V.V. Sokolov\textsuperscript{1}, Thomas Wolf\textsuperscript{2}

A symmetry test for quasilinear coupled systems

\textsuperscript{1}Centre for Nonlinear Studies, & Landau Institute for Theoretical Physics, Moscow
\textsuperscript{2}Queen Mary & Westfield College, London, Fellow at ZIB
A symmetry test for quasilinear coupled systems

V.V. Sokolov
Centre for Nonlinear Studies, & Landau Institute for Theoretical Physics,
Kosygina 2, Moscow 117940, Russia
email: sokolov@landau.ac.ru

Thomas Wolf
Queen Mary & Westfield College, University of London,
Mile End Road, London E1 4NS, UK
email: T.Wolf@maths.qmw.ac.uk

January 8, 1999

1 Classification result.

It is well known that the following class of systems of evolution equations
\[
\begin{align*}
\frac{\partial u}{\partial t} &= u_{xx} + F(u,v,u_x,v_x), \\
\frac{\partial v}{\partial t} &= -v_{xx} + G(u,v,u_x,v_x),
\end{align*}
\]
(1)
is very rich in integrable cases. In the papers [1]-[5] by Mikhailov, Shabat and Yamilov, all systems (1), possessing higher conservation laws, were classified. Hence, these authors have found all systems (1) that can be integrated by the inverse scattering method (S-integrable equations in the terminology by F. Calogero [6]).

However, there are integrable cases that are not in their classification. As an example, consider the system
\[
\begin{align*}
\frac{\partial u}{\partial t} &= u_{xx} - 2uu_x - 2uv_x - 2u^2 v + 2u v^2, \\
\frac{\partial v}{\partial t} &= -v_{xx} + 2uv_x + 2vu_x + 2u^2 v - 2v^2 u - 2u^2 v,
\end{align*}
\]
(2)
first discussed in [7] (see [8] for generalizations). It can be reduced to
\[
\begin{align*}
U_t &= U_{xx}, \\
V_t &= -V_{xx}
\end{align*}
\]
by the following substitution of the Cole-Hopf type
\[
\begin{align*}
u &= \frac{U_x}{(U + V)}, \\
v &= \frac{V_x}{(U + V)}.
\end{align*}
\]
The system (2) has no higher order conservation laws, but it has higher order symmetries. This is a typical feature of linearizable systems like the Burgers equation (C-integrable equations). Therefore, it would be interesting to classify the systems (1), which have higher order symmetries. As a result, all S-integrable and C-integrable systems would be found.

The complete classification problem is very difficult. Here we consider only the most interesting (from our opinion) subclass of systems (1). Namely, we consider equations linear in all derivatives of the form
\[
\begin{align*}
\frac{\partial u}{\partial t} &= u_{xx} + A_1(u,v)u_x + A_2(u,v)v_x + A_0(u,v), \\
\frac{\partial v}{\partial t} &= -v_{xx} + B_1(u,v)v_x + B_2(u,v)u_x + B_0(u,v),
\end{align*}
\]
(3)
without any restrictions on the functions $A_i(u,v)$, $B_i(u,v)$. We apply to such systems the simplest version of the symmetry test (see [9]-[12]).
Lemma. If system (3) has a fourth order symmetry

\[
\begin{align*}
\frac{\partial u}{\partial t} &= u_{xxx} + f(u, v, u_x, v_x, u_{xx}, v_{xx}, u_{xxx}, v_{xxx}), \\
\frac{\partial v}{\partial t} &= -v_{xxx} + g(u, v, u_x, v_x, u_{xx}, v_{xx}, u_{xxx}, v_{xxx})
\end{align*}
\]

(4)

then the system is of the following form

\[
\begin{align*}
u_t &= u_{xx} + (a_{12} u v + a_1 u + a_2 v + a_0) u_x + (p_2 v + p_1 u + p_0) v_x + A_0(u, v), \\
v_t &= -v_{xx} + (b_{12} u v + b_1 u + b_2 v + b_0) v_x + (q_2 u + q_1 v + q_0) u_x + B_0(u, v),
\end{align*}
\]

where \(A_0\) and \(B_0\) are polynomials of at most fifth degree.

