, becomes a homogeneous Dirichlet boundary condition or
free variables (homogeneous Neumann boundary condition),we repeat the steps of sensitivity
analysis in Sec. 3.2.2 with the weak formulation. This has been done together with Barbara
Kaltenbacher based on Kaltenbacher et al. [2006].

For the analysis we combine the displacements ofΩm andΩp such that̂uuu= (uuu φφφ)T . We can
write (4.12) with the given definition oflllu in the continuous form as

J =

∫

Γopt

uuuTeee3dΓ,

with eee3 the unit vector inz-direction. Considering the extended objective function

Φ = ûuuT lllu+λλλ T
(

K̃KK ûuu− f̂ff
)
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and choosingλλλ as vector of test functionsλλλ =̂(wwwv)T ∈ H1
B
(Ωm ∪ Ωp)× H1

0,Γ(Ωp), uuu ∈
H1

B
(Ωm∪Ωp) andφ −φlχ ∈ H1

0,Γ(Ωp), we get

Φ =

∫

Γopt

uuuTeee3dΓ+

∫

Ωp

(Bwww)T
(
[cccE]Buuu+[eee]TB̃φ

)
µ(ρ)dΩ

+

∫

Ωm

(Bwww)T [ccc]BuuudΩ+

∫

Ωp

(B̃v)T
(
[eee]Buuu+[εεεS]B̃φ

)
µ(ρ)dΩ.

We now perform the differentiation with respect toρ in directionρρρe. Note the vector notation
opposed to the scalarρe,

∂Φ
∂ρ

T

ρρρe =
∂Φ
∂ρe

= llluT ∂ ûuu
∂ρe

+λλλ T ∂ K̃KK
∂ρe

ûuu−λλλ T ∂ f̂ff
∂ρe

+λλλ TK̃KK
∂ ûuu
∂ρe

.

In weak formulation

∂Φ
∂ρe

=

∫

Γopt

∂uuu
∂ρe

T

eee3dΓ+

∫

Ωm

(Bwww)T [ccc]B
∂uuu
∂ρe

dΩ

+
∫

Ωp

(Bwww)T
(
[cccE]Buuu+[eee]TB̃φ

) ∂ µ(ρ)
∂ρe

ρρρedΩ

+

∫

Ωp

(B̃v)T
(
[eee]Buuu+[εεεS]B̃φ

) ∂ µ(ρ)
∂ρe

ρρρedΩ

+

∫

Ωp

(Bwww)T
(
[cccE]B

∂uuu
∂ρe

+[eee]TB̃
∂φ
∂ρe

)
µ(ρ)dΩ

+
∫

Ωp

(B̃v)T
(
[eee]B

∂uuu
∂ρe

+[εεεS]B̃
∂φ
∂ρe

)
µ(ρ)dΩ

with ∂uuu
∂ρe

∈ H1
B
(Ωm∪Ωp) and ∂φ−φl χ

∂ρe
= ∂φ

∂ρe

∂φl χ
∂ρe

= ∂φ
∂ρe

∈ H1
0,Γ(Ωp).

In the algebraic form we eliminate∂uuu
∂ρe

(llluT +λλλ TK̂KK) by solving the adjoint equation forλλλ in

K̂KK λλλ = −lllu. Having symmetric material tensors, where the tensor of piezoelectric moduli is
symmetric byei jk = ejik , we have symmetric bilinear forms. Therewith, we rearrangethe
terms corresponding to the adjoint equation

. . .=
∫

Γopt

∂uuu
∂ρe

T

eee3dΓ+
∫

Ωp

(B
∂uuu
∂ρe

)T
(
[cccE]Bwww+[eee]TB̃v

)
µ(ρ)dΩ

+
∫

Ωm

(B
∂uuu
∂ρe

)T [ccc]BwwwdΩ+
∫

Ωp

(B̃
∂φ
∂ρe

)T
(
[eee]Bwww+[εεεS]B̃v

)
µ(ρ)dΩ

+

∫

Ωp

(Bwww)T
(
[cccE]Buuu+[eee]TB̃φ

) ∂ µ(ρ)
∂ρe

ρρρedΩ

+
∫

Ωp

(B̃v)T
(
[eee]Buuu+[εεεS]B̃φ

) ∂ µ(ρ)
∂ρe

ρρρedΩ.
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The weak formulation to findλλλ =̂(wwwv)T in K̂KK λλλ − lllu = 000 is

0=

∫

Γopt

ωωωTeee3dΓ+

∫

Ωp

(BωωωT
(
[cccE]Bwww+[eee]TB̃v

)
µ(ρ)dΩ

+
∫

Ωm

(Bωωω)T [ccc]BwwwdΩ+
∫

Ωp

(B̃θ)T
(
[eee]Bwww+[εεεS]B̃v

)
µ(ρ)dΩ

for all test functions(ωωω θ)T ∈H1
B
(Ωm∪Ωp)×H1

0,Γ(Ωp). In the strong formulation, this reads:

Find wwwp : Ω̄p →R3, wwwm : Ω̄m → R3, v : Ω̄p →R such that the PDEs

B
T
(
[cccE]Bwwwp+[eee]TB̃v

)
µ(ρ) = 0 in Ωp,

B̃
T
(
[eee]Bwwwp− [εεεS]B̃v

)
µ(ρ) = 0 in Ωp,

B
T [ccc]Bwwwm = 0 in Ωm

and the boundary conditions

wwwm = 000 onΓs,

nnnT
p σσσp = 000 on∂Ωp\Γgnd,

nnnT
mσσσm = 000 on∂Ωm\ (Γgnd∪Γopt),

nnnT
p σσσp =−nnnT

mσσσm onΓgnd,

nnnT
mσσσm =−eee3 onΓopt,

v= 0 onΓgnd∪Γhot,

nnnT
p DDD = 0 on∂Ωp\ (Γhot∪Γgnd)

are satisfied.

We can conclude that the inhomogeneous Dirichlet boundary condition (2.49) of the state
equation becomes a homogeneous Dirichlet boundary condition in the adjoint equation.

A.2. Optimizers

A characteristic of topology optimization problems is thatthey are usually of large scale with
respect to the number of design variablesN and the size of the state problem. The compu-
tation of the Hessian would require solving forN systems, therefore first order optimization
algorithms are most commonly used for solving topology optimization problems.

Another criteria arises when the sensitivity filter (3.23) is applied, which replaces the math-
ematical gradient by an average. This is one of the most commonly applied regularization
methods within the SIMP community. Hence, the optimizer needs to be robust against the
disturbed gradient.
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A.2.1. Optimality Criteria Method

TheOptimality Criteria method, or OCM, is a heuristic which is applied especially for com-
pliance minimization problems. Sigmund [2001] contains anOCM implementation within the
99 lines code.

With the compliance formulation
Jmech= uuuTK̃KK uuu,

the mechanical energy is minimized, see (3.19) . . . (3.22). The gradient (3.30)

∂Jmech

∂ρe
=−uuuT

e
∂ K̃KKe

∂ρe
uuue

gives the (negative) local mechanical energy per element, specifically the strain energy density.

With ∂ K̃KKe
∂ρe

symmetric positive definite,

∂Jmech

∂ρe
≤ 0 for all e= 1, . . . ,N.

This means more material is desired everywhere. Due to the resource constraint (3.21)

N

∑
e=1

ρe≤ N∗
V/N,

the idea is to take material where it has the least effect and place it where it is most desired
such that the volume constraint is always fulfilled. In the following, we use the notation in
Bendsøe and Sigmund [2003]. At iterationk for

B(k)
e =

1

Λ(k)

∂J

∂ρ(k)
e

,

the Lagrange multiplierΛ(k) for the volume constraint is found such that the volume constraint
is active (acts as equality constraint). The principal update scheme is

ρ(k+1)
e = ρ(k)

e (B(k)
e )

η
=

ρ(k)
e

Λ(k)

∂J

∂ρ(k)
e

,

which lacks control of the feasible ranges forρ . Adding box constraints, move limit and
damping (to improve convergence), the common explicit update scheme reads as

ρ(k+1)
e =





max{(1−ζ )ρ(k)
e ,ρmin} if ρ(k)

e (B(k)
e )

η
≤ max{(1−η)ρ(k)

e ,ρmin},

min{(1+ζ )ρ(k)
e ,1} if min{(1+ζ )ρ(k)

e ,1} ≤ ρ(k)
e (B(k)

e )
η
,

ρ(k)
e (B(k)

e )
η

else,
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with step widthζ (e.g. 0.2) and damping parameterη (e.g. 0.5). The max and min functions
ensure the box constraints (3.22)ρe∈ {ρmin;1}. Finding the Lagrange multiplierΛ as a func-
tion of the smooth and strictly monotonous volume function is a one dimensional optimization
problem, which can be solved by the bisection method.
The efficiency of OCM isseparability, eachρe is updated independently with a global scaling
by Λ. In fact the convergence rate does not depend on the number ofdesign variables. Note
that no function values are evaluated and no line search is performed. The volume constraint
is fulfilled in each iteration exactly. It is advantageous tostart with a feasible design. More
details including references are given in Bendsøe and Sigmund [2003].

A.2.2. The Method of Moving Asymptotes

The standard optimization method within topology optimization is theMethod of Moving
Asymptotes - MMA, presented in Svanberg [1987]. Sequential Linear Programming (SLP),
Sequential Quadratic Programming (SQP), Convex Linearization (CONLIN) and MMA share
the principle idea of constructing at any iteration a convexsubproblem based on first order gra-
dient information only. The subproblem is to be solved by an additional optimization method.
In Christensen and Klarbring [2008] all mentioned methods are introduced.
The MMA method uses lower and upper constants

Le < ρe<Ue for all e= 1, . . . ,N

to construct convex subproblems. Letf be any of objective and constraint functions. Now,
at iteratek the design vectorρρρ(k) is known and the function valuef (ρρρ(k)) and the gradients
∂ f (ρρρ (k))

