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1 Introduction, Motivation and State

of the Art

The number of motor vehicles in Germany has constantly grown during

the last decades. As a result of the increased traffic density, more than 2.5

million road traffic accidents occur on Germany’s roads each year. In 2003,

in more than 335000 of these accidents, persons were injured with 6618

fatalities among them, [57]. Therefore, accident reconstruction is crucial to

solve the question of liability for these accidents. After an accident has oc-

curred the police reports about the accident scene. Accident investigators

afterwards conclude about causes and the question of guilt.

Independent reconstruction experts claim that nowadays due to the gro-

wing vehicle fleet, the police often does not have sufficient time to report

the accident situation accurately, [37].

Furthermore, in Europe more and more vehicles are equipped with electro-

nic control systems. The Antilock Braking System (ABS) avoids locking

wheels by controlling wheel slip. Typical brake traces left on the road sur-

face are missing when ABS is active. Among others, brake traces are the

most important aids for accident investigators to reconstruct the vehicle

motion leading to an accident. For vehicles equipped with Vehicle Dyna-

mics Control (VDC) systems the situation is even more complex. State

of the art systems brake wheels selectively to stabilize the car. The latest

systems even interfere into the steering system to manipulate the steering

angle automatically, [45]. The question whether the control system inter-

fered or whether the driver has acted appropriately cannot be answered

clearly any more.

1.1 Accident Statistics

The annual economic costs of road traffic accidents in the USA exceeded

200 billion Euro in 2000, [59]. In Germany, the economic costs are big-

ger than 35 billion Euro with more than half of this sum being caused by

accidents with injury or fatality. Accidents with severely injured or killed
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persons economically play the most important role, [11]. That is the rea-

son, why the focus is on these accidents.

In 2003, 29% of all accidents with injuries occurred on rural roads (with-

out highways) with 63% of all victims being killed there. This confirms

that accidents occurring outside cities are significantly more severe, becau-

se vehicles are averagely loaded with more people. Additionally, the vehicle

speed is significantly increased. Speeding is still the main cause of all ve-

hicle accidents in Germany, [57].

Among all German country road accidents since 1985 about 35% are single

car accidents, [10]. In this context, country roads are regarded as roads

outside cities excluding two-lane highways. Single car accidents are often

vehicle rollovers or tree collisions and represent an outstanding group of

accidents. 90% of all single car accidents are caused by misbehavior of the

driver, [61].

In the USA and in Germany young adults between 18 and 25 years repre-

sent the group with the highest fatality rate. Regarding all accidents with

injured people, averagely 1.3 driver mistakes occur, [57]. For young people

with a lack of driving experience, this number is even higher.

That means that accidents with a high fatality rate are often caused by

driver errors. These accidents often result from laterally critical drive si-

tuations. In such accident situations, electronic control systems attempt

to support the driver. In order to solve the question of liability, accident

causes must be investigated.

1.2 Patent Inquiry about Event Data Re-

cording Devices

The idea of recording accident relevant data in a memory for later analysis

bases on the principle of flight recorders installed in aeroplanes since the

1950s. There is an abundance of data recording devices patented which fo-

cus on various different aspects. The following overview therefore presents

only a portion of the ideas patented by companies all over the world.

Some ideas focus on acquiring data after a crash only. DaimlerChrysler pa-

tent EP 839698 A2 is a multi-functional optical recording device for theft

prosecution after accidents. Mannesmann Kienzle Patent DE 4303470 C

decreases the triggering threshold for accident detection after switching off

the ignition in order to record parking accidents.

The patented systems also distinguish in the data sources for the accident

relevant data. Some of the systems (as for instance DE 4303470 C) use pro-

prietary sensors, whereas others use the data provided by the ECU (Fuji
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patent JP 2001260953 A) or by sensors and other onboard calculators (for

instance PSA patent FR 2799557 A1).

In order to acquire data about the vehicle exterior, data sources additional

to the inertial sensors are used. Among others Sumitomo Electric’s system

(JP 2000128031 A) additionally uses a camera and a hyperboloid mirror

to gain a complete view around the car. Hitachi (JP 9123876 A) and To-

yota (JP 8235491 A) use data from a navigation system to enhance the

information about an accident. Temic Telefunken applied for a patent (DE

19729960 A) with a system triggering the recording of data by evaluating

relative distances and speeds to adjacent vehicles.

The system of Schimmelpfennig Company patented with the patent num-

ber DE 4132981 C2 uses at least two sensors and reproduces the vehicle

motion by solving a set of differential equations.

The list of patents could be continued regarding other aspects. The presen-

ted selection shall give an impression about the activity in the development

of event data recording devices.

1.3 Evolution and State of the Art of Event

Data Recorders

In the United states event data recorders (EDR) have been used for many

years to record crash related scenarios. In the early 1970s an analog device

called Disc Recorder was installed in about 1000 US American vehicles.

The current use of EDRs in highway vehicles is generally limited to original

equipment manufacturers (OEM) and a few small aftermarket suppliers.

Among the OEMs, General Motors (GM) is in the lead in developing EDR

technology. Therefore, as an example the evolution of GM EDRs will be

described more detailed.

General Motors event data recorders are tightly connected to the airbag

system. The first generation of EDRs including the Diagnostic and Energy

Reserve Module (DERM) was introduced in 1990. It records airbag status

data and additionally airbag sensor information.

The Sensing and Diagnostic Module (SDM) installed first in the 1994 mo-

del year represents the next step in the evolution of event data recorders.

The most important novelty of the SDM is the computation and storage

of the change in longitudinal vehicle velocity.

Certain 1999 and newer GM vehicles have a SDM installed with the added

capability to record vehicle system status data such as vehicle speed, engi-

ne rotations per minute, throttle position or brake switch status for the five

seconds proceeding an airbag deployment or near-deployment. The SDM’s
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longitudinal accelerometer is low-pass filtered at approximately 400Hz. It

contains 32kBytes of ROM for program code, 512 bytes of RAM and 512

bytes EEPROM. Every 312µs the algorithm samples the accelerometer

data and when two successive samples exceed two Gs of deceleration, the

algorithm is activated, [29]. Once each second, the SDM takes the most

recent sensor data values and stores them in a recirculating buffer (RAM),

one storage location for each parameter for a total of five seconds. After

algorithm enable shortly after impact, buffer refreshing is suspended.

The most popular aftermarket product in Europe is Siemens VDO’s Crash

Data Recorder. It samples the vehicle speed, longitudinal and lateral ac-

celeration and changes in direction with a frequency of 500 Hz for a time

period of 30 seconds pre- and 15 seconds post crash. In addition, static

variables like lights, indicators, brakes, etc. are recorded. The employed

sensors are proprietary.

Every OEM and every aftermarket supplier uses its own data format. The-

refore, the IEEE has created the P1616 Motor Vehicle Event Data Recor-

ders Standards Project, [46]. The standard will define what data will have

to be captured and how that information should be obtained, recorded and

transmitted. The data will then be available not only to the OEMs but also

to the public and might improve EDR based accident reconstruction.

1.4 Goal of this Thesis

The most severe accidents occur on country roads. Often there are no acci-

dent witnesses. Control interventions of electronic systems are probable. In

order to reconstruct such accidents appropriately, the focus of this thesis

is on vehicle dynamics whereas existing event data recorders mainly con-

centrate on describing the crash phase. These event data recorders mostly

solely use proprietary sensors which increases the costs. Alternatively, they

are connected to the airbag system, [13], and get information from the sen-

sors processed by this system. However, the accuracy of accident data is

limited, [48]. The recording of data is mainly triggered by exceeding a lon-

gitudinal acceleration threshold.

The model based system presented in this thesis provides more information

about the accident, because non-measurable parameters and state variables

can be estimated. Additionally, this approach increases the accuracy of the

sensor signals, as models are used to eliminate systematic sensor errors.

However, to limit extra costs, no additional sensors than the ones instal-

led in modern cars are employed. Furthermore, pre-accident situations are

recognized before a crash occurs based on the vehicle dynamics behavior
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of the car. The trigger mechanism is significantly improved. Moreover, the

following requirements for accident reconstruction are better covered by a

model based system:

The vehicle dynamics and the vehicle trajectory can be reconstructed more

accurately because important non-measurable variables are determined by

the system.

Conclusions about the driver’s behavior in critical driving situations can

be drawn. Very often, drivers do not act and react appropriately before

an accident. Therefore, assessing the drivers’s behavior by analyzing the

driver inputs and the resulting vehicle dynamic outputs is a basic require-

ment which can only be met by a model based EDR.

Finally, the vehicle environment significantly influences the behavior of dri-

ver and vehicle in the road traffic. By estimating environmental quantities

like the friction, conclusions about the state of the site around the accident

can be drawn.

An overview of the complete model based system for detection and recon-

struction of road traffic accidents is given in Chapter 2. There, the general

approach is described to meet the above mentioned requirements.





2 Overview of the Complete System

The following chapter is mainly based on the patent applications 543456

JP 01 (Japan) and 543456 US 01 (USA) and describes a model based

EDR. That is the reason why the individual blocks and leads in Fig. 2.1

are enumerated.

2.1 General Configuration

Fig. 2.1 shows the structure of the complete system. In order to save costs,

existing sensor data from in vehicle networks (for instance CAN bus) and

from the electrical system are employed. The EDR acts only as a ”listener”

to record existing sensor signals. The CAN bus or a comparable bus system

therefore need not be reprogrammed. The EDR can simply be ”hooked” to

the network and starts recording the data, assuming that the CAN messa-

ge identifiers are made available to the system.

European middle and upper class vehicles are by default equipped with

an ABS and a vehicle dynamics control system like DSC or ESP. These

systems use a variety of sensors, for example wheel speed sensors (ABS), a

yaw rate sensor and a lateral acceleration sensor (VDC). Additionally, the

model based EDR employs a longitudinal acceleration sensor (e.g. used in

VDC systems, [71], or in seat belt locking systems, [21]). The longitudinal

wheel forces are measured or estimated in cars with ABS (for braking) and

with an engine management system (for the drive forces). Cars equipped

with the electro-hydraulic brake (EHB) will contain accurate wheel force

signals. That means that all of the quantities required by the system are

available in modern cars.

The acquired data are preprocessed in order to be applied to the vehicle

model and estimation unit (see Fig. 2.1). The data acquisition and prepro-

cessing as well as the applied sensors are described in Chapter 6 where the

test environment is presented. In the vehicle model and estimation unit,

the state space models describing the vehicle motion are executed. The un-

derlying models will be presented in Chapter 3. The results from the model

calculations are saved in a memory in case an accident occurs. Therefore,
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Figure 2.1: General overview of a model based EDR

an accident situation must be detected and a trigger signal must be gene-

rated to avoid that accident relevant data in the memory are overwritten

again (block 40 in Fig. 2.1). The principle of accident detection is described

in Chapter 4 and an overview is illustrated in Fig. 4.22. In the model based

reconstruction unit the vehicle motion and the driver’s behavior as well as

external influences are reproduced based on the available sensor signals

(Chapter 5). Due to the limited amount of employed sensor signals (for in-

stance no camera is used in this thesis) human information from the police

and from eye witnesses is required for complete accident reconstruction.

In the assessment unit, finally, conclusions about the accident are drawn.

From the huge variety of accident situations, as an example the steering

behavior of the driver in critical situations is selected and described in

Section 5.9.
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2.2 Core of the System

The core of the model based event data recorder is shown in Fig. 2.2. It

shows the sub-models of the vehicle model and estimation unit as well as

the model based reconstruction unit. As a convention, in the entire thesis

the indices ij are wildcards: i for ”F” or ”R”: front/rear and j for ”L”

or ”R”: left/right. This expresses that a quantity, for instance a force, etc.

occurs on all four wheels. If the indices are not used, then the quantity

in general is described. However, the quantity can still occur on all four

wheels.

In the steering model (Section 3.1.2), the steering wheel angle δS applied

by the driver is transformed to the wheel turn angle δW which is an input

into the state space models.

The velocity estimator described in Section 5.1 outputs an estimation of

the velocity v̂CoG in the center of gravity (CoG) which is determined by

means of a fuzzy system. Figs. 5.2 and 5.6 give a more detailed overview.

Here, the redundancy of the acceleration sensor signal (aX) and the wheel

speed sensor signals ωRij is used by weighting the individual sensors accor-

ding to their reliability. A similar principle is implemented in the yaw rate

estimator, see Fig. 5.11 in Section 5.2, to estimate the yaw rate ψ̇Fuz. The

redundant signals ψ̇S and ωRij from gyroscope and wheel speed sensors

are fused. Using the estimated velocity v̂CoG as well as the yaw rate ψ̇Fuz

the vehicle trajectory x(t) can be calculated. The trajectory reconstruc-

tion block is shown in more detail in Fig. 5.15 and described in Section

5.3. The trajectory represents one part of complete vehicle motion repro-

duction. The estimated center of gravity velocity v̂CoG is also applied to

the wheel model in Section 3.1. In the wheel model (overview given by

Fig. 3.1), among others, the tire side slip angle (TSSA) α is determined.

Most of the sub-models require the forces acting on the vehicle to deter-

mine accident relevant quantities. The rolling friction force FR calculated

in the respective block is a resistance force which has significant influence

on the vehicle motion at higher speeds. It is approximated in Section 3.3.2

by means of a velocity polynomial. The other main quantity influencing

the vehicle motion at high speeds is the wind force FWX . In the wind force

calulation block, the well known quadratic approximation equation with

the velocity vCoG is described in Section 3.3.3.

Knowing these two main resistance forces and the longitudinal wheel forces

FLij available on the in-vehicle networks, the longitudinal force balance can

be evaluated to estimate the vehicle mass mCoG (Section 5.5, especially

Fig. 5.38). Mass changes significantly influence the vehicle model accuracy.

Therefore, this time-varying parameter is adapted. The control port in the
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mass estimation block of Fig. 2.2 indicates that mass estimation is activa-

ted only in certain driving situations.

The vehicle motion depends on the vertical wheel forces FZij which are

changing with longitudinal and lateral accelerations aX and aY . The wheel

loads are calculated in the vertical wheel forces block which is explained

in Section 3.3.4. In the lateral wheel forces block, the wheel loads FZij

and the tire side slip angles αij are considered in a non-linear approxima-

tion equation for the side wheel forces FSij (Section 3.4.2). The cornering

stiffnesses cij are not constant. In the cornering stiffness adaptation block,

these parameters are adapted by using the non-linear lateral wheel force

approximation FSij and the tire side slip angles αij (Section 3.4.2). Like

the vehicle mass mCoG, the cornering stiffnesses cij are crucial parameters

for the state space model and therefore represent one of the time-varying

model parameters. The approach of lateral wheel force approximation and

cornering stiffness adaptation can be seen in Fig. 3.16.

The ABS-cycle detection block implemented in Section 5.6 processes the

wheel speed signals ωRij to assess, whether ABS was active or not. An

overview of the ABS-cycle detection method is given by Fig. 5.41. The

friction coefficient block described in Section 5.7 processes the longitudinal

wheel forces FLij, the vertical wheel forces FZij and the wheel accelerati-

ons ω̇Rij and yields the friction coefficient µ. The estimation is triggered

by ABS-cycle detection. With the ABS being active, normally the ma-

ximum friction is reached and the road condition can be assessed. The

friction coefficient and the longitudinal and lateral wheel forces are used

to check whether the calculated forces can theoretically be transmitted to

the ground or not. The Kamm-circle block implemented in Section 3.4.1

yields wheel force reduction factors kredij. The longitudinal wheel forces

FLij and the wheel turn angle δW are input variables into the state space

models described in Section 3.3. Additionally, the wheel force reduction

factors kredij, the adapted cornering stiffnesses cij and the estimated ve-

hicle mass mCoG are time-varying parameters. Based on these inputs, two

state space model types are implemented: first, the linear single track mo-

del (Section 3.5) which is required as a reference model to detect accident

situations online (Chapter 4). Second, the adaptive non-linear state space

model (Section 3.3) describing the vehicle dynamics up to the limit of ve-

hicle stability offline. The cause of vehicle motion and therefore the basis

of this model are the forces shown in Fig. 3.7. Based upon this adaptive

non-linear vehicle model, two non-linear state space observers are imple-

mented in Sections 5.4.2 and 5.4.5 to estimate the vehicle body side slip

angle (VBSSA) β. The underlying model structures for these observers are

displayed in Figs. 5.22 and 5.28. To design one of these observers, the state
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space model must be restructured (Section 5.4.3). As an alternative to the

observer design, in Section 5.4.7 an extended Kalman-Bucy-Filter was

implemented to consider model inaccuracies appropriately.

Finally, a road gradient observer was implemented in Section 5.8, repre-

sented by the road gradient observer block. Here, the vehicle behavior is

modeled with a linear state space observer in order to estimate the road

gradient χRoad. The sub-system processes the longitudinal wheel forces FLij

and the wind force FWX . Knowing the road gradient, the vehicle motion

reproduction on the plane can be extended to the height.

The model structure shown in Fig. 2.2 generates the vehicle trajectory x(t)
and the vehicle body side slip angle estimate β which is fed back to the

wheel model. Knowing these two quantities, the center of gravity location

as well as the vehicle heading can be calculated to provide complete infor-

mation about the vehicle motion. The tire and body side slip angles α and

β are measures for the stability of the car in critical situations. The vehicle

mass mCoG can help decide whether or not a vehicle was overloaded. Fur-

thermore, the dynamic vehicle behavior as well as the brake distance are

influenced by mass changes. The estimated maximum friction coefficient µ
describes the road condition. The road gradient χRoad enhances the know-

ledge about the vehicle motion.

With these additional quantities, the reconstruction of road traffic acci-

dents can be achieved even when the vehicle was driven at its limits. Acci-

dent situations can be better assessed and the question of liability can be

answered more accurately.



3 Vehicle Model

The vehicle model is a substantial part of a model based event data re-

corder. In Chapter 3, the state space models are derived to describe the

vehicle motion. In a first step, the wheel forces are calculated in the wheel

model of Section 3.1 based on the wheel slip. The wheel forces are the basis

of the vehicle models. Afterwards, the equations of motion of the vehicle

body are regarded (Section 3.2). Finally, the vehicle motion in plane is de-

scribed by two vehicle model types: a non-linear two track model (Section

3.3) and a linear single track model (Section 3.5). In order to increase the

accuracy of the non-linear model, several time-varying parameters are ad-

apted (Section 3.4). After setting up the vehicle models, they are validated

in Section 3.6 to analyze their applicability in a model based event data

recorder.

3.1 Wheel Model

The wheel model describes the physics of the tire-road contact. The for-

ce transmission to the ground is a complex process, which is still subject

to numerous research activities. In a vehicle motion reproduction system,

which is planned to be installed in a large number of vehicles, simplifi-

cations have to be made because of the limited calculation capacity. For

example, the determination of the friction coefficients or the lateral wheel

forces are extremely sophisticated issues. That is why the wheel model is

a compromise between complexity (that means calculation effort) and ac-

curacy.

The employed wheel model is shown in Fig. 3.1. The wheel ground con-

tact point velocities are calculated to set the basis for slip calculation. By

means of the steering transmission iS, the wheel turn angle δW is calcu-

lated from the steering angle δS given by the driver. After the derivation

of approximations for the tire side slip angle, the wheel slip and the fricti-

on coefficients, this section provides solutions to calculate the wheel forces

based on a friction model.

The longitudinal forces in this thesis are assumed to be measured input
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Figure 3.1: Implemented wheel model

variables into the vehicle model. The equations and relations presented in

this section provide possibilities to calculate the forces, when the longitu-

dinal forces are not measured. The wheel turn angle δW and the tire side

slip angles αij calculated in Section 3.1 are further needed for the vehicle

model. Other quantities like the side forces are approximated alternative-

ly later on. The force model provides a possibility to calculate the wheel

forces based on the friction.

3.1.1 Wheel Ground Contact Point Velocity

The wheel ground contact point velocity (WGCPV) describes the velocity

of the tire relative to a fix reference point on the road surface. Under normal

driving conditions the wheel ground contact point velocity deviates from

the rotational equivalent velocity of the wheel. The WGCPV is required

for the slip definition in Section 3.1.4. The WGCPV is determined by

regarding the different curve radii of the single wheels. Assuming that the

curve radius is significantly bigger than the geometric dimensions of the

car, then the individual curve radii of the four wheels are parallel. In this

case, the individual wheel ground contact point velocities consist of the

center of gravity velocity vCoG and a portion resulting from the vehicle’s
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yaw rate ψ̇. Linearizing the vehicle body side slip angle β leads to the

following equations for the different wheel ground contact point velocities

vWij, [44]:

vWFL = vCoG − ψ̇

(
bF

2
− lFβ

)

, (3.1)

vWFR = vCoG + ψ̇

(
bF

2
+ lFβ

)

, (3.2)

vWRL = vCoG − ψ̇

(
bR

2
+ lRβ

)

, (3.3)

vWRR = vCoG + ψ̇

(
bR

2
− lRβ

)

. (3.4)

In Eqns. (3.1) - (3.4), lF and lR describe the distances of front and rear

axle from the center of gravity, whereas bF and bR are the track of the front

and the rear axle.

A method to determine the center of gravity velocity vCoG is presented in

Section 5.1 by means of a fuzzy estimator. Another method to determine

vCoG is by using GPS velocity data, [20].

3.1.2 Steering Model

In conventional steering systems, the steering wheel angle δS given by the

driver is transformed to the wheel turn angle δW by a steering gear. The

transmission factor of this gearbox is the steering transmission iS. The

alignment torque TA influences the resulting wheel turn angle, [54],

TA =

(
δS

iS
− δW

)

· cS , (3.5)

when considering the steering stiffness cS. Originally, the alignment torque

is caused by the wheel caster nLF and the constructive caster nC ,

TA = (FSFL + FSFR) · (nC + nLF ) , (3.6)

when the lateral wheel forces FSFL and FSFR are not acting in the middle

of the wheel ground contact area. Using Eqns. (3.5) and (3.6) and isolating

δW yields

δW =
δS

iS
− (FSFL + FSFR) · (nC + nLF )

cS
. (3.7)
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For most of the test drives conducted, the error is small when neglecting

the alignment torque. Then, the wheel turn angle can simply be calculated

by means of the steering transmission

δW ≈ δS

iS
. (3.8)

In modern vehicles, the steering transmission iS is not constant any more.

The introduction of the active front steering system enables to adapt the

steering transmission factor to the current driving situation, for instance

to the vehicle speed, [18]. Then, a sum angle sensor measures the sum of

the wheel turn angle portion given by the driver and the one applied by a

direct current synchronous motor. In this case, Eqns. (3.7) and (3.8) cannot

be applied any more, as iS is time-varying.

3.1.3 Tire Side Slip Angles

In order to transmit lateral forces, the tire must evade laterally. That means

that the direction of the tire motion deviates from the wheel plane. The

angle between the wheel velocity vector vW and the wheel plane is called

the tire side slip angle α, see Fig. 3.2. Considering the geometric measures

of the vehicle and its yaw motion, the individual wheel velocity directions

are derived, [14]. Knowing the wheel velocity directions, the individual tire

side slip angles of the four wheels are calculated. If the center of gravity

is located in the middle of all wheels and if changes of lF , lR, bF , bR are

neglected, the tire side slip angles of the individual wheels are

αFL = δW − arctan

(

vCoG · sin β + lF · ψ̇
vCoG · cos β − bF

2 · ψ̇

)

, (3.9)

αFR = δW − arctan

(

vCoG · sin β + lF · ψ̇
vCoG · cos β + bF

2 · ψ̇

)

, (3.10)

αRL = − arctan

(

vCoG · sin β − lR · ψ̇
vCoG · cos β − bR

2 · ψ̇

)

, (3.11)

αRR = − arctan

(

vCoG · sin β − lR · ψ̇
vCoG · cos β + bR

2 · ψ̇

)

. (3.12)

Merging the tire side slip angles of the two tracks and linearizing the vehicle

body side slip angle (sin β ≈ β, cos β ≈ 1) yields the linear single track
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Figure 3.2: Slip definition according to Burckhardt

approximation for the tire side slip angles

αF = δW − β − lF
ψ̇

vCoG
, (3.13)

αR = −β + lR
ψ̇

vCoG
. (3.14)

Validation of the employed vehicle models shows that errors caused by

linearization (Eqns. (3.13) and (3.14)) influences the model accuracy only

little. The benefit of the reduced computational complexity justifies the

linearization. Therefore, the linearized equations for the tire side slip angle

are applied in the vehicle models of Sections 3.3 and 3.5. Information about

the slip angles on all individual wheels gets lost, though.

3.1.4 Wheel Slip

The tires transmit all the drive and brake forces applied by the driver to

the ground. For force transmission, the tire deforms elastically as described

for instance by the brush model, [62]. Therefore, the rotational equivalent

wheel velocity

vRij = ωRij · rstat (3.15)

and the wheel ground contact point velocity vWij relative to the ground de-

viate. In Eqn. (3.15), ωRij is the angular velocity of the individual wheels,
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Longitudinal slip sLij =
vRij cos αij−vWij

vWij

Brake slip

vRij cos αij ≤ vWij

Lateral slip sSij =
vRij sinαij

vWij

Longitudinal slip sLij =
vRij cos αij−vWij

vRij cos αij

Drive slip

vRij cos αij > vWij

Lateral slip sSij = tan αij

Table 3.1: Slip definition

rstat denotes the static tire radius. The normalized difference of these ve-

locities is called wheel slip. There are several definitions of the wheel slip.

For example Reimpell, [64], defines the slip with respect to the wheel pla-

ne, whereas for instance Burckhardt, [12], defines it with respect to the

wheel velocity direction. As the wheel moves in the direction of the wheel

velocity vector vW and not generally in the direction of the wheel plane,

the Burckhardt definition is used in this thesis. The difference between

the transformed rotational equivalent wheel velocity and the wheel ground

contact point velocity is divided by the larger one of both to guarantee

that the value of the slip is in the interval [−1, +1]. Thus, drive and brake

slip must be distinguished (see Fig. 3.2). The slip can be divided into a

longitudinal and a lateral component in the wheel coordinate system. The

longitudinal slip sLij points in direction of the WGCPV, [12], the lateral

slip component sSij perpendicular to it. This leads to the definition of the

wheel slip according to Table 3.1.

The resultant slip sResij is the geometric sum of longitudinal and lateral

slip:

sResij =

√

s2
Lij + s2

Sij . (3.16)

The GPS system described in [20] is also capable to determine a suitable

reference velocity. Therefore, it provides an alternative method to calculate

the longitudinal and lateral slip.
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3.1.5 Friction Coefficients

The determination of the friction coefficients is one of the biggest problems

in vehicle dynamics research. There are several approaches to approximate

the complex process of the contact between tire and road surface. The most

widespread ones are probably Pacejka’s ”Magic tyre formula”, [17], [60]

and the Dugoff model, [1]. An investigation of these two methods can be

found in [38]. They are compared with the mentioned approach of Burck-

hardt, [12]. The result is that the Pacejka model is the most accurate

one, the Dugoff model the one with the smallest computational effort.

The Burckhardt formula represents an acceptable compromise between

computational complexity and approximation accuracy. It is therefore used

in the presented wheel model. The resultant friction coefficient µRes is a

function of the slip with five approximation parameters:

µRes(sRes) = (c1(1 − e−c2sRes) − c3sRes) · e−c4sRes·vCoG(1 − c5F
2
Z). (3.17)

It can be set up for all four wheels providing µResij. The parameters

c1, . . . , c5 depend on the characteristics of tire and road surface. Typical

values can be found in [12]. Fig. 3.3 shows the friction over slip relation

according to Eqn. (3.17) for different road surfaces.

The resultant slip and the resultant friction coefficient point into the same

direction. This allows to define longitudinal friction coefficients µLij and

lateral friction coefficients µSij of the individual wheels which transmit the

respective forces to the road surface:

µLij = µResij
sLij

sResij
(3.18)

µSij = µResij
sSij

sResij
(3.19)

Eqns. (3.18) and (3.19) are used for the calculation of the longitudinal and

lateral wheel forces.

3.1.6 Friction Based Wheel Forces

Approaches for the calculation of the wheel forces often require tire pa-

rameters like the longitudinal and radial tire stiffness, for instance [65].

These models are often very sophisticated with a large number of parame-

ters. Therefore, the application of such models on standard microprocessors

is impossible. In this section a simplified friction based method to describe
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the wheel forces based on Eqn. (3.17) will be presented. The friction coef-

ficient is defined as the ratio between actually transmitted force Ffric and

vertical wheel force FZ :

µ =
Ffric

FZ
. (3.20)

This means that the longitudinal and the lateral wheel forces transmitted

from the tire to the road surface can be calculated using the vertical forces

and the friction coefficients determined in Section 3.1.5. As the longitudinal

slip points into the direction of the wheel ground contact point velocity

vW , the forces have to be transformed from the wheel velocity coordinate

system (CS) (xV W , yV W ) into the wheel coordinate system (xW , yW ), see

Fig. 3.4(a):

FLij = (µLij cos αij + µSij sin αij) · FZij , (3.21)

FSij = (µSij cos αij − µLij sin αij) · FZij . (3.22)

With Eqns. (3.18) and (3.19) the resultant friction coefficient determined

by means of Eqn. (3.17) can be used:

FLij = (sLij cos αij + sSij sin αij) ·
µResij

sResij
FZij , (3.23)

FSij = (sSij cos αij − sLij sin αij) ·
µResij

sResij
FZij . (3.24)
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Figure 3.4: Coordinate transformations of the calculated forces

In order to obtain the forces acting on the center of gravity, they are trans-

formed into the CoG-coordinate system (xCoG, yCoG). For vehicles which

are only front axle steered the forces in the wheel coordinate system of the

rear axle are equal to those in the CoG-coordinate system:

FXRj = FLRj , (3.25)

FY Rj = FSRj . (3.26)

The forces in the wheel coordinate system (xW , yW ) of the front axle have

to be transformed into the CoG-coordinate system (xCoG, yCoG) considering

the wheel turn angle:

FXFj = FLFj cos δW − FSFj sin δW , (3.27)

FY Fj = FSFj cos δW + FLFj sin δW . (3.28)

Fig. 3.4(b) explains this transformation of forces for one wheel of the front

axle. Knowing the forces acting on the center of gravity, the force and

torque balances can be set up to describe the vehicle motion in plane.
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3.2 Motions of the Vehicle Body

3.2.1 Pitch Motion

Neglecting gravitational effects due to road slope, pitching is caused by

inertial forces acting on the vehicle body, when a vehicle accelerates or

decelerates. The vehicle body acceleration aXB directs contrarily to the

measurable vehicle acceleration aX :

aXB = −aX . (3.29)

When the roll axis is parallel to the vehicle’s lateral axis with a longitudinal

displacement lPA and a height displacement (hCoG − hPA) to the center of

gravity, then the torque balance about this axis is

JY · χ̈ = (FZRL + FZRR) · (lR − lPA) − (FZFL + FZFR) · (lF + lPA)

+mB · aXB · (hCoG − hPA) + mB · g · lPA . (3.30)

The mass of the vehicle body is denoted mB. Regarding Fig. 3.5 shows that

for a braking maneuver the vehicle body accelerates in the xCoG-direction.

This causes an angular acceleration χ̈ about the roll axis and shifts the

wheel load to the front axle.

3.2.2 Roll Motion

The roll motion of the vehicle body mainly occurs in cornering situations

caused by centrifugal forces. The body acceleration aY B therefore can be

calculated according to

aY B = −aY . (3.31)
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As for pitching, gravitational forces by tilted roads are not regarded. Assu-

ming that the pitch axis is parallel to the vehicle’s longitudinal axis with

a lateral displacement bRA and a height displacement (hCoG − hRA) to the

center of gravity, then the respective torque balance is

JX · ϕ̈ = FZFL ·
(

bF

2
+ bRA

)

− FZFR ·
(

bF

2
− bRA

)

+FZRL ·
(

bR

2
+ bRA

)

− FZRR ·
(

bR

2
− bRA

)

+mB · aY B · (hCoG − hRA) − mB · g · bRA . (3.32)

Fig. 3.6 shows the effect of a left curve: the vehicle body moves to the outer

track, because the body acceleration points to the right.

3.2.3 Vertical Body Motion

Driving on uneven road surface, the vehicle body moves up and downward.

The force balance is

mB · aZ = FZFL + FZFR + FZRL + FZRR − mB · g . (3.33)
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3.3 Non-linear Two Track Model

The main goal of this thesis is to describe the vehicle dynamics with ac-

ceptable computational costs. Moreover, vehicle models shall be used to

reconstruct the vehicle motion before accidents. For these purposes, the

vehicle motion in plane is of most interest. That is the reason, why the

motion in plane is regarded more detailed than the body motions.

A lot of publications deal with the modeling of the vehicle dynamics in

plane, for instance [2], [14], [53], [62], [78]. To describe the vehicle dyna-

mics the vehicle’s equations of motion are set up. From these equations a

non-linear state space model is derived. Thereby, it is necessary to keep

the structure of the model simple with a small number of input and state

variables. On the other hand, the vehicle model must be as accurate as pos-

sible. As a compromise, some parameters of the state space equations are

adapted according to the current driving situation (Section 3.4). Additio-

nally, forces with only little influence for the model accuracy are neglected.

Fig. 3.7 shows the most important forces, quantities of motion and some

vehicle parameters of the two track model. For simplification, the center of

gravity is assumed to be in the road surface and the vehicle’s vertical axis

lies on the CoG as well.

The force balance equations in longitudinal and lateral direction and the

torque balance about the yaw axis are set up. In addition to the wheel

forces FLij and FSij, rolling resistance forces are acting on each wheel.

These four rolling resistance forces are unified to a resultant force FR ac-

ting in direction of the vehicle’s longitudinal axis. The centripetal force

FCP acts in the center of gravity perpendicular to the vehicle motion. The

wind forces FWX and FWY are affecting the vehicle in the pressure point

PP . Gravitational forces or the ascending force FWZ are neglected. The

wheel casters are assumed to be equal on the respective axles,

nLF := nLFL = nLFR and nLR := nLRL = nLRR ,

and lateral displacements of the wheel ground contact point are neglec-

ted. Therewith, all assumptions and limitations are defined and the force

balance equations in xCoG- and yCoG-direction are

mCoGv̇CoG cos β = FXFL + FXFR + FXRL

+FXRR − FCP sin β − FWX − FR (3.34)
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Figure 3.7: Forces and vehicle parameters of the two track model

and

mCoGv̇CoG sin β = FY FL + FY FR + FY RL

+FY RR + FCP cos β − FWY . (3.35)

The torque balance about the zCoG-axis is (see Fig. 3.7)

JZ · ψ̈ = (lF − nLF cos δW )(FY FL + FY FR) − (lR + nLR)(FY RL + FY RR)

+
bF

2
(FXFR − FXFL) +

bR

2
(FXRR − FXRL) − eCoGFWY . (3.36)

In the next section, a state space form is derived by replacing FCP in Eqns.

(3.34) - (3.36).
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3.3.1 Centripetal Force

According to [28], the centripetal force is

FCP = −mCoG · v2
CoG

rC
, (3.37)

where rC describes the curve radius around the center of curvature (CC)

and mCoG the complete vehicle mass. According to Fig. 3.8 the inverse

curve radius 1/rC is the change of the course angle d(β + ψ) with the arc

length du between two successive time instants (CoG)1 and (CoG)2:

1

rC
=

d(β + ψ)

du
=

d(β + ψ)

dt
· dt

du
= (β̇ + ψ̇) · 1

vCoG
. (3.38)

Then, the centripetal force according to Eqn. (3.37) can be written as

FCP = −mCoG · v2
CoG

rC
= −mCoG · vCoG · (β̇ + ψ̇) . (3.39)

Inserting (3.39) into the force balances (3.34) and (3.35) yields

mCoG · v̇CoG · cos β − mCoG · vCoG · (β̇ + ψ̇) · sin β =
∑

FX , (3.40)

mCoG · v̇CoG · sin β + mCoG · vCoG · (β̇ + ψ̇) · cos β =
∑

FY , (3.41)
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with

∑

FX = FXFL + FXFR + FXRL + FXRR − FWX − FR , (3.42)

∑

FY = FY FL + FY FR + FY RL + FY RR − FWY . (3.43)

In order to obtain state space form f(x, u), the state variables vCoG and β
shall be isolated now. Multiplying Eqn. (3.40) with cosβ and Eqn. (3.41)

with sin β and adding the resulting equations leads to

mCoG · v̇CoG · (cos2 β + sin2 β)
︸ ︷︷ ︸

=1

= cos β ·
∑

FX + sin β ·
∑

FY . (3.44)

Isolating v̇CoG provides the first state space equation

v̇CoG =
1

mCoG
·
{

cos β ·
∑

FX + sin β ·
∑

FY

}

. (3.45)

Using Eqn. (3.41) and (3.45) provides an equation for β

cos β · sin β
∑

FX + sin2 β
∑

FY + mCoGvCoG(β̇ + ψ̇) cos β =
∑

FY

⇔ mCoGvCoG(β̇ + ψ̇) cos β = (1 − sin2 β)
︸ ︷︷ ︸

cos2 β

∑

FY − cos β · sin β
∑

FX .