The coefficients of the last system satisfy an overdetermined system of algebraic equations. The most essential equations are

\[
\begin{align*}
p_2(b_{12} - q_{11}) &= 0, \\
p_2(a_{12} - p_{11}) &= 0, \\
p_2(a_{12} + 2b_{12}) &= 0, \\
q_2(b_{12} - q_{11}) &= 0, \\
q_2(a_{12} - p_{11}) &= 0, \\
q_2(b_{12} + 2a_{12}) &= 0.
\end{align*}
\]

As usual, such factorized equations lead to a tree of variants, which was investigated by the computer algebra program CRACK [19],[20].

Solving the overdetermined system, we don’t consider so called triangular systems like the following

\[
\begin{align*}
u_t &= u_{xx} + 2uv_x, \\
v_t &= -v_{xx} - 2uv_x.
\end{align*}
\]

(5)

Here the second equation is separated and the first is linear with the variable coefficients defined by a given solution of the second equation.

Theorem. Any nonlinear nontriangular system (3), having a symmetry (4), up to scalings of \(t, x, u, v\), shifts of \(u\) and \(v\), and the involution

\[
\begin{align*}
u \leftrightarrow v, \\
t \leftrightarrow -t
\end{align*}
\]

(6)

belongs to the following list:

\[
\begin{align*}
u_t &= u_{xx} + (u + v)u_x + uv_x, \\
v_t &= -v_{xx} + (u + v)v_x + uv_x,
\end{align*}
\]

(7)

\[
\begin{align*}
u_t &= u_{xx} - 2(u + v)u_x - 2uv_x + 2u^2 v + 2u^2 + \alpha u + \beta v + \gamma, \\
v_t &= -v_{xx} + 2(u + v)v_x + 2uv_x - 2u^2 v - 2u^2 - \alpha u - \beta v - \gamma,
\end{align*}
\]

(8)

\[
\begin{align*}
u_t &= u_{xx} + mu_x + uv_x, \\
v_t &= -v_{xx} + mv_x + uv_x,
\end{align*}
\]

(9)

\[
\begin{align*}
u_t &= u_{xx} + 2mu_x + 2uv_x + 2u^2 + u^2 + \alpha u + \beta v + \gamma, \\
v_t &= -v_{xx} - 2uv_x - u_x,
\end{align*}
\]

(10)

\[
\begin{align*}
u_t &= u_{xx} + \alpha u_x + (u + v)^2 + \beta(u + v) + \gamma, \\
v_t &= -v_{xx} + \alpha v_x - (u + v)^2 - \beta(u + v) - \gamma,
\end{align*}
\]

(11)
\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + (u + v)u_x + 4\alpha v_x + \alpha (u + v)^2 + \beta (u + v) + \gamma, \\
  v_t &= -v_{xx} + (u + v)v_x + 4\alpha u_x - \alpha(u + v)^2 - \beta(u + v) - \gamma,
\end{cases} \\
(12)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + 2\alpha u^2 v_x + 2\beta uvu_x + \alpha(\beta - 2\alpha)u^3v^2 + \gamma u^2v + 6u, \\
  v_t &= -v_{xx} + 2\alpha v^2u_x + 2\beta uvu_x - \alpha(\beta - 2\alpha)u^2v' - \gamma uv^2 - 6v,
\end{cases} \\
(13)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + 2\alpha uvu_x + (\alpha + u^2)v_x, \\
  v_t &= -v_{xx} + 2\alpha uvu_x + (\beta + u^2)u_x,
\end{cases} \\
(14)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + 2\alpha uvu_x + 2\alpha^2 v_x - \alpha\beta x^2v^2 + \gamma u, \\
  v_t &= -v_{xx} + 2\beta x^2 u_x + 2\beta uvu_x + \alpha\beta x^2v^3 - \gamma v,
\end{cases} \\
(15)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + 2\alpha uvu_x + 2(\alpha + u^2)v_x + u^2v^2 + \beta u^3 + \alpha uv^2 + \gamma u, \\
  v_t &= -v_{xx} - 2\alpha uvu_x - 2(\beta + u^2)u_x - u^2v^3 - \gamma u^2v - \alpha v^3 - \gamma v,
\end{cases} \\
(16)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + 4\alpha uvu_x + 4u^2 v_x + 3uv_x + 2u^4v^2 + uv^3 + \alpha u, \\
  v_t &= -v_{xx} - 2\alpha uvu_x - 2\alpha v^2u_x - 2u^2v^3 - v^4 - \alpha v,
\end{cases} \\
(17)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + 4\alpha uvu_x + 2uv_x, \\
  v_t &= -v_{xx} - 2\alpha uvu_x - 2\alpha v^2u_x - 3u^2v - v^3 + \alpha v,
\end{cases} \\
(18)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + uv_x, \\
  v_t &= -v_{xx} + u_x,
\end{cases} \\
(19)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + 6(u + v)v_x - 6(u + v)^3 - \alpha(u + v)^2 - \beta(u + v) - \gamma, \\
  v_t &= -v_{xx} + 6(u + v)u_x + 6(u + v)^3 + \alpha(u + v)^2 + \beta(u + v) + \gamma,
\end{cases} \\
(20)
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
  u_t &= u_{xx} + uv_x, \\
  v_t &= -v_{xx} + u_x.
\end{cases} \\
(21)
\end{align*}
\]