∂ρe
can be computed.L(k)

e andU (k)
e shall be given. The subproblemf (k)(ρρρ) is given in

Svanberg [1987] as

f (k)(ρρρ) = r(k)+
N

∑
e=1

(
p(k)e

U (k)
e −ρe

+
q(k)e

ρe−L(k)
e

)
,

where the properties are to be computed as

p(k)e =





(U (k)
e −ρ(k)

e )2 ∂ f (ρρρ(k))

∂ρe
if

∂ f (ρρρ (k))

∂ρe
> 0,

0 if
∂ f (ρρρ (k))

∂ρe
≤ 0,

q(k)e =





0 if
∂ f (ρρρ (k))

∂ρe
≥ 0,

− (ρ(k)
e −L(k)

e )2 ∂ f (ρρρ (k))

∂ρe
if

∂ f (ρρρ (k))

∂ρe
< 0,

r(k) = f (ρρρ(k))−
N

∑
e=1

(
p(k)e

U (k)
e −ρ(k)

e

+
q(k)e

ρ(k)
e −L(k)

e

)
.
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As eitherp(k)e or q(k)e is zero, the derivative off (k) is

∂ f (k)(ρρρ(k))

∂ρe
=− p(k)e

(U (k)
e −ρe)2

− q(k)e

(ρe−L(k)
e )2

and the second derivative is

∂ 2 f (k)(ρρρ(k))

∂ρ2
e

=
2p(k)e

(U (k)
e −ρe)3

+
2q(k)e

(ρe−L(k)
e )3

.

Hence, the Hessian is the diagonal matrix

∂ 2 f (k)(ρρρ(k))

∂ρ2
e

=





2 ∂ f (ρρρ(k))
∂ρe

U (k)
e −ρ(k)

e

if
∂ f (ρρρ (k))

∂ρe
> 0,

−
2 ∂ f (ρρρ (k))

∂ρe

ρ(k)
e −L(k)

e

if
∂ f (ρρρ (k))

∂ρe
< 0,

replacingp(k)e and q(k)e . In Fig. A.1 the principle of the convex subproblem is illustrated.
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Figure A.1.: The convex subproblems of the MMA method are based onvertical asymptotes.
p

U−ρ is plotted forU ∈ {1.0,1.2,2.0}. The scalingp is arbitrary chosen.

For special asymptotes, MMA reformulates as a classical sequential programming method.
Also the equivalence with OCM can be shown, which provides the latter, actually a heuristic
method, with the mathematical background of MMA.

However, the efficiency of MMA implementations lies in the proper selection of asymptotes

L(k)
e andU (k)

e per iteration, thereforemovingasymptotes. Moving the asymptotes closer to
the current iteration point stabilizes the solutions of theouter problem (prevents oscillation).
Moving them further away relaxes the process to speed it up. The actual strategies are based
on heuristics which also consider the history of the asymptotes.
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MMA shares with OCM the feature to be robust enough to handle sensitivity filtering and
the feasibility of every iteration (constraints are fulfilled). Despite being considered as a state
of the art optimizer for structural optimization, it is not well known in other optimization
communities.

There are currently three known MMA implementations available free of charge to the
scientific community. A MATLAB and a FORTRAN code from Krister Svanberg and SCPIP
from Christian Zillober. SCPIP is a FORTRAN implementationtargeted towards very large
scaled problems. SCPIP has a globalized mode, based on line search and uses the Interior
Point method to solve the subproblems, see Zillober [2002].Our main numerical results
are obtained using SCPIP and we grateful acknowledge the opportunity to use the code. We
provide an object orientated C++ interface for the FORTRAN code which mimics the interface
of IPOPT, see Wächter and Biegler [2006], a popular open source second order optimizer. The
interface is called C++SCPIP and published in Wein [2007] asopen source with more than
100 downloads.

A.2.3. SNOPT

A drawback of all mentioned MMA implementations is that theyperform well for a large
number of design variables but not for a large number of constraints. SCPIP can handle some
hundred constraints only. In Sec. A.3 however, constraintsin the order of the design variables
are presented.

SNOPT - Sparse Nonlinear Optimizeris a commercial SQP solver targeted towards large
non-linear optimization problems with a high number of constraints, see Gill et al. [2002].
While only first order gradients from the original problem are required, SNOPT works with a
limited-memory quasi-Newton approximation to the Hessianof the Lagrangian, adding addi-
tional information to the problem.

Linear constraints (with a constant derivative) are treated more efficiently than general non-
linear constraints but the real advantage is the robustnesswith respect to unfeasible subprob-
lems due to a rich set of implemented methods, triggered by heuristics. The designs of inter-
mediate iterations are not necessarily feasible. On difficult problems SNOPT often converges
to better local optima than SCPIP and shows less symmetry in the design.

A.3. Regularization in Topology Optimization

As introduced in Sec. 3.2.1, there exists a solution for the compliance problem as variable
thickness sheet problem. The corresponding SIMP topology optimization problem, is how-
ever, unfeasible and thus requires regularization. Note that any regularized problem is an
ersatz problem and it is worth comparing the solution against the original solution.