Isolating β̇ yields the second state space equation of the non-linear two

track model:

β̇ =
1

mCoGvCoG
·
{

cos β ·
∑

FY − sin β ·
∑

FX

}

− ψ̇ . (3.46)

The third state space equation from the torque balance (3.36) reads

ψ̈ =
1

JZ
·
{

(lF − nLF cos δW )(FY FL + FY FR)

+
bF

2
(FXFR − FXFL) − (lR + nLR)(FY RL + FY RR)

+
bR

2
(FXRR − FXRL) − eCoGFWY

}

. (3.47)

The mass moment of inertia JZ is approximated. Generally, it is defined as

J =

∫

m

r2dm . (3.48)
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Assuming only two mass elements on the front axle (mF ) and on the rear

axle (mR), Eqn. (3.48) is simplified:

JZ = mF · l2F + mR · l2R . (3.49)

If the mass distribution is unknown, then an approximation can be em-

ployed, [63]:

JZ = mCoG · i2Z . (3.50)

with i2Z = 1.3 . . . 1.45m2.

The three Eqns. (3.45), (3.46) and (3.47) describe the vehicle dynamics

in plane. These equations are merged to a vector equation leading to a

non-linear state space model with the state vector x = (vCoG, β, ψ̇)T :




v̇CoG

β̇

ψ̈



 =: ẋ = f(vCoG, β, ψ̇, δW , FXij, FY ij, FR, FWX , FWY ). (3.51)

The function f depends on the state variables vCoG, β and ψ̇. Furthermore,

the longitudinal and lateral wheel forces FXij and FY ij, the rolling resistan-

ce force FR and the wind forces FWX and FWY are unknown in Eqn. (3.51).

These variables are replaced stepwise in the next sections, so that f only

depends on the three state variables and other measurable variables.

3.3.2 Rolling Resistance Force

When a rubber tire rotates, it is compressed when running through the

wheel ground contact area. Due to the damping characteristics of the tire,

a portion of this ”compression energy” is transformed to thermal energy

heating up the tire. The rolling resistance force is a quantity which describes

this effect. It mainly occurs in the wheel ground contact area. The rolling

resistance significantly depends on the vehicle velocity, and according to

[64] can be approximated by a polynomial

FR = FZ ·
(

fR,0 + fR,1 ·
(

vCoG

30 m
s

)

+ fR,4 ·
(

vCoG

30 m
s

)4
)

, (3.52)

where FZ describes the vertical wheel force calculated in Section 3.3.4.

Typical values for the rolling resistance parameters fR,0, fR,1 and fR,4 can

be found in [52]. [32] describes a method to estimate the rolling resistance

parameters with a recursive least squares approach.

The rolling resistance force is neglected in the vehicle model. Simulations

show that the rolling resistance hardly influences the accuracy of the non-

linear state space model.
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3.3.3 Wind Force

A driving vehicle is passed by air causing a turbulent flow, [52], which can

be described by a quadratic velocity dependence. Therefore, the following

widespread approximation was used for the wind forces:

FWX = cWX · v2
CoG , (3.53)

FWY = cWY · v2
WY . (3.54)

In the vehicle models, the lateral wind force is neglected, because there is

no reliable online information about the current lateral wind force vWY .

The constant cWX holds

cWX = caer · AL · ρ0

2
(3.55)

with the air density ρ0, the vehicle front area AL and the air drag coefficient

caer.

3.3.4 Vertical Wheel Forces

In moderate driving situations the vertical wheel forces are mainly cau-

sed by earth gravitation. Then, they primarily depend on the passenger

and package distribution and on the geometric measures of the vehicle. In

extreme acceleration, brake or cornering situations, however, the vehicle

body shifts because of inertial forces. In these situations, the individual

vertical wheel forces change depending on the accelerations acting, on the

spring damper characteristics of the suspension system, [69], and on kine-

matic interactions of the coupled wheels. Considering all of these effects

results in a set of complex non-linear equations with a lot of unknown

parameters which have to be identified. [32] describes the vertical wheel

forces accurately by using neural networks. To avoid unnecessary comple-

xity, the vertical wheel forces are approximated with a simple approach

here. The camber angle is neglected as well as the dynamics of the vehicle

body motion. The roll and pitch accelerations χ̈ and ϕ̈ are not considered.

The left sides of Eqns. (3.30) and (3.32) are zero. Furthermore, the roll and

pitch axes are assumed to pass through the center of gravity. Then, hPA,

lPA, hRA, bRA in Figs. 3.5 and 3.6 are zero. If, moreover, couplings between

the pitch and roll dynamics are not regarded, the torque balances around

the respective axes can be carried out separately. The current wheel loads

depend on the longitudinal and lateral accelerations. Positive longitudinal

accelerations aX cause a pitch motion aXB of the vehicle body due to its
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Figure 3.9: Wheel load changes

inertia. The pitch motion relieves the front axle and loads the rear axle (see

Fig. 3.9(a)). The torque balance about the wheel ground contact point of

the rear axle provides

FZF = mCoG ·
(

lR
l

g − hCoG

l
aXB

)

. (3.56)

Here, it is assumed that not only the vehicle body but the whole vehicle

”rotates” around the front wheel contact point. That is the reason, why

Eqn. (3.56) contains the complete vehicle mass mCoG instead of the vehicle

body mass mB only.

Secondly, cornering causes lateral accelerations aY B of the vehicle body,

which relieves the inner vehicle track. As mentioned before, to calculate the

resultant wheel loads, the front and rear axle are regarded separately. This

demands to introduce two virtual masses mF and mR for the respective

vehicle axles. According to Eqn. (3.56), for the front axle it becomes

mF =
FZF

g
=

mCoG

g
·
(

lR
l

g − hCoG

l
aXB

)

. (3.57)

Using the virtual mass mF , the individual wheel loads for the front wheels

can be calculated. Fig. 3.9(b) shows the affecting forces. The torque balance

about the wheel ground contact point of the front right wheel yields the

wheel load of the front left wheel

FZFL = mF ·
(

1

2
g − hCoG

bF
aY B

)

= mCoG ·
(

lR
l

g − hCoG

l
aXB

)

·
(

1

2
− hCoG

bF
· aY B

g

)

. (3.58)
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Figure 3.10: Varying wheel loads for cornering

Analogous, the wheel loads of the other wheels are calculated

FZFR = mCoG ·
(

lR
l

g − hCoG

l
aXB

)

·
(

1

2
+

hCoG

bF
· aY B

g

)

,

FZRL = mCoG ·
(

lF
l

g +
hCoG

l
aXB

)

·
(

1

2
− hCoG

bR
· aY B

g

)

,

FZRR = mCoG ·
(

lF
l

g +
hCoG

l
aXB

)

·
(

1

2
+

hCoG

bR
· aY B

g

)

. (3.59)

Fig. 3.10 shows the varying wheel loads of a cornering drive. The vehicle

drives straightforward during the first phase of the drive. The wheel loads

are almost constant at about 3300N . After about t = 1.8s the vehicle

enters a left curve. That is why the front left wheel is relieved, whereas the

right wheel is loaded. The wheel load at the right wheel rises to a value of

almost 6000N . Fig. 3.10 shows that even for extreme cornering situations

with significant wheel load changes, the approximation Eqns. (3.58) - (3.59)

provide very good results. The values are much better than considering

static wheel loads only. This is the basis for the accurate calculation of the

lateral wheel forces (see Section 3.3.6).
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3.3.5 Longitudinal Wheel Forces

This thesis focuses on vehicle dynamics and accident reconstruction. The-

refore, no sophisticated drivetrain and brake system models were set up.

The longitudinal wheel forces are assumed to be measured or modeled in-

puts into the vehicle model.

The drive forces can be calculated based on the engine torque by modeling

the drivetrain, e.g. [44]. In a first, rough approximation, the drive torque

at the wheels is calculated with the engine torque TE and the transmission

factors of the gear box and the differential gear. This approach neglects

torsion oscillations in the drivetrain, though.

The brake forces can for instance be determined by means of the main cy-

linder brake pressure pBM and a brake model, which calculates the indivi-

dual wheel cylinder brake pressures pBWij, [14]. Knowing the pBWij and the

geometric measures as well as the friction characteristics of the brake disks

allows to determine the brake forces. In future automotive applications,

new brake systems like the electrohydraulic brake or the electromechanic

brake, described e.g. in [69], will probably spread and provide a brake force

signal.

3.3.6 Lateral Wheel Forces

Section 3.1.3 describes the deviation of the tire motion from the wheel

plane. The tire must evade laterally to transform side forces. Usually, the

relationship between the tire side slip angles αij and the lateral wheel forces

FSij is assumed to be linear:

FSij = cij · αij . (3.60)

For the tire side slip angles, the linear state space approximations can be

inserted (Eqns. (3.13) and (3.14)) leading to the following linear approxi-

mation of the lateral wheel forces on the front and on the rear axle:

FSFj = cFj ·
(

δW − β − lF · ψ̇
vCoG

)

, (3.61)

FSRj = cRj ·
(

−β +
lR · ψ̇
vCoG

)

. (3.62)

However, the linear approximation is only valid for lateral accelerations

below 4m/s2, [53]. For growing lateral accelerations, that means with in-

creasing tire side slip angles and wheel load shift, the linear approximation
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Figure 3.11: Non-linear characteristic line for lateral wheel force

deviates more and more from the real lateral wheel force characteristic

(Fig. 3.11). The cornering stiffnesses cij describe the slope of the straight

line in Fig. 3.11. That means, they represent the proportionality factor for

the linear relationship expressed in Eqn. (3.60). It is obvious that for hig-

her lateral accelerations the cornering stiffnesses are reduced. Section 3.4.2

explains a methodology which approximates the time-varying reduction of

cornering stiffnesses according to the driving situation.

3.3.7 Final State Space Equations of the Non-Linear

Two Track Model

The longitudinal and lateral wheel forces determined in Sections 3.3.5

and 3.3.6 are transformed into the center of gravity coordinate system

now. The forces FXij and FY ij in Eqns. (3.45) to (3.47) therefore are re-

placed by the longitudinal and lateral wheel forces FLij and FSij. These

are the forces acting on the tires and causing the vehicle motion. For the

transformation of the forces, Eqns. (3.25) to (3.28) are employed again.

With the transformed wheel forces FLij and with FSij according to Eqns.

(3.61) and (3.62), with the approximation of FWX (Eqn. (3.53)) and the

neglect of less important forces, the equations for the vehicle model can be

set up now.

Goal of this section is the derivation of a non-linear two track model. To

reduce the complexity, several approximations were carried out. For exam-

ple, as mentioned before, the rolling resistance was not considered due to
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its small influence. This yields the following state space equations for the

non-linear two track model:

v̇CoG =
1

mCoG
·
{

(FLFL + FLFR) cos(δW − β)

−(cFL + cFR) ·
(

δW − β − lF ψ̇

vCoG

)

· sin(δW − β)

+
(
FLRL + FLRR − cWX · v2

CoG

)
· cos β

+(cRL + cRR) ·
(

−β +
lR ψ̇

vCoG

)

· sin β
}

, (3.63)

β̇ =
1

mCoGvCoG
·
{

(FLFL + FLFR) sin(δW − β)

+(cFL + cFR) ·
(

δW − β − lF ψ̇

vCoG

)

· cos(δW − β)

+(cRL + cRR) ·
(

−β +
lR ψ̇

vCoG

)

· cos β

−(FLRL + FLRR − cWX · v2
CoG) sin β

}

− ψ̇ , (3.64)

ψ̈ =
1

JZ
·
{

(lF − nLF cos δW ) · (FLFL + FLFR) · sin δW

+(lF − nLF cos δW ) · (cFL + cFR) ·
(

δW − β − lF · ψ̇
vCoG

)

· cos δW

+
bF

2
· (FLFR − FLFL) cos δW +

bR

2
· (FLRR − FLRL)

−bF

2
· (cFR − cFL) ·

(

δW − β − lF · ψ̇
vCoG

)

· sin δW

−(lR + nLR) · (cRL + cRR) ·
(

−β +
lR ψ̇

vCoG

)
}

. (3.65)
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With these three differential equations, the dynamics of a vehicle can be

described by a state space model

ẋ = f(x, u) (3.66)

with three state variables

x =
[

vCoG β ψ̇
]T

.

The non-linear vector function f is defined by the differential equations

(3.63), (3.64) and (3.65).

Keeping the number of inputs small was a main aspect of the considerations

in Section 3.3. The final state space model gets by with only five input

variables

u =
[

FLFL FLFR FLRL FLRR δW

]T
.

Two of the state variables are measurable: the center of gravity velocity

vCoG and the yaw rate ψ̇. This yields the output equation

y =
[

vCoG ψ̇
]T

= C · x =

[
1 0 0

0 0 1

]

· x . (3.67)

This model is the basis for the non-linear vehicle body side slip angle

observers designed in Section 5.4 and for the extended Kalman-Bucy-

Filter of Section 5.4.7.

3.4 Adaptation of Time-varying Parameters

To handle the trade-off between simpleness and accuracy of the vehicle

model, two important parameters of the model are adapted: the wheel

force reduction factors kredij and the cornering stiffnesses cij. The cornering

stiffnesses are approximated with a non-linear approximation equation.

3.4.1 Wheel Force Reduction Factor

According to Eqn. (3.20) the maximum force Ffric which can be transmit-

ted to the ground is limited by the friction coefficient µ. The wheel adhesion

limit describes the limit, where the wheel is not rolling any more and starts

sliding. The calculated wheel forces are adapted now to meet the adhesion

condition. If longitudinal and lateral forces are acting simultaneously, the



36 3 Vehicle Model

µResij · FZij

FLij

FSij

adhesion limit:
rolling wheel

Figure 3.12: The Kamm-circle

geometric sum of the forces must be inside the Kamm-circle (see Fig. 3.12)

and meet the adhesion condition
√

F 2
Lij + F 2

Sij ≤ µResij · FZij . (3.68)

In extreme driving situations the friction forces may be calculated too

large. In order to consider that fact, a wheel force reduction factor kred

is introduced which reduces the longitudinal and lateral wheel forces FLij

and FSij, if the relation (3.68) is not fulfilled any more

kredij =
µResij · FZij

√

F 2
Lij + F 2

Sij

. (3.69)

If both FLij and FSij are zero when rolling straightforward, the adhesion

condition (3.68) holds. Then, kredij is set to one to avoid singularities of

Eqn. (3.69). The wheel force reduction factor ensures that the geometric

sum of the forces lies within the borders of the Kamm-circle. It has to be

adapted in every calculation step of the vehicle model in order to guaran-

tee, that the maximum force transmission to the ground is not exceeded.

However, if the wheel is sliding over the ground, the force transmission will

still be calculated too high, as a sliding wheel is almost not at all capable to

transmit forces to the ground. That means, that the wheel force reduction

factor is a means to come closer to reality. In sliding situations, though,

the calculated wheel forces are still too large.

Fig. 3.13 shows the lateral wheel force FSFL of a test drive, where the

vehicle is understeering. That means, the adhesion contact to the ground
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on the front axle gets lost. Fig. 3.13 shows that the modeled lateral wheel

force without regarding the Kamm-Circle is too high. Considering the re-

lation (3.68) and employing the wheel force reduction factor according to

Eqn. (3.69), the measured reference is approximated more accurately in

the highly dynamical phase of the drive between t = 4s and t = 5.5s. This

gain of lateral wheel force accuracy influences the quality of the employed

vehicle models.

3.4.2 Adaptation of the Cornering Stiffnesses

In order to keep the complexity of the non-linear two track model small,

the linear relationship FS(α) from Eqn. ( 3.60) remains. However, the time-

varying cornering stiffnesses are adapted using a non-linear approximation

equation of the lateral wheel forces as well as the TSSAs determined by

means of Eqns. ( 3.13) and ( 3.14).

Approximation of the Non-Linear Lateral Wheel Force Charac-

teristics

Several elementary functions such as f(α) =
√

α or rational functions have

been analyzed to meet the shape of the FS(α)-curve of Fig. 3.11. However,

the arctan(x)-function coupled with a factor including varying wheel loads

best fits the reference data set, [35]

FS(α, FZ , ξ) = kred ·
(

1 − FZ

ξ1

)

FZ arctan(ξ2 · α) . (3.70)
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The wheel force reduction factor kred is added to consider the limited fric-

tion on low µ road surfaces. The lateral wheel force does not build up

instantly. [80] models the setup of the lateral wheel force with a first order

dynamical behavior. As it is short compared to the vehicle behavior, the

time constant is neglected here.

Eqn. (3.70) depends on a two element parameter vector ξ = (ξ1, ξ2)
T .

Fig. 3.14 shows four characteristic maps of a tire. The circles are measu-

rement points of the map. The parameter for the five curves is the wheel

load, starting at the bottom with FZ = 1.1kN and ending on top with

FZ = 7.1kN . Changes of ξ1 and ξ2 in Eqn. (3.70) describe different tire

characteristics. In Fig. 3.14(a) the ”best fit” of the approximation (solid)

with respect to the reference (circles) is plotted. However, the vector ξ can

be varied to model different tire characteristics:

In Fig. 3.14(b), ξ1 was increased and ξ2 was decreased simultaneously. For

large TSSAs, the force transmission is increased compared to the reference,

whereas for small α it is rather small. This is typical for a tire which has

a reduced tendency for understeer at high lateral accelerations, [64].

The characteristic map of the tire in Fig. 3.14(c) represents a tire with a

strong understeer tendency at high lateral accelerations. This behavior re-

sults for decreasing ξ1 and increasing ξ2 compared to the ”best-fit values”.

In Fig. 3.14(d), a tire is characterized which in general is not capable to

transmit forces as well as the ”best-fit tire”. This behavior can be achieved

by decreasing ξ1.

The examples show how tires with different self-steering behavior can be

described by variations of ξ.

Optimization of ξ1 and ξ2 for Best-Fit

In order to achieve ”best-fits” of the curves using Eqn. (3.70), the parameter

vector ξ must be optimized. The goal is to determine the parameter vector

ξ, so that the quadratic error between approximated and real characteristic

map is minimized. As the parameters in function (3.70) are non-linear,

standard least squares (LS-) methods cannot be applied. Therefore, a non-

linear quality function must be minimized with non-linear optimization

techniques. First, the deviation between approximation FS and reference

Fref is defined

Fr(ξ) = Fref,r − FS,r(αr, FZ,r, ξ) . (3.71)

Using Eqn. (3.70) provides

Fr(ξ) = Fref,r − kred ·
(

1 − FZ,r

ξ1

)

FZ,r arctan(ξ2αr) . (3.72)
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Figure 3.14: Different tire characteristics when varying the tire parame-

ters

FS,r represents the approximation for data point r (r = 1, . . . , N). Fref,r

describes the r− th value of the characteristic map of the tire to be appro-

ximated.

Next, a quality function is set up which sums up the quadratic errors in

Eqn. (3.72). The optimization goal is to minimize the quality function

min
ξ

{
N∑

r=1

[
Fref,r − FS,r(αr, FZ,r, ξ)

]2

}

. (3.73)

with respect to the parameter vector ξ. For the optimization, kred is 1.

The Levenberg-Marquardt-Optimization, a numerical method of gra-
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dient descent, was applied here to determine ξ. The algorithm converges

quickly and for the reference tire map of Fig. 3.14 yields ξ1 = 14386 and

ξ2 = 0.3355.

Adaptation of the Cornering Stiffnesses

As the lateral wheel forces are the basis to describe the vehicle dynamics in

curves, the non-linear and time-varying characteristics FS(t) = c(t) · α(t)
must be approximated. To reduce the complexity of the adaptive non-linear

state space model the cornering stiffnesses are adapted to the non-linear

tire force characteristic in every simulation step (see Fig. 3.15)

cij(t) =
FSij(t)

αij(t)
, (3.74)

with the FSij calculated by means of Eqn. (3.70).

[9] adapts the cornering stiffnesses with a recursive least-squares estimation

(RLS-) algorithm. The method described in [4] estimates the current cor-

nering stiffness using GPS velocity based measurements. The lateral wheel

forces FSij crucial for both methods are determined from the lateral acce-

lerations without explicitly considering wheel load changes. The approach

described above is a parametric non-linear approximation equation, where

the wheel load changes are included. The parameters can be adapted to a

specific tire type easily.

Fig. 3.16 gives an overview over the cornering stiffness adaptation system.

The changing vertical wheel force FS as well as the TSSA α are flowing into
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Figure 3.16: Overview of cornering stiffness adaptation

the non-linear approximation block represented by Eqn. (3.70). Here, the

lateral wheel forces FSij on each individual wheel are calculated in every

sampling step according to the tire characteristic map specified by the

parameter vector ξ. Using the tire side slip angle determined by means of

existing sensor information and the estimated vehicle body side slip angle

β from the last calculation step, the cornering stiffnesses can be adapted.

Fig. 3.17 shows the time-varying cornering stiffnesses of a left clothoide

drive. The cornering stiffnesses of the left track are dropping between t = 2s
and t = 6s from about 50000N/rad (linear approximation value) to less

than 10000N/rad. This effect is caused by the increased side slip angle and

even more by the wheel load shift to the outer (=right) track. In this driving

situation the vehicle was understeering , therefore the cornering stiffness of

the (loaded) front right wheel also decreases significantly. At the end of the

drive, when the vehicle drives straight again the cornering stiffnesses return

to their initial values. Fig. 3.17 points out that the decrease of lateral wheel

force caused by the drop of the cornering stiffnesses influences the lateral

vehicle dynamics significantly. That is the reason, why the cij(t) have to

be time-varying parameters for the vehicle model.

The final equation for the lateral wheel forces can now be expressed ba-

sed on Eqns. (3.61) and (3.62) by considering the time-varying cornering

stiffness cij(t):

FSFj = cFj(t) ·
(

δW − β − lF · ψ̇
vCoG

)

, (3.75)

FSRj = cRj(t) ·
(

−β +
lR · ψ̇
vCoG

)

. (3.76)

In Eqns. (3.63) - (3.65) of the non-linear two track model the cornering
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Figure 3.17: Adapted cornering stiffnesses over time for a clothoide drive

stiffnesses are adapted yielding an adaptive non-linear two track vehicle

model.

3.5 Linear Single Track Model

Starting from the adaptive non-linear two track model the linear single

track model is derived in this section. The linear single track model is also

known as the ”bicycle model”. Several simplifications are made which limit

its range of application:

• The wheels of one axle are merged to one resultant wheel. There-

with, bF and bR are zero. That means, wheel load changes are not

considered.

• Assuming that the vehicle body side slip angle β and the wheel turn

angle are small, the approximations sinβ ≈ β, cos β ≈ 1, sin δW ≈ δW

and cos δW ≈ 1 are applied.

• The lateral wheel forces affect in the middle of the wheel ground

contact area. The casters nLF and nLR are zero.

• The center of gravity velocity is regarded as a constant parameter.

That means: v̇CoG ≈ 0. Neglecting additionally the wind force, no
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Figure 3.18: Linear single track model

forces are acting in longitudinal direction: FXR = FXF = 0. That is

why the linear single track model consists only of two equations.

To describe the vehicle dynamics, the lateral force balance and the torque

balance about the yaw axis are set up (see Fig. 3.18). The force balance in

lateral direction is

mCoGv̇CoG sin β = FY F + FY R + FCP cos β . (3.77)

The wind forces FWX and FWY as well as the rolling resistance force FR

are neglected.

Applying the mentioned trigonometrical approximations and replacing FCP

(Eqn. (3.39)) provides

0 = FY F + FY R − mCoG · vCoG · (β̇ + ψ̇) . (3.78)

Again, the wheel forces FSR and FSF must be transformed into the center

of gravity coordinate system:

FY R = FSR , (3.79)

FY F = FLF · sin δW + FSF · cos δW ≈ FLF · δW + FSF . (3.80)

The lateral wheel forces are replaced with Eqns. (3.61) and (3.62). The

cornering stiffnesses of the front axle cF and of the rear axle cR are constant.

Neglecting the term FLF · δW yields

mCoG·vCoG·(β̇+ψ̇) = cF ·
(

δW − β − lF ψ̇

vCoG

)

+cR·
(

−β +
lR ψ̇

vCoG

)

. (3.81)
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Isolating β̇ leads to

β̇ = − cF + cR

mCoG vCoG
· β +

(
cRlR − cF lF
mCoG v2

CoG

− 1

)

· ψ̇ +
cF

mCoG vCoG
· δW . (3.82)

The second differential equation for ψ̇ is derived by means of the torque

balance about the zCoG-axis (see also Fig. 3.18)

JZ · ψ̈ = lF · FY F − lR · FY R . (3.83)

Here, the wheel forces are also replaced with Eqns. (3.79) and (3.80). Again

FLF · δW is not considered and ψ̈ is isolated providing

ψ̈ =
cRlR − cF lF

JZ
· β − cF l2F + cRl2R

JZvCoG
· ψ̇ +

cF lF
JZ

· δW . (3.84)

In order to set up a state space model, the vehicle body side slip angle β
and the yaw rate ψ̇ are defined as the state space vector

x =

[
β

ψ̇

]

.

The time derivative of x is described by the two differential equations (3.82)

and (3.84) which yields the vector differential equation

ẋ =





− cF +cR

mCoG vCoG

cRlR−cF lF
mCoG v2

CoG

− 1

cRlR−cF lF
JZ

−cF l2F +cRl2R
JZvCoG



 · x +





cF

mCoG vCoG

cF lF
JZ



 · δW . (3.85)

Eqn. (3.85) represents a linear state space model

ẋ = A(vCoG) · x + B(vCoG) · u
with

A(vCoG) =





− cF +cR

mCoG vCoG

cRlR−cF lF
mCoG v2

CoG

− 1

cRlR−cF lF
JZ

−cF l2F +cRl2R
JZvCoG



 and B(vCoG) =





cF

mCoG vCoG

cF lF
JZ



 .

The wheel turn angle δW is the only input variable and β and ψ̇ are the

two state space variables. The velocity vCoG is a time-varying parameter.

The only measurable output variable is the yaw rate. The output equation

is therefore

y = ψ̇ =
[

0 1
]

︸ ︷︷ ︸

C

·
[

β

ψ̇

]

= C · x . (3.86)

The linear single track model will be needed as a reference model to detect

critical driving situations in Chapter 4.
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3.6 Validation of the Vehicle Models

The vehicle models are the basis for the reconstruction of the vehicle mo-

tion. Section 5.4 presents approaches for the model based determination of

the vehicle body side slip angle. The quality of these model based approa-

ches significantly depends on the accuracy of the underlying vehicle models.

Therefore, this section validates the adaptive non-linear two track and the

linear single track vehicle model. Measured input quantities are applied

to the models. The modeled state variables are simulated and afterwards

compared to the measured reference. The in- and output quantities u and

y are measured, the state variables x are usually unknown. The model is

simulated with the very same input values than the process. Additionally,

it depends on the initial state x0 of the state variables. As the process state

variables and their initial values are unknown, process and simulation start

with different values x0 and xs,0. Therefore, even if the model described the

process exactly, the state variables of the model and the process would de-

viate.

For the validation, though, measurement values for the state variables are

existing. The initial value of these reference measurements can be chosen

for the model as well. Then, the vehicle model and the real vehicle dyna-

mics start in the very same state and the modeled and measured signals

can be compared in order to assess the model quality.

3.6.1 Test Drives

Three test drives described here are exciting the dynamics of the vehicle.

Sinusodial changes of the steering angle cause a slalom drive of the car.

The test drive was carried out at medium velocity. The test drive therefore

is a mixture of exciting the lateral and longitudinal vehicle dynamics. Se-

condly, a clothoide with high dynamics excites the lateral dynamics up to

the stability limit of the car. The last test drive is a straightforward drive
to analyze the simulation quality of the longitudinal vehicle dynamics.

Slalom Drive

Fig. 3.19 shows the wheel turn angle δW , the velocity vCoG, vehicle body

side slip angle β and the yaw rate ψ̇. As the wheel turn angle and the vehicle

body side slip angle range between −1◦ and +2◦, the simplifications of the

linear single track model should not be too severe. Therefore, this test drive

appears to be adequate to validate the single track model.
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Figure 3.19: Measured signals of the slalom drive

Clothoide with High Dynamics

A clothoide driving maneuver is a test drive, where the curvature increases

linearly with the traveled distance, [53]. For small velocities, this is equi-

valent to equally increasing the steering wheel angle until a steady final

value. For the high dynamical clothoide, the wheel turn angle is increased

until its maximum value within only 1.5s. With a certain delay, the vehicle

body side slip angle increases up to as much as 15◦ (Fig. 3.20). The wheels

of the inner track almost lose road contact. The rough trajectory of the

test drive can be seen in Fig. 3.21 for clarification. This test drive describes

a driving situation right at the stability limit and therefore is appropriate

to test, whether the vehicle models are sufficiently accurate for accident

detection and reconstruction.

3.6.2 Simulation of the Linear Single Track Model

Describing the lateral vehicle dynamics with the linear single track model

requires several simplifications (see Section 3.5). Among others, small va-

lues for the wheel turn angle δW and for β are pre-assumed.

First, the linear single track model is analyzed by means of the slalom

drive described in Section 3.6.1. Fig. 3.22 compares the simulated and the
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Figure 3.20: Measured signals for the clothoide drive with high dynamics
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Figure 3.22: Simulation of the slalom drive with the linear single track

model

measured signals for the state variables β and ψ̇. The measured signal of

the vehicle body side slip angle was filtered with a third order Butter-

worth Low-pass Filter (cut-off frequency: fC = 2.5 Hz). On principal, the

modeled yaw rate signal (bottom) and its measured reference are similar.

The model provides maxima, which are about 25% too large. The side

slip angle simulations (top) are significantly worse. Here, the modeled and

measured signals deviate abundantly clear. The basic characteristics of the

signal are different. There is an offset and a phase delay between modeled

and measured signal. The maxima and minima of side slip angle and yaw

rate show noticeable correlation. All in all, the simulated vehicle body side

slip angle matches the reference unsatisfactory even though δW and β are

small.

The deviations are even more obvious for the second test drive employed

here, the clothoide drive with high dynamics (Fig. 3.23). Initially, the simu-

lated yaw rate increases too fast and slightly decreases after circa t = 3.2s,
while the real value is still growing. The deviations for β are even more

severe. The vehicle body side slip angle builds up too fast. Especially at

the beginning of the test drive, the results are unacceptable.

The simulation results of both test drives show that the linear single track

model cannot describe the lateral dynamics with sufficient accuracy. The
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Figure 3.23: Simulation of the linear single track model for a high dyna-

mical clothoide drive

detection and reconstruction of pre-crash situations or the design of a state

space observer require a model which is much more accurate.

3.6.3 Simulation of the Non-Linear Two Track Model

Constant Cornering Stiffnesses

Initially, the non-linear two track model is simulated with the clothoide of

high dynamics. First, the cornering stiffnesses are kept constant. Fig. 3.24

shows the simulation results. Similar to the bicycle model, the modeled

yaw rate ψ̇ increases too fast and reaches too high values. The side slip

angle also increases too fast, converges against the reference value at the

end, though. The velocity is also too large.

As the cornering stiffnesses were kept constant, a linear relation between

the tire side slip angle α and the lateral wheel force FS was presumed

(Eqn. (3.60)). This assumption is only valid for small wheel load changes

and little values of α. However, this measurement drive was carried out

at the stability limit of the car. Therefore, the linear relationship surely

is not fulfilled any more. In the following, the effects of cornering stiffness

adaptation are analyzed.
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Figure 3.24: Simulation of the non-linear two track model with constant

cornering stiffnesses for the clothoide drive with high dynamics

Adapted Cornering Stiffnesses

The adaptation of the cornering stiffnesses requires the calculation of the ti-

re side slip angles αij and the current vertical wheel forces FZij. The vertical

wheel force approximation was already validated in Section 3.3.4. Knowing

the vertical wheel forces FZij and the αij, the lateral wheel forces are ap-

proximated with Eqn. (3.70). Finally, the cornering stiffnesses are adapted

according to Eqn. (3.74). Fig. 3.25 shows that the theoretical side forces

are more than 500% too large when using constant cornering stiffnesses.

Adapting the cornering stiffnesses provides much better approximations for

the lateral wheel forces of the front axle. Using these improvements, the

simulation accuracy of the adapted non-linear state space model is much

better. Fig. 3.26 shows the three state variables with and without parame-

ter adaptation and with the measured reference.

Adapting the cornering stiffnesses yields very much better results, especi-

ally for the vehicle body side slip angle and the yaw rate. The simulated

velocity is improved as well, however still too large. All in all, the adap-

ted non-linear state space model is accurate enough to describe the lateral

dynamics up to the stability limit of the vehicle.
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Figure 3.25: Comparison of side forces with and without adaptation of

the cornering stiffnesses with the measured reference for the clothoide with

high dynamics
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Figure 3.26: Effect of cornering stiffness adaptation on the simulation

accuracy for a clothoide of high dynamics
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Figure 3.27: Simulation of the non-linear two track model with constant

and with adapted cornering stiffnesses for a slalom drive

Simulation of a Slalom Drive

Fig. 3.27 shows the results of the simulation of the slalom drive with and

without adaptation of the cornering stiffnesses. The velocity and the yaw

rate are practically not influenced by parameter adaptation. That is why

the respective curves are covering each other. Only the amplitude of the

vehicle body side slip angle approaches the one of the measured reference.

The improvements are slight, though, as during the slalom drive only small

wheel turn angles were applied. That means, the tire side slip angles we-

re moderate as well. Therefore, the tire behavior remains linear and the

adaptation is not necessary any more.

Simulation of a Straightforward Drive

The straightforward drive was chosen to validate the longitudinal dynamics

of the vehicle model. Fig. 3.28 shows that the vehicle was accelerated up to

50 km/h. Afterwards, the car brakes down again to almost standstill. The

driver was not steering at all. Therefore, the vehicle body side slip angle

and the yaw rate are almost zero. The figure shows, that the vehicle model

describes the longitudinal dynamics (i.e. the velocity vCoG) very accurately.

The modeled and the measured velocities can hardly be distinguished. The
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Figure 3.28: Simulation of the non-linear two track model for a straight-

forward drive

yaw rate and the vehicle body side slip angle as measures for the lateral

dynamics are also correctly calculated. That means, that also for straight-

forward drives with small lateral excitation the vehicle model provides very

good results.

3.7 Conclusion

In Chapter 3 a wheel force model was presented which calculates the lon-

gitudinal and lateral wheel forces on basis of the slip. Thereby, a friction

model of Burckhardt was employed as a compromise between comple-

xity and approximation accuracy. The tire side slip angles are calculated

on basis of a linear model.

Afterwards, the motions of the vehicle body were regarded. For accident

reconstruction purposes, though, the vehicle motion in plane is most im-

portant. Therefore, the focus of this chapter was the derivation of a non-

linear two track state space model. As a basic condition, the model should

be kept as simple as possible. Therefore, the input variables were limited

to the longitudinal wheel forces and the wheel turn angle. To gain satisfac-

tory accuracy, several time-varying parameters must be adapted. The most

important parameters are the cornering stiffnesses. With a non-linear ap-
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proximation equation considering varying wheel loads, the cornering stiff-

nesses are adapted in every calculation cycle of the model. The state space

model therefore is non-linear and adaptive.

In a next step, the adaptive non-linear two track model was simplified to

the well known linear single track (or ”bicycle”) model.

Both the bicycle model and the (adaptive) non-linear two track model were

validated with several test drives. The presented simulation results show

that the linear single track model is not capable to describe the lateral ve-

hicle dynamics with sufficient accuracy. For test drives close to the stability

limit, both state variables of the model are significantly too high compared

to the measured reference. State space observers or other approaches to

reconstruct the vehicle motion in an instable pre-crash situation require a

very exact vehicle model. The linear model is not sufficiently accurate for

these purposes.

Compared to the linear single track model, the non-linear two track model

provides a much more accurate vehicle description, particularly of the la-

teral dynamics. Regarding all four wheels allows to consider load changes.

Linearizations are not necessary here. Adaptation of the cornering stiff-

nesses is a crucial improvement for the model performance. All in all, the

adaptive non-linear model is more complex. However, the vehicle dynamics

can be described up to the stability limit which is the basis for reconstruc-

ting the pre-crash phase of a road traffic accident.



4 Detection and Classification of Pre-

Accident Situations

A model based event data recorder records data continuously and saves it

in a circular buffer. After a certain time, when the storage capacity of the

memory is reached, the memory management starts writing at the begin-

ning of the buffer again. That means, it overwrites the data already stored

in the memory.

The time before an accident is crucial for accident reconstruction. Kno-

wing the vehicle and driver behavior provides information about the cause

of the accident. Therefore, a major task of an EDR is to guarantee that

the crucial information of the pre-accident phase is stored in a memory. To

define the beginning of the time period which must not be overwritten any

more, a robust accident detection mechanism has to be developed.