We omitted the term \((cu_x, cv_x)^T\) on the right hand sides of all systems. It is a Lie symmetry, corresponding to the invariance of our classification problem with respect to the shift of \(x\).

2 Discussion.

1. Admissible transformations. Some equations in the list contain arbitrary constants \(\alpha, \beta, \gamma, \delta\). Not all of them are essential.

Let us consider, for instance, the equations (14). It is easy to see that those constants \(\alpha\) and \(\beta\) which are not equal to zero can be reduced to 1 via scalings of \(t, x, u\) and \(v\). In this way, (14) actually describes three different equations without parameters. These equations correspond to \(\alpha = \beta = 1, \alpha = \beta = 0\) and \(\alpha = 1, \beta = 0\).

The following parameters: \(\alpha\) in (11) and (12), \(\gamma\) in (13), both \(\alpha\) and \(\beta\) in (16) are not essential in the same sense. For (13) and (15) the essential parameter is the ratio of \(\alpha\) and \(\beta\). Note, that if \(\alpha = \beta = 0\) then (13) coincides with the nonlinear Schrödinger equation, which is not a separate equation in our list.

For some equations from the list, there exist admissible transformations of the form

\[
\begin{align*}
  u &\to p(x,t)u + q(x,t), \\
  v &\to r(x,t)v + s(x,t).
\end{align*}
(22)
\]
"Admissible" means that the resulting equation does not depend explicitly on \( x \) and \( t \) and has the same form (3). Using such admissible transformations, one can remove some of constants in the equations of the list.

In particular, with the help of the transformation \( u \rightarrow \exp(\alpha t)u \), \( v \rightarrow \exp(\alpha t)v \) one can remove the terms \((cu, -cv)^T\) in (13), (15), (16).

Using the transformations \( u \rightarrow u + \lambda + \mu x \), \( v \rightarrow v - \lambda - \mu x \) it is possible to remove \( \beta \) and \( \gamma \) in (11), (12). The equation (20) can be reduced to the form

\[
\begin{align*}
  u_t &= u_{xxx} + 6(u + v)u_x + 6(u + v)^3 + cu_x, \\
  v_t &= -v_{xxx} + 6(u + v)u_x + 6(u + v)^3 + cu_x
\end{align*}
\]  
(23)

by such a transformation and by shifts of \( u \) and \( v \). It seems to us that the essential constant \( c \) was missed in the classification result of [3].

More general transformations are described in [4],[5] which reduce some of the equations (7)-(21) to others in this list. For simplicity in applying our results, we will not rely on these non-trivial transformations, and will instead operate with the complete list (7)-(21).

2. Three groups of equations. All equations of the list can be divided into three groups. The first group contains the so-called NLS-type equations (7), (9), (12), (13), (14). Besides a higher symmetry (4) every such equation possesses a symmetry of the form

\[
\begin{align*}
  u_\tau &= u_{xxx} + \varphi(u, v, u_x, v_x, u_{xxx}, v_{xxx}), \\
  v_\tau &= v_{xxx} + \psi(u, v, u_x, v_x, u_{xxx}, v_{xxx})
\end{align*}
\]  
(24)

This is typical for equations having the Lax representations in \( sl(2) \).

The equations of the Boussinesq type form the second group (11), (19), (20), (21). They have no symmetries of third order. This indicates the existence of a Lax representation in \( sl(3) \). We have chosen the existence of the symmetry (4) as a criterion of integrability for (3) since the choice of the simplest ansatz (24) leads to the loss of all equations of the second group.

The last group (8), (10), (15), (16), (17), (18) consists of "linearizable" equations, which have no higher conservation laws. Some of them seem to be new.