The principle solution is to either directly or indirectly prevent too high oscillation of the
design to obtain checkerboard-free and mesh-independent designs of penalized topology op-
timization problem. See Sigmund and Petersson [1998] and Bendsøe and Sigmund [2003] for
an overview.
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One of the first regularization approaches wasperimeter control, see Ambrosio and But-
tazzo [1993] and Haber et al. [1996]. It controls the total variation as

gperim(ρρρ) =
∫

Ω
|∇ρ |dxxx,

but it is difficult in practice, as the choice of a suitable parameter is highly problem dependent.
Feature size control, which is the elimination of too small material features, specifically

holes, is closely related to the general regularization idea. Hence, some regularization meth-
ods show a form of implicit features size control, or the methods are indeed features size
control with the side effect of sufficient regularization ofthe underlying topology optimiza-
tion problem.

In the following a brief selection of important regularization methods is given.

A.3.1. Slope constraints

Slope constraints, presented in Petersson and Sigmund [1998], locally control the design gra-
dient as

gslope(ρ) =
∣∣∣dddT∇ρ(xxx)

∣∣∣≤ cs

along directionsddd in x-, y- andz-direction. The discrete local constraint functions are given as

gslope(ρe, i) = |ρe−ρi | ≤ c,

with ρi being the next neighbor inx-, y- andz-direction. The abs function is best implemented
as two separate constraints

gslope(ρe, i,1) = ρe−ρi −c≤ 0,

gslope(ρe, i,2) = ρi −ρe−c≤ 0.

The constantc bounds the maximal variation of the density. Hence the minimal distance
between void and solid is 1/c elements. The slope constraint is a smoothing regularization
with boundaries having a rim with linear ascent/descent of the design variable, see Fig. A.2
(a). Due to penalization, the rim is smaller in the relevant physical design, see Fig. A.2 (b).

Resolving the abs function as two inequality constraints, the total number of (linear) con-
straints is 2N times the dimension of the problem. This prevents the use of OCM and the
standard MMA implementations. This might be a reason why theslope constraints found al-
most no appeal in the community. Using SNOPT as optimizer, however, even very difficult
optimization problems can be solved, independent on the initial design.

A general globalization strategy forG local inequality constraints is

gglob =
G

∑
i=1

max(0, gi)
p ≤ εglob, (A.1)

where(εglob)p is the sum of all tolerated local constraint violations.εglob = 0 coincides with
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(a) Pseudo density (b) Physical pseudo density

Figure A.2.: Applying the local slope constraint with|ρe− ρe+1| ≤ 0.3 for the x- and y-
direction. The physical volume is 36%.

feasible local constraints. Further parameters arep, e.g. two, and the inequality bound for the
local constraint functionsgi . Globalizing the slope constraints allows the use of MMA solvers
and it shows that even a strong local violation of the slope generally regularizes sufficiently.
Note that slope constraints are purely mathematically motivated. From the user point of view
a design with less blurring is favourable as long as the regularization is sufficient.

A.3.2. Filtering

Sensitivity filters have been introduced in Sec. 3.2.1. Theywere the first practical regular-
ization and are easy to implement with a reference implementation in the 99 lines code in
Sigmund [2001]. Hence, they are widely applied. Also, variations exist which result in less
blurring, see Sigmund [2007], which contains an comprehensive overview of filters. Never-
theless, we restrict ourselves to mathematically rigorousregularization methods, which are
with respect to filters,density filters, introduced in Bruns and Tortorelli [2001] and proven to
exhibit a unique solution in Bourdin [2001]. The density, which is to be penalized and applied
to the state equation, is an averaged design variable with neighborhood elementsNe defined
by radiusR, a linear weightingw(xxxi) = max(0,R−|xxxe−xxxi |) and given as

F(ρe) = ρe=
∑Ne

i=1w(xxxi)ρi

∑Ne
i=1w(xxxi)

. (A.2)

An interpolation functionµ, e.g. power law or RAMP, is then applied to the averaged density
asµ(ρ) in the state problem

K̃KK(µ(ρρρ))uuu(µ(ρρρ)) = fff .

Hence, the derivative of any design dependent objective or constraint functionf (µ(ρρρ)) needs
to include the derivative of the filter as

∂ f
∂ρe

=
Ne

∑
i=1

∂ f
∂ρi

∂ρi

∂ρe
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with
∂ρi

∂ρe
=

w(xxxe)

∑Ni
j=1w(xxx j)

.

(a) Pseudo density (b) Physical pseudo density

Figure A.3.: Applying a density filter with a radius of 1.7 times the element edge. The physical
design (b) includes filtering and penalization. The physical volume is 38%.

A.3.3. Post Processing of the Physical Design

The pure pseudo density in Fig. A.3 (a) is a very appealing design. It is almost perfectly
black and white. Also the penalized density matches the volume constraint well. However, the
physical design with respect to the state problem and evaluation of the cost function in Fig. A.3
(b) differs significantly due to filtering. Generally a blackand white design is necessary as a
final result which contradicts with the ’smearing’ effect ofdensity filters, standard sensitivity
filters and slope constraints.