Existing event data recorders use the longitudinal acceleration signal aX .

If it exceeds a certain predefined threshold (for instance aX > 2g, [19]),

the system suspends overwriting existing data.

The system presented here additionally regards laterally critical driving

situations (oversteer, understeer, sliding, etc.) occurring before the crash

event. This is advantageous because the system not only detects but also

classifies a driving situation. Therefore, the behavior of car and driver in

the pre-crash phase can be assessed. Secondly, accidents resulting from a

laterally critical driving situation are of special interest for reconstruction.

Such accidents mainly occur on country roads, they are characterized by

a significantly increased fatality rate, the victims are often young drivers,

[57], [59]. Furthermore, there are often no witnesses, as single car acci-

dents are over proportional for this accident type. For these accidents, it

is advantageous to use model based detection strategies. Then, if a few

seconds before the freezing signal are stored in the memory additionally,

the complete critical pre-accident phase crucial for accident reconstruction

is recorded as well. Conventional systems detecting an accident by means

of the longitudinal acceleration need much more memory to capture the

whole pre-accident phase, because the trigger signal is usually generated

at a later point of time.
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Before a detection and classification methodology can be presented, the

term ”critical driving situation” must be defined. First of all, ”critical si-

tuation” in this chapter means laterally critical situations. The longitudinal

dynamics is of less importance in this context, as the freezing problematic

can be solved by applying intelligent acceleration thresholds. Therefore,

in this chapter not the braking performance but only the vehicle reaction

on steering inputs is regarded. A widespread approach defines a laterally

critical situation, if the vehicle behavior deviates significantly from the dri-

ver’s driving experience (see for instance [55], [68], [75], [76] and others).

A driver is capable to manage and control the lateral vehicle behavior wi-

thout problems, if the vehicle reacts proportional to the driver’s steering

desire. The driver applies a certain steering angle and anticipates that the

vehicle will react with a certain yaw rate, that means with a specific corne-

ring behavior. If the vehicle reaction is too weak or too strong, the driving

situation deviates from the driver’s desire and anticipation. The situati-

on might become uncontrollable for the driver and lead to an accident.

The ”proportional” vehicle behavior is described by the linear single track

model (see Section 3.5), as 85% of all drivers drive their car within a la-

teral acceleration band of ±0.3g, [77]. Even standard microprocessors can

calculate this linear reference model in real-time. Real-time operation is a

crucial basic condition for the model based detection of accidents by means

of event data recorders. Comparing the real vehicle behavior measured by

sensors with linear reference models is the underlying idea for the detection

methodologies presented in this chapter.

Modern vehicle control systems (known as ESP, VDC, DSC, etc.) addi-

tionally assess the reliability of the employed sensors to detect sensor fai-

lures, [9], [16]. However, in this chapter, sensor failures are not explicitly

considered. In fact, four different methods basing on different sensor confi-

gurations are presented to detect and categorize critical driving situations.

According to the respective driving situation, different methods detect a

critical situation earlier or later and more or less reliably. In order to in-

crease robustness, a ”two-of-four” strategy is implemented: if two out of

these four methods detect an accident situation then the freezing of data in

an EDR is triggered. As mentioned, freezing thereby means that a certain

amount of seconds before the calculated trigger event, data must not be

overwritten any more. The ”two-of-four” strategy reduces false triggering

caused by single sensor errors.

The model based accident detection system automatically recognizes, if a

potentially critical driving situation was defused by the driver. Then, the

vehicle state will sooner or later converge to the linear vehicle behavior

again. If no accident has occurred, the system deletes the triggering event
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model

y
meas
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Figure 4.1: Classification of driving situations by assessing the deviation

from a linear reference model

and the data acquisition continues as if nothing had happened.

In Section 4.1 the discrete stability index (DSI) will be introduced to cate-

gorize the driving situation. Afterwards, in Sections 4.1.1 - 4.1.4 the four

detection methods are explained. Section 4.1.5 compares these methods.

An extension of the discrete stability index approach is presented in Sec-

tion 4.2 yielding the definition of the continuous stability index (CSI).

Afterwards, the methods are fused and the integration in the event data

recorder is described in Section 4.3.

4.1 Discrete Stability Index to Assess Dri-

ving Situation

All the detection methods described in Chapter 4 contain the wheel turn

angle as an input variable. Based on the wheel turn angle straightforward

driving is distinguished from cornering. The measured signals y
meas

are

afterwards compared to a quantity y
model

calculated with equations basing

on a linear reference (see Fig. 4.1). The deviation ∆y between measured

and modeled quantities can be used to categorize the driving situation. In

the following, six driving situations describing different driving behavior are

distinguished by means of threshold evaluation. The thresholds are fixed

for dry road conditions, as most of the available measurement data sets

were recorded on such surface. Furthermore, the underlying considerations

assume constant self-steering properties of the test cars. Evaluating the

thresholds, a discrete number is assigned to each of these driving situations,

the so called discrete stability index (Table 4.1).

Stable straightforward A stable straightforward drive is characterized

by a very small absolute value |δW | of the wheel turn angle causing model

quantities y
model

similar to the measured values y
meas

. Then, the discrete

stability index becomes ”1”.
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Driving situation Discrete Stability Index

Stable straightforward 1

Stable cornering 2

Instable straightforward 3

Understeer 4

Oversteer 5

Breakout 6

Table 4.1: Assessment of driving situations with the discrete stability

index

Stable cornering If the absolute value |δW | of the wheel turn angle

ranges above a certain threshold (i.e. indicates cornering) and additionally

the measured output quantities range within a tolerance band around the

modeled output quantities, then the driving situation is assessed ”stable

cornering”. The discrete stability index is ”2”.

Instable straightforward In this driving situation, the measured quan-

tities y
meas

do not range within a tolerance band around the modeled quan-

tities y
model

, although the steering wheel angle is small indicating straight-

forward driving. In this case, the discrete stability index ”3” is assigned.

Braking situations on µ-split road surface are typical for this behavior.

Here, the adhesion coefficients of left and right track are different. Braking

on such ground results in a yaw motion caused by different braking forces,

although the wheel turn angle is zero.

Understeer Understeer describes a driving situation where the measu-

red vehicle reaction to a steering input δW is not as strong as expected by

the driver. A car is understeering, if the adhesion limit at the front axle

is exceeded. Caused by high lateral accelerations, the required side force

FS (Eqn. (3.70)) cannot be transmitted to the ground any more. The ve-

hicle ”shifts” out of the curve (Fig. 4.2(a)). Understeer behavior can be

described as follows:

|ymodel| ≥ |ymeas| . (4.1)

Discrete stability index ”4” is assigned to understeer behavior.

Oversteer If the measured vehicle reaction exceeds the driver’s expecta-

tion, then the vehicle oversteers. Oversteer is caused by loss of adhesion on
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Understeer

Desired course

(a) Understeer

Oversteer

Desired course

(b) Oversteer

Figure 4.2: Comparison of desired curve drive with understeer and over-

steer

the rear axle. The lateral force FS on the rear axle cannot be transmitted

to the ground any more. The rear end of the car slips away (Fig. 4.2(b)).

This critical situation is usually more severe than understeer and can be

described by

|ymodel| ≤ |ymeas| . (4.2)

For oversteer behavior, ”DSI=5” was chosen.

Breakout Vehicle breakout is a more severe driving situation than the

ones described before. In this situation, the vehicle reaction is hardly con-

trollable for the driver and may even behave opposite to the driver’s an-

ticipation. In such situations, the measured quantities can have opposite

algebraic sign than the results gained from the reference model. The car

can often only be stabilized by counter-steering. Breakout is characterized

by a discrete stability index ”6”.

4.1.1 Yaw Gain Method

Theoretical Background

The range of experience of average drivers can be described with the linear

single track model (Section 3.5). The modeled system output y
model

is the

yaw rate ψ̇model, Eqn. (3.86). The difference between the measured and the

modeled yaw rate signal

∆ψ̇ = ψ̇meas − ψ̇model (4.3)

is evaluated and represents the basis of the yaw gain method. The basic

problem is the proper definition of thresholds for ∆ψ̇. The most practical
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method is to evaluate test drives of average drivers. [68] has carried out a

variety of tests on dry, icy and snowy road surface with five test persons.

One of the results is that constant threshold values can be utilized as a

criterion independent from lateral accelerations or from the vehicle velocity.

As the amount of test drives available for this thesis was limited, this

fact could not be checked with an own measurement campaign. However,

assuming that the construction of modern vehicles and its tires do not

provide completely different vehicle behavior than described in [68], the

following thresholds ∆ψ̇u and ∆ψ̇l for the yaw rate deviation ∆ψ̇ can be

defined:

• Yaw reaction stronger than expected by the driver:

∆ψ̇ > 0, ∆ψ̇u = 0, 05rad
s

• Yaw reaction smaller than expected by the driver:

∆ψ̇ < 0, ∆ψ̇l = 0, 05rad
s

These thresholds define, at which yaw rate difference the driver senses the

situation as critical. The two quantities ∆ψ̇u and ∆ψ̇l define the maximum

and minimum yaw rate value of the tolerance band around the model yaw

rate:

ψ̇max(t) = ψ̇model(t) + ∆ψ̇u , (4.4)

ψ̇min(t) = ψ̇model(t) − ∆ψ̇l . (4.5)

If the measured yaw rate exceeds the tolerance band, a critical situation

is assumed. This means, for instance for a left curve with |δW | > δW,th =

0.5◦: if the measured yaw rate ψ̇meas is larger than ψ̇max, the vehicle is

oversteering (DSI=5). If ψ̇meas falls below ψ̇min, the vehicle understeers

(DSI=4). For a breakout in a right curve (DSI=6), the driver steers to

the left to re-stabilize the car. Then, the car is in a curve (|δW | > δW,th),

the measured yaw rate exceeds the tolerance band and additionally has

opposite direction compared to the model yaw rate.

The relations to categorize the driving situations can be found in Table 4.2.

Assessment of a Measurement Drive

After describing the yaw gain method by simulations, the method shall be

validated with measurements. The measurements were conducted with a

Ford Scorpio (see Appendix D.1) or with an Opel Vita (Appendix D.2).

Fig. 4.3(a) shows the course of the drive for better understanding. It is a

J-Turn maneuver where the vehicle rear breaks out on low µ suface. The
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δW ψ̇model ψ̇meas DSI

Straightforward

|δW | < δW,th ψ̇model ≈ 0 ψ̇min < ψ̇meas < ψ̇max 1
(

ψ̇meas ≥ ψ̇max

)

∨
(

ψ̇meas ≤ ψ̇min

)

3

Left curve

δW ≥ δW,th ψ̇model ≥ 0 ψ̇min < ψ̇meas < ψ̇max 2
(

ψ̇meas ≤ ψ̇min

)

∧
(

ψ̇meas ≥ 0
)

4

ψ̇meas ≥ ψ̇max 5
(

ψ̇meas ≤ ψ̇min

)

∧
(

ψ̇meas < 0
)

6

Right curve

δW ≤ −δW,th ψ̇model < 0 ψ̇min < ψ̇meas < ψ̇max 2
(

ψ̇meas ≥ ψ̇max

)

∧
(

ψ̇meas < 0
)

4

ψ̇meas ≤ ψ̇min 5
(

ψ̇meas ≥ ψ̇max

)

∧
(

ψ̇meas ≥ 0
)

6

Table 4.2: Algorithm for assessment of driving situations with the yaw

gain method

drive starts on asphalt which changes to cobblestone after approximately

five seconds. After t = 9.3s, the algorithm detects understeer (DSI=4,

Fig. 4.3(d)). After approximately t = 11s, oversteer occurs (DSI=5), which

becomes even more critical after approximately t = 12.3s. Finally, the rear

axle of the car breaks out, DSI=6. Figures 4.3(b) and 4.3(c) show that the

steering desire of the driver (negative wheel turn angle) causes an increasing

yaw rate of opposite algebraic sign in the last phase of the drive.

Figure 4.3(d) proves that the assessment algorithm of the yaw gain method

works properly.

4.1.2 Method of Characteristic Speed

Determination of the Stability Criterion

The characteristic speed method is a mathematical detection method. It

describes the vehicle behavior from the viewpoint of system theory: the

stability behavior of the linear single track model is analyzed by means of

the Hurwitz-criterion, [51]. The dynamic matrix of the linear single track
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Figure 4.3: Assessment of an instable curve drive with the yaw gain me-

thod

model is

A =





− cF +cR

mCoG vCoG

cRlR−cF lF
mCoG v2

CoG

− 1

cRlR−cF lF
JZ

−cF l2F +cRl2R
JZvCoG



 . (4.6)

Stability analysis of the system comprises the setup of the characteristic

equation, [24],

det(sI − A) = 0 . (4.7)

Inserting Eqn. (4.6) yields

∣
∣
∣
∣
∣
∣

s + cF +cR

mCoG vCoG
1 − cRlR−cF lF

mCoG v2
CoG

−cRlR−cF lF
JZ

s +
cF l2F +cRl2R

JZvCoG

∣
∣
∣
∣
∣
∣

= 0 . (4.8)
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After some mathematical conversions, a polynomial of second order results:

s2 + a1s + a2 = 0 , (4.9)

with

a1 =
mCoG(cF l2F + cRl2R) + JZ(cF + cR)

JZmCoGvCoG
(4.10)

and

a2 =
cF cR(lF + lR)2 − mCoGv2

CoG(cF lF − cRlR)

JZmCoGv2
CoG

. (4.11)

According to the Hurwitz-criterion, a second order linear system is sta-

ble, if all the coefficients of its characteristic equation are positive. The

coefficient a1 is always positive, as the cornering stiffnesses are positive:

cF > 0 and cR > 0. Therefore, the parameter a2 must be analyzed to set

up the stability criterion:

a2 =
cF cR(lF + lR)2 − mCoGv2

CoG(cF lF − cRlR)

JZmCoGv2
CoG

=
cF cR(lF + lR)2

JZmCoGv2
CoG

(

1 + v2
CoG

mCoG(cRlR − cF lF )

cF cR(lF + lR)2

)

. (4.12)

With the abbreviation

v2
ch =

cF cR(lF + lR)2

mCoG(cRlR − cF lF )
=

cF (lF + lR)2

mCoG(lR − lF
cF

cR
)

, (4.13)

the term (4.12) is simplified:

a2 =
cF cR(lF + lR)2

JZmCoGv2
CoG

(

1 +
v2

CoG

v2
ch

)

. (4.14)

vch is called the ”characteristic speed” and defined according to Eqn. (4.13),

[82]. For non-linear vehicle behavior, it cannot be interpreted physically as

a ”conventional” vehicle velocity.

Coming back to the stability analysis: the vehicle is stable, if the coefficient

a2 is positive. Regarding Eqn. (4.14) leads to the stability condition
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1 +
v2

CoG

v2
ch

> 0 . (4.15)

The square of the characteristic speed v2
ch plays an important role. Accor-

ding to Eqn. (4.13) it can be positive or negative. Therefore, two cases

must be distinguished:

Case 1: v2
ch > 0

For positive square of the characteristic speed v2
ch, the coefficient a2 of the

characteristic equation is positive. This fulfills the stability criterion for the

vehicle model, i.e. the vehicle is stable for all vehicle velocities. The square

of the characteristic speed (Eqn. (4.13)) is positive, if the condition

cRlR > cF lF (4.16)

is fulfilled. In normal driving situations Eqn. (4.16) is valid for vehicles

with understeer tendency, [33], [53].

Case 2: v2
ch < 0

The stability criterion for negative square of the characteristic velocity is

valid only for specific velocities. Considering the negative algebraic sign,

Eqn. (4.15) can be converted:

v2
CoG < |v2

ch| . (4.17)

The vehicle is stable as long as Eqn. (4.17) is fulfilled. If the square of

the characteristic speed falls below the squared velocity v2
CoG, the vehicle

becomes unstable. The square of the characteristic speed is negative, if

cRlR < cF lF . The vehicle behavior is called ”oversteer” in this case, [33],

[53].

Regarding cRlR < cF lF allows to draw parallels to the yaw gain method.

The yaw gain method states that the vehicle oversteers, if the yaw rate

ψ̇meas exceeds the tolerance band due to the breakout of the vehicle rear.

The breakout is caused by a reduced lateral wheel force FY R on the rear

axle. The reduction of the wheel force can be explained with a reduction of

the cornering stiffness cR. Eqn. (4.13) shows that a reduction of cR causes

a decrease of v2
ch. If |v2

ch| falls below v2
CoG, the stability condition (4.17) is
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δW v2
CoG ψ̇meas DSI

|δW | < δW,th v2
CoG > 0 |ψ̇meas| < ψ̇th 1

|ψ̇meas| ≥ ψ̇th 3

Table 4.3: Algorithm for assessment of the driving situation using the

method of characteristic speed, part I

not fulfilled any more. The vehicle becomes unstable.

Knowing the vehicle velocity vCoG and the square of the characteristic speed

v2
ch, an algorithm for detection and assessment of critical driving situations

is set up by using Eqn. (4.17). According to [53] an alternative equation

for constant curve drives can be set up using only measurable signals:

v2
ch(t) = − v2

CoG(t)

1 − δW (t)vCoG(t)

ψ̇meas(t)l

. (4.18)

The velocity vCoG can be approximated with the wheel speed signals. The

wheel turn angle δW is calculated from the measured steering wheel angle

δS. For the yaw rate ψ̇meas, a sensor signal exists as well. Hence, Eqn. (4.18)

is taken to calculate the characteristic speed and to analyze the stability

with the criterion from Eqn. (4.17).

Algorithm for Detection and Assessment

Like before, in this section the discrete stability index is used for categori-

zing the driving situation. The principle of assessment is the same as des-

cribed before: if the yaw reaction of the vehicle is stronger than expected,

then the driving situation is rated as critical. The respective algorithms can

be seen in Tables 4.3 and 4.4. The first part of the algorithm in Table 4.3

describes straightforward driving (wheel turn angle limited: |δW | < δW,th).

The threshold value for δW,th is 0.5◦. For cornering, the second part of the

algorithm is displayed in Table 4.4. Cornering is detected, if the absolute

value of the steering angle |δW | exceeds the specified threshold δW,th.

The square of the characteristic speed v2
ch can be positive or negative.

The current driving situation is assessed by analyzing the algebraic sign of

v2
ch and by comparing v2

ch and v2
CoG. Furthermore, a factor k is introduced,

which was gained from measurements. Evaluating these measurements, the

factor was fixed to k = 3.
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δW v2
CoG v2

ch |v2
ch| DSI

|δW | ≥ δW,th v2
CoG > 0 v2

ch ≥ 0 |v2
ch| ≤ kv2

CoG 4

|v2
ch| > kv2

CoG 2

|δW | ≥ δW,th v2
CoG > 0 v2

ch < 0 |v2
ch| > kv2

CoG 2

v2
CoG < |v2

ch| ≤ kv2
CoG 5

|v2
ch| ≤ v2

CoG 6

Table 4.4: Algorithm for assessment of the driving situation using the

method of characteristic speed, part II
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Figure 4.4: Assessment of an instable curve drive with the characteristic

speed method
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Assessment with Measurements

A measurement drive already used in Section 4.1.1 is taken for validation

here, too. Fig. 4.4(a) shows the driver’s steering input. The vehicle yaw

reaction can be seen in 4.4(b). For clarification, Fig. 4.4(c) displays the

vehicle velocity and the time-varying characteristic speed of the test drive.

After t = 9s v2
ch is permanently negative and its absolute value falls below

k · v2
CoG for t > 11s. The real yaw rate remains positive after t = 11s, whe-

reas the driver starts counter-steering. The situation is rated ”oversteer”

(DSI=5, Fig. 4.4(d)) and after t = 12.5s ”breakout” (DSI=6), as |v2
ch| falls

below v2
CoG then.

The characteristic speed method is capable to assess the driving behavior

correctly. The results confirm the subjective feeling of the driver during

the maneuvers.

4.1.3 Curve Radius Method

The principle of the curve radius method (CRM) is rather pragmatic and

can be compared to the yaw gain method. The currently measured curve

radius is compared to the curve radius determined by means of the vehicle

model in Eqns. (3.85) and (3.86). Large deviations between measured and

modeled curve radius indicate laterally critical driving situations. Note that

in this method the curve radius is determined from the wheel speeds and

not by using the gyroscope. In combination with the other methods, this

provides physical redundancy to improve the detection.

Determination of Model Curve Radius

The model curve radius rmodel is determined with the linear single track

model and Eqn. (3.39):

rmodel =
vCoG

β̇ + ψ̇
. (4.19)

The linear single track model uses constant cornering stiffnesses cF and cR.

Therefore, the lateral forces FSF and FSR can be much larger as realistic

and the forces keeping a car in a curve are modeled larger than physically

reasonable (see Section 3.4.2). Therefore, the curve radius behavior of the

real vehicle deviates from the modeled one.
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front axle for t = t1

front axle for t = t1 + ∆T

ν

t = t1

t = t1 + ∆T

∆siL ∆siR

rmeas

bi

Figure 4.5: Determination of current curve radius rmeas

Determination of Current Curve Radius

In order to compare the modeled and the measured curve radius the di-

stances traveled by a wheel of the left ∆siL and the right track ∆siR are

compared. Fig. 4.5 shows a left curve. The term bi represents the track (i is

a wildcard for F-front, R-rear). For a left curve, the distances are calculated

using the curve angle ν and the current (=̂measured) curve radius

∆siL =

(

rmeas −
bi

2

)

ν and ∆siR =

(

rmeas +
bi

2

)

ν . (4.20)

The ratio of ∆siL and ∆siR eliminates ν and yields

∆siL

∆siR
=

rmeas −
bi

2

rmeas +
bi

2

. (4.21)

The current curve radius rmeas becomes

rmeas =
bi

2

(
∆siL + ∆siR

∆siR − ∆siL

)

. (4.22)

For a right curve, the equations are derived respectively.

The distance increments ∆sij can be determined by integrating the veloci-

ties: vWij(t) ·∆T . ∆T is one integration time step fixed to 40ms. To reduce
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Figure 4.6: Curve radii in critical driving situations

the computational effort, vCoG in Eqn. (4.19) is approximated by averaging

the equivalent rotational wheel speeds of both wheels of the rear axle:

vCoG ≈ 1

2
(vRiL + vRiR) . (4.23)

The modeled curve radius can be negative or positive. The algebraic sign

depends on the direction of the curve. For a left curve it is defined positive,

for a right curve it is negative in accordance with the definition of the

yaw angle. The algebraic sign is an important means for the assessment

criterion.

Current Curve Radius in Critical Situations

After the derivation of the measured and the modeled curve radius, the

characteristics of the current curve radius in critical driving situations is

explained. Like in the sections before, understeer, neutral steer and over-

steer situations are regarded in the following.

Curve Radius in Extreme Understeer Situations

Fig. 4.6(a) shows that in a critical situation the curve radius of an under-

steering vehicle is larger than the curve radius calculated by the reference

model. The vehicle ”shifts” out of the curve.

This behavior can additionally be expressed by means of the yaw rate

ψ̇meas. For an understeering vehicle, the absolute value of the measured
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yaw rate |ψ̇meas| is smaller than the modeled one |ψ̇model|. The absolute

values of the yaw rate signals therefore correspond to the respective curve

radii.

Curve Radius for Oversteering Vehicle

Oversteering vehicles drive smaller curve radii than calculated by the ve-

hicle model. The vehicle reacts stronger to the steering input δW as desired

by the driver. Figure 4.6(b) expresses this behavior.

The ”overreaction” of the car can be explained with a higher yaw rate

ψ̇meas. The reduced curve radius of an oversteering vehicle causes a larger

angle ∆ψmeas in the same time increment. That means, the real yaw rate is

larger than the modeled yaw rate. Therefore, this measurement also shows

a significant analogy of yaw rate and curve radius rmeas. One advantage

of determining the curve radius with the wheel speeds will be shown in

Section 4.1.5.

Algorithm of the Curve Radius Method

In the previous section, the relation between the modeled and the measu-

red curve radius rmodel and rmeas was analyzed in critical driving situations:

for oversteer, the curve radius is smaller whereas for understeer it is larger

than the model radius rmodel calculated with the single track model. Thus,

the following stability criterion can be set up: If the vehicle is in a stable

driving situation, the measured curve radius rmeas deviates only little from

the model radius. If the driving situation becomes critical, the radius diffe-

rence becomes more significant. The proper operativeness of the detection

algorithm was checked by means of a variety of simulations and measu-

rements. The algorithm structure can be found in Table 4.5. Table 4.5

shows that for the detection the inverse curve radii were used, because

for straightforward driving the curve radius is infinite, whereas the inverse

radius is zero. For better understanding, Fig. 4.7 contains the tolerance

band of the inverse curve radii and the respective thresholds. Like before,

a critical driving situation is detected, if the measured inverse curve radi-

us leaves the tolerance band limited by the upper border 1
rmodel

+ ∆p1 and

the lower border 1
rmodel

−∆n1. The numerical values for ∆p1 and ∆n1 were

determined by means of experiments and set to ∆p1 = ∆n1 = 0, 008m−1.

The additional thresholds ∆p2 and ∆n2 are needed to distinguish between

”understeer” (DSI=4) and ”breakout” (DSI=6). These values were also

determined with test drives and fixed to ∆p2 = ∆n2 = 0.015m−1.



4.1. Discrete Stability Index to Assess Driving Situation 71

1
rmodel

1
rmeas

DSI

Straightforward: |δW | < δW,th

∣
∣
∣

1
rmodel

∣
∣
∣ < ∞ 1

rmodel
− ∆n1 < 1

rmeas
< 1

rmodel
+ ∆p1 1

( 1
rmeas

≥ 1
rmodel

+ ∆p1) ∨ ( 1
rmeas

≤ 1
rmodel

− ∆n1) 3

Left curve: |δW | ≥ δW,th

1
rmodel

≥ 0 1
rmodel

− ∆n1 < 1
rmeas

< 1
rmodel

+ ∆p1 2

( 1
rmeas

≤ 1
rmodel

− ∆n1) ∧ ( 1
rmeas

≥ −∆n2) 4

1
rmeas

≥ 1
rmodel

+ ∆p1 5

( 1
rmeas

≤ 1
rmodel

− ∆n1) ∧ ( 1
rmeas

≤ −∆n2) 6

Right curve: |δW | ≥ δW,th

1
rmodel

< 0 1
rmodel

− ∆n1 < 1
rmeas

< 1
rmodel

+ ∆p1 2

( 1
rmeas

≥ 1
rmodel

+ ∆p1) ∧ ( 1
rmeas

< ∆p2) 4

1
rmeas

≤ 1
rmodel

− ∆n1 5

( 1
rmeas

≥ 1
rmodel

+ ∆p1) ∧ ( 1
rmeas

≥ ∆p2) 6

Table 4.5: Algorithm for assessment of the driving situation by means of

the CRM
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Figure 4.7: Tolerance band of inverse radii

To assess its accuracy and quality for real-world applications, the curve

radius method was tested with a data set recorded during a test drive with

the Ford Scorpio (see Appendix D.1). It is the same data set as the one

presented in the sections before. The results are displayed in Fig. 4.8. Ho-

wever, the reaction of this method displayed in Fig. 4.8(c) between t = 9s
and t = 11s is much stronger than with the two other methods. The reason

for this behavior and its advantage will be discussed in Section 4.1.5 when

comparing all the detection methods. Apart from this, the CRM yields

almost the same results like the other two methods. Thus, the method

provides reasonable results for the simulations and for the test drives in

accordance with the subjective feeling of the test driver.

4.1.4 Self-Steer Gradient Method

The self-steer gradient method (SSGM) is related to the characteristic ve-

locity method. It bases on the physical effect that the self-steer behavior

of the vehicle supervenes the steering desire of the driver. After explaining

the underlying theory, the implementation of the method will be presented

and a measurement drive will be assessed with the discrete stability index.
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Figure 4.8: J-Turn maneuver and detection of critical situation with the

curve radius method

Underlying Theory

To understand the cornering behavior of a vehicle it is convenient to dis-

cuss the cornering behavior at low speeds. Fig. 4.9 shows the single track

model and the vehicle geometry for a low speed turn. In this situation,

the wheels roll without lateral slip. Centrifugal forces are neglected. The

velocity vectors of the front wheel vF and of the rear wheel vR lie exactly

in the wheel plane. The turn center is the intersection of the curve radii of
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Figure 4.9: Geometry of the linear single track vehicle for low speed turn

front and rear wheel. Both of these radii are perpendicular to the respective

wheel velocity. The ideal turn angle δA only depends on the curve radius

rC and on the geometric parameters l and lR:

tan δA =
l

√

r2
C − l2R

. (4.24)

Assuming small angles of δA and rC ≫ lR, Eqn. (4.24) is

δA =
l

rC
. (4.25)

δA is called ”Ackermann-angle” and the geometric relations of Fig. 4.9

”Ackermann-steering”, [26], [79], [82]. Using Eqn. (3.38) for slow and

stationary cornering (β̇ ≈ 0) the Ackermann-angle can also be written

as

δA =
l · ψ̇
vCoG

. (4.26)

For higher velocities, the centrifugal force increases and the lateral slip

cannot be neglected any more. Then, the wheel turn angle δW and the
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Ackermann-angle are not equal any more (see Fig. 4.9), due to the tire

side slip angles αF and αR:

δW = δA + αF − αR . (4.27)

The additional angle (αF − αR) is caused by the self-steer behavior of the

vehicle which describes the steering properties of a car independent from

the steering influence of the driver. The self-steer behavior can also be

described with the self-steer gradient (SSG) :

SSG =
1

iS
· ∂δS

∂aY
− ∂δA

∂aY
. (4.28)

For a stationary circle and linear vehicle behavior, the differentials in Eqn.

(4.28) can be replaced by quotients. Isolating the steering wheel angle δS

yields

δS ≈ iS · δA + iS · SSG · aY , (4.29)

where iS describes the steering transmission factor. Without differentials,

Eqn. (4.28) becomes

SSG =

δS

iS
− δA

aY
. (4.30)

In order to increase the robustness of the detection algorithm, the late-

ral acceleration in the denominator of Eqn. (4.30) is replaced by its al-

gebraic sign: aY → sign(aY ). Especially for straightforward driving with

little accelerations the self-steer gradient values would become very large

and would cause false detections due to noise. This was verified with test

measurements. Simplifying the denominator leads to the employed modified
self-steer gradient

SSGm =

δS

iS
− δA

sign(aY )
=

δS

iS
− l·ψ̇

vCoG

sign(aY )
. (4.31)

The Ackermann-angle is a measure for the self-steer behavior of a car:

for small centrifugal forces, δS/iS and δA are approximately equal. The mo-

dified SSG is around zero. With growing lateral accelerations, the desired

wheel turn angle δS/iS deviates from δA, because Eqn. (4.25) is not fulfilled
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any more. Again there is a deviation between the ”model” Ackermann-

angle and the real angle measured with l · ψ̇/vCoG. For understeer, the term

l · ψ̇/vCoG is smaller than δS/iS. SSGm is bigger than zero. On the other

hand, for oversteer the yaw reaction of the car is too large. The nominator

of Eqn. (4.31) is negative and so is SSGm. The idea of detecting critical

situations with the self-steer gradient is obvious: if SSGm exceeds a thres-

hold, the vehicle understeers, the DSI is 4. In case that SSGm falls below

the oversteer threshold, the DSI is 5.

Before the implementation of the method is described, a physical conside-

ration points out the similarity to the other methods. According to [82]

for a stationary and linear circle drive the self-steer gradient can also be

described by means of the constant cornering stiffnesses cF and cR:

SSG =
mCoG(cR · lR − cF · lF )

l · cF · cR
. (4.32)

For small lateral accelerations (dry road: aY < 4m/s2), the self-steer gradi-

ent is constant depending on the properties of the tires (cF , cR) and on the

geometric measures of the vehicle and its mass. Neutral steer (SSG = 0)

requires

cR · lR = cF · lF . (4.33)

Accordingly, understeer is described by SSG > 0 and

cR · lR > cF · lF , (4.34)

and finally oversteer by SSG < 0 and

cR · lR < cF · lF . (4.35)

As the cornering stiffnesses cannot be measured with commercial-off-the-

shelf sensor equipment, a measurable approximation must be found. Eqn.

(4.31) represents such an approximation. Although several simplifications

are made, the next sections will show that the self-steer gradient method

can also be used as a detection and classification method for critical driving

situations.

Implementation of the Method

In accordance with the other detection methods thresholds have to be de-

fined for SSGm to distinguish between the different driving states. The

thresholds were chosen by evaluating a variety of test drives with two dif-

ferent vehicles and on basis of existing detection methods (mainly the yaw
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δW SSGm DSI

Straightforward

|δW | < δW,th (SSGm < SSGu1) ∧ (SSGm > SSGl1) 1

(SSGm ≥ SSGu1) ∨ (SSGm ≤ SSGl1) 3

Left/right curve

|δW | ≥ δW,th (SSGm < SSGu1) ∧ (SSGm > SSGl1) 2

(SSGm < SSGu2) ∧ (SSGm ≥ SSGu1) 4

(SSGm > SSGl2) ∧ (SSGm ≤ SSGl1) 5

(SSGm ≥ SSGu2) ∨ (SSGm ≤ SSGl2) 6

Table 4.6: Algorithm for assessment of the driving situation using the

self-steer gradient method

gain method of Section 4.1.1). Table 4.6 shows the criteria to distinguish

between the six states of the discrete stability index. The tolerance band for

SSGm around zero is limited by SSGu1 = 0.025 rad and SSGl1 = −0.025

rad.

Small values of the modified self-steer gradient indicate stable straightfor-

ward drive (DSI=1) or a stable curve (DSI=2), if additionally the steering

wheel angle |δW | exceeds the ”curve-threshold” of δW,th = 0.5◦.
If the calculated SSGm lies outside the tolerance band, although δW indi-

cates straightforward driving, then the algorithm detects DSI=3, instable

straightforward drive.

For the states DSI=4, 5, 6, the wheel turn angle indicates cornering. For

understeer (DSI=4), SSGm lies between SSGu1 and SSGu2, a second thres-

hold at 0.2 rad. If SSGm ranges between SSGl1 and SSGl2 = −0.2 rad, the

situation is oversteer (DSI=5). For breakout (DSI=6), the wide tolerance

band limited by SSGl2 and SSGu2 is exceeded.

Assessment with Measurement Drive

The self-steer gradient method was validated with instable test drives on

different road surfaces. Fig. 4.10 shows the results of a J-Turn test drive

on cobblestone. At a velocity vCoG ≈ 50km/h the vehicle turns into a

left curve. After a short understeer peak at t ≈ 9.5s, where the car was

changing from asphalt to cobblestone, the car oversteers after t = 11s. The

self-steer gradient crosses the first threshold SSGl1 and the DSI changes

to ”5”. At t = 12.2s, the driver counter-steers and for a short time the
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Figure 4.10: Steering wheel angle, self-steer gradient with tolerance band

and respective stability index

steering wheel is straight. In this period, the algorithm detects instable

straightforward driving. The DSI is ”3” in this phase. Finally, the vehicle

rear breaks out. The self-steering gradient falls below the lower border

SSGl2 and the stability index becomes ”6”. The stability index values

confirm the driver’s feeling during the test drive.

4.1.5 Comparison of the Methods

In the last sections four different methods for the detection and assessment

of critical driving situations were presented: the yaw gain method (YGM),

the characteristic speed method (CSM), the curve radius method (CRM)

and the self-steering gradient method (SSGM). All of these methods are

based on a linear reference model representing the range of experience of

average drivers. The four methods are related to each other. All of the

methods somehow detect the fading capability of the car to transmit the

lateral forces to the ground. The sensor combination of the individual me-

thods varies, though. That means, the physical redundancy of the different

sensor combinations allows to enhance robustness of accident detection and

assessment.
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Figure 4.11: Comparison of different detection methods for a critical J-

Turn drive

The detection methods are tested with several test drives. Out of these

test drives, Fig. 4.11 shows a representative measurement. The results we-

re already presented in the last sections for the individual methods. Now,

they are compared to show similarities and to point out differences of the

methods. The basic shape of the discrete stability indices in Fig. 4.11 looks

similar for all methods. A major deviation represents only the curve radius

method between t = 10s and t = 11s. The car was moving on cobblesto-

ne. The wheel load shifts dramatically to the outer track. Therefore, the

left wheels were relieved. This effect causes increasing drive slip on the

rear left wheel. The velocity of this wheel gets higher and ∆sRL increases

according to Eqn. (4.22). The curve radius method detects clockwise cor-

nering (rmeas < 0: the inner wheel appears to ”overtake” the outer wheel),

whereas the real curve calculated by the model indicates counter clockwise

driving. In such situations, the curve radius method detects a ”breakout”.