Equations (15), (16) : In [18], [6] one can find a linearization procedure for (15). Namely, a non-local substitution

\[
U = u \exp \left( \alpha \int u \, dx \right), \quad V = v \exp \left( -\beta \int u \, dx \right)
\]  
(25)

reduces it to the linear equation \( U_t = U_{xxx} + \gamma U \), \( V_t = -V_{xxx} - \gamma V \).

Consider equation (16). It is easy to see that it has the following symmetry

\[
\begin{align*}
  u_\tau &= u_{xxx} + 3\alpha uu_x + 6\alpha u_xv_x + 3\beta v_x^2 + 3\gamma u_x^2u_x, \\
  v_\tau &= v_{xxx} + 3\alpha vu_x + 6\alpha u_xv_x + 3\beta u_x^2 + 3\gamma v_x^2v_x,
\end{align*}
\]  
(26)

for any \( \alpha, \beta, \gamma \). Under a reduction \( u = v \), (26) coincides with the well known equation (see [13],[11], [6])

\[
\begin{align*}
  u_\tau &= u_{xxx} + 3\alpha^2 u_{xx} + 9\alpha u_x^2 + 3\gamma u_x^3, \\
  v_\tau &= v_{xxx} + 3\alpha u_{xx} + 9\alpha u_x^2 + 3\gamma v_x^3,
\end{align*}
\]

which can be linearized by the substitution \( U = u \exp \int u^2 \, dx \). It is easy to verify that the following very similar substitution (cf. also with (25))

\[
\begin{align*}
  U = u \exp \left( \int u \, dx \right), \\
  V = v \exp \left( \int u \, dx \right)
\end{align*}
\]  
(27)

reduces (26) to \( U_\tau = U_{xxx} \), \( V_\tau = V_{xxx} \). The same substitution reduces (16) to a linear system

\[
\begin{align*}
  U_t &= U_{xxx} + 2\gamma V_x + \gamma U, \\
  V_t &= -V_{xxx} - 2\beta U_x - \gamma V.
\end{align*}
\]
Generalizing the formula (27) one can find the following vector generalizations of the systems (16) and (26):

\[
\begin{align*}
\begin{cases}
u_l = u_{xx} + 2 < u, v > u_x + 2 < u, v_x > u + < u, v >^2 u + \\
2\alpha u_x + \beta < u, u > + 2\alpha < u, v > v - \alpha < u, v > u + \gamma u, \\
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
u_l = -v_{xx} - 2 < u, v > v_x - 2 < v, u_x > v - < u, v >^2 v - \\
2\beta u_x - \alpha < u, v > v - 2\beta u_x + \beta < u, u > v + \gamma v,
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
u_r = u_{xx} + 3 < u, v > u_{xx} + 3u < u_x, v_x > + 3 < u_x, u_x > u_x + 3 < u, v >^2 u_x, \\
v_r = v_{xx} + 3 < u, v > v_{xx} + 3v < u_x, v_x > + 3 < u, v > v_x + 3 < u, v >^2 v_x,
\end{cases}
\end{align*}
\]

where \( u \) and \( v \) are \( N \)-dimensional vectors and \( < > \) is a scalar product. Both of them can be linearized just as in the scalar case:

\[
U = u \exp \int < u, v > dx, \quad V = v \exp \int < u, v > dx.
\] (28)

In contrast with (15), (16), equations (8) and (10) are related to linear systems

\[
\begin{align*}
U_l = U_{xx} + c_1 U_x + c_2 V_x + c_3 U, \quad V_l = -V_{xx} - k_1 V_x - k_2 U_x - k_3 V
\end{align*}
\] (29)

via local differential substitutions.

Equation (8): For \( \alpha = \beta = \gamma = 0 \) the substitution is given by (1). In the general case such a substitution is defined by

\[
u = \frac{U_x}{(U + V)} + \frac{(c_1 - k_2)U + c_2 V}{2(U + V)};
\]

\[
v = \frac{V_x}{(U + V)} + \frac{(c_1 - c_2)V + k_3 U}{2(U + V)},
\]

where the constants in (29) and (8) satisfy the following conditions

\[
k_1 = c_1, \quad k_3 = c_3 = \frac{c_1(c_1 - c_2 - k_2)}{4},
\]

\[
2\alpha = -k_2(c_1 + c_2), \quad 2\beta = -c_2(c_1 + k_2), \quad 2\gamma = c_1 k_2 c_2.
\]