The simplest post-processing method to gain a black and white solution is to apply a thresh-
old filter

χ(ρρρ) =
{

1 if ρ ≥ ρth
ρmin if ρ < ρth,

with threshold valueρth. Applied on the density filter result Fig. A.3 (b), a design similar to
Fig. A.3 (a) can be obtained. Some objective functions however, e.g. hinge based mechanisms
or dynamic problems, are very sensitive with respect to a modification of the design.

The possibly most sophisticated post-processing approachis to perform shape optimization
for the same objective function starting with the topology optimization result. However, the
complexity is significantly higher than the initial topology optimization.

Two remedies to avoid the post-processing problem are to apply a non-smoothing regular-
ization method, such that the penalization of the SIMP modelresults in a black and white
solution or to apply so called ’black and white filters’. Efficient grayness constraints have not
been found yet.
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A.3.4. Black and White Density Filters

Heaviside Filter

The first black and white density filter was published in Guestet al. [2004]. The idea is to
set an element to void only if all elements in a neighborhood are void. If, however, a single
element in the neighborhood is a material element, the element is set to full material. In the
neighborhood region a minimum material feature size is alsodefined, as no smaller region can
contain full material. The method regularizes the SIMP problem, although no proof is given.

The realisation is based on aHeavisidefunction as

H∞(ρe) =

{
1 if ρe> ρmin
ρmin if ρe= ρmin,

where a possible continuation form of the Heaviside function is

Hβ (ρe) = 1−e−β ρe+ρee−β , (A.3)

see Fig. A.4 (a). The discrete Heaviside functionH∞ is approached forβ → ∞, the original
density filter is represented byβ = 0. The simple mapping within the rangeρmin, . . . ,1 is
omitted for clarity.

Modified Heaviside Filter

In Sigmund [2007] the complementary function was formulated. The termmodified Heaviside
function, used by Ole Sigmund, became common. The formulation is

H−
∞ (ρe) =

{
1 if ρe = 1
ρmin if ρe < 1,

with the continuation
H−

β (ρe) = e−β (1−ρe)− (1−ρe)e−β . (A.4)

The approximation of the Heaviside functions requires starting with smallβ values to pre-
vent oscillations and local optima. Successive optimization runs with increasingβ . Starting
from the obtained solutions is necessary up to grayness is sufficiently suppressed. The com-
putational cost is therefore magnitudes higher. A further problem is the strong discrepancy of
constrained volume and obtained physical volume, also called nonvolume preserving.

Post-processing of conventional obtained results with black and white Heaviside filters does
not work, as the removal of too small features by the modified Heaviside filter (A.4) may
completely destroy the structural principle of the original solution, see Fig. A.5 (b). The effect
is similar for the Heaviside filter (A.3) when the volume constraint needs to be reduced to
achieve the desired physical volume.

Note that the feature size control relates only to material not to void. Corners are feasible.
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(b) Modified Heaviside filter

Figure A.4.: The approximated Heaviside filterHβ (A.3) in Fig. (a) returns full material if and
only if any element within the filter radius contains material. The approximated
’modified Heaviside’ filter returns full material only if allelements within the
filter radius have full material.

(a) Heaviside filter (b) Modified Heaviside filter

Figure A.5.: Post-processing the topology Fig. 3.6 (a) by the Heaviside filter (A.3), see (b),
and the modified Heaviside filter (A.4), see (c). The filter radius is 1.5 elements
in both cases, the physical volumes are 71 %, respectively 17% with β = 25.

Volume Preserving Black and White Filter

In Xu et al. [2010], both Heaviside filters are combined in a volume preserving way by param-
eterη as

HV
∞ (ρe) =





ρmin if ρe< η
η if ρe= η
1 if ρe> η.

η rescales the Heaviside filters to(0,η], and[η,1] whereη needs to be determined in each it-
eration by a one dimensional optimization, similarly to obtainingλ for the Optimality Criteria
method. Note that this filter has no feature size control.
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Discussion

For some optimization problems where no volume constraint is applied, the Heaviside filters
offer the unique feature of guaranteeing black and white solutions even without penalization.
The Heaviside and modified Heaviside filter regularize and give feature size control while the
missing volume preservation has no effect. The volume preserving black and white filter lacks
the additional properties.

A.3.5. Length Scale Control by Rigorous Monotonicity Constraint

In Poulsen [2003], a local regularization approach is presented, defining regions with mono-
tonic design. These monotonic regions directly define the minimum length scale for void and
material and T. Poulsen suggests the nameMOLE - MOnotonicity based minimum LEngth
scale. The local constraints for the interior of the design domainstem directly from the for-
mulation ofBounded Variationand are based on line segmentsγγγ(xxxe,ddd) = xxxe+ t ddd aroundxxxe

in directionddd of lengthd with −d/2≤ t ≤ d/2 as

gMOLE(ρ) =
∫

γγγ
|dddT∇ρ(xxx)|dxxx−

∣∣∣∣
∫

γγγ
dddT∇ρ(xxx)dxxx

∣∣∣∣≤ 0.