In fact, the increase of drive slip is a sign that the wheel force transmission

to the ground gets lost on the rear track, the vehicle is approaching an

oversteer situation. The increased slip effect was observed on asphalt as

well. However, it is not so dramatic on this ground. That means, the curve

radius method is capable to detect oversteer very early, especially on low

µ road surface. Fig. 4.12 shows a clothoide drive. Until t = 8s the four
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Figure 4.12: Comparison of different detection methods for a clothoide

methods more or less detect the same situation: a stable curve with a ten-

dency to understeer. For t > 8s the laterally critical situation can be seen.

After an oversteer period for t > 8.5s the DSI of the SSGM changes to 6 at

t = 10.5s. In this driving situation, the velocity was decreasing significant-

ly. Regarding Eqn. (4.31) for the modified self-steer gradient explains the

early detection of DSI=6: the wheel turn angle is kept constant for t > 6s
and the yaw rate increases only slightly. The significant drop of the velocity

causes a decreasing negative value for the self-steer gradient. The self-steer

gradient method is therefore capable to detect critical situations, where

the driver tries to stabilize the car by braking. The driver reduces speed

and the negative value of SSGm further decreases indicating an instable

driving situation.

This section has shown that the different methods basically assess a critical

driving situation coherently for the conducted test drives. However, these

results should be confirmed by conducting further test drives like double

lane changes, µ-split braking or sinusodial steering excitation with growing

frequency. With the methods presented, in certain driving situations one

method can be faster or less reliable. Fusing all of the presented methods

by means of the ”two-of-four-method” (Section 4.3) provides a more robust

detection of critical driving situations.
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Figure 4.13: Growing difference between measured and modeled yaw rate

makes the CSI grow accordingly

4.2 Continuous Stability Index

4.2.1 Motivation

The methods presented in Sections 4.1.1 to 4.1.4 classify the driving situa-

tion in six discrete states using a discrete stability index. The comparison

of the methods in Section 4.1.5 has shown that the methods basically work

and provide similar results.

Anyhow, classifying the driving state with discrete thresholds causes de-

viations of the results gained from the individual methods. If the specified

threshold is not exceeded by one method whereas another method lies right

on the ”other side” of the threshold, then the difference is very significant,

if for instance one method detects ”stable curve drive” (DSI=2), the other

one ”oversteer” (DSI=5). That means, the DSI provides only a rough clas-

sification of the current driving state.

This drawback will be reduced by introducing a continuous stability in-

dex . The CSI is derived from the discrete stability index. Fig. 4.13 shows

the step from the discrete to the continuous stability index by means of

the yaw gain method. If the yaw rate difference ψ̇meas − ψ̇model between

measurement and model grows over time and approaches ∆ψ̇u, the con-

tinuous stability index grows accordingly and causes a smooth transition
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Figure 4.14: Stability index and thresholds of the yaw gain method

from DSI=2 to DSI=5. The DSI would jump up at once. As the DSI is a

very demonstrative method to classify the driving state, it is convenient to

derive the CSI from the discrete stability index.

4.2.2 Yaw Gain Method

Fig. 4.14 shows the possible transitions of the DSI-values: on the left side

the wheel turn angle tolerance band can be seen. If the wheel turn angle

|δW | lies below the threshold δW,th, a yaw rate threshold decides, whether

the straightforward drive is stable or unstable (middle of Fig. 4.14). For

cornering (|δW | > δW,th) individual thresholds ∆ψ̇u, ∆ψ̇l, ... describe the

transitions to adjacent discrete states (right of Fig. 4.14).

Generally, for the CSI values the transitions from adjacent DSI values must

be expressed continuously. This is carried out by evaluating the thresholds

∆ψ̇u, ∆ψ̇l, etc. . As an example, the transition from a stable curve drive

to oversteer is explained by means of the third row in Table 4.7. Starting

with DSI=2 (left column of the table), a main condition decides, whether

the transition to DSI=4 or DSI=5 (right column of the table) must occur.

In the example, the measured yaw rate shall be larger than the modeled

one: |ψ̇meas| > |ψ̇model|. Then, the third column of Table 4.7 contains the

calculation formula for the CSI. If the deviation between modeled and

measured yaw rate grows, the term |ψ̇meas − ψ̇model|/∆ψ̇u gets bigger until

finally it reaches its maximum value 1, when the deviation exceeds ∆ψ̇u
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Start: Main condition Calculation of Limit

DSI CSI CSI→x

1 1 +







|δW |
δW,th
︸ ︷︷ ︸
max=1

·1 +

∣
∣
∣ψ̇meas − ψ̇model

∣
∣
∣

∆ψ̇l
︸ ︷︷ ︸

max=1

·2







x=2

or

x=3

2 |ψ̇meas| < |ψ̇model| 2 +

∣
∣
∣ψ̇meas − ψ̇model

∣
∣
∣

∆ψ̇l
︸ ︷︷ ︸

max=1

·2 x=4

|ψ̇meas| > |ψ̇model| 2 +

∣
∣
∣ψ̇meas − ψ̇model

∣
∣
∣

∆ψ̇u
︸ ︷︷ ︸

max=1

·3 x=5

3 ψ̇meas < ψ̇l 3 +
|δW |
δW,th
︸ ︷︷ ︸
max=1

·1 x=4

ψ̇meas > ψ̇u 3 +
|δW |
δW,th
︸ ︷︷ ︸
max=1

·2 x=5

4 left curve 4 +

∣
∣
∣ψ̇meas − ψ̇l

∣
∣
∣

ψ̇l2 − ψ̇l
︸ ︷︷ ︸

max=1

·2 x=6

right curve 4 +

∣
∣
∣ψ̇meas − ψ̇u

∣
∣
∣

ψ̇u2 − ψ̇u
︸ ︷︷ ︸

max=1

·2 x=6

5 left curve 5 +

∣
∣
∣ψ̇meas − ψ̇u

∣
∣
∣

ψ̇u2 − ψ̇u
︸ ︷︷ ︸

max=1

·1 x=6

right curve 5 +

∣
∣
∣ψ̇meas − ψ̇l

∣
∣
∣

ψ̇l2 − ψ̇l
︸ ︷︷ ︸

max=1

·1 x=6

6 no changes

Table 4.7: Yaw gain method: continuous stability index
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Figure 4.15: Stability index and thresholds of the characteristic speed

method

(see also Fig. 4.13). Then, the algorithm ”jumps” to the discrete stability

index 5 (row 8 in Table 4.7) and the transition to the discrete state ”6”

must be evaluated. If the measured yaw rate returns to the tolerance band

around the model yaw rate, a main condition causes a jump back to the

third column of Table 4.7 starting with DSI=2 again.

For the other DSI, the check of a main condition (column 2 in Table 4.7)

clarifies which transition equation is chosen to calculate the CSI for the

respective transition shown in Fig. 4.14. The equations in the table prove

that the stability index can have all real values between 1 and 6.

4.2.3 Characteristic Speed Method

The algorithm for the continuous stability index according to the charac-

teristic speed also bases on the discrete stability index. Table 4.8 describes

the transition of one discrete stability index (left column) to the next one

(right column) by means of an appropriate calculation method for the CSI.

Fig. 4.15 illustrates the different discrete stability indices based on δW , ψ̇
and vch. According to Fig. 4.15, for example a stability index of 5 results,

if the wheel turn angle exceeds the cornering threshold and the absolu-

te value of the characteristic speed additionally ranges between v2
CoG and

k·v2
CoG. One of the ”adjacent states” for DSI=5 is for example DSI=6. That

means, the more |v2
ch| approaches v2

CoG, the larger the continuous stability

index becomes until it finally converges against DSI=6. The equation for

the calculation of the CSI between 5 and 6 is presented in Table 4.8.

Table 4.8 shows the transitions between the discrete stability indices by

means of the CSI. Starting with DSI=1, depending on the wheel turn angle

a transition towards a stable curve drive (DSI=2) or an instable straight-

forward situation (DSI=3) occurs.
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Start: Main condition Calculation of Limit:

DSI CSI CSI→x

1 1 +







|δW |
δW,th
︸ ︷︷ ︸
max=1

·1 +

∣
∣
∣ψ̇meas

∣
∣
∣

ψ̇th
︸ ︷︷ ︸
max=1

·2







x=2

or

x=3

2 v2
ch ≥ 0 2 +







1 −
∣
∣
∣
∣v2

ch

∣
∣ − kv2

CoG

∣
∣

vCh,t
︸ ︷︷ ︸

max=1







· 2 x=4

v2
ch < 0 2 +







1 −
∣
∣
∣
∣v2

ch

∣
∣ − kv2

CoG

∣
∣

vCh,t
︸ ︷︷ ︸

max=1







· 3 x=5

3 3 +
|δW |
δW,th
︸ ︷︷ ︸
max=1

·1 x=4

3 +
|δW |
δW,th
︸ ︷︷ ︸
max=1

·2 x=5

4 4 +







∣
∣
∣
∣v2

ch

∣
∣ − kv2

CoG

∣
∣

kv2
CoG︸ ︷︷ ︸

max=1







· 1 x=5

5 5 +







∣
∣
∣
∣v2

ch

∣
∣ − kv2

CoG

∣
∣

|v2
CoG − kv2

CoG|︸ ︷︷ ︸
max=1







· 1 x=6

6 no changes

Table 4.8: Characteristic speed method: continuous stability index



86 4 Detection and Classification of Pre-Accident Situations

Start: Main condition Calculation Limit:

DSI of CSI CSI→x

1 1 +







|δW |
δW,th
︸ ︷︷ ︸
max=1

·1 +

∣
∣
∣

1
rmeas

− 1
rmodel

∣
∣
∣

∆p1
︸ ︷︷ ︸

max=1

·2







x=2

or

x=3

2 1
rmeas

< 1
rmodel

2 +

∣
∣
∣

1
rmeas

− 1
rmodel

∣
∣
∣

∆n1︸ ︷︷ ︸
max=1

·2 x=4

1
rmeas

≥ 1
rmodel

2 +

∣
∣
∣

1
rmeas

− 1
rmodel

∣
∣
∣

∆p1
︸ ︷︷ ︸

max=1

·3 x=5

3 1
rmeas

≤ 1
rmodel

− ∆n1 3 +
|δW |
δW,th
︸ ︷︷ ︸
max=1

·1 x=4

1
rmeas

≥ 1
rmodel

+ ∆p1 3 +
|δW |
δW,th
︸ ︷︷ ︸
max=1

·2 x=5

4 1
rmodel

≥ 0 4 +

(∗)
︷ ︸︸ ︷∣
∣
∣

1
rmeas

− 1
rmodel

+ ∆n1

∣
∣
∣

∣
∣
∣−∆n2 − 1

rmodel
+ ∆n1

∣
∣
∣

︸ ︷︷ ︸
max=1

·2 x=6

5 1
rmodel

≥ 0 5 +

∣
∣
∣

1
rmeas

− 1
rmodel

− ∆p1

∣
∣
∣

∣
∣
∣∆p2 − 1

rmodel
− ∆p1

∣
∣
∣

︸ ︷︷ ︸
max=1

·1 x=6

6 no changes

Table 4.9: Curve radius method: CSI (equations for left curve only)
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If the car is driving in a stable curve (DSI=2), as a main condition the squa-

re of the characteristic speed v2
ch must be considered: if v2

ch is positive, the

vehicle understeers and consequently a transition from DSI=2 to DSI=4

must occur. For oversteer, the state changes to DSI=5. In this case, if |v2
ch|

approaches k · v2
CoG (see Fig. 4.15), the fraction in brackets of Table 4.8 is

zero and the CSI converges against DSI=5. The division by vCh,t = 2050

is required to achieve a smooth transition between stable curve drive and

oversteer or understeer. It represents a vehicle parameter gained from a

variety of test drives.

The other calculation equations can be reconstructed by means of Fig. 4.15.

4.2.4 Curve Radius Method

Fig. 4.7 shows the wheel turn angle and the tolerance band of the inverse

curve radius. For a left curve with 1/rmeas > 0 the following considerations

are underlying: if the inverse curve radius falls below the ”inner tolerance

band” the vehicle understeers. Right at the border the measured curve ra-

dius is 1/rmodel − ∆n1. According to Table 4.9, the CSI in this case is 4,

because the fraction (∗) is 0. Approaching the outer tolerance band −∆n2

linearly increases the CSI value to its limit CSI=6 (see Table 4.9), because

the fraction (∗) in the respective equation of the table becomes 1. The

equation guarantees that the CSI covers every real value between 4 and 6.

The main condition in Table 4.9 decides, whether the equations for a left

or a right curve must be applied. In the table, only the equations for a

left curve are displayed for space reasons. For DSI=2 and DSI=3 the main

condition is also used to distinguish between transitions to DSI=4 (under-

steer) and DSI=5 (oversteer).

Processing an algorithm with the conditions specified in Table 4.9 gua-

rantees that the stability index is a real number between 1 and 6. CSI=6

cannot be exceeded.

For a right curve, the equations are accordingly.

4.2.5 Self-steer Gradient Method

The conversion from the discrete to the continuous stability index is simpler

for the self-steer gradient method than for the other methods, because the

thresholds are symmetrical around 0 (see Fig. 4.16). The following example

illustrates the calculation of the CSI by means of Table 4.10: if the wheel

turn angle is larger than the cornering threshold δW,th and if additionally the

SSGm passes the SSGu1 threshold, the CSI becomes 4 (see Table 4.10).
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Figure 4.16: Tolerance band of the self-steer gradient method

Starting from DSI=4, the CSI increases to DSI=6, if SSGm approaches

SSGu2. The fraction (∗∗) then linearly reaches its maximum value 1. The

position of SSGm between SSGu1 and SSGu2 in Fig. 4.16 determines the

value of the CSI.

The transition from DSI=5 to DSI=6 is symmetrical to SSGm = 0. The

main condition in the second column of Table 4.10 decides, whether the

states ”2” and ”3” change to DSI=4 (understeer) or DSI=5 (oversteer).

Compared to the other methods, the calculation of the continuous stability

index of the self-steer gradient method is much simpler. This is one of the

main advantages for implementing the method.

4.2.6 Implementation of the CSI-method

The motivation to introduce a continuous stability index in the last sections

was to bring the results of the individual methods in line. The choice of

fixed limits for the discrete stability index can cause significant deviations,

if an inconvenient combination of sensor signals occurs.

The Tables 4.7 to 4.10 have shown that the CSI is a real number in the

range of 1 ≤ CSI ≤ 6. Compared to the DSI, the classification of a driving

situation with linguistic terms like ”understeer” or ”oversteer” gets lost.

For example, if one method yields a CSI of 5.2 it is unclear, if this is caused

by an understeer or oversteer drive (see Fig. 4.17). Either the DSI or the

evaluation of the main condition in Tables 4.7 - 4.10 is necessary to decide,

if the left (DSI=4 → 6) or the right transition (DSI=5 → 6) is responsible

for CSI=5.2. Only with knowledge about the currently active edge in the

DSI-graph shown in Fig. 4.17 a classification with the CSI is possible.

Accepting that the classification characteristic gets more complex for the

CSI, the advantage is obvious: the larger the CSI-value is, the more a
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Start: Main condition Calculation Limit:

DSI of CSI SI→x

1 1 +







|δW |
δW,th
︸ ︷︷ ︸
max=1

·1 +
|SSGm|
SSGu1︸ ︷︷ ︸
max=1

·2







x=2

or

x=3

2 SSGm ≥ 0 2 +

∣
∣
∣
∣

SSGm

SSGu1

∣
∣
∣
∣

︸ ︷︷ ︸
max=1

·2 x=4

SSGm < 0 2 +

∣
∣
∣
∣

SSGm

SSGl1

∣
∣
∣
∣

︸ ︷︷ ︸
max=1

·3 x=5

3 SSGm ≥ SSGu1 3 +
|δW |
δW,th
︸ ︷︷ ︸
max=1

·1 x=4

SSGm ≤ SSGl1 3 +
|δW |
δW,th
︸ ︷︷ ︸
max=1

·2 x=5

4 4 +

(∗∗)
︷ ︸︸ ︷

SSGm − SSGu1

SSGu2 − SSGu1︸ ︷︷ ︸
max=1

·2 x=6

5 5 +
SSGm − SSGl1

SSGl2 − SSGl1︸ ︷︷ ︸
max=1

·1 x=6

6 no changes

Table 4.10: Self-steer gradient method: continuous stability index
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Main Condition

CSI=5.2

CSI=5.5

DSI=4

DSI=5

DSI=6

Figure 4.17: Different possible transitions in the DSI-graph cause uncer-

tainties in the CSI method

drive situation deviates from the (linear) driver’s desire. That means, for

average drivers the increase of the CSI-value is a measure for a critical

drive situation.

Fig. 4.18 shows the discrete and real stability indices gained from the four

different methods for a test drive. The figure shows that for this com-

bination of measurement signals the DSI values of the different methods

significantly deviate. The characteristic speed method for example does not

correctly detect the understeer drive between t = 5s and t = 11s and the

oversteer situation for t > 14s. Comparing the four methods shows that

the correlation between the CSI values is bigger than between the DSI.

Only the peak for the CS-method between t = 2.5s and t = 4s is false.

One peculiarity of the curve radius method can be seen as well. It is the

only method where the DSI and CSI drop out between t = 12s and t = 14s
is missing. The drops are caused by the steering behavior of the driver in

this situation. As the CRM does not process the wheel turn angle, it does

not ”recognize” the CSI drop.

For this test drive of an inconvenient signal combination the results can be

improved. Tests with a variety of measurements confirm the tendency that

the CSI increases the robustness of the detection process.

As mentioned above, the CSI describes the ”deviation from a linear re-

ference”. In Sections 4.2.7 and 4.2.8 the physical behavior of the car is

compared with the continuous stability index.
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Figure 4.18: Discrete and continuous stability indices for a clothoide drive

4.2.7 Comparing CSI and Cornering Stiffness

In critical situations, the lateral vehicle dynamics becomes non-linear. Sec-

tion 3.4.2 shows that this is mainly caused by the non-linear lateral wheel

force characteristic causing a decrease of the cornering stiffnesses. The

relation between the DSI and the cornering stiffnesses is illustrated in

Figs. 4.19(a) and 4.19(b). The lateral wheel forces were measured with

a multi-axes wheel torque sensor (see Section 6.3), the tire side slip angle

with an optical reference sensor (Table D.2 in Appendix D.3). Employing

Eqn. (3.74) provides a measured reference value for the cornering stiffness.

The underlying test drive of Fig. 4.19(a) was a stationary circle drive on

dry asphalt with lateral accelerations of approximately 4m/s2. According

to [53] this is the upper border of linear vehicle behavior for dry roads.

The CSI values range between 2.3 and 3.5 indicating stable driving. The

measured cornering stiffness at the inner rear wheel remains constant at

about 35500N/rad. Fig. 4.19(b) is a faster stationary circle drive with la-

teral accelerations of averagely 6m/s2. Here, the driving behavior deviates

significantly from the linear reference model. Accordingly, the CSI values

exceed CSI=4. The cornering stiffness value falls below 20000N/rad.

Comparing Figs. 4.19(a) and 4.19(b) shows that the reduction of cornering

stiffness is tightly related to an increase of the stability index. If the wheel

force reserve and so the cornering stiffness decreases the vehicle responses
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Figure 4.19: Continuous stability indices and cornering stiffness for a

stationary circle

to the driver inputs are no more proportional. The vehicle behavior devia-

tes from the driver’s desire. That is the reason for the increasing continuous

stability index.

The CSI method is capable to describe the physical vehicle behavior of the

conducted test drives correctly.

4.2.8 Comparing CSI and Side Slip Angle

In this section, the CSI of the self-steer gradient method is compared to the

vehicle body side slip angle. According to [27] the VBSSA is a measure for

the controllability of cars. Large absolute values or increased vehicle body

side slip rates are sensed as very inconvenient by the driver. This means

that large VBSSA values should correspond to large CSI values.

Fig. 4.20 shows a transient curve drive with slow increase of the steering

angle. The vehicle body side slip angle was measured with an optical refe-

rence sensor. The increase of δW causes a yaw rate ψ̇ = 1rad/s and a lateral

acceleration up to aY = 7.5m/s2. The vehicle body side slip angle grows

constantly up to a very large value of β = 13◦. The self-steering gradient

method instantly detects an understeer tendency which changes to an in-
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Figure 4.20: Comparison of CSI and measured vehicle body side slip angle

β of a transient circle with decreasing curve radius

stable drive at t > 8s. The driver is counter-steering at t = 16s causing

the decrease of CSI. At t = 19s the vehicle stands still. The CSI correctly

detects instable driving situations with increased β-values. For highly dy-

namical curve drives, the increase of β lags. The CSI is then capable to

detect the critical situation before the VBSSA builds up.

4.3 Trigger Signal for Event Data Recorder

In order to not overwrite the data recorded in an EDR, a trigger signal for

”freezing” must be generated.

The continuous stability index is a means to detect laterally critical driving

situations. A real number between 1 ≤ CSI ≤ 6 is generated providing

information about the driving state by means of four different methods.

Tests with a variety of measurement data gained from two test cars with

different drivers have shown that a critical situation can be defined by a

CSI exceeding 5.5.
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Figure 4.21: Continuous stability index and trigger signal for event data

recorder

The reliability and robustness can be increased by employing the ”two-of-

four method”: only if at least two of the four methods have got a CSI > 5.5,

then the trigger signal for the event data recorder is generated. To avoid

false triggering by sensor drop outs, additionally each CSI signal must

exceed the detection threshold for more than five sampling steps, i.e. for

more than 50ms.
Fig. 4.21 shows the real stability indices of an unstable J-Turn measurement

drive. The arrows mark the points in time, when the respective method’s

CSI exceeds the detection threshold. In this test drive, the yaw gain method

(YGM) first ”detects” the critical situation after t = 3.3s followed by the

self-steer gradient method (SSGM) at t = 3.51s. Both methods have got a

CSI > 5.5 for more than 50ms. As two of the four methods are permanently

above DSI=5.5, the trigger event signal for the EDR is generated. The curve

radius method (CRM) and the characteristic speed method (CSM) exceed

DSI=5.5 at t = 4.9s and at t = 7s. Therefore, they do not contribute to

the triggering process in this test drive.
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Figure 4.22: Triggering concept based on the stability index

4.4 Conclusion

Chapter 4 deals with the detection and classification of laterally critical

driving situations to ”freeze” the data in an event data recorder. Existing

concepts for triggering EDRs do not consider the vehicle dynamics. They

evaluate only the longitudinal acceleration. If the longitudinal acceleration

exceeds a certain threshold, then the data in the EDR is ”frozen”.

The methodology presented in this chapter is an extension of this trig-

gering strategy (see Fig. 4.22). It considers accidents with critical vehicle

dynamics behavior before the crash.

For the definition of a critical driving situation, the deviation from a line-

ar reference model is evaluated. The underlying idea is that the average

driver’s steering behavior and the responding vehicle reaction can be des-

cribed with a linear model. If the real vehicle dynamics deviates too much

from the linear field of experience of the driver, then the situation is rated

as laterally critical.

Four different methods were presented in this chapter which evaluate the

deviation from the linear model. An integer value called discrete stabi-
lity index categorizes the driving situation in six states: a stable or an
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unstable straightforward drive, a stable curve, an under- or an oversteer

situation and finally a breakout situation. The employed thresholds result

from a measurement campaign carried out by [68]. This assumes, however,

that newer vehicle constructions and tire design do not affect the thres-

holds. Furthermore, the thresholds were determined for dry road conditi-

ons. Changes of the thresholds on low µ roads are imaginable. Thirdly, if

the self-steer properties of a car varies with increasing velocity, this might

not be considered by the thresholds. The DSI method was validated with

measurements and approved the driver’s sense during most of the test dri-

ves.

However, due to the fix thresholds of the DSI method, the individual stabi-

lity indices of the four methods can deviate for inconvenient sensor signal

combinations. The introduction of a continuous stability index reduces this

problem. The CSI of the four detection methods correlate more than the

DSI. However, a classification of driving states with the CSI methodology

is complicated.

The CSI method was validated with measurements of two different vehic-

les. Some of the parameters and thresholds employed must be adapted

to the respective test car. The results were compared with measurements

of the cornering stiffness and the vehicle body side slip angle. They were

consistent proving that the physics of lateral vehicle motion is correctly

described by the CSI method.

To trigger the memory management (Fig. 4.22) not to overwrite recorded

data in an EDR any more, a two-of-four method was employed. If at least

two of the four presented methods output a CSI > 5.5 for more than 50ms,
then a trigger signal for the EDR is generated.

The methodology to detect and classify pre-accident situations enhances

the known strategies to freeze EDR data. Apart from detecting accident si-

tuations, the results can also be used to reconstruct accidents by analyzing

the vehicle dynamics in the pre-crash phase (see also steering performance

assessment in Section 5.9).

The methods should be tuned with more test drives and varying cars on

different friction characteristics.



5 Reconstruction of Road Traffic Ac-

cidents

According to [15], a road traffic accident is a violent disruption of the in-
tended motion sequence combined with damage and personal injury.
Reconstruction of road traffic accidents is necessary for increasing the traf-

fic security. Apart from this idealistic approach, of course the materialistic

aspect must be clarified as well: the liability question.

To obtain as much information as possible about the accident situation,

two main goals of accident reconstruction can be defined:

1. Motions of persons and vehicles directly or indirectly involved into the

accident situation must be reconstructed from the beginning of the

pre-accident phase over the actual accident event until the standstill

position of the accident participants.

2. Driver, vehicle and environmental causes must be investigated con-

cerning their influence on the reconstructed vehicle motion.

Of course, the complete accident cannot be reconstructed only by means

of the data acquired and calculated by the event data recorder presented

in Chapter 2. An accident reconstruction expert is still required. His work

can be supported by EDR data, but he cannot be completely replaced.

Even the first demand of accident reconstruction cannot be met. With the

specified sensor equipment of the employed system it is impossible to gain

information about other vehicles involved in the accident scene.

Fig. 5.1 gives an overview over accident reconstruction based on EDR data.

The information acquired can be used to reconstruct vehicle, driver and

environmental influences. For the vehicle motion, the trajectory and par-

ticularly its heading and center of gravity location must be reconstructed.

The fuzzy system presented in Sections 5.1 - 5.3 in combination with the

vehicle body side slip angle observers of Section 5.4 guarantee complete

trajectory reconstruction.

The vehicle dynamics behavior of the car can be reconstructed with the

discrete stability index presented in Chapter 4. Driving situations like over-
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Figure 5.1: Goals of accident reconstruction with EDR data

steer, understeer and so on are distinguished to clarify the pre-accident

vehicle behavior.

The vehicle model accuracy and the braking distance significantly depend

on the vehicle mass. Among other parameters, the vehicle mass is certain-

ly the one which has the greatest significance for accident reconstruction.

Therefore, in Section 5.5 the vehicle mass is determined by means of a

recursive least squares algorithm applied in certain driving situations.

Modern vehicles contain a variety of electronic control systems. Knowledge

about the proper functionality of these systems is an important issue of

accident reconstruction. Therefore, an algorithm to detect ABS-cycles by

processing only the wheel speed sensor signals is presented in Section 5.6.

The environment significantly affects the vehicle and driver behavior. The

illumination of the accident scene, the temperature, the road condition,

the view are influencing not only the braking behavior and vehicle moti-

on. Without external sensors, it is almost impossible to gain information

about the environment. Without human knowledge and statements of wit-

nesses, complete accident reconstruction is unthinkable. Nevertheless, in

Section 5.7 the friction coefficient is estimated in hard braking and ac-

celeration situations to get more knowledge about the road surface. In

combination with ABS-cycle detection, in most cases those situations can

be detected, where the friction of the road surface is maximal. Only then,

the road condition can be assessed. The road gradient is determined in Sec-

tion 5.8 with a linear observer. For complete vehicle motion reproduction

and to get an idea of the vehicle environment, the road gradient is a useful

quantity.

Finally, the driver behavior must of course be considered. Driver appli-

cation of indicators, lights and so on have to be evaluated as well as the
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driver’s braking and steering performance. Reactions to e.g. understeer

and oversteer behavior can be evaluated using the stability index method

of Chapter 4. As complete driver assessment increases the boundaries of

this thesis, the driver performance is limited to a theoretical approach ana-

lyzing the driver’s steering behavior in critical driving situations (Section

5.9).

5.1 Fuzzy Velocity Estimator

Fig. 5.2 shows the complete fuzzy velocity estimation system. In a first

step, the wheel speed and acceleration signals are preprocessed. On basis

of the corrected signals, appropriate inputs into the fuzzy system are ge-

nerated and the driving situation is categorized. The fuzzy system outputs

weighting factors for the individual wheel speed signals and for the acce-

leration signal and calculates the velocity estimate v̂CoG with a weighted

mean equation.

5.1.1 Sensor Data Preprocessing

Wheel speeds The wheel speed sensors are providing false values when

the vehicle is cornering: the outer wheels are traveling a longer distance in

curves than the inner. The inner wheel speeds are too small, whereas the

outer ones are too high. Therefore, the wheel speeds have to be transformed
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Figure 5.3: Wheel speeds during a sinusodial drive

into the center of gravity to eliminate these systematic errors:

vRFL,C =

(

vRFL + ψ̇

(
bF

2
− lF sin β

))

cos(δW − β) ,

vRFR,C =

(

vRFR − ψ̇

(
bF

2
+ lF sin β

))

cos(δW − β) ,

vRRL,C =

(

vRRL + ψ̇

(
bR

2
+ lR sin β

))

cos β ,

vRRR,C =

(

vRRR − ψ̇

(
bR

2
− lR sin β

))

cos β . (5.1)

Fig. 5.3(a) shows the individual wheel speeds of a slalom drive before and

after the transformation into the center of gravity. The original velocity

differences caused by the individual curve radii are almost eliminated in

Fig. 5.3(b).

Acceleration signal The acceleration signal is unreliable due to offsets

of the acceleration sensor. As the acceleration must be integrated in order

to achieve the velocity, these offset errors cumulate. Additional errors of the

acceleration sensor are caused by false orientation. False orientation occurs,

when the sensor is not mounted exactly in the vehicle’s longitudinal axis or

when the longitudinal axis deviates significantly from the velocity vector.

This happens in driving situations with large vehicle body side slip angle

values β, for big pitch angles χ (panic braking) or for significant road slopes

χRoad, [30]. All these influences are considered in the following correction
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equation:

aX,C ≈ aX − g sin(χ − χRoad)
︸ ︷︷ ︸

gravitational effects

+aY · β − aX,0 . (5.2)

Note that the definitions of the angles χRoad and χ are important: the pitch

angle χ is positive in braking situations, whereas the road slope is positive

for uphill driving (see Appendix B.3).

In order to reduce the error of the acceleration sensor signal, an offset re-

duction algorithm was set up. Fig. 5.4 shows the procedure to reduce the

sensor errors explained in Eqn. (5.2). The signal ˙̂vCoG gained from the fuzzy
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estimate of the last simulation step is used as a reference. To reduce noise

caused by the derivation of v̂CoG, a third order Butterworth-filter with

a cut-off frequency fC = 200Hz is applied.

If the maximum velocity difference is small and the acceleration close to

zero, then the state ”rolling” is detected and max ∆v is small. To avoid

sensor errors, this state must not change for t = 20ms. In case these con-

ditions are fulfilled, the difference to the value of ˙̂vCoG represents the offset

which is subtracted from the measured acceleration signal.

Fig. 5.5 shows the positive effects of the offset elimination strategy. The

integrated acceleration is too large without offset elimination. Employing

offset elimination, the integrated acceleration ranges close to the averaged

wheel speed v̄.

5.1.2 Fuzzy System

In this section, the data fusion of the four wheel speed signals and the

longitudinal acceleration sensor signal is implemented with a fuzzy estima-

tor. The rule base of the fuzzy estimator contains the heuristic knowledge

about the individual sensor signal errors during different driving situations.

Based on the sensor errors, weighting factors are generated by the fuzzy

estimator. The four weighting factors k1, . . . , k4 for the wheel speed sensor

signals and that for the acceleration signal k5 are employed to determine

the estimation value v̂CoG for the center of gravity velocity
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v̂CoG(k) =

4∑

i=1

ki · vRi,C(k) + k5 [v̂CoG(k − 1) + TS · aX,C(k)]

5∑

i=1

ki

. (5.3)

Eqn. (5.3) is a weighted mean of all sensor signals. The vRi,C in Eqn.

(5.3) are the vRij,C from Eqns. (5.1). The goal of the fuzzy estimator is to

determine the weighting factors ki in Eqn. (5.3) appropriately.

Sub-Models

In order to reduce the number of active rules in the rule base of the fuzzy

estimator, the fuzzy system is partitioned into five sub-models, see Fig. 5.6.

The corrected longitudinal acceleration signal aX,C is taken to distinguish

between the five driving conditions ”strong Acceleration”, ”Acceleration”,

”Rolling”, ”Braking” and ”strong Braking”. Each of these sub-systems

contains a reduced rule base suited for the respective driving situation.

The input signals of all five sub-systems are identical and will be presented

next.
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Input Signals

Apart from the corrected longitudinal acceleration aX,C only signals con-

taining information about the sensor signal reliability are suitable as inputs

into the fuzzy estimator.

In addition to the above five signals, the difference between the corrected

wheel speeds vRij,C and the last estimated vehicle velocity value v̂CoG is

considered:

∆vRij = vRij,C(k) − v̂CoG(k − 1) . (5.4)

Large deviations ∆vR of a specific wheel speed indicate slip at this wheel.

Under such conditions, the wheel speed signal of the respective wheel is

inaccurate. Therefore, the respective weighting factor is reduced by the

fuzzy estimator. The difference ∆vR is correlated to the slip. However, the

absolute value of ∆vR is usually larger than the slip and less sensitive to

noise and errors.

The maximum deviation max ∆v of the corrected wheel speeds vRij,C is

taken to assess the quality of a signal

max ∆v =

∣
∣
∣
∣
v̂CoG − max

ij
{vRij,C}

∣
∣
∣
∣
+

∣
∣
∣
∣
v̂CoG − min

ij
{vRij,C}

∣
∣
∣
∣

. (5.5)

For values of max ∆v around zero, the vehicle velocity can be determined

by just averaging the four corrected wheel speeds vRij,C . In this case, the

fuzzy estimator is not used at all.

If max ∆v is ”small”, as shown in the lower left corner of Fig. 5.7, the wheel

speed signal deviations may no longer be neglected. In this case, the fuzzy

estimator generates individual weighting factors for the wheel speeds and

the acceleration signal.

”Small” values of max ∆v indicate that two conditions are fulfilled: firstly,

the measured velocity signal from the wheel speed sensors is close to the

previously estimated value v̂CoG. If the estimated value v̂CoG drifts away,

this is detected by max ∆v exceeding a certain threshold, see Fig. 5.8(a).

Secondly, if both the maximum and the minimum wheel speed are very

close to v̂CoG, the individual wheel speeds do not deviate significantly from

each other. Then, the wheel speed signals are considered reliable and the

fuzzy estimator generates a high weight for them.

”Big” values of max ∆v indicate sensor errors or disturbances (see Fig.

5.8(b)), for instance spinning wheels or ABS-braking. The fuzzy estimator

then reduces the wheel speed signal weights accordingly.
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Output Signals

The fuzzy system generates weighting factors in correlation to the accu-

racy of the wheel speed signals and the acceleration signal. According to

its input signals aX,C , max ∆v and ∆vRij the rule base of the fuzzy esti-

mator generates a signal reliability ”zero”, ”small”, ”middle” or ”’big”.

The membership functions can be seen in the right column of Fig. 5.7.

The defuzzified, crisp output values ki, i = 1, . . . , 5, are weighting factors

in the range of [0...1]. The ki are processed by Eqn. (5.3) to generate the

estimated value v̂CoG for the center of gravity velocity.

Rule Base

All rules in the rule base contain the AND operator only. The Mamda-

ni-implication ([41]) is employed and all the membership functions used in

the system are trapezoid to reduce processing complexity.

Due to a sensor-specific drift, the acceleration sensor signal is unreliable.

Therefore, its weight should be kept small whenever possible. The time

periods, during which the acceleration signal is integrated to gain the ve-

hicle speed should be as short as possible. To meet this constraint, the

weight of at least one wheel speed signal generated from the rule base is

non-zero. This will normally prevent the estimated vehicle velocity from

drifting away when solely using the integrated acceleration. When the ve-

hicle velocity still drifts away in some cases, max ∆v and ∆vRij are analyzed

to detect this effect (see Fig. 5.8(a)).

For the sub-system ”strong Braking” (aX,C < −3m/s2) the membership

functions are displayed in Fig. 5.7. Table 5.1 provides an idea of the rule

base structure.

Braking with a deceleration below −3m/s2 causes large slip values on the

wheels. Therefore, a small weighting factor is assigned to the wheel speed

signals here. Generally, the braking force on the front wheels is higher than

that on the rear wheels. This increases the probability of ABS-cycles on the

front axle. Accordingly, the front wheel speed signals are used only if the

rear wheel speed signals are erroneous. In such situations, the acceleration

sensor provides the best signal. The integrated acceleration signal is then

weighted highest.