Equation (8): The substitution is of the form

\[
u = \frac{c_2 U_x}{V} + \frac{c_2^2}{2}, \quad v = V_x + \frac{c_1}{2}.
\]

The relations between constants are the following

\[
k_1 = c_1, \quad k_2 = c_2, \quad k_3 = 0,
\]

\[
2\alpha = -c_1^2 - 2c_2^2 + 2c_3, \quad \beta = -c_1 c_2^2, \quad 4\gamma = c_1^2(2c_1^2 + c_2^2 - 2c_3).
\]

Equation (17), (18): These equations are related to triangular systems. Equations (18) have been obtained in [17]. The substitution

\[
u = \frac{U_x}{2U}, \quad v = \frac{V}{\sqrt{U}};
\]

found first by Marthin [15], links equations (18) with

\[
U_l = U_{xx} + 2V^2, \quad V_l = -V_{xx} + \alpha V.
\]

The last system is linear in the following sense. To find \( V \) we need to solve a linear equation. For a given function \( V \), the function \( U \) satisfies a linear equation with variable coefficients.
Similarly the following substitution
\[ u = \frac{1}{3} U^{1/3} V - V_x, \quad v = U^{1/3} V, \]
reduces (17) to
\[ U_t = U_{xx} - 2V^{-1} V_x U_x + 3\alpha U + 3V^3, \quad V_t = -V_{xx}. \]

3. Master-symmetries. For all equations (7)-(21) we have found all symmetries of order less or equal than four using the computer program LiePde [21]. It turns out that many of the equations have symmetries depending on \( t \) and \( x \) explicitly. For example, computing for equation (15) the general symmetry of \( n \)th order of the form
\[ u_r = P(t) u_{rx} + \ldots, \quad v_r = -P(t) v_{rx} + \ldots \]
the polynomial \( P(t) \) is an arbitrary polynomial of degree \( n \).

It is well known that symmetries which are linearly depending on \( t \) and \( x \) are closely related to local master-symmetries [14]. The equations (7)-(10), (14)-(16) have such symmetries. To obtain the master-symmetries one has to simply put \( t \) equal to zero in these time-dependent symmetries.

The resulting master-symmetry is of the form
\[
\begin{cases}
  u_r = 2x (u_{xx} + F(u, v, u_x, v_x)) + f(u, v, u_x, v_x), \\
  v_r = 2x (-u_{xx} + G(u, v, u_x, v_x)) + g(u, v, u_x, v_x),
\end{cases}
\] (30)
where \( F \) and \( G \) are the right hand sides of the corresponding equation (1) and \( f \) and \( g \) are given by the following list

\[
\begin{align*}
  (7) : \quad & f = u^2 + 3uv + 4u_x, & g = v^2 + 3uv - 4v_x, \\
  (8) : \quad & f = 2u^2 + 4uv + \beta + 3u_x, & g = -2v^2 - 4uv - \alpha - 3v_x, \\
  (9) : \quad & f = 4uv + 5u_x, & g = v^2 + 4u - 5v_x, \\
  (10) : \quad & f = 4uv + \beta + 3u_x, & g = -2v^2 - 2u - \alpha - 3v_x, \\
  (14) : \quad & f = 2u^2 + v + 3u_x, & g = 2uv^2 + 2\beta u - 3v_x, \\
  (15) : \quad & f = 2u^2 - 2\gamma xu + 2u_x, & g = 2\beta v^2 u + 2\gamma xv - 2v_x, \\
  (16) : \quad & f = 2u^2 v + 2uv + 2u_x, & g = -2uv^2 - 2\beta u - 2v_x.
\end{align*}
\]

Acknowledgement

The first author (V.S.) was supported, in part, by RFBR grant 98-, EPSRC grant GR/L99036 and LMS(fSU) grant 5324. He is grateful to the Queen Mary & Westfield College (Univ. of London) for its hospitality. The second author (T.W.) thanks the Symbolic Computation Group at the University of Waterloo for its hospitality during the authors sabbatical in the fall of 1998.

References

[3] Shabat A.B., Yamilov R.I., On a complete list of integrable systems of the form \( \begin{align*}
  \dot{u}_t &= u_{xx} + f(u, v, u_x, v_x), \\
  \dot{v}_t &= v_{xx} + g(u, v, u_x, v_x).
\end{align*} \) Preprint BFAN, Ufa 28 p (1985).