In the discretized form every line segmentγγγ(xxxe,ddd) is associated with a set ofNe(xxxe,ddd) densi-
ties, respectivelyNe(ddd) densities for a regular grid, and the constraints are

gMOLE(ρe) =
Ne−1

∑
i=1

|ρi+1−ρi |− |ρNe−ρ1| ≤ ε. (A.5)
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Figure A.6.: The abs approximation (A.6)abs≈ with varying parameterε≈. Note the property
abs≈(∆ρ) = abs≈(−∆ρ).
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Continuation of the abs Function

A continuation of the abs function with∆ρ = ρi −ρ j is

abs≈(∆ρ) =
√

∆ρ2+ ε2≈− ε≈, (A.6)

see Fig. A.6. In contrast to the continuation of the Heaviside filters no successive optimizations
are required. However, the parameters (ε andε≈) have to be chosen with care. Figure A.7
shows a black and white result for the compliance problem.

Figure A.7.: Applying a local MOLE constraint (A.5)gMOLE ≤ 0.001 withε≈ = 0.0005 and
Ne= 3 for all γγγ. The physical volume is 0.497.

Properties

The number of line segments for every inner elementρe are in two dimensions 2+ 2 for
connecting 4 edges and 4 corners. In three dimensions 13 linesegments/ constraints per local
element are required for 6 faces, 12 edges and 8 corners.

The finest bar structure is defined by the features sized minus one element size. Corners,
holes and islands, however are larger as the shortest discrete line segment is also controlled by
d. This leads to an octagon as smallest bounded object with diameter(1+

√
2)d ≈ 2.4d, see

Poulsen [2003] for details.
When globalizing the constraints, e.g. by (A.1), the local and global bounds shall not be

too strict. A simplification as checkerboard control has been published in Poulsen [2002].
However the results are not convincing as isolated void elements are possible.

A.3.6. Length Scale Control by Rigorous Oscillation Constraint

Using theoscillation constraintwe present an alternative rigorous length scale constraint. The
development has been inspired by the slope constraint and was developed independently of the
MOLE constraint. However, as it turned out, the oscillationconstraint shares many features
with the MOLE constraint, including the proof of sufficient regularization.
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A local oscillation constraint is a weaker constraint than the monotonicity constraint. From
a global point of view, however, the set of feasible solutions coincide. An advantage is the
possibility of defining feature length scale of void and solid independently, which doubles
the number of local constraints. A common feature with the MOLE constraint is the non-
smoothing; this allows pure black and white solutions by penalization or a black and white
filter.

Checkerboard Constraint

The oscillation control is best introduced as the special form checkerboard controlwith two
elements as minimal feature size. All constraints are basedon the line segments in thex-, y-
andz-direction. For a given line, one constraint controls stronger material as

gstrongcc(ρe) = ρe−max(ρe−1,ρe+1)≤ 0, (A.7)

and weaker material as

gweakcc(ρe) = min(ρe−1,ρe+1)−ρe≤ 0. (A.8)

0.0

1.0

-1 0 1
(a) Local hole

0.0

1.0

-1 0 1
(b) Local island

0.0

1.0

-1 0 1
(c) No checkerboard

Figure A.8.: One dimensional local model configurations forthe checkerboard constraints
(A.7) and (A.8). The pseudo densities are drawn for elementsrelative to a center
elementρe.

Based on the configurations in Fig. A.8gstrongcc (A.7) does not detect the local hole Fig. A.8
(a) as 0.1−0.9= −0.8≤ 0. The local island Fig. A.8 (b) is detected by 0.9−0.1= 0.8> 0
and the valid configuration Fig. A.8 (c) is passed by 0.5−0.9=−0.4≤ 0.
For gweakcc (A.8) the local hole is detected by 0.9− 0.1 = 0.8 > 0, the island passes by
0.1−0.9=−0.8≤ 0 as does the valid configuration by 0.1−0.5=−0.4≤ 0.
Fig. A.9 shows the application of the checkerboard constraints to the compliance minimization
problem. It appears that in contrast to the MOLE constraint,the development of structural
features is prevented by too small inequality boundsε, see Fig. A.9 (a). Smallβ values
allow more grayness, which is not suppressed by a SIMP penalization parameterp= 3. The
checkerboard constraint does not prevent sharp corners.
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(a) ε = 0.01,β = 7 (b) ε = 0.05,β = 7

(c) ε = 0.1, β = 5 (d) ε = 0.1, β = 7

Figure A.9.: Applying the local checkerboard constraints (A.7) and (A.8) with the varying in-
equality boundsε and varyingβ of the maxKS (A.11), respectively minKS (A.12)
approximations. SIMP penalization parameterp= 5, all problems converged to
KKT.

Length Scale Constraint

Mesh independent feature size control is achieved by minmax, respectively maxmin opera-
tions. Minimal material feature size is controlled by

gmat oc(ρe) = ρe−max(min(ρe−Nn, . . . ,ρe−1),min(ρe+1, . . . ,ρe+Nn))≤ 0, (A.9)

and minimal void feature size is controlled by

gvoid oc(ρe) = min(max(ρe−Nn, . . . ,ρe−1),max(ρe+1, . . . ,ρe+Nn))−ρe ≤ 0. (A.10)

We have the same number of line segmentsγγγ(xxxe,ddd), where the distanced corresponds with
2Nn(xxxe,ddd)+1 elements.