For the other four sub-systems, the rule base is composed of similar rules

(see Appendix C.1). However, these rules are adapted specifically to the

respective driving situation.
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∆vRFL ∆vRFR ∆vRRL ∆vRRR max ∆v k FL k FR k RL k RR k v(a)

- - - - small zero zero small small big

- - rear rear big zero zero small small middle

- - not rear rear big zero zero zero big middle

- - rear not rear big zero zero big zero middle

front - not rear not rear big small zero zero zero big

- front not rear not rear big zero small zero zero big

ABS ABS front front big zero zero small small big

Table 5.1: Rule base for the v-Fuzzy subsystem ”strong Braking”

5.1.3 Results of Vehicle Velocity Estimator

A test drive with hard braking is used to validate the vehicle velocity esti-

mation. The results can be seen in Fig. 5.9. After accelerating up to a

vehicle speed of vCoG = 11m/s, a panic braking to vehicle standstill was

conducted. At the bottom of Fig. 5.9, the current driving conditions can

be seen, compare Fig. 5.6. The dashed line for the integrated acceleration

shows that the vehicle velocity would drift away even when derived from

the corrected acceleration signal aX,C . Therefore, the time windows during

which the acceleration signal is integrated are kept as short as possible. In

the first phase of Fig. 5.9 (”bad ABS-sensors”), the wheel speed sensors are

below their activation threshold. Due to their measuring principle, inducti-

ve ABS sensors are only activated above a certain wheel speed. Below the

activation threshold, the signal is unreliable. The vehicle velocity is derived

solely by integrating the acceleration signal aX,C . The middle part of Fig.

5.9 shows the difference velocities ∆vRij. In the second phase (”strong Ac-

celeration”), the corrected wheel speeds are all above the estimated vehicle

velocity v̂CoG due to drive slip. Between t = 5.2s and t = 5.6s, the vehicle

is in ”Rolling” condition. Almost no slip occurs and the velocity differences

are close to zero. In the last phase (”strong Braking”), the velocity diffe-

rences ∆vRij are significantly below 0 due to a large brake slip. ABS-cycles

at the front wheels cause velocity drops of vRFL,C and vRFR,C . The front

wheel speed signals are rated as ”ABS” or ”erroneous”. Thus, the weights

for these signals are zero. At the very end of the measurement, the wheel

speed signals fall below the activation threshold of the ABS sensors. The

velocity is again determined only by integration of aX,C .

Fig. 5.10 zooms into the start of the strong braking phase of the test drive

described above. At the beginning, after approximately t = 10.6s, the fuz-

zy estimator detects large deviations ∆vRij of the front wheel speeds and
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rates the front wheel speed sensor signals as erroneous. The estimated ve-

hicle velocity v̂CoG is then approximately equal to the velocity of the rear

wheels. After approximately t = 10.75s, the driving condition changes from

”Rolling” to ”Braking/strong Braking”. Now, all the wheel speed signals

are rated as unreliable due to slip. In this driving situation the integrated

acceleration signal is the main signal for estimating the vehicle velocity.

The estimated vehicle velocity in Fig. 5.10 is almost permanently slightly

above the highest wheel velocity. ABS control cycles from the wheel speeds

are completely suppressed.
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Figure 5.9: Velocities (top) and ∆vRij (bottom) during an ABS test drive
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5.2 Fuzzy Yaw Rate Estimator

Accurate yaw rate signals ψ̇ are crucial for vehicle dynamics control sy-

stems. Usually the yaw rate is measured with a gyroscope sensor. One

main disadvantage of available gyroscopes is their offset drift caused by

temperature changes. In order to increase the accuracy of the yaw rate si-

gnal, signals from different sensors are fused for yaw rate calculation. Their

weights are determined according to the driving situation. For this proce-

dure, a fuzzy estimator similar to the one presented in Section 5.1 is used.

After describing the setup of the fuzzy yaw rate estimator, its quality and

robustness shall be validated in Section 5.3 by means of trajectory recon-

struction.

5.2.1 Sensor Data Preprocessing

The gyroscope signal is preprocessed before using it for yaw rate calcula-

tion. The idea is to eliminate the time-varying gyroscope offset according

to the driving situation. The gyroscope signal value is certainly zero if the

vehicle is standing still or when driving exactly straightforward. The goal

therefore is to determine these driving situations: standstill and straight-
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forward driving. After turning the ignition key to start the vehicle, the

gyroscope’s yaw rate signal is reset to zero. At traffic lights or during other

standstill situations, the wheel speed signals and the acceleration signals

are taken as a means to detect standstill in order to eliminate the gy-

roscope signal offset. A more sophisticated approach is chosen to detect

straightforward driving. Assuming equal slip values sRes,ij and equal tire

radii rstat,ij at each wheel the rotational wheel speeds ωRij can be used as a

means to detect straightforward driving. Ideally, all rotational wheel speeds

should be equal then. However, due to noise, radius deviations, different

tire pressures and other influences, the rotational velocities will slightly de-

viate even when driving straightforward. Taking the maximum deviation

max ∆ω of the rotational equivalent wheel velocities, ωRij though, provides

a sufficiently accurate criterion to detect straightforward driving:

max ∆ω = max
ij

{ωRij} − min
ij

{ωRij} (5.6)

If max ∆ω ranges below a certain threshold ε, the signal value from the

gyroscope sensor ψ̇S can be set to zero:

max ∆ω < ε ⇒ ψ̇S
!
= 0 (5.7)

The standstill detection presented above and the criterion for straightfor-

ward driving (Eqns. (5.6) and (5.7)) improve the gyroscope sensor signal

already. However, sufficient accuracy for the yaw rate signal can only be

achieved when fusing the gyroscope sensor signal with yaw rate signals cal-

culated from the wheel speeds. This will be shown in the following sections.

5.2.2 Yaw Rate Calculation Using the Wheel Speeds

In curves, the wheels of outer and inner vehicle track run with different

velocities. The outer wheels travel a larger distance than the inner wheels.

By using a simple triangular approximation, the velocity difference can be

used to calculate the yaw rates of front and rear axle:

ψ̇F =
(ωRFR − ωRFL) · rstat

bF · cos δW
, (5.8)

ψ̇R =
(ωRRR − ωRRL) · rstat

bR
. (5.9)
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Figure 5.11: Overview over employed fuzzy system, [36]

Eqns. (5.8) and (5.9) assume the same tire radius rstat on all wheels. The

parameters bF and bR are again the track of front and rear axle. Considering

the third yaw rate signal ψ̇S coming from the gyroscope sensor, the fuzzy

system generates weighting factors hi, i = 1, . . . , 3, before merging the

respective individual sensor signals.

5.2.3 Fuzzy System

Fig. 5.11 shows the setup of the fuzzy system. The inputs will be explained

in this section. Additionally, a status flag ”enable ABS” is used. This flag

indicates whether or not the ABS sensor signals can be used for yaw rate

calculation. Due to the inductive working principle of today’s ABS wheel

speed sensors, the velocity is not reliable below a certain velocity threshold.

In this case, only the yaw rate sensor’s signal ψ̇S is used for the yaw rate

estimate ψ̇Fuz.

The inference method used in the fuzzy system is the Mamdani-implication.

This means that the logical value of the conclusion is always smaller than

the one of the assumption. The linguistic inputs are logically connected

with the AND operator. The rule base of the system can be found in Ap-

pendix C.2.

For defuzzification, the center of gravity method was chosen. It represents

the standard method and it is capable of smoothing the output.
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Figure 5.12: Membership functions of system inputs

Inputs

The estimator inputs should allow to consider the current driving situati-

on. The rules generate weighting factors corresponding to the individual

sensors’ measurement errors.

Wheel Turn Angle δW The wheel turn angle indicates whether the

curve radius is large or small. It also disturbs the velocity calculation at

the front axle. As a consequence, the calculated yaw rate increases with

growing steering angle, [68]. Furthermore, for small curve radii the yaw

rate calculated from the wheel speeds of the rear track is weighted less.

The membership functions of δW are displayed in Fig. 5.12(a).

Longitudinal Acceleration aX,C The longitudinal acceleration signal’s

membership functions are illustrated in Fig. 5.12(b). Accelerations aX,C

other than little indicate large brake or drive slip, where the wheel speed si-

gnals are inaccurate. Therefore, in braking situations the front axle’s wheel

speeds are weighted small, whereas those for the rear axle are weighted me-

dium. This is due to the braking force distribution. The braking force and

the resulting braking slip are larger at the front axle.

Lateral Acceleration aY Along with the wheel turn angle δW , the la-

teral acceleration assesses the degree of curve driving. At very high lateral

accelerations, the wheel load shifts to the outer wheels and causes large slip

values at the inner wheels. Therefore, the inner wheel speeds are weighted

less. The membership functions for aY are almost equal to the ones of aX,C .
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Figure 5.13: Membership functions of fuzzy estimator

Wheel Speed Differences at Front and Rear Axle ∆vF and ∆vR

∆vF and ∆vR describe the two axle’s wheel speed differences. For the front

axle, this yields

∆vF = |v̂CoG − vRFR,C| + |vRFR,C − vRFL,C | . (5.10)

For the rear axle, respectively

∆vR = |v̂CoG − vRRR,C|
︸ ︷︷ ︸

”condition 1”

+ |vRRR,C − vRRL,C |
︸ ︷︷ ︸

”condition 2”

. (5.11)

∆vR in Eqn. (5.11) is small, if two conditions are fulfilled: firstly, if the

corrected velocity vRRR,C is close to the previously estimated vehicle velo-

city v̂CoG (”condition 1”). Secondly, both corrected velocities vRRL,C and

vRRR,C must be almost equal (”condition 2”). If both ABS sensors failed,

then vRRL,C and vRRR,C would be equal. Without condition 1, the weight

for the failing ABS sensors would be high. The estimation results would

then be completely wrong. By means of condition 1 though, a large devia-

tion from the vehicle velocity is detected and the sensors are not weighted

at all. Condition 1 therefore ensures the stability of the fuzzy estimator.

That means, if ∆vR is small, then the calculated yaw rate signal is reliable

and the weight for the respective sensors is high.

Fig. 5.13(a) shows the membership functions for ∆vF . Those for ∆vR are

similar.
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Figure 5.14: Reconstructed yaw angle of multiple drive through round-

about traffic

Outputs

The output variables of the fuzzy estimator are the three weighting factors,

h1 for the gyroscope, h2 for the yaw rate at the front axle and h3 for the yaw

rate at the rear axle. The weight ranges between [0, 1] and the membership

functions are displayed in Fig. 5.13(b). If a signal is not reliable at all, then

it is weighted ”zero”. If the reliability increases, the corresponding weight

rises and the membership functions are ”small”, ”average” and ”large”.

The weighting factors are used to calculate a weighted mean of the sensor

signals according to their reliability:

ψ̇Fuz =
h1 · ψ̇S + h2 · ψ̇F + h3 · ψ̇R

3∑

i=1

hi

. (5.12)

5.2.4 Measurement: Roundabout Traffic on Public

Road

The test drive was carried out on a public road. The test vehicle initially

parks along the road before driving for a distance of approximately 80 m.

Then it enters a roundabout traffic. The vehicle drives three times through

the roundabout traffic and finally leaves it in the opposite direction back to
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Figure 5.15: Trajectory reconstruction using the fuzzy velocity and yaw

rate estimator

its initial location. Fig. 5.14 shows the results of the test drive during which

the vehicle turns by a yaw angle of 1260 degrees. The straight horizontal

line represents this final value. To validate the yaw rate estimation, the

yaw rates from the sensors and from the fuzzy system were integrated to

get the yaw angle. As expected, the fuzzy yaw angle ψFuz approximates

the true value best. The yaw angles from the gyroscope (ψS) and from the

rear axle ψR are too large, whereas the one from the front axle ψF is too

small in this test.

5.3 Trajectory Reconstruction

The reconstruction of the vehicle trajectory can be used as a means to

validate the fuzzy velocity and the fuzzy yaw rate estimator. For this, the

velocity calculated in Section 5.1 and the yaw rate determined in Section

5.2 are integrated and applied to the trajectory reconstruction block. A

block diagram of it can be seen in Fig. 5.15.

In this section, the equations for the vehicle location are derived. Then the

fuzzy systems are analyzed regarding their robustness. Apart from acci-

dent reconstruction, an accurate vehicle position is e.g. desired in vehicle

navigation systems, should the satellite-based positioning not be available

in specific situations.
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5.3.1 Vehicle Location

The vehicle location is calculated recursively. Based on the old location

and heading, the new location is determined by processing the distance

increment ∆s(n) and the yaw angle increment ∆ψ(n). Fig. 5.16 shows a

circular motion increment during one sampling period between t = n · TS

and t = (n+1)·TS. Based on the vehicle location x(n) = [x(n), y(n)]T the

new location at time instant (n+1) ·TS is calculated. Using the triangular

approximation in Fig. 5.16, the location equations for trajectory calculation

are

x(n + 1) = x(n) + ∆s(n) · cos

(

ψ(n) +
∆ψ(n)

2

)

, (5.13)

y(n + 1) = y(n) + ∆s(n) · sin
(

ψ(n) +
∆ψ(n)

2

)

. (5.14)

The two variables ∆s and ∆ψ are calculated using the vehicle velocity

estimate v̂CoG and the yaw rate estimate ψ̇Fuz:

∆s(n) = v̂CoG(n − 1) · TS , (5.15)

∆ψ(n) = ψ̇Fuz(n − 1) · TS . (5.16)



5.3. Trajectory Reconstruction 117

In order to get the absolute distance s(n) and the absolute yaw angle ψ(n),

the distance and the time increments of Eqns. (5.15) and (5.16) are added,

s(n) = s(n − 1) + ∆s(n) , (5.17)

ψ(n) = ψ(n − 1) + ∆ψ(n) . (5.18)

Eqns. (5.17) and (5.18) describe a time-discrete integration process. That

means that errors made calculating the time increments ∆s and ∆ψ accu-

mulate over time. Therefore, it is crucial for trajectory reconstruction to

determine ∆s and ∆ψ and due to Eqns. (5.15) and (5.16) also v̂CoG and

ψ̇Fuz very accurately. Thus, trajectory reconstruction is a good application

to validate the fuzzy estimators presented in Sections 5.1 and 5.2.

5.3.2 Reconstructed Trajectories

During the test drive through the roundabout traffic (see Section 5.2.4),

the vehicle trajectory was calculated. The angular differences between the

measured and estimated yaw angles in Fig. 5.14 appear to be reasonably

small. However, regarding the trajectories of the roundabout traffic drive

in Fig. 5.17 calculated with Eqns. (5.13) and (5.14) shows that even such

small deviations from the real vehicle heading result in a poor reconstruc-

tion quality. If only one of the three measured yaw angles is taken for

reconstruction the resulting vehicle course is not sufficiently accurate. The

gyroscope yaw angle ψS drifts away at the end of the measurement. The

yaw angles from the wheel speeds ψF and ψR also yield large deviations

from the real vehicle course. Only fuzzy estimation describes the vehicle

motion accurately from the beginning to the end of the course. Only there,

the vehicle returns to its initial location.

5.3.3 Robustness Analysis

Sensor errors are inevitable in real-world measurements. During the test

drives, for instance, low battery load caused ABS sensor failures with signi-

ficant drop outs in the wheel speed signal. In order to assess its robustness,

the fuzzy system was tested with artificially injected sensor failures. The

plots of Figs. 5.20 and 5.21 represent the results from the test drive. In

Fig. 5.18, velocity drops were artificially inserted every 10 seconds at the

front left wheel. That means that the calculated yaw rate from the front

axle ψ̇F was corrupted then. Fig. 5.18 also shows that the wheel speeds fail

below 1m/s at the very beginning and at the end of the measurement.
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Fig. 5.19 displays the system inputs into the fuzzy system. During the cir-

cular motion in the roundabout traffic (between 17s and 53s), the wheel

turn angle is high resulting in a high lateral acceleration. Close to the zero-

axis, peaks in the ∆vF,err-signal can be recognized resulting from the sensor

signals drops.

Fig. 5.20 depicts the various yaw rate signals and their weighting factors.

At the beginning and at the end of the measurement, the weighting factors

h2 and h3 for the wheel speed signals are zero and h1 for the gyroscope

signal is high. In such conditions, the wheel speed sensors are below their

activation threshold. In the middle of the measurement at high lateral ac-

celerations aY and for large wheel turn angles δW the rear axle’s yaw rate

signal ψ̇R is only little weighted, whereas the other two yaw rates (ψ̇S and

ψ̇F ) are rated as ”medium reliable”. During the wheel speed signal drops

at t ≈ 9s, 19s, ... the weighting factor h2 for the front axle drops to zero as

well, whereas h1 for the gyroscope signal increases. The sensor signal errors

cause sharp yaw rate peaks (dashed) in the middle plot of Fig. 5.20. In cur-

ves the yaw rate from the rear axle is generally weighted small, so that the

sensor signal drops do not influence h3. In the phases before the circular

motion (3s < t < 17s) and after the circular motion (53s < t < 68s) the

car is driving almost straightforward. Here, the wheel speeds are generally

preferred to the gyroscope. In these phases, the weights h2 and h3 are hig-
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Figure 5.20: Yaw rates and weighting factors (ψ̇F with errors)

her than h1.

As mentioned above, the edges of the membership functions were chosen

relatively steep. This causes fast switches between different driving condi-

tions. Fig. 5.20 shows that the sharp velocity signal drops are very quickly

detected and the estimation can therefore recover very fast.

Fig. 5.21 shows the results of the robustness test for the yaw angle estimati-

on and for the trajectory calculation. In Fig. 5.21(a), steps in the calculated

yaw angle signal can be recognized. Driving counter-clockwise through a

roundabout traffic results in positive yaw angles. Sensor signal drops at the

left wheel cause erroneous positive yaw rates in the ψF -signal at t ≈ 49s
and t ≈ 59s. This is because the velocity difference increases according to

Eqn. (5.8). Fig. 5.21(a) shows that the fuzzy estimation completely ignores

the false yaw rate signal. Comparing Figs. 5.14 and 5.21(a), the results for

ψFuz are almost equal with or without sensor signal drops.

The effect of sensor failures on the accuracy of the reconstructed trajec-

tory is illustrated in Fig. 5.21(b). The dash-dotted course represents the

trajectory xF,err reconstructed using the front axle yaw rate ψF,err only.

The figure points out that the course is corrupted significantly. Even the

circles of the roundabout traffic are no longer centrical. The signal the-
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refore is absolutely inapplicable for trajectory reconstruction. Comparing

Figs. 5.21(b) and 5.17 shows that the fuzzy system’s trajectory is not at

all affected by the sensor signal failures.

5.4 Vehicle Body Side Slip Angle Observer

The vehicle body side slip angle β is one of the most important variables in

vehicle dynamics. It is defined as the angle between the vehicle’s longitudi-

nal axis xCoG and the vector of the center of gravity velocity vCoG. Drivers

perceive the vehicle body side slip angle or its gradient very sensitively and

desire to keep these quantities small, [54]. Growing vehicle body side slip

angles at high lateral accelerations are an indicator for an instable driving

situation, [55], [27], see also Section 4.2.8. For complete vehicle motion

reproduction, for example for accident reconstruction purposes, [15], the

location of the center of gravity (i.e. the actual trajectory) and the course

angle are required. The course angle is the sum of yaw angle and vehicle

body side slip angle (ψ + β).

The vehicle body side slip angle cannot be measured with commercial-off-

the-shelf sensors. Instead, a very expensive optical sensor system is used

for development purposes. Newer systems base on GPS data, [3], [66]. Ho-

wever, this method is also too expensive for series production.

Due to the importance of the vehicle body side slip angle especially for

vehicle dynamics control systems, it has to be calculated from measurable

sensor signals. [25] calculates the VBSSA from the ratio of the lateral and

longitudinal vehicle velocity vY and vX :

β =
vY

vX
, (5.19)

where vY is calculated from estimates of the side forces. A similar approach

is described in [31].

Another approach can be found in [39]. In stable driving situations, the

VBSSA is calculated by means of a linear observer. However, the model

is not adapted to measured outputs but runs ”open loop”. If the vehicle

behavior becomes non-linear, an integration equation is applied:

β =

∫ (
aY

vX
− ψ̇

)

dt . (5.20)

The method has two major disadvantages. Firstly, running a model ”open

loop” can cause difficulties, if the unknown initial process state and the mo-

deled one deviate. Furthermore, the integration method from Eqn. (5.20)
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is problematic because of cumulated offsets of the acceleration and yaw

rate sensor signals employed in this method.

To avoid these problems, a state space observer will be presented in this

section. The feedback of the observer reduces modeling errors and is ca-

pable to handle the mentioned deviations of the initial values of model an

process. However, a state space observer is only as good as its underlying

model. For accident reconstruction and the description of unstable pre-

accident situations, linear observer approaches are not applicable (see the

model validation in Section 3.6).

That is the reason why this section presents a selection of non-linear ob-

servers. Only the non-linear two track model shown in Section 3.3.7 with

the necessary adaptations in Section 3.4.2 is sufficiently accurate to gain

satisfactory results.

In contrast to linear observer design there exists a variety of approaches

for non-linear systems. The form of the non-linearity plays a crucial role

for the choice of a suitable observer concept, [32]. Some of the observers

presented in this section are limited to systems with a special structure.

That is, why the adaptive non-linear two track model according to Secti-

on 3.3 must be restructured.

The observability of a system is a necessary and sufficient condition for ob-

server design. The fundamentals of non-linear observability are described

in Section 5.4.1. After proving the requirements for observer design, Sec-

tion 5.4.2 presents a non-linear state space observer where the non-linear

model is linearized around the currently estimated state vector. This ob-

server uses all measurable information available in the system. The second

part of Section 5.4.2 reduces the measurement vector to a scalar, where

only the measured yaw rate supports the observer. In Section 5.4.3 the

adaptive non-linear state space model is restructured. This enables the

observer design of a new type of observer which adapts the estimation er-

ror of the non-linear observer to the dynamics of a linear reference model

(Section 5.4.5). In Section 5.4.4 the linearization observer is also designed

according to the restructured model. Section 5.4.6 compares the individu-

al observer concepts. The extended Kalman-Bucy-Filter is capable to

employ heuristic knowledge about model inaccuracies or sensor charac-

teristics. Its design and validation results are presented in Section 5.4.7.

Section 5.4.8 enhances the reconstruction of the vehicle motion using the

knowledge about the vehicle body side slip angle. Finally, in Section 5.9

the driver’s steering performance in a critical drive situation is assessed by

means of a simple control approach.
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5.4.1 Observability of State Space Models

Linear Observability

Starting with the observability of a linear state space model, the respective

definition for non-linear models is presented afterwards.

The observability of a linear state space model

ẋ = A x + B u , (5.21)

y = C x + D u

is defined as follows, [24]:

Definition 5.1 (Linear Observability)

A linear and time-invariant system (5.21) is observable, if its initial state
x(t0) can be calculated uniquely, when the input and output variables are
known.

Knowing the initial state of a system, all the other state vectors x(t), t > t0
and thus the complete state trajectory can be reconstructed. [49] gives a

necessary and sufficient condition for the observability of a linear system:

Theorem 5.2

A linear and time-invariant state space system with n state variables and

q output variables defined by Eqn. (5.21) is observable, if the (nq, n)-

observability matrix

Q
B

=







C
C A

...

C An−1







(5.22)

has maximum rank n. ⋄
If Q

B
has maximum rank, then the observer can be designed. Based on

the considerations of this section, the observability term is expanded to

non-linear systems in the next section.

Non-Linear Observability

The most common form of a non-linear dynamical system is

ẋ(t) = f
(
x(t), u(t)

)
,

y(t) = h
(
x(t), u(t)

)
,

(5.23)
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where the functions f and h can depend non-linearly from all state space

and input quantities.

The definition of observability for non-linear systems is similar to Def. 5.1.

According to [5], global and local observability must be distinguished.

Definition 5.3 (Global Observability)

A dynamical system according to (5.23) is called globally observable, if an
arbitrary initial state x(t0) can be reconstructed uniquely from the input
quantities u and from the output quantities y.

Definition 5.4 (Local Observability)

A dynamical system according to (5.23) is called locally observable in a
point xp, if all initial states x(t0) in a surrounding area of xp can be recon-
structed uniquely from the input quantities u and from the output quantities
y. If this is fulfilled for arbitrary points xp, then the system is called locally
observable.

For analysis of the observability of non-linear systems, the state and input

variables of the system are transformed to the output quantities by means

of an observability transformation q
obs

which is defined as

q
obs

:= y[n−1] =







y
ẏ
...

y(n−1)







=








h(x, u)
d
dt h(x, u)

...
dn−1

dtn−1 h(x, u)








. (5.24)

The first time derivative of the output variable is

ẏ =
∂h(x, u)

∂x
ẋ +

∂h(x, u)

∂u
u̇ =

∂h(x, u)

∂x
f(x, u) +

∂h(x, u)

∂u
u̇ . (5.25)

Accordingly, in all time derivatives of higher order, the derivatives of the

state space variable ẋ are replaced by f(x, u). Then, y[n−1] depends on the

state variables and on the time derivatives of the input variables up to

their maximum order (n − 1):

y[n−1] = q
obs

(x, u[n−1]) . (5.26)

If the inverse transformation

x = q−1
obs

(u[n−1], y[n−1]) (5.27)

exists, then the state vector x can be determined from the in- and output

quantities u and y and the system is globally observable, [5]. This yields

the theorem for global observability.
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Theorem 5.5

A dynamical system according to (5.23) is globally observable, if the ob-

servability transformation (5.26) is invertible. ⋄
For a local examination in a point xp, the transformation is Taylor-

expanded around xp curtailing the Taylor-expansion after the linear term:

y[n−1] ≈ q
obs

(xp, u
[n−1]) +

∂q
obs

∂x

∣
∣
∣
∣
∣
x=xp

· (x − xp) . (5.28)

According to [5], x can be isolated in this set of equations, when the matrix

∂q
obs

∂x

∣
∣
∣
∣
∣
x=xp

=: Q
B
(x, u[n−1])

∣
∣
∣
x=xp

(5.29)

has full rank n.

In this case the system (5.23) is locally observable. Matrix Q
B

is called

observability matrix. Using Q
B
, a sufficient criterion for local observability

can be defined:

Theorem 5.6

A dynamical system according to (5.23) is locally observable, if the (nq, n)-

observability matrix Q
B

according to Eqn. (5.29) has full rank n. ⋄
After the observability definition of non-linear systems and the setup of

the respective observability criteria, the different observer designs for non-

linear systems are presented. Every time, the underlying model is changed

or restructured, a new observability analysis must be carried out. The

respective proofs of observability are provided in Appendix A.3.

5.4.2 Linearization Observer

Underlying theory

The linearization observer, [23], [81], can be used for observer design of

arbitrary non-linear systems, assuming that they are locally observable.

For a non-linear system of the common form

ẋ = f(x, u) ,
y = h(x, u) ,

(5.30)

a non-linear observer is set up as follows:

˙̂x = f(x̂, u) + L(x̂, u) · (y − ŷ) ,
ŷ = h(x̂, u) .

(5.31)
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The observability proof of the underlying system can be found in Appen-

dix A.3.1. The observer structure can be seen in Fig. 5.22. The estimation

error x̃(t) = x(t) − x̂(t) is described by the differential equation

˙̃x = f(x, u) − f(x̂, u) − L(x̂, u) ·
(
h(x, u) − h(x̂, u)

)
. (5.32)

For determining an appropriate observer gain, this differential equation is

linearized around the currently estimated state x̂ by Taylor-expanding

f(x, u) and h(x, u) around x̂. The expansion is curtailed after the linear

term

f(x, u) ≈ f(x̂, u) +
∂f(x, u)

∂x

∣
∣
∣
∣
x=x̂

· (x − x̂) , (5.33)

h(x, u) ≈ h(x̂, u) +
∂h(x, u)

∂x

∣
∣
∣
∣
x=x̂

· (x − x̂) . (5.34)

Insertion of Eqn. (5.33) and (5.34) in Eqn. (5.32) reads

˙̃x =
( ∂f(x, u)

∂x

∣
∣
∣
∣
x=x̂

− L(x̂, u) · ∂h(x, u)

∂x

∣
∣
∣
∣
x=x̂

)

︸ ︷︷ ︸

· x̃

= F (x̂, u) · x̃

. (5.35)

The observer gain L and the matrix F depend on the input values u and

on the estimated state variables x̂. Both of these quantities are known.

If the observer matrix L(x̂, u) can be chosen, so that the dynamic matrix F
is constant and has fix eigenvalues, then the solution of the error differential

equation is

x̃(t) = exp
{
F · (t − t0)

}
· x̃(t0) . (5.36)

In a sufficiently long time interval, the error x̃ converges against zero for

arbitrary initial estimation errors x̃(t0) = x(t0) − x̂(t0).
To determine the observer gain, it must fulfill the condition

det(sIn − F ) = det
(

sIn −
∂f(x, u)

∂x

∣
∣
∣
∣
x=x̂

+ L(x̂, u) · ∂h(x, u)

∂x

∣
∣
∣
∣
x=x̂

)

!
=

n∏

ν=1

(s − λν) . (5.37)

The elements of the matrix L(x̂, u) must be chosen appropriately.

In general, it is not possible to achieve fix poles and a constant dynamic
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Figure 5.22: Structure of the linearization observer

matrix F , [23]. A compromise between a simple structure of matrix F
and fix eigenvalues is necessary. For the implementation, the stability of

the observer and its sensitivity to noise and model inaccuracies must be

analyzed by means of simulations.

One advantage of the linearization observer is that it can be applied to any

non-linear and observable process.

Observer for Two Measurable Outputs

The non-linear two track model

ẋ = f(x, u) (5.38)

presented in Section 3.3 has three state variables

x =
[

vCoG β ψ̇
]T

and five input variables

u =
[

FLFL FLFR FLRL FLRR δW

]T
.

The vector function f is described by Eqns. (3.63) to (3.65). Two of the

three state variables are measured outputs, the center of gravity velocity
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vCoG and the yaw rate ψ̇:

y =
[

vCoG ψ̇
]T

= C · x =

[
1 0 0

0 0 1

]

· x . (5.39)

For this system, due to C = ∂h
∂x , the error differential equation (5.35) pro-

vides the following dynamic matrix:

F (x̂, u) =
∂f(x, u)

∂x

∣
∣
∣
∣
x=x̂

− L(x̂, u) · ∂h(x)

∂x

∣
∣
∣
∣
x=x̂

=







∂v̇CoG

∂vCoG
− l11

∂v̇CoG

∂β
∂v̇CoG

∂ψ̇
− l12

∂β̇
∂vCoG

− l21
∂β̇
∂β

∂β̇

∂ψ̇
− l22

∂ψ̈
∂vCoG

− l31
∂ψ̈
∂β

∂ψ̈

∂ψ̇
− l32







∣
∣
∣
∣
∣
∣
∣
∣
x=x̂

. (5.40)

The Jacobian-matrix
∂f(x,u)

∂x is calculated in Appendix A.1. Goal of the

observer design is the appropriate choice of the elements of matrix L by

means of Eqn. (5.37). For the poles λ1, λ2, λ3 this yields

det













λ1 − ∂v̇CoG

∂vCoG
+ l11 −∂v̇CoG

∂β −∂v̇CoG

∂ψ̇
+ l12

− ∂β̇
∂vCoG

+ l21 λ2 − ∂β̇
∂β −∂β̇

∂ψ̇
+ l22

− ∂ψ̈
∂vCoG

+ l31 −∂ψ̈
∂β λ3 − ∂ψ̈

∂ψ̇
+ l32













!
= 0 . (5.41)

As already mentioned, the pole placement has two goals: firstly, the choice

of fix eigenvalues and secondly a constant dynamic matrix F . Eqn. (5.41)

points out the dilemma: the six elements of matrix L are insufficient to

place all three observer poles on the one hand, and to influence all nine

elements of matrix F on the other hand. Therefore, a compromise must

be found: if all the poles are fix, then F is very complex. Therefore, this

section deals with the design of an observer with a simple dynamic matrix

F . At the end of this section, validations show the differences of these two

approaches.

The dynamic matrix becomes as simple as possible, if the observer gain L
is

L(x̂, u) =







∂v̇CoG

∂vCoG
− λ1

∂v̇CoG

∂ψ̇
∂β̇

∂vCoG

∂β̇

∂ψ̇
∂ψ̈

∂vCoG

∂ψ̈

∂ψ̇
− λ3







. (5.42)
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Figure 5.23: Time-varying positions of λ2 for the clothoide with high

dynamics

In this case, only two of the three poles are fix. According to Eqn. (5.41)

the third one is

λ2(t) =
∂β̇

∂β

∣
∣
∣
∣
∣
x=x̂

=
1

mCoGv̂CoG

{

(cFL + cFR)(δW − β̂ − lF
ˆ̇ψ

v̂CoG
) sin(δW − β̂)

−(cFL + cFR + FLFL + FLFR) cos(δW − β̂)

−
(
cRL + cRR + FLRL + FLRR − cWX v̂2

CoG

)
cos β̂

}

−(cRL + cRR)(−β̂ +
lR

ˆ̇ψ

v̂CoG
) sin β̂ . (5.43)

An analytical examination of the pole location is impossible, as Eqn. (5.43)

contains eight time-varying parameters. Instead, the pole locations are si-

mulated for the clothoide drive of high dynamics (see Section 3.6.1). This

driving maneuver covers all driving situations starting from straightfor-

ward driving to a critical cornering situation.

Fig. 5.23 shows, that λ2 remains in the open left half plane. That means

that the observer designed with the observer gain (5.42) is stable, at least

for all test drives conducted.

Fig. 5.24 compares the described observer with the observer where all three

poles are fix. For the latter one, the observer gain and the dynamic matrix

are very complex and therefore not listed here. At the beginning, the signals

are almost congruent. After approximately t = 6s, the observer with three

fix poles deviates significantly and finally it becomes unstable. Although

the pole λ2 of the other observer is time-varying, the results are much

better, because the dynamic matrix is much simpler. However, between
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Figure 5.24: Results of the linearization observer with two measured out-

put variables with and without time-varying poles (test drive: highly dy-

namical clothoide)

t = 2.5s and t = 6.5s the observed VBSSA is too high. Section 3.6.3 states

that the velocity is modeled less accurately. These inaccuracies increase

with growing side forces causing a significant deviation between measured

and modeled velocity (see Fig. 3.26). The linearization observer adapts the

modeled velocity to the measured one. This adaptation fudges the estima-

tion result of the vehicle body side slip angle mainly because of inaccuracies

of the first differential equation of the model. To avoid this problem, in the

next step only the yaw rate is regarded as an output variable. Then, the

observer adapts solely the yaw rate to the measured value. Therefore, there

is no velocity adaptation any more and the model inaccuracy is ignored.

Observer for One Measurable Output Variable

If only the yaw rate is a system output, the system becomes

ẋ = f(x, u) =





v̇CoG

β̇

ψ̈



 , y = C ·x with C =
[

0 0 1
]

. (5.44)
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The non-linear function f(x, u) is defined by Eqns. (3.63) - (3.65). The

observability of this model must be proven separately. This is carried out

in Appendix A.3.2.

As the system (5.44) contains only one output variable, the observer gain

is a column vector with three elements:

L(x̂, u) :=





l1
l2
l3



 . (5.45)

The characteristic equation for observer design then reads

det













λ1 − ∂v̇CoG

∂vCoG
−∂v̇CoG

∂β −∂v̇CoG

∂ψ̇
+ l1

− ∂β̇
∂vCoG

λ2 − ∂β̇
∂β −∂β̇

∂ψ̇
+ l2

− ∂ψ̈
∂vCoG

−∂ψ̈
∂β λ3 − ∂ψ̈

∂ψ̇
+ l3













!
= 0 . (5.46)

For this observer, a simple dynamic matrix F is preferred to fixing all ei-

genvalues. Again, the observer with all eigenvalues fixed has a very complex

observer gain and therefore becomes instable.

A simple structure for F can be achieved when choosing

L(x̂, u) =







∂v̇CoG

∂ψ̇
∂β

∂ψ̇
∂ψ̈

∂ψ̇
− λ3







. (5.47)

In this case λ3 is chosen −80 and the other two time-varying poles are

λ1/2 =
1

2

{

a11 + a22 ±
√

a2
11 − 2a11a22 + a2

22 + 4a12a21

}

,

with the partial derivatives

a11 =
∂v̇CoG

∂vCoG
, a12 =

∂v̇CoG

∂β
, a21 =

∂β̇

∂vCoG
and a22 =

∂β̇

∂β

listed in Appendix A.1. Again the stability of the observer must be ensured.

Therefore, the time-varying poles λ1 and λ2 were analyzed with several test

drives. For the most representative one, the highly dynamical clothoide,

Fig. 5.25 shows the result of the simulation. Both real eigenvalues are

permanently negative, i.e. in the open left half plane. This means, using

the available test drives the observer gain (5.47) provides a stable state

observer for the system (5.44).
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Figure 5.25: Time-varying eigenvalues λ1 and λ2 for the clothoide of high

dynamics

After knowing its stability, the observer can be validated with test drives.

The observer with two time-varying poles is compared to the one designed

before with only one time-varying pole. Fig. 5.26 shows, that the observer

does not adapt the model velocity to the measured velocity any more, as

the velocity is no longer regarded as an output variable. Therefore, the

estimated vehicle body side slip angle for the system with only one output

variable is much more accurate then the one with two outputs. The mea-

sured and the modeled yaw rate for the observer with one output variable

are congruent.

Choosing only one output variable provides much better observation results

than considering the velocity as a second output as well. The observer pre-

sented in this section is capable to estimate the vehicle body side slip angle

up to the stability limit.

However, for straightforward driving, it is desirable to have the velocity as

an output variable as well. In this driving situation, the velocity should

be more reliable than the yaw rate signal, e.g. due to offsets. Switching

between an observer with one or two output variables would improve the

observer results for driving situations with little side forces. The switching

logic contains thresholds for the yaw rate and the yaw acceleration which

are evaluated to select the system to be employed. However, the ”sharp”

switching certainly does not represent an optimal solution for an appro-

priate determination of the vehicle body side slip angle. Therefore, in Sec-

tion 5.4.7 an extended Kalman-Bucy-Filter will provide a better solution

to decide, how much weight the velocity gets as an output variable. There,

situation dependent covariance matrices improve the methodology.
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Figure 5.26: Comparison of the observers for the system with two and

with one output variable (OV) (test drive: highly dynamical clothoide)

5.4.3 Restructuring of the State Space Model

As mentioned, the design of non-linear observers significantly depends on

the structure of the underlying process model. For the observer design des-

cribed later in Sections 5.4.4 and 5.4.5 and for other observers in canonical

form, though, it is necessary to have a system structure of the form

ẋ = A(y, u) · x + b(y, u) ,
y = C x .

(5.48)

The state vector contains n state variables and p input variables. The

output vector has the dimension q.
Therefore, the goal is to restructure the adaptive non-linear state space

model to the form (5.48). Additionally, the system order decreases from

n = 3 to n = 2. This reduces the complexity of the resultant state space

model.

Linearization of the Side Slip Angle

The non-linear model is restructured so that the vehicle body side slip angle

β has linear influence. Therefore, the three state equations are linearized

with respect to the VBSSA. Eqn. (3.65) is already linear in β so that only

the Eqns. (3.63) for vCoG and (3.64) for β must be linearized.
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Assuming side slip angles less than 10◦, the sine and cosine approximations

cos β ≈ 1, sin β ≈ β

are applied. Using these approximations, two more transformations are

carried out:

cos(δW − β) = cos δW cos β + sin δW sin β ≈ cos δW + β sin δW ,
sin(δW − β) = sin δW cos β − cos δW sin β ≈ sin δW − β cos δW .

Neglecting quadratic terms of β simplifies equations (3.63) and (3.64):

v̇CoG = β · 1

mCoG
·
{

(FLFL + FLFR) · sin δW + (cRL + cRR) · lR ψ̇

vCoG

+(cFL + cFR)

(

sin δW + cos δW

(

δW − lF ψ̇

vCoG

))
}

+
1

mCoG

{

(FLFL + FLFR) cos δW +
(
FLRL + FLRR − cWXv2

CoG

)

−(cFL + cFR) ·
(

δW − lF ψ̇

vCoG

)

· sin δW

}

(5.49)

and

β̇ = β · 1

mCoGvCoG

{

(cFL + cFR) ·
[

sin δW ·
(

δW − lF · ψ̇
vCoG

)

− cos δW

]

−(cRL + cRR) − (FLFL + FLFR) · cos δW

−
(
FLRL + FLRR − cWXv2

CoG

) }

+
1

mCoGvCoG
·
{

(cFL + cFR) ·
(

δW − lF · ψ̇
vCoG

)

· cos δW

+(FLFL + FLFR) · sin δW + (cRL + cRR) · lR · ψ̇
vCoG

}

−ψ̇ . (5.50)

The effects of the linearization of both differential equations is analy-

zed by means of simulations. For this, the differential function f1(x, u) =
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Figure 5.27: Effect of β-linearization on the accuracy of the simulation

of the high dynamical clothoide

v̇CoG(x, u) in its original version (Eqn. (3.63)) is compared with the linea-

rized Eqn. (5.49). The same procedure is carried out for f2(x, u) = β̇(x, u).

The simulation data set is again a clothoide drive of high dynamics. The

measured state and input variables are applied for the simulation. Fig. 5.27

compares the linearized with the original differential function for vCoG and

β.

For the vehicle body side slip angle the linearized and the non-linear func-

tion are almost equal. For the velocity, there are significant deviations,

though. To overcome this disadvantage, the velocity is regarded as an in-
put instead of a state variable. Then, the differential equation for vCoG is

not needed any more.

Reduction of System Order

The reduced model contains only two differential equations. For the yaw

rate, the original differential Eqn. (3.65) can be employed, as the vehicle

body side slip angle has only linear influence. For the vehicle body side slip

angle itself, the linearized Eqn. (5.50) is used:

β̇ = a11(ψ̇, u) · β + a12(u) · ψ̇ + b1(u) ,

ψ̈ = a21(u) · β + a22(u) · ψ̇ + b2(u)
(5.51)
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with a11, a12, a21, a22 and b1 as well as b2 being specified in Appendix A.2.

The system has six input variables

u =
[

FLFL FLFR FLRL FLRR δW vCoG

]T
.

The two state variables β and ψ̇ build the state vector

x =
[

β ψ̇
]T

.

The only system output is the yaw rate y = ψ̇.

The state space model (5.51) contains the vehicle body side slip angle as

a linear quantity. Therefore, it fulfills the structural requirements for the

observer design presented in Sections 5.4.4 and 5.4.5.

Simulations of the restructured model show that it is advantageous to use

the modeled center of gravity velocity v̂CoG instead of the measured one.

The model accuracy can be significantly improved then. Fig. 5.28 shows the

resulting structure of the observer. The observer gain L(x̂, u) is calculated

based on the model (5.51) with two state variables and with linear influence

of β. As the process model, though, the adaptive non-linear state space

model with Eqns. (3.63) - (3.65) is used. It provides estimation values x̂
for all three state variables (velocity, vehicle body side slip angle and yaw

rate). However, the observer only influences the side slip angle and the yaw

rate directly. The velocity is only affected by the feedback of the corrected

estimation values β̂ and
˙̂
ψ. The observability of the restructured system

is proven in Appendix A.3.3. After the proof of observability, the observer

design can be carried out.

5.4.4 Linearization Observer for Restructured Model

For the restructured model (5.51)

ẋ = f(x, u) = A(y, u) x + b(y, u) ,

y = C x ,

a linearization observer is designed:

˙̂x = f(x̂, u) = A(ŷ, u) x̂ + b(ŷ, u) + L(x̂, u) · (y − ŷ) ,
ŷ = C x̂ .

(5.52)

The output variable y is equal to x2. It is replaced by its estimation value

y = x̂2.
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Figure 5.28: Structure of the observer for the restructured non-linear

model

The dynamic matrix is set up like in Eqn. (5.35). For the system (5.51),

the dynamic matrix F becomes

F (x̂, u) =
∂f(x, u)

∂x

∣
∣
∣
∣
x=x̂

− L(x̂, u)C =

[

a11(
ˆ̇ψ, u) a∗12(β̂, u) − l1

a21(u) a22(u) − l2

]

.

(5.53)

The term a∗12 is

a∗12(β, u) =
∂β̇

∂ψ̇
=

∂a11(ψ̇, u)

∂ψ̇
· β + a12(u)

= −β · (cFL + cFR) · lF · sin δW

mCoGv2
CoG

+ a12(u). (5.54)

With the poles λ1 and λ2 the characteristic equation reads

det

([
λ1 0

0 λ2

]

− F

)

= det

(
λ1 − a11 −a∗12 + l1
−a21 λ2 − a22 + l2

)

!
= 0. (5.55)

Like for the other linearization observers, the strategy is to prefer a simple

dynamic matrix F to an observer where all eigenvalues are fix. Choosing
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Figure 5.29: Behavior of time-varying pole for the linearization observer

of the restructured system (drive: highly dynamical clothoide)

the observer gain

L =

[

a∗12(β̂, u)

a22(u) − λ2

]

(5.56)

provides a simple dynamic matrix

F (x̂, u) =

[

a11(
ˆ̇ψ, u) 0

a21(u) λ2

]

. (5.57)

The pole λ2 is fixed at −80. The other pole λ1 is time-varying

λ1(t) = a11(
ˆ̇ψ, u) =

1

mCoGvCoG
·
{

−(FLRL + FLRR − cWX · v2
CoG)

−(cRL + cRR) − (FLFL + FLFR) · cos δW

+(cFL + cFR) · [sin δW · (δW − lF · ˆ̇ψ

vCoG
) − cos δW ]

}

.

To guarantee the stability of the observer, the time behavior of the eigen-

value λ1 is simulated for the clothoide of high dynamics. Fig. 5.29 shows

that the eigenvalue remains negative for the complete test drive. This result

was confirmed by other test drives and shows that the observer is stable.

Therefore, the observer gain (5.56) can be applied.

Fig. 5.30 compares the observer results of the observer design with the

original model and the restructured model. The results for both observers

are almost identical. Both observers approximate the measured reference

very well. That means that the observer design with the restructured state

space model is justifiable. Therefore, the observer design by means of a

quality function can also be carried out in Section 5.4.5.
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Figure 5.30: Comparison of the linearization observer for the original

model and for the restructured two track model by means of a clothoide of

high dynamics

5.4.5 Observer Design with Adaptation of a Quality

Function for the Restructured Model

Observer Concept

In case that a system contains only linear non-measurable variables the

observer by means of adaptation of a quality function (in the following

called ”AQF-observer”) can be designed, [70]. The system equations are

ẋ = A(y, u) · x + b(y, u) ,
y = C x .

(5.58)

The dimension of the state vector is n. The system has p input quanti-

ties and q output quantities. Using a non-linear observer with the state

equations

˙̂x = A(y, u) · x̂ + b(y, u) + L(y, u) · (y − ŷ) ,
ŷ = C x̂

(5.59)
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the estimation error differential equation is

˙̃x =
[
A(y, u) − L(y, u)C

]
x̃ . (5.60)

The design of the AQF-observer differs fundamentally from the linearizati-

on observers presented in Sections 5.4.2 and 5.4.4, which were designed by

pole placement. The AQF-observer adapts the non-linear estimation error

x̃ according to Eqn. (5.60) to the estimation error of a linear reference mo-

del. The error x̃ must converge to the error equilibrium point x̃R. Thereby,

the area of convergence around x̃R must be as large as possible.

The system (5.58) can be commonly described by

ẋ = f(x, u)

y = C x .

Linearizing the system around an equilibrium point xR, uR yields a linear

reference model. The equilibrium point is characterized by

ẋ
∣
∣
xR, uR

= 0 .

The linear reference model is given by

ẋ lin = A0 · x lin + B0 · u lin

y
lin

= C · x lin (5.61)

with

A0
(n,n)

=
∂f(x, u)

∂x

∣
∣
∣
∣
x=xR, u=uR

, B0
(n,p)

=
∂f(x, u)

∂u

∣
∣
∣
∣
x=xR, u=uR

,

x lin = x − xR, ẋ lin = ẋ − ẋR = ẋ,

u lin = u − uR and y
lin

= y − y
R

.

For this system, a linear observer is designed:

˙̂x lin = A0 x̂ lin + B0 u lin + L lin · (ylin
− ŷ

lin
)

ŷ
lin

= C · x̂ lin . (5.62)

The differential equation for the linear estimaton error x̃ lin = x lin − x̂ lin

then reads:

˙̃x lin =
(
A0 − L linC

)
· x̃ lin (5.63)
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with constant matrices A0, L lin and C. The coefficients of the linear L lin

are determined by pole placement:

det(sIn − A0 + L lin C)
!
=

n∏

ν=1

(s − λν) . (5.64)

The poles are placed in the open left half plane. Then, the error ˜xlin vanishes

after sufficient time.

To adapt the dynamics of the non-linear estimation error (5.60) to the one

of the linear reference system according to Eqn. (5.63), a stability criterion

of the non-linear system theory is employed. The so called Ljapunov-

method is explained in detail in [23] or [49]. The general idea is only briefly

described here. After introducing the Ljapunov-method, it is applied to

the estimation error x̃.

Ljapunov-Method

The Ljapunov-method can be applied to non-linear systems of the form

ẋ = f(x, u)

to analyze the stability of the equilibrium point xR = 0. Note that this

equilibrium point xR = 0 is different from the one of the linear reference

model specified by Eqn. (5.61). The equilibrium point is called globally

asymptotically stable if the state vector x(t) converges to the equilibrium

point xR = 0 from any arbitrary initial point x0 (see Fig. 5.31). If this is

true only for a certain area around the equilibrium point the stability is

called locally asymptotical. The Ljapunov-method provides a criterion to

assess the characteristics of the stability:

Theorem 5.7

The equilibrium point xR = 0 of a dynamic system ẋ = f(x, u) is globally

asymptotically stable, if a continuous function V (x) exists which holds the

conditions

(1) V (x) > 0 ∀ x 6= 0 ,

(2) V (x) = 0 for x = 0 ,

(3) V̇ (x) < 0 ∀ x 6= 0 and

(4) ‖x‖ → ∞ ⇒ V (x) → ∞ .

V (x) is said to be positive definite, if it fulfills condition (1) and (2). V̇ (x)

is said to be negative definite, if condition (3) is fulfilled. ⋄
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Figure 5.31: Quadratic, two-dimensional Ljapunov-function V(x)

This idea can be expanded to matrices. If function V (x) has the special

form

V (x) = xT · PL · x ,

then matrix PL is positive definite, in case V (x) is positive definite. The

definition for a negative definite matrix PL is accordingly.

Adaptation of the Non-linear to the Linear Error Differential

Equation

To adapt the dynamics of the non-linear estimation error (5.60) to the

linear reference model (5.61) an appropriate Ljapunov-function for the
linear estimation error x̃ lin is defined. It is called ideal Ljapunov-function

and can be written as

Vlin = x̃T
linPL x̃ lin , (5.65)

with

PL =

n∑

i=1

P̃L,ii w̄i w
T
i .

The wi are left-eigenvectors of the observer dynamic matrix (A0 − L lin C)

and w̄i is the complex conjugate of wi. The coefficients P̃L,ii are positive
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weighting functions which can be set arbitrarily. Ideal Ljapunov-functions

are positive definite for all x, [23].

The time derivative of the Ljapunov-function is

V̇lin = −x̃T
linRL,linx̃lin , (5.66)

with

RL,lin =
[
CTLT

lin − AT
0

]
PL + PL

[
LlinC − A0

]
. (5.67)

V̇lin is negative definite and holds condition (3) in Theorem 5.7, if RL,lin

is positive definite. According to [23] RL,lin is positive definite, if all ei-

genvalues λi, i = 1, ..., n of the dynamic matrix (A0 − Llin · C) are in the

open left half plane. As the design of the observer gain (5.64) fulfills this

condition, V̇lin decreases exponentially and the linear error x̃ lin converges

against x̃ lin,R = 0.

The ideal Ljapunov-function is set up for the non-linear estimation error
x̃ as well:

V = x̃TPL x̃ ⇒ V̇ = −x̃TRL x̃ , (5.68)

with

RL =
[
CTL(y, u)T − A(y, u)T

]
PL + PL

[
L(y, u)C − A(y, u)

]
. (5.69)

The design of the linear observer according to Eqn. (5.64) makes the

estimation error x̃lin decrease fast. Therefore, V̇lin also decreases quickly

(Fig. 5.31). In order to adapt the dynamics of the non-linear estimation

error x̃ to the linear error x̃lin, V̇ must be adapted to V̇lin by minimizing

the norm

NRL
=

∥
∥RL,lin − RL

∥
∥ , (5.70)

with appropriate choice of the observer matrix L(y, u) in Eqn. (5.69). The

norm is the geometric sum of the deviations between the elements of matrix

RL,lin =
(

r
(lin)
L,ij

)

and those of RL = (rL,ij):

NRL
=

√
√
√
√

n∑

i,j=1

(r
(lin)
L,ij − rL,ij)

2
.

Using Eqn. (5.69) yields:

RL,lin − RL = RL,lin − CTL(y, u)TPL + A(y, u)TPL

−PL L(y, u) C + PL A(y, u). (5.71)
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Isolating L in Eqn. (5.71) requires an extension of the commonly used

matrix operations. The underlying theory shall not be explained in detail

here. It can for instance be found in [70].

Observer Design for the Restructured Model

Starting point for the observer design is the underlying restructured mo-

del described by Eqns. (5.58). For this system, the observer differential

equation is given by

˙̂x = A(ψ̇, u) · x̂ + b(u) + L(ψ̇, u) · (ψ̇ − ˆ̇ψ) , (5.72)

the error differential equation is

˙̃x =
[

A(ψ̇, u) − L(ψ̇, u) C
]
x̃ =

[
a11(ψ̇, u) a12(u) − l1(ψ̇, u)

a21(u) a22(u) − l2(ψ̇, u)

]

·x̃. (5.73)

For one equilibrium point of the system, where

ẋ
∣
∣
x=xR,u=uR

= 0 (5.74)

is fulfilled, the individual longitudinal wheel forces FLijR
are set to zero

and δWR
as well as vCoGR

are chosen arbitrarily. For δWR
= 1◦ and vCoGR

=

10m/s the equilibrium point can be calculated with Eqn. (5.72)

xR =

[
βR

ψ̇R

]

=

[
0, 2374◦

3, 536
◦

s

]

.

Linearizing the non-linear model around the calculated equilibrium point

yields the linear reference model according to Eqn. (5.61). For the linear

reference model, a Luenberger-Observer can be designed. Its observer

gain Llin is determined by pole placement. The observer poles are chosen

left of the poles of the stable linear reference model. As the poles of the

reference model are λ1 = −14, 30 and λ2 = −21, 76, the poles of the ob-

server are fixed to λB1
= −20 and λB2

= −120. The free coefficients P̃L,ii

of the ideal Ljapunov-function (5.65) are chosen P̃L,11 = 2 and P̃L,22 = 1.

Finally, the observer gain of the non-linear system can be calculated:

L(ψ̇, u) =

[
109, 9
117, 4

]

+

[
1, 404 0, 3309 1 0

−0, 1038 1, 033 0 1

]

·







a11(ψ̇, u)

a21(u)

a12(u)

a22(u)







. (5.75)

The elements a11, a12, a21 and a22 are given in Appendix A.2 by Eqns.

(A.10) - (A.13).
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Figure 5.32: Comparison of linearization observer and observer with ad-

aptation of a quality function (AQF) (test drive: clothoide of high dyna-

mics)

Validation

Knowing the elements of the observer gain, the observer is designed and

validated with three representative test drives. Fig. 5.32 compares the li-

nearization observer and the observer with adaptation of a quality function

(AQF). Both observers base on the restructured non-linear two track mo-

del. The yaw rate is the only measured output variable of this system.

Both observers are capable to adapt the model to the measured yaw rate.

The initial VBSSA values of the observers were chosen different from the

process. After t = 0.3s, both observers converge against the measured re-

ference. Between t = 3s and t = 3.5s and between t = 6s and t = 6.5s the

AQF-observer is slightly more accurate than the linearization observer. To

assess the quality of both observers, the average error over N measurement

values

∆β =
1

N

N∑

i=1

√

(β̂(ti) − β(ti))2 (5.76)

is calculated. For the AQF-observer, the error is ∆β = 0, 588◦, for the li-

nearization observer it is slightly larger: ∆β = 0, 667◦. The computational
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Figure 5.33: Comparison of linearization observer and observer with ad-

aptation of a quality function (AQF) (test drive: transient circle)

complexity of the observers shall be compared as well. On an Athlon XP

2,4GHz personal computer with 512 MB RAM, the linearization obser-

ver takes TSim,L = 43, 7ms to simulate one second of a test drive. The

AQF-observer is a little bit slower and takes TSim,AQF = 49, 7ms. The

AQF-observer is a little bit more accurate, but on the other hand a little

bit slower. Therefore, the observers are tested with two more test drives.

Fig. 5.33 shows a test drive, where the driver drives straightforward and

enters a curve afterwards. By increasing the steering angle, the curve radi-

us gets smaller. That means, Fig. 5.33 describes a transient circle. Again

both observers follow the measured reference very well. The average error

(5.76) is ∆β = 0, 603◦ for the AQF- and ∆β = 0, 652◦ for the linearization

observer.

The last test drive employed is a slalom drive shown in Fig. 5.34. Both

observers follow the reference well and are almost equal. The linearization

observer (∆β = 0, 123◦) is insignificantly more accurate than the AQF-

observer (∆β = 0, 126◦).
It is hard to decide which of the observers is superior. The approximation

quality and the computational complexity are almost equal, although the

observer design strategies are completely different. Nevertheless, both ob-

servers are capable to estimate the vehicle body side slip angle up to the
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stability limit of the vehicle.
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Figure 5.34: Comparison of linearization observer and observer with ad-

aptation of a quality function (AQF) (test drive: slalom)

5.4.6 Comparison of the Observer Approaches

The goal of observer design in Sections 5.4.2 - 5.4.5 was the model based

determination of the vehicle body side slip angle. The easiest way would be

to apply a linear observer. For accident reconstruction purposes, though,

the VBSSA shall be described up to the stability limit. Model validation

of the linear single track model shows that the linear model and therefore

also a linear observer is not sufficiently accurate to fulfill this requirement.

Therefore, only non-linear observers were analyzed. Without changing the

structure of the adaptive non-linear two track model from Section 3.3.7,

only a linearization observer or an extended Luenberger-observer can

be applied. The latter one was not presented in this thesis. The observer

design is very complex. The results are not as good as those presented in

this thesis and the computational complexity is large. The theory of the

extended Luenberger-observer can be found in [6] or [81]. For highly

dynamical drive situations, it provides good results, if the yaw rate is the

only measured output. Otherwise, model inaccuracies for velocity calcula-

tion cause errors.
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As the form of the non-linearity plays an important role for observer de-

sign, the adaptive non-linear two track model was restructured, so that the

influence of the side slip angle is linear. Additionally, the model inaccura-

cy concerning the velocity must be eliminated by considering the modeled

velocity as a system input. Then, a variety of other observers can be desi-

gned. One group of observers was not presented in this thesis: observers in

canonical form. Here, a high gain observer, [5] and a normal form observer ,

[42] were analyzed. For both observers, the restructured vehicle model is

transformed into a canonical form. Afterwards, an observer is designed in

canonical coordinates and transformed back to initial coordinates at the

end. Both the high gain and the normal form observer are not as accurate

as the presented observers and tend to become unstable in certain driving

situations.

The linearization observer for the restructured model and the observer with
adaptation of a quality function (AQF-observer) both provide very accu-

rate results. The linearization observer is designed with pole placement,

whereas the AQF-observer adapts the dynamics of the non-linear estima-

tion error to a linear reference model. The computational complexity and

the accuracy of these observers is almost equal.

The presented vehicle body side slip angle observers were validated with

a variety of test drives. For the test drives conducted the VBSSA can be

approximated very accurately up to the stability limit with the observers

presented in this thesis.

5.4.7 Extended Kalman-Bucy-Filter

In Section 5.4.2 the linearization observer was designed for one and two

measured output signals. For normal test drives both observers show good

results. In these cases, it is certainly better to use all available output si-

gnals. For highly dynamical driving situations, however, it is advantageous

to use the yaw rate signal as the only measurable output (see Fig. 5.26).

In this section, an extended Kalman-Bucy-Filter (EKBF) is designed, to

achieve both of these properties without the necessity to restructure the

model and to design a new observer. The situation dependent choice of the

filter’s noise covariance matrices allows to determine appropriate weights

for the vehicle model or the measured output signals. The idea is to detect

drive situations, where the vehicle speed calculated by the model is unre-

liable due to model inaccuracies. In these drive situations, the respective

element of the covariance matrix must be increased so that the filter does

not consider it any more.

After describing the time-discrete Kalman-Filter, the time-continuous
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Kalman-Bucy-Filter (KBF) is described. Both filters can be designed for

linear and time-varying processes. The extended Kalman-Bucy-Filter is

an extension to non-linear processes, where the system is linearized around

the currently estimated state.

The derivation of the filter equations is lengthy and complex. For the linear

filters it can be found for instance in [7], [8].

Kalman-Filter

In the following, the Kalman-Filter and its working principle will be de-

scribed. A linear and time-discrete system with the state vector xk, the

output vector y
k

which is disturbed by the vectorial noise processes vk and

wk reads

xk+1 = Φ(Ts) · xk + H · uk + wk , (5.77)

y
k

= C · xk + vk . (5.78)

The matrix Φ(Ts) is the time-discrete dynamic matrix derived from the

continuous dynamic matrix A by

Φ(Ts) = L−1{(s · I − A)−1}
∣
∣
t=Ts

, (5.79)

where L−1{·} is the inverse Laplace-Transform of the term in brackets.

Respectively, the time-discrete output matrix H can be calculated, [22]:

H = A−1 · (Φ(Ts) − I) · B . (5.80)

The vectorial noise processes thereby have got the following characteristics:

E{wk} = E{vk} = 0 ∀ k and E{wi · vT
j } = 0 ∀ i, j . (5.81)

E{·} describes the expectation of a random variable, i.e. the random pro-

cesses vk and wk have zero mean and are uncorrelated. The symmetric and

positive definite covariance matrices are

E{wi · wT
j } = Q

i
· δij and (5.82)

E{vi · vT
j } = Ri · δij . (5.83)

δij is the Kronecker-Symbol:

δij =

{
1 , for i = j
0 , else

.
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The Kalman-Filter calculates an estimation value x̂k for the state vector

xk by using the output vector y
k

and the input vector uk. The estimation

error ek = xk − x̂k has minimum variance.

The Kalman-Filter for linear and time-discrete systems with the charac-

teristics described by Eqns. (5.77) - (5.83) contains the following equations

which are divided in a prediction and in a filter part:

Prediction equations:

x̂k+1|k = Φ(Ts) · x̂k|k + H · uk , (5.84)

P k+1|k = Φ(Ts) · P k|k · ΦT (Ts) + Q
k

. (5.85)

Filter equations:

Kk+1 = P k+1|k · CT · (C · P k+1|k · CT + Rk+1)
−1 , (5.86)

x̂k+1|k+1 = x̂k+1|k + Kk+1 · (yk+1
− C · x̂k+1|k) , (5.87)

P k+1|k+1 = (I − Kk+1 · C) · P k+1|k , (5.88)

with the initial values

x̂0|0 = x(t0) , (5.89)

P 0|0 = P (t0) . (5.90)

In Eqns. (5.84) - (5.88) the matrix P is called the error covariance matrix,

K the Kalman matrix gain and I the identity matrix.

The filter works recursively: before the (k + 1)-th measurement value y
k+1

is available, in the prediction step the estimates for the cycle k + 1 are

calculated based on the results of cycle k. This is described by the notation

x̂k+1|k and P k+1|k. After the new measurement value y
k+1

is available, the

results are corrected in the filter step. Accordingly, the notation is x̂k+1|k+1

and P k+1|k+1.

Due to its dependence on Q
k

the covariance matrix of the prediction step

P k+1|k is proportional to the system noise wk. The larger the variance of

wk becomes, the larger the covariance matrix and with it the Kalman

matrix gain Kk+1 gets. Eqn. (5.87) shows that the filter then ”trusts”

the measurements y
k+1

more and the predicted state variables x̂k+1|k less,

respectively. The Kalman matrix gain Kk+1 is proportional to R−1
k+1 as

well. If the output noise vk+1 has a high variance, the measurement weight

is reduced. Furthermore, the variance of the filter step is always smaller
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than the one of the prediction step

P k+1|k+1 < P k+1|k , (5.91)

because the filter step contains one more measurement value.

For the state estimation of the linear system the Kalman-Filter is an

optimal minimum variance estimation algorithm. The coefficients of the

covariance matrices Q and R are generally unknown, however. They must

be chosen appropriately to achieve good estimation results. The elements

of these matrices are weights for the model or the measurement values. If

these coefficients are chosen arbitrarily, it cannot be guaranteed any more

that the estimation is optimal concerning a minimum variance. This is

the case only for the exact variances of the vectorial random processes.

However, this pragmatic approach yields good results.

After describing the principle idea of the Kalman-Filter, the equations for

the Kalman-Bucy-Filter and for the extended Kalman-Bucy-Filter are

set up.

Kalman-Bucy Filter (KBF)

A time-continuous, linear system disturbed by the vectorial noise processes

v(t) and w(t) reads

ẋ(t) = A · x(t) + B · u(t) + w(t) , (5.92)

y(t) = C · x(t) + v(t) . (5.93)

As for the time-discrete Kalman-Filter, the following conditions hold:

E{w(t)} = E{v(t)} = 0 ∀ t , E{w(ti) · vT (tj)} = 0 ∀ ti, tj (5.94)

E{w(ti) · wT (tj)} = Q(ti) · δij , (5.95)

E{v(ti) · vT (tj)} = R(ti) · δij . (5.96)

For this system, a Kalman-Bucy-Filter is used. The theory of the KBF

is described more detailed for instance in [7], [8], [67]. The filter equations

are

K(t) = P (t) · CT · R−1(t) , (5.97)

˙̂x(t) = A · x̂(t) + B · u(t) + K(t) ·
[
y(t) − C · x̂(t)

]
, (5.98)

Ṗ (t) = A · P (t) + P (t) · AT − P (t) · CT · R−1(t) · C · P + Q(t).(5.99)
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Eqn. (5.98) describes the structure of prediction by means of the linear

state differential equation and correction by weighting the difference bet-

ween measured system output y(t) and estimated system output C · x̂(t).
The recursive equation for the error covariance matrix P is replaced by

a matrix Ricatti differential equation (5.99). The Kalman-Bucy-Filter

has the same characteristics like the Kalman-Filter. Especially the Kal-

man matrix gain (5.97) is still proportional to the system noise covarian-

ce matrix Q(t) and to the inverse measurement noise covariance matrix

R−1(t).

Extended Kalman-Bucy Filter (EKBF)

The underlying process of the employed filters is non-linear. The vehic-

le dynamics behavior can only be sufficiently described by means of the

adaptive non-linear two track model (Section 3.3.7). Consequently, a non-
linear Kalman-Bucy-Filter must be employed known as the extended
Kalman-Bucy-Filter.

The time-continuous non-linear system

ẋ(t) = f(x(t), u(t)) + w(t) , (5.100)

y(t) = h(x(t)) + v(t) (5.101)

has the noise characteristics described by Eqns. (5.94) to (5.96). The EKBF

designed for this system linearizes the system around the currently estima-

ted state vector x̂(t). The equations for the EKBF are similar to those of

the KBF:

K(t) = P (t) · ĈT
(t) · R−1(t) , (5.102)

˙̂x(t) = f (x̂(t), u(t)) + K(t) ·
[
y(t) − h (x̂(t))

]
, (5.103)

Ṗ (t) = Â(t) · P (t) + P (t) · ÂT
(t)

−P (t) · ĈT
(t) · R−1(t) · Ĉ(t) · P (t) + Q(t) , (5.104)

with

Â(t) =
∂f (x, u)

∂x

∣
∣
∣
∣
x=x̂(t),u=u(t)

and Ĉ(t) =
∂h (x)

∂x

∣
∣
∣
∣
x(t)=x̂(t)

. (5.105)

Instead of Eqn. (5.98), now the non-linear Eqn. (5.103) is employed for the

prediction. In the filter step, the non-linear output Eqn. (5.101) is used. In
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a last step, the matrices A and C in Eqns. (5.97) and (5.99) are replaced by

the Jacobian-matrices (5.105). The Jacobians are calculated in every

simulation step for the currently estimated state x̂(t). As they are time-

varying, the computational complexity grows significantly.

Results

The Kalman-Filter and the Kalman-Bucy-Filter cannot be employ-

ed for VBSSA estimation. The linearization errors caused by linearizing

around a fix equilibrium point are too large. The linear filters were only

presented in this section to explain the principle of state estimation. To ob-

tain sufficient accuracy, the linearization must occur in every calculation

step. For the EKBF, the Jacobian-matrix Â must be calculated once and

afterwards only x̂(t) and u(t) must be inserted in every calculation step. As

the output equation (3.67) is already linear, the time-varying calculation

of Ĉ is not required. The mathematical terms for Eqns. (5.103) - (5.105)

were calculated with the software Maple. Due to their complexity, they are

not given in this context.

To consider that the first differential equation of the adaptive non-linear

two track model does not describe the driving behavior accurately enough

(Fig. 5.26), the system and the observers had to be redesigned in Sec-

tions 5.4.2 and 5.4.3. The structure of the EKBF allows to consider the

measurement or the model value more or less according to the choice of

the elements of the noise covariance matrices Q and R. By choosing these

matrices for instance

Q(t) =





0.1 0 0

0 4 0

0 0 10



 and

R(t) =

(
1000 0

0 0.01

)

,

the element (1, 1) of matrix Q is very much smaller than the respective

element of R. As the element (1, 1) influences the weight of the velocity,

this means that the system relies almost completely on the vehicle model
velocity and does not consider the measurement any more. Then the esti-

mated state is not adapted to the measured velocity any more. Therefore,

the model inaccuracy can be considered without restructuring the system.

The appropriate choice of Q and R is sufficient. Fig. 5.35 compares the
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Figure 5.35: Comparison of estimation results of the non-linear state

space observers and the extended Kalman-Bucy-Filter

estimation results of the EKBF with those of the linearization observer

designed in Section 5.4.2 and with the AQF-observer (Section 5.4.5). With

the specified noise covariance matrices, for the test drives conducted the

accuracy of the estimation can even be improved by using the EKBF.

A second estimation result with the same choice for Q and R can be seen

in Fig. 5.36. Again, the EKBF estimates the vehicle body side slip angle

very accurately. The error caused by the deviation between modeled and

measured velocity shown in the top plot of Fig. 5.36 is eliminated by the

appropriate choice of the upper left elements in matrix Q and R.

The EKBF is even more complex than the non-linear observers. The com-

putation time for one second is approximately three times as large as

the one for the AQF- and for the linearization observer. On an Athlon

2.4GHz personal computer with 512 MBytes RAM, one second of the mo-

del was simulated with the observers and with the EKBF. The EKBF takes

TSim = 0.11s for the calculation whereas the non-linear observers only take

approximately TSim = 0.04−0.05s. On the other hand, the big advantage of

the extended Kalman-Bucy-Filter is its flexibility. By changing the ele-

ments of the covariance matrices, different model effects can be considered

or excluded according to the current drive situation.
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Figure 5.36: Estimation results of the extended Kalman-Bucy-Filter

(test drive: transient circle)

5.4.8 Complete Vehicle Motion Reconstruction

A main goal of accident reconstruction is the complete motion reproduc-

tion. In addition to the center of gravity location in an inertial coordinate

system the heading of the vehicle must be considered. The course angle

γ = ψ + β (5.106)

describes a vehicle’s direction of traveling in an inertial coordinate system.

That means, in addition to the yaw angle ψ the vehicle body side slip angle

β must be known. The state space observers and the extended Kalman-

Bucy-Filter presented in Section 5.4 provide accurate VBSSA estimation

values. Therefore, the vehicle motion can be completely reproduced.

Fig. 5.37 illustrates the center of gravity location including the heading.

Reconstruction experts recognize that after entering the curve, the slip

angle β constantly grows. This points to an unstable driving situation.

Additionally, the distances between successive center of gravity locations

decrease indicating deceleration of the vehicle. The vehicle body side slip

angle of this test drive can be seen in the middle plot of Fig. 5.36.
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Figure 5.37: Complete vehicle motion of a transient circle drive

Fusing the fuzzy based trajectory reconstruction of Section 5.3 with vehicle

body side slip angle estimation provides complete motion reproduction for

accident reconstruction experts.

After knowing the center of gravity location and the vehicle heading, the

vehicle motion can be ”backtracked” after an accident. Starting from an

initial position (xIn(t0), yIn(t0))
T with a certain course angle γ(t0), the re-

corded trajectory and heading is calculated backward. The initial position

can either be the position of vehicle standstill or any other point on the

trajectory, for example the location of a crash with another car. Then, if

both vehicles are equipped with an EDR, the location of the crash can be

used as a joint origin for the later reconstruction process.

5.5 Mass Estimation

Variations of the vehicle mass influence for instance the accuracy of the

vehicle models (see Chapter 3) and also the braking distance. Knowing the

vehicle mass allows to draw conclusions whether a vehicle was overloaded

or not.

The mass can be determined by evaluating the longitudinal force balance

of a vehicle,see Fig. 5.38. The longitudinal drive or brake forces accelerate
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or decelerate the vehicle depending on its mass:

m̂CoG︸ ︷︷ ︸
1
Θ

· aX,C
︸︷︷︸

y

= FXFL + FXFR + FXRL + FXRR − FR − FWX︸ ︷︷ ︸
u

. (5.107)

The rolling resistance force FR can be approximated by Eqn. (3.52), the

wind force with the commonly known quadratic approximation of Eqn.