Analogue to the model configurations of the checkerboard constraintgmat oc, (A.9) is applied
to the model configurations in Fig. A.8 with the results (a): 0.1−0.5= −0.4≤ 0, (b): 0.9−
0.1= 0.8> 0 and (c): 0.5−0.9=−0.4≤ 0.

For gvoid oc (A.10) the example gives (a): 0.9−0.5= 0.4> 0, (b): 0.1−0.5=−0.4≤ 0 and
(c): 0.1−0.5=−0.4≤ 0.
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Figure A.10.: One dimensional local model configurations for the oscillation constraints (A.9)
and (A.10) as feature size extensions of the checkerboard model configurations
in Fig. A.8

Continuation of the min and max Functions

A continuation of the max function of the densitiesρ1, . . . ,ρNm is the Kreisselmeier and Stein-
hauser function

maxKS(ρ1, . . . ,ρNm,β ) =
1
β

ln
∑Nm

i=1eβρi

Nm
, (A.11)

or for the min function

minKS(ρ1, . . . ,ρNm,β ) = 1− 1
β

ln
∑Nm

i=1eβ (ρi−1)

Nm
. (A.12)

A visualization for varyingβ is given in Fig. A.11. Successive optimizations are, common
with the MOLE constraint, not necessary - in contrast to the black and white density filters.
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Figure A.11.: The differentiable Kreisselmeier and Steinhauser max approximation (A.11)
maxKS applied on some test data with varyingβ .
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A.4. Stress Constraints

A.4.1. Von Mises Stress

In the case of mechanical stresses thevon Mises stressσv represents a common norm in the
convenient form

σv =
√

〈σσσ ,MMM σσσ〉 (A.13)

with MMM given in two and three dimensions as

MMM2D =




1 −0.5 0
−0.5 1 0

0 0 3


 , respectivelyMMM3D =




2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6



.

A.4.2. Problem Formulation

Static Formulation

We start with the static problem formulation, the notation by scalar products supports the
subsequent dynamic formulation. It is numerically convenient to useσ2

v as function within an
optimization problem, hence

Jσ = 〈σσσ ,MMM σσσ〉. (A.14)

Jσ is a local function. Assuming design dependent ersatz material [ c̃cc], the discrete finite
element wise formulation for a stress constraint at elementi is given as

Jσi = 〈[ c̃cc]i Bi uuui ,MMM [ c̃cc]i Bi uuui〉.

The static gradient is given by (3.27) as

∂Jst
σi

∂ρe
= 〈λλλ i

e,
∂ K̃KKe

∂ρe
uuue〉+2〈[ c̃cc]i Bi uuui ,MMM

∂ [ c̃cc]i
∂ρe

Bi uuui〉,

where the second term is only non-zero fore= i. λλλ i
e is the solution for elementeof the global

adjoint problem for the stress constraintJσi within elementi. The adjoint problem is given by
(3.28) as

K̃KK λλλ i =−2([ c̃cc]i Bi uuui)
TMMM [ c̃cc]i Bi .

Dynamic Formulation

The following time-harmonic formulation of stress constraints can easily be derived using
the formulae given in Sec. 3.2.2. The notation ofJσ in (A.14) holds for static and complex
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properties. The gradient is given by (3.36) as

∂Jdyn
σi

∂ρe
= 2 Re

{
λλλ i

e
∂ S̃SSe

∂ρe
uuue

}
+2

〈
[ c̃cc]i Bi uuui ,

∂ [ c̃cc]i
∂ρe

Bi uuui

〉
,

whereλλλ i solves the general adjoint problem (3.37) as

S̃SSλλλ i =−([ c̃cc]i Bi uuu
∗
i )

TMMM [ c̃cc]i Bi .

To our best knowledge dynamic stress constraints are not yetreported in the literature.

Globalization

The presented stress formulation is local, requiring the solution of the adjoint equation for
every element the stress constraint is defined, see Duysinx and Bendsøe [1998]. Common is
thep-normapproach, first used in Duysinx and Sigmund [1998], in a non-smooth multi-region
approach in Le et al. [2010] and others.

Our approach, adopted from Kocvara and Stingl [2007], is slightly different. It defines a
tolerable stress limitcσ where only local stressesJσi > cσ are considered as

gσ =
Nσ

∑
i=1

max(0,Jσi −cσ )
2 ≤ εσ . (A.15)

Nσ contains all element indices, the stress constraint is defined on. εσ is a small positive
number. Choosingεσ sufficiently small, no local stress will exceed the limitcσ within a
feasible design.

Let us write the globalization in (A.15) as

gσ = ∑
i

ϕ(Jσi ),

with ϕ being smooth and convex. The gradient ofgσ is given as

∇ρgσ = ∑
i

∂ϕ(Jσi )

∂Jσi

∂Jσi

∂ρi
.

The scalar
∂ϕ(Jσi )

∂Jσi

= 2 max(0,Jσi −cσ )

can be applied to each summand of
∂Jst

σi
∂ρe

and
∂Jdyn

σi
∂ρe

separately. The gradient of the static glob-
alized stress constraint (A.15) is given as

∂gst
σ

∂ρe
= 〈λλλ st

e ,
∂ K̃KKe

∂ρe
uuue〉+2

∂ϕ(Jσe)

∂Jσe

〈[ c̃cc]eBeuuue,
∂ [ c̃cc]e
∂ρe

Beuuue〉 (A.16)
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with the single adjoint equation

K̃KK λλλ st =
Nσ

∑
i=1

−2
∂ϕ(Jσi)

∂Jσi

([ c̃cc]i Bi uuui)
TMMM [ c̃cc]i Bi .

The dynamic gradient is given as

∂gdyn
σ

∂ρe
= 2 Re{λλλ dyn

e
∂ S̃SSe

∂ρe
uuue}+2

∂ϕ(Jσe)

∂Jσe

〈[ c̃cc]eBeuuue,
∂ [ c̃cc]e
∂ρe

Beuuue〉, (A.17)

with the adjoint equation

S̃SSλλλ dyn =
Nσ

∑
i=1

−∂ϕ(Jσi )

∂Jσi

([ c̃cc]i Bi uuu
∗
i )

TMMM [ c̃cc]i Bi . (A.18)

Approximation Quality

In the presented form we assume the differential operators to be evaluated at the barycenter
of elementi. This is only an approximation which can be improved by a weighted sum at the
integration points over the whole terms. To improve the readability of the equations we keep
the simpler notation. For many applications the obtained topologies are sufficiently similar.

A.4.3. Challenges

Stress constraint topology optimization faces serious problems and is still subject to active re-
search, even for the standard problems in elasticity. We quote without references from Duysinx
and Sigmund [1998]

One major difficulty in the topology optimization with stress constraints comes
from the so-calledsingularity phenomenon. It results in the impossibility for the
optimization algorithms to create or to remove holes in the material distribution
during the optimization process. The origin of the phenomenon in now under-
stood: Low density regions sometimes remain highly strained. When the density
decreases to zero in these regions, the limit of the stress state in the microstructure
tends to a non-zero value and remains even higher than the stress limit. Therefore,
the optimization procedure cannot remove the material in the region. The paradox
is that if the material is totally removed, the stress constraint would obviously not
be active.

A.5. Material Properties

The applied piezoelectric material is lead zirconate titanate PZT-5A with the following elastic
properties:
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Mass density is 7.75025 kg/m3, damping tanδ = 0.015 at 1000 Hz. The transversal isotropic
stiffness tensor (2.34) is given as

[cccE] =




126 79.5 84.1 0 0 0
79.5 126 84.1 0 0 0
84.1 84.1 117 0 0 0

0 0 0 23.0 0 0
0 0 0 0 23.0 0
0 0 0 0 0 23.2




GPa.

This corresponds toE = 60 GPa,E3 = 48.2 GPa,ν = 0.29,ν3 = 0.41 andG= G3 = 23 GPa.
The piezoelectric coupling matrix (2.35) and permittivitytensor (2.36) are

[eee] =




0 0 0 0 17 0
0 0 0 17 0 0

−6.5 −6.5 23.3 0 0 0


 N/C and[εεεS] =




1.51 0 0
0 1.51 0
0 0 1.27


 10−8F/m.

The supporting aluminum plate has the following isotropic properties:
Poisson’s ratioν = 0.34, Young’s modulusE = 70.7 GPa, mass density 2.7 kg/m3, damping
tanδ = 0.03 at 1000 Hz.

For an accurate simulation model it might be necessary to determine the piezoelectric cou-
pling coefficients by inverse methods as in Rupitsch and Lerch [2009].
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Bänsch, and Fabian Schury. On the effect of self-penalization of piezoelectric compos-
ites in topology optimization.Structural and Multidisciplinary Optimization, 43(3):405,
2011.

168



Bibliography

Elias Weller. Topology Optimization of a Piezoelectric Energy Harvester. Master’s thesis,
University of Erlangen-Nuremberg, Germany, 2009. in German.

Shengli Xu, Yuanwu Cai, and Gengdong Cheng. Volume preserving nonlinear density filter
based on heaviside functions.Structural and Multidisciplinary Optimization, 41:495–505,
2010.

Bin Zheng, Ching-Jui Chang, and Hae Chang Gea. Topology optimization of energy harvest-
ing devices using piezoelectric materials.Structural and Multidisciplinary Optimization,
38(1):17–23, 2008.

Christian Zillober. SCPIP - an efficient software tool for the solution of structural optimization
problems.Structural and Multidisciplinary Optimization, 24(5):362–371, 2002.

Jochem Zowe, M. Kočvara, and Martin P. Bendsøe. Free material optimization via mathemat-
ical programming.Mathematical programming, 79(1):445–466, 1997.

169