(3.53). The longitudinal forces FXij are determined from a drive and brake

model or they are measured like here. The longitudinal acceleration aX,C

is a measured signal.

The sum of the longitudinal forces is the input u into a recursive least squa-

res (RLS-) estimator. For detailed information on the RLS-estimator see

for instance [56]. The acceleration is the estimator output y. The vehicle

mass is the inverse estimation parameter 1
Θ .

The recursive least squares estimator calculates a new estimation value

Θ(k) by correcting a previously estimated parameter Θ(k − 1). This ensu-

res constant calculation time, in contrast to the ”standard” least squares

method, where the computation time grows with the number of acquired

samples.

Some parameters are changing quickly over time. In this case, a forgetting

factor λF = (0, 1] is introduced which exponentially weights the history of

the data set, [40]: λF = 1 considers all samples whereas small values for λF

only consider the last acquired samples for calculation. That means, the

smaller λF , the faster the algorithm adapts to parameter changes. On the

other hand, the sensitivity to noise increases in this case.

As the vehicle mass is a parameter which is only changing little over time,

a forgetting factor λF = 1 is required. A variety of systematic errors are

fudging Eqn. (5.107). The most significant ones are gravitational effects

caused by road slopes or pitching and rolling, for instance Eqn. (5.2). Se-

condly, influences of lateral forces affect the estimation accuracy. Therefore,

a situation based long time estimation must be employed (Fig. 5.38). The

mass estimation algorithm only starts, if the vehicle is driving straightfor-

ward. Like in Section 5.2 this is ensured by Eqn. (5.6).

Additionally, the car must be in a calm driving situation. Only then, gravi-

tational influences due to pitching or other transient effects can be neglec-

ted. A calm driving situation is detected, if the average wheel acceleration

is small:

| ˙̄ωij| =
1

4

∑

ij

|ω̇Rij| < 1m/s2 . (5.108)

Gravitational errors caused by road slope are averaged, if the estimation

is sufficiently long. Additionally, the results of several estimations carried
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out according to the procedure displayed in Fig. 5.38 should be averaged

as well to increase the reliability of the estimation. That means that mass

estimation is carried out continuously and not only in the pre-accident

phase. The results of situation dependent mass estimation have to be stored

in a separate memory which is not overwritten by new measurements.

With the presented algorithm, very good mass estimation results can be

achieved. Fig. 5.39 shows a three minute record on a test course with

little steering actions. The velocity of the test drive was about 35km/h,

the accelerations were little and the wheel accelerations and the measured

acceleration of the sensor are almost equal. This indicates a very reliable

driving situation. The estimated vehicle mass ranges in a band of ±50kg
around the real vehicle mass mCoG = 1257kg. This is a maximum relative

error of ±4%.

5.6 ABS-cycle Detection

The estimation of the friction coefficient (see Section 5.7) is only reasonable,

if the maximum friction is used, for example when braking. In order to be

able to assess the type of the road surface (dry, icy, snow-covered and so on)

the state ”maximum braking” must be recognized. For vehicles equipped

with ABS, a panic braking situation causes ABS control cycles. That is, if

an ABS control cycle occurs, then usually the maximum friction is used.

On the other hand, the operativeness of ABS shall be assessed in general

to see if malfunction of the ABS system has influenced the investigated

accident.

To solve these two questions, a three step algorithm will be presented which

is capable to detect the characteristic ABS control cycle pattern.

5.6.1 Basic Approach of ABS-cycle Detection

An ABS-cycle pattern can be seen in Fig. 5.40. Fig. 5.40(a) shows a wheel

speed signal of a real test run with a test car. The ABS-cycles are marked.

Fig. 5.40(b) shows a cut-out of the wheel acceleration signal. It is the

time-derivation of the first ABS-cycle of Fig. 5.40(a). The method must

be capable to detect these patterns. The shape of the pattern is hardly

changing. However, the amplitude and time duration of the pattern varies.

Fig. 5.41 shows, that the algorithm of ABS-cycle detection contains three

steps: after preprocessing, where for instance an actual braking situation

is detected (step 1), a probable ABS-cycle is marked with a prediction

approach (step 2, Section 5.6.2). To increase reliability and robustness of
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Figure 5.41: Three steps of ABS-cycle detection

the method, the result of the prediction is cross-checked with the tri-state

correlation afterwards (step 3, Section 5.6.3).

5.6.2 Prediction

The prediction method employs the wheel speed measurements, in order to

detect an ABS-cycle. Detecting the ABS-activity, the past two measure-

ments of the wheel speed are utilized to extrapolate linearly a value of the

current wheel speed (see Fig. 5.42). vR denotes the measured wheel speed

signal, whereas vR,est is calculated by means of

vR,est (n) = 2 · vR (n − 1) − vR (n − 2) . (5.109)

The estimated value vR,est (n) is compared with the currently measured

value vR (n). The difference ∆vP between these two values is almost zero

for normal signal behavior. An ABS-cycle, however, causes a prediction

difference ∆vP , which exceeds specific limits (for an Opel Vita, see Eqn.
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vR vR (n − 2)

vR (n − 1)

vR,est (n)

vR (n)
∆vP

t

Figure 5.42: Sketch of extrapolated wheel speed signal

(5.110)) for the beginning and end of the ABS-cycle:

∆vP = vR,est − vR ≥ 0.08 . (5.110)

This approach detects ABS-cycles with a high probability. However, a si-

gnal drop out caused by sensor errors can be recognized wrongly as an

ABS-cycle. Therefore, the wheel speed signals are preprocessed and the

results of the detection are evaluated by another method, the so called

”tri-state correlation”.

5.6.3 Tri-state Correlation

The input signals into the ABS-cycle detection system are not zero-mean.

Thus, the conventional correlation is replaced by a ”tri-state correlation”.

In Eqn. (5.111) the calculation of the tri-state correlation of two signals x
and y is presented:

r̂xy (k) =
1

N

N−1−k∑

n=0

T (x∗ (n)) · T (y (n + k)) . (5.111)

The difference of the tri-state correlation to a polarity correlation, [43],

[47], is an additional state ”0”. The states of the signals for the tri-state

correlation are +1, 0, −1. The function y(n + k) in Eqn. (5.111) is a test

function shown in Fig. 5.43(a), whereas x∗(n) is a ”cut-out” of the wheel

acceleration signal v̇ displayed in Fig. 5.40(b). T (·) is a threshold function

and maps the input signals to signals with the only values 0 and ±1 accor-

ding to thresholds specified in Eqn. (5.112). The thresholds are, however,

depending on the ABS system installed in the car.
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Figure 5.43: Signals of the tri-state correlation method

T (x) =







1 , if x ≥ 2

0 , if −10 < x < 2

−1 , if −10 ≥ x
(5.112)

The tri-state correlation can be carried out using the signal created by the

threshold function. In Fig. 5.43(b) the result of a tri-state correlation of the

test signal with an ABS acceleration pattern is sketched. This pattern is ty-

pical due to the structure of the signals. Because of the threshold function,

the test signal possesses the values | − 1| − 1| · · · | − 1|0|0| · · · |0|1|1| · · · |1|.
Applying the threshold function to the wheel acceleration signal yields a

similar structure. Thus, if the test signal shown in Fig. 5.43(a) is ”moving”

over the measured wheel acceleration signal and matches an ABS-cycle,

the structure of the signal shown in Fig. 5.43(b) is gained. The algorithm

identifies this pattern to confirm or reject the probable ABS-cycle gained

from the prediction. Tests show that this method is robust and reliable.

Since the tri-state correlation utilizes a 2-bit input signal, it is more suitable

for microprocessor applications than a ”conventional” correlation. Due to

this advantage and the reliability of this approach, it is used for cross-

checking the result of the prediction.

Fig. 5.44 shows the results of an ABS braking situation on very low µ road

surface. The presented method detects all ABS-cycles above a velocity of

2m/s. The method works well for different road surfaces. However, the

threshold of the prediction method must be adapted to the respective car.
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Figure 5.44: ABS-cycle detection for a very low µ braking maneuver with

an Opel Vita

5.7 Estimation of the Friction Coefficient

In Section 3.1.5 the Burckhardt-method was presented for friction de-

termination. The method approximates the µ(s)-curve with an exponential

approximation equation (Eqn. (3.17)). However, if there is no reliable slip

signal, then the method fails. Additionally, real time processing is proble-

matic with the non-linear Burckhardt-equation.

For accident reconstruction purposes, the maximum friction coefficient is

desirable. Only then a statement about the road surface can be made and

it can be assessed, whether the theoretical friction was utilized completely

or not.

Before an accident occurs, usually full braking maneuvers are carried out.

If the vehicle is equipped with ABS, the system controls the wheel slip in

order to achieve high friction. However, if an old ABS-system is combined

with modern tires, the control goal of the ABS system does not fit the

maximum friction of the tires. When such cases are not considered, the

ABS-cycle detection in Section 5.6 provides a possibility to detect full bra-

king. Applying the RLS friction estimation only in these braking situations

guarantees to estimate the maximum friction µmax with a high probability.

As real time processing is desirable, the friction coefficient is determined

with a RLS algorithm. The underlying model is the torque balance on the
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Figure 5.45: Side view of a wheel with torques and forces for µ-estimation

wheel shown in Fig. 5.45.

The definition of the friction coefficient

µ =
FL

FZ
(5.113)

shows that the longitudinal wheel force FL must be calculated. The verti-

cal wheel force FZ can be efficiently approximated by Eqns. (3.59). Using

Fig. 5.45 the torque balance around the wheel turn axis reads

FL =
JW · ω̇ + TB − TD

rstat
, (5.114)

with JW as the mass moment of inertia of the wheel and TB and TD as

the brake and drive torque at the wheel. With Eqn. (5.113), the in- and

output variables into the RLS-estimation algorithm can be defined:

JW · ω̇ + TB − TD

rstat︸ ︷︷ ︸
y

= µ
︸︷︷︸

Θ

· FZ︸︷︷︸
u

. (5.115)

The friction coefficient is a parameter which can change very quickly, for

example if a car brakes on asphalt initially and ”slides” on ice afterwards.

It is desirable, that the algorithm can ”follow” the parameter change fast

enough. Therefore, a compromise between good ”tracking characteristics”

and noise resistance must be found by influencing the forgetting factor.

Tests with two cars on different road surfaces have shown that the forget-

ting factor λF should be in the range 0.95 ≤ λF ≤ 0.99.

In order to validate the estimation method, various test drives on different

road surfaces were conducted. The top plot of Fig. 5.46(a) shows that in-

itially, the wheel speed signal is extremely large. The wheels were spinning
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Figure 5.46: Test drives for µ-estimation

because the traction control system (TCS) was switched off. After appro-

ximately 11.5 s the car is rolling for 2.5 s before full braking is applied.

The absolute value of the estimated friction coefficient is in the range of

µLFR = 0.15 during ABS-braking and spinning wheels acceleration. This

value corresponds to the real value of the ”low µ test course”. During the

rolling phase, the estimated friction coefficient is approximately 0, indica-

ting that the theoretical friction is not used. The test drive makes clear,

that the road surface can only be assessed during extreme driving situati-

ons.

Fig. 5.46(b) is an acceleration and ABS braking drive on dry asphalt.

The top of the figure shows that the wheels were not spinning during the

acceleration phase, although the TCS was switched off. The maximum

friction was not used as can be seen in the estimated friction coefficient

µLFR ≈ 0.4 − 0.6. During the rolling phase between 7.5 s and 8.5 s the

estimated µLFR is around zero. Only in the ABS-braking phase, the maxi-

mum friction is used and the absolute value of the estimation corresponds

to the theoretical value of µLFR ≈ 1.

For both measurements the forgetting factor is λF = 0.99. Still, the tracking

capabilities of the RLS-algorithm are sufficient.

5.8 Road Gradient Observer

The employed method for road gradient determination is based on a linear

Luenberger-observer, [50]. Instead of the longitudinal acceleration aX ,

it employs the vehicle velocity vCoG and its time derivative.
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Figure 5.47: Sketch of longitudinal forces of an ascending car

Force Balance for Road Gradient Observation

The effect of the lateral dynamics on road gradient estimation is neglected

here. The vehicle body side slip angle is assumed to be zero. This assump-

tion is true for straightforward driving situations. Setting up the force

balance of the forces displayed in Fig. 5.47 yields the nonlinear equation

m · v̇CoG︸ ︷︷ ︸

FA

=
∑

ij

FXij − m · g · sin χroad
︸ ︷︷ ︸

FDH

− cWX · v2
CoG︸ ︷︷ ︸

FWX

. (5.116)

Linearization of Equation (5.116)

To reduce the computational complexity, a linear observer is employed

here, [34]. Therefore, Eqn. (5.116) is linearized. For the linearization, the

following assumptions are made:

• the road gradient angle of public roads is limited to approx. ± 12◦,
[32], therefore: sin χroad ≈ χroad

• the forces
∑

FXij and FWX are merged into a resultant force Fres =
∑

FXij−FWX . This is advantageous because the nonlinear term FWX

becomes part of the input. The remaining state space model therefore

is linear.

As a consequence of these assumptions Eqn. (5.116) is simplified

m · v̇CoG = Fres − m · g · χroad , (5.117)

where the FXij are measured or gained from a brake and drive model. vCoG

results from the fuzzy estimator in Section 5.1.
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Linear State Space Equations

Eqn. (5.117) is now transformed into a state space model. The state vector

x of the linear model contains the velocity vCoG and the road gradient angle

χroad. The input u is the resultant force Fres, the only measured output y
is the velocity vCoG.

x =

[
vCoG

χroad

]

, u =

[
Fres

0

]

. (5.118)

Then, the road gradient model reads

[
v̇CoG

χ̇road

]

︸ ︷︷ ︸

ẋ

=

[
0 −g
0 0

]

︸ ︷︷ ︸

A

[
vCoG

χroad

]

︸ ︷︷ ︸
x

+

[
1
m 0

0 0

]

︸ ︷︷ ︸

B

[
Fres

0

]

︸ ︷︷ ︸
u

, (5.119)

vCoG︸︷︷︸
y

= [1 0]
︸ ︷︷ ︸

C

[
vCoG

χroad

]

︸ ︷︷ ︸
x

. (5.120)

Observer design

The proof of observability for the system (5.119) and (5.120) is trivial.

The linear observability matrix Q
B

according to Eqn. (5.22) is quadratic.

Therefore, it has maximum rank, if its determinant is non-zero:

det
(

Q
B

)

= det

[
1 0

0 −g

]

= −g 6= 0 . (5.121)

The system is observable and a linear observer can be designed.

Since the system order is n = 2, the observer gain matrix L consists

of two elements l1 and l2. In order to calculate these elements, the poles

of the observed system must be placed appropriately. The characteristic

polynomial of the closed-loop system is

det (sI − A + L C) = det

([
s 0

0 s

]

−
[

0 −g
0 0

]

+

[
l1 0

l2 0

])

= s2 + l1 · s − g · l2 . (5.122)

The eigenvalues are denoted as λ1 and λ2 and are chosen according to
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s2 + l1 ·s−g · l2
!
= (s − λ1) (s − λ2) = s2−s · (λ1 + λ2)+λ1 ·λ2. (5.123)

For pole-placement, the coefficients of Eqn. (5.123) are compared. This

yields the elements of the observer gain matrix L:

l1 = −λ1 − λ2 , l2 =
−λ1 · λ2

g
. (5.124)

Next, the eigenvalues λ1 and λ2 are determined. For this, a simulation

model was implemented.

The following strategy for pole placement was employed to achieve suitable

values of λ1 and λ2:

• the real part of the eigenvalues must be negative, otherwise the ob-

server system becomes unstable.

• if the eigenvalues are too far left in the open left half plane, the

observer becomes sensitive to noise

• if the eigenvalues are too close to the imaginary axis, the observer

becomes too slow. It would not be able to follow the driving state of

the vehicle properly (e.g. uphill and downhill driving).

Considering these constraints, and running a variety of simulations, the

eigenvalues were fixed to

λ1 = −2 and

λ2 = −3 .
(5.125)

The height profile of a road calculated on basis of the estimated road

gradient is displayed in Fig. 5.48. The test drive was carried out on a test

course with a defined road gradient. Starting on a flat road, after t = 2.5 s
the car enters an inclined plane with a gradient of 33 % (χroad ≈ 18◦).
The car is moving on this inclined plane for approximately 10 s, returns

to a flat road again and moves downhill at the end. The estimated road

gradient of the first ramp is approximately 30 %. The deviation to the real

road gradient is caused by the linear approximation which is not valid any

more. At the end of the inclined plane the vehicle suddenly returns to a flat

road. The pitch angle during this transition is responsible for the deviation

of the maximum height (≈ 10 %). All in all, even for large road gradients,

the linear observer provides very good results.
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Figure 5.48: Road gradient of a test course with a defined gradient of

33%

5.9 Assessment of the Steering Behavior

In this section the steering behavior of the driver in critical situations shall

be analyzed. Thereby it will be assessed whether the driver reacted ap-

propriately in this situation. The vehicle trajectory is not regarded. The

presented considerations can be regarded as a theoretical example, how

model based approaches can be used for accident assessment. Fig. 5.49

shows the principle structure of the ”assessment unit”. After an accident

has occurred, the recorded data from the EDR is applied to the adaptive

non-linear two track model which estimates the side slip angle (Section

5.4). As the driver reacts very sensitively to increased side slip angles, the

VBSSA is used to control the steering angle here. By exceeding two VBS-

SA thresholds the steering wheel angle is reduced proportionally. The first,

lower, threshold is the so called ”recognition threshold” β1. Here, the driver

recognizes an increased VBSSA. The second threshold is called the ”risk

threshold” β2. Above this limit, the driving situation becomes unstable.

Both thresholds were determined on basis of the discrete stability index

values (see Section 4.1) of several test drives. Exceeding the second thres-

hold, the recorded steering wheel angle δS,meas is reduced by two subtractive

portions
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Figure 5.49: Structure of driver assessment by minimizing the VBSSA

δS = δS,meas − η1 · (β − β1)
︸ ︷︷ ︸

if |β| > β1

− η2 · (β − β2)
︸ ︷︷ ︸

if |β| > β2

. (5.126)

Actually, this simple control strategy can only be applied, if the vehicle

body side slip angle and the steering wheel angle have got positive algebraic

sign. It is assumed that the control law prevents the car from sliding and

that therefore the algebraic sign will always be equal. Otherwise, different

cases for varying algebraic signs of β and δS must be distinguished.

The new steering wheel angle is applied to the model and the updated state

variables, including the estimated VBSSA, are calculated. This assumes

that the adaptive non-linear two track model is capable to describe the

real vehicle behavior to the stability limit. This was shown in Section 3.6.

The updated steering wheel angle δS according to Eqn. (5.126) is applied to

the linear single track model as well. Both the updated yaw rate from the

linear and from the adaptive non-linear model are applied to the discrete

stability index block. Using the yaw gain method it is analyzed, if the

controlled steering angle is capable to stabilize the car. If this is the case,

then the suggested and the measured steering angle can be compared in

order to assess, whether the driver reacted appropriately to the situation

or not.
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Figure 5.50: Effect of steering angle reduction based on side slip angle

minimization

Fig. 5.50 shows the steering angle and the effect of steering control on the

vehicle body side slip angle. Before t ≈ 2.2s, the VBSSA β is below β1.

Therefore, the measured steering angle δS,meas and the controlled steering

angle δS are equal. After exceeding the ”recognition threshold” at t = 2.2s
the increase of the steering angle is reduced by the term η1 ·(β−β1) in Eqn.

(5.126). After t ≈ 3.2s the VBSSA exceeds the ”risk threshold”. Therefore,

the second subtractive term η2 · (β − β2) in Eqn. (5.126) becomes active

and the steering wheel angle is reduced significantly. The VBSSA stops

growing at about t = 3.7s and remains below the risk and later below the

recognition threshold for the rest of the test drive.

Comparing the original test drive represented by DSImeas with the control-

led one (DSIcont) in Fig. 5.51 shows, that both methods detect the critical

situation approximately at the same time around t = 2.1s. The transition

from understeer (area a.) to oversteer (area b.) is about tx = 0.8s earlier

when controlling the steering angle. The critical state is finished after ap-

proximately t = 3.7s whereas it ends for the original test drive at t ≈ 7s.
The bottom of Fig. 5.51 illustrates, that the real vehicle behavior (mode-

led by the adaptive non-linear vehicle model) converges against the linear

reference model indicating that the driving situation is no more critical.

After t = 3.7s, the linear and the non-linear model yaw rate are equal.

This example shows that the critical driving situation can be stabilized

by steering wheel inputs. The deviation between the controlled and the

original steering performance by the driver shows, that the driver should
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Figure 5.51: Stability index and yaw rate after steering intervention of

the model

have reduced the steering angle at the latest at t = 3.5s. With the recorded

steering performance, the driver has not tried to stabilize the car again.

Therefore, the driving situation becomes critical.

5.10 Conclusion

The approaches for the reconstruction of road traffic accidents described in

Chapter 5 provide information to support accident reconstruction experts.

The main goal of accident reconstruction is to gain full knowledge about

the vehicle motion and about influences of driver, environment and vehicle

in the complete time interval around the accident situation.

For vehicle motion reconstruction a fuzzy system is used which processes

the redundant information of the wheel speed sensors, the gyroscope and an

acceleration sensor. The rule base contains knowledge about the reliability

of these sensors in different driving situations. According to the respective

driving situation, the sensors are weighted more or less to increase the ac-

curacy of trajectory reconstruction.

Complete vehicle motion reproduction does not only mean the position

of the center of gravity over time. It means also the vehicle heading, the

direction of the vehicle’s longitudinal axis and its direction of travel. To

get this information, several non-linear state space observers were develo-
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ped on basis of the adaptive non-linear state space model. These observers

estimate the vehicle body side slip angle. In contrast to linear systems,

the structure of a non-linear system significantly influences the different

observer approaches. Therefore, the adaptive non-linear state space model

is restructured. Finally, an extended Kalman-Bucy-Filter was developed

to explicitly consider model inaccuracies by choosing the respective noise

covariance matrices appropriately. The presented non-linear observers and

the extended Kalman-Bucy-Filter are capable to estimate the vehicle

body side slip angle accurately up to the stability limit.

The vehicle mass and the friction coefficient represent the most important

time-varying parameters for accident reconstruction. Both parameters are

gained by RLS-estimation. The vehicle mass can be estimated accurate-

ly only in certain driving situations which are selected by the suggested

algorithm. Among other effects, the vehicle mass influences the model ac-

curacy and the braking distance. The maximum friction coefficient provides

information about the road surface. In hard braking situations, the friction

coefficient can be estimated with a recursive estimator.

In order to detect braking situations with maximum friction with a high

probability, a three step algorithm was described in this chapter in order

to detect ABS-cycles by processing the wheel speed signals. Only when

the friction is completely used, the assessment of the road surface cha-

racteristics is possible. Moreover, this method allows to check the proper

operativeness of ABS in order to exclude a technical defect as an accident

cause.

To gain more knowledge about the environment of the accident scene and

to track a vehicle more accurately, a linear road gradient state space obser-

ver was developed. For public roads the estimation with this linear observer

is sufficiently accurate.

Finally, in a theoretical approach the steering performance of the driver in

a critical driving situation was assessed using the discrete stability index

and by a control strategy to minimize the side slip angle. If the driver per-

formance deviates significantly from the steering suggestions made by the

system, then possibly the driver has not acted or reacted appropriately to

the critical driving situation. However, this theoretical approach does not

consider the vehicle trajectory.

All of the methodologies presented in this chapter help accident reconstruc-

tion experts to reproduce the facts leading to an accident. However, human

knowledge, for example from eye witnesses or about the environment of the

accident scene will still be required. An expert cannot be replaced but be

supported by a model based event data recorder.



6 Test Vehicle and Measurement En-

vironment

In order to validate the vehicle models and algorithms presented in Chap-

ters 3 to 5 a test vehicle was equipped with the necessary equipment. The

institute test car is a rear axle driven Ford Scorpio manufactured in 1987

(see also Appendix D.1). This chapter provides a brief overview of the test

environment in the Ford Scorpio.

6.1 Overview

A model based event data recorder shall be hooked into the existing bus

system of the car and act as a ”listener” recording the data on the bus. The

Ford Scorpio test car initially was not equipped with a CAN bus. Therefore,

a 500 kBit CAN bus and three CAN nodes were installed in the car (see

Fig. 6.1). These three microcontrollers acquire the analog and digital data

from the sensors. Additionally, a CAN steering wheel angle sensor was

integrated, as the steering angle is a key quantity for the employed models.

In order to monitor and record the data on the CAN bus, a laptop with

a PCMCIA CAN card and the CANalyzerTM software was added to the

CAN bus. However, sophisticated calculations cannot be made with the

CANalyzerTM. Therefore, the dSPACE Autobox r© was added to the CAN

bus as well. The Simulink r© models contain the algorithms specified in the

previous chapters. They were developed in the laboratory and downloaded

via LAN to the Autobox r©. The calculated quantities can be monitored

in the car by a laptop and the Control DeskTM Software. As a seventh

CAN node, a dual processor board called ”SAPS-RC” developed at the

Institut für Industrielle Informationstechnik was added. Using the Target

LinkTM Rapid Prototyping Tool, Simulink r© models can be downloaded to

the µC/DSP board via the serial port or a USB port. The dual processor

board represents a data logger as a kind of prototype for the model based

EDR. It is capable to run linear reference models in real-time. With the

data acquisition network shown in Fig. 6.1, most of the validation test

drives were conducted.
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Figure 6.1: Overview over the data acquisition system
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6.2 CAN Bus

The CAN bus installed in the test car has three CAN nodes. Each of them

contains an 8bit Siemens SAB80C515C µController including a Philips

CAN Transceiver PCA82C250. The CAN controller works in CAN 2.0B

Full CAN mode. For performance reasons, CAN 2.0A was implemented in

the software. The system is CAN 2.0B passive. It does not create error

messages when receiving messages with a long identifier.

The CAN nodes acquire the data from the sensors. Analog sensor signals

are 10bit A/D converted. Digital signals such as the edges from the ABS

sensors are acquired with a capture and compare unit.

The bus load was kept low by means of an intelligent CAN-message format.

To reduce the message overhead, several sensor signals were packed into

one message. With this data structure, the bus load was limited to 27%.

It is sufficiently low to avoid long latency times and jitter errors.

6.3 Sensors

By interfering into the ABS control unit, the sinusodial signals from the

four inductive ABS sensors are acquired. An adaptation electronics con-

verts the amplitude and frequency modulated ABS signals to rectangular

signals. The rising edges of the rectangular signal are counted by the CAN

µC units to calculate the rotational equivalent wheel speeds.

For the inertial sensors, a sensor block was mounted close to the center

of gravity of the test car. With a water level, the horizontal orientation of

the sensors can be improved. The sensor block contains three linear acce-

leration sensors for all degrees of freedom. Additionally, the yaw, roll and

pitch rates are measured. For the models, only the yaw rate is required.

The other two angular velocity sensors are used as reference sensors.

The steering wheel angle is a key quantity as it is the input of the linear

single track model as well as the non-linear two track model. Therefore, two

sensors were mounted in the car. The original sensor is a potentiometer.

The other sensor uses the Anisotropic Magneto-Resistive (AMR) effect. It

outputs a CAN signal and can simply be added to the existing CAN. The

sensor can be reset and recalibrated during a test drive. This reduces the

offset significantly.

The wheel torque angle sensor is an exception: it is not installed in serial

production cars. During the development process, its signal is used as a

reference input signal into the non-linear vehicle model. The torque sen-

sor uses eight quartz sheer force sensors which are preloaded between two
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Figure 6.2: Test vehicle with wheel torque sensor

flanges. The sensor consists of two disks. One disk is connected to the hub,

the other one to the rim. That means, a special rim had to be installed

where the sensor is screwed on. The rim had to be cranked in order to

not change the distance of the rear wheels, see Fig. 6.2. The wheel torque

angle sensor grips the electrical wheel torque signal with a slip ring and

outputs an analog ±5V signal which is acquired by the Autobox r©. The

torque signal is very accurate. It is transformed into a longitudinal wheel

force signal and can afterwards be applied to the vehicle model.

6.4 Prototypes for a Model Based Event Da-

ta Recorder

6.4.1 CANalyzerTM

The CANalyzerTM represents the simplest data logger type. It is capa-

ble to record the traffic on the CAN bus via a laptop with a PCMCIA

card. The recorded ASCII file is evaluated in Matlab r©. Furthermore, the

CANalyzerTM was used as a development tool to analyze the traffic on

the CAN bus or to initiate the communication with the prototype board

”SAPS-RC”. Apart from some basic arithmetical operations, the employed

version of the CANalyzerTM software is not capable to run sophisticated

vehicle models.
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6.4.2 Autobox

On the modular Autobox r© complex vehicle models can be implemented.

It therefore represents the model based event data recorder. With the real-

time interface (RTI) the Simulink r© models are translated to C-Code. The

C-Code is downloaded via an Ethernet connection and executed on the

microprocessors in the Autobox r©. The results of the real-time calculations

on the Autobox r© can be monitored with the Control DeskTM Software.

Furthermore, simulation parameters can be changed easily here to incre-

ase the development speed. The models presented in Chapters 3 - 5 were

implemented in the Autobox r©.

6.4.3 SAPS-RC

In a last step, the target hardware ”SAPS-RC” (Signal Analyzer for Pres-

sure Sensor - Real-time CAN-interface) was integrated into the CAN. Ori-

ginally, the board was designed for signal processing on a common-rail test

bench as described in [72]. It is equipped with a microcontroller and a si-

gnal processor. As the board contains all the necessary features for a passive

event data recorder, it was used as a ”prototype” here. The board contains

a 16bit Infineon C167CR µ-Controller with a clock frequency of 25MHz.

The µC is the master and responsible for communication and for the exe-

cution of a main program. The signal processor is a Motorola XC56309

digital signal processor at a clock frequency of 100 MHz. The DSP acts as

the slave. Both microprocessors communicate via a dual port RAM.

The signal processor filters the sensor signals before applying them to the

linear models running on the microcontroller. The models were developed

in Simulink r©. Afterwards, the models were downloaded to the microcon-

troller using the following software tool chain:

• dSPACE Target LinkTM

• dSPACE Target Optimization ModuleTM for the C16x family

• TaskingTM C166/ST10 C-Compiler

On the microprocessor the linear single track model and two methods fpr

detecting critical driving situations according to Chapter 4 are running

successfully and in real-time. The triggering of accidents works properly

with this prototype hardware. However, the non-linear models cannot be

executed in real-time on this hardware platform.
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The amount of electronic control systems in modern vehicles has constantly

grown during the past decade. Interventions by systems like ABS or ESP

support drivers in critical driving situations. However, such systems still

cannot avoid every accident. In case an accident has occurred, brake traces

on the road surface are lacking due to ABS. Furthermore, it is hard to

decide whether the driver or a technical component has failed. Country

road accidents have an increased fatality rate, as these accidents occur at

high speed with vehicle dynamics being often at the limit.

In order to assist accident investigators reconstructing such accidents, this

thesis deals with the detection and reconstruction of road traffic accidents

by means of model based event data recorders (EDR).

The underlying idea is to describe the vehicle motion and dynamics up

to the stability limit by means of a vehicle model. Based on these models,

non-measurable states and parameters can be determined. The linear single

track model turned out to be insufficient for accident reconstruction. The-

refore, an enhanced non-linear two track model was set up by means of the

forces acting on the car. Several parameters of this model are time-varying.

In order to achieve sufficient accuracy, especially the cornering stiffnesses

of the tires have to be adapted. This adaptive non-linear two track model

was then validated. It is capable to describe the vehicle dynamics up to

the stability limit of the car.

The principle of a model based event data recorder is to record data con-

tinuously until a trigger event indicates an accident situation. The trigger

procedure of existing EDRs is enhanced to the detection of laterally criti-

cal driving situations by using linear reference models. If the vehicle does

not react proportionally to the driver desire, then the driving situation can

become uncontrollable for an average driver. The field of experience of such

drivers is covered by the linear single track model. The real vehicle behavior

can be measured with sensors. The deviation of the measured signals from

the linear single track model is evaluated to classify the driving situation

with a discrete number called discrete stability index (DSI). In order to

guarantee that a reliable trigger signal is generated, the DSI is calculated
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with four different methods relying upon different sensor combinations. For

inconvenient sensor configurations, though, the four methods can provide

different stability results. Therefore, the discrete stability index was enhan-

ced to a continuous stability index (CSI). The CSI represents a continuous

number between one and six. The CSI values of the four methods were

validated with test drives made with two different test cars and proved

to be more coherent. The CSI were compared with the vehicle body side

slip angle and with the cornering stiffnesses. Growing CSI indicate reduced

cornering stiffnesses and increased side slip angles. This shows that the phy-

sical vehicle behavior can be described appropriately with the CSI-method.

Knowing that the method provides reasonable results, it can be applied to

trigger an EDR. A ”two-of-four-method” generates an EDR trigger signal,

if the continuous stability index gained from two of the four methods ex-

ceeds a certain threshold. This ensures robust and reliable triggering. The

detection of accident situations must occur online.

After an accident was detected, accident relevant data are saved in a me-

mory. Based on these data and using the vehicle model, the accident can

be reconstructed offline. The goal of accident reconstruction is to reprodu-

ce the vehicle behavior and external as well as internal influences on the

vehicle and the driver.

The vehicle motion in plane can be described by means of the center of

gravity location and the vehicle heading. The center of gravity location is

determined with a fuzzy trajectory estimator which consists of two fuzzy

subsystems: one estimates the vehicle velocity whereas the other one deter-

mines the yaw rate. The redundant sensor signals are weighted according

to their reliability to gain a more accurate trajectory estimate. The method

was validated with test drives on public roads and a robustness analysis

was conducted. The estimator results turned out to be accurate and robust

against injected sensor failures.

The vehicle heading can be calculated by means of the vehicle body side

slip angle. Furthermore, the side slip angle is a measure for vehicle stabili-

ty. Therefore, a linearization observer and an observer with adaptation of

a quality function were designed to determine the vehicle body side slip

angle. The basis for these observers was the adaptive non-linear two track

model. Existing model weaknesses were reduced by restructuring the vehic-

le model. Additionally, an extended Kalman-Bucy-Filter was designed.

The appropriate choice of the covariance matrices allows to weight model

components according to their reliability in the current driving situation.

Restructuring the model is not necessary any more.

A road gradient observer was designed to extend trajectory reconstructi-

on from the plane to the height. The vehicle motion can be reconstructed



183

completely knowing the vehicle’s center of gravity location, its heading and

its height over ground.

The mass of the car influences the brake distance as well as the accuracy of

the vehicle models. Therefore, it is estimated with a recursive least squares

method evaluating the longitudinal force balance of the vehicle. The qua-

lity of mass estimation varies extremely and depends significantly on the

accuracy of the sensor signals. A situation based approach improves the

mass estimation results.

The estimation of the friction coefficient provides valuable information for

accident investigators. Therefore, the recursive least squares method was

applied to a quarter vehicle model evaluating the torque balance on the

wheels. In order to ensure that the maximum friction was used, an ABS-

cycle detection method was implemented. If ABS-cycles are detected, then

in most cases the maximum friction was reached and the friction value can

be utilized to assess the road surface characteristic.

The majority of road traffic accidents are caused by driver mistakes. The

described vehicle models allow to assess the driver performance. The un-

derlying idea is based on a control strategy of the side slip angle. It assumes

that a driver should keep the vehicle body side slip angle small by reducing

the steering angle with a simple control strategy. The controlled steering

angle is compared to the measured steering angle after an accident to see,

if the critical situation could have been defused or not.

A test car had to be set up to validate the methodologies, models and

estimation approaches. Therefore, the laboratory test car was equipped

with state of the art sensor equipment and with a CAN bus to gain all the

sensor information which was required. The models were implemented in

Matlab r©/Simulink r©. They were tested with the Autobox r© to prove that

they run in real-time. The linear reference models were downloaded to a

prototype hardware by means of automatic code generation tools and were

validated in the car.

As an outlook, the detection of laterally critical situations may be further

improved, when the employed detection thresholds are further parametri-

zed with more test drives and different test cars.

The estimation values of the vehicle body side slip angle gained from the

non-linear observers and from the extended Kalman-Bucy-Filter may al-

so be used to set up a non-linear controller for the lateral vehicle dynamics.

Radar or ultrasonic systems as well as video devices can additionally be

introduced to combine vehicle dynamics with collision avoidance systems.

With such improvements, the methodologies presented in this thesis may

lead from accident reconstruction considered here to accident avoidance.





A Non-linear Two Track Model

A.1 Jacobian-Matrix

The elements of the Jacobian-matrix for the adaptive non-linear vehicle

model read:

∂v̇CoG

∂vCoG
=

1

mCoG
·
{
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v2
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∂v̇CoG

∂β
=

1

mCoG
·
{

(FLFL + FLFR + cFL + cFR) · sin(δW − β)

−
(
cRL + cRR + FLRL + FLRR − cWX · v2

CoG

)
sin β

+(cFL + cFR)(δW − β − lF ψ̇

vCoG
) cos(δW − β)

+(cRL + cRR)(−β +
lR ψ̇

vCoG
) cos β

}

, (A.2)

∂v̇CoG

∂ψ̇
=

1

mCoGvCoG
·
{

lF · sin(δW − β) · (cFL + cFR)

+lR · sin β · (cRL + cRR)
}

, (A.3)



186 A Non-linear Two Track Model
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(cFL + cFR)(δW − β − 2
lF ψ̇

vCoG
) cos(δW − β)

+(FLFL + FLFR) · sin(δW − β)

−
(
FLRL + FLRR + cWX · v2

CoG

)
· sin β

+(cRL + cRR)(−β + 2
lR ψ̇

vCoG
) cos β

}

, (A.4)

∂β̇

∂β
=

1

mCoGvCoG
·
{

(cFL + cFR)(δW − β − lF ψ̇

vCoG
) sin(δW − β)

−(cFL + cFR + FLFL + FLFR) cos(δW − β)

−
(
cRL + cRR + FLRL + FLRR − cWXv2

CoG

)
cos β

−(cRL + cRR)(−β +
lR ψ̇

vCoG
) sin β

}

, (A.5)

∂β̇

∂ψ̇
=

1

mCoGv2
CoG

·
{

lR (cRL + cRR) cos β

−lF (cFL + cFR) cos(δW − β)
}

− 1 , (A.6)

∂ψ̈

∂vCoG
=

1

JZ v2
CoG

{

lF ψ̇ (cFL + cFR)(lF − nLF cos δW ) cos δW

+
1

2
lF ψ̇ bF (cFL − cFR) sin δW

+lR ψ̇ (cRL + cRR)(lR + nLR)
}

, (A.7)
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∂ψ̈

∂β
=

1

JZ
·
{

−(cFL + cFR)(lF − nLF cos δW ) cos δW

−bF

2
(cFL − cFR) sin δW + (cRL + cRR)(lR + nLR)

}

, (A.8)

∂ψ̈

∂ψ̇
=

1

JZ vCoG
·
{

−lF (cFL + cFR)(lF − nLF cos δW ) cos δW

−lF bF

2
(cFL − cFR) sin δW − lR (cRL + cRR)(lR + nLR)

}

. (A.9)

A.2 Coefficients of the Restructured Non-

linear System

a11(ψ̇, u) =
1

mCoGvCoG

{

(cFL + cFR)

[

sin δW

(

δW − lF ψ̇

vCoG

)

− cos δW

]

−(cRL + cRR) − (FLFL + FLFR) · cos δW

−
(
FLRL + FLRR − cWXv2

CoG

) }

(A.10)

a12(u) = −1 +
lR · (cRL + cRR) − lF · cos δW · (cFL + cFR)

mCoGv2
CoG

(A.11)

a21(u) =
1

JZ

{

−(cFL + cFR) · (lF − nLF cos δW ) cos δW

−bF

2
sin δW · (cFL − cFR) + (cRR + cRL)(lR + nLR)

}

(A.12)

a22(u) =
1

JZvCoG

{

−lF · (cFL + cFR)(lF − nLF cos δW ) cos δW

−lF bF

2
sin δW (cFL − cFR) − lR(cRR + cRL)(lR + nLR)

}

(A.13)



188 A Non-linear Two Track Model

b1(u) =
δW · cos δW · (cFL + cFR) + sin δW · (FLFL + FLFR)

mCoGvCoG
(A.14)

b2(u) =
1

JZ

{

δW · cos δW · (cFL + cFR) · (lF − nLF cos δW )

+
bF

2
cos δW (FLFR − FLFL)

+(FLFR + FLFL) · sin δW · (lF − nLF cos δW )

+(cFL − cFR) · δW · bF

2
· sin δW + (FLRR − FLRL) · bR

2

}

(A.15)

A.3 Non-linear System Observability

A.3.1 Observability of the Non-linear System with

Two Output Variables

For analysis of the observability of the system described by Eqns. (5.38)

and (5.39), Eqn. (5.24) must be calculated

y[2] =





y
ẏ
ÿ



 =











y1

y2

ẏ1

ẏ2

ÿ1

ÿ2











=











vCoG

ψ̇
v̇CoG

ψ̈
v̈CoG

...

ψ











= q
obs

(x, u) . (A.16)

These are six non-linear equations for three state variables. Therefore, three

of these equations can be selected appropriately to prove unique reversibi-

lity by means of the reconfigured observability matrix q
obs,r

:





y1

y2

ẏ2



 =





vCoG

ψ̇

ψ̈



 =





vCoG

ψ̇
β · g21(u) + g20(u, y)



 =: q
obs,r

(x, u). (A.17)

The terms g20(u, y) and g21(u) are derived from the third state space equa-

tion (3.65):

ψ̈ = β · g21(u) + g20(u, y) . (A.18)
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The system of equations can be uniquely transformed to

x =





vCoG

β

ψ̇



 =





y1
ẏ2−g20(u,y)

g21(u)

y2



 = q
obs,r

−1(u, y) , (A.19)

if g21(u) is non-zero. Then, the system is globally observable.

A.3.2 Observability of the Non-linear System with

One Output Variable

For the analysis of the observability of the system (5.44) the observability

transformation (5.24) is calculated:

y[2] =





y
ẏ
ÿ



 =





ψ̇

ψ̈
ψ(3)



 = q
obs

(x, u) . (A.20)

The second and the third row depend on sin- and cos-terms of β. Without

restrictions, they are not analytically invertible. Therefore, for this purpo-

ses the local observability is proven by using Eqn. (5.29). This provides

Q
B
(x, y[2]) =

∂q
obs

(x, u)

∂x
=








∂ψ̇
∂vCoG

∂ψ̇
∂β

∂ψ̇

∂ψ̇

∂ψ̈
∂vCoG

∂ψ̈
∂β

∂ψ̈

∂ψ̇

∂ψ(3)

∂vCoG

∂ψ(3)

∂β
∂ψ(3)

∂ψ̇








. (A.21)

The first row is trivial:

∂ψ̇

∂vCoG
= 0,

∂ψ̇

∂β
= 0,

∂ψ̇

∂ψ̇
= 1 .

The partial derivatives of the second row can be found in Appendix A.1.

The partial derivatives of the third row

ψ(3) =
dψ̈

dt
=

∂ψ̈

∂x
ẋ +

∂ψ̈

∂u
u̇ with x =





vCoG

β

ψ̇





T

and u =









FLFL

FLFR

FLRL

FLRR

δW









T

were calculated with Matlab r©. The resultant terms are very complex and

therefore not listed here. Using Matlab r©, the full rank of Matrix Q
B

can

be checked numerically. It turns out that the system (5.44) is locally ob-

servable.
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A.3.3 Observability of the Restructured Non-linear

System

For the analysis of the observability of the system (5.51) the observability

transformation (5.24) is calculated using the differential equation (3.65):

y[1] =

[
y
ẏ

]

=

[
ψ̇

ψ̈

]

=

[

ψ̇
β · g21(u) + g20(u, y)

]

= q
obs

(x, u) . (A.22)

In Eqn. (A.22), x can be uniquely isolated

x =

[
β

ψ̇

]

=

[
ẏ−g20(u,y)

g21(u)

y

]

= q−1
obs

(u, y) , (A.23)

if g21(u) 6= 0. The system (5.51) is globally observable, if g21(u) 6= 0.



B Nomenclature

B.1 Physical Variables

Convention:

The following indices are wildcards:

i : F, R - front/rear axle

j : L, R - left/right side

Latin

Symbol Unit Meaning

AL m2 vertical front area of vehicle

aX m/s2 longitudinal acceleration

aX,0 m/s2 offset of longitudinal acceleration sensor

aX,B m/s2 longitudinal vehicle body acceleration

aX,C m/s2 corrected longitudinal acceleration

aY m/s2 lateral acceleration

aY,B m/s2 lateral vehicle body acceleration

aZ m/s2 vertical acceleration

bF m wheel track at front axle

bR m wheel track at rear axle

bRA m distance of roll axis from center of gravity

c1, . . . , c3 1 tire parameters

c4 s/m tire parameter

c5 N−2 tire parameter

caer 1 long. air drag coefficient

cij N/rad cornering stiffnesses (generally)

cF N/rad cornering stiffness of front axle

cR N/rad cornering stiffness of rear axle
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cS Nm/rad steering stiffness

cWX kg/m resultant long. air drag coefficient

cWY kg/m resultant lat. air drag coefficient

eCoG m distance: pressure point to CoG

FA N acceleration force

FDH N down hill force

Ffric N friction force

FLij N long. wheel forces

FLF , FLR N long. wheel forces of front/rear axle

FR N rolling resistance force

FRes N resultant long. resistance force

FSij N lateral wheel forces

FSF , FSR N lat. wheel forces of front/rear axle

FV L, FV S N long./lat. wheel force in vW -direction

FWX , FWY N long./lat. wind resistance force

FWZ N lift force

FXij N long. wheel forces in the CoG-coordinate

system

FXF , FXR N long. wheel forces on the front/rear axle

FY ij N lat. wheel forces in the CoG-coordinate

system

FY F , FY R N lat. wheel forces on the front/rear axle

FZij N vertical wheel forces

FZF , FZR N vertical wheel force of front/rear axle

fC Hz cut-off frequency of low pass filter

fR,0, fR,1, fR,4 1 rolling friction coefficients

g m/s2 earth acceleration

h1, . . . , h3 1 weighting factors: fuzzy yaw rate estimator

hCoG m height of the center of gravity over ground

hPA m height of the pitch axis over ground

hRA m height of the roll axis over ground

iS 1 steering transmission

iZ m radius of gyration

J kg m2 mass moment of inertia (generally)

JX , JY , JZ kg m2 mass moment of inertia about x-, y-, z-axis

JW kgm2 mass moment of inertia of wheel
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k 1 threshold (method of char. speed)

k1, . . . , k5 1 weighting factors: fuzzy velocity estimator

kredij 1 wheel force reduction factor

l m wheel base

lF , lR m CoG distance of front/rear axle

lPA m distance of pitch axle from CoG

max ∆v m/s max. deviation of corrected wheel speeds

max ∆ω m/s max. deviation of wheel speeds

mCoG kg vehicle mass

mB kg vehicle body mass

mF , mR kg front/rear axle portion of the vehicle mass

N 1 number of samples

nC m constructive caster

nLF , nLFj m wheel caster: front wheels

nLR, nLRj m wheel caster: rear wheels

pBM bar main cylinder brake pressure

pBWij bar individual wheel cylinder brake pressures

r, rC m curve radius

rmeas m measured curve radius

rmodel m model curve radius

rstat m static tire radius

SSG rad self-steer gradient

SSGm rad modified self-steer gradient

SSGl1, SSGl2 rad lower self-steer gradient thresholds

SSGu1, SSGu2 rad upper self-steer gradient thresholds

s(n) m distance driven by vehicle

s, sRes 1 wheel slip

sLij 1 longitudinal wheel slip

sSij 1 lateral wheel slip

TA Nm alignment torque

TB Nm brake torque

TD Nm drive torque

TS s sampling time
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t s time (generally)

t0 s initial point of time

tx s time difference

v̄ m/s average rotational equivalent wheel speed

vCh m/s characteristic speed

vCh,t m/s parameter of the characteristic speed method

vCoG m/s velocity of the center of gravity

v̂CoG m/s fuzzy estimate for the center of gravity

velocity

vF , vR m/s wheel velocity front/rear wheel

vR,est m/s predicted wheel velocity

vRij m/s rotational equivalent wheel velocity
˙̄vRij m/s2 averaged wheel accelerations

vRij,C m/s corrected rot. equivalent wheel velocities

vWij m/s wheel ground contact point velocities

vWY m/s lateral wind velocity

vX , vY m/s long./lateral velocity in CoG

x(t), x(n) center of gravity position over time

(trajectory)

x, xIn m x-coordinate in world coordinate system

xF trajectory calculated with front axle sensors

xFuz trajectory calculated with fuzzy estimators

xR trajectory calculated with rear axle sensors

xS trajectory calculated with gyroscope

xCoG m long. vehicle axis

xV W m long. wheel velocity axis

xW vector of the wheel plane direction

y, yIn m y-coordinate in world coordinate system

yCoG m lat. vehicle axis

yV W m lat. wheel velocity axis

Greek

Symbol Unit Meaning

αij rad tire side slip angles
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αF , αR rad TSSA of front/rear axle wheels

β rad vehicle body side slip angle

β0 rad stationary vehicle body side slip angle

β1 rad recognition threshold of VBSSA

β2 rad risk threshold of VBSSA

βcont rad controller output value of VBSSA

βmeas rad measured VBSSA

βobs rad observed VBSSA

βR rad equilibrium point of VBSSA

γ rad course angle

∆n1, ∆n2 1/m thresholds of curve radius method

∆p1, ∆p2 1/m thresholds of curve radius method

∆s, ∆sij m distance traveled between successive sample

points

∆smeas m distance traveled (measured)

∆smodel m distance traveled (modeled)

∆T s integration time for CRM

∆vF m/s wheel speed difference of front axle

∆vP m/s velocity prediction error

∆vR m/s wheel speed difference of rear axle

∆vRij m/s wheel speeds difference from v̂CoG

∆β rad average VBSSA observation error

∆δS1, ∆δS2 rad steering angle control interventions

∆ψ̇l, ∆ψ̇u rad/s tolerance band widths of ψ̇
∆ψ rad yaw angle difference between two successive

sample points

∆ψ̇ rad/s deviation of linear and nonlinear yaw rate

δA rad Ackermann angle

δS rad steering wheel angle

δS,meas rad measured steering wheel angle

δW rad wheel turn angle

δW,th rad wheel turn angle threshold for ”cornering”

η1, η2 1 amplification factors

µ, µres 1 friction coefficient

µLij, µSij 1 long./lat. friction coefficients
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ν rad curve angle

ξ1, ξ2 1 tire parameters

ϕ rad roll angle

χ rad pitch angle

χRoad rad road gradient

ψ̇ rad/s yaw rate (generally)

ψF rad yaw angle from front axle sensors

ψ̇F rad/s yaw rate from front axle sensors

ψFuz rad fuzzy yaw angle estimate

ψ̇Fuz rad/s fuzzy yaw rate estimate

ψ̇l, ψ̇l2, ψ̇u, ψ̇u2 rad/s thresholds of continuous yaw gain method

ψ̇lin, ψ̇nlin rad/s linear/non-linear yaw rate model value

ψ̇max, ψ̇min rad/s upper/lower limit of ψ̇-tolerance band

ψ̇meas rad/s measured yaw rate

ψ̇model rad/s model yaw rate

ψR rad yaw angle from rear axle sensors

ψ̇R rad/s yaw rate from rear axle sensors

ψS rad yaw angle from gyroscope sensor

ψ̇S rad/s yaw rate from gyroscope sensor

ψ̇th rad/s yaw rate threshold for ”cornering”

ωRij rad/s angular wheel velocities
˙̄ωRij rad/s2 average angular wheel accelerations
˙̄ωRij,th rad/s2 average angular wheel acceleration threshold

Terms of System, Observer and Parameter

Estimation Theory

Symbol Meaning

A dynamic matrix

A0 dynamic matrix of linear reference model

Â Jacobian-matrix of EKBF
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B, b input matrix/vector

B0 input matrix of linear reference model

C, c output matrix/vector

Ĉ Jacobian-matrix of EKBF

E{·} expectation value

F dynamic matrix

f(·) non-linear state vector function

h(·) non-linear output vector function

H time-discrete output matrix

I, In identity matrix

K, K(t) Kalman-matrix gain

L observer gain

Llin observer gain for linear reference model

NRL
norm

P , P (t) covariance matrix of Kalman-Filters

PL matrix of Ljapunov-function

P̃L,ii positive weighting functions in P

Q, Q(t) covariance matrix of system noise

Q
B

observability matrix

q
obs

non-linear observability transformation

q
obs,r

reconfigured non-linear observability matrix

R covariance matrix of measurement noise

RL matrix of Ljapunov-function

RL,lin matrix of the ideal Ljapunov-function

r̂xy cross correlation function

T (·) threshold function
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u input vector

ulin input vector of linearized reference model

uR input vector of equilibrium point

wi left eigenvectors

wk, w(t) system noise

w̄i complex conjugate left eigenvectors

vk, v(t) measurement noise

V (x) Ljapunov-function

Vlin(x) ideal Ljapunov-function for linear estimation error

x state vector

x̂ observed state vector

x̃ estimation error

x0 initial value of state vector

x̂0 initial value of state space observer

xS,0 initial simulation value of state vector

xlin state vector of linearized reference model

x̂lin observed state vector of linearized reference model

x̃lin estimation error of linearized reference model

xp expansion point of Taylor expansion

xR state vector of equilibrium point

y output vector

y
lin

output vector of linearized reference model

y
model

model output vector

y
meas

measured output vector

∆y deviation of measured and modeled output vector

δij Kronecker-Symbol

Θ RLS-estimation parameter

λF forgetting factor

λν eigenvalues

Φ(TS) time-discrete dynamic matrix
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B.2 Abbreviations

ABS : Antilock Braking System

AMR : Anisotropic Magneto-Resistive

AQF : Adaptation of a Quality Function

CAN : Controller Area Network

CC : Center of Curvature

CoG : Center of Gravity

CRM : Curve Radius Method

CS : Characteristic Speed

CSI : Continuous Stability Index

CSM : Characteristic Speed Method

DE : Differential Equation

DERM : Diagnostic and Energy Reserve Module

DSC : Dynamic Stability Control

DSI : Discrete Stability Index

DSP : Digital Signal Processor

EDR : Event Data Recorder

EEPROM: Electrical Erasable Programmable Read Only Memory

EHB : Electro-Hydraulic Brake

EKBF : Extended Kalman-Bucy-Filter

ESP : Electronic Stability Program

GM : General Motors (Corporation)

GPS : Global Positioning System

ICR : Inverse Curve Radius

IEEE : Institute of Electrical and Electronics Engineers

KBF : Kalman-Bucy-Filter

LS : Least Squares

NHTSA : National Highway Traffic Safety Administration

NL : Non-linear

NTSB : National Traffic Safety Board
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OEM : Original Equipment Manufacturer

OV : Output variable

PP : Pressure Point

PSA : Peugeot Citroen S.A.

RAM : Random Access Memory

RLS : Recursive Least Squares

ROM : Read Only Memory

SAPS-RC : Signal Analyzer for Pressure Sensor - Real-time CAN-interface

SDM : Sensing and Diagnostic Module

SI : Stability index

SSG : Self-Steer Gradient

SSGM : Self-Steer Gradient Method

TCS : Traction Control System

TSSA : Tire Side Slip Angle

VBSSA : Vehicle Body Side Slip Angle

VDC : Vehicle Dynamics Control

WGCPV : Wheel Ground Contact Point Velocity

YGM : Yaw Gain Method

B.3 Angle and Coordinate Definitions

xCoG

yCoG

zCoG

ϕ

ψ

χ

(a) Angles in the vehicle coor-
dinate system

xCoG

zCoG

χRoad > 0

(b) Longitudinally inclined
road

+

yCoG

zCoG

ϕRoad > 0

(c) Laterally inclined road

Figure B.1: Angle definitions
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C.1 Fuzzy Velocity Estimator

The individual rule bases listed in Tables C.1 to C.5 for the different sub-

systems were implemented in the fuzzy velocity estimator.

Strong Braking

Area of application: aX,C < −3m/s2

The velocity gained from the wheel speed sensor signals are weighted rather

low due to brake slip. As the braking force on the front axle is large, the

slip values are higher than on the rear axle. Therefore, the wheel speeds

of the front axle are only considered for the velocity calculation if those of

the rear axle are erroneous. The acceleration sensor’s weight is increased

in this driving situation (Table C.3).

Braking

Area of application: −3m/s2 < aX,C < 0m/s2

The rule base for ”Braking” does not differ a lot from the one of the sub-

system ”strong Braking”. Only the linguistic terms and the slip thresholds

of ∆vi have other limits and the slip values are generally reduced.

Rolling

Area of application: −0.3m/s2 < aX,C < 0.3m/s2

If max ∆v is small in this drive situation, then the fuzzy system is not used

at all. The estimated velocity is the average of the wheel speed signals.

If max ∆v is big, though, then the rolling wheels are weighted high, whereas

those wheels not free rolling are weighted less.
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Acceleration

Area of application: 0m/s2 < aX,C ≤ 1.5m/s2

The rough structure is comparable to the subsystem ”Braking” with the

significant difference that in this case drive slip must be detected and the

respective wheel speed signals must obtain reduced weight. Additionally,

braking affects all the wheels, whereas acceleration only affects the wheels

of the driven axle (for test car: the rear axle).

Strong Acceleration

Area of application: 1.5m/s2 < aX,C

The rule bases of ”Acceleration” and ”Strong Acceleration” are similar.

The basic difference is the selection of the linguistic terms of the different

subsystems. The shape of the trapezes of the membership functions must

be adapted, though. The increased drive slip must be considered. The va-

lues for ∆vi are larger and the linguistic terms ”Front” and ”Rear” of the

membership functions are shifted to the left.

∆vRFL ∆vRFR ∆vRRL ∆vRRR max ∆v k FL k FR k RL k RR k v(a)

- - - - small zero zero middle middle middle

- - rear rear big zero zero small small big

front - rear - big zero - small - big

- front rear - big - zero small - big

front - - rear big zero - - small big

- front - rear big - zero - small big

- - rear - big - - small - big

- - - rear big - - - small big

- front not rear - big - small small - middle

front - not rear - big small - small - middle

- front - not rear big - small - small middle

front - - not rear big small - - small middle

not front - - - big zero - - - -

- not front - - big - zero - - -

Table C.1: Rule base for the v-Fuzzy subsystem ”Braking”
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∆vRFL ∆vRFR ∆vRRL ∆vRRR max ∆v k FL k FR k RL k RR k v(a)

- - - - small big big big big zero

OK OK not OK not OK big big big zero zero middle

not OK not OK OK OK big zero zero big big middle

not OK OK OK OK big zero big big big small

OK not OK OK OK big big zero big big small

OK OK not OK OK big big big zero big small

OK OK OK not OK big big big big zero small

OK OK too high too high small middle middle middle middle small

too high too high OK OK small middle middle middle middle small

not too high too high too high too high big zero big big big small

too high not too high too high too high big big zero big big small

too high too high not too high too high big big big zero big small

too high too high too high not too high big big big big zero small

not too low too low too low too low big zero big big big small

too low not too low too low too low big big zero big big small

too low too low not too low too low big big big zero big small

too low too low too low not too low big big big big zero small

Table C.2: Rule base for the v-Fuzzy subsystem ”Rolling”

∆vRFL ∆vRFR ∆vRRL ∆vRRR max ∆v k FL k FR k RL k RR k v(a)

- - - - small zero zero small small big

- - rear rear big zero zero small small middle

- - not rear rear big zero zero zero big middle

- - rear not rear big zero zero big zero middle

front - not rear not rear big small zero zero zero big

- front not rear not rear big zero small zero zero big

ABS ABS front front big zero zero small small big

Table C.3: Rule base for the v-Fuzzy subsystem ”strong Braking”

C.2 Fuzzy Yaw Rate Estimator

The fuzzy yaw rate estimator is not explicitly partitioned into subsystems.

Therefore, the complete rule base is given by Table C.6.
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∆vRFL ∆vRFR ∆vRRL ∆vRRR max ∆v k FL k FR k RL k RR k v(a)

- - - - small middle middle zero zero big

front front rear rear big middle middle zero zero big

front - rear - big middle - zero - big

front - - rear big middle - - zero big

front - rear - big - middle zero - big

- front - rear big - - middle zero big

front not front rear rear big small zero zero zero middle

not front - rear - big small - small - big

not front - - rear big small - - small big

- not front rear - big - small small - big

- not front - rear big small - - small big

error - - - big zero - - - -

- error - - big - zero - - -

- - error - big - - zero - -

- - - error big - - - zero -

ABS - - - big zero - - - -

- ABS - - big - zero - - -

- - ABS - big - - zero - -

- - - ABS big - - - zero -

not front not front rear rear big small small middle middle big

error error error error big small small zero zero middle

ABS ABS ABS ABS big small small small small small

Table C.4: Rule base for the v-Fuzzy subsystem ”Strong Acceleration”
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∆vRFL ∆vRFR ∆vRRL ∆vRRR max ∆v k FL k FR k RL k RR k v(a)

- - - - small middle middle zero zero big

front - rear - big middle - small - big

front - - rear big middle - - small big

- front rear - big - middle small - big

- front - rear big - middle - small big

not front not front rear rear big zero middle small small big

front not front rear rear big middle zero small small big

not front not front rear rear big small small small small big

ABS - - - big zero - - - big

- ABS - - big - zero - - big

error - - - big zero - - - big

- error - - big - zero - - big

- - rear - big - - zero - middle

- - error - big - - zero - middle

- - - rear big - - - zero middle

- - - error big - - - zero middle

Table C.5: Rule base for the v-Fuzzy subsystem ”Acceleration”

δW aY aX,C ∆vF ∆vR h1 h2 h3

- little little small small small large large

- - - error - little zero -

- - - - error little - zero

- little strong braking small small average small average

- little strong braking small - average large small

- little strong acc. small - average large small

- not little strong acc. small large average average small

- not little strong acc. small small average large small

not little little little small - small large -

not little not little little small - average average -

not little little little - small - - large

not little not little little - small average - small

little not little little small - average small -

little not little little large large average zero average

little not little little - small small - large

Table C.6: Complete rule base of the ψ̇-Fuzzy estimator
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D Vehicles, Parameters and Sensors

D.1 Vehicle 1: Ford Scorpio

Most of the test drives were conducted with the test vehicle of the Institut

für Industrielle Informationstechnik (IIIT). Thereby, the sensors displayed

in Fig D.1 were used:

FRw

ax

ay

FLw

dS

Y

RLw

RRw

Yaw
Velocity

Steering angle

ABS sensor

ABS sensor

ABS sensor

ABS sensor

Acceleration

Acceleration

(laterally)

(longitudinally)

Figure D.1: Test car with employed sensors

Vehicle data:

Rear wheel driven, year of manufacture: 1987, 85kW

Distance of front axle from CoG : lF = 1, 377 m
Distance of rear axle from CoG : lR = 1, 383 m
Track front : bF = 1, 476 m
Track rear : bR = 1, 477 m
Height of CoG : hCoG = 0, 47 m
Tire radius : rstat = 0, 303m
Mass (empty) : mCoG = 1350 kg
Vehicle mass moment of inertia : JZ = 1856 kgm2

Cornering stiffnesses (approx.) : cij = 58000 N
rad

Steering transmission : iS = 16

Sampling Time : TS = 10ms
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D.2 Vehicle 2: Opel Vita

The test drives with side slip angle reference measurements were carried out

with this test vehicle. It is an Opel Vita, front axle driven. Some important

vehicle parameters and sensor positions are displayed in Fig. D.2.

Figure D.2: Opel Vita

Vehicle data:

Front wheel driven

Distance of front axle from CoG : lF = 1, 093 m
Distance of rear axle from CoG : lR = 1, 352 m
Track front : bF = 1, 39 m
Track rear : bR = 1, 39 m
Height of CoG : hCoG = 0, 47 m
Tire radius : rstat = 0, 27m
Mass (empty) : mCoG = 1257 kg
Vehicle mass moment of inertia : JZ = 1446 kgm2

Cornering stiffnesses : cij = 58000 N
rad

Caster front : nLF = 0,06 m

Caster rear : nLR = 0,06 m

Steering transmission : iS = 16

Sampling Time : TS = 1ms
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D.3 Most Important Sensors

The sensors used for the measurements were mostly industrial automotive

sensors. The analog and digital sensor signals were 10bit A/D converted in

three CAN nodes of the Ford Scorpio (see also Chapter 6).

Accelerations Yaw rate Steering angle Wheel speeds

Sensor piezo-resistive piezoelectric anisotropic mag- inductive

princicple vibration neto resistive

Manufacturer FGP Instr. MuRata GmbH Robert Robert

Bosch GmbH Bosch GmbH

Signal Range −2g... + 2g −60deg
s

... + 60deg
s

−780◦... + 779.9◦ ≈ 0.5...177m
s

Resolution ≈ 0.04 m

s2
·digit

≈ 0.002 rad
s·digit

0.1◦ 0.02 m

s·digit

Cycle time 10 ms 10 ms 10 ms 10 ms

Variable name aX , aY ψ̇ δS ωRij

Protection type - - IP 50 IP 67

Temp. range −20◦C...80◦C −30◦C...80◦C −40◦C...50◦C −40◦C... + 110◦C

Output signal analog, analog, CAN, freq. + ampl.

0.5V − 4.5V 0.5V − 4.5V ISO 11898 modulated

Table D.1: Standard sensors used in test car

VBSSA Wheel torque

Sensor princicple optical piezoelectric

Manufacturer Corrsys Datron Kistler Instrumente AG

Measuring Range −40◦... + 40◦ −3000Nm... + 3000Nm,

−300Nm... + 300Nm

Resolution < 0.1◦ < 1.5Nm

Cycle time 1ms 10 ms

Variable name β MY RL

Protection type IP 67 IP 65

Temp. range −25◦C... + 50◦C −25◦C... + 80◦C

Output signal analog, −10V... + 10V , analog, −5V... + 5V

or digital

Internal filter delay 128ms -

Overall time delay 75ms -

Table D.2: Reference sensors used in test car
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[58] describes the measurement procedure with these reference sensors very

extensively and provides information about measurement error compensa-

tion. Detailed information about inertial reference sensors can be found in,

[73], [74].
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[22] O. Föllinger. Lineare Abtastsysteme. Methoden der Regelungstechnik.

Oldenbourg Verlag, München, Wien, 5. edition, 1993.
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[74] E. v. Hinüber and H. Janocha. Leistungspotential moderner inertialer

Meßsysteme. Automobiltechnische Zeitschrift, 97(1):pp. 30–35, 1995.

[75] A. van Zanten, R. Erhardt, and G. Pfaff. FDR - Die Fahrdynamikre-

gelung von Bosch. Automobiltechnische Zeitschrift, 96(11):pp. 674 –

689, November 1994.

[76] A. van Zanten et al. VDC, the vehicle dynamics control system of

Bosch. Proceedings of the SAE World Congress, (SP-1075), 1995.

[77] J. Wiedemann and J. Neubeck. Fahrdynamikentwicklung jenseits

der klassischen Systemgrenzen. Automobiltechnische Zeitschrift,
105(12):pp. 1194–1199, 2003.

[78] H. P. Willumeit. Modelle und Modellierungsverfahren in der Fahr-
zeugdynamik. Teubner-Verlag, Stuttgart, Leipzig, 1998.

[79] J. Y. Wong. Theory of ground vehicles. John Wiley & Sons, Inc., New

York, Chichester, Brisbane, 1st edition, 1993.
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Index

ABS, 7

Acceleration

Sensor, lateral, 7

Sensor, longitudinal, 7

Signal errors, 100

Accident

Classification, 55
Detection, 55
Detection system, 56

Reconstruction, 97

Ackermann angle, 75

Definition, 74

Active front steering, 16

Adhesion condition, 36

Alignment torque, 15

AQF-Observer, 140

Backtracking, 157

Bicycle model, 42, 73

Validation, 46

Brake slip

Definition, 17

Breakout, 59
Burckhardt method, 164

Camber angle, 29

Caster, 42

Constructive, 15

Wheel, 15, 24

Center of curvature, 26

Center of gravity velocity, 42

Centripetal force, 26
Characteristic equation, 62

Characteristic speed, 61

Algorithm, 66

Definition, 63
Method, continuous, 84

Stability, 64

Circular buffer, 55

Continuous stability index, 81
Controller area network, 7

Coordinate system

Inertial, 156

Cornering

Breakout, 59

Oversteer, 58

Stable, 57

Understeer, 58

Cornering stiffness, 76, 91

Adaptation, 37, 40, 40
Adapted, 50

Constant, 49

Definition, 33

Country roads, 55

Course angle, 26, 122, 156

Critical driving situation, 56

Laterally, 56

Curve radius

Measured, 68

Modeled, 67

Curve radius method, 67

Algorithm, 71

Continuous, 87

Definite

Negative, 142

Positive, 142

Detection threshold, 94

Disc recorder, 3

Discrete stability index, 57, 77

Drive slip

Definition, 17

Driving experience, 56

Driving situation, 103

Critical, 56

Dynamic matrix

Time-discrete, 150

EDR, 55, 57

Overview, 7

Event data recorder, 55, 57

Extended Kalman-Bucy-Filter, 153

Extended Luenberger Observer, 148
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Forgetting factor, 158

Freezing, 56

Friction

Approximation equation, 19

Friction coefficient, 19
Definition, 20

Lateral, 19

Longitudinal, 19

Fuzzy

Center of gravity method, 111

Estimator, 105

Inputs, 104, 112

Mamdani-Implication, 106

Membership functions, 106

Outputs, 106, 114

Robustness, 117

Rule base, 103, 106

Sub-models, 103

Velocity estimator, 99

Yaw rate estimation, 109

Gyroscope, 109

Hurwitz criterion, 61

Kalman matrix gain, 151

Kalman-Bucy-Filter, 152
Extended, 149, 153

Kalman-Filter, 150
Kamm-circle, 10, 36

Least squares, 158

Left-eigenvectors, 143

Levenberg-Marquardt method, 39

Linear single track model, 42, 56, 73

Reference, 56

Validation, 46

Linearization observer, 126
for one output, 131

for two outputs, 128

Ljapunov

Function, ideal, 143

Method, 142
Stability criterion, 142

Location equations, 116

Main cylinder brake pressure, 32

Mass moment of inertia, 27

Memory, 7

Noise process, 150

Non-linear two track model, 33

Reduction of order, 136

Restructured, 134

Validation, 49

Observability

Global

Definition, 125

Theorem, 126

Linear, 124, 168

Definition, 124

Theorem, 124

Local

Definition, 125

Theorem, 126

Matrix, 124, 126

Non-linear, 124, 124
Transformation, 125

Observer

AQF-, 140, 140
Comparison, 148

Extended Luenberger, 148

for road gradient, 166

Gain, 139

High gain, 149

Linear, 141, 145

Luenberger, 145, 166

Normal form, 149

with adaptation of quality function,

140
with linearization, 126, 131

Output matrix

Time-discrete, 150

Oversteer, 55, 58, 70, 76

Pitch acceleration, 29

Pitching, 22

Polarity correlation, 162

Pole placement, 169

Pre-Accident

Classification, 55

Detection, 55

Phase, 55

Random process, 150

Recognition threshold, 170

Reconstruction unit

Model based, 8

Reference model, 44, 56

Ricatti differential equation, 153

Risk threshold, 170

Road gradient observer, 166



Index 225

Roll acceleration, 29

Rolling, 22

Rolling resistance, 28, 43

Rotational equivalent wheel velocity, 17

Self-steer gradient, 72
Definition, 75

Method, continuous, 87

Method, Validation, 77

Modified, 75

Sensor

Drop outs, 117

Failures, 56, 117

Sliding, 55

Slip, 17, 79

Lateral, 17, 18

Longitudinal, 17, 18

Resultant, 18

Stability

Globally asymptotical, 142

Locally asymptotical, 142

Stability index, 57
Definition, 57, 58

State space

Equation, 168

Form, 25

State variables, 28

Steering

Desire, 56

Model, 15
Stiffness, 15

Transmission, 15

Straightforward drive

Instable, 58

Stable, 57

Test drives, 45
Clothoide fast, 46

Slalom, 45, 52

Straightforward, 52

Tire side slip angle, 16, 32, 75

Traction control system, 166

Trajectory

Reconstruction, 115

Tri-state correlation, 162

Two-of-four

Method, 94

Strategy, 56

Understeer, 38, 41, 55, 58, 69, 70, 76, 77

Vehicle behavior

Proportional, 56

Vehicle body side slip angle, 42, 45, 92,

122
Definition, 122

Linearization, 134

Vehicle body side slip rate, 92

Vehicle dynamics control system, 7

Vehicle model, 13
and estimation unit, 7

Bicycle model, 42

Linear single track model, 42

Validation, 45, 46, 49

Weighted mean, 103, 114

Weighting factor, 102

Wheel force

Lateral, 20, 32, 32, 37, 38

Longitudinal, 20, 32

Reduction factor, 35, 36

Transformation, 20, 21

Vertical, 29, 30, 31
Wheel ground contact

Area, 28, 42

Point velocity, 14, 17, 20

Wheel load, 29
Changes, 40, 42

Shift, 30, 31
Wheel model, 13
Wheel speed

Differences, 113

Sensor, 7

Wheel turn angle, 16, 42

Wind force, 29, 43

Yaw angle, 115

Yaw gain method, 59

Algorithm, 61

Continuous, 82






